AudioScout™: Audio Content Indexing Software

Aetilius, Inc.

October, 2010

1 Overview

AudioScout™ is a distributed audio content indexing system. It
can index a large collection of audio content for the purpose of
later recognition of unknown signals. Robust to noise, different
encodings and other types of distortion, it can be used for a vari-
ety of applications including duplicate detection of files as well as
more sophisticated uses involving the enforcement of copyrights
and lawful use.

The AudioScout™ system is a collection of servers that manage
the storage and matching of audio signals in a large body of audio
content. When new audio signals are added to the index, a com-
pact hash is calculated based on low-level signal features. This
hash serves as a temporal description of the signal. The hash val-
ues are then added as entries into one of the distributed tables.
AudioScout additionally stores meta information associated with
that signal into a database for later retrieval. For queries of un-
known signals, its perceptual hash must be calculated in order to
find the matching signal in the table and retrieve the associated
metadata.

2 Features

* Able to build index files during normal server operation; can start
new table servers or terminate them at any time without effecting
operation of the main server.

* Make online additions to the table server through the auscoutd front
end server, as well as the use of a utility program to build the index
tables locally.

Ability to hash any part of an unkown signal and perform a lookup
on that signal. As long as the portion being hashed was previously
added to the index, AudioScout should find the matching signal.

System can scale to a large number of tables over a network of
machines.

Separate database server providing multi-threaded access to sqlite
database for storage of related file meta data; can be run on any
machine in the network.

Simple to set up and use. Various client applications can be easily
created to query and add to the index.

Complete system logging integration (syslog) with eight log levels.

Relatively small memory footprint and fast operating time.

client_app

metadatadb

_\

tblservdO tblservdl tblservd?2 tblservdn mdatadb

N N

index0 index1 index2 indexn

3 Architecture

The AudioScout central server manages the storage of
perceptual hashes in the distributed table servers along with the
storage and retrieval of metadata information. A perceptual
hash is a compact temporal description of a signal’s low level
frequency characteristics. Audio Scout uses a perceptual hash
algorithm to extract such a characterization from each signal.
Matches are found by publishing the hash of the query signal to
all the available table servers. Each table server tries to
determine the unique id that is matched most often to the
sequence and sends it back to the main server. The main server
can then use this id to retrieve that entries’ metadata from the
metadata database server.

3.1 AwudioScout Server

This is the main server providing the ability to add new audio
signals to the index as well as the ability to perform queries for
the identification of unknown content. The server is a multi-
threaded process servicing client requests in two modes: query
and insertion. In query mode, the main server publishes the
recieved hash to its network of table servers and waits for the
result. If a match is found, the audio scout server recieves the
unique id of the match from one of the table servers, and then,
using this id, it retrieves the correct information from the
metadata server for return to the client application. If not
found, an empty message is returned. For insertions, a particular
table is randomly chosen from the list of available servers, and
the hash is published for that table to add to its index. The
meta information which is included with the hash from the client
application is stored in the metadata server. The unique id for
that entry is returned to the client application. However, the
source of that metadata is not strictly tied to the contents of the
file; other client applications can easily be created to gather such
information from other sources.

3.2 Distributed Table Servers

Each table server provides access to an associated file index of
hash entries. Since hashing all audio files into an index can
involve a very time consuming process - especially for hundreds,
thousands or even millions of files - this distributed approach
allows for concurrently building separate index files on any

number of host machines. The size of each index file is only
limited by the host machine’s memory limitations. For this
initial process of building the index, a utility program is
provided to read the audio files, hash the files and then add
them to the index.

Once the index is built, the table servers can be started for each
of these index files. Additional insertions can always be done
through the main audio scout server interface or by termination
of the server and adding to the index with the utility program.
While terminating the table server does disable queries against
that particular index’s entries, it does not effect the overall
operation of the system.

It is important to note that new entries added through the audio
scout server are not immediately added to the index, but are
inserted into a temporary index file that can later be merged
into the main index file. The Audio Scout system has included a
simple means to merge the tables by sending user signals to the
table server, which can conveniently be scheduled as a cron task.
For this reason, new additions to the index are not immediately
available, but must wait for the next merge operation. The
reasons for this feature are twofold: (1) the index table used is a
memory mapped file and is not accessible for write operations.
The table must be closed and reopened in write mode, and (2)
since deletions of entries is a tedious process, this can provide a
filtering layer to the addition of new signals to ensure only
legimate files are added.

3.3 MetaDataDB Server

The metadata server is a multi-threaded process that is a
wrapper around a sqlite database for all the metadata. It
operates in two modes: insertion of new entries and query by a
unique id. It is meant to serve requests by the audio scout
server, but it also allows convenient access to metadata through
the sqlite utilities.

4 Public API

The public interface to the auscoutd server is very simple and easy to use.
It can be accessed by the following multi-part zeromq message.

’ cmd — nbframes — hash array — metadata string

cmd - (uint8) represents mode (cmd = 1 for query, cmd = 2 for
submission).

nbframes - (uint32) represents length of the hash array.

hash - (uint32 array) represents the perceptual hash to send.

The metadata string is only for user submissions (cmd = 2) and can be
formed with the following fields, each field seperated by the ascii record
separator character, RS (or 30 in decimal). Each field is a string unless
otherwise noted.

composer—title—performer—date—album—genre—year (int)—duration (int) —part of set (int) ‘

All multi-byte variables are serialized to little-endian format for
transmission over the network.

5 Installation and Set Up

The audio scout servers are quite easy to set up. Here is a general outline
of the process:

1. Create metadata sqlite database with the included sql schema.

2. Start metadatadb server on a particular host machine with the sqlite
database.

3. Build the index files. This can be done with the audioindex utility
file. If an index is not built, a table server may be started and an
empty index will be created. Insertions can then be made with the
audio scout server interface.

4. Start AudioScout server with the address of the metadatadb server.

5. Start Table Server for each audio index file. It must be given the
address and port for where to find the audio scout main server in
order to register and send back results.

6. Start the client application to index new signals or perform queries
for unknown signal content. Currently, there is a simple console
application. Fuller featured client applications can be easily created.

6 Tests

6.1 tblservd tests

To get a sense of the throughput capabilities of the system, the following
test was performed on the table server component!, since that is, in fact,
where the bulk of the work is done. The first two graphs below reveal
system limits across a varying number of worker threads running in the
table server. The first one shows maximum response times when 100
queries flood the table server at five different levels of arrival rates. The
maximum time in each case is the response time for the query that is at
the end of the longest queue that forms. The second graph shows the
corresponding recieve-to-send rate ratios for each number of worker
threads. This ratio is calculated by the rate queries are sent divided by the
rate at which the results are recieved. Each rate is the total number of
queries per second. The ratio itself is a measure of the clearing ability of
the table server. In other words, values closer to one mean greater ability
for the system to service queries without a queue forming. In this case, it
is clear that the increases in performance tend to level off at around 50
threads.

!This test was performed on Intel Pentium IV 1GHz processor

Maximum Response Times from Table Server

25 T T T T - T T T T
ave arrival rates (queries/sec)
20 1000q/s i
m
[$] -
[}
)
(]
£]
10 20 30 40 50 60 70 80 90 100
number threads in table server
Recieve Rate to Send Rate Ratio in Table Server Throughtput
1 T T T T T T — =T T)
° 000q/s - T -
S
=] 0.75
c
[}
2]
s 05
©
[}
& 025
(5]
o
0

10 20 30 40 50 60 70 80 90 100
number threads in table server
The next two graphs below show the same behavior for a fixed number of

worker threads (60) and a varying number of total queries. The data is
taken for three different query rates - 100, 200 and 1000 queries/second.
Notice how the table server can easily handle both 100 and 200
queries/second for up to around 50 queries before a queue forms. Even so,
it seems the table server can still handle larger bursts at these rates. For
example, the maximum response time does not grow to over 5 seconds
until around 200 queries have been submitted.

Maximum Response Times from Table Server

7 T T T T -
g ave arrival rate (querys/sec) /,/’/
2 5T 10000/ T
E 200q/s
= 100q/s
© 3+ i
[%2]
j
o
(=N
)
g 1t i

10 50 100 150 200 250
No. query files submitted to Table Server
Recieve/Send in Table Server Throughput
1 e RN T T T
S 1000q/s
= R 200q/s -------
= 08 [= s E
& NS 100q/s
2 06 :
J<5] N AN
3 .
S 04| N e .
Q N T
8 \;_;;; e -
g 02f S T e
O 1 1 1 1
10 50 100 150 200 250

No. query files submitted to Table Server

6.2 metadatadb Tests

The performance tests on the metadatadb server were conducted by
extracting the metadata from a large corpus of audio files and submitting
them to the server at given query rates, measured in queries per second.
The first two plots show the average response rates and the effective query
rate for different inter-arrival times between the delivered queries. As can
be seen in the plot, the average response time remains quite constant
across all query rates, and the plot of the effective query rate increases as
the inter-arrival time between queries is reduced. Notice how the effective
query rate reaches a maximum of around 250 queries per second when the
queries immediately succeed one another.

Average Response Times for Metadatadb Server

001 T T T T T T T T T
o)
@ 0.008 B
3
£ 0.006 [-
=
3 0004 g
j
o
(=N
@ 0.002 | B
4
0 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
inter-arrival time of queries (ms)
Query Rates for Metadatadb Server
T T T T T T T T T
250 |- als .
g 200 N
Q
(5]
& 150 i
0
>
o 100 | i
>
(=
50 —
O 1 | 1 I 1 1
0 50 100 150 200 250 300 350 400 450 500

inter-arrival time of queries (ms)
In order to increase the query submission rate to above that which is

permitted by simply reducing the inter-arrival time to 0 ms, the test driver
program was designed to include multiple threads from which to submit
queries to the metadatadb server. The driver program extracts the
metadata from all the audio files and passes each thread a portion of
submissions to submit to the server for inclusion into the database. The
next two plots reveal response times and effective query rates for various
numbers of these submission threads in the driver program. The number of
threads in the server is kept to a constant one and the inter-arrival time of
queries is kept to 0 ms. Notice where the average response time slowly
climbs 0.200, as the number of driver threads is increased, and the effective
query rate remains relatively constant (with some statistical fluctuations).

Average Response Times for Metadatadb Server
0.5 T T T

T
response time
04 | R

0.2 =

0.1 -

Response Time (sec)

0 1 1 1 1
1 20 40 60 80 100

number of threads in test driver pushing queries to 1 server thread at full geries/sec

Query Rates for Metadatadb Server

250
200 y
150 b

querys/sec

100 —

50 —

0 1 1 1 1
1 20 40 60 80 100

number of threads in test driver pushing queries to 1 server thread at full geries/sec
On the other hand, the number of threads in the metadatadb server

appears to have little effect on either the query rate or the average
response rate, as shown in the next two graphs.

Average Response Times for Metadatadb Server
0.5 T T T T

04 E

03 _

0.1 -

Response Time (sec)

O 1 1 1 1
1 20 40 60 80 100

Number of threads in Metadatadb Server with 10 test driver threads at full query/sec

Query Rates for Metadatadb Server
290 T T T T
250 E

200 —
150 —

100 y

querys/sec

O 1 1 1 1
1 20 40 60 80 100

Number of threads in Metadatadb Server with 10 test driver threads at full query/sec

10

7 Contact

Aetilius, Inc.
info@aetilius.com

8 Dependencies
— zeromgq version 2.0.9 www.zeromq.org/
— sqlite3 version 3.6.23.1 www.sqlite.org/
— libsndfile version 1.0.21 www.mega-nerd.com/libsndfile/

— libsamplerate version 0.1.7 www.mega-nerd.com/SRC/

— libmpg123 version 1.12.1 www.mpg123.de/api (for mp3 file support)

11

