AWS loT

Developer Guide

amazon
webservices™

AWS IoT Developer Guide

AWS IoT Developer Guide

AWS loT: Developer Guide

Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

AWS IoT Developer Guide

Table of Contents

WAL IS AWV S 10T 2 ittt ettt e e ettt e et e et e et e et et et et e eas 1
AWS [OT COMPONEINES ...ttt ettt et et ettt e ettt e et et e e et et a et e n e et e e e n e eenes 1

How to Get Started With AWS 0Touiiii e e 2
ACCESSING AWWS 0T oottt ettt et e et e e e 2
REIAIE SEIVICES ... eiitii i et e e e e e 2

HOW AWS 1OT WOTKS .ottt ettt ettt et ettt e e e ens 2
AWS 0T BULION QUICKSTAIS ... iuitiiitiit et et et e e e e e e et e e e et e e e et n e e n e e e e e e e e e aneananns 4
AWS 10T Button Wizard QUICKSTAITcuuieiiiieiei et e e e e e e e e e e e aeens 5
AWS loT Button AWS CloudFormation QUICKSTANvuiiieeiii e aeaeanees 13

N[] (= S PP 18
Getting Started WIith AWS 10T ... et e e e e et e e e e et anas 19
Sign iN t0 the AWS 10T CONSOIEeuiiiiiiii e e e ean e 20
Create a Device in the ThiNG REGISINYiuiiiiiiii e 21
Create and Activate a Device CertifiCateocuviuiiuiiiiiii e 23
Create an AWS 10T POICY ...uiuiiiiiii e 26
Attach an AWS 10T Policy to a Device Certificatecooviiiiiiiiiiii e 28
Attach @ Thing t0 @ CertifiCateo e 30
CONFIQUIE YOUE DBVICEeuiiiieie et e e e e e ettt et e et e e e anees 31
AWS 0T BULION oottt et ettt ettt e e e 31

View Device MQTT Messages with the AWS [0T MQTT Clentc..ooiviiiiiiiiiiceeeeee e 33
Configure and TSt RUIESiiiiii e 36
Create @n SINS TOPIC . ..uiunitiiitii ettt e e 36

Subscribe to an AMAazon SNS TOPIC ..uiuuiuitiiii e 37

Cre@te @ RUIE ... 38

Test the AMAzon SNS RUIE ... e 42

N[] (= S PP 44
AWS 10T RUIE TULOTIAIS ..eietieit it e e e e 45
Creating @ DYNamODB RUIEo e 46
Creating @ Lambda RUIE ... 59
Create the Lambda FUNCHONoouiiiii et 60

Test Your Lambda FUNCHONc.ieiii e 74

Creating @ Lambda RUIE ..o 77

Test Your Lambda RUIE ... e e 81

Managing ThiNgS WIth AWS 10T ... i et e e et et e e anees 85
Managing Things with the Thing REGISINYoeniiii e 85
Create @ thiNG ..eeeni e e 86

IS B (0] oo PP PRSPPI 86

SArCh fOr thiNGS ..ouiei e e 86

UPALE @ thING ..eeeei et 88

Delete @ thinNgeeiii e 88

Attach a principal 10 @ thiNG ... 88

Detach a principal from @ thingcooiiiii 88

BN a1 o T 1Y o= PP 89
Create @ ThiNG TP .ottt e e et ens 89

LISt ENING Y PS ottt 89

DeSCriDE @ thiNG BYPE ... 90

Associate a thing type with @ thing ..o 90

Deprecate @ thiNg TYPE ... e 91

Delete @ thinNg tYPE ...euiii i e 92

SECUNLY AN THENTILY ...ttt e e et et et et et et e et e et e e et e e e aneanas 93
AULhentiCAtION 1N AWS TOT ...ttt ettt et eaees 95
X509 CertifiCAIES ..uieiiiiiee ittt 95

IAM Users, Groups, and ROIESoiiuiiiiii e e 101

AMazon CogNito TAENTILIESiuuie i eaas 102
AULNOTIZALION ..t e et 102

AWS IoT Developer Guide

AWS [OT POLICIES et et e 103

2N Y o I 0 o] T 122
CrOSS ACCOUNE ACCESS ...ttt ettt ettt et ettt ettt et et ettt ettt ettt et et et et et et e e e e aeaeens 123
QLI L 1S 10 A= o] 11 124
TLS CIpher SUItE SUPPOIT ...ttt e e e eeans 124
LTSS Vo T = (0] (-] 125
PrOLOCOIS ... e e 125
1Y 1@ I P PP PP 125
H T P e 126
MQTT Over the WebSocket ProtoCOlcooiiiiiiiiii e 126

10 1 130
L] V=T I o] o2 130

LI ECYCIE EVENES ..ottt 130
Policy Required for Receiving Lifecycle EVENESociiiiiiiiii e 130
ConNNECt/DISCONNECT EVENLSuiiiiii it aenas 131
Subscribe/UNnsubscribe EVENLS ... 131

] 1 133
Granting AWS 10T the ReQUIFE ACCESScuiuiiniiiiie e et 134
Pass ROIE PEIMISSIONS ...t et et 135
Creating an AWS 10T RUIE ..o e e e e e 136
VIEWING YOUF RUIBS ..o e ettt e e aenes 139
Y@ Y=Y 3 o PP 139
What's New in the 2016-03-23 SQL Rules Engine Versionccocoviviiiiiiiiiiiiiiiinieenes 140
Troubleshooting @ RUIE ... e e e e s 141
DeletiNg @ RUIEooeiii et et e 141
AWS 10T RUIE ACLIONS ..eeii et e et ens 141
CloudWatch AIRrmM ACHION ... e ens 142
CloudWatCh MEtrC ACHON ...t et ens 143
(Y= g g o] I = 3o 1T o 143
DYNAmMODBV2 ACHON ...ttt e e 145
AMAZON ES ACHON ...t 145
FIFEN0OSE ACHION ..ot e 146

LT 2T LS Y o 1o o 147

(= T 0] o o =T 1o o 147
REPUDIISN ACHION ..ot e 148

S Vo1 o 149

SN S AT O ettt e 150

SIS AT ON ottt e, 150
AWS 10T SQL REIBIENCE ..ot e e aaas 151
(D= 1= B Y 01T TP PP 152

(O] 0T 2= (0] £ T PPN 155
0T 10 T 160
] I O I - T P 190

L L 1Y = T] 191
WHERE CIAUSE ..ot et et aen e 192

) =T = £ 192

(0F- LYY r= 1= 1 0= 0 K ST PPN 192

B8 S] B T 1= 0 7T o 193
SUDSHItULION TEMPIALIES ...t e e e 194
[Tt IS = U [0 1 195
Device Shadows Data FIOWooiuiiiiii e et aenas 195
Device ShadOWs DOCUMENLSuiuiiite et et e e e e et e e et e e e e e e e eenen 201
DOCUMENE PrOPEITIES ... euitiieiit ettt et ettt et e et e et et e e e eae e 201
Versioning of @ ThiNG ShadOWooiii e 202

L3 = o A o) = o 202
EXAMPIE DOCUMENT ...ttt e et ettt e e e et e e et e e nenes 202

0] 012 1= ox 1T 1 203

F £ =\ R 204

AWS IoT Developer Guide

USING DEVICE SNAUOWSeiiiitiiie et et e e et e en e ens 204
L 0 (o Toto] IS o] o T o 205
Updating @ Thing SNAOOWo.iiiiiii e 205
Retrieving a Thing Shadow DOCUMENT ..ot e 205
(D=1 1T To I - | = Y 208
Deleting @ Thing SNadOWo e 209
DEIA SEALEeeetiie it 210
ODbServing State ChaNQESc.iiiiiiiiie e e 211
LS = Vo T O (o [T S 212
Trim Device ShadOW MESSAQESuuiuitiiie it aeae e 213

RE ST UL AP e e 213
L= i 1 o 1 2 =T [0 P 214
Update ThINGSNAOOW ...t ee e 214
DeleteThINGSNATOW ... e 215

MQTT PUD/SUD TOPICS . .eietiiiee et et e e e e ens 216
] 0 = 216
J] o0 = (T = Lo o =T (= 217
J] o0 F=1 (=Y o [o o] 3 =T | £ 217
FT 00 = (Y=Y =T 01 = o 218
FT 0 = (T o 1= e 218
o= 219
L0 T= 7= T o= o] =T o 219
0 1= 7L (=TT 1T 220
JUBIBLE .o e 220
JAEIBLEIACCEPIEA ... e i e e 221
0 1= 1= (= (=TT ox 1= o 221

DOCUMENT SYNTAX ...ttt ettt et ettt ettt e aes 222
Request State DOCUMENESttt ettt e e e aeans 222
ReESPONSE State DOCUMENESuitttt et ettt a e e e e et eenanan 223
Error ReSpONSE DOCUMENES ...ttt ettt ettt ettt e e e e aeans 224

oo g [T Y= (o 1 PP P PP 224

AWS 10T SDKS ittt e 226

AWS Mobile SDK for ANAroidc.iveiiiiii e 226

AFUING YUN SDK ..ottt 226

AWS |oT Device SDK for Embedded Cc..oiiiiiiiiii e 227

AWS MoDile SDK fOr 10S ...t 227

AWS 10T DEVICE SDK TOF JAVA ...cviitiiiiii et 227

AWS 10T DeVvice SDK fOr JAVASCIIPLt e ee e 227

AWS 10T Device SDK fOr PYINON ..o e 228

AWS 10T Embedded C SDK ...t 228
L (=TT U LS (=S 228
Connecting Your RaSPDEITY Pl ... e 228

AWS 10T DeVice SDK fOr JAVASCIIPLuieiieie et e e een e 246
L (=TT [LS (= 246
Connecting Your RaSPDEITY Pl ... 247

/1 71 (o] 1T P 267

1Y/ Fo) 1 (o T T TR o0 N 268
AULOMALET TOOIS ...ttt e 268
MANUAI TOOIS ... ettt 268

Monitoring with AmMazon ClOUAWALCKH ... e 269
Metrics and DIMENSIONSiiiii e e e anes 269
USING AWS OT MEIIICS .uinitiii et e et e et ee e e 271
Creating CloudWatCh AlGIMS ... et 271

Logging AWS 10T API Calls with AWS CloudTrailccuoeieiiiii e 274
AWS [0T Information in CloUdTrailc.ovuiiiei e 274
Understanding AWS 10T Log File ENLHESc.ouiiiei e 275

I (o0 o] 1= g T T 1o 277

Diagnosing CONNECLIVILY ISSUEBSuuieiiiiii it nen e 277

vi

AWS IoT Developer Guide

AULNENTICALION ...ttt ettt 277
AULNOTIZALION ..t e 277
Setting Up ClOUAWALCH LOGS .. .uiiiiiiiiie et 277
Configuring an 1AM RoOI€ fOr LOGQINGcuueniiiiiii e 278
CloudWatch Log ENtry FOIMALineiiiiiie e aeae e 279
Logging Events and Error COUESuiuiuiniiiii et ene e 280
DIagnoSiNg RUIES ISSUBSiiieiiii ettt et e e e aaenes 282
Diagnosing Problems with Thing ShadOwsc.ouiiiii e 282
F TSR o I I 11 PP 284
LIS Vo TSR = (0] (] IR0 1 284
DeVvice ShadoW LIMILS ... e e 286
Security and 1dentity LIMitSioeii e s 287
LI L0 1 1 o T 1 287
AWS 10T RUlES ENGINE LIMILS .. o.ietiiii e e e ens 289

vii

AWS IoT Developer Guide
AWS |oT Components

What Is AWS loT?

AWS loT provides secure, bi-directional communication between Internet-connected things (such as
sensors, actuators, embedded devices, or smart appliances) and the AWS cloud. This enables you
to collect telemetry data from multiple devices and store and analyze the data. You can also create
applications that enable your users to control these devices from their phones or tablets.

AWS loT Components

AWS loT consists of the following components:

Device gateway
Enables devices to securely and efficiently communicate with AWS loT.

Message broker
Provides a secure mechanism for things and AWS loT applications to publish and receive
messages from each other. You can use either the MQTT protocol directly or MQTT over
WebSocket to publish and subscribe. You can use the HTTP REST interface to publish.

Rules engine
Provides message processing and integration with other AWS services. You can use a SQL-based
language to select data from message payloads, process and send the data to other services,
such as Amazon S3, Amazon DynamoDB, and AWS Lambda. You can also use the message
broker to republish messages to other subscribers.

Security and Identity service
Provides shared responsibility for security in the AWS cloud. Your things must keep their
credentials safe in order to securely send data to the message broker. The message broker and
rules engine use AWS security features to send data securely to devices or other AWS services.
Thing registry
Sometimes referred to as the device registry. Organizes the resources associated with each thing.
You register your things and associate up to three custom attributes with each thing. You can also
associate certificates and MQTT client IDs with each thing to improve your ability to manage and
troubleshoot your things.

Thing shadow
Sometimes referred to as a device shadow. A JSON document used to store and retrieve current
state information for a thing (device, app, and so on).

Thing Shadows service

Provides persistent representations of your things in the AWS cloud. You can publish updated
state information to a thing shadow, and your thing can synchronize its state when it connects.

AWS IoT Developer Guide
How to Get Started with AWS loT

Your things can also publish their current state to a thing shadow for use by applications or
devices.

How to Get Started with AWS loT

¢ To learn more about AWS IoT, see How AWS IoT Works (p. 2).
¢ To learn how to connect a thing to AWS 10T, see Getting Started with AWS 10T (p. 19).

Accessing AWS loT

AWS loT provides the following interfaces to create and interact with your things:

¢ AWS Command Line Interface (AWS CLI)—Run commands for AWS IoT on Windows, OS X, and

Linux. These commands allow you to create and manage things, certificates, rules, and policies.
To get started, see the AWS Command Line Interface User Guide. For more information about the
commands for AWS |oT, see iot in the AWS Command Line Interface Reference.

AWS loT API—Build your loT applications using HTTP or HTTPS requests. These API allow you to
programmatically create and manage things, certificates, rules, and policies. For more information
about the API actions for AWS loT, see Actions in the AWS loT API Reference.

AWS SDKs—-Build your IoT applications using language-specific APIs. These SDKs wrap the HTTP/
HTTPS API and allow you to program in any of the supported languages. For more information, see
AWS SDKs and Tools.

AWS loT Device SDKs—Build applications that run on your devices that send messages to and
receive messages from AWS IoT. For more information see, AWS IoT SDKs

Related Services

AWS IoT integrates directly with the following AWS services:

How

Amazon Simple Storage Service—Provides scalable storage in the AWS cloud. For more
information, see Amazon S3.

Amazon DynamoDB—Provides managed NoSQL databases. For more information, see Amazon
DynamoDB.

Amazon Kinesis—Enables real-time processing of streaming data at a massive scale. For more
information, see Amazon Kinesis.

AWS Lambda—Runs your code on virtual servers from Amazon EC2 in response to events. For
more information, see AWS Lambda.

Amazon Simple Notification Service—Sends or receives notifications. For more information, see
Amazon SNS.

Amazon Simple Queue Service—Stores data in a queue to be retrieved by applications. For more
information, see Amazon SQS.

AWS loT Works

AWS loT enables Internet-connected things to connect to the AWS cloud and lets applications in the
cloud interact with Internet-connected things. Common IoT applications either collect and process
telemetry from devices or enable users to control a device remotely.

http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/reference/iot/index.html
http://docs.aws.amazon.com/iot/latest/apireference/API_Operations.html
http://aws.amazon.com/tools/#sdk
http://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html
http://aws.amazon.com/s3/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/kinesis/
http://aws.amazon.com/lambda/
http://aws.amazon.com/sns/
http://aws.amazon.com/sqs/

AWS IoT Developer Guide
How AWS loT Works

Things report their state by publishing messages, in JSON format, on MQTT topics. Each MQTT topic
has a hierarchical name that identifies the thing whose state is being updated. When a message is
published on an MQTT topic, the message is sent to the AWS lIoT MQTT message broker, which is
responsible for sending all messages published on an MQTT topic to all clients subscribed to that topic.

Communication between a thing and AWS IoT is protected through the use of X.509 certificates.
AWS loT can generate a certificate for you or you can use your own. In either case, the certificate
must be registered and activated with AWS 10T, and then copied onto your thing. When your thing
communicates with AWS IoT, it presents the certificate to AWS loT as a credential.

We recommend all things that connect to AWS loT have an entry in the thing registry. The thing
registry stores information about a thing and the certificates that are used by the thing to secure
communication with AWS IoT.

You can create rules that define one or more actions to perform based on the data in a message. For
example, you can insert, update, or query a DynamoDB table or invoke a Lambda function. Rules use
expressions to filter messages. When a rule matches a message, the rules engine invokes the action
using the selected properties. Rules also contain an IAM role that grants AWS loT permission to the
AWS resources used to perform the action.

- Amazon DynamoDB
Things - = Messoe) . Thing) o
Shadows Amazon Kinesis
Broker Engine | *
Thing SDK »| SN > AWS Lambda
Registry ™ -
‘ ‘ 'l Amazon 53
4 ¥ ¥
Security and |dentity Amazon SN5
laT » -
Applications [» Amazon 505
AWS SDK

Each thing has a thing shadow that stores and retrieves state information. Each item in the state
information has two entries: the state last reported by the thing and the desired state requested by an
application. An application can request the current state information for a thing. The shadow responds
to the request by providing a JSON document with the state information (both reported and desired),
metadata, and a version number. An application can control a thing by requesting a change in its state.
The shadow accepts the state change request, updates its state information, and sends a message to
indicate the state information has been updated. The thing receives the message, changes its state,
and then reports its new state.

AWS IoT Developer Guide

AWS loT Button Quickstarts

The two quickstarts in this section show you how to configure and use the AWS loT button. You can
use the AWS loT button wizard in the AWS Lambda console to easily and quickly configure your AWS
10T button. The AWS Lambda console contains a blueprint that will automate the process of setting up
your AWS IloT button by:

Creating and activating an X.509 certificate and private key for authenticating with AWS IoT.

Walking you through the configuration of your AWS loT button in order to connect to your Wi-Fi
network.

Walking you through the copying of your certificate and private key to your AWS loT button.

Creating and attaching to the certificate an AWS loT policy that gives the button permission to make
calls to AWS loT.

Creating an AWS loT rule that invokes a Lambda function when your AWS IoT button is pressed.

Creating an IAM role and policy that allows the Lambda function to send email messages using
Amazon SNS.

Creating a Lambda function that sends an email message to the address specified in the Lambda
function code.

You can also configure the AWS loT button by using an AWS CloudFormation template. The second
quickstart shows you how to configure the AWS IoT resources required to process the MQTT
messages that are sent when the AWS IoT button is pressed, by using an AWS CloudFormation
template.

AWS IoT Developer Guide
AWS loT Button Wizard Quickstart

If you do not have a button, you can purchase one here. For more information about AWS IoT, see
What Is AWS IoT (p. 1).

Topics
e AWS IloT Button Wizard Quickstart (p. 5)
¢« AWS |oT Button AWS CloudFormation Quickstart (p. 13)
¢ Next Steps (p. 18)

AWS loT Button Wizard Quickstart

The AWS loT button wizard is a Lambda blueprint, so you need to sign in to the AWS Lambda console
in order to use it. If you do not have an AWS account, you can create one by following these steps.

To create an AWS account

1. Open the AWS home page and choose Create an AWS Account.
2. Follow the online instructions. Part of the sign-up procedure involves receiving a phone call and

entering a PIN using your phone's keypad.
To configure the AWS IoT Button

1. Signin to the AWS Management Console and open the AWS Lambda console.

2. Ifthis is your first time in the AWS Lambda console, you will see the following page. Choose the
Get Started Now button.

AWS Lambda

AWS Lambda is a compute service that runs developers' code in response to
events and automatically manages the compute resources for them, making it
easy to build applications that respond quickly to new information.

Get Started Now

Learn more about AWS Lambda

Wl T A gttt Bttt es B AP AT Attt il st P P

If you have used the AWS Lambda console before, you will see the following page. Choose the
Create a Lambda function button.

https://www.amazon.com/dp/B01C7WE5WM
http://aws.amazon.com/
https://console.aws.amazon.com/lambda/home

AWS IoT Developer Guide
AWS loT Button Wizard Quickstart

imbda Lambda > Functions

. You have 32 Lambda function(s) using 1.6 MB of code storage. Choose any Lambda function to view details on invocation requests, duration, 2
oard =+ take up to 60 seconds to appear).

ns
Create a Lambda function Actions -

== L

Function name - Description - Runtime - Code size ~

An AWS Lambda function that sends an email on
myButtonFunction) Node.js 4.3 1.7 kB
the click of an loT button.

michgreFunction A starter AWS Lambda function. Node.js 4.3 851 bytes
P o T

3. Onthe Select blueprint page, from the Runtime drop-down menu, choose Node.js 4.3. In the
filter text box, type but t on. To choose the iot-button-email blueprint, double-click it or choose
the Next button.

MNew function

ueprint Select blueprint

 triggers Blueprints are sample configurations of event sources and Lambda functions. Choose a blueprint that best aligns with your des
and customize as needed, or skip this step if you want to author a Lambda function and configure an event source separately.
otherwise noted, blueprints are licensed under CCO.

» function

Welcome to AWS Lambdal You can get started on creating your first Lambda function by choosing one of the blueprints be

Node.js 4.3 - button| & < Viewing 1

iot-button-email

An AWS Lambda function that sends an
email on the click of an loT button.

nodejs - iot - button

Cani

back (@& English

4. Onthe Configure triggers page, from the 10T Type drop-down menu, choose loT Button.

AWS IoT Developer Guide
AWS loT Button Wizard Quickstart

Type the serial number for your device. You'll find the device serial number (DSN) on the back of
the button.

Choose Generate certificate and keys.

Note
You only need to generate a certificate and private key once. Then you can navigate to
http://192.168.0.1/index.html in a browser to configure your button.

> New function using blueprint iot-button-email

ueprint Configure triggers
re triggers Configure an optional trigger to automatically invoke your function.
re function

1
AWS loT LIH!.LI 4 Lambda

Warning: Altering the description or SQL statement of an existing rule will overwrite it.

loT Type | loT Button - O
Device Serial Number (1]

0

s e P P i AT NN OO AN, P s B Bt OB s Il

Use the links on the page to download the device certificate and the private key.

http://192.168.0.1/index.html

AWS IoT Developer Guide
AWS loT Button Wizard Quickstart

i]

We have created the necessary AWS IoT resources (thing, policy, certificate, private key). The remaining resources (rule and action) will
be created after your function is created.

Download these resources by clicking the links below. (NOTE: If you are using Internet Explorer or Safari, right click the links to
save the files.)

a. Your certificat

To configure the AWS loT Button to use your Wi-Fi and these resources to connect to AWS securely, follow these steps:

2. Connect your computer to the button’s Wi-Fi network SSID "Button ConfigureMe - FFD", using "5364XVRB" (last B digits of device
serial number) as the WPA2-PSK password.
3. Click here (opens in new tab) and use the following information to fill out the form:
a. Enter your local network's Wi-Fi SSID and password.
b. Select the certificate and private key files that you just downloaded above.
c. Your endpoint subdomain is a182jd32qs965e.
d. Your endpoint region is us-east-1.
e. Check the box to agree to the terms and conditions.
f. Click "configure”.
4. Re-connect to your original Wi-Fi network.

The button should stop blinking blue and you will see a white blinking light followed by a greed solid light. Your button is now configured
to connect to the internet and AWS! Continue creating your function, and your button will be connected to it automatically.

R N T T s SR T ™ e

1. Place the button into configuration mode by pressing the button down for 5 seconds until it flashes blue. }

The page also includes instructions for configuring your AWS loT button. On step 3, you will
choose a link to open a web page that allows you to connect the AWS loT button to your network.
Under Wi-Fi Configuration, type the network ID (SSID) and network password for your Wi-Fi
network. Under AWS loT Configuration, choose the certificate and private key you downloaded
earlier. This will copy your certificate and private key to your AWS loT button. Select the check box
to agree to the AWS IoT button terms and conditions, and then choose the Configure button.

AWS IoT Developer Guide
AWS loT Button Wizard Quickstart

Button ConfigureMe

nter the value for any field that you wish to change for device: s e

i-Fi Configuration:

ID |Gucst E
curity Open Network(No Password)
ssword

VS IoT Configuration:

rtificate Browse.. certificate.pem

vate Key Browse.. private.key

dpoint Subdomain | a3TzRRENENTEIO
dpoint Region et E

1al Endpoint dot.us-west-2.amazonaws.com

By clicking this box, you agree to the AWS IoT Button Terms and Conditions.

Configure

A configuration confirmation page will be displayed.

Button ConfigureMe Setup

Thank you for configuring your device.

If you are unable to use your device, please enter configuration mode and try again.

AN Py et ol AT o sl ol B I i il TNl AP it gt P o

5. Close the Configure tab and go back to the AWS Lambda console page. Choose Enable trigger,
and then choose Next.

On the Configure function page, type a name for your function. The description, runtime, and
Lambda function code will be entered for you.

AWS IoT Developer Guide
AWS loT Button Wizard Quickstart

> New function using blueprint iot-button-email

lueprint Configure function
re triggers A Lambda function consists of the custom code you want to execute. Learn more about Lambda functions.
ire function
Name™ myloTButtonFunction
Descriptlnn An AWS Lambda function that sends an em
Runtime* Node.js 4.3 hd
Lambda function code

Provide the code for your function. Use the editor if your code does not require custom libraries (other than the aws-sdk). If yc
libraries, you can upload your code and libraries as a .ZIP file. Learn more about deploying Lambda functions.

Code entrytype | Edit code inline -

We have restored the code from your previous session. Would you like to revert to the last saved state? Revert now.

1, /l'l

2 * This is g sample Lambda function that sends an Email on click of a

3 * putton. It creates a SNS topic, subscribes an endpoint (EMAIL)

4 ¥ to the topic and publishes to the topic.

5 *

6 * Follow these steps to complete the configuration of your function:

? *

8 * 1. Update the EMAIL variable with your email address.

9 * 7. Enter a name for your execution role in the "Role name" field.

@ * Your function's execution role needs specific permissions for SNS operations
11 o to send an email. We have pre-selected the "AWS IoT Button permissions”
12 * policy template that will automatically add these permissions.

13 */

14

Y
L

const EMAIL = "my_emailBexample.com'; ./ TODO change me
”WWMMMMN =

In the Lambda function code, replace the example email address with your own email address.

10

AWS IoT Developer Guide
AWS loT Button Wizard Quickstart

1, /lt

2 * This is a sample Lambda function that sends an Email on click of a

3 * putton. It creates a SNS topic, subscribes an endpoint (EMAIL)

4 * tp the topic and publishes to the topic.

5 ¥

6 * Follow these steps to complete the configuration of your function:

? ¥

8 * 1. lUpdate the EMAIL variable with your email address.

9 ¥ 2. Enter a name for your execution role in the "Role name" field.
1w - Your function's execution role needs specific permissions for SNS operations
11 * to send an email. We have pre-selected the "AWS IoT Button permissions"”
12 - policy template that will automatically add these permissions.
13 +
14
15 |const EMAIL = 'my_email@example.com'; ./ TODO change me
16
17 const ANS = require('aws-sdk');

18 const SNS = new AWS.SNS({ apiVersion: '2010-83-31' });

19

20~ function findExistingSubscription(topicArn, nextToken, cb) {
21~ const params = {

22 TopicArn: topichrn,

23 NextToken: nextToken || null,

24 };

25~ SNS.listSubscriptionsByTopic(params, (err, data) == {
26~ if (err) {

Pt et s i I o o I gt ettt 0 B nlFITNARRL Nt B
In the Lambda function handler and role section, from the Role drop-down menu, choose

Create new role from template(s). Type a unique name for the role.
Lambda function handler and role

Handler* index.handler

Role* | Create new role from template(s) *+ O
Role name myloTButtonRole (i}
Policy templates | © AWS loT Button permissi... ' - 0

AN P et N A ettt ATttt et T T (P s ot Bl St e B PP,

At the bottom of the page, choose Next.

Review the settings for the Lambda function, and then choose Create function.

11

AWS IoT Developer Guide
AWS loT Button Wizard Quickstart

function using blueprint iot-button-email

Review
'S Please review your Lambda function details. You can go back to edit changes for each section. When you are ready, click Create func
" complete the setup process.
Triggers
Lambda function
Name myButtonFunction
Description An AWS Lambda function that sends an email
on the click of an loT button.
Runtime Node.js 4.3
Handler index.handler
Role name myNewRole
Policy templates AWS loT Button permissions
Memory (MB) 128
Timeout 3
VPC NoVPC

I i e T S R e R PP e T PR v L

You should see a page that confirms your Lambda function has been created:

12

AWS IoT Developer Guide
AWS loT Button AWS CloudFormation Quickstart

w Services v

ctions > myButtonFunction
re—

ons! Your Lambda function "myButtonFunction" has been successfully created and configured with loT: iotbutton_ as a trigger.

nfiguration Triggers Monitoring

/S loT: iotbutton_GO030JF055364XVRB

aws:iot:us-east-1: rulefiotbutton
2 Description: Event source for your loT Button to Lambda SQL Statement: SELECT * FROM ‘iotbutton/ !

jger

I Y TV o0 R T R e W &LV

6. To test your Lambda function, choose the Test button. After about a minute, you should receive
an email message with AW Noti fication - Subscription Confirnation inthe subject
line. Choose the link in the email message to confirm the subscription to an SNS topic created by
the Lambda function. When AWS loT receives a message from your button, it will send a message
to Amazon SNS. The Lambda function created a subscription to the Amazon SNS topic using the
email address you added in the code. When Amazon SNS receives a message on this Amazon
SNS topic, it will forward the message to your subscribed email address.

Press your button to send a message to AWS loT. The message will cause your Lambda rule to be
triggered, and then your Lambda function will be invoked. The Lambda function will check to see if your
SNS topic exists. The Lambda function will then send the contents of the message to the Amazon SNS
topic. Amazon SNS will then forward the message to the email address you specified in the Lambda
function code.

AWS IloT Button AWS CloudFormation Quickstart

When the AWS 1oT button is pressed, it sends basic information about the button to an Amazon SNS
topic. The topic then forwards that information to you in an email message. This quickstart will show
you how to use an AWS CloudFormation template to configure your AWS loT button.

You will need an AWS account and an AWS loT button to complete the steps in this quickstart.
1. Use the AWS loT console to create an AWS loT certificate:

a. Openthe AWS IoT console.
b. If a Welcome page appears, choose Get started.

13

https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
AWS loT Button AWS CloudFormation Quickstart

c. Inthe AWS region selector, choose the AWS region where you want to create the AWS
IoT certificate (for example, US East (N. Virginia)). You will be creating all supporting AWS
resources (additional AWS IoT resources and an Amazon SNS resource) in the same AWS
region.

d. Onthe Resources page, choose Create a certificate.

e. Select the Activate box, and then choose 1-Click certificate create.

f. Choose Download private key, and then choose Download certificate.

g. Select the box that represents the AWS loT certificate (the box with the handshake icon).
h. Inthe Detail pane, make a note of the certificate ARN value (for example,

arn:aws:iot:region-1D:account-1D:cert/random | D). You will need it later in this
procedure.

Use the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation/ to
create the AWS loT resources, an Amazon SNS resource, and an |IAM role:

a. Save the following AWS CloudFormation template file named
AWSIloTButtonQuickStart.template to your computer.

{
" AWSTenpl at eFor mat Ver si on": "2010- 09- 09",

"Description": "Creates required AW5 resources to allow an AW | oT
button to send information through an Amazon Sinple Notification
Service (Amazon SNS) topic to an enmmil address.",

"Paraneters": {

"1 0oTButt onDSN": {
"Type": "String",
"All onedPattern”: "G030JFO5[0-9][0-5][0-9][1-7][0-9A-HJ-NP-X][O0-9A-
HJ- NP- X] [0- 9A- HJ- NP- X] [0- 9A- HJ- NP- X] ",

"Description”: "The device serial nunber (DSN) of the AWS |oT
Button. This can be found on the back of the button. The DSN nust
match the pattern of ' G30JFO5[0-9][0-5][0-9][1-7][0-9A-HI- NP- X]

[0- 9A- HI- NP- X] [0- 9A- HJ- NP- X] [0- 9A- HJ-NP-X] " . "
}
"CertificateARN': {

"Type": "String",

"Description”: "The Amazon Resource Name (ARN) of the existing AWS
IoT certificate.”

},
" SNSTopi cNanme": {

"Type": "String",

"Default": "aws-iot-button-sns-topic",

"Description”: "The nane of the Amazon SNS topic for AWS
Cl oudFormation to create.”

},
" SNSTopi cRol eNane": {

"Type": "String",

"Default": "aws-iot-button-sns-topic-role",

"Description": "The nanme of the |AMrole for AWS Cl oudFornati on

to create. This IAMrole allows AW | oT to send notifications to the
Amazon SNS topic.”
},
"Emai | Address": {

"Type": "String",

"Description”: "The enmail address for the Amazon SNS topic to send
information to."

}

b

14

https://console.aws.amazon.com/cloudformation/

AWS IoT Developer Guide
AWS loT Button AWS CloudFormation Quickstart

"Resources": {
"1 oTThi ng": {
"Type": "AWS::1o0T:: Thing",
"Properties": {
"Thi ngName": {
"Fn::Join" : ["",
"iotbutton_",
{ "Ref": "l1oTButtonDSN' }

}
I
"l oTPolicy": {
"Type" : "AWS::|oT:: Policy",
"Properties": {
"Pol i cyDocunent": {
"Version": "2012-10-17",
"Statement": [

"Action": "iot:Publish",
"Effect": "Alow',
"Resource": {
"Fn::Join": ["",
[
"arn:aws:iot:",
{ "Ref": "AWS::Region" },
{ "Ref": "AWS:: Accountl|d" },
:topic/iotbutton/",
{ "Ref": "loTButtonDSN' }

I
"l oTPol i cyPrinci pal Attachnent": {

"Type": "AWS::1o0T:: PolicyPrincipal Attachment",
"Properties": {
"Pol i cyName": {
"Ref": "loTPolicy"
}

Principal": {
"Ref": "CertificateARN

}
}
"1 oTThi ngPrinci pal Attachnent": {
"Type" : "AWS::|oT:: Thi ngPrincipal Attachment",
"Properties": {
"Principal": {
"Ref": "CertificateARN'
H
"Thi ngName": {
"Ref": "10oTThi ng"

15

AWS loT Developer Guide
AWS loT Button AWS CloudFormation Quickstart

}
b
"SNSTopi c": {
"Type": "AWS:: SNS:: Topi c",
"Properties": {
"Di spl ayNane": "AWS | oT Button Press Notification",
"Subscription": [

"Endpoi nt": {
"Ref": "Enail Address"
}

rotocol": "emmil"
}
1,
"Topi cName": {
"Ref": "SNSTopi cNane"

}
H
" SNSTopi cRol e": {
"Type": "AWS: : | AM : Rol e",
"Properties": {
"AssunmeRol ePol i cyDocument ": {
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow',
"Principal": {
"Service": "iot.amzonaws. cont
b,
"Action": "sts:AssunmeRol e"
}

]

" Pat hll : " / " ,
"Policies": [

b

"Pol i cyDocunent": {
"Version": "2012-10-17",
"Statenment": [
{
"Effect": "Allow',
"Action": "sns:Publish",
"Resource": {
"Fn::Join": ["",

[
"arn:aws: sns: ",
{ "Ref": "AWS:: Region" },

{ "Ref": "AWS:: Account!|d" },

{ "Ref": "SNSTopi cNane" }
]

16

AWS loT Developer Guide
AWS loT Button AWS CloudFormation Quickstart

"Pol i cyName": {
"Ref": "SNSTopi cRol eNane"

}
]
}
H
"l oTTopi cRul e": {
"Type": "AWS::|o0T:: Topi cRul e",
"Properties": ({
"Rul eNanme": {
"Fn::Join": ["",
"iotbutton_",
{ "Ref": "loTButtonDSN' }
]
]
}

opi cRul ePayl oad": {
"Actions": [

"Sns": {
"Rol eArn": {

"Fn::GetAtt": ["SNSTopicRole", "Arn"]
}

arget Arn": {
"Ref": "SNSTopic"
}
}
}
1,
"Aws| ot Sgl Version": "2015-10-08",
"Rul eDi sabl ed": fal se,
"Sal v {
"Fn::Join": ["",

"SELECT * FROM 'iotbutton/",
{ "Ref": "loTButtonDSN' },

Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation/.

Make sure the AWS region selector displays the region where you created the AWS loT
certificate (for example, US East (N. Virginia)).

Choose Create Stack.

On the Select Template page, choose Upload a template to Amazon S3, and then choose
Browse.

Select the AWSIoTButtonQuickStart.template file you saved earlier, choose Open, and then
choose Next.

17

https://console.aws.amazon.com/cloudformation/

AWS IoT Developer Guide
Next Steps

On the Specify Details page, for Stack nhame, type a name for this AWS CloudFormation
stack (for example, MyAWSloTButtonStack).

For CertificateARN, type the Amazon Resource Name (ARN) of the AWS IoT certificate (the
certificate ARN value) that you noted earlier.

For EmailAddress, type your email address.

For loTButtonDSN, type the device serial number (DSN). You'll find it on the back of your
AWS loT button (for example, G030JF051234A5BC).

You can leave SNSTopicName and SNSTopicRoleName at their defaults, or specify a
different Amazon SNS topic nhame and associated IAM role nhame. For example, if you plan to
set up more AWS loT buttons, you might want to change these values. Choose Next.

You do not need to do anything on the Options page. Choose Next.

On the Review page, select | acknowledge that AWS CloudFormation might create IAM
resources, and then choose Create.

When CREATE_COMPLETE is displayed for MyAWSIoTButtonStack, check your email inbox
for a message with a subject line of AWS loT Button Press Notification. Choose the Confirm
subscription link in the body of the email message.

3. Using the private key and certificate you created earlier, follow the steps in Configure Your Device
to set up your AWS IoT button.

4. After you have set it up, press the button once. A white light should blink several times and then be
followed by a steady green light for a few moments. Shortly afterward, you should receive an email
message with AWS IoT Button Press Notification in the subject line. You will see information sent
by the button in the body of the email message.

5. After you are finished experimenting, you can clean up the AWS resources created by the AWS
CloudFormation template. To do this, return to the AWS CloudFormation console and delete
MyAWSIoTButtonStack. After you delete MyAWSIoTButtonStack, delete the AWS IoT certificate
as follows:

a.
b.

Return to the AWS loT console.

In the list of resources, select the check box inside of the box that represents the AWS loT
certificate (the box with the handshake icon).

For Actions, choose Decativate, and then confirm.

With the box that represents the AWS loT certificate still selected, for Actions, choose
Delete, and then confirm.

The private key and certificate that you downloaded earlier will no longer be valid, so you can
now delete them from your computer.

Next Steps

To learn more about the Lambda blueprint used to set up your button, see Getting Started
with AWS 1oT. To learn how to use AWS CloudFormation with the AWS loT button, see http://
docs.aws.amazon.com/iot/latest/developerguide/iot-button-cloud-formation.html

18

http://docs.aws.amazon.com/iot/latest/developerguide/configure-iot.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-button-cloud-formation.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-button-cloud-formation.html

AWS IoT Developer Guide

Getting Started with AWS loT

Note
The AWS loT console has been updated and this tutorial was written for the old version of the
console.

This section will guide you through the creation of resources required to send, receive, and process
MQTT messages from devices using AWS IoT. You will need a computer with Wi-Fi access to
complete this tutorial. If you have an AWS loT button (pictured here), you can use it to complete this
tutorial.

If you do not have a button, you can purchase one here or you can use the MQTT client in the AWS
10T console to complete this tutorial. For more information about AWS 10T, see What Is AWS IoT (p. 1).

Note

This tutorial uses Amazon Simple Notification Service (Amazon SNS), which is not available
in all regions. When you create AWS resources for this tutorial, make sure to sign in to the
US East (N. Virginia) Region. For more information about AWS regions, see Regions and
Endpoints.

Topics
¢ Sign in to the AWS IoT Console (p. 20)
¢ Create a Device in the Thing Registry (p. 21)
¢ Create and Activate a Device Certificate (p. 23)
¢ Create an AWS loT Policy (p. 26)

19

https://www.amazon.com/dp/B01C7WE5WM
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html

AWS IoT Developer Guide
Sign in to the AWS IoT Console

¢ Attach an AWS IoT Policy to a Device Certificate (p. 28)

¢ Attach a Thing to a Certificate (p. 30)

¢ Configure Your Device (p. 31)

« View Device MQTT Messages with the AWS loT MQTT Client (p. 33)
¢ Configure and Test Rules (p. 36)

* Next Steps (p. 44)

Sign in to the AWS loT Console

Note
The AWS loT console has been updated and this tutorial was written for the old version of the
console.

If you do not have an AWS account, create one.

1. Openthe AWS home page and choose Create an AWS Account.

2. Follow the online instructions. Part of the sign-up procedure involves receiving a phone call and
entering a PIN using your phone's keypad.

3. Sign in to the AWS Management Console and open the AWS IoT console.
4. Onthe Welcome page, choose Get started with AWS loT.

Easily and securely connect devices to the cloud.
Reliably scale to billions of devices and trillions of messages.

5. If this is your first time using the AWS loT console, you will see two options: Get started and Start
interactive tutorial. Choose Get Started.

20

http://aws.amazon.com/
https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Create a Device in the Thing Registry

AWS loT

AWS loT is a managed cloud platform that lets connected devices
-- cars, light bulbs, sensor grids and more -- easily and securely
interact with cloud applications and other devices.

Get started Start interactive tutorial

Getting started documentation

6. Onthe Resources page, if you don't see a blue banner with Create a thing, Create a rule,
Create a certificate, and Create a policy buttons, choose Create a resource.

AWS IOT Resources | MOQTT Client | Tutorial | Setting

SO u rces ' Connect AWS loT Button

Select all

0/0 things 0/0 thing types 0/0rules 0/0 CAs 00 certificates 0/0 policies

First Pre

0 RN A st st A, I bttt AN DN A e+ B I i D, i gl

Create a Device in the Thing Registry

To connect a device to AWS |oT, we recommend that you first create a device in the thing registry.
This registry allows you to keep a record of all of the devices that are connected to your AWS loT
account.

1. Choose Create a thing, and then type a name for your device. You can also choose Add
attribute to provide information about your device (for example, its serial number, manufacturer,
and more). Choose Create to add your device to the thing registry.

21

AWS IoT Developer Guide
Create a Device in the Thing Registry

Resources | MOQTT Client | Tutorial | Setting

So u rces ¥ Close create panel ' Connect AWS loT Button

oS | 0 N
N o S

Create a thing Create a thing type Create a rule Use my certificate Create a certificate Create a policy

Create a thing

Create a thing to represent your device in the cloud. This step creates an entry in the thing registry and a thing shadow for your device.

Name mvHaspberryPﬂ

Choose a thing type

You can associate a thing type to your thing. If you do not want to associate your thing with a type, choose No type

No type v

Attributes used in a thing search

Next (optional), you can use thing attributes to describe the identity and capabilities of your device. Each attribute is a key-value pair.

Add attribute

L PV L T T Y e T WY

2. Choose View thing to display information about your device.

22

AWS IoT Developer Guide
Create and Activate a Device Certificate

Resources | MQTT Client |

%X Close create panel ‘ &' Connect AWS loT Button

REST API e
b
M e

(=7 fal N

. 8 Ty

c | L e

Create a thing g type Create a rule Use my certificate Create a certificate Create a policy
reated.
a device to this thing, or add a rule that will trigger actions when your thing publishes a message.
View thing
‘ Select al ‘
gtypes 0/0rules 0/0CAs 0/0 certificates
First Previous MNext Last

Create and Activate a Device Certificate

Communication between your AWS loT button and AWS 1oT is protected through the use of X.509
certificates. AWS loT can generate a certificate for you or you can use your own X.509 certificate. This
tutorial assumes that AWS IoT will generate the X.509 certificate for you. Certificates must be activated
prior to use.

1. Inthe Create a Certificate section, choose 1-Click certificate create.

23

AWS IoT Developer Guide
Create and Activate a Device Certificate

Resources | MOQTT Client | Tutorial | Settings

{esou rces ‘ % Close create panel

Create a thing Create a rule Use my certificate Create a certificate Create a policy

ik

4

Create a certificate

Create a certificate to authenticate your device's connection to AWS loT.

You can generate a certificate with 1-click [recommended), or you can upload your own certificate signing request (CSR) based on a private key you own (adv:

X Create with CSR | — or — £ 1-Click certificate create

You don't have any CAs registered yet. Register your CA certificate

2. Onthe Resources page, choose the Download private key and Download certificate links, and
then save the private key and certificate to your computer.

24

AWS IoT Developer Guide
Create and Activate a Device Certificate

IOT Resources | MQTT Client | Tutor

~ S ‘ X Close create panel
=~
Nam
REST API endpoin
x
f /ﬁ ! F___I"'__ 7
. — Ny }liﬁf \:-
] Py
Create a thing Create a rule Use my certificate Create a certificate Create a policy
ificate has been created. You can attach a certificate to a thing so it can connect to AWS loT and attach a policy to give it
rad these files and save them in a safe place. Certificates can be retrieved at any time, but the private and public keys
rievable after closing this form.
ad public key
ad private key
ad certificate
Select all ‘
0/0 rules 0/0 CAs 1/1 certificates
First Previous n Mext Last

MyloTButton

3. Select the check box on the certificate, and from the Actions menu, choose Activate.

25

AWS IoT Developer Guide
Create an AWS loT Policy

y loT Resources | MQTT Client | Tuto

e S ‘ ® Close create panel

x
— ‘--{_\.ﬂ
W } |H”-|1| 4
LY — g \."_\':lz 5
] Py
Create a thing Create a rule Use my certificate Create a certificate Create a policy

ificate has been created. You can attach a certificate to a thing so it can connect to AWS loT and attach a policy to give it

oad these files and save them in a safe place. Certificates can be retrieved at any time, but the private and public keys
rievable after closing this form.

vad public key
vad private key
»ad certificate

Activate

0/0 rules 0/0 CAs 1/1 certificates

First Prew

Deactivate

Revoke
MyloTButton Delete

Accept transfer
Reject transfer

Transfer

p— Attach a paolicy
® O .
Attach a thing

At B bl B A Pt p T B A iy i

Create an AWS loT Policy

X.5009 certificates are used to authenticate your AWS IoT button. AWS loT policies are used to
authorize your button to perform AWS IoT operations, such as subscribing or publishing to MQTT
topics. Your button will present its certificate when sending messages to AWS loT. To allow your
button to perform AWS loT operations, you must create an AWS IoT policy and attach it to your device
certificate.

1. Inthe AWS IoT console, if you don't see the Create panel, choose Create a resource.

26

AWS IoT Developer Guide
Create an AWS IoT Policy

Choose Create a policy.

In the Create a policy section, type a name for the policy. From the Action menu, choose
iot:Publish. In the Resource field, type the ARN of your AWS loT button, and then select the
Allow check box. This allows your button to publish messages to AWS IoT.

Note

The ARN follows this format:

arn: aws:iot:your-region:your-aws-account:topic/iotbutton/your-
button-seri al - nunber

For example:

arn: aws:iot:us-east-1:123456789012: t opi c/ i ot butt on/ Q30JF055364XVRB
You can find the serial number on the bottom of your button.

The settings explained in this step assume you are using an AWS loT button which is programmed
to publish on a specific MQTT topic: t opi ¢/ i ot butt on/ butt on-seri al - nunber. The

policy created gives permission to publish to that topic. If you are not using an AWS IoT button,
you should modify the ARN described above to contain the MQTT topic on which your device
publishes. If your device is programmed to publish on nyDevi ce/ nmyTopi ¢ you would use the
following ARN:

arn: aws:iot:us-east-1:123456789012: t opi ¢/ nyDevi ce/ nyTopi c.

Choose Add statement, and then choose Create.

27

AWS IoT Developer Guide
Attach an AWS IoT Policy to a Device Certificate

MQTT Clie

Resources |

X% Close create panel

D
I

Create a thing

%

Create a rule

Use my certificate

N
o

Create a cerfificate

Create a policy

set of authorized actions. You can authorize actions on one or more resources (things and topics), or authorize the action for all resources with a *. You can then at

Name

Action

MyloTButtonPolicy

iot:Publish

Add statement

Resource

arn:aws:iot:

1123456789012}

Allow
Deny [

G e T Y T ¥ SN RIS PR VI e

For more information about AWS loT policies, see Managing AWS IoT Policies.

Attach an AWS loT Policy to a Device Certificate

Now that you have created a policy, you must attach it to your device certificate. Attaching an AWS loT

policy to a certificate gives the device the permissions specified in the policy.

1. Fromthe AWS loT console, choose your device certificate, and from the Actions menu, choose

Attach a policy.

28

http://docs.aws.amazon.com/iot/latest/developerguide/authorization.html

AWS IoT Developer Guide
Attach an AWS IoT Policy to a Device Certificate

Resources

MQTT Client

Settings

desources

X Close create panel

e \
A A 0
™ Lf:_
Ca A
Create a thing Create a rule Use my certificate Create a certificate Create a policy
Your new policy has been created. You can view your policy and manage it at any time.
Y Filter by resource names or by resource type (below) Select all .
Ml 0/1 things 0/0rules 0/0 CAs (1/1 certificates) 0/2 policies _A
First Prev

C
R
C
A
ACTIVE R
T
A
& C

A

WWW’“ NPy P

2. Inthe Confirm dialog box, type the name of the AWS IoT policy you created in the previous step,
and then choose Attach.

Confirm

Attach policy to the following certificates:

- - —— - - c o W - il . iy & - -

MyloTButtonPoIicﬂ

Policy name

29

AWS IoT Developer Guide
Attach a Thing to a Certificate

Attach a Thing to a Certificate

To attach a certificate to a device in the thing registry:

1. Inthe AWS IoT console, choose the certificate you want to attach, and from the Actions menu,
choose Attach a thing.

AWS IoT Resources | MOTT Client | Tutorial | Settings | 0O notificatio

Resou rces ‘ + Create a resource

Y Filter by resource names or by resource type (below) Select all Actions ~
(Al 141 things 1/1rules 0/0 CAs 1/1 certificates .
{}.J{}policies Fist Prey Activate

Deactivate
Revoke
MyloTButton 3b95b9d18852d75d6 MyS3Rule Delete
d3f1d405d284e5373
1a9f3c67f9bcfd5af... Accept transfer
ACTIVE ENABLED Reject transfer
Revoke transfer
Start transfer
@ v
ﬁ O & C@ O Attach a policy

I Attach a thing

B Y e I T T o WLt T SR NS

2. Inthe Confirm dialog box, type the name of the thing to which you will attach the certificate, and
then choose Attach.

Confirm

Attach the following certificates to a thing:

MyloTBuIIonl ‘

3. To verify the thing is attached, double-click the certificate. The policy and thing should appear in
the detall pane.

Thing name

30

AWS IoT Developer Guide
Configure Your Device

Resources | MQTT Client | Tutorial |

rces X Close create panel ‘

Certificate ARN

; x
— P s,
' -'\\;:] , f:\'-‘h} _
Create a thing Create a rule Use my certificate Create a certificate Create a policy

s policy has been created. You can view your policy and manage it at any time. Subject
Effective date

Expiration date

Select all Actions - ‘

s 1/1rules 0/0 CAs 1/1 certificates
First Previous - Mext Last Select all

nPoli MyloTButton 3b95b9d18852d MyS3Rule MyicTButtonPol
75d6d3f1d405d2 e ey
84e53f31a9f3c...

ACTIVE ENABLED

O

Configure Your Device

Configuring your device allows it to connect to your Wi-Fi network. Your device must be connected to
your Wi-Fi network to install the device certificate and to send messages to AWS IoT. All devices must
have a device certificate in order to communicate with AWS IoT.

AWS loT Button

To configure your AWS loT button:

31

AWS loT Developer Guide
AWS |oT Button

Turn on your device

1. Remove the AWS loT button from its packaging, and then press and hold the button for 15
seconds until a blue blinking light appears.

2. The button acts as a Wi-Fi access point, so when your computer searches for Wi-Fi networks, it
will find one called Button ConfigureMe - XXX where XXX is a three-character string generated
by the button. Use your computer to connect to the button's Wi-Fi access point.

3. The first time you connect to the button's Wi-Fi access point, you will be prompted for the WPA2-
PSK password. Type the last 8 characters of the device serial number (DSN). You'll find the DSN
on the back of the device, as shown here:

// N
/ ,/ DSNXXXX XXXX XXXX XXXX \\\\\
(-~ ~))
w))|
0610) / /

Model No.

Copy your device certificate onto your AWS loT button

To connect to AWS loT, you must copy your device certificate onto the AWS loT button.

1. In a browser, navigate to http://192.168.0.1/index.html.

Complete the configuration form.

Type your Wi-Fi SSID and password.
Browse to and select your certificate and private key.

3. Find your custom endpoint in the AWS IoT console. Your endpoint will look something like the
following:

ABCDEFGL234567. 1 ot . us- east-1. amazonaws. com

where ABCDEFGL234567 is the subdomain and us- east - 1 is the region.

4. Onthe Button ConfigureMe page, type the subdomain, and then choose the region that
matches the region in your AWS IoT endpoint.

5. Select the Terms and Conditions check box. Your settings should now look like the
following:

32

http://192.168.0.1/index.html
https://console.aws.amazon.com/iot/home?region=us-east-1#/dashboard/help

AWS IoT Developer Guide
View Device MQTT Messages
with the AWS loT MQTT Client

Button ConfigureMe

er the value for any field that you wish to change for device: G030JF055364XVRB

*i Configuration:

) |Guest |

rity @ Open Network(No Password)

word MNone {unsecured)

s IoT Configuration:

ficate Choose File = MyloTButtonCert.pem

e I{cy Choose File MyloTButto...atekKey.pem

yoint Subdomain AMUNIFEMTZ770

oint Region |

| Endpoint AMUN9F6MTZT770 10t us-east-1 amazonaws com

y clicking this box, you agree to the AWS IoT Button Terms and Conditions.

Configure

B T I P I R I T NI N

6. Your button should now connect to your Wi-Fi.

View Device MQTT Messages with the AWS loT
MQTT Client

You can use the AWS loT MQTT client to better understand the MQTT messages sent by a device.

Devices publish MQTT messages on topics. You can use the AWS IoT MQTT client to subscribe to
these topics to see the content of these messages.

To view MQTT messages:

1. Inthe AWS IoT console, choose MQTT Client.

AWS IOT Resources || MQTT Client | | Tuterial | Settin

— -
bources + Create a resource (4" Connect AWS loT Button

Select all

3/3things 2/2thingtypes 77 rules 2/2CAs 7/] certificates 5/5 policies

First Previou:

R I PRI I T i T v g e o

33

https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
View Device MQTT Messages
with the AWS loT MQTT Client

2. Type aclient ID or choose Generate client ID, and then choose Connect.

Resources | MOQTT Client | Tutorial | Setting

MQTT Client Actions

Device Gateway connection

Subscribe to topic

're not connected to the Device Gateway

o to the "Device Gateway connection” tab

/pe in your desired Client ID or generate one using the "Generate client ID" button

nce the connection to the Device Gateway succeeds, Subscribe or Publish to topics using the "Subscribe
) topic” and "Publish to topic" tabs Publish to topic

the connection to the Device Gateway fails, ensure that your Client |ID is less than 128 bytes and encoded
 UTF-8 Publish Iﬂg

Connection: Mot connected

Client ID

188c3

Connect Generate client ID

R T T I I P T i

3. Subscribe to the topic on which your thing publishes. In the case of the AWS loT button, you
can subscribe to i ot but t on/ +. Choose Subscribe to topic, in Subscription topic, type
i ot but t on/ +, and then choose Subscribe.

34

AWS IoT Developer Guide
View Device MQTT Messages
with the AWS loT MQTT Client

Resources | MQTT Client | Tutorial | Setting

i desired Topic Filts d QoS, th lick "Subscribe"
ype in your desired Topic Filter and Qo en click "Subscribe Subscribe to topic

nce subscribed, you can unsubscribe from the topic by clicking the 'x' in the right corner of the tab that will
> generated Publish to topic

Publish log

Subscription topic

iotbutton/+

Max message
capture

100

Quality of service

{QoS)

4. Press your AWS loT button, and then view the message in the AWS loT MQTT client.

00 On

35

AWS IoT Developer Guide
Configure and Test Rules

Clear messages

iotbutton/ &1 1 May4, 2016 3:36:15 PM

e Y LV _M’M—-—"I

Configure and Test Rules

The AWS loT rules engine listens for incoming MQTT messages that match a rule. When a matching
message is received, the rule takes some action with the data in the MQTT message (for example,
writing data to an Amazon S3 bucket, invoking a Lambda function, or sending a message to an
Amazon SNS topic). In this step, you will create and configure a rule to send the data received from a
device to an Amazon SNS topic. Specifically, you will:

* Create an Amazon SNS topic.
¢ Subscribe to the Amazon SNS topic using a cell phone number.

¢ Create a rule that will send a message to the Amazon SNS topic when a message is received from
your device.

¢ Test the rule using your AWS IoT button or an MQTT client.

In the upper-right corner of this page, there is a Filter View drop-down list. You can choose AWS IoT
Button to see instructions for testing your rule by using the AWS loT button or MQTT Client to see
instructions for testing your rule by using the AWS loT MQTT client.

Create an SNS Topic

You will use the Amazon SNS console to create an Amazon SNS topic.

Note
Amazon SNS is not available in all AWS regions.

36

AWS IoT Developer Guide
Subscribe to an Amazon SNS Topic

1. Open the https://console.aws.amazon.com/sns/.
2. From the left pane, choose Topics, and on the right pane, choose Create new topic.

3. Type a topic name and a display nhame, and then choose Create topic.

Create new topic

A topic name will be used to create a paermanent unique identifier called an Amazon Resource Name (ARN).

Topic name MyloTButtonSNSTopic

Display name loT Button

Cancel Q-5 CE0 T

4. Make a note of the ARN for the topic you just created.

Topics

Q
]

Create new topic Actions ~

Filter | MyloTButtonSNSTopic|

Name ARN
MyloTButtonSNSTopic arn:aws:sns: E :MyloTButtonSNSTopic

. W.W* BT Y e T & R e L L

Subscribe to an Amazon SNS Topic

To receive SMS messages on your cell phone, you need to subscribe to the Amazon SNS topic.

1. Inthe Amazon SNS console, from the Actions menu, choose Subscribe to topic.

2. From the Protocol drop-down list, choose SMS.

37

https://console.aws.amazon.com/sns/

AWS IoT Developer Guide
Create a Rule

Create Subscription

Topic ARN arm:aws:sns: :MyloTButtonSNSTopic
Protocol SMS v
Endpoint

Cancel Create Subscription

3. In Endpoint, type the phone number of an SMS-enabled cell phone, and then choose Create
Subscription.

Note
Enter the phone number using numbers and dashes only.

You will receive a text message that confirms you successfully created the subscription.

Create a Rule

AWS loT rules consist of a topic filter, a rule action, and, in most cases, an IAM role. Messages
published on topics that match the topic filter trigger the rule. The rule action defines which action to
take when the rule is triggered. The IAM role contains one or more IAM policies that determine which
AWS services the rule can access. You can create multiple rules that listen on a single topic. Likewise,
you can create a single rule that is triggered by multiple topics. The AWS loT rules engine continuously
processes messages published on topics that match the topic filters defined in the rules.

In this example, you will create a rule that uses Amazon SNS to send an SMS notification to a cell
phone number.

1. Inthe AWS loT console, choose Create a rule.

38

AWS IoT Developer Guide
Create a Rule

Resources | MQTT Client | Tutorial | Settings | 0 not

Resou rce S ‘ X Close create panel ‘

Create a thing Create a rule Use my certificate Create a certificate Create a policy

Create a rule

Create a rule to evaluate inbound messages published into AWS loT. Your rule can deliver a message to the topic of another device, or to a cloud
endpoint such as a DynamoDB table.

Name your rule and add an optional description.

Name mySNSRule

Description A simple SNS rule

Y I Y I Y e I Y YL RO S 8

2. Onthe Create arule page, in Name, type a name for your rule.
3. In Description, type a description for the rule.

4. In Attribute, type *. This specifies that you want to send the entire MQTT message that triggered
the rule.

5. The rules engine uses the topic filter to determine which rules to trigger when an MQTT message
is received. In Topic filter, type i ot but t on/ your - but t on- DSN. If you are not using an AWS
10T button, type my/ t opi c.

Note
You can find the DSN on the bottom of the button.

6. Leave Condition blank.

Indicate the source of the messages you want to process with this rule.

Rule query statement SELECT + FROM 'my/topic’

Attribute * (i]
Topic filter my/topic [i]
Condition e.g. temperature > 75 [i]

O Y st N SO IV e B Y TV

39

AWS IoT Developer Guide
Create a Rule

7. From the Choose an action drop-down list, choose Send message as a push notification
(SNS).

8. From the SNS target drop-down list, choose the Amazon SNS topic you created earlier.

Resources | MOTT Client | Tutorial | Settings

Select one or more actions to happen when the above rule query is matched by an inbound message. Actions define additional activities that occur when me
arrive, like storing them in a database, invoking cloud functions, or sending notifications. (* required)

Choose an action SNS w

This action will push the message to a SNS topic.

*SNS target MyloTButtonSNSTopic v | ® Create a new resource @
*Role name Choose a role v | & Create a new role
Cancel

P SV NI e st P e Y i ™ e WO WY I P

9. Now you need to give AWS loT permission to publish to the Amazon SNS topic on your behalf
when the rule is triggered. Choose the Create a new role link. This will open a web page in the
IAM console.

10. Accept the default values, and then choose Allow.

40

AWS IoT Developer Guide
Create a Rule

AWS loT is requesting permission to use resources in your account !

Click allow to give AWS loT write access to resources in your account.

~ Hide Details

Role Summary (2

Provides write access to AWS Services and Resources

Ak

aws_iot_sns

Create a new Role Palicy v

pon't allow [T

P b | ol B oy DI P W B a

11. Choose Add action to add the action to the rule.

AWS IOT Resources | MQTT Client | Tutorial | Sett

elect one or more actions to happen when the above rule query is matched by an inbound message. Actions define additional activities that occur when messages
oring them in a database, invoking cloud functions, or sending notifications. (* required)

Choose an action SNS v

This action will push the message to a SNS topic.

*SNS target MyloTButtonSNSTopic w | ©® Create a new resource @

*Role name aws_iot_sns v | O Create a new role

12. Choose Create to create the rule.

41

AWS IoT Developer Guide
Test the Amazon SNS Rule

Select one or more actions to happen when the above rule query is matched by an inbound message. Actions define additional activities that occur when mes:
like storing them in a database, invoking cloud functions, or sending notifications. (* required)

Choose an action Choose an action v

SNS Action .

P T e Sy P

B i e VR

For more information about creating rules, see AWS loT Rules.

Test the Amazon SNS Rule

You can test your rule by using an AWS loT button or the AWS loT MQTT client.

AWS loT Button

Press your button. You should receive an SMS text that shows the current charge on your device.

AWS loT MQTT Client

To test your rule with the AWS loT MQTT client:

1. Inthe AWS loT console, choose MQTT Client.
2. Choose Generate client ID, and then choose Connect.

42

http://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Test the Amazon SNS Rule

Resources | MOQTT Client | Tutorial | Settings

)u're not connected to the Device Gateway MQTT Client Actions

» Go to the "Device Gateway connection® tab Device Gateway connection

» Type in your desired Client |D or generate one using the "Generate client ID" button

Subscribe to topic
» Once the connection to the Device Gateway succeeds, Subscribe or Publish to topics using the
"Subscribe to topic" and "Publish to topic" tabs Publish to topic
» |f the connection to the Device Gateway fails, ensure that your Client ID is less than 128 bytes and .
encoded in UTF-8 Publish log

Connection: Not connected

Client ID

18973

P Y Sl A T R R Y e

3. Onthe MQTT client page, choose Publish to topic.

Resources | MOQTT Client | Tutorial | Settings

»u don't have any subscriptions. MQTT Client Actions

* Go to the "Subscribe to topic” tab Device Gateway connection

e Type in your desired Topic Filter and QoS, then click "Subscribe” i)
Subscribe to topic

*» Once subscribed, you can unsubscribe from the topic by clicking the "' in the right corner of the tab

that will be generated Publish to topic

Publish log

Connection: Connected

Client ID 18973

Disconnect H Generate client 1D

w‘ru
4. Inthe Publish topic field, type ny/ t opi c.

N‘\M“N

43

AWS IoT Developer Guide
Next Steps

5. In Payload, type the following JSON:

"message”: "Hello, world from AWS |oT!"

Resources | MQTT Client | Tutorial

Publish to topic

Publish log

Once subscribed, you can unsubscribe from the topic by clicking the "x" in the right corner of the tab
that will be generated

Publish topic

Quality of service

0o 1
(QoS) °

Payload

TR Per I Sy ST L SIPRIR TT R T W PRI RT

6. Choose Publish. You should receive an Amazon SNS message on your cell phone.

Next Steps

For more information about AWS IoT rules, see AWS IoT Rule Tutorials (p. 45) and AWS loT
Rules (p. 133).

44

AWS IoT Developer Guide

AWS loT Rule Tutorials

This guide includes tutorials that walk you through the creation and testing of AWS 1oT rules. If you
have not completed the AWS loT Getting Started Tutorial (p. 19), we recommend you do that first. It
shows you how to create an AWS account and connect your device to AWS loT.

Note
The AWS loT console has been updated and this tutorial was written for the old version of the
console.

An AWS 1oT rule consists of a SQL SELECT statement, a topic filter, and a rule action. Devices
send information to AWS |loT by publishing messages to MQTT topics. The SQL SELECT statement
allows you to extract data from an incoming MQTT message. The topic filter of an AWS IoT rule
specifies one or more MQTT topics. The rule is triggered when an MQTT message is received on a
topic that matches the topic filter. Rule actions allow you to take the information extracted from an
MQTT message and send it to another AWS service. Rule actions are defined for AWS services like
Amazon DynamoDB, AWS Lambda, Amazon SNS, and Amazon S3. By using a Lambda rule, you
can call other AWS or third-party web services. For a complete list of rule actions, see AWS IoT Rule
Actions (p. 141).

In these tutorials we assume you are using the AWS loT button and will use i ot but t on/ + as the topic
filter in the rules. If you do not have an AWS IoT button, you can buy one here.

The AWS loT button sends a JSON payload that looks like this:

{
"serial Nunber" : "ABCDEFGL2345",
"batteryVol tage" : "2000nV',
"clickType" : "SI NGLE"

}

You can emulate the AWS IoT button by using an MQTT client like the AWS loT MQTT client in the
AWS loT console. To emulate the AWS loT button, publish a similar message on the i ot but t on/
ABCDEFGL2345 topic. The number after the / is arbitrary. It will be used as the serial number for the
button.

You can use your own device, but you will need to know on which MQTT topic your device publishes
so you can specify it as the topic filter in the rule. For more information, see AWS loT Rules (p. 133).

45

https://www.amazon.com/dp/B01C7WE5WM
https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Creating a DynamoDB Rule

Creating a DynamoDB Rule

DynamoDB rules allow you to take information from an incoming MQTT message and write it to a
DynamoDB table.

To create a DynamoDB rule:

1. Inthe AWS IoT console, choose Create a resource.

Resources

T

5/5 things 0/0 thingtypes 3/3rules 00 CAs 13/13
5/5 policies

Mylo TButton MyloTButtonPFolicy

M 0 & 0
RNV i T VW NP

2. Choose Create arule.

46

https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Creating a DynamoDB Rule

3.

Resources

X Close create panel

MyloTButton

1Ny 0

On the Create a rule page:

Create a thing Create a thing type
T
6/6 things 0/0 thing types 3/3rules 00 CAs 13/13
5/5 policies

S

MyloTButtonPolicy

Pttt ™ e PN I I P e

47

AWS IoT Developer Guide
Creating a DynamoDB Rule

Type a rule name and description in Name and Description.

The Rule query statement field will be populated automatically when you enter data into the fields
below it.

In Attribute, type *. This determines which part of the incoming message will be sent to the rule
action. Using * sends the entire message.

In Topic filter, type i ot but t on/ +. If you are using a different device, type a topic filter that will
match the MQTT topic on which your device publishes.

From Choose an action, choose Insert message into a database table (DynamoDB).

48

AWS IoT Developer Guide
Creating a DynamoDB Rule

Create a rule

Create a rule to evaluate inbound messages published into AW
cloud endpoint such as a DynamoDB table.

MName your rule and add an optional description.

Name MyDDEBERule

Description Sends message data to DDB

Indicate the source of the messages you want to process with

Rule query statement SpLECT % FROM 'iotbutton/+'

SQAL version 2016-03-23-beta

Attribute ol

Topic filter iotbutton/+

Condition e.g. temperature > 75

Select one or more actions to happen when the above rule que
that occur when messages arrive, like storing them in a databa

49
Choose an action DynamoDB

AWS IoT Developer Guide
Creating a DynamoDB Rule

4. The Create a rule page will expand. Next to the Table name drop-down list, choose Create
a new resource. This will open the Amazon DynamoDB console where you can create a
DynamoDB table.

50

AWS IoT Developer Guide
Creating a DynamoDB Rule

Indicate the source of the messages you want to process with

Rule query statement

SQAL version

Attribute

Topic filter

Condition

SELECT = FROM 'iotbutton/+'

2016-03-23-beta

iotbutton/+

e.g. temperature > 75

Select one or more actions to happen when the above rule que

that occur when messages arrive, like storing them in a databa

Choose an action

DynamoDB

This action will insert the message into a Dynam

*Table name

Lhoose a resource

Cancel

51

AWS IoT Developer Guide
Creating a DynamoDB Rule

5.

Choose Create table.

DynamoDB
| Dashboard

Tables

Reserved capacity

Create table

Amazon DynamoDB is a fully managed non
that provides fast and predictable performa

Recent alerts

Mo CloudWatch alarms have been triggerec

Total capacity for US East (N. Vir

Provisioned read capacity 401

Provisioned write capacity 342
Reserved read capacity 0
Reserved write capacity 0

Service health

Current Status

& Amazon DynamoDB (M. Virginia)

In Table name, type a name for the table. The partition and sort keys are combined to create
a primary key for your DynamoDB table. For the Partition key, type Ser i al Nunber , and then
select Add sort key. For the Sort key, type d i ckType. Both the partition and sort keys should

be of type String.

Your screen should now look like the following:

52

AWS IoT Developer Guide
Creating a DynamoDB Rule

Create DynamoDB table

DynamoDB is a schema-less database that
primary key is made up of one or two attribl
sort data within each partition.

Table name* | IctButtonTable

Primary key* Partition key

— SerialMumber

0 Add sort key

|| ClickTypd

Table settings

Default settings provide the fastest way to ¢
settings now or after your table has been cr

Use default s

« No seconc
« Provisione
« Basic alan

"dynamod

Additional charges may apply if you exceed the AW
Advanced alarm settings are available in the Cloud'

53

AWS IoT Developer Guide
Creating a DynamoDB Rule

Choose Create. It will take a few seconds to create your DynamoDB table. Close the browser tab
that contains the Amazon DynamoDB console. If you do not close the tab, your DynamoDB table
will not be displayed in the Table name drop-down list in the AWS loT console. In the AWS loT
console, choose your new table.

In Hash key value, type ${ seri al Nunber} . This instructs the rule to take the value of the

seri al Nunber attribute from the MQTT message and write it into the SerialNumber column

in the DynamoDB table. In Range key value, type ${ cl i ckType}. This writes the value of the

cl i ckType attribute into the ClickType column. Leave Payload field blank. By default, the entire
message will be written to a column in the table called Payload. Select Create a new role.

54

AWS IoT Developer Guide
Creating a DynamoDB Rule

Choose an action

DynamoDB

This will insert the message into a DynamoDB ta

*Table name

*Hash key

*Hash key type

*Hash key value

Payload field

Range key

Range key type

Range key value

loTButtonTable

SerialNumber

STRING

S{serialNumber}

clickType

STRING

S{clickType}

Choose or create a new role to grant AWS loT the access to th

*Role name

Choose a role

Cancel

s D T I WP ¥

55

AWS IoT Developer Guide
Creating a DynamoDB Rule

9. Type a unique role name in the Create a new role dialog box, and then choose the Create button.

Create a new role

Role name DDE—buttﬂn—rﬂIe|

10. Choose Add action to add the action to the rule.

56

AWS IoT Developer Guide
Creating a DynamoDB Rule

*Hash key type STRING

*Hash key value S{serialNumber}

Payload field

Range key ClickType

Range key type STRING

H,ange k,e‘r value 5{clickﬁfp el

Choose or create a new role to grant AWS loT the access to th

*Role name DDB-button-role

Cancel

11. Choose Create to create the rule.

57

AWS IoT Developer Guide
Creating a DynamoDB Rule

Topic filter iotbutton/+

Condition

Select one or more actions to happen when the above rule que
that occur when messages arrive, like storing them in a databa

Choose an action Choose an action

DynamoDB Action

12. A confirmation message shows the rule has been created.

58

AWS IoT Developer Guide
Creating a Lambda Rule

Re SO u rces ¥ Close create panel

©

Create a thing Create a thing type

IE:

Create ar

Your new rule has been created and enabled. Click "View rule’ t

13. Test the rule by either pressing your configured AWS loT button or using an MQTT client to
publish a message on a topic that matches your rule's topic filter.

Creating a Lambda Rule

You can define a rule that calls a Lambda function, passing in data from the MQTT message that
triggered the rule. This allows you to process the incoming message and then call another AWS or
third-party service.

In this tutorial, we assume you have completed the AWS loT Getting Started Tutorial (p. 19) in which
you create and subscribe to an Amazon SNS topic using your cell phone number. You will create a
Lambda function that publishes a message to the Amazon SNS topic you created in the AWS loT
Getting Started Tutorial (p. 19). You will also create a Lambda rule that calls the Lambda function,
passing in some data from the MQTT message that triggered the rule.

59

AWS IoT Developer Guide
Create the Lambda Function

In this tutorial, we also assume you are using an AWS IoT button to trigger the Lambda rule. If you do
not have an AWS loT button, you can purchase one here or you can use an MQTT client to send an
MQTT message that will trigger the rule.

Create the Lambda Function

To create the Lambda function:

1. Inthe AWS Lambda console, choose Create a Lambda function.

Lambda * Functions

You have 32 Lambda function(s) using 1.6 MB of code storage. Choose ¢

take up to 60 seconds to appear).

Create a Lambda function Actions -

- Y Filter

Function name .
myloTButtonFunction

myLambaTest

michgreFunction

MyCodeCommitFunction
Awesome_CFN_Function_for_CodePipeline

FParseWiki

Descriptiol
A starter AV
Demonstrat

A starter AV

Tim's samp

R " e L PENCND e SWSO _PE WY

2. For the filter, type hel | o- wor | d, and then choose the hello-world blueprint.

60

https://www.amazon.com/dp/B01C7WE5WM
https://console.aws.amazon.com/lambda/home

AWS IoT Developer Guide
Create the Lambda Function

Lambda > New function

| Select blueprint Select blu Epl’i e
Configure triggers Blueprints are sample con
Confiaure function and customize as needed

J otherwise noted, blueprin
Review

Select runtime bl

hello-world

A starter AWS Lambda

nodejs

3. Onthe Configure triggers page, select the box to the left of the Lambda icon, and select AWS
0T from the drop down menu.

61

AWS IoT Developer Guide
Create the Lambda Function

Lambda > New function using blueprint hello-world

Select blueprint

Configure trigger
| Configure triggers Configure an optional trige
Configure function

Review

On the Configure triggers page enter your button's device serial number (DSN). Your DSN is
printed on the back of your AWS IoT button. If you have not already generated a certificate and

private key for your AWS IoT button, select Generate certificate and keys. Otherwise, skip to
step 6.

62

AWS IoT Developer Guide
Create the Lambda Function

Lambda > Mew function using blueprint hello-world

Select blueprint

Configure trigger

| Configure triggers Configure an optional trige

Configure function

Review

Warning: Altering t

For more information a
permissions for AWS I

63

AWS IoT Developer Guide
Create the Lambda Function

5. Select the links to download your certificate PEM and private key. Save these files in a secure
location on your computer.

We have created the necessary AWS loT resources (thing, policy, certific
be created after your function is created.

Download these resources by clicking the links below. (NOTE: If you
save the files.)

a. Your certificate PEM
b. Your private key

To configure the AWS loT Button to use your Wi-Fi and these resour

1. Place the button into configuration mode by pressing the button d
2. Connect your computer to the button's Wi-Fi network SSID "Buttc
serial number) as the WPA2-PSK password.
3. Click here (opens in new tab) and use the following information to
a. Enter your local network's Wi-Fi SSID and password.
b. Select the certificate and private key files that you just dow
c. Your endpoint subdomain is a182jd32qs965e.
d. Your endpoint region is us-east-1.
e. Check the box to agree to the terms and conditions.
f. Click "configure”.
4. Re-connect to your original Wi-Fi network.

The button should stop blinking blue and you will see a white blinking lig
to connect to the internet and AWS! Continue creating your function, ant

P P o v e Y o

Follow the instructions on the screen to configure your AWS IoT button.
6. Ensure that the Enable trigger checkbox is selected and select Next.

64

AWS IoT Developer Guide
Create the Lambda Function

Device Serial Number G030JF053216F1 B!

" Generate crthi

We have created the necessary AWS loT resources (thing, policy, ce
be created after your function is created.

Download these resources by clicking the links below. (NOTE: i
save the files.)

a. Your certificate PEM
b. Your private key

To configure the AWS loT Button to use your Wi-Fi and these res

1. Place the button into configuration mode by pressing the butt
2. Connect your computer to the button's Wi-Fi network SSID "
serial number) as the WPA2-PSK password.
3. Click here (opens in new tab) and use the following informatio
a. Enter your local network's Wi-Fi SSID and password.
b. Select the certificate and private key files that you just ¢
c. Your endpoint subdomain is 8182jd32qs965e.
d. Your endpoint region is us-east-1.
e. Check the box to agree to the terms and conditions.
f. Click "configure"”.
4. Re-connect to your original Wi-Fi network.

The button should stop blinking blue and you will see a white blinkin
to connect to the internet and AWS! Continue creating your function

For more information about loT rules and SQL statements, please se
permissions for AWS loT to invoke your Lambda function. Learn mol

AWS IoT Developer Guide
Create the Lambda Function

7. Onthe Configure function page, type a name and description for the Lambda function. In
Runtime, choose Node.js 4.3.

Lambda > MNew function using blueprint hello-world

Select blueprint Configure functic

Configure triggers A Lambda function consist

| Configure function

Review

B it gl ‘J‘-‘_"‘ﬂl’-‘"" #w--ll"“-l

8. Scroll down to the Lambda function code section of the page. Replace the existing code with the
following:

consol e. | og(' Loadi ng function');
/1 Load the AWS SDK
var AWS = require("aws-sdk");

/1 Set up the code to call when the Lanmbda function is invoked
exports. handl er = (event, context, callback) => {
/'l Load the message passed into the Lanbda function into a JSON
obj ect
var event Text = JSON.stringify(event, null, 2);

/1 Log a message to the console, you can viewthis text in
the Monitoring tab in the Lanbda console or in the d oudWatch Logs
consol e

consol e. | og(" Recei ved event:", eventText);

/]l Create a string extracting the click type and serial nunber
fromthe message sent by the AWS | oT button

var nessageText = "Received " + event.clickType + " nessage from
button ID: " + event.serial Nunber;

/1 Wite the string to the consol e
consol e. | og("Message to send: " + nessageText);

66

AWS IoT Developer Guide
Create the Lambda Function

/1 Crewate an SNS obj ect
var sns = new AWS. SNS();

/1 Popul ate the paraneters for the publish operation
/1l - Message : the text of the nessage to send
/1 - TopicArn : the ARN of the Amazon SNS topic to which you want
to publish
var parans = {
Message: nessageText,
Topi cArn: "arn:aws: sns: us-
east-1:123456789012: Myl oTBut t onSNSTopi c"
s
sns. publ i sh(parans, context.done);

I

Scroll down to the Lambda function handler and role section of the page. For Role, choose
Create a custom role. The IAM console will open, allowing you to create an IAM role that Lambda
can assume when executing the Lambda function.

To edit the role's policy to give it permission to publish to your Amazon SNS topic:

1. Choose View Policy Document.

67

AWS IoT Developer Guide
Create the Lambda Function

AWS Lambda requires access to your resources

AWS Lambda uses an |1AM role that grants your custom code permi:

v Hide Details

Role Summary (?

Role Lambda execution role parmissions

Description
IAM Role lambda_basic_execution v
Policy Name Create a new Role Policy v

b §View Policy Document

68

AWS IoT Developer Guide
Create the Lambda Function

Choose Edit to edit the role's policy.

v Hide Details

Role Summary ©

Role Description Lambda execution role permissions

IAM Role lambda_basic_execution v
Policy Name Create a new Role Policy =

* Hide Policy Document

{
"Version": "2012-10-17",

"Statement": [
{

"Effect”: "Allow",

"Action”: [
“logs:CreatelLogGroup”,
"logs:CreatelLogStream”,
“logs:PutLogEvents”

I,

2. Replace the policy document with the following:

69

AWS loT Developer Guide
Create the Lambda Function

{
"Version": "2012-10-17",
"Statenment": [
{
"Effect": "Alow',
"Action": [
"l ogs: Cr eat eLogG oup",
"l ogs: Creat eLogStreant,
"l ogs: Put LogEvent s"
1,
"Resource": "arn:aws:logs:*:*:*"
b
{
"Effect": "Alow',
"Action": [
"sns: Publ i sh"
1,
"Resource": "arn:aws:sns:us-
east-1:123456789012: Myl oTBut t onSNSTopi c"
}
]
}

This policy document adds permission to publish to your Amazon SNS topic.

Note
This example uses a fictitious AWS account number in the resource ARN. Make sure
to use the ARN for your Amazon SNS topic.

10. Choose Allow.

70

AWS IoT Developer Guide
Create the Lambda Function

v Hide Details

Role Summary (2

Role Description Lambda execution role permissions

IAM Role lambda_basic_execution =
Policy Name Create a new Role Policy =

w Hide Policy Document

"Effect": "Allow",
"Action": [
"sns:Publish”
],
"Resource”: "arn:aws:sns:us-east-
1:123455?&9{11ELMylnTEutmnsmsmpin"

}

et b B ah s B s o B R T A e

11. Leave the settings on the Advanced settings page at their defaults, and choose Next

71

AWS IoT Developer Guide
Create the Lambda Function

Advanced settings

These settings allow you to control the code execution performance an
selecting memory) or changing the timeout may impact your function ¢

Memory (MB)* 128

Timeout* 0 « | min

All AWS Lambda functions run securely inside a default system-manag
resources, such as databases, within your custom VPC. Learn more ab
appropriate permissions to configure VPC.

VPC | No VPC

* These fields are required.

B e i LY S SV S

12. On the Review page, choose Create function.

72

AWS IoT Developer Guide
Create the Lambda Function

Review

Please review your Lambda function details. You can go back to edit cl
complete the setup process.

Triggers
Lambda function

Name mylotButtonFunction

Description A starter AWS Lambd;

Runtime Node.js 4.3

Handler index.handler

Existing role* |ambda_ basic_execut

Memory (MB) 128

Timeout 3

VPC NoVPC

73

AWS IoT Developer Guide
Test Your Lambda Function

Test Your Lambda Function

To test the Lambda function:

1. From the Actions menu, choose Configure test event.

74

AWS IoT Developer Guide
Test Your Lambda Function

AWS Lambda Lambda > Functions > mylotButtonFun
L |
Dashboard = Qualifiers - Actions .

Functions

Configure

Congratulations! Your Lam Publish
trigger.

Code Configuration

AWS loT: iotbutton_GOZG
arn:aws:iot:us-east-1:80398198776
Rule description: Event sourc
"iotbutton/GO030JF053216F1E

© Add trigger

ATl s s Bt W p NN ot

AWS IoT Developer Guide
Test Your Lambda Function

2. Copy and paste the following JSON into the Input test event page, and then choose Save and
test.

Input test event

It looks like you have not configured a test event for this function yet. Us
function with (please remember that this will actually execute the code!).
Configure test event in the Actions list. Note that changes to the event

Sample event template = Hello World

{
"serialNumber”: "ABCDEFG12345",

"clickType”: "SINGLE",
"batteryVoltage": "Z2008 mV"

Ly [Y Ty 8 [

}

3. Inthe AWS Lambda console and scroll to the bottom of the screen. The Log output section
displays the output the Lambda function has written to the console.

76

AWS IoT Developer Guide
Creating a Lambda Rule

Log output

The area below shows the logging calls in your code. These correspond
group corresponding to this Lambda function. Click here to view the Clo

START RequestId: c4bSb4dl-1631-11e6-b78f-0d4d596724ad Version
Z016-85-89T22:82:49.5017 c4b5b4dl-1631-11e6-b78f-0d4d5!
"serialNumber™: “ABCDEFG12345",
"clickType": "SINGLE",
"batteryVoltage”: "Z2008 mV"
}
2016-05-89T22:82:49.501Z c4bSb4dl-1631-11e6-b7Ef -0d4dS!
END RequestId: c4b5b4dl-1631-11eb-b7E&f-Bd4d526724ad
REPORT RequestId: c4b5b4dl-1631-11e6-b78f-0d4d596724ad Durat

I T I P e

Creating a Lambda Rule

Now that you have created a Lambda function, you can create a rule that invokes the Lambda function.

1.
2.
3.

In the AWS |oT console, choose Create a resource.
Choose Create arule.
Type a name and description for the rule.

77

https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Creating a Lambda Rule

4.

Resources

X Close create panel

Create a rule

il |

e =
&I)

Create a thing Create a thin

Create a rule to evaluate inbound messages published into AW

table.

Mame your rule and add an optional description.

Description

MylLambdaRule

Invokes a Lambda function

B Y i S SN SIS

Enter the following settings for the rule:

78

AWS IoT Developer Guide
Creating a Lambda Rule

Indicate the source of the messages you want to process with this |

Rule query statement SELECT % FROM 'iotbutton/+'

SQAL version 2016-03-23-beta w

Attribute ol

Topic filter iothutton/+

Condition |

e bl e gt - ANl e AR . e,

5. For Choose an action, choose Insert this message into a code function and execute it
(Lambda).

6. From Function name, choose your Lambda function name, and then choose Add action.

79

AWS IoT Developer Guide
Creating a Lambda Rule

7.

Topic filter

Condition

iotbutton/+

e.g. temperature > 75

Select one or more actions to happen when the above rule que

messages arrive, like storing them in a database, invoking clou

Choose an action

Lambda

This action will invoke a Lambda function with th

*Function name

myloTButtonFunction

Cancel Add action

T T T e W N

Choose Create to create your Lambda function.

80

AWS IoT Developer Guide
Test Your Lambda Rule

Topic filter iotbutton/+

Condition e.g. temperature > 75

Select one or more actions to happen when the above rule que
messages arrive, like storing them in a database, invoking clou

Choose an action Choose an action

Lambda Action I

W

Test Your Lambda Rule

In this tutorial, we assume you have completed the AWS |oT Getting Started Tutorial (p. 19), which
covers:

e Configuring an AWS loT button.
¢ Creating and subscribing to an Amazon SNS topic with a cell phone number.

81

AWS IoT Developer Guide
Test Your Lambda Rule

Now that your button is configured and connected to Wi-Fi and you have configured an Amazon SNS
topic, you can press the button to test your Lambda rule. You should receive an SMS text message
on your phone that contains the serial number of your button, the type of button press (SINGLE or
DOUBLE), and the battery voltage.

The message should look like the following:

| OT BUTTON> {
"serial Nunber" : "ABCDEFGL2345",
"clickType" : "SINGE",
"batteryVol tage" : "2000 nmVv"

}

If you do not have a button, you can buy one here or you can use the AWS IoT MQTT client instead.

1. Inthe AWS IoT console, choose MQTT Client.

Reso urces + Create a resource

Y
3/3 things 2/2 thingtypes 77 rules 2/2CAs 7/7 ce

i o O PRI T bl

2. Type aclient ID or choose Generate client ID, and then choose Connect.

82

https://www.amazon.com/dp/B01C7WE5WM
https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Test Your Lambda Rule

You're not connected to the Devi

» Go to the "Device Gateway connection” tab
« Type in your desired Client ID or generate one using the "Genera

* Once the connection to the Device Gateway succeeds, Subscribe
to topic” and "Publish to topic® tabs

= |f the connection to the Device Gateway fails, ensure that your C
in UTF8

R PP P Y .

Choose Publish to topic.
In Publish topic, type i ot but t on/ ABCDEFGL2345.
In Payload, type the following JSON, and then choose Publish.

{

"serial Nunber" : "ABCDEFGl12345",
"clickType" : "SI NGLE",
"batteryVol tage" : "2000 nV"

83

AWS IoT Developer Guide
Test Your Lambda Rule

}

Type in your desired Topic Filter and QoS5, then click "Subscribe”

* Once subscribed, you can unsubscribe from the topic by clicking
the tab that will be generated

G s WP Y NP W S e

You should receive a message on your cell phone.

84

AWS IoT Developer Guide
Managing Things with the Thing Registry

Managing Things with AWS loT

AWS loT provides a thing registry that helps you manage your things. A thing is a representation of

a specific device or logical entity. It can be a physical device or sensor (for example, a light bulb or a
switch on a wall). It can also be a logical entity like an instance of an application or physical entity that
does not connect to AWS 1oT but is related to other devices that do (for example, a car that has engine
sensors or a control panel).

Information about a thing is stored in the thing registry as JSON data. Here is an example thing:

"version": 3,
"t hi ngNanme": " MyLi ght Bul b",
"defaultdientld": "MLightBul b",
"t hi ngTypeNane": "LightBul b",
"attributes": {
"model ": "123",
"wat tage": "75"

Things are identified by a name. Things can also have attributes, which are name-value pairs you can
use to store information about the thing, such as its serial number or manufacturer.

A typical device use case involves the use of the thing name as the default MQTT client ID. Although
we do not enforce a mapping between a thing’s registry name and its use of MQTT client IDs,
certificates, or shadow state, we recommend you choose a thing name and use it as the MQTT

client ID for both the thing registry and the Thing Shadows service. This provides organization and
convenience to your 10T fleet without removing the flexibility of the underlying device certificate model
or thing shadows.

You do not need to create a thing in the thing registry to connect it to AWS IoT. Adding your things in
the thing registry allows you to manage and search for them more easily.

Managing Things with the Thing Registry

You use the AWS IoT console or the AWS CLI to interact with the registry. The following sections show
how to use the CLI to work with the thing registry.

85

AWS IoT Developer Guide
Create a thing

Create a thing

The following command shows how to use the AWS IoT cr eat e-t hi ng CLI command to create a
thing:

$ aws iot create-thing --thing-nane "MLightBul b" --attribute-payl oad
"{\"attributes\": {\"wattage\":\"75\", \"nodel\":\"123\"}}"

The cr eat e-t hi ng API will display the name and ARN of your new thing:

{
"thingArn": "arn:aws:iot:us-east-1:803981987763:t hi ng/ MyLi ght Bul b",
"t hi ngNane": "MLi ght Bul b"

}

List things

You can use the | i st -t hi ngs API to list all things in your account:

$ aws iot list-things

{
"things": [
{
"attributes": {
"nodel ": "123",
"wattage": "75"
}s
"version": 1,
"t hi ngName": " MyLi ght Bul b"
}s
{
"attributes": {
"nunCr St at es” ;" 3"
b
"version": 11,
"t hi ngNarme": "M/Wal| Swi tch"
}
]
}

Search for things

You can use the descri be-t hi ng API to list information about a thing:

$ aws iot describe-thing --thing-name "MLightBul b"
{
"version": 3,
"t hi ngNarme": " MyLi ght Bul b",
"defaultdientld": "MLightBulb",
"t hi ngTypeNane": "StopLight",
"attributes": {
"nodel ": "123",
"wattage": "75"

86

AWS IoT Developer Guide
Search for things

}

You can use the | i st -t hi ngs API to search for all things associated with a thing type name:

$ aws iot list-things --thing-type-nanme "LightBul b"

{
"things": [
{
"t hi ngTypeNane": "LightBul b",
"attributes": {
"nmodel ": "123",
"wattage": "75"
s
"version": 1,
"t hi ngNane": " M/RGBLi ght"
s
{
"t hi ngTypeNane": "LightBul b",
"attributes": {
"nodel ": "123",
"wattage": "75"
s
"version": 1,
"t hi ngNanme": " MySecondLi ght Bul b"
}
]
}

You can use the | i st -t hi ngs API to search for all things that have an attribute with a specific value:

$ aws iot list-things --attribute-nane "wattage" --attribute-value "75"
{
"things": [
{

"t hi ngTypeNane": "StopLight",
"attributes": {
"model ": "123",
"wat tage": "75"
1
"version": 3,
"t hi ngNanme": " MLi ght Bul b"

1
{
"t hi ngTypeNane": "LightBul b",
"attributes": {
"model ": "123",
"wat tage": "75"
1
"version": 1,
"t hi ngName": " My/RGBLi ght"
}

87

AWS IoT Developer Guide
Update a thing

{
"t hi ngTypeNane": "LightBul b",
"attributes": {
"nmodel ": "123",
"wat tage": " 75"
H
"version": 1,
"t hi ngNarme": " MySecondLi ght Bul b"
}

Update a thing

You can use the updat e-t hi ng API to update a thing:

$ aws iot update-thing --thing-name "MLightBulb" --attribute-payl oad
"{\"attributes\": {\"wattage\":\"150\", \"nodel\":\"456\"}}"

The updat e- t hi ng command does not produce output. You can use the descri be-t hi ng API to
see the result:

$ aws iot describe-thing --thing-name "MWLightBul b"

{
"attributes": {
"nmodel ": "456",
"wattage": "150"
b
"version": 2,
"t hi ngNanme": " MLi ght Bul b"
}

Delete a thing

You can use the del et e-t hi ng API to delete a thing:

$ aws iot delete-thing --thing-name "MThing"

Attach a principal to a thing

A physical device must have an X.509 certificate in order to communicate with AWS loT. You can
associate the certificate on your device with the thing in the thing registry that represents your device.
To attach a certificate to your thing, use the at t ach-t hi ng- pri nci pal API:

$ aws iot attach-thing-principal --thing-name "M/LightBulb"
--principal "arn:aws:iot:us-east-1:123456789012: cert/
a0c01f 5835079de0a7514643d68ef 8414ab739ale94ee4162977b02b12842847"

The att ach-t hi ng- pri nci pal command does not produce any output.

Detach a principal from a thing

You can use the det ach-t hi ng- pri nci pal API to detach a certificate from a thing:

88

AWS loT Developer Guide
Thing Types

$ aws iot detach-thing-principal --thing-name "MWLightBulb"
--principal "arn:aws:iot:us-east-1:123456789012: cert/
a0c01f 5835079de0a7514643d68ef 8414ab739ale94ee4162977b02b12842847"

The det ach-t hi ng- pri nci pal command does not produce any output.

Thing Types

Thing types allow you to store description and configuration information that is common to all things
associated with the same thing type. This simplifies the management of things in the thing registry.
For example, you can define a LightBulb thing type. All things associated with the LightBulb thing type
share a set of attributes: serial number, manufacturer, and wattage. When you create a thing of type
LightBulb (or change the type of an existing thing to LightBulb) you can specify values for each of the
attributes defined in the LightBulb thing type.

Although thing types are optional, their use provides better discovery of things.

¢ Things can have up to 50 attributes.

¢ Things without a thing type can have up to three attributes.

¢ A thing can only be associated with one thing type.

¢ There is no limit on the number of thing types you can create in your account.

Thing types are immutable. You cannot change a thing type name after it has been created. You can
deprecate a thing type at any time to prevent new things from being associated with it. You can also
delete thing types that have no things associated with them.

Create a Thing Type

You can use the cr eat e- t hi ng-t ype API to create a thing type:

$ aws iot create-thing-type
--thing-type-nanme "LightBul b" --thing-type-properties
"t hi ngTypeDescri ption=light bulb type, searchabl eAttributes=wattage, nodel "

The cr eat e- t hi ng-t ype command returns a response that contains the thing type and its ARN:

"t hi ngTypeNane": "LightBul b",
"t hi ngTypeArn": "arn:aws:i ot:us-west-2:803981987763: t hi ngtype/ Li ght Bul b"

List thing types

You can use the | i st -t hi ng-t ypes API to list thing types:

$ aws iot list-thing-types

Theli st-thing-types command returns a list of the thing types defined in your AWS account:

89

AWS loT Developer Guide
Describe a thing type

"t hi ngTypes": [

"t hi ngTypeNane": "LightBul b",

"t hi ngTypeProperties": {
"deprecated": false,
"creationDate": 1468423800950,
"searchabl eAttributes": [

"wat t age",
"model "

I,
"t hi ngTypeDescription": "light bulb type"

Describe a thing type

You can use the descri be-t hi ng-t ype API to get information about a thing type:

$ aws iot describe-thing-type --thing-type-nanme "LightBulb"

The descri be-t hi ng-t ype API responds with information about the specified type:

"t hi ngTypeNane": "LightBul b",

"t hi ngTypeProperties": {
"deprecated": false,
"creationDate": 1468423800950,
"searchabl eAttributes": [

"wat t age",
"model "

]

hi ngTypeDescription": "light bulb type"

Associate a thing type with a thing

You can use the cr eat e-t hi ng API to specify a thing type when you create a thing:

$ aws iot create-thing --thing-name "MSecondLi ght Bul b" --thing-type-nane
"Light Bul b" --attribute-payload "{\"attributes\": {\"wattage\":\"75\",
\"model \":\"123\"}}"

You can use the updat e-t hi ng API at any time to change the thing type associated with a thing:

$ aws i ot update-thing --thing-nane "MLightBul b" --thing-type-nane
"StopLight" --attribute-payload "{\"attributes\": {\"wattage\":\"75\",
\"nmodel \":\"123\"}}"

You can also use the updat e- t hi ng API to disassociate a thing from a thing type.

90

AWS loT Developer Guide
Deprecate a thing type

Deprecate a thing type

Thing types are immutable. They cannot be changed after they are defined. You can, however,
deprecate a thing type to prevent users from associating any new things with it. All existing things
associated with the thing type will be unchanged.

To deprecate a thing type, use the depr ecat e- t hi ng-t ype API:

$ aws iot deprecate-thing-type --thing-type-nanme "nyThi ngType"

You can use the descri be-t hi ng-t ype API to see the result:

$ aws iot describe-thing --thing-type-nane "StopLight":

"t hi ngTypeNanme": " StopLight",

"t hi ngTypeProperties": {
"deprecated": true,
"creationDate": 1468425854308,
"searchabl eAttributes": [

"wat t age",
"nuntf Li ght s”,
"model "

!

hi ngTypeDescription": "traffic |light type",
"deprecationDate": 1468446026349

Deprecating a thing type is a reversible operation. You can undo a deprecation by using the - - undo-
depr ecat e flag with the depr ecat e- t hi ng-t ype CLI command:

$ aws i ot deprecate-thing-type --thing-type-nanme "nmyThi ngType" --undo-
deprecate

You can use the depr ecat e-t hi ng-t ype CLI command to see the result:

$ aws iot deprecate-thing-type --thing-type-name "StopLight":

{

"t hi ngTypeNane": "StopLight",

"t hi ngTypeProperties": {
"deprecated": fal se,
"creationDate": 1468425854308,
"searchabl eAttributes": [

"wat t age",
"nuntf Li ghts",
"model "
1.
"t hi ngTypeDescription": "traffic light type"
}
}

91

AWS IoT Developer Guide
Delete a thing type

Delete a thing type

You can delete thing types only after they have been deprecated. To delete a thing type, use the
del et e- t hi ng-type API:

$ aws iot delete-thing-type --thing-type-nanme "StopLight"

Note
You must wait five minutes after you deprecate a thing type before you can delete it.

92

AWS IoT Developer Guide

Security and ldentity for AWS loT

Each connected device must have a credential to access the message broker or the Thing Shadows

service. All traffic to and from AWS loT must be encrypted over Transport Layer Security (TLS). Device
credentials must be kept safe in order to send data securely to the message broker. After data reaches
the message broker, AWS cloud security mechanisms protect data as it moves between AWS loT and

other devices or AWS services.

93

AWS IoT Developer Guide

o/ AWS User
* + AWS secu
| credentials

* |AM policie

Device L,

I
* * loT certificate

+ loT policies €\

~—

AWS Cognito Identity
« Auth provider token + AWS
security credentials

* |AM Role policy
* loT policies

AWS User
* « AWS security
credentials
« |AM policies

* You are responsible for managing device credentials (X.509 certificates, AWS credentials) on your
devices and policies in AWS IoT. You are responsible for assigning unique identities to each device
and managing the permissions for a device or group of devices.

94

AWS IoT Developer Guide
Authentication in AWS loT

» Devices connect using your choice of identity (X.509 certificates, IAM users and groups, or Amazon
Cognito identities) over a secure connection according to the AWS IoT connection model.

* The AWS loT message broker authenticates and authorizes all actions in your account. The
message broker is responsible for authenticating your devices, securely ingesting device data, and
adhering to the access permissions you place on devices using policies.

» The AWS loT rules engine forwards device data to other devices and other AWS services according
to rules you define. It is responsible for leveraging AWS access management systems to securely
transfer data to its final destination.

Authentication in AWS loT

AWS loT supports three types of identity principals for authentication:

¢ X.509 certificates
« |AM users, groups, and roles
* Amazon Cognito identities

Each identity type supports different use cases for accessing the AWS IoT message broker and Thing
Shadows service.

The identity type you use depends on your choice of application protocol. If you use HTTP, use IAM
(users, groups, roles) or Amazon Cognito identities. If you use MQTT, use X.509 certificates.

X.509 Certificates

X.5009 certificates are digital certificates that use the X.509 public key infrastructure standard to
associate a public key with an identity contained in a certificate. X.509 certificates are issued by a
trusted entity called a certification authority (CA). The CA maintains one or more special certificates
called CA certificates that it uses to issue X.509 certificates. Only the certification authority has access
to CA certificates.

AWS loT supports the following certificate-signing algorithms:

* SHA256WITHRSA

* SHA384WITHRSA

* SHA384WITHRSA

* SHA512WITHRSA

* RSASSAPSS

« DSA_WITH_SHA256
* ECDSA-WITH-SHA256
« ECDSA-WITH-SHA384
*» ECDSA-WITH-SHA512

Certificates provide several benefits over other identification and authentication mechanisms.
Certificates enable asymmetric keys to be used with devices. This means you can burn private keys
into secure storage on a device without ever allowing the sensitive cryptographic material to leave the
device. Certificates provide stronger client authentication over other schemes, such as user name and
password or bearer tokens, because the secret key never leaves the device.

AWS loT authenticates certificates using the TLS protocol’s client authentication mode. TLS is
available in many programming languages and operating systems and is commonly used for
encrypting data. In TLS client authentication, AWS loT requests a client X.509 certificate and validates

95

AWS loT Developer Guide
X.509 Certificates

the certificate’s status and AWS account against a registry of certificates. It then challenges the client
for proof of ownership of the private key that corresponds to the public key contained in the certificate.

To use AWS loT certificates, clients must support all of the following in their TLS implementation:

e TLS 1.2
« SHA-256 RSA certificate signature validation.
« One of the cipher suites from the TLS cipher suite support section.

X.509 Certificates and AWS loT

AWS loT can use AWS loT-generated certificates or certificates signed by a CA certificate for device
authentication. Certificates generated by AWS loT do not expire. The expiry date and time for
certificates signed by a CA certificate are set when the certificate is created.

To use a certificate that is not created by AWS loT, you must register a CA certificate. All device
certificates must be signed by the CA certificate you register.

You can use the AWS IoT console or CLI to create and manage certificates. The following operations
are available:

¢ Create and register an AWS loT certificate.

* Register a CA certificate.

* Register a device certificate.

« Activate or deactivate a device certificate.

¢ Revoke a device certificate.

« Transfer a device certificate to another AWS account.

« List all CA certificates registered to your AWS account.

« List all device certificates registered to your AWS account.

For more information about the CLI commands to use to perform these operations, see AWS loT CLI
Reference.

For more information about using the AWS IoT console to create certificates, see Create and Activate
a Device Certificate.

Server Authentication

Device certificates allow AWS 10T to authenticate devices. To ensure your device is communicating
with AWS loT and not another server impersonating AWS loT, copy the VeriSign root CA certificate
onto your device. Reference the CA root certificate in your device code when connecting to AWS loT.
For more information, see the AWS IoT Device SDKs (p. 226).

Note
You cannot use your own CA certificate to authenticate the AWS loT server, only the VeriSign
root CA certificate.

Create and Register an AWS IoT Device Certificate
You can use the AWS IoT console or the AWS loT CLI to create an AWS loT certificate.
To create a certificate (console)

You can use the UpdateCertificate API to revoke a certificate at any time. For more information about
managing device certificates, see the AWS Command Line Interface User Guide.

96

http://docs.aws.amazon.com/cli/latest/reference/iot/index.html
http://docs.aws.amazon.com/cli/latest/reference/iot/index.html
http://docs.aws.amazon.com/iot/latest/developerguide/create-device-certificate.html
http://docs.aws.amazon.com/iot/latest/developerguide/create-device-certificate.html
https://www.symantec.com/content/en/us/enterprise/verisign/roots/VeriSign-Class%203-Public-Primary-Certification-Authority-G5.pem
http://docs.aws.amazon.com/iot/latest/apireference/API_UpdateCertificate.html
http://docs.aws.amazon.com/cli/latest/userguide/

AWS IoT Developer Guide
X.509 Certificates

1. Signin to the AWS Management Console and open the AWS loT console at https://
console.aws.amazon.com/iot.

2. Choose Create aresource, and then choose Create a certificate.

Choose 1-Click certificate create. Alternatively, to generate a certificate with a certificate signing
request (CSR), choose the Create with CSR button.

Use the links to the public key, private key, and certificate to download each to a secure location.

5. The newly created certificate will be displayed as INACTIVE. Choose it, and from the Actions
drop-down list, choose Activate.

To create a certificate (CLI)
The AWS loT CLI provides two commands to create certificates:
e create-keys-and-certificate

The CreateKeysAndCertificate API creates a private key, public key, and X.509 certificate.
e create-certificate-from-csr

The CreateCertificateFromCSR API creates a certificate given a CSR.

Use Your Own Certificate

To use your own X.509 certificates, you must register a CA certificate with AWS IoT. The CA certificate
can then be used to sign device certificates. You can register up to ten CA certificates with the same
subject field and public key per AWS account. This allows you to have more than one CA sign your
device certificates.

Note

Device certificates must be signed by the registered CA certificate. It is common for a

CA certificate to be used to create an intermediate CA certificate. If you will be using an
intermediate certificate to sign your device certificates, you must register the intermediate

CA certificate. You should use the AWS 1oT root CA certificate when connecting to AWS loT
even if you register your own root CA certificate. The AWS loT root CA certificate is used by a
device to verify the identity of the AWS loT servers.

Contents
* Registering Your CA certificate (p. 98)
¢ Creating a Device Certificate (p. 99)
¢ Registering a Device Certificate (p. 99)
« Registering Device Certificates Manually (p. 100)
¢ Using Automatic/Just-in-Time Registration for Device Certificates (p. 100)
¢ Deactivate the CA Certificate (p. 101)
¢ Revoke the Device Certificate (p. 101)

If you do not have a CA certificate, you can create your own by using OpenSSL tools.

To create a CA certificate

1. Generate a key pair.

openssl genrsa -out root CA key 2048

97

https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/codedeploy
https://console.aws.amazon.com/codedeploy
http://docs.aws.amazon.com/cli/latest/reference/iot/create-keys-and-certificate.html
http://docs.aws.amazon.com/iot/latest/apireference/API_CreateKeysAndCertificate.html
http://docs.aws.amazon.com/cli/latest/reference/iot/create-certificate-from-csr.html
http://docs.aws.amazon.com/iot/latest/apireference/API_CreateCertificateFromCSR.html
https://www.openssl.org/

AWS loT Developer Guide
X.509 Certificates

2. Use the private key from the key pair to generate a CA certificate.

openssl req -x509 -new -nodes -key root CA key -sha256 -days 1024 -out
r oot CA. pem

Registering Your CA certificate

To register your CA certificate, you must get a registration code from AWS IoT, sign a private key
verification certificate with your CA certificate, and pass both your CA certificate and a private key
verification certificate to the r egi st er-ca-certifi cat e CLI command. The Common Nanre field
in the private key verification certificate must be set to the registration code generated by the get -
regi strati on-code CLI command. A single registration code is generated per AWS account.
You can use theregi st er-ca-certifi cat e command or the AWS loT console to register CA
certificates.

To register a CA certificate

1. Get aregistration code from AWS loT. This code will be used as the Conmon Nane of the private
key verification certificate.

aws iot get-registration-code

2. Generate a key pair for the private key verification certificate.

openssl genrsa -out verificationCert.key 2048

3. Create a CSR for the private key verification certificate, setting the Conmon Nane field of the
certificate to your registration code.

openssl req -new -key verificationCert.key -out verificationCert.csr

You will be prompted for some information, including the Common Narre for the certificate.

Country Nane (2 letter code) [AU]:

State or Province Nane (full nane) []:
Locality Nane (eg, city) []:

Organi zation Nane (eg, conpany) []:

Organi zational Unit Nane (eg, section) []:
Common Nane (e.g. server FQDN or YOUR nane)
[T : XXX XXXMYREG STRATI ONCODEXXXXXX
Emai | Address []:

4. Use the CSR to create a private key verification certificate.

openssl x509 -req -in verificationCert.csr -CA root CA pem - CAkey
root CA. key -CAcreateserial -out verificationCert.pem-days 500 -sha256

5. Register the CA certificate with AWS 10T, passing in the CA certificate and the private key
verification certificate to the r egi st er-ca-certi fi cat e CLI command.

aws iot register-ca-certificate -—a-certificate file://rootCA pem-—
verification-cert file://verificationCert.pem

6. Activate the CA certificate using the updat e-certi fi cat e CLI command.

98

AWS loT Developer Guide
X.509 Certificates

aws iot update-ca-certificate --certificate-id XXXXXXXXXXX --new status
ACTI VE

Creating a Device Certificate

You can use a CA certificate registered with AWS 10T to create a device certificate. The device
certificate must be registered with AWS loT before use.

To create a device certificate

1. Generate a key pair.

openssl genrsa -out deviceCert.key 2048

2. Create a CSR for the device certificate.

openssl req -new -key deviceCert.key -out deviceCert.csr

You will be prompted for some additional information, as shown here.

Country Nane (2 letter code) [AU:

State or Province Nane (full nane) []:

Locality Nane (eg, city) []:

Organi zation Nanme (eg, conpany) []:

Organi zational Unit Nanme (eg, section) []:
Common Nane (e.g. server FQDN or YOUR name) []:
Emai | Address []:

3. Create a device certificate from the CSR.

openssl x509 -req -in deviceCert.csr -CA root CA pem - CAkey root CA. key -
CAcreateserial -out deviceCert.pem -days 500 -sha256

Note

You must use the CA certificate registered with AWS |oT to create device certificates.
If you have more than one CA certificate (with the same subject field and public key)
registered in your AWS account, you must specify the CA certificate used to create the
device certificate when registering your device certificate.

4. Register a device certificate.

aws iot register-certificate -—ertificate file://deviceCert.crt --
caCertificate file://caCert.crt

5. Activate the device certificate using the updat e- certi fi cat e CLI command.

aws iot update-certificate --certificate-id XXXXXXXXXXX --new status
ACTI VE

Registering a Device Certificate

You must use the CA certificate registered with AWS loT to sign device certificates. If you have more
than one CA certificate (with the same subject field and public key) registered in your AWS account,

99

AWS loT Developer Guide
X.509 Certificates

you must specify the CA certificate used to sign the device certificate when registering your device
certificate. You can register each device certificate manually, or you can use automatic registration,
which allows devices to register their certificate when they connect to AWS loT for the first time.
Registering Device Certificates Manually

Use the following CLI command to register a device certificate:

aws iot register-certificate -—ertificate file://deviceCert.crt --
caCertificate file://caCert.crt

Using Automatic/Just-in-Time Registration for Device Certificates

You can also have your device certificates automatically registered when devices first connect to AWS
l0T. To do this, you must enable automatic registration for your CA certificate. This will automatically
register any device certificate signed by your CA certificate when it connects to AWS loT.

Enable Auto Registration

Use the updat e- ca- certi fi cat e API to set the CA certificates aut o-r egi strati on- st atus to
ENABLE:

$ aws iot update-ca-certificate --certificate-id caCertificateld --new auto-
regi stration-status ENABLE

You can also set the aut o-r egi strati on- st at us to ENABLE when you register your CA certificate
usingtheregi ster-ca-certificate APl

aws iot register-ca-certificate -—a-certificate file://rootCA pem-—
verification-cert file://privateKeyVerificationCert.crt --allow auto-
regi stration

When a device first attempts to connect to AWS 10T, as part of the TLS handshake, it must present

a registered CA certificate and a device certificate. AWS loT will recognize the CA certificate as a
registered CA certificate and will automatically register the device certificate and set its status to

PENDI NG_ACTI VATI ON. This means the device certificate was automatically registered and is awaiting
activation. A certificate must be in the ACTIVE state before it can be used to connect to AWS IoT.
When AWS IoT automatically registers a certificate or when a certificate in PENDING_ACTIVATION
status connects, AWS IoT publishes a message to the following MQTT topic:

$aws/ event s/ certificates/registered/ caCertificatelD

Where caCerti fi cat el Dis the ID of the CA certificate that issued the device certificate.

The message published to this topic has the following structure:

"certificateld": "certificatel D",

"caCertificateld": "caCertificateld",

"timestanmp": tinmestanp,

"certificateStatus": "PENDI NG _ACTI VATI ON',

"awsAccount I d": "awsAccount|d",

"certificateRegistrationTinestanp": "certificateRegistrationTi nestanp"”

100

AWS IoT Developer Guide
IAM Users, Groups, and Roles

You can create a rule that listens on this topic and performs some additional actions. We recommend
that you create a Lambda rule that verifies the device certificate is not on a certificate revocation

list (CRL), activates the certificate, and creates and attaches a policy to the certificate. The policy
determines which resources the device is able to access. For more information about how to create a
Lambda rule that listens on the $aws/ event s/ certificates/regi stered/caCertificatelD
topic and performs these actions, see Just-in-Time Registration.

Deactivate the CA Certificate

When you attempt to register a device certificate, AWS will check if the associated CA certificate

is ACTI VE. If the CA certificate is | NACTI VE, AWS loT will not allow the device certificate to be
registered. By marking the CA certificate as INACTIVE, you are preventing any new device certificates
issued by the compromised CA to be registered in your account. You can deactivate the CA certificate
using the updat e-ca-certificat e API:

$ aws iot update-ca-certificate --certificate-id certificateld --newstatus
I NACTI VE

Note
Any registered device certificates that were signed by the compromised CA certificate will
continue to work until you explicitly revoke the device certificate.

Use the Li st Certi fi cat esByCA API to get a list of all registered device certificates that were signed
by the compromised CA. For each device certificate signed by the compromised CA certificate, use the
Updat eCerti fi cat e API to revoke the device certificate to prevent it from being used.

Revoke the Device Certificate

If you detect any suspicious activity with a registered device certificate, you can revoke it by using the
updat e-certificate API:

$ aws iot update-certificate --certificate-id certificateld
--new- st at us REVOKED

If any error or exception occurs during the auto-registration of the device certificates, AWS loT will
send the appropriate events or messages to your logs in CloudWatch Logs. For more information
about setting up the CloudWatch Logs for your account, see the Amazon CloudWatch documentation.

IAM Users, Groups, and Roles

IAM users, groups, and roles are the standard mechanisms for managing identity and authentication in
AWS. As with any other AWS service, you can use them to connect to AWS loT HTTP interfaces using
the AWS SDK and CLI.

IAM roles are also the basis for AWS IoT security in the cloud. Roles allow AWS 10T to issue calls to
other AWS resources in your account on your behalf. If you want to have a device publish its state to
a DynamoDB table, for example, 1AM roles allow AWS IoT to do the heavy lifting securely. For more
information, see IAM Roles.

For message broker connections, AWS IoT authenticates IAM users, groups, and roles using
the Signature Version 4 signing process. For information about authentication with AWS security
credentials, see Signing AWS API Requests.

When using AWS Signature Version 4 with AWS IoT, clients must support the following in their TLS
implementation:

e TLS1.2, TLS 1.1, TLS 1.0.

101

https://aws.amazon.com/blogs/iot/just-in-time-registration-of-device-certificates-on-aws-iot/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html

AWS IoT Developer Guide
Amazon Cognito Identities

¢ SHA-256 RSA certificate signature validation.
¢ One of the cipher suites from the TLS cipher suite support section.

For information, see the IAM User Guide.

Amazon Cognito Identities

Amazon Cognito Identity allows you to use your own identity provider or leverage other popular identity
providers, such as Login with Amazon, Facebook, or Google. You exchange a token from your identity
provider for AWS security credentials. The credentials represent an 1AM role and can be used with
AWS loT.

AWS loT extends Amazon Cognito and allows policy attachment to Amazon Cognito identities. You
can attach a policy to an Amazon Cognito identity and give fine-grained permissions to an individual
user of your AWS loT application. This can be used to assign permissions between specific customers
and their devices. For more information, see Amazon Cognito Identity.

-

Device (loT certificate) SUBSCRIBE /thing/123
’ + Action: SUBSCRIBE

Resource: /thing/123 ~r
. Effect: Allow =

AWS Cognito Identity (loT PUBLISH /thing/123
policy)

@ . Action: PUBLISH
+ Resource: /thing/123

« Effect: Allow

Authorization

Communication with AWS loT follows the principle of least privilege. An identity can execute AWS loT
operations only if you grant the appropriate permission. You create AWS loT and IAM policies to give
permissions to authenticated identities in AWS loT.

Policies give permissions to AWS IoT clients regardless of the authentication mechanism they use

to connect to AWS loT. To control which resources a device can access, attach one or more AWS
10T policies to the certificate associated with the device. To control which resources a web or mobile
application can access, attach one or more AWS IoT policies to the Amazon Cognito identity pool
associated with the application. AWS IoT policies control access to AWS IoT resources (MQTT topics,
devices, thing shadows, and so on). IAM policies control access to other AWS services and are
attached to IAM users, groups, and roles.

Policy-based authorization is a powerful tool. It gives you complete control over the topics and topic
filters in your AWS account. For example, consider a device connecting to AWS loT with a certificate.
You can open its access to all topics, or you can restrict its access to a single topic. The latter example
allows you to assign a topic per device. For example, the device ID 123ABC can subscribe to /

devi ce/ 123ABC and you can grant other identities permission to subscribe to this topic, effectively
opening a communication channel to this device.

102

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html

AWS IoT Developer Guide
AWS loT Policies

AWS loT Policies

AWS IoT policies are JSON documents. They follow the same conventions as IAM policies. AWS loT
supports named policies so many identities can reference the same policy document. Named policies
are versioned so they can be easily rolled back. For more information, see Overview of IAM Policies.

An AWS 1oT policy looks like the following:

{
"Version": "2012-10-17",
"Statenment": [{
"Effect": "Allow',
"Action":["iot:Publish"],
"Resource": ["arn:aws:iot:us-east-1:123456789012:topic/foo/bar"]
},
{
"Effect": "Allow',
"Action": ["iot:Connect"],
"Resource": ["*"]
}H
}

This policy allows the principal to connect and publish messages to AWS IoT.

AWS |oT Policy Actions

The following actions are available for use with AWS loT:

iot:Publish
Checked every time a PUBLISH request is sent to the broker. Used to allow clients to publish to
specific topic patterns.

iot:Subscribe
Checked every time a SUBSCRIBE request is sent to the broker. Used to allow clients to
subscribe to topics that match specific topic patterns.

iot:Receive
Checked every time a message is delivered to a client. Because the Receive permission is
checked on every delivery, it can be used to revoke permissions to clients that are currently
subscribed to a topic.

iot:Connect

Checked every time a CONNECT request is sent to the broker. The message broker does not

allow two clients with the same client ID to stay connected at the same time. After the second

client connects, the broker detects this case and disconnects one of the clients. The Connect

permission can be used to ensure only authorized clients can connect using a specific client ID.
iot:UpdateThingShadow

Checked every time a request is made to update the state of a thing shadow document.
iot:GetThingShadow

Checked every time a request is made to get the state of a thing shadow document.
iot:DeleteThingShadow

Checked every time a request is made to delete the thing shadow document.

Action Resources

The following table shows the resource to specify for each action type:

103

http://docs.aws.amazon.com/IAM/latest/UserGuide//access_policies.html

AWS IoT Developer Guide
AWS loT Policies

Action Resource
iot:DeleteThingShadow thing ARN
iot:Connect client ID ARN
iot:Publish topic ARN
iot:Subscribe topic filter ARN
iot:Receive topic ARN
iot:UpdateThingShadow thing ARN
iot:GetThingShadow thing ARN

AWS |oT Policy Variables

AWS loT defines policy variables that can be used in AWS |oT policies within the resource or
condition block. For more information about policy variables, see IAM Policy Variables and Multi-Value
Conditions.

Basic Policy Variables
AWS loT defines the following basic policy variables:

ejot:Cientld
e aws: Sourcel p

iot:dientldisreplaced by the client ID that sent an MQTT message. aws: Sour cel p is replaced
by the IP address from which the message originated.

The following AWS IoT policy illustrates the use of policy variables:

"Version": "2012-10-17",
"Statenment": [{
"Effect": "All ow',
"Action": ["iot:Connect"],
"Resource": [
"arn:aws:iot:us-east-1:123451234510:client/${iot:Cientld}"
]
I8

{
"Effect": "All ow',

"Action": ["iot:Publish"],
"Resource": [
"arn:aws:iot:us-east-1:123451234510: t opi ¢/ f oo/ bar/
${iot:Adientld}”
]
}H

When you use policy variables like ${i ot : i ent | d}, you can inadvertently open access to topics
you do not want to be accessible. For example, if you use a policy that uses ${i ot: Cl i ent1d} to
specify a topic filter:

104

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html

AWS IoT Developer Guide
AWS loT Policies

{

"Effect": "Allow',

"Action": ["iot:Subscribe"],

"Resource": |

"arn:aws:iot:us-east-1:123456789012:topicfilter/foo/${iot:dientld}/

bar "

]
}

A client can connect using + as the client ID. This would allow the user to subscribe to any topic
matching f oo/ +/ bar . To protect against such security gaps, use the i ot : Connect policy action to
control which client IDs are able to connect. For example, this policy will allow only clients whose client
IDisclientidl to connect:

{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action": ["iot:Connect"],
"Resource": [
"arn:aws:iot:us-east-1:123456789012: client/clientidl"
]
H
}

X.509 Certificate Policy Variables

X.5009 certificate policy variables allow you to write AWS loT policies that grant permissions based on
X.5009 certificate attributes. The following sections describe how you can use these certificate policy
variables.

Issuer Attributes

The following AWS IoT policy variables allow you to allow or deny permissions based on certificate
attributes set by the certificate issuer.

e jot:Certificate.lssuer.Distingui shedNaneQualifier
e jot:Certificate.lssuer. Country

e iot:Certificate.lssuer.Organi zation

e jot:Certificate.lssuer.Organizational Unit
e jot:Certificate.lssuer.State

e jot:Certificate.lssuer. CommonNane

e jot:Certificate.lssuer. Serial Nunber

e jiot:Certificate.lssuer.Title

e jot:Certificate.lssuer. Surnane

e jot:Certificate.lssuer.G venNane

e jot:Certificate.lssuer.Initials

e jot:Certificate.|ssuer.Pseudonym

e jiot:Certificate.lssuer.CenerationQualifier

Subject Attributes

The following AWS IoT policy variables allow you to grant or deny permissions based on certificate
attributes set by the certificate subject.

105

AWS IoT Developer Guide
AWS loT Policies

e jot:Certificate. Subject.Di stingui shedNaneQualifier
e jot:Certificate. Subject.Country

e jot:Certificate. Subject. Organi zati on

e jot:Certificate. Subject.Organi zational Unit
e jot:Certificate. Subject. State

e jot:Certificate. Subj ect. CormonNane

e jot:Certificate. Subject. Serial Nunber

e jiot:Certificate. Subject. Title

e jot:Certificate. Subject. Surname

e jot:Certificate. Subject.G venNane

e jot:Certificate. Subject.Initials

e iot:Certificate. Subject.Pseudonym

e jot:Certificate. Subject. CGenerationQualifier

X.509 certificates allow these attributes to contain one or more values. By default, the

policy variables for each multi-value attribute return the first value. For example, the

Certificate. Subj ect. Count ry attribute might contain a list of country names. When

evaluated in a policy, i ot : Certifi cate. Subj ect. Count ry is replaced by the first country
name. You can request a specific attribute value using a zero-based index. For example,
iot:Certificate. Subject. Country#1l is replaced by the second country name in the
Certificate. Subj ect. Count ry attribute. If you specify an attribute value that does not exist
(for example, if you ask for a third value when there are only two values assigned to the attribute),
no substitution will be made and authorization will fail. You can use the . Li st suffix on the policy
variable name to specify all values of the attribute. The following example policy allows any client

to connect to AWS loT, but restricts publishing rights to those clients with certificates whose
Certificate. Subject. Organi zati on attribute is set to " Exanpl e Cor p" or " AnyConpany".
This is done through the use of a " Condi t i on" attribute that specifies a condition for the preceding
action. The condition in this case is that the Cer ti fi cat e. Subj ect . Or gani zat i on attribute of the
certificate must include one of the listed values.

"Version":"2012-10-17",
"Statenment": [

{
"Effect":"All ow',
"Action":[
"iot: Connect"
I,
"Resource": [
W
]
}
{
"Effect":"All ow',
"Action":[
"iot:Publish"

]

Resource": [

nwan

1
"Condition":{
"For Al | Val ues: StringEqual s": {
"iot:Certificate.Subject.Oganization.List":]
"Exanpl e Corp",

106

AWS IoT Developer Guide
AWS loT Policies

" AnyConpany”

Issuer Alternate Name Attributes

The following AWS IoT policy variables allow you to grant or deny permissions based on issuer
alternate name attributes set by the certificate subject.

e jot:Certificate.lssuer.AlternativeNane. RFC822Nane

e jot:Certificate.lssuer.AlternativeNanme. DNSNanme

e jot:Certificate.lssuer.AlternativeNane. D rectoryNanme

e jot:Certificate.lssuer.AlternativeNane. Uni fornResourcel dentifier
e jot:Certificate.lssuer.AlternativeNane. | PAddress

Subject Alternate Name Attributes

The following AWS IoT policy variables allow you to grant or deny permissions based on subject
alternate name attributes set by the certificate subject.

e jot:Certificate. Subject. Al ternativeNanmre. RFC822Nane

e iot:Certificate. Subject. AlternativeNane. DNSNane

e jot:Certificate. Subject.AlternativeNane. DirectoryNane

e jot:Certificate. Subject.AlternativeNane. UnifornResourcel dentifier
e jot:Certificate. Subject. AlternativeNane. | PAddress

Other Attributes

Youcanuseiot: Certificate. Serial Nunber to allow or deny access to AWS loT resources
based on the serial number of a certificate. The i ot: Certi fi cat e. Avai | abl eKeys policy variable
contains the name of all certificate policy variables that contain values.

X.509 Certificate Policy Variable Limitations
The following limitations apply to X.509 certificate policy variables:

Wildcards
If wildcard characters are present in certificate attributes, the policy variable will not be replaced by
the certificate attribute value, leaving the ${ pol i cy- vari abl e} textin the policy document. This
might cause authorization failure.
Array fields
Certificate attributes that contain arrays are limited to five items. Additional items will be ignored.
String length
All string values are limited to 1024 characters. If a certificate attribute contains a string longer than
1024 characters, the policy variable will not be replaced by the certificate attribute value, leaving
the ${ pol i cy-vari abl e} in the policy document. This might cause authorization failure.

Thing Policy Variables

Thing policy variables allow you to write AWS IoT policies that grant permissions based on thing
properties like thing names, thing types, and thing attribute values. The thing name is obtained from

107

AWS IoT Developer Guide
AWS loT Policies

the client ID in the MQTT Connect message sent when a thing connects to AWS IoT. The thing policy
variables are replaced when a thing connects to AWS IoT over MQTT using TLS mutual authentication
or MQTT over the WebSocket protocol using authenticated Amazon Cognito identities. Thing policy
variables are also replaced when a certificate or authenticated Amazon Cognito identity is attached to
a thing. Certificates and authenticated Amazon Cognito identities can be attached to a thing using the
AttachThingPrincipal API.

The following thing policy variables are available:

e i ot: Connecti on. Thi ng. Thi ngNane

e jot: Connection. Thi ng. Thi ngTypeNane

e jot:Connection. Thing. Attributes[attributeNane]
e i ot: Connection. Thing.|sAttached

iot:Connection.Thing. ThingName

This resolves to the name of the thing for which the policy is being evaluated. The thing name is
obtained from the client ID for the MQTT/Websocket connection. This policy variable is only available
when connecting over MQTT or MQTT over the WebSocket protocol.

iot:Connection.Thing.ThingTypeName

This resolves to the thing type associated with the thing for which the policy is being evaluated. The
thing name is obtained from the client ID for the MQTT/Websocket connection and the thing type name
is obtained by a call to the DescribeThing API. This policy variable is only available when connecting
over MQTT or MQTT over the WebSocket protocol.

iot:Connection.Thing.Attributes[at t r i but eNane]

This resolves to the value of the specified attribute associated with the thing for which the policy is
being evaluated. A thing can have up to 50 attributes. Each attribute will be available as a policy
variable: i ot : Connecti on. Thing. Attributes[attributeNane] where attri but eNane is
the name of the attribute. The thing name is obtained from the client ID for the MQTT/Websocket
connection. This policy variable is only available when connecting over MQTT or MQTT over the
WebSocket protocol.

iot:Connection.Thing.IsAttached
This resolves to t r ue if the thing has a certificate or Amazon Cognito attached.

Example Policies

AWS loT policies are specified in a JISON document. These are the components of an AWS 10T policy:

Version

Must be setto " 2012-10-17".
Effect

Must be setto " Al | ow"' or " Deny".
Action

Must be set to "iot:<oper at i on- nane>" where <operation-name> is one of the following:
"iot:Publish": MQTT publish.

"iot: Subscribe": MQTT subscribe.

"i ot : Updat eThi ngShadow" : Update a thing shadow.

"i ot : Get Thi ngShadow" :Retrieve a thing shadow.

108

AWS IoT API ReferenceAPI_AttachThingPrincipal.html

AWS loT Developer Guide
AWS loT Policies

"i ot : Del et eThi ngShadow:Delete a thing shadow.

Resource
Must be set to one of the following:

Client - arn:aws:iot:<r egi on>:<account | d>:client/<cl i ent | d>
Topic ARN - arn:aws:iot:<r egi on>:<account | d>:topic/<t opi cNane>

Topic filter ARN - arn:aws:iot:<r egi on>:<account | d>:topicfilter/<t opi cFi | t er >

Connect Policy Examples

The following policy allows a set of client IDs to connect:

{
"Version": "2012-10-17",
"Statenent": [
{

"Effect": "Alow',

"Action": [

"i ot: Connect"

I,

"Resource": |
"arn:aws:iot:us-east-1:123456789012:client/clientidl",
"arn:aws:iot:us-east-1:123456789012:client/clientid2",
"arn:aws:iot:us-east-1:123456789012:client/clientid3"

]

b,
{

"Effect": "Alow',

"Action":
"iot:Publish",
"iot:Subscribe",
"i ot: Receive"

I,

"Resource": |
"

]

}
]
}

The following policy prevents a set of client IDs from connecting:

"Version": "2012-10-17",
"Statenment": [

{
"Effect": "Deny",
"Action": [
"iot: Connect"

]

esource": [
"arn:aws:iot:us-east-1:123456789012:client/clientidl",
"arn:aws:iot:us-east-1:123456789012:client/clientid2"

109

AWS loT Developer Guide
AWS loT Policies

b,
{
"Effect": "Alow',
"Action": [
"iot: Connect"
1.
"Resource": |
W
]
}

The following policy allows the certificate holder using any client ID to subscribe to topic filter f oo/ *:

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Alow',
"Action": [
"iot: Connect"
1
"Resource": [
wn
]
b
{
"Effect": "Alow',
"Action": [
"iot: Subscri be"
1
"Resource": [
"arn:aws:iot:us-east-1:123456789012:topicfilter/foo/*"
]
}
]
}

Publish/Subscribe Policy Examples

The policy you use will depend on how you are connecting to AWS IoT. You can connect to AWS

10T using an MQTT client, HTTP, or WebSocket. When you connect with an MQTT client, you will be
authenticating with an X.509 certificate. When you connect over HTTP or the WebSocket protocol, you
will be authenticating with Signature Version 4 and Amazon Cognito.

Policies for MQTT Clients

The following policy allows the certificate holder using any client ID to publish to all topics and
subscribe to all topic filters in the AWS account:

"Version": "2012-10-17",
"Statenment": [
{
"Effect": "Alow',
"Action": [
"iot:*"

110

AWS loT Developer Guide
AWS loT Policies

]

"Resource": |

g

The following policy allows the certificate holder using any client ID to publish to all topics in the AWS
account:

{
"Version": "2012-10-17",
"Statenent": [
"Effect": "All ow',
"Action": [
"i ot: Publish",
"iot: Connect"”
I,
"Resource": [
e
]
}
]
}

The following policy allows the certificate holder using any client ID to publish to the f oo/ bar and
f oo/ baz topics:

{
"Version": "2012-10-17",
"Statenent": [
{

"Effect": "Alow',

"Action": [
"iot:Connect"

1.

"Resource": [

"

]

}
{

"Effect": "Alow',

"Action": [
"iot:Publish"

1.

"Resource": [
"arn:aws:iot:us-east-1:123456789012: t opi ¢/ f oo/ bar",
"arn:aws:iot:us-east-1:123456789012: t opi ¢/ f oo/ baz"

]

}
]
}

The following policy prevents the certificate holder using any client ID from publishing to the f oo/ bar
topic:

111

AWS loT Developer Guide
AWS loT Policies

{
"Version": "2012-10-17",
"Statenment": [
{
"Effect": "Allow',
"Action": [
"iot: Connect"
1,
"Resource": |
"
]
3
{
"Effect": "Deny",
"Action": [
"iot: Publish"
1,
"Resource": |
"arn:aws:iot:us-east-1:123456789012: t opi ¢/ f oo/ bar"
]
}
]
}

The following policy allows the certificate holder using any client ID to subscribe to topic filter f oo/ +/
bar:

{
"Version": "2012-10-17",
"Statenment": [
{
"Effect": "Allow',
"Action": [
"iot: Connect"
1,
"Resource": |
W
]
},
{
"Effect": "Allow',
"Action": [
"iot: Subscribe"
1,
"Resource": |
"arn:aws:iot:us-east-1:123456789012: topi cfilter/foo/ +/ bar"
]
}
]
}

The following policy allows the certificate holder using any client ID to publish on topic f oo and
subscribe to topic filter f oo/ bar / *:

"Version": "2012-10-17",
"Statenment": [

112

AWS loT Developer Guide
AWS loT Policies

{
"Effect": "Alow',
"Action": [
"iot: Connect"
1,
"Resource": |
W
]
3
{
"Effect": "Alow',
"Action": [
"iot: Publish"
1,
"Resource": |
"arn:aws:iot:us-east-1:123456789012: t opi ¢/ f 00"
]
3
{
"Effect": "Alow',
"Action": [
"iot: Subscribe"
1,
"Resource": |
"arn:aws:iot:us-east-1:123456789012: topi cfilter/fool bar/*"
]
}

The following policy allows the certificate holder using any client ID to publish on topic f oo and
prevents the certificate holder using any client ID from publishing to topic bar :

"Version": "2012-10-17",
"Statenent": [

{
"Effect": "Allow',
"Action": [
"i ot:Connect"
1,
"Resource": |
"
]
}
{
"Effect": "Allow',
"Action": [
"iot:Publish"
1,
"Resource": |
"arn: aws:iot:us-east-1:123456789012: t opi ¢/ f 00"
]
}
{
"Effect": "Deny",
"Action": [

"iot:Publish"

113

AWS loT Developer Guide
AWS loT Policies

]

"Resource": |
"arn:aws:iot:us-east-1:123456789012: t opi ¢/ bar"

The following policy allows the certificate holder using any client ID to subscribe to topic filter f oo/ bar :

{
"Version": "2012-10-17",
"Statenment": [
{
"Effect": "Alow',
"Action": [
"iot: Connect"
1,
"Resource": |
W
]
3
{
"Effect": "Alow',
"Action": [
"iot: Subscribe"
1,
"Resource": |
"arn:aws:iot:us-east-1:123456789012: topi cfilter/fool bar"
]
}
]
}

The following policy allows the certificate holder using any client ID to publish

onthearn: aws:iot:us-east-1:123456789012: topi c/i ot nonitor/

provi si oni ng/ 8050373158915119971 topic and allows the certificate holder using any client
ID to subscribe to the topic filter ar n: aws: i ot : us- east-1: 123456789012: t opi cfilter/

i ot noni tor/ provi si oni ng/ 8050373158915119971:

{
"Version": "2012-10-17",

"Statenent": [

{
"Effect": "Alow',
"Action": [
"i ot: Connect"
I,
"Resource": |
W
]
b,
{
"Effect": "Alow',
"Action":
"iot:Publish",

"i ot: Recei ve"

1

114

AWS IoT Developer Guide
AWS loT Policies

"Resource": |
"arn:aws:iot:us-east-1:123456789012: t opi ¢/ i ot noni tor/
provi si oni ng/ 8050373158915119971"
]
1
{
"Effect": "Alow',

"Action": [
"iot:Subscribe"

]

Resource": [
"arn:aws:iot:us-east-1:123456789012: topicfilter/iotnonitor/
provi si oni ng/ 8050373158915119971"
]
}

Policies for HTTP and WebSocket Clients

For the following operations, AWS IoT uses policies attached to Amazon Cognito identities (through
the At t achPri nci pal Pol i cy API) to scope down the permissions attached to the Amazon Cognito
identity pool with authenticated identities. That means an Amazon Cognito identity needs permission
from the role policy attached to the pool and the policy attached to the Amazon Cognito identity through
the AWS IoT At t achPri nci pal Pol i cy APL.

e jot: Connect

e jiot:Publish

e jot:Subscribe

e iot: Receive

e iot: Get Thi ngShadow

e jot: Updat eThi ngShadow
e i ot: Del et eThi ngShadow

Note

For other AWS loT operations or for unauthenticated identities, AWS loT does not
scope down the permissions attached to the Amazon Cognito identity pool role. For both
authenticated and unauthenticated identities, this is the most permissive policy that we
recommend attaching to the Amazon Cognito pool role.

To allow unauthenticated Amazon Cognito identities to publish messages over HTTP on any topic,
attach the following policy to the Amazon Cognito identity pool role:

"Version": "2012-10-17",
"Statenment": [

"Effect": "Alow',

"Action": [
ot : Connect ",
ot : Publish",

i

i

"iot: Subscribe",

"iot: Receive",

"i ot: Get Thi ngShadow",

"i ot : Updat eThi ngShadow",
"i ot: Del et eThi ngShadow'

115

AWS loT Developer Guide
AWS loT Policies

]

Resource": ["*"]

}

To allow unauthenticated Amazon Cognito identities to publish MQTT messages over HTTP on any
topic in your account, attach the following policy to the Amazon Cognito identity pool role:

{
"Version": "2012-10-17",
"Statenment": [{
"Effect": "Alow',
"Action": ["iot:Publish"],
"Resource": ["*"]
}H
}
Note

This example is for illustration only. Unless your service absolutely requires it, we recommend
the use of a more restrictive policy, one that does not allow unauthenticated Amazon Cognito
identities to publish on any topic.

To allow unauthenticated Amazon Cognito identities to publish MQTT messages over HTTP on
t opi c1 in your account, attach the following policy to your Amazon Cognito identity pool role:

{
"Version": "2012-10-17",
"Statenment": [{
"Effect": "Al ow',
"Action": ["iot:Publish"],
"Resource": ["arn:aws:iot:us-east-1:123456789012:topic/topicl"]
}H
}

For an authenticated Amazon Cognito identity to publish MQTT messages over HTTP on t opi c1 in
your AWS account, you must specify two policies, as outlined here. The first policy must be attached

to an Amazon Cognito identity pool role and allow identities from that pool to make a publish call. The
second policy is attached to an Amazon Cognito user using the AWS loT AttachPrincipalPolicy APl and
allows the specified Amazon Cognito user access to the t opi c1 topic.

Amazon Cognito identity pool policy:

{
"Version": "2012-10-17",
"Statenment": [({
"Effect": "Alow',
"Action": ["iot:Publish"],
"Resource": ["arn:aws:iot:us-east-1:123456789012:topic/topicl"]
}
}

Amazon Cognito user policy:

"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',

116

http://docs.aws.amazon.com//iot/latest/apireference/API_AttachPrincipalPolicy.html

AWS loT Developer Guide
AWS loT Policies

"Action": ["iot:Publish"],
"Resource": ["arn:aws:iot:us-east-1:123456789012:topic/topicl"]
}

Similarly, the following example policy allows the Amazon Cognito user to publish MQTT messages
over HTTP on the t opi c1 and t opi c2 topics. Two policies are required. The first policy gives the
Amazon Cognito identity pool role the ability to make the publish call. The second policy gives the
Amazon Cognito user access to the t opi ¢c1 and t opi c2 topics.

Amazon Cognito identity pool policy:

{
"Version": "2012-10-17",
"Statenent": [{
"Effect": "Allow',
"Action": ["iot:Publish"],
"Resource": ["*"]
}H
}

Amazon Cognito user policy:

{
"Version": "2012-10-17",
"Statenment": [{
"Effect": "All ow',
"Action": ["iot:Publish"],
"Resource": [
"arn:aws:iot:us-east-1:123456789012: t opi ¢/ topicl",
"arn:aws:iot:us-east-1:123456789012: t opi ¢/t opi c2"
]
}H
}

The following policies allow multiple Amazon Cognito users to publish to a topic. Two policies per
Amazon Cognito identity are required. The first policy gives the Amazon Cognito identity pool role the
ability to make the publish call. The second and third policies give the Amazon Cognito users access to
the topics t opi c1 and t opi c2, respectively.

Amazon Cognito identity pool policy:

{
"Version": "2012-10-17",
"Statenment": [{
"Effect": "Al ow',
"Action": ["iot:Publish"],
"Resource": ["*"]
}H
}

Amazon Cognito userl policy:

"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',

117

AWS loT Developer Guide
AWS loT Policies

"Action": ["iot:Publish"],
"Resource": ["arn:aws:iot:us-east-1:123456789012:topic/topicl"]
}

Amazon Cognito user2 policy:

{
"Version": "2012-10-17",
"Statenment": [{
"Effect": "Alow',
"Action": ["iot:Publish"],
"Resource": ["arn:aws:iot:us-east-1:123456789012:topic/topic2"]
}H
}

Receive Policy Examples

The following policy prevents the certificate holder using any client ID from receiving messages from a
topic:

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Deny",
"Action": [
"iot: Receive"
1,
"Resource": |
"arn:aws:iot:us-east-1:123456789012:topic/foo/restricted"
]
1
{
"Effect": "Allow',
"Action": [
"iot:*"
1,
"Resource": |
"
]
}
]
}

The following policy allows the certificate holder using any client ID to subscribe and receive messages
on one topic:

"Version": "2012-10-17",
"Statenment": [

{
"Effect": "Alow',
"Action": [
"i ot: Connect"

1.

"Resource": [*]

118

AWS loT Developer Guide
AWS loT Policies

3
{
"Effect": "Alow',
"Action": [
"iot: Subscribe"
1,
"Resource": |
"arn:aws:iot:us-east-1:123456789012: topi cfilter/fool bar"
]
3
{
"Effect": "Alow',
"Action": [
"iot: Receive"
1,
"Resource": |
"arn:aws:iot:us-east-1:123456789012: t opi ¢/ f oo/ bar"
]
}

Certificate Policy Examples

The following policy allows a device to publish on a topic whose name is equal to the certificateld of the
certificate with which the device authenticated itself:

"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action":["iot:Publish"],
"Resource": ["arn:aws:iot:us-east-1:123456789012: t opi c/
${iot:Certificateld}"]

}s

{
"Effect": "Alow',
"Action": ["iot:Connect"],
"Resource": ["*"]

H

The following policy allows a device to publish on a topic whose name is equal to the subject's common
name field of the certificate with which the device authenticated itself:

"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action":["iot:Publish"],
"Resource": ["arn:aws:iot:us-east-1:123456789012: t opi c/
${iot:Certificate.lssuer.CommonNane}"]
1

{
"Effect": "Alow',

"Action": ["iot:Connect"],
"Resource": ["*"]

119

AWS loT Developer Guide
AWS loT Policies

}

The following policy allows a device to publish on a topic which is prefixed with "admin/* when the
certificate used to authenticate the device has its Subj ect . ConmbnNane. 2 field set to "Administrator":

{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action": ["iot:Connect"],
"Resource": ["*"]
b
{
"Effect": "Alow',
"Action": ["iot:Publish"],
"Resource": ["arn:aws:iot:us-east-1:123456789012:topic/adm n/*"],
"Condition": {
"StringEqual s": {
"iot:Certificate. Subject. CormonNane. 2": "Adm ni strator”
}
}
}H
}

The following policy allows a device to publish on a topic which is prefixed with "admin/" when
the certificate used to authenticate the device has any one of its Subj ect . Conmon fields set to
"Administrator":

"Version": "2012-10-17",
"Statenment": [{
"Effect": "Al ow',
"Action": ["iot:Connect"],
"Resource": ["*"]

"Effect": "Al ow',
"Action": ["iot:Publish"],
"Resource": ["arn:aws:iot:us-east-1:123456789012:topic/adnin/*"],
"Condition": {
"For AnyVal ue: Stri ngEqual s": {
"iot:Certificate. Subject.ComonNane. List": "Adninistrator"

}
}

Thing Policy Examples

The following policy allows a thing to publish on a specific topic that contains the thing type name and
thing name:

"Version":"2012-10-17",
"Statement":[{
"Effect":"All ow',

120

AWS IoT Developer Guide
AWS loT Policies

"Action":["iot:Publish"],
"Resource": [
"arn:aws:iot:us-east-1:123456789012: t opi ¢/
${i ot : Connecti on. Thi ng. Thi ngTypeNane}/ ${i ot: Connecti on. Thi ng. Thi ngNane}"
]
}H

The following policy allows the device to connect if it is attached to the certificate used to authenticate
with AWS loT

{
"Version": "2012-10-17",
"Statenent": [{
"Effect": "Allow',
"Action": ["iot:Connect"],
"Resource": ["*"],
"Condition":{
"Bool ": {
"iot:Connection. Thing.lsAttached ":["true"]
}
}
}H
}

The following policy allows a device to publish on a set of topics ("/foo/bar" and "/foo/baz") if:

« The thing associated with the device has an attribute called "Manufacturer” with a value of "foo",
"bar", or "baz".

¢ The thing associated with the device exists in the thing registry and is attached to the certificate used
to connect to AWS loT

{
"Version": "2012-10-17",
"Statenment": [{
"Effect": "All ow',
"Action": ["iot:Publish"],
"Resource": [
"arn:aws:iot:us-east-1:123456789012:t opi ¢/ f oo/ bar",
"arn:aws:iot:us-east-1:123456789012: t opi ¢/ f oo/ baz"
1
"Condition": {
"For AnyVal ue: Stri ngLi ke": {
"iot:Connection. Thing. Attributes[Manufacturer]": [
"foo",
"bar",
"baz"
]
}
}
}H
}

The following policy allows a device to publish to a topic if:

¢ The topic is composed of the thing type name, a /', and the thing name.

121

AWS IoT Developer Guide
IAM IoT Policies

» The thing exists in the thing registry.

* The thing is attached to the certificate used to connect to AWS IoT.

"Version":"2012-10-17",
"Statenent":[{
"Effect":" Al ow',
"Action":["iot:Publish"],
"Resource": [

"arn:aws:iot:us-east-1:123456789012: t opi c/
${i ot : Connecti on. Thi ng. Thi ngTypeNane}/ ${i ot : Connecti on. Thi ng. Thi ngNane}"

]
}

The following policy allows a device to publish only on its own thing shadow topic if the thing exists in

the thing registry.

"Version": "2012-10-17",
"Statenment": [{
"Effect": "Alow',
"Action": ["iot:Publish"],
"Resource": [

"arn:aws:iot:us-east-1:123456789012: t opi ¢/ $aws/ t hi ngs/
${i ot: Connecti on. Thi ng. Thi ngNane}/ shadow updat e"

]
1

IAM 10T Policies

AWS loT provides a set of IAM policy templates you can either use as-is or as a starting point for
creating custom 1AM policies. These templates allow access to configuration and data operations.
Configuration operations allow you to create things, certificates, policies, and rules. Data operations
send data over MQTT or HTTP protocols. The following table describes these templates.

Policy Template

AWSlotLogging

AWSloTConfigAccess

AWSIloTConfigReadOnlyAccess

AWSloTDataAccess

Description

Allows the associated identity to configure
CloudWatch logging. This policy is attached to
your CloudWatch logging role.

Allows the associated identity access to all AWS
0T configuration operations.

Allows the associated identity to call read-only
configuration operations.

Allows the associated identity full access to

all AWS loT data operations. Data operations
send data over MQTT or HTTP protocols. When
MQTT over the WebSocket protocol is used,
only policies stored in IAM will apply to the
WebSocket connection.

122

AWS loT Developer Guide
Cross Account Access

Policy Template Description

AWSIloTFullAccess Allows the associated identity full access to all
AWS loT configuration and data operations.

AWSIoTRuleActions Allows the associated identity access to all AWS
services supported in AWS IoT rule actions.

Cross Account Access

AWS loT allows you to enable a principal to publish or subscribe to a topic that is defined in an AWS
account not owned by the principal. You configure cross account access by creating an IAM policy and
IAM role and then attaching the policy to the role.

First, create an IAM policy just like you would for other users and certificates in your AWS account. For
example, the following policy grants permissions to connect and publish to the / f oo/ bar topic.

{
"Version": "2012-10-17",
"Statenment": [
{
"Effect": "Alow',
"Action": [
"iot:Connect"
1.
"Resource": [
"
]
I
{
"Effect": "Allow',
"Action": [
"iot: Publish"
1.
"Resource": [
"arn:aws:iot:us-east-1:123456789012: t opi ¢/ f oo/ bar"
]
}H
}

Next, follow the steps in Creating a Role for an IAM User. Enter the AWS account ID of the AWS
account with which you want to share access. Then, in the final step, attach the policy you just created
to the role. If, at a later time, you need to modify the AWS account ID to which you are granting access,
you can use the following trust policy format to do so.

{
"Version":"2012-10-17",
"Statenent":[{
"Effect": "Alow',
"Principal": {
"AWS': "arn:aws:iamus-east-1:111111111111: user/ MyUser"
}
"Action": "sts:AssuneRol e"
}
}

123

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

AWS loT Developer Guide
Transport Security

Transport Security

The AWS loT message broker and Thing Shadows service encrypt all communication with TLS. TLS
is used to ensure the confidentiality of the application protocols (MQTT, HTTP) supported by AWS |oT.
TLS is available in a number of programming languages and operating systems.

For MQTT, TLS encrypts the connection between the device and the broker. TLS client authentication
is used by AWS IoT to identify devices. For HTTP, TLS encrypts the connection between the device
and the broker. Authentication is delegated to AWS Signature Version 4.

TLS Cipher Suite Support

AWS IoT supports the following cipher suites:

ECDHE-ECDSA-AES128-GCM-SHA256 (recommended)
ECDHE-RSA-AES128-GCM-SHA256 (recommended)
ECDHE-ECDSA-AES128-SHA256
ECDHE-RSA-AES128-SHA256
ECDHE-ECDSA-AES128-SHA
ECDHE-RSA-AES128-SHA
ECDHE-ECDSA-AES256-GCM-SHA384
ECDHE-RSA-AES256-GCM-SHA384
ECDHE-ECDSA-AES256-SHA384
ECDHE-RSA-AES256-SHA384
ECDHE-RSA-AES256-SHA
ECDHE-ECDSA-AES256-SHA
AES128-GCM-SHA256

AES128-SHA256

AES128-SHA

AES256-GCM-SHA384

AES256-SHA256

AES256-SHA

124

AWS IoT Developer Guide
Protocols

Message Broker for AWS loT

The AWS loT message broker is a publish/subscribe broker service that enables the sending and
receiving of messages to and from AWS loT. When communicating with AWS |oT, a client sends a
message addressed to a topic like Sensor/ t enp/ r oonil. The message broker, in turn, sends the
message to all clients that have registered to receive messages for that topic. The act of sending the
message is referred to as publishing. The act of registering to receive messages for a topic filter is
referred to as subscribing.

The topic namespace is isolated for each AWS account and region pair. For example, the Sensor /

t enp/ r oo topic for an AWS account is independent from the Sensor / t enp/ r oont topic for
another AWS account. This is true of regions, too. The Sensor/ t enp/ r oont topic in the same AWS
account in us-east-1 is independent from the same topic in us-west-2. AWS loT does not support
sending and receiving messages across AWS accounts and regions.

The message broker maintains a list of all client sessions and the subscriptions for each session.
When a message is published on a topic, the broker checks for sessions with subscriptions that
map to the topic. The broker then forwards the publish message to all sessions that have a currently
connected client.

Protocols

The message broker supports the use of the MQTT protocol to publish and subscribe and the HTTPS
protocol to publish. Both protocols are supported through IP version 4 and IP version 6. The message
broker also supports MQTT over the WebSocket protocol.

MQTT

MQTT is a widely adopted lightweight messaging protocol designed for constrained devices. For more
information, see MQTT.

Although the AWS loT message broker implementation is based on MQTT version 3.1.1, it deviates
from the specification as follows:

¢ In AWS loT, subscribing to a topic with Quality of Service (QoS) 0 means a message will be
delivered zero or more times. A message might be delivered more than once. Messages delivered
more than once might be sent with a different packet ID. In these cases, the DUP flag is not set.

125

http://www.mqtt.org

AWS IoT Developer Guide
HTTP

* AWS loT does not support publishing and subscribing with QoS 2. The AWS loT message broker
does not send a PUBACK or SUBACK when QoS 2 is requested.

¢ The QoS levels for publishing and subscribing to a topic have no relation to each other. One client
can subscribe to a topic using QoS 1 while another client can publish to the same topic using QoS 0.

¢ When responding to a connection request, the message broker sends a CONNACK message. This
message contains a flag to indicate if the connection is resuming a previous session. The value of
this flag might be incorrect if two MQTT clients connect with the same client ID simultaneously.

¢ When a client subscribes to a topic, there might be a delay between the time the message broker
sends a SUBACK and the time the client starts receiving new matching messages.

¢ The MQTT specification provides a provision for the publisher to request that the broker retain the
last message sent to a topic and send it to all future topic subscribers. AWS loT does not support
retained messages. If a request is made to retain messages, the connection is disconnected.

¢ The message broker uses the client ID to identify each client. The client ID is passed in from the
client to the message broker as part of the MQTT payload. Two clients with the same client ID are
not allowed to be connected concurrently to the message broker. When a client connects to the
message broker using a client ID that another client is using, a CONNACK message will be sent to
both clients and the currently connected client will be disconnected.

¢ The message broker does not support persistent sessions (clean session set to 0). All sessions are
assumed to be clean sessions and messages are not stored across sessions. If an MQTT client
sends a message with the clean session attribute set to false, the client will be disconnected.

¢ On rare occasions, the message broker might resend the same logical PUBLISH message with a
different packet ID.

¢ The message broker does not guarantee the order in which messages and ACK are received.

HTTP

The message broker supports clients connecting with the HTTP protocol using a REST
API. Clients can publish by sending a POST message to <AWS | oT Endpoi nt >/
topi cs/ <url _encoded_t opi c_nane>?qos=1".

MQTT Over the WebSocket Protocol

AWS IoT supports MQTT over the WebSocket protocol to enable browser-based and remote
applications to send and receive data from AWS loT-connected devices using AWS credentials. AWS
credentials are specified using AWS Signature Version 4. WebSocket support is available on TCP port
443, which allows messages to pass through most firewalls and web proxies.

A WebSocket connection is initiated on a client by sending an HTTP GET request. The URL you use is
of the following form:

wss: // <endpoi nt>.iot.<regi on>. amazonaws. com ngtt

WES
Specifies the WebSocket protocol.

endpoint
Your AWS account-specific AWS IoT endpoint. You can use the AWS IoT CLI describe-endpoint
command to find this endpoint.
region
The AWS region of your AWS account.
matt
Specifies you will be sending MQTT messages over the WebSocket protocol.

126

https://en.wikipedia.org/wiki/WebSocket
http://docs.aws.amazon.com/general/latest/gr//sigv4_signing.html
http://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html

AWS IoT Developer Guide
MQTT Over the WebSocket Protocol

When the server responds, the client sends an upgrade request to indicate to the server it will
communicate using the WebSocket protocol. After the server acknowledges the upgrade request, all
communication is performed using the WebSocket protocol. The WebSocket implementation you use
acts as a transport protocol. The data you send over the WebSocket protocol are MQTT messages.

Using the WebSocket Protocol in a Web Application

The WebSocket implementation provided by most web browsers does not allow the modification of
HTTP headers, so you must add the Signature Version 4 information to the query string. For more
information, see Adding Signing Information to the Query String.

The following JavaScript defines some utility functions used in generating a Signature Version 4
request.

/**

* utilities to do sigv4d
* @lass Sigvaltils

*/

function Sigvaltils() {}

SigV4altil s. get Si gnatureKey = function (key, date, region, service) {
var kDate = AWS. util.crypto. hmac(' AWs4' + key, date, 'buffer');
var kRegion = AWS. util.crypto. hmac(kDate, region, 'buffer');
var kService = AWS. util.crypto. hmac(kRegi on, service, 'buffer');
var kCredentials = AWS. util.crypto. hmac(kService, 'aws4_request',

"buffer');
return kCredenti al s;

s
SigV4altils. get SignedUrl = function(host, region, credentials) {

var datetinme = AWS. util.date.iso8601(new Date()).replace(/[:\-]]\.\d{3}/
g ')

var date = datetine.substr(0, 8);

var nethod = ' CGET' ;

var protocol = 'wss';
var uri = "'/mtt';
var service = 'iotdevi cegateway';

var al gorithm ="' AWs4- HVAC- SHA256' ;

var credential Scope = date + '/' + region + '/' + service + '/' +
"aws4_request’;
var canoni cal Querystring = ' X-Anz-Al gorithm=" + algorithm
canoni cal Querystring += ' &X-Anz-Credential =" +
encodeURl Conponent (credenti al s. accessKeyld + '/' + credenti al Scope);
canoni cal Querystring += ' &X-Anz-Date='" + datetine;
canoni cal Querystring += ' &X- Anz- Si gnedHeader s=host "' ;

var canoni cal Headers = 'host:' + host + '\n';

var payl oadHash = AWB. util.crypto.sha256('', 'hex')

var canoni cal Request = nethod + '\n' + uri + '"\n' + canonical Querystring
+ '\n'" + canoni cal Headers + '\ nhost\n' + payl oadHash;

var stringToSign = algorithm+ '"\n' + datetime + '\n' + credential Scope +
"\n' + AWS. util.crypto.sha256(canoni cal Request, 'hex');

var signingKey = SigVAUtil s. get Si gnatureKey(credential s. secret AccessKey,
date, region, service);

var signature = AWS. util.crypto. hmac(signingKey, stringToSign, 'hex');

127

http://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html#sigv4-add-signature-querystring

AWS IoT Developer Guide
MQTT Over the WebSocket Protocol

canoni cal Querystring += '&X-Ane-Signature=" + signature;
if (credentials.sessionToken) {
canoni cal Querystring += ' &X- Anz- Security-Token=" +
encodeURI Conmponent (credenti al s. sessi onToken) ;

}

var requestU |l = protocol + '://' + host + uri + '?" +
canoni cal Querystring;
return requestUrl;

}s

To create a Signature Version 4 request
1. Create a canonical request for Signature Version 4.

The following JavaScript code creates a canonical request:

var datetime = AWB. util.date.iso8601(new Date()).replace(/[:\-]]\.\d{3}/q,
II).

var date = datetinme.substr(0, 8);

var nethod = ' GET';

var protocol = 'wss';
var uri ="'/mtt";
var service = 'iotdevi cegateway';

var al gorithm = "' AWs4- HVAC- SHA256' ;

var credential Scope = date + '/' + region + '/' + service + '/' +
'aws4_request’;
var canoni cal Querystring = ' X-Anz-Al gorithm" + algorithm
canoni cal Querystring += '&X-Ane-Credential =" +
encodeURIl Conponent (credenti al s. accessKeyld + '/' + credenti al Scope);
canoni cal Querystring += ' &X-Ane-Date=' + dateti ne;
canoni cal Querystring += '&X- Ane- Si gnedHeader s=host ' ;

var canonical Headers = 'host:' + host + '"\n';

var payl oadHash = AWS. util.crypto.sha256('"', 'hex")

var canoni cal Request = nethod + '"\n' + uri + '\n" + canonical Querystring +
"\'n" + canonical Headers + '\ nhost\n' + payl oadHash;

2. Create a string to sign, generate a signing key, and sign the string.

Take the canonical URL you created in the previous step and assemble it into a string to sign. You
do this by creating a string composed of the hashing algorithm, the date, the credential scope, and
the SHA of the canonical request. Next, generate the signing key and sign the string, as shown in
the following JavaScript code.

var stringToSign = algorithm+ '\n' + datetine + '\n' + credential Scope +
"\n" + AWS. util.crypto.sha256(canoni cal Request, 'hex');

var signingKey = SigV4Util s. get Si gnat ureKey(credenti al s. secr et AccessKey,
date, region, service);

var signature = AWS. util.crypto. hmac(signi ngkey, stringToSign, 'hex');

3. Add the signing information to the request.

128

AWS loT Developer Guide
MQTT Over the WebSocket Protocol

The following JavaScript code shows how to add the signing information to the query string.

canoni cal Querystring += '&X-Ane-Si gnature=" + signature;

4. If you have session credentials (from an STS server, AssumeRole, or Amazon Cognito), append
the session token to the end of the URL string after signing:

canoni cal Querystring += ' &X- Ane- Security-Token=' +
encodeURI Conponent (credenti al s. sessi onToken) ;

5. Prepend the protocol, host, and URI to the canonicalQuerystring:

var requestUl = protocol + '://' + host + uri +"'?' +
canoni cal Querystri ng;

6. Open the WebSocket.

The following JavaScript code shows how to create a Paho MQTT client and call CONNECT to
AWS loT. The endpoi nt argument is your AWS account-specific endpoint. Theclientldisa
text identifier that is unique among all clients simultaneously connected in your AWS account.

var client = new Paho. MJTT.Client(requestUl, clientld);
var connect Options = {
onSuccess: function(){
/'l connect succeeded
}
useSSL: true,
timeout: 3,
nmgtt Versi on: 4,
onFai lure: function() {
/] connect failed

}
I

client.connect (connect Opti ons);

Using the WebSocket Protocol in a Mobile Application

We recommend using one of the AWS |oT Device SDKs to connect your device to AWS loT when
making a WebSocket connection. The following AWS loT Device SDKs support WebSocket-based
MQTT connections to AWS loT:

* Node.js
*« iOS
¢ Android

For a reference implementation for connecting a web application to AWS IoT using MQTT over the
WebSocket protocol, see AWS Labs WebSocket sample.

If you are using a programming or scripting language that is not currently supported, any existing
WebSocket library can be used as long as the initial WebSocket upgrade request (HTTP POST) is

129

https://github.com/aws/aws-iot-device-sdk-js
http://docs.aws.amazon.com/mobile/sdkforios/developerguide/
http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/
https://github.com/awslabs/aws-iot-examples

AWS loT Developer Guide
Topics

signed using AWS Signature Version 4. Some MQTT clients, such as Eclipse Paho for JavaScript,
support the WebSocket protocol natively.

Topics

The message broker uses topics to route messages from publishing clients to subscribing clients. The
forward slash (/) is used to separate topic hierarchy. The following table lists the wildcards that can be
used in the topic filter when you subscribe.

Topic Wildcards

Wildcard Description

Must be the last character in the topic to which
you are subscribing. Works as a wildcard by
matching the current tree and all subtrees.

For example, a subscription to Sensor / # will
receive messages published to Sensor/,
Sensor/tenp, Sensor/t enp/ rooml, but not
the messages published to Sensor .

+ Matches exactly one item in the topic hierarchy.
For example, a subscription to Sensor/ +/ r oomil
will receive messages published to Sensor /

t enp/ r oont, Sensor/ noi st ur e/ roont, and
S0 on.

Reserved Topics

Any topics beginning with $ are considered reserved and are not supported for publishing and
subscribing except when working with the Thing Shadows service. For more information, see Thing
Shadows.

Lifecycle Events

AWS loT publishes lifecycle events on the MQTT topics discussed in the following sections. These
messages allow you to be notified of lifecycle events from the message broker.

Note
Lifecycle messages might be sent out of order and you might receive duplicate messages.

Policy Required for Receiving Lifecycle Events

The following is an example of the policy required for receiving lifecycle events:

"Version":"2012-10-17",
"Statenent": [{
"Effect":"Al |l ow',
"Action":[
"iot:Subscribe",
"iot: Receive"

1

130

http://www.eclipse.org/paho/
http://docs.aws.amazon.com/iot/latest/developerguide//iot-thing-shadows.html
http://docs.aws.amazon.com/iot/latest/developerguide//iot-thing-shadows.html

AWS loT Developer Guide
Connect/Disconnect Events

"Resource": [
"arn:aws:iot:region:account:topicfilter/$aws/events/*"
]
}

Connect/Disconnect Events

AWS loT publishes a message to the following MQTT topics when a client connects or disconnects:

$aws/ event s/ presence/ connected/clientld

or

$aws/ event s/ presence/ di sconnected/clientld

Where cl i ent | d is the MQTT client ID that connects to or disconnects from the AWS IoT message
broker.

The message published to this topic has the following structure:

"clientld": "alb2c3d4e5f 6a7b8c9d0elf 2a3b4c5d6",

"timestanp": 1460065214626,

"event Type": "connected",

"sessionldentifier": "00000000-0000-0000-0000-000000000000",

"principalldentifier": "000000000000/ ABCDEFGH JKLMNOPQRSTU: some- user /
ABCDEFGHI JKLMNOPQRSTU: sone- user "

}

The following is a list of JSON elements that are contained in the connection/disconnection messages
published to the $aws/ event s/ presence/ connect ed/ cl i ent | d topic.

clientld
The client ID of the connecting or disconnecting client.
Note
Client IDs that contain # or + will not receive lifecycle events.
eventType

The type of event. Valid values are connect ed or di sconnect ed.

principalldentifier
The credential used to authenticate. For TLS mutual authentication certificates, this is the
certificate ID. For other connections, this is IAM credentials.

sessionldentifier
A globally unique identifier in AWS loT that exists for the life of the session.

timestamp
An approximation of when the event occurred, expressed in milliseconds since the Unix epoch.
The accuracy of the timestamp is +/- 2 minutes.

Subscribe/Unsubscribe Events

AWS loT publishes a message to the following MQTT topic when a client subscribes or unsubscribes
to an MQTT topic:

131

AWS IoT Developer Guide
Subscribe/Unsubscribe Events

$aws/ event s/ subscri ptions/ subscribed/clientld

or

$aws/ event s/ subscri pti ons/ unsubscri bed/clientld

Where cl i ent | d is the MQTT client ID that connects to the AWS loT message broker.

The message published to this topic has the following structure:

"clientld": "186b5",

"timestamp": 1460065214626,

"event Type": "subscribed" | "unsubscribed",

"sessionldentifier": "00000000-0000-0000-0000-000000000000",

"principalldentifier”: "000000000000/ ABCDEFGHI JKLMNOPQRSTU: some- user/
ABCDEFGHI JKLMNOPQRSTU: some- user "

"topics" : ["foo/bar","devicel/data", "dog/cat"]

}

The following is a list of JSON elements that are contained in the subscribed and unsubscribed
messages published to the $aws/ event s/ subscri ptions/ subscri bed/ clientld and $aws/
event s/ subscri pti ons/unsubscri bed/cl i ent| d topics.

clientld
The client ID of the subscribing or unsubscribing client.
Note
Client IDs that contain # or + will not receive lifecycle events.
eventType

The type of event. Valid values are subscri bed or unsubscri bed.
principalldentifier
The credential used to authenticate. For TLS mutual authentication certificates, this is the
certificate ID. For other connections, this is IAM credentials.
sessionldentifier
A globally unique identifier in AWS loT that exists for the life of the session.
timestamp
An approximation of when the event occurred, expressed in milliseconds since the Unix epoch.
The accuracy of the timestamp is +/- 2 minutes.
topics
An array of the MQTT topics to which the client has subscribed.

Note
Lifecycle messages might be sent out of order. You might receive duplicate messages.

132

AWS loT Developer Guide

Rules for AWS loT

Rules give your devices the ability to interact with AWS services. Rules are analyzed and actions are
performed based on the MQTT topic stream. You can use rules to support tasks like these:

Augment or filter data received from a device.

Write data received from a device to an Amazon DynamoDB database.
Save a file to Amazon S3.

Send a push notification to all users using Amazon SNS.

Publish data to an Amazon SQS queue.

Invoke a Lambda function to extract data.

Process messages from a large number of devices using Amazon Kinesis.
Send data to the Amazon Elasticsearch Service.

Capture a CloudWatch metric.

Change a CloudWatch alarm.

Send the data from an MQTT message to Amazon Machine Learning to make predictions based on
an Amazon ML model.

Before AWS loT can perform these actions, you must grant it permission to access your AWS
resources on your behalf. When the actions are performed, you incur the standard charges for the
AWS services you use.

Contents

e Granting AWS IoT the Required Access (p. 134)
¢ Pass Role Permissions (p. 135)

¢ Creating an AWS IoT Rule (p. 136)

¢ Viewing Your Rules (p. 139)

e SQL Versions (p. 139)

¢ Troubleshooting a Rule (p. 141)

¢ Deleting a Rule (p. 141)

133

AWS IoT Developer Guide
Granting AWS loT the Required Access

¢ AWS IoT Rule Actions (p. 141)
¢ AWS IoT SQL Reference (p. 151)

Granting AWS loT the Required Access

You use IAM roles to control the AWS resources to which each rule has access. Before you create a
rule, you must create an IAM role with a policy that allows access to the required AWS resources. AWS
0T assumes this role when executing a rule.

To create an IAM role (AWS CLI)

1. Save the following trust policy document, which grants AWS IoT permission to assume the role, to
a file called iot-role-trust.json:

{
"Version":"2012-10-17",
"Statement": [{
"Effect": "Alow',
"Principal": {
"Service": "iot.amzonaws. cont
b
"Action": "sts:AssuneRol e"
H
}

Use the create-role command to create an IAM role specifying the iot-role-trust.json file:

aws iamcreate-role --role-name ny-iot-role --assume-rol e-policy-docunent
file://iot-role-trust.json

The output of this command will look like the following:

{
"Role": {
"AssuneRol ePol i cyDocunment": "url - encoded-j son",
"Rol el d": " AKI Al OSFODNN7EXAMPLE" ,
"CreateDate": "2015-09-30T18:43: 32.8217",
"Rol eNane": "ny-iot-role",
"Path": "/",
"Arn": "arn:aws:iam:123456789012:rol e/ ny-iot-role"
}
}

2. Save the following JSON into a file named iot-policy.json.

{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow',
"Action": "dynanodb:*",
"Resource": "*"
}H
}

134

http://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html

AWS IoT Developer Guide
Pass Role Permissions

This JSON is an example policy document that grants AWS loT administrator access to
DynamoDB.

Use the create-policy command to grant AWS loT access to your AWS resources upon assuming
the role, passing in the iot-policy.json file:

aws iam create-policy --policy-name ny-iot-policy --policy-docunent
file://nmy-iot-policy-docunent.json

For more information about how to grant access to AWS services in policies for AWS IoT, see
Creating an AWS IoT Rule (p. 136).

The output of the create-policy command will contain the ARN of the policy. You will need to attach
the policy to a role.

{
"Policy": {
"Pol i cyNane": "ny-iot-policy",
"CreateDate": "2015-09-30T19: 31: 18. 620Z2",
"Attachnment Count": O,
"I sAttachabl e": true,
"Policyld": "ZXR6A36LTYANPAI 7NJSUV",
"Defaul tVersionld": "v1",
"Path": "/",
"Arn": "arn:aws:iam:123456789012: policy/ ny-iot-policy",
"Updat eDat e": "2015-09-30T19: 31: 18. 6202"
}
}

3. Use the attach-role-policy command to attach your policy to your role:

aws iam attach-role-policy --role-name ny-iot-role --policy-arn
"arn:aws:iam:123456789012: pol i cy/ ny-i ot -policy"

Pass Role Permissions

When creating or replacing a rule, you must pass a role that controls the AWS resources to which

the rule has access. The role must be defined in the same AWS account as the rule. The AWS

10T rules engine checks to make sure you have i am PassRol e permission to pass the role to the
creat e-topi c-rul e APIL. To ensure you have this access, you need to create a policy that grants
the i am PassRol e permission and attach it to your IAM user. The following policy shows how to allow
i am PassRol e permission for a role.

"Version": "2012-10-17",
"Statenent": [

{
"Sid': "Stnt1",
"Effect": "Allow',
"Action": [

"i am PassRol e"

1.

"Resource": |

135

http://docs.aws.amazon.com/cli/latest/reference/iam/create-policy.html
http://docs.aws.amazon.com/cli/latest/reference/iam/create-policy.html
http://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html

AWS loT Developer Guide
Creating an AWS loT Rule

"arn:aws:iam:123456789012: r ol e/ myRol e"

In this policy example, the i am PassRol e permission is granted for the role nyRol e. The role is
specified using the role's ARN. You must also attach this policy to your IAM user or role to which your
user belongs. For more information, see Working with Managed Policies.

Note

Lambda functions use resource-based policy, where the policy is attached directly to the
Lambda function itself. When creating a rule that invokes a Lambda function, you do not pass
a role, so the user creating the rule does not need the i am PassRol e permission. For more
information about Lambda function authorization, see Granting Permissions Using a Resource
Policy.

Creating an AWS loT Rule

You configure rules to route data from your connected things. Rules consist of the following:

Rule name
The name of the rule.

Optional description
A textual description of the rule.

SQL statement
A simplified SQL syntax to filter messages received on an MQTT topic and push the data
elsewhere. For more information, see AWS IoT SQL Reference (p. 151).

SQL version
The version of the SQL rules engine to use when evaluating the rule. Although this property is
optional, we strongly recommend that you specify the SQL version. If this property is not set, the
default, 2015- 10- 08, will be used.

One or more actions
The actions AWS loT performs when executing the rule. For example, you can insert data into a
DynamoDB table, write data to an Amazon S3 bucket, publish to an Amazon SNS topic, or invoke
a Lambda function.

When you create a rule, be aware of how much data you are publishing on topics. If you create rules
that include a wildcard topic pattern, they might match a large percentage of your messages, and you
might need to increase the capacity of the AWS resources used by the target actions. Also, if you
create a republish rule that includes a wildcard topic pattern, you can end up with a circular rule that
causes an infinite loop.

Note
Creating and updating rules are administrator-level actions. Any user who has permission to
create or update rules will be able to access data processed by the rules.

To create a rule (AWS CLI)

Use the create-topic-rule command to create a rule:

aws iot create-topic-rule --rule-name ny-rule --topic-rule-payload file://ny-
rule.json

136

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/cli/latest/reference/iot/create-topic-rule.html

AWS IoT Developer Guide
Creating an AWS loT Rule

The following is an example payload file with a rule that inserts all messages sent to the i ot / t est
topic into the specified DynamoDB table. The SQL statement filters the messages and the role ARN
grants AWS |oT permission to write to the DynamoDB table.

{
"sqgl": "SELECT * FROM'iot/test'",
"rul eDi sabl ed": fal se,
"awsl| ot Sql Versi on": "2016-03-23",
"actions": [{
"dynanmoDB": {
"t abl eNane": "ny-dynanodb-table",
"roleArn": "arn:aws:iam:123456789012:role/nmy-iot-role",
"hashKeyFi el d": "topic",
"hashKeyVal ue": "${topic(2)}",
"rangeKeyFi el d": "tinestamp",
"rangeKeyVal ue": "${timestanp()}"
}
}H
}

The following is an example payload file with a rule that inserts all messages sent to the i ot/ t est
topic into the specified S3 bucket. The SQL statement filters the messages, and the role ARN grants
AWS |oT permission to write to the Amazon S3 bucket.

"rule": {
"awsl ot Sgl Versi on": "2016-03-23",
"sqgl": "SELECT * FROM'iot/test'",
"rul eDi sabl ed": fal se,
"actions": [
{
"s3": {
"rol eArn": "arn:aws:iam:123456789012:rol e/ aws_i ot _s3",
"bucket Nane": "nmy-bucket",
"key": "myS3Key"

"rul eName": "M/S3Rul e"

The following is an example payload file with a rule that pushes data to Amazon ES:

"sqgl ":"SELECT *, tinestanp() as tinestanp FROM 'iot/test'",
"rul eDi sabl ed": f al se,
"awsl| ot Sql Versi on": "2016-03-23",
"actions":[

"el asticsearch":{
"rol eArn":"arn:aws:iam:123456789012: rol e/ aws_i ot _es",
"endpoint":"https://ny-endpoint",
"index":"ny-index",
"type":"ny-type",
"id":"${newuuid()}"

137

AWS loT Developer Guide
Creating an AWS loT Rule

The following is an example payload file with a rule that invokes a Lambda function:

"sqgl": "expression",
"rul eDi sabl ed": fal se,
"awsl| ot Sql Versi on": "2016-03-23",
"actions": [{
"l anbda": {
"functionArn": "arn:aws: | anbda: us-west -2: 123456789012: f uncti on: ny-
| anmbda- f uncti on"
}
}H
}

The following is an example payload file with a rule that publishes to an Amazon SNS topic:

{
"sql": "expression",
"rul eDi sabl ed": fal se,
"awsl ot Sgl Versi on": "2016-03-23",
"actions": [{
"sns": {
"target Arn": "arn:aws:sns: us-west-2:123456789012: ny-sns-topic",
"roleArn": "arn:aws:iam:123456789012:rol e/ my-iot-role"
}
}H
}

The following is an example payload file with a rule that republishes on a different MQTT topic:

{
"sqgl": "expression",
"rul eDi sabl ed": fal se,
"awsl ot Sgl Versi on": "2016-03-23",
"actions": [{
"republish": {
"topic": "nmy-nmtt-topic",
"roleArn": "arn:aws:iam:123456789012:rol e/ny-iot-role"
}
}H
}

The following is an example payload file with a rule that pushes data to an Amazon Kinesis Firehose
stream:

"sql": "SELECT * FROM 'ny-topic'",
"rul eDi sabl ed": fal se,
"awsl| ot Sql Versi on": "2016-03-23",
"actions": [{
"firehose": {

138

AWS IoT Developer Guide
Viewing Your Rules

"roleArn": ""arn:aws:iam:123456789012:rol e/ ny-iot-role",
"del iveryStreamNanme": "ny-stream nanme"

}

The following is an example payload file with a rule that uses the Amazon Machine Learning
machi nel ear ni ng_pr edi ct function to republish to a topic if the data in the MQTT payload is
classified as a 1.

{
"sqgl": "SELECT * FROM'iot/test' where machi nel earni ng_predict(' ny-
nmodel ', '"arn:aws:iam:123456789012:rol e/ ny-iot-am -role',
*). predi ct edLabel =1",
"rul eDi sabl ed": fal se,
"awsl ot Sgl Versi on": "2016-03-23",
"actions": [{
"republish": {
"rol eArn": "arn:aws:iam:123456789012:rol e/my-iot-role",
"topic": "my-nqtt-topic"

}

Viewing Your Rules

Use the list-topic-rules command to list your rules:

aws iot list-topic-rules

Use the get-topic-rule command to get information about a rule:

aws iot get-topic-rule --rule-name ny-rule

SQL Versions

The AWS 1oT rules engine uses an SQL-like syntax to select data from MQTT messages. The SQL
statements are interpreted based on a SQL version specified with the aws| ot Sgl Ver si on property

in a JSON document that describes the rule. For more information about the structure of JSON rule
documents, see Creating a Rule (p. 136). The aws| ot Sql Ver si on property allows you to specify
which version of the AWS IoT SQL rules engine you want to use. When a new version is deployed, you
can continue to use an older version or change your rule to use the new version. Your current rules will
continue to use the version with which they were created.

The following JSON example shows how to specify the SQL version using the aws| ot Sql Ver si on
property:

"sql": "expression",

"rul eDi sabl ed": fal se,

"awsl| ot Sql Versi on": "2016-03-23",
"actions": [{

139

http://docs.aws.amazon.com/cli/latest/reference/iot/list-topic-rules.html
http://docs.aws.amazon.com/cli/latest/reference/iot/get-topic-rule.html

AWS loT Developer Guide
What's New in the 2016-03-23 SQL Rules Engine Version

"republish": {
"topic": "ny-ngtt-topic",
"roleArn": "arn:aws:iam:123456789012:rol e/ ny-iot-role"
}
}H

Current supported versions are:

e 2015- 10- 08, the original SQL version built on 2015-10-08.
¢ 2016- 03- 23, the SQL version built on 2016-03-23.

« bet a, the most recent beta SQL version. The use of this version might introduce breaking changes
to your rules.

What's New in the 2016-03-23 SQL Rules Engine
Version

¢ Fixes for selecting nested JSON objects.

¢ Fixes for array queries.

« Inter-object query support.

¢ Support to output an array as a top-level object.

¢ Adds the encode (value, encodingScheme) function, which can be applied on both JISON and non-
JSON format data.

Inter-Object Queries

This feature allows you to query for an attribute in a JSON object. For example, given the following
MQTT message:

{
e [
{ "n": "tenperature", "u": "Cel", "t": 1234, "v":22.5 },
{ "n": "light", "u": "In¥, "t": 1235, "v":135 },
{ "n": "aci dity", "u": "pH', "t": 1235, "V"Z7}
]
}

And the following rule:

SELECT (SELECT v FROM e WHERE n = 'tenperature') as tenperature FROM' ny/
topi ¢’

The rule will generate the following output:

{"tenperature": [{"v":22.5}]}

Using the same MQTT message, given a slightly more complicated rule such as:

SELECT get ((SELECT v FROM e WHERE n = 'tenperature'),1).v as tenperature FROM
"topic'

140

AWS IoT Developer Guide
Troubleshooting a Rule

The rule will generate the following output:

{"tenperature":22.5}

Output an aray as a Top-Level Object

This feature allows a rule to return an array as a top-level object. For example, given the following
MQTT message:

{
"a": {"b":"c"},
"arr":[1, 2,3, 4]

And the following rule:

SELECT VALUE arr FROM 'topic'

The rule will generate the following output:

[1,2,3, 4]

Encode Function

Encodes the payload, which potentially might be non-JSON data, into its string representation based
on the specified encoding scheme.

Troubleshooting a Rule

If you are having an issue with your rules, you should enable CloudWatch Logs. By analyzing your
logs, you can determine whether the issue is authorization or whether, for example, a WHERE clause
condition did not match. For more information about using Amazon CloudWatch Logs, see Setting Up
CloudWatchLogs.

Deleting a Rule

When you are finished with a rule, you can delete it.
To delete a rule (AWS CLI)

Use the delete-topic-rule command to delete a rule:

aws iot delete-topic-rule --rule-name nmy-rule

AWS loT Rule Actions

AWS loT rule actions are used to specify what to do when a rule is triggered. You can define actions to
write data to a DynamoDB database or an Amazon Kinesis stream or to invoke a Lambda function, and
more. The following actions are supported:

141

http://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html
http://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html
http://docs.aws.amazon.com/cli/latest/reference/iot/delete-topic-rule.html

AWS IoT Developer Guide
CloudWatch Alarm Action

* cl oudwat chAl ar mto change a CloudWatch alarm.

e cl oudwat chMet ri c to capture a CloudWatch metric.

¢ dynanoDB to write data to a DynamoDB database.

¢ dynanoDBv2 to write data to a DynamoDB database.

» el asti csear ch to write data to a Amazon Elasticsearch Service domain.
e firehose to write data to an Amazon Kinesis Firehose stream.
« ki nesi s to write data to a Amazon Kinesis stream.

¢ | ambda to invoke a Lambda function.

¢ s3 to write data to a Amazon S3 bucket.

¢ sns to write data as a push notification.

¢ sgs to write data to an SQS queue.

e republ i sh to republish the message on another MQTT topic.

Note
The AWS 1oT rules engine does not currently retry delivery for messages that fail to be
published to another service.

The following sections discuss each action in detail.

CloudWatch Alarm Action

The CloudWatch alarm action allows you to change CloudWatch alarm state. You can specify the state
change reason and value in this call. When creating an AWS IoT rule with a CloudWatch alarm action,
you must specify the following information:

roleArn
The IAM role that allows access to the CloudWatch alarm.

alarmName
The CloudWatch alarm name.

stateReason
Reason for the alarm change.

stateValue
The value of the alarm state. Acceptable values are OK, ALARM | NSUFFI Cl ENT_DATA.

Note
Ensure the role associated with the rule has a policy granting the
cl oudwat ch: Set Al ar n5t at e permission.

The following JSON example shows how to define a CloudWatch alarm action in an AWS |oT rule:

"rule": {

"sqgl": "SELECT * FROM 'sone/topic'",

"rul eDi sabl ed": fal se,

"actions": [{

"cl oudwat chAl arm': {

"roleArn": "arn:aws:iam:123456789012:rol e/ aws_i ot _cw',
"al armName": "lot Al arnt,
"stat eReason": "Tenperature stabilized.",
"stateValue": "OK"

142

AWS loT Developer Guide
CloudWatch Metric Action

}

For more information, see CloudWatch Alarms.

CloudWatch Metric Action

The CloudWatch metric action allows you to capture a CloudWatch metric. You can specify the metric
namespace, name, value, unit, and timestamp. When creating an AWS 1oT rule with a CloudWatch
metric action, you must specify the following information:

roleArn
The IAM role that allows access to the CloudWatch metric.

metricNamespace
CloudWatch metric namespace name.

metricName
The CloudWatch metric name.

metricValue
The CloudWatch metric value.

metricUnit
The metric unit supported by CloudWatch.

metricTimestamp
An optional Unix timestamp.

Note
Ensure the role associated with the rule has a policy granting the
cl oudwat ch: Put Met ri cDat a permission.

The following JSON example shows how to define a CloudWatch metric action in an AWS IoT rule:

{
"rule": {
"sqgl": "SELECT * FROM 'sone/topic'",
"rul eDi sabl ed": fal se,
"actions": [{
"cl oudwat chMetric": {
"rol eArn": "arn:aws:iam:123456789012: rol e/ aws_i ot _cw"',
"met ri cNanespace": "l ot Namespace",
"metricNane": "lotMetric",
"metricValue": "1",
"metricUnit": "Count",
"metricTinestamp": "1456821314"
}
1
}
}

For more information, see CloudWatch Metrics.

DynamoDB Action

The dynanpDB action allows you to write all or part of an MQTT message to a DynamoDB table. When
creating a DynamoDB rule, you must specify the following information:

143

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CW_Support_For_AWS.html

AWS IoT Developer Guide
DynamoDB Action

hashKeyType
The data type of the hash key (also called the partition key). Valid values are: " STRI NG' or
" NUMBER" .

hashKeyField
The name of the hash key (also called the partition key).

hashKeyValue
The value of the hash key.

rangeKeyType
Optional. The data type of the range key (also called the sort key). Valid values are: " STRI NG' or
" NUMBER" .

rangeKeyField
Optional. The name of the range key (also called the sort key).

rangeKeyValue
Optional. The value of the range key.

operation
Optional. The type of operation to be performed. This follows the substitution template, so it can
be ${ oper ati on}, but the substitution must result in one of the following: | NSERT, UPDATE, or
DELETE.

payloadField
Optional. The name of the field where the payload will be written. If this value is omitted, the
payload is written to payl oad field.

table
The name of the DynamoDB table.

roleARN
The IAM role that allows access to the DynamoDB table. At a minimum, the role must allow the
dynanoDB: Put | t emIAM action.

The data written to the DynamoDB table is the result from the SQL statement of the rule. The
hashKeyVal ue and r angeKeyVal ue fields are usually composed of expressions (for example,
"${topic()}" or "${timestamp()}").
Note
Non-JSON data is written to DynamoDB as binary data. The DynamoDB console will display
the data as Base64-encoded text.
Ensure the role associated with the rule has a policy granting the dynanodb: Put | t em
permission.

The following JSON example shows how to define a dynanpDB action in an AWS IoT rule:

{
"rule": {
"rul eDi sabl ed": fal se,
"sql": "SELECT * AS nessage FROM 'sone/topic'",
"description": "A test Dynanp DB rule",
"actions": [{
"dynanoDB": {

"hashKeyFi el d": "key",
"rol eArn": "arn:aws:iam:123456789012:rol e/
aws_i ot _dynanoDB",
"tabl eNane": "nmy_ddb_tabl e",
"hashKeyVal ue": "${topic()}",
"rangeKeyVal ue": "${tinmestanmp()}",
"rangeKeyFi el d": "tinestanp"

}H

144

AWS loT Developer Guide
DynamoDBv2 Action

‘ }

For more information, see the Amazon DynamoDB Getting Started Guide.

DynamoDBv2 Action

The dynanpDBv2 action allows you to write all or part of an MQTT message to a DynamoDB table.
Each attribute in the payload is written to a separate column in the DynamoDB database. When
creating a DynamoDB rule, you must specify the following information:

roleARN
The IAM role that allows access to the DynamoDB table. At a minimum, the role must allow the
dynanoDB: Put | t emlAM action.

tableName
The name of the DynamoDB table.

Note
The MQTT message payload must contain a root-level key that matches the table's primary
partition key and a root-level key that matches the table's primary sort key, if one is defined.

The data written to the DynamoDB table is the result from the SQL statement of the rule.

Note
Ensure the role associated with the rule has a policy granting the dynanodb: Put | t em
permission.

The following JSON example shows how to define a dynanoDB action in an AWS IoT rule:

{
"rule": {
"rul eDi sabl ed": fal se,
"sql": "SELECT * AS nessage FROM 'some/topic'",
"description": "A test DynanoDBv2 rule",

"actions": [{
"dynanoDBv2": {
"roleArn": "arn:aws:iam:123456789012:rol e/
aws_i ot _dynanmoDBv2",
"putltem: {
"tabl eName": "my_ddb_t abl e"
}

}

For more information, see the Amazon DynamoDB Getting Started Guide.

Amazon ES Action

The el asti csear ch action allows you to write data from MQTT messages to an Amazon
Elasticsearch Service domain. Data in Amazon ES can then be queried and visualized by using tools
like Kibana. When you create an AWS |oT rule with an el asti csear ch action, you must specify the
following information:

endpoint
The endpoint of your Amazon ES domain.

145

http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/
http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/

AWS IoT Developer Guide
Firehose Action

index
The Amazon ES index where you want to store your data.

type
The type of document you are storing.
id
The unique identifier for each document.

Note
Ensure the role associated with the rule has a policy granting the es: ESHt t pPut permission.

The following JSON example shows how to define an el ast i csear ch action in an AWS loT rule:

{
"rul e":{
"sqgl ":"SELECT *, tinestanp() as tinestanp FROM 'iot/test'",
"rul eDi sabl ed": fal se,
"actions":[
{
"el asticsearch":{
"rol eArn":"arn:aws:iam:123456789012: rol e/ aws_i ot _es",
"“endpoint":"https://ny-endpoint",
"index":"ny-index",
"type":"ny-type",
"id":"${newuid()}"
}
}
]
}
}

For more information, see the Amazon ES Developer Guide.

Firehose Action

A firehose action sends data from an MQTT message that triggered the rule to an Firehose stream.
When creating a rule with a f i r ehose action, you must specify the following information:

deliveryStreamName

The Firehose stream to which to write the message data.
roleArn

The IAM role that allows access to Firehose.
separator

A character separator that will be used to separate records written to the firehose stream. Valid
values are: '\n' (newline), '\t' (tab), \r\n' (Windows newline), ',' (comma).

Note
Make sure the role associated with the rule has a policy granting the f i r ehose: Put Record
permission.

The following JSON example shows how to create an AWS IoT rule with afi r ehose action:

"rule": {
"sqgl": "SELECT * FROM 'sone/topic'",

146

http://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/

AWS IoT Developer Guide
Kinesis Action

"rul eDi sabl ed": fal se,
"actions": [{
"firehose": {
"rol eArn": "arn:aws:iam:123456789012:rol e/
aws_i ot _firehose",
"del iveryStreamNane": "ny_firehose_streant
}
}H

For more information, see the Firehose Developer Guide.

Kinesis Action

The ki nesi s action allows you to write data from MQTT messages into an Amazon Kinesis stream.
When creating an AWS IoT rule with a ki nesi s action, you must specify the following information:

stream
The Amazon Kinesis stream to which to write data.

partitionKey
The partition key used to determine to which shard the data is written. The patrtition key is usually
composed of an expression (for example, "${topic()}" or "${timestamp()}").

Note
Ensure that the policy associated with the rule has the ki nesi s: Put Recor d permission.

The following JSON example shows how to define a ki nesi s action in an AWS loT rule:

{
"rule": {
"sql": "SELECT * FROM 'sone/topic'",
"rul eDi sabl ed": fal se,
"actions": [{
"Kkinesis": {
"rol eArn": "arn:aws:iam:123456789012:rol e/ aws_i ot _ki nesi s",
"streanNane": "nmy_kinesis_streant,
"partitionKey": "${topic()}"
}
.
}
}

For more information, see the Amazon Kinesis Developer Guide.

Lambda Action

Al anbda action calls a Lambda function, passing in the MQTT message that triggered the

rule. In order for AWS IoT to call a Lambda function, you must configure a policy granting the

| anbda: | nvokeFunct i on permission to AWS IoT. Lambda functions use resource-based policies,
so you must attach the policy to the Lambda function itself. Use the following CLI command to attach a
policy granting | anbda: | nvokeFunct i on permission:

aws | anbda add- permi ssion --function-name "function_nanme" --region
"region" --principal iot.amzonaws.com --source-arn arn:aws:iot:us-

147

http://docs.aws.amazon.com/firehose/latest/dev/
http://docs.aws.amazon.com/streams/latest/dev/introduction.html

AWS IoT Developer Guide
Republish Action

east-1:account _id:rule/rul e_nane --source-account "account_id" --statenent-id
"uni que_id" --action "lanbda: | nvokeFuncti on"

The following are the arguments for the add- per m ssi on command:

--function-name
Name of the Lambda function whose resource policy you are updating by adding a new
permission.

--region
The AWS region of your account.

--principal
The principal who is getting the permission. This should be i ot . amazonaws. comto allow AWS
IoT permission to call a Lambda function.

--source-arn
The ARN of the rule. You can use the get - t opi c- r ul e CLI command to get the ARN of a rule.

--source-account
The AWS account where the rule is defined.

--statement-id
A unique statement identifier.

--action
The Lambda action you want to allow in this statement. In this case, we want to allow AWS IoT to
invoke a Lambda function, so we specify | anbda: | nvokeFuncti on.

Note

If you add a permission for a AWS loT principal without providing the source ARN, any AWS
account that creates a rule with your Lambda action can trigger rules to invoke your Lambda
function from AWS loT

For more information, see Lambda Permission Model.

When creating a rule with a | anmbda action, you must specify the Lambda function to invoke when the
rule is triggered.

The following JSON example shows a rule that calls a Lambda function:

{
"rule": {
"sql": "SELECT * FROM 'sone/topic'",
"rul eDi sabl ed": fal se,
"actions": [{
"l anbda": {
"functionArn": "arn:aws: | anbda: us-
east - 1:123456789012: f uncti on: myLanbdaFuncti on"
}
}H
}
}

For more information, see the AWS Lambda Developer Guide.

Republish Action

The r epubl i sh action allows you to republish the message that triggered the role to another MQTT
topic. When creating a rule with a r epubl i sh action, you must specify the following information:

148

http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model
http://docs.aws.amazon.com/lambda/latest/dg/

AWS IoT Developer Guide
S3 Action

topic
The MQTT topic to which to republish the message.

roleArn
The IAM role that allows publishing to the MQTT topic.

Note
Make sure the role associated with the rule has a policy granting the i ot : Publ i sh
permission.

"rule": {
"sql": "SELECT * FROM 'sone/topic'",
"rul eDi sabl ed": fal se,
"actions": [{
"republish": {
“"topic": "another/topic",
"rol eArn": "arn:aws:iam:123456789012: rol e/ aws_i ot _republ i sh"

}

S3 Action

A s3 action writes the data from the MQTT message that triggered the rule to an Amazon S3 bucket.
When creating an AWS IoT rule with an s3 action, you must specify the following information:

bucket
The Amazon S3 bucket to which to write data.

cannedacl
The Amazon S3 canned ACL that controls access to the object identified by the object key. For
more information, see S3 Canned ACLSs.

key
The path to the file where the data is written. For example, if the value of this argument is
"${topic()}/${timestamp()}", the topic the message was sent to is "this/is/my/topic,", and the current
timestamp is 1460685389 the data will be written to a file called "1460685389" in the "this/is/my/
topic" folder on Amazon S3.

Note

Using a static key will result in a single file in Amazon S3 being overwritten for each
invocation of the rule. More common use cases are to use the message timestamp or
another unique message identifier, so that a new file will be saved in Amazon S3 for each
message received.

roleArn
The IAM role that allows access to the Amazon S3 bucket.

Note
Make sure the role associated with the rule has a policy granting the s3: Put (bj ect
permission.

The following JSON example shows how to define an s3 action in an AWS IoT rule:

{

149

http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl

AWS IoT Developer Guide
SNS Action

"rule": {

"sqgl": "SELECT * FROM 'sone/topic'",

"rul eDi sabl ed": fal se,

"actions": [{

"s3": {

"rol eArn": "arn:aws:iam:123456789012:rol e/ aws_i ot _s3",
"bucket Nane": "nmy-bucket",
"key": "${topic()}/ ${timestamp()}"

}

For more information, see the Amazon S3 Developer Guide.

SNS Action

A sns action sends the data from the MQTT message that triggered the rule as an SNS push
notification. When creating a rule with an sns action, you must specify the following information:

messageFormat
The message format. Accepted values are "JSON" and "RAW". The default value of the attribute is
"RAW". SNS uses this setting to determine if the payload should be parsed and relevant platform-
specific parts of the payload should be extracted.

roleArn
The IAM role that allows access to SNS.

targetArn
The SNS topic or individual device to which the push notification will be sent.

Note
Make sure the policy associated with the rule has the sns: Publ i sh permission.

The following JSON example shows how to define an sns action in an AWS IoT rule:

{
"rule": {
"sql": "SELECT * FROM 'sone/topic'",
"rul eDi sabl ed": fal se,
"actions": [{
"sns": {
"target Arn": "arn:aws:sns: us-
east-1:123456789012: ny_sns_t opi c",
"rol eArn": "arn:aws:iam:123456789012: rol e/ aws_i ot _sns"
}
}H
}
}

For more information, see the Amazon SNS Developer Guide.

SQS Action

A sqgs action sends data from the MQTT message that triggered the rule to an SQS queue. When
creating a rule with an sqgs action, you must specify the following information:

150

http://docs.aws.amazon.com/AmazonS3/latest/dev/
http://docs.aws.amazon.com/sns/latest/dg/

AWS loT Developer Guide
AWS loT SQL Reference

queueUrl
The URL of the SQS queue to which to write the data.

useBase64
Set to t r ue if you want the MQTT message data to be Base64-encoded before writing to the SQS
gueue; otherwise, setto f al se.

roleArn
The IAM role that allows access to the SQS queue.

Note
Make sure the role associated with the rule has a policy granting the sqs: SendMessage
permission.

The following JSON example shows how to create an AWS loT rule with an sgs action:

{
"rule": {
"sqgl": "SELECT * FROM 'some/topic'",
"rul eDi sabl ed": fal se,
"actions": [{
"sqgs": {
"queueUr!l": "https://sgs.us-
east - 1. amazonaws. com 123456789012/ ny_sqs_queue",
"rol eArn": "arn:aws:iam:123456789012: rol e/ aws_i ot _sqs",
"useBase64": fal se
}
1
}
}

For more information, see the Amazon SQS Developer Guide.

AWS loT SQL Reference

In AWS loT, rules are defined using an SQL-like syntax. SQL statements are composed of three types
of clauses:

SELECT
Required. Extracts information from the incoming payload and performs transformations.

WHERE
Optional. Adds conditional logic that determines if a rule is evaluated and its actions are executed.

FROM
Required. The MQTT topic filter from which the rule will receive messages.

An example SQL statement looks like this:

"SELECT col or AS rgb WHERE tenperature > 50 FROM "a/b""

An example MQTT message (also called an incoming payload) looks like this:

"color":"red",

151

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/

AWS IoT Developer Guide
Data Types

"tenperature": 100

If this message is published on the ' a/ b' topic, the rule is triggered and the SQL statement is

evaluated. The SQL statement extracts the value of the r gb property if the "t enper at ur e" property
is greater than 50. The WHERE clause specifies the condition t enper at ure > 50. The AS keyword
renames the " col or" property to "r gb". The result (also called an outgoing payload) looks like this:

" r gbn . " r edn

This data is then forwarded to the rule's action, which sends the data for more processing. For more
information about rule actions, see AWS loT Rule Actions (p. 141).

Data Types

The AWS 10T rules engine supports all JISON data types.

Supported Data Types

Type Meaning
I nt A discrete | nt . 34 digits maximum.
Deci mal A Deci mal with a precision of 34 digits, with a

minimum non-zero magnitude of 1E-999 and a
maximum magnitude 9.999...E999.

Note
Some functions return Deci mal s with
double precision rather than 34-digit

precision.
Bool ean True or Fal se.
String A UTF-8 string.
Array A series of values that don't have to have the
same type.
oj ect A JSON value consisting of a key and a value.

Keys must be strings. Values can be any type.

Nul | Nul | as defined by JSON. It's an actual value
that represents the absence of a value. You can
explicitly create a Nul | value by using the Nul |
keyword in your SQL statement. For example:
"SELECT NULL AS n FROM "a/b""

Undef i ned Not a value. This isn't explicitly representable
in JSON except by omitting the value. For
example, in the object {"f 0oo": nul | }, the key
"foo" returns NULL, but the key "bar" returns
Undef i ned. Internally, the SQL language treats
Undef i ned as a value, but it isn't representable
in JSON, so when serialized to JSON, the results
are Undef i ned.

152

AWS IoT Developer Guide

Data Types

Type

Conversions

Meaning

{"foo":null, "bar":undefined}

is serialized to JSON as:

{"foo":null}

Similarly, Undef i ned is converted to an empty
string when serialized by itself. Functions called
with invalid arguments (for example, wrong
types, wrong number of arguments, and so on)
will return Undef i ned.

The following table lists the results when a value of one type is converted to another type (when

a value of the incorrect type is given to a function). For example, if the absolute value function

"abs" (which expects an | nt or Deci nal) is given a St ri ng, it attempts to convertthe Stri ng to a
Deci mal , following these rules. In this case, 'abs("-5.123")" is treated as 'abs(-5.123)".

Note

There are no attempted conversions to Ar r ay, Qbj ect, Nul | , or Undef i ned.

To Decimal
Argument Type
I nt
Deci nal

Bool ean

String

Array
Object
Null

Undefined

To Int
Argument Type
I nt

Deci nal

Result
A Deci mal with no decimal point.
The source value.

Undef i ned. (You can explicitly use the cast
function to transform true = 1.0, false = 0.0.)

The SQL engine will try to parse the string as

a Deci mal . We will attempt to parse strings
matching the regular expression:*- 2\ d+(\.\d
+)?((?i)E-?\d+) ?$."0", "-1.2", "5E-12" are all
examples of strings that would be automatically
converted to Deci mal s.

Undef i ned.

Undef i ned.

Nul | .

Undef i ned.

Result
The source value.

The source value rounded to the nearest | nt .

153

AWS IoT Developer Guide

Data Types

Argument Type

Bool ean

String

Array
Object
Null

Undefined

To Boolean

Argument Type

I nt

Deci mal

Bool ean

String

Array
Object
Null

Undefined

To String

Argument Type

I nt

Deci mal

Bool ean

Result

Undef i ned. (You can explicitly use the cast
function to transform true = 1.0, false = 0.0.)

The SQL engine will try to parse the string as

a Deci mal . We will attempt to parse strings
matching the regular expression:*- 2\ d+(\.\d
+) 2((?i) E-?\ d+) ?$."0", "-1.2", "5E-12" are
all examples of strings that would automatically
be converted to Deci mal s. We will attempt to
convert the St ri ng to a Deci mal , and then
truncate the decimal places of that Deci mal to
make an | nt .

Undef i ned.
Undef i ned.
Nul | .

Undef i ned.

Result

Undef i ned. (You can explicitly use the
cast function to transform O = False,
any_nonzero_value = True.)

Undef i ned. (You can explicitly use the
cast function to transform 0 = False,
any_nonzero_value = True.)

The original value.

"true"=True and "false"=False (case-insensitive).
Other string values will be Undef i ned.

Undef i ned.
Undef i ned.
Undef i ned.

Undef i ned.

Result

A string representation of the I nt in standard
notation.

A string representing the Deci mal value,
possibly in scientific notation.

"true" or "false". All lowercase.

154

AWS IoT Developer Guide

Operators

Argument Type Result

String The original value.

Array The Arr ay serialized to JSON. The resultant
string will be a comma-separated list, enclosed
in square brackets. St ri ngs will be quoted.
Deci mal s, I nt's, Bool eans and Nul | will not.

Object The object serialized to JSON. The resultant
string will be a comma-separated list of key-
value pairs and will begin and end with curly
braces. St ri ngs will be quoted. Deci nal s,

I nt's, Bool eans and Nul | will not.

Null Undef i ned.

Undefined Undefined.

Operators

The following operators can be used in SELECT, FROM, and WHERE clauses.

AND operator

Returns a Bool ean result. Performs a logical AND operation. Returns true if left and right operands are
true; returns false otherwise. Bool ean operands or case-insensitive "true" or "false" string operands
are required.

Syntax: expressi on AND expressi on.
AND Operator
Left Operand Right Operand Output
Bool ean Bool ean Bool ean. True if both operands are true; otherwise, false.

String/Bool ean | String/Bool ean | If all strings are "true" or "false" (case-insensitive), they
are converted to Bool ean and processed normally as
bool ean AND bool ean.

Other Value Other Value Undef i ned.

OR operator

Returns a Bool ean result. Performs a logical OR operation. Returns true if either the left or the right
operands are true; returns false otherwise. Bool ean operands or case-insensitive "true" or "false"
string operands are required.

Syntax: expressi on OR expression.
OR Operator

Left Operand Right Operand Output

Bool ean Bool ean Bool ean. True if either operand is true; otherwise, false.

155

AWS IoT Developer Guide
Operators

Left Operand Right Operand Output

String/Bool ean | String/Bool ean | If all strings are "true" or "false" (case-insensitive), they
are converted to Bool eans and processed normally as
bool ean OR bool ean.

Other Value Other Value Undef i ned.

NOT operator

Returns a Bool ean result. Performs a logical NOT operation. Returns true if the operand is false;
returns true otherwise. A boolean operand or case-insensitive "true" or "false" string operand is
required.

Syntax: NOT expr essi on.

NOT Operator

Operand Output

Bool ean Bool ean. True if operand is false; otherwise,
true.

String If string is "true" or "false" (case-insensitive), it is
converted to the corresponding boolean value,
and the opposite value is returned.

Other Value Undef i ned.

> operator

Returns a Bool ean result. Returns true if the left operand is greater than the right operand. Both
operands are converted to a Deci nal , and then compared.

Syntax: expr essi on > expression.

> Operator
Left Operand Right Operand Output
I nt /Deci nal I nt /Deci nal Bool ean. True if the left operand is greater than the right
operand; otherwise, false.
String/lnt/ String/lnt/ If all strings can be converted to Deci mal , then Bool ean.
Deci mal Deci mal Returns true if the left operand is greater than the right
operand, otherwise false.
Other Value Undef i ned. Undef i ned.
>= operator

Returns a Bool ean result. Returns true if the left operand is greater than or equal to the right operand.
Both operands are converted to a Deci mal , and then compared.

Syntax: expr essi on >= expression.

156

AWS IoT Developer Guide
Operators

>= Operator

Left Operand Right Operand Output

I nt /Deci mal I nt /Deci mal Bool ean. True if the left operand is greater than or equal to
the right operand; otherwise, false.
String/lnt/ String/lnt/ If all strings can be converted to Deci nmal , then Bool ean.
Deci mal Deci mal Returns true if the left operand is greater than or equal to
the right operand; otherwise, false.
Other Value Undef i ned. Undef i ned.
< operator

Returns a Bool ean result. Returns true if the left operand is less than the right operand. Both
operands are converted to a Deci nmal , and then compared.

Syntax: expr essi on < expression.
< Operator
Left Operand

Right Operand Output

I nt /Deci nal I nt /Deci nal Bool ean. True if the left operand is less than the right
operand; otherwise, false.
String/lnt/ String/lnt/ If all strings can be converted to Deci nmal , then Bool ean.
Deci mal Deci mal Returns true if the left operand is less than the right
operand; otherwise, false.
Other Value Undef i ned Undef i ned
<= operator

Returns a Bool ean result. Returns true if the left operand is less than or equal to the right operand.
Both operands are converted to a Deci mal , and then compared.

Syntax: expr essi on <= expression.

>= Operator

Left Operand

I nt /Deci nal

String/lnt/
Deci mal

Other Value

<> operator

Right Operand

I nt /Deci nal

String/lnt/
Deci mal

Undef i ned

Output

Bool ean. True if the left operand is less than or equal to
the right operand; otherwise, false.

If all strings can be converted to Deci mal , then Bool ean.
Returns true if the left operand is less than or equal to the
right operand; otherwise, false.

Undef i ned

Returns a Bool ean result. Returns true if both left and right operands are not equal; returns false

otherwise.

157

AWS IoT Developer Guide

Operators

Syntax:
<> Operator

Left Operand

I nt
Deci mal
String
Array
Object

Null
Any Value
Undef i ned

Mismatched Type

= operator

Right Operand

I nt

Deci mal

String

Array

Object

Null
Undef i ned
Any Value

Mismatched Type

expressi on <> expression.

Output

True if left operand is not equal to right operand; otherwise,
false.

True if left operand is not equal to right operand; otherwise
false.l nt is converted to Deci nal before being compared.

True if left operand is not equal to right operand; otherwise,
false.

True if the items in each operand are not equal and not in
the same order; otherwise, false

True if the keys and values of each operand are not equal;
otherwise, false. The order of keys/values is unimportant.

False.
Undefined.
Undefined.

True.

Returns a Bool ean result. Returns true if both left and right operands are equal; returns false

otherwise.

Syntax:
= Operator

Left Operand

I nt

Deci mal

String

Array

Object

Any Value
Undef i ned

Mismatched Type

expression =

Right Operand

I nt

Deci mal

String

Array

Object

Undef i ned
Any Value

Mismatched Type

expr essi on.

Output

True if left operand is equal to right operand; otherwise,
false.

True if left operand is equal to right operand; otherwise,
false.l nt is converted to Deci nmal before being compared.

True if left operand is equal to right operand; otherwise,
false.

True if the items in each operand are equal and in the same
order; otherwise, false.

True if the keys and values of each operand are equal;
otherwise, false. The order of keys/values is unimportant.

Undef i ned.
Undef i ned.

False.

158

AWS IoT Developer Guide
Operators

+ operator

The "+" is an overloaded operator. It can be used for string concatenation or addition.

Syntax: expression + expression.

+ Operator
Left Operand Right Operand Output
String Any Value Converts the right operand to a string and concatenates it
to the end of the left operand.
Any Value String Converts the left operand to a string and concatenates the
right operand to the end of the converted left operand.
I nt I nt I nt value. Adds operands together.
I nt /Deci mal I nt /Deci mal Deci mal value. Adds operands together.
Other Value Other Value Undef i ned.
- operator

Subtracts the right operand from the left operand.

Syntax: expression - expression.

- Operator
Left Operand Right Operand Output
I nt I nt I nt value. Subtracts right operand from left operand.
I nt /Deci mal I nt /Deci mal Deci mal value. Subtracts right operand from left operand.
String/lnt/ String/lnt/ If all strings convert to Deci nal s correctly, a Deci nal
Deci mal Deci mal value is returned. Subtracts right operand from left operand.
Otherwise, returns Undef i ned.
Other Value Other value Undef i ned.
Other Value Other Value Undef i ned.
* operator

Multiplies the left operand by the right operand.

Syntax: expression * expression.

* Operator
Left Operand Right Operand Output
I nt I nt I nt value. Multiplies the left operand by the right operand.
I nt /Deci mal I nt /Deci mal Deci mal value. Multiplies the left operand by the right

operand.

159

AWS IoT Developer Guide

Functions
Left Operand Right Operand Output
String/lnt/ String/lnt/ If all strings convert to Deci mal s correctly, a Deci mal
Deci mal Deci mal value is returned. Multiplies the left operand by the right
operand. Otherwise, returns Undef i ned.
Other Value Other value Undef i ned.
/ operator

Divides the left operand by the right operand.

Syntax: expression / expression.

/ Operator
Left Operand Right Operand
I nt I nt
I nt /Deci mal I nt /Deci mal
String/lnt/ String/lnt/
Deci nal Deci nal
Other Value Other value

% operator

Output
I nt value. Divides the left operand by the right operand.

Deci mal value. Divides the left operand by the right
operand.

If all strings convert to Deci mal s correctly, a Deci mal
value is returned. Divides the left operand by the right
operand. Otherwise, returns Undef i ned.

Undef i ned.

Returns the remainder from dividing the left operand by the right operand.

Syntax: expression % expression.

% Operator

Left Operand Right Operand
I nt I nt
String/lnt/ String/lnt/
Deci nal Deci nal

Other Value Other value
Functions

Output

I nt value. Returns the remainder from dividing the left
operand by the right operand.

If all St ri ngs convert to Deci mal s correctly, a Deci nal
value is returned. Returns the remainder from dividing the
left operand by the right operand. Otherwise, Undef i ned.

Undef i ned.

You can use the following built-in functions in the SELECT or WHERE clauses of your SQL

expressions.

abs(Decimal)

Returns the absolute value of a number. Supported by SQL version 2015-10-8 and later.

160

AWS IoT Developer Guide

Functions

Example: abs(-5) returns 5.

Argument Type Result

| nt I nt, the absolute value of the argument.
Deci mal Deci mal , the absolute value of the

argument.
Bool ean Undef i ned.
String Deci mal . The result is the absolute value

of the argument. If the string cannot be
converted, the result is Undef i ned.

Array Undef i ned.
Object Undef i ned.
Null Undef i ned.
Undefined Undef i ned.
accountid()

Returns the ID of the account that owns this rule as a St ri ng. Supported by SQL version 2015-10-8
and later.

Example:

accountid() ="123456789012"

acos(Decimal)

Returns the inverse cosine of a number in radians. Deci mal arguments are rounded to double
precision before function application. Supported by SQL version 2015-10-8 and later.

Example: acos(0) = 1.5707963267948966

Argument Type Result

I nt Deci mal (with double precision), the
inverse cosine of the argument. Imaginary
results are returned as Undef i ned.

Deci mal Deci mal (with double precision), the
inverse cosine of the argument. Imaginary
results are returned as Undef i ned.

Bool ean Undef i ned.

String Deci mal , the inverse cosine of the
argument. If the string cannot be converted,
the result is Undef i ned. Imaginary results
are returned as Undef i ned.

Array Undef i ned.
Object Undef i ned.

161

AWS IoT Developer Guide
Functions

Argument Type Result
Null Undef i ned.
Undefined Undef i ned.

asin(Decimal)

Returns the inverse sine of a number in radians. Deci mal arguments are rounded to double precision
before function application. Supported by SQL version 2015-10-8 and later.

Example: asi n(0) =0.0

Argument Type Result

I nt Deci mal (with double precision), the
inverse sine of the argument. Imaginary
results are returned as Undef i ned.

Deci mal Deci mal (with double precision), the
inverse sine of the argument. Imaginary
results are returned as Undef i ned.

Bool ean Undef i ned.

String Deci mal (with double precision), the
inverse sine of the argument. If the
string cannot be converted, the result is
Undef i ned. Imaginary results are returned
as Undef i ned.

Array Undef i ned.
Object Undef i ned.
Null Undef i ned.
Undefined Undef i ned.

atan(Decimal)

Returns the inverse tangent of a number in radians. Deci mal arguments are rounded to double
precision before function application. Supported by SQL version 2015-10-8 and later.

Example: at an(0) =0.0

Argument Type Result

I nt Deci mal (with double precision), the
inverse tangent of the argument. Imaginary
results are returned as Undef i ned.

Deci mal Deci mal (with double precision), the
inverse tangent of the argument. Imaginary
results are returned as Undef i ned.

Bool ean Undef i ned.

162

AWS IoT Developer Guide
Functions

Argument Type

String

Array
Object
Null

Undefined

Result

Deci mal , the inverse tangent of the
argument. If the string cannot be converted,
the result is Undef i ned. Imaginary results
are returned as Undef i ned.

Undef i ned.
Undef i ned.
Undef i ned.

Undef i ned.

atan2(Decimal, Decimal)

Returns the angle, in radians, between the positive x-axis and the (x, y) point defined in the two
arguments. The angle is positive for counter-clockwise angles (upper half-plane, y > 0), and negative
for clockwise angles (lower half-plane, y < 0). Deci mal arguments are rounded to double precision
before function application. Supported by SQL version 2015-10-8 and later.

Example: at an2(1, 0) =1.5707963267948966

Argument Type

I nt /Deci mal
I nt /Deci nal /String

Other Value

bitand(Int, Int)

Argument Type

| nt /Deci nal

I nt /Deci mal /String

Other Value

Result

Deci mal (with double precision), the angle
between the x-axis and the specified (x,y)
point.

Deci mal , the inverse tangent of the point
described. If a string cannot be converted,
the result is Undef i ned.

Undef i ned.

Performs a bitwise AND on the bit representations of the two | nt (-converted) arguments. Supported
by SQL version 2015-10-8 and later.

Example: bi tand(13, 5) =5

Argument Type
I nt

| nt /Deci nal

I nt /Deci nmal /String

Argument Type
I nt

| nt /Deci nmal

I nt /Deci mal /String

Result
I nt, a bitwise AND of the two arguments.

I nt, a bitwise AND of the two arguments.
All non-I nt numbers are rounded down to
the nearest | nt . If any of the arguments
cannot be converted to an | nt, the result is
Undef i ned.

I nt, a bitwise AND of the two arguments.
All strings are converted to Deci mal s and

163

AWS IoT Developer Guide

Functions

Argument Type

Other Value

bitor(Int, Int)

Argument Type

Other Value

Result

are rounded down to the nearest | nt . If the
conversion fails, the result is Undef i ned.

Undef i ned.

Performs a bitwise OR of the bit representations of the two arguments. Supported by SQL version

2015-10-8 and later.

Example: bitor (13, 5) =8

Argument Type
I nt

I nt /Deci nal

I nt /Deci mal /String

Other Value

bitxor(Int, Int)

Argument Type
I nt

| nt /Deci nal

I nt /Deci mal /String

Other Value

Result
I nt, the bitwise OR of the two arguments.

I nt, the bitwise OR of the two arguments.
All non-I nt numbers are rounded down to
the nearest | nt . If the conversion fails, the
result is Undef i ned.

I nt, the bitwise OR on the two arguments.
All strings are converted to Deci nal s and
rounded down to the nearest | nt . If the
conversion fails, the result is Undef i ned.

Undef i ned.

Performs a bitwise XOR on the bit representations of the two | nt (-converted) arguments. Supported
by SQL version 2015-10-8 and later.

Example:bi tor (13, 5) =8

Argument Type
I nt

I nt /Deci nal

I nt /Deci mal /String

Other Value

Argument Type
I nt

| nt /Deci mal

I nt /Deci mal /String

Other Value

Result
I nt, a bitwise XOR on the two arguments.

I nt, a bitwise XOR on the two arguments.
Non-I nt numbers are rounded down to the
nearest | nt .

I nt, a bitwise XOR on the two arguments.
St ri ngs are converted to Deci mal s and
rounded down to the nearest | nt . If any
conversion fails, the result is Undef i ned.

Undef i ned.

164

AWS IoT Developer Guide
Functions

bitnot(Int)

Performs a bitwise NOT on the bit representations of the | nt (-converted) argument. Supported by
SQL version 2015-10-8 and later.

Example: bi t not (13) =2

Argument Type Result

| nt I nt, a bitwise NOT of the argument.

Deci mal I nt, a bitwise NOT of the argument. The
Deci mal value is rounded down to the
nearest | nt .

String I nt, a bitwise NOT of the argument.

St ri ngs are converted to Deci mal s and
rounded down to the nearest | nt . If any
conversion fails, the result is Undef i ned.

Other Value Other value.

cast()

Converts a value from one data type to another. Cast behaves mostly like the standard conversions,
with the addition of the ability to cast numbers to/from Bool eans. If we cannot determine how to cast
one type to another, the result is Undef i ned. Supported by SQL version 2015-10-8 and later. Format:
cast(val ue astype).

Example:
cast(true as Decimal) =1.0

The following keywords may appear after "as" when calling cast :

Keyword Result

Deci mal Casts value to Deci nal .
Bool Casts value to Bool ean.
Bool ean Casts value to Bool ean.
String Casts value to Stri ng.
Nvarchar Casts value to Stri ng.
Text Casts value to Stri ng.
Ntext Casts value to Stri ng.
varchar Casts value to Stri ng.

I nt Casts value to I nt .

I nt Casts valueto | nt .

Casting rules:

165

AWS IoT Developer Guide
Functions

Cast to Decimal
Argument Type
I nt
Deci nal
Bool ean

String

Array
Object
Null

Undefined

Cast to Int
Argument Type
I nt

Deci mal

Bool ean

String

Array
Object
Null

Undefined

Cast to Bool ean
Argument Type
I nt

Deci nal

Result

A Deci mal with no decimal point.
The source value.

true = 1.0, false = 0.0.

Will try to parse the string as a Deci mal .
We will attempt to parse strings matching
the regex: A-?\d+(\.\d+)?((?i)E-?\d+)?$. "0",
"-1.2", "BE-12" are all examples of St ri ngs
that would be converted automatically to
Deci mal s.

Undef i ned.
Undef i ned.
Undef i ned.

Undef i ned.

Result
The source value.

The source value, rounded down to the
nearest | nt .

true = 1.0, false = 0.0.

Will try to parse the string as a Deci mal .
We will attempt to parse strings matching
the regex: -?2\d+(\.\d+)?((?i))E-?\d+)?$. "0",
"-1.2", "BE-12" are all examples of St ri ngs
that would be converted automatically

to Deci mal s. Will attempt to convert the
string to a Deci mal and round down to the
nearest | nt .

Undef i ned.
Undef i ned.
Undef i ned.

Undef i ned.

Result
0 = False, any_nonzero_value = True.

0 = False, any_nonzero_value = True.

166

AWS IoT Developer Guide

Functions
Argument Type Result
Bool ean The source value.
String "true" = True and "false" = False (case-
insensitive). Other string values =
Undef i ned.
Array Undefi ned.
Object Undef i ned.
Null Undef i ned.
Undefined Undef i ned.
Cast to String
Argument Type Result
I nt A string representation of the I nt, in

standard notation.

Deci mal A string representing the Deci mal value,
possibly in scientific notation.

Bool ean "true" or “false”, all lowercase.

String "true"=True and "false"=False (case-
insensitive). Other string values =
Undef i ned.

Array The array serialized to JSON. The result

string will be a comma-separated list
enclosed in square brackets. St ri ngs are
quoted. Deci mal s, | nt s, Bool eans are
not.

Object The object serialized to JSON. The JSON
string will be a comma-separated list of
key-value pairs and will begin and end
with curly braces. St ri ngs are quoted.
Deci mal s, I nts, Bool eans and Nul | are

not.
Null Undef i ned.
Undefined Undef i ned.

ceil(Decimal)

Rounds the given Deci mal up to the nearest | nt . Supported by SQL version 2015-10-8 and later.
Examples:

ceil(1.2) =2

ceil(11.2) =-1

167

AWS IoT Developer Guide

Functions
Argument Type Result
| nt I nt, the argument value.
Deci nal I nt, the Deci mal value rounded up to the
nearest | nt .
String I nt . The string is converted to Deci nal

and rounded up to the nearest | nt . If the
string cannot be converted to a Deci mal ,
the result is Undef i ned.

Other Value Undef i ned.

chr(String)

Returns the ASCII character that corresponds to the given | nt argument. Supported by SQL version
2015-10-8 and later.

Examples:
chr (65) ="A".
chr (49) ="1"

Argument Type Result

I nt The character corresponding to the
specified ASCII value. If the argument
is not a valid ASCII value, the result is
Undef i ned.

Deci mal The character corresponding to the
specified ASCII value. The Deci nal
argument is rounded down to the nearest
I nt . If the argument is not a valid ASCII
value, the result is Undef i ned.

Bool ean Undef i ned.

String If the St ri ng can be converted to a
Deci mal , it is rounded down to the nearest
I nt . If the argument is not a valid ASCII
value, the result is Undef i ned.

Array Undef i ned.

Object Undef i ned.

Null Undef i ned.

Other Value Undef i ned.

clientid()

Returns the ID of the MQTT client sending the message, or Undef i ned if the message wasn't sent
over MQTT. Supported by SQL version 2015-10-8 and later.

168

AWS IoT Developer Guide
Functions

Example:

clientid() ="123456789012"

concat()

Concatenates arrays or strings. This function accepts any number of arguments and returns a Stri ng
or an Arr ay. Supported by SQL version 2015-10-8 and later.

Examples:

concat () =Undefi ned.

concat (1) ="1"

concat ([1, 2, 3], 4) =[1,2,3,4].

concat ([1, 2, 3], "hello") =1, 2, 3, "hello"]
concat ("con", "cat") ="concat"

concat (1, "hello") ="1hello"

concat ("he","is","man") ="heisman"

concat ([1, 2, 3], "hello", [4, 5, 6]) =[1,2, 3, "hello", 4, 5, 6]

Number of Arguments | Result

0 Undef i ned.
1 The argument is returned unmodified.
2+ If any argument is an Arr ay, the result

is a single array containing all of the
arguments. If no arguments are Ar r ays,
and at least one argumentis a Stri ng, the
result is the concatenation of the Stri ng
representations of all the arguments.
Arguments will be converted to Stri ngs
using the standard conversions listed
above.

cos(Decimal)

Returns the cosine of a number in radians. Deci mal arguments are rounded to double precision
before function application. Supported by SQL version 2015-10-8 and later.

Example:
cos(0) =1.

Argument Type Result

I nt Deci mal (with double precision), the

cosine of the argument. Imaginary results
are returned as Undef i ned.

169

AWS IoT Developer Guide
Functions

Argument Type Result

Deci mal Deci mal (with double precision), the
cosine of the argument. Imaginary results
are returned as Undef i ned.

Bool ean Undef i ned.

String Deci mal (with double precision), the
cosine of the argument. If the string cannot
be converted to a Deci mal , the result is
Undef i ned. Imaginary results are returned
as Undef i ned.

Array Undef i ned.
Object Undef i ned.
Null Undef i ned.
Undefined Undef i ned.

cosh(Decimal)

Returns the hyperbolic cosine of a number in radians. Deci mal arguments are rounded to double
precision before function application. Supported by SQL version 2015-10-8 and later.

Example: cosh(2. 3) =5.037220649268761.

Argument Type Result

I nt Deci mal (with double precision), the
hyperbolic cosine of the argument.
Imaginary results are returned as
Undef i ned.

Deci mal Deci mal (with double precision), the
hyperbolic cosine of the argument.
Imaginary results are returned as

Undef i ned.
Bool ean Undef i ned.
String Deci mal (with double precision), the

hyperbolic cosine of the argument. If the
string cannot be converted to a Deci mal ,
the result is Undef i ned. Imaginary results
are returned as Undef i ned.

Array Undef i ned.
Object Undef i ned.
Null Undef i ned.
Undefined Undef i ned.

170

AWS IoT Developer Guide
Functions

encode(value, encodingScheme)

Use the encode function to encode the payload, which potentially might be non-JSON data, into its
string representation based on the encoding scheme. Supported by SQL version 2016-03-23 and later.

value
Any of the valid expressions, as defined in AWS IoT SQL Reference (p. 151). In addition, you
can specify * to encode the entire payload, regardless of whether it's in JSON format. If you supply
an expression, the result of the evaluation will first be converted to a string before it is encoded.

encodingScheme
A literal string representing the encoding scheme you want to use. Currently, only ' base64' is
supported.

endswith(String, String)

Returns a Bool ean indicating whether the first St ri ng argument ends with the second St ri ng
argument. If either argument is Nul | or Undef i ned, the result is Undef i ned. Supported by SQL
version 2015-10-8 and later.

Example: endswith("cat", "at") =true.

argument Type 1 argument Type 2 Result

String String True if the first argument ends in the
second argument; otherwise, false.

Other Value Other Value Both arguments are converted to St ri ngs
using the standard conversion rules.
True if the first argument ends in the
second argument; otherwise, false. If either
argument is Nul | or Undef i ned, the result
is Undef i ned.

exp(Decimal)

Returns e raised to the Deci mal argument. Deci nmal arguments are rounded to double precision
before function application. Supported by SQL version 2015-10-8 and later.

Example: exp(1) =e.

Argument Type Result

I nt Deci mal (with double precision), e #
argument.

Deci mal Deci mal (with double precision), e »
argument.

String Deci mal (with double precision), e

~Nargument. If the St ri ng cannot be
converted to a Deci nal , the result is
Undef i ned.

Other Value Undef i ned.

171

AWS IoT Developer Guide
Functions

get

Extracts a value from a collection-like type (Array, String, Object). No conversion will be applied to the
first argument. Conversion applies as documented in the table to the second argument. Supported by
SQL version 2015-10-8 and later.

Examples:
get(["a", "b", "c"], 1) ="b"
get({"a":"b"}, "a") ="b"

get ("abc", 1) ="b"

argument Type 1 argument Type 2 Result

Array Any Type (converted to | nt) The item at the 0-based index of the
Arr ay provided by the second argument
(converted to | nt). If the conversion is
unsuccessful, the result is Undef i ned.
If the index is outside the bounds of the
Array (negative or >= array.length), the
result is Undef i ned.

String Any Type (converted to | nt) The character at the 0-based index of the
string provided by the second argument
(converted to | nt). If the conversion is
unsuccessful, the result is Undef i ned. If
the index is outside the bounds of the string
(negative or >= string.length), the result is
Undef i ned.

Object St ri ng (no conversion is applied) The value stored in the first argument
object corresponding to the string key
provided as the second argument.

Other Value Any Value Undef i ned.

get_thing_shadow(thingName, roleARN)

Returns the shadow of the specified thing. Supported by SQL version 2016-03-23 and later.

thingName
String: The name of the thing whose shadow you want to retrieve.

roleArn
String: A role ARN with i ot : Get Thi ngShadow permission.

Example:
SELECT * from'a/b' WHERE

get _thing_shadow"MyThi ng", "arn: aws: i am : 123456789012: r ol e/
Al'l owsThi ngShadowAccess").state.reported.alarm="ON

Hashing Functions

We provide the following hashing functions:

172

AWS IoT Developer Guide
Functions

* md2
¢ md5
¢ shal
e sha224
¢ sha256
* sha384
¢ sha512

All hash functions expect one string argument. The result is the hashed value of that string. Standard
string conversions apply to non-string arguments. All hash functions are supported by SQL version
2015-10-8 and later.

Examples:

nd2(" hel | 0") ="a9046c73e00331af68917d3804f70655"

nd5(" hel | 0") ="5d41402abc4b2a76b9719d911017c592"

hsin(Decimal)

Returns the hyperbolic sine of a number. Deci nal values are rounded to double precision before
function application. The result is a Deci mal value of double precision. Supported by SQL version
2015-10-8 and later.

Example: si nh(2. 3) =4.936961805545957

Argument Type Result

I nt Deci mal (with double precision), the
hyperbolic sine of the argument.

Deci nal Deci mal (with double precision), the
hyperbolic sine of the argument.

Bool ean Undef i ned.

String Deci mal (with double precision), the

hyperbolic sine of the argument. If the string
cannot be converted to a Deci mal , the
result is Undef i ned.

Array Undef i ned.
Object Undef i ned.
Null Undef i ned.
Undefined Undef i ned.

htan(Decimal)

Returns the hyperbolic tangent of a number in radians. Deci mal values are rounded to double
precision before function application. Supported by SQL version 2015-10-8 and later.

Example: t anh(2. 3) = 0.9800963962661914

173

AWS IoT Developer Guide
Functions

Argument Type Result

I nt Deci mal (with double precision), the
hyperbolic tangent of the argument.

Deci mal Deci mal (with double precision), the
hyperbolic tangent of the argument.

Bool ean Undef i ned.

String Deci mal (with double precision), the
hyperbolic tangent of the argument. If the
string cannot be converted to a Deci mal ,
the result is Undef i ned.

Array Undef i ned.
Object Undef i ned.
Null Undef i ned.
Undefined Undef i ned.

indexof(String, String)

Returns the first index (0-based) of the second argument as a substring in the first argument. Both
arguments are expected as strings. Arguments that are not strings are subjected to standard string
conversion rules. This function does not apply to arrays, only to strings. Supported by SQL version
2015-10-8 and later.

Examples:

i ndexof ("abcd", "bc") =1
isNull()

Returns whether the argument is the Nul | value. Supported by SQL version 2015-10-8 and later.
Examples:
i sNull (5) =false.

i sNul I (Nul'l) =true.

Argument Type Result
I nt false
Deci mal false
Bool ean false
String false
Array false
oj ect false

174

AWS IoT Developer Guide
Functions

Argument Type Result
Nul | true
Undef i ned false

isUndefined()

Returns whether the argument is Undef i ned. Supported by SQL version 2015-10-8 and later.
Examples:
i sUndefi ned(5) =false.

isNull (floor([1,2,3]))) =true.

Argument Type Result
I nt false
Deci nal false
Bool ean false
String false
Array false
hj ect false
Nul | false
Undef i ned true

length(String)

Returns the number of characters in the provided string. Standard conversion rules apply to
non-St ri ng arguments. Supported by SQL version 2015-10-8 and later.

Examples:
length("hi") =2

I ength(false) =5

In(Decimal)

Returns the natural logarithm of the argument. Deci mal arguments are rounded to double precision
before function application. Supported by SQL version 2015-10-8 and later.

Example: I n(e) = 1.

Argument Type Result

I nt Deci mal (with double precision), the
natural log of the argument.

175

AWS IoT Developer Guide
Functions

Argument Type Result

Deci mal Deci mal (with double precision), the
natural log of the argument.

Bool ean Undef i ned.

String Deci mal (with double precision), the
natural log of the argument. If the string
cannot be converted to a Deci nal the
result is Undef i ned.

Array Undef i ned.
Object Undef i ned.
Null Undef i ned.
Undefined Undefi ned.
log(Decimal)

Returns the base 10 logarithm of the argument. Deci nmal arguments are rounded to double precision
before function application. Supported by SQL version 2015-10-8 and later.

Example: | og(100) = 2.0.

Argument Type Result

I nt Deci mal (with double precision), the base
10 log of the argument.

Deci mal Deci mal (with double precision), the base
10 log of the argument.

Bool ean Undef i ned.

String Deci mal (with double precision), the base
10 log of the argument. If the Stri ng
cannot be converted to a Deci mal , the
result is Undef i ned.

Array Undef i ned.
Object Undefi ned.
Null Undef i ned.
Undefined Undef i ned.
lower(String)

Returns the lowercase version of the given St ri ng. Non-string arguments are converted to St ri ngs
using the standard conversion rules. Supported by SQL version 2015-10-8 and later.

Examples:

| ower ("HELLO') = "hello".

176

AWS IoT Developer Guide
Functions

| ower (["HELLO']) = "[\"hello\"]".

lpad(String, Int)

Returns the St ri ng argument, padded on the left side with the number of spaces specified by the
second argument. The | nt argument must be between 0 and 1000. If the provided value is outside
of this valid range, the argument will be set to the nearest valid value (0 or 1000). Supported by SQL

version 2015-10-8 and later.
Examples:
| pad(" hel | 0",

I pad(1, 3) ="1"

argument Type 1

String

String

String

Other Value

Any Value

ltrim(String)

2) ="hello".

argument Type 2

I nt

Deci mal

String

I nt /Deci mal /String

Other Value

Result

Stri ng, the provided St ri ng padded on
the left side with a number of spaces equal
to the provided | nt .

The Deci mal argument will be rounded
down to the nearest I nt and the Stri ng
is padded on the left with the specified
number of spaces.

The second argument will be converted
to a Deci mal , which is rounded down

to the nearest I nt, and the Stri ng is
padded with the specified number spaces
on the left. If the second argument cannot
be converted to an | nt , the result is
Undef i ned.

The first value will be converted to a

St ri ng using the standard conversions,
and then the LPAD function will be applied
onthat Stri ng. If it cannot be converted,
the result is Undef i ned.

Undef i ned.

Removes all leading whitespace (tabs and spaces) from the provided St ri ng. Supported by SQL

version 2015-10-8 and later.
Example:

Ltrim(" hi ") ="hi"

Argument Type

I nt

Result

The St ri ng representation of the | nt with
all leading whitespace removed.

177

AWS IoT Developer Guide
Functions

Argument Type Result

Deci mal The St ri ng representation of the Deci mal
with all leading whitespace removed.

Bool ean The St ri ng representation of the
boolean ("true" or "false") with all leading
whitespace removed.

String The argument with all leading whitespace
removed.
Array The St ri ng representation of the Ar r ay

(using standard conversion rules) with all
leading whitespace removed.

Object The St ri ng representation of the Object
(using standard conversion rules) with all
leading whitespace removed.

Null Undef i ned.

Undefined Undef i ned.

machinelearning_predict(modelld)

Use the machi nel ear ni ng_pr edi ct function to make predictions using the data from an MQTT
message based on an Amazon Machine Learning (Amazon ML) model. Supported by SQL version
2015-10-8 and later. The arguments for the machi nel ear ni ng_pr edi ct function are:

modelld
The ID of the model against which to run the prediction. The real-time endpoint of the model must
be enabled.

roleArn
The IAM role that has a policy with machi nel ear ni ng: Pr edi ct and
machi nel ear ni ng: Get MLMbdel permissions and allows access to the model against which the
prediction is run.

record
The data to be passed into the Amazon ML Predict API. This should be represented as a single
layer JSON object. If the record is a multi-level JSON object, the record will be flattened by
serializing its values. For example, the following JSON:

{ "keyl": {"innerKeyl": "valuel"}, "key2": 0}

would become:

{ "keyl": "{\"innerKeyl\": \"valuel\"}", "key2": 0}

The function returns a JSON object with the following fields:
predictedLabel
The classification of the input based on the model.

details
Contains the following attributes:

178

AWS IoT Developer Guide

Functions
PredictiveModelType
The model type. Valid values are REGRESSION, BINARY, MULTICLASS.
Algorithm

The algorithm used by Amazon ML to make predictions. The value must be SGD.

predictedScores
Contains the raw classification score corresponding to each label.

predictedValue
The value predicted by Amazon ML.

mod(Decimal, Decimal)

Returns the remainder of the division of the first argument by the second argument. Supported by
SQL version 2015-10-8 and later. You can also use "%" as an infix operator for the same modulo
functionality. Supported by SQL version 2015-10-8 and later.

Example: nod(8, 3) =2.

Left Operand Right Operand Output

I nt | nt I nt, the first argument modulo the second
argument.

| nt /Deci mal | nt /Deci nmal Deci mal , the first argument modulo the

second operand.

St ri ng/l nt /Deci nal String/l nt /Deci nmal If all strings convert to Deci mal s, the result
is the first argument modulo the second
argument; otherwise, Undef i ned.

Other Value Other Value Undef i ned.

nanvl(AnyValue, AnyValue)

Returns the first argument if it is a valid Deci mal ; otherwise, the second argument is returned.
Supported by SQL version 2015-10-8 and later.

Example: Nanvl (8, 3) =8.

argument Type 1 argument Type 2 Output

Undefined Any Value The second argument.
Null Any Value The second argument.
Deci mal (NaN) Any Value The second argument.
Deci nal (not NaN) Any Value The first argument.
Other Value Any Value The first argument.
newuuid()

Returns a random 16-byte UUID. Supported by SQL version 2015-10-8 and later.

179

AWS IoT Developer Guide
Functions

Example: uui d() = 123a4567- b89c- 12d3- e456- 789012345000

numbytes(String)

Returns the number of bytes in the UTF-8 encoding of the provided string. Standard conversion rules
apply to non-St r i ng arguments. Supported by SQL version 2015-10-8 and later.

Examples:
nunbytes("hi") =4

nunbytes("€") =3

principal()

Returns the X.509 certificate fingerprint or thing name, depending on which endpoint, MQTT or HTTP,
received the request. Supported by SQL version 2015-10-8 and later.

Example:

principal () ="ba67293af50bf2506f5f93469686da660c7c844e7b3950bfb16813e0d31e9373"

power(Decimal, Decimal)

Returns the first argument raised to the second argument. Deci mal arguments are rounded to double
precision before function application. Supported by SQL version 2015-10-8 and later. Supported by
SQL version 2015-10-8 and later.

Example: power (2, 5) =32.0.

argument Type 1 argument Type 2 Output

I nt /Deci mal I nt /Deci mal A Deci mal (with double precision), the first
argument raised to the second argument's
power.

I nt /Deci mal /String I nt /Deci mal /String A Deci mal (with double precision), the first

argument raised to the second argument's
power. Any strings are converted to

Deci mal s. If any St ri ng fails to be
converted to Deci mal , the result is

Undef i ned.

Other Value Other Value Undef i ned.

rand()

Returns a pseudorandom, uniformly distributed double between 0.0 and 1.0. Supported by SQL
version 2015-10-8 and later.

Example:

rand() =0.8231909191640703

regexp_matches(String, String)

Returns whether the first argument contains a match for the second argument (regex).

180

AWS IoT Developer Guide

Functions

Example:
Regexp_nat ches("aaaa", "a{2,}") =true.
Regexp_nat ches("aaaa", "b") =false.
First argument:

Argument Type Result

I nt The St ri ng representation of the | nt .
Deci mal The St ri ng representation of the

Deci mal .
Bool ean The St ri ng representation of the boolean

("true" or "false").

String The String.

Array The St ri ng representation of the Arr ay
(using standard conversion rules).

Object The St ri ng representation of the Object
(using standard conversion rules).

Null Undef i ned.

Undefined Undef i ned.

Second argument:

Must be a valid regex expression. Non-string types are converted to St ri ng using the standard
conversion rules. Depending on the type, the resultant string may or may not be a valid regular
expression. If the (converted) argument is not valid regex, the result is Undef i ned.

Third argument:

Must be a valid regex replacement string. (Can reference capture groups.) Non-string types will be
converted to St ri ng using the standard conversion rules. If the (converted) argument is not a valid
regex replacement string, the result is Undef i ned.

regexp_replace(String, String, String)

Replaces all occurrences of the second argument (regular expression) in the first argument with the
third argument. Reference capture groups with "$". Supported by SQL version 2015-10-8 and later.

Example:
Regexp_repl ace("abcd", "bc", "x") ="axd".
Regexp_repl ace("abcd", "b(.*)d", "$1") ="ac".

First argument:

Argument Type Result

I nt The Stri ng representation of the I nt .

Deci mal The St ri ng representation of the
Deci mal .

181

AWS IoT Developer Guide
Functions

Argument Type

Bool ean

String

Array

Object

Null

Undefined

Second argument:

Result

The St ri ng representation of the boolean
("true" or "false").

The source value.

The St ri ng representation of the Arr ay
(using standard conversion rules).

The St ri ng representation of the Object
(using standard conversion rules).

Undef i ned.

Undef i ned.

Must be a valid regex expression. Non-string types are converted to St r i ngs using the standard
conversion rules. Depending on the type, the resultant string may or may not be a valid regular
expression. If the (converted) argument is not a valid regex expression, the result is Undef i ned.

Third argument:

Must be a valid regex replacement string. (Can reference capture groups.) Non-string types will be
converted to St ri ngs using the standard conversion rules. If the (converted) argument is not a valid
regex replacement string, the result is Undef i ned.

regexp_substr(String, String)

Finds the first match of the 2nd parameter (regex) in the first parameter. Reference capture groups with
"$". Supported by SQL version 2015-10-8 and later.

Example:

regexp_substr("hi hihello", "hi") =>"hi"

regexp_substr (" hi hi hel 10", "(hi)*") =>"hi hi".

First argument:

Argument Type

Result

I nt The St ri ng representation of the | nt .

Deci mal The St ri ng representation of the
Deci mal .

Bool ean The St ri ng representation of the boolean
("true" or "false").

String The Stri ng argument.

Array The St ri ng representation of the Ar r ay
(using standard conversion rules).

Object The St ri ng representation of the Object
(using standard conversion rules).

Null Undef i ned.

182

AWS IoT Developer Guide
Functions

Argument Type Result
Undefined Undef i ned.

Second argument:

Must be a valid regex expression. Non-string types are converted to St ri ngs using the standard
conversion rules. Depending on the type, the resultant string may or may not be a valid regular
expression. If the (converted) argument is not a valid regex expression, the result is Undef i ned.

Third argument:

Must be a valid regex replacement string. (Can reference capture groups.) Non-string types will
be converted to St ri ng using the standard conversion rules. If the argument is not a valid regex
replacement string, the result is Undef i ned.

rpad(String, Int)

Returns the string argument, padded on the right side with the number of spaces specified in the
second argument. The | nt argument must be between 0 and 1000. If the provided value is outside
of this valid range, the argument will be set to the nearest valid value (0 or 1000). Supported by SQL
version 2015-10-8 and later.

Examples:
rpad("hell 0", 2) ="hello".
rpad(1, 3) ="1".

argument Type 1 argument Type 2 Result

String I nt The Stri ng is padded on the
right side with a number of
spaces equal to the provided
I nt.

String Deci nal The Deci mal argument
will be rounded down to the
nearest | nt and the string is
padded on the right side with
a number of spaces equal to
the provided I nt .

String String The second argument will
be converted to a Deci mal ,
which is rounded down to the
nearestint. The Stringis
padded on the right side with
a number of spaces equal to
the I nt value.

Other Value I nt /Deci mal /Stri ng The first value will be
converted to a St ri ng using
the standard conversions,
and the rpad function will be
applied on that Stri ng. If
it cannot be converted, the
result is Undef i ned.

183

AWS IoT Developer Guide
Functions

argument Type 1 argument Type 2 Result

Any Value Other Value Undef i ned.

round(Decimal)

Rounds the given Deci nal to the nearest | nt . If the Deci nal is equidistant from two | nt values (for
example, 0.5), the Deci mal is rounded up. Supported by SQL version 2015-10-8 and later.

Example: Round(1. 2) = 1.
Round(1.5) =2.
Round(1.7) =2.
Round(-1.1) =-1.

Round(-1.5) =-2.

Argument Type Result

I nt The argument.

Deci nal Deci mal is rounded down to the nearest
I nt.

String Deci mal is rounded down to the nearest

I nt . If the string cannot be converted to a
Deci mal , the result is Undef i ned.

Other Value Undef i ned.

rtrim(String)

Removes all trailing whitespace (tabs and spaces) from the provided St ri ng. Supported by SQL
version 2015-10-8 and later.

Examples:

rtrin(" hi ")="hi

Argument Type Result
I nt The St ri ng representation of the | nt .
Deci mal The St ri ng representation of the
Deci mal .
Bool ean The St ri ng representation of the boolean

("true" or "false").

Array The St ri ng representation of the Arr ay
(using standard conversion rules).

Object The St ri ng representation of the Object
(using standard conversion rules).

184

AWS IoT Developer Guide
Functions

Argument Type
Null

Undefined

sign(Decimal)

Result
Undef i ned.

Undef i ned

Returns the sign of the given number. When the sign of the argument is positive, 1 is returned. When
the sign of the argument is negative, -1 is returned. If the argument is 0, O is returned. Supported by

SQL version 2015-10-8 and later.

Examples:
sign(-7) =-1.
sign(0) =0.
sign(13) =1.
Argument Type Result
I nt I nt, the sign of the | nt value.
Deci mal I nt, the sign of the Deci mal value.
String I nt, the sign of the Deci nal value. The
string is converted to a Deci mal value, and
the sign of the Deci nal value is returned.
If the St ri ng cannot be converted to
a Deci mal , the result is Undef i ned.
Supported by SQL version 2015-10-8 and
later.
Other Value Undef i ned.
sin(Decimal)

Returns the sine of a number in radians. Deci mal arguments are rounded to double precision before

function application. Supported by SQL version 2015-10-8 and later.

Example: sin(0) =0.0

Argument Type Result

I nt Deci mal (with double precision), the sine
of the argument.

Deci mal Deci mal (with double precision), the sine
of the argument.

Bool ean Undef i ned.

String Deci mal (with double precision), the
sine of the argument. If the string cannot
be converted to a Deci nal , the result is
Undef i ned.

185

AWS IoT Developer Guide
Functions

Argument Type Result

Array Undef i ned.
Object Undef i ned.
Null Undef i ned.
Undef i ned Undef i ned.

substring(String, Int [, Int])

Expects a St ri ng followed by one or two | nt values. For a St ri ng and a single | nt argument, this
function returns the substring of the provided St r i ng from the provided | nt index (0-based, inclusive)
to the end of the St ri ng. Fora St ri ng and two | nt arguments, this function returns the substring of
the provided St ri ng from the first | nt index argument (0-based, inclusive) to the second | nt index
argument (0-based, exclusive). Indices that are less than zero will be set to zero. Indices that are
greater than the St ri ng length will be set to the St ri ng length. For the three argument version, if the
first index is greater than (or equal to) the second index, the result is the empty St ri ng.

If the arguments provided are not (St ri ng, I nt), or (Stri ng, | nt, | nt >), the standard conversions
will be applied to the arguments to attempt to convert them into the correct types. If the types cannot be
converted, the result of the function is Undef i ned. Supported by SQL version 2015-10-8 and later.

Examples:

substring("012345", 0) ="012345".
substring("012345", 2) ="2345".
substring("012345", 2.745) ="2345".
substring(123, 2) ="3".
substring("012345", -1) ="012345".
substring(true, 1.2) ="rue".
substring(false, -2.411E247) ="false".
substring("012345", 1, 3) ="12".
substring("012345", -50, 50) ="012345".

substring("012345", 3, 1) =".
sqrt(Decimal)

Returns the square root of a number. Deci mal arguments are rounded to double precision before
function application. Supported by SQL version 2015-10-8 and later.

Example: sqrt (9) =3.0.

Argument Type Result
I nt The square root of the argument.
Deci mal The square root of the argument.

186

AWS IoT Developer Guide

Functions
Argument Type Result
Bool ean Undef i ned.
String The square root of the argument. If the

string cannot be converted to a Deci mal ,
the result is Undef i ned.

Array Undefi ned.
Object Undef i ned.
Null Undef i ned.
Undefined Undef i ned.

startswith(String, String)

Returns Bool ean, whether the first string argument starts with the second string argument. If either
argument is Nul | or Undef i ned, the result is Undef i ned. Supported by SQL version 2015-10-8 and
later.

Example:

startswith("ranger","ran") =true

argument Type 1 argument Type 2 Result

String String Whether the first string starts with the
second string.

Other Value Other Value Both arguments will be converted to
St ri ngs using the standard conversion
rules. Returns whether the first string
starts with the second string. If either
argument is Nul | or Undef i ned, the result
is Undef i ned.

timestamp()

Returns the current Unix timestamp, as observed by the AWS 10T rules engine. Supported by SQL
version 2015-10-8 and later.

Example: ti mest anp() = 1472857716
topic(Decimal)

Returns the topic to which the message that triggered the rule was sent. If no parameter is specified,
the entire topic is returned. The Deci mal parameter is used to specify a specific, one-based topic
segment. For the topic f oo/ bar / baz, topic(1) will return f oo, topic(2) will return bar , and so on.
Supported by SQL version 2015-10-8 and later.

Examples:
t opi c() = "things/myThings/thingOne"

t opi c(1) ="things"

187

AWS IoT Developer Guide
Functions

tan(Decimal)

Returns the tangent of a number in radians. Deci nmal values are rounded to double precision before
function application. Supported by SQL version 2015-10-8 and later.

Example: t an(3) =-0.1425465430742778

Argument Type Result

I nt Deci mal (with double precision), the
tangent of the argument.

Deci mal Deci mal (with double precision), the
tangent of the argument.

Bool ean Undef i ned.

String Deci mal (with double precision), the
tangent of the argument. If the string cannot
be converted to a Deci nal , the result is

Undef i ned.
Array Undef i ned.
Object Undef i ned.
Null Undef i ned.
Undefined Undef i ned.

traceid()

Returns the trace ID (UUID) of the MQTT message, or Undef i ned if the message wasn't sent over
MQTT. Supported by SQL version 2015-10-8 and later.

Example:

tracei d() ="12345678-1234-1234-1234-123456789012"

trunc(Decimal, Int)

Truncates the first argument to the number of Deci mal places specified by the second argument. If the
second argument is less than zero, it will be set to zero. If the second argument is greater than 34, it
will be set to 34. Trailing zeroes are stripped from the result. Supported by SQL version 2015-10-8 and
later.

Examples:

trunc(2.3, 0) =2.
trunc(2.3123, 2=2.31.
trunc(2.888, 2) =2.88.

(2.00, 5) =2.
argument Type 1 argument Type 2 Result
I nt I nt The source value.

188

AWS IoT Developer Guide
Functions

argument Type 1

I nt /Deci nal

I nt /Deci mal /String

Other Value

trim(String)

argument Type 2

| nt /Deci nal

The first argument is truncated to the

length described by the second argument.
The second argument, if not an | nt, will

be rounded down to the nearest | nt .

St ri ngs are converted to Deci nal values.
If the string conversion fails, the result is
Undefi ned.

Undef i ned.

Result

The first argument is truncated to the length
described by the second argument. The
second argument, if not an | nt , will be
rounded down to the nearest | nt .

Removes all leading and trailing whitespace from the provided St r i ng. Supported by SQL version

2015-10-8 and later.
Example:

Trim(" hi ") ="hi"

Argument Type

I nt

Deci mal
Bool ean

String
Array
Object

Null

Undefined

upper(String)

Result

The St ri ng representation of the | nt with
all leading and trailing whitespace removed.

The St ri ng representation of the Deci nmal
with all leading and trailing whitespace
removed.

The St ri ng representation of the Bool ean
("true” or "false") with all leading and trailing
whitespace removed.

The St ri ng with all leading and trailing
whitespace removed.

The St ri ng representation of the Arr ay
using standard conversion rules.

The St ri ng representation of the Object
using standard conversion rules.

Undef i ned.

Undef i ned.

Returns the uppercase version of the given St ri ng. Non-St r i ng arguments are converted to St ri ng
using the standard conversion rules. Supported by SQL version 2015-10-8 and later.

189

AWS loT Developer Guide
SELECT Clause

Examples:
upper ("hell 0") ="HELLO"

upper (["hel 1 0"]) ="[\"HELLO\"

SELECT Clause

The AWS loT SELECT clause is essentially the same as the ANSI SQL SELECT clause, with some
minor differences.

You can use the SELECT clause to extract information from incoming MQTT messages. SELECT *
can be used to retrieve the entire incoming message payload. For example:

I ncom ng payl oad published on topic "a/b': {"color":"red", "tenperature":50}
SQ statenent: SELECT * FROM'a/b'
Qut goi ng payl oad: {"color":"red", "tenperature": 50}

If the payload is a JSON object, you can reference keys in the object. Your outgoing payload will
contain the key-value pair. For example:

I ncom ng payl oad published on topic "a/b': {"color":"red", "tenperature":50}
SQ. statenment: SELECT col or FROM'a/b'
Qut goi ng payl oad: {"color":"red"}

You can use the AS keyword to rename keys. For example:

I ncom ng payl oad published on topic "a/b':{"color":"red", "tenperature":50}
SQL: SELECT col or AS ny_col or FROM ' a/b'
Qut goi ng payl oad: {"ny_color":"red"}

You can select multiple items by separating them with a comma. For example:

I ncom ng payl oad published on topic "a/b': {"color":"red", "tenperature":50}
SQL: SELECT color as ny_color, tenperature as farenheit FROM' a/b’
Qut goi ng payl oad: {"ny_color":"red","farenheit": 50}

You can select multiple items including *' to add items to the incoming payload. For example:

I ncom ng payl oad published on topic "a/b': {"color":"red", "tenperature:50}
SQL: SELECT *, 15 as speed FROM 'a/ b’
Qut goi ng payload: {"color":"red", "tenperature:50, speed:15}"

You can use the " VALUE" keyword to produce outgoing payloads that are not JSON objects. You may
only select one item. For example:

I ncom ng payl oad published on topic "a/b': {"color":"red", "tenperature":50}
SQL: SELECT VALUE col or FROM ' a/b'
Qut goi ng payl oad: "red"

You canuse'."' syntax to drill into nested JSON objects in the incoming payload. For example:

I ncom ng payl oad published on topic "a/b': {"color":
{"red":255,"green":0,"blue":0}, "tenperature":50}

190

AWS IoT Developer Guide
FROM Clause

SQL: SELECT color.red as red_value FROM'a/b'
Qut goi ng payl oad: {"red_val ue": 255}

You can use functions (see Functions (p. 160)) to transform the incoming payload. Parentheses can
be used for grouping. For example:

I ncom ng payl oad published on topic "a/b': {"color":"red", "tenperature":50}

SQ.: SELECT (temperature — 32) * 5/ 9 AS celsius, upper(color) as my_col or
FROM ' a/ b’

Qut goi ng payl oad: {"celsius":10,"my_color":"RED'}

FROM Clause

The FROM clause subscribes your rule to a topic or topic filter. A topic filter allows you to subscribe to
a group of similar topics.

Example:

Incoming payload published on topic ' a/ b' : {t enperature: 50}
Incoming payload published on topic ' a/ ¢' : {t enperature: 50}
SQL: "SELECT tenperature ASt FROM 'a/b"".

The rule is subscribed to ' a/ b' , so the incoming payload is passed to the rule, and the outgoing
payload (passed to the rule actions) is: {t: 50} . The rule is not subscribed to' a/ ¢' , so the rule is
not triggered for the message publishedon' a/c' .

You can use the # wildcard character to match any subpath in a topic filter:

Example:

Incoming payload published on topic' a/ b' : {t enperature: 50}.

Incoming payload published on topic' a/ c' : {t enperature: 60}.

Incoming payload published on topic ' a/ e/ f' : {tenperature: 70}.

Incoming payload published on topic ' b/ x' : {t enperature: 80}.

SQL: "SELECT tenperature ASt FROM'a/# ".

The rule is subscribed to any topic beginning with ' a' , so it is executed three times, sending outgoing
payloads of {t: 50} (for a/b), {t: 60} (foralc),and {t: 70} (for a/eff) to its actions. It is not
subscribed to ' b/ x' , so the rule will not be triggered for the {temperature: 80} message.

You can use the '+' character to match any one particular path element:

Example:

Incoming payload published on topic' a/ b' : {t enperature: 50}.

Incoming payload published on topic ' a/ c' : {t enperature: 60}.

Incoming payload published on topic' a/ e/ f' : {tenperature: 70}.

Incoming payload published on topic ' b/ x' : {t enperature: 80}.

SQL: "SELECT tenperature ASt FROM'a/+'".

191

AWS IoT Developer Guide
WHERE Clause

The rule is subscribed to all topics with two path elements where the first elementis' a' . The rule is
executed for the messages sentto' a/b' and'a/c',butnot'a/e/f" or'b/x".

You can use functions and operators in the WHERE clause. In the WHERE clause, you cannot
reference any aliases created with the AS keyword in the SELECT. (The WHERE clause is evaluated
first, to determine if the SELECT clause is evaluated.)

WHERE Clause

The WHERE clause determines if a rule is evaluated for a message sent to an MQTT topic to which
the rule is subscribed. If the WHERE clause evaluates to true, the rule is evaluated; otherwise, the rule
is not evaluated.

Example:
Incoming payload published on a/ b: {"color": "red", "tenperature": 40}.

SQL: SELECT col or AS ny_color FROM'a/b' WHERE tenperature > 50 AND col or <>
"red'.

In this case, the rule would not be evaluated; there would be no outgoing payload; and rules actions
would not be triggered.

You can use functions and operators in the WHERE clause. However, you cannot reference any
aliases created with the AS keyword in the SELECT. (The WHERE clause is evaluated first, to
determine if SELECT is evaluated.)

Literals

You can directly specify objects in the SELECT and WHERE clauses of your rule SQL, which can be
useful for passing information. JSON object syntax is used (key-value pairs, comma-separated, where
keys are strings and values are JSON values, wrapped in curly brackets {}). For example:

Incoming payload published on topic a/ b: " {1l at _| ong: [47. 606, - 122. 332]}"

SQL statement: SELECT {'l atitude': get(lat_long, 0),'longitude':get(lat_Iong,
1)} as lat_long FROM 'a/ b’

The resulting outgoing payload would be: {' | ati t ude' : 47. 606, ' | ongi t ude' : - 122. 332} .

You can also directly specify arrays in the SELECT and WHERE clauses of your rule SQL, which
allows you to group information. JSON syntax is used (wrap comma-separated items in square
brackets [] to create an array literal). For example:

Incoming payload published on topic a/ b: {| at: 47. 696, |ong: -122.332}
SQL statement: SELECT [l at,long] as lat_|ong FROM'a/b’

The resulting output payload would be: {"1 at _| ong": [47.606, - 122. 332]}.

Case Statements

Case statements can be used for branching execution, like a switch statement, or if/else statements.

Syntax:

CASE v WHEN t[1] THEN r[1]
WHEN t[2] THEN r[2]

192

AWS IoT Developer Guide
JSON Extensions

VWHEN t[n] THEN r[n]
ELSE r[e] END

The expression v is evaluated and matched for equality against each t [i] expression. If a match is
found, the corresponding r[i] expression becomes the result of the case statement. If there is more
than one possible match, the first match is selected. If there are no matches, the else statement'sr e
is used as the result. If there is no match and no else statement, the result of the case statement is
Undef i ned. For example:

Incoming payload published on topic a/ b: {"col or": "yel | ow'}

SQL statement: SELECT CASE col or WHEN ' green' THEN 'go' WHEN 'yell ow THEN
‘caution' WHEN 'red' THEN 'stop' ELSE 'you are not at a stop light' END as
instructions FROM'a/b'

The resulting output payload would be: {"i nstructions":"caution"}.

Case statements require at least one WHEN clause. An ELSE clause is not required.

Note
If vis Undef i ned, the result of the case statement is Undef i ned.

JSON Extensions

You can use the following extensions to ANSI SQL syntax to make it easier to work with nested JSON
objects.

." Operator

This operator accesses members in embedded JSON objects and functions identically to ANSI SQL
and JavaScript. For example:

SELECT foo. bar AS bar.baz FROM'a/b'

* Operator

This functions in the same way as the * wildcard in ANSI SQL. It's used in the SELECT clause only
and creates a new JSON object containing the message data. If the message payload is not in JSON
format, * returns the entire message payload as raw bytes. For example:

SELECT * FROM ' a/ b’

Applying a Function to an Attribute Value

The following is an example JSON payload that could be published by a device:

{
"deviceid" : "iotl1l23",
"tenp" : 54.98,
"hum dity" : 32.43,
"coords" : {
"latitude" : 47.615694,
"l ongi tude" : -122. 3359976
}
}

The following example applies a function to an attribute value in a JSON payload:

193

AWS IoT Developer Guide
Substitution Templates

SELECT tenp, nd5(deviceid) AS hashed_id FROM topic/#

The result of this query is the following JSON object:

"tenmp": 54.98,
"hashed_i d": "e37f81fb397e595c4aeb5645hb8chbbdl"

Substitution Templates

You can use a substitution template to augment the JSON data returned when a rule is triggered
and AWS loT performs an action. The syntax for a substitution template is ${ expression} , where
expression can be any expression supported by AWS loT in SELECT or WHERE clauses. For more
information about supported expressions, see AWS loT SQL Reference (p. 151).

Substitution templates appear in the SELECT clause within a rule:

{
"sqgl": "SELECT *, topic() AS topic FROM 'ny/iot/topic'",
"rul eDi sabl ed": fal se,
"actions": [{
"republish": {
"topic": "${topic()}/republish",
"roleArn": "arn:aws:iam:123456789012:rol e/ ny-iot-role"
}
}H
}

If this rule is triggered by the following JSON:

{
"deviceid" : "iot123",
"tenp" : 54.98,
"hum dity" : 32.43,
"coords" : {
"latitude" : 47.615694,
"l ongi tude" : -122. 3359976
}

Here is the output of the rule:

{
"coords": {
"l ongi tude": -122. 3359976,
"latitude":47.615694
H
"hum dity": 32. 43,
"tenp":54.98,
"deviceid":"iot123",
“"topic":"nyl/iot/topic"
}

194

AWS IoT Developer Guide
Device Shadows Data Flow

Device Shadows for AWS loT

A thing shadow (sometimes referred to as a device shadow) is a JSON document that is used to store
and retrieve current state information for a thing (device, app, and so on). The Thing Shadows service
maintains a thing shadow for each thing you connect to AWS IoT. You can use thing shadows to get
and set the state of a thing over MQTT or HTTP, regardless of whether the thing is connected to the
Internet. Each thing shadow is uniquely identified by its name.
Contents

¢ Device Shadows Data Flow (p. 195)

¢ Device Shadows Documents (p. 201)

¢ Using Device Shadows (p. 204)

¢ Device Shadow RESTful API (p. 213)

¢ Device Shadow MQTT Topics (p. 216)

¢ Device Shadow Document Syntax (p. 222)

¢ Device Shadow Error Messages (p. 224)

Device Shadows Data Flow

The Thing Shadows services acts as an intermediary, allowing devices and applications to retrieve and
update thing shadows.

To illustrate how devices and applications communicate with the Thing Shadows service, this section
walks you through the use of the AWS loT MQTT client and the AWS CLI to simulate communication
between an internet-connected light bulb, an application, and the Thing Shadows service.

The Thing Shadows service uses a number of MQTT topics to facilitate communication between
applications and devices. To see how this works, use the AWS loT MQTT client to subscribe to the
following MQTT topics with QoS 1:

$aws/things/myLightBulb/shadow/update/accepted
The Thing Shadows service sends messages to this topic when an update is successfully made to
a thing shadow.

195

AWS IoT Developer Guide
Device Shadows Data Flow

$aws/things/myLightBulb/shadow/update/rejected
The Thing Shadows service sends messages to this topic when an update to a thing shadow is
rejected.

$aws/things/myLightBulb/shadow/update/delta
The Thing Shadows service sends messages to this topic when a difference is detected between
the reported and desired sections of a thing shadow.

$aws/things/myLightBulb/shadow/get/accepted
The Thing Shadows service sends messages to this topic when a request for a thing shadow is
made successfully.

$aws/things/myLightBulb/shadow/get/rejected
The Thing Shadows service sends messages to this topic when a request for a thing shadow is
rejected.

$aws/things/myLightBulb/shadow/delete/accepted
The Thing Shadows service sends messages to this topic when a thing shadow is deleted.

$aws/things/myLightBulb/shadow/delete/rejected
The Thing Shadows service sends messages to this topic when a request to delete a thing shadow
is rejected.

To learn more about all of the MQTT topics used by the Thing Shadows service, see Device Shadow
MQTT Topics (p. 216).

Note
We recommend you subscribe to the . . . / r ej ect ed topics to see any errors sent by the
Thing Shadows service.

When the light bulb comes online, it sends its current state to the Thing Shadows service by sending
an MQTT message to the $aws/ t hi ngs/ nmyLi ght Bul b/ shadow' updat e topic.

To simulate this, use the AWS loT MQTT client to publish the following message to the $aws/
t hi ngs/ myLi ght bul b/ shadow/ updat e topic:

{
"state": {
"reported": {
"color": "red"
}
}
}

The Thing Shadows service responds by sending the following message to the $aws/ t hi ngs/
myLi ght Bul b/ shadow/ updat e/ accept ed topic:

"messageNunber": 4,
"payl oad": {
"state": {
"reported": {
"color": "red"
}
},

"metadata": {
"reported": {
"color": {

"timestanmp": 1469564492
}

196

AWS IoT Developer Guide
Device Shadows Data Flow

}
b
"version": 1,
"timestanmp": 1469564492
}

"qos": O,
"tinmestanp": 1469564492848,
"topic": "$aws/things/ nmyLi ght Bul b/ shadow updat e/ accept ed"

This message indicates the Thing Shadows service received the UPDATE request and updated the
thing shadow. If the thing shadow doesn't exist, it is created. Otherwise, the thing shadow is updated
with the data in the message. If you don't see a message published to $aws/ t hi ngs/ myLi ght Bul b/
shadow/ updat e/ accept ed, check the subscription to $aws/ t hi ngs/ nyLi ght Bul b/ shadow
updat e/ r ej ect ed to see any error messages.

An application that interacts with the light bulb comes online and requests the light bulb's current state.
The application sends an empty message to the $aws/ t hi ngs/ nyLi ght Bul b/ shadow/ get topic. To
simulate this, use the AWS loT MQTT client to publish an empty message (") to the $aws/ t hi ngs/
nyLi ght Bul b/ shadow get topic.

The Thing Shadows service responds by publishing the requested thing shadow to the $aws/ t hi ngs/
myLi ght Bul b/ shadow/ get / accept ed topic:

"messageNunber": 1,
"payl oad": {
"state": {
"reported": {
"color": "red"
}
}

"metadata": {
"reported": {
"color": {
"timestanp": 1469564492
}
}
1
"version": 1,
"timestanp": 1469564571
}
"gos": O,
"timestamp": 1469564571533,
"topic": "$aws/things/ nyLi ght Bul b/ shadow get/accept ed"
}

If you don't see a message on the $aws/ t hi ngs/ nyLi ght Bul b/ shadow get / accept ed topic,
check the $aws/ t hi ngs/ myLi ght Bul b/ shadow/ get / r ej ect ed topic for any error messages.

The application displays this information to the user, and the user requests a change to the light bulb's
color (from red to green). To do this, the application publishes a message on the $aws/ t hi ngs/
nyLi ght Bul b/ shadow updat e topic:

"state": {
"desired": {

197

AWS loT Developer Guide
Device Shadows Data Flow

"color": "green"

To simulate this, use the AWS loT MQTT client to publish the preceding message to the $aws/

t hi ngs/ nyLi ght Bul b/ shadow/ updat e topic.

The Thing Shadows service responds by sending a message to the $aws/ t hi ngs/ myLi ght Bul b/

shadow updat e/ accept ed topic:

{

"messageNunber”: 5,
"payl oad": {
"state": {
"desired": {
"color": "green"
}
s
"met adata": {
"desired": {
"color": {
"timestanp": 1469564658
}
}
s
"version": 2,
"timestanp": 1469564658
s
"qos": O,
"timestanmp": 1469564658286,
"topic": "$aws/things/ nyLi ght Bul b/ shadow updat e/ accept ed"
}

and to the $aws/ t hi ngs/ myLi ght Bul b/ shadow/ updat e/ del t a topic:

{

"messageNunber": 1,
"payl oad": {
"version": 2,
"timestanmp": 1469564658,
"state": {
"color": "green"
}s
"metadata": {
"color": {
"timestanmp": 1469564658
}
}
}s
"qos": O,
"timestanp": 1469564658309,
"topic": "$aws/things/ nyLi ght Bul b/ shadow updat e/ del t a"

The light bulb is subscribed to the $aws/ t hi ngs/ myLi ght Bul b/ shadow updat e/ del t a topic, so
it receives the message, changes its color, and publishes its new state. To simulate this, use the AWS

198

AWS loT Developer Guide
Device Shadows Data Flow

IoT MQTT client to publish the following message to the $aws/ t hi ngs/ nyLi ght bul b/ shadow/
updat e topic to update the shadow state:

{
"state":{
"reported":{
"color":"green"
}s
"desired":nul |}
}
}

In response, the Thing Shadows service sends a message to the $aws/ t hi ngs/ myLi ght Bul b/
shadow updat e/ accept ed topic:

{
"messageNunber": 6,
"payl oad": {
"state": {
"reported": {
"“color": "green"
}s
"desired": null
}s
"met adata": {
"reported": {
"color": {
"timestamp": 1469564801
}
}s
"desired": {
"timestamp": 1469564801
}
}s
"version": 3,
"timestamp": 1469564801
}s
"qos": O,
"timestanmp": 1469564801673,
"topic": "$aws/things/ nmyLi ght Bul b/ shadow updat e/ accept ed"
}

The app requests the current state from the Thing Shadows service and displays the most recent state
data. To simulate this, run the following command:

aws iot-data get-thing-shadow --thing-nanme "nyLi ght Bul b" "output.txt" && cat
"out put.txt"

Note

On Windows, omit the & cat "out put . t xt ", which displays the contents of output.txt
to the console. You can open the file in Notepad or any text editor to see the contents of the
thing shadow.

The Thing Shadows service returns the thing shadow document:

{

199

AWS IoT Developer Guide
Device Shadows Data Flow

"state":{
"reported":{
"color":"green"
}
}s
"met adat a": {
"reported":{
"color":{
"timestanp": 1469564801
}
}
b,

"version":3,
"timestanp": 1469564864}

If you want to determine if a device is currently connected, include a connected setting in the thing
shadow and use an MQTT Last Will and Testament (LWT) message that will set the connected setting
to f al se if a device is disconnected due to error.

Note

Currently, LWT messages sent to AWS IoT reserved topics (topics that begin with $) are
ignored. To work around this issue, register an LWT message to a hon-reserved topic and
create a rule that republishes the message on the reserved topic. The following example
shows how to create a republish rule that listens for a messages from the my/ t hi ngs/
nmyLi ght Bul b/ updat e topic and republishes it to $aws/ t hi ngs/ nyLi ght Bul b/ shadow/

updat e.
{
"rule": {
"rul eDi sabl ed": fal se,
"sql": "SELECT * FROM ' ny/things/ nyLi ght Bul b/ update'",

"description": "Turn ny/things/ into $aws/things/",
"actions": [{
"republish": {
"topic": "$$aws/thi ngs/ nyLi ght Bul b/ shadow updat e",
"rol eArn": "arn:aws:iam:123456789012:rol e/
aws_i ot _republish"
}
}
}

When a device connects, it registers an LWT that sets the connected setting to f al se:

"reported":

{
}

"connected":"fal se"

It also publishes a message on its update topic ($aws/ t hi ngs/ nmyLi ght Bul b/ shadow/ updat €),
setting its connected state to t r ue:

"reported":

{

200

AWS IoT Developer Guide
Device Shadows Documents

"connected": "true"

When the device disconnects gracefully, it publishes a message on its update topic and sets its
connected state to f al se:

"reported":

{
}

"connected": "fal se"

If the device disconnects due to an error, its LWT message is posted automatically to the update topic.

To delete the thing shadow, publish an empty message to the $aws/ t hi ngs/ myLi ght Bul b/
shadow del et e topic. AWS loT will respond by publishing a message to the $aws/ t hi ngs/
myLi ght Bul b/ shadow/ del et e/ accept ed topic:

{

"messageNunber": 2,
"payl oad": {
"version": 3,
"timestanmp": 1469564968
}s
"qos": O,
"timestanmp": 1469564968492,
"topic": "$aws/things/ nmyLi ght Bul b/ shadow del et e/ accept ed"

}

Device Shadows Documents

The Thing Shadows service respects all rules of the JSON specification. Values, objects, and arrays
are stored in the thing shadow document.

Contents
¢ Document Properties (p. 201)
¢ Versioning of a Thing Shadow (p. 202)
¢ Client Token (p. 202)
¢ Example Document (p. 202)
¢ Empty Sections (p. 203)
e Arrays (p. 204)

Document Properties

A thing shadow document has the following properties:

state

desired
The desired state of the thing. Applications can write to this portion of the document to update
the state of a thing without having to directly connect to a thing.

201

AWS IoT Developer Guide
Versioning of a Thing Shadow

reported
The reported state of the thing. Things write to this portion of the document to report their new
state. Applications read this portion of the document to determine the state of a thing.

met adat a
Information about the data stored in the st at e section of the document. This includes timestamps,
in Epoch time, for each attribute in the st at e section, which enables you to determine when they
were updated.

ti mestanp
Indicates when the message was transmitted by AWS loT. By using the timestamp in the message
and the timestamps for individual attributes in the desi r ed or r epor t ed section, a thing can
determine how old an updated item is, even if it doesn't feature an internal clock.

cl i ent Token
A string unique to the device that enables you to associate responses with requests in an MQTT
environment.

ver si on
The document version. Every time the document is updated, this version number is incremented.
Used to ensure the version of the document being updated is the most recent.

For more information, see Device Shadow Document Syntax (p. 222).

Versioning of a Thing Shadow

The Thing Shadows service supports versioning on every update message (both request and
response), which means that with every update of a thing shadow, the version of the JSON document
is incremented. This ensures two things:

¢ A client can receive an error if it attempts to overwrite a shadow using an older version number. The
client is informed it must resync before it can update a thing shadow.

¢ A client can decide not to act on a received message if the message has a lower version than the
version stored by the client.

In some cases, a client might bypass version matching by not submitting a version.

Client Token

You can use a client token with MQTT-based messaging to verify the same client token is contained in
a request and request response. This ensures the response and request are associated.

Example Document

Here is an example thing shadow document:

{
"state" : {
"desired" : {
"color" : "RED',
"sequence" : ["RED', "GREEN', "BLUE"]
}.
"reported" : {
"color" : "GREEN'
}

202

AWS IoT Developer Guide
Empty Sections

"metadata" : {
"desired" : {
"color" : {
"timestamp" : 12345
H
"sequence" : {
"timestamp" : 12345
}
H
"reported" : {
"color" : {
"timestamp" : 12345
}
}
H
"version" : 10,
"client Token" : "Uni qued i ent Token"

"tinmestanp": 123456789

Empty Sections

A thing shadow document contains a desi r ed section only if it has a desired state. For example, the
following is a valid state document with no desi r ed section:

"reported"” : { "temp": 55}

The r epor t ed section can also be empty:

"desired" : { "color" : "RED' }

If an update causes the desi r ed or r epor t ed sections to become null, the section is removed from
the document. To remove the desi r ed section from a document (in response, for example, to a device
updating its state), set the desired section to nul | :

{
"state": {
"reported": {
"color": "red"
b
"desired": null
}
}

It is also possible a thing shadow document will not contain desi r ed or r eport ed sections. In that
case, the shadow document is empty. For example, this is a valid document:

203

AWS loT Developer Guide
Arrays

Arrays

Thing shadows support arrays, but treat them as normal values in that an update to an array replaces
the whole array. It is not possible to update part of an array.

Initial state:
{

"desired" : { "colors" : ["RED', "GREEN', "BLUE"] }
}
Update:
{

"desired" : { "colors" : ["RED'] }
}
Final state:
{

"desired" : { "colors" : ["RED'] }
}

Arrays can't have null values. For example, the following array is not valid and will be rejected.

"desired" : {
"colors" : [null, "RED', "GREEN']
}

Using Device Shadows

AWS IoT provides three methods for working with thing shadows:

UPDATE
Creates a thing shadow if it doesn't exist, or updates the content of a thing shadow with the data
provided in the request. The data is stored with timestamp information to indicate when it was
last updated. Messages are sent to all subscribers with the difference between desi r ed or
r epor t ed state (delta). Things or apps that receive a message can perform an action based on
the difference between desi r ed or r eport ed states. For example, a device can update its state
to the desired state, or an app can update its Ul to show the change in the device's state.

GET
Retrieves the latest state stored in the thing shadow (for example, during startup of a device to
retrieve configuration and the last state of operation). This method returns the full JSON document,
including metadata.

DELETE
Deletes a thing shadow, including all of its content. This removes the JSON document from the
data store. You can't restore a thing shadow you deleted, but you can create a new thing shadow
with the same name.

204

AWS IoT Developer Guide
Protocol Support

Protocol Support

These methods are supported through both MQTT and a RESTful APl over HTTPS. Because MQTT
is a publish/subscribe communication model, AWS loT implements a set of reserved topics. Things
or applications subscribe to these topics before publishing on a request topic in order to implement a
request—response behavior. For more information, see Device Shadow MQTT Topics (p. 216) and
Device Shadow RESTful API (p. 213).

Updating a Thing Shadow

You can update a thing shadow by using the UpdateThingShadow (p. 214) RESTful API or by
publishing to the /update (p. 216) topic. Updates affect only the fields specified in the request.

Initial state:
{
"state": {
"reported" : {
"color™ : { "r"™ :255, "g": 255, "b": 0}
}
}
}

An update message is sent:

{
"state": {
"desired" : {
"color™ : { "r" : 10 },
"engi ne" : "ON'
}
}
}

The device receives the desi r ed state on the / updat e/ del t a topic that is triggered by the previous
/ updat e message and then executes the desired changes. When finished, the device should confirm
its updated state through the r epor t ed section in the thing shadow JSON document.

Final state:
{
"state": {
"reported" : {
“color" : { "r" : 10, "g" : 255, "b": 0},
"engi ne" : "ON'
}
}
}

Retrieving a Thing Shadow Document

You can retrieve a thing shadow by using the GetThingShadow (p. 214) RESTful API or by
subscribing and publishing to the /get (p. 219) topic. This retrieves the entire document plus the delta
between the desi red or r epor t ed states.

205

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

AWS loT Developer Guide
Retrieving a Thing Shadow Document

Example document:

{
"state": {
"desired": {
"lights": {
"color": "RED
}.
"engi ne": "ON'
}.
"reported": {
"lights": {
"color": "GREEN'
}.
"engi ne": "ON'
}
}.
"metadata": {
"desired": {
"lights": {
"color": {
"timestanmp": 123456
}.
"engi ne": {
"timestanmp": 123456
}
}
}.
"reported": {
"lights": {
"color": {
"timestanmp": 789012
}
}.
"engi ne": {
"timestanmp": 789012
}
}.
"version": 10,
"timestamp": 123456789
}
}
Response:
{
"state": {
"desired": {
"lights": {
"“color": "RED
H
"engi ne": "ON'
H
"reported": {

"lights": {
"color": "GREEN'

b,
"engi ne": "ON'

206

AWS loT Developer Guide
Retrieving a Thing Shadow Document

1
"delta": {
"lights": {
"“color": "RED
}
}
1
"metadata": {
"desired": {
"lights": {
"color": {
"timestanmp": 123456
1
"engi ne": {
"timestanmp": 123456
}
1
"reported": {
"lights": {
"color": {
"timestanmp": 789012
}
1
"engi ne": {
"timestanmp": 789012
}
1
"delta": {
"lights": {
"color": {
"timestanmp": 123456
}
}
}
1
"version": 10,
"tinmestanp": 123456789
}

Optimistic Locking

You can use the state document version to ensure you are updating the most recent version of a thing
shadow document. When you supply a version with an update request, the service rejects the request
with an HTTP 409 conflict response code if the current version of the state document does not match
the version supplied.

For example:

Initial document:

"state" : {
"desired" : { "colors" : ["RED', "GREEN', "BLUE"] }
}s

"version" : 10

207

AWS IoT Developer Guide
Deleting Data

Update: (version doesn't match; request will be rejected)

"state": {
"desired": {
"colors": [
" BLUE"
]
}
1

"version": 9

Result:

409 Conflict

Update: (version matches; this request will be accepted)

{
"state": {
"desired": {
"colors": [
" BLUE"
]
}
b,
"version": 10
}
Final state:
{
"state": {
"desired": {
"colors": [
" BLUE"
]
}
b
"version": 11
}

Deleting Data

You can delete data from a thing shadow by publishing to the /update (p. 216) topic, setting the fields
to be deleted to null. Any field with a value of nul | is removed from the document.

Initial state:
{
"state": {
"desired" : {
"lights": { "color": "RED" },
"engi ne" : "ON'

208

AWS IoT Developer Guide
Deleting a Thing Shadow

}s
"reported" {
"lights" : { "color": "GREEN' 1},
"engi ne" " OFF"
}
}
}
An update message is sent:
{
"state": {
"desired": null,
"reported": {
"engi ne": null
}
}
}
Final state:
{
"state": {
"reported" {
“1ights" { "color" " GREEN' }
}
}
}

You can delete all data from a thing shadow by setting its state to nul | . For example, sending the
following message will delete all of the state data, but the thing shadow will remain.

"state": null

The thing shadow still exists even if its state is nul | . The version of the thing shadow will be
incremented when the next update occurs.

Deleting a Thing Shadow

You can delete a thing shadow document by using the DeleteThingShadow (p. 215) RESTful API or
by publishing to the /delete (p. 220) topic.

Initial state:
{
"state": {
"desired" {
"lights": { "color": "RED' },
" engi r.1ell " O\rl
b,
"reported" {
"lights" { "color": "GREEN' 1},
" engi r.1ell " G:FII

209

AWS loT Developer Guide
Delta State

A message is sent to the /delete topic.

Final state:

HTTP 404 - resource not found

Delta State

Delta state is a virtual type of state that contains the difference between the desi red and report ed
states. Fields in the desi r ed section that are not in the r epor t ed section are included in the delta.
Fields that are in the r epor t ed section and not in the desi r ed section are not included in the delta.
The delta contains metadata, and its values are equal to the metadata in the desi r ed field. For
example:

{
"state": {
"desired": {
"color": "RED',
"state": "STOP"
}
"reported": {
"color": "GREEN',
"engi ne": "ON'
}
"delta": {
"color": "RED',
"state": "STOP"
}
}
"metadata": {
"desired": {
"color": {
"timestamp": 12345
}
"state": {
"timestamp": 12345
}
"reported": {
"color": {
"timestamp": 12345
}
"engi ne": {
"timestamp": 12345
}
}
"delta": {
"color": {
"timestamp": 12345
}
"state": {
"timestamp": 12345
}
}

210

AWS loT Developer Guide
Observing State Changes

b
"version": 17,
"timestamp": 123456789

When nested objects differ, the delta contains the path all the way to the root.

{
"state": {
"desired": {
"lights": {
"color": {
"r": 255,
"g": 255,
"b": 255
}
}
1
"reported": {
"lights": {
"color": {
"r": 255,
"g": O,
"b": 255
}
}
1
"delta": {
"lights": {
"color": {
"g": 255
}
}
}
1
"version": 18,
"timestanmp": 123456789
}

The Thing Shadows service calculates the delta by iterating through each field in the desi r ed state
and comparing it to the r epor t ed state.

Arrays are treated like values. If an array in the desi r ed section doesn't match the array in the
r epor t ed section, then the entire desired array is copied into the delta.

Observing State Changes

When a thing shadow is updated, messages are published on two MQTT topics:

e $aws/things/t hi ng- nane/shadow/update/accepted
¢ $aws/things/t hi ng- nane/shadow/update/delta

The message sent to the updat e/ del t a topic is intended for the thing whose state is being updated.
This message contains only the difference between the desi r ed and r epor t ed sections of the thing
shadow document. Upon receiving this message, the thing decides whether to make the requested

211

AWS loT Developer Guide
Message Order

change. If the thing's state is changed, it publishes its new current state to the $aws/ t hi ngs/ t hi ng-
nane/ shadow updat e topic.

Devices and applications can subscribe to either of these topics to be notified when the state of the
document has changed.

Here is an example of that flow:

1. Device reports state.
2. The system updates the state document in its persistent data store.

3. The system publishes a delta message, which contains only the delta and is targeted at the
subscribed devices. Devices should subscribe to this topic to receive updates.

4. The thing shadow publishes an accepted message, which contains the entire received document,
including metadata. Applications should subscribe to this topic to receive updates.

Message Order

There is no guarantee that messages from the AWS IoT service will arrive at the device in any specific
order.

Initial state document:

{
"state" : {
"reported” : { "color" : "blue" }
}s
"version" : 10,
"timestamp": 123456777
}
Update 1:
{
"state": { "desired" : { "color" : "RED' } },
"version": 10,
"timestanmp": 123456777
}
Update 2:
{
"state": { "desired" : { "color" : "GREEN' } },
"version": 11 ,
"timestanmp": 123456778
}

Final state document:

"state": {
"reported": { "color" : "GREEN' }
}s
"version": 12,
"timestamp": 123456779

212

AWS loT Developer Guide
Trim Device Shadow Messages

}

This results in two delta messages:

{
"state": {
"color": "RED
}
"version": 11,
"timestamp": 123456778
}
{
"state": { "color" : "GREEN' },
"version": 12,
"timestamp": 123456779
}

The device might receive these messages out of order. Because the state in these messages is
cumulative, a device can safely discard any messages that contain a version number older than the
one it is tracking. If the device receives the delta for version 12 before version 11, it can safely discard
the version 11 message.

Trim Device Shadow Messages

To reduce the size of thing shadow messages sent to your device, define a rule that selects only the
fields your device needs and republishes the message on an MQTT topic to which your device is
listening.

The rule is specified in JISON and should look like the following:

{
"sqgl": "SELECT state, version FROM' $aws/t hi ngs/+/ shadow update/delta'",
"rul eDi sabl ed": fal se,
"actions": [{
"republish": {
"topic": "${topic(2)}/delta",
"roleArn": "arn:aws:iam:123456789012:rol e/ ny-iot-role"
}
1
}

The SELECT statement determines which fields from the message will be republished to the specified
topic. A "+" wildcard is used to match all thing shadow names. The rule specifies that all matching
messages should be republished to the specified topic. In this case, the "t opi c() " function is used to
specify the topic on which to republish. t opi c(2) evaluates to the thing name in the original topic. For
more information about creating rules, see Rules.

Device Shadow RESTful API

A thing shadow exposes the following URI for updating state information:

https://endpoi nt/things/thi ngNane/ shadow

213

http://docs.aws.amazon.com/iot/latest/developerguide//iot-rules.html

AWS IoT Developer Guide
GetThingShadow

The endpoint is specific to your AWS account. To retrieve your endpoint, use the describe-endpoint
command. The format of the endpoint is as follows:

identifier.iot.region.amazonaws. com

API Actions
¢ GetThingShadow (p. 214)
¢ UpdateThingShadow (p. 214)
¢ DeleteThingShadow (p. 215)

GetThingShadow

Gets the thing shadow for the specified thing.
The response state document includes the delta between the desi r ed and r epor t ed states.
Request

The request includes the standard HTTP headers plus the following URI:

HTTP CET https://endpoint/things/thi ngNanme/ shadow

Response

Upon success, the response includes the standard HTTP headers plus the following code and body:

HTTP 200
BODY: response state docunent

For more information, see Example Response State Document (p. 223).
Authorization

Retrieving a thing shadow requires a policy that allows the caller to perform the
i ot : Get Thi ngShadow action. The Thing Shadows service accepts two forms of authentication:
Signature Version 4 with |AM credentials or TLS mutual authentication with a client certificate.

The following is an example policy that allows a caller to retrieve a thing shadow:

{
"Version": "2012-10-17",
"Statenment": [{
"Effect": "Alow',
"Action": "iot:GetThi ngShadow',
"Resource": ["arn:aws:iot:region:account:thing/thing"]
}
}

UpdateThingShadow

Updates the thing shadow for the specified thing.

Updates affect only the fields specified in the request state document. Any field with a value of nul | is
removed from the thing shadow.

214

http://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html

AWS IoT Developer Guide
DeleteThingShadow

Request

The request includes the standard HTTP headers plus the following URI and body:

HTTP POST https://endpoi nt/things/thingNanme/ shadow
BODY: request state docunent

For more information, see Example Request State Document (p. 222).
Response

Upon success, the response includes the standard HTTP headers plus the following code and body:

HTTP 200
BODY: response state docunent

For more information, see Example Response State Document (p. 223).
Authorization

Updating a thing shadow requires a policy that allows the caller to perform the
i ot : Updat eThi ngShadow action. The Thing Shadows service accepts two forms of authentication:
Signature Version 4 with IAM credentials or TLS mutual authentication with a client certificate.

The following is an example policy that allows a caller to update a thing shadow:

{
"Version": "2012-10-17",
"Statenent": [{
"Effect": "Allow',
"Action": "iot:UpdateThi ngShadow',
"Resource": ["arn:aws:iot:region:account:thing/thing"]
}H
}

DeleteThingShadow

Deletes the thing shadow for the specified thing.
Request

The request includes the standard HTTP headers plus the following URI:

HTTP DELETE https://endpoi nt/things/thi ngNane/ shadow

Response

Upon success, the response includes the standard HTTP headers plus the following code and body:

HTTP 200
BODY: Enpty response state docunent

Authorization

Deleting a thing shadow requires a policy that allows the caller to perform the
i ot : Del et eThi ngShadow action. The Thing Shadows service accepts two forms of authentication:
Signature Version 4 with |AM credentials or TLS mutual authentication with a client certificate.

215

AWS IoT Developer Guide
MQTT Pub/Sub Topics

The following is an example policy that allows a caller to delete a thing shadow:

{
"Version": "2012-10-17",
"Statenent": [{
"Effect": "Alow',
"Action": "iot:Del eteThi ngShadow',
"Resource": ["arn:aws:iot:region:account:thing/thing"]
}
}

Device Shadow MQTT Topics

The Thing Shadows service uses reserved MQTT topics to enable applications and things to get,
update, or delete the state information for a thing (thing shadow). The names of these topics start with
$aws/things/t hi ngNane/shadow. Publishing and subscribing on thing shadow topics requires topic-
based authorization. AWS 10T reserves the right to add new topics to the existing topic structure. For
this reason, we recommend that you avoid wildcard subscriptions to shadow topics. For example, avoid
subscribing to topic filters like $aws/ t hi ngs/ t hi ngNane/ shadow/ # because the number of topics
that match this topic filter might increase as AWS IoT introduces new shadow topics.

The following are the MQTT topics used for interacting with thing shadows.

Topics
¢ /update (p. 216)
¢ /update/accepted (p. 217)
¢ /update/documents (p. 217)
¢ /update/rejected (p. 218)
¢ /update/delta (p. 218)
e /get (p. 219)
¢ /get/accepted (p. 219)
« /get/rejected (p. 220)
¢ /delete (p. 220)
¢ /delete/accepted (p. 221)
¢ /delete/rejected (p. 221)

/update

A thing publishes a request state document to this topic to update the thing shadow:

$aws/ t hi ngs/ t hi ngNanme/ shadow updat e

AWS loT responds by publishing to either /update/accepted (p. 217) or /update/rejected (p. 218).

For more information, see Request State Documents (p. 222).

Example Policy

The following is an example policy:

I

216

AWS IoT Developer Guide
/update/accepted

"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action": ["iot:Publish"],
"Resource": ["arn:aws:iot:region:account:topic/$aws/things/thi ngNanme/
shadow/ updat e"]

}H
}

/update/accepted

AWS IoT publishes a response state document to this topic when it accepts a change for the thing
shadow:

$aws/ t hi ngs/ t hi ngNane/ shadow updat e/ accept ed

For more information, see Response State Documents (p. 223).

Example Policy

The following is an example of the required policy:

"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action":
"iot:Subscribe",
"iot: Receive"

]

esource": ["arn:aws:iot:region:account:topicfilter/$aws/
t hi ngs/ t hi ngNane/ shadow updat e/ accept ed"]
}H
}

/update/documents

AWS IoT publishes a state document to this topic whenever an update to the shadow is successfully
performed:

$aws/ t hi ngs/ t hi ngNane/ shadow updat e/ docunent s

The JSON document will contain two primary nodes: pr evi ous and curr ent . The pr evi ous node
will contain the contents of the full shadow document before the update was performed while cur r ent
will contain the full shadow document after the update is successfully applied. When the device
shadow is updated (created) for the first time, the pr evi ous node will contain nul I .

Example Policy

The following is an example of the required policy:

"Version": "2012-10-17",

217

AWS IoT Developer Guide
/update/rejected

"Statenent": [{
"Effect": "Alow',
"Action":

"iot:Subscribe",
"iot: Receive"

]

esource": ["arn:aws:iot:region:account:topicfilter/$aws/
t hi ngs/ t hi ngNane/ shadow updat e/ docunent s"]

}
}

/update/rejected

AWS loT publishes an error response document to this topic when it rejects a change for the thing
shadow:

$aws/ t hi ngs/ t hi ngNanme/ shadow/ updat e/ r ej ect ed

For more information, see Error Response Documents (p. 224).

Example Policy

The following is an example of the required policy:

"Version": "2012-10-17",
"Statenent": [{
"Effect": "Al ow',
"Action": [
"i ot: Subscri be",
"iot:Receive"
1
"Resource": ["arn:aws:iot:region:account:topicfilter/$aws/
t hi ngs/ t hi ngNane/ shadow/ updat e/ r ej ect ed"]
}H
}

/update/delta

AWS loT publishes a response state document to this topic when it accepts a change for the thing
shadow and the request state document contains different values for desi r ed and r epor t ed states:

$aws/ t hi ngs/t hi ngNane/ shadow/ updat e/ del ta

For more information, see Response State Documents (p. 223).

Publishing Details

¢ A message published on updat e/ del t a includes only the desired attributes that differ between
the desi red and r eport ed sections. It contains all of these attributes, regardless of whether
these attributes were contained in the current update message or were already stored in AWS IoT.
Attributes that do not differ between the desi r ed and r epor t ed sections are not included.

« If an attribute is in the r epor t ed section but has no equivalent in the desi r ed section, it is not
included.

218

AWS IoT Developer Guide
/get

« If an attribute is in the desi r ed section but has no equivalent in the r epor t ed section, it is not
included.

« If an attribute is deleted from the r epor t ed section but still exists in the desi r ed section, it is
included.

Example Policy

The following is an example of the required policy:

"Version": "2012-10-17",
"Statenent": [{
"Effect": "Allow',
"Action": [
"iot:Subscribe",
"iot: Receive"
1,
"Resource": ["arn:aws:iot:region:account:topicfilter/$aws/
t hi ngs/ t hi ngNane/ shadow updat e/ del t a"]

}H
}

/get

A thing publishes to this topic to get the thing shadow:

$aws/ t hi ngs/ t hi ngNanme/ shadow get

AWS loT responds by publishing to either /get/accepted (p. 219) or /get/rejected (p. 220).

Example Policy

The following is an example of the required policy:

"Version": "2012-10-17",
"Statenment": [{
"Effect": "Allow',
"Action": [
"iot:Publish"
1
"Resource": ["arn:aws:iot:region:account:topic/$aws/things/thi ngNanme/
shadow/ get "]
}H
}

/get/accepted

AWS IoT publishes a response state document to this topic when returning the thing shadow:

$aws/ t hi ngs/t hi ngNane/ shadow get / accept ed

219

AWS IoT Developer Guide
/get/rejected

For more information, see Response State Documents (p. 223).

Example Policy

The following is an example of the required policy:

"Version": "2012-10-17",
"Statenent": [{
"Effect": "Alow',
"Action": [
"iot: Subscribe",
"iot: Receive"
1,
"Resource": ["arn:aws:iot:region:account:topicfilter/$aws/
t hi ngs/ t hi ngNane/ shadow/ get/ accept ed"]
}H
}

/get/rejected

AWS loT publishes an error response document to this topic when it can't return the thing shadow:

$aws/ t hi ngs/ t hi ngNane/ shadow/ get/rej ect ed

For more information, see Error Response Documents (p. 224).

Example Policy

The following is an example of the required policy:

"Version": "2012-10-17",
"Statement": [{
"Action": [
"i ot: Subscri be",
"i ot: Receive"

]

source": ["arn:aws:iot:region:account:topicfilter/$aws/
t hi ngs/ t hi ngNane/ shadow/ get/rej ect ed"]

}H
}

/delete

A thing publishes a document to this topic to delete a thing shadow:

$aws/ t hi ngs/ t hi ngNane/ shadow del et e

To delete a thing shadow, send a message to the delete topic. The content of the message is ignored.

AWS loT responds by publishing to either /delete/accepted (p. 221) or /delete/rejected (p. 221).

220

AWS IoT Developer Guide
/delete/accepted

Example Policy

The following is an example policy:

"Version": "2012-10-17",
"Statenment": [{
"Effect": "Alow',
"Action": [
"i ot: Subscri be",
"i ot: Recei ve"

]

esource": ["arn:aws:iot:region:account:topic filter/$aws/
t hi ngs/ t hi ngNanme/ shadow del et e"]
}H
}

/delete/accepted

AWS loT publishes a message to this topic when deleting a thing shadow:

$aws/ t hi ngs/ t hi ngNane/ shadow/ del et e/ accept ed

Example Policy

The following is an example of the required policy:

"Version": "2012-10-17",
"Statenent": [{
"Effect": "Alow',
"Action": [
"iot:Subscribe",
"iot: Receive"
1,
"Resource": ["arn:aws:iot:region:account:topicfilter/$aws/
t hi ngs/ t hi ngNanme/ shadow del et e/ accept ed"]
}H
}

/delete/rejected

AWS loT publishes an error response document to this topic when it can't delete the thing shadow:

$aws/ t hi ngs/ t hi ngNane/ shadow/ del et e/ rej ect ed

For more information, see Error Response Documents (p. 224).

Example Policy

The following is an example of the required policy:

221

AWS IoT Developer Guide
Document Syntax

"Version": "2012-10-17",
"Statenent": [{
"Effect": "Allow',
"Action":
"iot:Subscribe",
"iot:Receive"
1,
"Resource": ["arn:aws:iot:region:account:topicfilter/$aws/
t hi ngs/ t hi ngNane/ shadow/ del et e/ rej ect ed"]

}
}

Device Shadow Document Syntax

The Thing Shadows service uses the following documents in UPDATE, GET, and DELETE operations
using the RESTful API (p. 213) or MQTT Pub/Sub Messages (p. 216). For more information, see
Device Shadows Documents (p. 201).
Examples

¢ Request State Documents (p. 222)

* Response State Documents (p. 223)

e Error Response Documents (p. 224)

Request State Documents

Request state documents have the following format:

{
"state": {
"desired": {
"attributel": integer?2,
"attribute2": "string2",
"attributeN': bool ean2
},
"reported": {
"attributel": integerl,
"attribute2": "stringl",
"attributeN': bool eanl
}
}
"client Token": "token",
"version": version
}

¢ st at e — Updates affect only the fields specified.

e cl i ent Token — If used, you can verify that the request and response contain the same client
token.

e versi on — If used, the Thing Shadows service processes the update only if the specified version
matches the latest version it has.

222

AWS IoT Developer Guide
Response State Documents

Response State Documents

Response state documents have the following format:

{
"state": {
"desired": {
"attributel": integer2,
"attribute2": "string2",
"attributeN': bool ean2
H
"reported": {
"attributel": integerl,
"attribute2": "stringl",
"attributeN': bool eanl
H
"delta": {
"attribute3": integerX,
"attributeb": "stringY"
}
H
"metadata": {
"desired": {
"attributel": {
"timestamp": tinestanp
H
"attribute2": {
"timestamp": tinestanp
H
"attributeN': {
"timestamp": tinestanp
}
H
"reported": {
"attributel": {
"timestamp": tinestanp
H
"attribute2": {
"timestamp": tinestanp
H
"attributeN': {
"timestamp": tinestanp
}
}
}' .
"timestanp": tinestanp,
"client Token": "token",
"version": version
}
e state

e reported — Only present if a thing reported any data in the r epor t ed section and contains only
fields that were in the request state document.

223

AWS loT Developer Guide
Error Response Documents

» desi red — Only present if a thing reported any data in the desi r ed section and contains only
fields that were in the request state document.

¢ net adat a — Contains the timestamps for each attribute in the desi r ed and r epor t ed sections so
that you can determine when the state was updated.

¢ ti mest anp — The Epoch date and time the response was generated by AWS IoT.

¢ cli ent Token — Present only if a client token was used when publishing valid JSON to the /
updat e topic.

e ver si on — The current version of the document for the thing shadow shared in AWS IoT. Itis
increased by one over the previous version of the document.

Error Response Documents

Error response documents have the following format:

{
"code": error-code,
"message": "error-nessage",
"timestanmp": tinestanp,
"client Token": "token"

}

¢ code — An HTTP response code that indicates the type of error.
¢ nessage — A text message that provides additional information.
e ti mest anp — The date and time the response was generated by AWS loT.

¢ client Token — Present only if a client token was used when publishing valid JSON to the /
updat e topic.

For more information, see Device Shadow Error Messages (p. 224).

Device Shadow Error Messages

The Thing Shadows service publishes a message on the error topic (over MQTT) when an attempt
to change the state document fails. This message is only emitted as a response to a publish request
on one of the reserved $aws topics. If the client updates the document using the REST API, then it
receives the HTTP error code as part of its response, and no MQTT error messages are emitted.

HTTP Error Code Error Messages

400 (Bad Request) ¢ Invalid JSON
¢ Missing required node: state
« State node must be an object
» Desired node must be an object
* Reported node must be an object
¢ Invalid version
* Invalid clientToken
¢ JSON contains too many levels of nesting; maximum is 6
 State contains an invalid node

401 (Unauthorized) ¢ Unauthorized

224

AWS IoT Developer Guide
Error Messages

HTTP Error Code Error Messages

403 (Forbidden) e Forbidden

404 (Not Found) * Thing not found

409 (Conflict) ¢ Version conflict

413 (Payload Too Large) * The payload exceeds the maximum size allowed

415 (Unsupported Media Type) ¢ Unsupported documented encoding; supported encoding
is UTF-8

429 (Too Many Requests) ¢ The Thing Shadow service will generate this error

message when there are more than 10 in-flight requests.

500 (Internal Server Error) * Internal service failure

225

AWS IoT Developer Guide
AWS Mobile SDK for Android

AWS IoT SDKs

Contents

AWS Mobile SDK for Android (p. 226)

Arduino Yun SDK (p. 226)

AWS |oT Device SDK for Embedded C (p. 227)

AWS Mobile SDK for iOS (p. 227)

AWS loT Device SDK for Java (p. 227)

AWS loT Device SDK for JavaScript (p. 227)

AWS loT Device SDK for Python (p. 228)

Getting Started with AWS IoT on the Raspberry Pi and the AWS IoT Embedded C SDK (p. 228)

Getting Started with AWS IoT on Raspberry Pi and the AWS loT Device SDK for
JavaScript (p. 246)

The AWS loT Device SDKs help you to easily and quickly connect your devices to AWS loT. The AWS
10T Device SDKs include open-source libraries, developer guides with samples, and porting guides so
that you can build innovative IoT products or solutions on your choice of hardware platforms.

AWS Mobile SDK for Android

The AWS SDK for Android contains a library, samples, and documentation for developers to build
connected mobile applications using AWS. This SDK also includes support for calling AWS IoT APIs.
For more information, see the following:

« AWS Mobile SDK for Android on GitHub
« AWS Mobile SDK for Android Readme
¢ AWS Mobile SDK for Android Samples

Arduino Yun SDK

The AWS loT Arduino Yun SDK allows developers to connect their Arduino YUn-compatible boards
to AWS loT. By connecting a device to AWS IoT, users can securely work with the message broker,

226

https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android/blob/master/README.md
https://github.com/awslabs/aws-sdk-android-samples

AWS IoT Developer Guide
AWS IloT Device SDK for Embedded C

rules, and thing shadows provided by AWS loT and with other AWS services like AWS Lambda,
Amazon Kinesis, and Amazon S3. For more information, see the following:

¢ Arduino Yun SDK on GitHub
¢ Arduino Yun SDK Readme

AWS |oT Device SDK for Embedded C

The AWS loT Device SDK for Embedded C is a collection of C source files that can be used in
embedded applications to securely connect to the AWS IloT platform. It includes transport clients, TLS
implementations, and examples for their use. It also supports AWS loT-specific features such as an
API to access the Thing Shadows service. It is distributed as source code and is intended to be built
into customer firmware along with application code, other libraries, and RTOS. For more information
see the following:

« AWS loT Device SDK for Embedded C GitHub
¢ AWS IoT Device SDK for Embedded C Readme
¢ AWS IoT Device SDK for Embedded C Porting Guide

AWS Mobile SDK for i0S

The AWS SDK for iOS is an open-source software development kit, distributed under an Apache
Open Source license. The SDK for iOS provides a library, code samples, and documentation to help
developers build connected mobile applications using AWS. This SDK also includes support for calling
the AWS loT API.

¢ AWS SDK for iOS on GitHub

¢ AWS SDK for iOS Readme

¢ AWS SDK for iOS Samples

AWS loT Device SDK for Java

The AWS loT Device SDK for Java enables Java developers to access the AWS |oT platform through
MQTT or MQTT over the WebSocket protocol. The SDK is built with AWS IoT thing shadow support,
providing access to thing shadows using HTTP methods, including GET, UPDATE, and DELETE. It
also supports a simplified thing shadow access model, which allows developers to exchange data with
thing shadows by just using getter and setter methods without having to serialize or deserialize any
JSON documents. For more information, see the following:

¢ AWS loT Device SDK for Java on GitHub
« AWS loT Device SDK for Java readme

AWS loT Device SDK for JavaScript

The aws-iot-device-sdk.js package allows developers to write JavaScript applications that access AWS
10T using MQTT or MQTT over the WebSocket protocol. It can be used in Node.js environments and
browser applications. For more information, see the following:

227

https://github.com/aws/aws-iot-device-sdk-arduino-yun
https://github.com/aws/aws-iot-device-sdk-arduino-yun/blob/master/README.md
https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/aws/aws-iot-device-sdk-embedded-C/blob/master/README.md
https://github.com/aws/aws-iot-device-sdk-embedded-C/blob/master/PortingGuide.md
https://github.com/aws/aws-sdk-ios
https://github.com/aws/aws-sdk-ios/blob/master/README.md
https://github.com/aws/aws-sdk-ios/blob/master/README.md#iot-sample-swift
https://github.com/aws/aws-iot-device-sdk-java
https://github.com/aws/aws-iot-device-sdk-java/blob/master/README.md

AWS IoT Developer Guide
AWS loT Device SDK for Python

¢ AWS IoT Device SDK for JavaScript on GitHub
¢ AWS IoT Device SDK for JavaScript readme

AWS loT Device SDK for Python

The AWS loT Device SDK for Python allows developers to write Python scripts to use their devices to
access the AWS loT platform through MQTT or MQTT over the WebSocket protocol. By connecting
their devices to AWS IoT, users can securely work with the message broker, rules, and thing shadows
provided by AWS loT and with other AWS services like AWS Lambda, Amazon Kinesis, and Amazon
S3, and more.

« AWS IoT Device SDK for Python on GitHub
¢« AWS IoT Device SDK for Python readme

Getting Started with AWS |oT on the Raspberry Pi
and the AWS IoT Embedded C SDK

This guide provides step-by-step instructions for connecting your Raspberry Pi to the AWS IoT platform
and setting it up for use with the AWS loT Embedded C SDK. After following the steps in this guide,
you will be able to get connected to the AWS IoT platform and run sample apps included with the AWS
IoT Embedded C SDK.

Prerequisites

¢ A fully set up Raspberry Pi board with Internet access

For information about setting up your Raspberry Pi, see Raspberry Pi Quickstart Guide.
¢ Chrome or Firefox (Iceweasel) browser

For information about installing Iceweasel, see the instructions on the Embedded Linux wiki.

In this guide, the following hardware and software are used:

¢ Raspberry Pi 2 Model B
¢ Raspbian Wheezy

¢ |ceweasel browser

Connecting Your Raspberry Pi
Sign in to the AWS loT Console

Turn on your Raspberry Pi and confirm you have an Internet connection.

Sign in to the AWS Management Console and open the AWS |oT console at https://aws.amazon.com/
iot. On the Welcome page, choose Get started with AWS IoT.

228

https://github.com/aws/aws-iot-device-sdk-js
https://github.com/aws/aws-iot-device-sdk-js/blob/master/README.md
https://github.com/aws/aws-iot-device-sdk-python
https://github.com/aws/aws-iot-device-sdk-python/blob/master/README.rst
https://www.raspberrypi.org/help/quick-start-guide/
http://elinux.org/RPi_IceWeasel#Installing_the_software
https://www.raspberrypi.org/
https://www.raspberrypi.org/downloads/
http://elinux.org/RPi_IceWeasel#Installing_the_software
https://aws.amazon.com/iot
https://aws.amazon.com/iot

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Easily and sex

Reliably scale to bil

If this is your first time using the AWS IoT console, you will see two buttons: Get Started and Start
interactive tutorial.

AWS IoT Developer Guide
Connecting Your Raspberry Pi

AWS |

AWS loT is a managed cloud platfc
-- cars, light bulbs, sensor grids al
interact with cloud applicat

Getting started do

Choose Get Started. The following page should appear.

230

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Reso urces + Create a resource G

T
0/0 things 0/0 thing types 0/0rules 0/0 CAs 0/0 certif

L T e P T PRI il T Y

If you don't see a blue banner with Create a thing, Create a rule, Create a certificate, and Create a
policy buttons, choose the Create a resource button:

231

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Resources :

T
0/0 things 0/0 thingtypes 0/0rules 0/0 CAs 0/0 certif

Create and Attach a Thing (Device)

A thing represents a device whose status or data is stored in the AWS loT cloud. The Thing Shadows
service maintains a thing shadow for each device connected to AWS IoT. Thing shadows allow you to
access and modify thing state data.

Choose Create a thing, type a name for the thing, and then choose Create:

232

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Re SO u rces X Close create panel K

,_.—"'-\"'.g. ™
1.-_‘_'_ﬂ_l::.'-” '5-"':@" |
LY ""."'-|
cCS :
Create a thing Create a thing ty]

Create a thing

Create a thing to represent your device in the cloud. This step cre

Name myRaspber r',fF"||

Choose a thing type

You can associate a thing type to your thing. If you do not want tc

No type v

Attributes used in a thing search

MNext (optional), you can use thing attributes to describe the identi

Add attribute

233

AWS loT Developer Guide
Connecting Your Raspberry Pi

In addition to a confirmation message, the View thing button will be displayed:

234

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Re sources X Close create panel E

iy M
N N
. —
Create a thing Create a thing typ

Your thing has been created.

You can now connect a device to this thing, or add a rule that wvill

Y
1/1 things 0f0 thingtypes 0/Orules 0/0 CAs 0/0 certif

myHRaspberryPi

235

AWS loT Developer Guide
Connecting Your Raspberry Pi

Choose View thing to display information about your thing:

236

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Re sources X Close create panel E

\Ng £ X

Create a thing Create a thing type Create

Your thing has been created.

You can now connect a device to this thing, or add a rule that wvill

T
1/1 things 0f0 thingtypes 0/Orules 0/0 CAs 0/0 certi
0/0 policies

myRaspberryPi

237

AWS loT Developer Guide
Connecting Your Raspberry Pi

Choose the Connect a device button to download a key pair and a certificate generated by AWS loT:

238

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Re sources X Close create panel E

\Ng £ X

Create a thing Create a thing type Create

Your thing has been created.

You can now connect a device to this thing, or add a rule that wvill

T
1/1 things 0f0 thingtypes 0/Orules 0/0 CAs 0/0 certi
0/0 policies

myRaspberryPi

239

AWS IoT Developer Guide
Connecting Your Raspberry Pi

On the Connect a device page, select the SDK to use, and then choose Generate certificate and
policy:

Connect a device

Connect your device to one of our many supported SDKs.

O Embedded C NodeldS First, yo

" Arduino Yan will helf
' that def

You can
default .
through

R A R s ™ s BB

This will generate an X.509 certificate and key pair; activate the X.509 certificate; and create an AWS
10T policy and attach it to the certificate.

The following page will be displayed:

240

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Connect a device

Connect your device to one of our many supported SDKs.

O Embedded C | NodeldS Please ¢
" Arduino Yin but the |
e [
e [
e [

NI N T I OO L L

Create a working directory called devi ceSDK where your files will be stored. Choose the links to
download your public and private keys and certificate and save them in the devi ceSDK directory.

Choose Confirm & start connecting. The following page will be displayed:

241

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Connect a device

Connect your device to one of our many supported SDKs.

O Embedded C NodeJS
" Arduino Yin

242

//f Ge
ff ==
#defi
#defi
#deti
#deti
#defi
#defi
#defi
fr==

Start on
the stat
device ¢
connect
that you

AWS IoT Developer Guide
Connecting Your Raspberry Pi

There are two versions of the AWS loT Embedded C SDK: OpenSSL and mbed TLS. Choose

the OpenSSL link. This will download the AWS loT AWS loT Device SDK for C in a tarball

(I'i nux_mgtt _openssl -1 atest.tar). Save itin your devi ceSDK directory. In a terminal window,
type the following command to extract the tarball into your devi ceSDK directory:

“tar -xvf linux_ngtt_openssl-latest.tar’

Set Up the Runtime Environment for the AWS loT Embedded
C SDK

Before you can use the AWS loT Embedded C SDK, you must install the OpenSSL library on
Raspberry Pi. . In a terminal window, run sudo apt-get install |ibssl-dev.

Sample App Configuration

The AWS loT Embedded C SDK includes sample apps for you to try. For simplicity, we are going to
run subscribe_publish_sample. Copy your certificate and private key into the devi ceSDK/ certs
directory. Download a root CA certificate here. Copy the root CA text from the browser, paste it into a
file, and then copy it into the devi ceSDK/ cer t s directory.

Navigate to the devi ceSDK/ sanpl e_apps/ subscri be_publ i sh_sanpl e directory. You will need
to configure your personal endpoint, private key, and certificate. If you have access to a machine
with the AWS CLI installed, you can use the aws i ot descri be- endpoi nt command to find your
personal endpoint URL. Otherwise, go to the AWS loT console, double-click MyNewThing, and copy
everything after "https://" including ".com" from REST API endpoint.

RESO u r‘C ES + Create a resource ‘

Y Filter by resource names or by resource type (below)

‘ Select all

1/1things O/Orules 1/1 certificates

1/1 policies Firs

243

https://www.symantec.com/content/en/us/enterprise/verisign/roots/VeriSign-Class%203-Public-Primary-Certification-Authority-G5.pem

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Open the aws_i ot _confi g. h file and update the values for the following:
AWS_IOT_MQTT_HOST
Your personal endpoint.

AWS_IOT_MY_THING_NAME
Your thing name.

AWS_|IOT_ROOT_CA_FILENAME
Your root CA certificate.

AWS_|OT_CERTIFICATE_FILENAME
Your certificate.

AWS_IOT_PRIVATE_KEY_FILENAME
Your private key.

Run Sample Applications

Compile the subscri be_publ i sh_sanpl e_app using the included makefile.
make -f Makefile

This will generate an executable file.

244

AWS IoT Developer Guide
Connecting Your Raspberry Pi

! Jiraspoermypl: ~/LowWniogaas/Anux_..Mmple_apps/sUunscripe_pup

File Edit Tabs Help

pig@raspberrypi

aws iot_config.h Makefile subscribe publish sample.c
pi@raspberrypi

make
pi@raspberrypi

aws 1ot _config.h [subscribe publish sample
Makefile subscribe publish _sample.c
pi@raspberrypi

Now run the subscribe_publish_sample_app. You should see output similar to the following:

245

AWS IoT Developer Guide
AWS loT Device SDK for JavaScript

- r LA L i i B ;
- || - 1] = L 4 - |

main L#143 clientkey /home/p1/Downloads;
cribe publish sample/../../ce f -private

callback

hello from
callback
' hello from

éallbaih
: hello from

1be callback

hello from
hello from

Your Raspberry Pi is now connected to AWS IoT using the AWS loT Device SDK for C.

This guide provides step-by-step instructions for connecting your Raspberry Pi to the AWS loT platform
and setting it up for use with the AWS loT Device SDK for JavaScript. After following the steps in this
guide, you will be able to get connected to the AWS IoT platform and run sample apps included in the
SDK.

Prerequisites

» A fully set up Raspberry Pi board with Internet access

For information about setting up your Raspberry Pi, see the Raspberry Pi Quickstart Guide.

246

https://www.raspberrypi.org/help/quick-start-guide/

AWS IoT Developer Guide
Connecting Your Raspberry Pi

¢ Chrome or Firefox (Iceweasel) browser

For information about installing Iceweasel, see the instructions on the Embedded Linux wiki.

In this guide, the following hardware and software are used:

¢ Raspberry Pi 2 Model B
¢ Raspbian Jessie

* |ceweasel browser

Connecting Your Raspberry Pi
Sign in to the AWS loT Console

Turn on your Raspberry Pi and confirm you have an Internet connection.

Sign in to the AWS Management Console and open the AWS IoT console at https://aws.amazon.com/
iot. On the Welcome page, choose Get started with AWS IoT:

247

http://elinux.org/RPi_IceWeasel#Installing_the_software
https://www.raspberrypi.org/
https://www.raspberrypi.org/downloads/raspbian/
http://elinux.org/RPi_IceWeasel#Installing_the_software
https://aws.amazon.com/iot
https://aws.amazon.com/iot

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Easily and sex

Reliably scale to bil

If this is your first time using the AWS IoT console, you will see two buttons: Get Started and Start
Interactive Tutorial.

AWS IoT Developer Guide
Connecting Your Raspberry Pi

AWS |

AWS loT is a managed cloud platfc
-- cars, light bulbs, sensor grids al
interact with cloud applicat

Getting started do

Choose Get Started. The following page should appear.

249

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Reso urces + Create a resource G

T
0/0 things 0/0 thing types 0/0rules 0/0 CAs 0/0 certif

L T e P T PRI il T Y

If you don't see a blue banner with Create a thing, Create a rule, Create a certificate, and Create a
policy buttons, choose the Create a resource button:

250

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Resources :

T
0/0 things 0/0 thingtypes 0/0rules 0/0 CAs 0/0 certif

Create and Attach a Thing (Device)

A thing represents a device whose status or data is stored in the AWS loT cloud. The Thing Shadow
service maintains a thing shadow for each device connected to AWS IoT. Thing shadows allow you to
access and modify thing state data.

Choose Create a thing, type in a name for the thing, and then choose Create:

251

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Re SO u rces X Close create panel K

,_.—"'-\"'.g. ™
1.-_‘_'_ﬂ_l::.'-” '5-"':@" |
LY ""."'-|
cCS :
Create a thing Create a thing ty]

Create a thing

Create a thing to represent your device in the cloud. This step cre

Name myRaspber r',fF"||

Choose a thing type

You can associate a thing type to your thing. If you do not want tc

No type v

Attributes used in a thing search

MNext (optional), you can use thing attributes to describe the identi

Add attribute

252

AWS loT Developer Guide
Connecting Your Raspberry Pi

In addition to a confirmation message, the View thing button will be displayed:

253

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Re sources X Close create panel E

iy M
N N
. —
Create a thing Create a thing typ

Your thing has been created.

You can now connect a device to this thing, or add a rule that wvill

Y
1/1 things 0f0 thingtypes 0/Orules 0/0 CAs 0/0 certif

myHRaspberryPi

254

AWS loT Developer Guide
Connecting Your Raspberry Pi

Choose View thing to display information about your thing:

255

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Re sources X Close create panel E

\Ng £ X

Create a thing Create a thing type Create

Your thing has been created.

You can now connect a device to this thing, or add a rule that wvill

T
1/1 things 0f0 thingtypes 0/Orules 0/0 CAs 0/0 certi
0/0 policies

myRaspberryPi

256

AWS loT Developer Guide
Connecting Your Raspberry Pi

Choose the Connect a device button to download a key pair and a certificate generated by AWS loT :

257

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Re sources X Close create panel E

\Ng £ X

Create a thing Create a thing type Create

Your thing has been created.

You can now connect a device to this thing, or add a rule that wvill

T
1/1 things 0f0 thingtypes 0/Orules 0/0 CAs 0/0 certi
0/0 policies

myRaspberryPi

258

AWS IoT Developer Guide
Connecting Your Raspberry Pi

On the Connect a device page, select the NodeJS SDK, and then choose Generate certificate and
policy:

Connect a device

Connect your device to one of our many supported SDKs.

" 'Embedded C © NodeldS First, you will need

~ Arduine Yin following steps will
' certificate for auther

certificate is allowec

You can generate a
also generate a def:
this security policy ¢

This will generate an X.509 certificate and a key pair; activate the X.509 certificate; and create an AWS
10T policy and attach it to the certificate.

The following page will be displayed:

259

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Connect a device

Connect your device to one of our many supported SDKs.

" 'Embedded C {© NodelS Please download th
~ Arduine Yin retrieved at any tim:
' closing this form.

* Download pul
¢ Download pri
* Download cer

B e R i T PNy RN S S

Create a working directory called devi ceSDK where your SDK files will be stored. Create a directory
called cer t s within the devi ceSDK directory where you will store your device certificate, private key,
and root CA certificate.

Choose the links to download your public and private keys and certificate, and then save them in the
devi ceSDK/ cert s directory.

Download a root CA certificate from here. Copy the text from the browser, paste it into a file, and save
it to a file called r oot CA. pem crt inthe cert s directory.

Choose Confirm & start connecting. The following page will be displayed:

260

https://www.symantec.com/content/en/us/enterprise/verisign/roots/VeriSign-Class%203-Public-Primary-Certification-Authority-G5.pem

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Connect a device

Connect your device to one of our many supported SDKs.

" 'Embedded C © NodedS
" Arduino Yin

AWS lo

Download the

Set up the 5D
Add in the foll
{
"h
"p
"
"t
s
"
"p
}

Start one of tt
observe the s
shadow. Only
same time. If
thing (and clie

261

Aeturn to Th

AWS IoT Developer Guide
Connecting Your Raspberry Pi

This page contains a link to download the AWS IoT Device SDK for Node.js. You can download the
SDK using this link, but it is easier to install the SDK using npmas shown below. But first you must
install Node and npm as discussed in the next section.

Set Up the Runtime Environment for the AWS loT Device SDK
for JavaScript

To use the AWS loT Device SDK for JavaScript, you need to install Node and the npm development
tool on your Raspberry Pi. These packages are not installed by default.

Note
Before you continue, you might want to configure the keyboard mapping for your Raspberry
Pi. For more information, see Configure Raspberry Pi Keyboard Mapping.

To add the Node repository, open a terminal and run the following command:

curl -sLS https://apt.adafruit.comadd | sudo bash

-

=

Qg S DETTY L)
File Edit Tabs Help

pi@raspberrypi

To install Node, run sudo apt-get install node. You should see output similar to the following:

262

https://www.raspberrypi.org/documentation/configuration/localisation.md

AWS IoT Developer Guide
Connecting Your Raspberry Pi

-,
-

Qg S DETTY L)

File Edit Tabs Help

pi@raspberrypi
Reading |=-
Building
Reading

To install npm, run sudo apt-get install npm You should see output similar to the following:

263

AWS IoT Developer Guide
Connecting Your Raspberry Pi

- ".;.'-: 11 J—' 4o

:e Edit chs Help

To verify the installation of Node and npm, run node -v and npm - v. You should see output similar to
the following:

264

AWS IoT Developer Guide
Connecting Your Raspberry Pi

-,
-

Qg S DETTY L)
File Edit Tabs Help

pi@raspberrypi node -v
S

pi@raspberrypi npm -v
2.11.2
pi@raspberrypi |

Install the AWS loT Device SDK for JavaScript

Now you will install the AWS IoT Device SDK for JavaScript/Node.js on your Raspberry Pi. Open a
console window and from your ~/ devi ceSDK directory use npm to install the SDK:

npminstall aws-iot-device-sdk

After the installation is complete, you should find a node_nodul es directory in your ~/ devi ceSDK
directory.

Prepare to Run the Sample Applications

The AWS loT Device SDK for JavaScript includes sample apps for you to try. To run them, you must
configure your certificates and private key.

By default, the files should be named as follows:

 your private key: pri vat e. pem key

265

AWS loT Developer Guide
Connecting Your Raspberry Pi

« your certificate: certificate. pemcrt
» the CA root certificate: r oot - CA. crt

You can edit the cmdline.js file to change the default names used by each sample.

default: {
region: 'us-east-1',
clientld: clientldDefault,
privateKey: 'private.pem key',
clientCert: 'certificate.pemecrt',
caCert: 'root-CA crt,

t est Mode: 1,
reconnect Period: 3 * 1000, /* mlliseconds */
delay: 4 * 1000 /[* mlliseconds */

Run the Sample Applications

Now you can run examples using node examples/<YourDesiredExample>.js -f <certs location>
(assuming you are under ~/ devi ceSDK/ node_npdul es/ aws- i ot - devi ce- sdk/). In this case, the
certificates location should be ~/ devi ceSDK/ cert s/ . You can specify the certificates location and
your own host address using command line options. For information, see Certificates.

Your Raspberry Pi is now connected to AWS IoT using the AWS loT SDK for JavaScript.

266

https://github.com/aws/aws-iot-device-sdk-js#certificates

AWS IoT Developer Guide

Monitoring AWS IloT

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS loT
and your AWS solutions. You should collect monitoring data from all parts of your AWS solution so that
you can more easily debug a multi-point failure if one occurs. Before you start monitoring AWS loT, you
should create a monitoring plan that includes answers to the following questions:

» What are your monitoring goals?

¢ Which resources will you monitor?

¢ How often will you monitor these resources?

¢ Which monitoring tools will you use?

* Who will perform the monitoring tasks?

¢ Who should be notified when something goes wrong?

The next step is to establish a baseline for normal AWS loT performance in your environment, by
measuring performance at various times and under different load conditions. As you monitor AWS
10T, store historical monitoring data so that you can compare it with current performance data, identify
normal performance patterns and performance anomalies, and devise methods to address issues.

For example, if you're using Amazon EC2, you can monitor CPU utilization, disk 1/0, and network
utilization for your instances. When performance falls outside your established baseline, you might
need to reconfigure or optimize the instance to reduce CPU utilization, improve disk I/O, or reduce
network traffic.

To establish a baseline you should, at a minimum, monitor the following items:

¢ PublishIn.Success

¢ PublishOut.Success

e Subscribe.Success

¢ Ping.Success

e Connect.Success

¢ GetThingShadow.Accepted

» UpdateThingShadow.Accepted

267

AWS loT Developer Guide
Monitoring Tools

DeleteThingShadow.Accepted
RulesExecuted

Topics

¢ Monitoring Tools (p. 268)
¢ Monitoring with Amazon CloudWatch (p. 269)
¢ Logging AWS IoT API Calls with AWS CloudTrail (p. 274)

Monitoring Tools

AWS provides various tools that you can use to monitor AWS loT. You can configure some of these
tools to do the monitoring for you, while some of the tools require manual intervention. We recommend
that you automate monitoring tasks as much as possible.

Automated Monitoring Tools

You can use the following automated monitoring tools to watch AWS loT and report when something is
wrong:

Amazon CloudWatch Alarms — Watch a single metric over a time period that you specify, and
perform one or more actions based on the value of the metric relative to a given threshold over
a number of time periods. The action is a notification sent to an Amazon Simple Notification
Service (Amazon SNS) topic or Auto Scaling policy. CloudWatch alarms do not invoke

actions simply because they are in a particular state; the state must have changed and been
maintained for a specified number of periods. For more information, see Monitoring with Amazon
CloudWatch (p. 269).

Amazon CloudWatch Logs — Monitor, store, and access your log files from AWS CloudTrail or
other sources. For more information, see Monitoring Log Files in the Amazon CloudWatch User
Guide.

Amazon CloudWatch Events — Match events and route them to one or more target functions
or streams to make changes, capture state information, and take corrective action. For more
information, see Using Events in the Amazon CloudWatch User Guide.

AWS CloudTrail Log Monitoring — Share log files between accounts, monitor CloudTrail log files
in real time by sending them to CloudWatch Logs, write log processing applications in Java, and
validate that your log files have not changed after delivery by CloudTrail. For more information, see
Working with CloudTrail Log Files in the AWS CloudTrail User Guide.

Manual Monitoring Tools

Another important part of monitoring AWS IoT involves manually monitoring those items that the
CloudWatch alarms don't cover. The AWS loT, CloudWatch, and other AWS console dashboards
provide an at-a-glance view of the state of your AWS environment. We recommend that you also check
the log files on AWS loT.

AWS loT dashboard shows:
» CA certificates

* Certificates

» Polices

* Rules

268

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchEvents.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html

AWS IoT Developer Guide
Monitoring with Amazon CloudWatch

e Things
¢ CloudWatch home page shows:
» Current alarms and status
» Graphs of alarms and resources
» Service health status

In addition, you can use CloudWatch to do the following:

» Create customized dashboards to monitor the services you care about
» Graph metric data to troubleshoot issues and discover trends

» Search and browse all your AWS resource metrics

» Create and edit alarms to be notified of problems

Monitoring with Amazon CloudWatch

You can monitor AWS loT using CloudWatch, which collects and processes raw data from AWS loT
into readable, near real-time metrics. These statistics are recorded for a period of two weeks, so that
you can access historical information and gain a better perspective on how your web application or
service is performing. By default, AWS IoT metric data is automatically sent to CloudWatch in 1 minute
periods. For more information, see What Are Amazon CloudWatch, Amazon CloudWatch Events, and
Amazon CloudWatch Logs? in the Amazon CloudWatch User Guide.

Topics
¢ AWS IoT Metrics and Dimensions (p. 269)
¢ How Do | Use AWS loT Metrics? (p. 271)
¢ Creating CloudWatch Alarms to Monitor AWS 10T (p. 271)

AWS loT Metrics and Dimensions

When you interact with AWS 10T, it sends the following metrics and dimensions to CloudWatch every
minute. You can use the following procedures to view the metrics for AWS IoT.

To view metrics using the CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension combinations
within each namespace.

Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.
In the navigation pane, choose Metrics.

In the CloudWatch Metrics by Category pane, under the metrics category for AWS loT, select a
metrics category, and then in the upper pane, scroll down to view the full list of metrics.

To view metrics using the AWS CLI

¢ Atacommand prompt, use the following command:

aws cloudwatch list-netrics --namespace "AWS/ | oT"

CloudWatch displays the following metrics for AWS loT:

269

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
https://console.aws.amazon.com/cloudwatch/

AWS IoT Developer Guide
Metrics and Dimensions

AWS |oT Metrics

The AWS/ | oT namespace includes the following metrics.

AWS loT sends the following metrics to CloudWatch once per received request.

Metric

Publishin.Success

PublishOut.Success

Subscribe.Success

Ping.Success

Connect.Success

GetThingShadow.Accepted

UpdateThingShadow.Accepted

Description

A client published on an MQTT topic successfully.
Valid Dimensions: Protocol

Valid Statistics:1 for success, O for failure.

Unit: Count

Clients subscribed to an MQTT topic recieved a
published message.

Valid Dimensions: Protocol
Valid Statistics:1 for success, O for failure.
Unit: Count

AWS loT message broker received a request to
subscribe to an MQTT topic.

Valid Dimensions: Protocol

Valid Statistics:1 for success, O for failure.

Unit: Count

AWS loT received a Ping message.

Valid Dimensions: Protocol

Valid Statistics:1 per ping request from the client.
Unit: Count

A client connected to AWS loT.

Valid Dimensions: Protocol

Valid Statistics: 1 per successful MQTT connection
from the client.

Unit: Count

AWS loT received a GetThingShadow request.
Valid Dimensions: Protocol

Valid Statistics:1 for success, O for failure.

Unit: Count

AWS loT received a UpdateThingShadow request.

Valid Dimensions: Protocol

270

AWS loT Developer Guide
Using AWS loT Metrics

Metric Description
Valid Statistics:1 for success, 0 for failure.

Unit: Count
DeleteThingShadow.Accepted AWS |oT received a DeleteThingShadow request.
Valid Dimensions: Protocol
Valid Statistics:1 for success, O for failure.
Unit: Count
RulesExecuted AWS loT executed a rule..
Valid Dimensions: Protocol
Valid Statistics:1 for success, O for failure.

Unit: Count

Dimensions for AWS loT Metrics
Metrics use the namespace and provide metrics for the following dimension(s):

Dimension Description

Protocol The protocol with which the request was made. Valid
values are MQTT or HTTP.

How Do | Use AWS loT Metrics?

The metrics reported by AWS |oT provide information that you can analyze in different ways. The
following use cases are based on a scenario where you have ten things that connect to the internet
once a day. Each day:

¢ Ten things connect to AWS IoT at roughly the same time.

¢ Each thing subscribes to a topic filter, and then waits for an hour before disconnecting. During this
period, things communicate with one another and learn more about the state of the world.

¢ Each thing publishes some perception it has based on its newly found data using
Updat eThi ngShadow.

¢ Each thing disconnects from AWS IloT.

These are suggestions to get you started, not a comprehensive list.

¢ How can | be notified if my things do not connect successfully each day? (p. 272)
¢ How can | be notified if my things are not publishing data each day? (p. 273)
¢ How can | be natified if my thing's shadow updates are being rejected each day? (p. 273)

Creating CloudWatch Alarms to Monitor AWS loT

You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes
state. An alarm watches a single metric over a time period you specify and performs one or more

271

AWS loT Developer Guide
Creating CloudWatch Alarms

actions based on the value of the metric relative to a given threshold over a number of time periods.

The action is a notification sent to an Amazon SNS topic or Auto Scaling policy. Alarms invoke actions
for sustained state changes only. CloudWatch alarms do not invoke actions simply because they are in
a particular state; the state must have changed and been maintained for a specified number of periods.

How can | be notified if my things do not connect successfully
each day?

1. Create an Amazon SNS topic, arn:aws:sns:us-east-1:123456789012:things-not-connecting-
successfully.

For more information, see Set Up Amazon Simple Notification Service.
2. Create the alarm.

Pronpt >aws cl oudwat ch put-metric-alarm\
--al arm nane Connect SuccessAl arm \
--alarmdescription "Al armwhen ny Things don't connect successfully"

--namespace AWS/ | oT \

--metric-nane Connect. Success \

- -di mensi ons Nane=Pr ot ocol , Val ue=MJTT \

--statistic Sum\

--threshold 10 \

--conpari son-operator LessThanThreshold \

--period 86400 \

--unit Count \

--evaluation-periods 1\

--alarmactions arn:aws:sns: us-east-1:1234567890: t hi ngs- not -
connecti ng-successful ly

Pronpt >aws cl oudwat ch put-metric-alarm\
--al arm name Connect SuccessAl arm\
--alarmdescription "Al armwhen ny Things don't connect successfully"”

--namespace AWS/ | oT \

--netric-name Connect. Success \

- -di mensi ons Nane=Pr ot ocol , Val ue=MQTT \

--statistic Sum\

--threshold 10 \

--conpari son-operator LessThanThreshold \

--period 86400 \

--unit Count \

--evaluation-periods 1\

--alarmactions arn:aws:sns: us-east-1:1234567890: t hi ngs- not -
connecting-successfully

3. Test the alarm.

Pronpt >aws cl oudwat ch set-alarmstate --al arm nane Connect SuccessAl arm - -
state-reason "initializing" --state-value K

Pr onpt >aws cl oudwat ch set-al armstate --al arm nane Connect SuccessAlarm - -
state-reason "initializing" --state-value ALARM

272

Amazon Simple Notification Service Developer GuideUS_SetupSNS.html

AWS IoT Developer Guide
Creating CloudWatch Alarms

How can | be notified if my things are not publishing data each
day?

1. Create an Amazon SNS topic, ar n: aws: sns: us- east - 1: 123456789012: t hi ngs- not -
publ i shi ng- dat a.

For more information, see Set Up Amazon Simple Notification Service.
2. Create the alarm.

Pronpt >aws cl oudwat ch put-metric-alarm\

--al armnane PublishlnSuccessAl arm

--alarmdescription "Alarmwhen ny Things don't publish their data \

--namespace AWS/ | oT \

--metric-nane Publishln. Success \

- -di mensi ons Nane=Pr ot ocol , Val ue=MQJTT \

--statistic Sum\

--threshold 10 \

--conpari son-operator LessThanThreshold \

--period 86400 \

--unit Count \

--evaluation-periods 1\

--alarmactions arn:aws:sns: us-east-1:1234567890: t hi ngs- not -
publ i shi ng-dat a

3. Testthe alarm.

Pronpt >aws cl oudwat ch set-alarmstate --al arm name Publishl nSuccessAl arm
--state-reason "initializing" --state-value K

Pronmpt >aws cl oudwat ch set-al arm state --al arm nanme PublishlnSuccessAl arm
--state-reason "initializing" --state-value ALARM

How can | be notified if my thing's shadow updates are being
rejected each day?

1. Create an Amazon SNS topic, arn:aws:sns:us-east-1:1234567890:things-shadow-updates-
rejected.

For more information, see Set Up Amazon Simple Notification Service.
2. Create the alarm.

Pronpt >aws cl oudwat ch put-metric-alarm\
--al arm name Updat eThi ngShadowSuccessAl arm \
--alarmdescription "A armwhen ny Things Shadow updates are getting

rejected" \

--namespace AWS/ | oT \
--nmetric-name Updat eThi ngShadow. Success \
--di mensi ons Nanme=Pr ot ocol , Val ue=MJTT \
--statistic Sum\
--threshold 10 \
--conpari son-operator LessThanThreshold \
--period 86400 \
--unit Count \

273

Amazon Simple Notification Service Developer GuideUS_SetupSNS.html
Amazon Simple Notification Service Developer GuideUS_SetupSNS.html

AWS loT Developer Guide
Logging AWS IoT API Calls with AWS CloudTrail

--evaluation-periods 1\
--alarmactions arn:aws: sns: us-east-1:1234567890: t hi ngs- shadow
updat es-rej ect ed

3. Testthe alarm.

Pronpt >aws cl oudwat ch set-alarmstate --al arm nane
Updat eThi ngShadowSuccessAl arm --state-reason "initializing" --state-val ue
(01

Pronpt >aws cl oudwat ch set-alarmstate --al arm nane
Updat eThi ngShadowSuccessAl arm --state-reason "initializing" --state-val ue
ALARM

Logging AWS loT API Calls with AWS CloudTrall

AWS loT is integrated with CloudTrail, a service that captures all of the AWS |oTAPI calls and delivers
the log files to an Amazon S3 bucket that you specify. CloudTrail captures API calls from the AWS loT
console or from your code to the AWS IoT APIs. Using the information collected by CloudTrail, you can
determine the request that was made to AWS IoT, the source IP address from which the request was
made, who made the request, when it was made, and so on.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail User
Guide.

AWS 10T Information in CloudTralil

When CloudTrail logging is enabled in your AWS account, API calls made to AWS loT actions are
tracked in CloudTrail log files where they are written with other AWS service records. CloudTrail
determines when to create and write to a new file based on a time period and file size.

All AWS loT actions are logged by CloudTrail and are documented in the AWS loT API Reference. For
example, calls to the CreateThing, ListThings, and ListTopicRules sections generate entries in the
CloudTrail log files.

Every log entry contains information about who generated the request. The user identity information in
the log entry helps you determine the following:

* Whether the request was made with root or IAM user credentials.
« Whether the request was made with temporary security credentials for a role or federated user.
* Whether the request was made by another AWS service.

For more information, see the CloudTrail userldentity Element.

You can store your log files in your Amazon S3 bucket for as long as you want, but you can also define
Amazon S3 lifecycle rules to archive or delete log files automatically. By default, your log files are
encrypted with Amazon S3 server-side encryption (SSE).

If you want to be notified upon log file delivery, you can configure CloudTrail to publish Amazon SNS
notifications when new log files are delivered. For more information, see Configuring Amazon SNS
Notifications for CloudTrail.

You can also aggregate AWS IoT log files from multiple AWS regions and multiple AWS accounts into
a single Amazon S3 bucket.

274

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/iot/latest/apireference/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html

AWS loT Developer Guide
Understanding AWS loT Log File Entries

For more information, see Receiving CloudTrail Log Files from Multiple Regions and Receiving
CloudTrail Log Files from Multiple Accounts.

Understanding AWS loT Log File Entries

CloudTrail log files can contain one or more log entries. Each entry lists multiple JSON-formatted
events. A log entry represents a single request from any source and includes information about the
requested action, the date and time of the action, request parameters, and so on. Log entries are not
an ordered stack trace of the public API calls, so they do not appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the At t achPri nci pal Pol i cy
action.

"timestanp":"1460159496",
"Addi tional EventData":"",
"Annotation":"",
"Api Version":"",
"ErrorCode":"",
"Error Message":"",
"Event | D': " 8bf f 4f ed- c229- 4d2d- 8264- 4abh28a487505",
"Event Name": " AttachPri nci pal Pol i cy",
"Event Ti ne": " 2016- 04- 08T23: 51: 36Z",
"Event Type": " AwsApi Cal | ",
"ReadOnl y":"",
"Reci pi ent AccountList":"",
"Request | D': " d4875df 2- f de4- 11e5- b829- 23bf 9b56chbcd",
"Request Paranters": {
“principal":"arn:aws:iot: us-
east-1:123456789012: cert/ 528ce36e8047f 6a75ee51lab7beddb4eb268ad41d2ea881al0b67e
"pol i cyNane": " Exanpl ePol i cyFor | oT"
},
"Resources":"",
"ResponseEl ements":"",
" Sour cel pAddress": "52. 90. 213. 26",
"User Agent": "aws-internal /3",
"Userldentity":{
"type":"AssunedRol e",
"principalld":"AKl Al 44QH8DHBEXAVPLE" ,
"arn":"arn:aws: sts::12345678912: assuned-r ol e/ i ot moni t or - us- east - 1-
bet a- I nst anceRol e- 1C5T1YCYMHPYT/ i - 35d0a4b6",
"account | d":"222222222222",
"accessKeyl d": "access-key-id",
"sessi onCont ext ": {
"attributes":({
"nf aAut henti cated": "fal se",
"creationDate":"Fri Apr 08 23:51:10 UTC 2016"
},
"sessionl ssuer": {
"type":"Rol e",
"principalld":"AKl Al 44QH8DHBEXAVPLE" ,
"arn":"arn:aws:iam: 123456789012: rol e/
executionServi ceEC2Rol e/ i ot noni t or - us- east - 1- bet a-
I nst anceRol e- 1C5T1YCYMHPYT",
"account | d":"222222222222",
"user Nanme":"i ot noni t or - us- east - 1- | nst anceRol e- 1C5T1YCYMHPYT"

275

3e76924d894",

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

AWS loT Developer Guide
Understanding AWS loT Log File Entries

}

i nvokedBy": {
"serviceAccountld":"111111111111"
}
}

pcEndpointld":""

276

AWS IoT Developer Guide
Diagnosing Connectivity Issues

Troubleshooting AWS loT

The following information might help you troubleshoot common issues in AWS IoT.

Tasks
¢ Diagnosing Connectivity Issues (p. 277)
¢ Setting Up CloudWatch Logs (p. 277)
¢ Diagnosing Rules Issues (p. 282)
¢ Diagnosing Problems with Thing Shadows (p. 282)

Diagnosing Connectivity Issues

Authentication

How do my devices authenticate AWS loT endpoints?
Add the AWS loT CA certificate to your client’s trust store. You can download the CA certificate
from here.

How can | validate a correctly configured certificate?
Use the OpenSSL s_cl i ent command to test a connection to the AWS loT endpoint:

openssl s_client -connect custom endpoint.iot.us-east-1.anmazonaws.com 8443
-CAfile CA pem-cert cert.pem-key privateKey. pem

Authorization

| received a PUBNACK or SUBNACK response from the broker. What do | do?
Make sure there is a policy attached to the certificate you are using to call AWS loT. All publish/
subscribe operations are denied by default.

Setting Up CloudWatch Logs

As messages from your devices pass through the message broker and the rules engine, AWS loT
sends progress events about each message. You can opt in to view these events in CloudWatch Logs.
For more information, see CloudWatch Logs.

277

https://www.symantec.com/content/en/us/enterprise/verisign/roots/VeriSign-Class%203-Public-Primary-Certification-Authority-G5.pem
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide//WhatIsCloudWatchLogs.html

AWS loT Developer Guide
Configuring an IAM Role for Logging

Note

Before you enable AWS loT logging, be sure you understand the access permissions to
CloudWatch Logs in your AWS account. Users with access to CloudWatch Logs will be able to
see debugging information from your devices.

Configuring an IAM Role for Logging

Use the IAM console to create a logging role.

Create an IAM Role for Logging

The following policy documents provide the role policy and trust policy that allow AWS loT to submit
logs to CloudWatch on your behalf.

Role policy:

"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Allow',
"Action": [
"l ogs: Cr eat eLogGr oup",
"l ogs: Creat eLogStreant,
"l ogs: Put LogEvent s",
"l ogs: PutMetricFilter",
"l ogs: Put Ret enti onPol i cy"
1,
"Resource": |
"

]

Trust policy:

{
"Version": "2012-10-17",

"Statenent": [

{
"Sid": ,
"Effect": "Alow',
"Principal": {
"Service": "iot.amazonaws. cont
b,
"Action": "sts:AssuneRol e"
}

Register the Logging Role with AWS loT

Use the AWS loT console or the following CLI command to register the logging role with AWS IoT.

278

AWS IoT Developer Guide
CloudWatch Log Entry Format

aws iot set-|ogging-options --|ogging-options-payl oad
rol eArn="arn: aws: i am : <your - aws- account - nun: r ol e/

| 0oTLoggi ngRol e", | ogLevel ="1 NFO'

The log level can be DEBUG, INFO, ERROR, or DISABLED:

« DEBUG provides the most detailed information of AWS IoT activity.

INFO provides a summarized view of most actions. This is sufficient for most users.
¢« ERROR provides error cases only.
« DISABLED removes logging altogether, but keeps your logging role intact.

CloudWatch Log Entry Format

Each log entry has the following information:

Event
Describes the actions that take place in AWS IloT.

TimeStamp
The time the log was generated.

Traceld
An identifier generated randomly for an incoming request that can be used to filter all of the
corresponding logs to one incoming message.

Principalld
A certificate fingerprint or a thing name, depending on which endpoint (MQTT or HTTP) received
the request from a device.

LogLevel
The logging level. Can be DEBUG, INFO, ERROR, or WARN.

Topic Name
The MQTT topic name, which is added to an entry when an MQTT publish or subscribe message
is received.

Clientld
The ID of the client that sent an MQTT message.

Thingld
The thing identifier, which is added to an entry when a request is sent to an HTTP endpoint to
update or delete thing state.

Ruleld
The rule identifier, which contains the ID of a rule when the rule is triggered.

Log Level

The log level specifies which types of logs will be generated.

DEBUG
Information that might be helpful when debugging a problem.

Logs will include DEBUG, INFO, ERROR, and WARN information.

ERROR
Any error that causes an operation to fail.

Logs will include ERROR information only.

INFO
High-level information about the flow of things.

279

AWS IoT Developer Guide
Logging Events and Error Codes

Logs will include INFO, ERROR, and WARN information.

WARN
Anything that can potentially cause inconsistencies in the system, but might not necessarily cause
the operation to fail.

Logs will include ERROR and WARN information.
Logging Events and Error Codes

This section lists the logging events and error codes sent by AWS loT.

Identity and Security

Operation/Event Name Description
Authentication Success Successfully authenticated a certificate.
Authentication Failure Failed to authenticate a certificate.

Identity and Security Error Codes

Error Code Error Description

401 Unauthorized

Message Broker

Operation/Event Name Description

MQTT Publish MQTT Publish received.

MQTT Subscribe MQTT Subscribe received.

MQTT Connect MQTT Connect received.

MQTT Disconnect MQTT Disconnect received.

HTTP/1.1 POST MHTTP/1.1 POST received.

HTTP/1.1 GET HTTP/1.1 GET received.

HTTP/1.1 Unsupported Method Used when a message contains a syntax error or

the action (HTTP PUT/DELETE/) is forbidden.

Malformed HTTP Message The connection was terminated because of a
malformed HTTP message.

Malformed MQTT Message The connection was terminated because of a
malformed MQTT message.

Authorization Failed This client attempted to publish to or subscribe
on a topic for which it has no authorization.

Package Exceeds Maximum Payload Size This client attempted to publish a payload that
exceeds the message broker's upper limit.

280

AWS IoT Developer Guide
Logging Events and Error Codes

Message Broker Error Codes

Error Code
400
401
403
503

Rules Engine Events

Operation/Event Name
MessageReceived
DynamoActionSuccess
DynamoActionFailure

KinesisActionSuccess

KinesisActionFailure
LambdaActionSuccess
LambdaActionFailure
RepublishActionSuccess
MessageReceived
RepublishActionFailure
S3ActionSuccess
S3ActionFailure
SNSActionSuccess
SNSActionFailure
SQSActionSuccess

SQSActionFailure

Thing Shadow Events

Operation/Event Name
UpdateThingState

DeleteThing

Error Description
Bad Request
Unauthorized
Forbidden

Service Unavailable

Description

Received a request for a topic.
Successfully put DynamoDB record.
Failed to put DynamoDB record.

Successfully published Amazon Kinesis
message.

Failed to publish Amazon Kinesis message.
Successfully invoked Lambda function.
Failed to invoke Lambda function.
Successfully republished message.
Received request for a topic.

Failed to republish message.

Successfully put Amazon S3 object.

Failed to put Amazon S3 object.
Successfully published to Amazon SNS topic.
Failed to publish to Amazon SNS topic.
Successfully sent message to Amazon SQS.

Failed to send message to Amazon SQS.

Description

A thing's state is updated over HTTP or MQTT.

A thing is deleted.

281

AWS IoT Developer Guide
Diagnosing Rules Issues

Thing Shadow Error Codes

Error Code Error Description
400 Bad request.

401 Unauthorized.

403 Forbidden.

404 Not found.

409 Conflict.

413 Request too large.
422 Failed to process request.
429 Too many requests.
500 Internal error.

503 Service unavailable.

Diagnosing Rules Issues

CloudWatch Logs is the best place to debug issues you are having with rules. When you enable
CloudWatch Logs for AWS loT, you get visibility into which rules are triggered and their success or
failure. You also get information about whether WHERE clause conditions match.

The most common issue is authorization. In this case, the logs will tell you your role is not authorized to
perform AssumeRole on the resource.

To view CloudWatch logs (console)

1. In the AWS Management Console, navigate to the CloudWatch console.
2. Choose Logs, and then choose the AWSIloTLogs log group from the list.

3. On the Streams for AWSIoTLogs page, you will find a log stream for each principal (X.509
certificate, IAM user, or Amazon Cognito identity) that called into AWS 10T under your account.

For more information, see CloudWatch Logs.

External services are controlled by the end user. Before rule execution, make sure external services
are set up with enough throughput and capacity units.

Diagnosing Problems with Thing Shadows

Diagnosing Thing Shadows

Issue Troubleshooting Guidelines
A thing shadow document is rejected with If you are unfamiliar with JSON, modify the
"Invalid JSON document." examples provided in this guide for your own

use. For more information, see Thing Shadow
Document Syntax.

282

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide//WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/iot/latest/developerguide/thing-shadow-document-syntax.html
http://docs.aws.amazon.com/iot/latest/developerguide/thing-shadow-document-syntax.html

AWS IoT Developer Guide
Diagnosing Problems with Thing Shadows

Issue

| submitted correct JSON, but none or only parts
of it are stored in the thing shadow document.

I received an error that the thing shadow exceeds
the allowed size.

When | receive a thing shadow, it is larger than 8
KB. How can this happen?

My request has been rejected due to incorrect
version. What should | do?

The timestamp is off by several seconds.

My device can publish and subscribe on the
corresponding thing shadow topics, but when |
attempt to update the thing shadow document
over the HTTP REST API, | get HTTP 403.

Other issues.

Troubleshooting Guidelines

Be sure you are following the JSON formatting
guidelines. Only JSON fields in the desi r ed
and r epor t ed sections will be stored. JSON
content (even if formally correct) outside of those
sections will be ignored.

The thing shadow supports 8 KB of data only.
Try shortening field names inside of your JSON
document or simply create more thing shadows.
A device can have an unlimited number of thing
shadows. The only requirement is that the thing
name is unigue in your account.

Upon receipt, the AWS IoT service adds
metadata to the thing shadow. The service
includes this data in its response, but it does
not count toward the limit of 8 KB. Only the data
for desi r ed and r epor t ed state inside the
state document sent to the thing shadow counts
toward the limit.

Perform a GET operation to sync to the latest
state document version. When using MQTT,
subscribe to the ./update/accepted topic so you
will be notified about state changes and receive
the latest version of the JSON document.

The timestamp for individual fields and the whole
JSON document is updated when the document
is received by the AWS loT service or when the
state document is published onto the ./update/
accepted and ./update/delta message. Messages
can be delayed over the network, which can
cause the timestamp to be off by a few seconds.

Be sure you have created policies in IAM

to allow access to these topics and for the
corresponding action (UPDATE/GET/DELETE)
for the credentials you are using. IAM policies
and certificate policies are independent.

The Thing Shadows service will log errors

to CloudWatch Logs. To identify device and
configuration issues, enable CloudWatch Logs
and view the logs for debug information.

283

AWS loT Developer Guide
Message Broker Limits

AWS loT Limits

The following tables list limits in AWS loT.

Message Broker Limits

Client ID size

Connection inactivity (keep-alive interval)

Maximum number of slashes in topic and topic
filter

128 bytes of UTF-8 encoded characters.

By default, an MQTT client connection is
disconnected after 30 minutes of inactivity. When
the client sends a PUBLISH, SUBSCRIBE,
PING, or PUBACK message, the inactivity timer
is reset.

A client can request a shorter keep-alive interval
by specifying a value between 5-1,200 seconds
in the MQTT CONNECT message sent to the
server. If a keep-alive value is specified, the
server will disconnect the client if it does not
receive a PUBLISH, SUBSCRIBE, PINGREQ, or
PUBACK message within a period 1.5 times the
requested interval. The keep-alive timer starts
after the sender sends a CONNACK.

If a client sends a keep-alive value of zero, the
default keep-alive behavior will remain in place.

If a client request a keep-alive shorter than 5
seconds, the server will treat the client as though
it requested a keep-alive interval of 5 seconds.

The keep-alive timer begins immediately after
the server returns a CONNACK to the client.
There might be a brief delay between the client's
sending of a CONNECT message and the start
of keep-alive behavior.

A topic provided while publishing a message or
a topic filter provided while subscribing can have
no more than 7 forward slashes (/).

284

AWS IoT Developer Guide
Message Broker Limits

Maximum inbound unacknowledged messages

Maximum outbound unacknowledged messages

Maximum retry interval for delivering QoS 1
messages

Maximum subscriptions per subscribe call

Message size

Restricted client ID prefix

Restricted topic prefix

Subscriptions per session

Thing name size

Throughput per connection

Topic size

The message broker allows 100 in-progress
unacknowledged messages per client. (This limit
is applied across all messages that require ACK.)
When this limit is reached, no new messages

will be accepted from this client until an ACK is
returned by the server.

The message broker allows only 100 in-progress
unacknowledged messages per client.(This limit
is applied across all messages that require ACK.)
When this limit is reached, no new messages will
be sent to the client until the client acknowledges
the in-progress messages.

If a connected client is unable to receive an ACK
on a QoS 1 message for one hour, the message
broker will drop the message. The client might be
unable to receive the message if it has 100 in-
flight messages, it is being throttled due to large
payloads, or other errors.

A single SUBSCRIBE call is limited to request a
maximum of eight subscriptions.

The payload for every PUBLISH message is
limited to 128 KB. The AWS IloT service will
reject messages larger than this size.

'$' is reserved for internally generated client IDs.

Topics beginning with '$' are considered reserved
and are not supported for publishing and
subscribing except when working with the Thing
Shadows service.

The message broker limits each client session
to subscribe to up to 50 subscriptions. A
SUBSCRIBE request that pushes the total
number of subscriptions past 50 will result in the
connection being disconnected.

128 bytes of UTF-8 encoded characters. This
limit applies for both the thing registry and Thing
Shadow services.

AWS loT limits the ingress and egress rate on
each client connection to 512 KB/s. Data sent or
received at a higher rate will be throttled to this
throughput.

The topic passed to the message broker when
publishing a message cannot exceed 256 bytes
of UTF-8 encoded characters.

285

AWS IoT Developer Guide
Device Shadow Limits

WebSocket connection duration

Device Shadow Limits

Maximum depth of JSON device state
documents

Maximum number of in-flight, unacknowledged
messages

WebSocket connections are limited to 24

hours. If the limit is exceeded, the WebSocket
connection will automatically be closed when

an attempt is made to send a message by the
client or server. If you need to maintain an
active WebSocket connection for longer than 24
hours, simply close and reopen the WebSocket
connection from the client side before the time
limit elapses.

AWS loT supports keep-alive values specified

in MQTT CONNECT messages. When a client
specifies a keep-alive value, the client tells the
server to disconnect the client and transmit any
last-will message associated with the MQTT
session if the server does not receive a message
(PUBLISH, SUBSCRIBE, PUBACK, PINGREQ)
within 1.5 times the keep-alive period. AWS

10T supports keep-alive values between 5
seconds and 20 minutes. If a client requests

no keep-alive (that is, sets the field to 0 in the
MQTT CONNECT message), the server will

set the keep-alive value to 20 minutes, which
corresponds to the maximum idle time supported
by AWS IoT of 30 minutes. Most MQTT clients
(including the AWS SDK clients) support keep-
alive values by sending a PINGREQ if the keep-
alive period expires without the transmission of
any other message by the client.

The maximum number of levels in the desi r ed
or r epor t ed section of the JSON device state
document is 5. For example:

"desired": {
"one": {
"two": {
"three": {
"four": {
"five":{
}
}
}
}
}
}

The Thing Shadows service supports up to 10
in-flight unacknowledged messages. When this
limit is reached, all new shadow requests will be
rejected with a 429 error code.

286

AWS loT Developer Guide
Security and Identity Limits

Maximum number of JSON objects per AWS
account

Maximum size of a JSON state document
Maximum size of a thing name

Shadow lifetime

Security and Identity Limits

Maximum number of policies that can be
attached to a certificate or Amazon Cognito
identity

Maximum number of named policy versions
Maximum policy document size

Maximum number of device certificates that can
be registered per second

Throttling Limits

There is no limit on the number of JISON objects
per AWS account.

8 KB.
128 bytes of UTF-8 encoded characters.

A thing shadow is deleted by AWS |oT if it has
not been updated or retrieved in more than one
year.

10

5
2048 characters (excluding white space)

15

The following table lists the throttling limits for AWS loT API:

API

AcceptCertificate Transfer
AttachPrincipalPolicy
AttachThingPrincipal
CancelCertificateTransfer
CreateCertificateFromCsr
CreatePolicy
CreatePolicyVersion
CreateThing
CreateThingType
DeleteCertificate
DeleteCACertificate
DeletePolicy

DeletePolicyVersion

Transaction per Second
10
15
15
10
15
10
10
15
15
10
10
10

10

287

AWS IoT Developer Guide
Throttling Limits

API

DeleteThing
DeleteThingType
DeprecateThingType
DescribeCertificate
DescribeCACertificate
DescribeThing
DescribeThingType
DetachThingPrincipal
DetachPrincipalPolicy
DeleteRegistrationCode
GetPolicy
GetPolicyVersion
GetRegistrationCode
ListCACertificates
ListCertificates
ListCertificatesByCA
ListOutgoingCertificates
ListPolicies
ListPolicyPrincipals
ListPolicyVersions
ListPrincipalPolicies
ListPrincipalThings
ListThings
ListThingPrincipals
ListThingTypes
RegisterCertificate
RegisterCACertificate
RejectCertificate Transfer
SetDefaultPolicyVersion
TransferCertificate

UpdateCertificate

Transaction per Second

15
15
15
10
10
10
10
15
15
10
10
15
10
10
10
10
10
10
10
10
15
10
10
10
10
10
10
10
10
10

10

288

AWS IoT Developer Guide
AWS loT Rules Engine Limits

API Transaction per Second
UpdateCACertificate 10
UpdateThing 10

AWS IoT Rules Engine Limits

Maximum number of rules per AWS account

1000

Actions per rule

A maximum of 10 actions can be defined per
rule.

Rule size

Up to 256 KB of UTF-8 encoded characters
(including white space).

289

	AWS IoT
	Table of Contents
	What Is AWS IoT?
	AWS IoT Components
	How to Get Started with AWS IoT
	Accessing AWS IoT
	Related Services
	How AWS IoT Works

	AWS IoT Button Quickstarts
	AWS IoT Button Wizard Quickstart
	AWS IoT Button AWS CloudFormation Quickstart
	Next Steps

	Getting Started with AWS IoT
	Sign in to the AWS IoT Console
	Create a Device in the Thing Registry
	Create and Activate a Device Certificate
	Create an AWS IoT Policy
	Attach an AWS IoT Policy to a Device Certificate
	Attach a Thing to a Certificate
	Configure Your Device
	AWS IoT Button
	Turn on your device
	Copy your device certificate onto your AWS IoT button

	View Device MQTT Messages with the AWS IoT MQTT Client
	Configure and Test Rules
	Create an SNS Topic
	Subscribe to an Amazon SNS Topic
	Create a Rule
	Test the Amazon SNS Rule
	AWS IoT Button
	AWS IoT MQTT Client

	Next Steps

	AWS IoT Rule Tutorials
	Creating a DynamoDB Rule
	Creating a Lambda Rule
	Create the Lambda Function
	Test Your Lambda Function
	Creating a Lambda Rule
	Test Your Lambda Rule

	Managing Things with AWS IoT
	Managing Things with the Thing Registry
	Create a thing
	List things
	Search for things
	Update a thing
	Delete a thing
	Attach a principal to a thing
	Detach a principal from a thing

	Thing Types
	Create a Thing Type
	List thing types
	Describe a thing type
	Associate a thing type with a thing
	Deprecate a thing type
	Delete a thing type

	Security and Identity for AWS IoT
	Authentication in AWS IoT
	X.509 Certificates
	X.509 Certificates and AWS IoT
	Server Authentication
	Create and Register an AWS IoT Device Certificate
	To create a certificate (console)
	To create a certificate (CLI)

	Use Your Own Certificate
	Registering Your CA certificate
	Creating a Device Certificate
	Registering a Device Certificate
	Registering Device Certificates Manually
	Using Automatic/Just-in-Time Registration for Device Certificates
	Enable Auto Registration

	Deactivate the CA Certificate
	Revoke the Device Certificate

	IAM Users, Groups, and Roles
	Amazon Cognito Identities

	Authorization
	AWS IoT Policies
	AWS IoT Policy Actions
	Action Resources
	AWS IoT Policy Variables
	Basic Policy Variables
	X.509 Certificate Policy Variables
	Issuer Attributes
	Subject Attributes
	Issuer Alternate Name Attributes
	Subject Alternate Name Attributes
	Other Attributes
	X.509 Certificate Policy Variable Limitations

	Thing Policy Variables
	iot:Connection.Thing.ThingName
	iot:Connection.Thing.ThingTypeName
	iot:Connection.Thing.Attributes[attributeName]
	iot:Connection.Thing.IsAttached

	Example Policies
	Connect Policy Examples
	Publish/Subscribe Policy Examples
	Policies for MQTT Clients
	Policies for HTTP and WebSocket Clients
	Receive Policy Examples

	Certificate Policy Examples
	Thing Policy Examples

	IAM IoT Policies

	Cross Account Access
	Transport Security
	TLS Cipher Suite Support

	Message Broker for AWS IoT
	Protocols
	MQTT
	HTTP
	MQTT Over the WebSocket Protocol
	Using the WebSocket Protocol in a Web Application
	Using the WebSocket Protocol in a Mobile Application

	Topics
	Reserved Topics

	Lifecycle Events
	Policy Required for Receiving Lifecycle Events
	Connect/Disconnect Events
	Subscribe/Unsubscribe Events

	Rules for AWS IoT
	Granting AWS IoT the Required Access
	Pass Role Permissions
	Creating an AWS IoT Rule
	Viewing Your Rules
	SQL Versions
	What's New in the 2016-03-23 SQL Rules Engine Version
	Inter-Object Queries
	Output an Array as a Top-Level Object
	Encode Function

	Troubleshooting a Rule
	Deleting a Rule
	AWS IoT Rule Actions
	CloudWatch Alarm Action
	CloudWatch Metric Action
	DynamoDB Action
	DynamoDBv2 Action
	Amazon ES Action
	Firehose Action
	Kinesis Action
	Lambda Action
	Republish Action
	S3 Action
	SNS Action
	SQS Action

	AWS IoT SQL Reference
	Data Types
	Conversions

	Operators
	AND operator
	OR operator
	NOT operator
	> operator
	>= operator
	< operator
	<= operator
	<> operator
	= operator
	+ operator
	- operator
	* operator
	/ operator
	% operator

	Functions
	abs(Decimal)
	accountid()
	acos(Decimal)
	asin(Decimal)
	atan(Decimal)
	atan2(Decimal, Decimal)
	bitand(Int, Int)
	bitor(Int, Int)
	bitxor(Int, Int)
	bitnot(Int)
	cast()
	ceil(Decimal)
	chr(String)
	clientid()
	concat()
	cos(Decimal)
	cosh(Decimal)
	encode(value, encodingScheme)
	endswith(String, String)
	exp(Decimal)
	get
	get_thing_shadow(thingName, roleARN)
	Hashing Functions
	hsin(Decimal)
	htan(Decimal)
	indexof(String, String)
	isNull()
	isUndefined()
	length(String)
	ln(Decimal)
	log(Decimal)
	lower(String)
	lpad(String, Int)
	ltrim(String)
	machinelearning_predict(modelId)
	mod(Decimal, Decimal)
	nanvl(AnyValue, AnyValue)
	newuuid()
	numbytes(String)
	principal()
	power(Decimal, Decimal)
	rand()
	regexp_matches(String, String)
	regexp_replace(String, String, String)
	regexp_substr(String, String)
	rpad(String, Int)
	round(Decimal)
	rtrim(String)
	sign(Decimal)
	sin(Decimal)
	substring(String, Int [, Int])
	sqrt(Decimal)
	startswith(String, String)
	timestamp()
	topic(Decimal)
	tan(Decimal)
	traceid()
	trunc(Decimal, Int)
	trim(String)
	upper(String)

	SELECT Clause
	FROM Clause
	WHERE Clause
	Literals
	Case Statements
	JSON Extensions
	Substitution Templates

	Device Shadows for AWS IoT
	Device Shadows Data Flow
	Device Shadows Documents
	Document Properties
	Versioning of a Thing Shadow
	Client Token
	Example Document
	Empty Sections
	Arrays

	Using Device Shadows
	Protocol Support
	Updating a Thing Shadow
	Retrieving a Thing Shadow Document
	Optimistic Locking

	Deleting Data
	Deleting a Thing Shadow
	Delta State
	Observing State Changes
	Message Order
	Trim Device Shadow Messages

	Device Shadow RESTful API
	GetThingShadow
	UpdateThingShadow
	DeleteThingShadow

	Device Shadow MQTT Topics
	/update
	Example Policy

	/update/accepted
	Example Policy

	/update/documents
	Example Policy

	/update/rejected
	Example Policy

	/update/delta
	Publishing Details
	Example Policy

	/get
	Example Policy

	/get/accepted
	Example Policy

	/get/rejected
	Example Policy

	/delete
	Example Policy

	/delete/accepted
	Example Policy

	/delete/rejected
	Example Policy

	Device Shadow Document Syntax
	Request State Documents
	Response State Documents
	Error Response Documents

	Device Shadow Error Messages

	AWS IoT SDKs
	AWS Mobile SDK for Android
	Arduino Yún SDK
	AWS IoT Device SDK for Embedded C
	AWS Mobile SDK for iOS
	AWS IoT Device SDK for Java
	AWS IoT Device SDK for JavaScript
	AWS IoT Device SDK for Python
	Getting Started with AWS IoT on the Raspberry Pi and the AWS IoT Embedded C SDK
	Prerequisites
	Connecting Your Raspberry Pi
	Sign in to the AWS IoT Console
	Create and Attach a Thing (Device)
	Set Up the Runtime Environment for the AWS IoT Embedded C SDK
	Sample App Configuration
	Run Sample Applications

	Getting Started with AWS IoT on Raspberry Pi and the AWS IoT Device SDK for JavaScript
	Prerequisites
	Connecting Your Raspberry Pi
	Sign in to the AWS IoT Console
	Create and Attach a Thing (Device)
	Set Up the Runtime Environment for the AWS IoT Device SDK for JavaScript
	Install the AWS IoT Device SDK for JavaScript
	Prepare to Run the Sample Applications
	Run the Sample Applications

	Monitoring AWS IoT
	Monitoring Tools
	Automated Monitoring Tools
	Manual Monitoring Tools

	Monitoring with Amazon CloudWatch
	AWS IoT Metrics and Dimensions
	AWS IoT Metrics
	Dimensions for AWS IoT Metrics

	How Do I Use AWS IoT Metrics?
	Creating CloudWatch Alarms to Monitor AWS IoT
	How can I be notified if my things do not connect successfully each day?
	How can I be notified if my things are not publishing data each day?
	How can I be notified if my thing's shadow updates are being rejected each day?

	Logging AWS IoT API Calls with AWS CloudTrail
	AWS IoT Information in CloudTrail
	Understanding AWS IoT Log File Entries

	Troubleshooting AWS IoT
	Diagnosing Connectivity Issues
	Authentication
	Authorization

	Setting Up CloudWatch Logs
	Configuring an IAM Role for Logging
	Create an IAM Role for Logging
	Register the Logging Role with AWS IoT

	CloudWatch Log Entry Format
	Log Level

	Logging Events and Error Codes

	Diagnosing Rules Issues
	Diagnosing Problems with Thing Shadows

	AWS IoT Limits
	Message Broker Limits
	Device Shadow Limits
	Security and Identity Limits
	Throttling Limits
	AWS IoT Rules Engine Limits

