Earth Syst. Sci. Data, 8, 1–45, 2016 www.earth-syst-sci-data.net/8/1/2016/ doi:10.5194/essd-8-1-2016 © Author(s) 2016. CC Attribution 3.0 License.

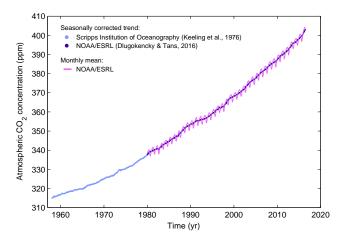
Global Carbon Budget 2016

Corinne Le Quéré¹, Robbie M. Andrew², Josep G. Canadell³, Stephen Sitch⁴, Jan Ivar Korsbakken², Glen P. Peters², Andrew C. Manning⁵, Thomas A. Boden⁶, Pieter P. Tans⁷, Richard A. Houghton⁸, Ralph F. Keeling⁹, Simone Alin¹⁰, Oliver D. Andrews¹, Peter Anthoni¹¹, Leticia Barbero^{12,13}, Laurent Bopp¹⁴, Frédéric Chevallier¹⁴, Louise P. Chini¹⁵, Philippe Ciais¹⁴, Kim Currie¹⁶, Christine Delire¹⁷, Scott C. Doney¹⁸, Pierre Friedlingstein¹⁹, Thanos Gkritzalis²⁰, Ian Harris²¹, Judith Hauck²², Vanessa Haverd²³, Mario Hoppema²², Kees Klein Goldewijk²⁴, Atul K. Jain²⁵, Etsushi Kato²⁶, Arne Körtzinger²⁷, Peter Landschützer²⁸, Nathalie Lefèvre²⁹, Andrew Lenton³⁰, Sebastian Lienert^{31,32}, Danica Lombardozzi³³, Joe R. Melton³⁴, Nicolas Metzl²⁹, Frank Millero³⁵, Pedro M. S. Monteiro³⁶, David R. Munro³⁷, Julia E. M. S. Nabel²⁸, Shin-ichiro Nakaoka³⁸, Kevin O'Brien³⁹, Are Olsen⁴⁰, Abdirahman M. Omar⁴⁰, Tsuneo Ono⁴¹, Denis Pierrot^{12,13}, Benjamin Poulter^{42,43}, Christian Rödenbeck⁴⁴, Joe Salisbury⁴⁵, Ute Schuster⁴, Jörg Schwinger⁴⁶, Roland Séférian¹⁷, Ingunn Skjelvan⁴⁶, Benjamin D. Stocker⁴⁷, Adrienne J. Sutton^{39,10}, Taro Takahashi⁴⁸, Hanqin Tian⁴⁹, Bronte Tilbrook⁵⁰, Ingrid T. van der Laan-Luijkx⁵¹, Guido R. van der Werf⁵², Nicolas Viovy¹⁴, Anthony P. Walker⁵³, Andrew J. Wiltshire⁵⁴, and Sönke Zaehle⁴⁴ ¹Tyndall Centre for Climate Change Research, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK ²Center for International Climate and Environmental Research – Oslo (CICERO), Oslo, Norway ³Global Carbon Project, CSIRO Oceans and Atmosphere, GPO Box 3023, Canberra, ACT 2601, Australia ⁴College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK ⁵Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK ⁶Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, Oak Ridge, TN, USA ⁷National Oceanic & Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL), Boulder, CO 80305, USA ⁸Woods Hole Research Center (WHRC), Falmouth, MA 02540, USA ⁹University of California, San Diego, Scripps Institution of Oceanography, La Jolla, CA 92093-0244, USA ¹⁰National Oceanic & Atmospheric Administration/Pacific Marine Environmental Laboratory (NOAA/PMEL), 7600 Sand Point Way NE, Seattle, WA 98115, USA ¹¹Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research/Atmospheric Environmental Research, 82467 Garmisch-Partenkirchen, Germany ¹²Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School for Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA ¹³National Oceanic & Atmospheric Administration/Atlantic Oceanographic & Meteorological Laboratory (NOAA/AOML), Miami, FL 33149, USA ¹⁴Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre-Simon Laplace, CEA-CNRS-UVSQ, CE Orme des Merisiers, 91191 Gif sur Yvette CEDEX, France ¹⁵Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA ¹⁶National Institute of Water and Atmospheric Research (NIWA), Dunedin 9054, New Zealand ¹⁷Centre National de Recherche Météorologique, Unite mixte de recherche 3589 Météo-France/CNRS, 42 Avenue Gaspard Coriolis, 31100 Toulouse, France ¹⁸Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, USA ¹⁹College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK ²⁰Flanders Marine Institute, InnovOcean, Wandelaarkaai 7, 8400 Ostend, Belgium ²¹Climatic Research Unit, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK

²²Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Postfach 120161, 27515 Bremerhaven, Germany ²³CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT 2601, Australia ²⁴PBL Netherlands Environmental Assessment Agency, The Hague/Bilthoven and Utrecht University, Utrecht, the Netherlands ²⁵Department of Atmospheric Sciences, University of Illinois, Urbana, IL 61821, USA ²⁶Institute of Applied Energy (IAE), Minato-ku, Tokyo 105-0003, Japan ²⁷GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany ²⁸Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany ²⁹Sorbonne Universités (UPMC, Univ Paris 06), CNRS, IRD, MNHN, LOCEAN/IPSL Laboratory, 75252 Paris, France ³⁰CSIRO Oceans and Atmosphere, P.O. Box 1538, Hobart, TAS, Australia ³¹Climate and Environmental Physics, University of Bern, Bern, Switzerland ³²Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland ³³National Center for Atmospheric Research, Climate and Global Dynamics, Terrestrial Sciences Section, Boulder, CO 80305, USA ³⁴Climate Research Division, Environment and Climate Change Canada, Victoria, Canada ³⁵Department of Ocean Sciences, RSMAS/MAC, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA ³⁶Ocean Systems and Climate, CSIR-CHPC, Cape Town, 7700, South Africa ³⁷Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine Research, University of Colorado, Campus Box 450, Boulder, CO 80309-0450, USA ³⁸Center for Global Environmental Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan ³⁹Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA 98195, USA ⁴⁰Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Allégaten 70, 5007 Bergen, Norway ⁴¹National Research Institute for Far Sea Fisheries, Japan Fisheries Research and Education Agency 2-12-4 Fukuura, Kanazawa-Ku, Yokohama 236-8648, Japan ⁴²NASA Goddard Space Flight Center, Biospheric Science Laboratory, Greenbelt, MD 20771, USA ⁴³Department of Ecology, Montana State University, Bozeman, MT 59717, USA ⁴⁴Max Planck Institute for Biogeochemistry, P.O. Box 600164, Hans-Knöll-Str. 10, 07745 Jena, Germany ⁴⁵University of New Hampshire, Ocean Process Analysis Laboratory, 161 Morse Hall, 8 College Road, Durham, NH 03824, USA ⁴⁶Uni Research Climate, Bjerknes Centre for Climate Research, Nygårdsgaten 112, 5008 Bergen, Norway ⁴⁷Imperial College London, Life Science Department, Silwood Park, Ascot, Berkshire, SL5 7PY, UK ⁴⁸Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA ⁴⁹School of Forestry and Wildlife Sciences, Auburn University, 602 Ducan Drive, Auburn, AL 36849, USA ⁵⁰CSIRO Oceans and Atmosphere and Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, TAS, Australia ⁵¹Department of Meteorology and Air Quality, Wageningen University & Research, P.O. Box 47, 6700AA Wageningen, the Netherlands ⁵²Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, the Netherlands ⁵³Environmental Sciences Division & Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA ⁵⁴Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, UK *Correspondence to:* Corinne Le Quéré (c.lequere@uea.ac.uk) Received: 5 October 2016 - Published in Earth Syst. Sci. Data Discuss.: 12 October 2016 Revised: 12 October 2016 – Accepted: 18 October 2016 – Published:

Abstract. ISIAccurate assessment of anthropogenic carbon dioxide (CO_2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate

change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO₂ emissions from fossil fuels and industry ($E_{\rm FF}$) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E_{LUC}), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO_2 concentration is measured directly and its rate of growth (G_{ATM}) is computed from the annual changes in concentration. The mean ocean CO₂ sink (S_{OCEAN}) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S_{OCEAN} is evaluated with data products based on surveys of ocean CO_2 measurements. The global residual terrestrial CO_2 sink (S_{LAND}) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as $\pm 1\sigma$, reflecting the current capacity to characterise [1] the annual estimates of each component of the global carbon budget. For the last decade available (2006–2015), $E_{\rm FF}$ was 9.3 ± 0.5 GtC yr⁻¹, $E_{\rm LUC}$ 1.0 ± 0.5 GtC yr⁻¹, G_{ATM} 4.5 ± 0.1 GtC yr⁻¹, S_{OCEAN} 2.6 ± 0.5 GtC yr⁻¹, and S_{LAND} 3.1 ± 0.9 GtC yr⁻¹. For year 2015 alone, the growth in $E_{\rm FF}$ was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr⁻¹, showing a slowdown in growth of these emissions compared to the average growth of $1.8 \% \text{ yr}^{-1}$ that took place during 2006–2015. Also, for 2015, E_{LUC} was 1.3 ± 0.5 GtC yr⁻¹, G_{ATM} was 6.3 ± 0.2 GtC yr⁻¹, S_{OCEAN} was 3.0 ± 0.5 GtC yr⁻¹, and S_{LAND} was 1.9 ± 0.9 GtC yr⁻¹. G_{ATM} was higher in 2015 compared to the past decade (2006–2015), reflecting a smaller S_{LAND} for that year. The global atmospheric CO₂ concentration reached 399.4 ± 0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in $E_{\rm FF}$ with +0.2 % (range of -1.0 to +1.8 %) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of an unchanged $E_{\rm FF}$ in 2016, the growth rate in atmospheric CO₂ concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink (SLAND) in response to El Niño conditions of 2015–2016. From this projection of $E_{\rm FF}$ and assumed constant $E_{\rm LUC}$ for 2016, cumulative emissions of CO₂ will reach 570 \pm 55 GtC (2085 \pm 205 GtCO₂) for 1870–2016, about 75 % from $E_{\rm FF}$ and 25 % from $E_{\rm LUC}$. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015b, a, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2016).


1 Introduction

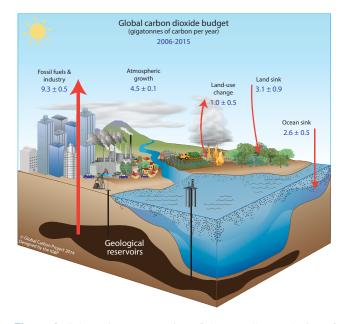
The concentration of carbon dioxide (CO₂) in the atmosphere has increased from approximately 277 parts per million (ppm) in 1750 (Joos and Spahni, 2008), the beginning of the ⁵ industrial era, to 399.4 \pm 0.1 ppm in 2015 (Dlugokencky and Tans, 2016). The Mauna Loa station, which holds the longest running record of direct measurements of atmospheric CO₂ concentration (Tans and Keeling, 2014), went above 400 ppm for the first time in May 2013 (Scripps, 2013). The global ¹⁰ monthly average concentration was above 400 ppm in March

- through May 2015 and again since November 2015 (Dlugokencky and Tans, 2016; Fig. 1). The atmospheric CO_2 increase above pre-industrial levels was, initially, primarily caused by the release of carbon to the atmosphere from
- ¹⁵ deforestation and other land-use-change activities (Ciais et al., 2013). While emissions from fossil fuels started before the industrial era, they only became the dominant source of anthropogenic emissions to the atmosphere from around

1920, and their relative share has continued to increase until present. Anthropogenic emissions occur on top of an active natural carbon cycle that circulates carbon between the reservoirs of the atmosphere, ocean, and terrestrial biosphere on timescales from sub-daily to millennia, while exchanges with geologic reservoirs occur at longer timescales (Archer et al., 2009).

The global carbon budget presented here refers to the mean, variations, and trends in the perturbation of CO_2 in the atmosphere, referenced to the beginning of the industrial era. It quantifies the input of CO_2 to the atmosphere by emissions from human activities, the growth rate of atmospheric ³⁰ CO_2 concentration, and the resulting changes in the storage of carbon in the land and ocean reservoirs in response to increasing atmospheric CO_2 levels, climate and variability, and other anthropogenic and natural changes (Fig. 2). An understanding of this perturbation budget over time and the under-³⁵ lying variability and trends of the natural carbon cycle is necessary to understand the response of natural sinks to changes

Figure 1. Surface average atmospheric CO₂ concentration, deseasonalised (ppm). The 1980–2016 monthly data are from NOAA/ESRL (Dlugokencky and Tans, 2016) and are based on an average of direct atmospheric CO₂ measurements from multiple stations in the marine boundary layer (Masarie and Tans, 1995). The 1958–1979 monthly data are from the Scripps Institution of Oceanography, based on an average of direct atmospheric CO₂ measurements from the Mauna Loa and South Pole stations (Keeling et al., 1976). To take into account the difference of mean CO₂ between the NOAA/ESRL and the Scripps station networks used here, the Scripps surface average (from two stations) was harmonised to match the NOAA/ESRL surface average (from multiple stations) by adding the mean difference of 0.542 ppm, calculated here from overlapping data during 1980–2012. The mean seasonal cycle is also shown from 1980 (in pink).


in climate, CO_2 , and land-use-change drivers, and the permissible emissions for a given climate stabilisation target.

The components of the CO₂ budget that are reported annually in this paper include separate estimates for the CO₂ $_{5}$ emissions from (1) fossil fuel combustion and oxidation and cement production (E_{FF} ; GtC yr⁻¹) and (2) the emissions resulting from deliberate human activities on land leading to land-use change (E_{LUC} ; GtC yr⁻¹), as well as their partitioning among (3) the growth rate of atmospheric CO₂ con- $_{10}$ centration (G_{ATM} ; GtC yr⁻¹), and the uptake of CO₂ by the "CO₂ sinks" in (4) the ocean (S_{OCEAN} ; GtC yr⁻¹) and (5) on land (S_{LAND} ; GtC yr⁻¹). The CO₂ sinks as defined here include the response of the land and ocean to elevated CO₂

and changes in climate and other environmental conditions. ¹⁵ The global emissions and their partitioning among the atmosphere, ocean, and land are in balance:

$$E_{\rm FF} + E_{\rm LUC} = G_{\rm ATM} + S_{\rm OCEAN} + S_{\rm LAND}.$$
 (1)

 G_{ATM} is usually reported in ppm yr⁻¹, which we convert to units of carbon mass per year, GtC yr⁻¹, using 20 1 ppm = 2.12 GtC (Ballantyne et al., 2012; Prather et al., 2012; Table 1). We also include a quantification of E_{FF} by country, computed with both territorial and consumption-based accounting (see Sect. 2152).

Figure 2. Schematic representation of the overall perturbation of the global carbon cycle caused by anthropogenic activities, averaged globally for the decade 2006–2015. The arrows represent emission from fossil fuels and industry (E_{FF}), emissions from deforestation and other land-use change (E_{LUC}), the growth rate in atmospheric CO₂ concentration (G_{ATM}), and the uptake of carbon by the "sinks" in the ocean (S_{OCEAN}) and land (S_{LAND}) reservoirs. All fluxes are in units of GtC yr⁻¹, with uncertainties reported as $\pm 1\sigma$ (68 % confidence that the real value lies within the given interval) as described in the text. This figure is an update of one prepared by the International Geosphere-Biosphere Programme for the Global Carbon Project (GCP), first presented in Le Quéré (2009).

Equation (1) partly omits two kinds of processes. The first is the net input of CO_2 to the atmosphere from the chemical $_{25}$ oxidation of reactive carbon-containing gases from sources other than the combustion of fossil fuels (e.g. fugitive anthropogenic CH₄ emissions, industrial processes, and biogenic emissions from changes in vegetation, fires, wetlands), primarily methane (CH₄), carbon monoxide (CO), and volatile ³⁰ organic compounds such as isoprene and terpene (Gonzalez-Gaya et al., 2016). CO emissions are currently implicit in $E_{\rm FF}$, while fugitive anthropogenic CH₄ emissions are not and thus their inclusion would result in a small increase in $E_{\rm FF}$. The second is the anthropogenic perturbation to carbon cycling in terrestrial freshwaters, estuaries, and coastal areas, which modifies lateral fluxes from land ecosystems to the open ocean; the evasion of CO₂ flux from rivers, lakes, and estuaries to the atmosphere; and the net air-sea anthropogenic CO₂ flux of coastal areas (Regnier et al., 2013). The 40 inclusion of freshwater fluxes of anthropogenic CO2 would affect the estimates of, and partitioning between, SLAND and S_{OCEAN} in Eq. (1) in complementary ways, but it would not affect the other terms. These flows are omitted in the absence of annual information on the natural vs. anthropogenic per- 45

Unit 1	Unit 2	Conversion	Source
GtC (gigatonnes of carbon)	ppm (parts per million) ^a	2.12 ^b	Ballantyne et al. (2012)
GtC (gigatonnes of carbon)	PgC (petagrams of carbon)	1	SI unit conversion
GtCO ₂ (gigatonnes of carbon dioxide)	GtC (gigatonnes of carbon)	3.664	44.01/12.011 in mass equivalent SI unit conversion
GtC (gigatonnes of carbon)	MtC (megatonnes of carbon)	1000	

Table 1. Factors used to convert carbon in various units (by convention, unit $1 = \text{unit } 2 \cdot \text{conversion}$).

^a Measurements of atmospheric CO₂ concentration have units of dry-air mole fraction. "ppm" is an abbreviation for micromole per mole of dry air. ^b The use of a factor of 2.12 assumes that all the atmosphere is well mixed within one year. In reality, only the troposphere is well mixed and the growth rate of CO₂ concentration in the less well-mixed stratosphere is not measured by sites from the NOAA network. Using a factor of 2.12 makes the approximation that the growth rate of CO₂ concentration in the stratosphere equals that of the troposphere on a yearly basis.

turbation terms of these loops of the carbon cycle, and they are discussed in Sect. 2.7.

The CO₂ budget has been assessed by the Intergovernmental Panel on Climate Change (IPCC) in all assessment ⁵ reports (Ciais et al., 2013; Denman et al., 2007; Prentice et al., 2001; Schimel et al., 1995; Watson et al., 1990), as well as by others (e.g. Ballantyne et al., 2012). These assessments included budget estimates for the decades of the 1980s and 1990s (Denman et al., 2007) and, most recently, the period 2002, 2011 (Circin et al., 2012). The IPCC method dependence

- ¹⁰ 2002–2011 (Ciais et al., 2013). The IPCC methodology has been adapted and used by the Global Carbon Project (GCP, http://www.globalcarbonproject.org), which has coordinated a cooperative community effort for the annual publication of global carbon budgets up to year 2005 (Raupach et al.,
- ¹⁵ 2007; including fossil emissions only), year 2006 (Canadell et al., 2007), year 2007 (published online; GCP, 2007), year 2008 (Le Quéré et al., 2009), year 2009 (Friedlingstein et al., 2010), year 2010 (Peters et al., 2012b), year 2012 (Le Quéré et al., 2013; Peters et al., 2013), year 2013 (Le Quéré et al.,

²⁰ 2014), year 2014 (Friedlingstein et al., 2014; Le Quéré et al., 2015b), and most recently year 2015 (Jackson et al., 2016; Le Quéré et al., 2015a). Each of these papers updated previous estimates with the latest available information for the entire time series. From 2008, these publications projected ²⁵ fossil fuel emissions for one additional year.

We adopt a range of ± 1 standard deviation (σ) to report the uncertainties in our estimates, representing a likelihood of 68 % that the true value will be within the provided range if the errors have a Gaussian distribution. This choice reflects

³⁰ the difficulty of characterising the uncertainty in the CO₂ fluxes between the atmosphere and the ocean and land reservoirs individually, particularly on an annual basis, as well as the difficulty of updating the CO₂ emissions from land-use change. A likelihood of 68 % provides an indication of our
³⁵ current capability to quantify each term and its uncertainty given the available information. For comparison, the Fifth Assessment Report of the IPCC (AR5) generally reported a likelihood of 90 % for large data sets whose uncertainty is well characterised, or for long time intervals less affected by
⁴⁰ year-to-year variability. Our 68 % uncertainty value is near the 66 % which the IPCC characterises as "likely" for values falling into the ±1σ interval. The uncertainties reported here

combine statistical analysis of the underlying data and expert judgement of the likelihood of results lying outside this range. The limitations of current information are discussed in ⁴⁵ the paper and have been examined in detail elsewhere (Ballantyne et al., 2015).

All quantities are presented in units of gigatonnes of carbon (GtC, 10^{15} gC), which is the same as petagrams of carbon (PgC; Table 1). Units of gigatonnes of CO₂ (or billion ⁵⁰ tonnes of CO₂) used in policy are equal to 3.664 multiplied by the value in units of GtC.

This paper provides a detailed description of the data sets and methodology used to compute the global carbon budget estimates for the period pre-industrial (1750) to 2015 55 and in more detail for the period 1959 to 2015. We also provide decadal averages starting in 1960 including the last decade (2006–2015), results for the year 2015, and a projection of $E_{\rm FF}$ for year 2016. Finally, we provide cumulative emissions from fossil fuels and land-use change 60 since year 1750, the pre-industrial period, and since year 1870, the reference year for the cumulative carbon estimate used by the IPCC (AR5) based on the availability of global temperature data (Stocker et al., 2013). This paper will be updated every year using the format of "living 65 data" to keep a record of budget versions and the changes in new data, revision of data, and changes in methodology that lead to changes in estimates of the carbon budget. Additional materials associated with the release of each new version will be posted at the Global Carbon Project (GCP) 70 website (http://www.globalcarbonproject.org/carbonbudget), with fossil fuel emissions also available through the Global Carbon Atlas (http://www.globalcarbonatlas.org). With this approach, we aim to provide the highest transparency and traceability in the reporting of CO₂, the key driver of climate ⁷⁵ change.

2 Methods

Multiple organisations and research groups around the world generated the original measurements and data used to complete the global carbon budget. The effort presented here is thus mainly one of synthesis, where results from individual groups are collated, analysed, and evaluated for consistency.

Primary reference
Boden and Andres (2016; CDIAC; http://cdiac.ornl. gov/trends/emis/meth_reg.html)
CDIAC source: Boden and Andres (2016; as above) UNFCCC source: (2016; http://unfccc.int/national_ reports/annex_i_ghg_inventories/national_inventories_ submissions/items/8108.php; last access: June 2016)
Peters et al. (2011b) updated as described in this paper
Houghton et al. (2012) combined with Giglio et al. (2013)
Dlugokencky and Tans (2016; NOAA/ESRL: http://www.esrl.noaa.gov/gmd/ccgg/trends/global
This paper for S_{OCEAN} and S_{LAND} and references in Table 6 for individual models

Table 2. How to cite the individual components of the global carbon budget presented here.

We facilitate access to original data with the understanding that primary data sets will be referenced in future work (see Table 2 for how to cite the data sets). Descriptions of the measurements, models, and methodologies follow below and

5 in-depth descriptions of each component are described elsewhere.

This is the 11th version of the global carbon budget and the fifth revised version in the format of a living data update. It builds on the latest published global carbon budget of Le

¹⁰ Quéré et al. (2015a). The main changes are (1) the inclusion of data to year 2015 (inclusive) and a projection for fossil fuel emissions for year 2016; (2) the introduction of a projection for the full carbon budget for year 2016 using our fossil fuel projection, combined with preliminary data (Keeling et

¹⁵ al., 2016) and analysis by others (Betts et al., 2016) of the growth rate in atmospheric CO₂ concentration; and (3) the use of BP data from 1990 (BP, 2016b) to estimate emissions in China to ensure all recent revisions in Chinese statistics are incorporated. The main methodological differences between ²⁰ annual carbon budgets are summarised in Table 3.

2.1 CO₂ emissions from fossil fuels and industry (E_{FF})

2.1.1 Emissions from fossil fuels and industry and their

uncertainty

The calculation of global and national CO_2 emissions from ²⁵ fossil fuels, including gas flaring and cement production (*E*_{FF}), relies primarily on energy consumption data, specifically data on hydrocarbon fuels, collated and archived by several organisations (Andres et al., 2012). These include the Carbon Dioxide Information Analysis Center (CDIAC), ³⁰ the International Energy Agency (IEA), the United Nations (UN), the United States Department of Energy (DoE) Energy Information Administration (EIA), and more recently also the Planbureau voor de Leefomgeving (PBL) Netherlands Environmental Assessment Agency. Where available, we use national emissions estimated by the countries them- 35 selves and reported to the UNFCCC for the period 1990-2014 (40 countries). We assume that national emissions reported to the UNFCCC are the most accurate because national experts have access to additional and country-specific information, and because these emission estimates are peri- 40 odically audited for each country through an established international methodology overseen by the UNFCCC. We also use global and national emissions estimated by CDIAC (Boden and Andres, 2016). The CDIAC emission estimates are the only data set that extends back in time to 1751 with con-45 sistent and well-documented emissions from fossil fuels, cement production, and gas flaring for all countries and their uncertainty (Andres et al., 2014, 2012, 1999); this makes the data set a unique resource for research of the carbon cycle during the fossil fuel era. 50

The global emissions presented here are from CDIAC's analysis, which provides an internally consistent global estimate including bunker fuels, minimising the effects of lowerquality energy trade data. Thus, the comparison of global emissions with previous annual carbon budgets is not influenced by the use of national data from UNFCCC reports.

During the period 1959–2013, the emissions from fossil fuels estimated by CDIAC are based primarily on energy data provided by the UN Statistics Division (UN, 2015a, b; Table 4). When necessary, fuel masses/volumes are converted to fuel energy content using coefficients provided by the UN and then to CO₂ emissions using conversion factors that take into account the relationship between carbon content and en-

		Fossil fuel emissions				Reservoirs		
- Publication year ^a	Global	Country (territorial)	Country (consumption)	- LUC emissions	Atmosphere	Ocean	Land	Uncertainty and other changes
2006 Raupach et al. (2007)		Split into regions						
2007 Canadell et al. (2007)				E_{LUC} based on FAO-FRA 2005; constant E_{LUC} for 2006	1959–1979 data from Mauna Loa; data after 1980 from global aver- age	Based on one ocean model tuned to repro- duced observed 1990s sink		$\pm 1\sigma$ provided for all components
2008 (online)				Constant E _{LUC} for 2007				
2009 Le Quéré et al. (2009)		Split between Annex B and non-Annex B	Results from an indepen- dent study discussed	Fire-based emission anomalies used for 2006– 2008		Based on four ocean models normalised to observations with con- stant delta	First use of five DGVMs to compare with budget resid- ual	
2010 Friedlingstein et al. (2010)	Projection for current year based on GDP	Emissions for top emit- ters		E _{LUC} updated with FAO- FRA 2010				
2011 Peters et al. (2012b)			Split between Annex B and non-Annex B					
2012 Le Quéré et al. (2013) Peters et al. (2013)		129 countries from 1959	129 countries and regions from 1990 to 2010 based on GTAP8.0	E_{LUC} for 1997–2011 in- cludes interannual anoma- lies from fire-based emis- sions	All years from global average	Based on five ocean models normalised to observations with ratio	Ten DGVMs available for S_{LAND} ; first use of four models to compare with E_{LUC}	
2013 Le Quéré et al. (2014)		250 countries ^b	134 countries and regions 1990–2011 based on GTAP8.1, with detailed estimates for years 1997, 2001, 2004, and 2007	$E_{\rm LUC}$ for 2012 estimated from 2001–2010 average		Based on six models compared with two data products to year 2011	Coordinated DGVM experiments for S_{LAND} and E_{LUC}	Confidence levels; cumulative emissions; budget from 1750
2014 Le Quéré et al. (2015b)	Three years of BP data	Three years of BP data	Extended to 2012 with up- dated GDP data	E_{LUC} for 1997–2013 in- cludes interannual anoma- lies from fire-based emis- sions		Based on seven mod- els compared with three data products to year 2013	Based on 10 models	Inclusion of breakdown of the sinks in three lati- tude bands and comparison with three atmospheric in- versions
2015 Le Quéré et al. (2015a) Jackson et al. (2016)	Projection for current year based on Jan-Aug data	National emissions from UNFCCC ex- tended to 2014 also provided (along with CDIAC)	Detailed estimates intro- duced for 2011 based on GTAP9			Based on eight models compared with two data products	Based on 10 models with assessment of minimum re- alism	The decadal uncertainty for the DGVM ensemble mean now uses $\pm 1\sigma$ of the decadal spread across models
2016 (this study)	Two years of BP data; CHN emissions from 1000 from BP data	Added three small countries		Preliminary E _{LUC} using FRA-2015 shown for com- parison: use of five DGVMs		Based on seven models compared with two data products	Based on 14 models	Discussion of projection for full budget for current year

C. Le Quéré et al.: Global Carbon Budget 2016

www.earth-syst-sci-data.net/8/1/2016/

Earth Syst. Sci. Data, 8, 1-45, 2016

Component	Process	Data source	Data reference
$E_{\rm FF}$ (global and CDIAC national)	Fossil fuel combustion and gas flaring	UN Statistics Division to 2013	UN (2015a, b)
,		BP for 2014–2015	BP (BP, 2016b)
	Cement production	US Geological Survey	USGS (2016a, b)
E _{LUC}	Land-cover change (deforesta- tion, afforestation, and forest regrowth)	Forest Resource Assessment (FRA) of the Food and Agricul- ture Organization (FAO)	FAO (2010)
	Wood harvest Shifting agriculture	FAO Statistics Division FAO FRA and Statistics Divi- sion	FAOSTAT (2010) FAO (2010) FAOSTAT (2010)
	Interannual variability from peat fires and climate–land management interactions (1997–2013)	Global Fire Emissions Database (GFED4)	Giglio et al. (2013)
G _{ATM}	Change in atmospheric CO ₂ concentration	1959–1980: CO ₂ Program at Scripps Institution of Oceanog- raphy and other research groups	Keeling et al. (1976)
		1980–2015: US National Oceanic and Atmospheric Administration Earth System Research Laboratory	Dlugokencky and Tans (2016) Ballantyne et al. (2012)
S _{OCEAN}	Uptake of anthropogenic CO ₂	1990–1999 average: indirect estimates based on CFCs, atmospheric O_2 , and other tracer observations	Manning and Keeling (2006) McNeil et al. (2003) Mikaloff Fletcher et al. (2006) as assessed by the IPCC in Den- man et al. (2007)
	Impact of increasing atmospheric CO_2 , climate, and variability	Ocean models	Table 6
S _{LAND}	Response of land vegetation to increasing atmospheric CO_2 concentration, climate and variability, and other environmental changes	Budget residual	

Table 4. Data sources	s used to compute	e each component	of the globa	al carbon budget.

ergy (heat) content of the different fuel types (coal, oil, gas, gas flaring) and the combustion efficiency (to account, for example, for soot left in the combustor or fuel otherwise lost or discharged without oxidation). Most data on energy 5 consumption and fuel quality (carbon content and heat content) are available at the country level (UN, 2015a). In general, CO₂ emissions for equivalent primary energy consumption are about 30 % higher for coal compared to oil, and 70 % higher for coal compared to natural gas (Marland et 10 al., 2007).

Recent revisions in energy data for China (Korsbakken et al., 2016) have not yet fully propagated to the UN energy statistics used by CDIAC but are available through the BP energy statistics (BP, 2016b). We thus use the BP energy

statistics (BP, 2016b) and estimate the emissions by fuel type ¹⁵ using the BP methodology (BP, 2016a) to be consistent with the format of the CDIAC data. Emissions in China calculated from the BP statistics differ from those provided by CDIAC emissions mostly between 1997 and 2009. The revised emissions are higher by 5% on average between 1990 and 2015 ²⁰ for a total additional emissions of 2.0 GtC during that period (41.3 GtC using the BP statistics and methodology compared to 39.3 provided by CDIAC). The two estimates converge to similar values from 2011 onwards (< 2% difference). We propagate these new estimates for China through ²⁵ to the global total to ensure consistency.

Our emission totals for the UNFCCC-reporting countries were recorded as in the UNFCCC submissions, which have

C. Le Quéré et al.: Global Carbon Budget 2016

a slightly larger system boundary than CDIAC. Additional emissions come from carbonates other than in cement manufacture, and thus UNFCCC totals will be slightly higher than CDIAC totals in general, although there are multiple sources

- ⁵ of differences. We use the CDIAC method to report emissions by fuel type (e.g. all coal oxidation is reported under "coal", regardless of whether oxidation results from combustion as an energy source), which differs slightly from UN-FCCC.
- ¹⁰ For the most recent 1–2 years when the UNFCCC estimates (1 year) and UN statistics (2 years) used by CDIAC are not yet available, we generated preliminary estimates based on the BP annual energy review by applying the growth rates of energy consumption (coal, oil, gas) for 2015 to the na-
- ¹⁵ tional and global emissions from the UN national data in 2014, and for 2014 and 2015 to the CDIAC national and global emissions in 2013. BP's sources for energy statistics overlap with those of the UN data but are compiled more rapidly from about 70 countries covering about 96 %
- ²⁰ of global emissions. We use the BP values only for the yearto-year rate of change, because the rates of change are less uncertain than the absolute values and to avoid discontinuities in the time series when linking the UN-based data with the BP data. These preliminary estimates are replaced by the
- ²⁵ more complete UNFCCC or CDIAC data based on UN statistics when they become available. Past experience and work by others (Andres et al., 2014; Myhre et al., 2009) show that projections based on the BP rate of change are within the uncertainty provided (see Sect. 3.2 and Supplement from Peters ³⁰ et al., 2013).

Estimates of emissions from cement production by CDIAC are based on data on growth rates of cement production from the US Geological Survey up to year 2013 (USGS, 2016a). For 2014 and 2015 we use estimates of cement pro-³⁵ duction made by the USGS for the top 18 countries (rep-

resenting 85% of global production; USGS, 2016b), while for all other countries we use the 2013 values (zero growth). Some fraction of the CaO and MgO in cement is returned to the carbonate form during cement weathering, but this is ⁴⁰ neglected here.

Estimates of emissions from gas flaring by CDIAC are calculated in a similar manner to those from solid, liquid, and gaseous fuels and rely on the UN energy statistics to supply the amount of flared or vented fuel. For the most recent 1–2 ⁴⁵ emission years, flaring is assumed constant from the most recent available year of data (2014 for countries that report to the UNFCCC, and 2013 for the remainder). The basic data on gas flaring report atmospheric losses during petroleum production and processing that have large uncertainty and do ⁵⁰ not distinguish between gas that is flared as CO₂ or vented as CH₄. Fugitive emissions of CH₄ from the so-called upstream sector (e.g. coal mining and natural gas distribution) are not included in the accounts of CO₂ emissions except to the extent that they are captured in the UN energy data and counted ⁵⁵ as gas "flared or lost".

The published CDIAC data set includes 255 countries and regions. This list includes countries that no longer exist, such as the USSR and East Pakistan. For the carbon budget, we reduce the list to 219 countries by reallocating emissions to the currently defined territories. This involved both aggrega- 60 tion and disaggregation, and does not change global emissions. Examples of aggregation include merging East and West Germany to the currently defined Germany. Examples of disaggregation include reallocating the emissions from the former USSR to the resulting independent countries. For dis-65 aggregation, we use the emission shares when the current territories first appeared. The disaggregated estimates should be treated with care when examining countries' emissions trends prior to their disaggregation. For the most recent years, 2014 and 2015, the BP statistics are more aggregated, but we 70 retain the detail of CDIAC by applying the growth rates of each aggregated region in the BP data set to its constituent individual countries in CDIAC.

Estimates of CO₂ emissions show that the global total of emissions is not equal to the sum of emissions from all countries. This is largely attributable to emissions that occur in international territory, in particular the combustion of fuels used in international shipping and aviation (bunker fuels), where the emissions are included in the global totals but are not attributed to individual countries. In practice, the emissions from international bunker fuels are calculated based on where the fuels were loaded, but they are not included with national emissions estimates. Other differences occur because globally the sum of imports in all countries is not equal to the sum of exports and because of inconsistent national reporting, differing treatment of oxidation of non-fuel uses of hydrocarbons (e.g. as solvents, lubricants, feedstocks), and changes in stock (Andres et al., 2012).

The uncertainty in the annual emissions from fossil fuels and industry for the globe has been estimated at $\pm 5\%$ (scaled $_{90}$ down from the published $\pm 10\%$ at $\pm 2\sigma$ to the use of $\pm 1\sigma$ bounds reported here; Andres et al., 2012). This is consistent with a more detailed recent analysis of uncertainty of ± 8.4 % at $\pm 2\sigma$ (Andres et al., 2014) and at the high end of the range of $\pm 5-10\%$ at $\pm 2\sigma$ reported by Ballantyne et al. (2015). ⁹⁵ This includes an assessment of uncertainties in the amounts of fuel consumed, the carbon and heat contents of fuels, and the combustion efficiency. While in the budget we consider a fixed uncertainty of $\pm 5\%$ for all years, in reality the uncertainty, as a percentage of the emissions, is growing with 100 time because of the larger share of global emissions from non-Annex B countries (emerging economies and developing countries) with less precise statistical systems (Marland et al., 2009). For example, the uncertainty in Chinese emissions has been estimated at around $\pm 10\%$ (for $\pm 1\sigma$; Gregg 105 et al., 2008), and important potential biases have been identified suggesting China's emissions could be overestimated in published studies (Liu et al., 2015 from mature economies with good statistical bases have an uncertainty of only a few percent (Marland, 2008). Further 110 research is needed before we can quantify the time evolution of the uncertainty, as well as its temporal error correlation structure. We note that even if they are presented as 1σ estimates, uncertainties in emissions are likely to be mainly

- ⁵ country-specific systematic errors related to underlying biases of energy statistics and to the accounting method used by each country. We assign a medium confidence to the results presented here because they are based on indirect estimates of emissions using energy data (Durant et al., 2010).
- ¹⁰ There is only limited and indirect evidence for emissions, although there is a high agreement among the available estimates within the given uncertainty (Andres et al., 2014, 2012), and emission estimates are consistent with a range of other observations (Ciais et al., 2013), even though their re-
- ¹⁵ gional and national partitioning is more uncertain (Francey et al., 2013).

2.1.2 Emissions embodied in goods and services

National emission inventories take a territorial (production) perspective and "include greenhouse gas emissions and re-²⁰ movals taking place within national territory and offshore areas over which the country has jurisdiction" (Rypdal et al., 2006). That is, emissions are allocated to the country where and when the emissions actually occur. The territorial emission inventory of an individual country does not include the ²⁵ emissions from the production of goods and services pro-

- duced in other countries (e.g. food and clothes) that are used for consumption. Consumption-based emission inventories for an individual country are another attribution point of view that allocates global emissions to products that are con-
- ³⁰ sumed within a country; these inventories are conceptually calculated as the territorial emissions minus the "embedded" territorial emissions to produce exported products plus the emissions in other countries to produce imported products (consumption = territorial – exports + imports). The differ-
- ³⁵ ence between the territorial- and consumption-based emission inventories is the net transfer (exports minus imports) of emissions from the production of internationally traded products. Consumption-based emission attribution results (e.g. Davis and Caldeira, 2010) provide additional information to
- ⁴⁰ territorial-based emissions that can be used to understand emission drivers (Hertwich and Peters, 2009), quantify emission transfers by the trade of products between countries (Peters et al., 2011b), and potentially design more effective and efficient climate policy (Peters and Hertwich, 2008).

We estimate consumption-based emissions from 1990 to 2014 by enumerating the global supply chain using a global model of the economic relationships between economic sectors within and between every country (Andrew and Peters, 2013; Peters et al., 2011a). Our analysis is based on the economic and trade data from the Global Trade and Analysis Project (GTAP; Narayanan et al., 2015), and we make detailed estimates for the years 1997 (GTAP version 5), 2001 (GTAP6), and 2004, 2007, and 2011 (GTAP9.1) (using the

methodology of Peters et al., 2011b). The results cover 57 sectors and up to 141 countries and regions. The detailed results are then extended into an annual time series from 1990 to the latest year of the GDP data (2014 in this budget), using GDP data by expenditure in current exchange rate of US dollars (USD; from the UN National Accounts Main Aggregates Database; UN, 2014) and time series of trade data from GTAP (based on the methodology in Peters et al., 2011b).

We estimate the sector-level CO₂ emissions using our own calculations based on the GTAP data and methodology, include flaring and cement emissions from CDIAC, and then scale the national totals (excluding bunker fuels) to match ⁶⁵ the CDIAC estimates from the most recent carbon budget. We do not include international transportation in our estimates of national totals, but include them in the global total. The time series of trade data provided by GTAP covers the period 1995–2013 and our methodology uses the trade shares as this data set. For the period 1990–1994 we assume the trade shares of 1995, while for 2014 we assume the trade shares of 2013.

Comprehensive analysis of the uncertainty in consumption emissions accounts is still lacking in the literature, although several analyses of components of this uncertainty have been made (e.g. Dietzenbacher et al., 2012; Inomata and Owen, 2014; Karstensen et al., 2015; Moran and Wood, 2014). For this reason we do not provide an uncertainty estimate for these emissions, but based on model comparisons and sensitivity analysis, they are unlikely to be larger than for the territorial emission estimates (Peters et al., 2012a). Uncertainty is expected to increase for more detailed results, and to decrease with aggregation (Peters et al., 2011b; e.g. the results for Annex B countries will be more accurate than the sector results for an individual country).

The consumption-based emissions attribution method considers the CO₂ emitted to the atmosphere in the production of products, but not the trade in fossil fuels (coal, oil, gas). It is also possible to account for the carbon trade in fossil fuels (Andrew et al., 2013), but we do not present those data here. Peters et al. (2012a) additionally considered trade in biomass.

The consumption data do not modify the global average terms in Eq. (1) but are relevant to the anthropogenic carbon cycle as they reflect the trade-driven movement of emissions across the Earth's surface in response to human activities. Furthermore, if national and international climate policies continue to develop in an un-harmonised way, then the trends reflected in these data will need to be accommodated 100 by those developing policies.

2.1.3 Growth rate in emissions

We report the annual growth rate in emissions for adjacent years (in percent per year) by calculating the difference between the two years and then comparing to the emissions 105 in the first year: $\left[\frac{E_{FF(i_{0+1})}-E_{FF(i_{0})}}{E_{FF(i_{0})}}\right] \times \% \text{ yr}^{-1}$ This is the simplest method to characterise a 1-year growth compared to the previous year and is widely used. We apply a leap-year adjustment to ensure valid interpretations of annual 5 growth rates. This affects the growth rate by about 0.3 % yr^{-1} (1/365) and causes growth rates to go up approximately 0.3 % if the first year is a leap year and down 0.3 % if the second year is a leap year.

The relative growth rate of $E_{\rm FF}$ over time periods of ¹⁰ greater than 1 year can be re-written using its logarithm equivalent as follows:

$$\frac{1}{E_{\rm FF}} \frac{\mathrm{d}E_{\rm FF}}{\mathrm{d}t} = \frac{\mathrm{d}(\ln E_{\rm FF})}{\mathrm{d}t}.$$
(2)

Here we calculate relative growth rates in emissions for multi-year periods (e.g. a decade) by fitting a linear trend ¹⁵ to $\ln(E_{\rm FF})$ in Eq. (2), reported in percent per year. We fit the logarithm of $E_{\rm FF}$ rather than $E_{\rm FF}$ directly because this method ensures that computed growth rates satisfy Eq. (6). This method differs from previous papers (Canadell et al., 2007; Le Quéré et al., 2009; Raupach et al., 2007) that com-

²⁰ puted the fit to $E_{\rm FF}$ and divided by average $E_{\rm FF}$ directly, but the difference is very small (< 0.05 % yr⁻¹) in the case of $E_{\rm FF}$.

2.1.4 Emissions projections

Energy statistics from BP are normally available around June ²⁵ for the previous year. To gain insight on emission trends for the current year (2016), we provide an assessment of global emissions for $E_{\rm FF}$ by combining individual assessments of emissions for China and the USA (the two biggest emitting countries) and the rest of the world.

We specifically estimate emissions in China because the 30 data indicate a significant departure from the long-term trends in the carbon intensity of the economy used in emissions projections in previous global carbon budgets (e.g. Le Quéré et al., 2015a), resulting from a rapid deceleration in 35 emissions growth against continued growth in economic output. This departure could be temporary (Jackson et al., 2016). Our 2016 estimate for China uses (1) coal consumption estimates from the China Coal Industry Association for January through September (CCIA, 2016), (2) estimated consump-40 tion of natural gas (IEW, 2016; NDRC, 2016a) and domestic production plus net imports of petroleum (NDRC, 2016b) for January through July from the National Development and Reform Commission, and (3) production of cement reported for January to September (NBS, 2016). Using these data, 45 we estimate the change in emissions for the corresponding months in 2016 compared to 2015 assuming a 2% increase in the energy (and thus carbon) content of coal for 2016 resulting from improvements in the quality of the coal used, in line with the trends reported by the National Bureau of Statis-⁵⁰ tics for recent years. We then assume that the relative changes during the first months will persist throughout the year. The main sources of uncertainty are from the incomplete data on stock changes, the carbon content of coal, and the assumption of persistent behaviour for the rest of the year. These are discussed further in Sect. 3.2.1.

For the USA, we use the forecast of the US Energy Information Administration (EIA) for emissions from fossil fuels (EIA, 2016). This is based on an energy forecasting model which is revised monthly, and takes into account heating degree days, household expenditures by fuel type, energy 60 markets, policies, and other effects. We combine this with our estimate of emissions from cement production using the monthly US cement data from USGS for January-July, assuming changes in cement production over the first seven months apply throughout the year. While the EIA's forecasts 65 for current full-year emissions have on average been revised downwards, only seven such forecasts are available, so we conservatively use the full range of adjustments following revision, and additionally assume symmetrical uncertainty to give ± 2.3 % around the central forecast. 70

For the rest of the world, we use the close relationship between the growth in GDP and the growth in emissions (Raupach et al., 2007) to project emissions for the current year. This is based on the so-called Kaya identity (also called IPAT identity, the acronym standing for human impact (*I*) on the environment, which is equal to the product of population (*P*), affluence (*A*), and technology (*T*)), whereby $E_{\rm FF}$ (GtC yr⁻¹) is decomposed by the product of GDP (USD yr⁻¹) and the fossil fuel carbon intensity of the economy ($I_{\rm FF}$; GtC USD⁻¹) as follows:

$$E_{\rm FF} = \rm GDP \times I_{\rm FF}. \tag{3}$$

Such product-rule decomposition identities imply that the relative growth rates of the multiplied quantities are additive. Taking a time derivative of Eq. (3) gives

$$\frac{\mathrm{d}E_{\mathrm{FF}}}{\mathrm{d}t} = \frac{\mathrm{d}(\mathrm{GDP} \times I_{\mathrm{FF}})}{\mathrm{d}t} \tag{4}$$

and, applying the rules of calculus,

$$\frac{\mathrm{d}E_{\mathrm{FF}}}{\mathrm{d}t} = \frac{\mathrm{d}\mathrm{GDP}}{\mathrm{d}t} \times I_{\mathrm{FF}} + \mathrm{GDP} \times \frac{\mathrm{d}I_{\mathrm{FF}}}{\mathrm{d}t}.$$
(5)

Finally, dividing Eq. (5) by Eq. (3) gives

$$\frac{1}{E_{\rm FF}}\frac{dE_{\rm FF}}{dt} = \frac{1}{\rm GDP}\frac{d\rm GDP}{dt} + \frac{1}{I_{\rm FF}}\frac{dI_{\rm FF}}{dt},\tag{6}$$

where the left-hand term is the relative growth rate of E_{FF} , ⁹⁰ and the right-hand terms are the relative growth rates of GDP and I_{FF} , respectively, which can simply be added linearly to give overall growth rate. The growth rates are reported in percent by multiplying each term by 100. As preliminary estimates of annual change in GDP are made well before the end of a calendar year, making assumptions on the growth rate of

55

 $I_{\rm FF}$ allows us to make projections of the annual change in CO₂ emissions well before the end of a calendar year. The $I_{\rm FF}$ is based on GDP in constant PPP (purchasing power parity) from the IEA up to 2013 (IEA/OECD, 2015) and ex-

- ⁵ tended using the IMF growth rates for 2014 and 2015 (IMF, 2016). Interannual variability in I_{FF} is the largest source of uncertainty in the GDP-based emissions projections. We thus use the standard deviation of the annual I_{FF} for the period 2006–2015 as a measure of uncertainty, reflecting a ±1σ as
- ¹⁰ in the rest of the carbon budget. This is $\pm 1.0 \%$ yr⁻¹ for the rest of the world (global emissions minus China and USA).

The 2016 projection for the world is made of the sum of the projections for China, USA, and the rest of the world. The uncertainty is added in quadrature among the three regions. ¹⁵ The uncertainty here reflects the best of our expert opinion.

2.2 CO₂ emissions from land use, land-use change, and forestry (E_{LUC})

Land-use-change emissions reported here (E_{LUC}) include CO₂ fluxes from deforestation, afforestation, logging (for-²⁰ est degradation and harvest activity), shifting cultivation (cycle of cutting forest for agriculture and then abandoning), and regrowth of forests following wood harvest or abandonment of agriculture. Only some land management activities are included in our land-use-change emissions estimates (Ta-²⁵ ble 5). Some of these activities lead to emissions of CO₂ to

- the atmosphere, while others lead to CO_2 sinks. E_{LUC} is the net sum of all anthropogenic activities considered. Our annual estimate for 1959–2010 is from a bookkeeping method (Sect. 2.2.1) primarily based on net forest area change and
- ³⁰ biomass data from the Forest Resource Assessment (FRA) of the Food and Agriculture Organization (FAO), which are only available at intervals of 5 years. We use the bookkeeping method based on FAO FRA 2010 here (Houghton et al., 2012) and present preliminary results of an update using the
- ³⁵ FAO FRA 2015 (Houghton and Nassikas, 2016). Interannual variability in emissions due to deforestation and degradation have been coarsely estimated from satellite-based fire activity in tropical forest areas (Sect. 2.2.2; Giglio et al., 2013; van der Werf et al., 2010). The bookkeeping method is used to
- ⁴⁰ quantify the E_{LUC} over the time period of the available data, and the satellite-based deforestation fire information to incorporate interannual variability (E_{LUC} flux annual anomalies) from tropical deforestation fires. The satellite-based deforestation and degradation fire emissions estimates are avail-⁴⁵ able for years 1997–2015. We calculate the global annual anomaly in deforestation and degradation fire emissions in tropical forest regions for each year, compared to the 1997– 2010 period, and add this annual flux anomaly to the E_{LUC} estimated using the published bookkeeping method that is ⁵⁰ available up to 2010 only and assumed constant at the 2010 value during the period 2011–2015. We thus assume that all land management activities apart from deforestation and degradation do not vary significantly on a year-to-year ba-

sis. Other sources of interannual variability (e.g. the impact of climate variability on regrowth fluxes) are accounted for ⁵⁵ in S_{LAND} . In addition, we use results from dynamic global vegetation models (see Sect. 2.2.3 and Table 6) that calculate net land-use-change CO₂ emissions in response to landcover change reconstructions prescribed to each model in order to help quantify the uncertainty in E_{LUC} and to explore ⁶⁰ the consistency of our understanding. The three methods are described below, and differences are discussed in Sect. 3.2. A discussion of other methods to estimate E_{LUC} was provided in the 2015 update (Le Quéré et al., 2015a; Sect. 2.2.4).

65

2.2.1 Bookkeeping method

Land-use-change CO₂ emissions are calculated by a bookkeeping method approach (Houghton, 2003) that keeps track of the carbon stored in vegetation and soils before deforestation or other land-use change, and the changes in forest age classes, or cohorts, of disturbed lands after land-use change, 70 including possible forest regrowth after deforestation. The method tracks the CO₂ emitted to the atmosphere immediately during deforestation, and over time due to the followup decay of soil and vegetation carbon in different pools, including wood products pools after logging and deforesta-75 tion. It also tracks the regrowth of vegetation and associated build-up of soil carbon pools after land-use change. It considers transitions between forests, pastures, and cropland; shifting cultivation; degradation of forests where a fraction of the trees is removed; abandonment of agricultural land; and for-80 est management such as wood harvest and, in the USA, fire management. In addition to tracking logging debris on the forest floor, the bookkeeping method tracks the fate of carbon contained in harvested wood products that is eventually emitted back to the atmosphere as CO₂, although a detailed treatment of the lifetime in each product pool is not performed (Earles et al., 2012). Harvested wood products are partitioned into three pools with different turnover times. All fuel wood is assumed burned in the year of harvest (1.0 yr^{-1}) . Pulp and paper products are oxidised at a rate of 0.1 yr^{-1} , timber is 90 assumed to be oxidised at a rate of 0.01 yr^{-1} , and elemental carbon decays at 0.001 yr^{-1} . The general assumptions about partitioning wood products among these pools are based on national harvest data (Houghton, 2003).

The primary land-cover change and biomass data for the ⁹⁵ bookkeeping method analysis is the Forest Resource Assessment of the FAO which provides statistics on forest-cover change and management at intervals of 5 years (FAO, 2010). The data are based on countries' self-reporting, some of which include satellite data in more recent assessments (Ta-¹⁰⁰ ble 4). Changes in land cover other than forest are based on annual, national changes in cropland and pasture areas reported by the FAO Statistics Division (FAOSTAT, 2010). Land-use-change country data are aggregated by regions. The carbon stocks on land (biomass and soils), and their response functions subsequent to land-use change, are based on **Table 5.** Comparison of the processes included in the bookkeeping method and DGVMs in their estimates of E_{LUC} and S_{LAND} . See Table 6 for model references. All models include deforestation and forest regrowth after abandonment of agriculture (or from afforestation activities on agricultural land). Processes relevant for E_{LUC} are only described for the DGVMs used with land-cover change in this study (Fig. 6 top panel).

	Bookkeeping	CABLE	CLASS-CTEM	CLM	DLEM	ISAM	JSBACH	JULES	LPJ-GUESS	LPJ	LPX-Bern	OCN	ORCHIDEE	SDGVM	VISIT
Processes relevant for $E_{\rm L}$.UC														
Wood harvest and for- est degradation ^a	yes					yes		no	no	no		yes			
Shifting cultivation	yes ^b					no		no	no	no		no			
Cropland harvest	yes					yes		no	yes	no		yes			
Peat fires	no					no		no	no	no		no			
Processes also relevant for	or S _{LAND}														
Fire simulation and/or suppression	for US only	no	yes	yes	yes	no	yes	no	yes	yes	yes	no	no	yes	yes
Climate and variability	no	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
CO ₂ fertilisation	no	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Carbon-nitrogen inter- actions, including N de- position	no	yes	no	yes	yes	yes	no	no	yes	no	yes	yes	no	yes ^c	no

^a Refers to the routine harvest of established managed forests rather than pools of harvested products. ^b Not in the recent update (Houghton and Nassikas, 2016). ^c Very limited. Nitrogen uptake is simulated as a function of soil C, and Vemax DE2 is an empirical function of canopy N. Does not consider N deposition.

FAO data averages per land-cover type, per biome, and per region. Similar results were obtained using forest biomass carbon density based on satellite data (Baccini et al., 2012). The bookkeeping method does not include land ecosystems' transient response to changes in climate, atmospheric CO₂, and other environmental factors, and the growth/decay curves are based on contemporary data that will implicitly reflect the effects of CO₂ and climate at that time. Published results from the bookkeeping method are available from 1850 to 2010, with preliminary results available to 2015.

2.2.2 Fire-based interannual variability in ELUC

Land-use-change-associated CO₂ emissions calculated from satellite-based fire activity in tropical forest areas (van der Werf et al., 2010) provide information on emissions due ¹⁵ to tropical deforestation and degradation that are complementary to the bookkeeping approach. They do not provide a direct estimate of E_{LUC} as they do not include noncombustion processes such as respiration, wood harvest, wood products, or forest regrowth. Legacy emissions such ²⁰ as decomposition from on-ground debris and soils are not included in this method either. However, fire estimates provide some insight in the year-to-year variations in the subcomponent of the total E_{LUC} flux that result from immediate CO₂ emissions during deforestation caused, for example, by the interactions between climate and human activity (e.g. 25 there is more burning and clearing of forests in dry years) that are not represented by other methods. The "deforestation fire emissions" assume an important role of fire in removing biomass in the deforestation process and thus can be used to infer gross instantaneous CO₂ emissions from defor-30 estation using satellite-derived data on fire activity in regions with active deforestation. The method requires information on the fraction of total area burned associated with deforestation vs. other types of fires, and this information can be merged with information on biomass stocks and the fraction 35 of the biomass lost in a deforestation fire to estimate CO₂ emissions. The satellite-based deforestation fire emissions are limited to the tropics, where fires result mainly from human activities. Tropical deforestation is the largest and most variable single contributor to E_{LUC} . 40

Fire emissions associated with deforestation and tropical peat burning are based on the Global Fire Emissions Database (GFED4; accessed July 2016) described in van der Werf et al. (2010) but with updated burned area (Giglio et al., 2013) as well as burned area from relatively small ⁴⁵ fires that are detected by satellite as thermal anomalies but not mapped by the burned-area approach (Randerson et al., 2012). The burned-area information is used as input data in a modified version of the satellite-driven Carnegie–Ames– Stanford Approach (CASA) biogeochemical model to esti-⁵⁰

Model/data name	Reference	Change from Le Quéré et al. (2015)
Dynamic global vegetation	on models	
CABLE	Zhang et al. (2013)	Not applicable (not used in 2015)
CLASS-CTEM	Melton and Arora (2016)	Not applicable (not used in 2015)
CLM	Oleson et al. (2013)	No change
DLEM	Tian et al. (2010)	Not applicable (not used in 2015)
ISAM	Jain et al. (2013)	Updated to account for dynamic phenology and dynamic rooting distribution and depth param-
		eterisations for various ecosystem types as described in El Masri et al. (2015). These parame-
		terisations account for light, water, and nutrient stresses while allocating the assimilated carbor
		to leaf, stem, and root pools.
JSBACH	Reick et al. (2013) ^a	No change
JULES ^b	Clark et al. (2011) ^c	Updated to code release 4.6 and configuration JULES-C-1.1. This version includes improve
		ments to the seasonal cycle of soil respiration.
LPJ-GUESS	Smith et al. (2014)	Use of CRU-NCEP. Crop representation in LPJ-GUESS was adopted from Olin et al. (2015)
		applying constant fertiliser rate and area fraction under irrigation, as in Elliott et al. (2015).
LPJ ^d	Sitch et al. (2003) ^e	No change
LPX-Bern	Stocker et al. (2014) ^f	Not applicable (not used in 2015)
OCN	Zaehle and Friend	Updated to v1.r278. Biological N fixation is now simulated dynamically according to the OPT
	(2010) ^g TS7	scheme of Meyerholt et al. (2016).
ORCHIDEE	Krinner et al. (2005) ^h	Updated revision 3687, including a new hydrological scheme with 11 layers and a complete
		diffusion scheme, a new parameterisation of photosynthesis, an improved scheme for represen-
		tation of snow, and a new representation of soil albedo based on satellite data.
SDGVM	Woodward et al. (1995) ⁱ	Not applicable (not used in 2015)
VISIT	Kato et al. (2013) ^j	Updated to use CRU-NCEP shortwave radiation data instead of using internally estimated radi
		ation from CRU cloudiness data.
Data products for land-us	se-change emissions	
Bookkeeping	Houghton et al. (2012)	No change
Bookkeeping using	Houghton and Nassikas	Not applicable (not used in 2015)
FAO2015	(2016)	
Fire-based emissions	van der Werf et al. (2010)	No change
Ocean biogeochemistry r		
	Buitenhuis et al. (2010) ^k	No change
NEMO-PlankTOM5 NEMO-PISCES (IPSL)	Aumont and Bopp (2006)	No change
CCSM-BEC	Doney et al. (2009)	No change
MICOM-HAMOCC	Schwinger et al. (2009)	•
(NorESM-OC)	Schwinger et al. (2010)	No change
NEMO-PISCES	Séférian et al. (2013) ¹	No change
(CNRM)	Serenan et an (2010)	
CSIRO	Oke et al. (2013)	No change
MITgcm-REcoM2	Hauck et al. (2016)	Nanophytoplankton degradation rate set to 0.1 per day
Data products for ocean (CO ₂ flux	
Landschützer	Landschützer et al. (2015)	No change
Jena CarboScope	Rödenbeck et al. (2014)	Updated to version oc 1.4 with longer spin-up/down periods both before and after the data
Jena Carboscope	Rodenbeek et al. (2014)	constrained period.
Atmospheric inversions f	or total CO ₂ fluxes (land-use-c	hange + land + ocean CO ₂ fluxes)
CarbonTracker	`	Updated to version CTE2016-FT with minor changes in the inversion setup.
Caroonnacker	Peters et al. (2010) Rödenbeck et al. (2003)	Updated to version C1E2010-F1 with minor changes in the inversion setup. Updated to version s81_v3.8.
Jana CarboScono		
Jena CarboScope CAMS ^m	Chevallier et al. (2005)	Updated to version 15.2 with minor changes in the inversion setup.

Table 6. References for the process models and data products included in Figs. 6–8. All models and products are updated with new data to end of year 2015.

⁶⁵ See also Goll et al. (2015). ⁷⁵ Joint UK Land Environment Simulator. ⁷⁵ See also Best et al. (2011). ⁶⁵ Lund-Potsdam-Jena. ⁷⁵ Compared to published version, decreased LPJ wood narvest efficiency so that 50 % of biomass was removed off-site compared to 85 % used in the 2012 budget. Residue management of managed grasslands increased so that 100 % of harvested grass enters the litter pool. ⁶ ⁶ Compared to published version: changed several model parameters, due to new tuning with multiple observational constraints. No mechanistic changes. ² See also Zaehle et al. (2011). ^h Compared to published version: revised parameters values for photosynthetic capacity for boreal forests (following assimilation of FLUXNET data), updated parameters values for stem allocation, maintenance respiration and biomass export for tropical forests (based on literature), and CO₂ down-regulation process added to photosynthesis. ¹ See also Woodward and Lomas (2004) **155**. Changes from publications include sub-daily photosynthesis downscaling and other adjustments. ¹ See also Ito and Inatomi (2012). ^k With no nutrient restoring below the mixed layer depth. ¹ Uses winds from Atlas et al. (2011). ^m The CAMS (Copernicus Atmosphere Monitoring Service) v15.2 CO₂ inversion system, initially described by Chevallier et al. (2005), relies on the global tracer transport model LMDZ (see also Supplement **159** Chevallier, 2015; Hourdin et al., 2006). mate carbon emissions associated with fires, keeping track of what fraction of fire emissions was due to deforestation (see van der Werf et al., 2010). The CASA model uses different assumptions to compute decay functions compared to the

- ⁵ bookkeeping method, and does not include historical emissions or regrowth from land-use change prior to the availability of satellite data. Comparing coincident CO emissions and their atmospheric fate with satellite-derived CO concentrations allows for some validation of this approach (e.g. van
- ¹⁰ der Werf et al., 2008). Results from the fire-based method to estimate land-use-change emissions anomalies added to the bookkeeping mean E_{LUC} estimate are available from 1997 to 2015. Our combination of land-use-change CO₂ emissions where the variability in annual CO₂ deforestation emissions
- ¹⁵ is diagnosed from fires assumes that year-to-year variability is dominated by variability in deforestation.

2.2.3 Dynamic global vegetation models (DGVMs)

Land-use-change CO₂ emissions have been estimated using an ensemble of DGVM simulations. New model experiments ²⁰ up to year 2015 have been coordinated by the project "Trends and drivers of the regional-scale sources and sinks of carbon dioxide" (TRENDY; Sitch et al., 2015). We use only models that have estimated land-use-change CO₂ emissions following the TRENDY protocol (see Sect. 2.5.2). Models use their ²⁵ latest configurations, summarised in Tables 5 and 6.

Two sets of simulations were performed with the DGVMs, first forced with historical changes in land-cover distribution, climate, atmospheric CO_2 concentration, and N deposition, and second, as further described below with a time-invariant

- ³⁰ pre-industrial land-cover distribution, allowing for estimation of, by difference with the first simulation, the dynamic evolution of biomass and soil carbon pools in response to prescribed land-cover change. Because of the limited availability of the land-use forcing (see below), 14 DGVMs per-³⁵ formed historical simulations with time-invariant land-cover
- distribution, but only 5 DGVMs managed to simulate realistic simulations with time varying land-cover change. These latter DGVMs accounted for deforestation and (to some extent) regrowth, the most important components of E_{LUC} , but 40 they do not represent all processes resulting directly from
- human activities on land (Table 5). All DGVMs represent processes of vegetation growth and mortality, as well as decomposition of dead organic matter associated with natural cycles, and include the vegetation and soil carbon response
- ⁴⁵ to increasing atmospheric CO₂ levels and to climate variability and change. In addition, eight models explicitly simulate the coupling of C and N cycles and account for atmospheric N deposition (Table 5), with three of those models used for land-use-change simulations. The DGVMs are independent
 ⁵⁰ of the other budget terms except for their use of atmospheric CO₂ concentration to calculate the fertilisation effect of CO₂
 - on primary production.

For this global carbon budget, the DGVMs used the HYDE land-use-change data set (Klein Goldewijk et al., 2011), which provides annual, half-degree, fractional data 55 on cropland and pasture. These data are based on annual FAO statistics of change in agricultural area available to 2012 (FAOSTAT, 2010). For the years 2013 to 2015, the HYDE data were extrapolated by country for pastures and cropland separately based on the trend in agricultural area over the 60 previous 5 years. The more comprehensive LUHOM data set (Hurtt et al., 2011TS10), which also includes fractional data on primary vegetation and secondary vegetation, as well as all underlying transitions between land-use states, has not been made available yet for this year. Hence, the reduced 65 ensemble of DGVMs that can simulate the LUC flux from the HYDE data set only. The HYDE data are independent of the data set used in the bookkeeping method (Houghton, 2003, and updates), which is based primarily on forest area change statistics (FAO, 2010). The HYDE land-use-change 70 data set does not indicate whether land-use changes occur on forested or non-forested land; it only provides the changes in agricultural areas. Hence, it is implemented differently within each model (e.g. an increased cropland fraction in a grid cell can be at the expense of either grassland or forest, 75 the latter resulting in deforestation; land-cover fractions of the non-agricultural land differ between models). Thus, the DGVM forest area and forest area change over time is not consistent with the Forest Resource Assessment of the FAO forest area data used for the bookkeeping model to calculate 80 E_{LUC} . Similarly, model-specific assumptions are applied to convert deforested biomass or deforested area, and other forest product pools, into carbon in some models (Table 5).

The DGVM runs were forced by either 6-hourly CRU-NCEP or by monthly CRU temperature, precipitation, and 85 cloud cover fields (transformed into incoming surface radiation) based on observations and provided on a $0.5^{\circ} \times 0.5^{\circ}$ grid and updated to 2015 (Harris et al., 2014; Viovy, 2016). The forcing data include both gridded observations of climate and global atmospheric CO₂, which change over time ⁹⁰ (Dlugokencky and Tans, 2016), and N deposition (as used in some models; Table 5). As mentioned before, E_{LUC} is diagnosed in each model by the difference between a model simulation with prescribed historical land-cover change and a simulation with constant, pre-industrial land-cover distribution. Both simulations were driven by changing atmospheric CO₂, climate, and, in some models, N deposition over the period 1860-2015. Using the difference between these two DGVM simulations to diagnose E_{LUC} is not fully consistent with the definition of E_{LUC} in the bookkeeping method 100 (Gasser and Ciais, 2013; Stocker and Joos, 2015). The DGVM approach to diagnose land-use-change CO₂ emissions would be expected to produce systematically higher $E_{\rm LUC}$ emissions than the bookkeeping approach if all the parameters of the two approaches were the same, which is not 105 the case (see Sect. 2.5.2).

Table 7. Comparison of results from the bookkeeping method and budget residuals with results from the DGVMs and inverse estimates for the periods 1960–1969, 1970–1979, 1980–1989, 1990–1999, and 2000–2009, as well as the last decade and last year available. All values are in GtC yr⁻¹. The DGVM uncertainties represent $\pm 1\sigma$ of the decadal or annual (for 2015 only) estimates from the individual models; for the inverse models all three results are given where available.

				Mean (GtC	yr ⁻¹)		
	1960–1969	1970–1979	1980–1989	1990–1999	2000-2009	2006-2015	2015
Land-use-change emissions (E_{LUC}))						
Bookkeeping method DGVMs ^a	$\begin{array}{c} 1.5 \pm 0.5 \\ 1.2 \pm 0.3 \end{array}$	1.3 ± 0.5 1.2 ± 0.3	$\begin{array}{c} 1.4 \pm 0.5 \\ 1.2 \pm 0.2 \end{array}$	$\begin{array}{c} 1.6 \pm 0.5 \\ 1.2 \pm 0.2 \end{array}$	1.0 ± 0.5 1.1 ± 0.2	1.0 ± 0.5 1.3 ± 0.3	$ \begin{array}{c} 1.3 \pm 0.5 \\ 1.2 \pm 0.4 \end{array} $
Residual terrestrial sink (S_{LAND})							
Budget residual DGVMs ^a	1.7 ± 0.7 1.2 ± 0.5	$\begin{array}{c} 1.7 \pm 0.8 \\ 2.2 \pm 0.5 \end{array}$	1.6 ± 0.8 1.7 ± 0.6	2.6 ± 0.8 2.3 ± 0.5	$\begin{array}{c} 2.6\pm0.8\\ 2.8\pm0.7\end{array}$	3.1 ± 0.9 2.8 ± 0.7	$\begin{array}{c} 1.9 \pm 0.9 \\ 1.0 \pm 1.4 \end{array}$
Total land fluxes $(S_{\text{LAND}} - E_{\text{LUC}})$							
Budget $(E_{\rm FF} - G_{\rm ATM} - S_{\rm OCEAN})$ DGVMs ^a	$0.2 \pm 0.5 \\ -0.2 \pm 0.7$	$\begin{array}{c} 0.4 \pm 0.6 \\ 1.1 \pm 0.5 \end{array}$	$\begin{array}{c} 0.1 \pm 0.6 \\ 0.4 \pm 0.5 \end{array}$	1.0 ± 0.6 1.1 ± 0.3	1.4 ± 0.6 1.8 ± 0.4	2.1 ± 0.7 1.7 ± 0.5	$\begin{array}{c} 0.6 \pm 0.7 \\ -0.1 \pm 1.4 \end{array}$
Inversions (CTE2016-FT/Jena CarboScope/CAMS) ^b	_/_/_	_/_/_	-/0.2 ^b /0.9 ^b	-/1.0 ^b /1.9 ^b	1.5/1.6 ^b /2.5 ^b	2.2 ^b /2.3 ^b /3.4 ^b	1.9 ^b /2.6 ^b /2.6 ^b

^a Note that for DGVMs, the mean reported for the total land fluxes is not equal to the difference between the means reported for S_{LAND} and E_{LUC} as a different set of models contributed to these two estimates (see Sect. 2.2.3). ^b Estimates are not corrected for the influence of river fluxes, which would reduce the fluxes by 0.45 GtC yr⁻¹ when neglecting the anthropogenic influence on land (Sect. 2.7.2). See Table 6 for model references.

2.2.4 Uncertainty assessment for E_{LUC}

Differences between the bookkeeping, the addition of firebased interannual variability to the bookkeeping, and DGVM methods originate from three main sources: the land-cover-

 $_5$ change data set, the different approaches used in models, and the different processes represented (Table 5). We examine the results from the DGVMs and of the bookkeeping method to assess the uncertainty in E_{LUC} .

The uncertainties in annual $E_{\rm LUC}$ estimates are examined ¹⁰ using the standard deviation across models, which averages 0.3 GtC yr⁻¹ from 1959 to 2015 (Table 7). The mean of the multi-model $E_{\rm LUC}$ estimates is consistent with a combination of the bookkeeping method and fire-based emissions (Le Quéré et al., 2014), with the multi-model mean ¹⁵ and bookkeeping method differing by less than 0.5 GtC yr⁻¹ over 85 % of the time. Based on this comparison, we deter-

mine that an uncertainty of $\pm 0.5 \text{ GtC yr}^{-1}$ provides a semiquantitative measure of uncertainty for annual emissions and reflects our best value judgement that there is at least 68 %

²⁰ chance $(\pm 1\sigma)$ that the true land-use-change emission lies within the given range, for the range of processes considered here. This is consistent with the uncertainty analysis of Houghton et al. (2012), which partly reflects improvements in data on forest area change using data and partly more com-²⁵ plete understanding and representation of processes in models.

The uncertainties in the decadal E_{LUC} estimates are also examined using the DGVM ensemble, although they are likely correlated between decades. The correlations between ³⁰ decades come from (1) common biases in system boundaries (e.g. not counting forest degradation in some models), (2) common definition for the calculation of E_{LUC} from the difference of simulations with and without land-use change (a source of bias vs. the unknown truth), (3) common and uncertain land-cover change input data which also cause a ³⁵ bias (though if a different input data set is used each decade, decadal fluxes from DGVMs may be partly decorrelated), and (4) model structural errors (e.g. systematic errors in biomass stocks). In addition, errors arising from uncertain DGVM parameter values would be random but they are not ⁴⁰ accounted for in this study, since no DGVM provided an ensemble of runs with perturbed parameters.

Prior to 1959, the uncertainty in E_{LUC} is taken as $\pm 33 \%$, which is the ratio of uncertainty to mean from the 1960s in the bookkeeping method (Table 7), the first decade available. This ratio is consistent with the mean standard deviation of DGVMs land-use-change emissions over 1870–1958 (0.32 GtC) over the multi-model mean (0.9 GtC).

2.3 Growth rate in atmospheric CO_2 concentration (G_{ATM})

Global growth rate in atmospheric CO₂ concentration

TSIT The rate of growth of the atmospheric CO₂ concentration is provided by the US National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL; Dlugokencky and Tans, 2016), which is updated from Ballantyne et al. (2012). For the 1959–1980 period, the global growth rate is based on measurements of atmospheric CO₂ concentration averaged from the Mauna

note the remarks at the end of the manuscript

50

C. Le Quéré et al.: Global Carbon Budget 2016

Loa and South Pole stations, as observed by the CO₂ Program at Scripps Institution of Oceanography (Keeling et al., 1976). For the 1980–2015 time period, the global growth rate is based on the average of multiple stations selected from

- 5 the marine boundary layer sites with well-mixed background air (Ballantyne et al., 2012), after fitting each station with a smoothed curve as a function of time, and averaging by latitude band (Masarie and Tans, 1995). The annual growth rate is estimated by Dlugokencky and Tans (2016) from atmo-
- ¹⁰ spheric CO₂ concentration by taking the average of the most recent December-January months corrected for the average seasonal cycle and subtracting this same average 1 year earlier. The growth rate in units of ppm yr^{-1} is converted to units of $GtCyr^{-1}$ by multiplying by a factor of 2.12 GtC ppm⁻¹ 15 (Ballantyne et al., 2012) for consistency with the other com-
- ponents.

The uncertainty around the annual growth rate based on the multiple stations data set ranges between 0.11 and $0.72 \,\text{GtC yr}^{-1}$, with a mean of 0.61 GtC yr⁻¹ for 1959–1979 $_{\rm 20}$ and 0.19 GtC yr^{-1} for 1980–2015, when a larger set of stations were available (Dlugokencky and Tans, 2016). It is based on the number of available stations, and thus takes into account both the measurement errors and data gaps at each station. This uncertainty is larger than the uncertainty $_{25}$ of ± 0.1 GtC yr⁻¹ reported for decadal mean growth rate by the IPCC because errors in annual growth rate are strongly anti-correlated in consecutive years leading to smaller er-

- rors for longer timescales. The decadal change is computed from the difference in concentration 10 years apart 30 based on a measurement error of 0.35 ppm. This error is based on offsets between NOAA/ESRL measurements and those of the World Meteorological Organization World Data Centre for Greenhouse Gases (NOAA/ESRL, 2015) for the start and end points (the decadal change uncertainty is the
- $\sqrt{(2(0.35 \text{ ppm})^2)(10 \text{ yr})^{-1}}$ assuming that each yearly measurement error is independent). This uncertainty is also used in Table 8.

The contribution of anthropogenic CO and CH₄ is neglected from the global carbon budget (see Sect. 2.7.1). We $_{40}$ assign a high confidence to the annual estimates of G_{ATM} because they are based on direct measurements from multiple and consistent instruments and stations distributed around the world (Ballantyne et al., 2012).

In order to estimate the total carbon accumulated in the at-⁴⁵ mosphere since 1750 or 1870, we use an atmospheric CO₂ concentration of 277 ± 3 or 288 ± 3 ppm, respectively, based on a cubic spline fit to ice core data (Joos and Spahni, 2008). The uncertainty of ± 3 ppm (converted to $\pm 1\sigma$) is taken directly from the IPCC's assessment (Ciais et al., 2013). Typi-50 cal uncertainties in the growth rate in atmospheric CO₂ concentration from ice core data are $\pm 1-1.5$ GtC per decade as evaluated from the Law Dome data (Etheridge et al., 1996) for individual 20-year intervals over the period from 1870 to 1960 (Bruno and Joos, 1997).

2.4 Ocean CO₂ sink

Estimates of the global ocean CO₂ sink are based on a combination of a mean CO₂ sink estimate for the 1990s from observations, as well as a trend and variability in the ocean CO₂ sink for 1959–2015 from seven global ocean biogeochemistry models. We use two observation-based estimates 60 of SOCEAN available for recent decades to provide a qualitative assessment of confidence in the reported results.

2.4.1 Observation-based estimates

A mean ocean CO₂ sink of 2.2 ± 0.4 GtC yr⁻¹ for the 1990s was estimated by the IPCC (Denman et al., 2007) based on 65 indirect observations and their spread: ocean-land CO2 sink partitioning from observed atmospheric O2 / N2 concentration trends (Manning and Keeling, 2006), an oceanic inversion method constrained by ocean biogeochemistry data (Mikaloff Fletcher et al., 2006), and a method based on pen-70 etration timescale for CFCs (McNeil et al., 2003). This is comparable with the sink of 2.0 ± 0.5 GtC yr⁻¹ estimated by Khatiwala et al. (2013) for the 1990s, and with the sink of 1.9 to $2.5 \,\text{GtC}\,\text{yr}^{-1}$ estimated from a range of methods for the period 1990–2009 (Wanninkhof et al., 2013), with uncer-75 tainties ranging from ± 0.3 to ± 0.7 GtC yr⁻¹. The most direct way for estimating the observation-based ocean sink is from the product of (sea-air pCO_2 difference) × (gas transfer coefficient). Estimates based on sea-air pCO2 are fully consistent with indirect observations (Wanninkhof et al., 2013), 80 but their uncertainty is larger mainly due to difficulty in capturing complex turbulent processes in the gas transfer coefficient (Sweeney et al., 2007) and because of uncertainties in the pre-industrial river outgas of CO₂ (Jacobson et al., 2007).

Both observation-based estimates (Landschützer et al., 85 2015; Rödenbeck et al., 2014) compute the ocean CO₂ sink and its variability using interpolated measurements of surface ocean fugacity of CO_2 (pCO₂ corrected for the nonideal behaviour of the gas; Pfeil et al., 2013). The measurements were from the Surface Ocean CO₂ Atlas version 4, 90 which is an update of version 3 (Bakker et al., 2016) and contains data to 2015 (see data attribution Table 1a). In contrast to last year's global carbon budget, where preliminary data were used for the past year, data used here are fully quality-controlled following standard SOCAT proce-95 dures. The SOCAT v4 were mapped using a data-driven diagnostic method (Rödenbeck et al., 2013) and a combined self-organising map and feed-forward neural network (Landschützer et al., 2014). The global observation-based estimates were adjusted to remove a background (not part of 100 the anthropogenic ocean flux) ocean source of CO2 to the atmosphere of $0.45 \,\text{GtC}\,\text{yr}^{-1}$ from river input to the ocean (Jacobson et al., 2007) in order to make them comparable to SOCEAN, which only represents the annual uptake of anthropogenic CO₂ by the ocean. Several other data-based prod- 105 ucts are available, but they show large discrepancies with

Table 8. Decadal mean in the five components of the anthropogenic CO₂ budget for the periods 1960–1969, 1970–1979, 1980–1989, 1990–1999, and 2000–2009, as well as the last decade and last year available. All values are in GtC yr⁻¹. All uncertainties are reported as $\pm 1\sigma$. A data set containing data for each year during 1959–2014 is available at http://cdiac.ornl.gov/GCP/carbonbudget/2015/. Please follow the terms of use and cite the original data sources as specified in the data set.

			М	ean (GtC yr ^{-1}))	
	1960–1969	1970–1979	1980–1989	1990–1999	2000-2009	2006–2015 2015
Emissions Fossil fuels and industry (E_{FF})	3.1 ± 0.2	4.7 ± 0.2	5.5 ± 0.3	6.3 ± 0.3	8.0 ± 0.4	9.3 \pm 0.5 9.9 \pm 0.5
Land-use-change emissions (E_{LUC})	1.5 ± 0.5	1.3 ± 0.5	1.4 ± 0.5	1.6 ± 0.5	1.0 ± 0.5	1.0 ± 0.5 1.3 ± 0.5
Partitioning Growth rate in atmospheric CO_2 concentration (G_{ATM})	1.7 ± 0.1	2.8 ± 0.1	3.4 ± 0.1	3.1 ± 0.1	4.0 ± 0.1	$4.5 \pm 0.1 6.3 \pm 0.2$
Ocean sink (S _{OCEAN})	1.2 ± 0.5	1.5 ± 0.5	1.9 ± 0.5	2.2 ± 0.5	2.3 ± 0.5	$2.6 \pm 0.5 \mid 3.0 \pm 0.5$
Residual terrestrial sink (S _{LAND})	1.7±0.7	1.7 ± 0.8	1.6 ± 0.8	2.6 ± 0.8	2.6 ± 0.8	3.1 ± 0.9 1.9 ± 0.9

observed variability that need to be resolved. Here we used the two data products that had the best fit to observations, Cetsidistinctly better than most in their representation of tropical and global variability (Rödenbeck et al., 2015).

- ⁵ We use the data-based product of Khatiwala et al. (2009) updated by Khatiwala et al. (2013) to estimate the anthropogenic carbon accumulated in the ocean during 1765– 1958 (60.2 GtC) and 1870–1958 (47.5 GtC), and assume an oceanic uptake of 0.4 GtC for 1750–1765 (for which time no ¹⁰ data are available) based on the mean uptake during 1765–
- 1770. The estimate of Khatiwala et al. (2009) is based on regional disequilibrium between surface pCO_2 and atmospheric CO₂, and a Green's function utilising transient ocean tracers like CFCs and ¹⁴C to ascribe changes through time.
- ¹⁵ It does not include changes associated with changes in ocean circulation, temperature, and climate, but these are thought to be small over the time period considered here (Ciais et al., 2013). The uncertainty in cumulative uptake of ± 20 GtC (converted to $\pm 1\sigma$) is taken directly from the IPCC's review
- $_{20}$ of the literature (Rhein et al., 2013), or about $\pm 30\,\%$ for the annual values (Khatiwala et al., 2009).

2.4.2 Global ocean biogeochemistry models

The trend in the ocean CO₂ sink for 1959–2015 is computed using a combination of seven global ocean biogeochemistry ²⁵ models (Table 6). The models represent the physical, chemical, and biological processes that influence the surface ocean

- concentration of CO_2 and thus the air-sea CO_2 flux. The models are forced by meteorological reanalysis and atmospheric CO_2 concentration data available for the entire time ³⁰ period. Models do not include the effects of anthropogenic
- changes in nutrient supply, which could lead to an increase in the ocean sink of up to about 0.3 GtC yr^{-1} over the indus-

trial period (Duce et al., 2008). They compute the air-sea flux of CO₂ over grid boxes of 1 to 4° in latitude and longitude. The ocean CO₂ sink for each model is normalised to the observations by dividing the annual model values by their modelled average over 1990–1999 and multiplying this by the observation-based estimate of 2.2 GtC yr⁻¹ (obtained from Manning and Keeling, 2006; McNeil et al., 2003; Mikaloff Fletcher et al., 2006). The ocean CO₂ sink for each year (*t*) 40 in GtC yr⁻¹ is therefore

$$S_{\text{OCEAN}}(t) = \frac{1}{n} \sum_{m=1}^{m=n} \frac{S_{\text{OCEAN}}^m(t)}{S_{\text{OCEAN}}^m(1990-1999)} \times 2.2,$$
 (7)

where *n* is the number of models. This normalisation ensures that the ocean CO_2 sink for the global carbon budget is based on observations, whereas the trends and annual values in CO_2 ⁴⁵ sinks are from model estimates. The normalisation based on a ratio assumes that if models over or underestimate the sink in the 1990s, it is primarily due to the process of diffusion, which depends on the gradient of CO_2 . Thus, a ratio is more appropriate than an offset as it takes into account the time dependence of CO_2 gradients in the ocean. The mean uncorrected ocean CO_2 sink from the models for 1990–1999 ranges between 1.7 and 2.4 GtC yr⁻¹, with a multi-model mean of 2.0 GtC yr⁻¹.

2.4.3 Uncertainty assessment for SOCEAN

The uncertainty around the mean ocean sink of anthropogenic CO₂ was quantified by Denman et al. (2007) for the 1990s (see Sect. 2.4.1). To quantify the uncertainty around annual values, we examine the standard deviation of the normalised model ensemble. We use further information from ⁶⁰ the two data-based products to assess the confidence level.

55

The average standard deviation of the normalised ocean model ensemble is 0.16 GtC yr^{-1} during 1980–2010 (with a maximum of 0.33), but it increases as the model ensemble goes back in time, with a standard deviation of 0.22 GtC yr⁻¹

- ⁵ across models in the 1960s. We estimate that the uncertainty in the annual ocean CO₂ sink is about ± 0.5 GtC yr⁻¹ from the fractional uncertainty in the data uncertainty of ± 0.4 GtC yr⁻¹ and standard deviation across models of up to ± 0.33 GtC yr⁻¹, reflecting both the uncertainty in the mean ¹⁰ sink from observations during the 1990s (Denman et al.,
- 2007; Sect. 2.4.1) and in the interannual variability as assessed by models.
- We examine the consistency between the variability in the model-based and the data-based products to as-¹⁵ sess confidence in S_{OCEAN} . The interannual variability of the ocean fluxes (quantified as the standard deviation) of the two data-based estimates for 1986–2015 (where they overlap) is ± 0.34 GtC yr⁻¹ (Rödenbeck et al., 2014) and ± 0.41 GtC yr⁻¹ (Landschützer et al., 2015), compared
- to $\pm 0.29 \,\text{GtC yr}^{-1}$ for the normalised model ensemble. The standard deviation includes a component of trend and decadal variability in addition to interannual variability, and their relative influence differs across estimates. The phase is generally consistent between estimates, with a higher ocean
- ²⁵ CO₂ sink during El Niño events. The annual data-based estimates correlate with the ocean CO₂ sink estimated here with a correlation of r = 0.71 (0.51 to 0.77 for individual models), and r = 0.81 (0.66 to 0.79) for the data-based estimates of Rödenbeck et al. (2014) and Landschützer et al. (2015), re-
- ³⁰ spectively (simple linear regression), with their mutual correlation at 0.65. The agreement is better for decadal variability than for interannual variability. The use of annual data for the correlation may reduce the strength of the relationship because the dominant source of variability associated with El
- ³⁵ Niño events is less than one year. We assess a medium confidence level to the annual ocean CO₂ sink and its uncertainty because they are based on multiple lines of evidence, and the results are consistent in that the interannual variability in the model and data-based estimates are all generally small com-
- ⁴⁰ pared to the variability in the growth rate of atmospheric CO₂ concentration.

2.5 Terrestrial CO₂ sink

The difference between, on the one hand, fossil fuel ($E_{\rm FF}$) and land-use-change emissions ($E_{\rm LUC}$) and, on the other ⁴⁵ hand, the growth rate in atmospheric CO₂ concentration ($G_{\rm ATM}$) and the ocean CO₂ sink ($S_{\rm OCEAN}$) is attributable to the net sink of CO₂ in terrestrial vegetation and soils ($S_{\rm LAND}$), within the given uncertainties (Eq. 1). Thus, this sink can be estimated as the residual of the other terms in ⁵⁰ the mass balance budget, as well as directly calculated us-

ing DGVMs. The residual land sink (S_{LAND}) is thought to be in part because of the fertilising effect of rising atmospheric CO₂ on plant growth, N deposition, and effects of climate change such as the lengthening of the growing season in northern temperate and boreal areas. S_{LAND} does not include gross land sinks directly resulting from land-use change (e.g. regrowth of vegetation) as these are estimated as part of the net land-use flux (E_{LUC}). System boundaries make it difficult to exactly attribute CO₂ fluxes on land between S_{LAND} and E_{LUC} (Erb et al., 2013), and by design most of the uncertainties in our method are allocated to S_{LAND} for those processes that are poorly known or represented in models.

2.5.1 Residual of the budget

For 1959–2015, the terrestrial carbon sink was estimated from the residual of the other budget terms by rearranging ⁶⁵ Eq. (1):

$$S_{\text{LAND}} = E_{\text{FF}} + E_{\text{LUC}} - (G_{\text{ATM}} + S_{\text{OCEAN}}).$$
(8)

The uncertainty in S_{LAND} is estimated annually from the root sum of squares of the uncertainty in the right-hand terms assuming the errors are not correlated. The uncertainty averages to $\pm 0.8 \text{ GtC yr}^{-1}$ over 1959–2015 (Table 7). S_{LAND} estimated from the residual of the budget includes, by definition, all the missing processes and potential biases in the other components of Eq. (8).

2.5.2 DGVMs

A comparison of the residual calculation of S_{LAND} in Eq. (8) with estimates from DGVMs as used to estimate E_{LUC} in Sect. 2.2.3, but here excluding the effects of changes in land cover (using a constant pre-industrial land-cover distribution), provides an independent estimate of the consistency of 80 S_{LAND} with our understanding of the functioning of the terrestrial vegetation in response to CO2 and climate variability (Table 7). As described in Sect. 2.2.3, the DGVM runs that exclude the effects of changes in land cover include all climate variability and CO2 effects over land, but they do not 85 include reductions in CO2 sink capacity associated with human activity directly affecting changes in vegetation cover and management, which by design is allocated to E_{LUC} . This effect has been estimated to have led to a reduction in the terrestrial sink by $0.5 \,\text{GtC}\,\text{yr}^{-1}$ since 1750 (Gitz and Ciais, 90 2003). The models in this configuration estimate the mean and variability of SLAND based on atmospheric CO2 and climate, and thus both terms can be compared to the budget residual. We apply three criteria for minimum model realism by including only those models with (1) steady state after 95 spin-up; (2) where available, net land fluxes $(S_{\text{LAND}} - E_{\text{LUC}})$ that are a carbon sink over the 1990s as constrained by global atmospheric and oceanic observations (Keeling and Manning, 2014; Wanninkhof et al., 2013); and (3) where available, global E_{LUC} that is a carbon source over the 1990s. 100 Fourteen models met criteria (1), and five of the models that provided E_{LUC} met all three criteria.

75

The standard deviation of the annual CO₂ sink across the DGVMs' averages to ± 0.8 GtC yr⁻¹ for the period 1959 to 2015. The model mean, over different decades, correlates with the budget residual with r = 0.68 (0.51 to r = 0.77⁵ for individual models). The standard deviation is similar to

- that of the five model ensembles presented in Le Quéré et al. (2009), but the correlation is improved compared to r = 0.54 obtained in the earlier study. The DGVM results suggest that the sum of our knowledge on annual CO₂ emissively.
- ¹⁰ sions and their partitioning is plausible (see Sect. 4^{TS12}), and provide insight on the underlying processes and regional breakdown. However, as the standard deviation across the DGVMs (0.8 GtC yr⁻¹ on average) is of the same magnitude as the combined uncertainty due to the other components
- ¹⁵ (*E*_{FF}, *E*_{LUC}, *G*_{ATM}, *S*_{OCEAN}; Table 7), the DGVMs do not provide further reduction of uncertainty in the annual terrestrial CO₂ sink compared to the residual of the budget (Eq. 8). Yet, DGVM results are largely independent of the residual of the budget, and it is worth noting that the residual method and
- ²⁰ ensemble mean DGVM results are consistent within their respective uncertainties. We attach a medium confidence level to the annual land CO₂ sink and its uncertainty because the estimates from the residual budget and averaged DGVMs match well within their respective uncertainties, and the estimates from the respective uncertainties.
- ²⁵ timates based on the residual budget are primarily dependent on $E_{\rm FF}$ and $G_{\rm ATM}$, both of which are well constrained.

2.6 The atmospheric perspective

The worldwide network of atmospheric measurements can be used with atmospheric inversion methods to constrain the 30 location of the combined total surface CO₂ fluxes from all sources, including fossil and land-use-change emissions and land and ocean CO_2 fluxes. The inversions assume E_{FF} to be well known, and they solve for the spatial and temporal distribution of land and ocean fluxes from the residual gradients ³⁵ of CO₂ between stations that are not explained by emissions. Inversions used atmospheric CO₂ data to the end of 2015 (including preliminary values in some cases), and three atmospheric CO_2 inversions (Table 6) to infer the total CO_2 flux over land regions, and the distribution of the total land 40 and ocean CO₂ fluxes for the mid- to high-latitude Northern Hemisphere (30-90° N), tropics (30° S-30° N) and mid- to high-latitude region of the Southern Hemisphere (30–90° S). We focus here on the largest and most consistent sources of information and use these estimates to comment on the con-45 sistency across various data streams and process-based estimates.

Atmospheric inversions

TSLThe three inversion systems used in this release are the CarbonTracker (Peters et al., 2010), the Jena CarboScope ⁵⁰ (Rödenbeck, 2005), and CAMS (Chevallier et al., 2005). See Table 6 for version numbers. They are based on the same

Bayesian inversion principles that interpret the same, for the most part, observed time series (or subsets thereof), but use different methodologies that represent some of the many approaches used in the field. This mainly concerns the time ⁵⁵ resolution of the estimates (i.e. weekly or monthly), spatial breakdown (i.e. grid size), assumed correlation structures, and mathematical approach. The details of these approaches are documented extensively in the references provided. Each system uses a different transport model, which ⁶⁰ was demonstrated to be a driving factor behind differences in atmospheric-based flux estimates, and specifically their global distribution (Stephens et al., 2007).

The three inversions use atmospheric CO₂ observations from various flask and in situ networks. They prescribe spatial and global $E_{\rm FF}$ that can vary from that presented here. The CarbonTracker and CAMS inversions prescribed the same global $E_{\rm FF}$ as in Sect. 2.1.1, during 2010–2015 for CarbonTracker and during 1979–2015 in CAMS. The Jena CarboScope inversion uses $E_{\rm FF}$ from EDGAR (2011) v4.2. ⁷⁰ Different spatial and temporal distributions of $E_{\rm FF}$ were prescribed in each inversion.

Given their \bigcirc prescribed map of $E_{\rm FF}$, each inversion estimates natural fluxes from a similar set of surface CO2 measurement stations, and CarbonTracker additionally uses two 75 sites of aircraft CO₂ vertical profiles over the Amazon and Siberia, regions where surface observations are sparse. The atmospheric transport models of each inversion are TM5 for CarbonTracker, TM3 for Jena CarboScope, and LMDZ for CAMS. These three models are based on the same ECMWF 80 wind fields. The three inversions use different prior natural fluxes, which partly influences their optimised fluxes. CAMS assumes that the prior land flux is zero on the annual mean in each grid cell of the transport model, so that any sink or source on land is entirely reflecting the information brought 85 by atmospheric measurements. CarbonTracker simulates a small prior sink on land from the SIBCASA model that results from regrowth following fire disturbances of an otherwise net zero biosphere. Jena CarboScope assumes a prior sink on land as well from the LPJ model. Inversion results 90 for the sum of natural ocean and land fluxes (Fig. 8) are more constrained in the Northern Hemisphere (NH) than in the tropics, because of the higher measurement stations density in the NH.

Finally, results from atmospheric inversions include the ⁹⁵ natural CO₂ fluxes from rivers (which need to be taken into account to allow comparison to other sources) and chemical oxidation of reactive carbon-containing gases (which are neglected here). These inverse estimates are not truly independent of the other estimates presented here as the atmospheric observations include a set of observations used to estimate the global growth rate in atmospheric CO₂ concentration (Sect. 2.3). However, they provide new information on the regional distribution of fluxes.

We focus the analysis on two known strengths of the inverse approach: the derivation of the year-to-year changes in total land fluxes ($S_{\text{LAND}} - E_{\text{LUC}}$) consistent with the whole network of atmospheric observations, and the spatial breakdown of land and ocean fluxes ($S_{\text{LAND}} - E_{\text{LUC}} + S_{\text{OCEAN}}$) across large regions of the globe. The spatial breakdown is 5 discussed in Sect. 3.1.3.

2.7 Processes not included in the global carbon budget

2.7.1 Contribution of anthropogenic CO and CH₄ to the global carbon budget

- Anthropogenic emissions of CO and CH_4 to the atmosphere ¹⁰ are eventually oxidised to CO_2 and thus are part of the global carbon budget. These contributions are omitted in Eq. (1), but an attempt is made in this section to estimate their magnitude and identify the sources of uncertainty. Anthropogenic CO emissions are from incomplete fossil fuel and biofuel burning
- ¹⁵ and deforestation fires. The main anthropogenic emissions of fossil CH_4 that matter for the global carbon budget are the fugitive emissions of coal, oil, and gas upstream sectors (see below). These emissions of CO and CH_4 contribute a net addition of fossil carbon to the atmosphere.
- In our estimate of $E_{\rm FF}$ we assumed (Sect. 2.1.1) that all the fuel burned is emitted as CO₂; thus, CO anthropogenic emissions and their atmospheric oxidation into CO₂ within a few months are already counted implicitly in $E_{\rm FF}$ and should not be counted twice (same for $E_{\rm LUC}$ and anthropogenic CO
- ²⁵ emissions by deforestation fires). Anthropogenic emissions of fossil CH₄ are not included in E_{FF} , because these fugitive emissions are not included in the fuel inventories. Yet they contribute to the annual CO₂ growth rate after CH₄ gets oxidised into CO₂. Anthropogenic emissions of fossil CH₄ rep-
- ³⁰ resent 15 % of total CH₄ emissions (Kirschke et al., 2013) that is 0.061 GtC yr⁻¹ for the past decade. Assuming steady state, these emissions are all converted to CO₂ by OH oxidation and thus explain 0.06 GtC yr⁻¹ of the global CO₂ growth rate in the past decade, or 0.07–0.1 GtC yr⁻¹ using higher ³⁵ CH₄ emissions reported recently (Schwietzke et al., 2016).

Other anthropogenic changes in the sources of CO and CH_4 from wildfires, biomass, wetlands, ruminants, or permafrost changes are similarly assumed to have a small effect on the CO₂ growth rate.

⁴⁰ 2.7.2 Anthropogenic carbon fluxes in the land to ocean aquatic continuum

The approach used to determine the global carbon budget considers only anthropogenic CO₂ emissions and their partitioning among the atmosphere, ocean, and land. In this anal-⁴⁵ ysis, the land and ocean reservoirs that take up anthropogenic CO₂ from the atmosphere are conceived as independent carbon storage repositories. This approach omits the fact that carbon is continuously displaced from the land to the ocean through the land–ocean aquatic continuum (LOAC) ⁵⁰ comprising freshwaters, estuaries, and coastal areas (Bauer et al., 2013; Regnier et al., 2013). A significant fraction of this lateral carbon flux is entirely "natural" and is thus a steadystate component of the pre-industrial carbon cycle. However, changes in environmental conditions and land-use change have caused an increase in the lateral transport of carbon into the LOAC – a perturbation that is relevant for the global carbon budget presented here.

The results of the analysis of Regnier et al. (2013) can be summarised in two points of relevance for the anthropogenic CO₂ budget. First, the anthropogenic perturbation has in-60 creased the organic carbon export from terrestrial ecosystems to the hydrosphere at a rate of 1.0 ± 0.5 GtC yr⁻¹, mainly owing to enhanced carbon export from soils. Second, this exported anthropogenic carbon is partly respired through the LOAC, partly sequestered in sediments along the LOAC 65 and, to a lesser extent, transferred in the open ocean where it may accumulate. The increase in storage of land-derived organic carbon in the LOAC and open ocean combined is estimated by Regnier et al. (2013) at 0.65 ± 0.35 GtC yr⁻¹. The implication of a substantial LOAC carbon accumula-70 tion is that S_{LAND} corresponds to carbon sequestered both in land ecosystems and in LOAC. We do not attempt to separate these two storage components in our study focused on S_{LAND} .

3 Results

3.1 Global carbon budget averaged over decades and its variability

The global carbon budget averaged over the last decade (2006–2015) is shown in Fig. 2. For this time period, 91% of the total emissions ($E_{\rm FF} + E_{\rm LUC}$) were caused by fossil ⁸⁰ fuels and industry, and 9% by land-use change. The total emissions were partitioned among the atmosphere (44%), ocean (26%), and land (30%). All components except land-use-change emissions have grown since 1959 (Figs. 3 and 4), with important interannual variability in the growth rate ⁸⁵ in atmospheric CO₂ concentration and in the land CO₂ sink (Fig. 4) and some decadal variability in all terms (Table 8).

3.1.1 CO₂ emissions

Global CO₂ emissions from fossil fuels and industry have increased every decade from an average of 3.1 ± 0.2 GtC yr⁻¹ ⁹⁰ in the 1960s to an average of 9.3 ± 0.5 GtC yr⁻¹ during 2006–2015 (Table 8 and Fig. 5). The growth rate in these emissions decreased between the 1960s and the 1990s, with $4.5 \% \text{ yr}^{-1}$ in the 1960s (1960–1969), $2.8 \% \text{ yr}^{-1}$ in the 1970s (1970–1979), $1.9 \% \text{ yr}^{-1}$ in the 1980s (1980–1989), ⁹⁵ and $1.1 \% \text{ yr}^{-1}$ in the 1990s (1990–1999). After this period, the growth rate began increasing again in the 2000s at an average growth rate of $3.5 \% \text{ yr}^{-1}$, decreasing to $1.8 \% \text{ yr}^{-1}$ for the last decade (2006–2015). In contrast, CO₂ emissions from land-use change have remained relatively constant at ¹⁰⁰ around 1.3 ± 0.5 GtC yr⁻¹ during 1960–2015. A decrease in

75

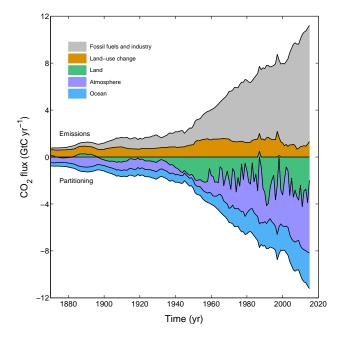
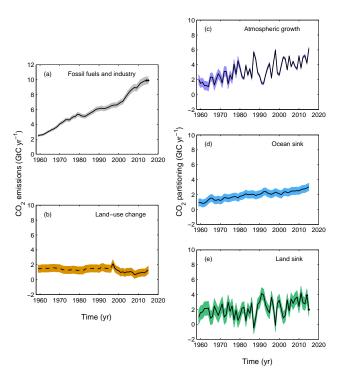



Figure 3. Combined components of the global carbon budget illustrated in Fig. 2 as a function of time, for emissions from fossil fuels and industry ($E_{\rm FF}$; grey) and emissions from land-use change $(E_{LUC}; brown)$, as well as their partitioning among the atmosphere (G_{ATM} ; purple), land (S_{LAND} ; green), and oceans (S_{OCEAN} ; dark blue). All time series are in GtC yr⁻¹. G_{ATM} and S_{OCEAN} (and by construction also S_{LAND}) prior to 1959 are based on different methods. The primary data sources for fossil fuels and industry are from Boden and Andres (2016), with uncertainty of about $\pm 5\% (\pm 1\sigma)$; land-use-change emissions are from Houghton et al. (2012) with uncertainties of about $\pm 30\%$; growth rate in atmospheric CO₂ concentration prior to 1959 is from Joos and Spahni (2008) with uncertainties of about $\pm 1-1.5$ GtC decade⁻¹ or $\pm 0.1-0.15$ GtC yr⁻¹ (Bruno and Joos, 1997), and from Dlugokencky and Tans (2016) from 1959 with uncertainties of about ± 0.2 GtC yr⁻¹; the ocean sink prior to 1959 is from Khatiwala et al. (2013) with uncertainty of about \pm 30%, and from this study from 1959 with uncertainties of about ± 0.5 GtC yr⁻¹; and the residual land sink is obtained by difference (Eq. 8), resulting in uncertainties of about $\pm 50\%$ prior to 1959 and ± 0.8 GtC yr⁻¹ after that. See the text for more details of each component and their uncertainties.

emissions from land-use change is suggested between the 1990s and 2000s by the combination of bookkeeping and fire-based emissions used here (Table 7), but it is highly uncertain due to uncertainty in the underlying land-cover-⁵ change data. This decrease is not found in the current ensemble of the DGVMs (Fig. 6), which are otherwise consistent with the bookkeeping method within their respective uncertainty (Table 7). The decrease is also not found in the study of tropical deforestation of Achard et al. (2014), where the 10 fluxes in the 1990s were similar to those of the 2000s and outside our uncertainty range. A new study based on FAO data to 2015 (Federici et al., 2015) suggests that E_{LUC} decreased during 2011–2015 compared to 2001–2010.

Figure 4. Components of the global carbon budget and their uncertainties as a function of time, presented individually for (**a**) emissions from fossil fuels and industry (E_{FF}), (**b**) emissions from landuse change (E_{LUC}), (**c**) growth rate in atmospheric CO₂ concentration (G_{ATM}), (**d**) the ocean CO₂ sink (S_{OCEAN} ; positive indicates a flux from the atmosphere to the ocean), and (**e**) the land CO₂ sink (S_{LAND} ; positive indicates a flux from the atmosphere to the land). All time series are in GtC yr⁻¹ with the uncertainty bounds representing $\pm 1\sigma$ in shaded colour. Data sources are as in Fig. 3. The black dots in (**a**, **e**) show values for 2014 and 2015 that originate from a different data set to the remainder of the data, while the dashed line in (**b**) highlights the start of satellite data use to estimate the interannual variability and extend the series in time (see text).

3.1.2 Partitioning among the atmosphere, ocean, and land

Emissions are partitioned among the atmosphere, ocean, and land (Eq. 1). The growth rate in atmospheric CO₂ level increased from $1.7 \pm 0.1 \,\text{GtC} \,\text{yr}^{-1}$ in the 1960s to $4.5 \pm 0.1 \,\text{GtC} \,\text{yr}^{-1}$ during 2006–2015 with important decadal variations (Table 8). Both ocean and land CO₂ sinks ²⁰ increased roughly in line with the atmospheric increase, but with significant decadal variability on land (Table 8). The ocean CO₂ sink increased from $1.2 \pm 0.5 \,\text{GtC} \,\text{yr}^{-1}$ in the 1960s to $2.6 \pm 0.5 \,\text{GtC} \,\text{yr}^{-1}$ during 2006–2015, with interannual variations of the order of a few tenths of GtC yr^{-1} generally showing an increased ocean sink during El Niño events (i.e. 1982–1983, 1997–1998, 2015–2016) (Fig. 7; Rödenbeck et al., 2014). Although there is some coherence between the ocean models and data products and among data

15

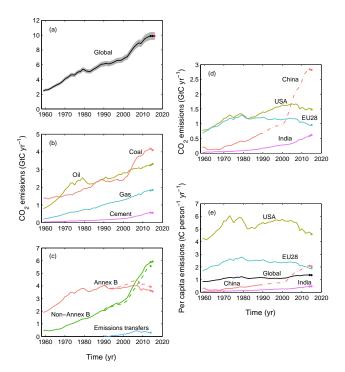


Figure 5. CO₂ emissions from fossil fuels and industry for (a) the globe, including an uncertainty of $\pm 5\%$ (grey shading), the emissions extrapolated using BP energy statistics (black dots), and the emissions projection for year 2016 based on GDP projection (red dot). (b) Global emissions by fuel type, including coal (salmon), oil (olive), gas (turquoise), and cement (purple), and excluding gas flaring which is small (0.6% in 2013). (c) Territorial (solid line) and consumption (dashed line) emissions for the countries listed in Annex B of the Kyoto Protocol (salmon lines; mostly advanced economies with emissions limitations) vs. non-Annex B countries (green lines); also shown are the emissions transfer from non-Annex B to Annex B countries (light-blue line). (d) Territorial CO2 emissions for the top three country emitters (USA - olive; China - salmon; India - purple) and for the European Union (EU; turquoise for the 28 member states of the EU as of 2012). (e) Per capita emissions for the top three country emitters and the EU (all colours as in panel (d) and the world (black). In (b-e), the dots show the data that were extrapolated from BP energy statistics for 2014 and 2015. All time series are in GtC yr⁻¹ except the per capita emissions (e), which are in tonnes of carbon per person per year (tC person⁻¹ yr⁻¹). Territorial emissions are primarily from Boden and Andres (2016) except for national data for the USA and EU28 for 1990-2014, which are reported by the countries to the UNFCCC as detailed in the text, and for China from 1990, which are estimated here from BP energy statistics (the latter shown as a dashdot line); consumption-based emissions are updated from Peters et al. (2011a). See Sect. 2.1.1 for details of the calculations and data sources.

products regarding the mean, decadal variability, and trend, the ocean models and data products show poor agreement for interannual variability (Sect. 2.4.3 and Fig. 7). As shown in Fig. 7, the two data products and most model estimates produce a mean CO₂ sink for the 1990s that is below the mean ⁵ assessed by the IPCC from indirect (but arguably more reliable) observations (Denman et al., 2007; Sect. 2.4.1). This discrepancy suggests we may need to reassess estimates of the mean ocean carbon sinks, with some implications for the cumulative carbon budget (Landschützer et al., 2016).

The residual terrestrial CO2 sink increased from $1.7 \pm 0.7 \,\text{GtC}\,\text{yr}^{-1}$ in the 1960s to $3.1 \pm 0.9 \,\text{GtC}\,\text{yr}^{-1}$ during 2006–2015, with important interannual variations of up to 2 GtC yr^{-1} generally showing a decreased land sink during El Niño events, overcompensating for the increase 15 in ocean sink and accounting for the enhanced growth rate in atmospheric CO₂ concentration during El Niño events. The high uptake anomaly around year 1991 is thought to be caused by the effect of the volcanic eruption of Mount Pinatubo on climate and is not generally reproduced by the 20 DGVMs, but it is assigned to the land by the two inverse systems that include this period (Fig. 6). The larger land CO₂ sink during 2006-2015 compared to the 1960s is reproduced by all the DGVMs in response to combined atmospheric CO₂ increase, climate, and variability, consistent with the ²⁵ budget residual and reflecting a common knowledge of the processes (Table 7). The DGVM ensemble mean of $2.8 \pm 0.7 \,\mathrm{GtC} \,\mathrm{yr}^{-1}$ also reproduces the observed mean for the period 2006-2015 calculated from the budget residual (Table 7). 30

The total CO₂ fluxes on land $(S_{LAND} - E_{LUC})$ constrained by the atmospheric inversions show in general very good agreement with the global budget estimate, as expected given the strong constrains of G_{ATM} and the small relative uncertainty assumed on S_{OCEAN} and E_{FF} by inversions. The to-35 tal land flux is of similar magnitude for the decadal average, with estimates for 2006-2015 from the three inversions of 2.2, 2.3, and 3.4 GtC yr⁻¹ compared to 2.1 ± 0.7 GtC yr⁻¹ for the total flux computed with the carbon budget from other terms in Eq. (1) (Table 7). The total land sink from the 40 three inversions is 1.8, 1.8, and $3.0 \,\text{GtC}\,\text{yr}^{-1}$ when including a mean river flux adjustment of $0.45 \,\mathrm{GtC} \,\mathrm{yr}^{-1}$, though the exact adjustment is in fact smaller because the anthropogenic contribution to river fluxes is only a fraction of the total river flux (Sect. 2.7.2). The interannual variability in 45 the inversions also matched the residual-based SLAND closely (Fig. 6). The total land flux from the DGVM multi-model mean also compares well with the estimate from the carbon budget and atmospheric inversions, with a decadal mean of $1.7 \pm 0.5 \,\text{GtC}\,\text{yr}^{-1}$ (Table 7; 2006–2015), although individ- 50 ual models differ by several GtC for some years (Fig. 6).

3.1.3 Regional distribution

Figure 8 shows the partitioning of the total surface fluxes excluding emissions from fossil fuels and industry (S_{LAND} + $S_{\text{OCEAN}} - E_{\text{LUC}}$) according to the process models in the 55 ocean and on land, as well as to the three atmospheric inversions. The total surface fluxes provide information on the re-

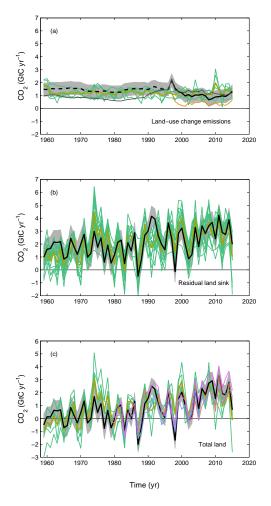
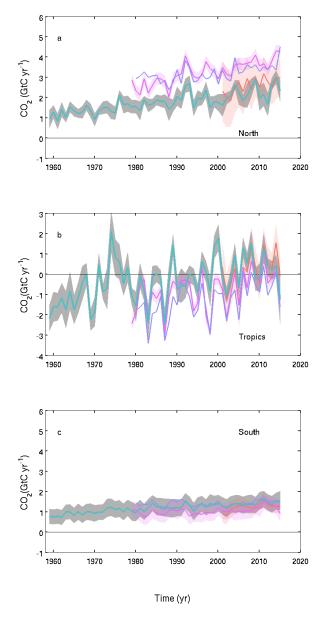



Figure 6. CO_2 exchanges between the atmosphere and the terrestrial biosphere. (a) Comparison of the global carbon budget values of CO₂ emissions from land-use change (E_{LUC} ; black with $\pm 1\sigma$ uncertainty in grey shading), with CO₂ emissions from land-use change showing individual DGVM results (green) and the multimodel mean (olive), as well as fire-based results (orange); land-usechange data prior to 1997 (dashed black) highlights the pre-satellite years; preliminary results using the FAO FRA 2015 (Houghton and Nassikas, 2016) are also shown in dark grey. (b) Land CO2 sink (SLAND; black with uncertainty in grey shading) showing individual DGVM results (green) and multi-model mean (olive). (c) CESTotal land CO₂ fluxes (b-a^{TS15}; black with uncertainty in grey shading), from DGVM results (green) and the multi-model mean (olive), and atmospheric inversions Chevallier et al. (2005; CAMSv15.2) in purple; Rödenbeck et al. (2003; Jena CarboScope, s81_v3.8) in violet; Peters et al. (2010; Carbon Tracker, CTE2016-FT) in salmon; see Table 6 and the carbon balance from Eq. (1) (black). Five DGVMs are plotted in (a) and 14 in (b, c); see Table 5 for the list. In (c) the inversions were corrected for the preindustrial land sink of CO2 from river input by removing a sink of $0.45 \,\text{GtC}\,\text{yr}^{-1}$ (Jacobson et al., 2007). This correction does not take into account the anthropogenic contribution to river fluxes (see Sect. 2.7.2).


Figure 7. Comparison of the anthropogenic atmosphere–ocean CO₂ flux showing the budget values of S_{OCEAN} (black; with $\pm 1\sigma$ uncertainty in grey shading), individual ocean models before normalisation (blue), and the two ocean data-based products (Rödenbeck et al. (2014) in salmon and Landschützer et al. (2015) in purple; see Table 6). Both data-based products were adjusted for the pre-industrial ocean source of CO₂ from river input to the ocean, which is not present in the models, by adding a sink of 0.45 GtC yr⁻¹ (Jacobson et al., 2007), to make them comparable to S_{OCEAN} . This adjustment does not take into account the anthropogenic contribution to river fluxes (see Sect. 2.7.2).

gional distribution of those fluxes by latitude bands (Fig. 8). The global mean CO₂ fluxes from process models for 2006–2015 is 4.2 ± 0.6 GtC yr⁻¹. This is comparable to the fluxes of 4.8 ± 0.5 GtC yr⁻¹ inferred from the remainder of the carbon budget ($E_{FF} - G_{ATM}$ in Eq. 1; Table 8) within their respective uncertainties. The total CO₂ fluxes from the three inversions range between 4.6 and 4.9 GtC yr⁻¹, consistent with the carbon budget as expected from the constraints on the inversions.

In the south (south of 30° S), the atmospheric inversions ¹⁰ and process models all suggest a CO₂ sink for 2006–2015 of between 1.2 and 1.6 GtC yr⁻¹ (Fig. 8), although the details of the interannual variability are not fully consistent across methods. The interannual variability in the south is low because of the dominance of ocean area with low variability ¹⁵ compared to land areas.

In the tropics $(30^{\circ} \text{ S}-30^{\circ} \text{ N})$, both the atmospheric inversions and process models suggest the carbon balance in this region is close to neutral over the past decade, with fluxes for 2006–2015 ranging between -0.5 and $+0.6 \text{ GtC yr}^{-1}$. Both ²⁰ the process-based models and the inversions consistently allocate more year-to-year variability in CO₂ fluxes to the tropics compared to the north (north of 30° N; Fig. 8), this variability being dominated by land fluxes.

In the north (north of 30° N), the inversions and process ²⁵ models are not in agreement on the magnitude of the CO₂ sink with the ensemble mean of the process models suggesting a total Northern Hemisphere sink for 2006–2015 of

Figure 8. CO₂ fluxes between the atmosphere and the surface $(S_{OCEAN} + S_{LAND} - E_{LUC})$ by latitude bands for the (**a**) north (north of 30° N), (**b**) tropics (30° S–30° N), and (**c**) south (south of 30° S). Estimates from the combination of the multi-model means for the land and oceans are shown (turquoise) with $\pm 1\sigma$ of the model ensemble (in grey). Results from the three atmospheric inversions are shown from Chevallier et al. (2005; CAMSv15.2) in purple, Rödenbeck et al. (2003; Jena CarboScope, s81_v3.8) in blue, and Peters et al. (2010; CarbonTracker, CTE2016-FT) in salmon; see Table 6. Where available, the uncertainty in the inversions is also shown.

 2.3 ± 0.4 GtC yr⁻¹, while the three inversions estimate a sink of 2.7, 3.8, and 3.8 GtC yr⁻¹. The mean difference can only partly be explained by the influence of river fluxes, which is seen by the inversions but not included in the process ⁵ models, as this flux in the Northern Hemisphere would be

less than $0.45 \,\mathrm{GtC} \,\mathrm{yr}^{-1}$, particularly when only the anthropogenic contribution to river fluxes is accounted for. The CarbonTracker inversion is close to the one standard deviation of the process models for the mean sink during their overlap period. CAMS and Jena CarboScope give a higher sink in the 10 north than the process models, and a correspondingly higher source in the tropics. Differences between CarbonTracker and CAMS, Jena CarboScope may be related to differences in inter-hemispheric mixing time of their transport models, and other inversion settings. Differences between the mean 15 fluxes of CAMS, Jena CarboScope, and the ensemble of process models cannot be explained easily. They could reflect a bias either in these two inversions or in missing processes or biases in the process models, such as the lack of adequate parameterisations for forest management in the north and for 20 forest degradation emissions in tropics for the DGVMs.

The estimated contribution of the north and its uncertainty from process models is sensitive both to the ensemble of process models used and to the specifics of each inversion. All three inversions show substantial differences in variability ²⁵ and/or trend, and one inversion shows a substantial difference in the mean Northern Hemisphere sink.

3.2 Global carbon budget for year 2015

3.2.1 CO₂ emissions

Global CO₂ emissions from fossil fuels and industry remained nearly constant at 9.9 ± 0.5 GtC in 2015 (Fig. 5), distributed among coal (41%), oil (34%), gas (19%), cement (5.6%), and gas flaring (0.7%). Compared to the previous year, emissions from coal and cement decreased by -1.8 and -1.9%, respectively, while emissions from oil and gas increased by 1.9 and 1.7%, respectively. Due to lack of data, gas flaring in 2014 and 2015 is assumed the same as 2013.

Growth in emissions in 2015 was not statistically different from zero, at 0.06 % higher than in 2014, in stark contrast with the decadal average of $1.8 \% \text{ yr}^{-1}$ (2006–2015). 40 Growth in 2015 is in the range of our projection change of -0.6[-1.6 to +0.5]% made last year (Le Quéré et al., 2015a) based on national emissions projections for China and the USA, and projections of gross domestic product corrected for $I_{\rm FF}$ improvements for the rest of the world. How- 45 ever, the specific projection for 2015 for China made last year (likely range of -4.6 to -1.1 %) was for a larger decrease in emissions than realised (-0.7%). This is due to lower decline in coal production in the last 4 months of the year compared to January-August and to improvements in 50 energy content of coal through improvements in the quality of the coal used which were at the top of the range of improvements considered in our projection.

In 2015, the largest contributions to global CO_2 emissions were from China (29 %), the USA (15 %), the EU (28 member states; 10 %), and India (6.3 %). The percentages are the fraction of the global emissions including bunker fuels (3.2 %). These four regions account for 59 % of global emissions. Growth rates for these countries from 2014 to 2015 were -0.7 % (China), -2.6 % (USA), +1.4 % (EU28), and +5.2 % (India). The per capita CO₂ emissions in 2015 were ${}_{5}$ 1.3 tC person⁻¹ yr⁻¹ for the globe, and were 4.6 (USA), 2.1

(China), 1.9 (EU28), and 0.5 tC person⁻¹ yr⁻¹ (India) for the four highest emitting countries (Fig. 5e).

Territorial emissions in Annex B countries decreased by $-0.2 \% \text{ yr}^{-1}$ on average during 1990–2014. Trends ob-¹⁰ served for consumption emissions were less monotonic, with $0.8 \% \text{ yr}^{-1}$ growth over 1990–2007 and a $-1.5 \% \text{ yr}^{-1}$ decrease over 2007–2014 (Fig. 5c). In non-Annex B countries during 1990–2014, territorial emissions have grown at $4.7 \% \text{ yr}^{-1}$, while consumption emissions have grown at ¹⁵ 4.4 \% \text{ yr}^{-1}. In 1990, 65 % of global territorial emissions were emitted in Annex B countries (33 % in non-Annex B, and 2 %

in bunker fuels used for international shipping and aviation), while in 2014 this had reduced to 37 % (60 % in non-Annex B, and 3 % in bunker fuels). In terms of consumption emis-

²⁰ sions this split was 67 % in 1990 and 41 % in 2014 (33 to 59 % in non-Annex B). The difference between territorial and consumption emissions (the net emission transfer via international trade) from non-Annex B to Annex B countries has increased from near zero in 1990 to 0.3 GtC yr⁻¹ around 2005

²⁵ and remained relatively stable afterwards until the last year available (2014; Fig. 5). The increase in net emission transfers of 0.30 GtC yr⁻¹ between 1990 and 2014 compares with the emission reduction of 0.4 GtC yr⁻¹ in Annex B countries. These results show the importance of net emission transfer

via international trade from non-Annex B to Annex B countries, as well as the stabilisation of emissions transfers when averaged over Annex B countries during the past decade. In 2014, the biggest emitters from a consumption perspective were China (25% of the global total), USA (16%), EU28
25 (12%), and India (5%).

Based on fire activity, the global CO₂ emissions from landuse change are estimated as 1.3 ± 0.5 GtC in 2015, slightly above the 2006–2015 average of 1.0 ± 0.5 GtC yr⁻¹. The slight rise in E_{LUC} in 2015 is consistent with estimates of

⁴⁰ peat fires in Asia based on atmospheric data (Yin et al., 2016). However, the estimated annual variability is not generally consistent between methods, except that all methods estimate that variability in E_{LUC} is small relative to the variability from S_{LAND} (Fig. 6a). This could be partly due to

⁴⁵ the design of the DGVM experiments, which use flux differences between simulations with and without land-cover change, and thus their variability may differ due to, for example, fires in forest regions where the contemporary forest cover is smaller than pre-industrial cover used in the "with-⁵⁰ out land-cover change" runs.

3.2.2 Partitioning among the atmosphere, ocean, and land

The growth rate in atmospheric CO₂ concentration was 6.3 ± 0.2 GtC in 2015 (2.97 ± 0.09 ppm; Fig. 4; Dlugokencky and Tans, 2016). This is well above the 2006–2015 ⁵⁵ average of 4.5 ± 0.1 GtC yr⁻¹ and reflects the large interannual variability in the growth rate of atmospheric CO₂ concentration associated with El Niño and La Niña events.

The ocean CO₂ sink was 3.0 ± 0.5 GtC yr⁻¹ in 2015, an increase of $0.15 \,\text{GtC}\,\text{yr}^{-1}$ over 2015 according to ocean models. Five of the seven ocean models produce an increase in the ocean CO₂ sink in 2015 compared to 2014, with nearzero changes in the last two models (Fig. 7). However, the two data products disagree over changes in the last year, with a decrease of $-0.4 \,\mathrm{GtC} \,\mathrm{yr}^{-1}$ found in Rödenbeck et 65 al. (2014) and an increase of $0.3 \,\text{GtC} \,\text{yr}^{-1}$ found in Landschützer et al. (2015). Thus, there is no overall consistency in the annual change in the ocean CO₂ sink, although there is an indication of increasing convergence among products for the assessment of multi-year changes, as suggested by 70 the time-series correlations reported in Sect. 2.4.3 (see also Landschützer et al., 2015). An increase in the ocean CO₂ sink in 2015 would be consistent with the observed El Niño conditions and continued rising atmospheric CO₂. All estimates suggest an ocean CO₂ sink for 2015 that is larger than their 75 2006-2015 average.

The terrestrial CO₂ sink calculated as the residual from the carbon budget was 1.9 ± 0.9 GtC in 2015, well below the 3.1 ± 0.9 GtC yr⁻¹ averaged over 2006–2015 (Fig. 4), and reflecting the onset of the El Niño conditions in the second half of 2015. The DGVM mean produces a sink of 1.0 ± 1.4 GtC in 2015, also well below the 2006–2015 average (Table 7). Both models and inversions suggest that the lower sink in 2015 primarily originated in the tropics (Fig. 8).

3.3 Emission projections and the global carbon budget ⁸⁵ for year 2016

3.3.1 CO₂ emissions

Using separate projections for China, the USA, and the rest of the world as described in Sect. 2.1.4, we project a continued low growth in global CO₂ emissions from fossil fuels and cement production in 2016 of $\pm 0.5\%$ (range of ± 0.7 to $\pm 2.1\%$) from 2015 levels (Table 9), or $\pm 0.2\%$ (± 1.0 to $\pm 1.8\%$) after adjusting for leap year (see Sect. 2.1.3). Our method is imprecise and contains several assumptions that could influence the results beyond the given range, and as such is indicative only. Within the given assumptions, global emissions remain nearly constant at 9.9 ± 0.5 GtC (36.4 ± 1.8 GtCO₂) in 2016, but they are still 63% above emissions in 1990. The drivers of the trends in $E_{\rm FF}$ are discussed elsewhere (Peters et al., 2016).

For China, the expected change based on available data during January to July or September (see Sect. 2.1.4) is for an

Table 9. Actual CO₂ emissions from fossil fuels and industry (E_{FF}) compared to projections made the previous year based on world GDP (IMF October 2015) and the fossil fuel intensity of GDP (I_{FF}) based on subtracting the CO₂ and GDP growth rates. The "Actual" values are the latest estimate available and the "Projected" value for 2016 refers to those presented in this paper. No correction for leap years is applied (Sect. 2.1.3).

			E _{FF}	GI	OP	I IFF	
		Projec	ted Actual	Projected	Actual	Projected	Actual
	2009 ^a	-2.8	3% -1.1%	-1.1 %	-0.05 %	-1.7 %	-1.1 %
	2010 ^b	>3	3% 5.7%	4.8 %	5.4 %	> -1.7 %	+0.3~%
	2011 ^c	3.1 ± 1.5	5% 4.1%	4.0 %	4.2 %	-0.9 ± 1.5 %	-0.2 %
	2012 ^d	2.6	% ⁱ 1.7 %	3.3 %	3.5 %	-0.7~%	-1.8%
		(1.9 to 3	5.5)				
	2013 ^e	2.1	1.1%	2.9 %	3.3 %	-0.8~%	-2.2~%
		(1.1 to 3	5.1)				
	2014 ^f	2.5	5% 0.8%	3.3 %	3.0 %	-0.7~%	-2.6 %
		(1.3 to 3	3.5)				
Change	in method						
	E_{FF}		$E_{\rm FF}$ (C	'hina)	E _I	FF (USA)	<i>E</i> _{FF}
	Projected	Actual	Projecte	d Actual	Proj	ected Actual	Pr
2015 ^g	-0.6 %	0.05 %	-3.9 9	% -0.8%	_	1.5 % -2.6 %	
	(-1.6 to 0.5)		(−4.6 to −1.1	.)	(-5.5 t)	o 0.3)	(-0.2
2016 ^h	$+0.5\%^{i}$	-	-0.2%	, ⁱ –	-1	.4 % ⁱ –	-
	(-1.7 to +2.1)		(-3.5 to +1.6)	5)	(−3.7 to -	+0.8)	(-0.2 to

^a Le Quéré et al. (2009). ^b Friedlingstein et al. (2010). ^c Peters et al. (2013). ^d Le Quéré et al. (2013). ^e Le Quéré et al. (2014). ^f Friedlingstein et al. (2014) and Le Quéré et al. (2015a). ^h This study. ⁱ These numbers are not adjusted for leap years (see Sect. 2.1.3 for leap-year adjustments).

increase in emissions of -0.2% (range of -3.5 to +1.6%) in 2016 compared to 2015, based on estimated decreases in coal consumption (-1.8%) and estimated growth in apparent oil (+4.0%) and natural gas (+7.2%) consumption and in 5 cement production (+2.6%). The uncertainty range considers the spread between different data sources, as well as differences between July/August and end-of-year data observed in 2014 and 2015. The estimated reduction in coal consumption also incorporates an assumed 2% increase in the energy 10 density of coal – based on increases in the last 2 years, which are assumed to continue given production limits in 2016 that

are likely to affect production of low-quality coal more – and the uncertainty range also reflects uncertainty in this figure. For the USA, the EIA emissions projection for 2016 com-

¹⁵ bined with cement data from USGS gives a decrease of -1.4% (range of -3.7 to +0.8%) compared to 2015.

For the rest of the world, the expected growth for 2016 of +1.3% (range of -0.2 to +2.8%) is computed using the GDP projection for the world excluding China and the ²⁰ USA of 2.5% made by the IMF (IMF, 2016) and a decrease in $I_{\rm FF}$ of -1.2% yr⁻¹, which is the average from 2006 to 2015. The uncertainty range is based on the standard devi-

ation of the internanual variability in I_{FF} during 2006–2015 of $\pm 1.0 \% \text{ yr}^{-1}$ and our estimate of uncertainty in the IMF's 25 GDP forecast of $\pm 0.5 \%$.

3.3.2 Partitioning among the atmosphere, ocean, and land

The growth in atmospheric CO_2 concentration (G_{ATM}) was projected to be high again in 2016, at 6.7 ± 1.1 GtC $(3.15 \pm 0.53 \text{ ppm})$ for the Mauna Loa station (Betts et al., 30 2016). Growth at Mauna Loa is closely correlated with the global growth (r = 0.95 for 1959–2015). Therefore, the global growth rate in atmospheric CO₂ concentration is also expected to be high in 2016. In the 8-month period between December 2015 and August 2016, the observed 35 global growth in atmospheric CO₂ concentration was already 2.3 ppm (Dlugokencky and Tans, 2016) after seasonal adjustment, supporting the projection of Betts et al. (2016). Even with a return to El Niño neutral or possible emerging La Niña conditions for the second half of 2016, positive growth 40 in atmospheric CO₂ would still be expected during the last 4 months of the year because of the continuing persistent emissions. For example, during the transitions from El Niño to La Niña of 1986-1987, 1998-1999, and 2010-2011, atmospheric CO₂ growth of 0.3, 0.6, and 0.9 ppm, respectively, 45 was observed in the last 4 months of the year.

Combining projected E_{FF} and G_{ATM} suggests a total for the combined land and ocean ($S_{\text{LAND}} + S_{\text{OCEAN}} - E_{\text{LUC}}$) of about 3 GtC only. S_{OCEAN} was 3.0 GtC in 2015 and is expected to slightly increase in 2016 from a delayed response 50 to El Niño conditions (Feely et al., 1999). E_{LUC} was 1.3 GtC

Table 10. Cumulative CO₂ emissions for the periods 1750–2014, 1870–2014, and 1870–2015 in gigatonnes of carbon (GtC). We also provide the 1850–2005 time period used in a number of model evaluation publications. All uncertainties are reported as $\pm 1\sigma$. All values are rounded to the nearest 5 GtC as in Stocker et al. (2013), reflecting the limits of our capacity to constrain cumulative estimates. Thus, some columns will not exactly balance because of rounding errors.

Units of GtC	1750-2015	1850-2005	1870–2015	1870–2016
$Emissions$ Fossil fuels and industry ($E_{\rm FF}$)	415 ± 20	320 ± 15	410 ± 20	$420\pm20^*$
Land-use-change emissions (E_{LUC})	190 ± 65	150 ± 55	145 ± 50	$150\pm50^{*}$
Total emissions	605 ± 70	470 ± 55	560 ± 55	$570\pm55^*$
PartitioningGrowth rate in atmospheric CO_2 concentration (G_{ATM})	260 ± 5	195 ± 5	235 ± 5	
Ocean sink (S _{OCEAN})	175 ± 20	160 ± 20	155 ± 20	
Residual terrestrial sink (S _{LAND})	170 ± 70	115 ± 60	165 ± 60	

* The extension to year 2016 uses the emissions projections for fossil fuels and industry for 2016 (Sect. 3.2) and assumes a constant E_{LUC} flux (Sect. 2.2).

in 2015, above the decadal mean average of $1.0 \,\text{GtC yr}^{-1}$, and is expected to return to average or below average in 2016 based on fire activity related to land management so far (up to August). Hence, for 2016, the residual land sink S_{LAND}

⁵ is expected to be well below its 2006–2015 average and approximately balance E_{LUC} . This is consistent with our understanding of the response of the terrestrial vegetation to El Niño conditions and increasing atmospheric CO₂ concentrations, though the uncertainties in G_{ATM} and of the partition-¹⁰ ing among S_{LAND} and S_{OCEAN} are substantial.

3.4 Cumulative emissions

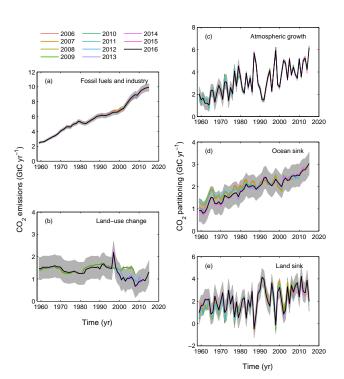
Cumulative emissions for 1870–2015 were 410 ± 20 GtC for $E_{\rm FF}$, and 145 ± 50 GtC for $E_{\rm LUC}$ based on the bookkeeping method of Houghton et al. (2012) for 1870–1996 and 15 a combination with fire-based emissions for 1997–2015 as described in Sect. 2.2 (Table 10). The cumulative emissions are rounded to the nearest 5 GtC. The total cumulative emissions from fossil and land-use change for 1870-2015 are 560 ± 55 GtC. These emissions were partitioned among the 20 atmosphere (235 ± 5 GtC based on atmospheric measurements in ice cores of 288 ppm (Sect. "Global growth rate in atmospheric CO₂ concentration" **TSIG**; Joos and Spahni, 2008) and recent direct measurements of 399.1 ppm (Dlugokencky and Tans, 2016), ocean (155 ± 20 GtC using Khati-25 wala et al. , 2013, prior to 1959 and Table 8 otherwise), and land (165 ± 60 GtC by the difference).

Cumulative emissions for the early period 1750–1869 were 3 GtC for *E*_{FF} and about 45 GtC for *E*_{LUC} (rounded to nearest 5), of which 10 GtC was emitted in the period 1850– ³⁰ 1870 (Houghton et al., 2012) and 30 GtC in the period 1750– 1850 based on the average of four publications (22 GtC by Pongratz et al., 2009; 15 GtC by van Minnen et al., 2009; 64 GtC by Shevliakova et al., 2009; and 24 GtC by Zaehle et al., 2011). The growth rate in atmospheric CO₂ concentration during that time was about 25 GtC, and the ocean uptake ³⁵ about 20 GtC, implying a land uptake of 5 GtC. These numbers have large relative uncertainties but balance within the limits of our understanding.

Cumulative emissions for 1750–2015 based on the sum of the two periods above (before rounding to the nearest ${}_{40}$ 5 GtC) were 415 ± 20 GtC for $E_{\rm FF}$, and 190 ± 65 GtC for $E_{\rm LUC}$, for a total of 605 ± 70 GtC, partitioned among the atmosphere (260 ± 5 GtC), ocean (175 ± 20 GtC), and land (170 ± 70 GtC).

Cumulative emissions through to year 2016 can be estimated based on the 2016 projections of $E_{\rm FF}$ (Sect. 3.2), the largest contributor, and assuming a constant $E_{\rm LUC}$ of 1.0 GtC (average of last decade). For 1870–2016, these are 570 ± 55 GtC (2085 ± 205 GtCO₂) for total emissions, with about 75 % contribution from $E_{\rm FF}$ (420 ± 20 GtC) and about 25 % contribution from $E_{\rm LUC}$ (150 ± 50 GtC). Cumulative emissions since year 1870 are higher than the emissions of 515 [445 to 585] GtC reported in the IPCC (Stocker et al., 2013) because they include an additional 55 GtC from emissions in 2012–2016 (mostly from $E_{\rm FF}$). The uncertainty presented here (±1 σ) is smaller than the range of 90 % used by IPCC, but both estimates overlap within their uncertainty ranges.

4 Discussion


Each year when the global carbon budget is published, each 60 component for all previous years is updated to take into account corrections that are the result of further scrutiny and verification of the underlying data in the primary input data sets. The updates have generally been relatively small and focused on the most recent years, except for land-use change, 65

C. Le Quéré et al.: Global Carbon Budget 2016

where they are more significant but still generally within the provided uncertainty range (Fig. 9). The difficulty in accessing land-cover change data to estimate E_{LUC} is the key problem to providing continuous records of emissions in this sec-

- ⁵ tor. Current FAO estimates are based on statistics reported at the country level and are not spatially explicit. Advances in satellite recovery of land-cover change could help to keep track of land-use change through time (Achard et al., 2014; Harris et al., 2012). Revisions in E_{LUC} for the 2008/2009
- ¹⁰ budget were the result of the release of FAO 2010, which contained a major update to forest cover change for the period 2000–2005 and provided the data for the following 5 years to 2010 (Fig. 9b). The differences this year could be attributable to both the different data and the different methods.
- ¹⁵ Comparison of global carbon budget components released annually by GCP since 2006 show that update differences were highest at 0.82 GtC yr^{-1} for the growth rate in atmospheric CO₂ concentration (from a one-off correction back to year 1979), 0.24 GtC yr⁻¹ for fossil fuels and industry, and
- $_{20}$ 0.52 GtC yr⁻¹ for the ocean CO₂ sink (from a change from one to multiple models; Fig. 9d). The update for the residual land CO₂ sink was also large (Fig. 9e), with a maximum value of 0.83 GtC yr⁻¹, directly reflecting revisions in other terms of the budget.
- ²⁵ Our capacity to constrain the global carbon budget can be evaluated by adding the five components of Eq. (1) using DGVM estimates for S_{LAND} , thus using largely independent estimates for each component (Fig. 10). This residual global budget represents all the carbon unaccounted currently. Fig-
- ³⁰ ure 10 shows that the mean global residual is very close to zero, and there is no trend over the entire time period. However, it also highlights periods of multiple years where the sum of the estimates differs significantly from zero. These include an unaccounted flux from the surface to the atmosphere
- ³⁵ (or underestimated emissions) during 1973–1979 and 1997–2001 and an unaccounted sink from the atmosphere to the surface (or overestimated emissions) during 1961–1965 and 1990–1992. This unaccounted variability could come from errors in our estimates of the five components of Equation (1;
- ⁴⁰ Li et al., 2016), or from missing factors in the global carbon budget, including but not limited to those discussed in Sect. 2.7. This unaccounted variability limits our ability to verify reported emissions and limits our confidence in the underlying processes regulating the carbon cycle feedbacks ⁴⁵ with climate change.

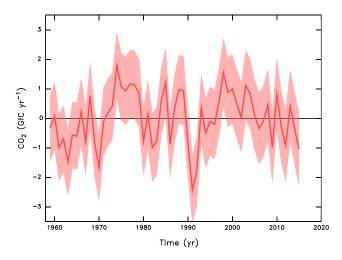

Another semi-independent way to evaluate the results is provided through the comparison with the atmospheric inversions and their regional breakdown. The comparison shows a first-order consistency between inversions and process mod-⁵⁰ els but with substantial discrepancies, particularly for the allocation of the mean sink between the tropics and the Northern Hemisphere. Understanding these discrepancies and further analysis of regional carbon budgets would provide additional information to quantify and improve our estimates, as

Figure 9. Comparison of global carbon budget components released annually by GCP since 2006. CO₂ emissions from (E9) (a) fossil fuels and industry ($E_{\rm FF}$) and (b) land-use change ($E_{\rm LUC}$), as well as their partitioning among (c) the atmosphere ($G_{\rm ATM}$), (d) the ocean ($S_{\rm OCEAN}$), and (e) the land ($S_{\rm LAND}$). See legend for the corresponding years, with the 2006 carbon budget from Raupach et al. (2007), 2007 from Canadell et al. (2007), 2008 released online only, 2009 from Le Quéré et al. (2010)[1517] from[1518] Friedlingstein et al. (2010), 2011 from Peters et al. (2012b), 2012 from Le Quéré et al. (2013), 2013 from Le Quéré et al. (2014), 2014 from Le Quéré et al. (2015b), and 2015 from Le Quéré et al. (2015a), and [1610] this year's budget (2016; this study). The budget year generally corresponds to the year when the budget was first released. All values are in GtC yr⁻¹. Grey shading shows the uncertainty bounds representing $\pm 1\sigma$ of the current global carbon budget.

has been shown by the project REgional Carbon Cycle Assessment and Processes (RECCAP; Canadell et al., 2012).

Annual estimates of each component of the global carbon budgets have their limitations, some of which could be improved with better data and/or better understanding of carbon dynamics. The primary limitations involve resolving fluxes on annual timescales and providing updated estimates for recent years for which data-based estimates are not yet available or only beginning to emerge. Of the various terms in the global budget, only the burning of fossil fuels and the growth rate in atmospheric CO₂ concentration terms are based primarily on empirical inputs supporting annual estimates in this carbon budget. While these models represent the current state of the art, they provide only simulated changes in primary carbon budget components. For example, the decadal trends in global ocean uptake and the interannual varia-

Figure 10. Unaccounted carbon in the global carbon budget $(GtC yr^{-1})$. This is calculated as the sum of $G_{ATM} + S_{OCEAN} - E_{FF}$ and E_{LUC} as described in Fig. 4, plus S_{LAND} as estimated with the ensemble of DGVMs as in Fig. 6b. Therefore, the unaccounted carbon represents the fluxes that are missing after accounting for all known processes as quantified in available estimates (see discussion). The uncertainty is the annual uncertainty for the five terms as described in the text, added in quadrature. Positive values indicate an unaccounted surface-to-atmosphere flux of CO₂ or an underestimation of the emissions.

tions associated with the El Niño–Southern Ocean Oscillation (ENSO) are not directly constrained by observations, although many of the processes controlling these trends are sufficiently well known that the model-based trends still have

- ⁵ value as benchmarks for further validation. Data-based products for the ocean CO₂ sink provide new ways to evaluate the model results, and could be used directly as data become more rapidly available and methods for creating such products improve. However, there are still large discrepan-
- ¹⁰ cies among data-based estimates, in large part due to the lack of routine data sampling, which precludes their direct use for now (Rödenbeck et al., 2015). Estimates of land-use emissions and their year-to-year variability have even larger uncertainty, and much of the underlying data are not available
- ¹⁵ as an annual update. Efforts are underway to work with annually available satellite area change data or FAO reported data in combination with fire data and modelling to provide annual updates for future budgets.

Our approach also depends on the reliability of the en-²⁰ ergy and land-cover change statistics provided at the country level, which are potentially subject to biases. Thus, it is critical to develop multiple ways to estimate the carbon balance at the global and regional level, including estimates from the inversion of atmospheric CO₂ concentration, the use of ²⁵ other oceanic and atmospheric tracers, and the compilation of emissions using alternative statistics (e.g. sectors). It is also important to challenge the consistency of information across observational streams, for example to contrast the coherence of temperature trends with those of CO₂ sink trends. Multiple approaches ranging from global to regional scale would ³⁰ greatly help increase confidence and reduce uncertainty in CO₂ emissions and their fate.

5 Data availability

TS20 The data presented here are made available in the belief that their wide dissemination will lead to greater understanding and new scientific insights into how the carbon cycle works, how humans are altering it, and how we can mitigate the resulting human-driven climate change. The free availability of these data does not constitute permission for publication of the data. For research projects, if the data are essential to the work, or if an important result or conclusion depends on the data, co-authorship may need to be considered. Full contact details and information on how to cite the data are given at the top of each page in the accompanying database and are summarised in Table 2.

The accompanying database includes two Excel files organised in the following spreadsheets (accessible with the free viewer http://www.microsoft.com/en-us/download/ details.aspx?id=10).

File Global_Carbon_Budget_2016.xlsx includes the following:

50

65

75

- 1. Summary
- 2. The global carbon budget (1959–2015)
- 3. Global CO₂ emissions from fossil fuels and cement ⁵⁵ production by fuel type, and the per capita emissions (1959–2015)
- 4. CO₂ emissions from land-use change from the individual methods and models (1959–2015)
- 5. Ocean CO₂ sink from the individual ocean models and 60 data products (1959–2015)
- Terrestrial residual CO₂ sink from the DGVMs (1959– 2015)
- 7. Additional information on the carbon balance prior to 1959 (1750–2015)

File National_Carbon_Emissions_2016.xlsx includes the following:

- 1. Summary
- Territorial country CO₂ emissions from fossil fuels and industry (1959–2015) from CDIAC, extended to 2015 70 using BP data
- 3. Territorial country CO₂ emissions from fossil fuels and industry (1959–2015) from CDIAC with UNFCCC data overwritten where available, extended to 2015 using BP data

- Consumption country CO₂ emissions from fossil fuels and industry and emissions transfer from the international trade of goods and services (1990–2014) using CDIAC/UNFCCC data (worksheet 3 above) as reference
- 5. Emissions transfers (consumption minus territorial emissions; 1990–2014)
- 6. Country definitions

5

- 7. Details of disaggregated countries
- 10 8. Details of aggregated countries

National emissions data are also available from the Global Carbon Atlas (http://globalcarbonatlas.org).

6 Conclusions

The estimation of global CO₂ emissions and sinks is a major ¹⁵ effort by the carbon cycle research community that requires a combination of measurements and compilation of statistical estimates and results from models. The delivery of an annual carbon budget serves two purposes. First, there is a large demand for up-to-date information on the state of the anthro-

- ²⁰ pogenic perturbation of the climate system and its underpinning causes. A broad stakeholder community relies on the data sets associated with the annual carbon budget, including scientists, policy makers, businesses, journalists, and the broader society increasingly engaged in adapting to and mit-
- ²⁵ igating human-driven climate change. Second, over the last decade we have seen unprecedented changes in the human and biophysical environments (e.g. increase in the growth

of fossil fuel emissions, ocean temperatures, and strength of the land sink) – which call for more frequent assessments of the state of the planet and, by implication, a better understanding of the future evolution of the carbon cycle – and the requirements for climate change mitigation and adaptation (1991). Both the ocean and the land surface presently remove a large fraction of anthropogenic emissions. Any significant change in the function of carbon sinks is of great importance to climate policymaking, as they affect the excess carbon dioxide remaining in the atmosphere and therefore the compatible emissions for any climate stabilisation target. Better constraints of carbon cycle models against contemporary data sets raise the capacity for the models to become more accurate at future projections.

This all requires more frequent, robust, and transparent data sets and methods that can be scrutinised and replicated. After 11 annual releases from the GCP, the effort is growing and the traceability of the methods has become increasingly complex. Here, we have documented in detail the data sets ⁴⁵ and methods used to compile the annual updates of the global carbon budget, explained the rationale for the choices made and the limitations of the information, and finally highlighted the need for additional information where gaps exist.

This paper via "living data" will help to keep track of new ⁵⁰ budget updates. The evolution over time of the carbon budget is now a key indicator of the anthropogenic perturbation of the climate system, and its annual delivery joins a set of other climate indicators to monitor the evolution of human-induced climate change, such as the annual updates on the global surface temperature, sea level rise, and minimum Arctic sea ice extent.

Appendix A

Vessel	Start date yyyy-mm-dd	End date yyyy-mm-dd	Regions	No. of samples	Principal investigators	DOI (if available)/comment
Atlantic Companion	2015-03-03	2015-03-10	North Atlantic	8496	Steinhoff, T.; Becker, M.; Körtzinger, A.	doi:10.3334/CDIAC/OTG.VOS_Atlantic_Companion_Line_2015
Atlantic Companion	2015-03-30	2015-04-07	North Atlantic	9265	Steinhoff, T.; Becker, M.; Körtzinger, A.	doi:10.3334/CDIAC/OTG.VOS_Atlantic_Companion_Line_2015
Aurora Australis	2014-12-05	2015-01-24	Southern Ocean	41 463	Tilbrook, B.	doi:10.3334/CDIAC/OTG.VOS_AA_2014
Benguela Stream	2015-01-08	2015-01-14	North Atlantic,	4664	Schuster, U.; Jones, S.D.; Wat-	doi:10.3334/CDIAC/OTG.VOS_BENGUELA_STREAM_2015
Benguela Stream	2015-02-05	2015-02-12	Tropical Atlantic North Atlantic,	4056	son, A.J. Schuster, U.; Jones, S.D.; Wat-	doi:10.3334/CDIAC/OTG.VOS_BENGUELA_STREAM_2015
Deliguela Stream	2015-02-05	2013-02-12	Tropical Atlantic	4050	son, A.J.	doi:10.5554/CDIRCOTC.705_DENGOLEA_51REAM_2015
Benguela Stream	2015-02-22	2015-03-01	North Atlantic,	6158	Schuster, U.; Jones, S.D.; Wat-	doi:10.3334/CDIAC/OTG.VOS_BENGUELA_STREAM_2015
Benguela Stream	2015-04-30	2015-05-07	Tropical Atlantic North Atlantic,	6125	son, A.J. Schuster, U.; Jones, S.D.; Wat-	doi:10.3334/CDIAC/OTG.VOS_BENGUELA_STREAM_2015
Benguela Stream	2015-05-17	2015-05-24	Tropical Atlantic North Atlantic,	6152	son, A.J. Schuster, U.; Jones, S.D.; Wat-	doi:10.3334/CDIAC/OTG.VOS_BENGUELA_STREAM_2015
Benguela Stream	2015-05-27	2015-06-04	Tropical Atlantic North Atlantic,	6116	son, A.J. Schuster, U.; Jones, S.D.; Wat-	doi:10.3334/CDIAC/OTG.VOS_BENGUELA_STREAM_2015
Benguela Stream	2015-06-24	2015-07-02	Tropical Atlantic North Atlantic,	6538	son, A.J. Schuster, U.; Jones, S.D.; Wat-	doi:10.3334/CDIAC/OTG.VOS_BENGUELA_STREAM_2015
Benguela Stream	2015-07-11	2015-07-19	Tropical Atlantic North Atlantic,	6220	son, A.J. Schuster, U.; Jones, S.D.; Wat-	doi:10.3334/CDIAC/OTG.VOS_BENGUELA_STREAM_2015
-			Tropical Atlantic		son, A.J.	
Benguela Stream	2015-07-22	2015-07-30	North Atlantic, Tropical Atlantic	6534	Schuster, U.; Jones, S.D.; Wat- son, A.J.	doi:10.3334/CDIAC/OTG.VOS_BENGUELA_STREAM_2015
Benguela Stream	2015-08-08	2015-08-16	North Atlantic, Tropical Atlantic	6727	Schuster, U.; Jones, S.D.; Wat- son, A.J.	doi:10.3334/CDIAC/OTG.VOS_BENGUELA_STREAM_2015
Benguela Stream	2015-08-19	2015-08-27	North Atlantic, Tropical Atlantic	6811	Schuster, U.; Jones, S.D.; Wat- son, A.J.	doi:10.3334/CDIAC/OTG.VOS_BENGUELA_STREAM_2015
Cap Blanche	2015-03-28	2015-04-10	Tropical Pacific, Southern Ocean	6117	Cosca C.; Feely R.; Alin S.	doi:10.3334/CDIAC/OTG.VOS_CAP_BLANCHE_2015
Cap Blanche	2015-09-30	2015-10-12	Tropical Pacific, Southern Ocean	5582	Cosca C.; Feely R.; Alin S.	doi:10.3334/CDIAC/OTG.VOS_CAP_BLANCHE_2015
Cap Blanche	2015-11-20	2015-12-04	Tropical Pacific,	6677	Cosca C.; Feely R.; Alin S.	doi:10.3334/CDIAC/OTG.VOS_CAP_BLANCHE_2015
Cap San Lorenzo	2015-02-28	2015-03-12	Southern Ocean North Atlantic,	5699	Lefèvre, N., Diverrès D.	
Cap San Lorenzo	2015-03-31	2015-04-06	Tropical Atlantic Tropical Atlantic	2654	Leftere N. Disservice D.	
Cap San Lorenzo	2015-03-51 2015-04-28	2015-05-07	North Atlantic,	2654 4335	Lefèvre, N., Diverrès D. Lefèvre, N., Diverrès D.	
			Tropical Atlantic			
Cap San Lorenzo	2015-06-20	2015-07-01	North Atlantic, Tropical Atlantic	5833	Lefèvre, N., Diverrès D.	
Cap San Lorenzo	2015-07-29	2015-08-04	North Atlantic	2934	Lefèvre, N., Diverrès D.	
Colibri	2015-02-26	2015-03-10	North Atlantic, Tropical Atlantic	4615	Lefèvre, N., Diverrès D.	
Colibri	2015-03-12	2015-03-23	North Atlantic,	5561	Lefèvre, N., Diverrès D.	
			Tropical Atlantic			
Colibri	2015-05-26	2015-06-04	North Atlantic, Tropical Atlantic	3683	Lefèvre, N., Diverrès D.	
Colibri	2015-06-07	2015-06-18	North Atlantic,	5613	Lefèvre, N., Diverrès D.	
			Tropical Atlantic			
Equinox	2015-02-24	2015-03-06	Tropical Atlantic	3563	Wanninkhof, R.; <u>Pierrot, D.;</u> Barbero, L.	doi:10.3334/CDIAC/OTG.VOS_EQNX_2015
Equinox	2015-03-07	2015-03-11	Tropical Atlantic	1588	Wanninkhof, R.; Pierrot, D.; Barbero, L.	doi:10.3334/CDIAC/OTG.VOS_EQNX_2015
Equinox	2015-03-19	2015-03-27	Tropical Atlantic	2694	Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.VOS_EQNX_2015
Equinox	2015-03-27	2015-04-06	Tropical Atlantic	3607	Barbero, L. Wanninkhof, R.; <u>Pierrot, D.</u> ;	doi:10.3334/CDIAC/OTG.VOS_EQNX_2015
Equinox	2015-04-06	2015-04-17	Tropical Atlantic	3750	Barbero, L. Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.VOS_EQNX_2015
Equinox	2015-04-17	2015-04-27	Tropical Atlantic	3611	Barbero, L. Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.VOS_EQNX_2015
Equinox	2015-04-28	2015-05-11	North Atlantic,	5151	Barbero, L. Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.VOS_EQNX_2015
Equinox	2015-05-11	2015-05-21	Tropical Atlantic North Atlantic	2323	Barbero, L. Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.VOS_EQNX_2015
Equinox	2015-05-21	2015-06-02	North Atlantic	3565	Barbero, L. Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.VOS_EQNX_2015
Equinox	2015-06-02	2015-06-04	North Atlantic	484	Barbero, L. Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.VOS_EQNX_2015
					Barbero, L.	
Explorer of the Seas	2014-12-27	2015-01-04	Tropical Atlantic	2804	Wanninkhof, R.; <u>Pierrot, D.</u> ; Barbero, L.	doi:10.3334/CDIAC/OTG.VOS_EXP2014
Explorer of the Seas	2015-01-04	2015-01-09	Tropical Atlantic	1698	Wanninkhof, R.; <u>Pierrot, D.</u> ; Barbero, L.	doi:10.3334/CDIAC/OTG.VOS_EXP2015
Explorer of the Seas	2015-01-09	2015-01-18	Tropical Atlantic	3176	Wanninkhof, R.; <u>Pierrot, D.;</u> Barbero, L.	doi:10.3334/CDIAC/OTG.VOS_EXP2015
Explorer of the Seas	2015-01-18	2015-01-24	Tropical Atlantic	2058	Wanninkhof, R.; <u>Pierrot, D.;</u> Barbero, L.	doi:10.3334/CDIAC/OTG.VOS_EXP2015
Explorer of the Seas	2015-01-24	2015-01-29	Tropical Atlantic	1587	Wanninkhof, R.; Pierrot, D.; Barbero, L.	doi:10.3334/CDIAC/OTG.VOS_EXP2015

Barbero, L.

Table A1. Attribution of fCO_2 measurements for year 2015 included in addition to SOCAT v4 (Bakker et al., 2016) to inform ocean data products.

Vessel	Start date yyyy-mm-dd	End date yyyy-mm-dd	Regions	No. of samples	Principal investigators	DOI (if available)/comment
Explorer of the Seas	2015-01-29	2015-02-07	Tropical Atlantic	3176	Wanninkhof, R.; <u>Pierrot, D.;</u> Barbero, L.	doi:10.3334/CDIAC/OTG.VOS_EXP2015
Explorer of the Seas	2015-02-07	2015-02-12	Tropical Atlantic	1707	Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.VOS_EXP2015
Explorer of the Seas	2015-02-12	2015-02-15	Tropical Atlantic	1289	Barbero, L. Wanninkhof, R.; <u>Pierrot, D.;</u> Barbero, L.	doi:10.3334/CDIAC/OTG.VOS_EXP2015
F.G. Walton Smith	2015-01-12	2015-01-14	Tropical Atlantic	816	Millero, F.; Wanninkhof, R.	
F.G. Walton Smith	2015-04-09	2015-04-10	Tropical Atlantic	613	Millero, F.; Wanninkhof, R.	
G. Walton Smith	2015-04-13	2015-04-17	Tropical Atlantic	2078	Millero, F.; Wanninkhof, R.	
.G. Walton Smith	2015-04-22	2015-05-02	Tropical Atlantic	3514	Millero, F.; Wanninkhof, R.	
G. Walton Smith	2015-05-07	2015-05-20	Tropical Atlantic	6523	Millero, F.; Wanninkhof, R.	
G. Walton Smith	2015-05-26	2015-05-27	Tropical Atlantic	684	Millero, F.; Wanninkhof, R.	
G. Walton Smith G. Walton Smith	2015-06-01 2015-06-10	2015-06-05	Tropical Atlantic Tropical Atlantic	2038 7319	Millero, F.; Wanninkhof, R. Millero, F.; Wanninkhof, R.	
G. Walton Smith	2015-07-14	2015-06-27 2015-07-15	Tropical Atlantic	689	Millero, F.; Wanninkhof, R.	
G. Walton Smith	2015-07-27	2015-08-01	Tropical Atlantic	2258	Millero, F.; Wanninkhof, R.	
G. Walton Smith	2015-08-22	2015-09-04	Tropical Atlantic	6600	Millero, F.; Wanninkhof, R.	
G. Walton Smith	2015-09-21	2015-09-25	Tropical Atlantic	2096	Millero, F.; Wanninkhof, R.	
G. Walton Smith	2015-09-28	2015-10-02	Tropical Atlantic	1990	Millero, F.; Wanninkhof, R.	
G. Walton Smith	2015-10-27	2015-11-06	North Atlantic, Tropical Atlantic	3896	Millero, F.; Wanninkhof, R.	
.G. Walton Smith	2015-11-10	2015-11-11	Tropical Atlantic	271	Millero, F.; Wanninkhof, R.	
G. Walton Smith	2015-11-16	2015-11-20	Tropical Atlantic	82	Millero, F.; Wanninkhof, R.	
3.O. Sars	2015-01-17	2015-02-10	North Atlantic	9661	Lauvset, S.K.	
3.O. Sars	2015-04-12	2015-04-25	North Atlantic	11719	Lauvset, S.K.; Skjelvan, I.	
.O. Sars	2015-04-29	2015-05-01	North Atlantic	2939	Lauvset, S.K.; Skjelvan, I.	
.O. Sars	2015-07-05	2015-07-14	North Atlantic	8921	Lauvset, S.K.; Skjelvan, I.	
.O. Sars	2015-07-21	2015-08-13	North Atlantic	20 088	Lauvset, S.K.; Skjelvan, I.	
.O. Sars	2015-08-18	2015-09-05	North Atlantic	18 076	Lauvset, S.K.; Skjelvan, I.	
.O. Sars	2015-09-12	2015-09-25	North Atlantic	11 327	Lauvset, S.K.; Skjelvan, I.	
.O. Sars	2015-09-30	2015-10-14	Arctic,	13 610	Lauvset, S.K.; Skjelvan, I.	
	2015 10 25	2015 11 02	North Atlantic	(0.05		
.O. Sars ordon Gunter	2015-10-27 2015-03-04	2015-11-03 2015-03-14	North Atlantic Tropical Atlantic	6937 4678	Lauvset, S.K.; <u>Skjelvan, I.</u> Wanninkhof, R.; <u>Pierrot, D.</u> ;	doi:10.3334/CDIAC/OTG.COAST_GU2015_UW
ordon Gunter	2015-03-18	2015-04-02	Tropical Atlantic	5015	Barbero, L. Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.COAST_GU2015_UW
ordon Gunter	2015-04-15	2015-04-27	North Atlantic, Tropical Atlantic	4334	Barbero, L. Wanninkhof, R.; <u>Pierrot, D.;</u> Barbero, L.	doi:10.3334/CDIAC/OTG.COAST_GU2015_UW
ordon Gunter	2015-05-16	2015-06-05	North Atlantic	9118	Wanninkhof, R.; <u>Pierrot, D.</u> ; Barbero, L.	doi:10.3334/CDIAC/OTG.COAST_GU2015_UW
ordon Gunter	2015-06-09	2015-06-12	North Atlantic	1031	Wanninkhof, R.; <u>Pierrot, D.</u> ; Barbero, L.	doi:10.3334/CDIAC/OTG.COAST_GU2015_UW
Gordon Gunter	2015-06-19	2015-07-03	North Atlantic	5688	Wanninkhof, R.; <u>Pierrot, D.;</u> Barbero, L.	doi:10.3334/CDIAC/OTG.COAST_GU2015_UW
Gordon Gunter	2015-07-08	2015-07-24	North Atlantic, Tropical Atlantic	7293	Wanninkhof, R.; <u>Pierrot, D.;</u> Barbero, L.	doi:10.3334/CDIAC/OTG.COAST_GU2015_UW
Gordon Gunter	2015-07-30	2015-08-16	Tropical Atlantic	7434	Wanninkhof, R.; Pierrot, D.; Barbero, L.	doi:10.3334/CDIAC/OTG.COAST_GU2015_UW
Gordon Gunter	2015-08-23	2015-09-06	Tropical Atlantic	6452	Wanninkhof, R.; Pierrot, D.; Barbero, L.	doi:10.3334/CDIAC/OTG.COAST_GU2015_UW
Gordon Gunter	2015-09-14	2015-09-28	Tropical Atlantic	6111	Wanninkhof, R.; Pierrot, D.; Barbero, L.	doi:10.3334/CDIAC/OTG.COAST_GU2015_UW
Gulf Challenger	2015-03-13	2015-03-13	North Atlantic	1148	Vandemark, D.; Salisbury, J.; Hunt, C.	doi:10.3334/CDIAC/otg.TSM_UNH_GOM
Gulf Challenger	2015-06-05	2015-06-05	North Atlantic	1071	Vandemark, D.; <u>Salisbury, J.</u> ; Hunt, C.	doi:10.3334/CDIAC/otg.TSM_UNH_GOM
ulf Challenger	2015-08-26	2015-08-26	North Atlantic	1127	Vandemark, D.; <u>Salisbury, J.</u> ; Hunt, C.	doi:10.3334/CDIAC/otg.TSM_UNH_GOM
ulf Challenger	2015-10-07	2015-10-07	North Atlantic	1078	Vandemark, D.; <u>Salisbury, J.</u> ; Hunt, C.	doi:10.3334/CDIAC/otg.TSM_UNH_GOM
ulf Challenger	2015-11-18	2015-11-18	North Atlantic	960	Vandemark, D.; <u>Salisbury, J.</u> ; Hunt, C.	doi:10.3334/CDIAC/otg.TSM_UNH_GOM
lealy	2015-07-14	2015-07-24	Arctic, North Pacific	4121	Sutherland, S.C.; Newberger, T.; Takahashi, T.	doi:10.3334/CDIAC/OTG.VOS_Healy_Lines_2015
Iealy	2015-08-11	2015-10-21	Arctic, North Pacific	27 033	Sutherland, S.C.; Newberger, T.; Takahashi, T.	doi:10.3334/CDIAC/OTG.VOS_Healy_Lines_2015
lealy	2015-10-26 2015-03-12	2015-10-28 2015-03-21	North Pacific	960 3525	Sutherland, S.C.; Newberger, T.; <u>Takahashi, T.</u> Wanninkhof, R.; Pierrot, D.;	<pre>doi:10.3334/CDIAC/OTG.VOS_Healy_Lines_2015 doi:10.3334/CDIAC/OTG.AOML_BIGELOW_ECOAST_2015</pre>
enry B. Bigelow	2015-03-12	2015-03-21	North Atlantic	5059	Wanninkhof, R.; Pierrot, D.; Wanninkhof, R.; Pierrot, D.;	
enry B. Bigelow					Barbero, L.	doi:10.3334/CDIAC/OTG.AOML_BIGELOW_ECOAST_2015
lenry B. Bigelow	2015-04-07 2015-04-27	2015-04-23 2015-05-07	North Atlantic	6155 4638	Wanninkhof, R.; <u>Pierrot, D.;</u> Barbero, L. Wanninkhof, R.; Pierrot, D.;	<pre>doi:10.3334/CDIAC/OTG.AOML_BIGELOW_ECOAST_2015 doi:10.3334/CDIAC/OTG.AOML_BIGELOW_ECOAST_2015</pre>
Ienry B. Bigelow	2015-04-27 2015-05-19	2015-05-07	North Atlantic	4638 6456	Wanninkhof, R.; <u>Pierrot, D.;</u> Barbero, L. Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.AOML_BIGELOW_ECOAST_2015 doi:10.3334/CDIAC/OTG.AOML_BIGELOW_ECOAST_2015
Henry B. Bigelow	2015-05-19	2015-06-03	North Atlantic	3839	Barbero, L. Pierrot, D.; Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.AOML_BIGELOW_ECOAST_2015
ienry B. Bigelow Ienry B. Bigelow	2015-06-11	2015-06-19	North Atlantic	3839	Wanninkhof, R.; Pierrot, D.; Barbero, L. Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.AOML_BIGELOW_ECOAST_2015
lenry B. Bigelow	2015-06-24	2015-07-02	North Atlantic	5265	Wanninkhof, R.; Pierrot, D.; Barbero, L. Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.AOML_BIGELOW_ECOAST_2013
	2010 01-21	_010 00 07		5205	Barbero, L.	BOBLO, OTO NOME_BIGELOW_ECOASI_201

Vessel	Start date yyyy-mm-dd	End date yyyy-mm-dd	Regions	No. of samples	Principal investigators	DOI (if available)/comment
Henry B. Bigelow	2015-08-12	2015-08-21	North Atlantic	4315	Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.AOML_BIGELOW_ECOAST_2015
Henry B. Bigelow	2015-09-01	2015-09-17	North Atlantic	7836	Barbero, L. Wanninkhof, R.; <u>Pierrot, D.</u> ; Barbero, L.	doi:10.3334/CDIAC/OTG.AOML_BIGELOW_ECOAST_2015
Henry B. Bigelow	2015-09-23	2015-09-30	North Atlantic	3382	Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.AOML_BIGELOW_ECOAST_2015
Henry B. Bigelow	2015-10-07	2015-10-22	North Atlantic	7186	Barbero, L. Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.AOML_BIGELOW_ECOAST_2015
Henry B. Bigelow	2015-10-27	2015-11-06	North Atlantic	4472	Barbero, L. Wanninkhof, R.; <u>Pierrot, D.</u> ; Barbero, L.	doi:10.3334/CDIAC/OTG.AOML_BIGELOW_ECOAST_2015
Henry B. Bigelow	2015-11-12	2015-11-17	North Atlantic	2402	Wanninkhof, R.; <u>Pierrot, D.</u> ; Barbero, L.	doi:10.3334/CDIAC/OTG.AOML_BIGELOW_ECOAST_2015
Laurence M. Gould	2014-12-30	2015-02-07	Southern Ocean	7302	Sweeney, C.; Takahashi, T.; Newberger, T.; Sutherland,	doi:10.3334/CDIAC/OTG.VOS_LM_GOULD_2014
Laurence M. Gould	2015-02-14	2015-03-16	Southern Ocean	9450	S.C.; <u>Munro, D.R.</u> Sweeney, C.; Takahashi, T.; Newberger, T.; Sutherland,	doi:10.3334/CDIAC/OTG.VOS_LM_GOULD_2015
Laurence M. Gould	2015-03-21	2015-04-03	Southern Ocean	2602	S.C.; <u>Munro, D.R.</u> Sweeney, C.; Takahashi, T.; Newberger, T.; Sutherland, S.C.; Munro, D.R.	doi:10.3334/CDIAC/OTG.VOS_LM_GOULD_2015
Laurence M. Gould	2015-04-08	2015-05-11	Southern Ocean	7691	S.C., Multio, D.K. Sweeney, C.; Takahashi, T.; Newberger, T.; Sutherland, S.C.; Munro, D.R.	doi:10.3334/CDIAC/OTG.VOS_LM_GOULD_2015
Laurence M. Gould	2015-05-16	2015-06-16	Southern Ocean	9497	Sweeney, C.; Takahashi, T.; Newberger, T.; Sutherland,	doi:10.3334/CDIAC/OTG.VOS_LM_GOULD_2015
Laurence M. Gould	2015-06-21	2015-06-30	Southern Ocean	2379	S.C.; <u>Munro, D.R.</u> Sweeney, C.; Takahashi, T.; Newberger, T.; Sutherland, S.C.; Munro, D.R.	doi:10.3334/CDIAC/OTG.VOS_LM_GOULD_2015
Marcus G. Langseth	2015-04-13	2015-04-22	North Atlantic	1948	Sutherland, S.C.; Newberger, T.; Takahashi, T.; Sweeney, C.	doi:10.3334/CDIAC/OTG.VOS_MG_LANGSETH_LINES_2015
Marcus G. Langseth	2015-06-01	2015-06-23	North Atlantic	8608	Sutherland, S.C.; Newberger, T.; Takahashi, T.; Sweeney, C.	doi:10.3334/CDIAC/OTG.VOS_MG_LANGSETH_LINES_2015
Marcus G. Langseth	2015-07-31	2015-09-12	North Atlantic	14 519	Sutherland, S.C.; Newberger, T.; Takahashi, T.; Sweeney, C.	doi:10.3334/CDIAC/OTG.VOS_MG_LANGSETH_LINES_2015
Marion Dufresne	2015-01-07	2015-02-06	Indian Ocean, South- ern Ocean	4529	Metzl, N.; Lo Monaco, C.	doi:10.3334/CDIAC/OTG.VOS_OISO_24
Mooring	2014-03-07	2015-03-22	Tropical Atlantic	3048	Sutton, A.; Sabine, C.; Manzello, D.; Musielewicz, S.; Maenner, S.; Dietrich, C.; Bott, R.; Osborne, J.	doi:10.3334/CDIAC/OTG.CHEECA_80W_25N
Mooring	2014-03-07	2015-04-03	Tropical Pacific	3129	Sutton, A.; Sabine, C.; Maen- ner, S.; Musielewicz, S.; Bott,	doi:10.3334/CDIAC/otg.TSM_Stratus_85W_20S
Mooring	2014-05-02	2015-04-28	North Pacific	2630	R.; Osborne, J. <u>Sutton, A.</u> ; Sabine, C.; Send, U.; Ohman, M.; Musielewicz, S.; Maenner, S.; Dietrich, C.; Bott, R.; Osborne, J.	doi:10.3334/CDIAC/OTG.TSM_CCE2_121W_34N
Mooring	2014-05-06	2015-01-27	North Pacific	2122	Mathis, J.; Monacci, N.; Musielewicz, S.; Maenner, S.	doi:10.3334/CDIAC/OTG.TSM_Southeast_AK_56N_134W
Mooring	2014-05-24	2015-05-06	Tropical Pacific	2447	Sutton, A.; Sabine, C.; De Carlo, E.; Musielewicz, S.; Maenner, S.; Dietrich, C.; Bott, R.; Osborne, J.	doi:10.3334/CDIAC/OTG.TSM_Kaneohe_158W_21N
Mooring	2014-07-21	2015-07-07	North Atlantic	2796	A.; Osborne, J. Sutton, A.; Sabine, C.; An- dersson, A.; Bates, N.; Musielewicz, S.; Maenner, S.; Dietrich, C.; Bott, R.; Osborne, J.	doi:10.3334/CDIAC/OTG.TSM_Crescent_64W_32N
Mooring	2014-10-06	2015-01-07	North Atlantic	741	Sutton, A.; Sabine, C.; Maen- ner, S.; Musielewicz, S.; Bott, R.; Osborne, J.	doi:10.3334/CDIAC/OTG.TSM_Hog_Reef_64W_32N
Nathaniel B. Palmer	2015-01-06	2015-01-18	Southern Ocean	4320	Sutherland, S.C.; Newberger, T.; Takahashi, T.; Sweeney, C.	doi:10.3334/CDIAC/OTG.VOS_PALMER_2015
Nathaniel B. Palmer	2015-01-23	2015-03-14	Southern Ocean	17 383	Sutherland, S.C.; Newberger, T.; Takahashi, T.; Sweeney, C.	doi:10.3334/CDIAC/OTG.VOS_PALMER_2015
Nathaniel B. Palmer	2015-03-27	2015-04-28	Southern Ocean	10 623	Sutherland, S.C.; Newberger, T.; Takahashi, T.; Sweeney, C.	doi:10.3334/CDIAC/OTG.VOS_PALMER_2015
Nathaniel B. Palmer	2015-05-12	2015-05-28	Southern Ocean	5654	Sutherland, S.C.; Newberger, T.; Takahashi, T.; Sweeney, C.	doi:10.3334/CDIAC/OTG.VOS_PALMER_2015
Nathaniel B. Palmer	2015-08-05	2015-08-28	Southern Ocean	7528	Sutherland, S.C.; Newberger, T.; Takahashi, T.; Sweeney, C.	doi:10.3334/CDIAC/OTG.VOS_PALMER_2015
Nathaniel B. Palmer	2015-09-08	2015-10-18	Southern Ocean, Tropical Atlantic	13 871	Sutherland, S.C.; Newberger, T.; Takahashi, T.; Sweeney, C.	doi:10.3334/CDIAC/OTG.VOS_PALMER_2015
New Century 2	2014-12-12	2015-01-12	North Pacific, Tropical Pacific	3221	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_New_Century_2_2014
New Century 2	2015-03-16	2015-03-31	North Pacific	1343	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_New_Century_2_2015
New Century 2	2015-04-01	2015-04-14	North Pacific	1417	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_New_Century_2_2015
New Century 2	2015-04-16	2015-05-03	North Pacific	1668	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_New_Century_2_2015
New Century 2	2015-05-04	2015-05-17	North Pacific	1616	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_New_Century_2_2015
New Century 2	2015-05-20	2015-06-04	North Pacific	1569	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_New_Century_2_2015

	Start date yyyy-mm-dd	End date yyyy-mm-dd	Regions	No. of samples	Principal investigators	DOI (if available)/comment
lew Century 2	2015-06-05	2015-06-21	North Pacific	1545	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_New_Century_2_2015
New Century 2	2015-06-23	2015-07-07	North Pacific	1376	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS New Century 2 2015
New Century 2	2015-07-07	2015-07-20	North Pacific	1440	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_New_Century_2_2015
lew Century 2	2015-07-23	2015-08-07	North Pacific	1538	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_New_Century_2_2015
lew Century 2	2015-08-09	2015-08-21	North Pacific	1460	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_New_Century_2_2015
lew Century 2	2015-08-26	2015-09-24	North Pacific,	2422	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_New_Century_2_2015
				2722		2011-11-25 # CD 1 10; 01 01: 00_1(0w_contary_2_2015
	2015 00 2/	2015 10 25	Tropical Pacific			
New Century 2	2015-09-24	2015-10-23	North Atlantic, North	3157	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_New_Century_2_2015
			Pacific, Tropical At-			
			lantic, Tropical Pa-			
			cific			
luka Arctica	2015-10-21	2015-11-08	North Atlantic	5318	Omar, A.; Olsen, A.; Johan-	
					nessen, T.	
Juka Arctica	2015-12-01	2015-12-21	North Atlantic	10 558	Omar, A.; Olsen, A.; Johan-	
iuka Aictica	2013-12-01	2013-12-21	North Atlantic	10,558		
					nessen, T.	
olarstern	2014-12-03	2015-01-31	Southern Ocean	58 046	van Heuven, S.; Hoppema, M.	doi:10.3334/CDIAC/OTG.OA_VOS_POLARSTERN_2014
olarstern	2015-05-19	2015-06-27	Arctic,	39 056	van Heuven, S.; Hoppema, M.	doi:10.3334/CDIAC/OTG.OA_VOS_POLARSTERN_2015
orarstern	2015-05-17	2015-00-27		57 050	van Heuven, S., Hoppenia, M.	doi:10.5554/CDI/IC/010.0/1_700_10E/IR01ERI(_2015
			North Atlantic			
olarstern	2015-06-29	2015-08-14	Arctic,	20164	van Heuven, S.; Hoppema, M.	doi:10.3334/CDIAC/OTG.OA_VOS_POLARSTERN_2015
			North Atlantic			
alaratara	2015 09 19	2015 10 11		42 700	von Houvon S. H-	doi:10.2224/CDIAC/OTC OA VOS BOLABSTERN 2015
olarstern	2015-08-18	2015-10-11	Arctic,	43 709	van Heuven, S.; Hoppema, M.	doi:10.3334/CDIAC/OTG.OA_VOS_POLARSTERN_2015
			North Atlantic			
olarstern	2015-10-30	2015-12-01	North Atlantic,	27 178	van Heuven, S.; Hoppema, M.	doi:10.3334/CDIAC/OTG.OA_VOS_POLARSTERN_2015
			Southern Ocean,			
			Tropical Atlantic			
onald H. Brown	2015-01-15	2015-01-29	North Pacific,	4855	Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.VOS_RB_2015
			Tropical Pacific		Barbero, L.	
and IL D	2015 01 20	2015 02 12		50/5		1-10 2224/CDIAC/OTC VOS DD 2015
Ronald H. Brown	2015-01-30	2015-02-12	North Pacific	5365	Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.VOS_RB_2015
					Barbero, L.	
onald H. Brown	2015-03-01	2015-03-30	Tropical Pacific	13 576	Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.VOS_RB_2015
			opieur i aenne	15570		
					Barbero, L.	
Ronald H. Brown	2015-04-10	2015-05-12	Tropical Pacific	15 021	Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.VOS_RB_2015
			-		Barbero, L.	
Ronald H. Brown	2015-05-25	2015-06-24	North Pacific,	13 690	Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG VOS PP 2015
conatu ri. Brown	2013-03-23	2013-00-24		15 090		doi:10.3334/CDIAC/OTG.VOS_RB_2015
			Tropical Pacific		Barbero, L.	
Ronald H. Brown	2015-07-14	2015-07-31	North Pacific	5862	Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.VOS_RB_2015
					Barbero, L.	
onald II D	2015 08 06	2015 08 21	Arotio	1015		doi:10.2224/CDIAC/OTC VOS DD 2015
Ronald H. Brown	2015-08-06	2015-08-21	Arctic,	6365	Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.VOS_RB_2015
			North Pacific		Barbero, L.	
Ronald H. Brown	2015-08-22	2015-09-04	Arctic,	6298	Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.VOS_RB_2015
			North Pacific		Barbero, L.	
and IL D	2015 11 22	2015 12 18		10.020		1-10 2224/CDIAC/OTC VOS DD 2015
lonald H. Brown	2015-11-22	2015-12-18	Tropical Pacific	10 838	Wanninkhof, R.; Pierrot, D.;	doi:10.3334/CDIAC/OTG.VOS_RB_2015
					Barbero, L.	
.A. Agulhas II	2014-12-08	2015-02-16	Southern Ocean	23 342	Monteiro, P.M.S.; Joubert,	doi:10.3334/CDIAC/OTG.VOS_SA_Agulhas_II_2015
.A. Aguinas n	2014-12-08	2013-02-10	Southern Ocean	23 342		doi.10.5554/CDIAC/010.405_5A_Aguillas_11_2015
					W.R.; Gregor, L.	
S.A. Agulhas II	2015-07-23	2015-08-12	Southern Ocean	16 271	Monteiro, P.M.S.; Joubert,	doi:10.3334/CDIAC/OTG.VOS_SA_Agulhas_II_2015
					W.R.; Gregor, L.	
A Agulhos II	2015 00 04	2015-10-06	Southern Ocean	12 371		doi:10.2224/CDIAC/OTC VOS SA Agulhas II 2015
.A. Agulhas II	2015-09-04	2013-10-06	Southern Ocean	12 5/1	Monteiro, P.M.S.; Joubert,	doi:10.3334/CDIAC/OTG.VOS_SA_Agulhas_II_2015
					W.R.; Gregor, L.	
imon Stevin	2015-06-01	2015-06-01	North Atlantic	445	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-06-04	2015-06-04	North Atlantic	909	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-06-08	2015-06-08	North Atlantic	440	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-06-23	2015-06-23	North Atlantic	749	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-06-24	2015-06-24	North Atlantic	1234	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-06-25	2015-06-25	North Atlantic	787	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-06-30	2015-06-30	North Atlantic	425	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-07-02	2015-07-02	North Atlantic	154	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-07-06	2015-07-06	North Atlantic	168	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-07-10	2015-07-10	North Atlantic	357	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-07-13	2015-07-13	North Atlantic	223	Gkritzalis, T.; Cattrijsse, A.	
				54		
imon Stevin	2015-07-14	2015-07-14	North Atlantic		Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-07-15	2015-07-15	North Atlantic	477	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-07-16	2015-07-16	North Atlantic	465	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-07-22	2015-07-22	North Atlantic	87	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-07-23	2015-07-23	North Atlantic	428	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-07-24	2015-07-24	North Atlantic	299	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-07-31	2015-07-31	North Atlantic	401	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-08-03	2015-08-03	North Atlantic	394	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-08-04	2015-08-04	North Atlantic	412	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-08-07	2015-08-07	North Atlantic	463	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-08-10	2015-08-10	North Atlantic	479	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-08-12	2015-08-12	North Atlantic	341	Gkritzalis, T.; Cattrijsse, A.	
mon Stevin	2015-08-17	2015-08-17	North Atlantic	439	Gkritzalis, T.; Cattrijsse, A.	
	2015-08-18	2015-08-18	North Atlantic	414	Gkritzalis, T.; Cattrijsse, A.	
	2015-08-19	2015-08-19	North Atlantic	470	Gkritzalis, T.; Cattrijsse, A.	
	2015-08-21	2015-08-21	North Atlantic	401	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin imon Stevin imon Stevin			North Atlantic			
imon Stevin imon Stevin	2015 08 24	2015-08-24		450	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin imon Stevin imon Stevin	2015-08-24			373	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin imon Stevin imon Stevin	2015-08-24 2015-08-27	2015-08-27	North Atlantic			
mon Stevin mon Stevin mon Stevin mon Stevin	2015-08-27			455	Gkritzalis, T.; Cattriisse, A.	
imon Stevin imon Stevin imon Stevin imon Stevin imon Stevin	2015-08-27 2015-08-28	2015-08-28	North Atlantic	455	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin imon Stevin imon Stevin imon Stevin imon Stevin imon Stevin	2015-08-27 2015-08-28 2015-09-02	2015-08-28 2015-09-02	North Atlantic North Atlantic	455 961	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin imon Stevin imon Stevin imon Stevin imon Stevin imon Stevin imon Stevin	2015-08-27 2015-08-28 2015-09-02 2015-09-03	2015-08-28 2015-09-02 2015-09-03	North Atlantic North Atlantic North Atlantic	455 961 450	Gkritzalis, T.; Cattrijsse, A. Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-08-27 2015-08-28 2015-09-02	2015-08-28 2015-09-02	North Atlantic North Atlantic	455 961	Gkritzalis, T.; Cattrijsse, A.	

Vessel	Start date yyyy-mm-dd	End date yyyy-mm-dd	Regions	No. of samples	Principal investigators	DOI (if available)/comment
mon Stevin	2015-09-09	2015-09-09	North Atlantic	436	Gkritzalis, T.; Cattrijsse, A.	
non Stevin	2015-09-10	2015-09-10	North Atlantic	469	Gkritzalis, T.; Cattrijsse, A.	
mon Stevin	2015-09-11	2015-09-11	North Atlantic	443	Gkritzalis, T.; Cattrijsse, A.	
mon Stevin	2015-09-15	2015-09-15	North Atlantic	729	Gkritzalis, T.; Cattrijsse, A.	
mon Stevin	2015-09-16	2015-09-16	North Atlantic	1081	Gkritzalis, T.; Cattrijsse, A.	
mon Stevin	2015-09-21	2015-09-21	North Atlantic	366	Gkritzalis, T.; Cattrijsse, A.	
mon Stevin	2015-09-25	2015-09-25	North Atlantic	454	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-09-28	2015-09-28	North Atlantic	440	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-09-29	2015-09-29	North Atlantic	701	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-09-30	2015-09-30	North Atlantic	850	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-10-05	2015-10-05	North Atlantic	453	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-10-06	2015-10-06	North Atlantic	491	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-10-07	2015-10-07	North Atlantic	423	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-10-08	2015-10-08	North Atlantic	437	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-10-10	2015-10-10	North Atlantic	488	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-10-11	2015-10-11	North Atlantic	448	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-10-20	2015-10-20	North Atlantic	435	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-10-21	2015-10-21	North Atlantic	319	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-11-01	2015-11-01	North Atlantic	387	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-11-04	2015-11-04	North Atlantic	272	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-11-05	2015-11-05	North Atlantic	415	Gkritzalis, T.; Cattrijsse, A.	
mon Stevin	2015-11-06	2015-11-06	North Atlantic	114 202	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-11-12	2015-11-12	North Atlantic	202 217	Gkritzalis, T.; Cattrijsse, A.	
mon Stevin	2015-12-07	2015-12-07	North Atlantic	336	Gkritzalis, T.; Cattrijsse, A.	
imon Stevin	2015-12-08 2015-12-09	2015-12-08	North Atlantic		Gkritzalis, T.; Cattrijsse, A.	
imon Stevin oyo Maru	2015-02-09 2015-05-08	2015-12-09 2015-05-11	North Atlantic North Pacific, Tropi-	156 3972	Gkritzalis, T.; Cattrijsse, A. Ono, T.	
,50 maru	2013-03-00	2013-03-11	cal Pacific	3912	010, 1.	
oyo Maru	2015-08-01	2015-08-07	North Pacific	8354	Ono, T.	
oyo Maru oyo Maru	2015-10-26	2015-08-07	North Pacific	10 759	Ono, T.	
angaroa	2015-01-28	2015-03-10	Southern Ocean	34 868	Currie, K.	doi:10.3334/CDIAC/OTG.VOS_Tangaroa_2015
angaroa angaroa	2015-01-28 2015-03-27	2015-03-10	Southern Ocean	15 297	Currie, K.	doi:10.3334/CDIAC/OTG.VOS_Tangaroa_2015 doi:10.3334/CDIAC/OTG.VOS Tangaroa 2015
angaroa angaroa	2015-04-17	2015-04-14	Southern Ocean	4797	Currie, K.	doi:10.3334/CDIAC/OTG.VOS_Tangaroa_2015 doi:10.3334/CDIAC/OTG.VOS_Tangaroa_2015
angaroa	2015-04-23	2015-04-22	Southern Ocean	5791	Currie, K.	doi:10.3334/CDIAC/OTG.VOS_Tangaroa_2015 doi:10.3334/CDIAC/OTG.VOS_Tangaroa_2015
angaroa	2015-05-04	2015-05-21	Southern Ocean	12 051	Currie, K.	doi:10.3334/CDIAC/OTG.VOS_Tangaroa_2015
angaroa	2015-05-23	2015-06-01	Southern Ocean	7985	Currie, K.	doi:10.3334/CDIAC/OTG.VOS_Tangaroa_2015 doi:10.3334/CDIAC/OTG.VOS_Tangaroa_2015
angaroa	2015-07-04	2015-08-02	Southern Ocean	26 898	Currie, K.	doi:10.3334/CDIAC/OTG.VOS_Tangaroa_2015
angaroa	2015-08-04	2015-08-26	Southern Ocean	18 553	Currie, K.	doi:10.3334/CDIAC/OTG.VOS Tangaroa 2015
angaroa	2015-09-05	2015-09-24	Southern Ocean	12 776	Currie, K.	doi:10.3334/CDIAC/OTG.VOS_Tangaroa_2015
angaroa	2015-09-26	2015-10-04	Tropical Pacific	7207	Currie, K.	doi:10.3334/CDIAC/OTG.VOS_Tangaroa_2014
angaroa	2015-10-13	2015-10-25	Southern Ocean	10 658	Currie, K.	doi:10.3334/CDIAC/OTG.VOS_Tangaroa_2015
rans Future 5	2015-01-10	2015-01-24	North Pacific, South-	1507	Nojiri, Y.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
runo r uture o	2010 01 10	2010 01 21	ern Ocean,	1507	1.0311, 1.	dom/0.000 # 000 # 000 # 000_110_2010
			Tropical Pacific			
rans Future 5	2015-01-31	2015-02-10	North Pacific, Tropi-	1179	Nojiri, Y.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
rans r atare 5	2015-01-51	2013-02-10	cal Pacific	11/2	10,11,1.	uo.10.5554/CD11C/010.105_115_2015
rans Future 5	2015-02-11	2015-02-24	Southern Ocean,	922	Nojiri, Y.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
			Tropical Pacific			
rans Future 5	2015-02-25	2015-03-08	North Pacific, South-	1379	Nojiri, Y.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
			ern Ocean, Tropical			
			Pacific			
rans Future 5	2015-03-14	2015-03-24	North Pacific, Tropi-	1083	Nojiri, Y.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
			cal Pacific			
rans Future 5	2015-04-25	2015-05-05	North Pacific, Tropi-	1090	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
			cal Pacific			
rans Future 5	2015-05-06	2015-05-20	Southern Ocean,	913	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
			Tropical Pacific			
rans Future 5	2015-05-21	2015-06-01	North Pacific, South-	1381	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
			ern Ocean, Tropical			
			Pacific			
rans Future 5	2015-06-06	2015-06-15	North Pacific, Tropi-	1138	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
			cal Pacific		<u>.</u>	
rans Future 5	2015-06-16	2015-06-28	Southern Ocean,	911	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
			Tropical Pacific			-
rans Future 5	2015-06-29	2015-07-12	North Pacific, South-	1431	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
			ern Ocean, Tropical			-
			Pacific			
rans Future 5	2015-07-18	2015-07-30	North Pacific, Tropi-	1112	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
			cal Pacific			
rans Future 5	2015-07-30	2015-08-11	Southern Ocean,	884	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
			Tropical Pacific			
rans Future 5	2015-08-12	2015-08-24	North Pacific, South-	1400	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
			ern Ocean, Tropical			
			Pacific			
rans Future 5	2015-09-26	2015-10-07	North Pacific, Tropi-	811	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
			cal Pacific			
rans Future 5	2015-10-07	2015-10-19	Southern Ocean,	889	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
			Tropical Pacific			
rans Future 5	2015-10-21	2015-11-01	North Pacific, South-	1427	Nakaoka, S.	doi:10.3334/CDIAC/OTG.VOS_TF5_2015
			ern Ocean, Tropical			
			Pacific			
/akataka Maru	2015-06-30	2015-07-04	North Pacific	6356	Kuwata, A.; Tadokoro, K.,	,
					Ono, T.	
Vakataka Maru	2015-07-11	2015-07-21	North Pacific	14 479	Kuwata, A.; Tadokoro, K.,	,
					Ono, T.	
/akataka Maru	2015-07-29	2015-08-05	North Pacific	9773	Kuwata, A.; Tadokoro, K.,	,
					Ono, T.	
	2015-09-30	2015-10-15	North Pacific	15 111	Kuwata, A.; Tadokoro, K.,	
/akataka Maru				1.3 1.1 1		

Appendix B

Table B1. Funding supporting the production of the various components of the global carbon budget (see also acknowledgements).

Funder and grant number (where relevant)	Author initials
European Commission (EC) Copernicus Atmosphere Monitoring Service, European Centre for Medium-Range Weather Forecasts (ECMWF)	FC
EC H2020 (AtlantOS; grant no. 633211)	NL, AO
EC H2020 (CRESCENDO; grant no. 641816)	CD, RS, OA, PF
EC H2020 European Research Council (ERC) (QUINCY; grant no. 647204).	SZ
EC H2020 ERC Synergy grant (IMBALANCE-P; grant no. ERC-2013-SyG-610028)	PC
France, BNP Paribas Climate Philanthropy Grant for the Global Carbon Atlas	PC
French Institut National des Sciences de l'Univers (INSU) and Institut Paul Emile Victor (IPEV) for	NM
OISO cruises	1 (1)1
French Institut de recherche pour le développement (IRD)	NL
German Federal Ministry of Education and Research (grant no. 01LK1224I ICOS-D)	MH
German Research Foundation's Emmy Noether Programme (grant no. PO1751/1-1)	JN
German Max Planck Society	CR, SZ
Germany, Federal Ministry of Education and Research (BMBF)	AK
Germany, Helmholtz Postdoc Programme (Initiative and Networking Fund of the Helmholtz Associa-	JH
tion)	J11
Japan Ministry of Agriculture, Forestry and Fisheries (MAFF)	ОТ
Japan Ministry of Environment	SN
Japan Ministry of Environment (grant no. ERTDF S-10)	EK
NASA LCLUC programme (grant no. NASA NNX14AD94G)	AJ
	AJ KC
New Zealand National Institute of Water and Atmospheric Research (NIWA) Core Funding	
Norway Research Council (grant no. 229752)	AMO GPP, RMA
Norway Research Council (grant no. 569980)	
Norway Research Council (project EVA; grant no. 229771)	JS
Norwegian Environment Agency (grant no. 16078007)	IS
Research Fund – Flanders (FWO; formerly Hercules Foundation)	TG
South Africa Council for Scientific and Industrial Research (CSIR)	PMSM
UK Natural Environment Research Council (RAGNARoCC)	US
UK Newton Fund through the Met Office Climate Science for Service Partnership Brazil (CSSP Brazil)	AJW
US Department of Agriculture, National Institute of Food and Agriculture (grant no. 2015-67003-	DL
23485) US Department of Energy (grant no. DE EC02.07EB62402(A010)	DL
US Department of Energy (grant no. DE-FC03-97ER62402/A010)	
US Department of Energy, Biological and Environmental Research Program, Office of Science (grant no. DE-AC05-00OR22725)	APW
US Department of Commerce, NOAA's Climate Observation Division of the Climate Program Office	SRA, AJS
US Department of Energy, Office of Science and BER programme (grant no. DOE DE-SC0016323)	AJ
US National Science Foundation (grant no. AGS-1048827)	SD
US NOAA's Climate Observation Division of the Climate Program Office (grant no. N8R1SE3P00);	DP, LB
NOAA's Ocean Acidification Program (grant no. N8R3CEAP00), US	,
US National Science Foundation (grant no. NSF AGS 12-43071)	AJ
Computing resources	
GENCI (Grand Équipement National de Calcul Intensif; allocation t2016012201), France	FC
	FC
Météo-France/DSI supercomputing centre	RS
Netherlands Organisation for Scientific Research (NWO) (SH-312-14)	IvdL-L
Norwegian Metacenter for Computational Science (NOTUR, project nn2980k) and the Norwegian Stor-	JS
age Infrastructure (NorStore, project ns2980k)	
UEA High Performance Computing Cluster, UK	OA, CLQ

55

60

The Supplement related to this article is available online at doi:10.5194/essd-8-1-2016-supplement.

Acknowledgements. We thank all people and institutions who provided the data used in this carbon budget; C. Enright, W. Pe-

- ⁵ ters, and S. Shu for their involvement in the development, use, and analysis of the models and data products used here; F. Joos and S. Khatiwala for providing historical data; and P. Regnier for assistance in describing LOAC fluxes. We thank E. Dlugokencky, who provided the atmospheric CO₂ measurements used here; B. Pfeil,
- ¹⁰ C. Landa, and S. Jones of the Bjerknes Climate Data Centre and the ICOS Ocean Thematic Centre data management at the University of Bergen, who helped with gathering information from the SO-CAT community; D. Bakker for support with the SOCAT coordination; and all those involved in collecting and providing oceano-
- ¹⁵ graphic CO₂ measurements used here, in particular for the new ocean data for years 2015: A. Andersson, N. Bates, R. Bott, A. Cattrijsse, E. De Carlo, C. Dietrich, L. Gregor, C. Hunt, T. Johannessen, W. R. Joubert, A. Kuwata, S. K. Lauvset, C. Lo Monaco, S. Maenner, D. Manzello, N. Monacci, S. Musielewicz, T. Newberger,
- ²⁰ A. Olsen, J. Osborne, C. Sabine, S. C. Sutherland, C. Sweeney, K. Tadokoro, S. van Heuven, D. Vandemark, and R. Wanninkhof. We thank the institutions and funding agencies responsible for the collection and quality control of the data included in SOCAT, and the support of the International Ocean Carbon Coordination Project
- ²⁵ (IOCCP), the Surface Ocean Lower Atmosphere Study (SOLAS), and the Integrated Marine Biogeochemistry, Ecosystem Research (IMBER) programme. We thank data providers to ObsPack GLOB-ALVIEWplus v1.0 and NRT v3.0 for atmospheric CO₂ observations used in CTE2016-FT. This is NOAA-PMEL contribution number ³⁰ 4576.

Finally, we thank all funders who have supported the individual and joint contributions to this work (see Appendix B^{TS23}), as well as M. Heimann, H. Dolman, and one anonymous reviewer for their comments on our manuscript.

35

note the remarks at the end of the manuscript

Edited by: D. Carlson

Reviewed by: A. J. Dolman, M. Heimann, and one anonymous referee 1824

References

⁴⁰ Achard, F., Beuchle, R., Mayaux, P., Stibig, H. J., Bodart, C., Brink, A., Carboni, S., Desclée, B., Donnay, F., and Eva, H.: Determination of tropical deforestation rates and related carbon losses from 1990 to 2010, Glob. Change Biol., 20, 2540–2554, 2014.

Andres, R., Boden, T., and Higdon, D.: A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon

- dioxide emission, Tellus B, 2014.
- Andres, R. J., Fielding, D. J., Marland, G., Boden, T. A., Kumar, N., and Kearney, A. T.: Carbon dioxide emissions from fossil fuel use, 1751–1950, Tellus, 51, 759–765, 1999.
- ⁵⁰ Andres, R. J., Boden, T. A., Bréon, F.-M., Ciais, P., Davis, S., Erickson, D., Gregg, J. S., Jacobson, A., Marland, G., Miller, J., Oda, T., Olivier, J. G. J., Raupach, M. R., Rayner, P., and Treanton, K.:

A synthesis of carbon dioxide emissions from fossil-fuel combustion, Biogeosciences, 9, 1845–1871, doi:10.5194/bg-9-1845-2012, 2012.

- Andrew, R. M. and Peters, G. P.: A multi-region input-output table based on the Global Trade Analysis Project Database (GTAP-MRIO), Economic Systems Research, 25, 99–121, 2013.
- Andrew, R. M., Davis, S. J., and Peters, G. P.: Climate policy and dependence on traded carbon, Environ. Res. Lett., 8, 2013.
- Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U., Caldeira, K. M., K., Munhoven, G., Montenegro, A., and Tokos, K.: Atmospheric Lifetime of Fossil Fuel Carbon Dioxide, Annu. Rev. Earth Planet. Sc., 37, 117-134, 2009.
- Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, 65 J. C., Smith, D. K., and Gombos, D.: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications, B. Am. Meteorol. Soc., 92, 157– 174, 2011.
- Aumont, O. and Bopp, L.: Globalizing results from ocean in ⁷⁰ situ iron fertilization studies, Global Biogeochem. Cyc., 20, 2006.
- Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S., and Houghton, R. A.: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps, Nature Climate Change, 2, 182–186, 2012.
- Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S.-I., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, 80 C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., 85 Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, 90 A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., 95 Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multidecade record of high-quality $f CO_2$ data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383-413, doi:10.5194/essd-8-383-2016, 2016. 100
- Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P., and White, J. W. C.: Increase in observed net carbon dioxide uptake by land and oceans during the last 50 years, Nature, 488, 70–72, 2012.
- Ballantyne, A. P., Andres, R., Houghton, R., Stocker, B. D., Wanninkhof, R., Anderegg, W., Cooper, L. A., DeGrandpre, M., Tans, 105
 P. P., Miller, J. B., Alden, C., and White, J. W. C.: Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty, Biogeosciences, 12, 2565–2584, doi:10.5194/bg-12-2565-2015, 2015.

C. Le Quéré et al.: Global Carbon Budget 2016

Bauer, J. E., Cai, W.-J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. A. G.: The changing carbon cycle of the coastal ocean, Nature, 504, 61–70, 2013.

Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L.

- H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, doi:10.5194/gmd-4-677-2011, 2011.
- Betts, R. A., Jones, C. D., Knight, J. R., Keeling, R. F., and Kennedy,
 J. J.: El Nino and a record CO₂ rise, Nature Climate Change, 6, 806–810, 2016.
- Boden, T. A. and Andres, R. J.: Global, Regional, and Na-
- tional Fossil-Fuel CO₂ Emissions, available at: http://cdiac.ornl. gov/trends/emis/overview_2013.html, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn., USA, 2016. 1523
- BP: Change in methodology for calculating
- 20 CO₂ emissions from energy use, available at: http://www.bp.com/content/dam/bp/pdf/energy-economics/ statistical-review-2016/bp-statistical-review-of-world-energy-2016-carbon-emissions-methodology.pdf, 2016a.
- BP: Statistical Review of World Energy 2016, available
 at: https://www.bp.com/content/dam/bp/pdf/ energyeconomics/statistical-review-2016/bp-statistical-review-ofworld-energy-2016-full-report.pdf, 2016b.[TS30]
- Bruno, M. and Joos, F.: Terrestrial carbon storage during the past 200 years: A monte carlo analysis of CO₂ data from ice core and
- atmospheric measurements, Global Biogeochem. Cy., 11, 111– 124, 1997.
- Buitenhuis, E. T., Rivkin, R. B., Sailley, S., and Le Quéré, C.: Biogeochemical fluxes through microzooplankton, Global Biogeochem. Cy., 24, 2010.
- ³⁵ Canadell, J., Ciais, P., Sabine, C., and Joos, F. (Eds.): REgional Carbon Cycle Assessment and Processes (RECCAP), Biogeosciences, http://www.biogeosciences.net/special_issue107.html, 2012.

Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buiten-

- ⁴⁰ huis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., and Marland, G.: Contributions to accelerating atmospheric CO₂ growth from economic activity, carbon intensity, and efficiency of natural sinks, P. Natl. Acad. Sci. USA, 104, 18866–18870, 2007.
- 45 CCIA: China Coal Industry Association, 2016 First Three Quarters of Economic Operation of Coal, available at: http://www. coalchina.org.cn/detail/16/10/25/00000007/content.html, last access: 29 October 2016 (in Chinese).
- Chevallier, F.: On the statistical optimality of CO₂ atmospheric

⁵⁰ inversions assimilating CO₂ column retrievals, Atmos. Chem. Phys., 15, 11133–11145, doi:10.5194/acp-15-11133-2015, 2015.

- Chevallier, F., Fisher, M., Peylin, P., Serrar, S., Bousquet, P., Bréon, F.-M., Chédin, A., and Ciais, P.: Inferring CO₂ sources and sinks from satellite observations: Method and application to TOVS
 ⁵⁵ data, J. Geophys. Res., D24309, 2005. [1532]
- Ciais, P., Sabine, C., Govindasamy, B., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R., Piao, S., and Thornton, P.: Chapter 6: Carbon and Other Biogeochemical Cycles,

in: Climate Change 2013 The Physical Science Basis, edited by: 60 Stocker, T., Qin, D., and Platner, G.-K., Cambridge University Press, Cambridge, 2013.

- Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, doi:10.5194/gmd-4-701-2011, 2011.
- Davis, S. J. and Caldeira, K.: Consumption-based accounting of CO₂ emissions, P. Natl. Acad. Sci. USA, 107, 5687–5692, 2010. ⁷⁰
- Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P.
 M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E.,
 Jacob, D., Lohmann, U., Ramachandran, S., Leite da Silva Dias,
 P., Wofsy, S. C., and Zhang, X.: Couplings Between Changes
 in the Climate System and Biogeochemistry, Intergovernmental 75
 Panel on Climate Change, 499–587, 2007.
- Dietzenbacher, E., Pei, J. S., and Yang, C. H.: Trade, production fragmentation, and China's carbon dioxide emissions, J. Environ. Econ. Manag., 64, 88–101, 2012.
- Dlugokencky, E. and Tans, P.: Trends in atmospheric carbon dioxide, National Oceanic & Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL), available at: http: //www.esrl.noaa.gov/gmd/ccgg/trends, last access: 28 October 2016.
- Doney, S. C., Lima, I., Feely, R. A., Glover, D. M., Lindsay, K., ⁸⁵ Mahowald, N., Moore, J. K., and Wanninkhof, R.: Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO₂ fluxes: Physical climate and atmospheric dust, Deep-Sea Res. Pt. II, 56, 640–655, 2009.
- Duce, R. A., LaRoche, J., Altieri, K., Arrigo, K. R., Baker, A. 90
 R., Capone, D. G., Cornell, S., Dentener, F., Galloway, J., Ganeshram, R. S., Geider, R. J., Jickells, T., Kuypers, M. M., Langlois, R., Liss, P. S., Liu, S. M., Middelburg, J. J., Moore, C. M., Nickovic, S., Oschlies, A., Pedersen, T., Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L. L., Uematsu, M., Ul- 95
 Ioa, O., Voss, M., Ward, B., and Zamora, L.: Impacts of atmospheric anthropogenic nitrogen on the open ocean, Science, 320, 893–897, 2008.
- Durant, A. J., Le Quéré, C., Hope, C., and Friend, A. D.: Economic value of improved quantification in global sources and sinks of 100 carbon dioxide, Philos. T. Roy. Soc. ATS34, 269, 1967–1979, 2010.
- Earles, J. M., Yeh, S., and Skog, K. E.: Timing of carbon emissions from global forest clearance, Nature Climate Change, 2, 682– 685, 2012.
- EDGAR: Global Emissions EDGAR v4.2 (November 2011), available at: http://edgar.jrc.ec.europa.eu/overview.php?v=42, 2011.
- EIA: US Energy Information Administration, Short-Term Energy and Winter Fuels Outlook, available at: http://www.eia.gov/ 110 forecasts/steo/outlook.cfm, last access: October 2016.
- Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., Foster, I., Glotter, M., Heinke, J., Iizumi, T., Izaurralde, R. C., Mueller, N. D., Ray, D. K., Rosenzweig, C., Ruane, A. C., and Sheffield, J.: The Global Gridded Crop Model 115 Intercomparison: data and modeling protocols for Phase 1 (v1.0), Geosci. Model Dev., 8, 261–277, doi:10.5194/gmd-8-261-2015, 2015.

105

- El Masri, B., Shu, S., and Jain, A. K.: Implementation of a dynamic rooting depth and phenology into a land surface model: Evaluation of carbon, water, and energy fluxes in the high latitude ecosystems, Agr. Forest Meteorol., 211–212, 85–99, 2015.
- ⁵ Erb, K.-H., Kastner, T., Luyssaert, S., Houghton, R. A., Kuemmerle, T., Olofsson, P., and Haberl, H.: Bias in the attribution of forest carbon sinks, Nature Climate Change, 3, 854–856, 2013.
- Etheridge, D. M., Steele, L. P., Langenfelds, R. L., and Francey, R. J.: Natural and anthropogenic changes in atmospheric CO₂ over
- the last 1000 years from air in Antarctic ice and firn, J. Geophys. Res., 101, 4115–4128, 1996.
- FAO: Global Forest Resource Assessment 2010, 378 pp., 2010.
 FAOSTAT: Food and Agriculture Organization Statistics Division, available at: http://faostat.fao.org/, 2010.
- ¹⁵ Federici, S., Tubiello, F. N., Salvatore, M., Jacobs, H., and Schmidhuber, J.: New estimates of CO₂ forest emissions and removals: 1990–2015, Forest Ecol. Manage., 352, 89–98, 2015.
- Feely, R. A., Wanninkhof, R., Takahashi, T., and Tans, P.: Influence of El Nino on the equatorial Pacific contribution to atmospheric
 ²⁰ CO₂ accumulation, Nature, 398, 597–601, 1999.
- Francey, R. J., Trudinger, C. M., van der Schoot, M., Law, R. M., Krummel, P. B., Langenfelds, R. L., Steele, L. P., Allison, C. E., Stavert, A. R., Andres, R. J., and Rodenbeck, C.: Reply to "An-thropogenic CO₂ emissions", Nature Climate Change, 3, 604–604, 2013.
- Friedlingstein, P., Houghton, R. A., Marland, G., Hackler, J., Boden, T. A., Conway, T. J., Canadell, J. G., Raupach, M. R., Ciais, P., and Le Quéré, C.: Update on CO₂ emissions, Nat. Geosci., 3, 811–812, 2010.
- ³⁰ Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J. G., Knutti, R., Luderer, G., Raupach, M. R., Schaeffer, M., van Vuuren, D. P., and Le Quéré, C.: Persistent growth of CO₂ emissions and implications for reaching climate targets, Nat. Geosci., 2014. ISSI
- ³⁵ Gasser, T. and Ciais, P.: A theoretical framework for the net landto-atmosphere CO₂ flux and its implications in the definition of "emissions from land-use change", Earth Syst. Dynam., 4, 171– 186, doi:10.5194/esd-4-171-2013, 2013.

GCP: **TS39** (last access: November 2013), 2007.

- ⁴⁰ Giglio, L., Randerson, J., and van der Werf, G.: Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4), J. Geophys. Res.-Biogeo., 118, 2013. 1540
- Gitz, V. and Ciais, P.: Amplifying effects of land-use change on fu-
- 5 ture atmospheric CO₂ levels, Global Biogeochem. Cy., 17, 1024, 2003. 1841
- Goll, D. S., Brovkin, V., Liski, J., Raddatz, T., Thum, T., and Todd-Brown, K. E. O.: Strong dependence of CO₂ emissions from an-thropogenic land cover change on initial land cover and soil car ⁵⁰ bon parametrization, Global Biogeochem. Cy., 29, 2015.
- Gonzalez-Gaya, B., Fernandez-Pinos, M. C., Morales, L., Mejanelle, L., Abad, E., Pina, B., Duarte, C. M., Jimenez, B., and Dachs, J.: High atmosphere-ocean exchange of semivolatile aromatic hydrocarbons, Nat. Geosci., 9, 438–11543, 2016.
- ⁵⁵ Gregg, J. S., Andres, R. J., and Marland, G.: China: Emissions pattern of the world leader in CO₂ emissions from fossil fuel consumption and cement production, Geophys. Res. Lett., 35, L08806, 2008.

- Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated high-resolution grids of monthly climatic observations – the 60 CRU TS3.10 Dataset, Int. J. Climatol., 34, 623–642, 2014.
- Harris, N., Brown, S., and Hagen, S. C.: Baseline map of carbon emissions from deforestation in tropical regions, Science, 336, 1573–1576, 2012.
- Hauck, J., Kohler, P., Wolf-Gladrow, D., and Volker, C.: Iron fertilisation and century-scale effects of open ocean dissolution of olivine in a simulated CO₂ removal experiment, Environ. Res. Lett., 11, 2016.
- Hertwich, E. G. and Peters, G. P.: Carbon Footprint of Nations: A Global, Trade-Linked Analysis, Environ. Sci. Tech., 6414–6420, 70 2009.
- Houghton, R. A.: Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000, Tellus B, 55, 378–390, 2003.
- Houghton, R. A. and Nassikas, A. A.: Annual Fluxes of Carbon 75 from Land Use and Land-Cover Change 1850 to 2015, Global Biogeochem. Cy., in preparation, 2016. 1847
- Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R., De-Fries, R. S., Hansen, M. C., Le Quéré, C., and Ramankutty, N.: Carbon emissions from land use and land-cover change, Biogeosciences, 9, 5125–5142, doi:10.5194/bg-9-5125-2012, 2012.
- Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-L., Fairhead, L., Filiberti, M.-A., Freidlingstein, P., Grandpeix, J.-Y., Krinner, G., LeVan, P., Li, Z.-X., and Lott, F.: The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection, Clim. Dynam., 27, 2006. [1543]
- IEA/OECD: CO₂ emissions from fuel combustion, Paris, 152 pp., 2015.
- IEW: International Energy Web, available at: http://gas.in-en.com/ 90 html/gas-2517194.shtml, last access: 11 October 2016 (in Chinese).
- IMF: World Economic Outlook of the International Monetary Fund, available at: http://www.imf.org/external/ns/cs.aspx?id=29, last access: September 2016.
- Inomata, S. and Owen, A.: COMPARATIVE EVALUATION OF MRIO DATABASES, Economic Systems Research, 26, 239– 244, 2014.
- Ito, A. and Inatomi, M.: Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty, Biogeosciences, 9, 759–773, doi:10.5194/bg-9-759-2012, 2012.
- Jackson, R. B., Canadell, J. G., Le Quéré, C., Andrew, R. M., Korsbakken, J. I., Peters, G. P., and Nakicenovic, N.: Reaching peak emissions, Nature Climate Change, 6, 7–1550, 2016.
- Jacobson, A. R., Mikaloff Fletcher, S. E., Gruber, N., Sarmiento, J. L., and Gloor, M.: A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global-scale fluxes, Global Biogeochem. Cy., 21, GB1019, 2007.
- Jain, A. K., Meiyappan, P., Song, Y., and House, J. I.: CO₂ Emis- ¹¹⁰ sions from Land-Use Change Affected More by Nitrogen Cycle, than by the Choice of Land Cover Data, Glob. Change Biol., 9, 2893–2906, 2013.
- Joos, F. and Spahni, R.: Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years, P. Natl. ¹¹⁵ Acad. Sci. USA, 105, 1425–1430, 2008.

C. Le Quéré et al.: Global Carbon Budget 2016

- Karstensen, J., Peters, G. P., and Andrew, R. M.: Uncertainty in temperature response of current consumption-based emissions estimates, Earth Syst. Dynam., 6, 287–309, doi:10.5194/esd-6-287-2015, 2015.
- 5 Kato, E., Kinoshita, T., Ito, A., Kawamiya, M., and Yamagata, Y.: Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process-based biogeochemical model, Journal of Land Use Science, 8, 104–122, 2013.

Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdhal, C. A.,

- Guenther, P. R., and Waterman, L. S.: Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii, Tellus, 28, 538–551, 1976.
- Keeling, R. F. and Manning, A. C.: Studies of Recent Changes in Atmospheric O₂ Content, in: Treatise on Geochemistry, 2nd
 Edn., 2014. 1852
- Keeling, R. F., Walker, S. J., Piper, S. C., and Bollenbacher, A. F.: Atmospheric CO₂ concentrations (ppm) derived from in situ air measurements at Mauna Loa, Observatory, Hawaii, available at: http://scrippsco2.ucsd.edu/sites/default/files/data/
- 20 in_situ_co2/monthly_mlo.csv, Scripps Institution of Oceanography, La Jolla, California USA 92093-0244, 2016.[1553]
- Khatiwala, S., Primeau, F., and Hall, T.: Reconstruction of the history of anthropogenic CO₂ concentrations in the ocean, Nature, 462, 346–350, 2009.
- ²⁵ Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S. C., Graven, H. D., Gruber, N., McKinley, G. A., Murata, A., Ríos, A. F., and Sabine, C. L.: Global ocean storage of anthropogenic carbon, Biogeosciences, 10, 2169–2191, doi:10.5194/bg-10-2169-2013, 2013.
- ³⁰ Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, J., Lan-
- ³⁵ genfelds, R. L., Le Quéré, C., Naik, V., O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R. F.,
- Williams, J. E., and Zeng, G.: Three decades of global methane sources and sinks, Nat. Geosci., 6, 813–823, 2013.
- Klein Goldewijk, K., Beusen, A., van Drecht, G., and de Vos, M.: The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years, Glob. Ecol.
 ⁴⁵ Biogeogr., 20, 73–86, 2011.
- Korsbakken, J. I., Peters, G. P., and Andrew, R. M.: Uncertainties around reductions in China's coal use and CO₂ emissions, Nature Climate Change, 6, 687–11554, 2016.
- Krinner, G., Viovy, N., de Noblet, N., Ogée, J., Friedlingstein, P.,
- 50 Ciais, P., Sitch, S., Polcher, J., and Prentice, I. C.: A dynamic global vegetation model for studies of the coupled atmospherebiosphere system, Global Biogeochem. Cy., 19, 1–33, 2005.
 - Landschützer, P., Gruber, N., Bakker, D. C. E., and Schuster, U.: Recent variability of the global ocean carbon sink, Global Biogeochem. Cy., 28, 927–949, doi:10.1002/2014GB004853, 2014.
- ⁵⁵ geochem. Cy., 28, 927–949, doi:10.1002/2014GB004853, 2014. Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C. E., van Heuven, S., Hoppema, M., Metzl, N., Sweeney, C., Takahashi, T., Tilbrook, B., and Wanninkhof, R.:

The reinvigoration of the Southern Ocean carbon sink, Science, 349, 1221–1224, 2015.

- Landschützer, P., Gruber, N., and Bakker, D. C. E.: Decadal variations and trends of the global ocean carbon sink, Global Biogeochem. Cy., doi:10.1002/2015GB005359, online first, 2016.
- Le Quéré, C.: Closing the global budget for CO₂, Global Change, 74, 28–31, 2009.
- Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., Conway, T. J., Doney, S. C., Feely, R. A., Foster, P., Friedlingstein, P., Gurney, K., Houghton, R. A., House, J. I., Huntingford, C., Levy, P. E., Lomas, M. R., Majkut, J., Metzl, N., Ometto, J. P., Peters, G. P., Prentice, I. C., Randerson, J. T., Running, S. W., Sarmiento, J. L., Schuster, U., Sitch, S., Takahashi, T., Viovy, N., van der Werf, G. R., and Woodward, F. I.: Trends in the sources and sinks of carbon dioxide, Nat. Geosci., 2, 831–836, 2009.
- Le Quéré, C., Andres, R. J., Boden, T., Conway, T., Houghton, R. ⁷⁵ A., House, J. I., Marland, G., Peters, G. P., van der Werf, G. R., Ahlström, A., Andrew, R. M., Bopp, L., Canadell, J. G., Ciais, P., Doney, S. C., Enright, C., Friedlingstein, P., Huntingford, C., Jain, A. K., Jourdain, C., Kato, E., Keeling, R. F., Klein Goldewijk, K., Levis, S., Levy, P., Lomas, M., Poulter, B., Raupach, M. R., Schwinger, J., Sitch, S., Stocker, B. D., Viovy, N., Zaehle, S., and Zeng, N.: The global carbon budget 1959–2011, Earth Syst. Sci. Data, 5, 165–185, doi:10.5194/essd-5-165-2013, 2013.
- Le Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P., Friedlingstein, P., Houghton, R. A., Marland, G., Moriarty, R., Sitch, S., Tans, P., Arneth, A., Arvanitis, A., Bakker, D. C. E., Bopp, L., Canadell, J. G., Chini, L. P., Doney, S. C., Harper, A., Harris, I., House, J. I., Jain, A. K., Jones, S. D., Kato, E., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Koven, C., Lefèvre, N., Maignan, F., Omar, A., Ono, T., Park, G.-H., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B. D., Takahashi, T., Tilbrook, B., van Heuven, S., Viovy, N., Wanninkhof, R., Wiltshire, A., and Zaehle, S.: Global carbon budget 2013, Earth Syst. Sci. Data, 6, 235–263, doi:10.5194/essd-6-235-2014, 2014.
- Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P., Peters, G. P., Andres, R. J., Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P., Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, L., Chang, 100 J., Chevallier, F., Chini, L. P., Ciais, P., Fader, M., Feely, R. A., Gkritzalis, T., Harris, I., Hauck, J., Ilyina, T., Jain, A. K., Kato, E., Kitidis, V., Klein Goldewijk, K., Koven, C., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lima, I. D., Metzl, N., Millero, F., Munro, D. R., Murata, A., Nabel, J. E. M. S., 105 Nakaoka, S., Nojiri, Y., O'Brien, K., Olsen, A., Ono, T., Pérez, F. F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J., Séférian, R., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S., Van- 110 demark, D., Viovy, N., Wiltshire, A., Zaehle, S., and Zeng, N.: Global Carbon Budget 2015, Earth Syst. Sci. Data, 7, 349-396, doi:10.5194/essd-7-349-2015, 2015a.
- Le Quéré, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P., Friedlingstein, P., Jones, S. D., Sitch, S., Tans, P., Arneth, A., ¹¹⁵ Boden, T. A., Bopp, L., Bozec, Y., Canadell, J. G., Chini, L. P., Chevallier, F., Cosca, C. E., Harris, I., Hoppema, M., Houghton,

R. A., House, J. I., Jain, A. K., Johannessen, T., Kato, E., Keeling, R. F., Kitidis, V., Klein Goldewijk, K., Koven, C., Landa, C. S., Landschützer, P., Lenton, A., Lima, I. D., Marland, G., Mathis, J. T., Metzl, N., Nojiri, Y., Olsen, A., Ono, T., Peng, S.,

- ⁵ Peters, W., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Salisbury, J. E., Schuster, U., Schwinger, J., Séférian, R., Segschneider, J., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Werf, G. R., Viovy, N., Wang, Y.-P., Wanninkhof, R., Wiltshire, A., and Zeng,
- ¹⁰ N.: Global carbon budget 2014, Earth Syst. Sci. Data, 7, 47–85, doi:10.5194/essd-7-47-2015, 2015b.
- Li, W., Ciais, P., Wang, Y., Peng, S., Broquet, G., Ballantyne, A. P., Canadell, J. G., Cooper, L., Friedlingstein, P., Le Quéré, C., Myneni, R., Peters, G. P., Piao, S., and Pongratz, J.: Reducing un-
- 15 certainties in decadal variability of the global carbon budget with multiple datasets, P. Natl. Acad. Sci. USA, in press, 2016. IIS56
- Manning, A. C. and Keeling, R. F.: Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network, Tellus B, 58, 95–116, 2006.
- ²⁰ Marland, G.: Uncertainties in accounting for CO₂ from fossil fuels, J. Ind. Ecol., 12, 136–139, 2008.
- Marland, G., Andres, R. J., Blasing, T. J., Boden, T. A., Broniak, C. T., Gregg, J. S., Losey, L. M., and Treanton, K.: Energy, industry and waste management activities: An introduction to CO₂
- emissions from fossil fuels, A report by the US Climate Change Science Program and the Subcommittee on Global Change Research, in: The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle, edited by: King, A. W., Dilling, L., Zim-
- ³⁰ merman, G. P., Fairman, D. M., Houghton, R. A., Marland, G., Rose, A. Z., and Wilbanks, T. J., Asheville, NC, 2007. [1557]
- Marland, G., Hamal, K., and Jonas, M.: How Uncertain Are Estimates of CO₂ Emissions?, J. Ind. Ecol., 13, 4–7, 2009.
- Masarie, K. A. and Tans, P. P.: Extension and integratino of atmo-³⁵ spheric carbon dioxide data into a globally consistent measure-
- ment record, J. Geophys. Res.-Atmos., 100, 11593–11610, 1995. McNeil, B. I., Matear, R. J., Key, R. M., Bullister, J. L., and
- Sarmiento, J. L.: Anthropogenic CO₂ uptake by the ocean based on the global chlorofluorocarbon data set, Science, 299, 235–
 239, 2003.
- Melton, J. R. and Arora, V. K.: Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0, Geosci. Model Dev., 9, 323–361, doi:10.5194/gmd-9-323-2016, 2016.
- ⁴⁵ Meyerholt, J., Zaehle, S., and Smith, M. J.: Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO₂ due to uncertainty in biological nitrogen fixation, Biogeosciences, 13, 1491–1518, doi:10.5194/bg-13-1491-2016, 2016.
 - Mikaloff Fletcher, S. E., Gruber, N., Jacobson, A. R., Doney, S.
- ⁵⁰ C., Dutkiewicz, S., Gerber, M., Follows, M., Joos, F., Lindsay, K., Menemenlis, D., Mouchet, A., Müller, S. A., and Sarmiento, J. L.: Inverse estimates of anthropogenic CO₂ uptake, transport, and storage by the oceans, Global Biogeochem. Cy., 20, GB2002, 2006. [ISSS]
- ⁵⁵ Moran, D. and Wood, R.: CONVERGENCE BETWEEN THE EORA, WIOD, EXIOBASE, AND OPENEU'S CONSUMPTION-BASED CARBON ACCOUNTS, Economic Systems Research, 26, 245–261, 2014.

- Myhre, G., Alterskjær, K., and Lowe, D.: A fast method for updating global fossil fuel carbon dioxide emissions, Environ. Res. 60 Lett., 4, 034012, 2009.
- Narayanan, B., Aguiar, A., and McDougall, R.: available at: https: //www.gtap.agecon.purdue.edu/databases/v9/default.asp, last access: September 2015.
- NBS: National Bureau of Statistic, Industrial Production Operation 65 in September 2016, available at: http://www.stats.gov.cn/english/ PressRelease/201610/t20161020_1411993.html, last access: October 2016.
- NDRC: National Development and Reform Commission, Natural Gas, available at: http://www.sdpc.gov.cn/jjxsfx/201608/ 70 t20160826_816043.html, last access: 26 August 2016a.
- NDRC: National Development and Reform Commission, Refined oil, available at: http://www.sdpc.gov.cn/jjxsfx/201608/ t20160826_816042.html, 2016b.
- NOAA/ESRL: available at: http://www.esrl.noaa.gov/gmd/ccgg/ 75 about/global_means.html, last access: 7 October 2015.
- Oke, P. R., Griffin, D. A., Schiller, A., Matear, R. J., Fiedler, R., Mansbridge, J., Lenton, A., Cahill, M., Chamberlain, M. A., and Ridgway, K.: Evaluation of a near-global eddy-resolving ocean model, Geosci. Model Dev., 6, 591–615, doi:10.5194/gmd-6-591-2013, 2013.
- Olin, S., Lindeskog, M., Pugh, T. A. M., Schurgers, G., Wårlind, D., Mishurov, M., Zaehle, S., Stocker, B. D., Smith, B., and Arneth, A.: Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching, Earth Syst. Dynam., 6, 745–768, doi:10.5194/esd-6-745-2015, 2015.
- Peters, G. P. and Hertwich, E. G.: Post-Kyoto Greenhouse Gas Inventories: Production versus Consumption, Climatic Change, 51–66, 2008.[186]
- Peters, G. P., Andrew, R., and Lennos, J.: Constructing a multiregional input-output table using the GTAP database, Economic Systems Research, 23, 131–152, 2011a.
- Peters, G. P., Minx, J. C., Weber, C. L., and Edenhofer, O.: Growth in emission transfers via international trade from 1990 to 2008, P. Natl. Acad. Sci. USA, 108, 8903–8908, 2011b.
- Peters, G. P., Davis, S. J., and Andrew, R.: A synthesis of carbon in international trade, Biogeosciences, 9, 3247–3276, doi:10.5194/bg-9-3247-2012, 2012a.
- Peters, G. P., Marland, G., Le Quéré, C., Boden, T. A., Canadell, J. G., and Raupach, M. R.: Correspondence: Rapid growth in CO₂ 100 emissions after the 2008–2009 global financial crisis, Nature Climate Change, 2, 2–4, 2012b.
- Peters, G. P., Andrew, R. M., Boden, T., Canadell, J. G., Ciais, P., Le Quéré, C., Marland, G., Raupach, M. R., and Wilson, C.: The challenge to keep global warming below 2 °C, Nature Climate ¹⁰⁵ Change, 3, 4–6, 2013.
- Peters, G. P., Andrew, R. M., Canadell, J. G., Fuss, S., Jackson, R. B., Korsbakken, J. I., Le Quéré, C., and Nakicenovic, N.: Key indicators to track current progress and future ambition of the Paris Agreement, Nature Climate Change, in review, 2016.
- Peters, W., Krol, M. C., van der Werf, G. R., Houweling, S., Jones, C. D., Hughes, J., Schaefer, K., Masarie, K. A., Jacobson, A. R., Miller, J. B., Cho, C. H., Ramonet, M., Schmidt, M., Ciattaglia, L., Apadula, F., Heltai, D., Meinhardt, F., Di Sarra, A. G., Piacentino, S., Sferlazzo, D., Aalto, T., Hatakka, J., Ström, J., 115 Haszpra, L., Meijer, H. A. J., Van Der Laan, S., Neubert, R. E. M., Jordan, A., Rodó, X., Morguí, J.-A., Vermeulen, A. T.,

Popa, E., Rozanski, K., Zimnoch, M., Manning, A. C., Leuenberger, M., Uglietti, C., Dolman, A. J., Ciais, P., Heimann, M., and Tans, P. P.: Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations, Glob. Change Biol., 16, 1317–1337, 2010.

- Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke, A., Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bates, N., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C.,
- ¹⁰ Fassbender, A. J., Feely, R. A., González-Dávila, M., Goyet, C., Hales, B., Hardman-Mountford, N., Heinze, C., Hood, M., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Jones, S. D., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat,
- L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Santana-Casiano, J. M., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjel-
- van, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H.: A uniform, quality controlled Surface Ocean CO₂ Atlas (SOCAT), Earth Syst. Sci. Data, 5, 125–143, doi:10.5194/essd-5-125-2013, 2013.
- Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M.: Effects of anthropogenic land cover change on the carbon cycle of the last millennium, Global Biogeochem. Cy., 23, 2009.
- Prather, M. J., Holmes, C. D., and Hsu, J.: Reactive greenhouse
 ³⁰ gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry, Geophys. Res. Lett., 39, L09803, 2012.
- Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quéré, C., Sc-
- ³⁵ holes, R. J., and Wallace, D. W. R.: The Carbon Cycle and Atmospheric Carbon Dioxide. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M.,
- van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2001.
- Randerson, J., Chen, Y., van der Werf, G. R., Rogers, B. M., and Morton, D. C.: Global burned area and biomass burning emissions from small fires, J. Geophys. Res.-Biogeo., 117, 2012.
- Raupach, M. R., Marland, G., Ciais, P., Le Quéré, C., Canadell, J. G., Klepper, G., and Field, C. B.: Global and regional drivers of accelerating CO₂ emissions, P. Natl. Acad. Sci. USA, 104, 10288–10293, 2007.
- ⁵⁰ Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson, A. J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A., Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., La Rowe, D. E., Leifeld, J.,
- Meysman, F. J. R., Munhoven, G., Raymond, P. A., Spahni, R., Suntharalingam, P., and Thullner M.: Anthropogenic perturbation of the carbon fluxes from land to ocean, Nat. Geosci., 6, 597–607, 2013.

- Reick, C. H., T. Raddatz, V. Brovkin, and Gayler, V.: The representation of natural and anthropogenic land cover change in MPI-ESM, J. Adv. Model. Earth Syst., 5, 459–482, 2013.
- Rhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A., Gulev, S., Johnson, G. C., Josey, S. A., Kostianoy, A., Mauritzen, C., Roemmich, D., Talley, L. D., and Wang, F.: Chapter 3: Observations: Ocean. In: Climate Change 2013 The 6 Physical Science Basis, Cambridge University Press, 2013.
- Rödenbeck, C.: Estimating CO₂ sources and sinks from atmospheric mixing ratio measurements using a global inversion of atmospheric transport, Max Plank Institute, MPI-BGC, 2005.
- Rödenbeck, C., Houweling, S., Gloor, M., and Heimann, M.: CO₂ 70 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport, Atmos. Chem. Phys., 3, 1919–1964, doi:10.5194/acp-3-1919-2003, 2003.
- Rödenbeck, C., Keeling, R. F., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., and Heimann, M.: Global surface-ocean 75 *p*CO₂ and sea–air CO₂ flux variability from an observationdriven ocean mixed-layer scheme, Ocean Sci., 9, 193–216, doi:10.5194/os-9-193-2013, 2013.
- Rödenbeck, C., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., Cassar, N., Reum, F., Keeling, R. F., and Heimann, M.: ⁸⁰ Interannual sea–air CO₂ flux variability from an observationdriven ocean mixed-layer scheme, Biogeosciences, 11, 4599– 4613, doi:10.5194/bg-11-4599-2014, 2014.
- Rödenbeck, C., Bakker, D. C. E., Gruber, N., Iida, Y., Jacobson, A.
 R., Jones, S., Landschützer, P., Metzl, N., Nakaoka, S., Olsen, ⁸⁵
 A., Park, G.-H., Peylin, P., Rodgers, K. B., Sasse, T. P., Schuster, U., Shutler, J. D., Valsala, V., Wanninkhof, R., and Zeng, J.: Data-based estimates of the ocean carbon sink variability first results of the Surface Ocean *p*CO₂ Mapping intercomparison (SOCOM), Biogeosciences, 12, 7251–7278, doi:10.5194/bg- ⁹⁰
 12-7251-2015, 2015.
- Rypdal, K., Paciomik, N., Eggleston, S., Goodwin, J., Irving, W., Penman, J., and Woodfield, M.: Chapter 1 Introduction to the 2006 Guidelines, in: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, edited by: Eggleston, S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K., Institute for Global Environmental Strategies (IGES), Hayama, Kanagawa, Japan, 2006.
- Schimel, D., Alves, D., Enting, I., Heimann, M., Joos, F., Raynaud, D., Wigley, T., Prater, M., Derwent, R., Ehhalt, D., Fraser, P., Sanhueza, E., Zhou, X., Jonas, P., Charlson, R., Rodhe, H., Sadasivan, S., Shine, K. P., Fouquart, Y., Ramaswamy, V., Solomon, S., Srinivasan, J., Albritton, D., Derwent, R., Isaksen, I., Lal, M., and Wuebbles, D.: Radiative Forcing of Climate Change, in: Climate Change 1995 The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Houghton, J. T., Meira Rilho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1995.
- Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M. P., Miller, J. 110 B., Etiope, G., Dlugokencky, E. J., Michel, S. E., Arling, V. A., Vaughn, B. H., White, J. W. C., and Tans, P. P.: Upward revision of global fossil fuel methane emissions based on isotope database, Nature, 538, 88–91, 2016.
- Schwinger, J., Goris, N., Tjiputra, J. F., Kriest, I., Bentsen, M., ¹¹⁵ Bethke, I., Ilicak, M., Assmann, K. M., and Heinze, C.: Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-

cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1), Geosci. Model Dev., 9, 2589–2622, doi:10.5194/gmd-9-2589-2016, 2016.

- Scripps: The Keeling Curve, available at: http://keelingcurve.ucsd. edu/, last access: 7 November 2013.
- Séférian, R., Bopp, L., Gehlen, M., Orr, J., Ethé, C., Cadule, P., Aumont, O., Salas y Mélia, D., Voldoire, A., and Madec, G.: Skill assessment of three earth system models with common marine biogeochemistry, Clim. Dynam., 40, 2549–2573, 2013.
- ¹⁰ Shevliakova, E., Pacala, S., Malyshev, S., Hurtt, G., Milly, P., Caspersen, J., Sentman, L., Fisk, J., Wirth, C., and Crevoisier, C.: Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink, Global Biogeochem. Cy., 23, 2009. [1566]
- ¹⁵ Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob. Change Biol., 9, 161–185, 2003.
- Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan,
- G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653– 679, doi:10.5194/bg-12-653-2015, 2015.
- ³⁰ Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N cycling and N limitations on primary production in an individualbased dynamic vegetation model, Biogeosciences, 11, 2027– 2054, doi:10.5194/bg-11-2027-2014, 2014.
- ³⁵ Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W., Bruhwiler, L., Ciais, P., Ramonet, M., Bousquet, P., Nakazawa, T., Aoki, S., Machida, T., Inoue, G., Vinnichenko, N., Lloyd, J., Jordan, A., Heimann, M., Shibistova, O., Langenfelds, R. L., Steele, L. P., Francey, R. J., and Denning, A. S.: Weak Northern
- and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO₂, Science, 316, 1732–1735, 2007.
- Stocker, B. D. and Joos, F.: Quantifying differences in land use emission estimates implied by definition discrepancies, Earth Syst. Dynam., 6, 731–744, doi:10.5194/esd-6-731-2015, 2015.
- 45 Stocker, B. D., Feissli, F., Strassmann, K. M., Spahni, R., and Joos, F.: Past and future carbon fluxes from land use change, shifting cultivation and wood harvest, Tellus B, 66, 2014. <u>INS67</u>
 - Stocker, T., Qin, D., and Platner, G.-K.: Climate Change 2013 The Physical Science Basis, Cambridge University Press, 2013.
- ⁵⁰ Sweeney, C., Gloor, E., Jacobson, A. R., Key, R. M., McKinley, G., Sarmiento, J. L., and Wanninkhof, R.: Constraining global airsea gas exchange for CO₂ with recent bomb ¹⁴C measurements, Global Biogeochem. Cy., 21, GB2015, 2007. [IS68]
 - Tans, P. and Keeling, R. F.: Trends in atmospheric carbon diox-
- ⁵⁵ ide, National Oceanic & Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL) & Scripps Institution of Oceanography, available at: http://www.esrl.noaa.gov/ gmd/ccgg/trends/ and http://scrippsco2.ucsd.edu/, NOAA/ESRL, 2014.ITS69

- Tian, H., Liu, M., Z, h. C., Ren, W., Xu, X., Chen, G., Lu, C., and ⁶⁰
 Tao, B.: The Dynamic Land Ecosystem Model (DLEM) for Simulating Terrestrial Processes and Interactions in the Context of Multifactor Global Change, Acta Geographica Sinica, 65, 1027–1047, 2010.
- UN: United Nations Statistics Division: National Accounts Main 65 Aggregates Database, available at: http://unstats.un.org/unsd/ snaama/Introduction.asp, 2014.
- UN: United Nations Statistics Division: Energy Statistics, available at: http://unstats.un.org/unsd/energy/, last access: October 2015a.
- UN: United Nations Statistics Division: Industry Statistics, available at: http://unstats.un.org/unsd/industry/default.asp, last access: October 2015b.
- USGS: 2014 Minerals Yearbook Cement, US Geological Survey, Reston, Virginia, 2016a.
- USGS: Mineral Commodities Summaries: Cement, USGS, Reston, 75 Virginia, 2016b.
- van der Werf, G. R., Dempewolf, J., Trigg, S. N., Randerson, J. T., Kasibhatla, P., Giglio, L., Murdiyarso, D., Peters, W., Morton, D. C., Collatz, G. J., Dolman, A. J., and DeFries, R. S.: Climate regulation of fire emissions and deforestation in equatorial Asia, ⁸⁰ P. Natl. Acad. Sci. USA, 15, 20350–20355, 2008.
- van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, doi:10.5194/acp-10-11707-2010, 2010.
- van Minnen, J. G., Goldewijk, K. K., Stehfest, E., Eickhout, B., van Drecht, G., and Leemans, R.: The importance of three centuries of land-use change for the global and regional terrestrial carbon ⁹⁰ cycle, Climatic Change, 97, 123–144, 2009.
- Viovy, N.: CRUNCEP data set, available at: ftp://nacp.ornl.gov/ synthesis/2009/frescati/temp/land_use_change/original/readme. htm, 2016.1572
- Wanninkhof, R., Park, G.-H., Takahashi, T., Sweeney, C., Feely, R., 95
 Nojiri, Y., Gruber, N., Doney, S. C., McKinley, G. A., Lenton,
 A., Le Quéré, C., Heinze, C., Schwinger, J., Graven, H., and
 Khatiwala, S.: Global ocean carbon uptake: magnitude, variability and trends, Biogeosciences, 10, 1983–2000, doi:10.5194/bg-10-1983-2013, 2013.
- Watson, R. T., Rodhe, H., Oeschger, H., and Siegenthaler, U.: Greenhouse Gases and Aerosols, in: Climate Change: The IPCC Scientific Assessment. Intergovernmental Panel on Climate Change (IPCC), edited by: Houghton, J. T., Jenkins, G. J., and Ephraums, J. J., Cambridge University Press, Cambridge, ¹⁰⁵ 1990.
- Woodward, F. I., Smith, T. M., and Emanuel, W. R.: A global land primary productivity and phytogeography model, Global Biogeochem. Cy., 9, 471–490, 1995.
- Yin, Y., Ciais, P., Chevallier, F., van der Werf, G. R., Fanin, T., Broquet, G., Boesch, H., Cozic, A., Hauglustaine, D., Szopa, S., and Wang, Y.: Variability of fire carbon emissions in Equatorial Asia and its non-linear sensitivity to El Niño, Geophys. Res. Lett., 43, 10472–10479, 2016.
- Zaehle, S., Ciais, P., Friend, A. D., and Prieur, V.: Carbon benefits ¹¹⁵ of anthropogenic reactive nitrogen offset by nitrous oxide emissions, Nat. Geosci., 4, 601–605, 2011.

C. Le Quéré et al.: Global Carbon Budget 2016

- Zhang, H. Q., Pak, B., Wang, Y. P., Zhou, X. Y., Zhang, Y. Q., and Zhang, L.: Evaluating Surface Water Cycle Simulated by the Australian Community Land Surface Model (CABLE) across Different Spatial and Temporal Domains, J. of Hydrometeorol.,
- 5 14, 1119–1138, 2013.

Remarks from the language copy-editor

- Please note that spelling style has been adjusted to standard British English and not Oxford English, as the former is dominant.
- Is this specifically to be found in SDGVM? This is not mentioned elsewhere.
- This could also be "CO₂ emissions associated with land-use change" if you wish to avoid hyphens.
- Please explain this (only instance in the text).

The connection of this phrase is unclear; should this be "observations, which were distinctly...", "observations and were distinctly...", or "observations; these were distinctly..."? Please clarify.

Does "their" refer to "distributions" above? If not, please clarify what this is.

Please check addition; "omit" cannot be used with a "that" clause directly, so either this or different wording should be used.

- Please check the following adjustments; the wording and punctuation was a bit difficult to follow.
- Please check changes; wording was difficult to follow due to the many instances of "and" and the punctuation.

CETO Is the following independent of "2015"? This is difficult to follow, as the wording is "2006 from..., 2007 from...,

[etc.]...and this years budget", the last part of which does not fit in well. Please clarify how this should be understood.

Please check adjustments; is "and the requirements for climate change mitigation and adaptation" connected to "unprecedented change in"? This is difficult to determine due to punctuation and the distance in between.

Remarks from the typesetter

- **TS1** Please provide the text for the short summary.
- TS2 Please confirm.
- TS3 Please check URL.
- **IS4** Not mentioned in the reference list.
- TS5 Please confirm.
- **IS6** Not mentioned in the reference list.
- **TS7** Not mentioned in the text.
- **TS8** Not mentioned in the reference list.
- **TS9** Do you mean the Supplement of Chevallier (2015)?
- **TS10** Not mentioned in the reference list.
- **TS11** Please note that we only use numbering for subsubsections if there are more than just one (e.g. Sects. 2.3.1 and 2.3.2).
- TS12 Please confirm.
- TS13 See TS11.
- **TS14** The composition of Figs. 4–6 has been adjusted to our standards.
- TS15 Please check.
- TS16 Please confirm.
- **TS17** Not mentioned in the reference list.
- TS18 Please check.
- **TS19** Plus and minus symbols added; please confirm.

Please confirm placement of this section. For further details see http://www.earth-system-science-data.net/for_authors/ manuscript_preparation.html.

As a scientific publication consists of not only the research article but also its underlying material and related items, Copernicus Publications collects the DOIs (or the links if not available) of data sets, videos, samples, model code, and other supplementary/underlying material or resources as well as additional outputs. These "assets" (i.e. non-textual resources underlying the research and findings in the article or other outputs from the research) should be added to the reference list and properly cited in the article. As for other resources, this citation must also consist of author(s), title, URL/DOI, and year. The production office will then add these to the assets tab (see http://www.geosci-model-dev.net/9/3517/2016/gmd-9-3517-2016-assets.html).

- **I** would be grateful if you could have another look at this table to make sure all DOIs are correct.
- TS23 Please confirm.
- **IS24** Please confirm that the zip file that has been uploaded in our system is the supplement to this paper.
- **TS25** Please provide volume and page range or DOI and article number.
- **TS26** Please provide page range or DOI and article number.
- **TS27** Please provide page range or DOI and article number.
- **TS28** Please provide last access date.

- **TS29** Please provide last access date.
- **TS30** Please provide last access date.
- **TS31** Please provide page range or DOI and article number.
- **TS32** Please provide volume and page range or DOI.
- **TS33** Please provide publisher and publisher's location.
- **TS34** Please confirm journal.
- **TS35** Please provide last access date.
- Please provide publisher and publisher's location or URL and last access date.
- **TS37** Please provide last access date.
- **Please** provide volume and page range or DOI and article number.
- **TS39** Please provide a title and URL.
- **TS40** Please provide page range or DOI and article number.
- **TS41** Please provide page range or DOI.
- **TS42** Please provide page range or DOI and article number.
- **TS43** Please provide page range or DOI and article number.
- **TS44** Please provide page range or DOI.
- **TS45** Please provide page range or DOI and article number.
- **TS46** Please provide volume.
- **TS47** If possible, please update.
- **TS48** Please provide page range or DOI and article number.
- **TS49** Please provide publisher.
- **TS50** Please provide page range or DOI and article number.
- **TS51** Please provide page range or DOI.
- **TS52** Please provide publisher and publisher's location.
- Please check URL and provide last access date.
- Please provide page range or DOI and article number.
- Please note that there were two bibliography entries for "Global carbon budget 2014". Therefore, Le Quéré et al. (2015c) has been deleted.
- **TS56** If possible, please update.
- **TS57** Please provide publisher.
- **TS58** Please provide DOI or page range.
- **TS59** Please provide DOI or page range.
- **TS60** Please provide last access date.
- TS61 Please provide volume.
- **TS62** If possible, please update.
- **TS63** Please provide page range or DOI and article number.
- **TS64** Please provide page range or DOI.
- **TS65** Please provide page range or DOI and article number.
- **TS66** Please provide page range or DOI and article number.
- **TS67** Please provide page range or DOI and article number.
- **TS68** Please provide page range or DOI.
- **TS69** Please provide last access date.
- **TS70** Please provide last access date.
- **TS71** Please check URL.
- **TS72** Please provide last access date.