What is the Expected Return on the Market?

Ian Martin

London School of Economics

Returns on the stock market are predictable

$$return_{t+1} = \frac{price_{t+1} + dividend_{t+1}}{price_{t}} = \underbrace{\frac{price_{t+1}}{price_{t}}}_{capital\ gain} + \underbrace{\frac{dividend_{t+1}}{price_{t}}}_{dividend\ yield}$$

- *Naive investor*: If I buy when the dividend yield is high, I will have a high return on average
- 'Sophisticated' investor: No! The high dividend yield—that is, low price—is a sign that the market anticipates that *future* dividends will be disappointing. I therefore expect that a low capital gain will offset the high dividend yield
- Empirically, it appears that the naive investor is right

S&P 500 Price / 10-Year Average of Earnings

The equity premium

Figure from John Campbell's Princeton Lecture in Finance

Motivation

- Find an asset price that forecasts expected returns
 - without using accounting data
 - without having to estimate any parameters
 - imposing minimal theoretical structure
 - and in real time

1 year horizon, in %

1 month horizon, annualized, in %

Outline

- A volatility index, SVIX, gives a lower bound on the equity premium
- SVIX and VIX
- SVIX as a predictor variable
- 4 What is the probability of a 20% decline in the market?

Outline

- 1 A volatility index, SVIX, gives a lower bound on the equity premium
- SVIX and VIX
- SVIX as a predictor variable
- What is the probability of a 20% decline in the market?

Notation

- S_T : level of S&P 500 index at time T
- *R*_T: gross return on the S&P 500 from time *t* to time *T*
- $R_{f,t}$: riskless rate from time t to time T
- M_T : SDF that prices time-T payoffs from the perspective of time t
- We can price any time-T payoff X_T either via the SDF or by computing expectations with risk-neutral probabilities:

time-
$$t$$
 price of a claim to $X_T = \mathbb{E}_t(M_T X_T) = \frac{1}{R_{f,t}} \mathbb{E}_t^* X_T$

• Asterisks indicate risk-neutral quantities

Risk-neutral variance and the risk premium

As an example, we can write conditional risk-neutral variance as

$$\operatorname{var}_{t}^{*} R_{T} = \mathbb{E}_{t}^{*} R_{T}^{2} - \left(\mathbb{E}_{t}^{*} R_{T}\right)^{2} = R_{f,t} \, \mathbb{E}_{t} \left(M_{T} R_{T}^{2}\right) - R_{f,t}^{2} \tag{1}$$

• We can decompose the equity premium into two components:

$$\mathbb{E}_{t}R_{T} - R_{f,t} = \left[\mathbb{E}_{t}(M_{T}R_{T}^{2}) - R_{f,t}\right] - \left[\mathbb{E}_{t}(M_{T}R_{T}^{2}) - \mathbb{E}_{t}R_{T}\right]$$
$$= \frac{1}{R_{f,t}}\operatorname{var}_{t}^{*}R_{T} - \operatorname{cov}_{t}(M_{T}R_{T}, R_{T})$$

- The first line adds and subtracts $\mathbb{E}_t(M_TR_T^2)$
- The second exploits equation (1) and the fact that $\mathbb{E}_t M_T R_T = 1$

Risk-neutral variance and the risk premium

$$\mathbb{E}_{t} R_{T} - R_{f,t} = \frac{1}{R_{f,t}} \operatorname{var}_{t}^{*} R_{T} - \underbrace{\operatorname{cov}_{t}(M_{T}R_{T}, R_{T})}_{\leq 0, \text{ under the NCC}}$$

- The decomposition splits the risk premium into two pieces
- Risk-neutral variance can be computed from time-t asset prices
- The covariance term can be controlled: it is negative in theoretical models and in the data
- Formalize this key assumption as the *negative correlation condition*:

$$\operatorname{cov}_t(M_T R_T, R_T) \leq 0$$

• ... in lognormal models in which the market's conditional Sharpe ratio exceeds its conditional volatility (Campbell–Cochrane 1999, Bansal–Yaron 2004, and many others).

- ... in lognormal models in which the market's conditional Sharpe ratio exceeds its conditional volatility (Campbell–Cochrane 1999, Bansal–Yaron 2004, and many others).
- 2 ...in a wide range of models with intertemporal investors, state variables, Epstein–Zin preferences, non-Normality, labor income.

- ...in lognormal models in which the market's conditional Sharpe ratio exceeds its conditional volatility (Campbell–Cochrane 1999, Bansal–Yaron 2004, and many others).
- … in a wide range of models with intertemporal investors, state variables, Epstein–Zin preferences, non-Normality, labor income.
- ③ ...if there is a one-period investor who maximizes expected utility, who is fully invested in the market, and whose relative risk aversion $\gamma(C) \equiv -\frac{Cu''(C)}{u'(C)} \geq 1$ (not necessarily constant).

- ...in lognormal models in which the market's conditional Sharpe ratio exceeds its conditional volatility (Campbell–Cochrane 1999, Bansal–Yaron 2004, and many others).
- … in a wide range of models with intertemporal investors, state variables, Epstein–Zin preferences, non-Normality, labor income.
- ③ ...if there is a one-period investor who maximizes expected utility, who is fully invested in the market, and whose relative risk aversion $\gamma(C) \equiv -\frac{Cu''(C)}{u'(C)} \geq 1$ (not necessarily constant).
 - ▶ *Proof.* The given assumption implies that the SDF is proportional to $u'(W_tR_T)$, so we must show that $cov_t(R_Tu'(W_tR_T), R_T) \le 0$.

- ...in lognormal models in which the market's conditional Sharpe ratio exceeds its conditional volatility (Campbell–Cochrane 1999, Bansal–Yaron 2004, and many others).
- … in a wide range of models with intertemporal investors, state variables, Epstein–Zin preferences, non-Normality, labor income.
- ③ ...if there is a one-period investor who maximizes expected utility, who is fully invested in the market, and whose relative risk aversion $\gamma(C) \equiv -\frac{Cu''(C)}{u'(C)} \geq 1$ (not necessarily constant).
 - ▶ *Proof.* The given assumption implies that the SDF is proportional to $u'(W_tR_T)$, so we must show that $cov_t(R_Tu'(W_tR_T), R_T) \le 0$.
 - ► This holds because $R_T u'(W_t R_T)$ is decreasing in R_T : its derivative is $u'(W_t R_T) + W_t R_T u''(W_t R_T) = -u'(W_t R_T) \left[\gamma(W_t R_T) 1 \right] \le 0$.

Whose equity premium?

$$\mathbb{E}_t R_T - R_{f,t} \ge \frac{1}{R_{f,t}} \operatorname{var}_t^* R_T$$

- Does not require that everyone holds the market
- Does not assume that all economic wealth is invested in the market
- Simply ask: What is the equity premium perceived by a rational one-period investor who holds the market and whose risk aversion is at least 1?
- This question is a sensible benchmark even in the presence of constrained and/or irrational investors

Comparison to Merton (1980)

- Merton (1980) suggested estimating the equity premium from $equity\ premium = risk\ aversion \times return\ variance$
- Holds if marginal investor has power utility and the market follows a geometric Brownian motion
- No distinction between risk-neutral and real-world variance in a diffusion-based model (Girsanov's theorem)
- The appropriate generalization relates the equity premium to *risk-neutral* variance
 - ▶ Bonus: Risk-neutral variance is directly measurable from asset prices

Comparison to Hansen–Jagannathan (1991)

$$\frac{1}{R_{f,t}} \operatorname{var}_{t}^{*} R_{T} \leq \mathbb{E}_{t} R_{T} - R_{f,t} \leq R_{f,t} \cdot \sigma_{t}(M_{T}) \cdot \sigma_{t}(R_{T})$$

- Left-hand inequality is the new result
 - Good: relates unobservable equity premium to an observable quantity
 - ▶ Bad: requires the negative correlation condition
- Right-hand inequality is the Hansen–Jagannathan bound
 - Good: no assumptions
 - ▶ Bad: neither side is observable

- We want to measure $\frac{1}{R_{f,t}} \operatorname{var}_t^* R_T = \frac{1}{R_{f,t}} \operatorname{\mathbb{E}}_t^* R_T^2 \frac{1}{R_{f,t}} \left(\operatorname{\mathbb{E}}_t^* R_T \right)^2$
- Since $\mathbb{E}_t^* R_T = R_{f,t}$, this boils down to calculating $\frac{1}{R_{f,t}} \mathbb{E}_t^* S_T^2$
- That is: how can we price the 'squared contract' with payoff S_T^2 ?

- How can we price the 'squared contract' with payoff S_T^2 ?
- Suppose you buy:
 - 2 calls with strike K = 0.5
 - 2 calls with strike K = 1.5
 - 2 calls with strike K = 2.5
 - \triangleright 2 calls with strike K = 3.5
 - etc . . .

- So, $\frac{1}{R_{t,t}} \mathbb{E}_t^* S_T^2 \approx 2 \sum_K \operatorname{call}_{t,T}(K)$
- In fact, $\frac{1}{R_{f,t}} \mathbb{E}_t^* S_T^2 = 2 \int_0^\infty \operatorname{call}_{t,T}(K) dK$

• Using put-call parity, we end up with a simple formula:

$$\frac{1}{R_{f,t}} \operatorname{var}_{t}^{*} R_{T} = \frac{2}{S_{t}^{2}} \left\{ \int_{0}^{F_{t,T}} \operatorname{put}_{t,T}(K) dK + \int_{F_{t,T}}^{\infty} \operatorname{call}_{t,T}(K) dK \right\}$$

• $F_{t,T}$ is the forward price of the underlying, which is known at time t

1mo horizon, annualized, 10-day moving avg. Mid prices in black, bid prices in red

3mo horizon, annualized, 10-day moving avg. Mid prices in black, bid prices in red

1yr horizon, annualized, 10-day moving avg. Mid prices in black, bid prices in red

Robustness

• Can't observe deep-OTM option prices

Robustness

• Even near-the-money, can't observe a continuum of strikes

Robustness

- Both these effects mean that the true lower bound is even higher
- By ignoring deep-OTM options, we underestimate the true area under the curve
- Discretization in strike also leads to underestimating the true area, because $\operatorname{call}_{t,T}(K)$ and $\operatorname{put}_{t,T}(K)$ are both convex in K
- Maybe option markets were totally illiquid in November 2008?
- If so, we should expect to see wide bid-ask spread
- Is lower bound much lower if bid prices are used for options, rather than mid prices? No. And volume was high

horizon	mean	s.d.	min	1%	10%	25%	50%	75%	90%	99%	max
1 mo	5.00	4.60	0.83	1.03	1.54	2.44	3.91	5.74	8.98	25.7	55.0
2 mo	5.00	3.99	1.01	1.20	1.65	2.61	4.11	5.91	8.54	23.5	46.1
3 mo	4.96	3.60	1.07	1.29	1.75	2.69	4.24	5.95	8.17	21.4	39.1
6 mo	4.89	2.97	1.30	1.53	1.95	2.88	4.39	6.00	7.69	16.9	29.0
1 yr	4.64	2.43	1.47	1.64	2.07	2.81	4.35	5.72	7.19	13.9	21.5

Table: Mean, standard deviation, and quantiles of EP bound (in %)

- The time series average of the lower bound is about 5%
- It is volatile and right-skewed, particularly at short horizons

Outline

- 1 A volatility index, SVIX, gives a lower bound on the equity premium
- SVIX and VIX
- SVIX as a predictor variable
- What is the probability of a 20% decline in the market?

SVIX and VIX

• By analogy with VIX, define

$$SVIX_t^2 = \frac{2R_{f,t}}{(T-t) \cdot F_{t,T}^2} \left\{ \int_0^{F_{t,T}} put_{t,T}(K) dK + \int_{F_{t,T}}^{\infty} call_{t,T}(K) dK \right\}$$

- In this notation, equity premium $\geq R_{f,t} \cdot \text{SVIX}_t^2$
- Compare SVIX with

$$VIX_{t}^{2} = \frac{2R_{f,t}}{T-t} \left\{ \int_{0}^{F_{t,T}} \frac{1}{K^{2}} \operatorname{put}_{t,T}(K) dK + \int_{F_{t,T}}^{\infty} \frac{1}{K^{2}} \operatorname{call}_{t,T}(K) dK \right\}$$

• These are definitions, not statements about pricing

SVIX and VIX

- VIX is similar to SVIX, but is more sensitive to left tail events
- SVIX measures risk-neutral variance, $SVIX^2 = var_t^*(R_T/R_{f,t})$
- VIX measures risk-neutral entropy,
 - $VIX^{2} = \log \mathbb{E}_{t}^{*}(R_{T}/R_{f,t}) \mathbb{E}_{t}^{*}\log(R_{T}/R_{f,t})$
- What VIX does *not* measure: VIX² $\neq \frac{1}{T-t} \mathbb{E}_t^* \left[\int_t^T \sigma_\tau^2 d\tau \right]$

VIX and SVIX

Figure: VIX (dotted) and SVIX (solid). Jan 4, 1996–Jan 31, 2012 Figure shows 10-day moving average. T=1 month

VIX minus SVIX

Figure: VIX minus SVIX. Jan 4, 1996–Jan 31, 2012 Figure shows 10-day moving average. T = 1 month

No conditionally lognormal model fits option prices

• If returns and the SDF are conditionally lognormal with return volatility $\sigma_{R,t}$ then we can calculate VIX and SVIX in closed form:

$$\begin{split} \text{SVIX}_t^2 &= \frac{1}{T-t} \left(e^{\sigma_{R,t}^2(T-t)} - 1 \right) \\ \text{VIX}_t^2 &= \sigma_{R,t}^2 \end{split}$$

- VIX would be lower than SVIX—which it never is in my sample
- No conditionally lognormal model is consistent with option prices

Outline

- 1 A volatility index, SVIX, gives a lower bound on the equity premium
- SVIX and VIX
- SVIX as a predictor variable
- 4 What is the probability of a 20% decline in the market?

Might the lower bound hold with equality?

- Time-series average of lower bound in recent data is around 5%
- Fama and French (2002) estimate unconditional equity premium of 3.83% (from dividend growth) or 4.78% (from earnings growth)
- Fama interviewed by Roll: "I always think of the number, the equity premium, as five per cent."
- Estimates of $cov(M_TR_T, R_T)$ in linear factor models are statistically and economically close to zero

$\widehat{\text{cov}}(M_T R_T, R_T)$ is negative and close to zero

	constant	$R_M - R_f$	SMB	HML	MOM	$\widehat{\operatorname{cov}}(M_TR_T,R_T)$
Full sample	1.072	-2.375	-0.648	-5.489	-5.572	-0.0018
	(0.020)	(0.746)	(1.011)	(1.131)	(1.033)	(0.0020)
Jan '27-Dec '62	1.071	-2.355	-0.587	-3.882	-5.552	-0.0021
	(0.029)	(1.034)	(1.747)	(2.163)	(1.565)	(0.0041)
Jan '63-Dec '13	1.092	-3.922	-2.400	-9.020	-5.152	-0.0020
	(0.029)	(1.272)	(1.475)	(1.795)	(1.427)	(0.0022)
Jan '96-Dec '13	1.047	-3.231	-2.327	-5.789	-2.548	-0.0017
	(0.034)	(1.981)	(2.224)	(2.491)	(1.637)	(0.0036)

Table: Estimates of coefficients in the 4-factor model, and of $cov(M_TR_T, R_T)$.

- Test assets: market, riskless asset, 5×5 portfolios sorted on size and B/M, 10 momentum portfolios; monthly data from Ken French's website
- Estimate M and $cov(M_TR_T, R_T)$ by GMM

Forecasting returns with risk-neutral variance

- We want to test the null hypothesis that $\mathbb{E}_t R_T R_{f,t} = R_{f,t} \cdot \text{SVIX}_t^2$
- Run regressions

$$R_T - R_{f,t} = \alpha + \beta \times R_{f,t} \cdot \text{SVIX}_t^2 + \varepsilon_T$$

- Sample period: January 1996-January 2012
- Robust Hansen–Hodrick standard errors account for heteroskedasticity and overlapping observations

Forecasting returns with risk-neutral variance

horizon	$\widehat{\alpha}$	s.e.	$\widehat{\beta}$	s.e.	R^2
1 mo	0.012	[0.064]	0.779	[1.386]	0.34%
2 mo	-0.002	[0.068]	0.993	[1.458]	0.86%
3 mo	-0.003	[0.075]	1.013	[1.631]	1.10%
6 mo	-0.056	[0.058]	2.104	[0.855]	5.72%
1 yr	-0.029	[0.093]	1.665	[1.263]	4.20%

Table: Coefficient estimates for the forecasting regression.

• Cannot reject the null at any horizon

Forecasting returns with risk-neutral variance

horizon	$\widehat{\alpha}$	s.e.	$\widehat{\beta}$	s.e.	R^2
1 mo	-0.095	[0.061]	3.705	[1.258]	3.36%
2 mo	-0.081	[0.062]	3.279	[1.181]	4.83%
3 mo	-0.076	[0.067]	3.147	[1.258]	5.98%
6 mo	-0.043	[0.072]	2.319	[1.276]	4.94%
1 yr	0.045	[0.088]	0.473	[1.731]	0.27%

Table: Coefficient estimates excluding Aug '08-Jul '09

• Predictability is not driven by the crisis

Realized variance doesn't predict reliably

horizon	$\widehat{\alpha}$	s.e.	\widehat{eta}	s.e.	R^2
1 mo	0.049	[0.045]	-0.462	[0.784]	0.27%
2 mo	0.044	[0.043]	-0.341	[0.586]	0.26%
3 mo	0.035	[0.046]	-0.173	[0.722]	0.09%
6 mo	-0.025	[0.050]	1.182	[0.430]	5.45%
1 yr	-0.042	[0.068]	1.293	[0.499]	8.13%

Table: Regression $R_T - R_{f,t} = \alpha + \beta \times SVAR_t + \varepsilon_T$, full sample.

Realized variance doesn't predict reliably

horizon	$\widehat{\alpha}$	s.e.	$\widehat{\beta}$	s.e.	R^2
1 mo	-0.007	[0.049]	1.478	[1.125]	0.71%
2 mo	-0.006	[0.050]	1.429	[1.272]	1.13%
3 mo	-0.004	[0.049]	1.342	[1.265]	1.32%
6 mo	0.028	[0.049]	0.299	[1.424]	0.09%
1 yr	0.034	[0.064]	-0.348	[2.469]	0.15%

Table: Regression $R_T - R_{f,t} = \alpha + \beta \times SVAR_t + \varepsilon_T$, excluding Aug '08–Jul '09.

Forecasting returns with valuation ratios

- Goyal–Welch (2008): Conventional predictor variables fail out-of-sample
- Campbell–Thompson (2008) response: Gordon growth model suggests a forecast

$$\mathbb{E}_t R_T = D/P_t + G$$

- Important: coefficient on D/P_t is not estimated but fixed a priori
- A good comparison for the risk-neutral variance approach

R^2 from Campbell and Thompson (2008)

	Sample: 1927-1956		Sample: 1956-1980			Sample: 1980-2005			
	Unconstrained	Pos. Intercept, Bounded Slope	Fixed Coefs	Unconstrained	Pos. Intercept, Bounded Slope	Fixed Coefs	Unconstrained	Pos. Intercept, Bounded Slope	Fixed Coefs
				A: Mor	nthly Return	s			
Dividend/price	-0.86%	0.21%	0.63%	0.88%	0.57%	0.67%	-1.30%	-0.21%	-0.54%
Earnings/price	0.16	0.28	1.04	0.56	0.45	0.30	-0.53	-0.09	0.07
Smooth earnings/price	0.56	0.53	1.33	0.80	0.48	0.51	-1.06	-0.06	0.01
Dividend/price + growth	-0.15	0.18	0.78	0.18	0.18	0.59	0.11	0.11	0.14
Earnings/price + growth	-0.06	0.12	0.73	-0.12	-0.12	0.33	0.05	0.05	0.16
Smooth earnings/price + growth	0.09	0.25	0.93	0.19	0.19	0.47	0.06	0.06	0.16
Book-to-market + growth				-0.62	-0.73	0.73	-0.12	-0.02	0.00
Dividend/price + growth - real rate	-0.01	0.30	0.45	-0.24	-0.24	0.76	0.11	0.11	-0.08
Earnings/price + growth - real rate	0.06	0.20	0.41	-0.34	-0.34	0.66	0.06	0.06	0.03
Smooth earnings/price + growth - real rate	0.27	0.39	0.60	-0.28	-0.28	0.74	0.04	0.04	0.02
Book-to-market + growth - real rate				-0.82	-0.91	0.89	-0.14	-0.02	-0.27
				B: Ann	nual Returns				
Dividend/price	9.95	4.53	3.67	9.46	5.99	6.88	-16.19	-1.38	-7.98
Earnings/price	7.45	5.34	7.58	5.08	3.25	2.56	-6.06	0.88	1.47
Smooth earnings/price	12.51	8.22	10.49	4.93	3.71	3.71	-8.86	1.33	1.33
Dividend/price + growth	2.77	3.05	4.83	1.76	1.74	6.61	1.87	1.82	0.28
Earnings/price + growth	2.21	2.38	4.37	-0.85	-0.85	3.97	1.63	1.63	1.60
Smooth earnings/price + growth	3.73	3.87	6.38	1.27	1.19	4.65	2.30	2.23	1.81
Book-to-market + growth				-7.09	-5.16	10.34	-0.24	0.14	-2.43
Dividend/price + growth - real rate	4.40	4.51	1.67	-3.57	-3.56	8.28	2.19	2.19	-2.95
Earnings/price + growth - real rate	3.44	3.49	1.25	-4.68	-4.68	7.16	1.88	1.88	-0.64
Smooth earnings/price + growth - real rate	5.34	5.37	3.19	-4.91	-4.84	7.32	2.36	2.36	-0.47
Book-to-market + growth - real rate				-3.36	-4.22	11.85	-0.25	0.35	-6.20

Out-of-sample R^2

Fixed coefficients $\alpha = 0$, $\beta = 1$

horizon	R_{OS}^2
1 mo	0.42%
2 mo	1.11%
3 mo	1.49%
6 mo	4.86%
1 yr	4.73%

Table: R^2 using SVIX_t² as predictor variable with $\alpha = 0$, $\beta = 1$

Are the R^2 too low?

No. Small $R^2 \longrightarrow \text{high Sharpe ratios}$

- We can use the predictor in a market-timing strategy
- On day t, invest α_t in the S&P 500 index and $1 \alpha_t$ in cash
- Choose α_t proportional to 1-mo SVIX_t²
- Earns a daily Sharpe ratio of 1.97% in sample
- For comparison, the daily Sharpe ratio of the index is 1.35%
- The point is not that Sharpe ratios are necessarily the right metric, but that apparently small R^2 can make a big difference

The value of a dollar invested

In cash (yellow), in the S&P 500 (red), and in the market-timing strategy (blue)

• Mean: 35% S&P 500, 65% cash. Median: 27% S&P 500, 73% cash.

Risk-neutral variance vs. valuation ratios

Blue: earnings yield (Campbell and Thompson (2008)). Red: risk-neutral variance

Black Monday, 1987

- It is interesting to identify points at which my claims contrast most starkly with the conventional view based on valuation ratios
- In particular: what happened to the equity premium during and immediately after Black Monday in 1987, which was by far the worst day in stock market history?
- Valuation ratios: it moved from about 5% to about 6%
 - Suppose D/P = 2% and then market *halves* in value. D/P only increases to 4%
- Options: it exploded
 - ▶ Implied risk premium about twice as high as in the recent crisis

Risk-neutral variance exploded on Black Monday

1mo horizon, annualized and using VXO as a proxy for true measure

Risk-neutral variance vs. valuation ratios

- Campbell–Shiller: $d_t p_t = k + \mathbb{E}_t \sum_{j=0}^{\infty} \rho^j \left(r_{t+1+j} \Delta d_{t+1+j} \right)$
- If dividend growth is unforecastable,

$$d_t - p_t = k + \sum_{j=0}^{\infty} \rho^j \, \mathbb{E}_t \, r_{t+1+j}$$

- Dividend yield measures expected returns over the very long run
- Difference between SVIX_t² and $d_t p_t \approx$ gap between short-run expected returns and long-run expected returns
 - ► Consider the late 1990s: 1-year expected returns (SVIX $_t^2$) were high, very long-run expected returns (D/P) were low

The term structure of the equity premium

• In bad times, high equity premia can mostly be attributed to very high short-run premia

What's the equity premium right now?

• Annualized 1-month equity premium $\approx 20.77\%^2 = 4.3\%$

Outline

- 1 A volatility index, SVIX, gives a lower bound on the equity premium
- SVIX and VIX
- SVIX as a predictor variable
- What is the probability of a 20% decline in the market?

- Take the perspective of an investor with log utility whose portfolio is fully invested in the market
- Expectations of such an investor obey the following relationship:

$$\widetilde{\mathbb{E}}_t X_T = \frac{1}{R_{f,t}} \, \mathbb{E}_t^* \left[X_T R_T \right]$$

- So if we can price a claim to X_TR_T then we know the log investor's expectation of X_T
- Interpretation: "What a log investor would have to believe about X_T to make him or her happy to hold the market"

$$\bullet \ \widetilde{\mathbb{P}}\left(R_T < \alpha\right) = \alpha \left[\mathrm{put}'_{t,T}(\alpha S_t) - \frac{\mathrm{put}_{t,T}(\alpha S_t)}{\alpha S_t} \right]$$

T=1 mo

T=2 mo

T=3 mo

T = 6 mo

T = 1 yr

New directions

- What is the expected return on an individual stock? (joint work with **Christian Wagner**, Copenhagen Business School)
- Our approach outperforms conventional predictors

Conclusions

- Have shown how to measure the equity premium in real time
- The results point to a new view of the equity premium
 - Extremely volatile, at faster-than-business-cycle frequency
 - Right-skewed, with occasional opportunities to earn exceptionally high expected excess returns in the short run
- Black Monday, October 19, 1987, provides the starkest illustration
 - ▶ D/P: annual equity premium moved from 4% to 5%
 - ▶ SVIX: equity premium was $\sim 8\%$ over the next one month