
AWS Database
Migration Service

User Guide

Version API Version 2016-01-01

AWS Database Migration Service User Guide

AWS Database Migration Service User Guide

AWS Database Migration Service: User Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

AWS Database Migration Service User Guide

Table of Contents
What Is AWS Database Migration Service? .. 1

Migration Planning .. 2
Setting Up to Use AWS Database Migration Service .. 3

Sign Up for AWS .. 3
Create an IAM User .. 4
Determine Requirements .. 5

Introduction to AWS Database Migration Service ... 7
Migration: A High-Level View .. 7
AWS DMS Components ... 8
Sources ... 9
Targets .. 10
Replication Instances ... 10

Public and Private Replication Instances ... 11
Setting Up a Network for Database Migration .. 12

Network Configurations for Database Migration .. 12
Creating a Replication Subnet Group ... 15

Setting an Encryption Key .. 16
Tagging ... 17
Constructing an ARN ... 18
Supported DDL Statements .. 19
LOB Support for Source Databases ... 20

Getting Started with AWS Database Migration Service .. 21
Start a Database Migration ... 21
Step 1: Welcome .. 22
Step 2: Create a Replication Instance .. 22
Step 3: Specify Database Endpoints .. 26
Step 4: Create a Task ... 30
Monitor Your Task ... 33

AWS Database Migration Service Best Practices ... 35
Improving Performance .. 35
Sizing a replication instance ... 36
Reducing Load on Your Source Database .. 37
Using the Task Log ... 37
Schema conversion ... 37
Migrating Large Binary Objects (LOBs) ... 37
Ongoing Replication .. 38

Security ... 39
IAM Permissions Needed to Use AWS DMS ... 39
Creating the IAM Roles to Use With the AWS CLI and AWS DMS API ... 41
Setting an Encryption Key .. 45
Network Security for AWS Database Migration Service ... 46
Using SSL With AWS Database Migration Service ... 47

Managing Certificates .. 48
Enabling SSL for a MySQL-compatible, PostsgreSQL, or SQL Server Endpoint 48
SSL Support for an Oracle Endpoint .. 50
Limitations on Using SSL with AWS Database Migration Service .. 51

Changing the Database Password ... 51
Limits .. 52

Limits for AWS Database Migration Service .. 52
Sources for Data Migration ... 53

Using Oracle as a Source .. 54
Using Oracle LogMiner or Oracle Binary Reader for Change Data Capture (CDC) 54
Limitations on Oracle as a Source ... 56
Supported Compression Methods .. 57
User Account Privileges for Oracle as a Source ... 57

Version API Version 2016-01-01
iv

AWS Database Migration Service User Guide

Configuring Oracle as a Source .. 58
Using SQL Server as a Source ... 61

SQL Server Limitations .. 62
SQL Server CDC Limitations .. 63
Supported Compression Methods .. 63
Working with Microsoft SQL Server AlwaysOn Availability Groups 64
Configuring Microsoft SQL Server Database as a Replication Source for AWS Database
Migration Service .. 64
Using MS-Replication to capture data changes in Microsoft SQL Server 64
Using MS-CDC to capture data changes in Microsoft SQL Server 65
If you cannot use MS-Replication nor MS-CDC .. 65

Using PostgreSQL as a Source ... 65
Prerequisites for PostgreSQL as a Source .. 66
Security Requirements for PostgreSQL as a Source ... 67
Limitations on PostgreSQL as a Source ... 67
Setting Up an Amazon RDS PostgreSQL DB Instance as a Source 68
Removing Artifacts from a PostgreSQL Source .. 70
Advanced Configuration Settings for PostgreSQL ... 70

Using MySQL as a Source ... 71
Prerequisites for Using MySQL as a Source .. 71
Limitations on MySQL as a Source .. 72
Security Requirements for MySQL as a Source ... 73

Using SAP ASE as a Source .. 73
Prerequisites for Using SAP ASE as a Source ... 73
Limitations on SAP ASE as a Source ... 74
User Account Permissions for SAP ASE as a Source ... 74
Removing the Truncation Point ... 74

Targets for Data Migration .. 76
Using Oracle as a Target ... 77

Limitations on Oracle as a Target .. 77
User Account Privileges for Oracle as a Target .. 77
Configuring Oracle as a Target ... 79

Using SQL Server as a Target .. 79
Limitations on Using SQL Server as a Target for AWS Database Migration Service 79
Security Requirements When Using SQL Server as a Target for AWS Database Migration
Service .. 79

Using PostgreSQL as a Target ... 80
Limitations on Using PostgreSQL as a Target for AWS Database Migration Service 80
Security Requirements for PostgreSQL as a Target .. 80

Using MySQL as a Target .. 80
Prerequisites for MySQL as a Target ... 80
Limitations on MySQL as a Target ... 81
Security Requirements for MySQL as a Target .. 81

Using Amazon Redshift as a Target ... 82
Prerequisites for Using an Amazon Redshift Database as a Target for AWS Database
Migration Service .. 82
Limitations on Redshift as a Target .. 83
Configuring an Amazon Redshift Database as a Target for AWS Database Migration
Service .. 83
Using Enhanced VPC Routing with an Amazon Redshift as a Target for AWS Database
Migration Service .. 84

Using SAP ASE as a Target ... 84
Prerequisites for SAP ASE as a Target .. 84

Working with Tasks ... 85
Modifying a Task .. 86
Task Status .. 86
Creating Multiple Tasks .. 86
Migration Methods ... 87

Version API Version 2016-01-01
v

AWS Database Migration Service User Guide

Task Settings ... 87
Target Metadata Task Settings .. 88
Full Load Task Settings ... 88
Logging Task Settings ... 89
Control Table Task Settings .. 90
Stream Buffer Task Settings ... 91
Change Processing Tuning Settings ... 91
Change Processing DDL Handling Policy Task Settings .. 92
Error Handling Task Settings .. 93
Saving Task Settings ... 95

Table State During Tasks ... 96
Creating Table Mappings ... 97

Selection and Transformation Table Mapping using the AWS Console 98
Selection and Transformation Table Mapping using JSON .. 103

Monitoring Migration Tasks ... 117
Data Migration Service Metrics .. 119

Replication Instance Metrics .. 120
Replication Task Metrics ... 121

Logging AWS DMS API Calls Using AWS CloudTrail .. 121
Configuring CloudTrail Event Logging ... 122
AWS Database Migration Service Event Entries in CloudTrail Log Files 122

Troubleshooting AWS Database Migration Service Tasks .. 123
Slow Running Migration Tasks .. 123
Task Status Bar Not Moving ... 124
Missing Foreign Keys and Secondary Indexes ... 124
Amazon RDS Connection Issues ... 124

Error Message: Incorrect thread connection string: incorrect thread value 0 125
Networking Issues ... 125
CDC Stuck After Full Load ... 125
Primary Key Violation Errors When Restarting a Task ... 125
Initial Load of Schema Fails .. 126
Tasks Failing With Unknown Error ... 126
Task Restart Loads Tables From the Beginning ... 126
Number of Tables Per Task .. 126
Troubleshooting Oracle Specific Issues ... 126

Pulling Data from Views ... 127
Migrating LOBs from Oracle 12c .. 127
Switching Between Oracle LogMiner and BinaryReader ... 127
Error: Oracle CDC stopped 122301 Oracle CDC maximum retry counter exceeded. 127
Automatically Add Supplemental Logging to an Oracle Source Endpoint 128
LOB Changes not being Captured ... 128
Error: ORA-12899: value too large for column <column-name> ... 128
NUMBER data type being misinterpreted .. 128

Troubleshooting MySQL Specific Issues .. 129
CDC Task Failing for Amazon RDS DB Instance Endpoint Because Binary Logging
Disabled ... 129
Adding Autocommit to a MySQL-compatible Endpoint ... 129
Disable Foreign Keys on a Target MySQL-compatible Endpoint .. 130
Characters Replaced with Question Mark .. 130
"Bad event" Log Entries ... 130
Change Data Capture with MySQL 5.5 ... 130
Increasing Binary Log Retention for Amazon RDS DB Instances 130
Log Message: Some changes from the source database had no impact when applied to the
target database. .. 131
Error: Identifier too long .. 131
Error: Unsupported Character Set Causes Field Data Conversion to Fail 131

Troubleshooting PostgreSQL Specific Issues ... 131
Columns of a user defined data type not being migrated correctly 132

Version API Version 2016-01-01
vi

AWS Database Migration Service User Guide

Error: No schema has been selected to create in ... 132
Deletes and updates to a table are not being replicated using CDC 132
Truncate statements are not being propagated ... 132
Preventing PostgreSQL from capturing DDL .. 132
Selecting the schema where database objects for capturing DDL are created 133
Oracle tables missing after migrating to PostgreSQL ... 133
Task Using View as a Source Has No Rows Copied ... 133

Troubleshooting Microsoft SQL Server Specific Issues .. 133
Special Permissions for AWS DMS user account to use CDC ... 133
SQL Server Change Data Capture (CDC) and Amazon RDS .. 134
Errors Capturing Changes for SQL Server Database ... 134
Missing Identity Columns .. 134
Error: SQL Server Does Not Support Publications .. 134
Changes Not Appearing in Target .. 134

Troubleshooting Amazon Redshift Specific Issues .. 135
Loading into a Amazon Redshift Cluster in a Different Region Than the AWS DMS
Replication Instance ... 135
Error: Relation "awsdms_apply_exceptions" already exists ... 135
Errors with Tables Whose Name Begins with "awsdms_changes" 135
Seeing Tables in Cluster with Names Like dms.awsdms_changes000000000XXXX 135
Permissions Required to Work with Amazon Redshift .. 135

Troubleshooting Amazon Aurora Specific Issues .. 136
Error: CHARACTER SET UTF8 fields terminated by ',' enclosed by '"' lines terminated by
'\n' ... 136

Reference ... 137
Source Data Types .. 138

Source Data Types for Oracle ... 138
Source Data Types for SQL Server .. 140
Source Data Types for PostgreSQL ... 143
Source Data Types for MySQL .. 145
Source Data Types for SAP ASE ... 146

Target Data Types ... 148
Target Data Types for Oracle .. 148
Target Data Types for SQL Server ... 149
Target Data Types for PostgreSQL .. 151
Target Data Types for MySQL ... 152
Target Data Types for SAP ASE .. 153
Amazon Redshift Data Types .. 154

AWS DMS Data Types ... 156
Extra Connection Attributes ... 157

MySQL .. 157
PostgreSQL .. 158
Oracle .. 159
SQL Server .. 161
Amazon Redshift ... 162
SAP Adaptive Server Enterprise (ASE) ... 163

DB Instance not in a VPC to VPC Using ClassicLink ... 163
Document History .. 167

Version API Version 2016-01-01
vii

AWS Database Migration Service User Guide

What Is AWS Database Migration
Service?

AWS Database Migration Service (AWS DMS) can migrate your data to and from most widely used
commercial and open-source databases such as Oracle, PostgreSQL, Microsoft SQL Server, Amazon
Redshift, Amazon Aurora, MariaDB, and MySQL. The service supports homogeneous migrations such
as Oracle to Oracle, and also heterogeneous migrations between different database platforms, such
as Oracle to MySQL or MySQL to Amazon Aurora. The source or target database must be on an AWS
service.

To perform a database migration, AWS DMS connects to the source database, reads the source data,
formats the data for consumption by the target database, and loads the data into the target database.
Most of this processing happens in memory, though large transactions might require some buffering to
disk. Cached transactions and log files are also written to disk.

AWS DMS creates the target schema objects necessary to perform the migration. However, AWS
DMS takes a minimalist approach and creates only those objects required to efficiently migrate the
data. In other words, AWS DMS creates tables, primary keys, and in some cases unique indexes, but
it doesn't create any other objects that are not required to efficiently migrate the data from the source.
For example, it doesn't create secondary indexes, non-primary key constraints, or data defaults.

In most cases, when performing a migration, you will also want to migrate most or all of the source
schema. If you are performing a homogeneous migration (between two databases of the same engine
type), you migrate the schema by using your engine’s native tools to export and import the schema
itself, without any data. If your migration is heterogeneous (between two databases that use different
engine types), you can use the AWS Schema Conversion Tool to generate a complete target schema
for you. If you use the tool, any dependencies between tables such as foreign key constraints need
to be disabled during the migration's “full load” and “cached change apply” phases. If performance is
an issue, removing or disabling secondary indexes during the migration process will help. For more
information on the AWS Schema Conversion Tool, see AWS Schema Conversion Tool.

For information on the cost of database migration, go to the AWS Database Migration Service pricing
page.

AWS DMS is currently available in the following regions:

Region Name

US East (N. Virginia) Region us-east-1

Version API Version 2016-01-01
1

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html
http://aws.amazon.com/dms/pricing/
http://aws.amazon.com/dms/pricing/

AWS Database Migration Service User Guide
Migration Planning

Region Name

US East (Ohio) Region us-east-2

US West (N. California) Region us-west-1

US West (Oregon) Region us-west-2

EU (Ireland) Region eu-west-1

EU (Frankfurt) Region eu-central-1

Asia Pacific (Tokyo) Region ap-northeast-1

Asia Pacific (Seoul) Region ap-northeast-2

Asia Pacific (Singapore) Region ap-southeast-1

Asia Pacific (Sydney) Region ap-southeast-2

Asia Pacific (Mumbai) Region ap-south-1

South America (São Paulo) Region sa-east-1

Canada (Central) Region ca-central-1

Migration Planning for AWS Database Migration
Service

When planning a database migration using AWS Database Migration Service, consider the following:

• You will need to configure a network that connects your source and target databases to a AWS
DMS replication instance. This can be as simple as connecting two AWS resources in the same
VPC as the replication instance to more complex configurations such as connecting an on-
premises database to an Amazon RDS DB instance over VPN. For more information, see Network
Configurations for Database Migration (p. 12)

• Source and Target Endpoints – You will need to know what information and tables in the source
database need to be migrated to the target database. AWS DMS supports basic schema migration,
including the creation of tables and primary keys. However, AWS DMS doesn't automatically
create secondary indexes, foreign keys, user accounts, and so on in the target database. Note
that, depending on your source and target database engine, you may need to set up supplemental
logging or modify other settings for a source or target database. See the Sources for Data Migration
for AWS Database Migration Service (p. 53) and Targets for Data Migration for AWS Database
Migration Service (p. 76) sections for more information.

• Schema/Code Migration – AWS DMS doesn't perform schema or code conversion. You can use
tools such as Oracle SQL Developer, MySQL Workbench, or pgAdmin III to convert your schema.
If you want to convert an existing schema to a different database engine, you can use the AWS
Schema Conversion Tool. It can create a target schema and also can generate and create an entire
schema: tables, indexes, views, and so on. You can also use the tool to convert PL/SQL or TSQL to
PgSQL and other formats. For more information on the AWS Schema Conversion Tool, see AWS
Schema Conversion Tool .

• Unsupported Data Types – Some source data types need to be converted into the parallel
data types for the target database. For tables listing conversions between database data types,
see Reference for AWS Database Migration Service Including Data Conversion Reference and
Additional Topics (p. 137).

Version API Version 2016-01-01
2

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html

AWS Database Migration Service User Guide
Sign Up for AWS

Setting Up to Use AWS Database
Migration Service

Before you use AWS Database Migration Service (AWS DMS) for the first time, you'll need to complete
the following tasks:

1. Sign Up for AWS (p. 3)

2. Create an IAM User (p. 4)

3. Determine Requirements (p. 5)

Sign Up for AWS
When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up for
all services in AWS, including AWS DMS. You are charged only for the services that you use.

With AWS DMS, you pay only for the resources you use. The AWS DMS replication instance that you
create will be live (not running in a sandbox). You will incur the standard AWS DMS usage fees for the
instance until you terminate it. For more information about AWS DMS usage rates, see the AWS DMS
product page. If you are a new AWS customer, you can get started with AWS DMS for free; for more
information, see AWS Free Usage Tier.

If you have an AWS account already, skip to the next task. If you don't have an AWS account, use the
following procedure to create one.

To create an AWS account

1. Open https://aws.amazon.com/, and then choose Create an AWS Account.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

Note your AWS account number, because you'll need it for the next task.

Version API Version 2016-01-01
3

http://aws.amazon.com/rds
http://aws.amazon.com/rds
http://aws.amazon.com/free/
https://aws.amazon.com/

AWS Database Migration Service User Guide
Create an IAM User

Create an IAM User
Services in AWS, such as AWS DMS, require that you provide credentials when you access them,
so that the service can determine whether you have permission to access its resources. The console
requires your password. You can create access keys for your AWS account to access the command
line interface or API. However, we don't recommend that you access AWS using the credentials for
your AWS account; we recommend that you use AWS Identity and Access Management (IAM) instead.
Create an IAM user, and then add the user to an IAM group with administrative permissions or and
grant this user administrative permissions. You can then access AWS using a special URL and the
credentials for the IAM user.

If you signed up for AWS but have not created an IAM user for yourself, you can create one using the
IAM console.

To create an IAM user for yourself and add the user to an Administrators group

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Users, and then choose Add user.

3. For User name, type a user name, such as Administrator. The name can consist of letters,
digits, and the following characters: plus (+), equal (=), comma (,), period (.), at (@), underscore
(_), and hyphen (-). The name is not case sensitive and can be a maximum of 64 characters in
length.

4. Select the check box next to AWS Management Console access, select Custom password,
and then type the new user's password in the text box. You can optionally select Require
password reset to force the user to select a new password the next time the user signs in.

5. Choose Next: Permissions.

6. On the Set permissions for user page, choose Add user to group.

7. Choose Create group.

8. In the Create group dialog box, type the name for the new group. The name can consist of letters,
digits, and the following characters: plus (+), equal (=), comma (,), period (.), at (@), underscore
(_), and hyphen (-). The name is not case sensitive and can be a maximum of 128 characters in
length.

9. For Filter, choose Job function.

10. In the policy list, select the check box for AdministratorAccess. Then choose Create group.

11. Back in the list of groups, select the check box for your new group. Choose Refresh if necessary
to see the group in the list.

12. Choose Next: Review to see the list of group memberships to be added to the new user. When
you are ready to proceed, choose Add permissions.

You can use this same process to create more groups and users, and to give your users access to
your AWS account resources. To learn about using policies to restrict users' permissions to specific
AWS resources, go to Access Management and Example Policies for Administering AWS Resources.

To sign in as this new IAM user, sign out of the AWS console, then use the following URL, where
your_aws_account_id is your AWS account number without the hyphens (for example, if your AWS
account number is 1234-5678-9012, your AWS account ID is 123456789012):

https://your_aws_account_id.signin.aws.amazon.com/console/

Enter the IAM user name and password that you just created. When you're signed in, the navigation
bar displays "your_user_name @ your_aws_account_id".

Version API Version 2016-01-01
4

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/access.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html

AWS Database Migration Service User Guide
Determine Requirements

If you don't want the URL for your sign-in page to contain your AWS account ID, you can create an
account alias. On the IAM dashboard, choose Customize and type an alias, such as your company
name. To sign in after you create an account alias, use the following URL.

https://your_account_alias.signin.aws.amazon.com/console/

To verify the sign-in link for IAM users for your account, open the IAM console and check under AWS
Account Alias on the dashboard.

Determine Requirements
A database migration requires thorough testing and a sound backup strategy. To successfully migrate
a database using AWS DMS, you must have expertise, time, and knowledge about your source
database, your network, the AWS network, your requirements, and your target database schema, as
described following.

Available Regions
Ensure that AWS DMS is available in the region that you need. AWS DMS is currently available in
the following regions:

Region Name

US East (N. Virginia) Region us-east-1

US East (Ohio) Region us-east-2

US West (N. California) Region us-west-1

US West (Oregon) Region us-west-2

EU (Ireland) Region eu-west-1

EU (Frankfurt) Region eu-central-1

Asia Pacific (Tokyo) Region ap-northeast-1

Asia Pacific (Seoul) Region ap-northeast-2

Asia Pacific (Singapore) Region ap-southeast-1

Asia Pacific (Sydney) Region ap-southeast-2

Asia Pacific (Mumbai) Region ap-south-1

South America (São Paulo) Region sa-east-1

Canada (Central) Region ca-central-1

Expertise
A database migration requires expertise in several areas.

• You should have a thorough knowledge of the database engine you are migrating from and the
database engine you are migrating to.

• You should understand both the network you are migrating from and how that network connects
to AWS.

• You should have a thorough knowledge of the AWS service you are migrating to and the AWS
Identity and Access Management (IAM) service.

Version API Version 2016-01-01
5

AWS Database Migration Service User Guide
Determine Requirements

• In most cases, it helps if you have an understanding of software architecture.

Time
Migration projects can take from two weeks to several months to complete.

• A successful migration can require several iterations.

• The migration process can take more time than you anticipate.

• Do you have a hard date on when your database migration must be completed?

• Migration planning can often take longer than the migration itself.

Knowledge of your source database
The size of your database and the data types it contains can have a dramatic impact on your
migration.

• How many schemas and tables does your database contain?

• Does your database have any very large tables (more than 5 GB in size)?

• Do you know what the transaction boundaries look like?

• Does your database have data types that AWS DMS does not support?

• Do you have LOBs in your tables? If so, how large are the LOBs?

• Do your tables with LOBs have primary keys?

• How busy is your source database?

• What kind of users, roles, and permissions do you have on the source database?

• When was the last time you vacuumed or compacted your source database?

Knowledge of your network and the AWS network
You must connect the network that the source database uses to AWS.

• How will your database access the AWS network?

• Which Amazon Virtual Private Cloud (Amazon VPC) will you use?

• Which Amazon Elastic Compute Cloud (Amazon EC2) security group will you use?

• How much bandwidth will you need to move all your data?

An understanding of your requirements
The following questions make up much of your migration planning:

• How much downtime can you afford?

• Do you need the source database to be available after migration?

• Do you know why you preferred one target database engine over another database engine?

• What are your high availability requirements?

• Does all the data needs to be migrated?

• Does all the data need to be migrated to the same database?

• Do you understand the benefits of using Amazon RDS (automated backups, high availability,
and so on)?

• Do you understand the limits of using Amazon RDS (storage size, admin user, and so on)?

• What happens to your application during the migration process?

• What is your contingency plan if the migration is unsuccessful?

Knowledge of your target database schema
AWS DMS creates only tables and primary keys in the target database. You must recreate any
other database requirements.

• You can use the AWS Schema Conversion Tool (AWS SCT) to migrate a database schema. It
works best when migrating from one database engine to a different database engine. For more
information on the AWS Schema Conversion Tool, see AWS Schema Conversion Tool .

• The AWS SCT does not support schema conversions from and to the same database engine
type. If you need to convert a schema when going to the same database engine, use the
database engine's native tools for the conversion.

• The AWS SCT does not currently support orchestration.

• Postpone any schema changes until after the migration.

Version API Version 2016-01-01
6

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html

AWS Database Migration Service User Guide
Migration: A High-Level View

Introduction to AWS Database
Migration Service

AWS Database Migration Service (AWS DMS) is a web service that you can use to migrate data from a
source database to a target database. To work with AWS DMS, one of your databases must be on an
AWS service. You can't migrate from an on-premises database to another on-premises database.

Migration: A High-Level View
To perform a database migration, AWS DMS connects to the source database, reads the source data,
formats the data for consumption by the target database, and loads the data into the target database.
Most of this processing happens in memory, though large transactions might require some buffering to
disk. Cached transactions and log files are also written to disk.

At a high level, when using AWS DMS, you do the following:

• Provision a replication server

• Define source and target endpoints (databases)

• Create one or more tasks to migrate data between the source and target databases.

A typical task consists of three major phases:

• The full load of existing data

• The application of cached changes

• Ongoing replication

During the full load, AWS DMS loads data from tables on the source database to tables on the target
database, eight tables at a time. While the full load is in progress, any changes made to the tables
being loaded are cached on the replication server; these are the cached changes. It’s important to note
that change capture for a given table doesn't begin until the full load for that table is started. In other
words, the point when change capture starts will be different for each individual table.

When the full load for a given table is complete, AWS DMS immediately begins to apply the cached
changes for that table. When all tables have been loaded, AWS DMS begins to collect changes as
transactions for the ongoing replication phase. After AWS DMS applies all cached changes, tables are
transactionally consistent. At this point, AWS DMS moves to the ongoing replication phase, applying
changes as transactions.

Version API Version 2016-01-01
7

AWS Database Migration Service User Guide
AWS DMS Components

At the start of the ongoing replication phase, a backlog of transactions generally causes some lag
between the source and target databases. The migration eventually reaches a steady state after
working through this backlog of transactions. At this point, you can shut down your applications, allow
any remaining transactions to be applied to the target, and bring your applications up, now pointing at
the target database.

AWS DMS creates the target schema objects necessary to perform the migration. However, AWS
DMS takes a minimalist approach and creates only those objects required to efficiently migrate the
data. In other words, AWS DMS creates tables, primary keys, and in some cases unique indexes, but
it doesn't create any other objects that are not required to efficiently migrate the data from the source.
For example, it doesn't create secondary indexes, non-primary key constraints, or data defaults.

In most cases, when performing a migration, you will also want to migrate most or all of the source
schema. If you are performing a homogeneous migration (between two databases of the same engine
type), you migrate the schema by using your engine’s native tools to export and import the schema
itself, without any data. If your migration is heterogeneous (between two databases that use different
engine types), you can use the AWS Schema Conversion Tool to generate a complete target schema
for you. If you use the tool, any dependencies between tables such as foreign key constraints need
to be disabled during the migration's “full load” and “cached change apply” phases. If performance is
an issue, removing or disabling secondary indexes during the migration process will help. For more
information on the AWS Schema Conversion Tool, see AWS Schema Conversion Tool.

AWS DMS Components
The components you work with when using AWS DMS include the following:

Replication instance
The AWS DMS replication instance runs on an Amazon Elastic Compute Cloud (Amazon EC2)
instance. The replication instance provides high-availability and failover support using a Multi-
AZ deployment. In a Multi-AZ deployment, AWS DMS automatically provisions and maintains a
synchronous standby replica of the replication instance in a different Availability Zone. The primary
replication instance is synchronously replicated across Availability Zones to a standby replica. This
approach provides data redundancy, eliminate I/O freezes, and minimize latency spikes during
system backups.

AWS DMS uses a replication server that connects to the source database, reads the source
data, formats the data for consumption by the target database, and loads the data into the target
database. Most of this processing happens in memory. However, large transactions might require
some buffering on disk. Cached transactions and log files are also written to disk. When creating
your replication server, you should consider the following:

• EC2 instance class — Some of the smaller EC2 instance classes are sufficient for testing the
service or for small migrations. If your migration involves a large number of tables, or if you
intend to run multiple concurrent replication tasks, you should consider using one of the larger
instances. We recommend this approach because AWS DMS consumes a fair amount of
memory and CPU.

• Storage — Depending on the EC2 instance class you select, your replication server comes
with either 50 GB or 100 GB of data storage. This storage is used for log files and any cached
changes collected during the load. If your source system is busy or takes large transactions, or
if you’re running multiple tasks on the replication server, you might need to increase this amount
of storage. Usually the default amount is sufficient.

Source endpoint
The change capture process that AWS DMS uses when replicating ongoing changes from a
source endpoint collects changes to the database logs by using the database engine's native API.
Each source engine has specific configuration requirements for exposing this change stream to a
given user account. Most engines require some additional configuration to make the change data
consumable in a meaningful way, without data loss, for the capture process. For example, Oracle

Version API Version 2016-01-01
8

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html

AWS Database Migration Service User Guide
Sources

requires the addition of supplemental logging, and MySQL requires row-level bin logging. When
using Amazon RDS as a source, we recommend ensuring that backups are enabled and that
the source database is configured to retain change logs for a sufficient time (24 hours is usually
enough).

Target endpoint
Whenever possible, AWS DMS attempts to create the target schema for you. Sometimes, AWS
DMS can't create the schema—for example, AWS DMS won't create a target Oracle schema for
security reasons. For MySQL database targets, you can use extra connection parameters to have
AWS DMS migrate all objects to the specified database and schema or create each database and
schema for you as it finds the schema on the source.

Task
You can create one of three possible types of migration tasks:

• Migrate existing data — If you can afford an outage long enough to copy your existing data, this
option is a good one to choose. This option simply migrates the data from your source database
to your target database, creating tables when necessary.

• Migrate existing data and replicate ongoing changes — This option performs a full data load
while capturing changes on the source. Once the full load is complete, captured changes are
applied to the target. Eventually the application of changes reaches a steady state. At this point
you can shut down your applications, let the remaining changes flow through to the target, and
then restart your applications pointing at the target.

• Replicate data changes only — In some situations it might be more efficient to copy existing
data using a method other than AWS DMS. For example, in a homogeneous migration, using
native export/import tools might be more efficient at loading the bulk data. In this situation, you
can use AWS DMS to replicate changes starting when you start your bulk load to bring and keep
your source and target databases in sync

By default AWS DMS starts your task as soon as you create it. However, in some situations, you
might want to postpone the start of the task. For example, when using the AWS Command Line
Interface (AWS CLI), you might have a process that creates a task and a different process that
starts the task based on some triggering event. As needed, you can postpone your task's start.

Schema and code migration
AWS DMS doesn't perform schema or code conversion. You can use tools such as Oracle SQL
Developer, MySQL Workbench, or pgAdmin III to move your schema if your source and target
are the same database engine. If you want to convert an existing schema to a different database
engine, you can use the AWS Schema Conversion Tool. It can create a target schema and also
can generate and create an entire schema: tables, indexes, views, and so on. You can also use
the tool to convert PL/SQL or TSQL to PgSQL and other formats. For more information on the
AWS Schema Conversion Tool, see AWS Schema Conversion Tool.

Sources for AWS Database Migration Service
You can use the following databases as a source for data migration using AWS Database Migration
Service.

On-premises and EC2 instance databases

• Oracle versions 10.2 and later, 11g, and 12c, for the Enterprise, Standard, Standard One, and
Standard Two editions

• Microsoft SQL Server versions 2005, 2008, 2008R2, 2012, and 2014, for the Enterprise, Standard,
Workgroup, and Developer editions. The Web and Express editions are not supported.

• MySQL versions 5.5, 5.6, and 5.7

• MariaDB (supported as a MySQL-compatible data source)

• PostgreSQL version 9.4 and later

• SAP Adaptive Server Enterprise (ASE) 15.7 and later

Version API Version 2016-01-01
9

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html

AWS Database Migration Service User Guide
Targets

Amazon RDS instance databases

• Oracle versions 11g (versions 11.2.0.3.v1 and later) and 12c, for the Enterprise, Standard, Standard
One, and Standard Two editions

• Microsoft SQL Server versions 2008R2, 2012, and 2014, for the Enterprise, Standard, Workgroup,
and Developer editions. Note that change data capture (CDC) operations are not supported. The
Web and Express editions are not supported.

• MySQL versions 5.5, 5.6, and 5.7

• MariaDB (supported as a MySQL-compatible data source)

• PostgreSQL version 9.4 and later

• Amazon Aurora (supported as a MySQL-compatible data source)

Targets for AWS Database Migration Service
You can use the following databases as a target for data replication using AWS Database Migration
Service.

On-premises and Amazon EC2 instance databases

• Oracle versions 10g, 11g, 12c, for the Enterprise, Standard, Standard One, and Standard Two
editions

• Microsoft SQL Server versions 2005, 2008, 2008R2, 2012, and 2014, for the Enterprise, Standard,
Workgroup, and Developer editions. The Web and Express editions are not supported.

• MySQL, versions 5.5, 5.6, and 5.7

• MariaDB (supported as a MySQL-compatible data target)

• PostgreSQL, versions 9.3 and later

• SAP Adaptive Server Enterprise (ASE) 15.7 and later

Amazon RDS instance databases and Amazon Redshift

• Oracle versions 11g (versions 11.2.0.3.v1 and later) and 12c, for the Enterprise, Standard, Standard
One, and Standard Two editions

• Microsoft SQL Server versions 2008R2, 2012, and 2014, for the Enterprise, Standard, Workgroup,
and Developer editions. The Web and Express editions are not supported.

• MySQL, versions 5.5, 5.6, and 5.7

• MariaDB (supported as a MySQL-compatible data target)

• PostgreSQL, versions 9.3 and later

• Amazon Aurora (supported as a MySQL-compatible data target)

• Amazon Redshift

Replication Instances for AWS Database
Migration Service

AWS DMS creates a replication instance that runs on an Amazon Elastic Compute Cloud (Amazon
EC2) instance in a VPC based on the Amazon Virtual Private Cloud (Amazon VPC) service. You use
this replication instance to perform the database migration. The replication instance provides high-
availability and failover support using a Multi-AZ deployment when you select the Multi-AZ option.
In a Multi-AZ deployment, AWS DMS automatically provisions and maintains a synchronous standby

Version API Version 2016-01-01
10

AWS Database Migration Service User Guide
Public and Private Replication Instances

replica of the replication instance in a different Availability Zone. The primary replication instance is
synchronously replicated across Availability Zones to a standby replica to provide data redundancy,
eliminate I/O freezes, and minimize latency spikes.

AWS DMS currently supports the T2 and C4 instance classes for replication instances. The T2
instance classes are low-cost standard instances designed to provide a baseline level of CPU
performance with the ability to burst above the baseline. They are suitable for developing, configuring,
and testing your database migration process, and for periodic data migration tasks that can benefit
from the CPU burst capability. The C4 instance classes are designed to deliver the highest level of
processor performance and achieve significantly higher packet per second (PPS) performance, lower
network jitter, and lower network latency. You should use C4 instance classes if you are migrating
large databases and want to minimize the migration time.

Each replication instance has a specific configuration of memory and vCPU. The following table shows
the configuration for each replication instance type. For pricing information, see the Amazon Database
Migration Service pricing page.

Replication Instance Type vCPU Memory (GB)

General Purpose

dms.t2.micro 1 1

dms.t2.small 1 2

dms.t2.medium 2 4

dms.t2.large 2 8

Compute Optimized

dms.c4.large 2 3.75

dms.c4.xlarge 4 7.5

dms.c4.2xlarge 8 15

dms.c4.4xlarge 16 30

Public and Private Replication Instances
You can specify whether a replication instance has a public or private IP address that the instance
uses to connect to the source and target databases. A replication instance should have a public IP
address if the source or target database is located in a network that is not connected to the replication
instance's VPC by using a virtual private network (VPN), AWS Direct Connect, or VPC peering.

A private replication instance has a private IP address that cannot be accessed outside the replication
network. A replication instance should have a private IP address when both the source and target
databases are located in the same network that is connected to the replication instance's VPC by using
a VPN, AWS Direct Connect, or VPC peering.

Version API Version 2016-01-01
11

http://aws.amazon.com/dms/pricing/
http://aws.amazon.com/dms/pricing/

AWS Database Migration Service User Guide
Setting Up a Network for Database Migration

A VPC peering connection is a networking connection between two VPCs that enables routing using
each VPC’s private IP addresses as if they were in the same network. For more information about VPC
peering, see VPC Peering in the Amazon VPC User Guide.

Setting Up a Network for Database Migration
AWS DMS always creates the replication instance in an Amazon Virtual Private Cloud (Amazon VPC),
and you specify the VPC where your replication instance is located. You can use your default VPC for
your account and region, or you can create a new VPC. The VPC must have two subnets in at least
one Availability Zone.

The Elastic Network Interface (ENI) allocated for the replication instance in your VPC must be
associated with a security group that has rules that allow all traffic on all ports to leave (egress) the
VPC. This approach allows communication from the replication instance to your source and target
database endpoints, as long as correct egress rules are enabled on the endpoints. We recommend
that you use the default settings for the endpoints, which allows egress on all ports to all addresses.

The source and target endpoints access the replication instance that is inside the VPC either by
connecting to the VPC or by being inside the VPC. The database endpoints must include network
ACLs and security group rules (if applicable) that allow incoming access from the replication instance.
Depending on the network configuration you are using, you can use the replication instance VPC
security group, the replication instance's private or public IP address, or the NAT Gateway's public IP
address. These connections form a network that you use for data migration.

Network Configurations for Database Migration
You can use several different network configurations with AWS Database Migration Service. The
following are common configurations for a network used for database migration.

Topics

• Configuration with All Database Migration Components in One VPC (p. 12)

• Configuration with Two VPCs (p. 13)

• Configuration for a Network to a VPC Using AWS Direct Connect or a VPN (p. 13)

• Configuration for a Network to a VPC Using the Internet (p. 14)

• Configuration with an Amazon RDS DB instance not in a VPC to a DB instance in a VPC Using
ClassicLink (p. 14)

Configuration with All Database Migration Components in One
VPC

The simplest network for database migration is for the source endpoint, the replication instance, and
the target endpoint to all be in the same VPC. This configuration is a good one if your source and
target endpoints are on an Amazon Relational Database Service (Amazon RDS) DB instance or an
Amazon Elastic Compute Cloud (Amazon EC2) instance.

The following illustration shows a configuration where a database on an Amazon EC2 instance
connects to the replication instance and data is migrated to an Amazon RDS DB instance.

Version API Version 2016-01-01
12

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-peering.html

AWS Database Migration Service User Guide
Network Configurations for Database Migration

The VPC security group used in this configuration must allow ingress on the database port from the
replication instance. You can do this by either ensuring that the security group used by the replication
instance has ingress to the endpoints, or by explicitly allowing the private IP address of the replication
instance.

Configuration with Two VPCs

If your source endpoint and target endpoints are in different VPCs, you can create your replication
instance in one of the VPCs and then link the two VPCs by using VPC peering.

A VPC peering connection is a networking connection between two VPCs that enables routing using
each VPC’s private IP addresses as if they were in the same network. We recommend this method for
connecting VPCs within a region. You can create VPC peering connections between your own VPCs
or with a VPC in another AWS account within the same AWS region. For more information about VPC
peering, see VPC Peering in the Amazon VPC User Guide.

The following illustration shows a configuration where the source database on an Amazon EC2
instance in a VPC is connected by using VPC peering to a VPC containing the replication instance and
the target database on an Amazon RDS DB instance.

The VPC security groups used in this configuration must allow ingress on the database port from the
replication instance.

Configuration for a Network to a VPC Using AWS Direct
Connect or a VPN

Remote networks can connect to a VPC using several options such as AWS Direct Connect or a
software or hardware VPN connection. These options are often used to integrate existing on-site
services, such as monitoring, authentication, security, data, or other systems, by extending an internal
network into the AWS cloud. By using this type of network extension, you can seamlessly connect to
AWS-hosted resources such as a VPC.

The following illustration shows a configuration where the source endpoint is an on-premises database
in a corporate data center. It is connected by using AWS Direct Connect or a VPN to a VPC that
contains the replication instance and a target database on an Amazon RDS DB instance.

Version API Version 2016-01-01
13

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-peering.html

AWS Database Migration Service User Guide
Network Configurations for Database Migration

In this configuration, the VPC security group must include a routing rule that sends traffic destined
for a specific IP address or range to a host that can bridge traffic from the Amazon VPC into the on-
premises VPN. In this case, the NAT host includes its own security group settings that must allow
traffic from the replication instance’s private IP address or security group into the NAT instance.

Configuration for a Network to a VPC Using the Internet

If you don't use a VPN or AWS Direct Connect to connect to AWS resources, you can use the Internet
to migrate a database to an Amazon EC2 instance or Amazon RDS DB instance. This configuration
involves a public replication instance in a VPC with an Internet gateway that contains the target
endpoint and the replication instance.

To add an Internet gateway to your VPC, see Attaching an Internet Gateway in the Amazon VPC User
Guide.

The VPC security group must include routing rules that send traffic not destined for the VPC by default
to the Internet gateway. In this configuration, the connection to the endpoint will appear to come from
the public IP address of the replication instance, not the private IP address.

Configuration with an Amazon RDS DB instance not in a VPC
to a DB instance in a VPC Using ClassicLink

You can use ClassicLink, in conjunction with a proxy server, to connect an Amazon RDS DB
instance that is not in a VPC to a AWS DMS replication server and DB instance that reside in a VPC.
ClassicLink allows you to link an EC2-Classic DB instance to a VPC in your account, within the same
region. After you've created the link, the source DB instance can communicate with the replication
instance inside the VPC using their private IP addresses. Since the replication instance in the VPC
cannot directly access the source DB instance on the EC2-Classic platform using ClassicLink, you
must use a proxy server to connect the source DB instance to the VPC containing the replication
instance and target DB instance. The proxy server uses ClassicLink to connect to the VPC, and port
forwarding on the proxy server allows communication between the source DB instance and the target
DB instance in the VPC.

Version API Version 2016-01-01
14

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Internet_Gateway.html#Add_IGW_Attach_Gateway

AWS Database Migration Service User Guide
Creating a Replication Subnet Group

For step-by-step instructions on creating a ClassicLink for use with AWS DMS, see Using ClassicLink
with AWS Database Migration Service (p. 163).

Creating a Replication Subnet Group
As part of the network to use for database migration, you need to specify what subnets in your Amazon
Virtual Private Cloud (Amazon VPC) you plan to use. A subnet is a range of IP addresses in your VPC
in a given Availability Zone. These subnets can be distributed among the Availability Zones for the
region where your VPC is located.

You create a replication instance in a subnet that you select, and you can manage what subnet a
source or target endpoint uses by using the AWS DMS console.

You create a replication subnet group to define which subnets will be used. You must specify at least
one subnet in two different Availability Zones.

To create a replication subnet group

1. Sign in to the AWS Management Console and choose AWS Database Migration Service. Note that
if you are signed in as an AWS Identity and Access Management (IAM) user, you must have the
appropriate permissions to access AWS DMS. For more information on the permissions required
for database migration, see IAM Permissions Needed to Use AWS DMS (p. 39).

2. In the navigation pane, choose Subnet Groups.

3. Choose Create Subnet Group.

4. On the Edit Replication Subnet Group page, shown following, specify your replication subnet
group information. The following table describes the settings.

For This Option Do This

Identifier Type a name for the replication subnet group that
contains from 8 to 16 printable ASCII characters

Version API Version 2016-01-01
15

AWS Database Migration Service User Guide
Setting an Encryption Key

For This Option Do This

(excluding /,", and @). The name should be unique
for your account for the region you selected. You can
choose to add some intelligence to the name such as
including the region and task you are performing, for
example DMS-default-VPC.

Description Type a brief description of the replication subnet group.

VPC Choose the VPC you want to use for database migration.
Keep in mind that the VPC must have at least one
subnet in at least two Availability Zones.

Available Subnets Choose the subnets you want to include in the
replication subnet group. You must select subnets in at
least two Availability Zones.

5. Choose Add to add the subnets to the replication subnet group.

6. Choose Create.

Setting an Encryption Key for AWS Database
Migration Service

AWS DMS encrypts the storage used by a replication instance and the endpoint connection
information. To encrypt the storage used by a replication instance, AWS DMS uses a master key that is
unique to your AWS account. You can view and manage this master key with AWS Key Management
Service (AWS KMS). You can use the default master key in your account (aws/dms) or a custom
master key that you create. If you have an existing AWS KMS encryption key, you can also use that
key for encryption.

You can specify your own encryption key by supplying a KMS key identifier to encrypt your AWS DMS
resources. When you specify your own encryption key, the user account used to perform the database
migration must have access to that key. For more information on creating your own encryption keys
and giving users access to an encryption key, see the KMS Developer Guide.

If you don't specify a KMS key identifier, then AWS DMS uses your default encryption key. KMS
creates the default encryption key for AWS DMS for your AWS account. Your AWS account has a
different default encryption key for each AWS region.

To manage the keys used for encrypting your AWS DMS resources, you use KMS. You can find KMS
in the AWS Management Console by choosing Identity & Access Management on the console
home page and then choosing Encryption Keys on the navigation pane. KMS combines secure,
highly available hardware and software to provide a key management system scaled for the cloud.
Using KMS, you can create encryption keys and define the policies that control how these keys can
be used. KMS supports AWS CloudTrail, so you can audit key usage to verify that keys are being
used appropriately. Your KMS keys can be used in combination with AWS DMS and supported AWS
services such as Amazon RDS, Amazon Simple Storage Service (Amazon S3), and Amazon Elastic
Block Store (Amazon EBS).

Once you have created your AWS DMS resources with a specific encryption key, you cannot change
the encryption key for those resources. Make sure to determine your encryption key requirements
before you create your AWS DMS resources.

Version API Version 2016-01-01
16

http://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS Database Migration Service User Guide
Tagging

Tagging AWS Database Migration Service
Resources

You can use AWS Database Migration Service tags to add metadata to your AWS DMS resources.
In addition, these tags can be used with IAM policies to manage access to AWS DMS resources and
to control what actions can be applied to the AWS DMS resources. Finally, these tags can be used to
track costs by grouping expenses for similarly tagged resources.

All AWS DMS resources can be tagged:

• Replication instances

• Endpoints

• Replication tasks

An AWS DMS tag is a name-value pair that you define and associate with an AWS DMS resource. The
name is referred to as the key. Supplying a value for the key is optional. You can use tags to assign
arbitrary information to an AWS DMS resource. A tag key could be used, for example, to define a
category, and the tag value could be a item in that category. For example, you could define a tag key
of “project” and a tag value of “Salix,” indicating that the AWS DMS resource is assigned to the Salix
project. You could also use tags to designate AWS DMS resources as being used for test or production
by using a key such as environment=test or environment =production. We recommend that you use a
consistent set of tag keys to make it easier to track metadata associated with AWS DMS resources.

Use tags to organize your AWS bill to reflect your own cost structure. To do this, sign up to get your
AWS account bill with tag key values included. Then, to see the cost of combined resources, organize
your billing information according to resources with the same tag key values. For example, you can tag
several resources with a specific application name, and then organize your billing information to see
the total cost of that application across several services. For more information, see Cost Allocation and
Tagging in About AWS Billing and Cost Management.

Each AWS DMS resource has a tag set, which contains all the tags that are assigned to that AWS
DMS resource. A tag set can contain as many as ten tags, or it can be empty. If you add a tag to an
AWS DMS resource that has the same key as an existing tag on resource, the new value overwrites
the old value.

AWS does not apply any semantic meaning to your tags; tags are interpreted strictly as character
strings. AWS DMS might set tags on an AWS DMS resource, depending on the settings that you use
when you create the resource.

The following list describes the characteristics of an AWS DMS tag.

• The tag key is the required name of the tag. The string value can be from 1 to 128 Unicode
characters in length and cannot be prefixed with "aws:" or "dms:". The string might contain only the
set of Unicode letters, digits, white-space, '_', '.', '/', '=', '+', '-' (Java regex: "^([\\p{L}\\p{Z}\\p{N}_.:/=+\
\-]*)$").

• The tag value is an optional string value of the tag. The string value can be from 1 to 256 Unicode
characters in length and cannot be prefixed with "aws:" or "dms:". The string might contain only the
set of Unicode letters, digits, white-space, '_', '.', '/', '=', '+', '-' (Java regex: "^([\\p{L}\\p{Z}\\p{N}_.:/=+\
\-]*)$").

Values do not have to be unique in a tag set and can be null. For example, you can have a key-value
pair in a tag set of project/Trinity and cost-center/Trinity.

Version API Version 2016-01-01
17

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

AWS Database Migration Service User Guide
Constructing an ARN

You can use the AWS Management Console, the AWS CLI, or the AWS DMS API to add, list, and
delete tags on AWS DMS resources. When using the AWS CLI or the AWS DMS API, you must
provide the Amazon Resource Name (ARN) for the AWS DMS resource you want to work with. For
more information about constructing an ARN, see Constructing an Amazon Resource Name (ARN) for
Use with AWS Database Migration Service (p. 18).

Note that tags are cached for authorization purposes. Because of this, additions and updates to tags
on AWS DMS resources might take several minutes before they are available.

Constructing an Amazon Resource Name (ARN)
for Use with AWS Database Migration Service

If you use the AWS CLI or AWS Database Migration Service API to automate your database migration,
then you need to know about working with an Amazon Resource Name (ARN). Resources that are
created in Amazon Web Services are identified by an ARN, which is a unique identifier. If you use
the AWS CLI or AWS DMS API to set up your database migration, you must supply the ARN of the
resource you want to work with.

An ARN for an AWS DMS resource uses the following syntax:

arn:aws:dms:<region>:<account number>:<resourcetype>:<name>

In this syntax:

• <region> is the AWS Region ID of the region where the AWS DMS resource was created, such as
us-west-2.

The following table shows AWS region names and the values you should use when constructing an
ARN.

Region Name

US East (N. Virginia) Region us-east-1

US East (Ohio) Region us-east-2

US West (N. California) Region us-west-1

US West (Oregon) Region us-west-2

EU (Ireland) Region eu-west-1

EU (Frankfurt) Region eu-central-1

Asia Pacific (Tokyo) Region ap-northeast-1

Asia Pacific (Seoul) Region ap-northeast-2

Asia Pacific (Singapore) Region ap-southeast-1

Asia Pacific (Sydney) Region ap-southeast-2

Asia Pacific (Mumbai) Region ap-south-1

South America (São Paulo) Region sa-east-1

Canada (Central) Region ca-central-1

Version API Version 2016-01-01
18

AWS Database Migration Service User Guide
Supported DDL Statements

• <account number> is your account number with dashes omitted. To find your account number, log
in to your AWS account at http://aws.amazon.com, choose My Account/Console, and then choose
My Account.

• <resourcetype> is the type of AWS DMS resource.

The following table shows the resource types you should use when constructing an ARN for a
particular AWS DMS resource.

AWS DMS Resource
Type

ARN Format

Replication instance arn:aws:dms:<region>: <account>:rep:
<replicationinstanceidentifier>

Endpoint arn:aws:dms:<region>:<account>:endpoint:
<endpointidentifier>

Replication task arn:aws:dms:<region>:<account>: task:<taskidentifier>

• <name> is the resource identifier for the AWS DMS resource.

The following table shows examples of ARNs for AWS DMS resources with an AWS account of
123456789012, which were created in the US East (N. Virginia) region, and which have a resource
name that begins with dm-:

Resource Type Sample ARN

Replication instance arn:aws:dms:us-east-1:123456789012:rep:dm-repl-instance

Endpoint arn:aws:dms:us-east-1:123456789012:endpoint:dm-
oracleendpoint

Migration task arn:aws:dms:us-east-1:123456789012:task:dm-
oracle2postgresql-task

DDL Statements Supported by AWS Database
Migration Service

You can execute data definition language (DDL) statements during the data migration process. These
statements run on the replication server and are supported for source or target databases.

Supported DDL statements include the following:

• Create table

• Drop table

• Rename table

• Add column

• Drop column

• Rename column

• Change column data type

For information about which DDL statements are supported for a specific source or target, see the topic
describing that source or target.

Version API Version 2016-01-01
19

AWS Database Migration Service User Guide
LOB Support for Source Databases

LOB Support for Source Databases

For This Option Do This

Include LOB columns in replication Large objects, (LOBs) can sometimes be difficult to migrate
between systems. AWS DMS offers a number of options
to help with the tuning of LOB columns. To see which and
when datatypes are considered LOBS by AWS DMS, see
the AWS DMS documentation.

Don't include LOB columns - When you migrate
data from one database to another, you might take the
opportunity to rethink how your LOBs are stored, especially
for heterogeneous migrations. If you want to do so, there’s
no need to migrate the LOB data.

Full LOB mode - In full LOB mode AWS DMS migrates
all LOBs from source to target regardless of size. In this
configuration, AWS DMS has no information about the
maximum size of LOBs to expect. Thus, LOBs are migrated
one at a time, piece by piece. Full LOB mode can be quite
slow.

Limited LOB mode - In limited LOB mode, you set a
maximum size LOB that AWS DMS should accept. Doing
so allows AWS DMS to pre-allocate memory and load the
LOB data in bulk. LOBs that exceed the maximum LOB
size are truncated and a warning is issued to the log file. In
limited LOB mode you get significant performance gains
over full LOB mode. We recommend that you use limited
LOB mode whenever possible.

Note
With Oracle, LOBs are treated as VARCHAR
data types whenever possible. This approach
means AWS DMS fetches them from the database
in bulk, which is significantly faster than other
methods. The maximum size of a VARCHAR in
Oracle is 64K, therefore a limited LOB size of less
than 64K is optimal when Oracle is your source
database.

Max LOB size (K) When a task is configured to run in limited LOB mode, this
option determines the maximum size LOB that AWS DMS
accepts. Any LOBs that are larger than this value will be
truncated to this value.

LOB chunk size (K) When a task is configured to use full LOB mode, AWS
DMS retrieves LOBs in pieces. This option determines the
size of each piece. When setting this option, pay particular
attention to the maximum packet size allowed by your
network configuration. If the LOB chunk size exceeds your
maximum allowed packet size, you might see disconnect
errors.

Version API Version 2016-01-01
20

AWS Database Migration Service User Guide
Start a Database Migration

Getting Started with AWS Database
Migration Service

AWS Database Migration Service (AWS DMS) helps you migrate databases to AWS easily and
securely. You can migrate your data to and from most widely used commercial and open-source
databases, such as Oracle, MySQL, and PostgreSQL. The service supports homogeneous migrations
such as Oracle to Oracle, and also heterogeneous migrations between different database platforms,
such as Oracle to PostgreSQL or MySQL to Oracle.

For information on the cost of database migration using AWS Database Migration Service, see the
AWS Database Migration Service pricing page.

Topics

• Start a Database Migration with AWS Database Migration Service (p. 21)

• Step 1: Welcome (p. 22)

• Step 2: Create a Replication Instance (p. 22)

• Step 3: Specify Database Endpoints (p. 26)

• Step 4: Create a Task (p. 30)

• Monitor Your Task (p. 33)

Start a Database Migration with AWS Database
Migration Service

On the Dashboard page in the AWS DMS console, you can use a wizard to help create your first
data migration. Following the wizard process, you allocate a replication instance that performs all the
processes for the migration, specify a source and a target database, and then create a task or set of
tasks to define what tables and replication processes you want to use. AWS DMS then creates your
replication instance and performs the tasks on the data being migrated.

Version API Version 2016-01-01
21

http://aws.amazon.com/dms/pricing/

AWS Database Migration Service User Guide
Step 1: Welcome

To start an AWS DMS database migration by using the console

1. Sign in to the AWS Management Console and choose AWS DMS. Select the appropriate AWS
Region.

Note
If you are signed in as an AWS Identity and Access Management (IAM) user, you must
have the appropriate permissions to access AWS DMS. For more information on the
permissions required, see IAM Permissions Needed to Use AWS DMS (p. 39).

2. On the Dashboard page, choose Get started.

Step 1: Welcome
You start migration from the console's Welcome page, shown following, which explains the process of
database migration using AWS DMS.

To start a database migration from the console's Welcome page

• Choose Next.

Step 2: Create a Replication Instance
Your first task in migrating a database is to create a replication instance that has sufficient storage and
processing power to perform the tasks you assign and migrate data from your source database to the

Version API Version 2016-01-01
22

AWS Database Migration Service User Guide
Step 2: Create a Replication Instance

target database. The required size of this instance varies depending on the amount of data you need
to migrate and the tasks that you need the instance to perform. For more information about replication
instances, see Replication Instances for AWS Database Migration Service (p. 10).

The procedure following assumes that you have chosen AWS DMS from the AWS Management
Console and started the replication task wizard.

To create a replication instance by using the AWS console

1. On the Create replication instance page, specify your replication instance information. The
following table describes the settings.

For This Option Do This

Name Type a name for the replication instance that contains
from 8 to 16 printable ASCII characters (excluding /,",
and @). The name should be unique for your account
for the region you selected. You can choose to add
some intelligence to the name, such as including the
region and task you are performing, for example west2-
mysql2mysql-instance1.

Description Type a brief description of the replication instance.

Instance class Choose an instance class with the configuration you
need for your migration. Keep in mind that the instance
must have enough storage, network, and processing
power to successfully complete your migration. For more
information on how to determine which instance class
is best for your migration, see Replication Instances for
AWS Database Migration Service (p. 10).

VPC Choose the Amazon Virtual Private Cloud (Amazon
VPC) you want to use. If your source or your target

Version API Version 2016-01-01
23

AWS Database Migration Service User Guide
Step 2: Create a Replication Instance

For This Option Do This

database is in an VPC, choose that VPC. If your source
and your target databases are in different VPCs,
ensure that they are both in public subnets and are
publicly accessible, and then choose the VPC where
the replication instance is to be located. The replication
instance must be able to access the data in the source
VPC. If neither your source nor your target database is in
a VPC, select a VPC where the replication instance is to
be located.

Multi-AZ Use this optional parameter to create a standby replica
of your replication instance in another Availability Zone
for failover support. If you intend to use change data
capture (CDC) or ongoing replication, you should enable
this option.

Publicly accessible Choose this option if you want the replication instance to
be accessible from the Internet.

2. Choose the Advanced tab, shown following, to set values for network and encryption settings if
you need them.

3. Specify the additional settings. The following table describes the settings.

Version API Version 2016-01-01
24

AWS Database Migration Service User Guide
Step 2: Create a Replication Instance

For This Option Do This

Allocated storage (GB) Storage is primarily consumed by log files and cached
transactions. For caches transactions, storage is
used only when the cached transactions need to be
written to disk. Therefore, AWS DMS doesn’t use a
significant amount of storage.Some exceptions include
the following:

• Very large tables that incur a significant transaction
load. Loading a large table can take some time, so
cached transactions are more likely to be written to
disk during a large table load.

• Tasks that are configured to pause prior to loading
cached transactions. In this case, all transactions are
cached until the full load completes for all tables. With
this configuration, a fair amount of storage might be
consumed by cached transactions.

• Tasks configured with tables being loaded into
Amazon Redshift. However, this configuration isn't an
issue when Aurora is the target.

In most cases, the default allocation of storage is
sufficient. However, it’s always a good idea to pay
attention to storage related metrics and scale up your
storage if you find you are consuming more than the
default allocation.

Replication Subnet Group Choose the replication subnet group in your selected
VPC where you want the replication instance to be
created. If your source database is in a VPC, choose
the subnet group that contains the source database
as the location for your replication instance. For more
information about replication subnet groups, see
Creating a Replication Subnet Group (p. 15).

Availability zone Choose the Availability Zone where your source
database is located.

VPC Security group(s) The replication instance is created in a VPC. If your
source database is in a VPC, select the VPC security
group that provides access to the DB instance where the
database resides.

KMS master key Choose the encryption key to use to encrypt replication
storage and connection information. If you choose
(Default) aws/dms, the default AWS Key Management
Service (AWS KMS) key associated with your account
and region is used. For more information on using the
encryption key, see Setting an Encryption Key for AWS
Database Migration Service (p. 45).

4. Choose Next.

Version API Version 2016-01-01
25

AWS Database Migration Service User Guide
Step 3: Specify Database Endpoints

Step 3: Specify Database Endpoints
While your replication instance is being created, you can specify the source and target databases. The
source and target databases can be on an Amazon Elastic Compute Cloud (Amazon EC2) instance, an
Amazon Relational Database Service (Amazon RDS) DB instance, or an on-premises database.

The procedure following assumes that you have chosen AWS DMS from the AWS Management
Console and specified your replication instance information in the replication task wizard.

To specify source or target database endpoints using the AWS console

1. On the Connect source and target database endpoints page, specify your connection
information for the source or target database. The following table describes the settings.

Version API Version 2016-01-01
26

AWS Database Migration Service User Guide
Step 3: Specify Database Endpoints

For This Option Do This

Endpoint identifier Type the name you want to use to identify the endpoint.
You might want to include in the name the type of
endpoint, such as oracle-source or PostgreSQL-
target. The name must be unique for all replication
instances.

Version API Version 2016-01-01
27

AWS Database Migration Service User Guide
Step 3: Specify Database Endpoints

For This Option Do This

Source engine and Target engine Choose the type of database engine that is the endpoint.

Server name Type the server name. For an on-premises database,
this can be the IP address or the public hostname.
For an Amazon RDS DB instance, this can be the
endpoint (also called the DNS name) for the DB
instance, such as mysqlsrvinst.abcd12345678.us-
west-2.rds.amazonaws.com.

Port Type the port used by the database.

SSL mode Choose an SSL mode if you want to enable connection
encryption for this endpoint. Depending on the mode
you select, you might be asked to provide certificate and
server certificate information.

User name Type the user name with the permissions required to
allow data migration. For information on the permissions
required, see the security section for the source or target
database engine in this user guide.

Password Type the password for the account with the required
permissions. If you want to use special characters in
your password, such as "+" or "&", enclose the entire
password in curly braces "{}".

2. Choose the Advanced tab, shown following, to set values for connection string and encryption key
if you need them. You can test the endpoint connection by choosing Run test.

Version API Version 2016-01-01
28

AWS Database Migration Service User Guide
Step 3: Specify Database Endpoints

For This Option Do This

Extra connection attributes Type any additional connection parameters here. For
more information about extra connection attributes, see
Using Extra Connection Attributes with AWS Database
Migration Service (p. 157).

KMS master key Choose the encryption key to use to encrypt replication
storage and connection information. If you choose
(Default) aws/dms, the default AWS Key Management
Service (AWS KMS) key associated with your account
and region is used. For more information on using the
encryption key, see Setting an Encryption Key for AWS
Database Migration Service (p. 45).

Version API Version 2016-01-01
29

AWS Database Migration Service User Guide
Step 4: Create a Task

Step 4: Create a Task
Create a task to specify what tables to migrate, to map data using a target schema, and to create new
tables on the target database. As part of creating a task, you can choose the type of migration: to
migrate existing data, migrate existing data and replicate ongoing changes, or replicate data changes
only.

Using AWS DMS, you can specify precise mapping of your data between the source and the target
database. Before you specify your mapping, make sure you review the documentation section on data
type mapping for your source and your target database.

You can choose to start a task as soon as you finish specifying information for that task on the
Create task page, or you can start the task from the Dashboard page once you finish specifying task
information.

The procedure following assumes that you have chosen AWS DMS from the AWS Management
Console and specified replication instance information and endpoints using the replication task wizard.

To create a migration task

1. On the Create Task page, specify the task options. The following table describes the settings.

For This Option Do This

Task name Type a name for the task.

Version API Version 2016-01-01
30

AWS Database Migration Service User Guide
Step 4: Create a Task

For This Option Do This

Task description Type a description for the task.

Source endpoint Shows the source endpoint that will be used.

Target endpoint Shows the target endpoint that will be used.

Replication instance Shows the replication instance that will be used.

Migration type Choose the migration method you want to use. You can
choose to have just the existing data migrated to the
target database or have ongoing changes sent to the
target database in addition to the migrated data.

Start task on create When this option is selected, the task begins as soon as
it is created.

2. Choose the Task Settings tab, shown following, and specify values for your target table, LOB
support, and to enable logging. The task settings shown depend on the Migration type value you
select. For example, when you select Migrate existing data, the following options are shown:

For This Option Do This

Target table preparation mode Do nothing - Data and metadata of the target tables are
not changed.

Drop tables on target - The tables are dropped and
new tables are created in their place.

Truncate - Tables are truncated without affecting table
metadata.

Include LOB columns in
replication

Don't include LOB columns - LOB columns will be
excluded from the migration.

Full LOB mode - Migrate complete LOBs regardless of
size. LOBs are migrated piecewise in chunks controlled
by the LOB chunk size. This method is slower than using
Limited LOB Mode.

Version API Version 2016-01-01
31

AWS Database Migration Service User Guide
Step 4: Create a Task

For This Option Do This

Limited LOB mode - Truncate LOBs to ‘Max LOB Size’
This method is faster than using Full LOB Mode.

For more information about LOB support in AWS DMS,
see LOB Support for Source Databases (p. 20)

Max LOB size (kb) In Limited LOB Mode, LOB columns which exceed
the setting of Max LOB Size will be truncated to the
specified Max LOB Size.

Enable logging Enables logging by Amazon CloudWatch.

When you select Migrate existing data and replicate for Migration type, the following options
are shown:

For This Option Do This

Target table preparation mode Do nothing - Data and metadata of the target tables are
not changed.

Drop tables on target - The tables are dropped and
new tables are created in their place.

Truncate - Tables are truncated without affecting table
metadata.

Version API Version 2016-01-01
32

AWS Database Migration Service User Guide
Monitor Your Task

For This Option Do This

Stop task after full load completes Don't stop - Do not stop the task, immediately apply
cached changes and continue on.

Stop before applying cached changes - Stop the task
prior to the application of cached changes. This will allow
you to add secondary indexes which may speed the
application of changes.

Stop after applying cached changes - Stop the task
after cached changes have been applied. This will allow
you to add foreign keys, triggers etc. if you are using
Transactional Apply.

Include LOB columns in
replication

Don't include LOB columns - LOB columns will be
excluded from the migration.

Full LOB mode - Migrate complete LOBs regardless of
size. LOBs are migrated piecewise in chunks controlled
by the LOB chunk size. This method is slower than using
Limited LOB Mode.

Limited LOB mode - Truncate LOBs to ‘Max LOB Size’
This method is faster than using Full LOB Mode.

Max LOB size (kb) In Limited LOB Mode, LOB columns which exceed
the setting of Max LOB Size will be truncated to the
specified Max LOB Size.

Enable logging Enables logging by Amazon CloudWatch.

3. Choose the Table mappings tab, shown following, to set values for schema mapping and the
mapping method. If you choose Custom, you can specify the target schema and table values.
For more information about table mapping, see Using Table Mapping with an AWS Database
Migration Service Task to Select and Filter Data (p. 97).

4. Once you have finished with the task settings, choose Create task.

Monitor Your Task
If you select Start task on create when you create a task, your task begins immediately to migrate
your data when you choose Create task. You can view statistics and monitoring information for your

Version API Version 2016-01-01
33

AWS Database Migration Service User Guide
Monitor Your Task

task by choosing the running task from the AWS Management Console. The following screenshot
shows the table statistics of a database migration. For more information about monitoring, see
Monitoring AWS Database Migration Service Tasks (p. 117)

Version API Version 2016-01-01
34

AWS Database Migration Service User Guide
Improving Performance

AWS Database Migration Service
Best Practices

To use AWS Database Migration Service (AWS DMS) most effectively, see this section's
recommendations on the most efficient way to migrate your data.

Topics

• Improving the Performance of an AWS Database Migration Service Migration (p. 35)

• Determining the Optimum Size for a Replication Instance (p. 36)

• Reducing Load on Your Source Database (p. 37)

• Using the Task Log to Troubleshoot Migration Issues (p. 37)

• Schema Conversion (p. 37)

• Migrating Large Binary Objects (LOBs) (p. 37)

• Ongoing Replication (p. 38)

Improving the Performance of an AWS Database
Migration Service Migration

A number of factors affect the performance of your AWS DMS migration:

• Resource availability on the source

• The available network throughput

• The resource capacity of the replication server

• The ability of the target to ingest changes

• The type and distribution of source data

• The number of objects to be migrated

In our tests, we've migrated a terabyte of data in approximately 12 to 13 hours under ideal conditions.
These ideal conditions included using source databases running on Amazon Elastic Compute Cloud
(Amazon EC2) and in Amazon Relational Database Service (Amazon RDS) with target databases in
Amazon RDS. Our source databases contained a representative amount of relatively evenly distributed
data with a few large tables containing up to 250 GB of data.

Version API Version 2016-01-01
35

AWS Database Migration Service User Guide
Sizing a replication instance

Your migration's performance can be limited by one or more bottlenecks long the way. The following
list shows a few things you can do to increase performance:

Load multiple tables in parallel
By default, AWS DMS loads eight tables at a time. You might see some performance improvement
by increasing this slightly when using a very large replication server, such as a dms.c4.xlarge or
larger instance. However, at some point increasing this parallelism reduces performance. If your
replication server is relatively small, such as a dms.t2.medium, you'll want to reduce this number.

Remove bottlenecks on the target
During the migration, try to remove any processes that might compete with each other for
write resources on your target database. As part of this process, disable unnecessary triggers,
validation, and secondary indexes. When migrating to an Amazon RDS database, it’s a good
idea to disable backups and Multi-AZ on the target until you’re ready to cut-over. Similarly, when
migrating to non-Amazon RDS systems, disabling any logging on the target until cut over is usually
a good idea.

Use multiple tasks
Sometimes using multiple tasks for a single migration can improve performance. If you have sets
of tables that don’t participate in common transactions, you might be able to divide your migration
into multiple tasks. Transactional consistency is maintained within a task, so it’s important
that tables in separate tasks don't participate in common transactions. Additionally, each task
independently reads the transaction stream, so be careful not to put too much stress on the source
system.

Improving LOB performance
For information about improving LOB migration, see Migrating Large Binary Objects
(LOBs) (p. 37).

Optimizing change processing
By default, AWS DMS processes changes in a transactional mode, which preserves transactional
integrity. If you can afford temporary lapses in transactional integrity, you can use the batch
optimized apply option instead. This option efficiently groups transactions and applies them in
batches for efficiency purposes. Note that using the batch optimized apply option almost certainly
violates any referential integrity constraints, so you should disable these during the migration
process and enable them again as part of the cut-over process.

Determining the Optimum Size for a Replication
Instance

Determining the correct size of your replication instance depends on several factors. The following
information can help you understand the migration process and how memory and storage are used.

Tables are loaded individually; by default, eight tables are loaded at a time. While each table is loaded,
the transactions for that table are cached in memory. After the available memory is used, transactions
are cached to disk. When the table for those transactions is loaded, the transactions and any further
transactions on that table are immediately applied to the table.

When all tables have been loaded and all outstanding cached transactions for the individual tables
have been applied by AWS DMS, the source and target tables will be in sync. At this point, AWS DMS
will apply transactions in a way that maintains transactional consistency. (As you can see, tables will be
out of sync during the full load and while cached transactions for individual tables are being applied.)

From the preceding explanation, you can see that relatively little disk space is required to hold cached
transactions. The amount of disk space used for a given migration will depend on the following:

• Table size – Large tables take longer to load and so transactions on those tables must be cached
until the table is loaded. Once a table is loaded, these cached transactions are applied and are no
longer held on disk.

Version API Version 2016-01-01
36

AWS Database Migration Service User Guide
Reducing Load on Your Source Database

• Data manipulation language (DML) activity – A busy database generates more transactions. These
transactions must be cached until the table is loaded. Remember, though, that transactions to an
individual table are applied as soon as possible after the table is loaded, until all tables are loaded.
At that point, AWS DMS applies all the transactions.

• Transaction size – Data generated by large transactions must be cached. If a table accumulates 10
GB of transactions during the full load process, those transactions will need to be cached until the full
load is complete.

• Total size of the migration – Large migrations take longer and the log files that are generated are
large.

• Number of tasks – The more tasks, the more caching will likely be required, and the more log files
will be generated.

Anecdotal evidence shows that log files consume the majority of space required by AWS DMS. The
default storage configurations are usually sufficient. Replication instances that run several tasks might
require more disk space.

Reducing Load on Your Source Database
During a migration, AWS DMS performs a full table scan of the source table for each table processed
in parallel. Additionally, each task will periodically query the source for change information. To perform
change processing, you might be required to increase the amount of data written to your databases
change log. If you find you are overburdening your source database you can reduce the number of
tasks and/or tables per task for your migration. If you prefer not to add load to your source, you might
consider performing the migration from a read copy of your source system. However, using a read
copy does increase the replication lag.

Using the Task Log to Troubleshoot Migration
Issues

At times DMS may encounter issues (warnings or errors) which are only currently visible when viewing
the task log. In particular, data truncation issues or row rejections due to foreign key violations are
currently only visible via the task log. Therefore, it is important to review the task log when migrating a
database.

Schema Conversion
AWS DMS doesn't perform schema or code conversion. You can use tools such as Oracle SQL
Developer, MySQL Workbench, or pgAdmin III to move your schema if your source and target are the
same database engine. If you want to convert an existing schema to a different database engine, you
can use the AWS Schema Conversion Tool. It can create a target schema and also can generate and
create an entire schema: tables, indexes, views, and so on. You can also use the tool to convert PL/
SQL or TSQL to PgSQL and other formats. For more information on the AWS Schema Conversion
Tool, see AWS Schema Conversion Tool .

Migrating Large Binary Objects (LOBs)
Migration of LOB data is done in two phases. First, the row in the LOB column is created in the target
table without the LOB data. Next, the row in the target table is updated with the LOB data. This means

Version API Version 2016-01-01
37

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html

AWS Database Migration Service User Guide
Ongoing Replication

that during the migration, the LOB columns of a table must be NULLABLE on the target database.
If AWS DMS creates the target tables, it sets LOB columns to NULLABLE, even if they are NOT
NULLABLE on the source table. If you create the target tables using some other mechanism, such as
Import/Export, the LOB columns must be NULLABLE.

Replication tasks, by default, are set to run in Full LOB support mode. While this setting moves all of
the LOBS in your tables, the process is also slow. To increase the speed with which your migration
task runs, you should create a new task and set the task to use “Limited Size LOB” mode. When you
choose this mode you need to ensure that the setting of the MAX LOB parameter is correct. This
parameter should be set to the largest LOBS size for all of your tables.

Whenever possible, use the limited LOB mode parameter for best performance. If you have a table
that contains a few large LOBs and mostly smaller LOBs, consider breaking up the table before
migration and consolidating the table fragments as part of migration.

AWS Database Migration Service provides full support for using large object data types (BLOBs,
CLOBs, and NCLOBs). The following source endpoints have full LOB support:

• Oracle

• Microsoft SQL Server

• ODBC

The following target endpoints have full LOB support:

• Oracle

• Microsoft SQL Server

The following target endpoints have limited LOB support. You cannot use an unlimited LOB size for
these target endpoints.

• Amazon Redshift

For endpoints that have full LOB support, you can also set a size limit for LOB data types.

Ongoing Replication
AWS DMS provides comprehensive ongoing replication of data, although it replicates only a limited
amount of data definition language (DDL). AWS DMS doesn't propagate items such as indexes, users,
privileges, stored procedures, and other database changes not directly related to table data.

If you want to use ongoing replication, you must enable the Multi-AZ option on your replication
instance. The Multi-AZ option provides high availability and failover support for the replication
instance.

Version API Version 2016-01-01
38

AWS Database Migration Service User Guide
IAM Permissions Needed to Use AWS DMS

AWS Database Migration Service
Security

AWS Database Migration Service (AWS DMS) uses several processes to secure your data during
migration. The service encrypts the storage used by your replication instance and the endpoint
connection information using an AWS Key Management Service (AWS KMS) key that is unique to
your AWS account. Secure Sockets Layer (SSL) is supported. AWS Database Migration Service also
requires that you have the appropriate permissions if you sign in as an AWS Identity and Access
Management (IAM) user.

The VPC based on the Amazon Virtual Private Cloud (Amazon VPC) service that you use with your
replication instance must be associated with a security group that has rules that allow all traffic on all
ports to leave (egress) the VPC. This approach allows communication from the replication instance to
your source and target database endpoints, as long as correct ingress is enabled on those endpoints.

If you want to view database migration logs, you need the appropriate Amazon CloudWatch Logs
permissions for the IAM role you are using.

Topics

• IAM Permissions Needed to Use AWS DMS (p. 39)

• Creating the IAM Roles to Use With the AWS CLI and AWS DMS API (p. 41)

• Setting an Encryption Key for AWS Database Migration Service (p. 45)

• Network Security for AWS Database Migration Service (p. 46)

• Using SSL With AWS Database Migration Service (p. 47)

• Changing the Database Password (p. 51)

IAM Permissions Needed to Use AWS DMS
You need to use certain IAM permissions and IAM roles to use AWS DMS. If you are signed in as an
IAM user and want to use AWS DMS, your account administrator must attach the following policy to the

Version API Version 2016-01-01
39

AWS Database Migration Service User Guide
IAM Permissions Needed to Use AWS DMS

IAM user, group, or role that you use to run AWS DMS. For more information about IAM permissions,
see the IAM User Guide.

The following set of permissions gives you access to AWS DMS, and also permissions for certain
actions needed from other Amazon services such as AWS KMS, IAM, Amazon Elastic Compute Cloud
(Amazon EC2), and Amazon CloudWatch. CloudWatch monitors your AWS DMS migration in real time
and collects and tracks metrics that indicate the progress of your migration. You can use CloudWatch
Logs to debug problems with a task.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "dms:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:ListAliases",
 "kms:DescribeKey"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:PassRole",
 "iam:CreateRole",
 "iam:AttachRolePolicy"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVpcs",
 "ec2:DescribeInternetGateways",
 "ec2:DescribeAvailabilityZones",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "ec2:ModifyNetworkInterfaceAttribute"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:Get*",
 "cloudwatch:List*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [

Version API Version 2016-01-01
40

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html

AWS Database Migration Service User Guide
Creating the IAM Roles to Use With
the AWS CLI and AWS DMS API

 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams",
 "logs:FilterLogEvents",
 "logs:GetLogEvents"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "redshift:Describe*",
 "redshift:ModifyClusterIamRoles"
],
 "Resource": "*"
 }
]
}

The AWS DMS console creates several roles that are automatically attached to your AWS account
when you use the AWS DMS console. If you use the AWS Command Line Interface (AWS CLI)
or the AWS DMS API for your migration, you need to add these roles to your account. For more
information on adding these roles, see Creating the IAM Roles to Use With the AWS CLI and AWS
DMS API (p. 41).

Creating the IAM Roles to Use With the AWS CLI
and AWS DMS API

If you use the AWS CLI or the AWS DMS API for your database migration, you must add three IAM
roles to your AWS account before you can use the features of AWS DMS. Two of these are dms-vpc-
role and dms-cloudwatch-logs-role. If you use Amazon Redshift as a target database, you must
also add the IAM role dms-access-for-endpoint to your AWS account.

Updates to managed policies are automatic. If you are using a custom policy with the IAM roles, be
sure to periodically check for updates to the managed policy in this documentation. You can view the
details of the managed policy by using a combination of the get-policy and get-policy-version
commands.

For example, the following get-policy command retrieves information on the role.

 $ aws iam get-policy --policy-arn arn:aws:iam::aws:policy/service-
role/AmazonDMSVPCManagementRole

The information returned from the command is as follows.

 {
 "Policy": {
 "PolicyName": "AmazonDMSVPCManagementRole",
 "Description": "Provides access to manage VPC settings for AWS
 managed customer configurations",

Version API Version 2016-01-01
41

AWS Database Migration Service User Guide
Creating the IAM Roles to Use With
the AWS CLI and AWS DMS API

 "CreateDate": "2015-11-18T16:33:19Z",
 "AttachmentCount": 1,
 "IsAttachable": true,
 "PolicyId": "ANPAJHKIGMBQI4AEFFSYO",
 "DefaultVersionId": "v3",
 "Path": "/service-role/",
 "Arn": "arn:aws:iam::aws:policy/service-role/
AmazonDMSVPCManagementRole",
 "UpdateDate": "2016-05-23T16:29:57Z"
 }
 }

The following get-policy-version command retrieves policy information.

 $ aws iam get-policy-version --policy-arn arn:aws:iam::aws:policy/
service-role/AmazonDMSVPCManagementRole --version-id v3

The information returned from the command is as follows.

 {
 "PolicyVersion": {
 "CreateDate": "2016-05-23T16:29:57Z",
 "VersionId": "v3",
 "Document": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:DescribeAvailabilityZones",
 "ec2:DescribeInternetGateways",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "ec2:DeleteNetworkInterface",
 "ec2:ModifyNetworkInterfaceAttribute"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
 },
 "IsDefaultVersion": true
 }
 }

The same commands can be used to get information on the AmazonDMSCloudWatchLogsRole and
the AmazonDMSRedshiftS3Role managed policy.

Note
If you use the AWS DMS console for your database migration, these roles are added to your
AWS account automatically.

Version API Version 2016-01-01
42

AWS Database Migration Service User Guide
Creating the IAM Roles to Use With
the AWS CLI and AWS DMS API

The following procedures create the dms-vpc-role, dms-cloudwatch-logs-role, and dms-
access-for-endpoint IAM roles.

To create the dms-vpc-role IAM role for use with the AWS CLI or AWS DMS API

1. Create a JSON file with the IAM policy following. Name the JSON file
dmsAssumeRolePolicyDocument.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "dms.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Create the role using the AWS CLI using the following command.

aws iam create-role --role-name dms-vpc-role --assume-role-policy-document
 file://dmsAssumeRolePolicyDocument.json’

2. Attach the AmazonDMSVPCManagementRole policy to dms-vpc-role using the following
command.

aws iam attach-role-policy --role-name dms-vpc-role --policy-arn
 arn:aws:iam::aws:policy/service-role/AmazonDMSVPCManagementRole

To create the dms-cloudwatch-logs-role IAM role for use with the AWS CLI or AWS
DMS API

1. Create a JSON file with the IAM policy following. Name the JSON file
dmsAssumeRolePolicyDocument2.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "dms.amazonaws.com"
 },
 "Action": "sts:AssumeRole"

Version API Version 2016-01-01
43

AWS Database Migration Service User Guide
Creating the IAM Roles to Use With
the AWS CLI and AWS DMS API

 }
]
}

Create the role using the AWS CLI using the following command.

aws iam create-role --role-name dms-cloudwatch-logs-role --assume-role-
policy-document file://dmsAssumeRolePolicyDocument2.json’

2. Attach the AmazonDMSCloudWatchLogsRole policy to dms-cloudwatch-logs-role using the
following command.

aws iam attach-role-policy --role-name dms-cloudwatch-logs-role --policy-
arn arn:aws:iam::aws:policy/service-role/AmazonDMSCloudWatchLogsRole

If you use Amazon Redshift as your target database, you must create the IAM role dms-access-for-
endpoint to provide access to Amazon S3 (S3).

To create the dms-access-for-endpoint IAM role for use with Amazon Redshift as a
target database

1. Create a JSON file with the IAM policy following. Name the JSON file
dmsAssumeRolePolicyDocument3.json.

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "1",
 "Effect": "Allow",
 "Principal": {
 "Service": "dms.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 },
 {
 "Sid": "2",
 "Effect": "Allow",
 "Principal": {
 "Service": "redshift.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Version API Version 2016-01-01
44

AWS Database Migration Service User Guide
Setting an Encryption Key

2. Create the role using the AWS CLI using the following command.

 aws iam create-role --role-name dms-access-for-endpoint --assume-role-
policy-document file://dmsAssumeRolePolicyDocument3.json

3. Attach the AmazonDMSRedshiftS3Role policy to dms-access-for-endpoint role using the
following command.

 aws iam attach-role-policy --role-name dms-access-for-endpoint --policy-
arn
 arn:aws:iam::aws:policy/service-role/AmazonDMSRedshiftS3Role

You should now have the IAM policies in place to use the AWS CLI or AWS DMS API.

Setting an Encryption Key for AWS Database
Migration Service

AWS DMS encrypts the storage used by a replication instance and the endpoint connection
information. To encrypt the storage used by a replication instance, AWS DMS uses a master key that is
unique to your AWS account. You can view and manage this master key with AWS KMS. You can use
the default master key in your account (aws/dms) or a custom master key that you create. If you have
an existing KMS encryption key, you can also use that key for encryption.

You can specify your own encryption key by supplying a KMS key identifier to encrypt your AWS DMS
resources. When you specify your own encryption key, the user account used to perform the database
migration must have access to that key. For more information on creating your own encryption keys
and giving users access to an encryption key, see the KMS Developer Guide.

If you use a custom key and the IAM user account you are using for AWS DMS is not the key
administrator, you must either make the user account an administrator of that key or you must grant
permission to the IAM user account using the CreateGrant permission ("kms:CreateGrant"). For
more information about granting permissions to a key user, see Allows Key Users to Use the CMK.

If you don't specify a KMS key identifier, then AWS DMS uses your default encryption key. KMS
creates the default encryption key for AWS DMS for your AWS account. Your AWS account has a
different default encryption key for each AWS region.

To manage the keys used for encrypting your AWS DMS resources, you use KMS. You can find KMS
in the AWS Management Console by choosing Identity & Access Management on the console
home page and then choosing Encryption Keys on the navigation pane. KMS combines secure,
highly available hardware and software to provide a key management system scaled for the cloud.
Using KMS, you can create encryption keys and define the policies that control how these keys can
be used. KMS supports AWS CloudTrail, so you can audit key usage to verify that keys are being
used appropriately. Your KMS keys can be used in combination with AWS DMS and supported AWS
services such as Amazon RDS, Amazon Simple Storage Service (Amazon S3), and Amazon Elastic
Block Store (Amazon EBS).

Once you have created your AWS DMS resources with a specific encryption key, you cannot change
the encryption key for those resources. Make sure to determine your encryption key requirements
before you create your AWS DMS resources.

Version API Version 2016-01-01
45

http://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users

AWS Database Migration Service User Guide
Network Security for AWS Database Migration Service

Network Security for AWS Database Migration
Service

The security requirements for the network you create when using AWS Database Migration Service
depend on how you configure the network. The general rules for network security for AWS DMS are as
follows:

• The replication instance must have access to the source and target endpoints. The security group for
the replication instance must have network ACLs or rules that allow egress from the instance out on
the database port to the database endpoints.

• Database endpoints must include network ACLs and security group rules that allow incoming access
from the replication instance. You can achieve this using the replication instance's security group,
the private IP address, the public IP address, or the NAT gateway’s public address, depending on
your configuration.

• If your network uses a VPN Tunnel, the EC2 instance acting as the NAT Gateway must use a
security group that has rules that allow the replication instance to send traffic through it.

By default, the VPC security group used by the AWS DMS replication instance has rules that allow
egress to 0.0.0.0/0 on all ports. If you modify this security group or use your own security group, egress
must, at a minimum, be permitted to the source and target endpoints on the respective database ports.

The network configurations you can use for database migration each require specific security
considerations:

• Configuration with All Database Migration Components in One VPC (p. 12) — The security group
used by the endpoints must allow ingress on the database port from the replication instance. Ensure
that the security group used by the replication instance has ingress to the endpoints, or you can
create a rule in the security group used by the endpoints that allows the private IP address of the
replication instance access.

• Configuration with Two VPCs (p. 13) — The security group used by the replication instance must
have a rule for the VPC range and the DB port on the database.

• Configuration for a Network to a VPC Using AWS Direct Connect or a VPN (p. 13) — a VPN tunnel
allowing traffic to tunnel from the VPC into an on- premises VPN. In this configuration, the VPC
includes a routing rule that sends traffic destined for a specific IP address or range to a host that can
bridge traffic from the VPC into the on-premises VPN. If this case, the NAT host includes its own
Security Group settings that must allow traffic from the Replication Instance’s private IP address or
security group into the NAT instance.

• Configuration for a Network to a VPC Using the Internet (p. 14) — The VPC security group must
include routing rules that send traffic not destined for the VPC to the Internet gateway. In this
configuration, the connection to the endpoint appears to come from the public IP address on the
replication instance.

• Configuration with an Amazon RDS DB instance not in a VPC to a DB instance in a VPC Using
ClassicLink (p. 14) — When the source or target Amazon RDS DB instance is not in a VPC and does
not share a security group with the VPC where the replication instance is located, you can setup a
proxy server and use ClassicLink to connect the source and target databases.

• Source endpoint is outside the VPC used by the replication instance and uses a NAT gateway
— You can configure a network address translation (NAT) gateway using a single Elastic IP Address
bound to a single Elastic Network Interface, which then receives a NAT identifier (nat-#####). If the
VPC includes a default route to that NAT Gateway instead of the Internet Gateway, the replication
instance will instead appear to contact the Database Endpoint using the public IP address of the
Internet Gateway. In this case, the ingress to the Database Endpoint outside the VPC needs to allow
ingress from the NAT address instead of the Replication Instance’s public IP Address.

Version API Version 2016-01-01
46

AWS Database Migration Service User Guide
Using SSL With AWS Database Migration Service

Using SSL With AWS Database Migration Service
You can encrypt connections for source and target endpoints by using Secure Sockets Layer (SSL). To
do so, you can use the AWS DMS Management Console or AWS DMS API to assign a certificate to an
endpoint. You can also use the AWS DMS console to manage your certificates.

Note
An Amazon Redshift endpoint already uses an SSL connection and does not require an SSL
connection set up by AWS DMS.

Topics

• Managing Certificates (p. 48)

• Enabling SSL for a MySQL-compatible, PostsgreSQL, or SQL Server Endpoint (p. 48)

• SSL Support for an Oracle Endpoint (p. 50)

• Limitations on Using SSL with AWS Database Migration Service (p. 51)

To assign a certificate to an endpoint, you provide the root certificate or the chain of intermediate
CA certificates leading up to the root (as a certificate bundle), that was used to sign the server SSL
certificate that is deployed on your endpoint. Certificates are accepted as PEM formatted X509 files,
only. When you import a certificate, you receive an Amazon Resource Name (ARN) that you can use
to specify that certificate for an endpoint. If you use Amazon RDS, you can download the root CA
and certificate bundle provided by Amazon RDS at https://s3.amazonaws.com/rds-downloads/rds-
combined-ca-bundle.pem.

You can choose from several SSL modes to use for your SSL certificate verification.

• none – The connection is not encrypted. This option is not secure, but requires less overhead.

• require – The connection is encrypted. This option is more secure, and requires more overhead.

• verify-ca – The connection is encrypted. This option is more secure, and requires more overhead.
This option verifies the server certificate.

• verify-full – The connection is encrypted. This option is more secure, and requires more overhead.
This option verifies the server certificate and verifies that the server hostname matches the
hostname attribute for the certificate.

Not all SSL modes work with all database endpoints. The following table shows which SSL modes are
supported for each database engine.

SSL
Mode

MySQL/MariaDB/
Amazon Aurora

Microsoft
SQL
Server

PostgreSQL Amazon
Redshift

Oracle SAP ASE

none Default Default Default Default Default Default

require Not supported Supported Supported SSL not
enabled

Not
Supported

SSL not
enabled

verify-ca Supported Not
Supported

Not
supported

SSL not
enabled

Supported SSL not
enabled

verify-full Supported Supported Not
supported

SSL not
enabled

Not
Supported

SSL not
enabled

Version API Version 2016-01-01
47

https://s3.amazonaws.com/rds-downloads/rds-combined-ca-bundle.pem
https://s3.amazonaws.com/rds-downloads/rds-combined-ca-bundle.pem

AWS Database Migration Service User Guide
Managing Certificates

Managing Certificates
You can use the DMS console to view and manage your SSL certificates. You can also import your
certificates using the DMS console.

Enabling SSL for a MySQL-compatible,
PostsgreSQL, or SQL Server Endpoint
You can add an SSL connection to a newly created endpoint or to an existing endpoint.

To create an AWS DMS endpoint with SSL

1. Sign in to the AWS Management Console and choose AWS Database Migration Service.

Note
If you are signed in as an AWS Identity and Access Management (IAM) user, you must
have the appropriate permissions to access AWS DMS. For more information on the
permissions required for database migration, see IAM Permissions Needed to Use AWS
DMS (p. 39).

2. In the navigation pane, choose Certificates.

3. Choose Import Certificate.

4. Upload the certificate you want to use for encrypting the connection to an endpoint.

Note
You can also upload a certificate using the AWS DMS console when you create or modify
an endpoint by selecting Add new CA certificate on the Create database endpoint
page.

5. Create an endpoint as described in Step 3: Specify Database Endpoints (p. 26)

To modify an existing AWS DMS endpoint to use SSL:

1. Sign in to the AWS Management Console and choose AWS Database Migration Service.

Version API Version 2016-01-01
48

AWS Database Migration Service User Guide
Enabling SSL for a MySQL-compatible,
PostsgreSQL, or SQL Server Endpoint

Note
If you are signed in as an AWS Identity and Access Management (IAM) user, you must
have the appropriate permissions to access AWS DMS. For more information on the
permissions required for database migration, see IAM Permissions Needed to Use AWS
DMS (p. 39).

2. In the navigation pane, choose Certificates.

3. Choose Import Certificate.

4. Upload the certificate you want to use for encrypting the connection to an endpoint.

Note
You can also upload a certificate using the AWS DMS console when you create or modify
an endpoint by selecting Add new CA certificate on the Create database endpoint
page.

5. In the navigation pane, choose Endpoints, select the endpoint you want to modify, and choose
Modify.

6. Choose an SSL mode.

If you select either the verify-ca or verify-full mode, you must specify the CA certificate that you
want to use, as shown following.

7. Choose Modify.

8. When the endpoint has been modified, select the endpoint and choose Test connection to
determine if the SSL connection is working.

Version API Version 2016-01-01
49

AWS Database Migration Service User Guide
SSL Support for an Oracle Endpoint

After you create your source and target endpoints, create a task that uses these endpoints. For more
information on creating a task, see Step 4: Create a Task (p. 30).

SSL Support for an Oracle Endpoint
Oracle endpoints in AWS DMS support none and verify-ca SSL modes. To use SSL with an Oracle
endpoint, you must upload the Oracle wallet for the endpoint instead of .pem certificate files.

To use an existing Oracle client installation to create the Oracle wallet file from the CA certificate file,
do the following steps.

1. Set the ORACLE_HOME system variable to the location of your dbhome_1 directory by running
the following command:

prompt>export ORACLE_HOME=/home/user/app/user/product/12.1.0/dbhome_1

2. Append $ORACLE_HOME/lib to the LD_LIBRARY_PATH system variable.

prompt>export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ORACLE_HOME/lib

3. Create a directory for the Oracle wallet at $ORACLE_HOME/ssl_wallet.

prompt>mkdir $ORACLE_HOME/ssl_wallet

4. Put the CA certificate .pem file in the ssl_wallet directory. Amazon RDS customers can download
the RDS CA certificates file from https://s3.amazonaws.com/rds-downloads/rds-ca-2015-
root.pem.

5. Run the following commands to create the Oracle wallet:

prompt>orapki wallet create -wallet $ORACLE_HOME/ssl_wallet -
auto_login_only

prompt>orapki wallet add -wallet $ORACLE_HOME/ssl_wallet -trusted_cert –
cert
 $ORACLE_HOME/ssl_wallet/ca-cert.pem -auto_login_only

When you have completed the steps previous, you can import the wallet file with the ImportCertificate
API by specifying the certificate-wallet parameter. You can then use the imported wallet certificate
when you select verify-ca as the SSL mode when creating or modifying your Oracle endpoint.

Note
Oracle wallets are binary files. AWS DMS accepts these files as-is.

Version API Version 2016-01-01
50

https://s3.amazonaws.com/rds-downloads/rds-ca-2015-root.pem
https://s3.amazonaws.com/rds-downloads/rds-ca-2015-root.pem

AWS Database Migration Service User Guide
Limitations on Using SSL with

AWS Database Migration Service

Limitations on Using SSL with AWS Database
Migration Service
• SSL connections are currently not supported for SAP ASE endpoints.

• SSL connections to Amazon Redshift target endpoints are not supported. AWS DMS uses an S3
bucket to transfer data to the Redshift database. This transmission is encrypted by Amazon Redshift
by default.

• SQL timeouts can occur when performing CDC tasks with SSL-enabled Oracle endpoints.
If you have this issue, where CDC counters don't reflect the expected numbers, set the
MinimumTransactionSize parameter from the ChangeProcessingTuning section of task
settings to a lower value, starting with a value as low as 100. For more information about the
MinimumTransactionSize parameter, see Change Processing Tuning Settings (p. 91).

• Certificates can only be imported in the .PEM and .SSO (Oracle wallet) formats.

• If your server SSL certificate is signed by an intermediate CA, make sure the entire certificate chain
leading from the intermediate CA up to the root CA is imported as a single .PEM file.

• If you are using self-signed certificates on your server, choose require as your SSL mode. The
require SSL mode implicitly trusts the server’s SSL certificate and will not try to validate that the
certificate was signed by a CA.

Changing the Database Password
In most situations, changing the database password for your source or target endpoint is
straightforward. If you need to change the database password for an endpoint that you are currently
using in a migration or replication task, the process is slightly more complex. The procedure following
shows how to do this.

To change the database password for an endpoint in a migration or replication task

1. Sign in to the AWS Management Console and choose AWS DMS. Note that if you are signed in as
an AWS Identity and Access Management (IAM) user, you must have the appropriate permissions
to access AWS DMS. For more information on the permissions required, see IAM Permissions
Needed to Use AWS DMS (p. 39).

2. In the navigation pane, choose Tasks.

3. Choose the task that uses the endpoint you want to change the database password for, and then
choose Stop.

4. While the task is stopped, you can change the password of the database for the endpoint using
the native tools you use to work with the database.

5. Return to the DMS Management Console and choose Endpoints from the navigation pane.

6. Choose the endpoint for the database you changed the password for, and then choose Modify.

7. Type the new password in the Password box, and then choose Modify.

8. Choose Tasks from the navigation pane.

9. Choose the task that you stopped previously, and choose Start/Resume.

10. Choose either Start or Resume, depending on how you want to continue the task, and then
choose Start task.

Version API Version 2016-01-01
51

AWS Database Migration Service User Guide
Limits for AWS Database Migration Service

Limits for AWS Database Migration
Service

This topic describes the resource limits and naming constraints for AWS Database Migration Service
(AWS DMS).

The maximum size of a database that AWS DMS can migrate depends on your source environment,
the distribution of data in your source database, and how busy your source system is. The best way to
determine whether your particular system is a candidate for AWS DMS is to test it out. Start slowly so
you can get the configuration worked out, then add some complex objects, and finally, attempt a full
load as a test.

Limits for AWS Database Migration Service
Each AWS account has limits, per region, on the number of AWS DMS resources that can be created.
Once a limit for a resource has been reached, additional calls to create that resource will fail with an
exception.

The 6 TB limit for storage applies to the DMS replication instance. This storage is used to cache
changes if the target cannot keep up with the source and for storing log information. This limit does not
apply to the target size; target endpoints can be larger than 6 TB.

The following table lists the AWS DMS resources and their limits per region.

Resource Default Limit

Replication instances 20

Total amount of storage 6 TB

Replication subnet groups 20

Subnets per replication subnet group 20

Endpoints 100

Tasks 200

Endpoints per instance 20

Version API Version 2016-01-01
52

AWS Database Migration Service User Guide

Sources for Data Migration for AWS
Database Migration Service

AWS Database Migration Service (AWS DMS) can use many of the most popular databases as
a source for data replication. The source can be on an Amazon Elastic Compute Cloud (Amazon
EC2) instance, an Amazon Relational Database Service (Amazon RDS) instance, or an on-premises
database. The source databases include the following.

On-premises and Amazon EC2 instance databases

• Oracle versions 10.2 and later, 11g, and 12c, for the Enterprise, Standard, Standard One, and
Standard Two editions

• Microsoft SQL Server versions 2005, 2008, 2008R2, 2012, and 2014, for the Enterprise, Standard,
Workgroup, and Developer editions. The Web and Express editions are not supported.

• MySQL versions 5.5, 5.6, and 5.7

• MariaDB (supported as a MySQL-compatible data source)

• PostgreSQL 9.3 and later

• SAP Adaptive Server Enterprise (ASE) 15.7 and later

Amazon RDS instance databases

• Oracle versions 11g (versions 11.2.0.3.v1 and later), and 12c, for the Enterprise, Standard, Standard
One, and Standard Two editions

• Microsoft SQL Server versions 2008R2, 2012, and 2014, for the Enterprise and Standard editions.
Note that change data capture (CDC) operations are not supported. The Web, Workgroup,
Developer, and Express editions are not supported.

• MySQL versions 5.5, 5.6, and 5.7

• PostgreSQL 9.4

• MariaDB (supported as a MySQL-compatible data source)

• Amazon Aurora (supported as a MySQL-compatible data source)

Topics

• Using an Oracle Database as a Source for AWS Database Migration Service (p. 54)

• Using a Microsoft SQL Server Database as a Source for AWS Database Migration
Service (p. 61)

Version API Version 2016-01-01
53

AWS Database Migration Service User Guide
Using Oracle as a Source

• Using a PostgreSQL Database as a Source for AWS Database Migration Service (p. 65)

• Using a MySQL-Compatible Database as a Source for AWS Database Migration Service (p. 71)

• Using a SAP ASE Database as a Source for AWS Database Migration Service (p. 73)

Using an Oracle Database as a Source for AWS
Database Migration Service

You can migrate data from one or many Oracle databases using AWS Database Migration Service
(AWS DMS). With an Oracle database as a source, you can migrate data to either another Oracle
database or one of the other supported databases.

AWS DMS supports as a migration source all Oracle database editions for versions 10.2 and later,
11g, and 12c on an on-premises or EC2 instance, and all Oracle database editions for versions 11g
(versions 11.2.0.3.v1 and later) and 12c for an Amazon RDS DB instance. An Oracle account with the
specific access privileges is required.

You can use SSL to encrypt connections between your Oracle endpoint and the replication instance.
For more information on using SSL with an Oracle endpoint, see Using SSL With AWS Database
Migration Service (p. 47).

If you plan to use change data capture (CDC) from your Oracle database, you need to set up
supplemental logging. For information on setting up supplemental logging, see Configuring an Oracle
Database as a Source for AWS Database Migration Service (p. 58).

For additional details on working with Oracle databases and AWS DMS, see the following sections.

Topics

• Using Oracle LogMiner or Oracle Binary Reader for Change Data Capture (CDC) (p. 54)

• Limitations on Using Oracle as a Source for AWS Database Migration Service (p. 56)

• Supported Compression Methods (p. 57)

• User Account Privileges Required for Using Oracle as a Source for AWS Database Migration
Service (p. 57)

• Configuring an Oracle Database as a Source for AWS Database Migration Service (p. 58)

Using Oracle LogMiner or Oracle Binary Reader for
Change Data Capture (CDC)
Oracle offers two methods for reading the logs when doing change processing: Oracle LogMiner and
Oracle Binary Reader.

By default, AWS DMS uses Oracle LogMiner for change data capture (CDC). Alternatively, you can
choose to use the Oracle Binary Reader. The Oracle Binary Reader bypasses LogMiner and reads the
logs directly. To enable the Binary Reader you need to modify your source connection to include the
following extra connection parameters:

useLogminerReader=N; useBfile=Y

To use LogMiner or Binary Reader, you must set the correct permissions. For information on setting
these permissions, see the following section, Access Privileges Required for Change Data Capture
(CDC) on an Oracle Source Database (p. 55)

The advantages to using LogMiner with AWS DMS, instead of Binary Reader, include the following:

Version API Version 2016-01-01
54

AWS Database Migration Service User Guide
Using Oracle LogMiner or Oracle Binary
Reader for Change Data Capture (CDC)

• LogMiner supports most Oracle options, such as encryption options and compression options. Binary
Reader doesn't support all Oracle options, in particular options for encryption and compression.

• LogMiner offers a simpler configuration, especially compared to Oracle Binary Reader's direct
access setup or if the redo logs are on Automatic Storage Management (ASM).

• LogMiner can be used with Oracle sources that use Oracle transparent data encryption (TDE).

The advantages to using Binary Reader with AWS DMS, instead of LogMiner, include the following:

• For migrations with a high volume of changes, LogMiner might have some I/O or CPU impact on the
computer hosting the Oracle source database. Binary Reader has less chance of having I/O or CPU
impact.

• For migrations with a high volume of changes, CDC performance is usually much better when using
Binary Reader compared with using Oracle LogMiner.

• Binary Reader supports CDC for LOBS in Oracle version 12c. LogMiner does not.

In general, use Oracle LogMiner for migrating your Oracle database unless you have one of the
following situations:

• You need to run several migration tasks on the source Oracle database.

• The volume of changes or the REDO log volume on the source Oracle database is large.

• You need to propagate changes to LOBs in Oracle 12c.

Access Privileges Required for Change Data Capture (CDC)
on an Oracle Source Database

The access privileges required depend on whether you use Oracle LogMiner or Oracle Binary Reader
for CDC.

The following privileges must be granted to the user account used for data migration when using
Oracle LogMiner for change data capture (CDC) with an Oracle source database:

For Oracle versions prior to version 12c, grant the following:

• CREATE SESSION

• EXECUTE on DBMS_LOGMNR

• SELECT on V_$LOGMNR_LOGS

• SELECT on V_$LOGMNR_CONTENTS

For Oracle versions 12c and higher, grant the following:

• LOGMINING (for example, GRANT LOGMINING TO <user account>)

The following privileges must be granted to the user account used for data migration when using
Oracle Binary Reader for change data capture (CDC) with an Oracle source database:

• SELECT on v_$transportable_platform

Grant the SELECT on v_$transportable_platform privilege if the Redo logs are stored in Automatic
Storage Management (ASM) and accessed by AWS DMS from ASM.

• BFILE read - Used when AWS DMS does not have file-level access to the Redo logs, and the Redo
logs are not accessed from ASM.

Version API Version 2016-01-01
55

AWS Database Migration Service User Guide
Limitations on Oracle as a Source

• DBMS_FILE_TRANSFER package - Used to copy the Redo log files to a temporary folder (in which
case the EXECUTE ON DBMS_FILE_TRANSFER privilege needs to be granted as well)

• DBMS_FILE_GROUP package - Used to delete the Redo log files from a temporary/alternate folder
(in which case the EXECUTE ON DBMS_FILE_ GROUP privilege needs to be granted as well).

• CREATE ANY DIRECTORY

Oracle file features work together with Oracle directories. Each Oracle directory object includes the
name of the folder containing the files which need to be processed.

If you want AWS DMS to create and manage the Oracle directories, you need to grant the CREATE
ANY DIRECTORY privilege specified above. Note that the directory names will be prefixed with
amazon_. If you do not grant this privilege, you need to create the corresponding directories manually.
If you create the directories manually and the Oracle user specified in the Oracle Source endpoint is
not the user that created the Oracle Directories, grant the READ on DIRECTORY privilege as well.

If the Oracle source endpoint is configured to copy the Redo log files to a temporary folder, and the
Oracle user specified in the Oracle source endpoint is not the user that created the Oracle directories,
the following additional privileges are required:

• READ on the Oracle directory object specified as the source directory

• WRITE on the directory object specified as the destination directory in the copy process.

Limitations for Change Data Capture (CDC) on an Oracle
Source Database
The following limitations apply when using an Oracle database as a source for AWS Database
Migration Service (AWS DMS) change data capture.

• Oracle LogMiner, which AWS DMS uses for change data capture (CDC), doesn't support updating
large binary objects (LOBs) when the UPDATE statement updates only LOB columns.

• For Oracle 11, Oracle LogMiner doesn't support the UPDATE statement for XMLTYPE and LOB
columns.

• On Oracle 12c, LogMiner does not support LOB columns.

• AWS DMS doesn't capture changes made by the Oracle DBMS_REDEFINITION package, such as
changes to table metadata and the OBJECT_ID value.

• AWS DMS doesn't support index-organized tables with an overflow segment in change data capture
(CDC) mode when using BFILE. An example is when you access the redo logs without using
LogMiner.

• AWS DMS doesn't support table clusters when you use Oracle Binary Reader.

• AWS DMS cannot capture changes from redo logs larger than 4 GB.

Limitations on Using Oracle as a Source for AWS
Database Migration Service
The following limitations apply when using an Oracle database as a source for AWS Database
Migration Service (AWS DMS). If you are using Oracle LogMiner or Oracle Binary Reader for change
data capture (CDC), see Limitations for Change Data Capture (CDC) on an Oracle Source Database
 (p. 56) for additional limitations.

• AWS DMS supports Oracle transparent data encryption (TDE) tablespace encryption and AWS Key
Management Service (AWS KMS) encryption when used with Oracle LogMiner. All other forms of
encryption are not supported.

Version API Version 2016-01-01
56

AWS Database Migration Service User Guide
Supported Compression Methods

• AWS DMS supports the rename table <table name> to <new table name> syntax with
Oracle version 11 and higher.

• Oracle source databases columns created using explicit CHAR Semantics are transferred to a target
Oracle database using BYTE semantics. You must create tables containing columns of this type on
the target Oracle database before migrating.

• AWS DMS doesn't replicate data changes resulting from partition or subpartition operations (ADD,
DROP, EXCHANGE, and TRUNCATE). To replicate such changes, you need to reload the table
being replicated. AWS DMS replicates any future data changes to newly added partitions without
your needing to reload the table again. However, UPDATE operations on old data records in these
partitions fail and generate a 0 rows affected warning.

• The data definition language (DDL) statement ALTER TABLE ADD <column> <data_type>
DEFAULT <> doesn't replicate the default value to the target, and the new column in the target is
set to NULL. If the new column is nullable, Oracle updates all the table rows before logging the DDL
itself. As a result, AWS DMS captures the changes to the counters but doesn't update the target.
Because the new column is set to NULL, if the target table has no primary key or unique index,
subsequent updates generate a 0 rows affected warning.

• Data changes resulting from the CREATE TABLE AS statement are not supported. However, the new
table is created on the target.

• When limited-size LOB mode is enabled, AWS DMS replicates empty LOBs on the Oracle source as
NULL values in the target.

• When AWS DMS begins CDC, it maps a timestamp to the Oracle system change number (SCN). By
default, Oracle keeps only five days of the timestamp to SCN mapping. Oracle generates an error if
the timestamp specified is too old (greater than the five day retention). For more information, see the
Oracle documentation.

Supported Compression Methods
AWS Database Migration Service supports all compression methods supported by LogMiner.

User Account Privileges Required for Using Oracle
as a Source for AWS Database Migration Service
To use an Oracle database as a source in an AWS DMS task, the user specified in the AWS
DMS Oracle database definitions must be granted the following privileges in the Oracle
database. To grant privileges on Oracle databases on Amazon RDS, use the stored procedure
rdsadmin.rdsadmin_util.grant_sys_object. For more information, see Granting SELECT or
EXECUTE privileges to SYS Objects.

Note
When granting privileges, use the actual name of objects (for example, V_$OBJECT including
the underscore), not the synonym for the object (for example, V$OBJECT without the
underscore).

• SELECT ANY TRANSACTION

• SELECT on V_$ARCHIVED_LOG

• SELECT on V_$LOG

• SELECT on V_$LOGFILE

• SELECT on V_$DATABASE

• SELECT on V_$THREAD

• SELECT on V_$PARAMETER

• SELECT on V_$NLS_PARAMETERS

• SELECT on V_$TIMEZONE_NAMES

Version API Version 2016-01-01
57

https://docs.oracle.com/cd/E11882_01/server.112/e41084/functions195.htm#SQLRF06326
https://docs.oracle.com/cd/E11882_01/server.112/e41084/functions195.htm#SQLRF06326
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.html#Appendix.Oracle.CommonDBATasks.TransferPrivileges
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.html#Appendix.Oracle.CommonDBATasks.TransferPrivileges

AWS Database Migration Service User Guide
Configuring Oracle as a Source

• SELECT on V_$TRANSACTION

• SELECT on ALL_INDEXES

• SELECT on ALL_OBJECTS

• SELECT on DBA_OBJECTS (required if the Oracle version is earlier than 11.2.0.3)

• SELECT on ALL_TABLES

• SELECT on ALL_USERS

• SELECT on ALL_CATALOG

• SELECT on ALL_CONSTRAINTS

• SELECT on ALL_CONS_COLUMNS

• SELECT on ALL_TAB_COLS

• SELECT on ALL_IND_COLUMNS

• SELECT on ALL_LOG_GROUPS

• SELECT on SYS.DBA_REGISTRY

• SELECT on SYS.OBJ$

• SELECT on DBA_TABLESPACES

• SELECT on ALL_TAB_PARTITIONS

• SELECT on ALL_ENCRYPTED_COLUMNS

For the requirements specified following, grant the additional privileges named:

• If views are exposed, grant SELECT on ALL_VIEWS.

• When you use a specific table list, for each replicated table grant SELECT.

• When you use a pattern for a specific table list, grant SELECT ANY TABLE.

• When you add supplemental logging, grant ALTER ANY TABLE.

• When you add supplemental logging and you use a specific table list, grant ALTER for each
replicated table.

Configuring an Oracle Database as a Source for
AWS Database Migration Service
Before using an Oracle database as a data migration source, you need to perform several tasks. For
an Oracle database on Amazon RDS, see the following section. For an Oracle database on premises
or on an Amazon EC2 instance, you should do the following:

• Provide Oracle Account Access – You must provide an Oracle user account for AWS Database
Migration Service. The user account must have read/write privileges on the Oracle database, as
specified in User Account Privileges Required for Using Oracle as a Source for AWS Database
Migration Service (p. 57).

• Ensure that ARCHIVELOG Mode Is On – Oracle can run in two different modes, the ARCHIVELOG
mode and the NOARCHIVELOG mode. To use Oracle with AWS Database Migration Service, the
database in question must be in ARCHIVELOG mode.

• Set Up Supplemental Logging – The following steps, required only when using change
data capture (CDC), show how to set up supplemental logging for an Oracle database. For
information on setting up supplemental logging on a database on an Amazon RDS DB instance,
see Configuring Oracle on an Amazon RDS DB Instance as a Source for AWS Database Migration
Service (p. 60).

To set up supplemental logging for an Oracle database

1. Determine if supplemental logging is enabled for the database:

Version API Version 2016-01-01
58

AWS Database Migration Service User Guide
Configuring Oracle as a Source

• Run the following query:

SELECT name, value, description FROM v$parameter WHERE
name = 'compatible';

The return result should be from GE to 9.0.0.

• Run the following query:

SELECT supplemental_log_data_min FROM v$database;

The returned result should be YES or IMPLICIT.

• Enable supplemental logging by running the following query:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA

2. Make sure that the required supplemental logging is added for each table:

• If a primary key exists, supplemental logging must be added for the primary key, either by
using the format to add supplemental logging on the primary key or by adding supplemental
logging on the primary key columns.

• If no primary key exists and the table has a single unique index, then all of the unique index’s
columns must be added to the supplemental log. Using SUPPLEMENTAL LOG DATA (UNIQUE
INDEX) COLUMNS doesn't add the unique index columns to the log.

• If no primary key exists and the table has multiple unique indexes, AWS DMS selects the
first unique index. AWS DMS uses the first index in an alphabetically ordered ascending list
in this case. Supplemental logging must be added on the selected index's columns. Using
SUPPLEMENTAL LOG DATA (UNIQUE INDEX) COLUMNS doesn't add the unique index
columns to the log.

• If there is no primary key and no unique index, supplemental logging must be added on all
columns.

When the target table primary key or unique index is different than the source table primary
key or unique index, you should add supplemental logging manually on the source table
columns that make up the target table primary key or unique index.

• If you change the target table primary key, you should add supplemental logging on the
selected index's columns, instead of the columns of the original primary key or unique index.

3. Perform additional logging if necessary, for example if a filter is defined for a table.

If a table has a unique index or a primary key, you need to add supplemental logging on each
column that is involved in a filter if those columns are different than the primary key or unique
index columns. However, if ALL COLUMNS supplemental logging has been added to the table,
you don't need to add any additional logging.

ALTER TABLE EXAMPLE.TABLE ADD SUPPLEMENTAL LOG GROUP example_log_group
 (ID,NAME)
ALWAYS;

Version API Version 2016-01-01
59

AWS Database Migration Service User Guide
Configuring Oracle as a Source

Note
You can also turn on supplemental logging using a connection attribute. If you use this
option, you still need to enable supplemental logging at the database level using the
following statement:

 ALTER DATABASE ADD SUPPLEMENTAL LOG DATA

For more information on setting a connection attribute, see Oracle (p. 159)

Configuring Oracle on an Amazon RDS DB Instance as a
Source for AWS Database Migration Service

Using an Oracle database on an Amazon RDS DB instance as a data migration source requires
several settings on the DB instance, including the following:

• Set Up Supplemental Logging – AWS DMS requires database-level supplemental logging to be
enabled. To enable database-level supplemental logging, run the following command:

exec rdsadmin.rdsadmin_util.alter_supplemental_logging('ADD');

Note
You can also turn on supplemental logging using a connection attribute. If you use this
option, you still need to enable supplemental logging at the database level using the
following statement:

 exec rdsadmin.rdsadmin_util.alter_supplemental_logging('ADD');

For more information on setting a connection attribute, see Oracle (p. 159)

In addition to running this command, we recommend that you turn on PRIMARY KEY logging at the
database level to enable change capture for tables that have primary keys. To turn on PRIMARY
KEY logging, run the following command:

exec rdsadmin.rdsadmin_util.alter_supplemental_logging('ADD','PRIMARY KEY');

If you want to capture changes for tables that don't have primary keys, you should alter the table to
add supplemental logging using the following command:

alter table table_name add supplemental log data (ALL) columns;

Version API Version 2016-01-01
60

AWS Database Migration Service User Guide
Using SQL Server as a Source

Additionally, when you create new tables without specifying a primary key, you should either include
a supplemental logging clause in the create statement or alter the table to add supplemental logging.
The following command creates a table and adds supplemental logging:

create table table_name(column data type, supplemental log data(ALL)
 columns);

If you create a table and later add a primary key, you need to add supplemental logging to the table.
The following command alters the table to include supplemental logging:

alter table table_name add supplemental log data (PRIMARY KEY) columns;

• Enable Automatic Backups – For information on setting up automatic backups, see the Amazon
RDS User Guide.

• Set Up Archiving – To retain archived redo logs of your Oracle database instance, which lets AWS
DMS retrieve the log information using LogMiner, execute the following command. In this example,
logs are kept for 24 hours.

exec rdsadmin.rdsadmin_util.set_configuration('archivelog retention
 hours',24);

Make sure that your storage has sufficient space for the archived redo logs during the specified
period.

Using a Microsoft SQL Server Database as a
Source for AWS Database Migration Service

You can migrate data from one or many Microsoft SQL Server databases using AWS Database
Migration Service (AWS DMS). With a SQL Server database as a source, you can migrate data to
either another SQL Server database or one of the other supported databases.

AWS DMS supports, as a source, on-premises and Amazon EC2 instance databases for Microsoft
SQL Server versions 2005, 2008, 2008R2, 2012, and 2014. The Enterprise, Standard, Workgroup, and
Developer editions are supported. The Web and Express editions are not supported.

AWS DMS supports, as a source, Amazon RDS DB instance databases for SQL Server versions
2008R2, 2012, and 2014. The Enterprise and Standard editions are supported. Change data capture
(CDC) is not supported for source databases on Amazon RDS. The Web, Workgroup, Developer, and
Express editions are not supported.

You can have the source SQL Server database installed on any computer in your network. A SQL
Server account with access privileges to the database is required for use with AWS DMS.

Version API Version 2016-01-01
61

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html

AWS Database Migration Service User Guide
SQL Server Limitations

You can use SSL to encrypt connections between your SQL Server endpoint and the replication
instance. For more information on using SSL with a SQL Server endpoint, see Using SSL With AWS
Database Migration Service (p. 47).

To capture changes from a source SQL Server database, it must be configured for full backups and
must be either the Enterprise or Standard Edition. For a list of requirements and limitations when using
CDC with SQL Server, see Special Limitations When Capturing Data Changes (CDC) from a SQL
Server Source (p. 63).

For additional details on working with SQL Server source databases and AWS DMS, see the following.

Topics

• General Limitations on Using SQL Server as a Source for AWS Database Migration
Service (p. 62)

• Special Limitations When Capturing Data Changes (CDC) from a SQL Server Source (p. 63)

• Supported Compression Methods (p. 63)

• Working with Microsoft SQL Server AlwaysOn Availability Groups (p. 64)

• Configuring Microsoft SQL Server Database as a Replication Source for AWS Database Migration
Service (p. 64)

• Using MS-Replication to capture data changes in Microsoft SQL Server (p. 64)

• Using MS-CDC to capture data changes in Microsoft SQL Server (p. 65)

• If you cannot use MS-Replication nor MS-CDC (p. 65)

General Limitations on Using SQL Server as a
Source for AWS Database Migration Service
The following limitations apply when using a SQL Server database as a source for AWS DMS:

• The identify property for a column is not migrated to a target database column.

• Changes to rows with more than 8000 bytes of information, including header and mapping
information, are not processed correctly due to limitations in the SQL Server TLOG buffer size.

• The Microsoft SQL Server endpoint does not support the use of sparse tables.

• The AWS DMS user account must have the sysAdmin fixed server role on the Microsoft SQL
Server database you are connecting to. A Microsoft SQL Server system administrator must provide
this permission for all AWS DMS users.

• Windows Authentication is not supported.

• Changes to computed fields in a Microsoft SQL Server are not replicated.

• Microsoft SQL Server partition switching is not supported.

• A clustered index on the source will be created as a non-clustered index on target.

• When using the WRITETEXT and UPDATETEXT utilities, AWS DMS does not capture events
applied on the source database.

• The following data manipulation language (DML) pattern is not supported:

SELECT <*> INTO <new_table> FROM <existing_table>

• When using Microsoft SQL Server as a source, column-level encryption is not supported.

• Due to a known issue with Microsoft SQL Server 2008, AWS Database Migration Service doesn't
support server level audits on Microsoft SQL Server 2008 as a source endpoint.

Version API Version 2016-01-01
62

AWS Database Migration Service User Guide
SQL Server CDC Limitations

For example, running the following command causes AWS Database Migration Service to fail:

USE [master]
GO
ALTER SERVER AUDIT [my_audit_test-20140710] WITH (STATE=on)
GO

Special Limitations When Capturing Data Changes
(CDC) from a SQL Server Source
The following limitations apply specifically when trying to capture changes from a SQL Server database
as a source for AWS DMS:

• You must use either the Enterprise, Standard, or Developer Edition.

• SQL Server must be configured for full backups and a backup must be made before beginning to
replicate data.

• Recovery Model must be set to Bulk logged or Full.

• Microsoft SQL Server backup to multiple disks is not supported.

• Microsoft SQL Server Replication Publisher definitions for the source database used in a DMS CDC
task are not removed when you remove a task. A Microsoft SQL Server system administrator must
delete these definitions from Microsoft SQL Server.

• SQL Server does not capture changes on newly created tables until they have been published.
When tables are added to a SQL Server source, AWS DMS manages the creation of the publication.
However, this process might take several minutes. Operations made to newly created tables during
this delay will not be captured or replicated to the target.

• The AWS DMS user account must have the sysAdmin fixed server role on the Microsoft SQL
Server database you are connecting to.

• AWS DMS change data capture requires FULLOGGING to be turned on in SQL Server; the only way
to turn on FULLLOGGING in SQL Server is to either enable MS-REPLICATION or CHANGE DATA
CAPTURE (CDC).

• The SQL Server tlog cannot be reused until the changes have been processed

• CDC operations are not supported on memory optimized tables. This limitation applies to Microsoft
SQL Server 2014 (when the feature was first introduced) and above.

Supported Compression Methods
The following table shows the compression methods AWS DMS supports for each Microsoft SQL
Server version.

Microsoft SQL Server
Version

Row/Page Compression (at
Partition Level)

Vardecimal Storage Format

2005 No No

2008 Yes No

2012 Yes No

Version API Version 2016-01-01
63

AWS Database Migration Service User Guide
Working with Microsoft SQL Server

AlwaysOn Availability Groups

Microsoft SQL Server
Version

Row/Page Compression (at
Partition Level)

Vardecimal Storage Format

2014 Yes No

Note
Sparse columns and columnar structure compression are not supported.

Working with Microsoft SQL Server AlwaysOn
Availability Groups
The Microsoft SQL Server AlwaysOn Availability Groups feature is a high-availability and disaster-
recovery solution that provides an enterprise-level alternative to database mirroring.

To use AlwaysOn Availability Groups as a source in AWS DMS, do the following:

• Enable the Distribution option on all Microsoft SQL Server instances in your Availability Replicas.

• In the AWS DMS console, open the Microsoft SQL Server source database settings. For Server
Name, specify the Domain Name Service (DNS) name or IP address that was configured for the
Availability Group Listener.

When you start an AWS Database Migration Service task for the first time, it might take longer than
usual to start because the creation of the table articles is being duplicated by the Availability Groups
Server.

Configuring Microsoft SQL Server Database as a
Replication Source for AWS Database Migration
Service
For the most complete replication of changes you must use either the Enterprise, Standard or
Developer editions of Microsoft SQL Server. These versions are required as they are the only versions
that include MS-Replication(EE,SE) or MS-CDC(EE,DEV). The source SQL Server must also be
configured for full backups. In addition DMS must connect with a user that has the sysAdmin fixed
server role on the Microsoft SQL Server database you are connecting to. Following, you can find
information about configuring SQL Server as a replication source for AWS DMS.

Using MS-Replication to capture data changes in
Microsoft SQL Server
To use MS-REPLICATION to replicate changes, each source table must have a primary key. If a
source table does not have a primary key, you can use MS-CDC for capturing changes. If you have
not previously enabled MS-REPLICATION, you must enable your SQL Server database to use MS-
REPLICATION. To enable MS-REPLICATION, follow the steps following or see the Microsoft SQL
Server documentation . Please note that setting up MS_REPLICATION will add a new SYSTEM
Database called Distribution to your source SQL Server database.

To open the Configure Distribution wizard from Microsoft SQL Server

1. In Microsoft SQL Server Management Studio, open the context (right-click) menu for the
Replication folder, and then choose Configure Distribution.

Version API Version 2016-01-01
64

https://msdn.microsoft.com/en-us/library/ms151772.aspx
https://msdn.microsoft.com/en-us/library/ms151772.aspx

AWS Database Migration Service User Guide
Using MS-CDC to capture data

changes in Microsoft SQL Server

2. In the Distributor step, select <Microsoft SQL Server Name> will act as its own distributor.
SQL Server will create a distribution database and log.

Using MS-CDC to capture data changes in Microsoft
SQL Server
If you need to replicate tables that don't have a primary key, the Use MS-CDC and Do Not Use MS-
Replication or MS-CDC options are available, as described following.

Important
Replicating tables that don't have a primary key or a unique index can adversely affect
performance, because additional database resources are required to capture the changes.
However, you can prevent performance issues related to the absence of primary keys or a
unique index by manually adding indexes to the target tables.

Note
SQL Server might not delete tlog entries. Log entries are not reused unless they are replicated
and backed up.

Setting Up MS-CDC

To set up MS-CDC, you first need to enable MS-CDC for the database by running the following
command:

use [DBname]
EXEC sys.sp_cdc_enable_db

Next, you need to enable MS-CDC for each of the source tables by running the following command:

EXECUTE sys.sp_cdc_enable_table @source_schema = N'MySchema', @source_name =
N'MyTable', @role_name = NULL;

For more information on setting up MS-CDC for specific tables, see the Microsoft SQL Server
documentation.

If you cannot use MS-Replication nor MS-CDC
If your database is not set up for MS-REPLICATION or MS-CDC, you can still capture tables. However,
such a setup only INSERT and DELETE DML events are captured; UPDATE and TRUNCATE TABLE
events are ignored.

Also note that a DELETE statement executed on an UPDATED source record will not be applied on the
target.

Using a PostgreSQL Database as a Source for
AWS Database Migration Service

You can migrate data from one or many PostgreSQL databases using AWS Database Migration
Service (AWS DMS). With a PostgreSQL database as a source, you can migrate data to either another

Version API Version 2016-01-01
65

https://msdn.microsoft.com/en-us/library/cc627369.aspx
https://msdn.microsoft.com/en-us/library/cc627369.aspx

AWS Database Migration Service User Guide
Prerequisites for PostgreSQL as a Source

PostgreSQL database or one of the other supported databases. AWS DMS supports a PostgreSQL
version 9.4 database as a source for on-premises databases, databases on an EC2 instance, and
databases on an Amazon RDS DB instance.

You can use SSL to encrypt connections between your PostgreSQL endpoint and the replication
instance. For more information on using SSL with a PostgreSQL endpoint, see Using SSL With AWS
Database Migration Service (p. 47).

AWS DMS supports change data capture (CDC) for PostgreSQL tables with primary keys; if a table
does not have a primary key, the WAL logs do not include a before image of the database row and
AWS DMS cannot update the table.

AWS DMS supports CDC on Amazon RDS PostgreSQL databases when the DB instance is configured
to use logical replication. Amazon RDS supports logical replication for a PostgreSQL DB instance
version 9.4.9 and higher and 9.5.4 and higher.

For additional details on working with PostgreSQL databases and AWS DMS, see the following
sections.

Topics

• Prerequisites for Using a PostgreSQL Database as a Source for AWS Database Migration
Service (p. 66)

• Security Requirements When Using a PostgreSQL Database as a Source for AWS Database
Migration Service (p. 67)

• Limitations on Using a PostgreSQL Database as a Source for AWS Database Migration
Service (p. 67)

• Setting Up an Amazon RDS PostgreSQL DB Instance as a Source (p. 68)

• Removing AWS Database Migration Service Artifacts from a PostgreSQL Source
Database (p. 70)

• Additional Configuration Settings When Using a PostgreSQL Database as a Source for AWS
Database Migration Service (p. 70)

Prerequisites for Using a PostgreSQL Database as
a Source for AWS Database Migration Service
For a PostgreSQL database to be a source for AWS DMS, you should do the following:

• Use a PostgreSQL database that is version 9.4.x or later.

• Grant superuser permissions for the user account specified for the PostgreSQL source database.

• Add the IP address of the AWS DMS replication server to the pg_hba.conf configuration file.

• Set the following parameters and values in the postgresql.conf configuration file:

• Set wal_level = logical

• Set max_replication_slots >=1

The max_replication_slots value should be set according to the number of tasks that you
want to run. For example, to run five tasks you need to set a minimum of five slots. Slots open
automatically as soon as a task starts and remain open even when the task is no longer running.
You need to manually delete open slots.

• Set max_wal_senders >=1

The max_wal_senders parameter sets the number of concurrent tasks that can run.

• Set wal_sender_timeout =0

Version API Version 2016-01-01
66

AWS Database Migration Service User Guide
Security Requirements for PostgreSQL as a Source

The wal_sender_timeout parameter terminates replication connections that are inactive longer
than the specified number of milliseconds. Although the default is 60 seconds, we recommend that
you set this parameter to zero, which disables the timeout mechanism.

Security Requirements When Using a PostgreSQL
Database as a Source for AWS Database Migration
Service
The only security requirement when using PostgreSQL as a source is that the user account specified
must be a registered user in the PostgreSQL database.

Limitations on Using a PostgreSQL Database as a
Source for AWS Database Migration Service
The following change data capture (CDC) limitations apply when using PostgreSQL as a source for
AWS DMS:

• A captured table must have a primary key. If a table doesn't have a primary key, AWS DMS ignores
DELETE and UPDATE record operations for that table.

• AWS DMS ignores an attempt to update a primary key segment. In these cases, the target identifies
the update as one that didn't update any rows and that results in a record written to the exceptions
table.

• AWS DMS doesn't support the Start Process Changes from Timestamp run option.

• AWS DMS supports full load and change processing on Amazon RDS for PostgreSQL. For
information on how to prepare a PostgreSQL DB instance and to set it up for using CDC, see Setting
Up an Amazon RDS PostgreSQL DB Instance as a Source (p. 68).

• AWS DMS doesn't map some PostgreSQL data types, including the JSON data type. The JSON is
converted to CLOB.

• Replication of multiple tables with the same name but where each name has a different case (for
example table1, TABLE1, and Table1) can cause unpredictable behavior, and therefore AWS DMS
doesn't support it.

• AWS DMS supports change processing of CREATE, ALTER, and DROP DDL statements for tables
unless the tables are held in an inner function or procedure body block or in other nested constructs.

For example, the following change is not captured:

CREATE OR REPLACE FUNCTION attu.create_distributors1() RETURNS void
LANGUAGE plpgsql
AS $$
BEGIN
create table attu.distributors1(did serial PRIMARY KEY,name
varchar(40) NOT NULL);
END;
$$;

• AWS DMS doesn't support change processing of TRUNCATE operations.

• AWS DMS doesn't support replication of partitioned tables. When a partitioned table is detected, the
following occurs:

• The endpoint reports a list of parent and child tables.

Version API Version 2016-01-01
67

AWS Database Migration Service User Guide
Setting Up an Amazon RDS

PostgreSQL DB Instance as a Source

• AWS DMS creates the table on the target as a regular table with the same properties as the
selected tables.

• If the parent table in the source database has the same primary key value as its child tables, a
“duplicate key” error is generated.

Note
To replicate partitioned tables from a PostgreSQL source to a PostgreSQL target, you first
need to manually create the parent and child tables on the target. Then you define a separate
task to replicate to those tables. In such a case, you set the task configuration to Truncate
before loading.

Setting Up an Amazon RDS PostgreSQL DB
Instance as a Source
You can use the AWS master user account for the PostgreSQL DB instance as the user account
for the PostgreSQL source endpoint for AWS DMS . The master user account has the required
roles that allow it to set up change data capture (CDC). If you use an account other than the master
user account, the account must have the rds_superuser role and the rds_replication role. The
rds_replication role grants permissions to manage logical slots and to stream data using logical slots.

If you don't use the master user account for the DB instance, you must create several objects from
the master user account for the account that you use. For information about creating the needed
objects, see Migrating an Amazon RDS for PostgreSQL Database Without Using the Master User
Account (p. 68).

Using CDC with an Amazon RDS for PostgreSQL DB Instance

You can use PostgreSQL's native logical replication feature to enable CDC during a database
migration of an Amazon RDS PostgreSQL DB instance. This approach reduces downtime and ensures
that the target database is in sync with the source PostgreSQL database. Amazon RDS supports
logical replication for a PostgreSQL DB instance version 9.4.9 and higher and 9.5.4 and higher.

To enable logical replication for an RDS PostgreSQL DB instance, do the following:

• In general, use the AWS master user account for the PostgreSQL DB instance as the user account
for the PostgreSQL source endpoint. The master user account has the required roles that allow the
it to set up CDC. If you use an account other than the master user account, you must create several
objects from the master account for the account that you use. For more information, see Migrating an
Amazon RDS for PostgreSQL Database Without Using the Master User Account (p. 68).

• Set the rds.logical_replication parameter in your DB parameter group to 1. This is
a static parameter that requires a reboot of the DB instance for the parameter to take effect.
As part of applying this parameter, AWS DMS sets the wal_level, max_wal_senders,
max_replication_slots, and max_connections parameters. Note that these parameter
changes can increase WAL generation so you should only set the rds.logical_replication
parameter when you are using logical slots.

Migrating an Amazon RDS for PostgreSQL Database Without
Using the Master User Account

If you don't use the master user account for the Amazon RDS PostgreSQL DB instance that you
are using as a source, you need to create several objects to capture data definition language (DDL)
events. You create these objects in the account other than the master account and then create a
trigger in the master user account.

Version API Version 2016-01-01
68

AWS Database Migration Service User Guide
Setting Up an Amazon RDS

PostgreSQL DB Instance as a Source

Use the following procedure to create these objects. The user account other than the master account is
referred to as the NoPriv account in this procedure.

1. Choose a schema where the objects will be created. The default schema is public. Ensure that
the schema exists and is accessible by the NoPriv account.

2. Log in to the PostgreSQL DB instance using the NoPriv account.

3. Create the table awsdms_ddl_audit by running the following command, replacing
<objects_schema> in the code following with the name of the schema to use:

create table <objects_schema>.awsdms_ddl_audit
(
 c_key bigserial primary key,
 c_time timestamp, -- Informational
 c_user varchar(64), -- Informational: current_user
 c_txn varchar(16), -- Informational: current transaction
 c_tag varchar(24), -- Either 'CREATE TABLE' or 'ALTER TABLE' or
 'DROP TABLE'
 c_oid integer, -- For future use - TG_OBJECTID
 c_name varchar(64), -- For future use - TG_OBJECTNAME
 c_schema varchar(64), -- For future use - TG_SCHEMANAME. For now -
 holds current_schema
 c_ddlqry text -- The DDL query associated with the current DDL
 event
)

4. Create the function awsdms_intercept_ddl by running the following command, replacing
<objects_schema> in the code following with the name of the schema to use:

CREATE OR REPLACE FUNCTION <objects_schema>.awsdms_intercept_ddl()
 RETURNS event_trigger
LANGUAGE plpgsql
 AS $$
 declare _qry text;
BEGIN
 if (tg_tag='CREATE TABLE' or tg_tag='ALTER TABLE' or tg_tag='DROP
 TABLE') then
 SELECT current_query() into _qry;
 insert into <objects_schema>.awsdms_ddl_audit
 values
 (
 default,current_timestamp,current_user,cast(TXID_CURRENT()as
 varchar(16)),tg_tag,0,'',current_schema,_qry
);
 delete from <objects_schema>.awsdms_ddl_audit;
end if;
END;
$$;

5. Log out of the NoPriv account and log in with an account that has the rds_superuser role assigned
to it.

6. Create the event trigger awsdms_intercept_ddl by running the following command:

Version API Version 2016-01-01
69

AWS Database Migration Service User Guide
Removing Artifacts from a PostgreSQL Source

CREATE EVENT TRIGGER awsdms_intercept_ddl ON ddl_command_end
EXECUTE PROCEDURE <objects_schema>.awsdms_intercept_ddl();

When you have completed the procedure preceding, you can create the AWS DMS source endpoint
using the NoPriv account.

Removing AWS Database Migration Service
Artifacts from a PostgreSQL Source Database
To capture DDL events, AWS DMS creates various artifacts in the PostgreSQL database when
a migration task starts. When the task completes, you might want to remove these artifacts.
To remove the artifacts, issue the following statements (in the order they appear), where
{AmazonRDSMigration} is the schema in which the artifacts were created:

drop event trigger awsdms_intercept_ddl;

Note that the event trigger doesn't belong to a specific schema.

drop function {AmazonRDSMigration}.awsdms_intercept_ddl()
drop table {AmazonRDSMigration}.awsdms_ddl_audit
drop schema {AmazonRDSMigration}

Note
Dropping a schema should be done with extreme caution, if at all. Never drop an operational
schema, especially not a public one.

Additional Configuration Settings When Using
a PostgreSQL Database as a Source for AWS
Database Migration Service
You can add additional configuration settings when migrating data from a PostgreSQL database in two
way.

• You can add values to the Extra Connection attribute to capture DDL events and to specify the
schema in which the operational DDL database artifacts are created. For more information, see
PostgreSQL (p. 158).

• You can override connection string parameters. Select this option if you need to do either of the
following:

• Specify internal AWS DMS parameters. Such parameters are rarely required and are therefore not
exposed in the user interface.

• Specify pass-through (passthru) values for the specific database client. AWS DMS includes pass-
through parameters in the connection sting passed to the database client.

Version API Version 2016-01-01
70

AWS Database Migration Service User Guide
Using MySQL as a Source

Using a MySQL-Compatible Database as a
Source for AWS Database Migration Service

You can migrate data from one or many MySQL, MariaDB, or Amazon Aurora databases using AWS
Database Migration Service. With a MySQL-compatible database as a source, you can migrate data to
either another MySQL-compatible database or one of the other supported databases. MySQL versions
5.5, 5.6, and 5.7, as well as MariaDB and Amazon Aurora, are supported for on-premises, Amazon
RDS, and Amazon EC2 instance databases. To enable change data capture (CDC) with Amazon RDS
MySQL, you must use Amazon RDS MySQL version 5.6 or higher.

Note
Regardless of the source storage engine (MyISAM, MEMORY, etc.), AWS DMS creates the
MySQL-compatible target table as an InnoDB table by default. If you need to have a table that
uses a storage engine other than InnoDB, you can manually create the table on the MySQL-
compatible target and migrate the table using the "Do Nothing" mode. For more information
about the "Do Nothing" mode, see Full Load Task Settings (p. 88).

You can use SSL to encrypt connections between your MySQL-compatible endpoint and the replication
instance. For more information on using SSL with a MySQL-compatible endpoint, see Using SSL With
AWS Database Migration Service (p. 47).

For additional details on working with MySQL-compatible databases and AWS Database Migration
Service, see the following sections.

Topics

• Prerequisites for Using a MySQL Database as a Source for AWS Database Migration
Service (p. 71)

• Limitations on Using a MySQL Database as a Source for AWS Database Migration
Service (p. 72)

• Security Requirements for Using a MySQL Database as a Source for AWS Database Migration
Service (p. 73)

Prerequisites for Using a MySQL Database as a
Source for AWS Database Migration Service
Before you begin to work with a MySQL database as a source for AWS DMS, make sure that you have
the following prerequisites:

• A MySQL account with the required security settings. For more information, see Security
Requirements for Using a MySQL Database as a Source for AWS Database Migration
Service (p. 73).

• A MySQL-compatible database with the tables that you want to replicate accessible in your network.

• MySQL Community Edition

• MySQL Standard Edition

• MySQL Enterprise Edition

• MySQL Cluster Carrier Grade Edition

• MariaDB

• Amazon Aurora

• If your source is an Amazon RDS MySQL or MariaDB DB instance or an Amazon Aurora cluster,
you must enable automatic backups. For more information on setting up automatic backups, see the
Amazon RDS User Guide.

Version API Version 2016-01-01
71

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html

AWS Database Migration Service User Guide
Limitations on MySQL as a Source

• If you use change data capture (CDC), you must enable and configure binary logging. To enable
binary logging, the following parameters must be configured in MySQL’s my.ini (Windows) or
my.cnf (UNIX) file:

Parameter Value

server_id Set this parameter to a value of 1 or greater.

log-bin Set the path to the binary log file, such as log-bin=E:\MySql_Logs
\BinLog. Don't include the file extension.

binlog_format Set this parameter to row.

expire_logs_days Set this parameter to a value of 1 or greater. To prevent overuse of disk
space, we recommend that you don't use the default value of 0.

binlog_checksum Set this parameter to none.

binlog_row_image Set this parameter to full.

• In order to use change data capture (CDC) with an Amazon RDS MySQL DB instance as a source,
AWS DMS needs access to the binary logs. Amazon RDS is fairly aggressive in clearing binary
logs from the DB instance. To use CDC with a MySQL DB instance on Amazon RDS, you should
increase the amount of time the binary logs remain on the MySQL DB instance. For example, to
increase log retention to 24 hours, you would run the following command:

 call mysql.rds_set_configuration('binlog retention hours', 24);

• To replicate clustered (NDB) tables using AWS Database Migration Service, the following
parameters must be configured in MySQL’s my.ini (Windows) or my.cnf (UNIX) file. Replicating
clustered (NDB) tables is required only when you use CDC.

Parameter Value

ndb_log_bin Set this parameter to on. This value ensures that changes in clustered
tables are logged to the binary log.

ndb_log_update_as_writeSet this parameter to OFF. This value prevents writing UPDATE
statements as INSERT statements in the binary log.

ndb_log_updated_onlySet this parameter to OFF. This value ensures that the binary log contains
the entire row and not just the changed columns.

Limitations on Using a MySQL Database as a
Source for AWS Database Migration Service
When using a MySQL database as a source, AWS DMS doesn't support the following:

• The DDL statements Truncate Partition, Drop Table, and Rename Table.

• Using an ALTER TABLE <table_name> ADD COLUMN <column_name> statement to add
columns to the beginning or the middle of a table.

• Capturing changes from tables whose names contain both uppercase and lowercase characters.

• The AR_H_USER header column.

• The AUTO_INCREMENT attribute on a column is not migrated to a target database column.

Version API Version 2016-01-01
72

AWS Database Migration Service User Guide
Security Requirements for MySQL as a Source

Security Requirements for Using a MySQL
Database as a Source for AWS Database Migration
Service
As a security requirement, the AWS DMS user must have the ReplicationAdmin role with the following
privileges:

• REPLICATION CLIENT – This privilege is required for change data capture (CDC) tasks only. In
other words, full-load-only tasks don't require this privilege.

• REPLICATION SLAVE – This privilege is required for change data capture (CDC) tasks only. In
other words, full-load-only tasks don't require this privilege.

• SUPER – This privilege is required only in MySQL versions prior to 5.6.6.

The AWS DMS user must also have SELECT privileges for the source tables designated for
replication.

Using a SAP ASE Database as a Source for AWS
Database Migration Service

You can migrate data from a SAP Adaptive Server Enterprise (ASE) database–formerly known as
Sybase–using AWS Database Migration Service. With a SAP ASE database as a source, you can
migrate data to any of the other supported AWS DMS target databases.

For additional details on working with SAP ASE databases and AWS Database Migration Service, see
the following sections.

Topics

• Prerequisites for Using a SAP ASE Database as a Source for AWS Database Migration
Service (p. 73)

• Limitations on Using SAP ASE as a Source for AWS Database Migration Service (p. 74)

• User Account Permissions Required for Using SAP ASE as a Source for AWS Database Migration
Service (p. 74)

• Removing the Truncation Point (p. 74)

Prerequisites for Using a SAP ASE Database as a
Source for AWS Database Migration Service
For a SAP ASE database to be a source for AWS DMS, you should do the following:

• SAP ASE replication must be enabled for tables by using the sp_setreptable command.

• RepAgent must be disabled on the SAP ASE database.

• When replicating to SAP ASE version 15.7 installed on a Windows EC2 instance configured with
a non-Latin language (for example, Chinese), AWS DMS requires SAP ASE 15.7 SP121 to be
installed on the target SAP ASE machine.

Version API Version 2016-01-01
73

AWS Database Migration Service User Guide
Limitations on SAP ASE as a Source

Limitations on Using SAP ASE as a Source for AWS
Database Migration Service
The following limitations apply when using an SAP ASE database as a source for AWS Database
Migration Service (AWS DMS):

• Only one AWS DMS task can be run per SAP ASE database.

• Rename table is not supported, for example: sp_rename 'Sales.SalesRegion', 'SalesReg;

• Rename column is not supported, for example: sp_rename 'Sales.Sales.Region', 'RegID',
'COLUMN';

• Zero values located at the end of binary data type strings are truncated when replicated to the target
database. For example, 0x0000000000000000000000000100000100000000 in the source table
will become 0x00000000000000000000000001000001 in the target table.

• AWS DMS creates the target table with columns that do not allow NULL values, if the database
default is not to allow NULL values. Consequently, if a Full Load or CDC replication task contains
empty values, errors will occur.

You can prevent these errors from occurring by allowing nulls in the source database by using the
following commands:

sp_dboption <database name>, 'allow nulls by default', 'true'
go
use <database name>
CHECKPOINT
go

• The reorg rebuild index command is not supported.

User Account Permissions Required for Using SAP
ASE as a Source for AWS Database Migration
Service
To use an SAP ASE database as a source in an AWS DMS task, the user specified in the AWS DMS
SAP ASE database definitions must be granted the following permissions in the SAP ASE database.

• sa_role

• replication_role

• sybase_ts_role

• If you have set the enableReplication connection property to Y, then your must also be granted
the sp_setreptable permission. For more information on connection properties see Using Extra
Connection Attributes with AWS Database Migration Service (p. 157).

Removing the Truncation Point
When a task starts, AWS DMS establishes a $replication_truncation_point entry in the
syslogshold system view, indicating that a replication process is in progress. While AWS DMS is
working, it advances the replication truncation point at regular intervals, according to the amount of
data that has already been copied to the target.

Version API Version 2016-01-01
74

AWS Database Migration Service User Guide
Removing the Truncation Point

Once the $replication_truncation_point entry has been established, the AWS DMS task must
be kept running at all times to prevent the database log from becoming excessively large. If you want to
stop the AWS DMS task permanently, the replication truncation point must be removed by issuing the
following command:

dbcc settrunc('ltm','ignore')

After the truncation point has been removed, the AWS DMS task cannot be resumed. The log
continues to be truncated automatically at the checkpoints (if automatic truncation is set).

Version API Version 2016-01-01
75

AWS Database Migration Service User Guide

Targets for Data Migration for AWS
Database Migration Service

AWS Database Migration Service (AWS DMS) can use many of the most popular databases as a
target for data replication. The target can be on an Amazon Elastic Compute Cloud (Amazon EC2)
instance, an Amazon Relational Database Service (Amazon RDS) instance, or an on-premises
database.

Note
Regardless of the source storage engine (MyISAM, MEMORY, etc.), AWS DMS creates the
MySQL-compatible target table as an InnoDB table by default. If you need to have a table that
uses a storage engine other than InnoDB, you can manually create the table on the MySQL-
compatible target and migrate the table using the "Do Nothing" mode. For more information
about the "Do Nothing" mode, see Full Load Task Settings (p. 88).

The databases include the following:

On-premises and EC2 instance databases

• Oracle versions 10g, 11g, 12c, for the Enterprise, Standard, Standard One, and Standard Two
editions

• Microsoft SQL Server versions 2005, 2008, 2008R2, 2012, 2014, and 2016 for the Enterprise,
Standard, Workgroup, and Developer editions. The Web and Express editions are not supported.

• MySQL versions 5.5, 5.6, and 5.7

• MariaDB (supported as a MySQL-compatible data target)

• PostgreSQL versions 9.3 and later

• SAP Adaptive Server Enterprise (ASE) 15.7 and later

Amazon RDS instance databases and Amazon Redshift

• Oracle versions 11g (versions 11.2.0.3.v1 and later) and 12c, for the Enterprise, Standard, Standard
One, and Standard Two editions

• Microsoft SQL Server versions 2008R2, 2012, and 2014, for the Enterprise, Standard, Workgroup,
and Developer editions. The Web and Express editions are not supported.

• MySQL versions 5.5, 5.6, and 5.7

• MariaDB (supported as a MySQL-compatible data target)

• PostgreSQL versions 9.3 and later

• Amazon Aurora

• Amazon Redshift

Version API Version 2016-01-01
76

AWS Database Migration Service User Guide
Using Oracle as a Target

Using an Oracle Database as a Target for AWS
Database Migration Service

You can migrate data to Oracle database targets using AWS DMS, either from another Oracle
database or from one of the other supported databases.

You can use SSL to encrypt connections between your Oracle endpoint and the replication instance.
For more information on using SSL with an Oracle endpoint, see Using SSL With AWS Database
Migration Service (p. 47).

AWS DMS supports Oracle versions 10g, 11g, and 12c for on-premises and EC2 instances for the
Enterprise, Standard, Standard One, and Standard Two editions as targets. AWS DMS supports
Oracle versions 11g (versions 11.2.0.3.v1 and later) and 12c for Amazon RDS instance databases for
the Enterprise, Standard, Standard One, and Standard Two editions.

Topics

• Limitations on Oracle as a Target for AWS Database Migration Service (p. 77)

• User Account Privileges Required for Using Oracle as a Target (p. 77)

• Configuring an Oracle Database as a Target for AWS Database Migration Service (p. 79)

Limitations on Oracle as a Target for AWS Database
Migration Service
Limitations when using Oracle as a target for data migration include the following:

• AWS DMS does not create schema on the target Oracle database. You have to create any schemas
you want on the target Oracle database. The schema name must already exist for the Oracle target.
Tables from source schema are imported to user/schema, which AWS DMS uses to connect to the
target instance. You must create multiple replication tasks if you have to migrate multiple schemas.

• AWS DMS doesn't support the Use direct path full load option for tables with INDEXTYPE
CONTEXT. As a workaround, you can use array load.

• In Batch Optimized Apply mode, loading into the net changes table uses Direct Path, which doesn't
support XMLType. As a workaround, you can use Transactional Apply mode.

User Account Privileges Required for Using Oracle
as a Target
To use an Oracle target in an AWS Database Migration Service task, for the user account specified
in the AWS DMS Oracle database definitions you need to grant the following privileges in the Oracle
database:

• SELECT ANY TRANSACTION

• SELECT on V$NLS_PARAMETERS

• SELECT on V$TIMEZONE_NAMES

• SELECT on ALL_INDEXES

• SELECT on ALL_OBJECTS

• SELECT on DBA_OBJECTS

• SELECT on ALL_TABLES

Version API Version 2016-01-01
77

AWS Database Migration Service User Guide
User Account Privileges for Oracle as a Target

• SELECT on ALL_USERS

• SELECT on ALL_CATALOG

• SELECT on ALL_CONSTRAINTS

• SELECT on ALL_CONS_COLUMNS

• SELECT on ALL_TAB_COLS

• SELECT on ALL_IND_COLUMNS

• DROP ANY TABLE

• SELECT ANY TABLE

• INSERT ANY TABLE

• UPDATE ANY TABLE

• CREATE ANY VIEW

• DROP ANY VIEW

• CREATE ANY PROCEDURE

• ALTER ANY PROCEDURE

• DROP ANY PROCEDURE

• CREATE ANY SEQUENCE

• ALTER ANY SEQUENCE

• DROP ANY SEQUENCE

For the requirements specified following, grant the additional privileges named:

• To use a specific table list, grant SELECT on any replicated table and also ALTER on any replicated
table.

• For logon, grant the privilege CREATE SESSION.

• If you are using a direct path, grant the privilege LOCK ANY TABLE.

• If the "DROP and CREATE table" or "TRUNCATE before loading" option is selected in the full load
settings, and the target table schema is different from that for the AWS DMS user, grant the privilege
DROP ANY TABLE.

• To store changes in change tables or an audit table when the target table schema is different from
that for the AWS DMS user, grant the privileges CREATE ANY TABLE and CREATE ANY INDEX.

Read Privileges Required for AWS Database Migration Service
on the Target Database

The AWS DMS user account must be granted read permissions for the following DBA tables:

• SELECT on DBA_USERS

• SELECT on DBA_TAB_PRIVS

• SELECT on DBA_OBJECTS

• SELECT on DBA_SYNONYMS

• SELECT on DBA_SEQUENCES

• SELECT on DBA_TYPES

• SELECT on DBA_INDEXES

• SELECT on DBA_TABLES

• SELECT on DBA_TRIGGERS

If any of the required privileges cannot be granted to V$xxx, then grant them to V_$xxx.

Version API Version 2016-01-01
78

AWS Database Migration Service User Guide
Configuring Oracle as a Target

Configuring an Oracle Database as a Target for
AWS Database Migration Service
Before using an Oracle database as a data migration target, you must provide an Oracle user account
to AWS DMS. The user account must have read/write privileges on the Oracle database, as specified
in the section User Account Privileges Required for Using Oracle as a Target (p. 77).

Using a Microsoft SQL Server Database as a
Target for AWS Database Migration Service

You can migrate data to Microsoft SQL Server databases using AWS DMS. With an SQL Server
database as a target, you can migrate data from either another SQL Server database or one of the
other supported databases.

For on-premises and Amazon EC2 instance databases, AWS DMS supports as a target SQL Server
versions 2005, 2008, 2008R2, 2012, and 2014, for the Enterprise, Standard, Workgroup, and
Developer editions. The Web and Express editions are not supported.

For Amazon RDS instance databases, AWS DMS supports as a target SQL Server versions 2008R2,
2012, and 2014, for the Enterprise, Standard, Workgroup, and Developer editions are supported. The
Web and Express editions are not supported.

For additional details on working with AWS DMS and SQL Server target databases, see the following.

Topics

• Limitations on Using SQL Server as a Target for AWS Database Migration Service (p. 79)

• Security Requirements When Using SQL Server as a Target for AWS Database Migration
Service (p. 79)

Limitations on Using SQL Server as a Target for
AWS Database Migration Service
The following limitations apply when using a SQL Server database as a target for AWS DMS:

• When you manually create a SQL Server target table with a computed column, full load replication is
not supported when using the BCP bulk-copy utility. To use full load replication, disable the Use BCP
for loading tables option in the console's Advanced tab.

• When replicating tables with SQL Server spatial data types (GEOMETRY and GEOGRAPHY), AWS
DMS replaces any spatial reference identifier (SRID) that you might have inserted with the default
SRID. The default SRID is 0 for GEOMETRY and 4326 for GEOGRAPHY.

Security Requirements When Using SQL Server as
a Target for AWS Database Migration Service
The following describes the security requirements for using AWS DMS with a Microsoft SQL Server
target.

• AWS DMS user account must have at least the db_owner user role on the Microsoft SQL Server
database you are connecting to.

Version API Version 2016-01-01
79

AWS Database Migration Service User Guide
Using PostgreSQL as a Target

• A Microsoft SQL Server system administrator must provide this permission to all AWS DMS user
accounts.

Using a PostgreSQL Database as a Target for
AWS Database Migration Service

You can migrate data to PostgreSQL databases using AWS DMS, either from another PostgreSQL
database or from one of the other supported databases.

PostgreSQL versions 9.3 and later are supported for on-premises, Amazon RDS, and EC2 instance
databases.

Limitations on Using PostgreSQL as a Target for
AWS Database Migration Service
The following limitations apply when using a PostgreSQL database as a target for AWS DMS:

• The JSON data type is converted to the Native CLOB data type.

Security Requirements When Using a PostgreSQL
Database as a Target for AWS Database Migration
Service
For security purposes, the user account used for the data migration must be a registered user in any
PostgreSQL database that you use as a target.

Using a MySQL-Compatible Database as a
Target for AWS Database Migration Service

You can migrate data to MySQL databases using AWS DMS, either from another MySQL database or
from one of the other supported databases.

MySQL versions 5.5, 5.6, and 5.7, as well as MariaDB and Amazon Aurora, are supported.

Prerequisites for Using a MySQL-Compatible
Database as a Target for AWS Database Migration
Service
Before you begin to work with a MySQL database as a target for AWS DMS, make sure that you have
the following prerequisites:

• A MySQL account with the required security settings. For more information, see Security
Requirements When Using MySQL as a Target for AWS Database Migration Service (p. 81).

• A MySQL database with the tables that you want to replicate accessible in your network. AWS DMS
supports the following MySQL editions:

Version API Version 2016-01-01
80

AWS Database Migration Service User Guide
Limitations on MySQL as a Target

• MySQL Community Edition

• MySQL Standard Edition

• MySQL Enterprise Edition

• MySQL Cluster Carrier Grade Edition

• MariaDB

• Amazon Aurora

• During a load, you should consider disabling foreign keys. In order to disable foreign key checks
on a MySQL-compatible database during a load, you can add the following command to the Extra
Connection Attributes in the Advanced section of the target MySQL, Aurora, MariaDB endpoint
connection information:

initstmt=SET FOREIGN_KEY_CHECKS=0

Limitations on Using MySQL as a Target for AWS
Database Migration Service
When using a MySQL database as a source, AWS DMS doesn't support the following:

• The DDL statements Truncate Partition, Drop Table, and Rename Table.

• Using an ALTER TABLE <table_name> ADD COLUMN <column_name> statement to add
columns to the beginning or the middle of a table.

In addition, when you update a column's value to its existing value, MySQL returns a 0 rows
affected warning. In contrast, Oracle performs an update of one row in this case. The MySQL result
generates an entry in the awsdms_apply_exceptions control table and the following warning:

Some changes from the source database had no impact when applied to
the target database. See awsdms_apply_exceptions table for details.

Security Requirements When Using MySQL as a
Target for AWS Database Migration Service
When using MySQL as a target for data migration, you must provide MySQL account access to the
AWS DMS user account. This user must have read/write privileges in the MySQL database.

To create the necessary privileges, run the following commands:

CREATE USER '<user acct>'@'%' IDENTIFIED BY <user password>';
GRANT ALTER, CREATE, DROP, INDEX, INSERT, UPDATE, DELETE, SELECT ON
 myschema.* TO '<user acct>'@'%';
GRANT ALL PRIVILEGES ON awsdms_control.* TO '<user acct>'@'%';

Version API Version 2016-01-01
81

AWS Database Migration Service User Guide
Using Amazon Redshift as a Target

Using an Amazon Redshift Database as a Target
for AWS Database Migration Service

You can migrate data to Amazon Redshift databases using AWS Database Migration Service. Amazon
Redshift is a fully-managed, petabyte-scale data warehouse service in the cloud. With an Amazon
Redshift database as a target, you can migrate data from all of the other supported source databases.

The Amazon Redshift cluster must be in the same AWS account and same AWS Region as the
replication instance.

During a database migration to Amazon Redshift, AWS DMS first moves data to an S3 bucket. Once
the files reside in an S3 bucket, AWS DMS then transfers them to the proper tables in the Amazon
Redshift data warehouse. AWS DMS creates the S3 bucket in the same AWS Region as the Amazon
Redshift database. The AWS DMS replication instance must be located in that same region.

If you use the AWS Command Line Interface (AWS CLI) or the AWS DMS API to migrate data to
Amazon Redshift, you must set up an AWS Identity and Access Management (IAM) role to allow S3
access. For more information about creating this IAM role, see Creating the IAM Roles to Use With the
AWS CLI and AWS DMS API (p. 41).

The Amazon Redshift endpoint provides full automation for the following:

• Schema generation and data type mapping

• Full load of source database tables

• Incremental load of changes made to source tables

• Application of schema changes in data definition language (DDL) made to the source tables

• Synchronization between full load and change data capture (CDC) processes.

AWS Database Migration Service supports both full load and change processing operations. AWS
DMS reads the data from the source database and creates a series of comma-separated value (CSV)
files. For full-load operations, AWS DMS creates files for each table. AWS DMS then copies the table
files for each table to a separate folder in Amazon S3. When the files are uploaded to Amazon S3,
AWS DMS sends a copy command and the data in the files are copied into Amazon Redshift. For
change-processing operations, AWS DMS copies the net changes to the CSV files. AWS DMS then
uploads the net change files to Amazon S3 and copies the data to Amazon Redshift.

Topics

• Prerequisites for Using an Amazon Redshift Database as a Target for AWS Database Migration
Service (p. 82)

• Limitations on Using Redshift as a Target for AWS Database Migration Service (p. 83)

• Configuring an Amazon Redshift Database as a Target for AWS Database Migration
Service (p. 83)

• Using Enhanced VPC Routing with an Amazon Redshift as a Target for AWS Database Migration
Service (p. 84)

Prerequisites for Using an Amazon Redshift
Database as a Target for AWS Database Migration
Service
The following list describe the prerequisites necessary for working with Amazon Redshift as a target for
data migration:

Version API Version 2016-01-01
82

AWS Database Migration Service User Guide
Limitations on Redshift as a Target

• Use the AWS Management Console to launch an Amazon Redshift cluster. You should note
the basic information about your AWS account and your Amazon Redshift cluster, such as your
password, user name, and database name. You will need these values when creating the Amazon
Redshift target endpoint.

• The Amazon Redshift cluster must be in the same AWS account and the same AWS Region as the
replication instance.

• Firewall ports 5746 and 5439 need to be open for outbound communication.

• AWS DMS uses an Amazon S3 bucket to transfer data to the Redshift database. For AWS DMS to
create the bucket, the DMS console uses an Amazon IAM role, dms-access-for-endpoint. If you
use the AWS CLI or DMS API to create a database migration with Amazon Redshift as the target
database, you must create this IAM role. For more information about creating this role, see Creating
the IAM Roles to Use With the AWS CLI and AWS DMS API (p. 41).

•

Limitations on Using Redshift as a Target for AWS
Database Migration Service
When using a Redshift database as a target, AWS DMS doesn't support the following:

• When migrating from MySQL/Aurora to Redshift, you cannot use DDL to alter a column from the
BLOB data type to the NVARCHAR data type.

For example, the following DDL is not supported.

ALTER TABLE table_name MODIFY column_name NVARCHAR(n);

Configuring an Amazon Redshift Database as a
Target for AWS Database Migration Service
AWS Database Migration Service must be configured to work with the Amazon Redshift instance. The
following table describes the configuration properties available for the Amazon Redshift endpoint.

Property Description

server The name of the Amazon Redshift cluster you are using.

port The port number for Amazon Redshift. The default value is 5439.

username An Amazon Redshift user name for a registered user.

password The password for the user named in the username property.

database The name of the Amazon Redshift data warehouse (service) you are
working with.

If you want to add extra connection string attributes to your Amazon Redshift endpoint, you can specify
the maxFileSize and fileTransferUploadStreams attributes. For more information on these
attributes, see Amazon Redshift (p. 162).

Version API Version 2016-01-01
83

AWS Database Migration Service User Guide
Using Enhanced VPC Routing with an Amazon Redshift

as a Target for AWS Database Migration Service

Using Enhanced VPC Routing with an Amazon
Redshift as a Target for AWS Database Migration
Service
If you're using the Enhanced VPC Routing feature with your Amazon Redshift target, the feature forces
all COPY traffic between your Redshift cluster and your data repositories through your Amazon VPC.
Because Enhanced VPC Routing affects the way that Amazon Redshift accesses other resources,
COPY commands might fail if you haven't configured your VPC correctly.

AWS DMS can be affected by this behavior since it uses the COPY command to move data in S3 to a
Redshift cluster.

Following are the steps AWS DMS takes to load data into an Amazon Redshift target:

1. AWS DMS copies data from the source to CSV files on the replication server.

2. AWS DMS uses the AWS SDK to copy the CSV files into an S3 bucket on your account.

3. AWS DMS then uses the COPY command in Redshift to copy data from the CSV files in S3 to an
appropriate table in Redshift.

If Enhanced VPC Routing is not enabled, Amazon Redshift routes traffic through the Internet, including
traffic to other services within the AWS network. If the feature is not enabled, you do not have to
configure the network path. If the feature is enabled, you must specifically create a network path
between your cluster's VPC and your data resources. For more information on the configuration
required, see Enhanced VPC Routing in the Amazon Redshift documentation.

Using a SAP ASE Database as a Target for AWS
Database Migration Service

You can migrate data to SAP Adaptive Server Enterprise (ASE)–formerly known as Sybase–databases
using AWS DMS, either from any of the supported database sources.

SAP ASE version 15.7 and later are supported.

Prerequisites for Using a SAP ASE Database as a
Target for AWS Database Migration Service
Before you begin to work with a SAP ASE database as a target for AWS DMS, make sure that you
have the following prerequisites:

• You must provide SAP ASE account access to the AWS DMS user. This user must have read/write
privileges in the SAP ASE database.

• When replicating to SAP ASE version 15.7 installed on a Windows EC2 instance configured with
a non-Latin language (for example, Chinese), AWS DMS requires SAP ASE 15.7 SP121 to be
installed on the target SAP ASE machine.

Version API Version 2016-01-01
84

https://docs.aws.amazon.com/redshift/latest/mgmt/enhanced-vpc-routing.html%E2%80%9D

AWS Database Migration Service User Guide

Working with AWS Database
Migration Service Replication Tasks

An AWS Database Migration Service (AWS DMS) replication task is where all the work happens. You
use replication tasks to specify what tables and schemas to use for your migration and to apply specific
replication requirements to a database migration. You can also apply transformations to your data
and specify if only existing data should be replicated or if change data capture (CDC) should be used.
For more information about transformations, see Selection and Transformation Table Mapping using
JSON (p. 103).

To create a replication task, you must have at least one source and one target database to work with
AWS DMS. You must also have a replication instance set up. Then, you can configure the task using
task settings and specify tables to be replicated. For more information about task settings, see Task
Settings for AWS Database Migration Service Tasks (p. 87).

You can customize a task by creating new tables or columns in the target database or by selecting only
some of the data from each column of a table to be replicated. You do this by using filters. For more
information about filters, see Using Source Filters in Selection Rules (p. 113).

When you create a task, you specify the migration method, which includes either a full load of the
existing data, a full load of the data plus ongoing changes, or just a replication of the ongoing changes.
For more information about migration methods, see Migration Methods for AWS Database Migration
Service (p. 87).

Once you create a task, you can run it immediately. The target tables with the necessary metadata
definitions are automatically created and loaded, and you can specify that the CDC replication process
be started. You can monitor, stop, or restart replication tasks using the AWS DMS console, AWS CLI,
or AWS DMS API.

The task status bar gives an estimation of the task's progress. The quality of this estimate depends on
the quality of the source database’s table statistics; the better the table statistics, the more accurate the
estimation. For tasks with only one table that has no estimated rows statistic, we are unable to provide
any kind of percentage complete estimate. In this case, the task state and the indication of rows loaded
can be used to confirm that the task is indeed running and making progress.

For more information, see the following topics.

Topics

• Modifying a Task (p. 86)

• Task Status (p. 86)

• Creating Multiple Tasks (p. 86)

Version API Version 2016-01-01
85

AWS Database Migration Service User Guide
Modifying a Task

• Migration Methods for AWS Database Migration Service (p. 87)

• Task Settings for AWS Database Migration Service Tasks (p. 87)

• Table State During Tasks (p. 96)

• Using Table Mapping with an AWS Database Migration Service Task to Select and Filter
Data (p. 97)

Modifying a Task
You can modify a task if you need to change the task settings, table mapping, or other settings. You
modify a task in the DMS console by selecting the task and choosing Modify. You can also use the
AWS CLI or AWS DMS API command ModifyReplicationTask.

There are a few limitations to modifying a task. These include:

• You cannot modify the source or target endpoint of a task.

• You cannot change the migration type from CDC to either Full_Load or Full_Load_and_CDC.

• A task that have been run must have a status of Stopped or Failed to be modified.

Task Status
The task status indicated the condition of the task. The following table shows the possible statuses a
task can have:

Task Status Description

Creating AWS DMS is creating the task.

Running The task is performing the migration duties specified.

Stopped The task is stopped.

Stopping The task is being stopped. This is usually an indication of
user intervention in the task.

Deleting The task is being deleted, usually from a request for user
intervention.

Failed The task has failed. See the task log files for more
information.

Starting The task is connecting to the replication instance and to the
source and target endpoints. Any filters and transformations
are being applied..

Ready The task is ready to run. This status usually follows the
"creating" status.

Modifying The task is being modified, usually due to a user action that
modified the task settings.

Creating Multiple Tasks
In some migration scenarios, you might have to create several migration tasks. Note that tasks work
independently and can run concurrently; each task has its own initial load, CDC, and log reading

Version API Version 2016-01-01
86

AWS Database Migration Service User Guide
Migration Methods

process. Tables that are related through data manipulation language (DML) must be part of the same
task.

Some reasons to create multiple tasks for a migration include the following:

• The target tables for the tasks reside on different databases, such as when you are fanning out or
breaking a system into multiple systems.

• You want to break the migration of a large table into multiple tasks by using filtering.

Note
Because each task has its own change capture and log reading process, changes are not
coordinated across tasks. Therefore, when using multiple tasks to perform a migration, make
sure that source transactions are wholly contained within a single task.

Migration Methods for AWS Database Migration
Service

AWS Database Migration Service can migrate your data in several ways:

• Migrating Data to the Target Database – This process creates files or tables in the target
database, automatically defines the metadata that is required at the target, and populates the tables
with data from the source. The data from the tables is loaded in parallel for improved efficiency. This
process is the Migrate existing data option in the AWS console and is called Full Load in the
API.

• Capturing Changes During Migration – This process captures changes to the source database
that occur while the data is being migrated from the source to the target. When the migration of
the originally requested data has completed, the change data capture (CDC) process then applies
the captured changes to the target database. Changes are captured and applied as units of single
committed transactions, and several different target tables can be updated as a single source
commit. This approach guarantees transactional integrity in the target database. This process is the
Migrate existing data and replicate ongoing changes option in the AWS console and is called
full-load-and-cdc in the API.

• Replicating Only Data Changes on the Source Database – This process reads the recovery log
file of the source database management system (DBMS) and groups together the entries for each
transaction. If AWS DMS can't apply changes to the target within a reasonable time (for example,
if the target is not accessible), AWS DMS buffers the changes on the replication server for as long
as necessary. It doesn't reread the source DBMS logs, which can take a large amount of time. This
process is the Replicate data changes only option in the AWS DMS console.

Note
If you restart a task, any tables that have not completed their initial load are restarted.

Task Settings for AWS Database Migration
Service Tasks

Each task has settings that you can configure according to the needs of your database migration. You
create these settings in a JSON file or, with some settings, you can specify the settings using the DMS
console.

There are several main types of task settings:

Version API Version 2016-01-01
87

AWS Database Migration Service User Guide
Target Metadata Task Settings

• Target Metadata Task Settings (p. 88)

• Full Load Task Settings (p. 88)

• Logging Task Settings (p. 89)

• Control Table Task Settings (p. 90)

• Change Processing Tuning Settings (p. 91)

• Stream Buffer Task Settings (p. 91)

• Change Processing DDL Handling Policy Task Settings (p. 92)

• Error Handling Task Settings (p. 93)

To see an example JSON file with sample task settings, see Saving Task Settings (p. 95).

Target Metadata Task Settings
Target metadata settings include the following:

• TargetSchema – The target table schema name. If this metadata option is empty, the schema from
the source table is used. AWS DMS automatically adds the owner prefix for the target database to
all tables if no source schema is defined. This option should be left empty for MySQL-type target
endpoints.

• LOB settings – Settings that determine how large objects (LOBs) are managed. If you set
SupportLobs=true, you must set one of the following to true:

• FullLobMode – If you set this option to true, then you must enter a value for the LobChunkSize
option. Enter the size, in kilobytes, of the LOB chunks to use when replicating the data to the
target. The FullLobMode option works best for very large LOB sizes but tends to cause slower
loading.

• LimitedSizeLobMode – If you set this option to true, then you must enter a value for the
LobMaxSize option. Enter the maximum size, in kilobytes, for an individual LOB. Enter 0 for
unlimited size.

• LoadMaxFileSize – An option for PostgreSQL and MySQL target endpoints that defines the
maximum size on disk of stored, unloaded data, such as .csv files. This option overrides the
connection attribute. You can provide values from 0, which indicates that this option doesn't override
the connection attribute, to 100,000 KB.

• BatchApplyEnabled – Determines if each transaction is applied individually or if changes are
committed in batches. The default value is false.

If set to true, AWS DMS commits changes in batches by a pre-processing action that groups
the transactions into batches in the most efficient way. Setting this value to true can affect
transactional integrity, so you must select BatchApplyPreserveTransaction in the
ChangeProcessingTuning section to specify how the system handles referential integrity issues.

If set to false, AWS DMS applies each transaction individually, in the order it is committed. In this
case, strict referential integrity is ensured for all tables.

When LOB columns are included in the replication, BatchApplyEnabledcan only be used in
Limited-size LOB mode.

Full Load Task Settings
Full load settings include the following:

• To enable or disable full load and change data capture (CDC), set the following:

• FullLoadEnabled – Set this option to true if the task needs to perform a full load on target
tables.

Version API Version 2016-01-01
88

AWS Database Migration Service User Guide
Logging Task Settings

• ApplyChangesEnabled – Set this option to true if the task needs to keep target tables up-to-
date by applying changes using CDC.

If both FullLoadEnabled=true and ApplyChangesEnabled=true, the task loads the tables
first and then keeps applying incoming changes. While updating a task, you can use these settings
only to toggle on and off full load or CDC, or both.

• To indicate how to handle loading the target at full-load startup, specify one of the following values
for the TargetTablePrepMode option:

• DO_NOTHING – Data and metadata of the existing target table are not affected.

• DROP_AND_CREATE – The existing table is dropped and a new table is created in its place.

• TRUNCATE_BEFORE_LOAD – Data is truncated without affecting the table metadata.

• To delay primary key or unique index creation until after full load completes, set the
CreatePkAfterFullLoad option.
When this option is selected, you cannot resume incomplete full load tasks.

• For full load and CDC-enabled tasks, you can set the following Stop task after full load
completes options:

• StopTaskCachedChangesApplied – Set this option to true to stop a task after a full load
completes and cached changes are applied.

• StopTaskCachedChangesNotApplied – Set this option to true to stop a task before cached
changes are applied.

• To allow tables to resume processing from the point of interruption during a full load, set the
ResumeEnabled option to true. Otherwise, table loading restarts from the beginning.

Allowing table loading to restart from the point of interruption can cause a slowdown in full-load
processing. However, starting extremely large tables from the beginning can cause long delays in
completing the full load. In addition, for a table load to be restarted from the point of interruption, the
table must have a unique index, and we also recommend that it have a clustered primary key.

If ResumeEnabled is set to true, the following options should be set:

• ResumeMinTableSize – Indicates which tables should resume loading when the full-load
operation begins again. Tables with fewer rows than the number set for this option restart the full
load. The default value is 1,000,000.

• ResumeOnlyClusteredPKTables – Indicates whether to resume loading only tables that have
clustered primary keys.

• To indicate the maximum number of tables to load in parallel, set the MaxFullLoadSubTasks
option.

• To set the number of seconds that AWS DMS waits for transactions to close before
beginning a full-load operation, if transactions are open when the task starts, set the
TransactionConsistencyTimeout option. The default value is 600 (10 minutes). AWS DMS
begins the full load after the timeout value is reached, even if there are open transactions.

• To indicate the maximum number of events that can be transferred together, set the CommitRate
option.

Logging Task Settings
Logging task settings are written to a JSON file and they let you specify which component activities
are logged and what amount of information is written to the log. The logging feature uses Amazon
CloudWatch to log information during the migration process.

There are several ways to enable Amazon CloudWatch logging. You can select the EnableLogging
option on the AWS Management Console when you create a migration task or set the
EnableLogging option to true when creating a task using the AWS DMS API. You can also specify
"EnableLogging": true in the JSON of the logging section of task settings.

Version API Version 2016-01-01
89

AWS Database Migration Service User Guide
Control Table Task Settings

You can specify logging for the following component activities:

• SOURCE_UNLOAD — Data is unloaded from the source database.

• SOURCE_CAPTURE — Data is captured from the source database.

• TARGET_LOAD — Data is loaded into the target database.

• TARGET_APPLY — Data and DDL are applied to the target database.

• TASK_MANAGER — The task manager triggers an event.

Once you specify a component activity, you can then specify the amount of information that is logged.
The following list is in order from the lowest level of information to the highest level of information. The
higher levels always include information from the lower levels. These severity values include:

• LOGGER_SEVERITY_ERROR — Error messages are written to the log.

• LOGGER_SEVERITY_WARNING — Warnings and error messages are written to the log.

• LOGGER_SEVERITY_INFO — Informational messages, warnings, and error messages are written
to the log.

• LOGGER_SEVERITY_DEFAULT — Debug messages, informational messages, warnings, and error
messages are written to the log.

• LOGGER_SEVERITY_DEBUG — Debug messages, informational messages, warnings, and error
messages are written to the log.

• LOGGER_SEVERITY_DETAILED_DEBUG — All information is written to the log.

For example, the following JSON section gives task settings for logging for all component activities:

…
 "Logging": {
 "EnableLogging": true,
 "LogComponents": [{
 "Id": "SOURCE_UNLOAD",
 "Severity": "LOGGER_SEVERITY_DEFAULT"
 },{
 "Id": "SOURCE_CAPTURE",
 "Severity": "LOGGER_SEVERITY_DEFAULT"
 },{
 "Id": "TARGET_LOAD",
 "Severity": "LOGGER_SEVERITY_DEFAULT"
 },{
 "Id": "TARGET_APPLY",
 "Severity": "LOGGER_SEVERITY_INFO"
 },{
 "Id": "TASK_MANAGER",
 "Severity": "LOGGER_SEVERITY_DEBUG"
 }]
 },
…

Control Table Task Settings
Control tables provide information about the migration task, as well as useful statistics that you can use
to plan and manage both the current migration task and future migration tasks. You can apply these
task settings in a JSON file or using the Advanced Settings link on the Create task page in the AWS
DMS console. In addition to the Apply Exceptions table, which is always created, you can choose to
create additional tables including the following:

Version API Version 2016-01-01
90

AWS Database Migration Service User Guide
Stream Buffer Task Settings

• Replication Status – This table provides details about the current task including task status, amount
of memory consumed by the task, number of changes not yet applied to the target, and the position
in the source database from which AWS DMS is currently reading.

• Suspended Tables – This table provides a list of suspended tables as well as the reason they were
suspended.

• Replication History – This table provides information about the replication history including the
number and volume of records processed during the migration task, latency at the end of a CDC
task, and other statistics.

Control table settings include the following:

• ControlSchema – Use this option to indicate the database schema name for the AWS DMS target
Control Tables. If you do not enter any information in this field, then the tables are copied to the
default location in the database.

• HistoryTimeslotInMinutes – Use this option to indicate the length of each time slot in the
Replication History table. The default is 5 minutes.

• HistoryTableEnabled – Use this option to enable creation of the replication history table. The
table provides information about the replication history including the number and volume of records
processed during a replication task, latency at the end of a CDC task, and other statistics.

• SuspendedTablesTableEnabled – Use this option to enable creation of Replication suspended
tables list. The table provides a list of suspended tables as well as the reason the table was
suspended.

• StatusTableEnabled – Use this option to enable creation of the Replication Status table. The
table provides details about the current task including task status, amount of memory consumed by
the task, number of changes not yet applied to the target and the position in the source database
from which AWS DMS is currently reading.

Stream Buffer Task Settings
You can set stream buffer settings using the AWS CLI, include the following:

• StreamBufferCount – Use this option to specify the number of data stream buffers for the
migration task. The default stream buffer number is 3. Increasing the value of this setting may
increase the speed of data extraction. However, this performance increase is highly dependent on
the migration environment, including the source system and instance class of the replication server.
The default is sufficient for most situations.

• StreamBufferSizeInMB – Use this option to indicate the maximum size of each data stream
buffer. The default size is 8 MB. You might need to increase the value for this option when you work
with very large LOBs or if you receive a message in the log files stating that the stream buffer size is
insufficient. When calculating the size of this option you can use the following equation: [Max LOB
size (or LOB chunk size)]*[number of LOB columns]*[number of stream buffers]*[number of tables
loading in parallel per task(MaxFullLoadSubTasks)]*3

• CtrlStreamBufferSizeInMB – Use this option to set the size of the control stream buffer. Value
is in MB, and can be from 1 to 8. The default value is 5. You may need to increase this when working
with a very large number of tables, such as tens of thousands of tables.

Change Processing Tuning Settings
The following settings determine how AWS DMS handles changes for target tables during change
data capture (CDC). Several of these settings depend on the value of the target metadata parameter
BatchApplyEnabled. For more information on the BatchApplyEnabled parameter, see Target
Metadata Task Settings (p. 88).

Version API Version 2016-01-01
91

AWS Database Migration Service User Guide
Change Processing DDL Handling Policy Task Settings

Change processing tuning settings include the following:

The following settings apply only when the target metadata parameter BatchApplyEnabled is set to
true.

• BatchApplyPreserveTransaction – If set to true, transactional integrity is preserved and a
batch is guaranteed to contain all the changes within a transaction from the source. The default
value is true.

If set to false, there can be temporary lapses in transactional integrity to improve performance.
There is no guarantee that all the changes within a transaction from the source will be applied to the
target in a single batch.

• BatchApplyTimeoutMin – Sets the minimum amount of time in seconds that AWS DMS waits
between each application of batch changes. The default value is 1.

• BatchApplyTimeoutMax – Sets the maximum amount of time in seconds that AWS DMS waits
between each application of batch changes before timing out. The default value is 30.

• BatchApplyMemoryLimit – Sets the maximum amount of memory in (MB) to use for pre-
processing in Batch optimized apply mode. The default value is 500.

• BatchSplitSize – Sets the number of changes applied in a single change processing statement.
Select the check box and then optionally change the default value. The default value is 10,000. A
value of 0 means there is no limt applied.

The following settings apply only when the target metadata parameter BatchApplyEnabled is set to
false.

• MinTransactionSize – Sets the minimum number of changes to include in each transaction. The
default value is 1000.

• CommitTimeout – Sets the maximum time in seconds for AWS DMS to collect transactions in
batches before declaring a timeout. The default value is 1.

• HandleSourceTableAltered – Set this option to true to alter the target table when the source
table is altered.

AWS DMS attempts to keep transaction data in memory until the transaction is fully committed to the
source and/or the target. However, transactions that are larger than the allocated memory or that are
not committed within the specified time limit are written to disk.

The following settings apply to change processing tuning regardless of the change processing mode.

• MemoryLimitTotal – Sets the maximum size (in MB) that all transactions can occupy in memory
before being written to disk. The default value is 1024.

• MemoryKeepTime – Sets the maximum time in seconds that each transaction can stay in memory
before being written to disk. The duration is calculated from the time that AWS DMS started
capturing the transaction. The default value is 60.

• StatementCacheSize – Sets the maximum number of prepared statements to store on the server
for later execution when applying changes to the target. The default value is 50. The maximum value
is 200.

Change Processing DDL Handling Policy Task
Settings
The following settings determine how AWS DMS handles DDL changes for target tables during change
data capture (CDC). Change processing DDL handling policy settings include the following:

Version API Version 2016-01-01
92

AWS Database Migration Service User Guide
Error Handling Task Settings

• HandleSourceTableDropped – Set this option to true to drop the target table when the source
table is dropped

• HandleSourceTableTruncated – Set this option to true to truncate the target table when the
source table is truncated

• HandleSourceTableAltered – Set this option to true to alter the target table when the source
table is altered.

Error Handling Task Settings
You can set the error handling behavior of your replication task using the following settings:

• DataErrorPolicy – Determines the action AWS DMS takes when there is an error. The default is
LOG_ERROR.

• IGNORE_RECORD – The task continues and the data for that record is ignored. The error counter
for the DataErrorEscalationCount property is incremented so that if you set a limit on errors
for a table, this error will count toward that limit.

• LOG_ERROR – The task continues and the error is written to the task log.

• SUSPEND_TABLE – The task continues but data from the table with the error record is moved into
an error state and the data is not replicated.

• STOP_TASK – The task stops and manual intervention is required.

• DataTruncationErrorPolicy – Determines the action AWS DMS takes when data is truncated.
The default is LOG_ERROR.

• IGNORE_RECORD – The task continues and the data for that record is ignored. The error counter
for the DataErrorEscalationCount property is incremented so that if you set a limit on errors
for a table, this error will count toward that limit.

• LOG_ERROR – The task continues and the error is written to the task log.

• SUSPEND_TABLE – The task continues but data from the table with the error record is moved into
an error state and the data is not replicated.

• STOP_TASK – The task stops and manual intervention is required.

• DataErrorEscalationPolicy – Determines the action AWS DMS takes when the maximum
number of errors (set in the DataErrorsEscalationCount parameter) is reached. The default is
SUSPEND_TABLE.

• LOG_ERROR – The task continues and the error is written to the task log.

• SUSPEND_TABLE – The task continues but data from the table with the error record is moved into
an error state and the data is not replicated.

• STOP_TASK – The task stops and manual intervention is required.

• DataErrorEscalationCount – Sets the maximum number of errors that can occur to the data for
a specific record. When this number is reached, the data for the table that contains the error record
is handled according to the policy set in the DataErrorEscalationCount. The default is 50.

• TableErrorPolicy – Determines the action AWS DMS takes when an error occurs to the general
table data being replicated. The default is SUSPEND_TABLE.

• SUSPEND_TABLE – The task continues but data from the table with the error record is moved into
an error state and the data is not replicated.

• STOP_TASK – The task stops and manual intervention is required.

• TableErrorEscalationPolicy – Determines the action AWS DMS takes when the maximum
number of errors (set using the TableErrorEscalationCount parameter). The default and only
user setting is STOP_TASK, where the task is stopped and manual intervention is required.

• TableErrorEscalationCount – The maximum number of errors that can occur to the general
data or metadata for a specific table. When this number is reached, the data for the table is handled
according to the policy set in the TableErrorEscalationPolicy. The default is 50.Version API Version 2016-01-01

93

AWS Database Migration Service User Guide
Error Handling Task Settings

• RecoverableErrorCount – The maximum number of attempts made to restart a task when an
environmental error occurs. After the system attempts to restart the task the designated number of
times, the task is stopped and manual intervention is required. Set this value to -1 to continuously
attempt to restart a task. Set this value to 0 to never attempt to restart a task. The default is 0.

• RecoverableErrorInterval – The number of seconds that AWS DMS waits between attempts to
restart a task. The default is 5.

• RecoverableErrorThrottling – When enabled, the interval between attempts to restart a task is
increased each time a restart is attempted. The default is true.

• RecoverableErrorThrottlingMax – The maximum number of seconds that AWS DMS waits
between attempts to restart a task if RecoverableErrorThrottling is enabled. The default is
1800.

• ApplyErrorDeletePolicy – Determines what action AWS DMS takes when there is a conflict
with a DELETE operation. The default is IGNORE_RECORD.

• IGNORE_RECORD – The task continues and the data for that record is ignored. The error counter
for the ApplyErrorEscalationCount property is incremented so that if you set a limit on errors
for a table, this error will count toward that limit.

• LOG_ERROR – The task continues and the error is written to the task log.

• SUSPEND_TABLE – The task continues but data from the table with the error record is moved into
an error state and the data is not replicated.

• STOP_TASK – The task stops and manual intervention is required.

• ApplyErrorInsertPolicy – Determines what action AWS DMS takes when there is a conflict
with an INSERT operation. The default is LOG_ERROR.

• IGNORE_RECORD – The task continues and the data for that record is ignored. The error counter
for the ApplyErrorEscalationCount property is incremented so that if you set a limit on errors
for a table, this error will count toward that limit.

• LOG_ERROR – The task continues and the error is written to the task log.

• SUSPEND_TABLE – The task continues but data from the table with the error record is moved into
an error state and the data is not replicated.

• STOP_TASK – The task stops and manual intervention is required.

• UPDATE_RECORD – If there is an existing target record with the same primary key as the inserted
source record, the target record is updated.

• ApplyErrorUpdatePolicy – Determines what action AWS DMS takes when there is a conflict
with an UPDATE operation. The default is LOG_ERROR.

• IGNORE_RECORD – The task continues and the data for that record is ignored. The error counter
for the ApplyErrorEscalationCount property is incremented so that if you set a limit on errors
for a table, this error will count toward that limit.

• LOG_ERROR – The task continues and the error is written to the task log.

• SUSPEND_TABLE – The task continues but data from the table with the error record is moved into
an error state and the data is not replicated.

• STOP_TASK – The task stops and manual intervention is required.

• UPDATE_RECORD – If the target record is missing, the missing target record will be inserted into
the target table. Selecting this option requires full supplemental logging to be enabled for all the
source table columns when Oracle is the source database.

• ApplyErrorEscalationPolicy – Determines what action AWS DMS takes when the maximum
number of errors (set using the ApplyErrorsEscalationCount parameter) is reached.

• LOG_ERROR – The task continues and the error is written to the task log.

• SUSPEND_TABLE – The task continues but data from the table with the error record is moved into
an error state and the data is not replicated.

• STOP_TASK – The task stops and manual intervention is required.

• ApplyErrorEscalationCount – Sets the maximum number of APPLY conflicts that can occur for
a specific table during a change process operation. When this number is reached, the data for the

Version API Version 2016-01-01
94

AWS Database Migration Service User Guide
Saving Task Settings

table is handled according to the policy set in the ApplyErrorEscalationPolicy parameter. The
default is 0.

• FulloadIgnoreConflicts – Determines if AWS DMS loads the conflicting data when carrying out
a full-load operation after the change processing is complete.

Saving Task Settings
You can save the settings for a task as a JSON file, in case you want to reuse the settings for another
task.

For example, the following JSON file contains settings saved for a task:

{
 "TargetMetadata": {
 "TargetSchema": "",
 "SupportLobs": true,
 "FullLobMode": false,
 "LobChunkSize": 64,
 "LimitedSizeLobMode": true,
 "LobMaxSize": 32,
 "BatchApplyEnabled": true
 },
 "FullLoadSettings": {
 "FullLoadEnabled": false,
 "ApplyChangesEnabled": true,
 "TargetTablePrepMode": "DO_NOTHING",
 "CreatePkAfterFullLoad": false,
 "StopTaskCachedChangesApplied": false,
 "StopTaskCachedChangesNotApplied": false,
 "ResumeEnabled": false,
 "ResumeMinTableSize": 100000,
 "ResumeOnlyClusteredPKTables": true,
 "MaxFullLoadSubTasks": 8,
 "TransactionConsistencyTimeout": 600,
 "CommitRate": 10000
 },
 "Logging": {
 "EnableLogging": false
 },
 "ControlTablesSettings": {
 "ControlSchema":"",
 "HistoryTimeslotInMinutes":5,
 "HistoryTableEnabled": false,
 "SuspendedTablesTableEnabled": false,
 "StatusTableEnabled": false
 },
 "StreamBufferSettings": {
 "StreamBufferCount": 3,
 "StreamBufferSizeInMB": 8
 },
 "ChangeProcessingTuning": {
 "BatchApplyPreserveTransaction": true,
 "BatchApplyTimeoutMin": 1,
 "BatchApplyTimeoutMax": 30,
 "BatchApplyMemoryLimit": 500,
 "BatchSplitSize": 0,

Version API Version 2016-01-01
95

AWS Database Migration Service User Guide
Table State During Tasks

 "MinTransactionSize": 1000,
 "CommitTimeout": 1,
 "MemoryLimitTotal": 1024,
 "MemoryKeepTime": 60,
 "StatementCacheSize": 50
 },
 "ChangeProcessingDdlHandlingPolicy": {
 "HandleSourceTableDropped": true,
 "HandleSourceTableTruncated": true,
 "HandleSourceTableAltered": true
 },
 "ErrorBehavior": {
 "DataErrorPolicy": "LOG_ERROR",
 "DataTruncationErrorPolicy":"LOG_ERROR",
 "DataErrorEscalationPolicy":"SUSPEND_TABLE",
 "DataErrorEscalationCount": 50,
 "TableErrorPolicy":"SUSPEND_TABLE",
 "TableErrorEscalationPolicy":"STOP_TASK",
 "TableErrorEscalationCount": 50,
 "RecoverableErrorCount": 0,
 "RecoverableErrorInterval": 5,
 "RecoverableErrorThrottling": true,
 "RecoverableErrorThrottlingMax": 1800,
 "ApplyErrorDeletePolicy":"IGNORE_RECORD",
 "ApplyErrorInsertPolicy":"LOG_ERROR",
 "ApplyErrorUpdatePolicy":"LOG_ERROR",
 "ApplyErrorEscalationPolicy":"LOG_ERROR",
 "ApplyErrorEscalationCount": 0,
 "FullLoadIgnoreConflicts": true
 }
}

Table State During Tasks
The AWS console will update information regarding the state of your tables during migration. The
following table shows the possible state values:

Version API Version 2016-01-01
96

AWS Database Migration Service User Guide
Creating Table Mappings

State Description

Table does not exist AWS DMS cannot find the table on the source endpoint.

Before load The full load process has been enabled, but it hasn't started
yet.

Full load The full load process is in progress.

Table completed Full load or CDC has completed.

Table cancelled Loading of the table has been cancelled.

Table error An error occurred when loading the table.

Using Table Mapping with an AWS Database
Migration Service Task to Select and Filter Data

Table mappings specify the tables from a particular source schema that you want to migrate to a
target endpoint. The simplest mapping is to migrate all the tables from a source schema to the target
database. You can also use table mapping to specify individual tables in a database to migrate and the
schema to use for the migration. In addition, you can use filters to specify what data from a given table
column you want replicated to the target database.

You specify selections and filters using the AWS Console or by creating a JSON file that you can use
with the console, the AWS CLI, or AWS DMS API.

Version API Version 2016-01-01
97

AWS Database Migration Service User Guide
Selection and Transformation Table
Mapping using the AWS Console

Selection and Transformation Table Mapping using
the AWS Console
You can use the AWS console to perform table mapping, including specifying table selection and
transformations. In the AWS Console user interface, you use the Where section to specify the schema,
table, and action (include or exclude). You use the Filter section to specify the column name in a
table and the conditions you want to apply to the replication task. Together these two actions create a
selection rule.

Transformations can be included in a table mapping after you have specified at least one selection
rule. Transformations can be used to rename a schema or table, add a prefix or suffix to a schema or
table, or remove a table column.

The following example shows how to set up selection rules for a table called Customers in a schema
called EntertainmentAgencySample. Note that the Guided tab, where you create selection rules
and transformations, only appears when you have a source endpoint that has schema and table
information.

To specify a table selection, filter criteria, and transformations using the AWS console

1. Sign in to the AWS Management Console and choose AWS DMS. Note that if you are signed in as
an AWS Identity and Access Management (IAM) user, you must have the appropriate permissions
to access AWS DMS. For more information on the permissions required, see IAM Permissions
Needed to Use AWS DMS (p. 39).

2. On the Dashboard page, choose Tasks.

3. Select Create Task.

4. Enter the task information, including Task name, Replication instance, Source endpoint,
Target endpoint, and Migration type. Select Guided from the Table mappings section.

Version API Version 2016-01-01
98

AWS Database Migration Service User Guide
Selection and Transformation Table
Mapping using the AWS Console

5. In the Table mapping section, select the schema name and table name. You can use the "%"
as a wildcard value when specifying the table name. Specify the action to be taken, to include or
exclude data defined by the filter.

Version API Version 2016-01-01
99

AWS Database Migration Service User Guide
Selection and Transformation Table
Mapping using the AWS Console

6. You specify filter information using the Add column filter and the Add condition links. First,
select Add column filter to specify a column and conditions. Select Add condition to add
additional conditions. The following example shows a filter for the Customers table that includes
AgencyIDs between 01 and 85.

Version API Version 2016-01-01
100

AWS Database Migration Service User Guide
Selection and Transformation Table
Mapping using the AWS Console

7. When you have created the selections you want, select Add selection rule.

8. After you have created at least one selection rule, you can add a transformation to the task. Select
add transformation rule.

9. Select the target you want to transform and enter the additional information requested. The
following example shows a transformation that deletes the AgencyStatus column from the
Customer table.

Version API Version 2016-01-01
101

AWS Database Migration Service User Guide
Selection and Transformation Table
Mapping using the AWS Console

10. Choose Add transformation rule.

11. You can add additional selection rules or transformations by selecting the add selection rule or
add transformation rule. When you are finished, choose Create task.

Version API Version 2016-01-01
102

AWS Database Migration Service User Guide
Selection and Transformation Table Mapping using JSON

Selection and Transformation Table Mapping using
JSON
Table mappings can be created in the JSON format. If you create a migration task using the AWS DMS
Management Console, you can enter the JSON directly into the table mapping box. If you use the AWS
Command Line Interface (AWS CLI) or AWS Database Migration Service API to perform migrations,
you can create a JSON file to specify the table mappings that you want to occur during migration.

You can specify what tables or schemas you want to work with, and you can perform schema and table
transformations. You create table mapping rules using the selection and transformation rule
types.

Selection Rules and Actions

Using table mapping, you can specify what tables or schemas you want to work with by using selection
rules and actions. For table mapping rules that use the selection rule type, the following values can be
applied:

Parameter Possible Values Description

rule-type selection You must have at least one selection
rule when specifying a table mapping.

rule-id A numeric value. A unique numeric value to identify the
rule.

rule-name An alpha-numeric value. A unique name to identify the rule.

rule-action include, exclude Include or exclude the object selected
by the rule.

Version API Version 2016-01-01
103

AWS Database Migration Service User Guide
Selection and Transformation Table Mapping using JSON

Example Migrate All Tables in a Schema

The following example migrates all tables from a schema named Test in your source to your target
endpoint:

{
 "rules": [
 {
 "rule-type": "selection",
 "rule-id": "1",
 "rule-name": "1",
 "object-locator": {
 "schema-name": "Test",
 "table-name": "%"
 },
 "rule-action": "include"
 }
]
}

Example Migrate Some Tables in a Schema

The following example migrates all tables except those starting with DMS from a schema named Test
in your source to your target endpoint:

{
 "rules": [
 {
 "rule-type": "selection",
 "rule-id": "1",
 "rule-name": "1",
 "object-locator": {
 "schema-name": "Test",
 "table-name": "%"
 },
 "rule-action": "include"
 },
 {
 "rule-type": "selection",
 "rule-id": "2",
 "rule-name": "2",
 "object-locator": {
 "schema-name": "Test",
 "table-name": "DMS%"
 },
 "rule-action": "exclude"
 }
]
}

Transformation Rules and Actions

You use the transformation actions to specify any transformations you want to apply to the selected
schema or table. Transformation rules are optional.

For table mapping rules that use the transformation rule type, the following values can be applied:

Version API Version 2016-01-01
104

AWS Database Migration Service User Guide
Selection and Transformation Table Mapping using JSON

Parameter Possible Values Description

rule-type transformation Applies a to the object specified by the
selection rule.

rule-id A numeric value. A unique numeric value to identify the
rule.

rule-name An alpha-numeric value. A unique name to identify the rule.

object-
locator

schema-name The name of the
schema.

table-nameThe name of the table.
You can use the "%" percent sign to be
a wildcard.

The schema and table the rule applies
to.

rule-action • rename

• remove-column

• convert-lowercase, convert-
uppercase

• add-prefix, remove-prefix,
replace-prefix

• add-suffix, remove-suffix,
replace-suffix

The transformation you want to apply
to the object. All transformation rule
actions are case sensitive.

rule-target schema, table, column The type of object you are
transforming.

value An alpha-numeric value that follows
the naming rules for the target type.

The new value for actions that require
input, such as rename.

old-value An alpha-numeric value that follows
the naming rules for the target type.

The old value for actions that require
replacement, such as replace-
prefix.

Version API Version 2016-01-01
105

AWS Database Migration Service User Guide
Selection and Transformation Table Mapping using JSON

Example Rename a Schema

The following example renames a schema from Test in your source to Test1 in your target endpoint:

{
 "rules": [
 {
 "rule-type": "selection",
 "rule-id": "1",
 "rule-name": "1",
 "object-locator": {
 "schema-name": "Test",
 "table-name": "%"
 },
 "rule-action": "include"
 },
 {
 "rule-type": "transformation",
 "rule-id": "2",
 "rule-name": "2",
 "rule-action": "rename",
 "rule-target": "schema",
 "object-locator": {
 "schema-name": "Test"
 },
 "value": "Test1"
 }
]
}

Version API Version 2016-01-01
106

AWS Database Migration Service User Guide
Selection and Transformation Table Mapping using JSON

Example Rename a Table

The following example renames a table from Actor in your source to Actor1 in your target endpoint:

{
 "rules": [
 {
 "rule-type": "selection",
 "rule-id": "1",
 "rule-name": "1",
 "object-locator": {
 "schema-name": "Test",
 "table-name": "%"
 },
 "rule-action": "include"
 },
 {
 "rule-type": "transformation",
 "rule-id": "2",
 "rule-name": "2",
 "rule-action": "rename",
 "rule-target": "table",
 "object-locator": {
 "schema-name": "Test",
 "table-name": "Actor"
 },
 "value": "Actor1"
 }
]
}

Version API Version 2016-01-01
107

AWS Database Migration Service User Guide
Selection and Transformation Table Mapping using JSON

Example Rename a Column

The following example renames a column in table Actor from first_name in your source to fname in
your target endpoint:

{
 "rules": [
 {
 "rule-type": "selection",
 "rule-id": "1",
 "rule-name": "1",
 "object-locator": {
 "schema-name": "test",
 "table-name": "%"
 },
 "rule-action": "include"
 },
 {
 "rule-type": "transformation",
 "rule-id": "4",
 "rule-name": "4",
 "rule-action": "rename",
 "rule-target": "column",
 "object-locator": {
 "schema-name": "test",
 "table-name": "Actor",
 "column-name" : "first_name"
 },
 "value": "fname"
 }
]
}

Version API Version 2016-01-01
108

AWS Database Migration Service User Guide
Selection and Transformation Table Mapping using JSON

Example Remove a Column

The following example transforms the table named Actor in your source to remove all columns
starting with the characters col from it in your target endpoint:

{
 "rules": [{
 "rule-type": "selection",
 "rule-id": "1",
 "rule-name": "1",
 "object-locator": {
 "schema-name": "test",
 "table-name": "%"
 },
 "rule-action": "include"
 }, {
 "rule-type": "transformation",
 "rule-id": "2",
 "rule-name": "2",
 "rule-action": "remove-column",
 "rule-target": "column",
 "object-locator": {
 "schema-name": "test",
 "table-name": "Actor",
 "column-name": "col%"
 }
 }]
 }

Example Convert to Lowercase

The following example converts a table name from ACTOR in your source to actor in your target
endpoint:

{
 "rules": [{
 "rule-type": "selection",
 "rule-id": "1",
 "rule-name": "1",
 "object-locator": {
 "schema-name": "test",
 "table-name": "%"
 },
 "rule-action": "include"
 }, {
 "rule-type": "transformation",
 "rule-id": "2",
 "rule-name": "2",
 "rule-action": "convert-lowercase",
 "rule-target": "table",
 "object-locator": {
 "schema-name": "test",
 "table-name": "ACTOR"
 }
 }]
}

Version API Version 2016-01-01
109

AWS Database Migration Service User Guide
Selection and Transformation Table Mapping using JSON

Example Convert to Uppercase

The following example converts all columns in all tables and all schemas from lowercase in your
source to uppercase in your target endpoint:

{
 "rules": [
 {
 "rule-type": "selection",
 "rule-id": "1",
 "rule-name": "1",
 "object-locator": {
 "schema-name": "test",
 "table-name": "%"
 },
 "rule-action": "include"
 },
 {
 "rule-type": "transformation",
 "rule-id": "2",
 "rule-name": "2",
 "rule-action": "convert-uppercase",
 "rule-target": "column",
 "object-locator": {
 "schema-name": "%",
 "table-name": "%",
 "column-name": "%"
 }
 }
]
}

Version API Version 2016-01-01
110

AWS Database Migration Service User Guide
Selection and Transformation Table Mapping using JSON

Example Add a Prefix

The following example transforms all tables in your source to add the prefix DMS_ to them in your target
endpoint:

{
 "rules": [{
 "rule-type": "selection",
 "rule-id": "1",
 "rule-name": "1",
 "object-locator": {
 "schema-name": "test",
 "table-name": "%"
 },
 "rule-action": "include"
 }, {
 "rule-type": "transformation",
 "rule-id": "2",
 "rule-name": "2",
 "rule-action": "add-prefix",
 "rule-target": "table",
 "object-locator": {
 "schema-name": "test",
 "table-name": "%"
 },
 "value": "DMS_"
 }]

}

Version API Version 2016-01-01
111

AWS Database Migration Service User Guide
Selection and Transformation Table Mapping using JSON

Example Replace a Prefix

The following example transforms all columns containing the prefix Pre_ in your source to replace the
prefix with NewPre_ in your target endpoint:

{
 "rules": [
 {
 "rule-type": "selection",
 "rule-id": "1",
 "rule-name": "1",
 "object-locator": {
 "schema-name": "test",
 "table-name": "%"
 },
 "rule-action": "include"
 },
 {
 "rule-type": "transformation",
 "rule-id": "2",
 "rule-name": "2",
 "rule-action": "replace-prefix",
 "rule-target": "column",
 "object-locator": {
 "schema-name": "%",
 "table-name": "%",
 "column-name": "%"
 },
 "value": "NewPre_",
 "old-value": "Pre_"
 }
]
}

Version API Version 2016-01-01
112

AWS Database Migration Service User Guide
Selection and Transformation Table Mapping using JSON

Example Remove a Suffix

The following example transforms all tables in your source to remove the suffix _DMS from them in your
target endpoint:

{
 "rules": [{
 "rule-type": "selection",
 "rule-id": "1",
 "rule-name": "1",
 "object-locator": {
 "schema-name": "test",
 "table-name": "%"
 },
 "rule-action": "include"
 }, {
 "rule-type": "transformation",
 "rule-id": "2",
 "rule-name": "2",
 "rule-action": "remove-suffix",
 "rule-target": "table",
 "object-locator": {
 "schema-name": "test",
 "table-name": "%"
 },
 "value": "_DMS"
 }]
}

Using Source Filters in Selection Rules

You can use source filters to limit the number and type of records transferred from your source to your
target. For example, you can specify that only employees with a location of headquarters are moved to
the target database. Filters are part of a selection rule. You apply filters on a column of data.

Source filters must follow these constraints:

• A selection rule can have no filters or one or more filters.

• Every filter can have one or more filter conditions.

• If more than one filter is used, the list of filters will be combined as if using an AND operator between
the filters.

• If more than one filter condition is used within a single filter, the list of filter conditions will be
combined as if using an OR operator between the filter conditions.

• Filters are only applied when rule-action = 'include'.

• Filters require a column name and a list of filter conditions. Filter conditions must have a filter
operator and a value.

Creating Source Filter Rules in JSON

You can create source filters by specifying a column name, filter condition, filter operator, and a filter
value.

The following table shows the parameters used for source filtering.

Version API Version 2016-01-01
113

AWS Database Migration Service User Guide
Selection and Transformation Table Mapping using JSON

Parameter Value

filter-type source

column-name The name of the source column you want the filter applied to.

filter-conditions

filter-operator This parameter can be one of the following:

• ste – less than or equal to

• gte – greater than or equal to

• eq – equal to

• between – equal to or between two values

value The value of the filter-operator parameter. If the filter-operator is
between, provide two values, one for start-value and one for end-
value.

The following examples show some common ways to use source filters.

Example Single Filter

The following filter replicates all employees where empid >= 100 to the target database.

 {
 "rules": [{
 "rule-type": "selection",
 "rule-id": "1",
 "rule-name": "1",
 "object-locator": {
 "schema-name": "test",
 "table-name": "employee"
 },
 "rule-action": "include",
 "filters": [{
 "filter-type": "source",
 "column-name": "empid",
 "filter-conditions": [{
 "filter-operator": "gte",
 "value": "100"
 }]
 }]
 }]
}

Version API Version 2016-01-01
114

AWS Database Migration Service User Guide
Selection and Transformation Table Mapping using JSON

Example Multiple Filter Operators

The following filter applies multiple filter operators to a single column of data. The filter replicates all
employees where (empid <=10) OR (empid is between 50 and 75) OR (empid >= 100) to
the target database.

{
 "rules": [{
 "rule-type": "selection",
 "rule-id": "1",
 "rule-name": "1",
 "object-locator": {
 "schema-name": "test",
 "table-name": "employee"
 },
 "rule-action": "include",
 "filters": [{
 "filter-type": "source",
 "column-name": "empid",
 "filter-conditions": [{
 "filter-operator": "ste",
 "value": "10"
 }, {
 "filter-operator": "between",
 "start-value": "50",
 "end-value": "75"
 }, {
 "filter-operator": "gte",
 "value": "100"
 }]
 }]
 }]
 }

Version API Version 2016-01-01
115

AWS Database Migration Service User Guide
Selection and Transformation Table Mapping using JSON

Example Multiple Filters

The following filter applies multiple filters to two columns in a table. The filter replicates all employees
where (empid <= 100) AND (dept= tech) to the target database.

{
 "rules": [{
 "rule-type": "selection",
 "rule-id": "1",
 "rule-name": "1",
 "object-locator": {
 "schema-name": "test",
 "table-name": "employee"
 },
 "rule-action": "include",
 "filters": [{
 "filter-type": "source",
 "column-name": "empid",
 "filter-conditions": [{
 "filter-operator": "ste",
 "value": "100"
 }]
 }, {
 "filter-type": "source",
 "column-name": "dept",
 "filter-conditions": [{
 "filter-operator": "eq",
 "value": "tech"
 }]
 }]
 }]
}

Version API Version 2016-01-01
116

AWS Database Migration Service User Guide

Monitoring AWS Database Migration
Service Tasks

You can monitor the progress of your tasks in AWS Database Migration Service (AWS DMS) using
Amazon CloudWatch. By using the AWS Management Console, the AWS Command Line Interface
(CLI), or AWS DMS API, you can monitor the progress of your data migration and also the resources
and network connectivity used.

You can use Amazon CloudWatch alarms or events to more closely track your migration. For more
information about Amazon CloudWatch, see What Are Amazon CloudWatch, Amazon CloudWatch
Events, and Amazon CloudWatch Logs? in the Amazon CloudWatch User Guide

The AWS DMS console shows basic CloudWatch statistics for each task, including the task status,
percent complete, elapsed time, and table statistics, as shown following. Select the replication task and
then select the Task monitoring tab.

Version API Version 2016-01-01
117

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html

AWS Database Migration Service User Guide

The AWS DMS console shows performance statistics for each table, including the number of inserts,
deletions, and updates, when you select the Table statistics tab.

Version API Version 2016-01-01
118

AWS Database Migration Service User Guide
Data Migration Service Metrics

In addition, if you select a replication instance from the Replication Instance page, you can view
performance metrics for the instance by selecting the Monitoring tab.

Data Migration Service Metrics
AWS DMS provides statistics for the following:

• Host Metrics – Performance and utilization statistics for the replication host, provided by Amazon
CloudWatch. For a complete list of the available metrics, see Replication Instance Metrics (p. 120).

• Replication Task Metrics – Statistics for replication tasks including incoming and committed
changes, and latency between the replication host and both the source and target databases. For a
complete list of the available metrics, see Replication Task Metrics (p. 121).

• Table Metrics – Statistics for tables that are in the process of being migrated, including the number
of insert, update, delete, and DDL statements completed.

Task metrics are divided into statistics between the replication host and the source endpoint, and
statistics between the replication host and the target endpoint. You can determine the total statistic for

Version API Version 2016-01-01
119

AWS Database Migration Service User Guide
Replication Instance Metrics

a task by adding two related statistics together. For example, you can determine the total latency, or
replica lag, for a task by combining the CDCLatencySource and CDCLatencyTarget values.

Task metric values can be influenced by current activity on your source database. For example, if a
transaction has begun, but has not been committed, then the CDCLatencySource metric will continue
to grow until that transaction has been committed.

Replication Instance Metrics
Replication instance monitoring include Amazon CloudWatch metrics for the following statistics:

CPUUtilization
The amount of disk space occupied by binary logs on the master. Applies to MySQL read replicas.

Units: Bytes

FreeStorageSpace
The amount of available storage space.

Units: Bytes

FreeableMemory
The amount of available random access memory.

Units: Bytes

WriteIOPS
The average number of disk I/O operations per second.

Units: Count/Second

ReadIOPS
The average number of disk I/O operations per second.

Units: Count/Second

WriteThroughput
The average number of bytes written to disk per second.

Units: Bytes/Second

ReadThroughput
The average number of bytes read from disk per second.

Units: Bytes/Second

WriteLatency
The average amount of time taken per disk I/O operation.

Units: Seconds

ReadLatency
The average amount of time taken per disk I/O operation.

Units: Seconds

SwapUsage
The amount of swap space used on the DB Instance.Units: Bytes

NetworkTransmitThroughput
The outgoing (Transmit) network traffic on the DB instance, including both customer database
traffic and Amazon RDS traffic used for monitoring and replication.

Units: Bytes/second

NetworkReceiveThroughput
The incoming (Receive) network traffic on the DB instance, including both customer database
traffic and Amazon RDS traffic used for monitoring and replication.

Version API Version 2016-01-01
120

AWS Database Migration Service User Guide
Replication Task Metrics

Units: Bytes/second

Replication Task Metrics
Replication task monitoring includes metrics for the following statistics:

FullLoadThroughputBandwidthSource
Incoming network bandwidth from a full load from the source in kilobytes (KB) per second.

FullLoadThroughputBandwidthTarget
Outgoing network bandwidth from a full load for the target in KB per second.

FullLoadThroughputRowsSource
Incoming changes from a full load from the source in rows per second.

FullLoadThroughputRowsTarget
Outgoing changes from a full load for the target in rows per second.

CDCIncomingChanges
Total row count of changes for the task.

CDCChangesMemorySource
Amount of rows accumulating in a memory and waiting to be committed from the source.

CDCChangesMemoryTarget
Amount of rows accumulating in a memory and waiting to be committed to the target.

CDCChangesDiskSource
Amount of rows accumulating on disk and waiting to be committed from the source.

CDCChangesDiskTarget
Amount of rows accumulating on disk and waiting to be committed to the target.

CDCThroughputBandwidthSource
Incoming task network bandwidth from the source in KB per second.

CDCThroughputBandwidthTarget
Outgoing task network bandwidth for the target in KB per second.

CDCThroughputRowsSource
Incoming task changes from the source in rows per second.

CDCThroughputRowsTarget
Outgoing task changes for the target in rows per second.

CDCLatencySource
Latency reading from source in seconds.

CDCLatencyTarget
Latency writing to the target in seconds.

Logging AWS Database Migration Service API
Calls Using AWS CloudTrail

The AWS CloudTrail service logs all AWS Database Migration Service (AWS DMS) API calls made
by or on behalf of your AWS account. AWS CloudTrail stores this logging information in an S3 bucket.
You can use the information collected by CloudTrail to monitor AWS DMS activity, such as creating
or deleting a replication instance or an endpoint. For example, you can determine whether a request
completed successfully and which user made the request. To learn more about CloudTrail, see the
AWS CloudTrail User Guide.

If an action is taken on behalf of your AWS account using the AWS DMS console or the AWS
DMS command line interface, then AWS CloudTrail logs the action as calls made to the AWS DMS
API. For example, if you use the AWS DMS console to describe connections, or call the AWS

Version API Version 2016-01-01
121

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/

AWS Database Migration Service User Guide
Configuring CloudTrail Event Logging

CLI describe-connections command, then the AWS CloudTrail log shows a call to the AWS DMS
API DescribeConnections action. For a list of the AWS DMS API actions that are logged by AWS
CloudTrail, see the AWS DMS API Reference.

Configuring CloudTrail Event Logging
CloudTrail creates audit trails in each region separately and stores them in an S3 bucket. You can
configure CloudTrail to use Amazon Simple Notification Service (Amazon SNS) to notify you when
a log file is created, but that is optional. CloudTrail will notify you frequently, so we recommend that
you use Amazon SNS with an Amazon Simple Queue Service (Amazon SQS) queue and handle
notifications programmatically.

You can enable CloudTrail using the AWS Management Console, CLI, or API. When you enable
CloudTrail logging, you can have the CloudTrail service create an S3 bucket for you to store your log
files. For details, see Creating and Updating Your Trail in the AWS CloudTrail User Guide. The AWS
CloudTrail User Guide also contains information on how to aggregate CloudTrail logs from multiple
regions into a single S3 bucket.

There is no cost to use the CloudTrail service. However, standard rates for S3 usage apply, and
also rates for Amazon SNS usage should you include that option. For pricing details, see the S3 and
Amazon SNS pricing pages.

AWS Database Migration Service Event Entries in
CloudTrail Log Files
CloudTrail log files contain event information formatted using JSON. An event record represents a
single AWS API call and includes information about the requested action, the user that requested the
action, the date and time of the request, and so on.

CloudTrail log files include events for all AWS API calls for your AWS account, not just calls to the
AWS DMS API. However, you can read the log files and scan for calls to the AWS DMS API using the
eventName element.

For more information about the different elements and values in CloudTrail log files, see CloudTrail
Event Reference in the AWS CloudTrail User Guide.

You might also want to make use of one of the Amazon partner solutions that integrate with CloudTrail
to read and analyze your CloudTrail log files. For options, see the AWS partners page.

Version API Version 2016-01-01
122

http://docs.aws.amazon.com//cli/latest/reference/dms/describe-connections.html
http://docs.aws.amazon.com/dms/latest/APIReference/API_DescribeConnections.html
http://docs.aws.amazon.com/dms/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/setupyourtrail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregatinglogs.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregatinglogs.html
http://aws.amazon.com/s3/pricing/
http://aws.amazon.com/sns/pricing/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/eventreference.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/eventreference.html
http://aws.amazon.com/cloudtrail/partners/

AWS Database Migration Service User Guide
Slow Running Migration Tasks

Troubleshooting AWS Database
Migration Service Tasks

The following sections provide information on troubleshooting issues with AWS Database Migration
Service (AWS DMS).

Topics

• Slow Running Migration Tasks (p. 123)

• Task Status Bar Not Moving (p. 124)

• Missing Foreign Keys and Secondary Indexes (p. 124)

• Amazon RDS Connection Issues (p. 124)

• Networking Issues (p. 125)

• CDC Stuck After Full Load (p. 125)

• Primary Key Violation Errors When Restarting a Task (p. 125)

• Initial Load of Schema Fails (p. 126)

• Tasks Failing With Unknown Error (p. 126)

• Task Restart Loads Tables From the Beginning (p. 126)

• Number of Tables Per Task (p. 126)

• Troubleshooting Oracle Specific Issues (p. 126)

• Troubleshooting MySQL Specific Issues (p. 129)

• Troubleshooting PostgreSQL Specific Issues (p. 131)

• Troubleshooting Microsoft SQL Server Specific Issues (p. 133)

• Troubleshooting Amazon Redshift Specific Issues (p. 135)

• Troubleshooting Amazon Aurora Specific Issues (p. 136)

Slow Running Migration Tasks
There are several issues that may cause a migration task to run slowly, or for subsequent tasks to
run slower than the initial task. The most common reason for a migration task running slowly is that
there are inadequate resources allocated to the AWS DMS replication instance. Check your replication
instance's use of CPU, Memory, Swap, and IOPs to ensure that your instance has enough resources

Version API Version 2016-01-01
123

AWS Database Migration Service User Guide
Task Status Bar Not Moving

for the tasks you are running on it. For example, multiple tasks with Amazon Redshift as an endpoint
are IO intensive. You can increase IOPS for your replication instance or split your tasks across multiple
replication instances for a more efficient migration.

For more information about determining the size of your replication instance, see Determining the
Optimum Size for a Replication Instance (p. 36)

You can increase the speed of an initial migration load by doing the following:

• If your target is an Amazon RDS DB instance, ensure that Multi-AZ is not enabled for the target DB
instance.

• Turn off any automatic backups or logging on the target database during the load, and turn back on
those features once the migration is complete.

• If the feature is available on the target, use Provisioned IOPs.

• If your migration data contains LOBs, ensure that the task is optimized for LOB migration. See
Target Metadata Task Settings (p. 88) for more information on optimizing for LOBs.

Task Status Bar Not Moving
The task status bar gives an estimation of the task's progress. The quality of this estimate depends on
the quality of the source database’s table statistics; the better the table statistics, the more accurate the
estimation. For a task with only one table that has no estimated rows statistic, we are unable to provide
any kind of percentage complete estimate. In this case, the task state and the indication of rows loaded
can be used to confirm that the task is indeed running and making progress.

Missing Foreign Keys and Secondary Indexes
AWS DMS creates tables, primary keys, and in some cases unique indexes, but it doesn't create
any other objects that are not required to efficiently migrate the data from the source. For example, it
doesn't create secondary indexes, non-primary key constraints, or data defaults.

To migrate secondary objects from your database, use the database's native tools if you are migrating
to the same database engine as your source database. Use the Schema Conversion Tool if you are
migrating to a different database engine than that used by your source database to migrate secondary
objects.

Amazon RDS Connection Issues
There can be several reasons why you are unable to connect to an Amazon RDS DB instance that you
set as an endpoint. These include:

• Username and password combination is incorrect.

• Check that the endpoint value shown in the Amazon RDS console for the instance is the same as
the endpoint identifier you used to create the AWS DMS endpoint.

• Check that the port value shown in the Amazon RDS console for the instance is the same as the port
assigned to the AWS DMS endpoint.

• Check that the security group assigned to the Amazon RDS DB instance allows connections from
the AWS DMS replication instance.

• If the AWS DMS replication instance and the Amazon RDS DB instance are not in the same VPC,
check that the DB instance is publicly accessible.

Version API Version 2016-01-01
124

AWS Database Migration Service User Guide
Error Message: Incorrect thread

connection string: incorrect thread value 0

Error Message: Incorrect thread connection string:
incorrect thread value 0
This error can often occur when you are testing the connection to an endpoint. The error indicates that
there is an error in the connection string, such as a space after the host IP address or a bad character
was copied into the connection string.

Networking Issues
The most common networking issue involves the VPC security group used by the AWS DMS
replication instance. By default, this security group has rules that allow egress to 0.0.0.0/0 on all
ports. If you modify this security group or use your own security group, egress must, at a minimum, be
permitted to the source and target endpoints on the respective database ports.

Other configuration related issues include:

• Replication instance and both source and target endpoints in the same VPC — The security
group used by the endpoints must allow ingress on the database port from the replication instance.
Ensure that the security group used by the replication instance has ingress to the endpoints, or you
can create a rule in the security group used by the endpoints that allows the private IP address of the
replication instance access.

• Source endpoint is outside the VPC used by the replication instance (using Internet Gateway)
— The VPC security group must include routing rules that send traffic not destined for the VPC to
the Internet Gateway. In this configuration, the connection to the endpoint appears to come from the
public IP address on the replication instance.

• Source endpoint is outside the VPC used by the replication instance (using NAT Gateway) —
You can configure a network address translation (NAT) gateway using a single Elastic IP Address
bound to a single Elastic Network Interface which then receives a NAT identifier (nat-#####). If the
VPC includes a default route to that NAT Gateway instead of the Internet Gateway, the replication
instance will instead appear to contact the Database Endpoint using the public IP address of the
Internet Gateway. In this case, the ingress to the Database Endpoint outside the VPC needs to allow
ingress from the NAT address instead of the Replication Instance’s public IP Address.

CDC Stuck After Full Load
Slow or stuck replication changes can occur after a full load migration when several AWS DMS settings
conflict with each other. For example, if the Target table preparation mode parameter is set to
Do nothing or Truncate, then you have instructed AWS DMS to do no setup on the target tables,
including creating primary and unique indexes. If you haven't created primary or unique keys on the
target tables, then AWS DMS must do a full table scan for each update, which can significantly impact
performance.

Primary Key Violation Errors When Restarting a
Task

This error can occur when data remains in the target database from a previous migration task. If
the Target table preparation mode parameter is set to Do nothing, AWS DMS does not do any

Version API Version 2016-01-01
125

AWS Database Migration Service User Guide
Initial Load of Schema Fails

preparation on the target table, including cleaning up data inserted from a previous task. In order to
restart your task and avoid these errors, you must remove rows inserted into the target tables from the
previous running of the task.

Initial Load of Schema Fails
If your initial load of your schemas fails with an error of
Operation:getSchemaListDetails:errType=, status=0, errMessage=, errDetails=,
then the user account used by AWS DMS to connect to the source endpoint does not have the
necessary permissions.

Tasks Failing With Unknown Error
The cause of these types of error can be varied, but often we find that the issue involves insufficient
resources allocated to the AWS DMS replication instance. Check the replication instance's use of CPU,
Memory, Swap, and IOPs to ensure your instance has enough resources to perform the migration. For
more information on monitoring, see Data Migration Service Metrics (p. 119).

Task Restart Loads Tables From the Beginning
AWS DMS restarts table loading from the beginning when it has not finished the initial load of a table.
When a task is restarted, AWS DMS does not reload tables that completed the initial load but will
reload tables from the beginning when the initial load did not complete.

Number of Tables Per Task
While there is no set limit on the number of tables per replication task, we have generally found that
limiting the number of tables in a task to less than 60,000 is a good rule of thumb. Resource use can
often be a bottleneck when a single task uses more than 60,000 tables.

Troubleshooting Oracle Specific Issues
The following issues are specific to using AWS DMS with Oracle databases.

Topics

• Pulling Data from Views (p. 127)

• Migrating LOBs from Oracle 12c (p. 127)

• Switching Between Oracle LogMiner and BinaryReader (p. 127)

• Error: Oracle CDC stopped 122301 Oracle CDC maximum retry counter exceeded. (p. 127)

• Automatically Add Supplemental Logging to an Oracle Source Endpoint (p. 128)

• LOB Changes not being Captured (p. 128)

• Error: ORA-12899: value too large for column <column-name> (p. 128)

• NUMBER data type being misinterpreted (p. 128)

Version API Version 2016-01-01
126

AWS Database Migration Service User Guide
Pulling Data from Views

Pulling Data from Views
To be able to extract data from views, you must add the following code to the Extra connection
attributes in the Advanced section of the Oracle source endpoint.

exposeViews=true

Migrating LOBs from Oracle 12c
AWS DMS can use two methods to capture changes to an Oracle database, BinaryReader and Oracle
LogMiner. By default, AWS DMS uses Oracle LogMiner to capture changes. However, on Oracle 12c,
Oracle LogMiner does not support LOB columns. To capture changes to LOB columns on Oracle 12c,
use BinaryReader.

Switching Between Oracle LogMiner and
BinaryReader
AWS DMS can use two methods to capture changes to a source Oracle database, BinaryReader
and Oracle LogMiner. Oracle LogMiner is the default. To switch to using BinaryReader for capturing
changes, do the following:

To use BinaryReader for capturing changes

1. Sign in to the AWS Management Console and select DMS.

2. Select Endpoints.

3. Select the Oracle source endpoint that you want to use BinaryReader.

4. Select Modify.

5. Select Advanced, and then add the following code to the Extra connection attributes text box:

useLogminerReader=N

6. Use an Oracle developer tool such as SQL-Plus to grant the following additional privilege to the
AWS DMS user account used to connect to the Oracle endpoint:

SELECT ON V_$TRANSPORTABLE_PLATFORM

Error: Oracle CDC stopped 122301 Oracle CDC
maximum retry counter exceeded.
This error occurs when the needed Oracle archive logs have been removed from your server before
AWS DMS was able to use them to capture changes. Increase your log retention policies on your
database server. For an Amazon RDS database, run the following procedure to increase log retention.
For example, the following code increases log retention on an Amazon RDS DB instance to 24 hours.

Version API Version 2016-01-01
127

AWS Database Migration Service User Guide
Automatically Add Supplemental

Logging to an Oracle Source Endpoint

Exec rdsadmin.rdsadmin_util.set_configuration(‘archivelog retention
 hours’,24);

Automatically Add Supplemental Logging to an
Oracle Source Endpoint
By default, AWS DMS has supplemental logging turned off. To automatically turn on supplemental
logging for a source Oracle endpoint, do the following:

To add supplemental logging to a source Oracle endpoint

1. Sign in to the AWS Management Console and select DMS.

2. Select Endpoints.

3. Select the Oracle source endpoint that you want to add supplemental logging to.

4. Select Modify.

5. Select Advanced, and then add the following code to the Extra connection attributes text box:

addSupplementalLogging=Y

6. Choose Modify.

LOB Changes not being Captured
Currently, a table must have a primary key for AWS DMS to capture LOB changes. If a table that
contains LOBs doesn't have a primary key, there are several actions you can take to capture LOB
changes:

• Add a primary key to the table. This can be as simple as adding an ID column and populating it with
a sequence using a trigger.

• Create a materialized view of the table that includes a system generated ID as the primary key and
migrate the materialized view rather than the table.

• Create a logical standby, add a primary key to the table, and migrate from the logical standby.

Error: ORA-12899: value too large for column
<column-name>
The error "ORA-12899: value too large for column <column-name>" is often caused by
a mismatch in the character sets used by the source and target databases or when NLS
settings differ between the two databases. A common cause of this error is when the source
database NLS_LENGTH_SEMANTICS parameter is set to CHAR and the target database
NLS_LENGTH_SEMANTICS parameter is set to BYTE.

NUMBER data type being misinterpreted
The Oracle NUMBER data type is converted into various AWS DMS datatypes, depending on the
precision and scale of NUMBER. These conversions are documented here Using an Oracle Database

Version API Version 2016-01-01
128

AWS Database Migration Service User Guide
Troubleshooting MySQL Specific Issues

as a Source for AWS Database Migration Service (p. 54). The way the NUMBER type is converted
can also be affected by using Extra Connection Attributes for the source Oracle endpoint. These Extra
Connection Attributes are documented in Using Extra Connection Attributes with AWS Database
Migration Service (p. 157).

Troubleshooting MySQL Specific Issues
The following issues are specific to using AWS DMS with MySQL databases.

Topics

• CDC Task Failing for Amazon RDS DB Instance Endpoint Because Binary Logging
Disabled (p. 129)

• Adding Autocommit to a MySQL-compatible Endpoint (p. 129)

• Disable Foreign Keys on a Target MySQL-compatible Endpoint (p. 130)

• Characters Replaced with Question Mark (p. 130)

• "Bad event" Log Entries (p. 130)

• Change Data Capture with MySQL 5.5 (p. 130)

• Increasing Binary Log Retention for Amazon RDS DB Instances (p. 130)

• Log Message: Some changes from the source database had no impact when applied to the target
database. (p. 131)

• Error: Identifier too long (p. 131)

• Error: Unsupported Character Set Causes Field Data Conversion to Fail (p. 131)

CDC Task Failing for Amazon RDS DB Instance
Endpoint Because Binary Logging Disabled
This issue occurs with Amazon RDS DB instances because automated backups are disabled. Enable
automatic backups by setting the backup retention period to a non-zero value.

Adding Autocommit to a MySQL-compatible
Endpoint

To add autocommit to a target MySQL-compatible endpoint

1. Sign in to the AWS Management Console and select DMS.

2. Select Endpoints.

3. Select the MySQL-compatible target endpoint that you want to add autocommit to.

4. Select Modify.

5. Select Advanced, and then add the following code to the Extra connection attributes text box:

Initstmt= SET AUTOCOMMIT=1

6. Choose Modify.

Version API Version 2016-01-01
129

AWS Database Migration Service User Guide
Disable Foreign Keys on a Target

MySQL-compatible Endpoint

Disable Foreign Keys on a Target MySQL-
compatible Endpoint
You can disable foreign key checks on MySQL by adding the following to the Extra Connection
Attributes in the Advanced section of the target MySQL, Aurora, or MariaDB endpoint.

To disable foreign keys on a target MySQL-compatible endpoint

1. Sign in to the AWS Management Console and select DMS.

2. Select Endpoints.

3. Select the Oracle target endpoint that you want to disable foreign keys.

4. Select Modify.

5. Select Advanced, and then add the following code to the Extra connection attributes text box:

Initstmt=SET FOREIGN_KEY_CHECKS=0

6. Choose Modify.

Characters Replaced with Question Mark
The most common situation that causes this issue is when the source endpoint characters have been
encoded by a character set that AWS DMS doesn't support. For example, AWS DMS does not support
the UTF8MB4 character set.

"Bad event" Log Entries
"Bad event" entries in the migration logs usually indicate that an unsupported DDL operation was
attempted on the source database endpoint. Unsupported DDL operations cause an event that the
replication instance cannot skip so a bad event is logged. To fix this issue, restart the task from the
beginning, which will reload the tables and will start capturing changes at a point after the unsupported
DDL operation was issued.

Change Data Capture with MySQL 5.5
AWS DMS change data capture (CDC) for Amazon RDS MySQL-compatible databases requires full
image row-based binary logging, which is not supported in MySQL version 5.5 or lower. To use AWS
DMS CDC, you must up upgrade your Amazon RDS DB instance to MySQL version 5.6.

Increasing Binary Log Retention for Amazon RDS
DB Instances
AWS DMS requires the retention of binary log files for change data capture. To increase log retention
on an Amazon RDS DB instance, use the following procedure. The following example increases the
binary log retention to 24 hours.

Call mysql.rds_set_configuration(‘binlog retention hours’, 24);

Version API Version 2016-01-01
130

AWS Database Migration Service User Guide
Log Message: Some changes from the source database

had no impact when applied to the target database.

Log Message: Some changes from the source
database had no impact when applied to the target
database.
When AWS DMS updates a MySQL database column’s value to its existing value, a message of zero
rows affected is returned from MySQL. This behavior is unlike other database engines such as
Oracle and SQL Server that perform an update of one row, even when the replacing value is the same
as the current one.

Error: Identifier too long
The following error occurs when an identifier is too long:

TARGET_LOAD E: RetCode: SQL_ERROR SqlState: HY000 NativeError:
1059 Message: MySQLhttp://ODBC 5.3(w) Driverhttp://mysqld-5.6.10Identifier
name ‘<name>’ is too long 122502 ODBC general error. (ar_odbc_stmt.c:4054)

When AWS DMS is set to create the tables and primary keys in the target database, it currently does
not use the same names for the Primary Keys that were used in the source database. Instead, AWS
DMS creates the Primary Key name based on the tables name. When the table name is long, the auto-
generated identifier created can be longer than the allowed limits for MySQL. The solve this issue,
currently, pre-create the tables and Primary Keys in the target database and use a task with the task
setting Target table preparation mode set to Do nothing or Truncate to populate the target tables.

Error: Unsupported Character Set Causes Field
Data Conversion to Fail
The following error occurs when an unsupported character set causes a field data conversion to fail:

“[SOURCE_CAPTURE]E: Column ‘<column name>' uses an unsupported character set
 [120112]
A field data conversion failed. (mysql_endpoint_capture.c:2154)

This error often occurs because of tables or databases using UTF8MB4 encoding. AWS DMS does
not support the UTF8MB4 character set. In addition, check your database's parameters related to
connections. The following command can be used to see these parameters:

SHOW VARIABLES LIKE ‘%char%’

Troubleshooting PostgreSQL Specific Issues
The following issues are specific to using AWS DMS with PostgreSQL databases.

Version API Version 2016-01-01
131

AWS Database Migration Service User Guide
Columns of a user defined data

type not being migrated correctly

Topics

• Columns of a user defined data type not being migrated correctly (p. 132)

• Error: No schema has been selected to create in (p. 132)

• Deletes and updates to a table are not being replicated using CDC (p. 132)

• Truncate statements are not being propagated (p. 132)

• Preventing PostgreSQL from capturing DDL (p. 132)

• Selecting the schema where database objects for capturing DDL are created (p. 133)

• Oracle tables missing after migrating to PostgreSQL (p. 133)

• Task Using View as a Source Has No Rows Copied (p. 133)

Columns of a user defined data type not being
migrated correctly
When replicating from a PostgreSQL source, AWS DMS creates the target table with the same
data types for all columns, apart from columns with user-defined data types. In such cases, the
data type is created as “character varying” in the target. [NEED MORE INFORMATION FOR
TROUBLESHOOTING HERE]

Error: No schema has been selected to create in
The error "SQL_ERROR SqlState: 3F000 NativeError: 7 Message: ERROR: no schema has been
selected to create in" can occur when your JSON table mapping contains a wild card value for the
schema but the source database doesn't support that value.

Deletes and updates to a table are not being
replicated using CDC
Delete and Update operations during change data capture (CDC) are ignored if the source table does
not have a primary key. AWS DMS supports change data capture (CDC) for PostgreSQL tables with
primary keys; if a table does not have a primary key, the WAL logs do not include a before image of the
database row and AWS DMS cannot update the table. Create a primary key on the source table if you
want delete operations to be replicated.

Truncate statements are not being propagated
When using change data capture (CDC), TRUNCATE operations are not supported by AWS DMS.

Preventing PostgreSQL from capturing DDL
You can prevent a PostgreSQL target endpoint from capturing DDL statements by adding the following
Extra Connection Attribute statement. The Extra Connection Attribute parameter is available in the
Advanced tab of the target endpoint.

captureDDLs=N

Version API Version 2016-01-01
132

AWS Database Migration Service User Guide
Selecting the schema where database
objects for capturing DDL are created

Selecting the schema where database objects for
capturing DDL are created
You can control what schema the database objects related to capturing DDL are created in. Add the
following Extra Connection Attribute statement. The Extra Connection Attribute parameter is
available in the Advanced tab of the target endpoint.

ddlArtifactsSchema=xyzddlschema

Oracle tables missing after migrating to PostgreSQL
Oracle defaults to uppercase table names while PostgreSQL defaults to lowercase table names. When
performing a migration from Oracle to PostgreSQL you will most likely need to supply transformation
rules under the table mapping section of your task to convert the case of your table names.

Your tables and data are still accessible; if you migrated your tables without using transformation rules
to convert the case of your table names, you will need to enclose your table names in quotes when
referencing them.

Task Using View as a Source Has No Rows Copied
A View as a PostgreSQL source endpoint is not supported by AWS DMS.

Troubleshooting Microsoft SQL Server Specific
Issues

The following issues are specific to using AWS DMS with Microsoft SQL Server databases.

Topics

• Special Permissions for AWS DMS user account to use CDC (p. 133)

• SQL Server Change Data Capture (CDC) and Amazon RDS (p. 134)

• Errors Capturing Changes for SQL Server Database (p. 134)

• Missing Identity Columns (p. 134)

• Error: SQL Server Does Not Support Publications (p. 134)

• Changes Not Appearing in Target (p. 134)

Special Permissions for AWS DMS user account to
use CDC
The user account used with AWS DMS requires the SQL Server SysAdmin role in order to operate
correctly when using change data capture (CDC). CDC for SQL Server is only available for on-
premises databases or databases on an EC2 instance.

Version API Version 2016-01-01
133

AWS Database Migration Service User Guide
SQL Server Change Data

Capture (CDC) and Amazon RDS

SQL Server Change Data Capture (CDC) and
Amazon RDS
AWS DMS currently does not support change data capture (CDC) from an Amazon RDS SQL Server
DB instance. CDC for SQL Server is only available for on-premises databases or databases on an
Amazon EC2 instance.

Errors Capturing Changes for SQL Server Database
Errors during change data capture (CDC) can often indicate that one of the pre-requisites was not
met. For example, the most common overlooked pre-requisite is a full database backup. The task log
indicates this omission with the following error:

SOURCE_CAPTURE E: No FULL database backup found (under the 'FULL' recovery
 model).
To enable all changes to be captured, you must perform a full database
 backup.
120438 Changes may be missed. (sqlserver_log_queries.c:2623)

Review the pre-requisites listed for using SQL Server as a source in the AWS DMS documentation:
Using a Microsoft SQL Server Database as a Source for AWS Database Migration Service.

Missing Identity Columns
AWS DMS does not support identity columns when you create a target schema. You must add them
after the initial load has completed.

Error: SQL Server Does Not Support Publications
The following error is generated when you use SQL Server Express as a source endpoint:

RetCode: SQL_ERROR SqlState: HY000 NativeError: 21106
Message: This edition of SQL Server does not support publications.

AWS DMS currently does not support SQL Server Express as a source or target.

Changes Not Appearing in Target
AWS DMS requires that a source SQL Server database be in either ‘FULL’ or ‘BULK LOGGED’ data
recovery model in order to consistently capture changes. The ‘SIMPLE’ model is not supported.

The SIMPLE recovery model logs the minimal information needed to allow users to recover their
database. All inactive log entries are automatically truncated when a checkpoint occurs. All operations
are still logged, but as soon as a checkpoint occurs the log is automatically truncated, which means
that it becomes available for re-use and older log entries can be over-written. When log entries are
overwritten, changes cannot be captured, and that is why AWS DMS doesn't support the SIMPLE data
recovery model. For information on other required pre-requisites for using SQL Server as a source,
see the DMS Documentation: Using a Microsoft SQL Server Database as a Source for AWS Database
Migration Service.

Version API Version 2016-01-01
134

http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.SQLServer.html
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.SQLServer.html
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.SQLServer.html

AWS Database Migration Service User Guide
Troubleshooting Amazon Redshift Specific Issues

Troubleshooting Amazon Redshift Specific Issues
The following issues are specific to using AWS DMS with Amazon Redshift databases.

Topics

• Loading into a Amazon Redshift Cluster in a Different Region Than the AWS DMS Replication
Instance (p. 135)

• Error: Relation "awsdms_apply_exceptions" already exists (p. 135)

• Errors with Tables Whose Name Begins with "awsdms_changes" (p. 135)

• Seeing Tables in Cluster with Names Like dms.awsdms_changes000000000XXXX (p. 135)

• Permissions Required to Work with Amazon Redshift (p. 135)

Loading into a Amazon Redshift Cluster in a
Different Region Than the AWS DMS Replication
Instance
This can't be done. AWS DMS requires that the AWS DMS replication instance and a Redshift cluster
be in the same region.

Error: Relation "awsdms_apply_exceptions" already
exists
The error "Relation "awsdms_apply_exceptions" already exists" often occurs when a Redshift endpoint
is specified as a PostgreSQL endpoint. To fix this issue, modify the endpoint and change the Target
engine to "redshift."

Errors with Tables Whose Name Begins with
"awsdms_changes"
Error messages that relate to tables with names that begin with "awsdms_changes" often occur
when two tasks that are attempting to load data into the same Amazon Redshift cluster are running
concurrently. Due to the way temporary tables are named, concurrent tasks can conflict when updating
the same table.

Seeing Tables in Cluster with Names Like
dms.awsdms_changes000000000XXXX
AWS DMS creates temporary tables when data is being loaded from files stored in S3. The name of
these temporary tables have the prefix "dms.awsdms_changes." These tables are required so AWS
DMS can store data when it is first loaded and before it is placed in its final target table.

Permissions Required to Work with Amazon
Redshift
To use AWS DMS with Amazon Redshift, the user account you use to access Amazon Redshift must
have the following permissions:

Version API Version 2016-01-01
135

AWS Database Migration Service User Guide
Troubleshooting Amazon Aurora Specific Issues

• CRUD (Select, Insert, Update, Delete)

• Bulk Load

• Create, Alter, Drop (if required by the task's definition)

To see all the pre-requisites required for using Amazon Redshift as a target, see Using an Amazon
Redshift Database as a Target for AWS Database Migration Service

Troubleshooting Amazon Aurora Specific Issues
The following issues are specific to using AWS DMS with Amazon Aurora databases.

Topics

• Error: CHARACTER SET UTF8 fields terminated by ',' enclosed by '"' lines terminated by
'\n' (p. 136)

Error: CHARACTER SET UTF8 fields terminated by
',' enclosed by '"' lines terminated by '\n'
If you are using Amazon Aurora as a target and see an error like the following in the logs, this usually
indicates that you have ANSI_QUOTES as part of the SQL_MODE parameter. Having ANSI_QUOTES
as part of the SQL_MODE parameter causes double quotes to be handled like quotes and can create
issues when you run a task. To fix this error, remove ANSI_QUOTES from the SQL_MODE parameter.

2016-11-02T14:23:48 [TARGET_LOAD]E: Load data sql statement. load data local
 infile
"/rdsdbdata/data/tasks/7XO4FJHCVON7TYTLQ6RX3CQHDU/data_files/4/
LOAD000001DF.csv" into table
`VOSPUSER`.`SANDBOX_SRC_FILE` CHARACTER SET UTF8 fields terminated by ','
enclosed by '"' lines terminated by '\n'(`SANDBOX_SRC_FILE_ID`,`SANDBOX_ID`,
`FILENAME`,`LOCAL_PATH`,`LINES_OF_CODE`,`INSERT_TS`,`MODIFIED_TS`,`MODIFIED_BY`,
`RECORD_VER`,`REF_GUID`,`PLATFORM_GENERATED`,`ANALYSIS_TYPE`,`SANITIZED`,`DYN_TYPE`,
`CRAWL_STATUS`,`ORIG_EXEC_UNIT_VER_ID`) ; (provider_syntax_manager.c:2561)

Version API Version 2016-01-01
136

http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.Redshift.html
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.Redshift.html

AWS Database Migration Service User Guide

Reference for AWS Database
Migration Service Including
Data Conversion Reference and
Additional Topics

This reference section includes additional information you may need when using AWS Database
Migration Service (AWS DMS), including data type conversion information and additional procedures.
There are a few important things to remember about data types when migrating a database:

• The FLOAT data type is inherently an approximation. The FLOAT data type is special in the sense
that when you insert a specific value, it may be represented differently in the database, as it is not
an accurate data type, such as a decimal data type like NUMBER or NUMBER(p,s). As a result, the
internal value of FLOAT stored in the database might be different than the value that you insert, so
the migrated value of a FLOAT might not match exactly the value on the source database.

Here are some articles on the topic:

IEEE floating point https://en.wikipedia.org/wiki/IEEE_floating_point

IEEE Floating-Point Representation https://msdn.microsoft.com/en-us/library/0b34tf65.aspx

Why Floating-Point Numbers May Lose Precision https://msdn.microsoft.com/en-us/library/
c151dt3s.aspx

• The UTF-8 4-byte character set (utf8mb4) is not supported and could cause unexpected behavior in
a source database. Plan to convert any data using the UTF-8 4-byte character set before migrating.

Topics

• Source Data Types (p. 138)

• Target Data Types (p. 148)

• Data Types for AWS Database Migration Service (p. 156)

• Using Extra Connection Attributes with AWS Database Migration Service (p. 157)

• Using ClassicLink with AWS Database Migration Service (p. 163)

Version API Version 2016-01-01
137

https://en.wikipedia.org/wiki/IEEE_floating_point
https://msdn.microsoft.com/en-us/library/0b34tf65.aspx
https://msdn.microsoft.com/en-us/library/c151dt3s.aspx
https://msdn.microsoft.com/en-us/library/c151dt3s.aspx

AWS Database Migration Service User Guide
Source Data Types

Source Data Types
You can find data type conversion tables for databases used as a source for AWS Database Migration
Service following.

Topics

• Source Data Types for Oracle (p. 138)

• Source Data Types for Microsoft SQL Server (p. 140)

• Source Data Types for PostgreSQL (p. 143)

• Source Data Types for MySQL (p. 145)

• Source Data Types for SAP ASE (p. 146)

Source Data Types for Oracle
The Oracle endpoint for AWS DMS supports most Oracle data types. The following table shows the
Oracle source data types that are supported when using AWS DMS and the default mapping to AWS
DMS data types.

For additional information about AWS DMS data types, see Data Types for AWS Database Migration
Service (p. 156).

Oracle Data Type AWS DMS Data Type

BINARY_FLOAT REAL4

BINARY_DOUBLE REAL8

BINARY BYTES

FLOAT (P) If precision is less than or equal to 24, use REAL4.

If precision is greater than 24, use REAL8.

NUMBER (P,S) When scale is less than 0, use REAL8

NUMBER according to
the "Expose number as"
property in the Oracle
source database settings.

When scale is 0:

• And precision is 0, use REAL8.

• And precision is greater than or equal to 2, use INT1.

• And precision is greater than 2 and less than or equal to 4, use
INT2.

• And precision is greater than 4 and less than or equal to 9, use
INT4.

• And precision is greater than 9, use NUMERIC.

• And precision is greater than or equal to scale, use NUMERIC.

In all other cases, use REAL8.

DATE DATETIME

INTERVAL_YEAR TO
MONTH

STRING (with interval year_to_month indication)

INTERVAL_DAY TO
SECOND

STRING (with interval day_to_second indication)

Version API Version 2016-01-01
138

AWS Database Migration Service User Guide
Source Data Types for Oracle

Oracle Data Type AWS DMS Data Type

TIME DATETIME

TIMESTAMP DATETIME

TIMESTAMP WITH TIME
ZONE

STRING (with timestamp_with_timezone indication)

TIMESTAMP WITH LOCAL
TIME ZONE

STRING (with timestamp_with_local_ timezone indication)

CHAR STRING

VARCHAR2 STRING

NCHAR WSTRING

NAVARCHAR2 WSTRING

RAW BYTES

REAL REAL8

BLOB BLOB

To use this data type with AWS DMS, you must enable the use of
BLOB data types for a specific task. AWS DMS supports BLOB data
types only in tables that include a primary key.

CLOB CLOB

To use this data type with AWS DMS, you must enable the use of
CLOB data types for a specific task. During change data capture
(CDC), AWS DMS supports CLOB data types only in tables that
include a primary key.

NCLOB NCLOB

To use this data type with AWS DMS, you must enable the use
of NCLOB data types for a specific task. During CDC, AWS DMS
supports NCLOB data types only in tables that include a primary key.

LONG CLOB

The LONG data type is not supported in batch-optimized apply mode
(TurboStream CDC mode). To use this data type with AWS DMS, you
must enable the use of LOBs for a specific task. During CDC, AWS
DMS supports LOB data types only in tables that have a primary key.

LONG RAW BLOB

The LONG RAW data type is not supported in batch-optimized apply
mode (TurboStream CDC mode). To use this data type with AWS
DMS, you must enable the use of LOBs for a specific task. During
CDC, AWS DMS supports LOB data types only in tables that have a
primary key.

Version API Version 2016-01-01
139

AWS Database Migration Service User Guide
Source Data Types for SQL Server

Oracle Data Type AWS DMS Data Type

XMLTYPE CLOB

Support for the XMLTYPE data type requires the full Oracle Client
(as opposed to the Oracle Instant Client). When the target column is
a CLOB, both full LOB mode and limited LOB mode are supported
(depending on the target).

Oracle tables used as a source with columns of the following data types are not supported and cannot
be replicated. Replicating columns with these data types result in a null column.

• BFILE

• ROWID

• REF

• UROWID

• Nested Table

• User-defined data types

• ANYDATA

Note
Virtual columns are not supported.

Source Data Types for Microsoft SQL Server
Data migration that uses Microsoft SQL Server as a source for AWS DMS supports most SQL Server
data types. The following table shows the SQL Server source data types that are supported when
using AWS DMS and the default mapping from AWS DMS data types.

For information on how to view the data type that is mapped in the target, see the section for the target
endpoint you are using.

For additional information about AWS DMS data types, see Data Types for AWS Database Migration
Service (p. 156).

SQL Server Data Types AWS DMS Data Types

BIGINT INT8

BIT BOOLEAN

DECIMAL NUMERIC

INT INT4

MONEY NUMERIC

NUMERIC (p,s) NUMERIC

SMALLINT INT2

SMALLMONEY NUMERIC

TINYINT UINT1

REAL REAL4

Version API Version 2016-01-01
140

AWS Database Migration Service User Guide
Source Data Types for SQL Server

SQL Server Data Types AWS DMS Data Types

FLOAT REAL8

DATETIME DATETIME

DATETIME2 (SQL Server 2008 and later) DATETIME

SMALLDATETIME DATETIME

DATE DATE

TIME TIME

DATETIMEOFFSET WSTRING

CHAR STRING

VARCHAR STRING

VARCHAR (max) CLOB

TEXT

To use this data type with AWS DMS, you must
enable the use of CLOB data types for a specific
task.

For SQL Server tables, AWS DMS updates
LOB columns in the target even for UPDATE
statements that don't change the value of the
LOB column in SQL Server.

During CDC, AWS DMS supports CLOB data
types only in tables that include a primary key.

NCHAR WSTRING

NVARCHAR (length) WSTRING

NVARCHAR (max) NCLOB

NTEXT

To use this data type with AWS DMS, you must
enable the use of NCLOB data types for a
specific task.

For SQL Server tables, AWS DMS updates
LOB columns in the target even for UPDATE
statements that don't change the value of the
LOB column in SQL Server.

During CDC, AWS DMS supports CLOB data
types only in tables that include a primary key.

BINARY BYTES

VARBINARY BYTES

Version API Version 2016-01-01
141

AWS Database Migration Service User Guide
Source Data Types for SQL Server

SQL Server Data Types AWS DMS Data Types

VARBINARY (max) BLOB

IMAGE

For SQL Server tables, AWS DMS updates
LOB columns in the target even for UPDATE
statements that don't change the value of the
LOB column in SQL Server.

To use this data type with AWS DMS, you must
enable the use of BLOB data types for a specific
task.

AWS DMS supports BLOB data types only in
tables that include a primary key.

TIMESTAMP BYTES

UNIQUEIDENTIFIER STRING

HIERARCHYID Use HIERARCHYID when replicating to a SQL
Server target endpoint.

Use WSTRING (250) when replicating to all other
target endpoints.

XML NCLOB

For SQL Server tables, AWS DMS updates
LOB columns in the target even for UPDATE
statements that don't change the value of the
LOB column in SQL Server.

To use this data type with AWS DMS, you must
enable the use of NCLOB data types for a
specific task.

During CDC, AWS DMS supports NCLOB data
types only in tables that include a primary key.

GEOMETRY Use GEOMETRY when replicating to target
endpoints that support this data type.

Use CLOB when replicating to target endpoints
that don't support this data type.

GEOGRAPHY Use GEOGRAPHY when replicating to target
endpoints that support this data type.

Use CLOB when replicating to target endpoints
that do not support this data type.

AWS DMS does not support tables that include fields with the following data types:

• CURSOR

• SQL_VARIANT

• TABLE

Version API Version 2016-01-01
142

AWS Database Migration Service User Guide
Source Data Types for PostgreSQL

Note
User-defined data types are supported according to their base type. For example, a user-
defined data type based on DATETIME is handled as a DATETIME data type.

Source Data Types for PostgreSQL
The following table shows the PostgreSQL source data types that are supported when using AWS
DMS and the default mapping to AWS DMS data types.

For additional information about AWS DMS data types, see Data Types for AWS Database Migration
Service (p. 156).

PostgreSQL Data Types AWS DMS Data Types

INTEGER INT4

SMALLINT INT2

BIGINT INT8

NUMERIC (p,s) If precision is from 0 through 38, then use
NUMERIC.

If precision is 39 or greater, then use STRING.

DECIMAL(P,S) If precision is from 0 through 38, then use
NUMERIC.

If precision is 39 or greater, then use STRING.

REAL REAL4

DOUBLE REAL8

SMALLSERIAL INT2

SERIAL INT4

BIGSERIAL INT8

MONEY NUMERIC(38,4)

Note: The MONEY data type is mapped to
FLOAT in SQL Server.

CHAR WSTRING (1)

CHAR(N) WSTRING (n)

VARCHAR(N) WSTRING (n)

TEXT NCLOB

BYTEA BLOB

TIMESTAMP TIMESTAMP

TIMESTAMP (z) TIMESTAMP

TIMESTAMP with time zone Not supported

DATE DATE

Version API Version 2016-01-01
143

AWS Database Migration Service User Guide
Source Data Types for PostgreSQL

PostgreSQL Data Types AWS DMS Data Types

TIME TIME

TIME (z) TIME

INTERVAL STRING (128)—1 YEAR, 2 MONTHS, 3 DAYS, 4
HOURS, 5 MINUTES, 6 SECONDS

BOOLEAN STRING (1) F or T

ENUM STRING (64)

CIDR STRING (50)

INET STRING (50)

MACADDR STRING (18)

BIT (n) STRING (n)

BIT VARYING (n) STRING (n)

UUID STRING

TSVECTOR CLOB

TSQUERY CLOB

XML CLOB

POINT STRING (255) "(x,y)"

LINE STRING (255) "(x,y,z)"

LSEG STRING (255) "((x1,y1),(x2,y2))"

BOX STRING (255) "((x1,y1),(x2,y2))"

PATH CLOB "((x1,y1),(xn,yn))"

POLYGON CLOB "((x1,y1),(xn,yn))"

CIRCLE STRING (255) "(x,y),r"

JSON NCLOB

ARRAY NCLOB

COMPOSITE NCLOB

INT4RANGE STRING (255)

INT8RANGE STRING (255)

NUMRANGE STRING (255)

STRRANGE STRING (255)

Version API Version 2016-01-01
144

AWS Database Migration Service User Guide
Source Data Types for MySQL

Source Data Types for MySQL
The following table shows the MySQL database source data types that are supported when using AWS
DMS and the default mapping from AWS DMS data types.

Note
The UTF-8 4-byte character set (utf8mb4) is not supported and could cause unexpected
behavior in a source database. Plan to convert any data using the UTF-8 4-byte character set
before migrating.

For additional information about AWS DMS data types, see Data Types for AWS Database Migration
Service (p. 156).

MySQL Data Types AWS DMS Data Types

INT INT4

MEDIUMINT INT4

BIGINT INT8

TINYINT INT1

DECIMAL(10) NUMERIC (10,0)

BINARY BYTES(1)

BIT BOOLEAN

BIT(64) BYTES(8)

BLOB BYTES(66535)

LONGBLOB BLOB

MEDIUMBLOB BLOB

TINYBLOB BYTES(255)

DATE DATE

DATETIME DATETIME

TIME STRING

TIMESTAMP DATETIME

YEAR INT2

DOUBLE REAL8

FLOAT REAL(DOUBLE)

The supported FLOAT range is -1.79E+308 to
-2.23E-308, 0 and 2.23E-308 to 1.79E+308

If the FLOAT values are not in the range
specified here, map the FLOAT data type to the
STRING data type.

VARCHAR (45) WSTRING (45)

VARCHAR (2000) WSTRING (2000)

Version API Version 2016-01-01
145

AWS Database Migration Service User Guide
Source Data Types for SAP ASE

MySQL Data Types AWS DMS Data Types

VARCHAR (4000) WSTRING (4000)

VARBINARY (4000) BYTES (4000)

VARBINARY (2000) BYTES (2000)

CHAR WSTRING

TEXT WSTRING (65535)

LONGTEXT NCLOB

MEDIUMTEXT NCLOB

TINYTEXT WSTRING (255)

GEOMETRY BLOB

POINT BLOB

LINESTRING BLOB

POLYGON BLOB

MULTIPOINT BLOB

MULTILINESTRING BLOB

MULTIPOLYGON BLOB

GEOMETRYCOLLECTION BLOB

Note
If the DATETIME and TIMESTAMP data types are specified with a “zero” value (that is,
0000-00-00), you need to make sure that the target database in the replication task supports
"zero" values for the DATETIME and TIMESTAMP data types. Otherwise, they are recorded
as null on the target.

The following MySQL data types are supported in full load only:

MySQL Data Types AWS DMS Data Types

ENUM STRING

SET STRING

Source Data Types for SAP ASE
Data migration that uses SAP ASE as a source for AWS DMS supports most SAP ASE data types. The
following table shows the SAP ASE source data types that are supported when using AWS DMS and
the default mapping from AWS DMS data types.

For information on how to view the data type that is mapped in the target, see the section for the target
endpoint you are using.

For additional information about AWS DMS data types, see Data Types for AWS Database Migration
Service (p. 156).

Version API Version 2016-01-01
146

AWS Database Migration Service User Guide
Source Data Types for SAP ASE

SAP ASE Data Types AWS DMS Data Types

BIGINT INT8

BINARY BYTES

BIT BOOLEAN

CHAR STRING

DATE DATE

DATETIME DATETIME

DECIMAL NUMERIC

DOUBLE REAL8

FLOAT REAL8

IMAGE BLOB

INT INT4

MONEY NUMERIC

NCHAR WSTRING

NUMERIC NUMERIC

NVARCHAR WSTRING

REAL REAL4

SMALLDATETIME DATETIME

SMALLINT INT2

SMALLMONEY NUMERIC

TEXT CLOB

TIME TIME

TINYINT UINT1

UNICHAR UNICODE CHARACTER

UNITEXT NCLOB

UNIVARCHAR UNICODE

VARBINARY BYTES

VARCHAR STRING

AWS DMS does not support tables that include fields with the following data types:

• User-defined type (UDT)

Version API Version 2016-01-01
147

AWS Database Migration Service User Guide
Target Data Types

Target Data Types
You can find data type conversion tables for databases used as a target for AWS Database Migration
Service following.

Topics

• Target Data Types for Oracle (p. 148)

• Target Data Types for Microsoft SQL Server (p. 149)

• Target Data Types for PostgreSQL (p. 151)

• Target Data Types for MySQL (p. 152)

• Target Data Types for SAP ASE (p. 153)

• Amazon Redshift Data Types (p. 154)

Target Data Types for Oracle
A target Oracle database used with AWS DMS supports most Oracle data types. The following table
shows the Oracle target data types that are supported when using AWS DMS and the default mapping
from AWS DMS data types. For more information about how to view the data type that is mapped from
the source, see the section for the source you are using.

AWS DMS Data Type Oracle Data Type

BOOLEAN NUMBER (1)

BYTES RAW (length)

DATE DATETIME

TIME TIMESTAMP (0)

DATETIME TIMESTAMP (scale)

INT1 NUMBER (3)

INT2 NUMBER (5)

INT4 NUMBER (10)

INT8 NUMBER (19)

NUMERIC NUMBER (p,s)

REAL4 FLOAT

REAL8 FLOAT

STRING With date indication: DATE

With time indication: TIMESTAMP

With timestamp indication: TIMESTAMP

With timestamp_with_timezone indication: TIMESTAMP WITH
TIMEZONE

With timestamp_with_local_timezone indication: TIMESTAMP
WITH LOCAL TIMEZONE With interval_year_to_month indication:
INTERVAL YEAR TO MONTH

Version API Version 2016-01-01
148

AWS Database Migration Service User Guide
Target Data Types for SQL Server

AWS DMS Data Type Oracle Data Type

With interval_day_to_second indication: INTERVAL DAY TO
SECOND

In all other cases: VARCHAR2 (Length)

UINT1 NUMBER (3)

UINT2 NUMBER (5)

UINT4 NUMBER (10)

UINT8 NUMBER (19)

WSTRING NAVARCHAR2 (length)

BLOB BLOB

To use this data type with AWS DMS, you must enable the use of
BLOBs for a specific task. BLOB data types are supported only in
tables that include a primary key

CLOB CLOB

To use this data type with AWS DMS, you must enable the use
of CLOBs for a specific task. During CDC, CLOB data types are
supported only in tables that include a primary key.

NCLOB NCLOB

To use this data type with AWS DMS, you must enable the use of
NCLOBs for a specific task. During CDC, NCLOB data types are
supported only in tables that include a primary key.

XMLTYPE The XMLTYPE target data type is only relevant in Oracle-to-Oracle
replication tasks.

When the source database is Oracle, the source data types are
replicated "as is" to the Oracle target. For example, an XMLTYPE
data type on the source is created as an XMLTYPE data type on the
target.

Target Data Types for Microsoft SQL Server
The following table shows the Microsoft SQL Server target data types that are supported when using
AWS DMS and the default mapping from AWS DMS data types. For additional information about AWS
DMS data types, see Data Types for AWS Database Migration Service (p. 156).

AWS DMS Data Type SQL Server Data Type

BOOLEAN TINYINT

BYTES VARBINARY(length)

DATE For SQL Server 2008 and later, use DATE.

For earlier versions, if the scale is 3 or less use DATETIME. In all
other cases, use VARCHAR (37).

Version API Version 2016-01-01
149

AWS Database Migration Service User Guide
Target Data Types for SQL Server

AWS DMS Data Type SQL Server Data Type

TIME For SQL Server 2008 and later, use DATETIME2 (%d).

For earlier versions, if the scale is 3 or less use DATETIME. In all
other cases, use VARCHAR (37).

DATETIME For SQL Server 2008 and later, use DATETIME2 (scale).

For earlier versions, if the scale is 3 or less use DATETIME. In all
other cases, use VARCHAR (37).

INT1 SMALLINT

INT2 SMALLINT

INT4 INT

INT8 BIGINT

NUMERIC NUMBER (p,s)

REAL4 REAL

REAL8 FLOAT

STRING If the column is a date or time column, then do the following:

• For SQL Server 2008 and later, use DATETIME2.

• For earlier versions, if the scale is 3 or less use DATETIME. In all
other cases, use VARCHAR (37).

If the column is not a date or time column, use VARCHAR (length).

UINT1 TINYINT

UINT2 SMALLINT

UINT4 INT

UINT8 BIGINT

WSTRING NVARCHAR (length)

BLOB VARBINARY(max)

IMAGE

To use this data type with AWS DMS, you must enable the use of
BLOBs for a specific task. AWS DMS supports BLOB data types only
in tables that include a primary key.

CLOB VARCHAR(max)

To use this data type with AWS DMS, you must enable the use of
CLOBs for a specific task. During CDC, AWS DMS supports CLOB
data types only in tables that include a primary key.

Version API Version 2016-01-01
150

AWS Database Migration Service User Guide
Target Data Types for PostgreSQL

AWS DMS Data Type SQL Server Data Type

NCLOB NVARCHAR(max)

To use this data type with AWS DMS, you must enable the use
of NCLOBs for a specific task. During CDC, AWS DMS supports
NCLOB data types only in tables that include a primary key.

Target Data Types for PostgreSQL
The PostgreSQL database endpoint for AWS DMS supports most PostgreSQL database data types.
The following table shows the PostgreSQL database target data types that are supported when using
AWS DMS and the default mapping from AWS DMS data types. Unsupported data types are listed
following the table.

For additional information about AWS DMS data types, see Data Types for AWS Database Migration
Service (p. 156).

AWS DMS Data Type PostgreSQL Data Type

BOOL BOOL

BYTES BYTEA

DATE DATE

TIME TIME

TIMESTAMP If the scale is from 0 through 6, then use TIMESTAMP.

If the scale is from 7 through 9, then use VARCHAR (37).

INT1 SMALLINT

INT2 SMALLINT

INT4 INTEGER

INT8 BIGINT

NUMERIC DECIMAL (P,S)

REAL4 FLOAT4

REAL8 FLOAT8

STRING If the length is from 1 through 21,845, then use VARCHAR (length in
bytes).

If the length is 21,846 through 2,147,483,647, then use VARCHAR
(65535).

UINT1 SMALLINT

UINT2 INTEGER

UINT4 BIGINT

UINT8 BIGINT

Version API Version 2016-01-01
151

AWS Database Migration Service User Guide
Target Data Types for MySQL

AWS DMS Data Type PostgreSQL Data Type

WSTRING If the length is from 1 through 21,845, then use VARCHAR (length in
bytes).

If the length is 21,846 through 2,147,483,647, then use VARCHAR
(65535).

BCLOB BYTEA

NCLOB TEXT

CLOB TEXT

Note
When replicating from a PostgreSQL source, AWS DMS creates the target table with the
same data types for all columns, apart from columns with user-defined data types. In such
cases, the data type is created as "character varying" in the target.

Target Data Types for MySQL
The following table shows the MySQL database target data types that are supported when using AWS
DMS and the default mapping from AWS DMS data types.

For additional information about AWS DMS data types, see Data Types for AWS Database Migration
Service (p. 156).

AWS DMS Data Types MySQL Data Types

BOOLEAN BOOLEAN

BYTES If the length is from 1 through 65,535, then use
VARBINARY (length).

If the length is from 65,536 through
2,147,483,647, then use LONGLOB.

DATE DATE

TIME TIME

TIMESTAMP If the scale is from 0 through 6, then use
BIGDATETIME.

If the scale is from 7 through 9, then use
VARCHAR (37).

INT1 TINYINT

INT2 SMALLINT

INT4 INTEGER

INT8 BIGINT

NUMERIC DECIMAL (p,s)

REAL4 FLOAT

REAL8 DOUBLE PRECISION

Version API Version 2016-01-01
152

AWS Database Migration Service User Guide
Target Data Types for SAP ASE

AWS DMS Data Types MySQL Data Types

STRING If the length is from 1 through 21,845, then use
VARCHAR (length).

If the length is from 21,846 through
2,147,483,647, then use LONGTEXT.

UINT1 UNSIGNED TINYINT

UINT2 UNSIGNED SMALLINT

UINT4 UNSIGNED INTEGER

UINT8 UNSIGNED BIGINT

WSTRING If the length is from 1 through 32,767, then use
VARCHAR (length).

If the length is from 32,768 through
2,147,483,647, then use LONGTEXT.

BLOB If the length is from 1 through 65,535, then use
BLOB.

If the length is from 65,536 through
2,147,483,647, then use LONGBLOB.

If the length is 0, then use LONGBLOB (full LOB
support).

NCLOB If the length is from 1 through 65,535, then use
TEXT.

If the length is from 65,536 through
2,147,483,647, then use LONGTEXT with ucs2
for CHARACTER SET.

If the length is 0, then use LONGTEXT (full LOB
support) with ucs2 for CHARACTER SET.

CLOB If the length is from 1 through 65535, then use
TEXT.

If the length is from 65536 through 2147483647,
then use LONGTEXT.

If the length is 0, then use LONGTEXT (full LOB
support).

Target Data Types for SAP ASE
The following table shows the SAP ASE database target data types that are supported when using
AWS DMS and the default mapping from AWS DMS data types.

For additional information about AWS DMS data types, see Data Types for AWS Database Migration
Service (p. 156).

Version API Version 2016-01-01
153

AWS Database Migration Service User Guide
Amazon Redshift Data Types

AWS DMS Data Types SAP ASE Data Types

BOOLEAN BIT

BYTES VARBINARY (Length)

DATE DATE

TIME TIME

TIMESTAMP If scale is => 0 and =< 6, then: BIGDATETIME

If scale is => 7 and =< 9, then: VARCHAR (37)

INT1 TINYINT

INT2 SMALLINT

INT4 INTEGER

INT8 BIGINT

NUMERIC NUMERIC (p,s)

REAL4 REAL

REAL8 DOUBLE PRECISION

STRING VARCHAR (Length)

UINT1 TINYINT

UINT2 UNSIGNED SMALLINT

UINT4 UNSIGNED INTEGER

UINT8 UNSIGNED BIGINT

WSTRING VARCHAR (Length)

BLOB IMAGE

CLOB UNITEXT

NCLOB TEXT

AWS DMS does not support tables that include fields with the following data types. Replicated columns
with these data types will show as null.

• User-defined type (UDT)

Amazon Redshift Data Types
The Amazon Redshift endpoint for Amazon RDS Migration Tool supports most Amazon Redshift data
types. The following table shows the Amazon Redshift target data types that are supported when using
AWS DMS and the default mapping from AWS DMS data types.

For additional information about AWS DMS data types, see Data Types for AWS Database Migration
Service (p. 156).

Version API Version 2016-01-01
154

AWS Database Migration Service User Guide
Amazon Redshift Data Types

AWS DMS Data Types Amazon Redshift Data Types

BOOLEAN BOOL

BYTES VARCHAR (Length)

DATE DATE

TIME VARCHAR(20)

DATETIME If the scale is => 0 and =< 6, then:

TIMESTAMP (s)

If the scale is => 7 and =< 9, then:

VARCHAR (37)

INT1 INT2

INT2 INT2

INT4 INT4

INT8 INT8

NUMERIC If the scale is => 0 and =< 37, then:

NUMERIC (p,s)

If the scale is => 38 and =< 127, then:

VARCHAR (Length)

REAL4 FLOAT4

REAL8 FLOAT8

STRING If the length is => 1 and =< 65535, then:

VARCHAR (Length in Bytes)

If the length is => 65536 and =< 2147483647,
then:

VARCHAR (65535)

UINT1 INT2

UINT2 INT2

UINT4 INT4

UINT8 NUMERIC (20,0)

WSTRING If the length is => 1 and =< 65535, then:

NVARCHAR (Length in Bytes)

If the length is => 65536 and =< 2147483647,
then:

NVARCHAR (65535)

Version API Version 2016-01-01
155

AWS Database Migration Service User Guide
AWS DMS Data Types

AWS DMS Data Types Amazon Redshift Data Types

BLOB VARCHAR (Max LOB Size *2)

Note: The maximum LOB size cannot exceed 31
KB.

NCLOB NVARCHAR (Max LOB Size)

Note: The maximum LOB size cannot exceed 63
KB.

CLOB VARCHAR (Max LOB Size)

Note: The maximum LOB size cannot exceed 63
KB.

Data Types for AWS Database Migration Service
AWS Database Migration Service uses built-in data types to migrate data from one database to
another. The following table shows the built-in data types and their descriptions.

AWS DMS Data Types Description

STRING A character string.

WSTRING A double-byte character string.

BOOLEAN A Boolean value.

BYTES A binary data value.

DATE A date value: year, month, day.

TIME A time value: hour, minutes, seconds.

DATETIME A timestamp value: year, month, day, hour,
minute, second, fractional seconds. The
fractional seconds have a maximum scale of 9
digits.

INT1 A one-byte, signed integer.

INT2 A two-byte, signed integer.

INT4 A four-byte, signed integer.

INT8 An eight-byte, signed integer.

NUMERIC An exact numeric value with a fixed precision and
scale.

REAL4 A single-precision floating-point value.

REAL8 A double-precision floating-point value.

UINT1 A one-byte, unsigned integer.

UINT2 A two-byte, unsigned integer.

Version API Version 2016-01-01
156

AWS Database Migration Service User Guide
Extra Connection Attributes

AWS DMS Data Types Description

UINT4 A four-byte, unsigned integer.

UINT8 An eight-byte, unsigned integer.

BLOB Binary large object. This data type can be used
only with Oracle endpoints.

CLOB Character large object.

NCLOB Native character large object.

Using Extra Connection Attributes with AWS
Database Migration Service

You can specify additional connection attributes when creating an endpoint for AWS Database
Migration Service. The following database engine specific sections show possible settings.

MySQL

Role Name Description

eventsPollInterval Specifies how often to check the binary log for
new changes/events when the database is idle.

Default value: 5

Valid values: 1 - 60

Example: eventsPollInterval=5

Source

initstmt=SET time-zone Specifies the time zone for the source MySQL
database.

Default value: UTC

Valid values: Any three or four character
abbreviation for the time zone you want to
use. Valid values are the standard time zone
abbreviations for the operating system hosting the
source MySQL database.

Example: initstmt=SET time_zone=UTC

Target targetDbType Specifies where to migrate source tables on the
target, either to a single database or multiple
databases.

Default value: MULTIPLE_DATABASES

Valid values: {SPECIFIC_DATABASE,
MULTIPLE_DATABASES}

Example:
targetDbType=MULTIPLE_DATABASES

Version API Version 2016-01-01
157

AWS Database Migration Service User Guide
PostgreSQL

Role Name Description

parallelLoadThreads Improves performance when loading data into
the MySQL target database. Specifies how
many threads to use to load the data into the
MySQL target database. Note that setting a
large number of threads may have an adverse
effect on database performance since a separate
connection is required for each thread.

Default value: 2

Valid values: 1-5

Example: parallelLoadThreads=1

initstmt=SET
FOREIGN_KEY_CHECKS=0

Disables foreign key checks.

initstmt=SET time-zone Specifies the time zone for the target MySQL
database.

Default value: UTC

Valid values: A three or four character
abbreviation for the time zone you want to
use. Valid values are the standard time zone
abbreviations for the operating system hosting the
target MySQL database.

Example: initstmt=SET time_zone=UTC

PostgreSQL

Role Name Description

Source captureDDLs In order to capture DDL events, AWS DMS
creates various artifacts in the PostgreSQL
database when the task starts. You can later
remove these artifacts as described in the
section Removing AWS Database Migration
Service Artifacts from a PostgreSQL Source
Database (p. 70).

Streamed DDL events are captured.

Default value: Y

Valid values: Y/N

Example: captureDDLs=Y

Version API Version 2016-01-01
158

AWS Database Migration Service User Guide
Oracle

Role Name Description

ddlArtifactsSchema The schema in which the operational DDL
database artifacts are created.

Default value: public

Valid values: String

Example:
ddlArtifactsSchema=xyzddlschema

Oracle

Role Name Description

addSupplementalLogging Set this attribute to automatically set up
supplemental logging for the Oracle database.

Default value: N

Valid values: Y/N

Example: addSupplementalLogging=Y

Note
If you use this option, you still need
to enable supplemental logging at
the database level using the following
statement:

 ALTER DATABASE ADD
 SUPPLEMENTAL LOG DATA

useLogminerReader Set this attribute to capture change data using the
LogMiner utility (the default). Clear this option if
you want AWS DMS to access the redo logs as a
binary file.

Default value: Y

Valid values: Y/N

Example: useLogminerReader=Y

Source

retryInterval Specifies the number of seconds that the system
waits before resending a query.

Default value: 5

Valid values: number starting from 1

Example: retryInterval=6

Version API Version 2016-01-01
159

AWS Database Migration Service User Guide
Oracle

Role Name Description

archivedLogDestId Specifies the destination of the archived redo logs.
The value should be the same as the DEST_ID
number in the $archived_log table. When working
with multiple log destinations (DEST_ID), we
recommended that you to specify an Archived
redo logs location identifier. This will improve
performance by ensuring that the correct logs are
accessed from the outset.

Default value:0

Valid values: Number

Example: archivedLogDestId=1

archivedLogsOnly When this field is set to Y, AWS DMS will only
access the archived redo logs. If the archived redo
logs ares stored on ASM only, the AWS DMS user
needs to be granted the ASM privileges.

Default value: N

Valid values: Y/N

Example: archivedLogDestId=Y

numberDataTypeScale Specifies the Number scale. You can select a
scale up to 38 or you can select FLOAT. By
default the NUMBER data type is converted to
precision 38, scale 10.

Default value: 10

Valid values: -1 to 38 (-1 for FLOAT)

Example: numberDataTypeScale =12

useDirectPathFullLoad Use direct path full load, specify this to enable/
disable the OCI direct path protocol for bulk
loading Oracle tables.

Default value: Y

Valid values: Y/N

Example: useDirectPathFullLoad=N

Target

charLengthSemantics Column length semantics specifies whether the
length of a column is in bytes or in characters. Set
this value to CHAR.

Example: charLengthSemantics=CHAR

Version API Version 2016-01-01
160

AWS Database Migration Service User Guide
SQL Server

SQL Server

Role Name Description

Source safeguardPolicy For optimal performance, AWS DMS tries to
capture all unread changes from the active
transaction log (TLOG). However, sometimes due
to truncation, the active TLOG may not contain all
of the unread changes. When this occurs, AWS
DMS accesses the backup log to capture the
missing changes. To minimize the need to access
the backup log, AWS DMS prevents truncation
using one of the following methods:

1. Start transactions in the database: This is the
default method. When this method is used, AWS
DMS prevents TLOG truncation by mimicking a
transaction in the database. As long as such a
transaction is open, changes that appear after the
transaction started will not be truncated. If you
need Microsoft Replication to be enabled in your
database, then you must choose this method.

2. Exclusively use sp_repldone within a single
task: When this method is used, AWS DMS
reads the changes and then uses sp_repldone
to mark the TLOG transactions as ready for
truncation. Although this method does not involve
any transactional activities, it can only be used
when Microsoft Replication is not running. Also,
when using this method, only one AWS DMS
task can access the database at any given time.
Therefore, if you need to run parallel AWS DMS
tasks against the same database, use the default
method.

Default value:
RELY_ON_SQL_SERVER_REPLICATION_AGENT

Valid values:
{EXCLUSIVE_AUTOMATIC_TRUNCATION,
RELY_ON_SQL_SERVER_REPLICATION_AGENT}

Example: safeguardPolicy=
RELY_ON_SQL_SERVER_REPLICATION_AGENT

Target useBCPFullLoad Use this to attribute to transfer data for full-load
operations using BCP. When the target table
contains an identity column that does not exist in
the source table, you must disable the use BCP
for loading table option.

Default value: Y

Valid values: Y/N

Example: useBCPFullLoad=Y

Version API Version 2016-01-01
161

AWS Database Migration Service User Guide
Amazon Redshift

Role Name Description

BCPPacketSize The maximum size of the packets (in bytes) used
to transfer data using BCP.

Default value: 16384

Valid values: 1 - 100000

Eg : BCPPacketSize=16384

controlTablesFileGroup Specify a filegroup for the AWS DMS internal
tables. When the replication task starts,
all the internal AWS DMS control tables
(awsdms_ apply_exception, awsdms_apply,
awsdms_changes) will be created on the specified
filegroup.

Default value: n/a

Valid values: String

Example:
controlTablesFileGroup=filegroup1

The following is an example of a command for
creating a filegroup:

ALTER DATABASE replicate ADD FILEGROUP
 Test1FG1;
GO ALTER DATABASE replicate
 ADD FILE (
 NAME = test1dat5,
 FILENAME = 'C:\temp\DATA
\t1dat5.ndf',
 SIZE = 5MB,
 MAXSIZE = 100MB,
 FILEGROWTH = 5MB
)
TO FILEGROUP Test1FG1;
GO

Amazon Redshift

Role Name Description

Target maxFileSize Specifies the maximum size (in KB) of any CSV
file used to transfer data to Amazon Redshift.

Default value: 1024

Valid values: 1 - 1048576

Example: maxFileSize=512

Version API Version 2016-01-01
162

AWS Database Migration Service User Guide
SAP Adaptive Server Enterprise (ASE)

Role Name Description

fileTransferUploadStreams Specifies the number of threads used to upload a
single file.

Default value: 10

Valid values: 1 - 64

Example: fileTransferUploadStreams=20

SAP Adaptive Server Enterprise (ASE)

Role Name Description

enableReplication Set to Y to automatically enable SAP ASE
replication. This is only required if SAP ASE
replication has not been enabled already.

Target

additionalConnectionPropertiesAny additional ODBC connection parameters that
you want to specify.

Note
If the user name or password specified in the connection string contains non-Latin characters
(for example, Chinese), the following property is required: charset=gb18030

Using ClassicLink with AWS Database Migration
Service

You can use ClassicLink, in conjunction with a proxy server, to connect an Amazon RDS DB instance
that is not in a VPC to a AWS DMS replication server and DB instance that reside in a VPC.

The following procedure shows how to use ClassicLink to connect an Amazon RDS source DB
instance that is not in a VPC to a VPC containing an AWS DMS replication instance and a target DB
instance.

• Create an AWS DMS replication instance in a VPC. (All replication instances are created in a VPC).

• Associate a VPC security group to the replication instance and the target DB instance. When two
instances share a VPC security group, they can communicate with each other by default.

• Set up a proxy server on an EC2 Classic instance.

• Create a connection using ClassicLink between the proxy server and the VPC.

• Create AWS DMS endpoints for the source and target databases.

• Create an AWS DMS task.

To use ClassicLink to migrate a database on a DB instance not in a VPC to a database
on a DB instance in a VPC

1. Step 1: Create an AWS DMS replication instance.

Version API Version 2016-01-01
163

AWS Database Migration Service User Guide
DB Instance not in a VPC to VPC Using ClassicLink

To create a AWS DMS replication instance and assign a VPC security group

1. Sign in to the AWS Management Console and choose AWS Database Migration Service.
Note that if you are signed in as an AWS Identity and Access Management (IAM) user, you
must have the appropriate permissions to access AWS DMS. For more information on the
permissions required for database migration, see IAM Permissions Needed to Use AWS
DMS (p. 39).

2. On the Dashboard page, choose Replication Instance. Follow the instructions at Step 2:
Create a Replication Instance (p. 22) to create a replication instance.

3. After you have created the AWS DMS replication instance, open the EC2 service console.
Select Network Interfaces from the navigation pane.

4. Select the DMSNetworkInterface, and then choose Change Security Groups from the
Actions menu.

5. Select the security group you want to use for the replication instance and the target DB
instance.

2. Step 2: Associate the security group from the last step with the target DB instance.

To associate a security group with a DB instance

1. Open the Amazon RDS service console. Select Instances from the navigation pane.

2. Select the target DB instance. From Instance Actions, select Modify.

3. For the Security Group parameter, select the security group you used in the previous step.

4. Select Continue, and then Modify DB Instance.

3. Step 3: Set up a proxy server on an EC2 Classic instance using NGINX. Use an AMI of your
choice to launch an EC2 Classic instance. The example below is based on the AMI Ubuntu Server
14.04 LTS (HVM).

To set up a proxy server on an EC2 Classic instance

1. Connect to the EC2 Classic instance and install NGINX using the following commands:

Prompt> sudo apt-get update
Prompt> sudo wget http://nginx.org/download/nginx-1.9.12.tar.gz
Prompt> sudo tar -xvzf nginx-1.9.12.tar.gz
Prompt> cd nginx-1.9.12
Prompt> sudo apt-get install build-essential
Prompt> sudo apt-get install libpcre3 libpcre3-dev
Prompt> sudo apt-get install zlib1g-dev
Prompt> sudo ./configure --with-stream
Prompt> sudo make
Prompt> sudo make install

2. Edit the NGINX daemon file, /etc/init/nginx.conf, using the following code:

/etc/init/nginx.conf – Upstart file

description "nginx http daemon"
author “email"

start on (filesystem and net-device-up IFACE=lo)
stop on runlevel [!2345]

Version API Version 2016-01-01
164

AWS Database Migration Service User Guide
DB Instance not in a VPC to VPC Using ClassicLink

env DAEMON=/usr/local/nginx/sbin/nginx
env PID=/usr/local/nginx/logs/nginx.pid

expect fork
respawn
respawn limit 10 5

pre-start script
 $DAEMON -t
 if [$? -ne 0]
 then exit $?
 fi
end script

exec $DAEMON

3. Create an NGINX configuration file at /usr/local/nginx/conf/nginx.conf. In the configuration file,
add the following:

/usr/local/nginx/conf/nginx.conf - NGINX configuration file

worker_processes 1;

events {
 worker_connections 1024;
}

stream {
 server {
 listen <DB instance port number>;
proxy_pass <DB instance identifier>:<DB instance port number>;
 }
}

4. From the command line, start NGINX using the following commands:

Prompt> sudo initctl reload-configuration
Prompt> sudo initctl list | grep nginx
Prompt> sudo initctl start nginx

4. Step 4: Create a ClassicLink connection between the proxy server and the target VPC that
contains the target DB instance and the replication instance

Use ClassicLink to connect the proxy server with the target VPC

1. Open the EC2 console and select the EC2 Classic instance that is running the proxy server.

2. Select ClassicLink under Actions, then select Link to VPC.

3. Select the security group you used earlier in this procedure.

4. Select Link to VPC.

Version API Version 2016-01-01
165

AWS Database Migration Service User Guide
DB Instance not in a VPC to VPC Using ClassicLink

5. Step 5: Create AWS DMS endpoints using the procedure at Step 3: Specify Database
Endpoints (p. 26). You must use the internal EC2 DNS hostname of the proxy as the server name
when specifying the source endpoint.

6. Step 6: Create a AWS DMS task using the procedure at Step 4: Create a Task (p. 30).

Version API Version 2016-01-01
166

AWS Database Migration Service User Guide

Document History

The following table describes the important changes to the documentation since the last release of the
AWS Database Migration Service.

• API version: 20160101

• Latest documentation update: September 14, 2016

Change Description Date Changed

Amazon RDS
PostgreSQL
support for CDC

Added support for using Change Data Capture (CDC)
with an Amazon RDS PostgreSQL DB instance. For
more information, see Setting Up an Amazon RDS
PostgreSQL DB Instance as a Source (p. 68).

September 14, 2016

New region
support

Added support for the Asia Pacific (Mumbai), Asia
Pacific (Seoul), and South America (São Paulo) regions.
For a list of supported regions, see What Is AWS
Database Migration Service? (p. 1).

August 3, 2016

New feature Added support for ongoing replication. For more
information, see Ongoing Replication (p. 38).

July 13, 2016

New feature Added support for secured connections using SSL. For
more information, see Using SSL With AWS Database
Migration Service (p. 47).

July 13, 2016

New feature Added support for SAP Adaptive Server Enterprise
(ASE) as a source or target endpoint. For more
information, see Using a SAP ASE Database as a
Source for AWS Database Migration Service (p. 73)
and Using a SAP ASE Database as a Target for AWS
Database Migration Service (p. 84).

July 13, 2016

New feature Added support for Amazon Redshift as a target
endpoint. For more information, see Using an Amazon
Redshift Database as a Target for AWS Database
Migration Service (p. 82).

May 2, 2016

General availability Initial release of AWS Database Migration Service. March 14, 2016

Version API Version 2016-01-01
167

AWS Database Migration Service User Guide

Change Description Date Changed

Public preview
release

Released the preview documentation for AWS Database
Migration Service.

January 21, 2016

Version API Version 2016-01-01
168

	AWS Database Migration Service
	Table of Contents
	What Is AWS Database Migration Service?
	Migration Planning for AWS Database Migration Service

	Setting Up to Use AWS Database Migration Service
	Sign Up for AWS
	Create an IAM User
	Determine Requirements

	Introduction to AWS Database Migration Service
	Migration: A High-Level View
	AWS DMS Components
	Sources for AWS Database Migration Service
	Targets for AWS Database Migration Service
	Replication Instances for AWS Database Migration Service
	Public and Private Replication Instances

	Setting Up a Network for Database Migration
	Network Configurations for Database Migration
	Configuration with All Database Migration Components in One VPC
	Configuration with Two VPCs
	Configuration for a Network to a VPC Using AWS Direct Connect or a VPN
	Configuration for a Network to a VPC Using the Internet
	Configuration with an Amazon RDS DB instance not in a VPC to a DB instance in a VPC Using ClassicLink

	Creating a Replication Subnet Group

	Setting an Encryption Key for AWS Database Migration Service
	Tagging AWS Database Migration Service Resources
	Constructing an Amazon Resource Name (ARN) for Use with AWS Database Migration Service
	DDL Statements Supported by AWS Database Migration Service
	LOB Support for Source Databases

	Getting Started with AWS Database Migration Service
	Start a Database Migration with AWS Database Migration Service
	Step 1: Welcome
	Step 2: Create a Replication Instance
	Step 3: Specify Database Endpoints
	Step 4: Create a Task
	Monitor Your Task

	AWS Database Migration Service Best Practices
	Improving the Performance of an AWS Database Migration Service Migration
	Determining the Optimum Size for a Replication Instance
	Reducing Load on Your Source Database
	Using the Task Log to Troubleshoot Migration Issues
	Schema Conversion
	Migrating Large Binary Objects (LOBs)
	Ongoing Replication

	AWS Database Migration Service Security
	IAM Permissions Needed to Use AWS DMS
	Creating the IAM Roles to Use With the AWS CLI and AWS DMS API
	Setting an Encryption Key for AWS Database Migration Service
	Network Security for AWS Database Migration Service
	Using SSL With AWS Database Migration Service
	Managing Certificates
	Enabling SSL for a MySQL-compatible, PostsgreSQL, or SQL Server Endpoint
	SSL Support for an Oracle Endpoint
	Limitations on Using SSL with AWS Database Migration Service

	Changing the Database Password

	Limits for AWS Database Migration Service
	Limits for AWS Database Migration Service

	Sources for Data Migration for AWS Database Migration Service
	Using an Oracle Database as a Source for AWS Database Migration Service
	Using Oracle LogMiner or Oracle Binary Reader for Change Data Capture (CDC)
	Access Privileges Required for Change Data Capture (CDC) on an Oracle Source Database
	Limitations for Change Data Capture (CDC) on an Oracle Source Database

	Limitations on Using Oracle as a Source for AWS Database Migration Service
	Supported Compression Methods
	User Account Privileges Required for Using Oracle as a Source for AWS Database Migration Service
	Configuring an Oracle Database as a Source for AWS Database Migration Service
	Configuring Oracle on an Amazon RDS DB Instance as a Source for AWS Database Migration Service

	Using a Microsoft SQL Server Database as a Source for AWS Database Migration Service
	General Limitations on Using SQL Server as a Source for AWS Database Migration Service
	Special Limitations When Capturing Data Changes (CDC) from a SQL Server Source
	Supported Compression Methods
	Working with Microsoft SQL Server AlwaysOn Availability Groups
	Configuring Microsoft SQL Server Database as a Replication Source for AWS Database Migration Service
	Using MS-Replication to capture data changes in Microsoft SQL Server
	Using MS-CDC to capture data changes in Microsoft SQL Server
	Setting Up MS-CDC

	If you cannot use MS-Replication nor MS-CDC

	Using a PostgreSQL Database as a Source for AWS Database Migration Service
	Prerequisites for Using a PostgreSQL Database as a Source for AWS Database Migration Service
	Security Requirements When Using a PostgreSQL Database as a Source for AWS Database Migration Service
	Limitations on Using a PostgreSQL Database as a Source for AWS Database Migration Service
	Setting Up an Amazon RDS PostgreSQL DB Instance as a Source
	Using CDC with an Amazon RDS for PostgreSQL DB Instance
	Migrating an Amazon RDS for PostgreSQL Database Without Using the Master User Account

	Removing AWS Database Migration Service Artifacts from a PostgreSQL Source Database
	Additional Configuration Settings When Using a PostgreSQL Database as a Source for AWS Database Migration Service

	Using a MySQL-Compatible Database as a Source for AWS Database Migration Service
	Prerequisites for Using a MySQL Database as a Source for AWS Database Migration Service
	Limitations on Using a MySQL Database as a Source for AWS Database Migration Service
	Security Requirements for Using a MySQL Database as a Source for AWS Database Migration Service

	Using a SAP ASE Database as a Source for AWS Database Migration Service
	Prerequisites for Using a SAP ASE Database as a Source for AWS Database Migration Service
	Limitations on Using SAP ASE as a Source for AWS Database Migration Service
	User Account Permissions Required for Using SAP ASE as a Source for AWS Database Migration Service
	Removing the Truncation Point

	Targets for Data Migration for AWS Database Migration Service
	Using an Oracle Database as a Target for AWS Database Migration Service
	Limitations on Oracle as a Target for AWS Database Migration Service
	User Account Privileges Required for Using Oracle as a Target
	Read Privileges Required for AWS Database Migration Service on the Target Database

	Configuring an Oracle Database as a Target for AWS Database Migration Service

	Using a Microsoft SQL Server Database as a Target for AWS Database Migration Service
	Limitations on Using SQL Server as a Target for AWS Database Migration Service
	Security Requirements When Using SQL Server as a Target for AWS Database Migration Service

	Using a PostgreSQL Database as a Target for AWS Database Migration Service
	Limitations on Using PostgreSQL as a Target for AWS Database Migration Service
	Security Requirements When Using a PostgreSQL Database as a Target for AWS Database Migration Service

	Using a MySQL-Compatible Database as a Target for AWS Database Migration Service
	Prerequisites for Using a MySQL-Compatible Database as a Target for AWS Database Migration Service
	Limitations on Using MySQL as a Target for AWS Database Migration Service
	Security Requirements When Using MySQL as a Target for AWS Database Migration Service

	Using an Amazon Redshift Database as a Target for AWS Database Migration Service
	Prerequisites for Using an Amazon Redshift Database as a Target for AWS Database Migration Service
	Limitations on Using Redshift as a Target for AWS Database Migration Service
	Configuring an Amazon Redshift Database as a Target for AWS Database Migration Service
	Using Enhanced VPC Routing with an Amazon Redshift as a Target for AWS Database Migration Service

	Using a SAP ASE Database as a Target for AWS Database Migration Service
	Prerequisites for Using a SAP ASE Database as a Target for AWS Database Migration Service

	Working with AWS Database Migration Service Replication Tasks
	Modifying a Task
	Task Status
	Creating Multiple Tasks
	Migration Methods for AWS Database Migration Service
	Task Settings for AWS Database Migration Service Tasks
	Target Metadata Task Settings
	Full Load Task Settings
	Logging Task Settings
	Control Table Task Settings
	Stream Buffer Task Settings
	Change Processing Tuning Settings
	Change Processing DDL Handling Policy Task Settings
	Error Handling Task Settings
	Saving Task Settings

	Table State During Tasks
	Using Table Mapping with an AWS Database Migration Service Task to Select and Filter Data
	Selection and Transformation Table Mapping using the AWS Console
	Selection and Transformation Table Mapping using JSON
	Selection Rules and Actions
	Transformation Rules and Actions
	Using Source Filters in Selection Rules
	Creating Source Filter Rules in JSON

	Monitoring AWS Database Migration Service Tasks
	Data Migration Service Metrics
	Replication Instance Metrics
	Replication Task Metrics

	Logging AWS Database Migration Service API Calls Using AWS CloudTrail
	Configuring CloudTrail Event Logging
	AWS Database Migration Service Event Entries in CloudTrail Log Files

	Troubleshooting AWS Database Migration Service Tasks
	Slow Running Migration Tasks
	Task Status Bar Not Moving
	Missing Foreign Keys and Secondary Indexes
	Amazon RDS Connection Issues
	Error Message: Incorrect thread connection string: incorrect thread value 0

	Networking Issues
	CDC Stuck After Full Load
	Primary Key Violation Errors When Restarting a Task
	Initial Load of Schema Fails
	Tasks Failing With Unknown Error
	Task Restart Loads Tables From the Beginning
	Number of Tables Per Task
	Troubleshooting Oracle Specific Issues
	Pulling Data from Views
	Migrating LOBs from Oracle 12c
	Switching Between Oracle LogMiner and BinaryReader
	Error: Oracle CDC stopped 122301 Oracle CDC maximum retry counter exceeded.
	Automatically Add Supplemental Logging to an Oracle Source Endpoint
	LOB Changes not being Captured
	Error: ORA-12899: value too large for column <column-name>
	NUMBER data type being misinterpreted

	Troubleshooting MySQL Specific Issues
	CDC Task Failing for Amazon RDS DB Instance Endpoint Because Binary Logging Disabled
	Adding Autocommit to a MySQL-compatible Endpoint
	Disable Foreign Keys on a Target MySQL-compatible Endpoint
	Characters Replaced with Question Mark
	"Bad event" Log Entries
	Change Data Capture with MySQL 5.5
	Increasing Binary Log Retention for Amazon RDS DB Instances
	Log Message: Some changes from the source database had no impact when applied to the target database.
	Error: Identifier too long
	Error: Unsupported Character Set Causes Field Data Conversion to Fail

	Troubleshooting PostgreSQL Specific Issues
	Columns of a user defined data type not being migrated correctly
	Error: No schema has been selected to create in
	Deletes and updates to a table are not being replicated using CDC
	Truncate statements are not being propagated
	Preventing PostgreSQL from capturing DDL
	Selecting the schema where database objects for capturing DDL are created
	Oracle tables missing after migrating to PostgreSQL
	Task Using View as a Source Has No Rows Copied

	Troubleshooting Microsoft SQL Server Specific Issues
	Special Permissions for AWS DMS user account to use CDC
	SQL Server Change Data Capture (CDC) and Amazon RDS
	Errors Capturing Changes for SQL Server Database
	Missing Identity Columns
	Error: SQL Server Does Not Support Publications
	Changes Not Appearing in Target

	Troubleshooting Amazon Redshift Specific Issues
	Loading into a Amazon Redshift Cluster in a Different Region Than the AWS DMS Replication Instance
	Error: Relation "awsdms_apply_exceptions" already exists
	Errors with Tables Whose Name Begins with "awsdms_changes"
	Seeing Tables in Cluster with Names Like dms.awsdms_changes000000000XXXX
	Permissions Required to Work with Amazon Redshift

	Troubleshooting Amazon Aurora Specific Issues
	Error: CHARACTER SET UTF8 fields terminated by ',' enclosed by '"' lines terminated by '\n'

	Reference for AWS Database Migration Service Including Data Conversion Reference and Additional Topics
	Source Data Types
	Source Data Types for Oracle
	Source Data Types for Microsoft SQL Server
	Source Data Types for PostgreSQL
	Source Data Types for MySQL
	Source Data Types for SAP ASE

	Target Data Types
	Target Data Types for Oracle
	Target Data Types for Microsoft SQL Server
	Target Data Types for PostgreSQL
	Target Data Types for MySQL
	Target Data Types for SAP ASE
	Amazon Redshift Data Types

	Data Types for AWS Database Migration Service
	Using Extra Connection Attributes with AWS Database Migration Service
	MySQL
	PostgreSQL
	Oracle
	SQL Server
	Amazon Redshift
	SAP Adaptive Server Enterprise (ASE)

	Using ClassicLink with AWS Database Migration Service

	Document History

