
Amazon Cognito
Developer Guide

Version Last Updated: 07/28/2016

Amazon Cognito Developer Guide

Amazon Cognito Developer Guide

Amazon Cognito: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

Amazon Cognito Developer Guide

Table of Contents
What is Amazon Cognito? .. 1

Are You a First-Time Amazon Cognito User? .. 1
Features of Amazon Cognito .. 1
Accessing Amazon Cognito .. 2
Pricing for Amazon Cognito .. 2

Getting Started ... 3
Setting Up Amazon Cognito ... 3

Sign Up for AWS .. 4
Creating a Pool in Amazon Cognito ... 4
Install the Mobile SDK ... 5

Step 1: Obtain AWS Credentials ... 5
Android .. 5
iOS - Objective-C .. 5
iOS - Swift ... 6
JavaScript .. 6
Unity ... 6
Xamarin ... 6

Step 2: Store and Sync Data .. 6
Android .. 6
iOS - Objective-C .. 7
iOS - Swift ... 7
JavaScript .. 7
Unity ... 8
Xamarin ... 8

Creating and Managing User Pools .. 10
Setting up User Pools .. 11

Creating a New User Pool Using the Console .. 11
Creating a New User Pool Using the AWS CLI .. 11
Creating a New User Pool Using the API .. 11
Console Quickstart .. 11
Step Through Settings ... 13

Setting up the Mobile SDK for Android ... 22
Dependencies ... 22
Key Concepts ... 22
Examples: Using the Mobile SDK for Android .. 23
Example: Handling Users Created Using the Android AdminCreateUser API 30
Tutorial: Integrating User Pools for Android Apps ... 31

Setting up the Mobile SDK for iOS .. 37
Installing the AWS Mobile SDK for iOS .. 37
Examples: Using the iOS SDK .. 38
Tutorial: Integrating User Pools for iOS Apps ... 44

Setting up the JavaScript SDK .. 48
Installing the SDK for JavaScript ... 48
Examples: Using the JavaScript SDK ... 49
Example: Handling Users Created Using the JavaScript AdminCreateUser API 59
Tutorial: Integrating User Pools for JavaScript Apps .. 60

Using Lambda Triggers .. 64
Creating an AWS Lambda Trigger for a Stage ... 65
AWS Lambda Trigger Request and Response Parameters ... 65
AWS Lambda Trigger Examples ... 72

Creating Users .. 79
Authentication Flow for Users Created by Administrators or Developers 80
Creating a New User in the AWS Management Console .. 80

Importing Users .. 82
Creating the CloudWatch Logs IAM Role .. 82

Version Last Updated: 07/28/2016
iv

Amazon Cognito Developer Guide

Creating the User Import .csv File .. 84
Creating and Running the User Import Job ... 86
Viewing Import Job Results .. 90
Requiring Imported Users to Reset Their Passwords .. 91

Signing Up and Confirming User Accounts .. 92
Overview of User Account Confirmation .. 92
Allowing Users to Sign Up and Confirm Themselves and Verify Email or Phone 93
Allowing Users to Sign Up in Your App but Confirming Them as Administrator 93
Confirming User Accounts Without Verifying Email or Phone Number 94
Verifying When Users Change Their Email or Phone Number ... 94
Confirmation and Verification Processes for User Accounts Created by Administrators or
Developers ... 94
Confirmation and Verification Processes for Imported User Accounts 94

Managing and Searching for Users .. 95
Viewing User Attributes .. 95
Searching User Attributes ... 95
Searching for Users Using the AWS Management Console .. 96
Searching for Users Using the ListUsers API ... 97
Examples of Using the ListUsers API .. 97

Authentication Flow ... 98
Custom Authentication Flow .. 98
Admin Authentication Flow ... 99

Integrating User Pools with Amazon Cognito Identity ... 100
Setting Up a User Pool .. 100
Configuring Your Identity Pool Using the AWS Management Console 100
Using Amazon Cognito Identity User Pools .. 101

Using Tokens .. 102
Structure of ID Tokens ... 103
Structure of Access Tokens .. 104
Using ID Tokens and Access Tokens in your Web APIs .. 104
Revoking All Tokens for a User ... 105

Using Federated Identities .. 106
Identity Pools .. 106

Authenticated and Unauthenticated Identities ... 107
User IAM Roles ... 107

Federated Identities Concepts ... 107
Authentication Flow .. 107
IAM Roles .. 112
Role Trust and Permissions .. 114

Getting Credentials .. 115
Android .. 115
iOS - Objective-C .. 116
iOS - Swift ... 117
JavaScript .. 119
Unity .. 119
Xamarin ... 120

Accessing AWS Services .. 121
Android .. 121
iOS - Objective-C .. 121
iOS - Swift ... 121
JavaScript .. 122
Unity .. 122
Xamarin ... 122

External Identity Providers .. 122
Facebook ... 123
Amazon ... 128
Google ... 133
Twitter/Digits ... 139

Version Last Updated: 07/28/2016
v

Amazon Cognito Developer Guide

Open ID Connect Providers .. 143
SAML Identity Provider ... 144

Developer Authenticated Identities ... 146
Understanding the Authentication Flow ... 146
Associate Developer Provider .. 147
Implement an Identity Provider .. 147
Updating the Logins Map (Android and iOS only) ... 153
Getting a Token (Server Side) ... 154
Connect to an Existing Social Identity (Android, iOS, Unity, and Xamarin) 155
Supporting Transition Between Providers .. 156

Switching Identities .. 159
Android .. 159
iOS - Objective-C .. 159
iOS - Swift ... 160
JavaScript .. 160
Unity .. 160
Xamarin ... 160

Amazon Cognito Sync .. 162
Synchronizing Data .. 162

Initializing the Amazon Cognito Sync Client ... 162
Understanding Datasets ... 164
Reading and Writing Data in Datasets .. 165
Synchronizing Local Data with the Sync Store ... 167

Handling Callbacks .. 169
Android .. 170
iOS - Objective-C .. 171
iOS - Swift ... 173
JavaScript .. 176
Unity .. 178
Xamarin ... 180

Push Sync .. 182
Android .. 182
iOS - Objective-C .. 184
iOS - Swift ... 187
JavaScript .. 190
Unity .. 190
Xamarin ... 190

Amazon Cognito Streams ... 190
Amazon Cognito Events ... 192

Logging Amazon Cognito API Calls with AWS CloudTrail ... 195
Amazon Cognito Information in CloudTrail ... 195
Understanding Amazon Cognito Log File Entries .. 196

Limits ... 198
Resource Permissions .. 200
Using the Amazon Cognito Console ... 203

What is the Amazon Cognito Console? ... 203
Delete an Identity Pool ... 203
Delete an Identity from an Identity Pool .. 203
Enable or edit authentication providers ... 204
Change the role associated with an identity type .. 204
Enable or disable unauthenticated identities .. 205
Managing Datasets in the Amazon Cognito Console ... 205
Create a Dataset for an Identity ... 205
Delete a Dataset Associated with an Identity ... 205
Set Up Amazon Cognito Streams .. 206
Bulk Publish Data .. 206
Enable Push Synchronization .. 206
Set Up Amazon Cognito Events .. 206

Version Last Updated: 07/28/2016
vi

Amazon Cognito Developer Guide

Document History .. 208
AWS Glossary .. 211

Version Last Updated: 07/28/2016
vii

Amazon Cognito Developer Guide
Are You a First-Time Amazon Cognito User?

What is Amazon Cognito?

Welcome to the Amazon Cognito Developer Guide. Amazon Cognito is a service that enables you to
create unique identities for your users and authenticate them using either your own user pools or by
using federated identity providers. You can save mobile user data, such as app preferences or game
state, in the AWS Cloud without writing any back-end code or managing any infrastructure.

Topics

• Are You a First-Time Amazon Cognito User? (p. 1)

• Features of Amazon Cognito (p. 1)

• Accessing Amazon Cognito (p. 2)

• Pricing for Amazon Cognito (p. 2)

Are You a First-Time Amazon Cognito User?
If you are a first-time user of Amazon Cognito, we recommend that you begin by reading the following
sections:

• Setting Up Amazon Cognito (p. 3)

• Identity Pools (p. 106)

• Setting up User Pools (p. 11)

Features of Amazon Cognito
Amazon Cognito Your User Pools: You can create and maintain a user directory and add sign-up
and sign-in to your mobile app or web application using user pools. User pools scale to hundreds of
millions of users and provide simple, secure, and low-cost options for you as a developer. For more
information, see Creating and Managing User Pools (p. 10).

Amazon Cognito Federated Identities: Amazon Cognito Identity enable you to create unique
identities for your users and authenticate them with federated identity providers. With a federated
identity, you can obtain temporary, limited-privilege AWS credentials to synchronize data with Amazon
Cognito Sync, or directly access other AWS services. Amazon Cognito Federated Identities support
federated identity providers—including Amazon, Facebook, Google, and SAML identity providers—as
well as unauthenticated identities. This feature also supports developer authenticated identities, which
let you register and authenticate users via your own back-end authentication process.

Version Last Updated: 07/28/2016
1

Amazon Cognito Developer Guide
Accessing Amazon Cognito

Amazon Cognito Sync: Amazon Cognito Sync is an AWS service and client library that enables
cross-device syncing of application-related user data. You can use it to synchronize user profile data
across mobile devices and the web without requiring your own back end. The client libraries cache
data locally so your app can read and write data regardless of device connectivity status. When
the device is online, you can synchronize data, and if you set up push sync, notify other devices
immediately that an update is available.

Accessing Amazon Cognito
Amazon Cognito can be accessed using the Amazon Cognito console, the AWS Command Line
Interface, and the Amazon Cognito APIs.

• The Amazon Cognito Your User Pool APIs are documented in the User Pools API Reference.

• The Amazon Cognito Federated Identities APIs are documented in the Amazon Cognito Identity API
Reference.

• The Amazon Cognito Sync APIs are documented in the Amazon Cognito Sync APIs.

Pricing for Amazon Cognito
For information on Amazon Cognito pricing, see https://aws.amazon.com/cognito/pricing/.

Version Last Updated: 07/28/2016
2

https://console.aws.amazon.com/cognito/home
http://docs.aws.amazon.com/cli/latest/reference/cognito-identity/index.html
http://docs.aws.amazon.com/cli/latest/reference/cognito-identity/index.html
http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/cognitosync/latest/APIReference/Welcome.html
http://aws.amazon.com/cognito/pricing/

Amazon Cognito Developer Guide
Setting Up Amazon Cognito

Getting Started

For information on getting started with Amazon Cognito user pools or federated identities, see the
following sections.

Topics

• Setting Up Amazon Cognito (p. 3)

• Step 1: Obtain AWS Credentials (p. 5)

• Step 2: Store and Sync Data (p. 6)

Setting Up Amazon Cognito
You can obtain an identity, get credentials, and start syncing data or interacting with other AWS
services from your app with a few steps.

Topics

Version Last Updated: 07/28/2016
3

Amazon Cognito Developer Guide
Sign Up for AWS

• Sign Up for AWS (p. 4)

• Creating a Pool in Amazon Cognito (p. 4)

• Install the Mobile SDK (p. 5)

Sign Up for AWS
To use Amazon Cognito, you need an AWS account. If you don't already have one, use the following
procedure to sign up:

To sign up for an AWS account

1. Open http://aws.amazon.com/, and then choose Create an AWS Account.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

Creating a Pool in Amazon Cognito
You must create a user pool or an identity pool to obtain AWS credentials using Amazon Cognito
Identity as your credential provider. Using a credential provider allows your application to access AWS
services without having to embed your private credentials in your application. This also allows you to
set permissions to control which AWS services your users have access to.

Amazon Cognito offers two options for managing user credentials: you can create Your User Pool
using Amazon Cognito Identity, or you can create an identity pool using Federated Identities, such as
a Facebook or Google login provider.

User pools use Amazon Cognito Identity to scale to hundreds of millions of users and provide simple,
secure, and low-cost options for you as a developer. For more information see Creating and Managing
User Pools (p. 10).

To create a new user pool for your application

1. Sign in to the Amazon Cognito console and choose Manage your User Pools.

2. Follow the steps in the wizard.

For more information, see Creating and Managing User Pools (p. 10).

Identity pools use external identity providers such as Facebook, Amazon.com, Google, or Twitter/
Digits. An identity pool is a store of user identity data specific to your account. Every identity pool has
configurable IAM roles that you can use to specify which AWS services your application’s users can
access. Typically, a developer will use one identity pool per application. For more information, see
Identity Pools (p. 106).

To create a new identity pool for your application

1. Sign in to the Amazon Cognito console, choose Manage Federated Identities, and then choose
Create new identity pool.

2. Type a name for your identity pool, select Enable access to unauthenticated identities, and
then choose Create Pool.

3. Choose Allow to create the two default roles associated with your identity pool–one for
unauthenticated users and one for authenticated users. These default roles provide your identity

Version Last Updated: 07/28/2016
4

http://aws.amazon.com/
https://console.aws.amazon.com/cognito/home
https://console.aws.amazon.com/cognito/home

Amazon Cognito Developer Guide
Install the Mobile SDK

pool access to Amazon Cognito Sync. You can modify the roles associated with your identity pool
in the IAM console. For additional instructions on working with the Amazon Cognito console, see
Using the Amazon Cognito Console (p. 203).

After you have set up your identity pool, see Amazon Cognito Identity: Using Federated
Identities (p. 106).

Install the Mobile SDK
To use Amazon Cognito, you must install and configure the AWS Mobile SDK. For more information,
see the following topics:

• Set Up the AWS Mobile SDK for Android

• Set Up the AWS Mobile SDK for iOS

• Set Up the AWS SDK for JavaScript

• Set Up the AWS Mobile SDK for Unity

• Set Up the AWS Mobile SDK for Xamarin

Step 1: Obtain AWS Credentials

Android
Initialize the credentials provider:

CognitoCachingCredentialsProvider credentialsProvider = new
 CognitoCachingCredentialsProvider(
 getApplicationContext(), // Context
 "IDENTITY_POOL_ID", // Identity Pool ID
 Regions.US_EAST_1 // Region
);

iOS - Objective-C
Import the Amazon Cognito header files:

#import <AWSCore/AWSCore.h>
#import <AWSCognito/AWSCognito.h>

Then initialize the credentials provider:

AWSCognitoCredentialsProvider *credentialsProvider =
 [[AWSCognitoCredentialsProvider alloc]
 initWithRegionType:AWSRegionUSEast1
 identityPoolId:@"IDENTITY_POOL_ID"];

AWSServiceConfiguration *configuration = [[AWSServiceConfiguration alloc]
 initWithRegion:AWSRegionUSEast1 credentialsProvider:credentialsProvider];

[AWSServiceManager defaultServiceManager].defaultServiceConfiguration =
 configuration;

Version Last Updated: 07/28/2016
5

http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/setup.html
http://docs.aws.amazon.com/mobile/sdkforios/developerguide/setup.html
http://docs.aws.amazon.com/AWSJavaScriptSDK/guide/
http://docs.aws.amazon.com/mobile/sdkforunity/developerguide/setup-unity.html
http://docs.aws.amazon.com/mobile/sdkforxamarin/developerguide/setup.html

Amazon Cognito Developer Guide
iOS - Swift

iOS - Swift
Import the Amazon Cognito header files:

#import <AWSCore/AWSCore.h>
#import <AWSCognito/AWSCognito.h>

Then initialize the credentials provider:

let credentialsProvider = AWSCognitoCredentialsProvider(regionType:
 AWSRegionType.USEast1, identityPoolId: "IDENTITY_POOL_ID")
let configuration = AWSServiceConfiguration(region: AWSRegionType.USEast1,
 credentialsProvider: credentialsProvider)
AWSServiceManager.defaultServiceManager().defaultServiceConfiguration =
 configuration

JavaScript
Initialize the credentials provider:

AWS.config.region = 'us-east-1';
AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'IDENTITY_POOL_ID',
});

Unity
Obtain AWS credentials:

CognitoAWSCredentials credentials = new CognitoAWSCredentials (
 "IDENTITY_POOL_ID", // Identity Pool ID
 RegionEndpoint.USEast1 // Region
);

Xamarin
Obtain AWS credentials:

CognitoAWSCredentials credentials = new CognitoAWSCredentials (
 "IDENTITY_POOL_ID", // Identity Pool ID
 RegionEndpoint.USEast1 // Region
);

Step 2: Store and Sync Data

Android
Initialize the Amazon Cognito Sync client:

Version Last Updated: 07/28/2016
6

Amazon Cognito Developer Guide
iOS - Objective-C

CognitoSyncManager syncClient = new CognitoSyncManager(
 getApplicationContext(), // Context
 Regions.US_EAST_1, // Region
 credentialsProvider
);

Then, create a dataset, add a record, and synchronize it with the server:

Dataset dataset = syncClient.openOrCreateDataset("myDataset");
dataset.put("myKey", "myValue");
dataset.synchronize(new DefaultSyncCallback() {
 @Override
 public void onSuccess(Dataset dataset, List newRecords) {
 //Your handler code here
 }
});

iOS - Objective-C
Initialize the Amazon Cognito Sync client:

AWSCognito *syncClient = [AWSCognito defaultCognito];

Then, create a dataset, add a record, and synchronize it with the server:

AWSCognitoDataset *dataset = [syncClient openOrCreateDataset:@"myDataset"];
[dataset setString:@"myValue" forKey:@"myKey"];
[[dataset synchronize] continueWithBlock:^id(AWSTask *task) {
 // Your handler code here
 return nil;
}];

iOS - Swift
Initialize the Amazon Cognito Sync client:

let syncClient = AWSCognito.defaultCognito()

Then, create a dataset, add a record, and synchronize it with the server:

let dataset = syncClient.openOrCreateDataset("myDataset")
dataset.setString("myValue", forKey: "myKey")
dataset.synchronize().continueWithBlock {(task: AWSTask!) -> AnyObject! in
 //Your handler code here
 return nil
}

JavaScript
Download the Amazon Cognito Sync Manager library from GitHub and include it in your project. Then,
initialize the Amazon Cognito Sync client:

Version Last Updated: 07/28/2016
7

https://github.com/aws/amazon-cognito-js/

Amazon Cognito Developer Guide
Unity

AWS.config.credentials.get(function(){
var syncClient = new AWS.CognitoSyncManager();
syncClient.openOrCreateDataset('myDataset', function(err, dataset) {
 dataset.put('myKey', 'myValue', function(err, record){
 dataset.synchronize({
 onSuccess: function(data, newRecords) {
 // Your handler code here
 }
 });
 });
 });
});

Unity
Initialize the Amazon Cognito Sync client:

CognitoSyncManager syncManager = new CognitoSyncManager (
 credentials,
 new AmazonCognitoSyncConfig {
 RegionEndpoint = RegionEndpoint.USEast1 // Region
 }
);

Then, create a dataset, add a record, and synchronize it with the server:

Dataset dataset = syncManager.OpenOrCreateDataset("myDataset");
dataset.OnSyncSuccess += SyncSuccessCallback;
dataset.Put("myKey", "myValue");
dataset.Synchronize();

void SyncSuccessCallback(object sender, SyncSuccessEvent e) {
 // Your handler code here
}

Xamarin
Initialize the Amazon Cognito Sync client:

Dataset dataset = syncManager.OpenOrCreateDataset("myDataset");
dataset.OnSyncSuccess += SyncSuccessCallback;
dataset.Put("myKey", "myValue");
dataset.Synchronize();

void SyncSuccessCallback(object sender, SyncSuccessEvent e) {
 // Your handler code here
}

Then, create a record in a dataset and synchronize it with the server:

Dataset dataset = syncManager.OpenOrCreateDataset("myDataset");
dataset.OnSyncSuccess += SyncSuccessCallback;
dataset.Put("myKey", "myValue");

Version Last Updated: 07/28/2016
8

Amazon Cognito Developer Guide
Xamarin

dataset.SynchronizeAsync();

void SyncSuccessCallback(object sender, SyncSuccessEvent e) {
 // Your handler code here
}

Version Last Updated: 07/28/2016
9

Amazon Cognito Developer Guide

Creating and Managing User Pools

Create and maintain a user directory and add sign-up and sign-in to your mobile app or web application
using user pools. User pools scale to hundreds of millions of users and are designed to provide simple,
secure, and low-cost options for you as a developer.

You can use user pools to add user registration and sign-in features to your apps. Instead of using
external identity providers (p. 122) such as Facebook, Google, or Twitter, you can use user pools
to let users register with or sign in to an app using an email address, phone number, or a user name.
You can also create custom registration fields and store that metadata in your user directory. You can
verify email addresses and phone numbers, recover passwords, and enable multi-factor authentication
(MFA) with just a few lines of code.

User pools are for mobile and web app developers who want to handle user registration and sign-
in directly in their apps. Previously, you needed to implement your own user directory to create user
accounts, store user profiles, and implement password recovery flows to support user registration and
sign-in.

User pools integrate easily with the existing Amazon Cognito functionality for anonymous and social
identities. In addition, a user can start as an anonymous user and then either sign in using a social
identity or using user pools to register and sign in using email, phone number, or user name.

You can get started with user pools by using the AWS Management Console, the AWS Command
Line Interface, or the APIs provided in one of our SDKs. For more information, see Setting up User
Pools (p. 11).

To learn more about user pool settings, such as attributes, policies, multi-factor authentication,
and triggers, see Getting Started: Step Through Amazon Cognito User Pool Settings in the AWS
Management Console (p. 13).

Topics

• Setting up User Pools (p. 11)

• Setting Up the AWS Mobile SDK for Android to Work with User Pools (p. 22)

• Setting Up the AWS Mobile SDK for iOS to Work with User Pools (p. 37)

• Setting up the AWS SDK for JavaScript (p. 48)

• Customizing User Pool Workflows by Using AWS Lambda Triggers (p. 64)

Version Last Updated: 07/28/2016
10

Amazon Cognito Developer Guide
Setting up User Pools

• Creating User Accounts in the AWS Management Console and with the Amazon Cognito User
Pools API (p. 79)

• Importing Users into Your User Pools (p. 82)

• Signing Up and Confirming User Accounts (p. 92)

• Managing and Searching for User Accounts in the AWS Management Console and in the Amazon
Cognito User Pools API (p. 95)

• Amazon Cognito User Pool Authentication Flow (p. 98)

• Integrating User Pools with Amazon Cognito Identity (p. 100)

• Using Tokens with User Pools (p. 102)

Setting up User Pools
To create a new user pool for Amazon Cognito, you can use the AWS Management Console, the AWS
CLI, or the Amazon Cognito API.

Creating a New User Pool Using the Console
You can create a new user pool by choosing Create new pool from the Amazon Cognito console and
following the instructions. For a step-by-step walkthrough, see Quickstart: Using the Console to Create
a New User Pool (p. 11).

Creating a New User Pool Using the AWS CLI
You can create a new user pool using the create-user-pool command in the AWS CLI.

For more information, see the Amazon Cognito Identity AWS CLI Reference.

Creating a New User Pool Using the API
You can create a new user pool using the CreateUserPool() API. For more information, see
CreateUserPool.

You can also use one of the following SDKs to create and manage new user pools:

• Setting Up the AWS Mobile SDK for Android to Work with User Pools (p. 22)

• Setting Up the AWS Mobile SDK for iOS to Work with User Pools (p. 37)

• Setting up the AWS SDK for JavaScript (p. 48)

Quickstart: Using the Console to Create a New User
Pool
The following procedure shows how to create a new user pool using the AWS Management Console.

To create a new user pool using the AWS Management Console

1. Open the Amazon Cognito console.

2. On the Amazon Cognito home page, choose Manage your User Pools.

Version Last Updated: 07/28/2016
11

http://docs.aws.amazon.com/cli/latest/reference/cognito-idp/create-user-pool.html
http://docs.aws.amazon.com/cli/latest/reference/cognito-idp/index.html
http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://console.aws.amazon.com/cognito

Amazon Cognito Developer Guide
Console Quickstart

3. Choose Create a User Pool to get started.

4. Specify a Pool name.

Pool names must be between one and 128 characters long. They can contain uppercase and
lowercase letters (a-z, A-Z), numbers (0-9), and the following special characters: + = , . @ and -.

5. Next, decide how you want to create your user pool.

To create a user pool with the default settings, choose Review defaults, and then choose Create
pool. You can still customize settings from the default values.

To step through each setting to make your choices, choose Step through settings and go to the
next step. For more information, see Getting Started: Step Through Amazon Cognito User Pool
Settings in the AWS Management Console (p. 13).

6. Review your user pool configuration in the next step, and then choose Create pool.

Version Last Updated: 07/28/2016
12

Amazon Cognito Developer Guide
Step Through Settings

Getting Started: Step Through Amazon Cognito
User Pool Settings in the AWS Management
Console
You can customize the user pool settings to the needs of your app. This topic describes each category
of settings and gives you detailed information about attributes, policies, email and phone verification,
multi-factor authentication, apps, triggers, and trusted devices.

Topics

• Specifying a User Pool Name (p. 13)

• Specifying User Pool Attribute Settings (p. 13)

• Specifying User Pool Policy Settings (p. 16)

• Specifying User Pool MFA Setting and Email and Phone Verification Settings (p. 17)

• Customizing SMS and Email Verification Messages and User Invitation Messages (p. 18)

• Specifying User Pool Device Tracking Settings (p. 20)

• Specifying User Pool App Settings (p. 20)

• Specifying User Pool Lambda Trigger Settings (p. 21)

• Reviewing Your User Pool Settings (p. 22)

Specifying a User Pool Name
You must specify a Pool Name for your Amazon Cognito user pool in the AWS Management Console.
The name cannot be changed after the user pool is created.

Pool names must be between one and 128 characters long. They can contain uppercase and
lowercase letters (a-z, A-Z), numbers (0-9), and the following special characters: + = , . @ and -.

Specifying User Pool Attribute Settings
You can add standard or custom attributes to your user pool definition in the AWS Management
Console. This topic describes those attributes in detail and gives you tips on how to set up your user
pool.

Attributes are pieces of information that help you identify individual users, such as name, email, and
phone number.

Not all information about your users should be stored in attributes. For example, user data that
changes frequently, such as usage statistics or game scores, should be kept in a separate data store,
such as Amazon DynamoDB.

Standard attributes

There are 16 standard attributes for all users in a user pool:

• address

• birthdate

• email

• family name

• gender

• given name

• locale

• middle name

Version Last Updated: 07/28/2016
13

Amazon Cognito Developer Guide
Step Through Settings

• name

• nickname

• phone number

• picture

• preferred username

• profile

• timezone

• website

These attributes will be available as optional attributes for all users. To make an attribute required,
select the check box next to the attribute.

Note
When a standard attribute is marked required, a user cannot register unless a value for the
attribute is provided. An attribute cannot be switched between required or not required after a
user pool has been created.

Standard attribute names are between one and 32 characters long.

Standard attribute values can be any string up to 2048 characters by default, but some attribute
values have formatting restrictions. Only email and phone can be verified. For more information about
attributes, see the OpenID Connect specification.

Note
In the specification, attributes are called members.

Here are some additional notes regarding some of the above fields.

email
Email address values can be verified.

phone
A phone number will automatically be required if multi-factor authentication (MFA) is enabled. For
more information, see Multi-factor Authentication (MFA) (p. 17).

Phone number values can be verified.

An administrator with proper AWS account permissions can change the user's phone number.

Important
Phone numbers must follow these formatting rules: A phone number must start with a
plus (+) sign, followed immediately by the country code. A phone number can only contain
the + sign and digits. You must remove any other characters from a phone number, such
as parentheses, spaces, or dashes (-) before submitting the value to the service. For
example, a United States-based phone number must follow this format: +14325551212.

preferred_username
The preferred_username cannot be selected as both required and as an alias. If
preferred_username is an alias, a user can update the attribute once he or she is confirmed.

To edit standard attributes

1. On the Attributes tab, choose the attributes you will require for user registration. If an attribute is
required and a user doesn't provide the required attribute, the user cannot register.

Important
You will not be able to change these requirements after the user pool is created. For more
information, see Specifying User Pool Attribute Settings (p. 13).

Version Last Updated: 07/28/2016
14

http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

Amazon Cognito Developer Guide
Step Through Settings

2. To create an alias for email, phone number, address, or preferred username, choose Alias. For
more information on aliases, see Using Aliases to Simplify User Sign-Up and Sign-In (p. 15).

3. Choose Save changes or move on to create Custom Attributes (p. 16).

Usernames and Preferred Usernames

The username value is a separate attribute and not the same as the name attribute. A username is
always required to register a user, and it cannot be changed after a user is created.

Note
Developers can use the preferred_username attribute to give users a username that they
can change. For more information, see Using Aliases to Simplify User Sign-Up and Sign-
In (p. 15).

You do not have to ask users to provide a username, and your app can create one for them if, for
example, you want users to register and sign in with an email address and password. For more
information, see Using Aliases to Simplify User Sign-Up and Sign-In (p. 15).

The username must be unique within a user pool. A username can be reused, but only after it has
been deleted and is no longer in use.

Using Aliases to Simplify User Sign-Up and Sign-In

By using aliases, you can customize your app's sign-in experience to suit the needs of your users.

By default, users sign in with their username and password. The username is a fixed value that users
cannot change. If you mark an attribute as an alias, your users can sign in using that attribute in place
of the username. The email address, phone number, and preferred username attributes can be marked
as aliases.

For example, if email and phone are selected as aliases for a user pool, users in that user pool can
sign in using their username, email address, or phone number along with their password.

If email is selected as an alias, a username cannot match a valid email format. Similarly, if phone
number is selected as an alias, a username that matches a valid phone number pattern will not be
accepted by the service for that user pool.

Note
Alias values must be unique in a user pool. If an alias is configured for an email address
or phone number, the value provided can be in a verified state in only one account. During
sign-up, if an email address or phone number is supplied as an alias from a different
account that has already been used, registration succeeds. Nevertheless, when a user
tries to confirm the account with this email (or phone number) and enters the valid code, an
AliasExistsException error is thrown. The error indicates to the user that an account
with this email (or phone number) already exists. At this point, the user can abandon the new
account creation and can try to reset the password for the old account. If the user chooses
to continue creating the new account, your app should call the ConfirmSignUp API with the
forceAliasCreation option. This moves the alias from the previous account to the newly
created account, and it also marks the attribute unverified in the previous account.

Phone numbers and email addresses only become active aliases for a user after the phone numbers
and email addresses have been verified. We therefore recommend that you choose automatic
verification of email addresses and phone numbers if you choose to use them as aliases.

The preferred_username attribute is included so that users can have the experience of changing their
username, when in fact the actual username value for a user is not changeable.

Version Last Updated: 07/28/2016
15

Amazon Cognito Developer Guide
Step Through Settings

If you want to allow users to have the experience of a changeable username, submit their new
"username" value as a preferred_username and choose preferred_username as an alias. Then they
can log in with the new value they have entered.

If preferred_username is selected as an alias, the value can be provided only when an account is
confirmed and it cannot be provided during registration.

Custom Attributes

You can add up to 25 custom attributes. These custom attributes can be defined as strings or numbers.
You can specify a minimum and/or maximum length for the custom attributes. However, the maximum
length can be no more than 2048 characters.

Custom attributes cannot be required.

Custom attribute names can be any string from one to 20 characters.

Custom attributes cannot be removed or changed after you create a user pool.

To add a custom attribute

1. If you want to add custom attributes, open the Do you want to use custom attributes? section
and choose Add custom attribute.

2. Provide properties for each custom attribute, such as the data Type (string or number), the Name,
Min length, and Max length.

3. If you want to allow the user to change the value of a custom attribute after the value has been
provided by the user, choose Mutable.

4. To add more attributes, choose Add another attribute.

5. Choose Save changes

Attribute Permissions and Scopes

You can set per-app read and write permissions for each user attribute. This gives you the ability to
control which applications can see and/or modify each of the attributes that are stored for your users.
For example, you could have a custom attribute that indicates whether a user is a paying customer or
not. Your apps could see this attribute but could not modify it directly. Instead, you would update this
attribute using an administrative tool or a background process. Permissions for user attributes can be
set from the Amazon Cognito console, API, or CLI.

Attributes can be marked as readable or writable for each app. This is true for both standard and
custom attributes. An app can read an attribute that is marked as readable and can write an attribute
that is marked as writable. If an app tries to update an attribute that is not writable, the app gets a
NotAuthorizedException exception. An app calling GetUser only receives the attributes that are
readable for that app. The ID token issued post-authentication only contains claims corresponding
to the readable attributes. Required attributes on a user pool are always writable. If you, using
CLI or the admin API, set a writable attribute and do not provide required attributes, then an
InvalidParameterException exception is thrown.

Specifying User Pool Policy Settings

You can specify the following password requirements in the AWS Management Console:

• Minimum length, which must be at least 6 characters but fewer than 99 characters

• Require numbers

• Require special character, which includes the following set:

^ $ * . [] { } () ? - “ ! @ # % & / , > < ‘ : ; | _ ~ `

Version Last Updated: 07/28/2016
16

http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_GetUser.html

Amazon Cognito Developer Guide
Step Through Settings

• Require uppercase letters

• Require lowercase letters

Tip
Specifying a minimum password length of at least 8 characters, as well as requiring
uppercase, numeric, and special characters, increases password complexity for users in your
user pool. The increased complexity helps protect users from the security risks of guessing
attacks or common-pattern attacks. It is generally considered a best practice to require users
to create strong passwords by using these options.

Specifying User Pool MFA Setting and Email and Phone
Verification Settings
In the Verifications tab, you can choose settings for multi-factor authentication (MFA) and for email
and phone verification.

Note
SMS for MFA or for verifying phone numbers is charged separately. (There is no charge
for sending verification codes to email addresses.) For information about Amazon SNS
pricing, see Worldwide SMS Pricing. For the current list of countries where SMS messaging is
available, see Supported Regions and Countries.

Multi-factor Authentication (MFA)

Multi-factor authentication (MFA) increases security for your app by requiring the user to receive and
enter an authorization code when signing in to your app, in addition to their username (or alias) and
password.

The following MFA settings are available:

• Required: All users must use MFA. This setting can only be specified when the user pool is created.

• Optional: Individual users can choose whether to enable MFA for their own user accounts.

• Off: MFA is disabled for all users.

When MFA is required on a user pool, the phone number attribute is automatically required.

When a user signs in with MFA turned on, he or she first enters and submits his or her username and
password. The client app will receive a getMFA response indicating where the authorization code was
sent. The client app should tell the user where to look for the code (such as which phone number the
code was sent to), provide a form for entering the code, and then submit the code to complete the sign-
in process. The destination is masked (e.g., only last 4 digits of the phone number are displayed).

The authorization code is valid for 3 minutes.

If a user no longer has access to his or her device where MFA codes are sent, he or she will need
to request help from your customer service office. An administrator with necessary AWS account
permissions can change the user's phone number. The administrator can use the console, the AWS
Command Line Interface, or the API.

Requiring Email and Phone Number Verification

Verification requires users to retrieve a code from their email or phone to confirm ownership.
Verification of a phone or email is necessary to automatically confirm users and enable recovery from
forgotten passwords.

Amazon Cognito can automatically verify email addresses and mobile phone numbers by sending a
verification code. For email addresses, the code is sent in an email message. For phone numbers, it is
sent in an SMS text message.

Version Last Updated: 07/28/2016
17

http://aws.amazon.com/sns/sms-pricing/
http://docs.aws.amazon.com/sns/latest/dg/sms_supported-countries.html

Amazon Cognito Developer Guide
Step Through Settings

The verification code is valid for 24 hours.

If verification is selected as required for email or phone, the verification code is automatically sent when
a user signs up.

Note
The ForgotPassword flow requires both of the following:

• Auto-verification must be enabled for email or phone numbers.

• The user's email or phone number must be verified.

Note
If a user signs up with both a phone number and an email address, and your user pool
settings require verification of both attributes, a verification code is sent via SMS to the phone.
The email address is not verified. Your app can call GetUser to see if an email address is
awaiting verification. If it is, the app should call GetUserAttributeVerificationCode to initiate the
email verification flow and then submit the verification code by calling VerifyUserAttribute.

Authorizing Amazon Cognito to Send SMS Messages on Your Behalf

To send SMS messages to your users on your behalf, Amazon Cognito needs your permission. To
grant that permission, you need to create an AWS Identity and Access Management (IAM) role.

To create an IAM role for SMS verification

1. In the Verifications tab of the Create a User Pool wizard, choose Phone number under Do you
want to require verification of emails or phone numbers?.

2. Choose Create role to create the role.

Customizing SMS and Email Verification Messages and User
Invitation Messages
In the Message Customizations tab, you can customize:

• Your SMS and email verification messages

• Your user invitation messages

• Your email address

Note
The SMS and email verification message templates will only appear if you have chosen to
require phone number and email verification in the Verifications tab.

Customizing SMS Verification Messages

You can customize the SMS message for phone number verifications by editing the template under the
Do you want to customize your SMS verification messages? heading.

Important
Your custom message must contain the {####} placeholder, which is replaced with the
verification code before the message is sent.

The maximum length for the message is 2048 UTF-8 characters, including the verification code.

Customizing Email Verification Messages

You can customize the email subject and message for email address verifications by editing the
template under the Do you want to customize your email verification messages? heading.

Version Last Updated: 07/28/2016
18

http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_GetUser.html
http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_GetUserAttributeVerificationCode.html
http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_VerifyUserAttribute.html

Amazon Cognito Developer Guide
Step Through Settings

Important
Your custom message must contain the {####} placeholder, which is replaced with the
verification code before the message is sent.

The maximum length for the message is 2048 UTF-8 characters, including the verification code.

Customizing User Invitation Messages

You can customize the user invitation message that Amazon Cognito sends to new users via SMS or
email by editing the templates under the Do you want to customize your user invitation messages?
heading.

Important
Your custom message must contain the {username} and {####} placeholders, which are
replaced with the user's username and password before the message is sent.

For SMS, the maximum length is 140 UTF-8 characters, including the verification code. For email, the
maximum length for the message is 2048 UTF-8 characters, including the verification code.

Customizing Your Email Address

By default the email messages that Amazon Cognito sends to users in your user pools come from no-
reply@verificationemail.com. You can specify custom FROM email addresses and REPLY-TO email
addresses to be used instead of no-reply@verificationemail.com.

To customize the FROM email address, choose Add custom FROM address and follow the
instructions to verify your Amazon Simple Email Service identity. Choose an AWS region and an
Amazon SES verified identity. Learn more about Verifying Email Addresses and Domains in Amazon
SES.

To customize the REPLY-TO email address, choose Add custom REPLY-TO address and enter a
valid email address.

Authorizing Amazon Cognito to Send Amazon SES Email on Your Behalf (from
a Custom FROM Email Address)

If you want to send email from a custom FROM email address instead of the default, Amazon Cognito
needs your permission to send email messages to your users on behalf of your Amazon SES verified
identity. To grant that permission, create a sending authorization policy. For more information, see
Using Sending Authorization with Amazon SES.

The following is an example of an Amazon SES sending authorization policy for Amazon Cognito User
Pools. For more examples, see Amazon SES Sending Authorization Policy Examples.

Note
In this example, the "Sid" value is an arbitrary string that uniquely identifies the statement. For
more information about policy syntax, see Amazon SES Sending Authorization Policies.

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Sid": "stmnt1234567891234",
 "Effect": "Allow",
 "Principal": {
 "Service": "cognito-idp.amazonaws.com"
 },
 "Action": [
 "ses:SendEmail",

Version Last Updated: 07/28/2016
19

http://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-addresses-and-domains.html
http://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-addresses-and-domains.html
http://docs.aws.amazon.com/ses/latest/DeveloperGuide/sending-authorization.html
http://docs.aws.amazon.com/ses/latest/DeveloperGuide/sending-authorization-policy-examples.html
http://docs.aws.amazon.com/ses/latest/DeveloperGuide/sending-authorization-policies.html

Amazon Cognito Developer Guide
Step Through Settings

 "ses:SendRawEmail"
],
 "Resource": "<your SES identity ARN>"
 }
]
}

Specifying User Pool Device Tracking Settings

As a way of providing additional security, you can track devices that users have logged in to. This topic
describes how to add device tracking to your Amazon Cognito user pool in the AWS Management
Console.

Setting Up Remembered Devices

With Amazon Cognito Your User Pools, you can choose to have Amazon Cognito remember devices
used to access your application and associate these remembered devices with your application's users
in a user pool. You can also choose to use remembered devices to stop sending codes to your users
when you have set up multi-factor authentication (MFA).

When setting up the remembered devices functionality through the Cognito console, you have three
options: Always, User Opt-In, and No.

• No (default) – Devices are not remembered.

• Always – Every device used by your application's users is remembered.

• User Opt-In – Your user's device is only remembered if that user opts to remember the device.

If either Always or User Opt-In is selected, a device identifier (key and secret) will be assigned to each
device the first time a user signs in with that device. This key will not be used for anything other than
identifying the device, but it will be tracked by the service.

If you select Always, Amazon Cognito will use the device identifier (key and secret) to authenticate the
device on every user sign-in with that device as part of the user authentication flow.

If you select User Opt-In, you will have the ability to remember devices only when your application's
users opt to do so. When a user signs in with a new device, the response from the request to initiate
tracking will indicate whether the user should be prompted about remembering their device. You must
create the user interface to prompt users. If the user opts to have the device remembered, the device
status will be updated with a 'remembered' state.

The AWS Mobile SDKs have additional APIs to see remembered devices (ListDevices, GetDevice),
mark a device as remembered or not remembered (UpdateDeviceStatus), and stop tracking a device
(ForgetDevice). In the REST API, there are additional administrator versions of these APIs that
have elevated privileges and work on any user. They have API names such as AdminListDevices,
AdminGetDevice, and so on. They are not exposed through the SDKs.

Using Remembered Devices to Suppress Multi Factor Authentication (MFA)

If you have selected either Always or User Opt-In, you also have the option of suppressing MFA
challenges on remembered devices for the users of your application. To use this feature, you must
enable MFA for your user pool. For more information, see Multi-factor Authentication (MFA) (p. 17).

Specifying User Pool App Settings

An app is an entity within a user pool that has permission to call unauthenticated APIs (APIs that do
not have an authenticated user), such as APIs to register, sign in, and handle forgotten passwords.
To call these APIs, you need an app client ID and an optional client secret. It is the developer's

Version Last Updated: 07/28/2016
20

http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_ListDevices.html
http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_GetDevice.html
http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_UpdateDeviceStatus.html
http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_ForgetDevice.html
http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_AdminListDevices.html
http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_AdminGetDevice.html

Amazon Cognito Developer Guide
Step Through Settings

responsibility to secure any app client IDs or secrets so that only authorized client apps can call these
unauthenticated APIs.

You can create multiple apps for a user pool, and generally an app corresponds to the platform of an
app. For example, you may create an app for a server-side application and a different Android app.
Each app will have its own app client ID.

When you create an app, you can optionally choose to create a secret for that app. If a secret is
created for the app, the secret must be provided to use the app. Browser-based applications written in
JavaScript may not need an app with a secret.

Secrets cannot be changed after an app is created. You can create a new app with a new secret if you
want to rotate the secret that you are using. You can also delete an app to block access from apps that
use that app client ID.

To create an app

1. On the Apps tab in Create a user pool, choose Add an app.

2. Specify an App name.

3. Specify the app's Refresh token expiration (days). The default value is 30. You can change it to
any value between 1 and 3650.

4. By default, Amazon Cognito User Pools will generate a client secret for your app. If you don't want
that to happen, clear Generate client secret.

5. If your app is a server app that requires developer credentials (using Signature Version 4) and
doesn't use Secure Remote Protocol (SRP) authentication, check Enable sign-in API for server-
based authentication (ADMIN_NO_SRP_AUTH) to enable server-side authentication. For more
information, see Admin Authentication Flow (p. 99).

6. By default, Amazon Cognito User Pools will allow your app to read all attributes and write only the
email attribute. If you want to set different permissions for your app, perform the following steps.

1. Choose Set attribute read and write permissions.

2. You can set read and write permissions in both of the following ways:

• By choosing one or more scopes. Each scope is a set of standard attributes. For more
information, see the list of standard OIDC scopes.

• By choosing individual standard or custom attributes.

7. Choose Create app.

8. If you want to create another app, choose Add an app.

9. Once you've created all the apps you want, choose Save changes.

You can change attribute permissions and scopes after you have created your user pool.

You can also use the CLI commands create-user-pool-client and update-user-pool-client to set and
change permissions on a user pool.

Specifying User Pool Lambda Trigger Settings
You can use AWS Lambda triggers to customize workflows and the user experience with Amazon
Cognito. You can create the following Lambda triggers: Pre sign-up, Pre authentication, Custom
message, Post authentication, Post confirmation, Define Auth Challenge, Create Auth
Challenge, and Verify Auth Challenge Response. For examples of each Lambda trigger, see
Customizing User Pool Workflows by Using AWS Lambda Triggers (p. 64).

Note
The Custom message AWS Lambda trigger is an advanced way to customize messages for
email and SMS. For more information, see Customizing User Pool Workflows by Using AWS
Lambda Triggers (p. 64).

Version Last Updated: 07/28/2016
21

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://srp.stanford.edu/
http://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims

Amazon Cognito Developer Guide
Setting up the Mobile SDK for Android

Reviewing Your User Pool Settings
Before you create your user pool, you can review the different settings and edit them in the AWS
Management Console. Amazon Cognito will validate the user pool settings and warn you if something
needs to be changed. For example:

Warning
This user pool does not have an IAM role defined to allow Amazon Cognito to send SMS
messages, so it will not be able to confirm phone numbers or for MFA after August 31, 2016.
You can define the IAM role by selecting a role on the Verifications panel.

If you see a message, follow the instructions to fix them before choosing Create pool.

Setting Up the AWS Mobile SDK for Android to
Work with User Pools

In this walkthrough, you will set up the SDK and learn more about the operations provided in the API.
You can use the APIs to register users, confirm user registration, authenticate users, and more.

The main classes available are:

• CognitoUserPool

• CognitoUser

• CognitoUserSession

• CognitoUserDetails

• CognitoUserAttributes

• CognitoUserSettings

Most of the methods require callback handlers. All functions that need to perform a network operation
or interact with the Amazon Cognito Identity Provider service have two different methods. One of the
methods runs the network operations in the current thread (e.g., foo()) for use in apps where these
methods are called in a background thread. The other method (which ends with InBackground, e.g.,
fooInBackground()) performs the task in the background but calls the callback methods in the
thread where fooInBackground() was invoked.

The Mobile SDK for Android caches the last successfully authenticated user and tokens locally on the
device (in SharedPreferences), and provides methods to get the last successfully authenticated
user.

Dependencies
Add the aws-android-sdk-core-2.2.8.jar as a dependency library to your project. If you already had a
Gradle dependency on the AWS core .jar from your project, comment it out.

Key Concepts
The following objects are key to understanding the user pool API.

CognitoUserPool
Represents an abstraction of the developer's user pool. Allows the following operations: register a
new user, create a new CognitoUser object.

Callback handlers used with the CognitoUserPool class: SignUpHandler, used to implement
this interface and pass as a parameter to the sign-in method.

Version Last Updated: 07/28/2016
22

Amazon Cognito Developer Guide
Examples: Using the Mobile SDK for Android

CognitoUser
Represents a single user, created from the CognitoUserPool class. This class offers all possible
operations on a user, including confirmSignUp, resendConfirmationCode, and many more.

CognitoUserSession
Encapsulates the Amazon Cognito tokens (ID tokens, access tokens, and refresh token). This
object provides methods to access and read ID and access tokens.

CognitoUserDetails
Encapsulates CognitoUserAttributes and CognitoUserSettings.

CognitoUserAttributes
Encapsulates all user attributes and provides methods to read and write attributes.

CognitoUserSettings
Encapsulates all user settings and provides methods to read and write attributes.

Examples of Using User Pools with the Mobile SDK
for Android
This topic provides code examples that perform basic tasks using the Mobile SDK for Android. Since
the SDK makes network calls, all API calls should be made from a non-activity thread.

Create a CognitoUserPool

CognitoUserPool userPool = new CognitoUserPool(context, userPoolId, clientId,
 clientSecret);

// user pool can also be created with client app configuration:
CognitoUserPool userPool = new CognitoUserPool(context, userPoolId, clientId,
 clientSecret, clientConfiguration);

Register a New User

// create a handler for registration
SignUpHandler handler = new SignUpHandler() {
 @Override
 public void onSuccess(CognitoUser user, CognitoUserCodeDeliveryDetails
 codeDeliveryDetails) {
 // If the sign up was successful, "user" is a CognitoUser object of
 the user who was signed up.
 // "codeDeliveryDetails" will contain details about where the
 confirmation codes will be delivered.
}

 @Override
 public void onFailure(Exception exception) {
 // Sign up failed, code check the exception for cause and perform
 remedial actions.
 }
}

Get the Cached User

CognitoUser user = userPool.getCurrentUser();

Version Last Updated: 07/28/2016
23

Amazon Cognito Developer Guide
Examples: Using the Mobile SDK for Android

Create a User Object with a UserId

CognitoUser user = userPool.getUser(userId);

Confirm a User

// create a callback handler for confirm
GenericHandler handler = new GenericHandler {

 @Override
 public void onSuccess() {
 // User was successfully confirmed!
 }
 @Override
 public void onFailure(Exception exception) {
 // Confirmation failed, probe exception for details
 }
}

user.confirmSignUp(code, handler);

Request a Confirmation Code

// create a callback handler for the confirmation code request
GenericHandler handler = new GenericHandler {

 @Override
 public void onSuccess() {
 // Confirmation code was successfully sent!
 }
 @Override
 public void onFailure(Exception exception) {
 // Confirmation code request failed, probe exception for details
 }
}

user.resendConfirmationCode(handler);

Forgot Password: Get Code to Set New Password

ForgotPasswordHandler handler = new ForgotPasswordHandler {
 @Override
 public void onSuccess() {
 // Forgot password process completed successfully, new password has
 been successfully set

 }

 @Override
 public void getResetCode(ForgotPasswordContinuation continuation) {
 // A code will be sent, use the "continuation" object to continue
 with the forgot password process

 // This will indicate where the code was sent

Version Last Updated: 07/28/2016
24

Amazon Cognito Developer Guide
Examples: Using the Mobile SDK for Android

 String codeSentHere = continuation.getParameters();

 // Code to get the code from the user - user dialogs etc.

 // If the program control has to exit this method, take the
 "continuation" object.
 // "continuation" is the only possible way to continue with the
 process

 // When the code is available

 // Set the new password
 continuation.setPassword(newPassword);

 // Set the code to verify
 continuation.setVerificationCode(code);

 // Let the forgot password process proceed
 continuation.continueTask();

 }

 /**
 * This is called for all fatal errors encountered during the password
 reset process
 * Probe {@exception} for cause of this failure.
 * @param exception
 */
 public void onFailure(Exception exception) {
 // Forgot password processing failed, probe the exception for cause
 }
}

user.forgotPassword(handler);

Authentication Handler: Get Tokens

// Implement authentication handler,
AuthenticationHandler handler = new AuthenticationHandler {
 @Override
 public void onSuccess(CognitoUserSession userSession) {
 // Authentication was successful, the "userSession" will have the
 current valid tokens
 // Time to do awesome stuff
 }

 @Override
 public void getAuthenticationDetails(final AuthenticationContinuation
 continuation, final String userID) {
 // User authentication details, userId and password are required to
 continue.
 // Use the "continuation" object to pass the user authentication
 details

 // After the user authentication details are available, wrap them in
 an AuthenticationDetails class

Version Last Updated: 07/28/2016
25

Amazon Cognito Developer Guide
Examples: Using the Mobile SDK for Android

 // Along with userId and password, parameters for user pools for
 Lambda can be passed here
 // The validation parameters "validationParameters" are passed in as
 a Map<String, String>
 AuthenticationDetails authDetails = new AuthenticationDetails(userId,
 password, validationParameters);

 // Now allow the authentication to continue
 continuation.setAuthenticationDetails(authDetails);
 continuation.continueTask();
 }

 @Override
 public void getMFACode(final MultiFactorAuthenticationContinuation
 continuation) {
 // Multi-factor authentication is required to authenticate
 // A code was sent to the user, use the code to continue with the
 authentication

 // Find where the code was sent to
 String codeSentHere = continuation.getParameter()[0];

 // When the verification code is available, continue to authenticate
 continuation.setMfaCode(code);
 continuation.continueTask();
 }

 @Override
 public void authenticationChallenge(final ChallengeContinuation
 continuation) {
 // A custom challenge has to be solved to authenticate

 // Set the challenge responses

 // Call continueTask() method to respond to the challenge and
 continue with authentication.
 }

 @Override
 public void onFailure(final Exception exception) {
 // Authentication failed, probe exception for the cause

 }
};
user.getSession(handler);

Get User Details

GetDetailsHandler handler = new GetDetailsHandler {
 @Override
 public void onSuccess(final CognitoUserDetails list) {
 // Successfully retrieved user details
 }

 @Override

Version Last Updated: 07/28/2016
26

Amazon Cognito Developer Guide
Examples: Using the Mobile SDK for Android

 public void onFailure(final Exception exception) {
 // Failed to retrieve the user details, probe exception for the cause
 }
};
user.getDetails(handler);

Get Attribute Verification Code

GenericHandler handler = new GenericHandler {

 @Override
 public void onSuccess() {
 // Attribute verification code was successfully sent!
 }

 @Override
 public void onFailure(Exception exception) {
 // Attribute verification code request failed, probe exception for
 details
 }
};
user.getAttibuteVerificationCode(attributeName, handler);

Verify Attribute

GenericHandler handler = new GenericHandler {

 @Override
 public void onSuccess() {
 // Attribute verification was successful!
 }

 @Override
 public void onFailure(Exception exception) {
 // Attribute verification failed, probe exception for details
 }
};
user.verifyAttribute(attributeName, code, handler);

Delete Attribute

GenericHandler handler = new GenericHandler {

 @Override
 public void onSuccess() {
 // Attribute deletion was successful!
 }

 @Override
 public void onFailure(Exception exception) {
 // Attribute deletion failed, probe exception for details
 }
};
user.deleteAttribute(attributeName, handler);

Version Last Updated: 07/28/2016
27

Amazon Cognito Developer Guide
Examples: Using the Mobile SDK for Android

Change Password

GenericHandler handler = new GenericHandler {

 @Override
 public void onSuccess() {
 // Password change was successful!
 }

 @Override
 public void onFailure(Exception exception) {
 // Password change failed, probe exception for details
 }
};
user.changePassword(oldPassword, newPassword, handler);

Change or Set User Settings

GenericHandler handler = new GenericHandler {

 @Override
 public void onSuccess() {
 // Successfully changed settings!
 }

 @Override
 public void onFailure(Exception exception) {
 // Change failed, probe exception for details
 }
};

// userSettings is an object of the type CognitoUserSettings,
CognitoUserSettings userSettings = new CognitoUserSettings();

// Set the user settings
userSettings.setSettings(settingName, settingValue);

// Now update the new settings to the Amazon Cognito Identity Provider
 Service
user.setUserSettings(userSettings, handler);

Delete User

GenericHandler handler = new GenericHandler {

 @Override
 public void onSuccess() {
 // Delete was successful!
 }

 @Override
 public void onFailure(Exception exception) {
 // Delete failed, probe exception for details
 }
};

Version Last Updated: 07/28/2016
28

Amazon Cognito Developer Guide
Examples: Using the Mobile SDK for Android

user.deleteUser(handler);

Sign Out User

// This has cleared all tokens and this user will have to go through the
 authentication process to get tokens.
user.signOut();

Get Access and ID Tokens from CognitoUserSession

// Session is an object of the type CognitoUserSession
String accessToken = session.getAccessToken().getJWT();
String idToken = session.getIdToken().getJWTToken();

List All Devices for a User

DevicesHandler devicesHandler = new DevicesHandler() {
 @Override
 public void onSuccess(List<CognitoDevice> devices) {
 // devices will contain a list of all remembered devices
 }

 @Override
 public void onFailure(Exception e) {
 // List devices failed, probe exception for details

 }
};
user.listDevicesInBackground(10, null, devicesHandler);

Remember a Device

GenericHandler handler = new GenericHandler {

 @Override
 public void onSuccess() {
 // Successful!
 }

 @Override
 public void onFailure(Exception exception) {
 // Failed, probe exception for details
 }
};
cognitoDevice.rememberThisDeviceInBackground(handler)

Do Not Remember a Device

GenericHandler handler = new GenericHandler {

 @Override
 public void onSuccess() {

Version Last Updated: 07/28/2016
29

Amazon Cognito Developer Guide
Example: Handling Users Created Using

the Android AdminCreateUser API

 // Successful!
 }

 @Override
 public void onFailure(Exception exception) {
 // Failed, probe exception for details
 }
};
cognitoDevice.doNotRememberThisDeviceInBackground(handler)

Example: Handling Users Created Using the
AdminCreateUser API in the Mobile SDK for Android
Amazon Cognito Your User Pools allows administrators to create new users and invite the users to
sign in. The user must set his or her password during the first sign-in. Also during the first sign-in, the
user must provide values for any required attributes that don't already have values.

The Mobile SDK for Android (version 2.3.2 and later) supports this feature. To support this feature
in your apps, you must implement the AuthenticationChallenge callback method. The user
authentication process for these users has not changed. However, after the initial password
verification, the SDK invokes the AuthenticationChallenge callback, which you can implement
to read the new password from the user. You can then allow the user to set required attributes and
change user attributes that were already set by the administrator.

The continuation object passed to the AuthenticationChallenge callback method is of
the type NewPasswordContinuation. The NewPasswordContinuation class is a child of
ChallengeContinuation. The ChallengeContinuation class provides easier access to the
challenge attributes.

When the AuthenticationChallenge callback is invoked during the user authentication process,
first check the Challenge name. The challenge name, NEW_PASSWORD_REQUIRED, indicates that the
user is trying to sign in for the first time after the administrator created the user's account. To get the
challenge name, call continuation.getChallengeName.

To complete the sign-in process, the user must set a new password and provide any missing
values for user attributes that were marked as required when the user pool was created or
updated. To get the list of all required attributes, call continuation.getRequiredAttributes.
To get the attributes and the values that were already set by the administrator, call
continuation.getCurrentUserAttributes.

Call continuation.setPassword and continuation.setUserAttribute, respectively, to set
the user's new password and attributes (including required attributes).

Call continuation.continueTask to complete the sign-in process.

@Override
 public void authenticationChallenge(final ChallengeContinuation
 continuation) {
 // Check the challenge name
 if("NEW_PASSWORD_REQUIRED".equals(continuation.getChallengeName()) {
 // A new user is trying to sign in for the first time after
 // admin has created the user’s account

 // Cast to NewPasswordContinuation for easier access to challenge
 parameters
 NewPasswordContinuation newPasswordContinuation = (NewPasswordContinuation)
 continuation;

Version Last Updated: 07/28/2016
30

Amazon Cognito Developer Guide
Tutorial: Integrating User Pools for Android Apps

 // Get the list of required parameters
 List<String> requiredAttributes =
 newPasswordContinuation.getRequiredAttributes()

 // Get the current user attributes
 Map<String, String> currUserAttributes =
 newPasswordContinuation.getCurrentUserAttributes();

 // Prompt user to set a new password and values for required attributes

 // Set new user password
 newPasswordContinuation.setPassword();

 // Set user attributes
 newPasswordContinuation.setUserAttribute(attributeName, attributeValue);

 // Set user attributes
 newPasswordContinuation.setUserAttribute(anotherAttribute,
 valueOfAnotherAttribute);

 // Allow the sign-in to complete
 newPasswordContinuation.continueTask();
 }
 // Set the challenge responses

 // Call continueTask() method to respond to the challenge and
 continue with authentication.
 }

Tutorial: Integrating User Pools for Android Apps
This tutorial outlines the key steps to integrate Amazon Cognito Your User Pools with an Android
application. For a complete sample application that shows how to use user pools in your application,
see the Amazon Cognito Your User Pools sample on the GitHub website.

Topics

• Step 1: Creating a User Pool for Your App by Using the Console (p. 31)

• Step 2: Creating a User Pool Object (p. 32)

• Step 3: Signing up Users for Your App (p. 32)

• Step 4: Confirming Users for Your App (p. 34)

• Step 5: Resolving Alias Value Conflicts (p. 34)

• Step 6: Signing Users in to Your App (p. 35)

• Step 7: Getting User Details (p. 36)

• Step 8: Getting Credentials to Access AWS Resources for an App User (p. 36)

• Step 9: Setting IAM Permissions to Enable Access to AWS Resources (p. 37)

Step 1: Creating a User Pool for Your App by Using the
Console

The following procedure describes how to create a user pool and use it in your app. This procedure
creates a pool ID, an app client ID, and an app client secret using default settings. For information on
customizing these settings, see Getting Started: Step Through Amazon Cognito User Pool Settings in
the AWS Management Console (p. 13).

Version Last Updated: 07/28/2016
31

https://github.com/awslabs/aws-sdk-android-samples/tree/master/AmazonCognitoYourUserPoolsDemo

Amazon Cognito Developer Guide
Tutorial: Integrating User Pools for Android Apps

To create a user pool for your app

1. Sign in to the Amazon Cognito console

2. Choose Manage your User Pools.

3. Choose Create a User Pool.

4. In Pool name, type a name for the pool and then choose Review defaults. This creates the pool
with the default settings.

5. From the left navigation pane, choose Attributes to specify which attributes are required and
which attributes to use as aliases. After you set the following attributes and after users in the pool
verify their email addresses, they can sign in with their usernames or email addresses.

a. For email, choose Required and Alias.

b. For phone number, choose Required and Alias.

c. For given name, choose Required.

6. From the left navigation pane, choose Policies to specify the password policy. For this tutorial,
use the default settings.

7. From the left navigation pane, choose Verifications. On this page, you can customize the
messages that are sent to the users in your pool to deliver verification codes. For this tutorial, use
the default settings.

8. From the left navigation pane, choose Apps and then choose Add an app. You can create
multiple app clients for a user pool and you can create one app per platform.

9. For App name, type a name for your app. Keep Generate client secret selected, and then
choose Set attribute read and write permissions. Select the attributes that require write
permissions. Required attributes always have write permissions.

10. Choose Create app and then choose Save changes.

11. From the left navigation bar, choose Review and then choose Create pool.

12. Note the pool ID, client ID, and the client secret. You can find the app client ID and app client
secret under Apps on the left navigation bar. To view the client secret, choose Show details.

Step 2: Creating a User Pool Object

To create a user pool object, you need the pool ID, client ID, and client secret. The following
example shows how to create a ClientConfiguration object and a CognitoUserPool object.
The CognitoUserPool object is the entry point for all interactions with your user pool from your
application. In the sample application the userPool is created in AppHelper.java.

ClientConfiguration clientConfiguration = new ClientConfiguration();

// Create a CognitoUserPool object to refer to your user pool
CognitoUserPool userPool = new CognitoUserPool(context, poolId, clientId,
 clientSecret, clientConfiguration);

Step 3: Signing up Users for Your App

The following steps describe how to sign up users for your app.

To sign up users for your app

1. Collect the following information from the user:

• user-id: This is used by the user to log in and must be unique within the pool.

• password: This is the user’s password.

Version Last Updated: 07/28/2016
32

https://console.aws.amazon.com/cognito/home

Amazon Cognito Developer Guide
Tutorial: Integrating User Pools for Android Apps

• user attributes: You must specify the required attributes (email, given name, and phone number)
for your pool.

2. Use the pool instance to sign up the user.

// Create a CognitoUserAttributes object and add user attributes
CognitoUserAttributes userAttributes = new CognitoUserAttributes();

// Add the user attributes. Attributes are added as key-value pairs
// Adding user's given name.
// Note that the key is "given_name" which is the OIDC claim for given
 name
userAttributes.addAttribute("given_name", userGivenName);

// Adding user's phone number
userAttributes.addAttribute("phone_number", phoneNumber);

// Adding user's email address
userAttributes.addAttribute("email", emailAddress);

3. Create a callback handler for sign-up. The onSuccess method is called when the sign-up is
successful.

SignUpHandler signupCallback = new SignUpHandler() {

 @Override
 public void onSuccess(CognitoUser cognitoUser, boolean userConfirmed,
 CognitoUserCodeDeliveryDetails cognitoUserCodeDeliveryDetails) {
 // Sign-up was successful

 // Check if this user (cognitoUser) needs to be confirmed
 if(!userConfirmed) {
 // This user must be confirmed and a confirmation code was
 sent to the user
 // cognitoUserCodeDeliveryDetails will indicate where the
 confirmation code was sent
 // Get the confirmation code from user
 }
 else {
 // The user has already been confirmed
 }
 }

 @Override
 public void onFailure(Exception exception) {
 // Sign-up failed, check exception for the cause
 }
};

4. Call the sign-up API.

userPool.signUpInBackground(userId, password, userAttributes, null,
 signupCallback);

Version Last Updated: 07/28/2016
33

Amazon Cognito Developer Guide
Tutorial: Integrating User Pools for Android Apps

Step 4: Confirming Users for Your App

Users may need to be confirmed after they sign up before they can sign in. Users can confirm through
email or phone. After a successful sign-up, if the user needs to be confirmed, a confirmation code is
sent to the user's email address or phone number. You can also automatically confirm a user after
sign-up by using Lambda triggers.

If a user provides an email address or phone number during sign-up, and you selected automatic
verification for your user pool, a confirmation code is sent to the user's phone number as a text
message or to the user's email address. The cognitoUserCodeDeliveryDetails object, which
was delivered to the callback handler after successful sign-up, indicates where this confirmation code
was sent. You can use this to let the user know how he or she will get confirmation code.

The following steps describe how to confirm user information before users can sign in to your app.

To confirm a user for your app

1. Create a callback handler to confirm the user. This callback handler is used by the SDK to
communicate the results of the confirmation API call.

 // Callback handler for confirmSignUp API
GenericHandler confirmationCallback = new GenericHandler() {

 @Override
 public void onSuccess() {
 // User was successfully confirmed
 }

 @Override
 public void onFailure(Exception exception) {
 // User confirmation failed. Check exception for the cause.
 }
};

2. When a new user is confirmed, the user's attribute through which the confirmation code was sent
(email address or phone number) is marked as verified. If this attribute is also set to be used as an
alias, then the user can sign in with that attribute (email address or phone number) instead of the
username.

Step 5: Resolving Alias Value Conflicts

Alias values must be unique in a pool. When you confirm a new user, if that user's email address
or phone number are used as an alias, and that email or phone number are already in use for an
existing user in the pool, you must resolve this conflict. To ensure uniqueness, you can do either of the
following:

• Set the forcedAliasCreation parameter to false. This resolves the conflict by allowing the user
confirmation to fail. The attribute remains verified for the existing user and continues to be an alias
for the existing user. The new user remains un-confirmed, as shown in the following example.

 // This will cause confirmation to fail if the user attribute has been
 verified for another user in the same pool
boolean forcedAliasCreation = false;

Version Last Updated: 07/28/2016
34

Amazon Cognito Developer Guide
Tutorial: Integrating User Pools for Android Apps

// Call API to confirm this user
cognitoUser.confirmSignUpInBackground(confirmationCode, forcedAliasCreation,
 confirmationCallback);

• Setting the forcedAliasCreation parameter to true resolves the conflict by marking the attribute
(email or phone number) as verified for the new user, and consequently marking it as not-verified for
the existing user. This attribute is no longer an alias for the existing user.

All confirmed users can sign in. On successful sign-in, access and ID tokens are returned. These
tokens are in a CognitoUserSession object.

Step 6: Signing Users in to Your App
To sign a user in to your app, you must first create a callback handler for authentication. The following
example shows how the SDK interacts with your application through this callback handler.

// Callback handler for the sign-in process
AuthenticationHandler authenticationHandler = new AuthenticationHandler() {

 @Override
 public void onSuccess(CognitoUserSession cognitoUserSession) {
 // Sign-in was successful, cognitoUserSession will contain tokens for
 the user
 }

 @Override
 public void getAuthenticationDetails(AuthenticationContinuation
 authenticationContinuation, String userId) {
 // The API needs user sign-in credentials to continue
 AuthenticationDetails authenticationDetails = new
 AuthenticationDetails(userId, password, null);

 // Pass the user sign-in credentials to the continuation

 authenticationContinuation.setAuthenticationDetails(authenticationDetails);

 // Allow the sign-in to continue
 authenticationContinuation.continueTask();
 }

 @Override
 public void getMFACode(MultiFactorAuthenticationContinuation
 multiFactorAuthenticationContinuation) {
 // Multi-factor authentication is required; get the verification code
 from user

 multiFactorAuthenticationContinuation.setMfaCode(mfaVerificationCode);
 // Allow the sign-in process to continue
 multiFactorAuthenticationContinuation.continueTask();
 }

 @Override
 public void onFailure(Exception exception) {
 // Sign-in failed, check exception for the cause
 }
};

Version Last Updated: 07/28/2016
35

Amazon Cognito Developer Guide
Tutorial: Integrating User Pools for Android Apps

// Sign in the user
cognitoUser.getSessionInBackground(authenticationHandler);

Step 7: Getting User Details

After authenticating a user, you can retrieve other information about the user in the user pool, as
shown in the following example.

// Implement callback handler for getting details
GetDetailsHandler getDetailsHandler = new GetDetailsHandler() {
 @Override
 public void onSuccess(CognitoUserDetails cognitoUserDetails) {
 // The user detail are in cognitoUserDetails
 }

 @Override
 public void onFailure(Exception exception) {
 // Fetch user details failed, check exception for the cause
 }
};

// Fetch the user details
cognitoUser.getDetailsInBackground(getDetailsHandler);

Step 8: Getting Credentials to Access AWS Resources for an
App User

To get credentials to access AWS resources for your user, first create an identity pool and associate
your user pool with that identity pool.

To get AWS credentials to access AWS resources

1. Sign in to the Amazon Cognito console.

2. Choose Manage Federated Identities.

3. Choose Create new identity pool. Type a name for your identity pool in Identity pool name.

4. Expand the Authentication providers section. On the Cognito tab, type the User Pool ID and
the App Client ID for the user pool you just created.

5. Choose Create Pool.

6. In your application code, add the ID tokens, received after successful authentication, to your
credentials provider, as follows.

 // Get id token from CognitoUserSession.
 String idToken = cognitoUserSession.getIdToken().getJWTToken();

 // Create a credentials provider, or use the existing provider.
 CognitoCachingCredentialsProvider credentialsProvider = new
 CognitoCachingCredentialsProvider(context, IDENTITY_POOL_ID, REGION);

 // Set up as a credentials provider.
 Map<String, String> logins = new HashMap<String, String>();
 logins.put("cognito-idp.us-east-1.amazonaws.com/us-east-1_123456678",
 cognitoUserSession.getIdToken().getJWTToken());

Version Last Updated: 07/28/2016
36

https://console.aws.amazon.com/cognito/home

Amazon Cognito Developer Guide
Setting up the Mobile SDK for iOS

 credentialsProvider.setLogins(logins);

7. Use the credentials provider to access AWS resources, such as a Amazon DynamoDB table, as
follows.

 AmazonDynamoDBClient ddbClient = new
 AmazonDynamoDBClient(credentialsProvider);

Step 9: Setting IAM Permissions to Enable Access to AWS
Resources

When you create an identity pool, Amazon Cognito creates two IAM roles: Cognito<identity pool
name>Auth_Role and Cognito<identity pool name>Unauth_Role. By default, these roles
only allow access to Amazon Cognito Identity and Amazon Cognito Sync. To allow your application
to access AWS services such as Amazon DynamoDB, you must attach the appropriate managed
policy to the role. For example, if your application needs to read and write to a DynamoDB database
you must attach the AmazonDynamoDBFullAccess managed policy to the role, as described in the
following procedure.

To set IAM permissions to enable access to AWS resources

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Choose the authenticated role for your policy from the list of roles, and then choose Attach
Policy.

3. Choose the required policy for the list of managed policies (AmazonDynamoDBFullAccess, for
example), and then choose Attach Policy.

You application can now perform create, read, update, and delete operations in DynamoDB.

Setting Up the AWS Mobile SDK for iOS to Work
with User Pools

Amazon Cognito Identity provides a Mobile SDK for iOS. The following topic provides set-up
instructions and examples for common tasks while working with user pools.

Installing the AWS Mobile SDK for iOS
The following procedure describes how to set up the SDK.

To set up the Mobile SDK for iOS

1. Follow the instructions here: Set Up the Mobile SDK for iOS.

2. If you are using CocoaPods, add pod AWSCognitoIdentityProvider to your PodSpec and
#import AWSCognitoIdentityProvider.h in the classes you want to use it in.

3. If you are using Frameworks, add AWSCognitoIdentityProvider.framework and #import
<AWSCognitoIdentityProvider/AWSCognitoIdentityProvider.h> into the classes you
want to use it.

Version Last Updated: 07/28/2016
37

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/mobile/sdkforios/developerguide/setup.html

Amazon Cognito Developer Guide
Examples: Using the iOS SDK

Examples: Using User Pools with the iOS SDK
This topic provides details about registering, confirming, and authenticating users, as well as getting
user attributes, when using user pools with the AWS Mobile SDK for iOS.

Creating an AWSCognitoIdentityUserPool Object

The following procedure describes how to create an AWSCognitoIdentityUserPool object to interact
with.

1. Set up your service config.

//setup service config
AWSServiceConfiguration *serviceConfiguration = [[AWSServiceConfiguration
 alloc] initWithRegion:AWSRegionUSEast1 credentialsProvider:nil];

2. Create a user pool configuration.

//create a pool
AWSCognitoIdentityUserPoolConfiguration *configuration
 = [[AWSCognitoIdentityUserPoolConfiguration alloc]
 initWithClientId:@"CLIENT_ID"

 clientSecret:@"CLIENT_SECRET"

 poolId:@"USER_POOL_ID"];
[AWSCognitoIdentityUserPool
 registerCognitoIdentityUserPoolWithConfiguration:serviceConfiguration
 userPoolConfiguration:configuration forKey:@"UserPool"];
AWSCognitoIdentityUserPool *pool = [AWSCognitoIdentityUserPool
 CognitoIdentityUserPoolForKey:@"UserPool"];

Example: Register a User

Use pool.signUp:password:userAttributes:validationData to register a user.

AWSCognitoIdentityUserAttributeType * phone =
 [AWSCognitoIdentityUserAttributeType new];
phone.name = @"phone_number";
//phone number must be prefixed by country code
phone.value = @"+15555555555";
AWSCognitoIdentityUserAttributeType * email =
 [AWSCognitoIdentityUserAttributeType new];
email.name = @"email";
email.value = @"email@mydomain.com";

//register the user
[[pool signUp:@"username" password:@"password"
 userAttributes:@[email,phone] validationData:nil] continueWithBlock:^id
 _Nullable(AWSTask<AWSCognitoIdentityUserPoolSignUpResponse *> * _Nonnull
 task) {
 dispatch_async(dispatch_get_main_queue(), ^{
 if(task.error){
 [[[UIAlertView alloc]
 initWithTitle:task.error.userInfo[@"__type"]

Version Last Updated: 07/28/2016
38

Amazon Cognito Developer Guide
Examples: Using the iOS SDK

 message:task.error.userInfo[@"message"]
 delegate:self
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil] show];
 }else {
 AWSCognitoIdentityUserPoolSignUpResponse * response =
 task.result;
 if(!response.userConfirmed){
 //need to confirm user using user.confirmUser:
 }
 }});
 return nil;
}];

Example: Get a User

You can either get a user by registering or by using one of these methods on the pool.

//get the last logged in user
[pool currentUser];

//get a user without a username
[pool getUser];

//get a user with a specific username
[pool getUser:@"username"];

Example: Sign in a User

There are two ways to sign in: explicitly or when credentials are needed via a delegate.

To sign in explicitly, use the following:

[user getSession:@"username" password:@"password" validationData:nil
 scopes:nil];

To implement the delegate, implement AWSCognitoIdentityInteractiveAuthenticationDelegate and
set the delegate on the pool:

pool.delegate = self;

In your implementation, write code to instantiate your authentication user interfaces if they weren't
created and display them.

//set up password authentication ui to retrieve username and password from
 the user
-(id) startPasswordAuthentication {
 //write code to instantiate your sign in ui if it wasn't created here
 dispatch_async(dispatch_get_main_queue(), ^{
 //write code to display your ui
 });

 //return your sign in ui which implements the
 AWSCognitoIdentityPasswordAuthentication protocol

Version Last Updated: 07/28/2016
39

Amazon Cognito Developer Guide
Examples: Using the iOS SDK

 return signInViewController;
}

//set up mfa ui to retrieve mfa code from end user
//this is optional and only necessary if you turn on multifactor
 authentication on your pool
-(id) startMultiFactorAuthentication {
 //write code to instantiate your multifactor authentication ui if it
 wasn’t created here
 dispatch_async(dispatch_get_main_queue(), ^{
 //write code to display your ui
 });

 //return your sign in ui which implements the
 AWSCognitoIdentityMultiFactorAuthentication protocol
 return mfaViewController;
}

//set up new password required ui to retrieve new password and any required
 user profile from end user
//this is optional and only necessary if you use the AdminCreateUser feature
 on the pool
-(id) startNewPasswordRequired {
 //write code to instantiate your new password required ui if it wasn’t
 created here
 dispatch_async(dispatch_get_main_queue(), ^{
 //write code to display your ui
 });

 //return your new password required ui which implements the
 AWSCognitoIdentityNewPasswordRequired protocol
 return newPasswordRequiredController;
}

In your password authentication UI, implement the AWSCognitoIdentityPasswordAuthentication
protocol.

-(void) getPasswordAuthenticationDetails:
 (AWSCognitoIdentityPasswordAuthenticationInput *)
 authenticationInput passwordAuthenticationCompletionSource:
 (AWSTaskCompletionSource<AWSCognitoIdentityPasswordAuthenticationDetails *>
 *) passwordAuthenticationCompletionSource {
 //keep a handle to the completion, you'll need it continue once you get
 the inputs from the end user
 self.passwordAuthenticationCompletion =
 passwordAuthenticationCompletionSource;
 //authenticationInput has details about the last known username if you
 need to use it
}

-(void) didCompletePasswordAuthenticationStepWithError:(NSError*) error {
 dispatch_async(dispatch_get_main_queue(), ^{
 //on completion, either display the error or dismiss the ui
 if(error){
 [[[UIAlertView alloc] initWithTitle:error.userInfo[@"__type"]
 message:error.userInfo[@"message"]
 delegate:nil
 cancelButtonTitle:nil

Version Last Updated: 07/28/2016
40

Amazon Cognito Developer Guide
Examples: Using the iOS SDK

 otherButtonTitles:@"Retry", nil] show];
 }else{
 [self dismissViewControllerAnimated:YES completion:nil];
 }
 });
}

When the end user has entered his or her username and password, set the result on
passwordAuthenticationCompletion.

self.passwordAuthenticationCompletion.result =
 [[AWSCognitoIdentityPasswordAuthenticationDetails alloc]
 initWithUsername:@"Username" password:@"Password"];

If you support multi-factor authentication (MFA), you can implement the
AWSCognitoIdentityMultiFactorAuthentication protocol.

-(void) getMultiFactorAuthenticationCode:
 (AWSCognitoIdentityMultifactorAuthenticationInput)authenticationInput
 mfaCodeCompletionSource: (AWSTaskCompletionSource<NSString > *)
 mfaCodeCompletionSource {
//keep a handle to the completion, you’ll need it continue once you get the
 inputs from the end user
self.mfaCodeCompletion = mfaCodeCompletionSource;
//authenticationInput has details about where the mfa code was sent if you
 need to display them in your ui
}
-(void) didCompleteMultifactorAuthenticationStepWithError:(NSError*) error {
dispatch_async(dispatch_get_main_queue(), ^{
//on completion, either display the error or dismiss the ui
if(error){
[[[UIAlertView alloc] initWithTitle:error.userInfo[@"__type"]
message:error.userInfo[@"message"]
delegate:nil
cancelButtonTitle:nil
otherButtonTitles:@"Retry", nil] show];
}else{
[self dismissViewControllerAnimated:YES completion:nil];
}
});
}

When the end user has entered his or her code, set the result on mfaCodeCompletion.

self.mfaCodeCompletion.result = @"mfaCodeFromUser";

If you support sign-up using AdminCreateUser, you can implement the
AWSCognitoIdentityNewPasswordRequired protocol.

-(void) getNewPasswordDetails: (AWSCognitoIdentityNewPasswordRequiredInput
 *) newPasswordRequiredInput
 newPasswordRequiredCompletionSource:
(AWSTaskCompletionSource<AWSCognitoIdentityNewPasswordRequiredDetails *> *)
 newPasswordRequiredCompletionSource {
 //keep a handle to the completion, you’ll need it continue once you get
 the inputs from the end user

Version Last Updated: 07/28/2016
41

Amazon Cognito Developer Guide
Examples: Using the iOS SDK

 self.newPasswordRequiredCompletionSource =
 newPasswordRequiredCompletionSource;
 //AWSCognitoIdentityNewPasswordRequiredDetails has details about the
 existing user attributes and required fields if you need to display them in
 your ui
}

-(void) didCompleteNewPasswordStepWithError:(NSError* _Nullable) error {
 dispatch_async(dispatch_get_main_queue(), ^{
 //on completion, either display the error or dismiss the ui
 if(error){
 [[[UIAlertView alloc]
 initWithTitle:error.userInfo[@"__type"]
 message:error.userInfo[@"message"]
 delegate:nil
 cancelButtonTitle:nil
 otherButtonTitles:@"Retry", nil] show];
 }else{
 [self dismissViewControllerAnimated:YES completion:nil];
 }
 });
}

When the end user has entered their proposed password and any required attributes, set the result on
newPasswordRequiredCompletionSource.

NSDictionary<NSString *, NSString *> *userAttributes = @{@"name":@"My new
 name", @"email":@"mynewemail@myemail.com"};
AWSCognitoIdentityNewPasswordRequiredDetails *details =
 [[AWSCognitoIdentityNewPasswordRequiredDetails alloc]
 initWithProposedPassword:@"newPassword" userAttributes:userAttributes];
self.newPasswordRequiredCompletionSource.result = details;

Example: Forgot Password

[[user forgotPassword] continueWithSuccessBlock:^id
 _Nullable(AWSTask<AWSCognitoIdentityUserForgotPasswordResponse*> * _Nonnull
 task) {
 //success
 return nil;
}];

[[user confirmForgotPassword:@"code" password:@"newPassword"]
 continueWithSuccessBlock:^id
 _Nullable(AWSTask<AWSCognitoIdentityUserConfirmForgotPasswordResponse *> *
 _Nonnull task) {
 //success
 return nil;
}];

Authenticated Example: Get User Attributes

[[user getDetails] continueWithBlock:^id
 _Nullable(AWSTask<AWSCognitoIdentityUserGetDetailsResponse *> * _Nonnull
 task) {

Version Last Updated: 07/28/2016
42

Amazon Cognito Developer Guide
Examples: Using the iOS SDK

 dispatch_async(dispatch_get_main_queue(), ^{
 if(task.error){
 [[[UIAlertView alloc]
 initWithTitle:task.error.userInfo[@"__type"]

 message:task.error.userInfo[@"message"]
 delegate:self
 cancelButtonTitle:nil
 otherButtonTitles:@"Retry", nil] show];
 }else{
 AWSCognitoIdentityUserGetDetailsResponse *response = task.result;
 //do something with response.userAttributes
 }
 });
 return nil;
}];

Authenticated Example: Verify User Attributes

[[user getAttributeVerificationCode:@"phone_number"]
 continueWithSuccessBlock:^id
 _Nullable(AWSTask<AWSCognitoIdentityUserGetAttributeVerificationCodeResponse
 *> * _Nonnull task) {
 //success
 return nil;
}];

[[user verifyAttribute:@"phone_number"code:@"code"]
 continueWithSuccessBlock:^id
 _Nullable(AWSTask<AWSCognitoIdentityUserVerifyAttributeResponse *> *
 _Nonnull task) {
 //success
 return nil;
}];

Authenticated Example: Update User Attributes

AWSCognitoIdentityUserAttributeType * attribute =
 [AWSCognitoIdentityUserAttributeType new];
attribute.name = @"name";
attribute.value = @"John User";
[[user updateAttributes:@[attribute]] continueWithSuccessBlock:^id
 _Nullable(AWSTask<AWSCognitoIdentityUserUpdateAttributesResponse *> *
 _Nonnull task) {
 //success
 return nil;
}];

Authenticated Example: Change Password

[[user changePassword:@"currentPassword"
 proposedPassword:@"proposedPassword"] continueWithSuccessBlock:^id
 _Nullable(AWSTask<AWSCognitoIdentityUserChangePasswordResponse *> * _Nonnull
 task) {
 //success

Version Last Updated: 07/28/2016
43

Amazon Cognito Developer Guide
Tutorial: Integrating User Pools for iOS Apps

 return nil;
}];

Authenticated Example: Turning on MFA

AWSCognitoIdentityUserSettings * settings = [AWSCognitoIdentityUserSettings
 new];
AWSCognitoIdentityUserMFAOption * mfaOptions =
 [AWSCognitoIdentityUserMFAOption new];
mfaOptions.attributeName = @"phone_number";
mfaOptions.deliveryMedium = AWSCognitoIdentityProviderDeliveryMediumTypeSms;
settings.mfaOptions = @[mfaOptions];
[[user setUserSettings:settings] continueWithSuccessBlock:^id
 _Nullable(AWSTask<AWSCognitoIdentityUserSetUserSettingsResponse *> *
 _Nonnull task) {
 //success
 return nil;
}];

Tutorial: Integrating User Pools for iOS Apps
This tutorial helps you get started with user pools.

Topics

• Step 1: Creating a User Pool for Your App by Using the Console (p. 44)

• Step 2: Creating a UserPool Object (p. 45)

• Step 3: Signing up Users for Your App (p. 45)

• Step 4: Confirming Users for Your App (p. 46)

• Step 5: Authenticating Users for Your App (p. 46)

• Step 6: Getting User Details (p. 47)

• Step 7: Getting Credentials to Access AWS Resources For an App User (p. 47)

• Next Steps (p. 48)

Step 1: Creating a User Pool for Your App by Using the
Console

The following procedure describes how to create a user pool and use it in your app. This procedure
creates a pool ID, an app client ID, and an app client secret using default settings. For information on
customizing these settings, see Getting Started: Step Through Amazon Cognito User Pool Settings in
the AWS Management Console (p. 13).

To create a user pool for your app

1. Sign in to the Amazon Cognito console

2. Choose Manage your User Pools.

3. Choose Create a User Pool.

4. In Pool name, type a name for the pool and then choose Review defaults.

5. From the left navigation bar, choose Apps and then choose Add an app. You can create multiple
app clients for a user pool and you can create one app per platform.

6. For App name, type a name for your app. Keep Generate client secret selected, choose Create
app, and then choose Save changes.

Version Last Updated: 07/28/2016
44

https://console.aws.amazon.com/cognito/home

Amazon Cognito Developer Guide
Tutorial: Integrating User Pools for iOS Apps

7. From the left navigation bar, choose Review and then choose Create pool.

8. Note the pool ID. You can find the app client ID and app client secret under Apps on the left
navigation bar.

Step 2: Creating a UserPool Object

You must create a UserPool object for your client app. Using the user pool ID, app client ID, and app
client secret you obtained in step 1, create an AWSCognitoIdentityUserPool.

 //setup service config
 AWSServiceConfiguration *serviceConfiguration = [[AWSServiceConfiguration
 alloc] initWithRegion:AWSRegionUSEast1 credentialsProvider:nil];

 //create a pool
 AWSCognitoIdentityUserPoolConfiguration *configuration
 = [[AWSCognitoIdentityUserPoolConfiguration alloc]
 initWithClientId:@"CLIENT_ID"

 clientSecret:@"CLIENT_SECRET"

 poolId:@"USER_POOL_ID"];
 [AWSCognitoIdentityUserPool
 registerCognitoIdentityUserPoolWithConfiguration:serviceConfiguration
 userPoolConfiguration:configuration forKey:@"UserPool"];
 AWSCognitoIdentityUserPool *pool = [AWSCognitoIdentityUserPool
 CognitoIdentityUserPoolForKey:@"UserPool"];

Step 3: Signing up Users for Your App

To sign up users, your app's registration UI must collect information from users and call signUp.

NSMutableArray * attributes = [NSMutableArray new];

//Set user attributes by retrieving them from your UI. These values are
 hardcoded for this example
AWSCognitoIdentityUserAttributeType * phone =
 [AWSCognitoIdentityUserAttributeType new];

phone.name = @"phone_number";
//All phone numbers require +country code as a prefix
phone.value = @"+15555555555";

AWSCognitoIdentityUserAttributeType * email =
 [AWSCognitoIdentityUserAttributeType new];
email.name = @"email";
email.value = @"email@mydomain.com";

[attributes addObject:phone];
[attributes addObject:email];

//set username and password by retrieving them from your UI. They are
 hardcoded in this example.
AWSCognitoIdentityUser *user = [[pool signUp:@"username" password:@"password"
 userAttributes:attributes validationData:nil] continueWithSuccessBlock:^id
 _Nullable(AWSTask<AWSCognitoIdentityUser *> * _Nonnull task) {
 NSLog(@"Successfully registered user: %@",task.result.username);

Version Last Updated: 07/28/2016
45

Amazon Cognito Developer Guide
Tutorial: Integrating User Pools for iOS Apps

 return nil;
}];

Step 4: Confirming Users for Your App
Users are confirmed when either their email address or phone number is verified. In the following
example, users receive a verification code at their email address or via SMS on their mobile phone
during the registration flow and must input the code to complete sign-up. After obtaining the verification
code from your end user, call confirmSignUp.

//replace VERIFICATION_CODE with the value the user inputs
[[user confirmSignUp:@"VERIFICATION_CODE"] continueWithSuccessBlock:^id
 _Nullable(AWSTask<AWSCognitoIdentityProviderConfirmSignUpResponse *> *
 _Nonnull task) {
 NSLog(@"Successfully confirmed user: %@",user.username);
 return nil;
}];

Step 5: Authenticating Users for Your App
To authenticate the confirmed user, implement the
AWSCognitoIdentityInteractiveAuthenticationDelegate protocol, as shown next, and set
the delegate for the pool. This protocol manages your custom login UI and accepts username and
password information from your end user. The protocol's methods are only invoked if the user has
never authenticated, if the user has signed out, or if the user's refresh token (which is valid for 30 days)
has expired.

 //This code goes in your AppDelegate
 pool.delegate = self;

 -(id<AWSCognitoIdentityPasswordAuthentication>)
 startPasswordAuthentication{
 //implement code to instantiate and display login UI here
 //return something that implements the
 AWSCognitoIdentityPasswordAuthentication protocol
 return loginUI;
 }

 //This code goes in your Login UI
 -(void) getPasswordAuthenticationDetails:
 (AWSCognitoIdentityPasswordAuthenticationInput *) authenticationInput
 passwordAuthenticationCompletionSource: (AWSTaskCompletionSource *)
 passwordAuthenticationCompletionSource {
 //using inputs from login UI create an
 AWSCognitoIdentityPasswordAuthenticationDetails object.
 //These values are hardcoded for this example.
 AWSCognitoIdentityPasswordAuthenticationDetails * result
 = [[AWSCognitoIdentityPasswordAuthenticationDetails alloc]
 initWithUsername:@"USERNAME" password:@"PASSWORD"];
 //set the result to continue the sign-in process
 passwordAuthenticationDetails.result = result;
 };

 -(void) didCompletePasswordAuthenticationStepWithError:(NSError*) error {
 dispatch_async(dispatch_get_main_queue(), ^{
 //present error to end user
 if(error){

Version Last Updated: 07/28/2016
46

Amazon Cognito Developer Guide
Tutorial: Integrating User Pools for iOS Apps

 [[[UIAlertView alloc] initWithTitle:error.userInfo[@"__type"]
 message:error.userInfo[@"message"]
 delegate:nil
 cancelButtonTitle:nil
 otherButtonTitles:@"Ok", nil] show];
 }else{
 //dismiss view controller
 [self dismissViewControllerAnimated:YES completion:nil];
 }
 });
}

Step 6: Getting User Details

To get user details, call getDetails, as shown next.

[[user getDetails] continueWithSuccessBlock:^id
 _Nullable(AWSTask<AWSCognitoIdentityUserGetDetailsResponse *> * _Nonnull
 task) {
 AWSCognitoIdentityUserGetDetailsResponse *response = task.result;
 for (AWSCognitoIdentityUserAttributeType *attribute in
 response.userAttributes) {
 //print the user attributes
 NSLog(@"Attribute: %@ Value: %@", attribute.name, attribute.value);
 }
 return nil;
 }];

Step 7: Getting Credentials to Access AWS Resources For an
App User

To get credentials to access AWS resources for your user, first associate your user
pool with an identity pool, and then provide AWSCognitoIdentityUserPool to your
AWSCognitoCredentialsProvider. The following procedure describes how to get an identity pool.

To create an identity pool

1. Sign in to the Amazon Cognito console.

2. Choose Manage Federated Identities.

3. Choose Create new identity pool. Type a name for your identity pool in Identity pool name.

4. Expand the Authentication providers section.

5. On the Cognito tab, specify your User Pool ID and App Client ID.

6. After you configure the identity pool association, get AWS credentials into your app by providing
AWSCognitoIdentityUserPool to your AWSCognitoCredentialsProvider.

AWSCognitoCredentialsProvider *credentialsProvider
 = [[AWSCognitoCredentialsProvider alloc]
 initWithRegionType:AWSRegionUSEast1 identityPoolId:@"IDENTITY_POOL_ID"
 identityProviderManager:pool];
AWSServiceConfiguration *defaultServiceConfiguration =
 [[AWSServiceConfiguration alloc] initWithRegion:AWSRegionUSEast1
 credentialsProvider:credentialsProvider];
AWSServiceManager.defaultServiceManager.defaultServiceConfiguration =
 defaultServiceConfiguration;

Version Last Updated: 07/28/2016
47

https://console.aws.amazon.com/cognito/home

Amazon Cognito Developer Guide
Setting up the JavaScript SDK

Next Steps

For a working example demonstrating the functionality described in this tutorial, see the Objective-C
sample on Github.

Setting up the AWS SDK for JavaScript
Amazon Cognito provides a JavaScript SDK. The following topic provides setup instructions and
examples for common tasks while working with user pools.

The Amazon Cognito Identity SDK for JavaScript allows JavaScript-enabled applications to register
users, authenticate users, view, delete, and update user attributes within the Amazon Cognito Identity
service. Other functionality includes password changes for authenticated users and initiating and
completing forgotten password flows for unauthenticated users.

Installing the SDK for JavaScript
The following procedure describes how to set up the SDK for JavaScript.

To set up the SDK for JavaScript

1. Create an app for your user pool.

Important
The Generate client secret box must be unchecked because the JavaScript SDK
doesn't support apps that have a client secret.

2. Download and include the Amazon Cognito AWS SDK for JavaScript from GitHub.

Note
The Amazon Cognito AWS SDK for JavaScript is a variant of the AWS SDK for
JavaScript named AWSCognito instead of AWS. It references only the Amazon Cognito
Identity service. Similar to the SDK for JavaScript, the config.credentials property needs
to be populated (either globally for AWSCognito or per-service).

3. Configure your credentials per the instructions in Getting Your Credentials.

4. Download and include the Amazon Cognito Identity SDK for JavaScript from GitHub.

5. Include the JavaScript BN library for BigInteger computations from here.

6. Include the Stanford JavaScript Crypto Library from here.

Note
By default the Stanford JavaScript Crypto Library doesn't include the bytes codec that the
SDK uses, so it must be included with the --with-codecBytes option when configuring
the Stanford JavaScript Crypto Library (see sjlc README/INSTALL). It is known to build
on Linux and requires a Java runtime.

7. Include Moment.js, a JavaScript library used for date manipulation from here.

8. Optionally, you can download and include the AWS SDK for JavaScript to use other AWS
services. The SDK is necessary if you wish to use AWS.CognitoIdentityCredentials.

 <script src="/path/to/jsbn.js"></script>
 <script src="/path/to/jsbn2.js"></script>
 <script src="/path/to/sjcl.js"></script>
 <script src="/path/to/moment.min.js"></script>
 <script src="/path/to/aws-cognito-sdk.min.js"></script>
 <script src="/path/to/amazon-cognito-identity.min.js"></script>
 <script src="/path/to/aws-sdk-2.3.5.js"></script>

Version Last Updated: 07/28/2016
48

https://github.com/awslabs/aws-sdk-ios-samples/tree/master/CognitoYourUserPools-Sample/Objective-C
https://github.com/awslabs/aws-sdk-ios-samples/tree/master/CognitoYourUserPools-Sample/Objective-C
https://raw.githubusercontent.com/aws/amazon-cognito-identity-js/master/dist/aws-cognito-sdk.min.js
http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-your-credentials.html
https://raw.githubusercontent.com/aws/amazon-cognito-identity-js/master/dist/amazon-cognito-identity.min.js
http://www-cs-students.stanford.edu/%7Etjw/jsbn/
https://github.com/bitwiseshiftleft/sjcl
https://github.com/bitwiseshiftleft/sjcl
http://momentjs.com/
http://aws.amazon.com/sdk-for-browser/

Amazon Cognito Developer Guide
Examples: Using the JavaScript SDK

Network Configuration

The Amazon Cognito Identity JavaScript SDK will make requests to the following endpoints:

• For Amazon Cognito Identity request handling: "https://cognito-idp.us-east-1.amazonaws.com"

Note
This endpoint may change based on the region in which you created your Identity Pool.

For most frameworks, you can whitelist all AWS endpoints with "*.amazonaws.com" to whitelist the
domain.

Random Numbers

To authenticate with Amazon Cognito Identity, the client app needs to generate a random number as
part of the Secure Remote Password (SRP) protocol. For more information, see The Stanford SRP
Homepage.

Note
In some Web browsers such as Internet Explorer 8, Internet Explorer 9, or versions
4.2 and 4.3 of the Android Browser, a default paranoia of 0 passed to the Stanford
JavaScript Crypto Library generates weak random numbers that might compromise
client data. You should be careful when using the library in such an environment and call
the sjcl.random.startCollectors() function before starting the Amazon Cognito
authentication flow to collect the entropy required for random number generation. Paranoia
level should also be increased. See discussion here.

Paranoia levels can be set through the constructor:

 var poolData = {
 UserPoolId : 'us-east-1_TcoKGbf7n',
 ClientId : '4pe2usejqcdmhi0a25jp4b5sh3',
 Paranoia : 7
 };

 var userPool = new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUserPool(poolData);
 var userData = {
 Username : 'username',
 Pool : userPool
 };

 var cognitoUser = new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUser(userData);

You can also call the object method:

userPool.setParanoia(7);

Examples: Using the JavaScript SDK

Register a User with the Application

You need to create a CognitoUserPool object by providing a UserPoolId and a ClientId, and
registering by using a username, password, attribute list, and validation data.

Version Last Updated: 07/28/2016
49

http://srp.stanford.edu/
http://srp.stanford.edu/
https://github.com/bitwiseshiftleft/sjcl/issues/77

Amazon Cognito Developer Guide
Examples: Using the JavaScript SDK

 AWSCognito.config.region = 'us-east-1'; //This is required to derive the
 endpoint

 var poolData = { UserPoolId : 'us-east-1_TcoKGbf7n',
 ClientId : '4pe2usejqcdmhi0a25jp4b5sh3'
 };
 var userPool = new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUserPool(poolData);

 var attributeList = [];

 var dataEmail = {
 Name : 'email',
 Value : 'email@mydomain.com'
 };
 var dataPhoneNumber = {
 Name : 'phone_number',
 Value : '+15555555555'
 };
 var attributeEmail = new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUserAttribute(dataEmail);
 var attributePhoneNumber = new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUserAttribute(dataPhoneNumber);

 attributeList.push(attributeEmail);
 attributeList.push(attributePhoneNumber);

 userPool.signUp('username', 'password', attributeList, null,
 function(err, result){
 if (err) {
 alert(err);
 return;
 }
 cognitoUser = result.user;
 console.log('user name is ' + cognitoUser.getUsername());
 });

Delete an Authenticated User

 cognitoUser.deleteUser(function(err, result) {
 if (err) {
 alert(err);
 return;
 }
 console.log('call result: ' + result);
 });

Retrieve the current user from local storage

 var data = { UserPoolId : 'us-east-1_Iqc12345',
 ClientId : '12345du353sm7khjj1q'
 };
 var userPool = new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUserPool(data);
 var cognitoUser = userPool.getCurrentUser();

Version Last Updated: 07/28/2016
50

Amazon Cognito Developer Guide
Examples: Using the JavaScript SDK

 if (cognitoUser != null) {
 cognitoUser.getSession(function(err, session) {
 if (err) {
 alert(err);
 return;
 }
 console.log('session validity: ' + session.isValid());
 });
 }

Authenticate a User

The following example authenticates a user and establishes a user session with the Amazon Cognito
service.

 var authenticationData = {
 Username : 'username',
 Password : 'password',
 };
 var authenticationDetails = new
 AWSCognito.CognitoIdentityServiceProvider.AuthenticationDetails(authenticationData);
 var poolData = { UserPoolId : 'us-east-1_TcoKGbf7n',
 ClientId : '4pe2usejqcdmhi0a25jp4b5sh3'
 };
 var userPool = new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUserPool(poolData);
 var userData = {
 Username : 'username',
 Pool : userPool
 };
 var cognitoUser = new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUser(userData);
 cognitoUser.authenticateUser(authenticationDetails, {
 onSuccess: function (result) {
 console.log('access token + ' +
 result.getAccessToken().getJwtToken());
 /*Use the idToken for Logins Map when Federating User Pools with
 Cognito Identity or when passing through an Authorization Header to an API
 Gateway Authorizer*/
 console.log('idToken + ' + result.idToken.jwtToken);
 },

 onFailure: function(err) {
 alert(err);
 },

 });

Enable MFA for a User Pool

The following example enables multi-factor authentication (MFA) for a user pool that has an optional
MFA setting for an authenticated user.

 cognitoUser.enableMFA(function(err, result) {
 if (err) {
 alert(err);

Version Last Updated: 07/28/2016
51

Amazon Cognito Developer Guide
Examples: Using the JavaScript SDK

 return;
 }
 console.log('call result: ' + result);
 });

Disable MFA for a User Pool

The following example disables multi-factor authentication (MFA) for a user pool that has an optional
MFA setting for an authenticated user.

 cognitoUser.disableMFA(function(err, result) {
 if (err) {
 alert(err);
 return;
 }
 console.log('call result: ' + result);
 });

Create a User Pool Object

 var data = { UserPoolId : 'us-east-1_q2Y6U8uuY',
 ClientId : '224kjog47ojnt9ov773erj7qn9'
 };

 var userPool = new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUserPool(data);

Sign Up For the Application

 var attribute = {
 Name : 'phone_number',
 Value : '+12245657777'
 };

 var attribute = new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUserAttribute(attribute);
 var attributeList = [];

 attributeList.push(attribute);
 var cognitoUser;

 userPool.signUp('username', 'password', attributeList, null,
 function(err, result) {
 if (err) {
 alert(err);
 return;
 }
 cognitoUser = result.user;
 });

Sign in With MFA Enabled

 var userData = {

Version Last Updated: 07/28/2016
52

Amazon Cognito Developer Guide
Examples: Using the JavaScript SDK

 Username : 'username',
 Pool : userPool
 };

 cognitoUser = new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUser(userData);

 var authenticationData = {
 Username : 'username',
 Password : 'password',
 };

 var authenticationDetails = new
 AWSCognito.CognitoIdentityServiceProvider.AuthenticationDetails(authenticationData);

 cognitoUser.authenticateUser(authenticationDetails, {
 onSuccess: function (result) {
 alert('authentication successful!')
 },

 onFailure: function(err) {
 alert(err);
 },

 mfaRequired: function(codeDeliveryDetails) {
 var verificationCode = prompt('Please input verification
 code' ,'');
 cognitoUser.sendMFACode(verificationCode, this);
 }

 });

Sign Out

 if (cognitoUser != null) {
 cognitoUser.signOut();
 }

Update Attributes

The following example updates user attributes for an authenticated user.

 var attributeList = [];
 var attribute = {
 Name : 'nickname',
 Value : 'joe'
 };
 var attribute = new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUserAttribute(attribute);
 attributeList.push(attribute);

 cognitoUser.updateAttributes(attributeList, function(err, result) {
 if (err) {
 alert(err);
 return;
 }

Version Last Updated: 07/28/2016
53

Amazon Cognito Developer Guide
Examples: Using the JavaScript SDK

 console.log('call result: ' + result);
 });

Delete Attributes
The following example deletes user attributes for an authenticated user.

 var attributeList = [];
 attributeList.push('nickname');

 cognitoUser.deleteAttributes(attributeList, function(err, result) {
 if (err) {
 alert(err);
 return;
 }
 console.log('call result: ' + result);
 });

Verify an Attribute
The following example verifies user attributes for an authenticated user.

 cognitoUser.getAttributeVerificationCode('email', {
 onSuccess: function (result) {
 console.log('call result: ' + result);
 },
 onFailure: function(err) {
 alert(err);
 },
 inputVerificationCode() {
 var verificationCode = prompt('Please input verification code:
 ' ,'');
 cognitoUser.verifyAttribute('email', verificationCode, this);
 }
 });

Retrieve Attributes
The following example retrieves user attributes for an authenticated user.

 cognitoUser.getUserAttributes(function(err, result) {
 if (err) {
 alert(err);
 return;
 }
 for (i = 0; i < result.length; i++) {
 console.log('attribute ' + result[i].getName() + ' has value ' +
 result[i].getValue());
 }
 });

Resend a Confirmation Code
The following example resends a confirmation code via SMS that confirms the registration for an
unauthenticated user.

Version Last Updated: 07/28/2016
54

Amazon Cognito Developer Guide
Examples: Using the JavaScript SDK

 cognitoUser.resendConfirmationCode(function(err, result) {
 if (err) {
 alert(err);
 return;
 }
 alert(result);
 });

Confirm Registration

 cognitoUser.confirmRegistration('123456', function(err, result) {
 if (err) {
 alert(err);
 return;
 }
 alert(result);
 });

Change a Password

The following example changes the current password of an authenticated user.

 cognitoUser.changePassword('oldPassword', 'newPassword', function(err,
 result) {
 if (err) {
 alert(err);
 return;
 }
 console.log('call result: ' + result);
 });

Forgotten Password Flow

The following example starts and completes a forgotten password flow for an unauthenticated user.

 cognitoUser.forgotPassword({
 onSuccess: function (result) {
 console.log('call result: ' + result);
 },
 onFailure: function(err) {
 alert(err);
 },
 inputVerificationCode() {
 var verificationCode = prompt('Please input verification code
 ' ,'');
 var newPassword = prompt('Enter new password ' ,'');
 cognitoUser.confirmPassword(verificationCode, newPassword, this);
 }
 });

Delete a User

The following example deletes an authenticated user.

Version Last Updated: 07/28/2016
55

Amazon Cognito Developer Guide
Examples: Using the JavaScript SDK

 cognitoUser.deleteUser(function(err, result) {
 if (err) {
 alert(err);
 return;
 }
 console.log('call result: ' + result);
 });

Sign a User Out
The following example signs the current user out from the application.

 cognitoUser.signOut();

Sign a User Out Globally
The following example signs the current user out globally by invalidating all issued tokens.

 cognitoUser.globalSignOut();

Get the Current User
The following example retrieves the current user from local storage.

 var data = {
 UserPoolId : '...', // Your user pool id here
 ClientId : '...' // Your client id here
 };
 var userPool = new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUserPool(data);
 var cognitoUser = userPool.getCurrentUser();

 if (cognitoUser != null) {
 cognitoUser.getSession(function(err, session) {
 if (err) {
 alert(err);
 return;
 }
 console.log('session validity: ' + session.isValid());

 AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId : '...' // your identity pool id here
 Logins : {
 // Change the key below according to the specific region
 your user pool is in.
 'cognito-idp.<region>.amazonaws.com/
<YOUR_USER_POOL_ID>' : session.getIdToken().getJwtToken()
 }
 });

 // Instantiate aws sdk service objects now that the credentials
 have been updated.
 // example: var s3 = new AWS.S3();

Version Last Updated: 07/28/2016
56

Amazon Cognito Developer Guide
Examples: Using the JavaScript SDK

 });
 }

Integrate a User in a User Pool with an Identity Pool

The following example integrates the current user in a user pool with the specified identity pool.

 var cognitoUser = userPool.getCurrentUser();

 if (cognitoUser != null) {
 cognitoUser.getSession(function(err, result) {
 if (result) {
 console.log('You are now logged in.');

 // Add the User's Id Token to the Cognito credentials login
 map.
 AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'YOUR_IDENTITY_POOL_ID',
 Logins: {
 'cognito-idp.<region" .amazonaws.com/
<YOUR_USER_POOL_ID" ': result.getIdToken().getJwtToken()
 }
 });
 }
 });
 }
 //call refresh method in order to authenticate user and get new temp
 credentials
 AWS.config.credentials.refresh((error) => {
 if (error) {
 console.error(error);
 } else {
 console.log('Successfully logged!');
 }
 });

List All Devices for a User

The following example lists all devices for an authenticated user. In this case, we need to pass a limit
on the number of devices retrieved at a time. In the first call, the pagination token should be null. The
first call returns a pagination token, which should be passed in all subsequent calls.

 cognitoUser.listDevices(limit, paginationToken, {
 onSuccess: function (result) {
 console.log('call result: ' + result);
 },
 onFailure: function(err) {
 alert(err);
 }
 });

List Device Information

The following example lists information about the current device.

Version Last Updated: 07/28/2016
57

Amazon Cognito Developer Guide
Examples: Using the JavaScript SDK

 cognitoUser.listDevices(limit, paginationToken, {
 onSuccess: function (result) {
 console.log('call result: ' + result);
 },
 onFailure: function(err) {
 alert(err);
 }
 });

Remember a Device

The following example remembers a device.

 cognitoUser.setDeviceStatusRemembered({
 onSuccess: function (result) {
 console.log('call result: ' + result);
 },
 onFailure: function(err) {
 alert(err);
 }
 });

Do Not Remember a Device

The following example marks a device as not to be remembered.

 cognitoUser.setDeviceStatusNotRemembered({
 onSuccess: function (result) {
 console.log('call result: ' + result);
 },
 onFailure: function(err) {
 alert(err);
 }
 });

Do Not Remember a Device

The following example forgets the current device.

 cognitoUser.forgetDevice({
 onSuccess: function (result) {
 console.log('call result: ' + result);
 },
 onFailure: function(err) {
 alert(err);
 }
 });

Confirm a Registered, Unauthenticated User

The following example confirms a registered, unauthenticated user using a confirmation code received
via SMS message.

Version Last Updated: 07/28/2016
58

Amazon Cognito Developer Guide
Example: Handling Users Created Using

the JavaScript AdminCreateUser API

 var poolData = {
 UserPoolId : 'us-east-1_TcoKGbf7n',
 ClientId : '4pe2usejqcdmhi0a25jp4b5sh3'
 };

 var userPool = new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUserPool(poolData);
 var userData = {
 Username : 'username',
 Pool : userPool
 };

 var cognitoUser = new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUser(userData);
 cognitoUser.confirmRegistration('123456', true, function(err, result) {
 if (err) {
 alert(err);
 return;
 }
 console.log('call result: ' + result);
 });

Sign Out from the Application

 cognitoUser.signOut();

Example: Authenticate and Set a New Password for
a User Created Using the AdminCreateUser API
To support the user sign-in flow for users created by administrators (using the AdminCreateUser
API), implement a newPasswordRequired callback method to set the new password when
the user first signs in. The user first attempts to sign in with the temporary password he or she
received in the invitation and the SDK calls your newPasswordRequired callback. Gather
the required inputs, including the new password and required attributes, and then call the
completeNewPasswordChallenge method, which is available in the CognitoUser class.

The newPasswordRequired callback takes two parameters: userAttributes and
requiredAttributes.

cognitoUser.authenticateUser(authenticationDetails, {
 onSuccess: function (result) {
 // User authentication was successful
 },

 onFailure: function(err) {
 // User authentication was not successful
 },

 mfaRequired: function(codeDeliveryDetails) {
 // MFA is required to complete user authentication.
 // Get the code from user and call
 cognitoUser.sendMFACode(mfaCode, this)
 },

Version Last Updated: 07/28/2016
59

Amazon Cognito Developer Guide
Tutorial: Integrating User Pools for JavaScript Apps

 newPasswordRequired: function(userAttributes, requiredAttributes) {
 // User was signed up by an admin and must provide new
 // password and required attributes, if any, to complete
 // authentication.

 // userAttributes: object, which is the user's current profile.
 It will list all attributes that are associated with the user.
 // Required attributes according to schema, which don’t have any
 values yet, will have blank values.
 // requiredAttributes: list of attributes that must be set by the
 user along with new password to complete the sign-in.

 // Get these details and call
 // newPassword: password that user has given
 // attributesData: object with key as attribute name and value
 that the user has given.
 cognitoUser.completeNewPasswordChallenge(newPassword,
 attributesData, this)
 }
 });

Tutorial: Integrating User Pools for JavaScript Apps
This tutorial helps you use the Amazon Cognito SDK for JavaScript to get started with user pools.

Topics

• Step 1: Creating a User Pool for your JavaScript App by Using the Console (p. 60)

• Step 2: Creating a User Pool Object in Your App (p. 61)

• Step 3: Signing up Users for Your App (p. 61)

• Step 4: Confirming Users for Your App (p. 62)

• Step 5: Signing Users in to Your App (p. 62)

• Step 6: Getting User Details (p. 63)

• Step 7: Getting Credentials to Access AWS Resources for an App User (p. 64)

• Next Steps (p. 64)

Step 1: Creating a User Pool for your JavaScript App by Using
the Console

The following procedure describes how to create a user pool and use it in your app. This procedure
creates a user pool ID and an app client ID. For information on customizing these settings, see
Getting Started: Step Through Amazon Cognito User Pool Settings in the AWS Management
Console (p. 13).

To create a user pool for your app

1. Sign in to the Amazon Cognito console

2. Choose Manage your User Pools.

3. Choose Create a User Pool.

4. In Pool name, type a name for the pool and then choose Review defaults. This creates the pool
with the default settings.

Version Last Updated: 07/28/2016
60

https://console.aws.amazon.com/cognito/home

Amazon Cognito Developer Guide
Tutorial: Integrating User Pools for JavaScript Apps

5. From the left navigation pane, choose Attributes to specify which attributes are required and
which attributes to use as aliases. After you set the following attributes and after users in the pool
verify their email addresses, they can sign in with their usernames or email addresses.

a. For email, choose Required and Alias.

b. For phone number, choose Required and Alias.

c. For given name, choose Required.

d. Choose Save changes.

6. From the left navigation pane, choose Policies to specify the password policy. For this tutorial,
use the default settings.

7. From the left navigation pane, choose Verifications. On this page, you can customize the
messages that are sent to the users in your pool to deliver verification codes. For this tutorial, use
the default settings.

8. From the left navigation pane, choose Apps and then choose Add an app. You can create
multiple app clients for a user pool and you can create one app per platform.

9. For App name, type a name for your app. Ensure that the Generate client secret check box is
cleared, and then choose Set attribute read and write permissions. Select the attributes that
require write permissions. Required attributes always have write permissions.

Note
The Amazon Cognito JavaScript SDK does not use the app client secret. If you configure
your user pool app client with an app client secret, the SDK will throw exceptions.

10. Choose Create app and then choose Save changes.

11. From the left navigation bar, choose Review and then choose Create pool.

12. Note the pool ID and client ID. You can find the app client ID under Apps on the left navigation
bar.

Step 2: Creating a User Pool Object in Your App
To create a user pool object, you need the user pool ID and client ID that you obtained in step 1. The
following example shows how to create a CognitoUserPool object. The JavaScript SDK does not
support the app client secret. If you configure your user pool app client with an app client secret, the
SDK will throw exceptions.

AWSCognito.config.region = 'us-east-1';

var poolData = {
 UserPoolId : '...', // your user pool id here
 ClientId : '...' // your app client id here
};
var userPool =
new AWSCognito.CognitoIdentityServiceProvider.CognitoUserPool(poolData);
var userData = {
 Username : '...', // your username here
 Pool : userPool
};

Step 3: Signing up Users for Your App
After creating a user pool object, users can be signed up for the app. The user's information can be
collected through the web UI and used to populate CognitoUserAttribute objects that are passed
in the signUp call.

var attributeList = [];

Version Last Updated: 07/28/2016
61

Amazon Cognito Developer Guide
Tutorial: Integrating User Pools for JavaScript Apps

var dataEmail = {
 Name : 'email',
 Value : '...' // your email here
};
var dataPhoneNumber = {
 Name : 'phone_number',
 Value : '...' // your phone number here with +country code and no
 delimiters in front
};
var attributeEmail =
new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUserAttribute(dataEmail);
var attributePhoneNumber =
new
 AWSCognito.CognitoIdentityServiceProvider.CognitoUserAttribute(dataPhoneNumber);

attributeList.push(attributeEmail);
attributeList.push(attributePhoneNumber);

var cognitoUser;
userPool.signUp('username', 'password', attributeList, null, function(err,
 result){
 if (err) {
 alert(err);
 return;
 }
 cognitoUser = result.user;
 console.log('user name is ' + cognitoUser.getUsername());
});

Step 4: Confirming Users for Your App

After signing up, the user confirms the sign-up by entering a code sent either through SMS or email
(based on the user pool settings). Alternatively, you can use a PreSignUp AWS Lambda function
to automatically confirm your users. To confirm sign-up, you must collect the code ('123456' in the
following example) received by the user and use it as follows.

 cognitoUser.confirmRegistration('123456', true, function(err, result) {
 if (err) {
 alert(err);
 return;
 }
 console.log('call result: ' + result);
});

The registration code can be resent by using the resendConfirmationCode method of a
cognitoUser object. This is an unauthenticated call and only the username, the client ID, and the
user pool information are needed.

Step 5: Signing Users in to Your App

A confirmed user signs in to obtain a session. The session contains an ID token that contains user
claims, an access token that is used internally to perform authenticated calls, and a refresh token that
is used internally to refresh the session after it expires each hour. For more information about tokens,
see Using Tokens with User Pools (p. 102). If sign in is successful, the onSuccess callback is called.

Version Last Updated: 07/28/2016
62

Amazon Cognito Developer Guide
Tutorial: Integrating User Pools for JavaScript Apps

If sign in fails, the onFailure callback is called. If sign in requires MFA, the mfaRequired callback is
called and you must invoke sendMFACode on the cognitoUser object. The verification code that is
received must be passed and the user is then signed in.

 var authenticationData = {
 Username : '...', // your username here
 Password : '...', // your password here
 };
 var authenticationDetails =
new
 AWSCognito.CognitoIdentityServiceProvider.AuthenticationDetails(authenticationData);

 var cognitoUser =
new AWSCognito.CognitoIdentityServiceProvider.CognitoUser(userData);
 cognitoUser.authenticateUser(authenticationDetails, {
 onSuccess: function (result) {
 console.log('access token + ' +
 result.getAccessToken().getJwtToken());
 },

 onFailure: function(err) {
 alert(err);
 },
 mfaRequired: function(codeDeliveryDetails) {
 var verificationCode = prompt('Please input verification
 code' ,'');
 cognitoUser.sendMFACode(verificationCode, this);
 }
 });

Step 6: Getting User Details

After signing in, a user can perform authorized operations such as retrieving user attributes, verifying
user attributes (such as an unverified email address), deleting user attributes, updating user attributes,
changing the user password, and deleting the user account. For user pools that have an optional MFA
setting, users can enable or disable MFA for themselves. Signing out from the app clears the local user
session and the user must sign in again to establish a new session.

If users forget their passwords, they can initiate a forgotten password flow. A code will be sent to the
user. The user uses this code together with a new password to complete the flow. The relevant call is
forgotPassword on a cognitoUser object that is unauthenticated; the relevant callbacks are shown
in the following example.

cognitoUser.forgotPassword({
 onSuccess: function (result) {
 console.log('call result: ' + result);
 },
 onFailure: function(err) {
 alert(err);
 },
 inputVerificationCode() {
 var verificationCode = prompt('Please input verification code ' ,'');
 var newPassword = prompt('Enter new password ' ,'');
 cognitoUser.confirmPassword(verificationCode, newPassword, this);
 }
});

Version Last Updated: 07/28/2016
63

Amazon Cognito Developer Guide
Using Lambda Triggers

Step 7: Getting Credentials to Access AWS Resources for an
App User
If you want to work with other AWS services, you must first create an Amazon Cognito identity
pool (p. 106). After you create this identity pool, you can get AWS credentials by passing the identity
pool ID and the ID token (which were obtained earlier) when signing in the user. The following example
shows how to populate IdentityPoolId and pass the ID token through the Logins map.

 AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'us-east-1:XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX',
 Logins: {
 'cognito-idp.us-east-1.amazonaws.com/us-east-1_XXXXXXXXX':
 result.getIdToken().getJwtToken()
 }
});

AWS.config.credentials.get(function(err){
 if (err) {
 alert(err);
 }
});

Next Steps
For more examples and an overview of the code used in this tutorial, see the Amazon Cognito Identity
JavaScript GitHub repository.

Customizing User Pool Workflows by Using AWS
Lambda Triggers

You can use AWS Lambda triggers with Amazon Cognito user pools to customize workflows at various
stages in the lifecycle of a user account. For more information, see the AWS Lambda Developer Guide.
The following Lambda triggers are available for you to implement:

Pre sign-up
Amazon Cognito invokes this trigger when a user attempts to register (sign up), allowing you to
perform custom validation to accept or deny the registration request.

Pre authentication
Amazon Cognito invokes this trigger when a user attempts to authenticate (sign in), allowing you to
perform custom validation to accept or deny the authentication request.

Custom message
Amazon Cognito invokes this trigger before sending an email or phone verification message or a
multi-factor authentication (MFA) code, allowing you to customize the message dynamically. Static
custom messages can be edited in the Message Customizations tab of the Amazon Cognito
console.

Post authentication
Amazon Cognito invokes this trigger after authenticating a user, allowing you to add custom logic.

Post confirmation
Amazon Cognito invokes this trigger after a user is confirmed, allowing you to send custom
messages or to add custom logic. For example, you may want to implement analytics in your app.

Define Auth Challenge
Amazon Cognito invokes this trigger to initiate the custom authentication flow.

Version Last Updated: 07/28/2016
64

https://github.com/aws/amazon-cognito-identity-js/
https://github.com/aws/amazon-cognito-identity-js/
http://docs.aws.amazon.com/lambda/latest/dg/
https://console.aws.amazon.com/cognito/home
https://console.aws.amazon.com/cognito/home

Amazon Cognito Developer Guide
Creating an AWS Lambda Trigger for a Stage

Create Auth Challenge
Amazon Cognito invokes this trigger after Define Auth Challenge if a custom challenge has been
specified as part of the Define Auth Challenge trigger.

Verify Auth Challenge Response
Amazon Cognito invokes this trigger to verify if the response from the end user for a custom Auth
Challenge is valid or not.

Creating an AWS Lambda Trigger for a Stage
You can create an AWS Lambda function and then associate that function with one of the user account
life cycle stages to create a Lambda trigger.

To add a Lambda function to a user stage

1. If you haven't done so already, create a Lambda function using the Lambda console.

2. Navigate to the Amazon Cognito console, choose Manage User Pools, and then choose the user
pool to add the Lambda function to.

3. In your user pool, choose the Triggers tab.

4. Associate a user stage with a Lambda function by choosing the function from the drop-down menu
for that stage, and then save your changes.

AWS Lambda Trigger Request and Response
Parameters
This section describes the AWS Lambda trigger request and response parameters.

Topics

• AWS Lambda Trigger Common Parameters (p. 65)

• Pre Sign-up Lambda Parameters (p. 67)

• Pre-Authentication Lambda Parameters (p. 67)

• Custom Message Lambda Parameters (p. 68)

• Post-Authentication Lambda Parameters (p. 69)

• Post-Confirmation Lambda Parameters (p. 69)

• Define Auth Challenge Lambda Parameters (p. 69)

• Create Auth Challenge Lambda Parameters (p. 70)

• Verify Auth Challenge Response Lambda Parameters (p. 72)

AWS Lambda Trigger Common Parameters

The event information passed to the invoked Lambda function contains the parameters that were
passed from the Amazon Cognito service. The general format of the event is shown next. The request
and the response parameters depend on the Lambda trigger.

{
 "version": number,
 "triggerSource": "string",
 "region": AWSRegion,

Version Last Updated: 07/28/2016
65

https://console.aws.amazon.com/lambda/home
https://console.aws.amazon.com/cognito/home

Amazon Cognito Developer Guide
AWS Lambda Trigger Request and Response Parameters

 "userPoolId": "string",
 "callerContext":
 {
 "awsSdkVersion": "string",
 "clientId": "string"
 },
 "request":
 {
 "userAttributes": {
 "string": "string",

 }
 },
 "response": {}
}

version
The version number of your Lambda function.

triggerSource
The name of the event that triggered the Lambda function. The following table shows the
triggerSource values and the triggering event for each value.

triggerSource value Triggering event

PreSignUp_SignUp Pre-sign up

PostConfirmation_ConfirmSignUp Post confirmation

PreAuthentication_Authentication Pre authentication

PostAuthentication_Authentication Post authentication

CustomMessage_SignUp Custom message – To send confirmation code
post sign-up

CustomMessage_ResendCode Custom message – To resend confirmation
code to an existing user

CustomMessage_ForgotPassword Custom message – To send confirmation code
for Forgot Password request

CustomMessage_UpdateUserAttribute Custom message – When a user's email or
phone number is changed, this trigger sends
a verification code automatically to the user.
Cannot be used for other attributes.

CustomMessage_VerifyUserAttribute Custom message – This trigger sends a
verification code to the user when the they
manually request it for a new email or phone
number.

CustomMessage_Authentication Custom message – To send MFA code during
authentication

DefineAuthChallenge_Authentication Define Auth Challenge

CreateAuthChallenge_Authentication Create Auth Challenge

VerifyAuthChallengeResponse_AuthenticationVerify Auth Challenge Response

Version Last Updated: 07/28/2016
66

Amazon Cognito Developer Guide
AWS Lambda Trigger Request and Response Parameters

region
The AWS Region, as an AWSRegion instance.

userPoolId
The user pool ID for the user pool.

callerContext
The caller context, which consists of the following:

awsSdkVersion
The AWS SDK version number.

clientId
The ID of the client associated with the user pool.

request
The request from the Amazon Cognito service. This request must include:

userAttributes
One or more pairs of user attribute names and values. Each pair is in the form "name":
"value".

response
The response from your Lambda trigger. The return parameters depend on the triggering event.

Pre Sign-up Lambda Parameters

The request includes validation data from the client.

"request": {
 "userAttributes": {
 "string": "string",

 },
 "validationData": {<validation data as key-value (String,
 String) pairs, from the client>}
}

userAttributes
One or more name-value pairs representing user attributes. The attribute names are the keys.

validationData
One or more name-value pairs containing the validation data in the request to register a user. The
validation data is set and then passed from the client in the request to register a user.

In the response, you can set autoConfirmUser to true if you want to auto-confirm the user.

"response": {
 "autoConfirmUser": boolean
}

autoConfirmUser
Set to true to auto-confirm the user, or false otherwise.

Pre-Authentication Lambda Parameters

The request includes validation data from the client.

"request": {

Version Last Updated: 07/28/2016
67

Amazon Cognito Developer Guide
AWS Lambda Trigger Request and Response Parameters

 "userAttributes": {
 "string": "string",

 },
 "validationData": {<validation data as key-value (String,
 String) pairs, from the client>}
}

userAttributes
One or more name-value pairs representing user attributes.

validationData
One or more key-value pairs containing the validation data in the user's sign-in request.

No return information is expected in the response.

"response": {
}

Custom Message Lambda Parameters

The request includes codeParameter, which is a string that acts as a placeholder for the code that's
being delivered to the user. Insert the codeParameter string into the message body, at the position
where you want the verification code to be inserted. On receiving this response, the Amazon Cognito
service replaces the codeParameter string with the actual verification code.

"request": {
 "userAttributes": {
 "string": "string",

 },
 "codeParameter": "string"
}

userAttributes
One or more name-value pairs representing user attributes.

codeParameter
A string for you to use as the placeholder for the verification code in the custom message.

In the response, you specify the custom text to use in messages to your users.

"response": {
 "smsMessage": "string",
 "emailMessage": "string",
 "emailSubject": "string";
}

smsMessage
The custom SMS message to be sent to your users. Must include the codeParameter value
received in the request.

emailMessage
The custom email message to be sent to your users. Must include the codeParameter value
received in the request.

Version Last Updated: 07/28/2016
68

Amazon Cognito Developer Guide
AWS Lambda Trigger Request and Response Parameters

emailSubject
The subject line for the custom message.

Post-Authentication Lambda Parameters
The request includes a flag to indicate if the user has signed in on a new device. This flag is set only
if remembered devices functionality was enabled for the user pool by setting the remembered devices
value to Always or User Opt-In.

"request": {
 "userAttributes": {
 "string": "string",

 },
 "newDeviceUsed": boolean
}

userAttributes
One or more name-value pairs representing user attributes.

validationData
One or more key-value pairs containing the validation data in the request to register a user.

No return information is expected in the response.

"response": {
}

Post-Confirmation Lambda Parameters
The request contains the current attributes for the confirmed user.

"request": {
 "userAttributes": {
 "string": "string",

 }
}

userAttributes
One or more name-value pairs representing user attributes.

No return information is expected in the response.

"response": {
}

Define Auth Challenge Lambda Parameters
The request contains session, which is an array containing all of the challenges that are presented
to the user in the authentication process that is underway, along with the corresponding result. The
challenge details (ChallengeResult) are stored in chronological order in the session array, with
session[0] representing the first challenge that is presented to the user.

Version Last Updated: 07/28/2016
69

Amazon Cognito Developer Guide
AWS Lambda Trigger Request and Response Parameters

"request": {
 "userAttributes": {
 "string": "string",

 },
 "session": {
 [
 ChallengeResult
]
 }
}

userAttributes
One or more name-value pairs representing user attributes.

session
The session element is an array of ChallengeResult elements, each of which contains the
following elements:

challengeName
The challenge type. One of: "CUSTOM_CHALLENGE", "PASSWORD_VERIFIER", "SMS_MFA",
"DEVICE_SRP_AUTH", "DEVICE_PASSWORD_VERIFIER", or "ADMIN_NO_SRP_AUTH".

challengeResult
Set to true if the user successfully completed the challenge, or false otherwise.

challengeMetaData
Your name for the custom challenge. Used only if challengeName is
"CUSTOM_CHALLENGE".

In the response you can return the next stage of the authentication process.

"response": {
 "challengeName": "string",
 "issueTokens": boolean,
 "failAuthentication": boolean
}

challengeName
A string containing the name of the next challenge. If you want to present a new challenge to your
user, specify the challenge name here.

issueTokens
Set to true if you determine that the user has sufficiently authenticated by completing the
challenges, or false otherwise.

failAuthentication
Set to true if you want to terminate the current authentication process, or false otherwise.

Create Auth Challenge Lambda Parameters

This Lambda trigger is invoked to create a challenge to present to the user. The request for this
Lambda trigger includes the challengeName and session. The challengeName is a string and
is the name of the next challenge to the user. The value of this attribute is set in the Define Auth
Challenge Lambda trigger.

"request": {
 "userAttributes": {

Version Last Updated: 07/28/2016
70

Amazon Cognito Developer Guide
AWS Lambda Trigger Request and Response Parameters

 "string": "string",

 },
 "challengeName": "string",
 "session": {
 [
 ChallengeResult
]
 }
}

userAttributes
One or more name-value pairs representing user attributes.

challengeName
The name of the new challenge.

session
The session element is an array of ChallengeResult elements, each of which contains the
following elements:

challengeName
The challenge type. One of: "CUSTOM_CHALLENGE", "PASSWORD_VERIFIER",
"SMS_MFA", "DEVICE_SRP_AUTH", "DEVICE_PASSWORD_VERIFIER", or
"ADMIN_NO_SRP_AUTH".

challengeResult
Set to true if the user successfully completed the challenge, or false otherwise.

challengeMetaData
Your name for the custom challenge. Used only if challengeName is
"CUSTOM_CHALLENGE".

The challenge parameters for the new challenge are added to the response.

"response": {
 "publicChallengeParameters": {
 "string": "string",

 },
 "privateChallengeParameters": {
 "string": "string",

 },
 "challengeMetadata": "string"
}

publicChallengeParameters
One or more key-value pairs for the client app to use in the challenge to be presented to the user.
This parameter should contain all of the necessary information to accurately present the challenge
to the user.

privateChallengeParameters
This parameter is only used by the Verify Auth Challenge Response Lambda trigger. This
parameter should contain all of the information that is required to validate the user's response
to the challenge. In other words, the publicChallengeParameters parameter contains the
question that is presented to the user and privateChallengeParameters contains the valid
answers for the question.

challengeMetadata
Your name for the custom challenge, if this is a custom challenge.

Version Last Updated: 07/28/2016
71

Amazon Cognito Developer Guide
AWS Lambda Trigger Examples

Verify Auth Challenge Response Lambda Parameters

The request for this trigger contains the privateChallengeParameters and challengeAnswer
parameters. The privateChallengeParameters values are returned by the Create Auth Challenge
Lambda trigger and will contain the expected response from the user. The challengeAnswer
parameter contains the user's response for the challenge.

"request": {
 "userAttributes": {
 "string": "string",

 },
 "privateChallengeParameters": {
 "string": "string",

 },
 "challengeAnswer": {
 "string": "string",

 }
}

userAttributes
One or more name-value pairs representing user attributes.

privateChallengeParameters
This parameter is only used by the Verify Auth Challenge Response Lambda trigger. This
parameter should contain all of the information that is required to validate the user's response
to the challenge. In other words, the publicChallengeParameters parameter contains the
question that is presented to the user and privateChallengeParameters contains the valid
answers for the question.

challengeAnswer
The answer in the user's response to the challenge.

The response contains the answerCorrect attribute, which is set to true if the user successfully
completed the challenge, or false otherwise.

"response": {
 "answerCorrect": boolean
}

answerCorrect
Set to true if the user has successfully completed the challenge, or false otherwise.

AWS Lambda Trigger Examples
This section gives code examples for each type of AWS Lambda trigger.

Topics

• Pre Sign-up Example (p. 73)

• Pre Authentication Example (p. 74)

• Custom Message Example (p. 74)

• Post Authentication Example (p. 76)

Version Last Updated: 07/28/2016
72

Amazon Cognito Developer Guide
AWS Lambda Trigger Examples

• Post Confirmation Example (p. 76)

• Define Auth Challenge Example (p. 78)

• Create Auth Challenge Example (p. 78)

• Verify Auth Challenge Response Example (p. 78)

Pre Sign-up Example

The following example initializes just before the service starts the new user registration process. With
this Lambda function, you can add custom logic to validate, filter, or restrict the types of user accounts
that can be registered. For example, you may only want to allow users to register if they have been
invited to join the service. This example uses the autoConfirmUser flag to indicate whether to auto-
confirm a user to the user pool.

exports.handler = function(event, context) {
 // This Lambda function returns a flag to indicate if a user should be
 auto-confirmed.

 // Perform any necessary validations.

 // Impose a condition that the minimum length of the username of 5 is
 imposed on all user pools.
 if (event.userName.length < 5) {
 var error = new Error('failed!');
 context.done(error, event);
 }

 // Access your resource which contains the list of emails of users who
 were invited to sign up

 // Compare the list of email IDs from the request to the approved list
 if(event.userPoolId === "yourSpecialUserPool") {
 if (event.request.userAttributes.email in listOfEmailsInvited) {
 event.response.autoConfirmUser = true;
 }
 }
 // Return result to Cognito
 context.done(null, event);
};

{
 "version": 1,
 "triggerSource": "PreSignUp_SignUp",
 "region": "<region>",
 "userPoolId": "<userPoolId>",
 "userName": "<userName>",
 "callerContext": {
 "awsSdk": "<calling aws sdk with version>",
 "clientId": "<apps client id>",
 ...
 },
 "request": {
 "userAttributes": {
 "email": "<email>",
 "phone_number": "<phone_number>",
 ...

Version Last Updated: 07/28/2016
73

Amazon Cognito Developer Guide
AWS Lambda Trigger Examples

 },
 "validationData": {
 "k1": "v1",
 "k2": "v2",
 ...
 }
 },
 "response": {
 "autoConfirmUser": false
 }
}

Pre Authentication Example

This sample function restricts users from a specific app client ID from authenticating.

exports.handler = function(event, context) {
 if (event.callerContext.clientId === "<client id to be blocked>") {
 var error = new Error('Cannot authenticate users from this client');
 context.done(error, event);
 }
 context.done(null, event);
};

Sample event parameter:

{
 "version": 1,
 "triggerSource": "PreAuthentication_Authentication",
 "region": "<region>",
 "userPoolId": "<userPoolId>",
 "userName": "<userName>",
 "callerContext": {
 "awsSdkVersion": "<calling AWS sdk with version>",
 "clientId": "<apps client id>",
 ...
 },
 "request": {
 "userAttributes": {
 "phone_number_verified": false,
 "email_verified": false,
 ... // All custom attributes
 },
 "validationData": {
 "k1": "v1",
 "k2": "v2",
 ...
 }
 },
 "response": {}
}

Custom Message Example

This Lambda function is invoked when the service requires an app to send a verification code to the
user. This function is used to customize the messages that are sent to deliver the code.

Version Last Updated: 07/28/2016
74

Amazon Cognito Developer Guide
AWS Lambda Trigger Examples

This Lambda trigger is invoked at multiple points: post-registration; resending a verification code;
forgotten password; or verifying a user attribute. The response includes messages for both SMS
and email. The message must include the code parameter, {####}, which is the placeholder for the
verification code that is delivered to the user.

For email, the maximum length for the message is 2048 UTF-8 characters, including the verification
code. For SMS, the maximum length is 140 UTF-8 characters, including the verification code.

exports.handler = function(event, context) {
 //
 if(event.userPoolId === "theSpecialUserPool") {
 // Identify why was this function invoked
 if(event.triggerSource === "CustomMessage_SignUp") {
 // Ensure that your message contains event.request.codeParameter.
 This is the placeholder for code that will be sent
 event.response.smsMessage = "Welcome to the service. Your
 confirmation code is " + event.request.codeParameter;
 event.response.emailSubject = "Welcome to the service";
 event.response.emailMessage = "Thank you for signing up. " +
 event.request.codeParameter + " is your verification code";
 }
 // Create custom message for other events
 }
 // Customize messages for other user pools

 //

 // Return result to Cognito
 context.done(null, event);
};

Sample event parameter:

{
 "version": 1,
 "triggerSource": "CustomMessage_SignUp/CustomMessage_ResendCode/
CustomMessage_ForgotPassword/CustomMessage_VerifyUserAttribute",
 "region": "<region>",
 "userPoolId": "<userPoolId>",
 "userName": "<userName>",
 "callerContext": {
 "awsSdk": "<calling aws sdk with version>",
 "clientId": "<apps client id>",
 ...
 },
 "request": {
 "userAttributes": {
 "phone_number_verified": false,
 "email_verified": true,
 ...
 },
 "codeParameter": "####"
 },
 "response": {
 "smsMessage": "<custom message to be sent in the message with code
 parameter>"
 "emailMessage": "<custom message to be sent in the message with code
 parameter>"

Version Last Updated: 07/28/2016
75

Amazon Cognito Developer Guide
AWS Lambda Trigger Examples

 "emailSubject": "<custom email subject>"
 }
}

Post Authentication Example

This function is invoked after a user is successfully authenticated. This sample function logs in to the
console after a user is authenticated.

exports.handler = (event, context, callback) => {
 console.log('User authenticated: User-Pool', event.userPoolId+", UserId:"
 + event.userName);
 // Return result to Amazon Cognito
 context.done(null, event);
};

Sample event parameter:

{
 "version": 1,
 "triggerSource": "PostAuthentication_Authentication",
 "region": "<region>",
 "userPoolId": "<userPoolId>",
 "userName": "<userName>",
 "callerContext": {
 "awsSdk": "<calling aws sdk with version>",
 "clientId": "<apps client id>",
 ...
 },
 "request": {
 "userAttributes": {
 "phone_number_verified": true,
 "email_verified": true,
 ... //all custom attributes
 }
 },
 "response": {}
};

Post Confirmation Example

The example sends an email message to inform the user that he or she has been confirmed.

var aws = require('aws-sdk');

var ses = new aws.SES();

exports.handler = function(event, context) {
 console.log(event);

 if (event.request.userAttributes.email) {
 sendEmail(event.request.userAttributes.email, "Congratulations
 "+event.userName+", you have been confirmed: ", function(status) {
 context.done(null, event);
 });

Version Last Updated: 07/28/2016
76

Amazon Cognito Developer Guide
AWS Lambda Trigger Examples

 } else {
 // Nothing to do, the user's email ID is unknown
 context.done(null, event);
 }
};

function sendEmail(to, body, completedCallback) {
 var eParams = {
 Destination: {
 ToAddresses: [to]
 },
 Message: {
 Body: {
 Text: {
 Data: body
 }
 },
 Subject: {
 Data: "Cognito Identity Provider registration completed"
 }
 },
 Source: "<source_email>"
 };

 var email = ses.sendEmail(eParams, function(err, data){
 if (err) {
 console.log(err);
 } else {
 console.log("===EMAIL SENT===");
 }
 completedCallback('Email sent');
 });
 console.log("EMAIL CODE END");
};

Sample event parameter:

{
 "version": 1,
 "triggerSource": "PostConfirmation_ConfirmSignUp",
 "region": "<region>",
 "userPoolId": "<userPoolId>",
 "userName": "<userName>",
 "callerContext": {
 "awsSdk": "<calling aws sdk with version>",
 "clientId": "<apps client id>",
 ...
 },
 "request": {
 "userAttributes" : {
 "email": "<email>",
 "phone_number": "<phone_number>",
 ...
 }
 },
 "response": {}
}

Version Last Updated: 07/28/2016
77

Amazon Cognito Developer Guide
AWS Lambda Trigger Examples

Define Auth Challenge Example
This example defines a series of challenges for authentication and issues tokens only if all of the
challenges are successfully completed.

exports.handler = function(event, context) {
 if (event.request.session.length == 1 &&
 event.request.session[0].challengeName == 'SRP_A') {
 event.response.issueTokens = false;
 event.response.failAuthentication = false;
 event.response.challengeName = 'PASSWORD_VERIFIER';
 } else if (event.request.session.length == 2 &&
 event.request.session[1].challengeName == 'PASSWORD_VERIFIER' &&
 event.request.session[1].challengeResult == true) {
 event.response.issueTokens = false;
 event.response.failAuthentication = false;
 event.response.challengeName = 'CUSTOM_CHALLENGE';
 } else if (event.request.session.length == 3 &&
 event.request.session[2].challengeName == 'CUSTOM_CHALLENGE' &&
 event.request.session[2].challengeResult == true) {
 event.response.issueTokens = true;
 event.response.failAuthentication = false;
 } else {
 event.response.issueTokens = false;
 event.response.failAuthentication = true;
 }
 context.done(null, event);
}

Create Auth Challenge Example
A CAPTCHA is created as a challenge to the user. The URL for the CAPTCHA image is added to
the public challenge parameters as "captchaUrl", and the expected answer is added to the private
challenge parameters.

exports.handler = function(event, context) {
 if (event.request.challengeName == 'CUSTOM_CHALLENGE') {
 event.response.publicChallengeParameters = {};
 event.response.publicChallengeParameters.captchaUrl = 'url/123.jpg'
 event.response.privateChallengeParameters = {};
 event.response.privateChallengeParameters.answer = '5';
 event.response.challengeMetadata = 'CAPTCHA_CHALLENGE';
 }

 context.done(null, event);
}

Verify Auth Challenge Response Example
In this example, the Lambda function checks whether the user's response to a challenge matches the
expected response. The answerCorrect parameter is set to true if the user's response matches the
expected response.

exports.handler = function(event, context) {
 if (event.request.privateChallengeParameters.answer ==
 event.request.challengeAnswer) {

Version Last Updated: 07/28/2016
78

Amazon Cognito Developer Guide
Creating Users

 event.response.answerCorrect = true;
 } else {
 event.response.answerCorrect = false;
 }

 context.done(null, event);
}

Creating User Accounts in the AWS Management
Console and with the Amazon Cognito User Pools
API

After you create your user pool, you can create users using the AWS Management Console, as well as
the AWS Command Line Interface or the Amazon Cognito API. You can create a profile for a new user
in a user pool and send a welcome message with sign-up instructions to the user via SMS or email.

Developers and administrators can perform the following tasks:

• Create a new user profile by using the AWS Management Console or by calling the
AdminCreateUser API.

• Specify the temporary password or allow Amazon Cognito to automatically generate one.

• Specify whether provided email addresses and phone numbers are marked as verified for new
users.

• Specify custom SMS and email invitation messages for new users via the AWS Management
Console or a Custom Message Lambda trigger. For more information, see Customizing User Pool
Workflows by Using AWS Lambda Triggers (p. 64).

• Specify whether invitation messages are sent via SMS, email, or both.

• Resend the welcome message to an existing user by calling the AdminCreateUser API, specifying
RESEND for the MessageAction parameter.

Note
This action cannot currently be performed using the AWS Management Console.

• Suppress the sending of the invitation message when the user is created.

• Specify an expiration time limit for the user account (up to 90 days).

• Allow users to sign themselves up or require that new users only be added by the administrator.

For code examples, see the following topics:

• Example: Handling Users Created Using the AdminCreateUser API in the Mobile SDK for
Android (p. 30)

• Examples: Using User Pools with the iOS SDK (p. 38)

• Example: Authenticate and Set a New Password for a User Created Using the AdminCreateUser
API (p. 59)

Version Last Updated: 07/28/2016
79

Amazon Cognito Developer Guide
Authentication Flow for Users Created

by Administrators or Developers

Authentication Flow for Users Created by
Administrators or Developers
The authentication flow for these users includes the extra step to submit the new password and provide
any missing values for required attributes. The steps are outlined next; steps 5, 6, and 7 are specific to
these users.

1. The user starts to sign in for the first time by submitting the username and password provided to
him or her.

2. The SDK calls InitiateAuth(Username, USER_SRP_AUTH).

3. Amazon Cognito returns the PASSWORD_VERIFIER challenge with Salt & Secret block.

4. The SDK performs the SRP calculations and calls RespondToAuthChallenge(Username,
<SRP variables>, PASSWORD_VERIFIER).

5. Amazon Cognito returns the NEW_PASSWORD_REQUIRED challenge along with the current and
required attributes.

6. The user is prompted and enters a new password and any missing values for required attributes.

7. The SDK calls RespondToAuthChallenge(Username, New password, User
attributes).

8. If the user requires a second factor for MFA, Amazon Cognito returns the SMS_MFA challenge
and the code is submitted.

9. After the user has successfully changed his or her password and optionally provided attributed
values or completed MFA, the user is signed in and tokens are issued.

When the user has satisfied all challenges, the Amazon Cognito service marks the user as confirmed
and issues ID, access, and refresh tokens for the user. For more information, see Using Tokens with
User Pools (p. 102).

Creating a New User in the AWS Management
Console
The Amazon Cognito console for managing user pools has been updated to support this feature, as
shown next.

Policies Tab

The Policies tab has these related settings:

• Specify whether to allow users to sign themselves up. This option is set by default.

• Specify user account expiration time limit (in days). The default setting is 7 days, measured from the
time when the user account is created. The maximum setting is 90 days. After the account expires,
the user cannot use the account until the administrator updates the user's profile.

Version Last Updated: 07/28/2016
80

Amazon Cognito Developer Guide
Creating a New User in the AWS Management Console

Message Customizations Tab

The Message Customizations tab includes templates for specifying custom email verification
messages and custom user invitation messages.

For email (verification messages or user invitation messages), the maximum length for the message is
2048 UTF-8 characters, including the verification code or temporary password. For SMS, the maximum
length is 140 UTF-8 characters, including the verification code or temporary password.

Verification codes are valid for 24 hours.

Users Tab

The Users tab has a Create user button.

When you choose Create user, a Create user form appears, which you can use to enter information
about the new user. Only the Username field is required.

Version Last Updated: 07/28/2016
81

Amazon Cognito Developer Guide
Importing Users

Importing Users into Your User Pools
You can import users into an Amazon Cognito user pool. The user information is imported from a
specially formatted .csv file. The import process sets values for all user attributes except password.
Password import is not supported, because security best practices require that passwords are not
available as plain text, and we don't support importing hashes. This means that your users must
change their passwords the first time they sign in. The creation date for each user is the time when that
user was imported into the user pool. (Creation date is not one of the imported attributes.)

The basic steps are:

1. Create an Amazon CloudWatch Logs role in the AWS Identity and Access Management (IAM)
console.

2. Create the user import .csv file.

3. Create and run the user import job.

4. Upload the user import .csv file.

5. Start and run the user import job.

6. Use CloudWatch to check the event log.

7. Require the imported users to reset their passwords.

Creating the CloudWatch Logs IAM Role
If you're using the Amazon Cognito CLI or API, then you need to create a CloudWatch IAM role. The
following procedure describes how to enable Amazon Cognito to record information in CloudWatch
Logs about your user pool import job.

Note
You don't need to use this procedure if you are using the Amazon Cognito console, because
the console creates the role for you.

To create the CloudWatch Logs IAM Role for user pool import

1.
Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Choose Roles.

Version Last Updated: 07/28/2016
82

https://console.aws.amazon.com/cognito/home
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Cognito Developer Guide
Creating the CloudWatch Logs IAM Role

3. Choose Create New Role.

4. Type a role name and choose Next Step.

5. In Select Role Type, choose Amazon EC2. You can choose any role type; you’ll change this
setting in a later step. This is because you can't create an IAM role from scratch; you can only use
an existing IAM role as a template and overwrite it to make the role you need.

6. In Attach Policy, choose Next Step.

7. In Review, choose Create Role.

8. In Roles, choose the role you just created.

9. In Summary, choose Permissions.

10. On the Permissions tab, choose Inline Policies, and then choose click here.

11. In Set Permissions, choose custom policy, and then choose select.

12. In Review Policy, type a policy name (no spaces) and copy/paste the following text as your role
access policy, replacing any existing text:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:REGION:ACCOUNT:log-group:/aws/cognito/*"
]
 }
]
}

13. Choose Apply Policy.

14. In Summary, choose the Trust Relationships tab.

15. Choose Edit Trust Relationship.

16. Copy/paste the following trust relationship text into the Policy Document text box, replacing any
existing text:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "cognito-idp.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }

17. Choose Update Trust Policy. You are now finished creating the role.

18. Note the role ARN. You need this later when you're creating an import job.

Version Last Updated: 07/28/2016
83

Amazon Cognito Developer Guide
Creating the User Import .csv File

Creating the User Import .csv File
Before you can import your existing users into your user pool, you must create a .csv file that serves as
the input. To do this, you download the user import .csv header information, and then you edit the file
to match the formatting requirements outlined in Formatting the .csv File (p. 85).

Downloading the .csv File Header By Using the AWS
Management Console

1. Navigate to the Amazon Cognito console, choose Manage User Pools, and then choose the user
pool that you are importing the users into.

2. Choose the Users tab.

3. Choose Import users.

4. Choose Download CSV header to get a .csv file containing the header row that you must include
in your .csv file.

Downloading the .csv File Header By Using the CLI

To get a list of the correct headers, run the following CLI command, where USER_POOL_ID is the user
pool identifier for the user pool you'll import users into:

 aws cognito-idp get-csv-header --user-pool-id "USER_POOL_ID"

Sample response:

{
 "CSVHeader": [
 "name",
 "given_name",
 "family_name",
 "middle_name",
 "nickname",
 "preferred_username",
 "profile",
 "picture",
 "website",
 "email",
 "email_verified",
 "gender",
 "birthdate",
 "zoneinfo",
 "locale",
 "phone_number",
 "phone_number_verified",
 "address",
 "updated_at",
 "cognito:mfa_enabled",
 "cognito:username"
],
 "UserPoolId": "USER_POOL_ID"

Version Last Updated: 07/28/2016
84

https://console.aws.amazon.com/cognito/home

Amazon Cognito Developer Guide
Creating the User Import .csv File

}

Formatting the .csv File

The downloaded user import .csv header file looks like this:

cognito:username,name,given_name,family_name,middle_name,nickname,preferred_username,profile,picture,website,email,email_verified,gender,birthdate,zoneinfo,locale,phone_number,phone_number_verified,address,updated_at,cognito:mfa_enabled

You'll need to edit your .csv file so that it includes this header and the attribute values for your users
and is formatted according to the following rules.

Note
For more information about attribute values, such as proper format for phone numbers, see
Specifying User Pool Attribute Settings (p. 13).

• The first line in the file is the downloaded header row that contains the user attribute names.

• The order of columns in the .csv file doesn't matter.

• Each line after the first line contains the attribute values for a user.

• All columns in the header must be present, but you don't need to provide values in every column.

• The following attributes are required:

• cognito:username

• cognito:mfa_enabled

• email_verified or phone_number_verified

• email (if email_verified is true)

• phone_number (if phone_number_verified is true)

• Any attributes that you marked as required when you created the user pool

• The user pool must have at least one auto-verified attribute, either email_verified or
phone_number_verified. At least one of the auto-verified attributes must be true for each user. If
the user pool has no auto-verified attributes, the import job will not start. If the user pool only has one
auto-verified attribute, that attribute must be verified for each user. For example, if the user pool has
only phone_number as an auto-verified attribute, the phone_number_verified value must be true
for each user.

Note
In order for users to reset their passwords, they must have a verified email or phone
number. Amazon Cognito sends a message containing a reset password code to the email
or phone number specified in the .csv file. If the message is sent to the phone number, it is
sent via SMS.

• Attribute values that are strings should not be in quotation marks.

• If an attribute value contains a comma, you must put a backslash (\) before the comma. This is
because the fields in a .csv file are separated by commas.

• The .csv file contents should be in UTF-8 format without byte order mark.

• The cognito:username field is required and must be unique within your user pool. It can be any
Unicode string. However, it cannot contain spaces or tabs.

• The birthdate values, if present, must be in the format mm/dd/yyyy. This means, for example, that a
birthdate of February 1, 1985 must be encoded as 02/01/1985.

• The cognito:mfa_enabled field is required. If you've set multi-factor authentication (MFA) to be
required in your user pool, this field must be true for all users. If you've set MFA to be off, this field
must be false for all users. If you've set MFA to be optional, this field can be either true or false,
but it cannot be empty.

• The maximum line length is 16,000 characters.

Version Last Updated: 07/28/2016
85

Amazon Cognito Developer Guide
Creating and Running the User Import Job

• The maximum .csv file size is 100 MB.

• The maximum number of lines (users) in the file is 100,000, not including the header.

• The updated_at field value is expected to be epoch time in seconds, for example: 1471453471.

• Any leading or trailing white space in an attribute value will be trimmed.

A complete sample user import .csv file looks like this:

cognito:username,name,given_name,family_name,middle_name,nickname,preferred_username,profile,picture,website,email,email_verified,gender,birthdate,zoneinfo,locale,phone_number,phone_number_verified,address,updated_at,cognito:mfa_enabled
John,,John,Doe,,,,,,,johndoe@example.com,TRUE,,02/01/1985,,,
+12345550100,TRUE,123 Any Street,,FALSE
Jane,,Jane,Roe,,,,,,,janeroe@example.com,TRUE,,01/01/1985,,,
+12345550199,TRUE,100 Main Street,,FALSE

Creating and Running the Amazon Cognito User
Pool Import Job
This section describes how to create and run the user pool import job by using the Amazon Cognito
console and the AWS Command Line Interface.

Topics

• Importing Users from a .csv File By Using the Amazon Cognito Console (p. 86)

• Importing Users By Using the AWS CLI (p. 86)

Importing Users from a .csv File By Using the Amazon Cognito
Console

The following procedure describes how to import the users from the .csv file.

To import users from the .csv file by using the Amazon Cognito console

1. Choose Create import job.

2. Type a Job name. Job names can contain uppercase and lowercase letters (a-z, A-Z), numbers
(0-9), and the following special characters: + = , . @ and -.

3. If this is your first time creating a user import job, the AWS Management Console will automatically
create an IAM role for you. Otherwise, you can choose an existing role from the IAM Role list or let
the AWS Management Console create a new role for you.

4. Choose Upload CSV and select the .csv file to import users from.

5. Choose Create job.

6. To start the job, choose Start.

Importing Users By Using the AWS CLI

The following CLI commands are available for importing users into a user pool:

• create-user-import-job

• get-csv-header

• describe-user-import-job

Version Last Updated: 07/28/2016
86

Amazon Cognito Developer Guide
Creating and Running the User Import Job

• list-user-import-jobs

• start-user-import-job

• stop-user-import-job

To get the list of command-line options for these commands, use the help command-line option. For
example:

aws cognito-idp get-csv-header help

Creating a User Import Job

After you create your .csv file, create a user import job by running the following CLI command, where
JOB_NAME is the name you're choosing for the job, USER_POOL_ID is the same user pool ID as before,
and ROLE_ARN is the role ARN you received in Creating the CloudWatch Logs IAM Role (p. 82):

aws cognito-idp create-user-import-job --job-name "JOB_NAME" --user-pool-id
 "USER_POOL_ID" --cloud-watch-logs-role-arn "ROLE_ARN"

The PRE_SIGNED_URL returned in the response is valid for 15 minutes. After that time, it will expire
and you must create a new user import job to get a new URL.

Sample response:

{
 "UserImportJob": {
 "Status": "Created",
 "SkippedUsers": 0,
 "UserPoolId": "USER_POOL_ID",
 "ImportedUsers": 0,
 "JobName": "JOB_NAME",
 "JobId": "JOB_ID",
 "PreSignedUrl": "PRE_SIGNED_URL",
 "CloudWatchLogsRoleArn": "ROLE_ARN",
 "FailedUsers": 0,
 "CreationDate": 1470957431.965
 }
}

Status Values for a User Import Job

In the responses to your user import commands, you'll see one of the following Status values:

• "Created" - The job was created but not started.

• "Pending" - A transition state. You have started the job, but it has not begun importing users yet.

• "InProgress" - The job has started, and users are being imported.

• "Stopping" - You have stopped the job, but the job has not stopped importing users yet.

• "Stopped" - You have stopped the job, and the job has stopped importing users.

• "Succeeded" - The job has completed successfully.

• "Failed" - The job has stopped due to an error.

• "Expired" - You created a job, but did not start the job within 24-48 hours. All data associated with
the job was deleted, and the job cannot be started.

Version Last Updated: 07/28/2016
87

Amazon Cognito Developer Guide
Creating and Running the User Import Job

Uploading the .csv File

Use the following curl command to upload the .csv file containing your user data to the pre-signed
URL that you obtained from the response of the create-user-import-job command.

curl -v -T "PATH_TO_CSV_FILE" -H
 "x-amz-server-side-encryption:aws:kms" "PRE_SIGNED_URL"

In the output of this command, look for the phrase "We are completely uploaded and fine".
This phrase indicates that the file was uploaded successfully.

Describing a User Import Job

To get a description of your user import job, use the following command, where USER_POOL_ID is your
user pool ID, and JOB_ID is the job ID that was returned when you created the user import job.

aws cognito-idp describe-user-import-job --user-pool-id "USER_POOL_ID" --job-
id "JOB_ID"

Sample response:

{
 "UserImportJob": {
 "Status": "Created",
 "SkippedUsers": 0,
 "UserPoolId": "USER_POOL_ID",
 "ImportedUsers": 0,
 "JobName": "JOB_NAME",
 "JobId": "JOB_ID",
 "PreSignedUrl": "PRE_SIGNED_URL",
 "CloudWatchLogsRoleArn":"ROLE_ARN",
 "FailedUsers": 0,
 "CreationDate": 1470957431.965
 }
}

In the preceding sample output, the PRE_SIGNED_URL is the URL that you uploaded the .csv file to.
The ROLE_ARN is the CloudWatch Logs role ARN that you received when you created the role.

Listing Your User Import Jobs

To list your user import jobs, use the following command:

aws cognito-idp list-user-import-jobs --user-pool-id "USER_POOL_ID" --max-
results 2

Sample response:

{
 "UserImportJobs": [
 {
 "Status": "Created",
 "SkippedUsers": 0,
 "UserPoolId": "USER_POOL_ID",

Version Last Updated: 07/28/2016
88

Amazon Cognito Developer Guide
Creating and Running the User Import Job

 "ImportedUsers": 0,
 "JobName": "JOB_NAME",
 "JobId": "JOB_ID",
 "PreSignedUrl":"PRE_SIGNED_URL",
 "CloudWatchLogsRoleArn":"ROLE_ARN",
 "FailedUsers": 0,
 "CreationDate": 1470957431.965
 },
 {
 "CompletionDate": 1470954227.701,
 "StartDate": 1470954226.086,
 "Status": "Failed",
 "UserPoolId": "USER_POOL_ID",
 "ImportedUsers": 0,
 "SkippedUsers": 0,
 "JobName": "JOB_NAME",
 "CompletionMessage": "Too many users have failed or been skipped
 during the import.",
 "JobId": "JOB_ID",
 "PreSignedUrl":"PRE_SIGNED_URL",
 "CloudWatchLogsRoleArn":"ROLE_ARN",
 "FailedUsers": 5,
 "CreationDate": 1470953929.313
 }
],
 "PaginationToken": "PAGINATION_TOKEN"
}

Jobs are listed in chronological order from last created to first created. The PAGINATION_TOKEN
string after the second job indicates that there are additional results for this list command. To list the
additional results, use the --pagination-token option as follows:

aws cognito-idp list-user-import-jobs --user-pool-id "USER_POOL_ID" --max-
results 10 --pagination-token "PAGINATION_TOKEN"

Starting a User Import Job

To start a user import job, use the following command:

aws cognito-idp start-user-import-job --user-pool-id "USER_POOL_ID" --job-id
 "JOB_ID"

Only one user import job can be active at a time for a given user pool.

Sample response:

{
 "UserImportJob": {
 "Status": "Pending",
 "StartDate": 1470957851.483,
 "UserPoolId": "USER_POOL_ID",
 "ImportedUsers": 0,
 "SkippedUsers": 0,
 "JobName": "JOB_NAME",
 "JobId": "JOB_ID",
 "PreSignedUrl":"PRE_SIGNED_URL",

Version Last Updated: 07/28/2016
89

Amazon Cognito Developer Guide
Viewing Import Job Results

 "CloudWatchLogsRoleArn": "ROLE_ARN",
 "FailedUsers": 0,
 "CreationDate": 1470957431.965
 }
}

Stopping a User Import Job

To stop a user import job while it is in progress, use the following command. After you stop the job, it
cannot be restarted.

aws cognito-idp stop-user-import-job --user-pool-id "USER_POOL_ID" --job-id
 "JOB_ID"

Sample response:

{
 "UserImportJob": {
 "CompletionDate": 1470958050.571,
 "StartDate": 1470958047.797,
 "Status": "Stopped",
 "UserPoolId": "USER_POOL_ID",
 "ImportedUsers": 0,
 "SkippedUsers": 0,
 "JobName": "JOB_NAME",
 "CompletionMessage": "The Import Job was stopped by the developer.",
 "JobId": "JOB_ID",
 "PreSignedUrl":"PRE_SIGNED_URL",
 "CloudWatchLogsRoleArn": "ROLE_ARN",
 "FailedUsers": 0,
 "CreationDate": 1470957972.387
 }
}

Viewing the User Pool Import Results in the
CloudWatch Console
You can view the results of your import job in the Amazon CloudWatch console.

Topics

• Viewing the Results (p. 90)

• Interpreting the Results (p. 91)

Viewing the Results

The following steps describe how to view the user pool import results.

To view the results of the user pool import

1.
Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Logs.

Version Last Updated: 07/28/2016
90

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Cognito Developer Guide
Requiring Imported Users to Reset Their Passwords

3. Choose the log group for your user pool import jobs. The log group name is in the form /aws/
cognito/userpools/USER_POOL_ID/USER_POOL_NAME.

4. Choose the log for the user import job you just ran. The log name is in the form
JOB_ID/JOB_NAME. The results in the log refer to your users by line number. No user data is
written to the log. For each user, a line similar to the following appears:

• [SUCCEEDED] Line Number 5956 - The import succeeded.

• [SKIPPED] Line Number 5956 - The user already exists.

• [FAILED] Line Number 5956 - The User Record does not set any of the auto
verified attributes to true. (Example: email_verified to true).

Interpreting the Results

Successfully imported users have their status set to "PasswordReset".

In the following cases, the user will not be imported, but the import job will continue:

• No auto-verified attributes are set to true.

• The user data doesn't match the schema.

• The user couldn't be imported due to an internal error.

In the following cases, the import job will fail:

• The Amazon CloudWatch Logs role cannot be assumed, doesn't have the correct access policy, or
has been deleted.

• The user pool has been deleted.

• Amazon Cognito is unable to parse the .csv file.

Requiring Imported Users to Reset Their Passwords
The first time each imported user signs in, he or she is required to enter a new password as follows:

Requiring imported users to reset their passwords

1. The user attempts to sign in, providing username and password (via
GetAuthenticationDetails or InitiateAuth).

2. Amazon Cognito returns PasswordResetRequiredException.

3. The app should direct the user into the ForgotPassword flow as outlined in the following
procedure:

1. The app calls ForgotPassword(username).

2. Amazon Cognito sends a code to the verified email or phone number (depending on what you
have provided in the .csv file for that user) and indicates to the app where the code was sent
in the response to the ForgotPassword request.

Note
For sending reset password codes, it is important that your user pool has phone
number or email verification turned on.

3. The app indicates to the user that a code was sent and where the code was sent, and the app
provides a UI to enter the code and a new password.

4. The user enters the code and new password in the app.

5. The app calls ConfirmForgotPassword(code, password), which, if successful, sets the
new password.

Version Last Updated: 07/28/2016
91

Amazon Cognito Developer Guide
Signing Up and Confirming User Accounts

6. The app should now direct the user to a sign-in page.

Signing Up and Confirming User Accounts
User accounts are added to your user pool in one of the following ways:

• The user signs up in your user pool's client app, which can be a mobile or web app.

• You can import the user's account into your user pool. For more information, see Importing Users
into Your User Pools (p. 82).

• You can create the user's account in your user pool and invite the user to sign in. For more
information, see Creating User Accounts in the AWS Management Console and with the Amazon
Cognito User Pools API (p. 79).

Users who sign themselves up need to be confirmed before they can sign in. Imported and created
users are already confirmed, but they need to create their password the first time they sign in. The
following sections explain the confirmation process and email and phone verification.

Overview of User Account Confirmation
The following diagram illustrates the confirmation process:

A user account can be in any of the following states:

Registered
The user has successfully signed up, but cannot sign in until the user account is confirmed. This
state is also called enabled.

New users who sign themselves up start in this state.

Confirmed
The user account is confirmed and the user can sign in. If the user confirmed the user account
by entering a confirmation code that was received via email or phone (SMS), that email or phone
number is automatically verified. If the user account was confirmed by the administrator or a Pre
Sign-up Lambda trigger, there might not be a verified email or phone number associated with the
account.

Password Reset Required
The user account is confirmed, but the user must create a password before he or she can sign in.

Version Last Updated: 07/28/2016
92

Amazon Cognito Developer Guide
Allowing Users to Sign Up and Confirm
Themselves and Verify Email or Phone

User accounts that are imported by an administrator or developer start in this state.

Force Change Password
The user account is confirmed and the user can sign in using a temporary password, but on first
sign-in, the user must change his or her password to a new value before doing anything else.

User accounts that are created by an administrator or developer start in this state.

Disabled
Before a user account can be deleted, it must be disabled.

Allowing Users to Sign Up and Confirm Themselves
and Verify Email or Phone
1. A user signs up in your app by entering a username, phone number and/or email address, and

possibly other attributes.

2. The Amazon Cognito service receives the sign-up request from the app. After verifying that the
request contains all attributes required for sign-up, the service completes the sign-up process and
sends a confirmation code to the user's phone (via SMS) or email.

Note
If a user signs up with both a phone number and an email address, and your user
pool settings require verification of both attributes, a verification code is sent via
SMS to the phone. The email address is not verified. Your app can call GetUser
to see if an email address is awaiting verification. If it is, the app should call
GetUserAttributeVerificationCode to initiate the email verification flow and then submit the
verification code by calling VerifyUserAttribute.

3. The service returns to the app that sign-up is complete and that the user account is pending
confirmation. The response contains information about where the confirmation code was sent. At
this point the user's account is in an unconfirmed state, and the user's email address and phone
number are unverified.

4. The app can now prompt the user to enter the confirmation code. It is not necessary for the user to
enter the code immediately. However, the user will not be able to sign in until after they enter the
confirmation code.

5. The user enters the confirmation code in the app.

6. The app calls ConfirmSignUp to send the code to the Amazon Cognito service, which verifies the
code and, if the code is correct, sets the user's account to the confirmed state. After successfully
confirming the user account, the Amazon Cognito service automatically marks the attribute that
was used to confirm (email or phone number) as verified. Unless the value of this attribute is
changed, the user will not have to verify it again.

7. At this point the user's account is in a confirmed state, and the user can sign in.

Allowing Users to Sign Up in Your App but
Confirming Them as Administrator
1. A user signs up in your app by entering a username, phone number and/or email address, and

possibly other attributes.

2. The Amazon Cognito service receives the sign-up request from the app. After verifying that the
request contains all attributes required for sign-up, the service completes the sign-up process and
returns to the app that sign-up is complete, pending confirmation. At this point the user's account
is in an unconfirmed state. The user cannot sign in until the account is confirmed.

3. The administrator confirms the user's account, either in the Amazon Cognito console (by finding
the user account in the Users tab and choosing the Confirm button) or in the CLI (by using the

Version Last Updated: 07/28/2016
93

http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_GetUser.html
http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_GetUserAttributeVerificationCode.html
http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_VerifyUserAttribute.html
http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_ConfirmSignUp.html

Amazon Cognito Developer Guide
Confirming User Accounts Without
Verifying Email or Phone Number

admin-confirm-sign-up command). Both the Confirm button and the admin-confirm-
sign-up command use the AdminConfirmSignUp API to perform the confirmation.

4. At this point the user's account is in a confirmed state, and the user can sign in.

Confirming User Accounts Without Verifying Email
or Phone Number
The Pre-Sign Up Lambda trigger can be used to auto-confirm user accounts at sign-up time, without
requiring a confirmation code or verifying email or phone number. Users who are confirmed this way
can immediately sign in without having to receive a code.

Note
While this approach is convenient for users when they're getting started, we don't recommend
it, because it can leave the user unable to recover if they forget their password.

If you don't require the user to receive and enter a confirmation code at sign-up, you risk not having a
verified email address or phone number for that user account. The user can verify the email address
or phone number at a later time. However, if the user forgets his or her password and doesn't have
a verified email address or phone number, the user is locked out of the account, because the Forgot
Password flow requires a verified email or phone number in order to send a verification code to the
user.

Verifying When Users Change Their Email or Phone
Number
When a user changes his or her email address or phone number in your app, that attribute is marked
as unverified, and the service immediately sends the user a message containing a verification code,
which the user should enter to verify the change. You can use a Custom Message Lambda trigger to
customize this message. For more information, see Customizing User Pool Workflows by Using AWS
Lambda Triggers (p. 64). Whenever the user's email address or phone number is unverified, your
app should display the unverified status and provide a button or link for users to verify their new email
or phone number.

Confirmation and Verification Processes for User
Accounts Created by Administrators or Developers
User accounts that are created by an administrator or developer are already in the confirmed state, so
users aren't required to enter a confirmation code. The invitation message that the Amazon Cognito
service sends to these users includes the username and a temporary password. The user is required
to change the password before signing in. For more information, see the Message Customizations
Tab (p. 81) in Creating User Accounts in the AWS Management Console and with the Amazon
Cognito User Pools API (p. 79) and the Custom Message trigger in Customizing User Pool
Workflows by Using AWS Lambda Triggers (p. 64).

Confirmation and Verification Processes for
Imported User Accounts
User accounts that are created by using the user import feature in the AWS Management Console,
CLI, or API (see Importing Users into Your User Pools (p. 82)) are already in the confirmed state, so
users aren't required to enter a confirmation code. No invitation message is sent. However, imported
user accounts require users to create a password the first time they sign in. For more information, see
Requiring Imported Users to Reset Their Passwords (p. 91).

Version Last Updated: 07/28/2016
94

http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_AdminConfirmSignUp.html

Amazon Cognito Developer Guide
Managing and Searching for Users

Either the user's email or phone number must be marked as verified when the user account is
imported, so no verification is required when the user signs in.

Managing and Searching for User Accounts in the
AWS Management Console and in the Amazon
Cognito User Pools API

Once you create your user pool, you can view and manage users using the AWS Management
Console, as well as the AWS Command Line Interface or the Amazon Cognito API. This topic
describes how you can view and search for users using the AWS Management Console.

Viewing User Attributes
There are a number of operations you can perform in the AWS Management Console:

• You can view the Pool details and edit user pool attributes, password policies, MFA settings, apps,
and triggers. For more information, see Getting Started: Step Through Amazon Cognito User Pool
Settings in the AWS Management Console (p. 13).

• You can view the users in your user pool and drill down for more details.

• You can also view the details for an individual user in your user pool.

• You can also search for a user in your user pool.

To manage user pools using the AWS Management Console

1. From the Amazon Cognito home page in the AWS Management Console, choose Manage your
user identities.

2. Choose your user pool from the Your User Pools page.

3. Choose User to view user information.

4. Choose a user name to show more information about an individual user. From this screen, you
can perform any of the following actions:

• Reset user password

• Confirm user

• Enable or disable MFA

• Delete user

The Reset user password action results in a confirmation code being sent to the user
immediately. The Enable MFA action results in a confirmation code being sent to the user when
the user tries to log in. The Reset user password code is valid for 24 hours. The MFA code is
valid for 3 minutes.

Searching User Attributes
If you have already created a user pool, you can search from the Users panel in the AWS
Management Console. You can also use the Amazon Cognito ListUsers API, which accepts a Filter
parameter.

You can search for any of the following standard attributes. Custom attributes are not searchable.

Version Last Updated: 07/28/2016
95

http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_ListUsers.html

Amazon Cognito Developer Guide
Searching for Users Using the AWS Management Console

• username (case-sensitive)

• email

• phone_number

• name

• given_name

• family_name

• preferred_username

• cognito:user_status (called Enabled in the Console) (case-sensitive)

• status (case-insensitive)

Searching for Users Using the AWS Management
Console
If you have already created a user pool, you can search from the Users panel in the AWS
Management Console.

AWS Management Console searches are always prefix ("starts with") searches.

All of the following examples use the same user pool.

For example, if you want to list all users, leave the search box empty.

If you want to search for all confirmed users, choose Status from the drop-down menu. In the search
box, type the first letter of the word "confirmed."

Note that some attribute values are case-sensitive, such as User name.

Version Last Updated: 07/28/2016
96

Amazon Cognito Developer Guide
Searching for Users Using the ListUsers API

Searching for Users Using the ListUsers API
To search for users from your app, use the Amazon Cognito ListUsers API. This API uses the following
parameters:

• AttributesToGet: An array of strings, where each string is the name of a user attribute to be
returned for each user in the search results. If the array is empty, all attributes are returned.

• Filter: A filter string of the form "AttributeName Filter-Type "AttributeValue"". Quotation
marks within the filter string must be escaped using the backslash (\) character. For example,
"family_name = \"Reddy\"". If the filter string is empty, ListUsers returns all users in the user
pool.

• AttributeName: The name of the attribute to search for. You can only search for one attribute at
a time.

Note
You can only search for standard attributes. Custom attributes are not searchable. This
is because only indexed attributes are searchable, and custom attributes cannot be
indexed.

• Filter-Type: For an exact match, use =, for example, given_name = "Jon". For a prefix
("starts with") match, use ^=, for example, given_name ^= "Jon".

• AttributeValue: The attribute value that must be matched for each user.

• Limit: Maximum number of users to be returned.

• PaginationToken: A token to get more results from a previous search.

• UserPoolId: The user pool ID for the user pool on which the search should be performed.

All searches are case-insensitive. Search results are sorted by the attribute named by the
AttributeName string, in ascending order.

Examples of Using the ListUsers API
The following example returns all users and includes all attributes.

{
 "AttributesToGet": [],
 "Filter": "",
 "Limit": 10,
 "UserPoolId": "us-east-1_samplepool"
}

The following example returns all users whose phone numbers start with "+1312" and includes all
attributes.

Version Last Updated: 07/28/2016
97

http://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_ListUsers.html

Amazon Cognito Developer Guide
Authentication Flow

{
 "AttributesToGet": [],
 "Filter": "phone_number ^= \"+1312\"",
 "Limit": 10,
 "UserPoolId": "us-east-1_samplepool"
}

The following example returns the first 10 users whose family name is "Reddy". For each user, the
search results include the user's given name, phone number, and email address. If there are more than
10 matching users in the user pool, the response includes a pagination token.

{
 "AttributesToGet": [
 "given_name", "phone_number", "email"
],
 "Filter": "family_name = \"Reddy\"",
 "Limit": 10,
 "UserPoolId": "us-east-1_samplepool"
}

If the previous example returns a pagination token, the following example returns the next 10 users that
match the same filter string.

{
 "AttributesToGet": [
 "given_name", "phone_number", "email"
],
 "Filter": "family_name = \"Reddy\"",
 "Limit": 10,
 "PaginationToken": "pagination_token_from_previous_search",
 "UserPoolId": "us-east-1_samplepool"
}

Amazon Cognito User Pool Authentication Flow

Custom Authentication Flow
The custom authentication flow is designed to allow for a series of challenge and response cycles
that can be customized to meet different requirements. The flow starts with a call to the InitiateAuth
API that indicates the type of authentication that will be used and provides any initial authentication
parameters. Amazon Cognito will respond to the InitiateAuth call with either:

• ID, access, and refresh tokens if the user is signed in

• A challenge for the user along with a session and parameters

• An error if the user fails to authenticate

If Amazon Cognito responds to the InitiateAuth call with a challenge, the app will gather more
input and call the RespondToAuthChallenge API, providing the challenge responses and passing
back the session. Amazon Cognito responds to the RespondToAuthChallenge call similarly to the
InitiateAuth call, providing tokens if the user is signed in, another challenge, or an error. If another
challenge is returned, the sequence repeats with the app calling RespondToAuthChallenge until the

Version Last Updated: 07/28/2016
98

Amazon Cognito Developer Guide
Admin Authentication Flow

user is signed in or an error is returned. More details are provided in the API documentation for the
InitiateAuth and RespondToAuthChallenge APIs.

Amazon Cognito has some built-in AuthFlow and ChallengeName values for a standard
authentication flow to validate username and password through the Secure Remote Password (SRP)
protocol. This flow is built into the iOS, Android, and JavaScript SDKs for Amazon Cognito. At a
high level, the flow starts by sending USER_SRP_AUTH as the AuthFlow to InitiateAuth along with
USERNAME and SRP_A values in AuthParameters. If the InitiateAuth call is successful, the response
will include PASSWORD_VERIFIER as the ChallengeName and SRP_B in the challenge parameters.
The app will then call RespondToAuthChallenge with the PASSWORD_VERIFIER ChallengeName
and the necessary parameters in ChallengeResponses. If the call to RespondToAuthChallenge is
successful and the user is signed in, the tokens will be returned. If multi-factor authentication (MFA)
is enabled for the user, a ChallengeName of SMS_MFA will be returned, and the app can provide the
necessary code through another call to RespondToAuthChallenge.

An app can initiate a custom authentication flow by calling InitiateAuth with CUSTOM_AUTH as the
Authflow. With a custom authentication flow, the challenges and verification of the responses are
controlled through three AWS Lambda triggers. The DefineAuthChallenge Lambda trigger takes
as input a session array of previous challenges and responses and outputs the next challenge
name and booleans indicating if the user is authenticated (and should be granted tokens) or if the
authentication has failed. This Lambda trigger is a state machine that controls the user’s path through
the challenges. The CreateAuthChallenge Lambda trigger takes a challenge name as input and
generates the challenge and parameters to evaluate the response. CreateAuthChallenge is called
when DefineAuthChallenge returns CUSTOM_CHALLENGE as the next challenge, and the next type
of challenge is passed in the challenge metadata parameter. The VerifyAuthChallengeResponse
Lambda function evaluates the response and returns a boolean to indicate if the response was valid.

A custom authentication flow can also use a combination of built-in challenges such as SRP password
verification and MFA via SMS, and custom challenges such as CAPTCHA or secret questions. If you
want to include SRP in a custom authentication flow, you need to start with it. To initiate SRP password
verification, the DefineAuthChallenge Lambda trigger returns SRP_A as the challenge name and
SRP_A in the authentication parameters map. Once the password is verified the DefineAuthChallenge
Lambda trigger will be called again with PASSWORD_VERIFIER in the previous challenges array. MFA
will be done automatically if it is enabled for a user.

For more information about the Lambda triggers, including sample code, see Customizing User Pool
Workflows by Using AWS Lambda Triggers (p. 64).

Admin Authentication Flow
The APIs described Custom Authentication Flow (p. 98) with the use of SRP for password
verification is the recommended approach for authentication. The iOS, Android, and JavaScript SDKs
are based on that approach and make it easy to use SRP. However, there is an alternative set of
admin APIs designed for use on secure backend servers if you want to avoid the SRP calculations.
For these back-end admin implementations, AdminInitiateAuth is used in place of InitiateAuth,
and AdminRespondToAuthChallenge is used in place of RespondToAuthChallenge. When using
these APIs, the password can be submitted as plain text so the SRP calculations are not needed. For
example,

AdminInitiateAuth Request {
 "AuthFlow":"ADMIN_NO_SRP_AUTH",
 "AuthParameters":{
 "USERNAME":"<username>",
 "PASSWORD":"<password>"
 },
 "ClientId":"<clientId>",
 "UserPoolId":"<userPoolId>"
}

Version Last Updated: 07/28/2016
99

Amazon Cognito Developer Guide
Integrating User Pools with Amazon Cognito Identity

These admin authentication APIs require developer credentials and use the AWS Signature Version 4
(SigV4) signing process. These APIs are available in standard AWS SDKs including Node.js, which is
convenient for use in Lambda functions. In order to use these APIs and have them accept passwords
in plain text, you must enable them for the app in the console or by passing ADMIN_NO_SRP_AUTH for
the ExplicitAuthFlow parameter in calls to CreateUserPoolClient or UpdateUserPoolClient. The
ADMIN_NO_SRP_AUTH AuthFlow is not accepted for the InitiateAuth and RespondToAuthChallenge
APIs.

Integrating User Pools with Amazon Cognito
Identity

Amazon Cognito Identity user pools represent an identity provider that you manage. To enable users
in your user pool to access AWS resources through your client apps, you must configure Amazon
Cognito Identity to accept users that are federated with your user pool.

Setting Up a User Pool
Create an Amazon Cognito user pool and make a note of both the User Pool ID and the App Client
ID for each of your client apps. For more information about creating user pools,, see Creating and
Managing User Pools (p. 10). For more information about creating apps (to get app client IDs) for
your client apps, see Specifying User Pool App Settings (p. 20).

You can create multiple user pools, and each user pool can have multiple apps.

Configuring Your Identity Pool Using the AWS
Management Console
The following procedure describes how to configure your identity pool using the AWS Management
Console. You will learn how to configure an identity pool to use Amazon Cognito as the identity
provider.

To configure your identity pool

1. Open the Amazon Cognito console.

2. Choose Manage Federated Identities.

3. Choose the name of the identity pool for which you want to enable Amazon Cognito Identity user
pools as a provider.

4. On the Dashboard page, choose Edit identity pool.

5. Expand the Authentication providers section.

6. Choose Cognito.

7. Type the User Pool ID.

8. Type the App Client ID. This must be the same client app ID that you received when you created
the app in the Your User Pools section of the AWS Management Console for Amazon Cognito.

9. If you have additional apps, choose Add Another Provider and type the User Pool ID and App
Client ID for each app.

10. If you have additional user pools, choose Add Another Provider and type the User Pool ID and
App Client ID for each app in each user pool.

11. When you have no more apps or user pools to add, choose Save changes.

If successful, you will see Changes saved successfully. on the Dashboard page.

Version Last Updated: 07/28/2016
100

Amazon Cognito Developer Guide
Using Amazon Cognito Identity User Pools

Using Amazon Cognito Identity User Pools
Follow the instructions in Authentication Flow (p. 107) to authenticate users.

After the user is authenticated, add that user's identity token to the logins map in the credentials
provider. The provider name will depend on your Amazon Cognito Identity user pool ID. It will have the
following structure:

cognito-idp.<region>.amazonaws.com/<YOUR_USER_POOL_ID>

The value for <region> will be the same as the region in the User Pool ID. For example, cognito-
idp.us-east-1.amazonaws.com/us-east-1_123456789.

iOS - Objective-C

AWSServiceConfiguration *serviceConfiguration = [[AWSServiceConfiguration
 alloc] initWithRegion:AWSRegionUSEast1 credentialsProvider:nil];
AWSCognitoIdentityUserPoolConfiguration *userPoolConfiguration
 = [[AWSCognitoIdentityUserPoolConfiguration alloc]
 initWithClientId:@"YOUR_CLIENT_ID" clientSecret:@"YOUR_CLIENT_SECRET"
 poolId:@"YOUR_USER_POOL_ID"];
[AWSCognitoIdentityUserPool
 registerCognitoIdentityUserPoolWithConfiguration:serviceConfiguration
 userPoolConfiguration:userPoolConfiguration forKey:@"UserPool"];
AWSCognitoIdentityUserPool *pool = [AWSCognitoIdentityUserPool
 CognitoIdentityUserPoolForKey:@"UserPool"];
AWSCognitoCredentialsProvider *credentialsProvider =
 [[AWSCognitoCredentialsProvider alloc] initWithRegionType:AWSRegionUSEast1
 identityPoolId:@"YOUR_IDENTITY_POOL_ID" identityProviderManager:pool];

iOS - Swift

let serviceConfiguration = AWSServiceConfiguration(region: .USEast1,
 credentialsProvider: nil)
let userPoolConfiguration = AWSCognitoIdentityUserPoolConfiguration(clientId:
 "YOUR_CLIENT_ID", clientSecret: "YOUR_CLIENT_SECRET", poolId:
 "YOUR_USER_POOL_ID")
AWSCognitoIdentityUserPool.registerCognitoIdentityUserPoolWithConfiguration(serviceConfiguration,
 userPoolConfiguration: userPoolConfiguration, forKey: "UserPool")
let pool = AWSCognitoIdentityUserPool(forKey: "UserPool")
let credentialsProvider = AWSCognitoCredentialsProvider(regionType: .USEast1,
 identityPoolId: "YOUR_IDENTITY_POOL_ID", identityProviderManager:pool)

Android

cognitoUser.getSessionInBackground(new AuthenticationHandler() {
 @Override
 public void onSuccess(CognitoUserSession session) {
 String idToken = session.getIdToken().getJWTToken();

 Map<String, String> logins = new HashMap<String, String>();
 logins.put(cognito-idp.<region>.amazonaws.com/<YOUR_USER_POOL_ID>,
 session.getIdToken().getJWTToken());

Version Last Updated: 07/28/2016
101

Amazon Cognito Developer Guide
Using Tokens

 credentialsProvider.setLogins(logins);
 }

});

JavaScript

var cognitoUser = userPool.getCurrentUser();

if (cognitoUser != null) {
 cognitoUser.getSession(function(err, result) {
 if (result) {
 console.log('You are now logged in.');

 // Add the User's Id Token to the Cognito credentials login map.
 AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'YOUR_IDENTITY_POOL_ID',
 Logins: {
 'cognito-idp.<region>.amazonaws.com/<YOUR_USER_POOL_ID>':
 result.getIdToken().getJwtToken()
 }
 });
 }
 });
}

Using Tokens with User Pools
After successful authentication of a user, Amazon Cognito issues three tokens to the client:

• ID token

• Access token

• Refresh token

Important
We strongly recommended that you secure all three tokens in transit and storage in the
context of your application.

Using the ID Token
The ID token is represented as a JSON Web Key Token (JWT). The token contains claims
about the identity of the authenticated user. For example, it includes claims such as name,
family_name, phone_number, etc. For more information about standard claims, see the OpenID
Connect specification. A client app can use this identity information inside the application. The ID
token can also be used against your resource servers or server applications. When an ID token
is used outside of the application against your web APIs, you must verify the signature of the ID
token before you can trust any claims inside the ID token.

The ID token expires one hour after the user authenticates. You should not process the ID token in
your client or web API after it has expired.

Using the Access Token
The access token is also represented as a JSON Web Key Token (JWT). It contains claims
about the authenticated user, but unlike the ID token, it does not include all of the user's identity
information. The primary purpose of the access token is to authorize operations in the context of

Version Last Updated: 07/28/2016
102

http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

Amazon Cognito Developer Guide
Structure of ID Tokens

the user in the user pool. For example, you can use the access token against Amazon Cognito
Identity to update or delete user attributes. The access token can also be used with any of your
web APIs to make access control decisions and authorize operations in the context of the user. As
with the ID token, you must first verify the signature of the access token in your web APIs before
you can trust any claims inside the access token.

The access token expires one hour after the user authenticates. It should not be processed after it
has expired.

Using the Refresh Token
The refresh token is a string that should only be used against Amazon Cognito to retrieve a new
access token if the access token has expired.

By default, the refresh token expires 30 days after the user authenticates. When you create an app
for your user pool, you can set the app’s Refresh token expiration (days) to any value between 1
and 3650.

Structure of ID Tokens
ID tokens are JSON Web Key Tokens (JWT) and can be broken down into three parts: a header, a
payload, and a signature.

Header
The header contains two pieces of information: the kid and the alg. A kid value is used to locate
the public key. The public key should verify the ID token signature. The alg value represents the
cryptographic algorithm used to secure IdToken. Currently, user pools only use RS256 as the
cryptographic algorithm. For more information, see JSON Web Key Token (JWT).

For example, the header will look like this:

{

"alg" : "RS256",
"kid" : "samplekid****"

}

Payload
The payload contains claims as per the JWT specification. For more information, see RFC7519.
The following are details of some specific claims:

• iss : The issuer. It has the following format: https://cognito-idp.
{region}.amazonaws.com/{userPoolId}. For example, if you created a user pool in the
us-east-1 region and its ID is u123456, the ID token issued for users of your user pool have
an iss claim value of https://cognito-idp.us-east-1.amazonaws.com/u123456.

• sub : The UUID of the authenticated user. This is not the same as username.

• aud : Contains the client_id with which the user authenticated.

• token_use : The intended purpose of this token. Its value is always id in the case of the ID
token.

Additionally, the ID token contains standard claims defined in the OIDC Core spec, Section 5.1.
It also contains the custom attributes that you define in your user pool. The custom attributes are
always prefixed with the custom: prefix.

Signature
The signature of the ID token is calculated based on the header and payload of the ID token.
When used outside of an application in your web APIs, you must always verify this signature
before processing the ID token.

Version Last Updated: 07/28/2016
103

https://tools.ietf.org/html/draft-ietf-jose-json-web-key-41#section-4.4
https://tools.ietf.org/html/rfc7519
http://openid.net/specs/openid-connect-core-1_0.html

Amazon Cognito Developer Guide
Structure of Access Tokens

Structure of Access Tokens
Access tokens are also JSON Web Tokens (JWT) and can be broken down into three parts: a header,
a payload, and a signature.

Header
The header for the access token will be the same structure as the ID token, but the kid will be
different because different keys are used to sign ID tokens and access tokens.

Payload
The payload contains claims as per the JWT specification. For more information, see RFC7519.
The following are details of some specific claims:

• iss : The issuer. It has the following format: https://cognito-idp.
{region}.amazonaws.com/{userPoolId}. For example, if you created a user pool in the
us-east-1 region and its ID is u123456, the ID token issued for users of your user pool have
an iss claim value of https://cognito-idp.us-east-1amazonaws.com/u123456.

• client_id : The client app that was issued this access token.

• username : The user name of the authenticated user.

• sub : The UUID of the authenticated user. This is not the same as username.

• token_use : The intended purpose of this token. Its value is always access in the case of the
access token.

Signature
The signature of the access token is calculated based on the header and payload of the access
token. You should always verify this signature if you use access tokens in your web APIs.

Using ID Tokens and Access Tokens in your Web
APIs
Since both the ID token and the access token are JSON Web Tokens (JWT), you may use any of the
available JWT libraries to decode the JWT and verify the signature. For example, if your platform is
Java, you could use the Nimbus JOSE and JWT library. The following procedure describes the high
level steps you must implement to process the ID token and the access token on the server side.

To verify a signature for ID and access tokens

1. Download and store the JSON Web Token (JWT) Set for your user pool. You can locate them
at https://cognito-idp.{region}.amazonaws.com/{userPoolId}/.well-known/
jwks.json.

Each JWT should be stored against its kid.

Note
This is a one time step before your web APIs can process the tokens. Now you can
perform the following steps each time the ID token or the access token are used against
your web APIs.

2. Decode the token string into JWT format.

3. Check the iss claim. It should match your user pool. For example, a user pool created
in the us-east-1 region will have an iss value of https://cognito-idp.us-
east-1.amazonaws.com/{userPoolId}.

4. Check the token_use claim.

If you are only accepting the access token in your web APIs, its value must be access.

If you are only using the ID token, its value must be id.

Version Last Updated: 07/28/2016
104

https://tools.ietf.org/html/rfc7519
http://connect2id.com/products/nimbus-jose-jwt

Amazon Cognito Developer Guide
Revoking All Tokens for a User

If you are using both tokens, the value is either id or access.

5. Get the kid from the JWT token header and retrieve the corresponding JSON Web Key that was
stored in step 1.

6. Verify the signature of the decoded JWT token.

7. Check the exp claim and make sure the token is not expired.

You can now trust the claims inside the token and use it as it fits your requirements.

Revoking All Tokens for a User
Users can sign out from all devices where they are currently signed in when you revoke all of the user's
tokens by using the GlobalSignOut and AdminUserGlobalSignOut APIs. After the user has been
signed out:

• The user's refresh token cannot be used to get new tokens for the user.

• The user's access token cannot be used against the user pools service.

• The user must reauthenticate to get new tokens.

An app can use the GlobalSignOut API to allow individual users to sign themselves out from all
devices. Typically an app would present this option as a choice, such as Sign out from all devices.
The app must call this method with the user's valid, nonexpired, nonrevoked access token. This
method cannot be used to allow a user to sign out another user.

An administrator app can use the AdminUserGlobalSignOut API to allow administrators to sign out
a user from all devices. The administrator app must call this method with AWS developer credentials
and pass the user pool ID and the user's username as parameters. The AdminUserGlobalSignOut
API can sign out any user in the user pool.

Version Last Updated: 07/28/2016
105

Amazon Cognito Developer Guide
Identity Pools

Amazon Cognito Identity: Using
Federated Identities

Amazon Cognito Federated Identities enable you to create unique identities for your users and
authenticate them with identity providers. With an identity, you can obtain temporary, limited-privilege
AWS credentials to synchronize data with Amazon Cognito Sync, or directly access other AWS
services. Amazon Cognito Identity supports public identity providers—Amazon, Facebook, Google,
and SAML identity providers—as well as unauthenticated identities. It also supports developer
authenticated identities, which let you register and authenticate users via your own backend
authentication process.

For information about Amazon Cognito Identity Region availability, see AWS Service Region
Availability.

For more information about Amazon Cognito Identity, see the following topics.

• Identity Pools (p. 106)

• Getting Credentials (p. 115)

• Accessing AWS Services (p. 121)

• External Identity Providers (p. 122)

• Developer Authenticated Identities (p. 146)

• Switching Identities (p. 159)

Identity Pools
To use Amazon Cognito in your app, you'll need to create an identity pool. An identity pool is a store of
user identity data specific to your account. Using Amazon Cognito Sync (p. 162), you can retrieve the
data across client platforms, devices, and operating systems, so that if a user starts using your app on
a phone and later switches to a tablet, the persisted app information is still available for that user.

To create a new identity pool for your application:

1. Log in to the Amazon Cognito console and click Create new identity pool.

Version Last Updated: 07/28/2016
106

http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://console.aws.amazon.com/cognito

Amazon Cognito Developer Guide
Authenticated and Unauthenticated Identities

2. Enter a name for your identity pool, select the checkbox to enable access to unauthenticated
identities, and then click Create Pool.

3. Click Allow to create the two default roles associated with your identity pool–one for
unauthenticated users and one for authenticated users. These default roles provide your identity
pool access to Amazon Cognito Sync. You can modify the roles associated with your identity pool in
the IAM console.

For additional instructions on working with the Amazon Cognito console, see Using the Amazon
Cognito Console (p. 203).

Authenticated and Unauthenticated Identities
Amazon Cognito identity pools support both authenticated and unauthenticated identities.
Authenticated identities belong to users who are authenticated by a public login provider (Facebook,
Amazon, Google, Twitter/Digits, or any OpenID Connect Providers) or a developer provider (your own
backend authentication process). Unauthenticated identities typically belong to guest users.

• To configure authenticated identities with a public login provider, see External Identity
Providers (p. 122).

• To configure your own backend authentication process, see Developer Authenticated
Identities (p. 146).

User IAM Roles
An IAM role defines the permissions for your users to access AWS resources, like Amazon Cognito
Sync (p. 162). Users of your application will assume the roles you create. You can specify
different roles for authenticated and unauthenticated users. To learn more about IAM roles, see IAM
Roles (p. 112).

Federated Identities Concepts
Amazon Cognito Identity enables you to create unique identities for your users and authenticate them
with identity providers. With an identity, you can obtain temporary, limited-privilege AWS credentials
to synchronize data with Amazon Cognito Sync, or directly access other AWS services. Amazon
Cognito Identity supports public identity providers—Amazon, Facebook, and Google—as well as
unauthenticated identities. It also supports developer authenticated identities, which let you register
and authenticate users via your own back-end authentication process.

For information about Amazon Cognito Identity Region availability, see AWS Service Region
Availability. For more information about Amazon Cognito Identity concepts, see the following topics.

Topics

• Authentication Flow (p. 107)

• IAM Roles (p. 112)

• Role Trust and Permissions (p. 114)

Authentication Flow
Amazon Cognito helps you create unique identifiers for your end users that are kept consistent across
devices and platforms. Amazon Cognito also delivers temporary, limited-privilege credentials to your
application to access AWS resources. This page covers the basics of how authentication in Amazon
Cognito works and explains the life cycle of an identity inside your identity pool.

Version Last Updated: 07/28/2016
107

https://console.aws.amazon.com/iam/home
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Amazon Cognito Developer Guide
Authentication Flow

External Provider Authflow

A user authenticating with Amazon Cognito will go through a multi-step process to bootstrap their
credentials. Amazon Cognito has two different flows for authentication with public providers: enhanced
and basic.

Once you complete one of these flows, you can access other AWS services as defined by your role's
access policies. By default, the Amazon Cognito console will create roles with access to the Amazon
Cognito Sync store and to Amazon Mobile Analytics. For more information on how to grant additional
access see IAM Roles (p. 112).
Enhanced (Simplified) Authflow

1. GetId

2. GetCredentialsForIdentity

Basic (Classic) Authflow

1. GetId

2. GetOpenIdToken

3. AssumeRoleWithWebIdentity

Version Last Updated: 07/28/2016
108

https://console.aws.amazon.com/cognito/

Amazon Cognito Developer Guide
Authentication Flow

Developer Authenticated Identities Authflow

When using Developer Authenticated Identities (p. 146), the client will use a different authflow that
will include code outside of Amazon Cognito to validate the user in your own authentication system.
Code outside of Amazon Cognito is highlighted in italics.
Enhanced Authflow

1. Login via Developer Provider

2. Validate the user's login

3. GetOpenIdTokenForDeveloperIdentity

4. GetCredentialsForIdentity

Basic Authflow

1. Login via Developer Provider

2. Validate the user's login

3. GetOpenIdTokenForDeveloperIdentity

4. GetCredentialsForIdentity

5. AssumeRoleWithWebIdentity

Which Authflow Should I Use?

For most customers, the Enhanced Flow is the correct choice, as it offers many benefits over the Basic
Flow:

• One fewer network call to get credentials on the device.

Version Last Updated: 07/28/2016
109

Amazon Cognito Developer Guide
Authentication Flow

• All calls are made to Amazon Cognito, meaning it is also one less network connection.

• Roles no longer need to be embedded in your application, only an identity pool id and region are
necessary to start bootstrapping credentials.

Since February 2015, the Amazon Cognito console displayed example code that used the Enhanced
Flow. Additionally, the console will display a notification if your identity pool does not have the role
association necessary to use the Enhanced Flow.

The following are the minimum SDK versions where the Enhanced Flow is supported:
SDK (Minimum Version)

• AWS SDK for iOS (2.0.14)

• AWS SDK for Android (2.1.8)

• AWS SDK for JavaScript (2.1.7)

• AWS SDK for Unity (1.0.3)

• AWS SDK for Xamarin (3.0.0.5)

You may still wish to use the Basic Flow if you want to use more than the two default roles configured
when you create a new identity pool in the console.

API Summary

GetId

The GetId API call is the first call necessary to establish a new identity in Amazon Cognito.
Unauthenticated Access

Amazon Cognito has the ability to allow unauthenticated guest access in your applications. If this
feature is enabled in your identity pool, users can request a new identity ID at any time via the GetId
API. The application is expected to cache this identity ID to make subsequent calls to Amazon Cognito.
The AWS Mobile SDKs as well as the AWS SDK for JavaScript in the Browser have credentials
providers that handle this caching for you.
Authenticated Access

When you've configured your application with support for a public login provider (Facebook, Google
+, Login with Amazon), users will also be able to supply tokens (OAuth or OpenID Connect) that
identify them in those providers. When used in a call to GetId, Amazon Cognito will either create a
new authenticated identity or return the identity already associated with that particular login. Amazon
Cognito does this by validating the token with the provider and ensuring that:

• The token is valid and from the configured provider

• The token is not expired

• The token matches the application identifier created with that provider (e.g., Facebook app ID)

• The token matches the user identifier

GetCredentialsForIdentity

The GetCredentialsForIdentity API can be called after you establish an identity ID. This API is
functionally equivalent to calling GetOpenIdToken followed by AssumeRoleWithWebIdentity.

In order for Amazon Cognito to call AssumeRoleWithWebIdentity on your behalf, your identity pool
must have IAM roles associated with it. You can do this via the Amazon Cognito Console or manually
via the SetIdentityPoolRoles operation (see the API reference)

Note: For additional security protection, Amazon Cognito uses a scope-down policy when assuming
roles during a GetCredentialsForIdentity call. If the identity is unauthenticated, only AWS Services

Version Last Updated: 07/28/2016
110

https://console.aws.amazon.com/cognito/

Amazon Cognito Developer Guide
Authentication Flow

currently supported by the AWS Mobile SDKs are whitelisted in this scope down policy. If you need to
use a service not currently supported, you must use the basic authflow.

GetOpenIdToken

The GetOpenIdToken API call is called after you establish an identity ID. If you have a cached identity
ID, this can be the first call you make during an app session.
Unauthenticated Access

To obtain a token for an unauthenticated identity, you only need the identity ID itself. It is not possible
to get an unauthenticated token for authenticated or disabled identities.
Authenticated Access

If you have an authenticated identity, you must pass at least one valid token for a login already
associated with that identity. All tokens passed in during the GetOpenIdToken call must pass the
same validation mentioned earlier; if any of the tokens fail, the whole call fails. The response from the
GetOpenIdToken call also includes the identity ID. This is because the identity ID you pass in may not
be the one that is returned.
Linking Logins

If you pass in a token for a login that is not already associated with any identity, the login is considered
to be "linked" to the associated identity. You may only link one login per public provider. Attempts to
link more than one login with a public provider will result in a ResourceConflictException. If a login is
merely linked to an existing identity, the identity ID returned from GetOpenIdToken will be the same as
what was passed in.
Merging Identities

If you pass in a token for a login that is not currently linked to the given identity, but is linked to another
identity, the two identities are merged. Once merged, one identity becomes the parent/owner of all
associated logins and the other is disabled. In this case, the identity ID of the parent/owner is returned.
You are expected to update your local cache if this value differs (this is handled for you if you are using
the providers in the AWS Mobile SDKs or AWS SDK for JavaScript in the Browser).

GetOpenIdTokenForDeveloperIdentity

The GetOpenIdTokenForDeveloperIdentity API replaces the use of GetId and GetOpenIdToken from
the device when using developer authenticated identities. Because this API call is signed by your AWS
credentials, Amazon Cognito can trust that the user identifier supplied in the API call is valid. This
replaces the token validation Amazon Cognito performs with external providers.

The payload for this API includes a logins map which must contain the key of your developer provider
and a value as an identifier for the user in your system. If the user identifier isn't already linked to
an existing identity, Amazon Cognito will create a new identity and return the new identity id and an
OpenId Connect token for that identity. If the user identifier is already linked, Amazon Cognito will
return the pre-existing identity id and an OpenId Connect token.
Linking Logins

As with external providers, supplying additional logins that are not already associated with an identity
will implicitly link those logins to that identity. It is important to note that if you link an external provider
login to an identity, the user can use the external provider authflow with that provider, but they cannot
use your developer provider name in the logins map when calling GetId or GetOpenIdToken.
Merging Identities

With developer authenticated identities, Amazon Cognito supports both implicit merging as well as
explicit merging via the MergeDeveloperIdentities API. This explicit merging allows you to mark two
identities with user identifiers in your system as a single identity. You simply supply the source and
destination user identifiers and Amazon Cognito will merge them. The next time you request an OpenId
Connect token for either user identifier, the same identity id will be returned.

AssumeRoleWithWebIdentity

Version Last Updated: 07/28/2016
111

Amazon Cognito Developer Guide
IAM Roles

Once you have an OpenID Connect token, you can then trade this for temporary AWS credentials
via the AssumeRoleWithWebIdentity API call in AWS Security Token Service (STS). This call is no
different than if you were using Facebook, Google+, or Login with Amazon directly, except that you are
passing an Amazon Cognito token instead of a token from one of the other public providers.

Because there's no restriction on the number of identities that can be created, it's important to
understand the permissions that are being granted to your users. We recommend having two different
roles for your application: one for unauthenticated users, and one for authenticated users. The Amazon
Cognito console will create these for you by default when you first set up your identity pool. The access
policy for these two roles will be exactly the same: it will grant users access to Amazon Cognito Sync
as well as to submit events to Amazon Mobile Analytics. You are welcome and encouraged to modify
these roles to meet your needs.

Learn more about Role Trust and Permissions (p. 114).

IAM Roles
In the process of creating an identity pool, you'll be prompted to update the IAM roles that your
users assume. IAM roles work like this: When a user logs in to your app, Amazon Cognito generates
temporary AWS credentials for the user. These temporary credentials are associated with a specific
IAM role. The IAM role lets you define a set of permissions to access your AWS resources.

By default, the Amazon Cognito Console creates IAM roles that provide access to Amazon Mobile
Analytics and to Amazon Cognito Sync. Alternatively, you can choose to use existing IAM roles.

To modify IAM roles, thereby allowing or restricting access to other services, log in to the IAM
Console. Then click Roles and select a role. The policies attached to the selected role are listed in the
Permissions tab. You can customize an access policy by clicking the corresponding Manage Policy
link. To learn more about using and defining policies, see Overview of IAM Policies. For Amazon
Cognito to work, the IAM policy must at least enable access to the Amazon Cognito store for each
identity, as in the following example:

{
 "Version": "2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":"cognito-sync:*",
 "Resource":["arn:aws:cognito-sync:us-east-1:123456789012:identitypool/
${cognito-identity.amazonaws.com:aud}/identity/${cognito-
identity.amazonaws.com:sub}/*"]
 }]
 }

The following policy provides access to the entire Amazon Cognito Sync store:

{
 "Version": "2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":"cognito-sync:*",
 "Resource":["arn:aws:cognito-sync:us-east-1:123456789012:identitypool/
*"]
 }]
 }

Role Trust and Permissions

Version Last Updated: 07/28/2016
112

https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
http://docs.aws.amazon.com/IAM/latest/UserGuide/PoliciesOverview.html

Amazon Cognito Developer Guide
IAM Roles

Amazon Cognito leverages IAM roles to generate temporary credentials for your application's users.
Access to permissions is controlled by a role's trust relationships. Learn more about role trust and
permissions.

Reuse Roles Across Identity Pools

To reuse a role across multiple identity pools, because they share a common permission set, you can
include multiple identity pools, like this:

"StringEquals": {
 "cognito-identity.amazonaws.com:aud": [
 "us-east-1:12345678-abcd-abcd-abcd-123456790ab",
 "us-east-1:98765432-dcba-dcba-dcba-123456790ab"
]
}

Limit Access to Specific Identities

To create a policy limited to a specific set of app users, check the value of cognito-
identity.amazonaws.com:sub:

"StringEquals": {
 "cognito-identity.amazonaws.com:aud": "us-east-1:12345678-abcd-abcd-
abcd-123456790ab",
 "cognito-identity.amazonaws.com:sub": [
 "us-east-1:12345678-1234-1234-1234-123456790ab",
 "us-east-1:98765432-1234-1234-1243-123456790ab"
]
}

Limit Access to Specific Providers

To create a policy limited to users who have logged in with a specific provider (perhaps your own login
provider), check the value of cognito-identity.amazonaws.com:amr:

"ForAnyValue:StringLike": {
 "cognito-identity.amazonaws.com:amr": "login.myprovider.myapp"
}

For example, an app that trusts only Facebook would have the following amr clause:

"ForAnyValue:StringLike": {
 "cognito-identity.amazonaws.com:amr": "graph.facebook.com"
}

Access Policies

The permissions attached to a role are effective across all users that assume that role. If you want to
partition your users' access, you can do so via policy variables. Be careful when including your users'
identity IDs in your access policies, particularly for unauthenticated identities as these may change if
the user chooses to login.

S3 Prefix

You can give a user a specific prefix "folder" in an S3 bucket by mapping the prefix to the ${cognito-
identity.amazonaws.com:sub} variable:

Version Last Updated: 07/28/2016
113

Amazon Cognito Developer Guide
Role Trust and Permissions

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::mybucket"],
 "Condition": {"StringLike": {"s3:prefix": ["${cognito-
identity.amazonaws.com:sub}/*"]}}
 },
 {
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::mybucket/${cognito-
identity.amazonaws.com:sub}/*"]
 }
]
}

Fine-Grained Access to Amazon DynamoDB

You can use Amazon Cognito variables to provide fine-grained access control to Amazon DynamoDB
resources. Just grant access to items in DynamoDB by identity ID:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-west-2:123456789012:table/MyTable"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:LeadingKeys": ["${cognito-identity.amazonaws.com:sub}"]
 }
 }
 }
]
}

Role Trust and Permissions
The way these roles differ is in their trust relationships. Let's take a look at an example trust policy for
an unauthenticated role:

Version Last Updated: 07/28/2016
114

Amazon Cognito Developer Guide
Getting Credentials

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Federated": "cognito-identity.amazonaws.com"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "cognito-identity.amazonaws.com:aud": "us-east-1:12345678-dead-
beef-cafe-123456790ab"
 },
 "ForAnyValue:StringLike": {
 "cognito-identity.amazonaws.com:amr": "unauthenticated"
 }
 }
 }
]
}

This policy defines that we want to allow federated users from cognito-identity.amazonaws.com
(the issuer of the OpenID Connect token) to assume this role. Additionally, we make the restriction that
the aud of the token, in our case the identity pool ID, matches our identity pool. Finally, we specify that
the amr of the token contains the value unauthenticated.

When Amazon Cognito creates a token, it will set the amr of the token to be either "unauthenticated"
or "authenticated" and in the authenticated case will include any providers used during authentication.
This means you can create a role that trusts only users that logged in via Facebook, simply by
changing the amr clause to look like the following:

"ForAnyValue:StringLike": {
 "cognito-identity.amazonaws.com:amr": "graph.facebook.com"
}

Be careful when changing your trust relationships on your roles, or when trying to use roles across
identity pools. If your role is not configured to correctly trust your identity pool, you will see an exception
from STS like the following:

AccessDenied -- Not authorized to perform sts:AssumeRoleWithWebIdentity

If you see this, double check that you are using an appropriate role for your identity pool and
authentication type.

Getting Credentials
This section describes how to get credentials and how to retrieve an Amazon Cognito identity.

Android

Version Last Updated: 07/28/2016
115

Amazon Cognito Developer Guide
iOS - Objective-C

You can use Amazon Cognito to deliver temporary, limited-privilege credentials to your application,
so that your users can access AWS resources. Amazon Cognito supports both authenticated and
unauthenticated identities. To provide AWS credentials to your app, follow the steps below.

1. In the Amazon Cognito console, create an identity pool and copy the starter code snippets.

2. If you haven't already done so, add the AWS Mobile SDK for Android to your project. For
instructions, see Set Up the Mobile SDK for Android.

3. Include the following import statements:

import com.amazonaws.auth.CognitoCachingCredentialsProvider;
import com.amazonaws.regions.Regions;

4. Initialize the Amazon Cognito credentials provider using the code snippet generated by the Amazon
Cognito console. The value for IDENTITY_POOL_ID will be specific to your account:

CognitoCachingCredentialsProvider credentialsProvider = new
 CognitoCachingCredentialsProvider(
 getApplicationContext(), // Context
 "IDENTITY_POOL_ID", // Identity Pool ID
 Regions.US_EAST_1 // Region
);

5. Pass the initialized Amazon Cognito credentials provider to the constructor of the AWS client to be
used. The code required depends on the service to be initialized. The client will use this provider to
get credentials with which it will access AWS resources.

Note
If you created your identity pool before February 2015, you will need to reassociate your
roles with your identity pool in order to use this constructor without the roles as parameters.
To do so, open the Amazon Cognito console, select your identity pool, click Edit Identity
Pool, specify your authenticated and unauthenticated roles, and save the changes.

Retrieving an Amazon Cognito Identity

You can retrieve a unique Amazon Cognito identifier (identity ID) for your end user immediately if
you're allowing unauthenticated users or after you've set the login tokens in the credentials provider if
you're authenticating users:

String identityId = credentialsProvider.getIdentityId();
Log.d("LogTag", "my ID is " + identityId);

Note
Do not call getIdentityId(), refresh(), or getCredentials() in the main thread
of your application. As of Android 3.0 (API Level 11), your app will automatically fail and
throw a NetworkOnMainThreadException if you perform network I/O on the main application
thread. You will need to move your code to a background thread using AsyncTask. For more
information, consult the Android documentation. You can also call getCachedIdentityId()
to retrieve an ID, but only if one is already cached locally. Otherwise, the method will return
null.

iOS - Objective-C

You can use Amazon Cognito to deliver temporary, limited-privilege credentials to your application,
so that your users can access AWS resources. Amazon Cognito supports both authenticated and
unauthenticated identities. To provide AWS credentials to your app, follow the steps below.

Version Last Updated: 07/28/2016
116

https://console.aws.amazon.com/cognito/home
http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/setup.html
https://console.aws.amazon.com/cognito/home
https://developer.android.com/reference/android/os/NetworkOnMainThreadException.html
https://developer.android.com/training/basics/network-ops/connecting.html#AsyncTask

Amazon Cognito Developer Guide
iOS - Swift

1. In the Amazon Cognito console, create an identity pool and copy the starter code snippets.

2. If you haven't already done so, add the AWS Mobile SDK for iOS to your project. For instructions,
see Set Up the Mobile SDK for iOS.

3. In your source code, include the AWSCore header:

#import <AWSCore/AWSCore.h>

4. Initialize the Amazon Cognito credentials provider using the code snippet generated by the
Amazon Cognito console. The value for IDENTITY_POOL_ID will be specific to your account:

AWSCognitoCredentialsProvider *credentialsProvider =
 [[AWSCognitoCredentialsProvider alloc]
initWithRegionType:AWSRegionUSEast1 identityPoolId:@"IDENTITY_POOL_ID"];
AWSServiceConfiguration *configuration = [[AWSServiceConfiguration alloc]
initWithRegion:AWSRegionUSEast1 credentialsProvider:credentialsProvider];
AWSServiceManager.defaultServiceManager.defaultServiceConfiguration =
 configuration;

Note
If you created your identity pool before February 2015, you will need to reassociate
your roles with your identity pool in order to use this constructor without the roles as
parameters. To do so, open the Amazon Cognito console, select your identity pool, click
Edit Identity Pool, specify your authenticated and unauthenticated roles, and save the
changes.

Retrieving an Amazon Cognito Identity

You can retrieve a unique Amazon Cognito identifier (identity ID) for your end user immediately if
you're allowing unauthenticated users or after you've set the login tokens in the credentials provider if
you're authenticating users:

// Retrieve your Amazon Cognito ID
[[credentialsProvider getIdentityId] continueWithBlock:^id(AWSTask *task) {
 if (task.error) {
 NSLog(@"Error: %@", task.error);
 }
 else {
 // the task result will contain the identity id
 NSString *cognitoId = task.result;
 }
 return nil;
}];

Note
getIdentityId is an asynchronous call. If an identity ID is already set on your
provider, you can call credentialsProvider.identityId to retrieve that identity,
which is cached locally. However, if an identity ID is not set on your provider, calling
credentialsProvider.identityId will return nil. For more information, consult the
Mobile SDK for iOS API Reference.

iOS - Swift

Version Last Updated: 07/28/2016
117

https://console.aws.amazon.com/cognito/home
http://docs.aws.amazon.com/mobile/sdkforios/developerguide/setup.html
https://console.aws.amazon.com/cognito/home
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSCognitoCredentialsProvider.html#//api/name/getIdentityId
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSCognitoCredentialsProvider.html#//api/name/getIdentityId

Amazon Cognito Developer Guide
iOS - Swift

You can use Amazon Cognito to deliver temporary, limited-privilege credentials to your application,
so that your users can access AWS resources. Amazon Cognito supports both authenticated and
unauthenticated identities. To provide AWS credentials to your app, follow the steps below.

1. In the Amazon Cognito console, create an identity pool and copy the starter code snippets.

2. If you haven't already done so, add the Mobile SDK for iOS to your project. For instructions, see
Set Up the SDK for iOS.

3. In your source code, include the AWSCore header:

#import <AWSCore/AWSCore.h>

4. Initialize the Amazon Cognito credentials provider using the code snippet generated by the
Amazon Cognito console. The value for IDENTITY_POOL_ID will be specific to your account:

let credentialsProvider = AWSCognitoCredentialsProvider(regionType:
 AWSRegionType.USEast1, identityPoolId: "IDENTITY_POOL_ID")
let configuration = AWSServiceConfiguration(region: AWSRegionType.USEast1,
 credentialsProvider: credentialsProvider)
AWSServiceManager.defaultServiceManager().defaultServiceConfiguration =
 configuration

Note
If you created your identity pool before February 2015, you will need to reassociate
your roles with your identity pool in order to use this constructor without the roles as
parameters. To do so, open the Amazon Cognito console, select your identity pool, click
Edit Identity Pool, specify your authenticated and unauthenticated roles, and save the
changes.

Retrieving an Amazon Cognito Identity

You can retrieve a unique Amazon Cognito identifier (identity ID) for your end user immediately if
you're allowing unauthenticated users or after you've set the login tokens in the credentials provider if
you're authenticating users:

// Retrieve your Amazon Cognito ID
credentialsProvider.getIdentityId().continueWithBlock { (task: AWSTask!) ->
 AnyObject! in
 if (task.error != nil) {
 print("Error: " + task.error.localizedDescription)
 }
 else {
 // the task result will contain the identity id
 let cognitoId = task.result
 }
 return nil
}

Note
getIdentityId is an asynchronous call. If an identity ID is already set on your
provider, you can call credentialsProvider.identityId to retrieve that identity,
which is cached locally. However, if an identity ID is not set on your provider, calling
credentialsProvider.identityId will return nil. For more information, consult the
Mobile SDK for iOS API Reference.

Version Last Updated: 07/28/2016
118

https://console.aws.amazon.com/cognito/home
http://docs.aws.amazon.com/mobile/sdkforios/developerguide/setup.html
https://console.aws.amazon.com/cognito/home
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSCognitoCredentialsProvider.html#//api/name/getIdentityId

Amazon Cognito Developer Guide
JavaScript

JavaScript

You can use Amazon Cognito to deliver temporary, limited-privilege credentials to your application,
so that your users can access AWS resources. Amazon Cognito supports both authenticated and
unauthenticated identities. To provide AWS credentials to your app, follow the steps below.

// Set the region where your identity pool exists (us-east-1, eu-west-1)
AWS.config.region = 'us-east-1';

// Configure the credentials provider to use your identity pool
AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'IDENTITY_POOL_ID',
});

// Make the call to obtain credentials
AWS.config.credentials.get(function(){

 // Credentials will be available when this function is called.
 var accessKeyId = AWS.config.credentials.accessKeyId;
 var secretAccessKey = AWS.config.credentials.secretAccessKey;
 var sessionToken = AWS.config.credentials.sessionToken;

});

Note
If you created your identity pool before February 2015, you will need to reassociate your roles
with your identity pool in order to use this constructor without the roles as parameters. To
do so, open the Amazon Cognito console, select your identity pool, click Edit Identity Pool,
specify your authenticated and unauthenticated roles, and save the changes.

Retrieving an Amazon Cognito Identity

You can retrieve a unique Amazon Cognito identifier (identity ID) for your end user immediately if
you're allowing unauthenticated users or after you've set the login tokens in the credentials provider if
you're authenticating users:

var identityId = AWS.config.credentials.identityId;

Unity

You can use Amazon Cognito to deliver temporary, limited-privilege credentials to your application,
so that your users can access AWS resources. Amazon Cognito supports both authenticated and
unauthenticated identities. To provide AWS credentials to your app, follow the steps below.

1. In the Amazon Cognito console, create an identity pool and copy the starter code snippets.

2. If you haven't already done so, download and import the AWS Mobile SDK for Unity package into
your project. You can do so from the menu Assets > Import Package > Custom Package.

3. Paste the starter code snippet from the Console into the script you want to call Amazon Cognito
from. The value for IDENTITY_POOL_ID will be specific to your account:

CognitoAWSCredentials credentials = new CognitoAWSCredentials (
 "IDENTITY_POOL_ID", // Cognito Identity Pool ID
 RegionEndpoint.USEast1 // Region

Version Last Updated: 07/28/2016
119

https://console.aws.amazon.com/cognito/home
https://console.aws.amazon.com/cognito/home
http://aws.amazon.com/mobile/sdk/

Amazon Cognito Developer Guide
Xamarin

);

4. Pass the initialized Amazon Cognito credentials to the constructor of the AWS client to be used.
The code required depends on the service to be initialized. The client will use this provider to get
credentials with which it will access AWS resources.

Note
Note: If you created your identity pool before February 2015, you will need to reassociate
your roles with your identity pool in order to use this constructor without the roles as
parameters. To do so, open the Amazon Cognito console, select your identity pool, click
Edit Identity Pool, specify your authenticated and unauthenticated roles, and save the
changes.

Retrieving an Amazon Cognito Identity

You can retrieve a unique Amazon Cognito identifier (identity ID) for your end user immediately if
you're allowing unauthenticated users or after you've set the login tokens in the credentials provider if
you're authenticating users:

credentials.GetIdentityIdAsync(delegate(AmazonCognitoIdentityResult<string>
 result) {
 if (result.Exception != null) {
 //Exception!
 }
 string identityId = result.Response;
});

Xamarin

You can use Amazon Cognito to deliver temporary, limited-privilege credentials to your application,
so that your users can access AWS resources. Amazon Cognito supports both authenticated and
unauthenticated identities. To provide AWS credentials to your app, follow the steps below.

1. In the Amazon Cognito console, create an identity pool and copy the starter code snippets.

2. If you haven't already done so, add the AWS Mobile SDK for Xamarin to your project. For
instructions, see Set Up the SDK for Xamarin.

3. Include the following using statements:

using Amazon.CognitoIdentity;

4. Paste the starter code snippet from the Console into the script you want to call Amazon Cognito
from. The value for IDENTITY_POOL_ID will be specific to your account:

CognitoAWSCredentials credentials = new CognitoAWSCredentials (
 "IDENTITY_POOL_ID", // Cognito Identity Pool ID
 RegionEndpoint.USEast1 // Region
);

5. Pass the initialized Amazon Cognito credentials to the constructor of the AWS client to be used.
The code required depends on the service to be initialized. The client will use this provider to get
credentials with which it will access AWS resources.

Note
Note: If you created your identity pool before February 2015, you will need to reassociate your
roles with your identity pool in order to use this constructor without the roles as parameters. To

Version Last Updated: 07/28/2016
120

https://console.aws.amazon.com/cognito/home
https://console.aws.amazon.com/cognito/home
http://docs.aws.amazon.com/mobile/sdkforxamarin/developerguide/getting-started.html

Amazon Cognito Developer Guide
Accessing AWS Services

do so, open the Amazon Cognito console, select your identity pool, click Edit Identity Pool,
specify your authenticated and unauthenticated roles, and save the changes.

Retrieving an Amazon Cognito Identity

You can retrieve a unique Amazon Cognito identifier (identity ID) for your end user immediately if
you're allowing unauthenticated users or after you've set the login tokens in the credentials provider if
you're authenticating users:

var identityId = await credentials.GetIdentityIdAsync();

Accessing AWS Services
Once the Amazon Cognito credentials provider is initialized and refreshed, you can pass it directly to
the initializer for an AWS client. For example, the following snippet initializes an Amazon DynamoDB
client:

Android

// Create a service client with the provider
AmazonDynamoDB client = new AmazonDynamoDBClient(credentialsProvider);

The credentials provider communicates with Amazon Cognito, retrieving both the unique identifier for
authenticated and unauthenticated users as well as temporary, limited privilege AWS credentials for
the AWS Mobile SDK. The retrieved credentials are valid for one hour, and the provider refreshes them
when they expire.

iOS - Objective-C

// create a configuration that uses the provider
AWSServiceConfiguration *configuration = [AWSServiceConfiguration
 configurationWithRegion:AWSRegionUSEast1 provider:credentialsProvider];

// get a client with the default service configuration
AWSDynamoDB *dynamoDB = [AWSDynamoDB defaultDynamoDB];

The credentials provider communicates with Amazon Cognito, retrieving both the unique identifier for
authenticated and unauthenticated users as well as temporary, limited privilege AWS credentials for
the AWS Mobile SDK. The retrieved credentials are valid for one hour, and the provider refreshes them
when they expire.

iOS - Swift

// create a configuration that uses the provider
let configuration = AWSServiceConfiguration(region: AWSRegionType.USEast1,
 credentialsProvider: credentialsProvider)

// get a client with the default service configuration
let dynamoDB = AWSDynamoDB.defaultDynamoDB()

Version Last Updated: 07/28/2016
121

https://console.aws.amazon.com/cognito/home

Amazon Cognito Developer Guide
JavaScript

The credentials provider communicates with Amazon Cognito, retrieving both the unique identifier for
authenticated and unauthenticated users as well as temporary, limited privilege AWS credentials for
the AWS Mobile SDK. The retrieved credentials are valid for one hour, and the provider refreshes them
when they expire.

JavaScript

// Create a service client with the provider
var dynamodb = new AWS.DynamoDB({region: 'us-west-2'});

The credentials provider communicates with Amazon Cognito, retrieving both the unique identifier for
authenticated and unauthenticated users as well as temporary, limited privilege AWS credentials for
the AWS Mobile SDK. The retrieved credentials are valid for one hour, and the provider refreshes them
when they expire.

Unity

// create a service client that uses credentials provided by Cognito
AmazonDynamoDBClient client = new AmazonDynamoDBClient(credentials, REGION);

The credentials provider communicates with Amazon Cognito, retrieving both the unique identifier for
authenticated and unauthenticated users as well as temporary, limited privilege AWS credentials for
the AWS Mobile SDK. The retrieved credentials are valid for one hour, and the provider refreshes them
when they expire.

Xamarin

// create a service client that uses credentials provided by Cognito
var client = new AmazonDynamoDBClient(credentials, REGION)

The credentials provider communicates with Amazon Cognito, retrieving both the unique identifier for
authenticated and unauthenticated users as well as temporary, limited privilege AWS credentials for
the AWS Mobile SDK. The retrieved credentials are valid for one hour, and the provider refreshes them
when they expire.

External Identity Providers
Using the logins property, you can set credentials received from an identity provider. Moreover, you
can associate an Amazon Cognito identity with multiple identity providers. For example, you could set
both the Facebook and Google tokens in the logins property, so that the unique Amazon Cognito
identity would be associated with both identity provider logins. No matter which account the end user
uses for authentication, Amazon Cognito returns the same user identifier.

The instructions below guide you through authentication with the identity providers supported by
Amazon Cognito.

Topics

Version Last Updated: 07/28/2016
122

Amazon Cognito Developer Guide
Facebook

• Facebook (p. 123)

• Amazon (p. 128)

• Google (p. 133)

• Twitter/Digits (p. 139)

• Open ID Connect Providers (p. 143)

• SAML Identity Provider (p. 144)

Facebook
Amazon Cognito integrates with Facebook to provide federated authentication for your mobile
application users. This section explains how to register and set up your application with Facebook as
an identity provider.

Set Up Facebook

You need to register your application with Facebook before you can start authenticating Facebook
users and interacting with Facebook APIs.

The Facebook Developers portal takes you through the process of setting up your application. If you
haven't gone through that process yet, you'll need to do so before you can integrate Facebook in your
Amazon Cognito Identity Pool:

To set up Facebook

1. At the Facebook Developers portal, log in with your Facebook credentials.

2. From the Apps menu, select Add a New App.

3. Select a platform and complete the quick start process.

Android

The Facebook Getting Started Guide provides additional information on integrating with Facebook
Login.

iOS - Objective-C

The Facebook Getting Started Guide provides additional information about integrating with Facebook
Login.

iOS - Swift

The Facebook Getting Started Guide provides additional information about integrating with Facebook
Login.

JavaScript

The Facebook Getting Started Guide provides additional information about integrating with Facebook
Login.

Unity

The Facebook Getting Started Guide provides additional information about integrating with Facebook
Login.

Version Last Updated: 07/28/2016
123

https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/docs/android/getting-started
https://developers.facebook.com/docs/ios/getting-started/
https://developers.facebook.com/docs/ios/getting-started/
https://developers.facebook.com/docs/facebook-login/login-flow-for-web/v2.3
https://developers.facebook.com/docs/unity

Amazon Cognito Developer Guide
Facebook

Xamarin

To provide Facebook authentication, first follow the appropriate flow below to include and set up the
Facebook SDK in your application. Amazon Cognito uses the Facebook access token to generate a
unique user identifier that is associated to a Cognito Identity.

• Facebook iOS SDK by Xamarin
• Facebook Android SDK by Xamarin

Configure the External Provider in the Amazon Cognito
Console

From the Amazon Cognito Console home page:

1. Click the name of the identity pool for which you want to enable Facebook as an external provider.
The Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool
page appears.

3. Scroll down and click Authentication providers to expand it.

4. Click the Facebook tab.

5. Click Unlock.

6. Enter the Facebook App ID you obtained from Facebook, and then click Save Changes.

Using Facebook

Android

To provide Facebook authentication, first follow the Facebook guide to include their SDK in your
application. Then add a "Login with Facebook" button to your Android user interface. The Facebook
SDK uses a session object to track its state. Amazon Cognito uses the access token from this session
object to authenticate the user, generate the unique identifier, and, if needed, grant the user access to
other AWS resources.

Once you have authenticated your user with the Facebook SDK, add the session token to the Amazon
Cognito credentials provider.

Facebook SDK 4.0 or later:

Map<String, String> logins = new HashMap<String, String>();
logins.put("graph.facebook.com",
 AccessToken.getCurrentAccessToken().getToken());
credentialsProvider.setLogins(logins);

Facebook SDK before 4.0:

Map<String, String> logins = new HashMap<String, String>();
logins.put("graph.facebook.com",
 Session.getActiveSession().getAccessToken());
credentialsProvider.setLogins(logins);

The Facebook login process initializes a singleton session in its SDK. The Facebook session
object contains an OAuth token that Amazon Cognito uses to generate AWS credentials for your
authenticated end user. Amazon Cognito also uses the token to check against your user database

Version Last Updated: 07/28/2016
124

http://components.xamarin.com/view/facebookios
http://components.xamarin.com/view/facebookandroid
https://console.aws.amazon.com/cognito/home
https://developers.facebook.com/docs/android
https://developers.facebook.com/docs/facebook-login/android

Amazon Cognito Developer Guide
Facebook

for the existence of a user matching this particular Facebook identity. If the user already exists, the
API returns the existing identifier. Otherwise a new identifier is returned. Identifiers are automatically
cached by the client SDK on the local device.

Note
After setting the logins map, you'll need to make a call to refresh or get to actually get the
AWS credentials.

iOS - Objective-C

To add Facebook authentication, first follow the Facebook guide to integrate the Facebook SDK into
your application. Then add a Login with Facebook button to your user interface. The Facebook SDK
uses a session object to track its state. Amazon Cognito uses the access token from this session
object to authenticate the user and bind them to a unique Amazon Cognito identity.

To provide the Facebook access token to Amazon Cognito, implement the
AWSIdentityProviderManager protocol.

In the implementation of the logins method, return a dictionary containing
AWSIdentityProviderFacebook as the key and the current access token from the authenticated
Facebook user as the value, as shown in the following code example.

- (AWSTask<NSDictionary<NSString *, NSString *> *> *)logins {
 FBSDKAccessToken* fbToken = [FBSDKAccessToken currentAccessToken];
 if(fbToken){
 NSString *token = fbToken.tokenString;
 return [AWSTask taskWithResult: @{ AWSIdentityProviderFacebook :
 token }];
 }else{
 return [AWSTask taskWithError:[NSError errorWithDomain:@"Facebook
 Login"
 code:-1

 userInfo:@{@"error":@"No current Facebook access token"}]];
 }
}

When you instantiate the AWSCognitoCredentialsProvider, pass the class that implements
AWSIdentityProviderManager as the value of identityProviderManager in the constructor.
For more information, go to the AWSCognitoCredentialsProvider reference page and choose
initWithRegionType:identityPoolId:identityProviderManager.

iOS - Swift

To add Facebook authentication, first follow the Facebook guide to integrate the Facebook SDK into
your application. Then add a Login with Facebook button to your user interface. The Facebook SDK
uses a session object to track its state. Amazon Cognito uses the access token from this session
object to authenticate the user and bind them to a unique Amazon Cognito identity.

To provide the Facebook access token to Amazon Cognito, implement the
AWSIdentityProviderManager protocol.

In the implementation of the logins method, return a dictionary containing
AWSIdentityProviderFacebook as the key and the current access token from the authenticated
Facebook user as the value, as shown in the following code example.

class FacebookProvider: NSObject, AWSIdentityProviderManager {
 func logins() -> AWSTask<NSDictionary> {
 if let token = AccessToken.current?.authenticationToken {

Version Last Updated: 07/28/2016
125

https://developers.facebook.com/docs/ios
https://developers.facebook.com/docs/facebook-login/ios
http://docs.aws.amazon.com/AWSiOSSDK/latest/Protocols/AWSIdentityProviderManager.html
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSCognitoCredentialsProvider.html
https://developers.facebook.com/docs/ios
https://developers.facebook.com/docs/facebook-login/ios
http://docs.aws.amazon.com/AWSiOSSDK/latest/Protocols/AWSIdentityProviderManager.html

Amazon Cognito Developer Guide
Facebook

 return AWSTask(result: [AWSIdentityProviderFacebook:token])
 }
 return AWSTask(error:NSError(domain: "Facebook Login", code: -1 ,
 userInfo: ["Facebook" : "No current Facebook access token"]))
 }
}

When you instantiate the AWSCognitoCredentialsProvider, pass the class that implements
AWSIdentityProviderManager as the value of identityProviderManager in the constructor.
For more information, go to the AWSCognitoCredentialsProvider reference page and choose
initWithRegionType:identityPoolId:identityProviderManager.

JavaScript

To provide Facebook authentication, follow the Facebook Login for the Web to add the "Login with
Facebook" button on your website. The Facebook SDK uses a session object to track its state.
Amazon Cognito uses the access token from this session object to authenticate the user, generate the
unique identifier, and, if needed, grant the user access to other AWS resources.

Once you have authenticated your user with the Facebook SDK, add the session token to the Amazon
Cognito credentials provider.

FB.login(function (response) {

 // Check if the user logged in successfully.
 if (response.authResponse) {

 console.log('You are now logged in.');

 // Add the Facebook access token to the Cognito credentials login map.
 AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'IDENTITY_POOL_ID',
 Logins: {
 'graph.facebook.com': response.authResponse.accessToken
 }
 });

 // Obtain AWS credentials
 AWS.config.credentials.get(function(){
 // Access AWS resources here.
 });

 } else {
 console.log('There was a problem logging you in.');
 }

});

The Facebook SDK obtains an OAuth token that Amazon Cognito uses to generate AWS credentials
for your authenticated end user. Amazon Cognito also uses the token to check against your user
database for the existence of a user matching this particular Facebook identity. If the user already
exists, the API returns the existing identifier. Otherwise a new identifier is returned. Identifiers are
automatically cached by the client SDK on the local device.

Note
After setting the logins map, you need to make a call to refresh or get to get the AWS
credentials. For a code example, see "Use Case 17, Integrating User Pools with Cognito
Identity," in the JavaScript README file.

Version Last Updated: 07/28/2016
126

http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSCognitoCredentialsProvider.html
https://developers.facebook.com/docs/facebook-login/login-flow-for-web/v2.3
https://github.com/aws/amazon-cognito-identity-js/blob/master/README.md

Amazon Cognito Developer Guide
Facebook

Unity

To provide Facebook authentication, first follow the Facebook guide to include and set up their SDK in
your application. Amazon Cognito uses the Facebook access token from the 'FB' object to generate a
unique user identifier that is associated to a Cognito Identity.

Once you have authenticated your user with the Facebook SDK, add the session token to the Amazon
Cognito credentials provider:

void Start()
{
 FB.Init(delegate() {
 if (FB.IsLoggedIn) { //User already logged in from a previous session
 AddFacebookTokenToCognito();
 } else {
 FB.Login ("email", FacebookLoginCallback);
 }
 });
}

void FacebookLoginCallback(FBResult result)
{
 if (FB.IsLoggedIn)
 {
 AddFacebookTokenToCognito();
 }
 else
 {
 Debug.Log("FB Login error");
 }
}

void AddFacebookTokenToCognito()
{
 credentials.AddLogin ("graph.facebook.com",
 AccessToken.CurrentAccessToken.TokenString);
}

You should make sure to call FB.Login() and that FB.IsLoggedIn is true before using
FB.AccessToken.

Xamarin

Xamarin for Android:

public void InitializeFacebook() {
 FacebookSdk.SdkInitialize(this.ApplicationContext);
 callbackManager = CallbackManagerFactory.Create();
 LoginManager.Instance.RegisterCallback(callbackManager, new
 FacebookCallback < LoginResult > () {
 HandleSuccess = loginResult = > {
 var accessToken = loginResult.AccessToken;
 credentials.AddLogin("graph.facebook.com", accessToken.Token);
 //open new activity
 },
 HandleCancel = () = > {
 //throw error message
 },

Version Last Updated: 07/28/2016
127

https://developers.facebook.com/docs/unity

Amazon Cognito Developer Guide
Amazon

 HandleError = loginError = > {
 //throw error message
 }
 });
 LoginManager.Instance.LogInWithReadPermissions(this, new List < string
 > {
 "public_profile"
 });
 }

Xamarin for iOS:

public void InitializeFacebook() {
 LoginManager login = new LoginManager();
 login.LogInWithReadPermissions(readPermissions.ToArray(),
 delegate(LoginManagerLoginResult result, NSError error) {
 if (error != null) {
 //throw error message
 } else if (result.IsCancelled) {
 //throw error message
 } else {
 var accessToken = loginResult.AccessToken;
 credentials.AddLogin("graph.facebook.com", accessToken.Token);
 //open new view controller
 }
 });
}

Amazon
Amazon Cognito integrates with Login with Amazon to provide federated authentication for your mobile
application users. This section explains how to register and set up your application with Amazon as an
identity provider.

Android

Setting Up Amazon

To enable Login with Amazon, you'll need to create an Application ID in the Amazon App Console.
The Login with Amazon guide takes you through the process of setting up Login with Amazon in your
application, downloading the client SDK, and declaring your application on the Amazon developer
platform. Copy the App ID, as you'll need it when you create a Amazon Cognito identity pool, as
described in Getting Started.

Note
If you registered your application with developer.amazon.com, the terminology will differ. What
is here called an App ID will be called a Security Profile ID, though they are the same.

Configure the External Provider in the Amazon Cognito Console

From the Amazon Cognito Console home page:

1. Click the name of the identity pool for which you want to enable Amazon as an external provider.
The Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Authentication providers to expand it.

Version Last Updated: 07/28/2016
128

http://login.amazon.com/manageApps
http://login.amazon.com/android
getting-credentials.html
https://console.aws.amazon.com/cognito/home

Amazon Cognito Developer Guide
Amazon

4. Click the Amazon tab.

5. Click Unlock.

6. Enter the Amazon App ID you obtained from Amazon, and then click Save Changes.

Use Amazon

Once you've implemented Amazon login, you can pass the token to the Amazon Cognito credentials
provider in the onSuccess method of the TokenListener interface. The code looks like this:

@Override
public void onSuccess(Bundle response) {
 String token = response.getString(AuthzConstants.BUNDLE_KEY.TOKEN.val);
 Map<String, String> logins = new HashMap<String, String>();
 logins.put("www.amazon.com", token);
 credentialsProvider.setLogins(logins);
}

iOS - Objective-C

Setting Up Amazon

To enable Login with Amazon, you'll need to create an Application ID in the Amazon App Console.
The Login with Amazon guide takes you through the process of setting up Login with Amazon in your
application, downloading the client SDK, and declaring your application on the Amazon developer
platform. Copy the App ID, as you'll need it when you create a Amazon Cognito identity pool, as
described in Getting Credentials.

Note: If you registered your application with developer.amazon.com, the terminology
will differ. What is here called an App ID will be called a Security Profile ID, though
they are the same.

Configure the External Provider in the Amazon Cognito Console

From the Amazon Cognito Console home page:

1. Click the name of the identity pool for which you want to enable Amazon as an external provider.
The Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Authentication providers to expand it.

4. Click the Amazon tab.

5. Click Unlock.

6. Enter the Amazon App ID you obtained from Amazon, and then click Save Changes.

Use Amazon

Once you've implemented Amazon login, you can pass the token to the Amazon Cognito credentials
provider in the requestDidSucceed method of the AMZNAccessTokenDelegate:

- (void)requestDidSucceed:(APIResult *)apiResult {
 if (apiResult.api == kAPIAuthorizeUser) {
 [AIMobileLib getAccessTokenForScopes:[NSArray
 arrayWithObject:@"profile"] withOverrideParams:nil delegate:self];
 }

Version Last Updated: 07/28/2016
129

http://login.amazon.com/manageApps
http://login.amazon.com/ios
getting-credentials.html
https://console.aws.amazon.com/cognito/home

Amazon Cognito Developer Guide
Amazon

 else if (apiResult.api == kAPIGetAccessToken) {
 credentialsProvider.logins =
 @{ @(AWSCognitoLoginProviderKeyLoginWithAmazon): apiResult.result };
 }
}}

iOS - Swift

Setting Up Amazon

To enable Login with Amazon, you'll need to create an Application ID in the Amazon App Console.
The Login with Amazon guide takes you through the process of setting up Login with Amazon in your
application, downloading the client SDK, and declaring your application on the Amazon developer
platform. Copy the App ID, as you'll need it when you create a Amazon Cognito identity pool, as
described in Getting Started.

Note: If you registered your application with developer.amazon.com, the terminology
will differ. What is here called an App ID will be called a Security Profile ID, though
they are the same.

Configure the External Provider in the Amazon Cognito Console

From the Amazon Cognito Console home page:

1. Click the name of the identity pool for which you want to enable Amazon as an external provider.
The Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Authentication providers to expand it.

4. Click the Amazon tab.

5. Click Unlock.

6. Enter the Amazon App ID you obtained from Amazon, and then click Save Changes.

Use Amazon

Once you've implemented Amazon login, you can pass the token to the Amazon Cognito credentials
provider in the requestDidSucceed method of the AMZNAccessTokenDelegate:

func requestDidSucceed(apiResult: APIResult!) {
 if apiResult.api == API.AuthorizeUser {
 AIMobileLib.getAccessTokenForScopes(["profile"], withOverrideParams:
 nil, delegate: self)
 } else if apiResult.api == API.GetAccessToken {
 credentialsProvider.logins =
 [AWSCognitoLoginProviderKey.LoginWithAmazon.rawValue: apiResult.result]
 }
}

JavaScript

Setting Up Amazon

To enable Login with Amazon, you'll need to create an Application ID in the Amazon App Console.
The Login with Amazon guide takes you through the process of setting up Login with Amazon in your
application, downloading the client SDK, and declaring your application on the Amazon developer

Version Last Updated: 07/28/2016
130

http://login.amazon.com/manageApps
http://login.amazon.com/ios
getting-credentials.html
https://console.aws.amazon.com/cognito/home
http://login.amazon.com/manageApps
http://login.amazon.com/website

Amazon Cognito Developer Guide
Amazon

platform. Copy the App ID, as you'll need it when you create a Amazon Cognito identity pool, as
described in Getting Started.

Note: If you registered your application with developer.amazon.com, the terminology
will differ. What is here called an App ID will be called a Security Profile ID, though
they are the same.

Configure the External Provider in the Amazon Cognito Console

From the Amazon Cognito Console home page:

1. Click the name of the identity pool for which you want to enable Amazon as an external provider.
The Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Authentication providers to expand it.

4. Choose the Amazon tab.

5. Choose Unlock.

6. Enter the Amazon App ID you obtained from Amazon, and then choose Save Changes.

Use Amazon

After the user authenticates with Amazon and is redirected back to your website, the Amazon
access_token is provided in the query string. Pass that token into the credentials login map.

AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'IDENTITY_POOL_ID',
 Logins: {
 'www.amazon.com': 'Amazon Access Token'
 }
});

Unity

Amazon integration is not natively supported on the Unity platform. Integration currently requires the
use of a web view to go through the browser sign in flow. To learn how Amazon integration works with
other SDKs, please select another platform.

Xamarin

Setting Up Amazon

To enable Login with Amazon, you'll need to create an Application ID in the Amazon App Console.
Then, follow the Xamarin Getting Started Guide to integrate Login with Amazon into your Xamarin
application.

Note: If you registered your application with developer.amazon.com, the terminology
will differ. What is here called an App ID will be called a Security Profile ID, though
they are the same.

Configure the External Provider in the Amazon Cognito Console

From the Amazon Cognito Console home page:

1. Click the name of the identity pool for which you want to enable Amazon as an external provider.
The Dashboard page for your identity pool appears.

Version Last Updated: 07/28/2016
131

getting-credentials.html
https://console.aws.amazon.com/cognito/home
http://login.amazon.com/manageApps
https://developer.xamarin.com/guides/cross-platform/getting_started/
https://console.aws.amazon.com/cognito/home

Amazon Cognito Developer Guide
Amazon

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Authentication providers to expand it.

4. Choose the Amazon tab.

5. Choose Unlock.

6. Enter the Amazon App ID you obtained from Amazon, and then choose Save Changes.

Use AmazonXamarin for Android:

AmazonAuthorizationManager manager = new AmazonAuthorizationManager(this,
 Bundle.Empty);

var tokenListener = new APIListener {
 Success = response => {
 // Get the auth token
 var token = response.GetString(AuthzConstants.BUNDLE_KEY.Token.Val);
 credentials.AddLogin("www.amazon.com", token);
 }
};

// Try and get existing login
manager.GetToken(new[] {
 "profile"
}, tokenListener);

Xamarin for iOS:

In AppDelegate.cs, insert the following:

public override bool OpenUrl (UIApplication application, NSUrl url, string
 sourceApplication, NSObject annotation)
{
 // Pass on the url to the SDK to parse authorization code from the url
 bool isValidRedirectSignInURL = AIMobileLib.HandleOpenUrl (url,
 sourceApplication);
 if(!isValidRedirectSignInURL)
 return false;

 // App may also want to handle url
 return true;
}

Then, in ViewController.cs, do the following:

public override void ViewDidLoad ()
{
 base.LoadView ();

 // Here we create the Amazon Login Button
 btnLogin = UIButton.FromType (UIButtonType.RoundedRect);
 btnLogin.Frame = new RectangleF (55, 206, 209, 48);
 btnLogin.SetTitle ("Login using Amazon", UIControlState.Normal);
 btnLogin.TouchUpInside += (sender, e) => {
 AIMobileLib.AuthorizeUser (new [] { "profile"}, new
 AMZNAuthorizationDelegate ());

Version Last Updated: 07/28/2016
132

Amazon Cognito Developer Guide
Google

 };
 View.AddSubview (btnLogin);
}

// Class that handles Authentication Success/Failure
public class AMZNAuthorizationDelegate : AIAuthenticationDelegate
{
 public override void RequestDidSucceed(ApiResult apiResult)
 {
 // Your code after the user authorizes application for requested scopes
 var token = apiResult["access_token"];
 credentials.AddLogin("www.amazon.com",token);
 }

 public override void RequestDidFail(ApiError errorResponse)
 {
 // Your code when the authorization fails
 InvokeOnMainThread(() => new UIAlertView("User Authorization Failed",
 errorResponse.Error.Message, null, "Ok", null).Show());
 }
}

Google
Amazon Cognito integrates with Google to provide federated authentication for your mobile application
users. This section explains how to register and set up your application with Google as an identity
provider.

Android

NOTE: If your app uses Google and will be available on multiple mobile platforms,
you should configure it as an OpenID Connect Provider, adding all created client IDs
as additional audience values to allow for better integration. To learn more about
Google's cross-client identity model, see Cross-client Identity.

Set Up Google

To enable Google+ Sign-in for Android, you will need to create a Google Developers console project
for your application.

1. Go to the Google Developers console and create a new project.

2. Under APIs and auth > APIs > Social APIs, enable the Google+ API.

3. Under APIs and auth > Credentials > OAuth consent screen, create the dialog that will be shown
to users when your app requests access to their private data.

4. Under Credentials > Add Credentials, create an OAuth 2.0 client ID for Android. You will need a
client ID for each platform you intend to develop for (e.g. web, iOS, Android).

5. Under Credentials > Add Credentials, create a Service Account. The console will alert you that a
new public/private key has been created.

For additional instructions on using the Google Developers console, see Managing projects in the
Developers Console.

For additional instructions on integrating Google+ into your Android app, see the Google
documentation for Android.

Version Last Updated: 07/28/2016
133

open-id.html
https://developers.google.com/accounts/docs/CrossClientAuth
https://console.developers.google.com/
https://developers.google.com/console/help/new/?hl=en
https://developers.google.com/console/help/new/?hl=en
https://developers.google.com/+/mobile/android/getting-started
https://developers.google.com/+/mobile/android/getting-started

Amazon Cognito Developer Guide
Google

Configure the External Provider in the Amazon Cognito Console

From the Amazon Cognito Console home page:

1. Click the name of the identity pool for which you want to enable Amazon as an external provider.
The Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Authentication providers to expand it.

4. Click the Google tab.

5. Click Unlock.

6. Enter the Google Client ID you obtained from Google, and then click Save Changes.

Use Google

To enable login with Google in your application, follow the Google+ documentation for Android.
Successful authentication results in an OpenID Connect authentication token, which Amazon Cognito
uses to authenticate the user and generate a unique identifier.

The following sample code shows how to retrieve the authentication token from the Google Play
Service:

GooglePlayServicesUtil.isGooglePlayServicesAvailable(getApplicationContext());
AccountManager am = AccountManager.get(this);
Account[] accounts =
 am.getAccountsByType(GoogleAuthUtil.GOOGLE_ACCOUNT_TYPE);
String token = GoogleAuthUtil.getToken(getApplicationContext(),
 accounts[0].name,
 "audience:server:client_id:YOUR_GOOGLE_CLIENT_ID");
Map<String, String> logins = new HashMap<String, String>();
logins.put("accounts.google.com", token);
credentialsProvider.setLogins(logins);

iOS - Objective-C

Note
If your app uses Google and will be available on multiple mobile platforms, you should
configure it as an OpenID Connect Provider, adding all created client IDs as additional
audience values to allow for better integration. To learn more about Google's cross-client
identity model, see Cross-client Identity.

To enable Google+ Sign-in for iOS, you will need to create a Google Developers console project for
your application.

Set Up Google

1. Go to the Google Developers console and create a new project.

2. Under APIs and auth > APIs > Social APIs, enable the Google+ API.

3. Under APIs and auth > Credentials > OAuth consent screen, create the dialog that will be
shown to users when your app requests access to their private data.

4. Under Credentials > Add Credentials, create an OAuth 2.0 client ID for iOS. You will need a
client ID for each platform you intend to develop for (e.g. web, iOS, Android).

5. Under Credentials > Add Credentials, create a Service Account. The console will alert you that a
new public/private key has been created.

Version Last Updated: 07/28/2016
134

https://console.aws.amazon.com/cognito/home
https://developers.google.com/+/mobile/android/sign-in
open-id.html
https://developers.google.com/accounts/docs/CrossClientAuth
https://console.developers.google.com/

Amazon Cognito Developer Guide
Google

For additional instructions on using the Google Developers console, see Managing projects in the
Developers Console.

For additional instructions on integrating Google+ into your iOS app, see the Google documentation for
iOS.

From the Amazon Cognito Console home page:

Configure the External Provider in the Amazon Cognito Console

1. Click the name of the identity pool for which you want to enable Amazon as an external provider.
The Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Authentication providers to expand it.

4. Click the Google tab.

5. Click Unlock.

6. Enter the Google Client ID you obtained from Google, and then click Save Changes.

Use Google

To enable login with Google in your application, follow the Google+ documentation for iOS. Successful
authentication results in an OpenID Connect authentication token, which Amazon Cognito uses to
authenticate the user and generate a unique identifier.

Successful authentication results in a GTMOAuth2Authentication object which contains an id_token,
which Amazon Cognito uses to authenticate the user and generate a unique identifier:

- (void)finishedWithAuth: (GTMOAuth2Authentication *)auth error: (NSError *)
 error {
 NSString *idToken = [auth.parameters objectForKey:@"id_token"];
 credentialsProvider.logins = @{ @(AWSCognitoLoginProviderKeyGoogle):
 idToken };
 }

iOS - Swift

Note
If your app uses Google and will be available on multiple mobile platforms, you should
configure it as an OpenID Connect Provider, adding all created client IDs as additional
audience values to allow for better integration. To learn more about Google's cross-client
identity model, see Cross-client Identity.

To enable Google+ Sign-in for iOS, you will need to create a Google Developers console project for
your application.

Set Up Google

1. Go to the Google Developers console and create a new project.

2. Under APIs and auth > APIs > Social APIs, enable the Google+ API.

3. Under APIs and auth > Credentials > OAuth consent screen, create the dialog that will be
shown to users when your app requests access to their private data.

4. Under Credentials > Add Credentials, create an OAuth 2.0 client ID for iOS. You will need a
client ID for each platform you intend to develop for (e.g. web, iOS, Android).

5. Under Credentials > Add Credentials, create a Service Account. The console will alert you that a
new public/private key has been created.

Version Last Updated: 07/28/2016
135

https://developers.google.com/console/help/new/?hl=en
https://developers.google.com/console/help/new/?hl=en
https://developers.google.com/+/mobile/ios/getting-started
https://developers.google.com/+/mobile/ios/getting-started
https://console.aws.amazon.com/cognito/home
https://developers.google.com/+/mobile/ios/sign-in
open-id.html
https://developers.google.com/accounts/docs/CrossClientAuth
https://console.developers.google.com/

Amazon Cognito Developer Guide
Google

For additional instructions on using the Google Developers console, see Managing projects in the
Developers Console.

For additional instructions on integrating Google+ into your iOS app, see the Google documentation for
iOS.

From the Amazon Cognito Console home page:

Configure the External Provider in the Amazon Cognito Console

1. Click the name of the identity pool for which you want to enable Amazon as an external provider.
The Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Authentication providers to expand it.

4. Click the Google tab.

5. Click Unlock.

6. Enter the Google Client ID you obtained from Google, and then click Save Changes.

Use Google

To enable login with Google in your application, follow the Google+ documentation for iOS. Successful
authentication results in an OpenID Connect authentication token, which Amazon Cognito uses to
authenticate the user and generate a unique identifier.

Successful authentication results in a GTMOAuth2Authentication object which contains an
id_token, which Amazon Cognito uses to authenticate the user and generate a unique identifier:

func finishedWithAuth(auth: GTMOAuth2Authentication!, error: NSError!) {
 if error != nil {
 print(error.localizedDescription)
 }
 else {
 let idToken = auth.parameters.objectForKey("id_token")
 credentialsProvider.logins =
 [AWSCognitoLoginProviderKey.Google.rawValue: idToken!]
 }
}

JavaScript

NOTE: If your app uses Google and will be available on multiple mobile platforms,
you should configure it as an OpenID Connect Provider, adding all created client IDs
as additional audience values to allow for better integration. To learn more about
Google's cross-client identity model, see Cross-client Identity.

Set Up Google

To enable Google+ Sign-in for your web application, you will need to create a Google Developers
console project for your application.

1. Go to the Google Developers console and create a new project.

2. Under APIs and auth > APIs > Social APIs, enable the Google+ API.

3. Under APIs and auth > Credentials > OAuth consent screen, create the dialog that will be shown
to users when your app requests access to their private data.

Version Last Updated: 07/28/2016
136

https://developers.google.com/console/help/new/?hl=en
https://developers.google.com/console/help/new/?hl=en
https://developers.google.com/+/mobile/ios/getting-started
https://developers.google.com/+/mobile/ios/getting-started
https://console.aws.amazon.com/cognito/home
https://developers.google.com/+/mobile/ios/sign-in
open-id.html
https://developers.google.com/accounts/docs/CrossClientAuth
https://console.developers.google.com/

Amazon Cognito Developer Guide
Google

4. Under Credentials > Add Credentials, create an OAuth 2.0 client ID for your web application. You
will need a client ID for each platform you intend to develop for (e.g. web, iOS, Android).

5. Under Credentials > Add Credentials, create a Service Account. The console will alert you that a
new public/private key has been created.

For additional instructions on using the Google Developers console, see Managing projects in the
Developers Console.
Configure the External Provider in the Amazon Cognito Console

From the Amazon Cognito Console home page:

1. Click the name of the identity pool for which you want to enable Amazon as an external provider.
The Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Authentication providers to expand it.

4. Click the Google tab.

5. Click Unlock.

6. Enter the Google Client ID you obtained from Google, and then click Save Changes.

Use Google

To enable login with Google in your application, follow the Google+ documentation for Web.

Successful authentication results in a response object which contains an id_token, which Amazon
Cognito uses to authenticate the user and generate a unique identifier:

function signinCallback(authResult) {
 if (authResult['status']['signed_in']) {

 // Add the Google access token to the Cognito credentials login map.
 AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'IDENTITY_POOL_ID',
 Logins: {
 'accounts.google.com': authResult['id_token']
 }
 });

 // Obtain AWS credentials
 AWS.config.credentials.get(function(){
 // Access AWS resources here.
 });
 }
}

Unity

Set Up Google

To enable Google+ Sign-in for your web application, you will need to create a Google Developers
console project for your application.

1. Go to the Google Developers console and create a new project.

2. Under APIs and auth > APIs > Social APIs, enable the Google+ API.

Version Last Updated: 07/28/2016
137

https://developers.google.com/console/help/new/?hl=en
https://developers.google.com/console/help/new/?hl=en
https://console.aws.amazon.com/cognito/home
https://developers.google.com/+/web/signin/
https://console.developers.google.com/

Amazon Cognito Developer Guide
Google

3. Under APIs and auth > Credentials > OAuth consent screen, create the dialog that will be shown
to users when your app requests access to their private data.

4. For Unity, you need to create a total of three IDs: two for Android and one for iOS. Under
Credentials > Add Credentials:

• Android: Create an OAuth 2.0 client ID for Android and an OAuth 2.0 client ID for a web
application.

• iOS: Create an OAuth 2.0 client ID for iOS.

5. Under Credentials > Add Credentials, create a Service Account. The console will alert you that a
new public/private key has been created.

Create an OpenID Provider in the IAM Console

1. Next, you will need to create an OpenID Provider in the IAM Console. For instructions on how to set
up an OpenID Provider, see Using OpenID Connect Identity Providers.

2. When prompted for your Provider URL, enter "https://accounts.google.com".

3. When prompted to enter a value in the Audience field, enter any one of the three client IDs your
created in the previous steps.

4. After creating the provider, click on the provider name and add two more audiences, providing the
two remaining client IDs.

Configure the External Provider in the Amazon Cognito Console

From the Amazon Cognito Console home page:

1. Click the name of the identity pool for which you want to enable Amazon as an external provider.
The Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Authentication providers to expand it.

4. Click the Google tab.

5. Click Unlock.

6. Enter the Google Client ID you obtained from Google, and then click Save Changes.

Install the Unity Google Plugin

1. Add the Google Play Games plugin for Unity to your Unity project.

2. In Unity, from the Windows menu, configure the plugin using the three IDs for the Android and iOS
platforms.

Use Google

The following sample code shows how to retrieve the authentication token from the Google Play
Service:

void Start()
{
 PlayGamesClientConfiguration config = new
 PlayGamesClientConfiguration.Builder().Build();
 PlayGamesPlatform.InitializeInstance(config);
 PlayGamesPlatform.DebugLogEnabled = true;
 PlayGamesPlatform.Activate();
 Social.localUser.Authenticate(GoogleLoginCallback);

Version Last Updated: 07/28/2016
138

open-id.html
https://console.aws.amazon.com/cognito/home
https://github.com/playgameservices/play-games-plugin-for-unity

Amazon Cognito Developer Guide
Twitter/Digits

}

void GoogleLoginCallback(bool success)
{
 if (success)
 {
 string token = PlayGamesPlatform.Instance.GetIdToken();
 credentials.AddLogin("accounts.google.com", token);
 }
 else
 {
 Debug.LogError("Google login failed. If you are not running in an actual
 Android/iOS device, this is expected.");
 }
}

Xamarin

Note: Google integration is not natively supported on the Xamarin platform.
Integration currently requires the use of a web view to go through the browser sign in
flow. To learn how Google integration works with other SDKs, please select another
platform.

To enable login with Google in your application, you will need to authenticate your users and obtain an
OpenID Connect token from them. Amazon Cognito uses this token to generate a unique user identifier
that is associated to a Cognito Identity. Unfortunately, the Google SDK for Xamarin doesn't allow you
to retrieve the OpenID Connect token, so you will need to use an alternative client or the web flow in a
web view.

Once you have the token, you can set it in your CognitoAWSCredentials:

credentials.AddLogin("accounts.google.com", token);

NOTE: If your app uses Google and will be available on multiple mobile platforms,
you should configure it as an OpenID Connect Provider, adding all created client IDs
as additional audience values to allow for better integration. To learn more about
Google's cross-client identity model, see Cross-client Identity.

Twitter/Digits

Android

Amazon Cognito integrates with Twitter and Digits to provide federated authentication for your mobile
application users. This section explains how to register and set up your application with Twitter and
Digits as an identity provider.
Set Up Twitter/Digits

You will need to integrate the TwitterKit SDK in your application. Twitter offers Fabric as a mechanism
for enabling various functionality in your application.

Once you've integrated TwitterKit into your application, you get the following values from the Fabric
console:

• Consumer Key

• Consumer Secret

Version Last Updated: 07/28/2016
139

open-id.html
https://developers.google.com/accounts/docs/CrossClientAuth
https://fabric.io/
https://fabric.io/
https://fabric.io/

Amazon Cognito Developer Guide
Twitter/Digits

You must enter these values in the Amazon Cognito Console to configure your identity pool for Twitter/
Digits integration.
Using Twitter

Using the TwitterKit SDK login functionality, we need to simply capture the result of the completion
handler and pass the appropriate fields to Amazon Cognito.

Twitter sessions contain two important values:

• User token

• User secret

Amazon Cognito expects these values to be stored in a single value in logins with the key
api.twitter.com, concatenated with a single semicolon (;) delimiter.

loginButton = (TwitterLoginButton) findViewById(R.id.login_button);
loginButton.setCallback(new Callback<TwitterSession>() {
 @Override
 public void success(Result<TwitterSession> result) {
 TwitterSession session = result.data;
 TwitterAuthToken authToken = session.getAuthToken();
 String value = authToken.token + ";" + authToken.secret;
 Map<String, String> logins = new HashMap<String, String>();
 logins.put("api.twitter.com", value);
 // Note: This overrides any existing logins
 credentialsProvider.setLogins(logins);
 }

 @Override
 public void failure(TwitterException exception) {
 // Do something on failure
 }
});

Using Digits

Digits support is handled through a separate call in the Fabric SDK, but the session returned is
essentially the same as with Twitter login. You just need to concatenate the token and secret from the
session using a single semicolon (;) delimiter and store in logins with the key of www.digits.com.

DigitsAuthButton digitsButton = (DigitsAuthButton)
 findViewById(R.id.auth_button);
digitsButton.setCallback(new AuthCallback() {
 @Override
 public void success(DigitsSession session, String phoneNumber) {
 TwitterAuthToken authToken = (TwitterAuthToken)
 session.getAuthToken();
 String value = authToken.token + ";" + authToken.secret;
 Map<String, String> logins = new HashMap<String, String>();
 logins.put("www.digits.com", value);
 // Note: This overrides any existing logins
 credentialsProvider.setLogins(logins);
 }

 @Override
 public void failure(DigitsException exception) {
 // Do something on failure

Version Last Updated: 07/28/2016
140

https://console.aws.amazon.com/cognito/home
https://docs.fabric.io/android/twitter/log-in-with-twitter.html

Amazon Cognito Developer Guide
Twitter/Digits

 }
});

iOS

Amazon Cognito integrates with Twitter and Digits to provide federated authentication for your mobile
application users. This section explains how to register and set up your application with Twitter and
Digits as an identity provider.
Set Up Twitter/Digits

You will need to integrate the TwitterKit SDK in your application. Twitter offers Fabric as a mechanism
for enabling various functionality in your application.

Once you've integrated TwitterKit into your application, you get the following values from the Fabric
console:

• Consumer Key

• Consumer Secret

You must enter these values in the Amazon Cognito Console to configure your identity pool for Twitter/
Digits integration.
Using Twitter

Using the TwitterKit SDK login functionality, we need to simply capture the result of the completion
handler and pass the appropriate fields to Amazon Cognito.

Twitter sessions contain two important values:

• User token

• User secret

Amazon Cognito expects these values to be stored in a single value in logins with the key
api.twitter.com, concatenated with a single semicolon (;) delimiter.
Objective-C

[[Twitter sharedInstance] logInWithCompletion:^
 (TWTRSession *session, NSError *error) {
 if (session) {
 NSString value = [NSString stringWithFormat:@"%@;%@",
 session.authToken, session.authTokenSecret];
 // Note: This overrides any existing logins
 credentialsProvider.logins = @{@"api.twitter.com", value};
 } else {
 NSLog(@"error: %@", [error localizedDescription]);
 }
}];

Swift

Twitter.sharedInstance().logInWithCompletion {
 (session, error) -> Void in
 if (session != nil) {
 var value = session.authToken + ";" + session.authTokenSecret
 // Note: This overrides any existing logins
 credentialsProvider.logins = ["api.twitter.com": value]

Version Last Updated: 07/28/2016
141

https://fabric.io/
https://fabric.io/
https://fabric.io/
https://console.aws.amazon.com/cognito/home
https://docs.fabric.io/apple/twitter/log-in-with-twitter.html

Amazon Cognito Developer Guide
Twitter/Digits

 } else {
 println("error: (error.localizedDescription)")
 }
}

Using Digits

Digits support is handled through a separate call in the Fabric SDK, but the session returned is
essentially the same as with Twitter login. You just need to concatenate the token and secret from the
session using a single semicolon (;) delimiter and store in logins with the key of www.digits.com.
Objective-C

[[Digits sharedInstance] authenticateWithCompletion:^
 (DGTSession* session, NSError *error) {
 if (session) {
 NSString value = [NSString stringWithFormat:@"%@;%@",
 session.authToken, session.authTokenSecret];
 // Note: This overrides any existing logins
 credentialsProvider.logins = @{@"www.digits.com", value};
 }
}];

Swift

let digits = Digits.sharedInstance()
digits.authenticateWithCompletion { (session, error) in
 if (session != nil) {
 var value = session.authToken + ";" + session.authTokenSecret
 // Note: This overrides any existing logins
 credentialsProvider.logins = ["www.digits.com": value]
 }
}

JavaScript

Amazon Cognito integrates with Twitter and Digits to provide federated authentication for your mobile
application users. This section explains how to register and set up your application with Twitter and
Digits as an identity provider.

Note
We do not yet have documentation for integrating Twitter/Digits with the
JavaScript SDK. To learn how Twitter/Digits integration works with other
SDKs, select a different platform.

External Resources

• Sign in with Twitter

• Sign in with Digits

Unity

Amazon Cognito integrates with Twitter and Digits to provide federated authentication for your mobile
application users. This section explains how to register and set up your application with Twitter and
Digits as an identity provider.

Version Last Updated: 07/28/2016
142

https://dev.twitter.com/web/sign-in
https://dev.twitter.com/web/sign-in

Amazon Cognito Developer Guide
Open ID Connect Providers

Note
We do not yet have documentation for integrating Twitter/Digits with the Unity SDK. To learn
how Twitter/Digits integration works with other SDKs, select a different platform.

External Resources

• Twitter Kit Fabric plugin for Unity

Xamarin

Twitter integration is not natively supported on the Xamarin platform. Integration currently requires the
use of a web view to go through the browser sign in flow. To learn how Twitter/Digits integration works
with other SDKs, please select another platform.
External Resources

• Browser sign in flow for Twitter

Open ID Connect Providers
OpenID Connect is an open standard for authentication that is supported by a number of login
providers. Amazon Cognito supports linking of identities with OpenID Connect providers that are
configured through AWS Identity and Access Management.
Adding an OpenID Connect Provider

For information on how to create an OpenID Connect Provider, see the IAM documentation.
Associating a Provider to Amazon Cognito

Once you've created an OpenID Connect provider in the IAM Console, you can associate it to an
identity pool. All configured providers will be visible in the Edit Identity Pool screen in the Amazon
Cognito Console under the OpenID Connect Providers header.

You can associate multiple OpenID Connect providers to a single identity pool.
Using OpenID Connect

Refer to your provider's documentation for how to login and receive an ID token.

Once you have a token, simply add the token to the logins map, using the URI of your provider as the
key.

Android

Map<String, String> logins = new HashMap<String, String>();
logins.put("login.provider.com", token);
credentialsProvider.setLogins(logins);

Version Last Updated: 07/28/2016
143

https://docs.fabric.io/unity/twitter/overview.html
https://dev.twitter.com/web/sign-in/desktop-browser
http://openid.net/connect/
http://aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/identity-providers-oidc.html

Amazon Cognito Developer Guide
SAML Identity Provider

iOS - Objective-C

credentialsProvider.logins = @{ "login.provider.com": token }

iOS - Swift

credentialsProvider.logins = ["login.provider.com": token]

JavaScript

AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'IDENTITY_POOL_ID',
 Logins: {
 'login.provider.com': token
 }
});

Unity

credentials.AddLogin("login.provider.com", token);

Xamarin

credentials.AddLogin("login.provider.com", token);

Validating an OpenID Connect Token

When first integrating with Amazon Cognito, you may receive an InvalidToken exception. It is
important to understand how Amazon Cognito validates OpenID Connect tokens.

1. The iss parameter must match the key used in the logins map (e.g. login.provider.com).

2. The signature must be valid. The signature must be verifiable via an RSA public key.

3. The fingerprint of the certificate hosting the public key matches what's configured on your OpenId
Connect Provider.

4. If the azp parameter is present, check this value against listed client IDs in your OpenId Connect
provider.

5. If the azp parameter is not present, check the aud parameter against listed client IDs in your OpenId
Connect provider.

The website jwt.io is a valuable resource for decoding tokens to verify these values.

SAML Identity Provider
Amazon Cognito supports authentication with identity providers through Security Assertion Markup
Language 2.0 (SAML 2.0). You can use an identity provider that supports SAML with Amazon Cognito

Version Last Updated: 07/28/2016
144

http://jwt.io/

Amazon Cognito Developer Guide
SAML Identity Provider

to provide a simple onboarding flow for your users. Your SAML-supporting identity provider specifies
the IAM roles that can be assumed by your users so that different users can be granted different sets
of permissions.

Configuring Your Identity Pool for a SAML Provider

The following steps describe how to configure your identity pool to use a SAML-based provider.

Note
Before configuring your identity pool to support a SAML provider, you must first configure the
SAML identity provider in the IAM console. For more information, see Integrating third-party
SAML solution providers with AWS in the IAM User Guide.

To configure your identity pool to support a SAML provider

1. Sign in to the Amazon Cognito console, choose Manage Federated Identities, and choose
Create new identity pool.

2. In the Authentication providers section, choose the SAML tab.

3. Choose the ARN of the SAML provider and then choose Create Pool.

Configuring Your SAML Identity Provider

After you create the SAML provider, configure your SAML identity provider to add relying party trust
between your identity provider and AWS. Many identity providers allow you to specify a URL from
which the identity provider can read an XML document that contains relying party information and
certificates. For AWS, you can use https://signin.aws.amazon.com/static/saml-metadata.xml. The
next step is to configure the SAML assertion response from your identity provider to populate the
claims needed by AWS. For details on the claim configuration, see Configuring SAML assertions for
authentication response.

Customizing Your User Role with SAML

Using SAML with Amazon Cognito Identity allows the role to be customized for the end user. Only
the enhanced flow (p. 107) is supported with the SAML-based identity provider. You do not need
to specify an authenticated or unauthenticated role for the identity pool to use a SAML-based identity
provider. The https://aws.amazon.com/SAML/Attributes/Role claim attribute specifies
one or more pairs of comma delimited role and provider ARN. These are the roles that the user is
allowed to assume. The SAML identity provider can be configured to populate the role attributes based
on the user attribute information available from the identity provider. If multiple roles are received
in the SAML assertion, the optional customRoleArn parameter should be populated while calling
getCredentialsForIdentity. The input role received in the parameter will be assumed by the user
if it matches a role in the claim in the SAML assertion.

Authenticating Users with a SAML Identity Provider

To federate with the SAML-based identity provider, you must determine the URL that is
being used to initiate the login. AWS federation uses IdP-initiated login. In AD FS 2.0 the
URL takes the form of https://<fqdn>/adfs/ls/IdpInitiatedSignOn.aspx?
loginToRp=urn:amazon:webservices.

To add support for your SAML identity provider in Amazon Cognito, you must first authenticate
users with your SAML identity provider from your iOS or Android app. The code for integrating and
authenticating with the SAML identity provider is specific to SAML providers. After your user is
authenticated, you can provide the resulting SAML assertion to Amazon Cognito Identity using Amazon
Cognito APIs.

Version Last Updated: 07/28/2016
145

https://console.aws.amazon.com/iam
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_saml_3rd-party.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_saml_3rd-party.html
https://console.aws.amazon.com/cognito/home
https://signin.aws.amazon.com/static/saml-metadata.xml
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_create_saml_assertions.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_create_saml_assertions.html

Amazon Cognito Developer Guide
Developer Authenticated Identities

Android

If you are using the Android SDK you can populate the logins map with the SAML assertion as follows.

Map logins = new HashMap();
logins.put("arn:aws:iam::aws account id:saml-provider/name", "base64 encoded
 assertion response");
// Now this should be set to CognitoCachingCredentialsProvider object.
CognitoCachingCredentialsProvider credentialsProvider = new
 CognitoCachingCredentialsProvider(context, identity pool id, region);
credentialsProvider.setLogins(logins);
// If SAML assertion contains multiple roles, resolve the role by setting the
 custom role
credentialsProvider.setCustomRoleArn("arn:aws:iam::aws account id:role/
customRoleName");
// This should trigger a call to Cognito service to get the credentials.
credentialsProvider.getCredentials();

iOS

If you are using the iOS SDK you can provide the SAML assertion in
AWSIdentityProviderManager as follows.

- (AWSTask<NSDictionary<NSString*,NSString*> *> *) logins {
 //this is hardcoded for simplicity, normally you would asynchronously go
 to your SAML provider
 //get the assertion and return the logins map using a
 AWSTaskCompletionSource
 return [AWSTask taskWithResult:@{@"arn:aws:iam::aws account id:saml-
provider/name":@"base64 encoded assertion response"}];
}

// If SAML assertion contains multiple roles, resolve the role by setting the
 custom role.
// Implementing this is optional if there is only one role.
- (NSString *)customRoleArn {
 return @"arn:aws:iam::accountId:role/customRoleName";
}

Developer Authenticated Identities
Amazon Cognito supports developer authenticated identities, in addition to web identity federation
through Facebook (p. 123), Google (p. 133), and Amazon (p. 128). With developer authenticated
identities, you can register and authenticate users via your own existing authentication process,
while still using Amazon Cognito to synchronize user data and access AWS resources. Using
developer authenticated identities involves interaction between the end user device, your backend for
authentication, and Amazon Cognito. For more details, please read our blog.

Understanding the Authentication Flow
For information on the developer authenticated identities authflow and how it differs from the external
provider authflow, see Authentication Flow (p. 107).

Version Last Updated: 07/28/2016
146

http://mobile.awsblog.com/post/Tx2FL1QAPDE0UAH/Understanding-Amazon-Cognito-Authentication-Part-2-Developer-Authenticated-Ident

Amazon Cognito Developer Guide
Associate Developer Provider

Associate Developer Provider
To use developer authenticated identities, you'll need an identity pool associated with your developer
provider. To do so, follow these steps:

1. Log in to the Amazon Cognito Console.

2. Create a new identity pool and, as part of the process, provide a developer provider name.

3. Alternatively, edit an existing identity pool and add a developer provider.

Note: Once the provider name has been set, it cannot be changed.

For additional instructions on working with the Amazon Cognito Console, see Using the Amazon
Cognito Console (p. 203).

Implement an Identity Provider

Android

To use developer authenticated identities, implement your own identity provider class which extends
AWSAbstractCognitoIdentityProvider.

Below is a simple example of an identity provider which is used in our sample app:

public class DeveloperAuthenticationProvider extends
 AWSAbstractCognitoDeveloperIdentityProvider {

 private static final String developerProvider =
 "<Developer_provider_name>";

 public DeveloperAuthenticationProvider(String accountId, String
 identityPoolId, Regions region) {
 super(accountId, identityPoolId, region);
 // Initialize any other objects needed here.
 }

 // Return the developer provider name which you choose while setting up the
 // identity pool in the &COG; Console

 @Override
 public String getProviderName() {
 return developerProvider;
 }

 // Use the refresh method to communicate with your backend to get an
 // identityId and token.

 @Override
 public String refresh() {

 // Override the existing token
 setToken(null);

 // Get the identityId and token by making a call to your backend
 // (Call to your backend)

 // Call the update method with updated identityId and token to make sure

Version Last Updated: 07/28/2016
147

https://console.aws.amazon.com/cognito/home
https://github.com/awslabs/aws-sdk-android-samples/tree/master/CognitoSyncDemo

Amazon Cognito Developer Guide
Implement an Identity Provider

 // these are ready to be used from Credentials Provider.

 update(identityId, token);
 return token;

 }

 // If the app has a valid identityId return it, otherwise get a valid
 // identityId from your backend.

 @Override
 public String getIdentityId() {

 // Load the identityId from the cache
 identityId = cachedIdentityId;

 if (identityId == null) {
 // Call to your backend
 } else {
 return identityId;
 }

 }
}

To use this identity provider, you have to pass it into CognitoCachingCredentialsProvider.
Here's an example:

DeveloperAuthenticationProvider developerProvider = new
 DeveloperAuthenticationProvider(null, "IDENTITYPOOLID", context,
 Regions.USEAST1);
CognitoCachingCredentialsProvider credentialsProvider = new
 CognitoCachingCredentialsProvider(context, developerProvider,
 Regions.USEAST1);

iOS - Objective-C

To use developer authenticated identities, implement your own identity provider class which extends
AWSCognitoCredentialsProviderHelper.

@implementation DeveloperAuthenticatedIdentityProvider
/*
 * Use the token method to communicate with your backend to get an
 * identityId and token.
 */

- (AWSTask <NSString*>) token {
 //Write code to call your backend:
 //Pass username/password to backend or some sort of refresh token to
 authenticate user
 //If successful, from backend call getOpenIdTokenForDeveloperIdentity
 with logins map
 //containing "your.provider.name":"enduser.username"
 //Return the identity id and token to client
 //You can use AWSTaskCompletionSource to do this asynchronously

 // Set the identity id and return the token

Version Last Updated: 07/28/2016
148

http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSCognitoCredentialsProviderHelper.html

Amazon Cognito Developer Guide
Implement an Identity Provider

 self.identityId = response.identityId;
 return [AWSTask taskWithResult:response.token];
}

@end

To use this identity provider, pass it into AWSCognitoCredentialsProvider as shown in the
following example:

DeveloperAuthenticatedIdentityProvider * devAuth
 = [[DeveloperAuthenticatedIdentityProvider alloc]
 initWithRegionType:AWSRegionYOUR_IDENTITY_POOL_REGION

 identityPoolId:@"YOUR_IDENTITY_POOL_ID"
 useEnhancedFlow:YES
 identityProviderManager:nil];
AWSCognitoCredentialsProvider *credentialsProvider =
 [[AWSCognitoCredentialsProvider alloc]

 initWithRegionType:AWSRegionYOUR_IDENTITY_POOL_REGION

 identityProvider:devAuth];

If you want to support both unauthenticated identities and developer authenticated identities, override
the logins method in your AWSCognitoCredentialsProviderHelper implementation.

- (AWSTask<NSDictionary<NSString *, NSString *> *> *)logins {
 if(/*logic to determine if user is unauthenticated*/) {
 return [AWSTask taskWithResult:nil];
 }else{
 return [super logins];
 }
}

If you want to support developer authenticated identities and social providers,
you must manage who the current provider is in your logins implementation of
AWSCognitoCredentialsProviderHelper.

- (AWSTask<NSDictionary<NSString *, NSString *> *> *)logins {
 if(/*logic to determine if user is unauthenticated*/) {
 return [AWSTask taskWithResult:nil];
 }else if (/*logic to determine if user is Facebook*/){
 return [AWSTask taskWithResult: @{ AWSIdentityProviderFacebook :
 [FBSDKAccessToken currentAccessToken] }];
 }else {
 return [super logins];
 }
}

iOS - Swift

To use developer authenticated identities, implement your own identity provider class which extends
AWSCognitoCredentialsProviderHelper.

import AWSCore

Version Last Updated: 07/28/2016
149

http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSCognitoCredentialsProviderHelper.html

Amazon Cognito Developer Guide
Implement an Identity Provider

/*
 * Use the token method to communicate with your backend to get an
 * identityId and token.
 */
class DeveloperAuthenticatedIdentityProvider :
 AWSCognitoCredentialsProviderHelper {
 override func token() -> AWSTask<NSString> {
 //Write code to call your backend:
 //pass username/password to backend or some sort of refresh token to
 authenticate user, if successful,
 //from backend call getOpenIdTokenForDeveloperIdentity with logins map
 containing "your.provider.name":"enduser.username"
 //return the identity id and token to client
 //You can use AWSTaskCompletionSource to do this asynchronously

 // Set the identity id and return the token
 self.identityId = resultFromAbove.identityId
 return AWSTask(result: resultFromAbove.token)
}

To use this identity provider, pass it into AWSCognitoCredentialsProvider as shown in the
following example:

let devAuth =
 DeveloperAuthenticatedIdentityProvider(regionType: .YOUR_IDENTITY_POOL_REGION,
 identityPoolId: "YOUR_IDENTITY_POOL_ID", useEnhancedFlow: true,
 identityProviderManager:nil)
let credentialsProvider =
 AWSCognitoCredentialsProvider(regionType: .YOUR_IDENTITY_POOL_REGION,
 identityProvider:devAuth)
let configuration =
 AWSServiceConfiguration(region: .YOUR_IDENTITY_POOL_REGION,
 credentialsProvider:credentialsProvider)
AWSServiceManager.default().defaultServiceConfiguration = configuration

If you want to support both unauthenticated identities and developer authenticated identities, override
the logins method in your AWSCognitoCredentialsProviderHelper implementation.

override func logins () -> AWSTask<NSDictionary> {
 if(/*logic to determine if user is unauthenticated*/) {
 return AWSTask(result:nil)
 }else {
 return super.logins()
 }
}

If you want to support developer authenticated identities and social providers,
you must manage who the current provider is in your logins implementation of
AWSCognitoCredentialsProviderHelper.

override func logins () -> AWSTask<NSDictionary> {
 if(/*logic to determine if user is unauthenticated*/) {
 return AWSTask(result:nil)
 }else if (/*logic to determine if user is Facebook*/){
 if let token = AccessToken.current?.authenticationToken {
 return AWSTask(result: [AWSIdentityProviderFacebook:token])
 }

Version Last Updated: 07/28/2016
150

Amazon Cognito Developer Guide
Implement an Identity Provider

 return AWSTask(error:NSError(domain: "Facebook Login", code: -1 ,
 userInfo: ["Facebook" : "No current Facebook access token"]))
 }else {
 return super.logins()
 }
}

JavaScript
Once you obtain an identity ID and session token from your backend, you will to pass them into the
AWS.CognitoIdentityCredentials provider. Here's an example:

AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'IDENTITY_POOL_ID',
 IdentityId: 'IDENTITY_ID_RETURNED_FROM_YOUR_PROVIDER',
 Logins: {
 'cognito-identity.amazonaws.com': 'TOKEN_RETURNED_FROM_YOUR_PROVIDER'
 }
});

Unity
To use developer-authenticated identities you have to extend CognitoAWSCredentials and override
the RefreshIdentity method to retrieve the user identity id and token from your backend and return
them. Below is a simple example of an identity provider that would contact a hypothetical backend at
'example.com':

using UnityEngine;
using System.Collections;
using Amazon.CognitoIdentity;
using System.Collections.Generic;
using ThirdParty.Json.LitJson;
using System;
using System.Threading;

public class DeveloperAuthenticatedCredentials : CognitoAWSCredentials
{
 const string PROVIDER_NAME = "example.com";
 const string IDENTITY_POOL = "IDENTITY_POOL_ID";
 static readonly RegionEndpoint REGION = RegionEndpoint.USEast1;

 private string login = null;

 public DeveloperAuthenticatedCredentials(string loginAlias)
 : base(IDENTITY_POOL, REGION)
 {
 login = loginAlias;
 }

 protected override IdentityState RefreshIdentity()
 {
 IdentityState state = null;
 ManualResetEvent waitLock = new ManualResetEvent(false);
 MainThreadDispatcher.ExecuteCoroutineOnMainThread(ContactProvider((s)
 =>
 {
 state = s;

Version Last Updated: 07/28/2016
151

Amazon Cognito Developer Guide
Implement an Identity Provider

 waitLock.Set();
 }));
 waitLock.WaitOne();
 return state;
 }

 IEnumerator ContactProvider(Action<IdentityState> callback)
 {
 WWW www = new WWW("http://example.com/?username="+login);
 yield return www;
 string response = www.text;

 JsonData json = JsonMapper.ToObject(response);

 //The backend has to send us back an Identity and a OpenID token
 string identityId = json["IdentityId"].ToString();
 string token = json["Token"].ToString();

 IdentityState state = new IdentityState(identityId, PROVIDER_NAME,
 token, false);
 callback(state);
 }
}

The code above uses a thread dispatcher object to call a coroutine. If you don't have a way to do this in
your project, you can use the following script in your scenes:

using System;
using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class MainThreadDispatcher : MonoBehaviour
{
 static Queue<IEnumerator> _coroutineQueue = new Queue<IEnumerator>();
 static object _lock = new object();

 public void Update()
 {
 while (_coroutineQueue.Count > 0)
 {
 StartCoroutine(_coroutineQueue.Dequeue());
 }
 }

 public static void ExecuteCoroutineOnMainThread(IEnumerator coroutine)
 {
 lock (_lock) {
 _coroutineQueue.Enqueue(coroutine);
 }
 }
}

Xamarin

To use developer-authenticated identities you have to extend CognitoAWSCredentials and override
the RefreshIdentity method to retrieve the user identity id and token from your backend and return

Version Last Updated: 07/28/2016
152

Amazon Cognito Developer Guide
Updating the Logins Map (Android and iOS only)

them. Below is a simple example of an identity provider that would contact a hypothetical backend at
'example.com':

public class DeveloperAuthenticatedCredentials : CognitoAWSCredentials
{
 const string PROVIDER_NAME = "example.com";
 const string IDENTITY_POOL = "IDENTITY_POOL_ID";
 static readonly RegionEndpoint REGION = RegionEndpoint.USEast1;
 private string login = null;

 public DeveloperAuthenticatedCredentials(string loginAlias)
 : base(IDENTITY_POOL, REGION)
 {
 login = loginAlias;
 }

 protected override async Task<IdentityState> RefreshIdentityAsync()
 {
 IdentityState state = null;
 //get your identity and set the state
 return state;
 }
}

Updating the Logins Map (Android and iOS only)

Android
Once the user is authenticated, update the logins map with the developer provider name and a
developer user identifier, which is an alphanumeric string that uniquely identifies a user in your
authentication system. Be sure to call the refresh method after updating the logins map as the
identityId might have changed:

HashMap<String, String> loginsMap = new HashMap<String, String>();
loginsMap.put(developerAuthenticationProvider.getProviderName(),
 developerUserIdentifier);

credentialsProvider.setLogins(loginsMap);
credentialsProvider.refresh();

iOS - Objective-C
The iOS SDK only calls your logins method to get the latest logins map if there are no credentials
or they have expired. If you want to force the SDK to obtain new credentials (e.g., your end user went
from unauthenticated to authenticated and you want credentials against the authenticated user), call
clearCredentials on your credentialsProvider.

[credentialsProvider clearCredentials];

iOS - Swift
The iOS SDK only calls your logins method to get the latest logins map if there are no credentials
or they have expired. If you want to force the SDK to obtain new credentials (e.g., your end user went
from unauthenticated to authenticated and you want credentials against the authenticated user), call
clearCredentials on your credentialsProvider.

Version Last Updated: 07/28/2016
153

Amazon Cognito Developer Guide
Getting a Token (Server Side)

credentialsProvider.clearCredentials()

Getting a Token (Server Side)
All platforms

You obtain a token by calling GetOpenIdTokenForDeveloperIdentity. This API must be invoked from
your backend uaing AWS developer credentials. It must not be invoked from the client SDK. The API
receives the Cognito identity pool ID; a logins map containing your identity provider name as the key
and identifier as the value; and optionally a Cognito identity ID (i.e., you are making an unauthenticated
user authenticated). The identifier can be the username of your user, an email address, or a numerical
value. The API responds to your call with a unique Cognito ID for your user and an OpenID Connect
token for the end user.

A few things to keep in mind about the token returned by GetOpenIdTokenForDeveloperIdentity:

• You can specify a custom expiration time for the token so you can cache it. If you don't provide any
custom expiration time, the token is valid for 15 minutes.

• The maximum token duration you can set is 24 hours.

• Be mindful of the security implications of increasing the token duration. If an attacker obtains this
token, they can exchange it for AWS credentials for the end user for the token duration.

The following Java snippet shows how to initialize a Amazon Cognito client and retrieve a token for a
developer authenticated identity.

// authenticate your end user as appropriate
//

// if authenticated, initialize a cognito client with your AWS developer
 credentials
AmazonCognitoIdentity identityClient = new AmazonCognitoIdentityClient(
 new BasicAWSCredentials("access_key_id", "secret_access_key")
);

// create a new request to retrieve the token for your end user
GetOpenIdTokenForDeveloperIdentityRequest request =
 new GetOpenIdTokenForDeveloperIdentityRequest();
request.setIdentityPoolId("YOUR_COGNITO_IDENTITY_POOL_ID");

request.setIdentityId("YOUR_COGNITO_IDENTITY_ID"); //optional, set this if
 your client has an
 //identity ID that you
 want to link to this
 //developer account

// set up your logins map with the username of your end user
HashMap<String,String> logins = new HashMap<>();
logins.add("YOUR_IDENTITY_PROVIDER_NAME","YOUR_END_USER_IDENTIFIER");
request.setLogins(logins);

// optionally set token duration (in seconds)
request.setTokenDuration(60 * 15l);
GetOpenIdTokenForDeveloperIdentityResult response =
 identityClient.getOpenIdTokenForDeveloperIdentity(request);

// obtain identity id and token to return to your client
String identityId = response.getIdentityId();

Version Last Updated: 07/28/2016
154

http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/API_GetOpenIdTokenForDeveloperIdentity.html

Amazon Cognito Developer Guide
Connect to an Existing Social Identity

(Android, iOS, Unity, and Xamarin)

String token = response.getToken();

//code to return identity id and token to client
//...

Following the steps above, you should be able to integrate developer authenticated identities in your
app. If you have any issues or questions please feel free to post in our forums.

Connect to an Existing Social Identity (Android, iOS,
Unity, and Xamarin)
To connect a custom identity to a user's social identity (Facebook, Google, or Amazon), add the
identity provider token to the Logins map in the credentials provider, as shown below:

Android

// Initialize a Logins map for the authentication tokens.
Map logins = new HashMap();

// Add the custom identity for this user
logins.put("cognito-identity.amazonaws.com", oidcTokenFromYourBackend);

// If your user is also logged in with Facebook, Amazon, or Google, we can
 now add
// the session token.
logins.put("graph.facebook.com",
 Session.getActiveSession().getAccessToken());

// Add the new map we created to the credentials provider.
credentialsProvider.setLogins(logins);

iOS - Objective-C

//this is what your logins method should return to link devAuth and facebook
- (AWSTask<NSDictionary<NSString *, NSString *> *> *)logins {
 return [self.token continueWithSuccessBlock:^id
 _Nullable(AWSTask<NSString *> * _Nonnull task) {
 return [[AWSTask taskWithResult:
 @{ AWSIdentityProviderFacebook : [FBSDKAccessToken
 currentAccessToken],
 self.identityProviderName, task.result}]];
 }];
}

iOS - Swift

//this is what your logins method should return to link devAuth and facebook
override func logins () -> AWSTask<NSDictionary> {
 return self.token().continue(successBlock: { (result: AWSTask<NSString>)
 -> Any? in
 let devAuthToken = task.result

Version Last Updated: 07/28/2016
155

https://forums.aws.amazon.com/forum.jspa?forumID=173

Amazon Cognito Developer Guide
Supporting Transition Between Providers

 let fbToken = AccessToken.current?.authenticationToken
 return AWSTask(result: [AWSIdentityProviderFacebook:fbToken,
 self.identityProviderName:devAuthToken])
 }) as! AWSTask<NSDictionary>
}

Unity

//Add the dev auth token to any other tokens in your logins map
credentials.AddLogin("cognito-identity.amazonaws.com",
 oidcTokenFromYourBackend);

Xamarin

//Add the dev auth token to any other tokens in your logins map
credentials.AddLogin("cognito-identity.amazonaws.com",
 oidcTokenFromYourBackend);

Note
Login provider tokens may expire during the lifetime of your application. For all SDKs except
iOS, when the token expires you will need to obtain a new token from the provider and add
it to the logins map to ensure that your Amazon Cognito session can refresh properly and
retrieve AWS credentials.

Supporting Transition Between Providers

Android

Your application might require supporting unauthenticated identities or authenticated identities using
public providers (Login with Amazon, Facebook or Google) along with developer authenticated
identities. The essential difference between developer authenticated identities and other identities
(unauthenticated identities and authenticated identities using public provider) is the way the identityId
and token are obtained. For other identities the mobile application will interact directly with Amazon
Cognito instead of contacting your authentication system. So the mobile application should be able
to support two distinct flows depending on the choice made by the app user. For this you will have to
make some changes to the custom identity provider.

The refresh method should check the logins map, if the map is not empty and has a key with
developer provider name, then you should call your backend; otherwise just call the getIdentityId
method and return null.

public String refresh() {

 setToken(null);

 // If the logins map is not empty make a call to your backend
 // to get the token and identityId
 if (getProviderName() != null &&
 !this.loginsMap.isEmpty() &&
 this.loginsMap.containsKey(getProviderName())) {

 /**
 * This is where you would call your backend

Version Last Updated: 07/28/2016
156

Amazon Cognito Developer Guide
Supporting Transition Between Providers

 **/

 // now set the returned identity id and token in the provider
 update(identityId, token);
 return token;

 } else {
 // Call getIdentityId method and return null
 this.getIdentityId();
 return null;
 }
}

Similarly the getIdentityId method will have two flows depending on the contents of the logins
map:

public String getIdentityId() {

 // Load the identityId from the cache
 identityId = cachedIdentityId;

 if (identityId == null) {

 // If the logins map is not empty make a call to your backend
 // to get the token and identityId

 if (getProviderName() != null && !this.loginsMap.isEmpty()
 && this.loginsMap.containsKey(getProviderName())) {

 /**
 * This is where you would call your backend
 **/

 // now set the returned identity id and token in the provider
 update(identityId, token);
 return token;

 } else {
 // Otherwise call &COG; using getIdentityId of super class
 return super.getIdentityId();
 }

 } else {
 return identityId;
 }

}

iOS - Objective-C

Your application might require supporting unauthenticated identities or authenticated identities using
public providers (Login with Amazon, Facebook or Google) along with developer authenticated
identities. To do this, override the AWSCognitoCredentialsProviderHelper logins method to be able to
return the correct logins map based on the current identity provider. This example shows you how you
might pivot between unauthenticated, Facebook and developer authenticated.

- (AWSTask<NSDictionary<NSString *, NSString *> *> *)logins {

Version Last Updated: 07/28/2016
157

http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSCognitoCredentialsProviderHelper.html

Amazon Cognito Developer Guide
Supporting Transition Between Providers

 if(/*logic to determine if user is unauthenticated*/) {
 return [AWSTask taskWithResult:nil];
 }else if (/*logic to determine if user is Facebook*/){
 return [AWSTask taskWithResult: @{ AWSIdentityProviderFacebook :
 [FBSDKAccessToken currentAccessToken] }];
 }else {
 return [super logins];
 }
}

When you transition from unauthenticated to authenticated, you should call [credentialsProvider
clearCredentials]; to force the SDK to get new authenticated credentials. When you
switch between two authenticated providers and you aren't trying to link the two providers (i.e.
you are not providing tokens for multiple providers in your logins dictionary), you should call
[credentialsProvider clearKeychain];. This will clear both the credentials and identity and
force the SDK to get new ones.

iOS - Swift

Your application might require supporting unauthenticated identities or authenticated identities using
public providers (Login with Amazon, Facebook or Google) along with developer authenticated
identities. To do this, override the AWSCognitoCredentialsProviderHelper logins method to be able to
return the correct logins map based on the current identity provider. This example shows you how you
might pivot between unauthenticated, Facebook and developer authenticated.

override func logins () -> AWSTask<NSDictionary> {
 if(/*logic to determine if user is unauthenticated*/) {
 return AWSTask(result:nil)
 }else if (/*logic to determine if user is Facebook*/){
 if let token = AccessToken.current?.authenticationToken {
 return AWSTask(result: [AWSIdentityProviderFacebook:token])
 }
 return AWSTask(error:NSError(domain: "Facebook Login", code: -1 ,
 userInfo: ["Facebook" : "No current Facebook access token"]))
 }else {
 return super.logins()
 }
}

When you transition from unauthenticated to authenticated, you should call
credentialsProvider.clearCredentials() to force the SDK to get new authenticated
credentials. When you switch between two authenticated providers and you aren't trying to link the two
providers (i.e. you are not providing tokens for multiple providers in your logins dictionary), you should
call credentialsProvider.clearKeychain(). This will clear both the credentials and identity and
force the SDK to get new ones.

Unity

Your application might require supporting unauthenticated identities or authenticated identities using
public providers (Login with Amazon, Facebook or Google) along with developer authenticated
identities. The essential difference between developer authenticated identities and other identities
(unauthenticated identities and authenticated identities using public provider) is the way the identityId
and token are obtained. For other identities the mobile application will interact directly with Amazon
Cognito instead of contacting your authentication system. So the mobile application should be able
to support two distinct flows depending on the choice made by the app user. For this you will have to
make some changes to the custom identity provider.

Version Last Updated: 07/28/2016
158

http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSCognitoCredentialsProviderHelper.html

Amazon Cognito Developer Guide
Switching Identities

The recommended way to do it in Unity is to extend your identity provider from
AmazonCognitoEnhancedIdentityProvide instead of AbstractCognitoIdentityProvider, and call the
parent RefreshAsync method instead of your own in case the user is not authenticated with your own
backend. If the user is authenticated, you can use the same flow explained before.

Xamarin

Your application might require supporting unauthenticated identities or authenticated identities using
public providers (Login with Amazon, Facebook or Google) along with developer authenticated
identities. The essential difference between developer authenticated identities and other identities
(unauthenticated identities and authenticated identities using public provider) is the way the identityId
and token are obtained. For other identities the mobile application will interact directly with Amazon
Cognito instead of contacting your authentication system. So the mobile application should be able
to support two distinct flows depending on the choice made by the app user. For this you will have to
make some changes to the custom identity provider.

Switching Identities

Android
Users can begin their life in an application as unauthenticated guests. Eventually they may decide to
log in using one of the supported identity providers. Amazon Cognito will ensure that an old identity
retains the same unique identifier as the new one, and the profile data will be merged automatically.

Your application is informed of a profile merge through the IdentityChangedListener interface.
Implement the identityChanged method in the interface to receive these messages:

@override
public void identityChanged(String oldIdentityId, String newIdentityId) {
 // handle the change
}

iOS - Objective-C
Users can begin their life in an application as unauthenticated guests. Eventually they may decide to
log in using one of the supported identity providers. Amazon Cognito will ensure that an old identity
retains the same unique identifier as the new one, and the profile data will be merged automatically.

NSNotificationCenter informs your application of a profile merge:

[[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(identityIdDidChange:)

 name:AWSCognitoIdentityIdChangedNotification
 object:nil];

-(void)identityDidChange:(NSNotification*)notification {
 NSDictionary *userInfo = notification.userInfo;
 NSLog(@"identity changed from %@ to %@",
 [userInfo objectForKey:AWSCognitoNotificationPreviousId],
 [userInfo objectForKey:AWSCognitoNotificationNewId]);
}

Version Last Updated: 07/28/2016
159

Amazon Cognito Developer Guide
iOS - Swift

iOS - Swift
Users can begin their life in an application as unauthenticated guests. Eventually they may decide to
log in using one of the supported identity providers. Amazon Cognito will ensure that an old identity
retains the same unique identifier as the new one, and the profile data will be merged automatically.

NSNotificationCenter informs your application of a profile merge:

[NSNotificationCenter.defaultCenter().addObserver(observer: self
 selector:"identityDidChange"
 name:AWSCognitoIdentityIdChangedNotification
 object:nil)

func identityDidChange(notification: NSNotification!) {
 if let userInfo = notification.userInfo as? [String: AnyObject] {
 print("identity changed from:
 \(userInfo[AWSCognitoNotificationPreviousId])
 to: \(userInfo[AWSCognitoNotificationNewId])")
 }
}

JavaScript
Users can begin their life in an application as unauthenticated guests. Eventually they may decide to
log in using one of the supported identity providers. Amazon Cognito will ensure that an old identity
retains the same unique identifier as the new one, and the profile data will be merged automatically.

Unity
Users can begin their life in an application as unauthenticated guests. Eventually they may decide to
log in using one of the supported identity providers. Amazon Cognito will ensure that an old identity
retains the same unique identifier as the new one, and the profile data will be merged automatically.

You can subscribe to the IdentityChangedEvent to be notified of profile merges:

credentialsProvider.IdentityChangedEvent += delegate(object sender,
 CognitoAWSCredentials.IdentityChangedArgs e)
{
 // handle the change
 Debug.log("Identity changed from " + e.OldIdentityId + " to " +
 e.NewIdentityId);
};

Xamarin
Users can begin their life in an application as unauthenticated guests. Eventually they may decide to
log in using one of the supported identity providers. Amazon Cognito will ensure that an old identity
retains the same unique identifier as the new one, and the profile data will be merged automatically.

credentialsProvider.IdentityChangedEvent += delegate(object sender,
 CognitoAWSCredentials.IdentityChangedArgs e){
 // handle the change
 Console.WriteLine("Identity changed from " + e.OldIdentityId + " to " +
 e.NewIdentityId);

Version Last Updated: 07/28/2016
160

Amazon Cognito Developer Guide
Xamarin

};

Version Last Updated: 07/28/2016
161

Amazon Cognito Developer Guide
Synchronizing Data

Amazon Cognito Sync

Amazon Cognito Sync is an AWS service and client library that enables cross-device syncing of
application-related user data. You can use it to synchronize user profile data across mobile devices
and the web without requiring your own backend. The client libraries cache data locally so your app
can read and write data regardless of device connectivity status. When the device is online, you can
synchronize data, and if you set up push sync, notify other devices immediately that an update is
available.

For information about Amazon Cognito Identity region availability, see AWS Service Region
Availability.

To learn more about Amazon Cognito Sync, see the following topics.

Topics

• Synchronizing Data (p. 162)

• Handling Callbacks (p. 169)

• Push Sync (p. 182)

• Amazon Cognito Streams (p. 190)

• Amazon Cognito Events (p. 192)

Synchronizing Data
Amazon Cognito lets you save end user data in datasets containing key-value pairs. This data is
associated with an Amazon Cognito identity, so that it can be accessed across logins and devices. To
sync this data between the Amazon Cognito service and an end user’s devices, invoke the synchronize
method. Each dataset can have a maximum size of 1 MB. You can associate up to 20 datasets with an
identity.

The Amazon Cognito Sync client creates a local cache for the identity data. Your app talks to this local
cache when it reads and writes keys. This guarantees that all of your changes made on the device
are immediately available on the device, even when you are offline. When the synchronize method is
called, changes from the service are pulled to the device, and any local changes are pushed to the
service. At this point the changes are available to other devices to synchronize.

Initializing the Amazon Cognito Sync Client

To initialize the Amazon Cognito Sync client, you first need to create a credentials provider. The
credentials provider acquires temporary AWS credentials to enable your app to access your AWS

Version Last Updated: 07/28/2016
162

http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Amazon Cognito Developer Guide
Initializing the Amazon Cognito Sync Client

resources. You'll also need to import the required header files. Use the following steps to initialize the
Amazon Cognito Sync client.

Android

1. Create a credentials provider, following the instructions at Step 1: Obtain AWS Credentials (p. 5).

2. Import the Amazon Cognito package: import
com.amazonaws.mobileconnectors.cognito.*;

3. Initialize Amazon Cognito Sync, passing in the Android app context, the identity pool ID, an AWS
region, and an initialized Amazon Cognito credentials provider:

CognitoSyncManager client = new CognitoSyncManager(
 getApplicationContext(),
 Regions.YOUR_REGION,
 credentialsProvider);

iOS - Objective-C

1. Create a credentials provider, following the instructions at Step 1: Obtain AWS Credentials (p. 5).

2. Import AWSCore and Cognito, and initialize AWSCognito:

#import <AWSiOSSDKv2/AWSCore.h>
#import <AWSCognitoSync/Cognito.h>

AWSCognito *syncClient = [AWSCognito defaultCognito];

3. If you're using CocoaPods, replace <AWSiOSSDKv2/AWSCore.h> with AWSCore.h and follow the
same syntax for the Amazon Cognito import.

iOS - Swift

1. Create a credentials provider, following the instructions at Step 1: Obtain AWS Credentials (p. 5).

2. Import AWSCore and Cognito, and initialize AWSCognito:

#import <AWSiOSSDKv2/AWSCore.h>
#import <AWSCognitoSync/Cognito.h>

let syncClient = AWSCognito.defaultCognito()

3. If you're using CocoaPods, replace <AWSiOSSDKv2/AWSCore.h> with AWSCore.h and follow the
same syntax for the Amazon Cognito import.

JavaScript

1. Download the Amazon Cognito Sync Manager for JavaScript.

2. Include the Sync Manager library in your project.

3. Create a credentials provider, following the instructions at Step 1: Obtain AWS Credentials (p. 5).

4. Initialize the Sync Manager:

var syncManager = new AWS.CognitoSyncManager();

Version Last Updated: 07/28/2016
163

https://github.com/aws/amazon-cognito-js

Amazon Cognito Developer Guide
Understanding Datasets

Unity

1. You will need to first create an instance of CognitoAWSCredentials, following the instructions at
Step 1: Obtain AWS Credentials (p. 5).

2. Create an instance of CognitoSyncManager, passing the CognitoAwsCredentials object and a
AmazonCognitoSyncConfig with, at least, the region set:

AmazonCognitoSyncConfig clientConfig = new AmazonCognitoSyncConfig
 { RegionEndpoint = REGION };
CognitoSyncManager syncManager = new CognitoSyncManager(credentials,
 clientConfig);

Xamarin

1. You will need to first create an instance of CognitoAWSCredentials, following the instructions at
Step 1: Obtain AWS Credentials (p. 5).

2. Create an instance of CognitoSyncManager, passing the CognitoAwsCredentials object and a
AmazonCognitoSyncConfig with, at least, the region set:

AmazonCognitoSyncConfig clientConfig = new AmazonCognitoSyncConfig
 { RegionEndpoint = REGION };
CognitoSyncManager syncManager = new CognitoSyncManager(credentials,
 clientConfig);

Understanding Datasets

With Amazon Cognito, end user profile data is organized into datasets. Each dataset can contain up
to 1MB of data in the form of key-value pairs. A dataset is the most granular entity on which you can
perform a sync operation. Read and write operations performed on a dataset only affect the local store
until the synchronize method is invoked. A dataset is identified by a unique string. You can create a
new dataset or open an existing one as shown in the following.

Android

Dataset dataset = client.openOrCreateDataset("datasetname");

To delete a dataset, first call the method to remove it from local storage, then call the synchronize
method to delete the dataset from Amazon Cognito:

dataset.delete();
dataset.synchronize(syncCallback);

iOS - Objective-C

AWSCognitoDataset *dataset = [syncClient openOrCreateDataset:@"myDataSet"];

To delete a dataset, first call the method to remove it from local storage, then call the synchronize
method to delete the dataset from Amazon Cognito:

Version Last Updated: 07/28/2016
164

Amazon Cognito Developer Guide
Reading and Writing Data in Datasets

[dataset clear];
[dataset synchronize];

iOS - Swift

let dataset = syncClient.openOrCreateDataset("myDataSet")

To delete a dataset, first call the method to remove it from local storage, then call the synchronize
method to delete the dataset from Amazon Cognito:

dataset.clear()
dataset.synchronize()

JavaScript

syncManager.openOrCreateDataset('myDatasetName', function(err, dataset) {
 // ...
});

Unity

string myValue = dataset.Get("myKey");
dataset.Put("myKey", "newValue");

You can use Remove to delete a key from a dataset:

dataset.Remove("myKey");

Xamarin

Dataset dataset = syncManager.OpenOrCreateDataset("myDatasetName");

To delete a dataset, first call the method to remove it from local storage, then call the synchronize
method to delete the dataset from Amazon Cognito:

dataset.Delete();
dataset.SynchronizeAsync();

Reading and Writing Data in Datasets

Amazon Cognito datasets function as dictionaries, with values accessible by key. The keys and values
of a dataset can be read, added, or modified just as if the dataset were a dictionary. The following
shows an example.

Android

String value = dataset.get("myKey");
dataset.put("myKey", "my value");

Version Last Updated: 07/28/2016
165

Amazon Cognito Developer Guide
Reading and Writing Data in Datasets

iOS - Objective-C

[dataset setString:@"my value" forKey:@"myKey"];
NSString *value = [dataset stringForKey:@"myKey"];

iOS - Swift

dataset.setString("my value", forKey:"myKey")
let value = dataset.stringForKey("myKey")

JavaScript

dataset.get('myKey', function(err, value) {
 console.log('myRecord: ' + value);
});

dataset.put('newKey', 'newValue', function(err, record) {
 console.log(record);
});

dataset.remove('oldKey', function(err, record) {
 console.log(success);
});

Unity

string myValue = dataset.Get("myKey");
dataset.Put("myKey", "newValue");

Xamarin

//obtain a value
string myValue = dataset.Get("myKey");

// Create a record in a dataset and synchronize with the server
dataset.OnSyncSuccess += SyncSuccessCallback;
dataset.Put("myKey", "myValue");
dataset.SynchronizeAsync();

void SyncSuccessCallback(object sender, SyncSuccessEventArgs e) {
 // Your handler code here
}

Android

You can use the remove method to remove keys from a dataset:

dataset.remove("myKey");

Version Last Updated: 07/28/2016
166

Amazon Cognito Developer Guide
Synchronizing Local Data with the Sync Store

iOS - Objective-C

You can use removeObjectForKey to delete a key from a dataset:

[dataset removeObjectForKey:@"myKey"];

iOS - Swift

You can use removeObjectForKey to delete a key from a dataset:

dataset.removeObjectForKey("myKey")

Unity

You can use Remove to delete a key from a dataset:

dataset.Remove("myKey");

Xamarin

You can use Remove to delete a key from a dataset:

dataset.Remove("myKey");

Note that values written to a dataset only affect the local cached copy of the data until you call the
synchronize method.

Synchronizing Local Data with the Sync Store

Android

The synchronize method compares local cached data to the data stored in the Amazon Cognito
Sync store. Remote changes are pulled from the Amazon Cognito Sync store; conflict resolution
is invoked if any conflicts occur; and updated values on the device are pushed to the service. To
synchronize a dataset, call its synchronize method:

dataset.synchronize(syncCallback);

The synchronize method receives an implementation of the SyncCallback interface, discussed
below.

The synchronizeOnConnectivity() method attempts to synchronize when connectivity is
available. If connectivity is immediately available, synchronizeOnConnectivity() behaves
like synchronize(). Otherwise it monitors for connectivity changes and performs a sync once
connectivity is available. If synchronizeOnConnectivity()is called multiple times, only the last
synchronize request is kept, and only the last callback will fire. If either the dataset or the callback is
garbage-collected, this method won't perform a sync, and the callback won't fire.

To learn more about dataset synchronization and the different callbacks, see Handling
Callbacks (p. 169).

Version Last Updated: 07/28/2016
167

Amazon Cognito Developer Guide
Synchronizing Local Data with the Sync Store

iOS - Objective-C

The synchronize method compares local cached data to the data stored in the Amazon Cognito
Sync store. Remote changes are pulled from the Amazon Cognito Sync store; conflict resolution
is invoked if any conflicts occur; and updated values on the device are pushed to the service. To
synchronize a dataset, call its synchronize method:

The synchronize method is asynchronous and returns an AWSTask object to handle the response:

[[dataset synchronize] continueWithBlock:^id(AWSTask *task) {
 if (task.isCancelled) {
 // Task cancelled.
 } else if (task.error) {
 // Error while executing task.
 } else {
 // Task succeeded. The data was saved in the sync store.
 }
 return nil;
}];

The synchronizeOnConnectivity method attempts to synchronize when the device has
connectivity. First, synchronizeOnConnectivity checks for connectivity and, if the device is online,
immediately invokes synchronize and returns the AWSTask object associated with the attempt.

If the device is offline, synchronizeOnConnectivity 1) schedules a synchronize for the next time
the device comes online and 2) returns an AWSTask with a nil result. The scheduled synchronize is
only valid for the lifecycle of the dataset object. The data will not be synchronized if the app is exited
before connectivity is regained. If you want to be notified when events occur during the scheduled
synchronize, you must add observers of the notifications found in AWSCognito.

To learn more about dataset synchronization and the different callbacks, see Handling
Callbacks (p. 169).

iOS - Swift

The synchronize method compares local cached data to the data stored in the Amazon Cognito
Sync store. Remote changes are pulled from the Amazon Cognito Sync store; conflict resolution
is invoked if any conflicts occur; and updated values on the device are pushed to the service. To
synchronize a dataset, call its synchronize method:

The synchronize method is asynchronous and returns an AWSTask object to handle the response:

dataset.synchronize().continueWithBlock {(task) -> AnyObject! in
 if task.cancelled {
 // Task cancelled.
 } else if task.error != nil {
 // Error while executing task
 } else {
 // Task succeeded. The data was saved in the sync store.
 }
 return nil
}

The synchronizeOnConnectivity method attempts to synchronize when the device has
connectivity. First, synchronizeOnConnectivity checks for connectivity and, if the device is online,
immediately invokes synchronize and returns the AWSTask object associated with the attempt.

Version Last Updated: 07/28/2016
168

Amazon Cognito Developer Guide
Handling Callbacks

If the device is offline, synchronizeOnConnectivity 1) schedules a synchronize for the next time
the device comes online and 2) returns an AWSTask object with a nil result. The scheduled synchronize
is only valid for the lifecycle of the dataset object. The data will not be synchronized if the app is exited
before connectivity is regained. If you want to be notified when events occur during the scheduled
synchronize, you must add observers of the notifications found in AWSCognito.

To learn more about dataset synchronization and the different callbacks, see Handling
Callbacks (p. 169).

JavaScript

The synchronize method compares local cached data to the data stored in the Amazon Cognito
Sync store. Remote changes are pulled from the Amazon Cognito Sync store; conflict resolution
is invoked if any conflicts occur; and updated values on the device are pushed to the service. To
synchronize a dataset, call its synchronize method:

dataset.synchronize();

To learn more about dataset synchronization and the different callbacks, see Handling
Callbacks (p. 169).

Unity

The synchronize method compares local cached data to the data stored in the Amazon Cognito Sync
store. Remote changes are pulled from the Amazon Cognito Sync store; conflict resolution is invoked
if any conflicts occur; and updated values on the device are pushed to the service. To synchronize a
dataset, call its synchronize method:

dataset.Synchronize();

Synchronize will run asynchronously and will end up calling one of the several callbacks you can
specify in the Dataset.

To learn more about dataset synchronization and the different callbacks, see Handling
Callbacks (p. 169).

Xamarin

The synchronize method compares local cached data to the data stored in the Amazon Cognito
Sync store. Remote changes are pulled from the Amazon Cognito Sync store; conflict resolution
is invoked if any conflicts occur; and updated values on the device are pushed to the service. To
synchronize a dataset, call its synchronize method:

dataset.SynchronizeAsync();

To learn more about dataset synchronization and the different callbacks, see Handling
Callbacks (p. 169).

Handling Callbacks
This section describes how to handle callbacks.

Version Last Updated: 07/28/2016
169

Amazon Cognito Developer Guide
Android

Android
SyncCallback Interface

By implementing the SyncCallback interface, you can receive notifications on your app about
dataset synchronization. Your app can then make active decisions about deleting local data, merging
unauthenticated and authenticated profiles, and resolving sync conflicts. You should implement the
following methods, which are required by the interface:

• onSuccess()

• onFailure()

• onConflict()

• onDatasetDeleted()

• onDatasetsMerged()

Note that, if you don't want to specify all the callbacks, you can also use the class
DefaultSyncCallback which provides default, empty implementations for all of them.

onSuccess

The onSuccess() callback is triggered when a dataset is successfully downloaded from the sync
store.

@Override
public void onSuccess(Dataset dataset, List<Record> newRecords) {
}

onFailure
onFailure() is called if an exception occurs during synchronization.

@Override
public void onFailure(DataStorageException dse) {
}

onConflict

Conflicts may arise if the same key has been modified on the local store and in the sync store. The
onConflict() method handles conflict resolution. If you don't implement this method, the Amazon
Cognito Sync client defaults to using the most recent change.

@Override
public boolean onConflict(Dataset dataset, final List<SyncConflict>
 conflicts) {
 List<Record> resolvedRecords = new ArrayList<Record>();
 for (SyncConflict conflict : conflicts) {
 /* resolved by taking remote records */
 resolvedRecords.add(conflict.resolveWithRemoteRecord());

 /* alternately take the local records */
 // resolvedRecords.add(conflict.resolveWithLocalRecord());

 /* or customer logic, say concatenate strings */
 // String newValue = conflict.getRemoteRecord().getValue()
 // + conflict.getLocalRecord().getValue();
 // resolvedRecords.add(conflict.resolveWithValue(newValue);

Version Last Updated: 07/28/2016
170

Amazon Cognito Developer Guide
iOS - Objective-C

 }
 dataset.resolve(resolvedRecords);

 // return true so that synchronize() is retried after conflicts are
 resolved
 return true;
}

onDatasetDeleted

When a dataset is deleted, the Amazon Cognito client uses the SyncCallback interface to
confirm whether the local cached copy of the dataset should be deleted too. Implement the
onDatasetDeleted() method to tell the client SDK what to do with the local data.

@Override
public boolean onDatasetDeleted(Dataset dataset, String datasetName) {
 // return true to delete the local copy of the dataset
 return true;
}

onDatasetMerged

When two previously unconnected identities are linked together, all of their datasets are merged.
Applications are notified of the merge through the onDatasetsMerged() method:

@Override
public boolean onDatasetsMerged(Dataset dataset, List<String> datasetNames) {
 // return false to handle Dataset merge outside the synchronization
 callback
 return false;
}

iOS - Objective-C
Sync Notifications

The Amazon Cognito client will emit a number of NSNotification events during a synchronize call.
You can register to monitor these notifications via the standard NSNotificationCenter:

[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(myNotificationHandler:)
 name:NOTIFICATION_TYPE
 object:nil];

Amazon Cognito supports five notification types, listed below.

AWSCognitoDidStartSynchronizeNotification

Called when a synchronize operation is starting. The userInfo will contain the key dataset which is
the name of the dataset being synchronized.

AWSCognitoDidEndSynchronizeNotification

Called when a synchronize operation completes (successfully or otherwise). The userInfo will
contain the key dataset which is the name of the dataset being synchronized.

Version Last Updated: 07/28/2016
171

Amazon Cognito Developer Guide
iOS - Objective-C

AWSCognitoDidFailToSynchronizeNotification

Called when a synchronize operation fails. The userInfo will contain the key dataset which is the
name of the dataset being synchronized and the key error which will contain the error that caused the
failure.

AWSCognitoDidChangeRemoteValueNotification

Called when local changes are successfully pushed to Amazon Cognito. The userInfo will contain
the key dataset which is the name of the dataset being synchronized and the key keys which will
contain an NSArray of record keys that were pushed.

AWSCognitoDidChangeLocalValueFromRemoteNotification

Called when a local value changes due to a synchronize operation. The userInfo will contain the key
dataset which is the name of the dataset being synchronized and the key keys which will contain an
NSArray of record keys that changed.

Conflict Resolution Handler

During a sync operation, conflicts may arise if the same key has been modified on the local store and
in the sync store. If you haven't set a conflict resolution handler, Amazon Cognito defaults to choosing
the most recent update.

By implementing and assigning an AWSCognitoRecordConflictHandler you can alter the
default conflict resolution. The AWSCognitoConflict input parameter conflict contains an
AWSCognitoRecord object for both the local cached data and for the conflicting record in the sync
store. Using the AWSCognitoConflict you can resolve the conflict with the local record: [conflict
resolveWithLocalRecord], the remote record: [conflict resolveWithRemoteRecord] or a brand new
value: [conflict resolveWithValue:value]. Returning nil from this method prevents synchronization from
continuing and the conflicts will be presented again the next time the sync process starts.

You can set the conflict resolution handler at the client level:

client.conflictHandler = ^AWSCognitoResolvedConflict* (NSString *datasetName,
 AWSCognitoConflict *conflict) {
 // always choose local changes
 return [conflict resolveWithLocalRecord];
};

Or at the dataset level:

dataset.conflictHandler = ^AWSCognitoResolvedConflict* (NSString
 *datasetName, AWSCognitoConflict *conflict) {
 // override and always choose remote changes
 return [conflict resolveWithRemoteRecord];
};

Dataset Deleted Handler

When a dataset is deleted, the Amazon Cognito client uses the
AWSCognitoDatasetDeletedHandler to confirm whether the local cached copy of the dataset
should be deleted too. If no AWSCognitoDatasetDeletedHandler is implemented, the local data
will be purged automatically. Implement an AWSCognitoDatasetDeletedHandler if you wish to
keep a copy of the local data before wiping, or to keep the local data.

You can set the dataset deleted handler at the client level:

Version Last Updated: 07/28/2016
172

Amazon Cognito Developer Guide
iOS - Swift

client.datasetDeletedHandler = ^BOOL (NSString *datasetName) {
 // make a backup of the data if you choose
 ...
 // delete the local data (default behavior)
 return YES;
};

Or at the dataset level:

dataset.datasetDeletedHandler = ^BOOL (NSString *datasetName) {
 // override default and keep the local data
 return NO;
};

Dataset Merge Handler

When two previously unconnected identities are linked together, all of their datasets are merged.
Applications are notified of the merge through the DatasetMergeHandler. The handler will receive
the name of the root dataset as well as an array of dataset names that are marked as merges of the
root dataset.

If no DatasetMergeHandler is implemented, these datasets will be ignored, but will continue to use
up space in the identity's 20 maximum total datasets.

You can set the dataset merge handler at the client level:

client.datasetMergedHandler = ^(NSString *datasetName, NSArray *datasets) {
 // Blindly delete the datasets
 for (NSString *name in datasets) {
 AWSCognitoDataset *merged = [[AWSCognito defaultCognito]
 openOrCreateDataset:name];
 [merged clear];
 [merged synchronize];
 }
};

Or at the dataset level:

dataset.datasetMergedHandler = ^(NSString *datasetName, NSArray *datasets) {
 // Blindly delete the datasets
 for (NSString *name in datasets) {
 AWSCognitoDataset *merged = [[AWSCognito defaultCognito]
 openOrCreateDataset:name];
 // do something with the data if it differs from existing dataset
 ...
 // now delete it
 [merged clear];
 [merged synchronize];
 }
};

iOS - Swift
Sync Notifications

Version Last Updated: 07/28/2016
173

Amazon Cognito Developer Guide
iOS - Swift

The Amazon Cognito client will emit a number of NSNotification events during a synchronize call.
You can register to monitor these notifications via the standard NSNotificationCenter:

NSNotificationCenter.defaultCenter().addObserver(observer: self,
 selector: "myNotificationHandler",
 name:NOTIFICATION_TYPE,
 object:nil)

Amazon Cognito supports five notification types, listed below.

AWSCognitoDidStartSynchronizeNotification

Called when a synchronize operation is starting. The userInfo will contain the key dataset which is
the name of the dataset being synchronized.

AWSCognitoDidEndSynchronizeNotification

Called when a synchronize operation completes (successfully or otherwise). The userInfo will
contain the key dataset which is the name of the dataset being synchronized.

AWSCognitoDidFailToSynchronizeNotification

Called when a synchronize operation fails. The userInfo will contain the key dataset which is the
name of the dataset being synchronized and the key error which will contain the error that caused the
failure.

AWSCognitoDidChangeRemoteValueNotification

Called when local changes are successfully pushed to Amazon Cognito. The userInfo will contain
the key dataset which is the name of the dataset being synchronized and the key keys which will
contain an NSArray of record keys that were pushed.

AWSCognitoDidChangeLocalValueFromRemoteNotification

Called when a local value changes due to a synchronize operation. The userInfo will contain the key
dataset which is the name of the dataset being synchronized and the key keys which will contain an
NSArray of record keys that changed.

Conflict Resolution Handler

During a sync operation, conflicts may arise if the same key has been modified on the local store and
in the sync store. If you haven't set a conflict resolution handler, Amazon Cognito defaults to choosing
the most recent update.

By implementing and assigning an AWSCognitoRecordConflictHandler you can alter the
default conflict resolution. The AWSCognitoConflict input parameter conflict contains an
AWSCognitoRecord object for both the local cached data and for the conflicting record in the sync
store. Using the AWSCognitoConflict you can resolve the conflict with the local record: [conflict
resolveWithLocalRecord], the remote record: [conflict resolveWithRemoteRecord] or a brand new
value: [conflict resolveWithValue:value]. Returning nil from this method prevents synchronization from
continuing and the conflicts will be presented again the next time the sync process starts.

You can set the conflict resolution handler at the client level:

client.conflictHandler = {
 (datasetName: String!, conflict: AWSCognitoConflict!) ->
 AWSCognitoResolvedConflict! in
 return conflict.resolveWithLocalRecord()
}

Version Last Updated: 07/28/2016
174

Amazon Cognito Developer Guide
iOS - Swift

Or at the dataset level:

dataset.conflictHandler = {
 (datasetName: String!, conflict: AWSCognitoConflict!) ->
 AWSCognitoResolvedConflict! in
 return conflict.resolveWithLocalRecord()
}

Dataset Deleted Handler

When a dataset is deleted, the Amazon Cognito client uses the
AWSCognitoDatasetDeletedHandler to confirm whether the local cached copy of the dataset
should be deleted too. If no AWSCognitoDatasetDeletedHandler is implemented, the local data
will be purged automatically. Implement an AWSCognitoDatasetDeletedHandler if you wish to
keep a copy of the local data before wiping, or to keep the local data.

You can set the dataset deleted handler at the client level:

client.datasetDeletedHandler = {
 (datasetName: String!) -> Bool in
 // make a backup of the data if you choose
 ...
 // delete the local data (default behaviour)
 return true
}

Or at the dataset level:

dataset.datasetDeletedHandler = {
 (datasetName: String!) -> Bool in
 // make a backup of the data if you choose
 ...
 // delete the local data (default behaviour)
 return true
}

Dataset Merge Handler

When two previously unconnected identities are linked together, all of their datasets are merged.
Applications are notified of the merge through the DatasetMergeHandler. The handler will receive
the name of the root dataset as well as an array of dataset names that are marked as merges of the
root dataset.

If no DatasetMergeHandler is implemented, these datasets will be ignored, but will continue to use
up space in the identity's 20 maximum total datasets.

You can set the dataset merge handler at the client level:

client.datasetMergedHandler = {
 (datasetName: String!, datasets: [AnyObject]!) -> Void in
 for nameObject in datasets {
 if let name = nameObject as? String {
 let merged =
 AWSCognito.defaultCognito().openOrCreateDataset(name)
 merged.clear()
 merged.synchronize()

Version Last Updated: 07/28/2016
175

Amazon Cognito Developer Guide
JavaScript

 }
 }
}

Or at the dataset level:

dataset.datasetMergedHandler = {
 (datasetName: String!, datasets: [AnyObject]!) -> Void in
 for nameObject in datasets {
 if let name = nameObject as? String {
 let merged =
 AWSCognito.defaultCognito().openOrCreateDataset(name)
 // do something with the data if it differs from existing dataset
 ...
 // now delete it
 merged.clear()
 merged.synchronize()
 }
 }
}

JavaScript
Synchronization Callbacks

When performing a synchronize() on a dataset, you can optionally specify callbacks to handle each of
the following states:

dataset.synchronize({

 onSuccess: function(dataset, newRecords) {
 //...
 },

 onFailure: function(err) {
 //...
 },

 onConflict: function(dataset, conflicts, callback) {
 //...
 },

 onDatasetDeleted: function(dataset, datasetName, callback) {
 //...
 },

 onDatasetMerged: function(dataset, datasetNames, callback) {
 //...
 }

});

onSuccess()

The onSuccess() callback is triggered when a dataset is successfully updated from the sync store. If
you do not define a callback, the synchronization will succeed silently.

Version Last Updated: 07/28/2016
176

Amazon Cognito Developer Guide
JavaScript

onSuccess: function(dataset, newRecords) {
 console.log('Successfully synchronized ' + newRecords.length + ' new
 records.');
}

onFailure()

onFailure() is called if an exception occurs during synchronization. If you do not define a callback,
the synchronization will fail silently.

onFailure: function(err) {
 console.log('Synchronization failed.');
 console.log(err);
}

onConflict()

Conflicts may arise if the same key has been modified on the local store and in the sync store.
The onConflict() method handles conflict resolution. If you don't implement this method, the
synchronization will be aborted when there is a conflict.

onConflict: function(dataset, conflicts, callback) {

 var resolved = [];

 for (var i=0; i<conflicts.length; i++) {

 // Take remote version.
 resolved.push(conflicts[i].resolveWithRemoteRecord());

 // Or... take local version.
 // resolved.push(conflicts[i].resolveWithLocalRecord());

 // Or... use custom logic.
 // var newValue = conflicts[i].getRemoteRecord().getValue() +
 conflicts[i].getLocalRecord().getValue();
 // resolved.push(conflicts[i].resovleWithValue(newValue);

 }

 dataset.resolve(resolved, function() {
 return callback(true);
 });

 // Or... callback false to stop the synchronization process.
 // return callback(false);

}

onDatasetDeleted()

When a dataset is deleted, the Amazon Cognito client uses the onDatasetDeleted() callback to
decide whether the local cached copy of the dataset should be deleted too. By default, the dataset will
not be deleted.

onDatasetDeleted: function(dataset, datasetName, callback) {

Version Last Updated: 07/28/2016
177

Amazon Cognito Developer Guide
Unity

 // Return true to delete the local copy of the dataset.
 // Return false to handle deleted datasets outside the synchronization
 callback.

 return callback(true);

}

onDatasetMerged()

When two previously unconnected identities are linked together, all of their datasets are merged.
Applications are notified of the merge through the onDatasetsMerged() callback.

onDatasetMerged: function(dataset, datasetNames, callback) {

 // Return true to continue the synchronization process.
 // Return false to handle dataset merges outside the synchroniziation
 callback.

 return callback(false);

}

Unity
After you open or create a dataset, you can set different callbacks to it that will be triggered when you
use the Synchronize method. This is the way to register your callbacks to them:

dataset.OnSyncSuccess += this.HandleSyncSuccess;
dataset.OnSyncFailure += this.HandleSyncFailure;
dataset.OnSyncConflict = this.HandleSyncConflict;
dataset.OnDatasetMerged = this.HandleDatasetMerged;
dataset.OnDatasetDeleted = this.HandleDatasetDeleted;

Note that SyncSuccess and SyncFailure use += instead of = so you can subscribe more than one
callback to them.

OnSyncSuccess

The OnSyncSuccess callback is triggered when a dataset is successfully updated from the cloud. If
you do not define a callback, the synchronization will succeed silently.

private void HandleSyncSuccess(object sender, SyncSuccessEvent e)
{
 // Continue with your game flow, display the loaded data, etc.
}

OnSyncFailure

OnSyncFailure is called if an exception occurs during synchronization. If you do not define a
callback, the synchronization will fail silently.

private void HandleSyncFailure(object sender, SyncFailureEvent e)

Version Last Updated: 07/28/2016
178

Amazon Cognito Developer Guide
Unity

{
 Dataset dataset = sender as Dataset;
 if (dataset.Metadata != null) {
 Debug.Log("Sync failed for dataset : " +
 dataset.Metadata.DatasetName);
 } else {
 Debug.Log("Sync failed");
 }
 // Handle the error
 Debug.LogException(e.Exception);
}

OnSyncConflict

Conflicts may arise if the same key has been modified on the local store and in the sync store. The
OnSyncConflict callback handles conflict resolution. If you don't implement this method, the
synchronization will be aborted when there is a conflict.

private bool HandleSyncConflict(Dataset dataset, List < SyncConflict >
 conflicts)
{
 if (dataset.Metadata != null) {
 Debug.LogWarning("Sync conflict " + dataset.Metadata.DatasetName);
 } else {
 Debug.LogWarning("Sync conflict");
 }
 List < Amazon.CognitoSync.SyncManager.Record > resolvedRecords = new List <
 Amazon.CognitoSync.SyncManager.Record > ();
 foreach(SyncConflict conflictRecord in conflicts) {
 // SyncManager provides the following default conflict resolution
 methods:
 // ResolveWithRemoteRecord - overwrites the local with remote
 records
 // ResolveWithLocalRecord - overwrites the remote with local records
 // ResolveWithValue - to implement your own logic
 resolvedRecords.Add(conflictRecord.ResolveWithRemoteRecord());
 }
 // resolves the conflicts in local storage
 dataset.Resolve(resolvedRecords);
 // on return true the synchronize operation continues where it left,
 // returning false cancels the synchronize operation
 return true;
}

OnDatasetDeleted

When a dataset is deleted, the Amazon Cognito client uses the OnDatasetDeleted callback to
decide whether the local cached copy of the dataset should be deleted too. By default, the dataset will
not be deleted.

private bool HandleDatasetDeleted(Dataset dataset)
 {
 Debug.Log(dataset.Metadata.DatasetName + " Dataset has been deleted");
 // Do clean up if necessary
 // returning true informs the corresponding dataset can be purged in
 the local storage and return false retains the local dataset
 return true;

Version Last Updated: 07/28/2016
179

Amazon Cognito Developer Guide
Xamarin

 }

OnDatasetMerged

When two previously unconnected identities are linked together, all of their datasets are merged.
Applications are notified of the merge through the OnDatasetsMerged callback.

public bool HandleDatasetMerged(Dataset localDataset, List<string>
 mergedDatasetNames)
{
 foreach (string name in mergedDatasetNames)
 {
 Dataset mergedDataset = syncManager.OpenOrCreateDataset(name);
 //Lambda function to delete the dataset after fetching it
 EventHandler<SyncSuccessEvent> lambda;
 lambda = (object sender, SyncSuccessEvent e) => {
 ICollection<string> existingValues =
 localDataset.GetAll().Values;
 ICollection<string> newValues = mergedDataset.GetAll().Values;

 //Implement your merge logic here

 mergedDataset.Delete(); //Delete the dataset locally
 mergedDataset.OnSyncSuccess -= lambda; //We don't want this
 callback to be fired again
 mergedDataset.OnSyncSuccess += (object s2, SyncSuccessEvent e2)
 => {
 localDataset.Synchronize(); //Continue the sync operation
 that was interrupted by the merge
 };
 mergedDataset.Synchronize(); //Synchronize it as deleted, failing
 to do so will leave us in an inconsistent state
 };
 mergedDataset.OnSyncSuccess += lambda;
 mergedDataset.Synchronize(); //Asnchronously fetch the dataset
 }

 // returning true allows the Synchronize to continue and false stops it
 return false;
}

Xamarin
After you open or create a dataset, you can set different callbacks to it that will be triggered when you
use the Synchronize method. This is the way to register your callbacks to them:

dataset.OnSyncSuccess += this.HandleSyncSuccess;
dataset.OnSyncFailure += this.HandleSyncFailure;
dataset.OnSyncConflict = this.HandleSyncConflict;
dataset.OnDatasetMerged = this.HandleDatasetMerged;
dataset.OnDatasetDeleted = this.HandleDatasetDeleted;

Note that SyncSuccess and SyncFailure use += instead of = so you can subscribe more than one
callback to them.

OnSyncSuccess

Version Last Updated: 07/28/2016
180

Amazon Cognito Developer Guide
Xamarin

The OnSyncSuccess callback is triggered when a dataset is successfully updated from the cloud. If
you do not define a callback, the synchronization will succeed silently.

private void HandleSyncSuccess(object sender, SyncSuccessEventArgs e)
{
 // Continue with your game flow, display the loaded data, etc.
}

OnSyncFailure

OnSyncFailure is called if an exception occurs during synchronization. If you do not define a
callback, the synchronization will fail silently.

private void HandleSyncFailure(object sender, SyncFailureEventArgs e)
{
 Dataset dataset = sender as Dataset;
 if (dataset.Metadata != null) {
 Console.WriteLine("Sync failed for dataset : " +
 dataset.Metadata.DatasetName);
 } else {
 Console.WriteLine("Sync failed");
 }
}

OnSyncConflict

Conflicts may arise if the same key has been modified on the local store and in the sync store. The
OnSyncConflict callback handles conflict resolution. If you don't implement this method, the
synchronization will be aborted when there is a conflict.

private bool HandleSyncConflict(Dataset dataset, List < SyncConflict >
 conflicts)
{
 if (dataset.Metadata != null) {
 Console.WriteLine("Sync conflict " + dataset.Metadata.DatasetName);
 } else {
 Console.WriteLine("Sync conflict");
 }
 List < Amazon.CognitoSync.SyncManager.Record > resolvedRecords = new List <
 Amazon.CognitoSync.SyncManager.Record > ();
 foreach(SyncConflict conflictRecord in conflicts) {
 // SyncManager provides the following default conflict resolution
 methods:
 // ResolveWithRemoteRecord - overwrites the local with remote
 records
 // ResolveWithLocalRecord - overwrites the remote with local records
 // ResolveWithValue - to implement your own logic
 resolvedRecords.Add(conflictRecord.ResolveWithRemoteRecord());
 }
 // resolves the conflicts in local storage
 dataset.Resolve(resolvedRecords);
 // on return true the synchronize operation continues where it left,
 // returning false cancels the synchronize operation
 return true;
}

OnDatasetDeleted

Version Last Updated: 07/28/2016
181

Amazon Cognito Developer Guide
Push Sync

When a dataset is deleted, the Amazon Cognito client uses the OnDatasetDeleted callback to
decide whether the local cached copy of the dataset should be deleted too. By default, the dataset will
not be deleted.

private bool HandleDatasetDeleted(Dataset dataset)
{
 Console.WriteLine(dataset.Metadata.DatasetName + " Dataset has been
 deleted");
 // Do clean up if necessary
 // returning true informs the corresponding dataset can be purged in the
 local storage and return false retains the local dataset
 return true;
}

OnDatasetMerged

When two previously unconnected identities are linked together, all of their datasets are merged.
Applications are notified of the merge through the OnDatasetsMerged callback.

public bool HandleDatasetMerged(Dataset localDataset, List<string>
 mergedDatasetNames)
{
 foreach (string name in mergedDatasetNames)
 {
 Dataset mergedDataset = syncManager.OpenOrCreateDataset(name);

 //Implement your merge logic here

 mergedDataset.OnSyncSuccess += lambda;
 mergedDataset.SynchronizeAsync(); //Asnchronously fetch the dataset
 }

 // returning true allows the Synchronize to continue and false stops it
 return false;
}

Push Sync
This section describes how to use push sync.

Android
Amazon Cognito automatically tracks the association between identity and devices. Using the push
sync feature, you can ensure that every instance of a given identity is notified when identity data
changes. Push sync ensures that, whenever the sync store data changes for a particular identity, all
devices associated with that identity receive a silent push notification informing them of the change.

Set Up Your Account for Push Sync
Create an Amazon Simple Notification Service (Amazon SNS) App

Create and configure an Amazon SNS app for your supported platforms, as described in the SNS
Developer Guide.
Enable Push Sync in the Amazon Cognito console

You can enable Push Sync via the Amazon Cognito console. From the console home page:

Version Last Updated: 07/28/2016
182

http://docs.aws.amazon.com//sns/latest/dg/SNSMobilePush.html
http://docs.aws.amazon.com//sns/latest/dg/SNSMobilePush.html
https://console.aws.amazon.com/cognito/home

Amazon Cognito Developer Guide
Android

1. Click the name of the identity pool for which you want to enable Push Sync. The Dashboard page for
your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Push synchronization to expand it.

4. In the Service role dropdown menu, select the IAM role that grants Cognito permission to send an
SNS notification. Click Create role to create or modify the roles associated with your identity pool in
the AWS IAM Console.

5. Select a platform application, and then click Save Changes.

6. Grant SNS Access to Your Application

In the IAM console, configure your IAM roles to have full SNS access, or create a new role that trusts
cognito-sync and has full SNS access. To learn more about IAM roles, see Roles (Delegation and
Federation).

Use Push Sync in Your App

Your application will need to import the Google Play services. You can download the latest version
of the Google Play SDK via the Android SDK manager. Follow the Android documentation on
implementing a GCM client to register your app and receive a registration ID from GCM. Once you
have the registration ID, you need to register the device with Amazon Cognito, as shown in the snippet
below:

String registrationId = "MY_GCM_REGISTRATION_ID";
try {
 client.registerDevice("GCM", registrationId);
} catch (RegistrationFailedException rfe) {
 Log.e(TAG, "Failed to register device for silent sync", rfe);
} catch (AmazonClientException ace) {
 Log.e(TAG, "An unknown error caused registration for silent sync to
 fail", ace);
}

You can now subscribe a device to receive updates from a particular dataset:

Dataset trackedDataset = client.openOrCreateDataset("myDataset");
if (client.isDeviceRegistered()) {
 try {
 trackedDataset.subscribe();
 } catch (SubscribeFailedException sfe) {
 Log.e(TAG, "Failed to subscribe to datasets", sfe);
 } catch (AmazonClientException ace) {
 Log.e(TAG, "An unknown error caused the subscription to fail", ace);
 }
}

To stop receiving push notifications from a dataset, simply call the unsubscribe method. To subscribe
to all datasets (or a specific subset) in the CognitoSyncManager object, use subscribeAll():

if (client.isDeviceRegistered()) {
 try {
 client.subscribeAll();
 } catch (SubscribeFailedException sfe) {
 Log.e(TAG, "Failed to subscribe to datasets", sfe);

Version Last Updated: 07/28/2016
183

https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html
http://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/google/gcm/client.html

Amazon Cognito Developer Guide
iOS - Objective-C

 } catch (AmazonClientException ace) {
 Log.e(TAG, "An unknown error caused the subscription to fail", ace);
 }
}

In your implementation of the Android BroadcastReceiver object, you can check the latest version of
the modified dataset and decide if your app needs to synchronize again:

@Override
public void onReceive(Context context, Intent intent) {

 PushSyncUpdate update = client.getPushSyncUpdate(intent);

 // The update has the source (cognito-sync here), identityId of the
 // user, identityPoolId in question, the non-local sync count of the
 // data set and the name of the dataset. All are accessible through
 // relevant getters.

 String source = update.getSource();
 String identityPoolId = update.getIdentityPoolId();
 String identityId = update.getIdentityId();
 String datasetName = update.getDatasetName;
 long syncCount = update.getSyncCount;

 Dataset dataset = client.openOrCreateDataset(datasetName);

 // need to access last sync count. If sync count is less or equal to
 // last sync count of the dataset, no sync is required.

 long lastSyncCount = dataset.getLastSyncCount();
 if (lastSyncCount < syncCount) {
 dataset.synchronize(new SyncCallback() {
 // ...
 });
 }}

}

The following keys are available in the push notification payload:

• source: cognito-sync. This can serve as a differentiating factor between notifications.

• identityPoolId: The identity pool ID. This can be used for validation or additional information,
though it's not integral from the receiver's point of view.

• identityId: The identity ID within the pool.

• datasetName: The name of the dataset that was updated. This is available for the sake of the
openOrCreateDataset call.

• syncCount: The sync count for the remote dataset. You can use this as a way to make sure that the
local dataset is out of date, and that the incoming synchronization is new.

iOS - Objective-C
Amazon Cognito automatically tracks the association between identity and devices. Using the push
sync feature, you can ensure that every instance of a given identity is notified when identity data
changes. Push sync ensures that, whenever the sync store data changes for a particular identity, all
devices associated with that identity receive a silent push notification informing them of the change.

Version Last Updated: 07/28/2016
184

http://developer.android.com/reference/android/content/BroadcastReceiver.html

Amazon Cognito Developer Guide
iOS - Objective-C

Set Up Your Account for Push Sync
Create an Amazon Simple Notification Service(Amazon SNS) App

Create and configure an Amazon SNS app for your supported platforms, as described in the SNS
Developer Guide.
Enable Push Sync in the Amazon Cognito console

You can enable Push Sync via the Amazon Cognito console. From the console home page:

1. Click the name of the identity pool for which you want to enable Push Sync. The Dashboard page
for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Push synchronization to expand it.

4. In the Service role dropdown menu, select the IAM role that grants Amazon Cognito permission
to send an SNS notification. Click Create role to create or modify the roles associated with your
identity pool in the AWS IAM Console.

5. Select a platform application, and then click Save Changes.

6. Grant SNS Access to Your Application.

In the IAM console, configure your IAM roles to have full SNS access, or create a new role that trusts
cognito-sync and has full SNS access. To learn more about IAM roles, see Roles (Delegation and
Federation).

Use Push Sync in Your App

To obtain a device token for your app, follow the Apple documentation on Registering for Remote
Notifications. Once you've received the device token as an NSData object from APNs, you'll need to
register the device with Amazon Cognito using the registerDevice: method of the sync client, as
shown below:

AWSCognito *syncClient = [AWSCognito defaultCognito];
 [[syncClient registerDevice: devToken] continueWithBlock:^id(AWSTask
 *task) {
 if(task.error){
 NSLog(@"Unable to registerDevice: %@", task.error);
 } else {
 NSLog(@"Successfully registered device with id: %@",
 task.result);
 }
 return nil;
];

In debug mode, your device will register with the APNs sandbox; in release mode, it will register with
APNs. To receive updates from a particular dataset, use the subscribe method:

[[[syncClient openOrCreateDataset:@"MyDataset"] subscribe]
 continueWithBlock:^id(AWSTask *task) {
 if(task.error){
 NSLog(@"Unable to subscribe to dataset: %@", task.error);
 } else {
 NSLog(@"Successfully subscribed to dataset: %@", task.result);
 }
 return nil;
];

Version Last Updated: 07/28/2016
185

http://docs.aws.amazon.com//sns/latest/dg/SNSMobilePush.html
http://docs.aws.amazon.com//sns/latest/dg/SNSMobilePush.html
https://console.aws.amazon.com/cognito/home
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com//IAM/latest/UserGuide/WorkingWithRoles.html
http://docs.aws.amazon.com//IAM/latest/UserGuide/WorkingWithRoles.html

Amazon Cognito Developer Guide
iOS - Objective-C

To stop receiving push notifications from a dataset, simply call the unsubscribe method:

[[[syncClient openOrCreateDataset:@”MyDataset”] unsubscribe]
 continueWithBlock:^id(AWSTask *task) {
 if(task.error){
 NSLog(@"Unable to unsubscribe from dataset: %@", task.error);
 } else {
 NSLog(@"Successfully unsubscribed from dataset: %@",
 task.result);
 }
 return nil;
];

To subscribe to all datasets in the AWSCognito object, call subscribeAll:

[[syncClient subscribeAll] continueWithBlock:^id(AWSTask *task) {
 if(task.error){
 NSLog(@"Unable to subscribe to all datasets: %@", task.error);
 } else {
 NSLog(@"Successfully subscribed to all datasets: %@",
 task.result);
 }
 return nil;
];

Before calling subscribeAll, be sure to synchronize at least once on each dataset, so that the
datasets exist on the server.

To react to push notifications, you need to implement the didReceiveRemoteNotification method
in your app delegate:

- (void)application:(UIApplication *)application
 didReceiveRemoteNotification:(NSDictionary *)userInfo
 {
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"CognitoPushNotification" object:userInfo];
 }

If you post a notification using notification handler, you can then respond to the notification elsewhere
in the application where you have a handle to your dataset. If you subscribe to the notification like
this ...

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(didReceivePushSync:)
 name: :@"CognitoPushNotification" object:nil];

...you can act on the notification like this:

- (void)didReceivePushSync:(NSNotification*)notification
 {
 NSDictionary * data = [(NSDictionary *)[notification object]
 objectForKey:@"data"];
 NSString * identityId = [data objectForKey:@"identityId"];
 NSString * datasetName = [data objectForKey:@"datasetName"];
 if([self.dataset.name isEqualToString:datasetName] &&
 [self.identityId isEqualToString:identityId]){

Version Last Updated: 07/28/2016
186

Amazon Cognito Developer Guide
iOS - Swift

 [[self.dataset synchronize] continueWithBlock:^id(AWSTask *task)
 {
 if(!task.error){
 NSLog(@"Successfully synced dataset");
 }
 return nil;
 }];
 }
 }

The following keys are available in the push notification payload:

• source: cognito-sync. This can serve as a differentiating factor between notifications.

• identityPoolId: The identity pool ID. This can be used for validation or additional information,
though it's not integral from the receiver's point of view.

• identityId: The identity ID within the pool.

• datasetName: The name of the dataset that was updated. This is available for the sake of the
openOrCreateDataset call.

• syncCount: The sync count for the remote dataset. You can use this as a way to make sure that the
local dataset is out of date, and that the incoming synchronization is new.

iOS - Swift
Amazon Cognito automatically tracks the association between identity and devices. Using the push
sync feature, you can ensure that every instance of a given identity is notified when identity data
changes. Push sync ensures that, whenever the sync store data changes for a particular identity, all
devices associated with that identity receive a silent push notification informing them of the change.

Set Up Your Account for Push Sync
Create an Amazon Simple Notification Service(Amazon SNS) App

Create and configure an Amazon SNS app for your supported platforms, as described in the SNS
Developer Guide.
Enable Push Sync in the Amazon Cognito Console

You can enable Push Sync via the Amazon Cognito console. From the console home page:

1. Click the name of the identity pool for which you want to enable Push Sync. The Dashboard page
for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Push synchronization to expand it.

4. In the Service role dropdown menu, select the IAM role that grants Cognito permission to send an
SNS notification. Click Create role to create or modify the roles associated with your identity pool
in the AWS IAM console.

5. Select a platform application, and then click Save Changes.

6. Grant SNS Access to Your Application.

In the IAM console, configure your IAM roles to have full SNS access, or create a new role that trusts
cognito-sync and has full SNS access. To learn more about IAM roles, see Roles (Delegation and
Federation).

Use Push Sync in Your App

Version Last Updated: 07/28/2016
187

http://docs.aws.amazon.com//sns/latest/dg/SNSMobilePush.html
http://docs.aws.amazon.com//sns/latest/dg/SNSMobilePush.html
https://console.aws.amazon.com/cognito/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html

Amazon Cognito Developer Guide
iOS - Swift

To obtain a device token for your app, follow the Apple documentation on Registering for Remote
Notifications. Once you've received the device token as an NSData object from APNs, you'll need to
register the device with Amazon Cognito using the registerDevice: method of the sync client, as shown
below:

let syncClient = AWSCognito.defaultCognito()
syncClient.registerDevice(devToken).continueWithBlock { (task: AWSTask!) ->
 AnyObject! in
 if (task.error != nil) {
 print("Unable to register device: " +
 task.error.localizedDescription)

 } else {
 print("Successfully registered device with id: \(task.result)")
 }
 return nil
}

In debug mode, your device will register with the APNs sandbox; in release mode, it will register with
APNs. To receive updates from a particular dataset, use the subscribe method:

syncClient.openOrCreateDataset("MyDataset").subscribe().continueWithBlock
 { (task: AWSTask!) -> AnyObject! in
 if (task.error != nil) {
 print("Unable to subscribe to dataset: " +
 task.error.localizedDescription)

 } else {
 print("Successfully subscribed to dataset: \(task.result)")
 }
 return nil
}

To stop receiving push notifications from a dataset, simply call the unsubscribe method:

syncClient.openOrCreateDataset("MyDataset").unsubscribe().continueWithBlock
 { (task: AWSTask!) -> AnyObject! in
 if (task.error != nil) {
 print("Unable to unsubscribe to dataset: " +
 task.error.localizedDescription)

 } else {
 print("Successfully unsubscribed to dataset: \(task.result)")
 }
 return nil
}

To subscribe to all datasets in the AWSCognito object, call subscribeAll:

syncClient.openOrCreateDataset("MyDataset").subscribeAll().continueWithBlock
 { (task: AWSTask!) -> AnyObject! in
 if (task.error != nil) {
 print("Unable to subscribe to all datasets: " +
 task.error.localizedDescription)

 } else {

Version Last Updated: 07/28/2016
188

Amazon Cognito Developer Guide
iOS - Swift

 print("Successfully subscribed to all datasets: \(task.result)")
 }
 return nil
}

Before calling subscribeAll, be sure to synchronize at least once on each dataset, so that the
datasets exist on the server.

To react to push notifications, you need to implement the didReceiveRemoteNotification method
in your app delegate:

func application(application: UIApplication, didReceiveRemoteNotification
 userInfo: [NSObject : AnyObject],
 fetchCompletionHandler completionHandler: (UIBackgroundFetchResult) ->
 Void) {

 NSNotificationCenter.defaultCenter().postNotificationName("CognitoPushNotification",
 object: userInfo)
})

If you post a notification using notification handler, you can then respond to the notification elsewhere
in the application where you have a handle to your dataset. If you subscribe to the notification like
this ...

NSNotificationCenter.defaultCenter().addObserver(observer:self,
 selector:"didReceivePushSync:",
 name:"CognitoPushNotification",
 object:nil)

...you can act on the notification like this:

func didReceivePushSync(notification: NSNotification) {
 if let data = (notification.object as! [String: AnyObject])["data"] as?
 [String: AnyObject] {
 let identityId = data["identityId"] as! String
 let datasetName = data["datasetName"] as! String

 if self.dataset.name == datasetName && self.identityId == identityId
 {
 dataset.synchronize().continueWithBlock {(task) -> AnyObject! in
 if task.error == nil {
 print("Successfully synced dataset")
 }
 return nil
 }
 }
 }
}

The following keys are available in the push notification payload:

• source: cognito-sync. This can serve as a differentiating factor between notifications.

• identityPoolId: The identity pool ID. This can be used for validation or additional information,
though it's not integral from the receiver's point of view.

• identityId: The identity ID within the pool.

Version Last Updated: 07/28/2016
189

Amazon Cognito Developer Guide
JavaScript

• datasetName: The name of the dataset that was updated. This is available for the sake of the
openOrCreateDataset call.

• syncCount: The sync count for the remote dataset. You can use this as a way to make sure that the
local dataset is out of date, and that the incoming synchronization is new.

JavaScript
Amazon Cognito automatically tracks the association between identity and devices. Using the push
sync feature, you can ensure that every instance of a given identity is notified when identity data
changes. Push sync ensures that, whenever the sync store data changes for a particular identity, all
devices associated with that identity receive a silent push notification informing them of the change.

Note
Push sync is not supported by the JavaScript SDK. To learn how push sync works with other
SDKs, please select another platform.

Unity
Amazon Cognito automatically tracks the association between identity and devices. Using the push
sync feature, you can ensure that every instance of a given identity is notified when identity data
changes. Push sync ensures that, whenever the sync store data changes for a particular identity, all
devices associated with that identity receive a silent push notification informing them of the change.

Note
Push sync is not supported by the Unity SDK. To learn how push sync works with other SDKs,
please select another platform.

Xamarin
Amazon Cognito automatically tracks the association between identity and devices. Using the push
sync feature, you can ensure that every instance of a given identity is notified when identity data
changes. Push sync ensures that, whenever the sync store data changes for a particular identity, all
devices associated with that identity receive a silent push notification informing them of the change.

Note
Push sync is not supported by the Xamarin SDK. To learn how push sync works with other
SDKs, please select another platform.

Amazon Cognito Streams
Amazon Cognito Streams gives developers control and insight into their data stored in Amazon
Cognito. Developers can now configure an Amazon Kinesis stream to receive events as data is
updated and synchronized. Amazon Cognito can push each dataset change to an Amazon Kinesis
stream you own in real time.

Using Amazon Cognito Streams, you can move all of your Sync data to Amazon Kinesis, which can
then be streamed to a data warehouse tool such as Amazon Redshift for further analysis. To learn
more about Amazon Kinesis, see Getting Started Using Amazon Kinesis.

Configuring Streams

You can set up Amazon Cognito Streams in the Amazon Cognito console. To enable Amazon Cognito
Streams in the Amazon Cognito console, you need to select the Amazon Kinesis stream to publish to
and an IAM role that grants Amazon Cognito permission to put events in the selected stream.

Version Last Updated: 07/28/2016
190

http://docs.aws.amazon.com/kinesis/latest/dev/getting-started.html

Amazon Cognito Developer Guide
Amazon Cognito Streams

From the console home page:

1. Click the name of the identity pool for which you want to set up Amazon Cognito Streams. The
Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Cognito Streams to expand it.

4. In the Stream name dropdown menu, select the name of an existing Kinesis stream. Alternatively,
click Create stream to create one, entering a stream name and the number of shards. To learn
about shards and for help on estimating the number of shards needed for your stream, see the
Amazon Kinesis Developer Guide.

5. In the Publish role dropdown menu, select the IAM role that grants Amazon Cognito permission to
publish your stream. Click Create role to create or modify the roles associated with your identity pool
in the AWS IAM Console.

6. In the Stream status dropdown menu, select Enabled to enable the stream updates. Click Save
Changes.

After you've successfully configured Amazon Cognito streams, all subsequent updates to datasets in
this identity pool will be sent to the stream.

Stream Contents

Each record sent to the stream represents a single synchronization. Here is an example of a record
sent to the stream:

{
 "identityPoolId": "Pool Id",
 "identityId": "Identity Id",
 "dataSetName": "Dataset Name",
 "operation": "(replace|remove)",
 "kinesisSyncRecords": [
 {
 "key": "Key",
 "value": "Value",
 "syncCount": 1,
 "lastModifiedDate": 1424801824343,
 "deviceLastModifiedDate": 1424801824343,
 "op": "(replace|remove)"
 },
 ...
],
 "lastModifiedDate": 1424801824343,
 "kinesisSyncRecordsURL": "S3Url",
 "payloadType": "(S3Url|Inline)",
 "syncCount": 1
}

For updates that are larger than the Amazon Kinesis maximum payload size of 50 KB, a presigned
Amazon S3 URL will be included that contains the full contents of the update. Now that you have
updates to your data streaming, what about your existing data?

Bulk Publishing

Once you have configured Amazon Cognito streams, you will be able to execute a bulk publish
operation for the existing data in your identity pool. After you initiate a bulk publish operation, either via
the console or directly via the API, Amazon Cognito will start publishing this data to the same stream
that is receiving your updates.

Version Last Updated: 07/28/2016
191

https://console.aws.amazon.com/cognito/home
http://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://console.aws.amazon.com/iam/home

Amazon Cognito Developer Guide
Amazon Cognito Events

Amazon Cognito does not guarantee uniqueness of data sent to the stream when using the bulk
publish operation. You may receive the same update both as an update as well as part of a bulk
publish. Keep this in mind when processing the records from your stream.

To bulk publish all of your streams, follow steps 1-6 under Configuring Streams and then click Start
bulk publish. You are limited to one ongoing bulk publish operation at any given time and to one
successful bulk publish request every 24 hours.

Amazon Cognito Events
Amazon Cognito Events allows you to execute an AWS Lambda function in response to important
events in Amazon Cognito. Amazon Cognito raises the Sync Trigger event when a dataset is
synchronized. You can use the Sync Trigger event to take an action when a user updates data.
The function can evaluate and optionally manipulate the data before it is stored in the cloud and
synchronized to the user's other devices. This is useful to validate data coming from the device before
it is synchronized to the user's other devices, or to update other values in the dataset based on
incoming data such as issuing an award when a player reaches a new level.

The steps below will guide you through setting up a Lambda function that executes each time a
Amazon Cognito Dataset is synchronized.

Creating a Function in AWS Lambda

To integrate Lambda with Amazon Cognito, you first need to create a function in Lambda. To do so:

Selecting the Lambda Function in Amazon Cognito

1. Open the Lambda console.

2. Click Create a Lambda function.

3. On the Select blueprint screen, search for and select "cognito-sync-trigger."

4. On the Configure event sources screen, leave the Event source type set to "Cognito Sync Trigger"
and select your identity pool. Click Next.

5. On the Configure function screen, enter a name and description for your function. Leave Runtime
set to "Node.js." Leave the code unchanged for our example. The default example makes no
changes to the data being synced. It only logs the fact that the Amazon Cognito Sync Trigger event
occurred. Leave Handler name set to "index.handler." For Role, select an IAM role that grants your
code permission to access AWS Lambda. To modify roles, see the IAM console. Leave Advanced
settings unchanged. Click Next.

6. On the Review screen, review the details and click Create function. The next page displays your
new Lambda function.

Now that you have an appropriate function written in Lambda, you need to choose that function as the
handler for the Amazon Cognito Sync Trigger event. The steps below walk you through this process.

From the console home page:

Now, your Lambda function will be executed each time a dataset is synchronized. The next section
explains how you can read and modify the data in your function as it is being synchronized.

1. Click the name of the identity pool for which you want to set up Amazon Cognito Events. The
Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Cognito Events to expand it.

Version Last Updated: 07/28/2016
192

Amazon Cognito Developer Guide
Amazon Cognito Events

4. In the Sync Trigger dropdown menu, select the Lambda function that you want to trigger when a
Sync event occurs.

5. Click Save Changes.

Writing a Lambda Function for Sync Triggers

Sync triggers follow the service provider interface programming paradigm. Amazon Cognito will provide
input in the following JSON format to your Lambda function.

{
 "version": 2,
 "eventType": "SyncTrigger",
 "region": "us-east-1",
 "identityPoolId": "identityPoolId",
 "identityId": "identityId",
 "datasetName": "datasetName",
 "datasetRecords": {
 "SampleKey1": {
 "oldValue": "oldValue1",
 "newValue": "newValue1",
 "op": "replace"
 },
 "SampleKey2": {
 "oldValue": "oldValue2",
 "newValue": "newValue2",
 "op": "replace"
 },..
 }
}

Amazon Cognito expects the return value of the function in the same format as the input. A complete
example is provided below.

Some key points to keep in mind when writing functions for the Sync Trigger event:

• When your Lambda function is invoked during UpdateRecords, it must respond within 5 seconds.
If it does not, the Amazon Cognito Sync service throws a LambdaSocketTimeoutException
exception. It is not possible to increase this timeout value.

• Amazon Cognito will provide all the records present in the dataset as input to the function.

• Records updated by the app user will have the 'op' field set as “replace” and the records deleted will
have 'op' field as "remove".

• You can modify any record, even if it is not updated by the app user.

• All the fields except the datasetRecords are read only and should not be changed. Changing these
fields will result in a failure to update the records.

• To modify the value of a record, simply update the value and set the 'op' to "replace".

• To remove a record, either set the ‘op’ to remove or set the value to null.

• To add a record, simply add a new record to the datasetRecords array.

• Any omitted record in the response will be ignored for the update.

Sample Lambda Function

Here is a sample Lambda function showing how to access, modify and remove the data.

console.log('Loading function');

Version Last Updated: 07/28/2016
193

Amazon Cognito Developer Guide
Amazon Cognito Events

exports.handler = function(event, context) {
 console.log(JSON.stringify(event, null, 2));

 //Check for the event type
 if (event.eventType === 'SyncTrigger') {

 //Modify value for a key
 if('SampleKey1' in event.datasetRecords){
 event.datasetRecords.SampleKey1.newValue = 'ModifyValue1';
 event.datasetRecords.SampleKey1.op = 'replace';
 }

 //Remove a key
 if('SampleKey2' in event.datasetRecords){
 event.datasetRecords.SampleKey2.op = 'remove';
 }

 //Add a key
 if(!('SampleKey3' in event.datasetRecords)){
 event.datasetRecords.SampleKey3={'newValue':'ModifyValue3',
 'op' : 'replace'};
 }

 }
 context.done(null, event);
};

Version Last Updated: 07/28/2016
194

Amazon Cognito Developer Guide
Amazon Cognito Information in CloudTrail

Logging Amazon Cognito API Calls
with AWS CloudTrail

Amazon Cognito is integrated with AWS CloudTrail, a service that captures specific API calls and
delivers log files of the calls to an S3 bucket that you specify. CloudTrail captures API calls made from
the Amazon Cognito console or from your code to the Amazon Cognito APIs. With the information
collected by CloudTrail, you can determine which request was made to Amazon Cognito, the IP
address from which the request was made, who made the request, when it was made, and so on.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail User
Guide.

You can also create Amazon CloudWatch alarms for specific CloudTrail events. For example, you
can set up CloudWatch to trigger an alarm if an identity pool configuration is changed. For more
information, see Creating CloudWatch Alarms for CloudTrail Events: Examples.

Amazon Cognito Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to specific Amazon Cognito
actions are tracked in CloudTrail log files, where they are written with other AWS service records.
CloudTrail determines when to create and write to a new file based on a time period and file size.

The following actions are supported:

Amazon Cognito Your User Pools

• AddCustomAttributes

• CreateUserImportJob

• CreateUserPool

• CreateUserPoolClient

• DeleteUserPool

• DeleteUserPoolClient

• DescribeUserImportJob

• DescribeUserPool

• DescribeUserPoolClient

• GetCSVHeader

Version Last Updated: 07/28/2016
195

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html

Amazon Cognito Developer Guide
Understanding Amazon Cognito Log File Entries

• ListUserImportJobs

• ListUserPoolClients

• ListUserPools

• StartUserImportJob

• StopUserImportJob

• UpdateUserPool

• UpdateUserPoolClient

Amazon Cognito Federated Identities

• CreateIdentityPool

• DeleteIdentityPool

• DescribeIdentityPool

• GetIdentityPoolRoles

• ListIdentityPools

• SetIdentityPoolRoles

• UpdateIdentityPool

Amazon Cognito Sync

• BulkPublish

• DescribeIdentityPoolUsage

• GetBulkPublishDetails

• GetCognitoEvents

• GetIdentityPoolConfiguration

• ListIdentityPoolUsage

• SetCognitoEvents

• SetIdentityPoolConfiguration

Every log entry contains information about who generated the request. The user identity information
in the log helps you determine whether the request was made with root or AWS Identity and Access
Management (IAM) user credentials, with temporary security credentials for a role or federated user, or
by another AWS service. For more information, see the CloudTrail userIdentity Element.

You can store log files in your S3 bucket for as long as you want, but you can also define Amazon
Simple Storage Service (Amazon S3) lifecycle rules to archive or delete log files automatically. By
default, your log files are encrypted by using Amazon S3 server-side encryption (SSE).

If you want to take quick action upon log file delivery, you can have CloudTrail publish Amazon
Simple Notification Service (Amazon SNS) notifications when new log files are delivered. For more
information, see Configuring Amazon SNS Notifications.

You can also aggregate Amazon Cognito log files from multiple AWS regions and multiple AWS
accounts into a single S3 bucket. For more information, see Receiving CloudTrail Log Files From
Multiple Regions.

Understanding Amazon Cognito Log File Entries
CloudTrail log files contain one or more log entries, where each entry lists multiple JSON-formatted
events. A log entry represents a single request from any source and includes information about the

Version Last Updated: 07/28/2016
196

http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/API_CreateIdentityPool.html
http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/API_DeleteIdentityPool.html
http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/API_DescribeIdentityPool.html
http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/API_GetIdentityPoolRoles.html
http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/API_ListIdentityPools.html
http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/API_SetIdentityPoolRoles.html
http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/API_UpdateIdentityPool.html
http://docs.aws.amazon.com/cognitosync/latest/APIReference/API_BulkPublish.html
http://docs.aws.amazon.com/cognitosync/latest/APIReference/API_DescribeIdentityPoolUsage.html
http://docs.aws.amazon.com/cognitosync/latest/APIReference/API_GetBulkPublishDetails.html
http://docs.aws.amazon.com/cognitosync/latest/APIReference/API_GetCognitoEvents.html
http://docs.aws.amazon.com/cognitosync/latest/APIReference/API_GetIdentityPoolConfiguration.html
http://docs.aws.amazon.com/cognitosync/latest/APIReference/API_ListIdentityPoolUsage.html
http://docs.aws.amazon.com/cognitosync/latest/APIReference/API_SetCognitoEvents.html
http://docs.aws.amazon.com/cognitosync/latest/APIReference/API_SetIdentityPoolConfiguration.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

Amazon Cognito Developer Guide
Understanding Amazon Cognito Log File Entries

requested operation, including the date and time of the operation, request parameters, and so on. Log
entries are not an ordered stack trace of the public API calls, so they do not appear in any specific
order.

The following example is a log entry for a request for the CreateIdentityPool action. The request
was made by an IAM user named Alice.

{
 "eventVersion":"1.03",
 "userIdentity":{
 "type":"IAMUser",
 "principalId":"PRINCIPAL_ID",
 "arn":"arn:aws:iam::123456789012:user/Alice",
 "accountId":"123456789012",
 "accessKeyId":"['EXAMPLE_KEY_ID']",
 "userName":"Alice"
 },
 "eventTime":"2016-01-07T02:04:30Z",
 "eventSource":"cognito-identity.amazonaws.com",
 "eventName":"CreateIdentityPool",
 "awsRegion":"us-east-1",
 "sourceIPAddress":"127.0.0.1",
 "userAgent":"USER_AGENT",
 "requestParameters":{
 "identityPoolName":"TestPool",
 "allowUnauthenticatedIdentities":true,
 "supportedLoginProviders":{
 "graph.facebook.com":"000000000000000"
 }
 },
 "responseElements":{
 "identityPoolName":"TestPool",
 "identityPoolId":"us-
east-1:1cf667a2-49a6-454b-9e45-23199EXAMPLE",
 "allowUnauthenticatedIdentities":true,
 "supportedLoginProviders":{
 "graph.facebook.com":"000000000000000"
 }
 },
 "requestID":"15cc73a1-0780-460c-91e8-e12ef034e116",
 "eventID":"f1d47f93-c708-495b-bff1-cb935a6064b2",
 "eventType":"AwsApiCall",
 "recipientAccountId":"123456789012"
 }

Version Last Updated: 07/28/2016
197

Amazon Cognito Developer Guide

Limits in Amazon Cognito

The following tables describe limits within Amazon Cognito. For information about limits that can be
changed, see AWS Service Limits.

Limits in Amazon Cognito User Pools

Max number of apps per user pool 25

Max number of user pools per account 60

Max characters per attribute 2048 bytes

Max character length for custom attribute name 20

Limits in Cognito Identity

Max number of identity pools per account 60

Max number of identities per identity pool Unlimited

Max character length for identity pool name 128 bytes

Max character length for login provider name 2048 bytes

Max number of results from a single List/Lookup
API call

60

Limits in Cognito Sync

Max number of datasets per identity 20

Max number of records per dataset 1024

Max size of a single dataset 1 MB

Max character length for dataset name 128 bytes

Version Last Updated: 07/28/2016
198

http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Cognito Developer Guide

Minimum waiting time for a bulk publish after a
successful request

24 hours

Version Last Updated: 07/28/2016
199

Amazon Cognito Developer Guide

Resource Permissions

This article covers restricting access to Amazon Cognito resources via IAM. If you are trying to
define access permissions for your application's users, please refer to the Federated Identities
Concepts (p. 107) for further details.

Amazon Resource Names

Identity

For Amazon Cognito Identity, it is possible to restrict an IAM user's access to a specific identity pool,
using the Amazon Resource Name (ARN) format:

Identity Pool

arn:aws:cognito-identity:REGION:ACCOUNT_ID:identitypool/IDENTITY_POOL_ID

The identity pool id will also include a region prefix, meaning an ARN for an identity pool in the US (N.
Virginia) region will have the format:

arn:aws:cognito-identity:us-east-1:0123456789:identitypool/us-
east-1:1a1a1a1a-ffff-1111-9999-12345678

Sync

For Amazon Cognito Sync, customers can also restrict access by the identity pool, and by other
resources as well.

Identity Pool

When accessing Amazon Cognito Sync, the ARN for the identity pool will have a slightly different
format:

arn:aws:cognito-sync:REGION:ACCOUNT_ID:identitypool/IDENTITY_POOL_ID

Identity

Version Last Updated: 07/28/2016
200

Amazon Cognito Developer Guide

For APIs that operate on a single identity (for instance RegisterDevice), you can refer to the individual
identity by the following ARN:

arn:aws:cognito-sync:REGION:ACCOUNT_ID:identitypool/IDENTITY_POOL_ID/
identity/IDENTITY_ID

Dataset

For APIs that operate datasets (for instance UpdateRecords and ListRecords), you can refer to the
individual dataset by the following ARN:

arn:aws:cognito-sync:REGION:ACCOUNT_ID:identitypool/IDENTITY_POOL_ID/
identity/IDENTITY_ID/dataset/DATASET_NAME

Example Policies

Restricting Console Access to a Specific Identity Pool

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cognito-identity:ListIdentityPools"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "cognito-identity:*"
],
 "Resource": "arn:aws:cognito-identity:us-
east-1:0123456789:identitypool/us-east-1:1a1a1a1a-ffff-1111-9999-12345678"
 },
 {
 "Effect": "Allow",
 "Action": [
 "cognito-sync:*"
],
 "Resource": "arn:aws:cognito-sync:us-east-1:0123456789:identitypool/us-
east-1:1a1a1a1a-ffff-1111-9999-12345678"
 }
]
}

Allow Access to Specific Dataset for All Identities in a Pool

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cognito-sync:ListRecords",

Version Last Updated: 07/28/2016
201

Amazon Cognito Developer Guide

 "cognito-sync:UpdateRecords"
],
 "Resource": "arn:aws:cognito-sync:us-east-1:0123456789:identitypool/us-
east-1:1a1a1a1a-ffff-1111-9999-12345678/identity/*/dataset/UserProfile"
 }
]
}

Managed Policies

A number of policies are available via the IAM Console that customers can use to grant access to
Amazon Cognito:

• AmazonCognitoPowerUser - Permissions for accessing and managing all aspects of your identity
pools.

• AmazonCognitoReadOnly - Permissions for read only access to your identity pools.

• AmazonCognitoDeveloperAuthenticatedIdentities - Permissions for your authentication system to
integrate with Amazon Cognito.

These policies are maintained by the Amazon Cognito team, so even as new APIs are added your IAM
users will continue to have the same level of access.

Signed v. Unsigned APIs

APIs that are signed with AWS credentials are capable of being restricted via an IAM policy. The
following Cognito APIs are unsigned, and therefor cannot be restricted via an IAM policy:

• GetId

• GetOpenIdToken

• GetCredentialsForIdentity

• UnlinkIdentity

Version Last Updated: 07/28/2016
202

Amazon Cognito Developer Guide
What is the Amazon Cognito Console?

Using the Amazon Cognito Console

This guide provides a short introduction to working with the Amazon Cognito console.

What is the Amazon Cognito Console?
You can use the Amazon Cognito console to manage your application's interaction with Amazon
Cognito. The console provides an intuitive user interface for performing many Amazon Cognito tasks,
such as creating and managing identity pools, browsing the identities of your users, viewing the
number of data syncs for your application, and so on.

The Amazon Cognito console is a part of the AWS Management Console, which provides information
about your account and about billing. For more information on using the AWS Management Console,
see Working with the AWS Management Console.

Delete an Identity Pool
From the Console home page:

1. Click the name of the identity pool that you want to delete. The Dashboard page for your identity
pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Delete identity pool to expand it.

4. Click Delete identity pool.

5. Click Delete pool.

Warning
When you click the delete button, you will permanently delete your identity pool and all the
user data it contains. Deleting an identity pool will cause applications and other services
utilizing the identity pool to stop working.

Delete an Identity from an Identity Pool
From the Console home page:

Version Last Updated: 07/28/2016
203

https://console.aws.amazon.com/cognito/home
https://console.aws.amazon.com/cognito/home
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html
https://console.aws.amazon.com/cognito/home
https://console.aws.amazon.com/cognito/home

Amazon Cognito Developer Guide
Enable or edit authentication providers

1. Click the name of the identity pool that contains the identity that you want to delete. The Dashboard
page for your identity pool appears.

2. In the left-hand navigation on the Dashboard page, click Identity browser. The Identities page
appears.

3. On the Identities page, enter the identity ID that you want to delete and then click Search.

4. On the Identity details page, click the Delete identity button, and then click Delete.

Enable or edit authentication providers
If you allow your users to authenticate using public identity providers (e.g. Facebook, Twitter, Amazon),
you can specify your application identifiers in the Amazon Cognito Console. This associates the
application ID (provided by the public login provider) with your identity pool.

Warning
Changing the application ID to which your identity pool is linked will disable existing users from
authenticating with Amazon Cognito. Learn more about External Identity Providers (p. 122).

From the Console home page:

1. Click the name of the identity pool for which you want to enable the external provider. The
Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Authentication providers to expand it.

4. Click the tab for the appropriate provider and enter the required information associated with that
authentication provider.

Change the role associated with an identity type
Amazon Cognito defines two types of identities: authenticated and unauthenticated. Every identity
in your identity pool is either authenticated and unauthenticated. Authenticated identities belong to
users who are authenticated by a public login provider (Facebook, Amazon, Google, Twitter/Digits, or
any OpenID Connect Providers) or a developer provider (your own backend authentication process).
Unauthenticated identities typically belong to guest users.

For each identity type, there is an assigned role. This role has a policy attached to it which dictates
which AWS services that role can access. When Amazon Cognito receives a request, the service
will determine the identity type, determine the role assigned to that identity type, and use the policy
attached to that role to respond. By modifying a policy or assigning a different role to an identity
type, you can control which AWS services an identity type can access. To view or modify the policies
associated with the roles in your identity pool, see the AWS IAM Console.

You can easily change which role is associated with an identity type using the Amazon Cognito
Console. From the Console home page:

1. Click the name of the identity pool for which you want to modify roles. The Dashboard page for your
identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Use the dropdown menus next to Unauthenticated role and Authenticated role to change roles.
Click Create new role to create or modify the roles associated with each identity type in the AWS
IAM console. For more information, see IAM Roles.

Version Last Updated: 07/28/2016
204

https://console.aws.amazon.com/cognito/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/cognito/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Cognito Developer Guide
Enable or disable unauthenticated identities

Enable or disable unauthenticated identities
Amazon Cognito can support unauthenticated identities by providing a unique identifier and AWS
credentials for users who do not authenticate with an identity provider. If your application allows users
who do not log in, you can enable access for unauthenticated identities. To learn more, see Identity
Pools (p. 106).

From the Console home page:

1. Click the name of the identity pool for which you want to enable or disable unauthenticated
identities. The Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Unauthenticated identities to expand it.

4. Select the checkbox to enable or disable access to unauthenticated identities.

5. Click Save Changes.

Managing Datasets in the Amazon Cognito
Console

If you have implemented Amazon Cognito Sync functionality in your application, the Amazon Cognito
console enables you to manually create and delete datasets and records for individual identities. Any
change you make to an identity's dataset or records in the Amazon Cognito console will not be saved
until you click Synchronize in the console and will not be visible to the end user until the identity calls
synchronize.

Create a Dataset for an Identity
From the Amazon Cognito console home page:

1. Click the name of the identity pool that contains the identity for which you want to create a dataset.
The Dashboard page for your identity pool appears.

2. In the left-hand navigation on the Dashboard page, click Identity browser. The Identities page
appears.

3. On the Identities page, enter the identity ID for which you want to create a dataset, and then click
Search.

4. On the Identity details page for that identity, click the Create dataset button, enter a dataset name,
and then click Create and edit dataset.

5. On the Current dataset page, click Create record to create a record to store in that dataset.

6. Enter a key for that dataset, the valid JSON value or values to store, and then click Format as
JSON to prettify the value you entered and to confirm that it is well-formed JSON. When finished,
click Save Changes.

7. Click Synchronize to synchronize the dataset. Your changes will not be saved until you click
Synchronize and will not be visible to the user until the identity calls synchronize. To discard
unsynchronized changes, select the change you wish to discard, and then click Discard changes.

Delete a Dataset Associated with an Identity
From the Amazon Cognito console home page:

Version Last Updated: 07/28/2016
205

https://console.aws.amazon.com/cognito/home
https://console.aws.amazon.com/cognito/home
https://console.aws.amazon.com/cognito/home

Amazon Cognito Developer Guide
Set Up Amazon Cognito Streams

1. Click the name of the identity pool that contains the identity for which you want to delete a dataset.
The Dashboard page for your identity pool appears.

2. In the left-hand navigation on the Dashboard page, click Identity browser. The Identities page
appears.

3. On the Identities page, enter the identity ID containing the dataset which you want to delete, and
then click Search.

4. On the Identity details page, select the checkbox next to the dataset or datasets that you want to
delete, click Delete selected, and then click Delete.

Set Up Amazon Cognito Streams
Amazon Cognito Streams gives developers control and insight into their data stored in Amazon
Cognito. Developers can now configure an Amazon Kinesis stream to receive events as data. Amazon
Cognito can push each dataset change to an Amazon Kinesis stream you own in real time. For
instructions on how to set up Amazon Cognito Streams in the Amazon Cognito console, see Amazon
Cognito Streams (p. 190).

Bulk Publish Data
Bulk publish can be used to export data already stored in your Amazon Cognito Sync store to an
Amazon Kinesis stream. For instructions on how to bulk publish all of your streams, see Amazon
Cognito Streams (p. 190).

Enable Push Synchronization
Amazon Cognito automatically tracks the association between identity and devices. Using the push
sync feature, you can ensure that every instance of a given identity is notified when identity data
changes. Push sync ensures that, whenever the sync store data changes for a particular identity, all
devices associated with that identity receive a silent push notification informing them of the change.

You can enable Push Sync via the Amazon Cognito console. From the console home page:

1. Click the name of the identity pool for which you want to enable Push Sync. The Dashboard page
for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Edit identity pool. The Edit identity pool page
appears.

3. Scroll down and click Push synchronization to expand it.

4. In the Service role dropdown menu, select the IAM role that grants Amazon Cognito permission
to send an SNS notification. Click Create role to create or modify the roles associated with your
identity pool in the AWS IAM console.

5. Select a platform application, and then click Save Changes.

Set Up Amazon Cognito Events
Amazon Cognito Events allows you to execute an AWS Lambda function in response to important
events in Amazon Cognito. Amazon Cognito raises the Sync Trigger event when a dataset is
synchronized. You can use the Sync Trigger event to take an action when a user updates data.
For instructions on setting up Amazon Cognito Events from the console, see Amazon Cognito
Events (p. 192).

Version Last Updated: 07/28/2016
206

https://console.aws.amazon.com/cognito/home
https://console.aws.amazon.com/iam/home

Amazon Cognito Developer Guide
Set Up Amazon Cognito Events

To learn more about AWS Lambda, see AWS Lambda.

Version Last Updated: 07/28/2016
207

http://aws.amazon.com/lambda/

Amazon Cognito Developer Guide

Document History for Amazon
Cognito

The following table describes the documentation for this release of Amazon Cognito.

• API versions:

Amazon Cognito Your User Pools: 2016-04-18

Amazon Cognito Identity: 2014-06-30

Amazon Cognito Sync: 2014-06-30

• Latest documentation update: November 18, 2016

Change Description Date

Documentation update Updated iOS code examples
in Developer Authenticated
Identities (p. 146).

November 18, 2016

Documentation update Added information about
confirmation flow for user
accounts. For more information,
see Signing Up and Confirming
User Accounts (p. 92).

November 9, 2016

Create user accounts feature Added administrative capability
to create user accounts
through the Amazon Cognito
console and the API. For more
information, see Creating
User Accounts in the AWS
Management Console and
with the Amazon Cognito User
Pools API (p. 79).

October 6, 2016

Documentation update Updated examples that show
how to use AWS Lambda
triggers with user pools.
For more information, see

September 27, 2016

Version Last Updated: 07/28/2016
208

Amazon Cognito Developer Guide

Change Description Date

Customizing User Pool
Workflows by Using AWS
Lambda Triggers (p. 64).

User import feature Added bulk import capability
for Your User Pools. Use this
feature to migrate users from
your existing identity provider
to an Amazon Cognito user
pool. For more information, see
Importing Users into Your User
Pools (p. 82).

September 1, 2016

General availability of Your
User Pools

Added the Your User Pools
feature. Use this feature to
create and maintain a user
directory and add sign-up and
sign-in to your mobile app or
web application using user
pools. For more information,
see Creating and Managing
User Pools (p. 10).

July 28, 2016

SAML support Added support for
authentication with identity
providers through Security
Assertion Markup Language
2.0 (SAML 2.0). For more
information, see SAML Identity
Provider (p. 144).

June 23, 2016

CloudTrail integration Added integration with
AWS CloudTrail. For more
information, see Logging
Amazon Cognito API Calls with
AWS CloudTrail (p. 195).

February 18, 2016

Twitter support Provides support for Twitter
as an external identity
provider. For more information,
see External Identity
Providers (p. 122).

April 30, 2015

Integration of events with
Lambda

Enables you to execute an
AWS Lambda function in
response to important events
in Amazon Cognito. For more
information, see Amazon
Cognito Events (p. 192).

April 9, 2015

Data stream to Amazon Kinesis Provides control and insight
into your data streams. For
more information, see Amazon
Cognito Streams (p. 190).

March 4, 2015

Version Last Updated: 07/28/2016
209

Amazon Cognito Developer Guide

Change Description Date

Push synchronization Enables support for silent
push synchronization. For
more information, see Amazon
Cognito Sync (p. 162).

November 6, 2014

OpenID connect support Enables support for OpenID
Connect providers. For more
information, see External
Identity Providers (p. 122).

October 23, 2014

Developer-authenticated
identities support added

Enables developers who own
their own authentication and
identity management systems
to be treated as an identity
provider in Amazon Cognito.
For more information, see
Developer Authenticated
Identities (p. 146).

September 29, 2014

Amazon Cognito general
availability

 July 10, 2014

Version Last Updated: 07/28/2016
210

Amazon Cognito Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

Version Last Updated: 07/28/2016
211

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon Cognito
	Table of Contents
	What is Amazon Cognito?
	Are You a First-Time Amazon Cognito User?
	Features of Amazon Cognito
	Accessing Amazon Cognito
	Pricing for Amazon Cognito

	Getting Started
	Setting Up Amazon Cognito
	Sign Up for AWS
	Creating a Pool in Amazon Cognito
	Install the Mobile SDK

	Step 1: Obtain AWS Credentials
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Step 2: Store and Sync Data
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Creating and Managing User Pools
	Setting up User Pools
	Creating a New User Pool Using the Console
	Creating a New User Pool Using the AWS CLI
	Creating a New User Pool Using the API
	Quickstart: Using the Console to Create a New User Pool
	Getting Started: Step Through Amazon Cognito User Pool Settings in the AWS Management Console
	Specifying a User Pool Name
	Specifying User Pool Attribute Settings
	Standard attributes
	To edit standard attributes

	Usernames and Preferred Usernames
	Using Aliases to Simplify User Sign-Up and Sign-In
	Custom Attributes
	Attribute Permissions and Scopes

	Specifying User Pool Policy Settings
	Specifying User Pool MFA Setting and Email and Phone Verification Settings
	Multi-factor Authentication (MFA)
	Requiring Email and Phone Number Verification
	Authorizing Amazon Cognito to Send SMS Messages on Your Behalf

	Customizing SMS and Email Verification Messages and User Invitation Messages
	Customizing SMS Verification Messages
	Customizing Email Verification Messages
	Customizing User Invitation Messages
	Customizing Your Email Address
	Authorizing Amazon Cognito to Send Amazon SES Email on Your Behalf (from a Custom FROM Email Address)

	Specifying User Pool Device Tracking Settings
	Setting Up Remembered Devices
	Using Remembered Devices to Suppress Multi Factor Authentication (MFA)

	Specifying User Pool App Settings
	Specifying User Pool Lambda Trigger Settings
	Reviewing Your User Pool Settings

	Setting Up the AWS Mobile SDK for Android to Work with User Pools
	Dependencies
	Key Concepts
	Examples of Using User Pools with the Mobile SDK for Android
	Create a CognitoUserPool
	Register a New User
	Get the Cached User
	Create a User Object with a UserId
	Confirm a User
	Request a Confirmation Code
	Forgot Password: Get Code to Set New Password
	Authentication Handler: Get Tokens
	Get User Details
	Get Attribute Verification Code
	Verify Attribute
	Delete Attribute
	Change Password
	Change or Set User Settings
	Delete User
	Sign Out User
	Get Access and ID Tokens from CognitoUserSession
	List All Devices for a User
	Remember a Device
	Do Not Remember a Device

	Example: Handling Users Created Using the AdminCreateUser API in the Mobile SDK for Android
	Tutorial: Integrating User Pools for Android Apps
	Step 1: Creating a User Pool for Your App by Using the Console
	Step 2: Creating a User Pool Object
	Step 3: Signing up Users for Your App
	Step 4: Confirming Users for Your App
	Step 5: Resolving Alias Value Conflicts
	Step 6: Signing Users in to Your App
	Step 7: Getting User Details
	Step 8: Getting Credentials to Access AWS Resources for an App User
	Step 9: Setting IAM Permissions to Enable Access to AWS Resources

	Setting Up the AWS Mobile SDK for iOS to Work with User Pools
	Installing the AWS Mobile SDK for iOS
	Examples: Using User Pools with the iOS SDK
	Creating an AWSCognitoIdentityUserPool Object
	Example: Register a User
	Example: Get a User
	Example: Sign in a User
	Example: Forgot Password
	Authenticated Example: Get User Attributes
	Authenticated Example: Verify User Attributes
	Authenticated Example: Update User Attributes
	Authenticated Example: Change Password
	Authenticated Example: Turning on MFA

	Tutorial: Integrating User Pools for iOS Apps
	Step 1: Creating a User Pool for Your App by Using the Console
	Step 2: Creating a UserPool Object
	Step 3: Signing up Users for Your App
	Step 4: Confirming Users for Your App
	Step 5: Authenticating Users for Your App
	Step 6: Getting User Details
	Step 7: Getting Credentials to Access AWS Resources For an App User
	Next Steps

	Setting up the AWS SDK for JavaScript
	Installing the SDK for JavaScript
	Network Configuration
	Random Numbers

	Examples: Using the JavaScript SDK
	Register a User with the Application
	Delete an Authenticated User
	Retrieve the current user from local storage
	Authenticate a User
	Enable MFA for a User Pool
	Disable MFA for a User Pool
	Create a User Pool Object
	Sign Up For the Application
	Sign in With MFA Enabled
	Sign Out
	Update Attributes
	Delete Attributes
	Verify an Attribute
	Retrieve Attributes
	Resend a Confirmation Code
	Confirm Registration
	Change a Password
	Forgotten Password Flow
	Delete a User
	Sign a User Out
	Sign a User Out Globally
	Get the Current User
	Integrate a User in a User Pool with an Identity Pool
	List All Devices for a User
	List Device Information
	Remember a Device
	Do Not Remember a Device
	Do Not Remember a Device
	Confirm a Registered, Unauthenticated User
	Sign Out from the Application

	Example: Authenticate and Set a New Password for a User Created Using the AdminCreateUser API
	Tutorial: Integrating User Pools for JavaScript Apps
	Step 1: Creating a User Pool for your JavaScript App by Using the Console
	Step 2: Creating a User Pool Object in Your App
	Step 3: Signing up Users for Your App
	Step 4: Confirming Users for Your App
	Step 5: Signing Users in to Your App
	Step 6: Getting User Details
	Step 7: Getting Credentials to Access AWS Resources for an App User
	Next Steps

	Customizing User Pool Workflows by Using AWS Lambda Triggers
	Creating an AWS Lambda Trigger for a Stage
	AWS Lambda Trigger Request and Response Parameters
	AWS Lambda Trigger Common Parameters
	Pre Sign-up Lambda Parameters
	Pre-Authentication Lambda Parameters
	Custom Message Lambda Parameters
	Post-Authentication Lambda Parameters
	Post-Confirmation Lambda Parameters
	Define Auth Challenge Lambda Parameters
	Create Auth Challenge Lambda Parameters
	Verify Auth Challenge Response Lambda Parameters

	AWS Lambda Trigger Examples
	Pre Sign-up Example
	Pre Authentication Example
	Custom Message Example
	Post Authentication Example
	Post Confirmation Example
	Define Auth Challenge Example
	Create Auth Challenge Example
	Verify Auth Challenge Response Example

	Creating User Accounts in the AWS Management Console and with the Amazon Cognito User Pools API
	Authentication Flow for Users Created by Administrators or Developers
	Creating a New User in the AWS Management Console
	Policies Tab
	Message Customizations Tab
	Users Tab

	Importing Users into Your User Pools
	Creating the CloudWatch Logs IAM Role
	Creating the User Import .csv File
	Downloading the .csv File Header By Using the AWS Management Console
	Downloading the .csv File Header By Using the CLI
	Formatting the .csv File

	Creating and Running the Amazon Cognito User Pool Import Job
	Importing Users from a .csv File By Using the Amazon Cognito Console
	Importing Users By Using the AWS CLI
	Creating a User Import Job
	Status Values for a User Import Job
	Uploading the .csv File
	Describing a User Import Job
	Listing Your User Import Jobs
	Starting a User Import Job
	Stopping a User Import Job

	Viewing the User Pool Import Results in the CloudWatch Console
	Viewing the Results
	Interpreting the Results

	Requiring Imported Users to Reset Their Passwords

	Signing Up and Confirming User Accounts
	Overview of User Account Confirmation
	Allowing Users to Sign Up and Confirm Themselves and Verify Email or Phone
	Allowing Users to Sign Up in Your App but Confirming Them as Administrator
	Confirming User Accounts Without Verifying Email or Phone Number
	Verifying When Users Change Their Email or Phone Number
	Confirmation and Verification Processes for User Accounts Created by Administrators or Developers
	Confirmation and Verification Processes for Imported User Accounts

	Managing and Searching for User Accounts in the AWS Management Console and in the Amazon Cognito User Pools API
	Viewing User Attributes
	Searching User Attributes
	Searching for Users Using the AWS Management Console
	Searching for Users Using the ListUsers API
	Examples of Using the ListUsers API

	Amazon Cognito User Pool Authentication Flow
	Custom Authentication Flow
	Admin Authentication Flow

	Integrating User Pools with Amazon Cognito Identity
	Setting Up a User Pool
	Configuring Your Identity Pool Using the AWS Management Console
	Using Amazon Cognito Identity User Pools
	iOS - Objective-C
	iOS - Swift
	Android
	JavaScript

	Using Tokens with User Pools
	Structure of ID Tokens
	Structure of Access Tokens
	Using ID Tokens and Access Tokens in your Web APIs
	Revoking All Tokens for a User

	Amazon Cognito Identity: Using Federated Identities
	Identity Pools
	Authenticated and Unauthenticated Identities
	User IAM Roles

	Federated Identities Concepts
	Authentication Flow
	IAM Roles
	Role Trust and Permissions

	Getting Credentials
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Accessing AWS Services
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	External Identity Providers
	Facebook
	Set Up Facebook
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Configure the External Provider in the Amazon Cognito Console
	Using Facebook
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Amazon
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Google
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Twitter/Digits
	Android
	iOS
	JavaScript
	Unity
	Xamarin

	Open ID Connect Providers
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	SAML Identity Provider
	Configuring Your Identity Pool for a SAML Provider
	Configuring Your SAML Identity Provider
	Customizing Your User Role with SAML
	Authenticating Users with a SAML Identity Provider
	Android
	iOS

	Developer Authenticated Identities
	Understanding the Authentication Flow
	Associate Developer Provider
	Implement an Identity Provider
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Updating the Logins Map (Android and iOS only)
	Android
	iOS - Objective-C
	iOS - Swift

	Getting a Token (Server Side)
	Connect to an Existing Social Identity (Android, iOS, Unity, and Xamarin)
	Android
	iOS - Objective-C
	iOS - Swift
	Unity
	Xamarin

	Supporting Transition Between Providers
	Android
	iOS - Objective-C
	iOS - Swift
	Unity
	Xamarin

	Switching Identities
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Amazon Cognito Sync
	Synchronizing Data
	Initializing the Amazon Cognito Sync Client
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Understanding Datasets
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Reading and Writing Data in Datasets
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin
	Android
	iOS - Objective-C
	iOS - Swift
	Unity
	Xamarin

	Synchronizing Local Data with the Sync Store
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Handling Callbacks
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Push Sync
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Amazon Cognito Streams
	Amazon Cognito Events

	Logging Amazon Cognito API Calls with AWS CloudTrail
	Amazon Cognito Information in CloudTrail
	Understanding Amazon Cognito Log File Entries

	Limits in Amazon Cognito
	Resource Permissions
	Using the Amazon Cognito Console
	What is the Amazon Cognito Console?
	Delete an Identity Pool
	Delete an Identity from an Identity Pool
	Enable or edit authentication providers
	Change the role associated with an identity type
	Enable or disable unauthenticated identities
	Managing Datasets in the Amazon Cognito Console
	Create a Dataset for an Identity
	Delete a Dataset Associated with an Identity
	Set Up Amazon Cognito Streams
	Bulk Publish Data
	Enable Push Synchronization
	Set Up Amazon Cognito Events

	Document History for Amazon Cognito
	AWS Glossary

