
Amazon Simple Storage Service
Developer Guide

API Version 2006-03-01

Amazon Simple Storage Service Developer Guide

Amazon Simple Storage Service Developer Guide

Amazon Simple Storage Service: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

Amazon Simple Storage Service Developer Guide

Table of Contents
What Is Amazon S3? .. 1

How Do I...? .. 1
Introduction .. 2

Overview of Amazon S3 and This Guide .. 2
Advantages to Amazon S3 ... 2
Amazon S3 Concepts .. 3

Buckets ... 3
Objects .. 3
Keys ... 4
Regions ... 4
Amazon S3 Data Consistency Model ... 4

Features .. 6
Reduced Redundancy Storage .. 6
Bucket Policies ... 7
AWS Identity and Access Management .. 8
Access Control Lists .. 8
Versioning .. 8
Operations ... 8

Amazon S3 Application Programming Interfaces (API) .. 8
The REST Interface .. 9
The SOAP Interface .. 9

Paying for Amazon S3 ... 9
Related Services ... 9

Making Requests .. 11
About Access Keys ... 11

AWS Account Access Keys .. 11
IAM User Access Keys .. 12
Temporary Security Credentials ... 12

Request Endpoints .. 13
Making Requests over IPv6 .. 13

Getting Started with IPv6 .. 13
Using IPv6 Addresses in IAM Policies .. 14
Testing IP Address Compatibility ... 15
Using Dual-Stack Endpoints .. 16

Making Requests Using the AWS SDKs ... 19
Using AWS Account or IAM User Credentials .. 20
Using IAM User Temporary Credentials .. 25
Using Federated User Temporary Credentials ... 36

Making Requests Using the REST API ... 49
Dual-Stack Endpoints (REST API) ... 50
Virtual Hosting of Buckets .. 50
Request Redirection and the REST API ... 55

Buckets ... 58
Creating a Bucket ... 59

About Permissions .. 60
Accessing a Bucket ... 60
Bucket Configuration Options .. 61
Restrictions and Limitations .. 62

Rules for Naming .. 63
Examples of Creating a Bucket ... 64

Using the Amazon S3 Console ... 65
Using the AWS SDK for Java ... 65
Using the AWS SDK for .NET ... 66
Using the AWS SDK for Ruby Version 2 ... 67
Using Other AWS SDKs ... 67

API Version 2006-03-01
iv

Amazon Simple Storage Service Developer Guide

Deleting or Emptying a Bucket .. 67
Delete a Bucket .. 68
Empty a Bucket .. 71

Bucket Website Configuration ... 72
Using the AWS Management Console .. 73
Using the SDK for Java ... 73
Using the AWS SDK for .NET ... 75
Using the SDK for PHP ... 78
Using the REST API .. 80

Transfer Acceleration ... 80
Why use Transfer Acceleration? .. 80
Getting Started ... 81
Requirements for Using Amazon S3 Transfer Acceleration ... 82
Transfer Acceleration Examples .. 83

Requester Pays Buckets .. 92
Configure with the Console ... 93
Configure with the REST API .. 94
DevPay and Requester Pays .. 96
Charge Details .. 96

Access Control ... 96
Billing and Reporting ... 97

Cost Allocation Tagging ... 97
Objects .. 98

Object Key and Metadata ... 99
Object Keys ... 99
Object Metadata .. 101

Storage Classes .. 103
Subresources .. 105
Versioning .. 106
Lifecycle Management .. 109

What Is Lifecycle Configuration? .. 109
How Do I Configure a Lifecycle? .. 110
Transitioning Objects: General Considerations ... 110
Expiring Objects: General Considerations .. 112
Lifecycle and Other Bucket Configurations ... 112
Lifecycle Configuration Elements ... 113
GLACIER Storage Class: Additional Considerations .. 124
Specifying a Lifecycle Configuration ... 125

Cross-Origin Resource Sharing (CORS) .. 131
Cross-Origin Resource Sharing: Use-case Scenarios .. 131
How Do I Configure CORS on My Bucket? .. 132
How Does Amazon S3 Evaluate the CORS Configuration On a Bucket? 134
Enabling CORS ... 134
Troubleshooting CORS ... 142

Operations on Objects .. 142
Getting Objects ... 143
Uploading Objects ... 157
Copying Objects .. 212
Listing Object Keys .. 229
Deleting Objects .. 237
Restoring Archived Objects ... 259

Managing Access .. 266
Introduction ... 266

Overview .. 267
How Amazon S3 Authorizes a Request .. 272
Guidelines for Using the Available Access Policy Options .. 277
Example Walkthroughs: Managing Access ... 280

Using Bucket Policies and User Policies ... 308

API Version 2006-03-01
v

Amazon Simple Storage Service Developer Guide

Access Policy Language Overview ... 308
Bucket Policy Examples ... 334
User Policy Examples .. 343

Managing Access with ACLs ... 364
Access Control List (ACL) Overview ... 364
Managing ACLs ... 369

Protecting Data ... 380
Data Encryption ... 380

Server-Side Encryption ... 381
Client-Side Encryption .. 409

Reduced Redundancy Storage .. 420
Setting the Storage Class of an Object You Upload .. 421
Changing the Storage Class of an Object in Amazon S3 .. 421

Versioning .. 423
How to Configure Versioning on a Bucket ... 424
MFA Delete .. 424
Related Topics .. 425
Examples ... 426
Managing Objects in a Versioning-Enabled Bucket ... 428
Managing Objects in a Versioning-Suspended Bucket ... 444

Hosting a Static Website .. 449
Website Endpoints ... 450

Key Differences Between the Amazon Website and the REST API Endpoint 451
Configure a Bucket for Website Hosting .. 451

Overview .. 451
Syntax for Specifying Routing Rules ... 454
Index Document Support .. 457
Custom Error Document Support ... 458
Configuring a Redirect .. 460
Permissions Required for Website Access ... 462

Example Walkthroughs ... 462
Example: Setting Up a Static Website .. 463
Example: Setting Up a Static Website Using a Custom Domain .. 464

Notifications .. 472
Overview .. 472
How to Enable Event Notifications ... 473
Event Notification Types and Destinations ... 475

Supported Event Types .. 475
Supported Destinations .. 476

Configuring Notifications with Object Key Name Filtering ... 476
Examples of Valid Notification Configurations with Object Key Name Filtering 477
Examples of Notification Configurations with Invalid Prefix/Suffix Overlapping 479

Granting Permissions to Publish Event Notification Messages to a Destination 481
Granting Permissions to Invoke an AWS Lambda Function .. 481
Granting Permissions to Publish Messages to an SNS Topic or an SQS Queue 481

Example Walkthrough 1 ... 483
Walkthrough Summary ... 483
Step 1: Create an Amazon SNS Topic .. 484
Step 2: Create an Amazon SQS Queue .. 484
Step 3: Add a Notification Configuration to Your Bucket ... 485
Step 4: Test the Setup ... 489

Example Walkthrough 2 ... 489
Event Message Structure .. 489

Cross-Region Replication .. 492
Use-case Scenarios ... 492
Requirements .. 493
Related Topics .. 493
What Is and Is Not Replicated ... 493

API Version 2006-03-01
vi

Amazon Simple Storage Service Developer Guide

What Is Replicated .. 493
What Is Not Replicated .. 494
Related Topics .. 495

How to Set Up .. 495
Create an IAM Role ... 495
Add Replication Configuration .. 497
Walkthrough 1: Same AWS Account .. 500
Walkthrough 2: Different AWS Accounts ... 501
Using the Console ... 505
Using the AWS SDK for Java .. 505
Using the AWS SDK for .NET ... 507

Replication Status Information ... 509
Related Topics .. 510

Troubleshooting ... 511
Related Topics .. 511

Replication and Other Bucket Configurations ... 511
Lifecycle Configuration and Object Replicas .. 512
Versioning Configuration and Replication Configuration ... 512
Logging Configuration and Replication Configuration ... 512
Related Topics .. 512

Request Routing ... 513
Request Redirection and the REST API .. 513

Overview .. 513
DNS Routing .. 514
Temporary Request Redirection ... 514
Permanent Request Redirection .. 516

DNS Considerations ... 516
Performance Optimization ... 518

Request Rate and Performance Considerations ... 518
Workloads with a Mix of Request Types ... 519
GET-Intensive Workloads ... 521

TCP Window Scaling ... 521
TCP Selective Acknowledgement ... 522

Monitoring .. 523
Monitoring Tools .. 523

Automated Tools ... 523
Manual Tools .. 524

Monitoring Metrics with CloudWatch ... 524
Metrics and Dimensions ... 525
Accessing CloudWatch Metrics .. 526
Related Resources .. 526

Logging API Calls with AWS CloudTrail .. 527
Amazon S3 Information in CloudTrail .. 527
Using CloudTrail Logs with Amazon S3 Server Access Logs and CloudWatch Logs 529
Understanding Amazon S3 Log File Entries ... 529
Related Resources .. 531

BitTorrent ... 532
How You are Charged for BitTorrent Delivery .. 532
Using BitTorrent to Retrieve Objects Stored in Amazon S3 .. 533
Publishing Content Using Amazon S3 and BitTorrent .. 534

Amazon DevPay ... 535
Amazon S3 Customer Data Isolation .. 535

Example ... 536
Amazon DevPay Token Mechanism ... 536
Amazon S3 and Amazon DevPay Authentication .. 536
Amazon S3 Bucket Limitation .. 537
Amazon S3 and Amazon DevPay Process .. 538
Additional Information ... 538

API Version 2006-03-01
vii

Amazon Simple Storage Service Developer Guide

Error Handling ... 539
The REST Error Response ... 539

Response Headers .. 540
Error Response ... 540

The SOAP Error Response ... 541
Amazon S3 Error Best Practices .. 541

Retry InternalErrors .. 541
Tune Application for Repeated SlowDown errors .. 541
Isolate Errors .. 542

Troubleshooting Amazon S3 ... 543
General: Getting my Amazon S3 request IDs ... 543

Using HTTP .. 543
Using a Web Browser .. 544
Using an AWS SDK ... 544
Using the AWS CLI ... 545
Using Windows PowerShell ... 545

Related Topics .. 545
Server Access Logging .. 547

Overview .. 547
Log Object Key Format .. 548
How are Logs Delivered? ... 548
Best Effort Server Log Delivery ... 548
Bucket Logging Status Changes Take Effect Over Time .. 549

Related Topics .. 549
Enabling Logging Using the Console .. 549
Enabling Logging Programmatically .. 551

Enabling logging .. 551
Granting the Log Delivery Group WRITE and READ_ACP Permissions 551
Example: AWS SDK for .NET .. 552

Log Format ... 554
Custom Access Log Information .. 557
Programming Considerations for Extensible Server Access Log Format 557
Additional Logging for Copy Operations .. 557

Deleting Log Files ... 560
AWS SDKs and Explorers .. 561

Specifying Signature Version in Request Authentication ... 562
Set Up the AWS CLI ... 563
Using the AWS SDK for Java ... 564

The Java API Organization ... 565
Testing the Java Code Examples ... 565

Using the AWS SDK for .NET ... 566
The .NET API Organization ... 566
Running the Amazon S3 .NET Code Examples .. 567

Using the AWS SDK for PHP and Running PHP Examples .. 567
AWS SDK for PHP Levels ... 567
Running PHP Examples ... 568
Related Resources .. 569

Using the AWS SDK for Ruby - Version 2 ... 569
The Ruby API Organization .. 569
Testing the Ruby Script Examples ... 569

Using the AWS SDK for Python (Boto) ... 570
Appendices ... 571

Appendix A: Using the SOAP API .. 571
Common SOAP API Elements ... 571
Authenticating SOAP Requests .. 572
Setting Access Policy with SOAP ... 572

Appendix B: Authenticating Requests (AWS Signature Version 2) ... 574
Authenticating Requests Using the REST API .. 575

API Version 2006-03-01
viii

Amazon Simple Storage Service Developer Guide

Signing and Authenticating REST Requests .. 576
Browser-Based Uploads Using POST ... 587

Resources .. 603
Document History .. 605
AWS Glossary .. 615

API Version 2006-03-01
ix

Amazon Simple Storage Service Developer Guide
How Do I...?

What Is Amazon S3?

Amazon Simple Storage Service is storage for the Internet. It is designed to make web-scale
computing easier for developers.

Amazon S3 has a simple web services interface that you can use to store and retrieve any amount
of data, at any time, from anywhere on the web. It gives any developer access to the same highly
scalable, reliable, fast, inexpensive data storage infrastructure that Amazon uses to run its own global
network of web sites. The service aims to maximize benefits of scale and to pass those benefits on to
developers.

This guide explains the core concepts of Amazon S3, such as buckets and objects, and how to work
with these resources using the Amazon S3 application programming interface (API).

How Do I...?
Information Relevant Sections

General product overview and pricing Amazon S3

Get a quick hands-on introduction to
Amazon S3

Amazon Simple Storage Service Getting Started Guide

Learn about Amazon S3 key
terminology and concepts

Introduction to Amazon S3 (p. 2)

How do I work with buckets? Working with Amazon S3 Buckets (p. 58)

How do I work with objects? Working with Amazon S3 Objects (p. 98)

How do I make requests? Making Requests (p. 11)

How do I manage access to my
resources?

Managing Access Permissions to Your Amazon S3
Resources (p. 266)

API Version 2006-03-01
1

http://aws.amazon.com/s3/
http://docs.aws.amazon.com/AmazonS3/latest/gsg/

Amazon Simple Storage Service Developer Guide
Overview of Amazon S3 and This Guide

Introduction to Amazon S3

This introduction to Amazon Simple Storage Service is intended to give you a detailed summary of this
web service. After reading this section, you should have a good idea of what it offers and how it can fit
in with your business.

Topics

• Overview of Amazon S3 and This Guide (p. 2)

• Advantages to Amazon S3 (p. 2)

• Amazon S3 Concepts (p. 3)

• Features (p. 6)

• Amazon S3 Application Programming Interfaces (API) (p. 8)

• Paying for Amazon S3 (p. 9)

• Related Services (p. 9)

Overview of Amazon S3 and This Guide
Amazon S3 has a simple web services interface that you can use to store and retrieve any amount of
data, at any time, from anywhere on the web.

This guide describes how you send requests to create buckets, store and retrieve your objects,
and manage permissions on your resources. The guide also describes access control and the
authentication process. Access control defines who can access objects and buckets within Amazon S3,
and the type of access (e.g., READ and WRITE). The authentication process verifies the identity of a
user who is trying to access Amazon Web Services (AWS).

Advantages to Amazon S3
Amazon S3 is intentionally built with a minimal feature set that focuses on simplicity and robustness.
Following are some of advantages of the Amazon S3 service:

• Create Buckets – Create and name a bucket that stores data. Buckets are the fundamental
container in Amazon S3 for data storage.

• Store data in Buckets – Store an infinite amount of data in a bucket. Upload as many objects as
you like into an Amazon S3 bucket. Each object can contain up to 5 TB of data. Each object is stored
and retrieved using a unique developer-assigned key.

API Version 2006-03-01
2

Amazon Simple Storage Service Developer Guide
Amazon S3 Concepts

• Download data – Download your data or enable others to do so. Download your data any time you
like or allow others to do the same.

• Permissions – Grant or deny access to others who want to upload or download data into your
Amazon S3 bucket. Grant upload and download permissions to three types of users. Authentication
mechanisms can help keep data secure from unauthorized access.

• Standard interfaces – Use standards-based REST and SOAP interfaces designed to work with any
Internet-development toolkit.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon
S3 features will not be supported for SOAP. We recommend that you use either the REST
API or the AWS SDKs.

Amazon S3 Concepts
Topics

• Buckets (p. 3)

• Objects (p. 3)

• Keys (p. 4)

• Regions (p. 4)

• Amazon S3 Data Consistency Model (p. 4)

This section describes key concepts and terminology you need to understand to use Amazon S3
effectively. They are presented in the order you will most likely encounter them.

Buckets
A bucket is a container for objects stored in Amazon S3. Every object is contained in a bucket. For
example, if the object named photos/puppy.jpg is stored in the johnsmith bucket, then it is
addressable using the URL http://johnsmith.s3.amazonaws.com/photos/puppy.jpg

Buckets serve several purposes: they organize the Amazon S3 namespace at the highest level, they
identify the account responsible for storage and data transfer charges, they play a role in access
control, and they serve as the unit of aggregation for usage reporting.

You can configure buckets so that they are created in a specific region. For more information, see
Buckets and Regions (p. 60). You can also configure a bucket so that every time an object is added
to it, Amazon S3 generates a unique version ID and assigns it to the object. For more information, see
Versioning (p. 423).

For more information about buckets, see Working with Amazon S3 Buckets (p. 58).

Objects
Objects are the fundamental entities stored in Amazon S3. Objects consist of object data and
metadata. The data portion is opaque to Amazon S3. The metadata is a set of name-value pairs
that describe the object. These include some default metadata, such as the date last modified, and
standard HTTP metadata, such as Content-Type. You can also specify custom metadata at the time
the object is stored.

An object is uniquely identified within a bucket by a key (name) and a version ID. For more information,
see Keys (p. 4) and Versioning (p. 423).

API Version 2006-03-01
3

Amazon Simple Storage Service Developer Guide
Keys

Keys
A key is the unique identifier for an object within a bucket. Every object in a bucket has exactly
one key. Because the combination of a bucket, key, and version ID uniquely identify each object,
Amazon S3 can be thought of as a basic data map between "bucket + key + version" and the
object itself. Every object in Amazon S3 can be uniquely addressed through the combination of
the web service endpoint, bucket name, key, and optionally, a version. For example, in the URL
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl, "doc" is the name of the bucket and
"2006-03-01/AmazonS3.wsdl" is the key.

Regions
You can choose the geographical region where Amazon S3 will store the buckets you create. You
might choose a region to optimize latency, minimize costs, or address regulatory requirements.
Amazon S3 currently supports the following regions:

• US East (N. Virginia) Region Uses Amazon S3 servers in Northern Virginia

• US East (Ohio) Region Uses Amazon S3 servers in Columbus Ohio

• US West (N. California) Region Uses Amazon S3 servers in Northern California

• US West (Oregon) Region Uses Amazon S3 servers in Oregon

• Asia Pacific (Mumbai) Region Uses Amazon S3 servers in Mumbai

• Asia Pacific (Seoul) Region Uses Amazon S3 servers in Seoul

• Asia Pacific (Singapore) Region Uses Amazon S3 servers in Singapore

• Asia Pacific (Sydney) Region Uses Amazon S3 servers in Sydney

• Asia Pacific (Tokyo) Region Uses Amazon S3 servers in Tokyo

• EU (Frankfurt) Region Uses Amazon S3 servers in Frankfurt

• EU (Ireland) Region Uses Amazon S3 servers in Ireland

• South America (São Paulo) Region Uses Amazon S3 servers in Sao Paulo

Objects stored in a region never leave the region unless you explicitly transfer them to another region.
For example, objects stored in the EU (Ireland) region never leave it. For more information about
Amazon S3 regions and endpoints, go to Regions and Endpoints in the AWS General Reference.

Amazon S3 Data Consistency Model
Amazon S3 provides read-after-write consistency for PUTS of new objects in your S3 bucket in all
regions with one caveat. The caveat is that if you make a HEAD or GET request to the key name (to
find if the object exists) before creating the object, Amazon S3 provides eventual consistency for read-
after-write.

Amazon S3 offers eventual consistency for overwrite PUTS and DELETES in all regions.

Updates to a single key are atomic. For example, if you PUT to an existing key, a subsequent read
might return the old data or the updated data, but it will never write corrupted or partial data.

Amazon S3 achieves high availability by replicating data across multiple servers within Amazon's data
centers. If a PUT request is successful, your data is safely stored. However, information about the
changes must replicate across Amazon S3, which can take some time, and so you might observe the
following behaviors:

• A process writes a new object to Amazon S3 and immediately lists keys within its bucket. Until the
change is fully propagated, the object might not appear in the list.

• A process replaces an existing object and immediately attempts to read it. Until the change is fully
propagated, Amazon S3 might return the prior data.

API Version 2006-03-01
4

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide
Amazon S3 Data Consistency Model

• A process deletes an existing object and immediately attempts to read it. Until the deletion is fully
propagated, Amazon S3 might return the deleted data.

• A process deletes an existing object and immediately lists keys within its bucket. Until the deletion is
fully propagated, Amazon S3 might list the deleted object.

Note
Amazon S3 does not currently support object locking. If two PUT requests are simultaneously
made to the same key, the request with the latest time stamp wins. If this is an issue, you will
need to build an object-locking mechanism into your application.
Updates are key-based; there is no way to make atomic updates across keys. For example,
you cannot make the update of one key dependent on the update of another key unless you
design this functionality into your application.

The following table describes the characteristics of eventually consistent read and consistent read.

Eventually Consistent Read Consistent Read

Stale reads possible No stale reads

Lowest read latency Potential higher read latency

Highest read throughput Potential lower read throughput

Concurrent Applications

This section provides examples of eventually consistent and consistent read requests when multiple
clients are writing to the same items.

In this example, both W1 (write 1) and W2 (write 2) complete before the start of R1 (read 1) and R2
(read 2). For a consistent read, R1 and R2 both return color = ruby. For an eventually consistent
read, R1 and R2 might return color = red, color = ruby, or no results, depending on the amount
of time that has elapsed.

In the next example, W2 does not complete before the start of R1. Therefore, R1 might return color
= ruby or color = garnet for either a consistent read or an eventually consistent read. Also,
depending on the amount of time that has elapsed, an eventually consistent read might return no
results.

For a consistent read, R2 returns color = garnet. For an eventually consistent read, R2 might
return color = ruby, color = garnet, or no results depending on the amount of time that has
elapsed.

API Version 2006-03-01
5

Amazon Simple Storage Service Developer Guide
Features

In the last example, Client 2 performs W2 before Amazon S3 returns a success for W1, so the
outcome of the final value is unknown (color = garnet or color = brick). Any subsequent reads
(consistent read or eventually consistent) might return either value. Also, depending on the amount of
time that has elapsed, an eventually consistent read might return no results.

Features
Topics

• Reduced Redundancy Storage (p. 6)

• Bucket Policies (p. 7)

• AWS Identity and Access Management (p. 8)

• Access Control Lists (p. 8)

• Versioning (p. 8)

• Operations (p. 8)

This section describes important Amazon S3 features.

Reduced Redundancy Storage
Customers can store their data using the Amazon S3 Reduced Redundancy Storage (RRS) option.
RRS enables customers to reduce their costs by storing non-critical, reproducible data at lower levels
of redundancy than Amazon S3 standard storage. RRS provides a cost-effective, highly available

API Version 2006-03-01
6

Amazon Simple Storage Service Developer Guide
Bucket Policies

solution for distributing or sharing content that is durably stored elsewhere, or for storing thumbnails,
transcoded media, or other processed data that can be easily reproduced. The RRS option stores
objects on multiple devices across multiple facilities, providing 400 times the durability of a typical disk
drive, but does not replicate objects as many times as standard Amazon S3 storage, and thus is even
more cost effective.

RRS provides 99.99% durability of objects over a given year. This durability level corresponds to an
average expected loss of 0.01% of objects annually.

AWS charges less for using RRS than for standard Amazon S3 storage. For pricing information, see
Amazon S3 Pricing.

For more information, see Storage Classes (p. 103).

Bucket Policies
Bucket policies provide centralized, access control to buckets and objects based on a variety of
conditions, including Amazon S3 operations, requesters, resources, and aspects of the request
(e.g., IP address). The policies are expressed in our access policy language and enable centralized
management of permissions. The permissions attached to a bucket apply to all of the objects in that
bucket.

Individuals as well as companies can use bucket policies. When companies register with Amazon S3
they create an account. Thereafter, the company becomes synonymous with the account. Accounts
are financially responsible for the Amazon resources they (and their employees) create. Accounts have
the power to grant bucket policy permissions and assign employees permissions based on a variety of
conditions. For example, an account could create a policy that gives a user write access:

• To a particular S3 bucket

• From an account's corporate network

• During business hours

• From an account's custom application (as identified by a user agent string)

An account can grant one application limited read and write access, but allow another to create and
delete buckets as well. An account could allow several field offices to store their daily reports in a
single bucket, allowing each office to write only to a certain set of names (e.g. "Nevada/*" or "Utah/*")
and only from the office's IP address range.

Unlike access control lists (described below), which can add (grant) permissions only on individual
objects, policies can either add or deny permissions across all (or a subset) of objects within a bucket.
With one request an account can set the permissions of any number of objects in a bucket. An account
can use wildcards (similar to regular expression operators) on Amazon resource names (ARNs) and
other values, so that an account can control access to groups of objects that begin with a common
prefix or end with a given extension such as .html.

Only the bucket owner is allowed to associate a policy with a bucket. Policies, written in the access
policy language, allow or deny requests based on:

• Amazon S3 bucket operations (such as PUT ?acl), and object operations (such as PUT Object,
or GET Object)

• Requester

• Conditions specified in the policy

An account can control access based on specific Amazon S3 operations, such as GetObject,
GetObjectVersion, DeleteObject, or DeleteBucket.

API Version 2006-03-01
7

http://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
AWS Identity and Access Management

The conditions can be such things as IP addresses, IP address ranges in CIDR notation, dates, user
agents, HTTP referrer and transports (HTTP and HTTPS).

For more information, see Using Bucket Policies and User Policies (p. 308).

AWS Identity and Access Management
For example, you can use IAM with Amazon S3 to control the type of access a user or group of users
has to specific parts of an Amazon S3 bucket your AWS account owns.

For more information about IAM, see the following:

• Identity and Access Management (IAM)

• Getting Started

• IAM User Guide

Access Control Lists
For more information, see Managing Access with ACLs (p. 364)

Versioning
For more information, see Object Versioning (p. 106).

Operations
Following are the most common operations you'll execute through the API.

Common Operations

• Create a Bucket – Create and name your own bucket in which to store your objects.

• Write an Object – Store data by creating or overwriting an object. When you write an object, you
specify a unique key in the namespace of your bucket. This is also a good time to specify any access
control you want on the object.

• Read an Object – Read data back. You can download the data via HTTP or BitTorrent.

• Deleting an Object – Delete some of your data.

• Listing Keys – List the keys contained in one of your buckets. You can filter the key list based on a
prefix.

Details on this and all other functionality are described in detail later in this guide.

Amazon S3 Application Programming Interfaces
(API)

The Amazon S3 architecture is designed to be programming language-neutral, using our supported
interfaces to store and retrieve objects.

Amazon S3 provides a REST and a SOAP interface. They are similar, but there are some differences.
For example, in the REST interface, metadata is returned in HTTP headers. Because we only support

API Version 2006-03-01
8

http://aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/

Amazon Simple Storage Service Developer Guide
The REST Interface

HTTP requests of up to 4 KB (not including the body), the amount of metadata you can supply is
restricted.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

The REST Interface
The REST API is an HTTP interface to Amazon S3. Using REST, you use standard HTTP requests to
create, fetch, and delete buckets and objects.

You can use any toolkit that supports HTTP to use the REST API. You can even use a browser to fetch
objects, as long as they are anonymously readable.

The REST API uses the standard HTTP headers and status codes, so that standard browsers and
toolkits work as expected. In some areas, we have added functionality to HTTP (for example, we
added headers to support access control). In these cases, we have done our best to add the new
functionality in a way that matched the style of standard HTTP usage.

The SOAP Interface
Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

The SOAP API provides a SOAP 1.1 interface using document literal encoding. The most common
way to use SOAP is to download the WSDL (go to http://doc.s3.amazonaws.com/2006-03-01/
AmazonS3.wsdl), use a SOAP toolkit such as Apache Axis or Microsoft .NET to create bindings, and
then write code that uses the bindings to call Amazon S3.

Paying for Amazon S3
Pricing for Amazon S3 is designed so that you don't have to plan for the storage requirements of your
application. Most storage providers force you to purchase a predetermined amount of storage and
network transfer capacity: If you exceed that capacity, your service is shut off or you are charged high
overage fees. If you do not exceed that capacity, you pay as though you used it all.

Amazon S3 charges you only for what you actually use, with no hidden fees and no overage charges.
This gives developers a variable-cost service that can grow with their business while enjoying the cost
advantages of Amazon's infrastructure.

Before storing anything in Amazon S3, you need to register with the service and provide a payment
instrument that will be charged at the end of each month. There are no set-up fees to begin using the
service. At the end of the month, your payment instrument is automatically charged for that month's
usage.

For information about paying for Amazon S3 storage, see Amazon S3 Pricing.

Related Services
Once you load your data into Amazon S3, you can use it with other services that we provide. The
following services are the ones you might use most frequently:

API Version 2006-03-01
9

http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl
http://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Related Services

• Amazon Elastic Compute Cloud – This web service provides virtual compute resources in the
cloud. For more information, go to the Amazon EC2 product details page.

• Amazon EMR – This web service enables businesses, researchers, data analysts, and developers
to easily and cost-effectively process vast amounts of data. It utilizes a hosted Hadoop framework
running on the web-scale infrastructure of Amazon EC2 and Amazon S3. For more information, go to
the Amazon EMR product details page.

• AWS Import/Export – AWS Import/Export enables you to mail a storage device, such as a
RAID drive, to Amazon so that we can upload your (terabytes) of data into Amazon S3. For more
information, go to the AWS Import/Export Developer Guide.

API Version 2006-03-01
10

http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticmapreduce/
http://docs.aws.amazon.com/AWSImportExport/latest/DG/

Amazon Simple Storage Service Developer Guide
About Access Keys

Making Requests

Topics

• About Access Keys (p. 11)

• Request Endpoints (p. 13)

• Making Requests to Amazon S3 over IPv6 (p. 13)

• Making Requests Using the AWS SDKs (p. 19)

• Making Requests Using the REST API (p. 49)

Amazon S3 is a REST service. You can send requests to Amazon S3 using the REST API or the AWS
SDK (see Sample Code and Libraries) wrapper libraries that wrap the underlying Amazon S3 REST
API, simplifying your programming tasks.

Every interaction with Amazon S3 is either authenticated or anonymous. Authentication is a process
of verifying the identity of the requester trying to access an Amazon Web Services (AWS) product.
Authenticated requests must include a signature value that authenticates the request sender. The
signature value is, in part, generated from the requester's AWS access keys (access key ID and secret
access key). For more information about getting access keys, see How Do I Get Security Credentials?
in the AWS General Reference.

If you are using the AWS SDK, the libraries compute the signature from the keys you provide.
However, if you make direct REST API calls in your application, you must write the code to compute
the signature and add it to the request.

About Access Keys
The following sections review the types of access keys that you can use to make authenticated
requests.

AWS Account Access Keys
The account access keys provide full access to the AWS resources owned by the account. The
following are examples of access keys:

• Access key ID (a 20-character, alphanumeric string). For example: AKIAIOSFODNN7EXAMPLE

• Secret access key (a 40-character string). For example: wJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY

API Version 2006-03-01
11

http://aws.amazon.com/code
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Amazon Simple Storage Service Developer Guide
IAM User Access Keys

The access key ID uniquely identifies an AWS account. You can use these access keys to send
authenticated requests to Amazon S3.

IAM User Access Keys
You can create one AWS account for your company; however, there may be several employees in
the organization who need access to your organization's AWS resources. Sharing your AWS account
access keys reduces security, and creating individual AWS accounts for each employee might not
be practical. Also, you cannot easily share resources such as buckets and objects because they are
owned by different accounts. To share resources, you must grant permissions, which is additional
work.

In such scenarios, you can use AWS Identity and Access Management (IAM) to create users under
your AWS account with their own access keys and attach IAM user policies granting appropriate
resource access permissions to them. To better manage these users, IAM enables you to create
groups of users and grant group-level permissions that apply to all users in that group.

These users are referred as IAM users that you create and manage within AWS. The parent account
controls a user's ability to access AWS. Any resources an IAM user creates are under the control of
and paid for by the parent AWS account. These IAM users can send authenticated requests to Amazon
S3 using their own security credentials. For more information about creating and managing users
under your AWS account, go to the AWS Identity and Access Management product details page.

Temporary Security Credentials
In addition to creating IAM users with their own access keys, IAM also enables you to grant temporary
security credentials (temporary access keys and a security token) to any IAM user to enable them
to access your AWS services and resources. You can also manage users in your system outside
AWS. These are referred as federated users. Additionally, users can be applications that you create to
access your AWS resources.

IAM provides the AWS Security Token Service API for you to request temporary security credentials.
You can use either the AWS STS API or the AWS SDK to request these credentials. The API returns
temporary security credentials (access key ID and secret access key), and a security token. These
credentials are valid only for the duration you specify when you request them. You use the access key
ID and secret key the same way you use them when sending requests using your AWS account or IAM
user access keys. In addition, you must include the token in each request you send to Amazon S3.

An IAM user can request these temporary security credentials for their own use or hand them out to
federated users or applications. When requesting temporary security credentials for federated users,
you must provide a user name and an IAM policy defining the permissions you want to associate with
these temporary security credentials. The federated user cannot get more permissions than the parent
IAM user who requested the temporary credentials.

You can use these temporary security credentials in making requests to Amazon S3. The API libraries
compute the necessary signature value using those credentials to authenticate your request. If you
send requests using expired credentials, Amazon S3 denies the request.

For information on signing requests using temporary security credentials in your REST API requests,
see Signing and Authenticating REST Requests (p. 576). For information about sending requests
using AWS SDKs, see Making Requests Using the AWS SDKs (p. 19).

For more information about IAM support for temporary security credentials, see Temporary Security
Credentials in the IAM User Guide.

For added security, you can require multifactor authentication (MFA) when accessing your Amazon S3
resources by configuring a bucket policy. For information, see Adding a Bucket Policy to Require MFA
Authentication (p. 339). After you require MFA to access your Amazon S3 resources, the only way

API Version 2006-03-01
12

http://aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Amazon Simple Storage Service Developer Guide
Request Endpoints

you can access these resources is by providing temporary credentials that are created with an MFA
key. For more information, see the AWS Multi-Factor Authentication detail page and Configuring MFA-
Protected API Access in the IAM User Guide.

Request Endpoints
You send REST requests to the service's predefined endpoint. For a list of all AWS services and their
corresponding endpoints, go to Regions and Endpoints in the AWS General Reference.

Making Requests to Amazon S3 over IPv6
Amazon Simple Storage Service (Amazon S3) supports the ability to access S3 buckets using the
Internet Protocol version 6 (IPv6), in addition to the IPv4 protocol. Amazon S3 dual-stack endpoints
support requests to S3 buckets over IPv6 and IPv4. There are no additional charges for accessing
Amazon S3 over IPv6. For more information about pricing, see Amazon S3 Pricing.

Topics

• Getting Started Making Requests over IPv6 (p. 13)

• Using IPv6 Addresses in IAM Policies (p. 14)

• Testing IP Address Compatibility (p. 15)

• Using Amazon S3 Dual-Stack Endpoints (p. 16)

Getting Started Making Requests over IPv6
To make a request to an S3 bucket over IPv6, you need to use a dual-stack endpoint. The next section
describes how to make requests over IPv6 by using dual-stack endpoints.

The following are some things you should know before trying to access a bucket over IPv6:

• The client and the network accessing the bucket must be enabled to use IPv6.

• Both virtual hosted-style and path style requests are supported for IPv6 access. For more
information, see Amazon S3 Dual-Stack Endpoints (p. 16).

• If you use source IP address filtering in your AWS Identity and Access Management (IAM) user
or bucket policies, you need to update the policies to include IPv6 address ranges. For more
information, see Using IPv6 Addresses in IAM Policies (p. 14).

• When using IPv6, server access log files output IP addresses in an IPv6 format. You need to update
existing tools, scripts, and software that you use to parse Amazon S3 log files so that they can
parse the IPv6 formatted Remote IP addresses. For more information, see Server Access Log
Format (p. 554) and Server Access Logging (p. 547).

Note
If you experience issues related to the presence of IPv6 addresses in log files, contact AWS
Support.

Making Requests over IPv6 by Using Dual-Stack Endpoints

You make requests with Amazon S3 API calls over IPv6 by using dual-stack endpoints. The Amazon
S3 API operations work the same way whether you're accessing Amazon S3 over IPv6 or over IPv4.
Performance should be the same too.

API Version 2006-03-01
13

http://aws.amazon.com/mfa/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://aws.amazon.com/s3/pricing/
http://aws.amazon.com/premiumsupport/
http://aws.amazon.com/premiumsupport/

Amazon Simple Storage Service Developer Guide
Using IPv6 Addresses in IAM Policies

When using the REST API, you access a dual-stack endpoint directly. For more information, see Dual-
Stack Endpoints (p. 16).

When using the AWS Command Line Interface (AWS CLI) and AWS SDKs, you can use a parameter
or flag to change to a dual-stack endpoint. You can also specify the dual-stack endpoint directly as an
override of the Amazon S3 endpoint in the config file.

You can use a dual-stack endpoint to access a bucket over IPv6 from any of the following:

• The AWS CLI, see Using Dual-Stack Endpoints from the AWS CLI (p. 16).

• The AWS SDKs, see Using Dual-Stack Endpoints from the AWS SDKs (p. 17).

• The REST API, see Making Requests to Dual-Stack Endpoints by Using the REST API (p. 50).

Features Not Available over IPv6

The following features are not currently supported when accessing an S3 bucket over IPv6:

• Static website hosting from an S3 bucket

• BitTorrent

Amazon S3 IPv6 Access from Amazon EC2

Amazon EC2 instances currently support IPv4 only. They cannot reach Amazon S3 over IPv6. If you
use the dual-stack endpoints, normally the OS or applications automatically establish the connection
over IPv4. Before EC2 (VPC) supports IPv6, we recommend that you continue using the standard
IPv4-only endpoints from EC2 instances, or conduct sufficient testing before switching to the dual-
stack endpoints. For a list of Amazon S3 endpoints, see Regions and Endpoints in the AWS General
Reference.

Using IPv6 Addresses in IAM Policies
Before trying to access a bucket using IPv6, you must ensure that any IAM user or S3 bucket polices
that are used for IP address filtering are updated to include IPv6 address ranges. IP address filtering
policies that are not updated to handle IPv6 addresses may result in clients incorrectly losing or
gaining access to the bucket when they start using IPv6. For more information about managing access
permissions with IAM, see Managing Access Permissions to Your Amazon S3 Resources (p. 266).

IAM policies that filter IP addresses use IP Address Condition Operators. The following bucket policy
identifies the 54.240.143.* range of allowed IPv4 addresses by using IP address condition operators.
Any IP addresses outside of this range will be denied access to the bucket (examplebucket). Since
all IPv6 addresses are outside of the allowed range, this policy prevents IPv6 addresses from being
able to access examplebucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IPAllow",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "IpAddress": {"aws:SourceIp": "54.240.143.0/24"}

API Version 2006-03-01
14

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_IPAddress

Amazon Simple Storage Service Developer Guide
Testing IP Address Compatibility

 }
 }
]
}

You can modify the bucket policy's Condition element to allow both IPv4 (54.240.143.0/24) and
IPv6 (2001:DB8:1234:5678::/64) address ranges as shown in the following example. You can use
the same type of Condition block shown in the example to update both your IAM user and bucket
policies.

 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "54.240.143.0/24",
 "2001:DB8:1234:5678::/64"
]
 }
 }

Before using IPv6 you must update all relevant IAM user and bucket policies that use IP address
filtering to allow IPv6 address ranges. We recommend that you update your IAM policies with your
organization's IPv6 address ranges in addition to your existing IPv4 address ranges. For an example
of a bucket policy that allows access over both IPv6 and IPv4, see Restricting Access to Specific IP
Addresses (p. 336).

You can review your IAM user policies using the IAM console at https://console.aws.amazon.com/iam/.
For more information about IAM, see the IAM User Guide. For information about editing S3 bucket
policies, see Edit Bucket Permissions in the Amazon Simple Storage Service Console User Guide.

Testing IP Address Compatibility
If you are using use Linux/Unix or Mac OS X, you can test whether you can access a dual-stack
endpoint over IPv6 by using the curl command as shown in the following example:

curl -v http://s3.dualstack.us-west-2.amazonaws.com/

You get back information similar to the following example. If you are connected over IPv6 the
connected IP address will be an IPv6 address.

* About to connect() to s3-us-west-2.amazonaws.com port 80 (#0)
* Trying IPv6 address... connected
* Connected to s3.dualstack.us-west-2.amazonaws.com (IPv6 address) port 80
 (#0)
> GET / HTTP/1.1
> User-Agent: curl/7.18.1 (x86_64-unknown-linux-gnu) libcurl/7.18.1
 OpenSSL/1.0.1t zlib/1.2.3
> Host: s3.dualstack.us-west-2.amazonaws.com

If you are using Microsoft Windows 7, you can test whether you can access a dual-stack endpoint over
IPv6 or IPv4 by using the ping command as shown in the following example.

ping ipv6.s3.dualstack.us-west-2.amazonaws.com

API Version 2006-03-01
15

https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingBucketPermissions.html

Amazon Simple Storage Service Developer Guide
Using Dual-Stack Endpoints

Using Amazon S3 Dual-Stack Endpoints
Amazon S3 dual-stack endpoints support requests to S3 buckets over IPv6 and IPv4. This section
describes how to use dual-stack endpoints.

Topics

• Amazon S3 Dual-Stack Endpoints (p. 16)

• Using Dual-Stack Endpoints from the AWS CLI (p. 16)

• Using Dual-Stack Endpoints from the AWS SDKs (p. 17)

• Using Dual-Stack Endpoints from the REST API (p. 18)

Amazon S3 Dual-Stack Endpoints

When you make a request to a dual-stack endpoint, the bucket URL resolves to an IPv6 or an IPv4
address. For more information about accessing a bucket over IPv6, see Making Requests to Amazon
S3 over IPv6 (p. 13).

When using the REST API, you directly access an Amazon S3 endpoint by using the endpoint name
(URI). You can access an S3 bucket through a dual-stack endpoint by using a virtual hosted-style or a
path-style endpoint name. Amazon S3 supports only regional dual-stack endpoint names, which means
that you must specify the region as part of the name.

Use the following naming conventions for the dual-stack virtual hosted-style and path-style endpoint
names:

• Virtual hosted-style dual-stack endpoint:

bucketname.s3.dualstack.aws-region.amazonaws.com

• Path-style dual-stack endpoint:

s3.dualstack.aws-region.amazonaws.com/bucketname

For more information about endpoint name style, see Accessing a Bucket (p. 60). For a list of
Amazon S3 endpoints, see Regions and Endpoints in the AWS General Reference.

Important
You can use transfer acceleration with dual-stack endpoints. For more information, see
Getting Started with Amazon S3 Transfer Acceleration (p. 81).

When using the AWS Command Line Interface (AWS CLI) and AWS SDKs, you can use a parameter
or flag to change to a dual-stack endpoint. You can also specify the dual-stack endpoint directly as an
override of the Amazon S3 endpoint in the config file. The following sections describe how to use dual-
stack endpoints from the AWS CLI and the AWS SDKs.

Using Dual-Stack Endpoints from the AWS CLI

This section provides examples of AWS CLI commands used to make requests to a dual-stack
endpoint. For instructions on setting up the AWS CLI, see Set Up the AWS CLI (p. 563).

You set the configuration value use_dualstack_endpoint to true in a profile in your AWS Config
file to direct all Amazon S3 requests made by the s3 and s3api AWS CLI commands to the dual-stack
endpoint for the specified region. You specify the region in the config file or in a command using the --
region option.

When using dual-stack endpoints with the AWS CLI, both path and virtual addressing styles are
supported. The addressing style, set in the config file, controls if the bucket name is in the hostname or

API Version 2006-03-01
16

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide
Using Dual-Stack Endpoints

part of the URL. By default, the CLI will attempt to use virtual style where possible, but will fall back to
path style if necessary. For more information, see AWS CLI Amazon S3 Configuration.

You can also make configuration changes by using a command, as shown in the following example,
which sets use_dualstack_endpoint to true and addressing_style to virtual in the default
profile.

$ aws configure set default.s3.use_dualstack_endpoint true
$ aws configure set default.s3.addressing_style virtual

If you want to use a dual-stack endpoint for specified AWS CLI commands only (not all commands),
you can use either of the following methods:

• You can use the dual-stack endpoint per command by setting the --endpoint-url parameter
to https://s3.dualstack.aws-region.amazonaws.com or http://s3.dualstack.aws-
region.amazonaws.com for any s3 or s3api command.

$ aws s3api list-objects --bucket bucketname --endpoint-url https://
s3.dualstack.aws-region.amazonaws.com

• You can set up separate profiles in your AWS Config file. For example, create one profile that sets
use_dualstack_endpoint to true and a profile that does not set use_dualstack_endpoint.
When you run a command, specify which profile you want to use, depending upon whether or not
you want to use the dual-stack endpoint.

Note
When using the AWS CLI you currently cannot use transfer acceleration with dual-stack
endpoints. However, support for the AWS CLI is coming soon. For more information, see
Using Transfer Acceleration from the AWS Command Line Interface (AWS CLI) (p. 83).

Using Dual-Stack Endpoints from the AWS SDKs

This section provides examples of how to access a dual-stack endpoint by using the AWS SDKs.

AWS Java SDK Dual-Stack Endpoint Example

You use the setS3ClientOptions method in the AWS Java SDK to enable the use of a dual-stack
endpoint when creating an instance of AmazonS3Client, as shown in the following example.

AmazonS3 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());
s3Client.setRegion(Region.getRegion(Regions.US_WEST_2));
s3Client.setS3ClientOptions(S3ClientOptions.builder().enableDualstack().build());

If you are using the AWS Java SDK on Microsoft Windows, you might have to set the following Java
virtual machine (JVM) property.

java.net.preferIPv6Addresses=true

For information about how to create and test a working Java sample, see Testing the Java Code
Examples (p. 565).

AWS .NET SDK Dual-Stack Endpoint Example

When using the AWS SDK for .NET you use the AmazonS3Config class to enable the use of a dual-
stack endpoint as shown in the following example.

API Version 2006-03-01
17

http://docs.aws.amazon.com/cli/latest/topic/s3-config.html

Amazon Simple Storage Service Developer Guide
Using Dual-Stack Endpoints

var config = new AmazonS3Config
{
 UseDualstackEndpoint = true,
 RegionEndpoint = RegionEndpoint.USWest2
};

using (var s3Client = new AmazonS3Client(config))
{
 var request = new ListObjectsRequest
 {
 BucketName = “myBucket”
 };

 var response = s3Client.ListObjects(request);
}

For a full .NET sample for listing objects, see Listing Keys Using the AWS SDK for .NET (p. 233).

Note
You currently cannot use transfer acceleration with dual-stack endpoints. The .NET
SDK will throw an exception if you configure both UseAccelerateEndpoint and
UseDualstackEndpoint on the config object. For more information, see Using Transfer
Acceleration from the AWS SDK for .NET (p. 88).

For information about how to create and test a working .NET sample, see Running the Amazon
S3 .NET Code Examples (p. 567).

Using Dual-Stack Endpoints from the REST API

For information about making requests to dual-stack endpoints by using the REST API, see Making
Requests to Dual-Stack Endpoints by Using the REST API (p. 50).

API Version 2006-03-01
18

Amazon Simple Storage Service Developer Guide
Making Requests Using the AWS SDKs

Making Requests Using the AWS SDKs
Topics

• Making Requests Using AWS Account or IAM User Credentials (p. 20)

• Making Requests Using IAM User Temporary Credentials (p. 25)

• Making Requests Using Federated User Temporary Credentials (p. 36)

You can send authenticated requests to Amazon S3 using either the AWS SDK or by making the
REST API calls directly in your application. The AWS SDK API uses the credentials that you provide
to compute the signature for authentication. If you use the REST API directly in your applications, you
must write the necessary code to compute the signature for authenticating your request. For a list of
available AWS SDKs go to, Sample Code and Libraries.

API Version 2006-03-01
19

http://aws.amazon.com/code/

Amazon Simple Storage Service Developer Guide
Using AWS Account or IAM User Credentials

Making Requests Using AWS Account or IAM User
Credentials
You can use an AWS account or IAM user security credentials to send authenticated requests to
Amazon S3. This section provides examples of how you can send authenticated requests using the
AWS SDK for Java, AWS SDK for .NET, and AWS SDK for PHP. For a list of available AWS SDKs go
to, Sample Code and Libraries.

Topics

• Making Requests Using AWS Account or IAM User Credentials - AWS SDK for Java (p. 20)

• Making Requests Using AWS Account or IAM User Credentials - AWS SDK for .NET (p. 21)

• Making Requests Using AWS Account or IAM User Credentials - AWS SDK for PHP (p. 23)

• Making Requests Using AWS Account or IAM User Credentials - AWS SDK for Ruby (p. 24)

For more information about setting up your AWS credentials for use with the AWS SDK for Java, see
Testing the Java Code Examples (p. 565).

Making Requests Using AWS Account or IAM User Credentials
- AWS SDK for Java

The following tasks guide you through using the Java classes to send authenticated requests using
your AWS account credentials or IAM user credentials.

Making Requests Using Your AWS account or IAM user credentials

1 Create an instance of the AmazonS3Client class.

2 Execute one of the AmazonS3Client methods to send requests to Amazon S3. The
client generates the necessary signature value from your credentials and includes it in the
request it sends to Amazon S3.

The following Java code sample demonstrates the preceding tasks.

AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());

// Send sample request (list objects in a given bucket).
ObjectListing objectListing = s3client.listObjects(new
 ListObjectsRequest().withBucketName(bucketName));

Note
You can create the AmazonS3Client class without providing your security credentials.
Requests sent using this client are anonymous requests, without a signature. Amazon S3
returns an error if you send anonymous requests for a resource that is not publicly available.

To see how to make requests using your AWS credentials within the context of an example of listing
all the object keys in your bucket, see Listing Keys Using the AWS SDK for Java (p. 231). For
more examples, see Working with Amazon S3 Objects (p. 98) and Working with Amazon S3
Buckets (p. 58). You can test these examples using your AWS Account or IAM user credentials.

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 561)

API Version 2006-03-01
20

http://aws.amazon.com/code/

Amazon Simple Storage Service Developer Guide
Using AWS Account or IAM User Credentials

Making Requests Using AWS Account or IAM User Credentials
- AWS SDK for .NET

The following tasks guide you through using the .NET classes to send authenticated requests using
your AWS account or IAM user credentials.

Making Requests Using Your AWS Account or IAM User Credentials

1 Create an instance of the AmazonS3Client class.

2 Execute one of the AmazonS3Client methods to send requests to Amazon S3. The
client generates the necessary signature from your credentials and includes it in the
request it sends to Amazon S3.

The following C# code sample demonstrates the preceding tasks.

For information on running the .NET examples in this guide and for instructions on how to store your
credentials in a configuration file, see Running the Amazon S3 .NET Code Examples (p. 567).

using System;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class MakeS3Request
 {
 static string bucketName = "*** Provide bucket name ***";
 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 using (client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 Console.WriteLine("Listing objects stored in a bucket");
 ListingObjects();
 }

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static void ListingObjects()
 {
 try
 {
 ListObjectsRequest request = new ListObjectsRequest
 {
 BucketName = bucketName,
 MaxKeys = 2
 };

 do
 {
 ListObjectsResponse response =
 client.ListObjects(request);

API Version 2006-03-01
21

Amazon Simple Storage Service Developer Guide
Using AWS Account or IAM User Credentials

 // Process response.
 foreach (S3Object entry in response.S3Objects)
 {
 Console.WriteLine("key = {0} size = {1}",
 entry.Key, entry.Size);
 }

 // If response is truncated, set the marker to get the
 next
 // set of keys.
 if (response.IsTruncated)
 {
 request.Marker = response.NextMarker;
 }
 else
 {
 request = null;
 }
 } while (request != null);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 if (amazonS3Exception.ErrorCode != null &&
 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||
 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))
 {
 Console.WriteLine("Check the provided AWS Credentials.");
 Console.WriteLine(
 "To sign up for service, go to http://aws.amazon.com/
s3");
 }
 else
 {
 Console.WriteLine(
 "Error occurred. Message:'{0}' when listing objects",
 amazonS3Exception.Message);
 }
 }
 }
 }
}

Note
You can create the AmazonS3Client client without providing your security credentials.
Requests sent using this client are anonymous requests, without a signature. Amazon S3
returns an error if you send anonymous requests for a resource that is not publicly available.

For working examples, see Working with Amazon S3 Objects (p. 98) and Working with Amazon S3
Buckets (p. 58). You can test these examples using your AWS Account or an IAM user credentials.

For example, to list all the object keys in your bucket, see Listing Keys Using the AWS SDK
for .NET (p. 233).

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 561)

API Version 2006-03-01
22

Amazon Simple Storage Service Developer Guide
Using AWS Account or IAM User Credentials

Making Requests Using AWS Account or IAM User Credentials
- AWS SDK for PHP

This topic guides you through using a class from the AWS SDK for PHP to send authenticated
requests using your AWS account or IAM user credentials.

Note
This topic assumes that you are already following the instructions for Using the AWS SDK
for PHP and Running PHP Examples (p. 567) and have the AWS SDK for PHP properly
installed.

Making Requests Using Your AWS Account or IAM user Credentials

1 Create an instance of an Amazon S3 client by using the Aws\S3\S3Client class factory()
method.

2 Execute one of the Aws\S3\S3Client methods to send requests to Amazon S3. For
example, you can use the Aws\S3\S3Client::listBuckets() method to send a request to list
all the buckets for your account. The client API generates the necessary signature using
your credentials and includes it in the request it sends to Amazon S3.

The following PHP code sample demonstrates the preceding tasks and illustrates how the client makes
a request using your security credentials to list all the buckets for your account.

use Aws\S3\S3Client;

// Instantiate the S3 client with your AWS credentials
$s3 = S3Client::factory();

$result = $s3->listBuckets();

For working examples, see Working with Amazon S3 Objects (p. 98) and Working with Amazon S3
Buckets (p. 58). You can test these examples using your AWS account or IAM user credentials.

For an example of listing object keys in a bucket, see Listing Keys Using the AWS SDK for
PHP (p. 235).

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::factory() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::listBuckets() Method

• AWS SDK for PHP for Amazon S3

• AWS SDK for PHP Documentation

API Version 2006-03-01
23

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_listBuckets
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_listBuckets
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/index.html

Amazon Simple Storage Service Developer Guide
Using AWS Account or IAM User Credentials

Making Requests Using AWS Account or IAM User Credentials
- AWS SDK for Ruby

The following tasks guide you through using the AWS SDK for Ruby to send authenticated requests
using your AWS Account credentials or IAM user credentials.

Making Requests Using Your AWS Account or IAM user Credentials

1 Create an instance of the AWS::S3 class.

2 Make a request to Amazon S3 by enumerating objects in a bucket using the buckets
method of AWS::S3. The client generates the necessary signature value from your
credentials and includes it in the request it sends to Amazon S3.

The following Ruby code sample demonstrates the preceding tasks.

Get an instance of the S3 interface using the specified credentials
 configuration.
s3 = AWS::S3.new()

Get a list of all object keys in a bucket.
bucket = s3.buckets[bucket_name].objects.collect(&:key)
puts bucket

Note
You can create the AWS:S3 client without providing your security credentials. Requests sent
using this client are anonymous requests, without a signature. Amazon S3 returns an error if
you send anonymous requests for a resource that is not publicly available.

For working examples, see Working with Amazon S3 Objects (p. 98) and Working with Amazon S3
Buckets (p. 58). You can test these examples using your AWS Account or IAM user credentials.

API Version 2006-03-01
24

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

Making Requests Using IAM User Temporary
Credentials
Topics

• Making Requests Using IAM User Temporary Credentials - AWS SDK for Java (p. 25)

• Making Requests Using IAM User Temporary Credentials - AWS SDK for .NET (p. 28)

• Making Requests Using AWS Account or IAM User Temporary Credentials - AWS SDK for
PHP (p. 31)

• Making Requests Using IAM User Temporary Credentials - AWS SDK for Ruby (p. 34)

An AWS Account or an IAM user can request temporary security credentials and use them to send
authenticated requests to Amazon S3. This section provides examples of how to use the AWS SDK
for Java, .NET, and PHP to obtain temporary security credentials and use them to authenticate your
requests to Amazon S3.

Making Requests Using IAM User Temporary Credentials -
AWS SDK for Java

An IAM user or an AWS Account can request temporary security credentials (see Making
Requests (p. 11)) using AWS SDK for Java and use them to access Amazon S3. These credentials
expire after the session duration. By default, the session duration is one hour. If you use IAM user
credentials, you can specify duration, between 1 and 36 hours, when requesting the temporary security
credentials.

Making Requests Using IAM User Temporary Security Credentials

1 Create an instance of the AWS Security Token Service client
AWSSecurityTokenServiceClient.

2 Start a session by calling the GetSessionToken method of the STS client you
created in the preceding step. You provide session information to this method using a
GetSessionTokenRequest object.

The method returns your temporary security credentials.

3 Package the temporary security credentials in an instance of the
BasicSessionCredentials object so you can provide the credentials to your Amazon
S3 client.

4 Create an instance of the AmazonS3Client class by passing in the temporary security
credentials.

You send the requests to Amazon S3 using this client. If you send requests using
expired credentials, Amazon S3 returns an error.

The following Java code sample demonstrates the preceding tasks.

// In real applications, the following code is part of your trusted code. It
 has
// your security credentials you use to obtain temporary security
 credentials.
AWSSecurityTokenServiceClient stsClient =
 new AWSSecurityTokenServiceClient(new
 ProfileCredentialsProvider());

API Version 2006-03-01
25

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

//
// Manually start a session.
GetSessionTokenRequest getSessionTokenRequest = new GetSessionTokenRequest();
// Following duration can be set only if temporary credentials are requested
 by an IAM user.
getSessionTokenRequest.setDurationSeconds(7200);

GetSessionTokenResult sessionTokenResult =
 stsClient.getSessionToken(getSessionTokenRequest);
Credentials sessionCredentials = sessionTokenResult.getCredentials();

// Package the temporary security credentials as
// a BasicSessionCredentials object, for an Amazon S3 client object to use.
BasicSessionCredentials basicSessionCredentials =
 new
 BasicSessionCredentials(sessionCredentials.getAccessKeyId(),

 sessionCredentials.getSecretAccessKey(),
 sessionCredentials.getSessionToken());

// The following will be part of your less trusted code. You provide
 temporary security
// credentials so it can send authenticated requests to Amazon S3.
// Create Amazon S3 client by passing in the basicSessionCredentials object.
AmazonS3Client s3 = new AmazonS3Client(basicSessionCredentials);

// Test. For example, get object keys in a bucket.
ObjectListing objects = s3.listObjects(bucketName);

API Version 2006-03-01
26

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

Example
Note
If you obtain temporary security credentials using your AWS account credentials, the
temporary security credentials are valid for only one hour. You can specify session duration
only if you use IAM user credentials to request a session.

The following Java code example lists the object keys in the specified bucket. For illustration, the code
example obtains temporary security credentials for a default one hour session and uses them to send
an authenticated request to Amazon S3.
If you want to test the sample using IAM user credentials, you will need to create an IAM user under
your AWS Account. For more information about how to create an IAM user, see Creating Your First
IAM User and Administrators Group in the IAM User Guide.

import java.io.IOException;
import com.amazonaws.auth.BasicSessionCredentials;
import com.amazonaws.auth.PropertiesCredentials;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.securitytoken.AWSSecurityTokenServiceClient;
import com.amazonaws.services.securitytoken.model.Credentials;
import com.amazonaws.services.securitytoken.model.GetSessionTokenRequest;
import com.amazonaws.services.securitytoken.model.GetSessionTokenResult;
import com.amazonaws.services.s3.model.ObjectListing;

public class S3Sample {
 private static String bucketName = "*** Provide bucket name ***";

 public static void main(String[] args) throws IOException {
 AWSSecurityTokenServiceClient stsClient =
 new AWSSecurityTokenServiceClient(new
 ProfileCredentialsProvider());
 //
 // Start a session.
 GetSessionTokenRequest getSessionTokenRequest =
 new GetSessionTokenRequest();

 GetSessionTokenResult sessionTokenResult =

 stsClient.getSessionToken(getSessionTokenRequest);
 Credentials sessionCredentials = sessionTokenResult.getCredentials();
 System.out.println("Session Credentials: "
 +
 sessionCredentials.toString());

 // Package the session credentials as a BasicSessionCredentials
 // object for an S3 client object to use.
 BasicSessionCredentials basicSessionCredentials =
 new
 BasicSessionCredentials(sessionCredentials.getAccessKeyId(),
 sessionCredentials.getSecretAccessKey(),
 sessionCredentials.getSessionToken());
 AmazonS3Client s3 = new AmazonS3Client(basicSessionCredentials);

 // Test. For example, get object keys for a given bucket.
 ObjectListing objects = s3.listObjects(bucketName);
 System.out.println("No. of Objects = " +

 objects.getObjectSummaries().size());
 }
}

API Version 2006-03-01
27

http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 561)

Making Requests Using IAM User Temporary Credentials -
AWS SDK for .NET

An IAM user or an AWS Account can request temporary security credentials (see Making
Requests (p. 11)) using the AWS SDK for .NET and use them to access Amazon S3. These
credentials expire after the session duration. By default, the session duration is one hour. If you
use IAM user credentials, you can specify duration, between 1 and 36 hours, when requesting the
temporary security credentials.

Making Requests Using IAM User Temporary Security Credentials

1 Create an instance of the AWS Security Token Service client,
AmazonSecurityTokenServiceClient. For information about providing credentials,
see Using the AWS SDKs, CLI, and Explorers (p. 561).

2 Start a session by calling the GetSessionToken method of the STS client you
created in the preceding step. You provide session information to this method using a
GetSessionTokenRequest object.

The method returns you temporary security credentials.

3 Package up the temporary security credentials in an instance of the
SessionAWSCredentials object. You use this object to provide the temporary
security credentials to your Amazon S3 client.

4 Create an instance of the AmazonS3Client class by passing in the temporary security
credentials.

You send requests to Amazon S3 using this client. If you send requests using expired
credentials, Amazon S3 returns an error.

The following C# code sample demonstrates the preceding tasks.

// In real applications, the following code is part of your trusted code. It
 has
// your security credentials you use to obtain temporary security
 credentials.
AmazonSecurityTokenServiceConfig config = new
 AmazonSecurityTokenServiceConfig();
 AmazonSecurityTokenServiceClient stsClient =
 new AmazonSecurityTokenServiceClient(config);

GetSessionTokenRequest getSessionTokenRequest = new GetSessionTokenRequest();
// Following duration can be set only if temporary credentials are requested
 by an IAM user.
getSessionTokenRequest.DurationSeconds = 7200; // seconds.
Credentials credentials =

 stsClient.GetSessionToken(getSessionTokenRequest).GetSessionTokenResult.Credentials;

SessionAWSCredentials sessionCredentials =
 new SessionAWSCredentials(credentials.AccessKeyId,

API Version 2006-03-01
28

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

 credentials.SecretAccessKey,

 credentials.SessionToken);

// The following will be part of your less trusted code. You provide
 temporary security
// credentials so it can send authenticated requests to Amazon S3.
// Create Amazon S3 client by passing in the basicSessionCredentials object.
AmazonS3Client s3Client = new AmazonS3Client(sessionCredentials);

// Test. For example, send request to list object key in a bucket.
var response = s3Client.ListObjects(bucketName);

API Version 2006-03-01
29

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

Example

Note
If you obtain temporary security credentials using your AWS account security credentials, the
temporary security credentials are valid for only one hour. You can specify session duration
only if you use IAM user credentials to request a session.

The following C# code example lists object keys in the specified bucket. For illustration, the code
example obtains temporary security credentials for a default one hour session and uses them to send
authenticated request to Amazon S3.

If you want to test the sample using IAM user credentials, you will need to create an IAM user under
your AWS Account. For more information about how to create an IAM user, see Creating Your First
IAM User and Administrators Group in the IAM User Guide.

For instructions on how to create and test a working example, see Running the Amazon S3 .NET Code
Examples (p. 567).

using System;
using System.Configuration;
using System.Collections.Specialized;
using Amazon.S3;
using Amazon.SecurityToken;
using Amazon.SecurityToken.Model;
using Amazon.Runtime;
using Amazon.S3.Model;
using System.Collections.Generic;

namespace s3.amazon.com.docsamples
{
 class TempCredExplicitSessionStart
 {
 static string bucketName = "*** Provide bucket name ***";
 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 NameValueCollection appConfig = ConfigurationManager.AppSettings;
 string accessKeyID = appConfig["AWSAccessKey"];
 string secretAccessKeyID = appConfig["AWSSecretKey"];

 try
 {
 Console.WriteLine("Listing objects stored in a bucket");
 SessionAWSCredentials tempCredentials =
 GetTemporaryCredentials(accessKeyID, secretAccessKeyID);

 // Create client by providing temporary security credentials.
 using (client = new AmazonS3Client(tempCredentials,
 Amazon.RegionEndpoint.USEast1))
 {
 ListObjectsRequest listObjectRequest =
 new ListObjectsRequest();
 listObjectRequest.BucketName = bucketName;

 // Send request to Amazon S3.
 ListObjectsResponse response =
 client.ListObjects(listObjectRequest);
 List<S3Object> objects = response.S3Objects;
 Console.WriteLine("Object count = {0}", objects.Count);

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }
 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine(s3Exception.Message,
 s3Exception.InnerException);
 }
 catch (AmazonSecurityTokenServiceException stsException)
 {
 Console.WriteLine(stsException.Message,
 stsException.InnerException);
 }
 }

 private static SessionAWSCredentials GetTemporaryCredentials(
 string accessKeyId, string secretAccessKeyId)
 {
 AmazonSecurityTokenServiceClient stsClient =
 new AmazonSecurityTokenServiceClient(accessKeyId,
 secretAccessKeyId);

 GetSessionTokenRequest getSessionTokenRequest =
 new GetSessionTokenRequest();
 getSessionTokenRequest.DurationSeconds = 7200; // seconds

 GetSessionTokenResponse sessionTokenResponse =
 stsClient.GetSessionToken(getSessionTokenRequest);
 Credentials credentials = sessionTokenResponse.Credentials;

 SessionAWSCredentials sessionCredentials =
 new SessionAWSCredentials(credentials.AccessKeyId,
 credentials.SecretAccessKey,
 credentials.SessionToken);

 return sessionCredentials;
 }
 }
}

API Version 2006-03-01
30

http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 561)

Making Requests Using AWS Account or IAM User Temporary
Credentials - AWS SDK for PHP

This topic guides you through using classes from the AWS SDK for PHP to request temporary security
credentials and use them to access Amazon S3.

Note
This topic assumes that you are already following the instructions for Using the AWS SDK
for PHP and Running PHP Examples (p. 567) and have the AWS SDK for PHP properly
installed.

An IAM user or an AWS Account can request temporary security credentials (see Making
Requests (p. 11)) using the AWS SDK for PHP and use them to access Amazon S3. These credentials
expire when the session duration expires. By default, the session duration is one hour. If you use
IAM user credentials, you can specify the duration, between 1 and 36 hours, when requesting the
temporary security credentials. For more information about temporary security credentials, see
Temporary Security Credentials in the IAM User Guide.

Making Requests Using AWS Account or IAM User Temporary Security Credentials

1 Create an instance of an AWS Security Token Service (AWS STS) client by using the
Aws\Sts\StsClient class factory() method.

2 Execute the Aws\Sts\StsClient::getSessionToken() method to start a session.

The method returns you temporary security credentials.

3 Create an instance of an Amazon S3 client by using the Aws\S3\S3Client class
factory() method with the temporary security credentials you obtained in the preceding
step.
Any methods in the S3Client class that you call use the temporary security
credentials to send authenticated requests to Amazon S3.

The following PHP code sample demonstrates how to request temporary security credentials and use
them to access Amazon S3.

use Aws\Sts\StsClient;
use Aws\S3\S3Client;

// In real applications, the following code is part of your trusted code.
// It has your security credentials that you use to obtain temporary
// security credentials.
$sts = StsClient::factory();

$result = $sts->getSessionToken();

// The following will be part of your less trusted code. You provide
 temporary
// security credentials so it can send authenticated requests to Amazon S3.
// Create an Amazon S3 client using temporary security credentials.
$credentials = $result->get('Credentials');

API Version 2006-03-01
31

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Sts.StsClient.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Sts.StsClient.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Sts.StsClient.html#_getSessionToken
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

$s3 = S3Client::factory(array(
 'key' => $credentials['AccessKeyId'],
 'secret' => $credentials['SecretAccessKey'],
 'token' => $credentials['SessionToken']
));

$result = $s3->listBuckets();

Note
If you obtain temporary security credentials using your AWS account security credentials,
the temporary security credentials are valid for only one hour. You can specify the session
duration only if you use IAM user credentials to request a session.

Example of Making an Amazon S3 Request Using Temporary Security Credentials

The following PHP code example lists object keys in the specified bucket using temporary security
credentials. The code example obtains temporary security credentials for a default one hour session
and uses them to send authenticated request to Amazon S3. For information about running the PHP
examples in this guide, go to Running PHP Examples (p. 568).

If you want to test the example using IAM user credentials, you will need to create an IAM user under
your AWS Account. For information about how to create an IAM user, see Creating Your First IAM
User and Administrators Group in the IAM User Guide. For an example of setting session duration
when using IAM user credentials to request a session, see Making Requests Using Federated User
Temporary Credentials - AWS SDK for PHP (p. 43).

<?php

// Include the AWS SDK using the Composer autoloader.
require 'vendor/autoload.php';

use Aws\Sts\StsClient;
use Aws\S3\S3Client;
use Aws\S3\Exception\S3Exception;

$bucket = '*** Your Bucket Name ***';

$sts = StsClient::factory();

$credentials = $sts->getSessionToken()->get('Credentials');
$s3 = S3Client::factory(array(
 'key' => $credentials['AccessKeyId'],
 'secret' => $credentials['SecretAccessKey'],
 'token' => $credentials['SessionToken']
));

try {
 $objects = $s3->getIterator('ListObjects', array(
 'Bucket' => $bucket
));

 echo "Keys retrieved!\n";
 foreach ($objects as $object) {
 echo $object['Key'] . "\n";
 }
} catch (S3Exception $e) {
 echo $e->getMessage() . "\n";
}

API Version 2006-03-01
32

http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\Sts\StsClient Class

• AWS SDK for PHP for Amazon S3 Aws\Sts\StsClient::factory() Method

• AWS SDK for PHP for Amazon S3 Aws\Sts\StsClient::getSessionToken() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::factory() Method

• AWS SDK for PHP for Amazon S3

• AWS SDK for PHP Documentation

API Version 2006-03-01
33

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Sts.StsClient.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Sts.StsClient.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Sts.StsClient.html#_getSessionToken
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/index.html

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

Making Requests Using IAM User Temporary Credentials -
AWS SDK for Ruby

An IAM user or an AWS Account can request temporary security credentials (see Making
Requests (p. 11)) using AWS SDK for Ruby and use them to access Amazon S3. These credentials
expire after the session duration. By default, the session duration is one hour. If you use IAM user
credentials, you can specify the duration, between 1 and 36 hours, when requesting the temporary
security credentials.

Making Requests Using IAM User Temporary Security Credentials

1 Create an instance of the AWS Security Token Service client AWS::STS::Session by
providing your credentials.

2 Start a session by calling the new_session method of the STS client that you
created in the preceding step. You provide session information to this method using a
GetSessionTokenRequest object.

The method returns your temporary security credentials.

3 Use the temporary credentials in a new instance of the AWS::S3 class by passing in the
temporary security credentials.

You send the requests to Amazon S3 using this client. If you send requests using
expired credentials, Amazon S3 returns an error.

The following Ruby code sample demonstrates the preceding tasks.

Start a session.
In real applications, the following code is part of your trusted code. It
 has
your security credentials that you use to obtain temporary security
 credentials.

sts = AWS::STS.new()

session = sts.new_session()
puts "Session expires at: #{session.expires_at.to_s}"

Get an instance of the S3 interface using the session credentials.
s3 = AWS::S3.new(session.credentials)

Get a list of all object keys in a bucket.
bucket = s3.buckets[bucket_name].objects.collect(&:key)

API Version 2006-03-01
34

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

Example

Note
If you obtain temporary security credentials using your AWS account security credentials, the
temporary security credentials are valid for only one hour. You can specify session duration
only if you use IAM user credentials to request a session.

The following Ruby code example lists the object keys in the specified bucket. For illustration, the code
example obtains temporary security credentials for a default one hour session and uses them to send
an authenticated request to Amazon S3.

If you want to test the sample using IAM user credentials, you will need to create an IAM user under
your AWS Account. For more information about how to create an IAM user, see Creating Your First
IAM User and Administrators Group in the IAM User Guide.

require 'rubygems'
require 'aws-sdk'

In real applications, the following code is part of your trusted code. It
 has
your security credentials you use to obtain temporary security credentials.

bucket_name = '*** Provide bucket name ***'

Start a session.
sts = AWS::STS.new()
session = sts.new_session()
puts "Session expires at: #{session.expires_at.to_s}"

get an instance of the S3 interface using the session credentials
s3 = AWS::S3.new(session.credentials)

get a list of all object keys in a bucket
bucket = s3.buckets[bucket_name].objects.collect(&:key)
puts bucket

API Version 2006-03-01
35

http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

Making Requests Using Federated User Temporary
Credentials
Topics

• Making Requests Using Federated User Temporary Credentials - AWS SDK for Java (p. 36)

• Making Requests Using Federated User Temporary Credentials - AWS SDK for .NET (p. 40)

• Making Requests Using Federated User Temporary Credentials - AWS SDK for PHP (p. 43)

• Making Requests Using Federated User Temporary Credentials - AWS SDK for Ruby (p. 47)

You can request temporary security credentials and provide them to your federated users or
applications who need to access your AWS resources. This section provides examples of how you can
use the AWS SDK to obtain temporary security credentials for your federated users or applications and
send authenticated requests to Amazon S3 using those credentials. For a list of available AWS SDKs
go to, Sample Code and Libraries.

Note
Both the AWS account and an IAM user can request temporary security credentials
for federated users. However, for added security, only an IAM user with the necessary
permissions should request these temporary credentials to ensure that the federated user
gets at most the permissions of the requesting IAM user. In some applications, you might
find suitable to create an IAM user with specific permissions for the sole purpose of granting
temporary security credentials to your federated users and applications.

Making Requests Using Federated User Temporary
Credentials - AWS SDK for Java

You can provide temporary security credentials for your federated users and applications (see Making
Requests (p. 11)) so they can send authenticated requests to access your AWS resources. When
requesting these temporary credentials from the IAM service, you must provide a user name and an
IAM policy describing the resource permissions you want to grant. By default, the session duration is
one hour. However, if you are requesting temporary credentials using IAM user credentials, you can
explicitly set a different duration value when requesting the temporary security credentials for federated
users and applications.

Note
To request temporary security credentials for federated users and applications, for added
security, you might want to use a dedicated IAM user with only the necessary access
permissions. The temporary user you create can never get more permissions than the IAM
user who requested the temporary security credentials. For more information, go to AWS
Identity and Access Management FAQs .

Making Requests Using Federated User Temporary Security Credentials

1 Create an instance of the AWS Security Token Service client
AWSSecurityTokenServiceClient.

2 Start a session by calling the getFederationToken method of the STS client you
created in the preceding step.

You will need to provide session information including the user name and an IAM policy
that you want to attach to the temporary credentials.

This method returns your temporary security credentials.

API Version 2006-03-01
36

http://aws.amazon.com/code/
http://aws.amazon.com/iam/faqs/#What_are_the_best_practices_for_using_temporary_security_credentials
http://aws.amazon.com/iam/faqs/#What_are_the_best_practices_for_using_temporary_security_credentials

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

3 Package the temporary security credentials in an instance of the
BasicSessionCredentials object. You use this object to provide the temporary
security credentials to your Amazon S3 client.

4 Create an instance of the AmazonS3Client class by passing the temporary security
credentials.

You send requests to Amazon S3 using this client. If you send requests using expired
credentials, Amazon S3 returns an error.

The following Java code sample demonstrates the preceding tasks.

// In real applications, the following code is part of your trusted code. It
 has
// your security credentials you use to obtain temporary security
 credentials.
AWSSecurityTokenServiceClient stsClient =
 new AWSSecurityTokenServiceClient(new
 ProfileCredentialsProvider());

GetFederationTokenRequest getFederationTokenRequest =
 new GetFederationTokenRequest();
getFederationTokenRequest.setDurationSeconds(7200);
getFederationTokenRequest.setName("User1");

// Define the policy and add to the request.
Policy policy = new Policy();
// Define the policy here.
// Add the policy to the request.
getFederationTokenRequest.setPolicy(policy.toJson());

GetFederationTokenResult federationTokenResult =
 stsClient.getFederationToken(getFederationTokenRequest);
Credentials sessionCredentials = federationTokenResult.getCredentials();

// Package the session credentials as a BasicSessionCredentials object
// for an S3 client object to use.
BasicSessionCredentials basicSessionCredentials = new
 BasicSessionCredentials(
 sessionCredentials.getAccessKeyId(),
 sessionCredentials.getSecretAccessKey(),
 sessionCredentials.getSessionToken());

// The following will be part of your less trusted code. You provide
 temporary security
// credentials so it can send authenticated requests to Amazon S3.
// Create an Amazon S3 client by passing in the basicSessionCredentials
 object.
AmazonS3Client s3 = new AmazonS3Client(basicSessionCredentials);

// Test. For example, send list object keys in a bucket.
ObjectListing objects = s3.listObjects(bucketName);

To set a condition in the policy, create a Condition object and associate it with the policy. The
following code sample shows a condition that allows users from a specified IP range to list objects.

Policy policy = new Policy();

API Version 2006-03-01
37

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

// Allow only a specified IP range.
Condition condition = new
 StringCondition(StringCondition.StringComparisonType.StringLike,
 ConditionFactory.SOURCE_IP_CONDITION_KEY , "192.168.143.*");

policy.withStatements(new Statement(Effect.Allow)
 .withActions(S3Actions.ListObjects)
 .withConditions(condition)
 .withResources(new Resource("arn:aws:s3:::"+ bucketName)));

getFederationTokenRequest.setPolicy(policy.toJson());

API Version 2006-03-01
38

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

Example

The following Java code example lists keys in the specified bucket. In the code example, you first
obtain temporary security credentials for a two-hour session for your federated user (User1) and use
them to send authenticated requests to Amazon S3.

When requesting temporary credentials for others, for added security, you use the security credentials
of an IAM user who has permissions to request temporary security credentials. You can also limit the
access permissions of this IAM user to ensure that the IAM user grants only the minimum application-
specific permissions when requesting temporary security credentials. This sample only lists objects in a
specific bucket. Therefore, first create an IAM user with the following policy attached.

{
 "Statement":[{
 "Action":["s3:ListBucket",
 "sts:GetFederationToken*"
],
 "Effect":"Allow",
 "Resource":"*"
 }
]
}

The policy allows the IAM user to request temporary security credentials and access permission only to
list your AWS resources. For information about how to create an IAM user, see Creating Your First IAM
User and Administrators Group in the IAM User Guide.

You can now use the IAM user security credentials to test the following example. The example sends
authenticated request to Amazon S3 using temporary security credentials. The example specifies the
following policy when requesting temporary security credentials for the federated user (User1) which
restricts access to list objects in a specific bucket (YourBucketName). You must update the policy and
provide your own existing bucket name.

{
 "Statement":[
 {
 "Sid":"1",
 "Action":["s3:ListBucket"],
 "Effect":"Allow",
 "Resource":"arn:aws:s3:::YourBucketName"
 }
]
}

You must update the following sample and provide the bucket name that you specified in the preceding
federated user access policy.

import java.io.IOException;
import com.amazonaws.auth.BasicSessionCredentials;
import com.amazonaws.auth.PropertiesCredentials;
import com.amazonaws.auth.policy.Policy;
import com.amazonaws.auth.policy.Resource;
import com.amazonaws.auth.policy.Statement;
import com.amazonaws.auth.policy.Statement.Effect;
import com.amazonaws.auth.policy.actions.S3Actions;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.securitytoken.AWSSecurityTokenServiceClient;
import com.amazonaws.services.securitytoken.model.Credentials;
import com.amazonaws.services.securitytoken.model.GetFederationTokenRequest;
import com.amazonaws.services.securitytoken.model.GetFederationTokenResult;
import com.amazonaws.services.s3.model.ObjectListing;

public class S3Sample {
 private static String bucketName = "*** Specify bucket name ***";
 public static void main(String[] args) throws IOException {
 AWSSecurityTokenServiceClient stsClient =
 new AWSSecurityTokenServiceClient(new
 ProfileCredentialsProvider());

 GetFederationTokenRequest getFederationTokenRequest =
 new GetFederationTokenRequest();
 getFederationTokenRequest.setDurationSeconds(7200);
 getFederationTokenRequest.setName("User1");

 // Define the policy and add to the request.
 Policy policy = new Policy();
 policy.withStatements(new Statement(Effect.Allow)
 .withActions(S3Actions.ListObjects)
 .withResources(new Resource("arn:aws:s3:::ExampleBucket")));

 getFederationTokenRequest.setPolicy(policy.toJson());

 // Get the temporary security credentials.
 GetFederationTokenResult federationTokenResult =

 stsClient.getFederationToken(getFederationTokenRequest);
 Credentials sessionCredentials =
 federationTokenResult.getCredentials();

 // Package the session credentials as a BasicSessionCredentials
 // object for an S3 client object to use.
 BasicSessionCredentials basicSessionCredentials =
 new
 BasicSessionCredentials(sessionCredentials.getAccessKeyId(),
 sessionCredentials.getSecretAccessKey(),
 sessionCredentials.getSessionToken());
 AmazonS3Client s3 = new AmazonS3Client(basicSessionCredentials);

 // Test. For example, send ListBucket request using the temporary
 security credentials.
 ObjectListing objects = s3.listObjects(bucketName);
 System.out.println("No. of Objects = " +
 objects.getObjectSummaries().size());
 }
}

API Version 2006-03-01
39

http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 561)

Making Requests Using Federated User Temporary
Credentials - AWS SDK for .NET

You can provide temporary security credentials for your federated users and applications (see Making
Requests (p. 11)) so they can send authenticated requests to access your AWS resources. When
requesting these temporary credentials, you must provide a user name and an IAM policy describing
the resource permissions you want to grant. By default, the session duration is one hour. You can
explicitly set a different duration value when requesting the temporary security credentials for federated
users and applications.

Note
To request temporary security credentials for federated users and applications, for added
security, you might want to use a dedicated IAM user with only the necessary access
permissions. The temporary user you create can never get more permissions than the IAM
user who requested the temporary security credentials. For more information, go to AWS
Identity and Access Management FAQs .

Making Requests Using Federated User Temporary Credentials

1 Create an instance of the AWS Security Token Service client,
AmazonSecurityTokenServiceClient class. For information about providing
credentials, see Using the AWS SDK for .NET (p. 566).

2 Start a session by calling the GetFederationToken method of the STS client.

You will need to provide session information including the user name and an IAM
policy that you want to attach to the temporary credentials. You can provide an optional
session duration.

This method returns your temporary security credentials.

3 Package the temporary security credentials in an instance of the
SessionAWSCredentials object. You use this object to provide the temporary
security credentials to your Amazon S3 client.

4 Create an instance of the AmazonS3Client class by passing the temporary security
credentials.

You send requests to Amazon S3 using this client. If you send requests using expired
credentials, Amazon S3 returns an error.

The following C# code sample demonstrates the preceding tasks.

// In real applications, the following code is part of your trusted code. It
 has
// your security credentials you use to obtain temporary security
 credentials.
AmazonSecurityTokenServiceConfig config = new
 AmazonSecurityTokenServiceConfig();
AmazonSecurityTokenServiceClient stsClient =
 new AmazonSecurityTokenServiceClient(config);

GetFederationTokenRequest federationTokenRequest =
 new GetFederationTokenRequest();
federationTokenRequest.Name = "User1";

API Version 2006-03-01
40

http://aws.amazon.com/iam/faqs/#What_are_the_best_practices_for_using_temporary_security_credentials
http://aws.amazon.com/iam/faqs/#What_are_the_best_practices_for_using_temporary_security_credentials

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

federationTokenRequest.Policy = "*** Specify policy ***";
federationTokenRequest.DurationSeconds = 7200;

GetFederationTokenResponse federationTokenResponse =
 stsClient.GetFederationToken(federationTokenRequest);
GetFederationTokenResult federationTokenResult =
 federationTokenResponse.GetFederationTokenResult;
Credentials credentials = federationTokenResult.Credentials;

SessionAWSCredentials sessionCredentials =
 new SessionAWSCredentials(credentials.AccessKeyId,
 credentials.SecretAccessKey,
 credentials.SessionToken);

// The following will be part of your less trusted code. You provide
 temporary security
// credentials so it can send authenticated requests to Amazon S3.
// Create Amazon S3 client by passing in the basicSessionCredentials object.
AmazonS3Client s3Client = new AmazonS3Client(sessionCredentials);
// Test. For example, send list object keys in a bucket.
ListObjectsRequest listObjectRequest = new ListObjectsRequest();
listObjectRequest.BucketName = bucketName;
ListObjectsResponse response = s3Client.ListObjects(listObjectRequest);

API Version 2006-03-01
41

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

Example

The following C# code example lists keys in the specified bucket. In the code example, you first obtain
temporary security credentials for a two-hour session for your federated user (User1) and use them to
send authenticated requests to Amazon S3.

When requesting temporary credentials for others, for added security, you use the security credentials
of an IAM user who has permissions to request temporary security credentials. You can also limit
the access permissions of this IAM user to ensure that the IAM user grants only the minimum
application-specific permissions to the federated user. This sample only lists objects in a specific
bucket. Therefore, first create an IAM user with the following policy attached.

{
 "Statement":[{
 "Action":["s3:ListBucket",
 "sts:GetFederationToken*"
],
 "Effect":"Allow",
 "Resource":"*"
 }
]
}

The policy allows the IAM user to request temporary security credentials and access permission only
to list your AWS resources. For more information about how to create an IAM user, see Creating Your
First IAM User and Administrators Group in the IAM User Guide.

You can now use the IAM user security credentials to test the following example. The example sends
authenticated request to Amazon S3 using temporary security credentials. The example specifies the
following policy when requesting temporary security credentials for the federated user (User1) which
restricts access to list objects in a specific bucket (YourBucketName). You must update the policy and
provide your own existing bucket name.

{
 "Statement":[
 {
 "Sid":"1",
 "Action":["s3:ListBucket"],
 "Effect":"Allow",
 "Resource":"arn:aws:s3:::YourBucketName"
 }
]
}

You must update the following sample and provide the bucket name that you specified in the preceding
federated user access policy. For instructions on how to create and test a working example, see
Running the Amazon S3 .NET Code Examples (p. 567).

using System;
using System.Configuration;
using System.Collections.Specialized;
using Amazon.S3;
using Amazon.SecurityToken;
using Amazon.SecurityToken.Model;
using Amazon.Runtime;
using Amazon.S3.Model;
using System.Collections.Generic;

namespace s3.amazon.com.docsamples
{
 class TempFederatedCredentials
 {
 static string bucketName = "*** Provide bucket name ***";
 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 NameValueCollection appConfig = ConfigurationManager.AppSettings;
 string accessKeyID = appConfig["AWSAccessKey"];
 string secretAccessKeyID = appConfig["AWSSecretKey"];

 try
 {
 Console.WriteLine("Listing objects stored in a bucket");
 SessionAWSCredentials tempCredentials =
 GetTemporaryFederatedCredentials(accessKeyID,
 secretAccessKeyID);

 // Create client by providing temporary security credentials.
 using (client = new AmazonS3Client(tempCredentials,
 Amazon.RegionEndpoint.USEast1))
 {

 ListObjectsRequest listObjectRequest = new
 ListObjectsRequest();
 listObjectRequest.BucketName = bucketName;

 ListObjectsResponse response =
 client.ListObjects(listObjectRequest);
 List<S3Object> objects = response.S3Objects;
 Console.WriteLine("Object count = {0}", objects.Count);

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }
 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine(s3Exception.Message,
 s3Exception.InnerException);
 }
 catch (AmazonSecurityTokenServiceException stsException)
 {
 Console.WriteLine(stsException.Message,
 stsException.InnerException);
 }
 }

 private static SessionAWSCredentials GetTemporaryFederatedCredentials(
 string accessKeyId, string secretAccessKeyId)
 {
 AmazonSecurityTokenServiceConfig config = new
 AmazonSecurityTokenServiceConfig();
 AmazonSecurityTokenServiceClient stsClient =
 new AmazonSecurityTokenServiceClient(
 accessKeyId, secretAccessKeyId,
 config);

 GetFederationTokenRequest federationTokenRequest =
 new GetFederationTokenRequest();
 federationTokenRequest.DurationSeconds = 7200;
 federationTokenRequest.Name = "User1";
 federationTokenRequest.Policy = @"{
 ""Statement"":
 [
 {
 ""Sid"":""Stmt1311212314284"",
 ""Action"":[""s3:ListBucket""],
 ""Effect"":""Allow"",
 ""Resource"":""arn:aws:s3:::YourBucketName""
 }
]
 }
 ";

 GetFederationTokenResponse federationTokenResponse =

 stsClient.GetFederationToken(federationTokenRequest);
 Credentials credentials = federationTokenResponse.Credentials;

 SessionAWSCredentials sessionCredentials =
 new SessionAWSCredentials(credentials.AccessKeyId,
 credentials.SecretAccessKey,
 credentials.SessionToken);
 return sessionCredentials;
 }
 }
}

API Version 2006-03-01
42

http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 561)

Making Requests Using Federated User Temporary
Credentials - AWS SDK for PHP
This topic guides you through using classes from the AWS SDK for PHP to request temporary security
credentials for federated users and applications and use them to access Amazon S3.

Note
This topic assumes that you are already following the instructions for Using the AWS SDK
for PHP and Running PHP Examples (p. 567) and have the AWS SDK for PHP properly
installed.

You can provide temporary security credentials to your federated users and applications (see Making
Requests (p. 11)) so they can send authenticated requests to access your AWS resources. When
requesting these temporary credentials, you must provide a user name and an IAM policy describing
the resource permissions you want to grant. These credentials expire when the session duration
expires. By default, the session duration is one hour. You can explicitly set a different duration value
when requesting the temporary security credentials for federated users and applications. For more
information about temporary security credentials, see Temporary Security Credentials in the IAM User
Guide.

To request temporary security credentials for federated users and applications, for added security,
you might want to use a dedicated IAM user with only the necessary access permissions. The
temporary user you create can never get more permissions than the IAM user who requested the
temporary security credentials. For information about identity federation, go to AWS Identity and
Access Management FAQs.

Making Requests Using Federated User Temporary Credentials

1 Create an instance of an AWS Security Token Service (AWS STS) client by using the
Aws\Sts\StsClient class factory() method.

2 Execute the Aws\Sts\StsClient::getFederationToken() method by providing the name
of the federated user in the array parameter's required Name key. You can also add
the optional array parameter's Policy and DurationSeconds keys.

The method returns temporary security credentials that you can provide to your
federated users.

3 Any federated user who has the temporary security credentials can send requests to
Amazon S3 by creating an instance of an Amazon S3 client by using Aws\S3\S3Client
class factory method with the temporary security credentials.

Any methods in the S3Client class that you call use the temporary security
credentials to send authenticated requests to Amazon S3.

The following PHP code sample demonstrates obtaining temporary security credentials for a federated
user and using the credentials to access Amazon S3.

use Aws\Sts\StsClient;
use Aws\S3\S3Client;

// In real applications, the following code is part of your trusted code. It
 has

API Version 2006-03-01
43

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
http://aws.amazon.com/iam/faqs/#What_are_the_best_practices_for_using_temporary_security_credentials
http://aws.amazon.com/iam/faqs/#What_are_the_best_practices_for_using_temporary_security_credentials
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Sts.StsClient.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Sts.StsClient.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Sts.StsClient.html#_getFederationToken
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

// your security credentials that you use to obtain temporary security
 credentials.
$sts = StsClient::factory();

// Fetch the federated credentials.
$result = $sts->getFederationToken(array(
 'Name' => 'User1',
 'DurationSeconds' => 3600,
 'Policy' => json_encode(array(
 'Statement' => array(
 array(
 'Sid' => 'randomstatementid' . time(),
 'Action' => array('s3:ListBucket'),
 'Effect' => 'Allow',
 'Resource' => 'arn:aws:s3:::YourBucketName'
)
)
))
));

// The following will be part of your less trusted code. You provide
 temporary
// security credentials so it can send authenticated requests to Amazon S3.
$credentials = $result->get('Credentials');
$s3 = new S3Client::factory(array(
 'key' => $credentials['AccessKeyId'],
 'secret' => $credentials['SecretAccessKey'],
 'token' => $credentials['SessionToken']
));

$result = $s3->listObjects();

API Version 2006-03-01
44

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

Example of a Federated User Making an Amazon S3 Request Using Temporary Security
Credentials
The following PHP code example lists keys in the specified bucket. In the code example, you first
obtain temporary security credentials for an hour session for your federated user (User1) and use them
to send authenticated requests to Amazon S3. For information about running the PHP examples in this
guide, go to Running PHP Examples (p. 568).

When requesting temporary credentials for others, for added security, you use the security credentials
of an IAM user who has permissions to request temporary security credentials. You can also limit the
access permissions of this IAM user to ensure that the IAM user grants only the minimum application-
specific permissions to the federated user. This example only lists objects in a specific bucket.
Therefore, first create an IAM user with the following policy attached.

{
 "Statement":[{
 "Action":["s3:ListBucket",
 "sts:GetFederationToken*"
],
 "Effect":"Allow",
 "Resource":"*"
 }
]
}
The policy allows the IAM user to request temporary security credentials and access permission only
to list your AWS resources. For more information about how to create an IAM user, see Creating Your
First IAM User and Administrators Group in the IAM User Guide.

You can now use the IAM user security credentials to test the following example. The example sends
an authenticated request to Amazon S3 using temporary security credentials. The example specifies
the following policy when requesting temporary security credentials for the federated user (User1)
which restricts access to list objects in a specific bucket. You must update the policy with your own
existing bucket name.

{
 "Statement":[
 {
 "Sid":"1",
 "Action":["s3:ListBucket"],
 "Effect":"Allow",
 "Resource":"arn:aws:s3:::YourBucketName"
 }
]
}
In the following example you must replace YourBucketName with your own existing bucket name when
specifying the policy resource.

<?php

// Include the AWS SDK using the Composer autoloader.
require 'vendor/autoload.php';

$bucket = '*** Your Bucket Name ***';

use Aws\Sts\StsClient;
use Aws\S3\S3Client;
use Aws\S3\Exception\S3Exception;

// Instantiate the client.
$sts = StsClient::factory();

$result = $sts->getFederationToken(array(
 'Name' => 'User1',
 'DurationSeconds' => 3600,
 'Policy' => json_encode(array(
 'Statement' => array(
 array(
 'Sid' => 'randomstatementid' . time(),
 'Action' => array('s3:ListBucket'),
 'Effect' => 'Allow',
 'Resource' => 'arn:aws:s3:::YourBucketName'
)
)
))
));

$credentials = $result->get('Credentials');
$s3 = S3Client::factory(array(
 'key' => $credentials['AccessKeyId'],
 'secret' => $credentials['SecretAccessKey'],
 'token' => $credentials['SessionToken']
));

try {
 $objects = $s3->getIterator('ListObjects', array(
 'Bucket' => $bucket
));

 echo "Keys retrieved!\n";
 foreach ($objects as $object) {
 echo $object['Key'] . "\n";
 }
} catch (S3Exception $e) {
 echo $e->getMessage() . "\n";
}

API Version 2006-03-01
45

http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\Sts\StsClient Class

• AWS SDK for PHP for Amazon S3 Aws\Sts\StsClient::factory() Method

• AWS SDK for PHP for Amazon S3 Aws\Sts\StsClient::getSessionToken() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::factory() Method

• AWS SDK for PHP for Amazon S3

• AWS SDK for PHP Documentation

API Version 2006-03-01
46

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Sts.StsClient.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Sts.StsClient.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Sts.StsClient.html#_getSessionToken
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/index.html

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

Making Requests Using Federated User Temporary
Credentials - AWS SDK for Ruby

You can provide temporary security credentials for your federated users and applications (see Making
Requests (p. 11)) so that they can send authenticated requests to access your AWS resources. When
requesting these temporary credentials from the IAM service, you must provide a user name and an
IAM policy describing the resource permissions you want to grant. By default, the session duration is
one hour. However, if you are requesting temporary credentials using IAM user credentials, you can
explicitly set a different duration value when requesting the temporary security credentials for federated
users and applications.

Note
To request temporary security credentials for federated users and applications, for added
security, you might want to use a dedicated IAM user with only the necessary access
permissions. The temporary user you create can never get more permissions than the IAM
user who requested the temporary security credentials. For more information, go to AWS
Identity and Access Management FAQs .

Making Requests Using Federated User Temporary Security Credentials

1 Create an instance of the AWS Security Token Service client AWS::STS::Session.

2 Start a session by calling the new_federated_session method of the STS client you
created in the preceding step.

You will need to provide session information including the user name and an IAM policy
that you want to attach to the temporary credentials.

This method returns your temporary security credentials.

3 Create an instance of the AWS::S3 class by passing the temporary security credentials.

You send requests to Amazon S3 using this client. If you send requests using expired
credentials, Amazon S3 returns an error.

The following Ruby code sample demonstrates the preceding tasks.

Start a session with restricted permissions.
sts = AWS::STS.new()
policy = AWS::STS::Policy.new
policy.allow(
 :actions => ["s3:ListBucket"],
 :resources => "arn:aws:s3:::#{bucket_name}")

session = sts.new_federated_session(
 'User1',
 :policy => policy,
 :duration => 2*60*60)

puts "Policy: #{policy.to_json}"

Get an instance of the S3 interface using the session credentials.
s3 = AWS::S3.new(session.credentials)

Get a list of all object keys in a bucket.
bucket = s3.buckets[bucket_name].objects.collect(&:key)

API Version 2006-03-01
47

http://aws.amazon.com/iam/faqs/#What_are_the_best_practices_for_using_temporary_security_credentials
http://aws.amazon.com/iam/faqs/#What_are_the_best_practices_for_using_temporary_security_credentials

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

Example
The following Ruby code example lists keys in the specified bucket. In the code example, you first
obtain temporary security credentials for a two hour session for your federated user (User1) and use
them to send authenticated requests to Amazon S3.When requesting temporary credentials for others, for added security, you use the security credentials
of an IAM user who has permissions to request temporary security credentials. You can also limit the
access permissions of this IAM user to ensure that the IAM user grants only the minimum application
specific permissions when requesting temporary security credentials. This sample only lists objects in a
specific bucket. Therefore, first create an IAM user with the following policy attached.

{
 "Statement":[{
 "Action":["s3:ListBucket",
 "sts:GetFederationToken*"
],
 "Effect":"Allow",
 "Resource":"*"
 }
]
}
The policy allows the IAM user to request temporary security credentials and access permission only
to list your AWS resources. For more information about how to create an IAM user, see Creating Your
First IAM User and Administrators Group in the IAM User Guide.You can now use the IAM user security credentials to test the following example. The example sends
an authenticated request to Amazon S3 using temporary security credentials. The example specifies
the following policy when requesting temporary security credentials for the federated user (User1),
which restricts access to listing objects in a specific bucket (YourBucketName). To use this example in
your code, update the policy and provide your own bucket name.

{
 "Statement":[
 {
 "Sid":"1",
 "Action":["s3:ListBucket"],
 "Effect":"Allow",
 "Resource":"arn:aws:s3:::YourBucketName"
 }
]
}
To use this example in your code, provide your access key ID and secret key and the bucket name that
you specified in the preceding federated user access policy.
require 'rubygems'
require 'aws-sdk'

In real applications, the following code is part of your trusted code. It
 has
your security credentials that you use to obtain temporary security
 credentials.

bucket_name = '*** Provide bucket name ***'

Start a session with restricted permissions.
sts = AWS::STS.new()
policy = AWS::STS::Policy.new
policy.allow(
 :actions => ["s3:ListBucket"],
 :resources => "arn:aws:s3:::#{bucket_name}")

session = sts.new_federated_session(
 'User1',
 :policy => policy,
 :duration => 2*60*60)

puts "Policy: #{policy.to_json}"

Get an instance of the S3 interface using the session credentials.
s3 = AWS::S3.new(session.credentials)

Get a list of all object keys in a bucket.
bucket = s3.buckets[bucket_name].objects.collect(&:key)
puts "No. of Objects = #{bucket.count.to_s}"
puts bucket

API Version 2006-03-01
48

http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Simple Storage Service Developer Guide
Making Requests Using the REST API

Making Requests Using the REST API
This section contains information on how to make requests to Amazon S3 endpoints by using the
REST API. For a list of Amazon S3 endpoints, see Regions and Endpoints in the AWS General
Reference.

Topics

• Making Requests to Dual-Stack Endpoints by Using the REST API (p. 50)

• Virtual Hosting of Buckets (p. 50)

• Request Redirection and the REST API (p. 55)

When making requests by using the REST API, you can use virtual hosted–style or path-style URIs for
the Amazon S3 endpoints. For more information, see Working with Amazon S3 Buckets (p. 58).

Example Virtual Hosted–Style Request

Following is an example of a virtual hosted–style request to delete the puppy.jpg file from the bucket
named examplebucket.

DELETE /puppy.jpg HTTP/1.1
Host: examplebucket.s3-us-west-2.amazonaws.com
Date: Mon, 11 Apr 2016 12:00:00 GMT
x-amz-date: Mon, 11 Apr 2016 12:00:00 GMT
Authorization: authorization string

Example Path-Style Request

Following is an example of a path-style version of the same request.

DELETE /examplebucket/puppy.jpg HTTP/1.1
Host: s3-us-west-2.amazonaws.com
Date: Mon, 11 Apr 2016 12:00:00 GMT
x-amz-date: Mon, 11 Apr 2016 12:00:00 GMT
Authorization: authorization string

Amazon S3 supports virtual hosted-style and path-style access in all regions. The path-style syntax,
however, requires that you use the region-specific endpoint when attempting to access a bucket.
For example, if you have a bucket called mybucket that resides in the EU (Ireland) region, you want
to use path-style syntax, and the object is named puppy.jpg, the correct URI is http://s3-eu-
west-1.amazonaws.com/mybucket/puppy.jpg.

You will receive an HTTP response code 307 Temporary Redirect error and a message indicating
what the correct URI is for your resource if you try to access a bucket outside the US East (N. Virginia)
region with path-style syntax that uses either of the following:

• http://s3.amazonaws.com

• An endpoint for a region different from the one where the bucket resides. For example, if you use
http://s3-eu-west-1.amazonaws.com for a bucket that was created in the US West (N.
California) region.

API Version 2006-03-01
49

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide
Dual-Stack Endpoints (REST API)

Making Requests to Dual-Stack Endpoints by Using
the REST API
When using the REST API, you can directly access a dual-stack endpoint by using a virtual hosted–
style or a path style endpoint name (URI). All Amazon S3 dual-stack endpoint names include the
region in the name. Unlike the standard IPv4-only endpoints, both virtual hosted–style and a path-style
endpoints use region-specific endpoint names.

Example Virtual Hosted–Style Dual-Stack Endpoint Request

You can use a virtual hosted–style endpoint in your REST request as shown in the following example
that retrieves the puppy.jpg object from the bucket named examplebucket.

GET /puppy.jpg HTTP/1.1
Host: examplebucket.s3.dualstack.us-west-2.amazonaws.com
Date: Mon, 11 Apr 2016 12:00:00 GMT
x-amz-date: Mon, 11 Apr 2016 12:00:00 GMT
Authorization: authorization string

Example Path-Style Dual-Stack Endpoint Request

Or you can use a path-style endpoint in your request as shown in the following example.

GET /examplebucket/puppy.jpg HTTP/1.1
Host: s3.dualstack.us-west-2.amazonaws.com
Date: Mon, 11 Apr 2016 12:00:00 GMT
x-amz-date: Mon, 11 Apr 2016 12:00:00 GMT
Authorization: authorization string

For more information about dual-stack endpoints, see Using Amazon S3 Dual-Stack Endpoints (p. 16).

Virtual Hosting of Buckets
Topics

• HTTP Host Header Bucket Specification (p. 51)

• Examples (p. 51)

• Customizing Amazon S3 URLs with CNAMEs (p. 53)

• Limitations (p. 54)

• Backward Compatibility (p. 55)

In general, virtual hosting is the practice of serving multiple web sites from a single web server.
One way to differentiate sites is by using the apparent host name of the request instead of just the
path name part of the URI. An ordinary Amazon S3 REST request specifies a bucket by using the
first slash-delimited component of the Request-URI path. Alternatively, you can use Amazon S3
virtual hosting to address a bucket in a REST API call by using the HTTP Host header. In practice,
Amazon S3 interprets Host as meaning that most buckets are automatically accessible (for limited
types of requests) at http://bucketname.s3.amazonaws.com. Furthermore, by naming your
bucket after your registered domain name and by making that name a DNS alias for Amazon S3,
you can completely customize the URL of your Amazon S3 resources, for example, http://
my.bucketname.com/.

Besides the attractiveness of customized URLs, a second benefit of virtual hosting is the ability to
publish to the "root directory" of your bucket's virtual server. This ability can be important because

API Version 2006-03-01
50

Amazon Simple Storage Service Developer Guide
Virtual Hosting of Buckets

many existing applications search for files in this standard location. For example, favicon.ico,
robots.txt, crossdomain.xml are all expected to be found at the root.

Important
Amazon S3 supports virtual hosted-style and path-style access in all regions. The path-style
syntax, however, requires that you use the region-specific endpoint when attempting to access
a bucket. For example, if you have a bucket called mybucket that resides in the EU (Ireland)
region, you want to use path-style syntax, and the object is named puppy.jpg, the correct
URI is http://s3-eu-west-1.amazonaws.com/mybucket/puppy.jpg.
You will receive an HTTP response code 307 Temporary Redirect error and a message
indicating what the correct URI is for your resource if you try to access a bucket outside the
US East (N. Virginia) region with path-style syntax that uses either of the following:

• http://s3.amazonaws.com

• An endpoint for a region different from the one where the bucket resides. For example, if
you use http://s3-eu-west-1.amazonaws.com for a bucket that was created in the US
West (N. California) region.

Note
Amazon S3 routes any virtual hosted–style requests to the US East (N. Virginia) region by
default if you use the US East (N. Virginia) endpoint (s3.amazonaws.com), instead of the
region-specific endpoint (for example, s3-eu-west-1.amazonaws.com). When you create a
bucket, in any region, Amazon S3 updates DNS to reroute the request to the correct location,
which might take time. In the meantime, the default rule applies and your virtual hosted–style
request goes to the US East (N. Virginia) region, and Amazon S3 redirects it with HTTP 307
redirect to the correct region. For more information, see Request Redirection and the REST
API (p. 513).
When using virtual hosted–style buckets with SSL, the SSL wild card certificate only matches
buckets that do not contain periods. To work around this, use HTTP or write your own
certificate verification logic.

HTTP Host Header Bucket Specification

As long as your GET request does not use the SSL endpoint, you can specify the bucket for the request
by using the HTTP Host header. The Host header in a REST request is interpreted as follows:

• If the Host header is omitted or its value is 's3.amazonaws.com', the bucket for the request will be
the first slash-delimited component of the Request-URI, and the key for the request will be the rest of
the Request-URI. This is the ordinary method, as illustrated by the first and second examples in this
section. Omitting the Host header is valid only for HTTP 1.0 requests.

• Otherwise, if the value of the Host header ends in '.s3.amazonaws.com', the bucket name is the
leading component of the Host header's value up to '.s3.amazonaws.com'. The key for the request
is the Request-URI. This interpretation exposes buckets as subdomains of s3.amazonaws.com, as
illustrated by the third and fourth examples in this section.

• Otherwise, the bucket for the request is the lowercase value of the Host header, and the key for the
request is the Request-URI. This interpretation is useful when you have registered the same DNS
name as your bucket name and have configured that name to be a CNAME alias for Amazon S3.
The procedure for registering domain names and configuring DNS is beyond the scope of this guide,
but the result is illustrated by the final example in this section.

Examples

This section provides example URLs and requests.

API Version 2006-03-01
51

Amazon Simple Storage Service Developer Guide
Virtual Hosting of Buckets

Example Path Style Method

This example uses johnsmith.net as the bucket name and homepage.html as the key name.

The URL is as follows:

http://s3.amazonaws.com/johnsmith.net/homepage.html

The request is as follows:

GET /johnsmith.net/homepage.html HTTP/1.1
Host: s3.amazonaws.com

The request with HTTP 1.0 and omitting the host header is as follows:

GET /johnsmith.net/homepage.html HTTP/1.0

For information about DNS-compatible names, see Limitations (p. 54). For more information about
keys, see Keys (p. 4).

Example Virtual Hosted–Style Method

This example uses johnsmith.net as the bucket name and homepage.html as the key name.

The URL is as follows:

http://johnsmith.net.s3.amazonaws.com/homepage.html

The request is as follows:

GET /homepage.html HTTP/1.1
Host: johnsmith.net.s3.amazonaws.com

The virtual hosted–style method requires the bucket name to be DNS-compliant.

API Version 2006-03-01
52

Amazon Simple Storage Service Developer Guide
Virtual Hosting of Buckets

Example Virtual Hosted–Style Method for a Bucket in a Region Other Than US East (N.
Virginia) region

This example uses johnsmith.eu as the name for a bucket in the EU (Ireland) region and
homepage.html as the key name.

The URL is as follows:

http://johnsmith.eu.s3-eu-west-1.amazonaws.com/homepage.html

The request is as follows:

GET /homepage.html HTTP/1.1
Host: johnsmith.eu.s3-eu-west-1.amazonaws.com

Note that, instead of using the region-specific endpoint, you can also use the US East (N. Virginia)
region endpoint no matter what region the bucket resides.

http://johnsmith.eu.s3.amazonaws.com/homepage.html

The request is as follows:

GET /homepage.html HTTP/1.1
Host: johnsmith.eu.s3.amazonaws.com

Example CNAME Method

This example uses www.johnsmith.net as the bucket name and homepage.html as the
key name. To use this method, you must configure your DNS name as a CNAME alias for
bucketname.s3.amazonaws.com.

The URL is as follows:

http://www.johnsmith.net/homepage.html

The example is as follows:

GET /homepage.html HTTP/1.1
Host: www.johnsmith.net

Customizing Amazon S3 URLs with CNAMEs

Depending on your needs, you might not want "s3.amazonaws.com" to appear on your website or
service. For example, if you host your website images on Amazon S3, you might prefer http://
images.johnsmith.net/ instead of http://johnsmith-images.s3.amazonaws.com/.

The bucket name must be the same as the CNAME. So http://images.johnsmith.net/
filename would be the same as http://images.johnsmith.net.s3.amazonaws.com/
filename if a CNAME were created to map images.johnsmith.net to
images.johnsmith.net.s3.amazonaws.com.

Any bucket with a DNS-compatible name can be referenced as follows: http://
[BucketName].s3.amazonaws.com/[Filename], for example, http://

API Version 2006-03-01
53

Amazon Simple Storage Service Developer Guide
Virtual Hosting of Buckets

images.johnsmith.net.s3.amazonaws.com/mydog.jpg. By using CNAME, you can map
images.johnsmith.net to an Amazon S3 host name so that the previous URL could become
http://images.johnsmith.net/mydog.jpg.

The CNAME DNS record should alias your domain name to the appropriate virtual hosted–style
host name. For example, if your bucket name and domain name are images.johnsmith.net, the
CNAME record should alias to images.johnsmith.net.s3.amazonaws.com.

images.johnsmith.net CNAME images.johnsmith.net.s3.amazonaws.com.

Setting the alias target to s3.amazonaws.com also works, but it may result in extra HTTP redirects.

Amazon S3 uses the host name to determine the bucket name. For example, suppose that you have
configured www.example.com as a CNAME for www.example.com.s3.amazonaws.com. When you
access http://www.example.com, Amazon S3 receives a request similar to the following:

GET / HTTP/1.1
Host: www.example.com
Date: date
Authorization: signatureValue

Because Amazon S3 sees only the original host name www.example.com and is unaware of the
CNAME mapping used to resolve the request, the CNAME and the bucket name must be the same.

Any Amazon S3 endpoint can be used in a CNAME. For example, s3-ap-
southeast-1.amazonaws.com can be used in CNAMEs. For more information about endpoints, see
Request Endpoints (p. 13).

To associate a host name with an Amazon S3 bucket using CNAMEs

1. Select a host name that belongs to a domain you control. This example uses the images
subdomain of the johnsmith.net domain.

2. Create a bucket that matches the host name. In this example, the host and bucket names are
images.johnsmith.net.

Note
The bucket name must exactly match the host name.

3. Create a CNAME record that defines the host name as an alias for the Amazon S3 bucket. For
example:

images.johnsmith.net CNAME images.johnsmith.net.s3.amazonaws.com

Important
For request routing reasons, the CNAME record must be defined exactly as shown in the
preceding example. Otherwise, it might appear to operate correctly, but will eventually
result in unpredictable behavior.

Note
The procedure for configuring DNS depends on your DNS server or DNS provider. For
specific information, see your server documentation or contact your provider.

Limitations

Specifying the bucket for the request by using the HTTP Host header is supported for non-SSL
requests and when using the REST API. You cannot specify the bucket in SOAP by using a different
endpoint.

API Version 2006-03-01
54

Amazon Simple Storage Service Developer Guide
Request Redirection and the REST API

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

Backward Compatibility
Early versions of Amazon S3 incorrectly ignored the HTTP Host header. Applications that depend on
this undocumented behavior must be updated to set the Host header correctly. Because Amazon S3
determines the bucket name from Host when it is present, the most likely symptom of this problem is
to receive an unexpected NoSuchBucket error result code.

Request Redirection and the REST API
Topics

• Redirects and HTTP User-Agents (p. 55)

• Redirects and 100-Continue (p. 55)

• Redirect Example (p. 56)

This section describes how to handle HTTP redirects by using the Amazon S3 REST API. For general
information about Amazon S3 redirects, see Request Redirection and the REST API (p. 513) in the
Amazon Simple Storage Service API Reference.

Redirects and HTTP User-Agents
Programs that use the Amazon S3 REST API should handle redirects either at the application layer
or the HTTP layer. Many HTTP client libraries and user agents can be configured to correctly handle
redirects automatically; however, many others have incorrect or incomplete redirect implementations.

Before you rely on a library to fulfill the redirect requirement, test the following cases:

• Verify all HTTP request headers are correctly included in the redirected request (the second request
after receiving a redirect) including HTTP standards such as Authorization and Date.

• Verify non-GET redirects, such as PUT and DELETE, work correctly.

• Verify large PUT requests follow redirects correctly.

• Verify PUT requests follow redirects correctly if the 100-continue response takes a long time to
arrive.

HTTP user-agents that strictly conform to RFC 2616 might require explicit confirmation before following
a redirect when the HTTP request method is not GET or HEAD. It is generally safe to follow redirects
generated by Amazon S3 automatically, as the system will issue redirects only to hosts within the
amazonaws.com domain and the effect of the redirected request will be the same as that of the original
request.

Redirects and 100-Continue
To simplify redirect handling, improve efficiencies, and avoid the costs associated with sending a
redirected request body twice, configure your application to use 100-continues for PUT operations.
When your application uses 100-continue, it does not send the request body until it receives an
acknowledgement. If the message is rejected based on the headers, the body of the message is not
sent. For more information about 100-continue, go to RFC 2616 Section 8.2.3

Note
According to RFC 2616, when using Expect: Continue with an unknown HTTP server,
you should not wait an indefinite period before sending the request body. This is because

API Version 2006-03-01
55

http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.2.3

Amazon Simple Storage Service Developer Guide
Request Redirection and the REST API

some HTTP servers do not recognize 100-continue. However, Amazon S3 does recognize
if your request contains an Expect: Continue and will respond with a provisional 100-
continue status or a final status code. Additionally, no redirect error will occur after receiving
the provisional 100 continue go-ahead. This will help you avoid receiving a redirect response
while you are still writing the request body.

Redirect Example
This section provides an example of client-server interaction using HTTP redirects and 100-continue.

Following is a sample PUT to the quotes.s3.amazonaws.com bucket.

PUT /nelson.txt HTTP/1.1
Host: quotes.s3.amazonaws.com
Date: Mon, 15 Oct 2007 22:18:46 +0000

Content-Length: 6
Expect: 100-continue

Amazon S3 returns the following:

HTTP/1.1 307 Temporary Redirect
Location: http://quotes.s3-4c25d83b.amazonaws.com/nelson.txt?rk=8d47490b
Content-Type: application/xml
Transfer-Encoding: chunked
Date: Mon, 15 Oct 2007 22:18:46 GMT

Server: AmazonS3

<?xml version="1.0" encoding="UTF-8"?>
<Error>
 <Code>TemporaryRedirect</Code>
 <Message>Please re-send this request to the
 specified temporary endpoint. Continue to use the
 original request endpoint for future requests.
 </Message>
 <Endpoint>quotes.s3-4c25d83b.amazonaws.com</Endpoint>
 <Bucket>quotes</Bucket>
</Error>

The client follows the redirect response and issues a new request to the
quotes.s3-4c25d83b.amazonaws.com temporary endpoint.

PUT /nelson.txt?rk=8d47490b HTTP/1.1
Host: quotes.s3-4c25d83b.amazonaws.com
Date: Mon, 15 Oct 2007 22:18:46 +0000

Content-Length: 6
Expect: 100-continue

Amazon S3 returns a 100-continue indicating the client should proceed with sending the request body.

HTTP/1.1 100 Continue

The client sends the request body.

API Version 2006-03-01
56

Amazon Simple Storage Service Developer Guide
Request Redirection and the REST API

ha ha\n

Amazon S3 returns the final response.

HTTP/1.1 200 OK
Date: Mon, 15 Oct 2007 22:18:48 GMT

ETag: "a2c8d6b872054293afd41061e93bc289"
Content-Length: 0
Server: AmazonS3

API Version 2006-03-01
57

Amazon Simple Storage Service Developer Guide

Working with Amazon S3 Buckets

Amazon S3 is cloud storage for the Internet. To upload your data (photos, videos, documents etc.),
you first create a bucket in one of the AWS Regions. You can then upload any number of objects to the
bucket.

In terms of implementation, buckets and objects are resources, and Amazon S3 provides APIs for you
to manage them. For example, you can create a bucket and upload objects using the Amazon S3 API.
You can also use the Amazon S3 console to perform these operations. The console internally uses the
Amazon S3 APIs to send requests to Amazon S3.

In this section, we explain working with buckets. For information about working with objects, see
Working with Amazon S3 Objects (p. 98).

Amazon S3 bucket names are globally unique, regardless of the AWS Region in which you create the
bucket. You specify the name at the time you create the bucket. For bucket naming guidelines, see
Bucket Restrictions and Limitations (p. 62).

Amazon S3 creates bucket in a region you specify. You can choose any AWS Region that is
geographically close to you to optimize latency, minimize costs, or address regulatory requirements.
For example, if you reside in Europe, you might find it advantageous to create buckets in the EU
(Ireland) or EU (Frankfurt) regions. For a list of AWS Amazon S3 regions, go to Regions and Endpoints
in the AWS General Reference.

Note
Objects belonging to a bucket that you create in a specific AWS Region never leave that
region, unless you explicitly transfer them to another region. For example, objects stored in
the EU (Ireland) region never leave it.

Topics

• Creating a Bucket (p. 59)

• Accessing a Bucket (p. 60)

• Bucket Configuration Options (p. 61)

• Bucket Restrictions and Limitations (p. 62)

• Examples of Creating a Bucket (p. 64)

• Deleting or Emptying a Bucket (p. 67)

• Managing Bucket Website Configuration (p. 72)

API Version 2006-03-01
58

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide
Creating a Bucket

• Amazon S3 Transfer Acceleration (p. 80)

• Requester Pays Buckets (p. 92)

• Buckets and Access Control (p. 96)

• Billing and Reporting of Buckets (p. 97)

Creating a Bucket
Amazon S3 provides APIs for you to create and manage buckets. By default, you can create up to 100
buckets in each of your AWS accounts. If you need additional buckets, you can increase your bucket
limit by submitting a service limit increase. To learn more about submitting a bucket limit increase, go
to AWS Service Limits in the AWS General Reference.

When you create a bucket, you provide a name and AWS Region where you want the bucket created.
For information about naming buckets, see Rules for Bucket Naming (p. 63).

Within each bucket, you can store any number of objects. You can create a bucket using any of the
following methods:

• Create the bucket using the console.

• Create the bucket programmatically using the AWS SDKs.

Note
If you need to, you can also make the Amazon S3 REST API calls directly from your code.
However, this can be cumbersome because it requires you to write code to authenticate
your requests. For more information, go to PUT Bucket in the Amazon Simple Storage
Service API Reference.

When using AWS SDKs you first create a client and then send a request to create a bucket using
the client. You can specify an AWS Region when you create the client. US East (N. Virginia) is the
default region. You can also specify a region in your create bucket request. Note the following:

• If you create a client by specifying the US East (N. Virginia) Region, it uses the following endpoint
to communicate with Amazon S3.

s3.amazonaws.com

You can use this client to create a bucket in any AWS Region. In your create bucket request,

• If you don’t specify a region, Amazon S3 creates the bucket in the US East (N. Virginia) Region.

• If you specify an AWS Region, Amazon S3 creates the bucket in the specified region.

• If you create a client by specifying any other AWS Region, each of these regions maps to the
region-specific endpoint:

s3-<region>.amazonaws.com

For example, if you create a client by specifying the eu-west-1 region, it maps to the following
region-specific endpoint:

s3-eu-west-1.amazonaws.com

In this case, you can use the client to create a bucket only in the eu-west-1 region. Amazon S3
returns an error if you specify any other region in your create bucket request.

• If you create a client to access a dual-stack endpoint, you must specify an AWS Region. For more
information, see Dual-Stack Endpoints (p. 16).

API Version 2006-03-01
59

http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html

Amazon Simple Storage Service Developer Guide
About Permissions

For a list of available AWS Regions, go to Regions and Endpoints in the AWS General Reference.

For examples, see Examples of Creating a Bucket (p. 64).

About Permissions
You can use your AWS account root credentials to create a bucket and perform any other Amazon S3
operation. However, AWS recommends not using the root credentials of your AWS account to make
requests such as create a bucket. Instead, create an IAM user, and grant that user full access (users
by default have no permissions). We refer to these users as administrator users. You can use the
administrator user credentials, instead of the root credentials of your account, to interact with AWS and
perform tasks, such as create a bucket, create users, and grant them permissions.

For more information, go to Root Account Credentials vs. IAM User Credentials in the AWS General
Reference and IAM Best Practices in the IAM User Guide.

The AWS account that creates a resource owns that resource. For example, if you create an IAM
user in your AWS account and grant the user permission to create a bucket, the user can create a
bucket. But the user does not own the bucket; the AWS account to which the user belongs owns the
bucket. The user will need additional permission from the resource owner to perform any other bucket
operations. For more information about managing permissions for your Amazon S3 resources, see
Managing Access Permissions to Your Amazon S3 Resources (p. 266).

Accessing a Bucket
You can access your bucket using the Amazon S3 console. Using the console UI, you can perform
almost all bucket operations without having to write any code.

If you access a bucket programmatically, note that Amazon S3 supports RESTful architecture in which
your buckets and objects are resources, each with a resource URI that uniquely identify the resource.

Amazon S3 supports both virtual-hosted–style and path-style URLs to access a bucket.

• In a virtual-hosted–style URL, the bucket name is part of the domain name in the URL. For example:

• http://bucket.s3.amazonaws.com

• http://bucket.s3-aws-region.amazonaws.com.

In a virtual-hosted–style URL, you can use either of these endpoints. If you make a request to the
http://bucket.s3.amazonaws.com endpoint, the DNS has sufficient information to route your
request directly to the region where your bucket resides.

For more information, see Virtual Hosting of Buckets (p. 50).

• In a path-style URL, the bucket name is not part of the domain (unless you use a region-specific
endpoint). For example:

• US East (N. Virginia) region endpoint, http://s3.amazonaws.com/bucket

• Region-specific endpoint, http://s3-aws-region.amazonaws.com/bucket

In a path-style URL, the endpoint you use must match the region in which the bucket resides. For
example, if your bucket is in the South America (São Paulo) region, you must use the http://
s3-sa-east-1.amazonaws.com/bucket endpoint. If your bucket is in the US East (N. Virginia)
region, you must use the http://s3.amazonaws.com/bucket endpoint.

API Version 2006-03-01
60

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
http://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Simple Storage Service Developer Guide
Bucket Configuration Options

Important
Because buckets can be accessed using path-style and virtual-hosted–style URLs, we
recommend you create buckets with DNS-compliant bucket names. For more information, see
Bucket Restrictions and Limitations (p. 62).

Accessing an S3 Bucket over IPv6

Amazon S3 has a set of dual-stack endpoints, which support requests to S3 buckets over both Internet
Protocol version 6 (IPv6) and IPv4. For more information, see Making Requests over IPv6 (p. 13).

Bucket Configuration Options
Amazon S3 supports various options for you to configure your bucket. For example, you can configure
your bucket for website hosting, add configuration to manage lifecycle of objects in the bucket, and
configure the bucket to log all access to the bucket. Amazon S3 supports subresources for you to
store, and manage the bucket configuration information. That is, using the Amazon S3 API, you can
create and manage these subresources. You can also use the console or the AWS SDKs.

Note
There are also object-level configurations. For example, you can configure object-level
permissions by configuring an access control list (ACL) specific to that object.

These are referred to as subresources because they exist in the context of a specific bucket or object.
The following table lists subresources that enable you to manage bucket-specific configurations.

Subresource Description

location When you create a bucket, you specify the AWS Region where you want
Amazon S3 to create the bucket. Amazon S3 stores this information in the
location subresource and provides an API for you to retrieve this information.

policy and ACL
(Access Control
List)

All your resources (such as buckets and objects) are private by default. Amazon
S3 supports both bucket policy and access control list (ACL) options for you to
grant and manage bucket-level permissions. Amazon S3 stores the permission
information in the policy and acl subresources.

For more information, see Managing Access Permissions to Your Amazon S3
Resources (p. 266).

cors (cross-origin
resource sharing)

You can configure your bucket to allow cross-origin requests.

For more information, see Enabling Cross-Origin Resource Sharing.

website You can configure your bucket for static website hosting. Amazon S3 stores this
configuration by creating a website subresource.

For more information, see Hosting a Static Website on Amazon S3.

logging Logging enables you to track requests for access to your bucket. Each
access log record provides details about a single access request, such as the
requester, bucket name, request time, request action, response status, and
error code, if any. Access log information can be useful in security and access
audits. It can also help you learn about your customer base and understand
your Amazon S3 bill.

For more information, see Server Access Logging (p. 547).

event notification You can enable your bucket to send you notifications of specified bucket events.

API Version 2006-03-01
61

http://docs.aws.amazon.com/AmazonS3/latest/dev/cors.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html

Amazon Simple Storage Service Developer Guide
Restrictions and Limitations

Subresource Description

For more information, see Configuring Amazon S3 Event
Notifications (p. 472).

versioning Versioning helps you recover accidental overwrites and deletes.

We recommend versioning as a best practice to recover objects from being
deleted or overwritten by mistake.

For more information, see Using Versioning (p. 423).

lifecycle You can define lifecycle rules for objects in your bucket that have a well-defined
lifecycle. For example, you can define a rule to archive objects one year after
creation, or delete an object 10 years after creation.

For more information, see Object Lifecycle Management.

cross-region
replication

Cross-region replication is the automatic, asynchronous copying of objects
across buckets in different AWS Regions. For more information, see Cross-
Region Replication (p. 492).

tagging You can add cost allocation tags to your bucket to categorize and track your
AWS costs. Amazon S3 provides the tagging subresource to store and manage
tags on a bucket. Using tags you apply to your bucket, AWS generates a cost
allocation report with usage and costs aggregated by your tags.

For more information, see Billing and Reporting of Buckets (p. 97).

requestPayment By default, the AWS account that creates the bucket (the bucket owner) pays
for downloads from the bucket. Using this subresource, the bucket owner
can specify that the person requesting the download will be charged for the
download. Amazon S3 provides an API for you to manage this subresource.

For more information, see Requester Pays Buckets (p. 92).

transfer
acceleration

Transfer Acceleration enables fast, easy, and secure transfers of files over long
distances between your client and an S3 bucket. Transfer Acceleration takes
advantage of Amazon CloudFront’s globally distributed edge locations.

For more information, see Amazon S3 Transfer Acceleration (p. 80).

Bucket Restrictions and Limitations
A bucket is owned by the AWS account that created it. By default, you can create up to 100 buckets
in each of your AWS accounts. If you need additional buckets, you can increase your bucket limit by
submitting a service limit increase. For information about how to increase your bucket limit, go to AWS
Service Limits in the AWS General Reference.

Bucket ownership is not transferable; however, if a bucket is empty, you can delete it. After a bucket
is deleted, the name becomes available to reuse, but the name might not be available for you to reuse
for various reasons. For example, some other account could create a bucket with that name. Note, too,
that it might take some time before the name can be reused. So if you want to use the same bucket
name, don't delete the bucket.

There is no limit to the number of objects that can be stored in a bucket and no difference in
performance whether you use many buckets or just a few. You can store all of your objects in a single
bucket, or you can organize them across several buckets.

API Version 2006-03-01
62

http://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Simple Storage Service Developer Guide
Rules for Naming

You cannot create a bucket within another bucket.

The high-availability engineering of Amazon S3 is focused on get, put, list, and delete operations.
Because bucket operations work against a centralized, global resource space, it is not appropriate to
create or delete buckets on the high-availability code path of your application. It is better to create or
delete buckets in a separate initialization or setup routine that you run less often.

Note
If your application automatically creates buckets, choose a bucket naming scheme that is
unlikely to cause naming conflicts. Ensure that your application logic will choose a different
bucket name if a bucket name is already taken.

Rules for Bucket Naming
We recommend that all bucket names comply with DNS naming conventions. These conventions are
enforced in all regions except for the US East (N. Virginia) region.

Note
If you use the AWS management console, bucket names must be DNS compliant in all
regions.

DNS-compliant bucket names allow customers to benefit from new features and operational
improvements, as well as providing support for virtual-host style access to buckets. While the US East
(N. Virginia) region currently allows non-compliant DNS bucket naming, we are moving to the same
DNS-compliant bucket naming convention for the US East (N. Virginia) region in the coming months.
This will ensure a single, consistent naming approach for Amazon S3 buckets. The rules for DNS-
compliant bucket names are:

• Bucket names must be at least 3 and no more than 63 characters long.

• Bucket names must be a series of one or more labels. Adjacent labels are separated by a single
period (.). Bucket names can contain lowercase letters, numbers, and hyphens. Each label must
start and end with a lowercase letter or a number.

• Bucket names must not be formatted as an IP address (e.g., 192.168.5.4).

• When using virtual hosted–style buckets with SSL, the SSL wildcard certificate only matches buckets
that do not contain periods. To work around this, use HTTP or write your own certificate verification
logic. We recommend that you do not use periods (".") in bucket names.

The following examples are valid bucket names:

• myawsbucket

• my.aws.bucket

• myawsbucket.1

The following examples are invalid bucket names:

Invalid Bucket Name Comment

.myawsbucket Bucket name cannot start with a period (.).

myawsbucket. Bucket name cannot end with a period (.).

my..examplebucket There can be only one period between labels.

Challenges with Non–DNS-Compliant Bucket Names
The US East (N. Virginia) region currently allows more relaxed standards for bucket naming, which
can result in a bucket name that is not DNS-compliant. For example, MyAWSBucket is a valid bucket

API Version 2006-03-01
63

Amazon Simple Storage Service Developer Guide
Examples of Creating a Bucket

name, even though it contains uppercase letters. If you try to access this bucket by using a virtual-
hosted–style request (http://MyAWSBucket.s3.amazonaws.com/yourobject), the URL resolves
to the bucket myawsbucket and not the bucket MyAWSBucket. In response, Amazon S3 will return a
"bucket not found" error.

To avoid this problem, we recommend as a best practice that you always use DNS-compliant bucket
names regardless of the region in which you create the bucket. For more information about virtual-
hosted–style access to your buckets, see Virtual Hosting of Buckets (p. 50).

The name of the bucket used for Amazon S3 Transfer Acceleration must be DNS-compliant and
must not contain periods ("."). For more information about transfer acceleration, see see Amazon S3
Transfer Acceleration (p. 80).

The rules for bucket names in the US East (N. Virginia) region allow bucket names to be as long
as 255 characters, and bucket names can contain any combination of uppercase letters, lowercase
letters, numbers, periods (.), hyphens (-), and underscores (_).

Examples of Creating a Bucket
Topics

• Using the Amazon S3 Console (p. 65)

• Using the AWS SDK for Java (p. 65)

• Using the AWS SDK for .NET (p. 66)

• Using the AWS SDK for Ruby Version 2 (p. 67)

• Using Other AWS SDKs (p. 67)

This section provides code examples of creating a bucket programmatically using the AWS SDKs for
Java, .NET, and Ruby. The code examples perform the following tasks:

• Create a bucket if it does not exist — The examples create a bucket as follows:

• Create a client by explicitly specifying an AWS Region (example uses the s3-eu-
west-1 region). Accordingly, the client communicates with Amazon S3 using the s3-eu-
west-1.amazonaws.com endpoint. You can specify any other AWS Region. For a list of available
AWS Regions, see Regions and Endpoints in the AWS General Reference.

• Send a create bucket request by specifying only a bucket name. The create bucket request does
not specify another AWS Region; therefore, the client sends a request to Amazon S3 to create the
bucket in the region you specified when creating the client.

Note
If you specify a region in your create bucket request that conflicts with the region you
specify when you create the client, you might get an error. For more information, see
Creating a Bucket (p. 59).

The SDK libraries send the PUT bucket request to Amazon S3 (see PUT Bucket) to create the
bucket.

• Retrieve bucket location information — Amazon S3 stores bucket location information in the location
subresource associated with the bucket. The SDK libraries send the GET Bucket location request
(see GET Bucket location) to retrieve this information

API Version 2006-03-01
64

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlocation.html

Amazon Simple Storage Service Developer Guide
Using the Amazon S3 Console

Using the Amazon S3 Console
For creating a bucket using Amazon S3 console, go to Creating a Bucket in the Amazon Simple
Storage Service Console User Guide.

Using the AWS SDK for Java
For instructions on how to create and test a working sample, see Testing the Java Code
Examples (p. 565).

import java.io.IOException;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Region;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.CreateBucketRequest;
import com.amazonaws.services.s3.model.GetBucketLocationRequest;

public class CreateBucket {
 private static String bucketName = "*** bucket name ***";

 public static void main(String[] args) throws IOException {
 AmazonS3 s3client = new AmazonS3Client(new
 ProfileCredentialsProvider());
 s3client.setRegion(Region.getRegion(Regions.US_WEST_1));

 try {
 if(!(s3client.doesBucketExist(bucketName)))
 {
 // Note that CreateBucketRequest does not specify region. So
 bucket is
 // created in the region specified in the client.
 s3client.createBucket(new CreateBucketRequest(
 bucketName));
 }
 // Get location.
 String bucketLocation = s3client.getBucketLocation(new
 GetBucketLocationRequest(bucketName));
 System.out.println("bucket location = " + bucketLocation);

 } catch (AmazonServiceException ase) {
 System.out.println("Caught an AmazonServiceException, which " +
 "means your request made it " +
 "to Amazon S3, but was rejected with an error response" +
 " for some reason.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException, which " +
 "means the client encountered " +

API Version 2006-03-01
65

http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for .NET

 "an internal error while trying to " +
 "communicate with S3, " +
 "such as not being able to access the network.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }
}

Using the AWS SDK for .NET
For information about how to create and test a working sample, see Running the Amazon S3 .NET
Code Examples (p. 567).

using System;
using Amazon.S3;
using Amazon.S3.Model;
using Amazon.S3.Util;

namespace s3.amazon.com.docsamples
{
 class CreateBucket
 {
 static string bucketName = "*** bucket name ***";

 public static void Main(string[] args)
 {
 using (var client = new
 AmazonS3Client(Amazon.RegionEndpoint.EUWest1))
 {

 if (!(AmazonS3Util.DoesS3BucketExist(client, bucketName)))
 {
 CreateABucket(client);
 }
 // Retrieve bucket location.
 string bucketLocation = FindBucketLocation(client);
 }

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static string FindBucketLocation(IAmazonS3 client)
 {
 string bucketLocation;
 GetBucketLocationRequest request = new GetBucketLocationRequest()
 {
 BucketName = bucketName
 };
 GetBucketLocationResponse response =
 client.GetBucketLocation(request);
 bucketLocation = response.Location.ToString();
 return bucketLocation;
 }

 static void CreateABucket(IAmazonS3 client)
 {

API Version 2006-03-01
66

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for Ruby Version 2

 try
 {
 PutBucketRequest putRequest1 = new PutBucketRequest
 {
 BucketName = bucketName,
 UseClientRegion = true
 };

 PutBucketResponse response1 = client.PutBucket(putRequest1);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 if (amazonS3Exception.ErrorCode != null &&
 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||
 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))
 {
 Console.WriteLine("Check the provided AWS Credentials.");
 Console.WriteLine(
 "For service sign up go to http://aws.amazon.com/
s3");
 }
 else
 {
 Console.WriteLine(
 "Error occurred. Message:'{0}' when writing an
 object"
 , amazonS3Exception.Message);
 }
 }
 }
 }
}

Using the AWS SDK for Ruby Version 2
For information about how to create and test a working sample, see Using the AWS SDK for Ruby -
Version 2 (p. 569).

require 'aws-sdk'

s3 = Aws::S3::Client.new(region: 'us-west-1')
s3.create_bucket(bucket: 'bucket-name')

Using Other AWS SDKs
For information about using other AWS SDKs, go to Sample Code and Libraries.

Deleting or Emptying a Bucket
It is easy to delete an empty bucket, however in some situations you may need to delete or empty
a bucket that contains objects. In this section, we'll explain how to delete objects in an unversioned
bucket (the default), and how to delete object versions and delete markers in a bucket that has

API Version 2006-03-01
67

http://aws.amazon.com/code/

Amazon Simple Storage Service Developer Guide
Delete a Bucket

versioning enabled. For more information about versioning, see Using Versioning (p. 423). In some
situations, you may choose to empty a bucket instead of deleting it. This section explains various
options you can use to delete or empty a bucket that contains objects.

Topics

• Delete a Bucket (p. 68)

• Empty a Bucket (p. 71)

Delete a Bucket
You can delete a bucket and its content programmatically using AWS SDK. You can also use lifecycle
configuration on a bucket to empty its content and then delete the bucket. There are additional options,
such as using Amazon S3 console and AWS CLI, but there are limitations on this method based on the
number of objects in your bucket and the bucket's versioning status.

Topics

• Delete a Bucket: Using the Amazon S3 Console (p. 68)

• Delete a Bucket: Using the AWS CLI (p. 68)

• Delete a Bucket: Using Lifecycle Configuration (p. 68)

• Delete a Bucket: Using the AWS SDKs (p. 69)

Delete a Bucket: Using the Amazon S3 Console
The Amazon S3 console supports deleting a bucket that may or may not be empty. If the bucket is not
empty, the Amazon S3 console supports deleting a bucket containing up to 100,000 objects. If your
bucket contains more than 100,000 objects, you can use other options, such as the AWS CLI, bucket
lifecycle configuration, or programmatically using AWS SDKs.

In the Amazon S3 console, open the context (right-click) menu on the bucket and choose Delete
Bucket or Empty Bucket.

Delete a Bucket: Using the AWS CLI
You can delete a bucket that contains objects using the AWS CLI only if the bucket does not have
versioning enabled. If your bucket does not have versioning enabled, you can use the rb (remove
bucket) AWS CLI command with --force parameter to remove a non-empty bucket. This command
deletes all objects first and then deletes the bucket.

 $ aws s3 rb s3://bucket-name --force

For more information, see Using High-Level S3 Commands with the AWS Command Line Interface in
the AWS Command Line Interface User Guide.

To delete a non-empty bucket that does not have versioning enabled, you have the following options:

• Delete the bucket programmatically using the AWS SDK.

• First, delete all of the objects using the bucket's lifecycle configuration and then delete the empty
bucket using the Amazon S3 console.

Delete a Bucket: Using Lifecycle Configuration
You can configure lifecycle on your bucket to expire objects, Amazon S3 then deletes expired objects.
You can add lifecycle configuration rules to expire all or a subset of objects with a specific key name

API Version 2006-03-01
68

http://docs.aws.amazon.com/cli/latest/userguide/using-s3-commands.html

Amazon Simple Storage Service Developer Guide
Delete a Bucket

prefix. For example, to remove all objects in a bucket, you can set a lifecycle rule to expire objects one
day after creation.

If your bucket has versioning enabled, you can also configure the rule to expire noncurrent objects.

After Amazon S3 deletes all of the objects in your bucket, you can delete the bucket or keep it.

Important
If you just want to empty the bucket and not delete it, make sure you remove the lifecycle
configuration rule you added to empty the bucket so that any new objects you create in the
bucket will remain in the bucket.

For more information, see Object Lifecycle Management (p. 109) and Expiring Objects: General
Considerations (p. 112).

Delete a Bucket: Using the AWS SDKs
You can use the AWS SDKs to delete a bucket. The following sections provide examples of how to
delete a bucket using the AWS SDK for .NET and Java. First, the code deletes objects in the bucket
and then it deletes the bucket. For information about other AWS SDKs, see Tools for Amazon Web
Services.

Delete a Bucket Using the AWS SDK for Java

The following Java example deletes a non-empty bucket. First, the code deletes all objects and then it
deletes the bucket. The code example also works for buckets with versioning enabled.

For instructions on how to create and test a working sample, see Testing the Java Code
Examples (p. 565).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.ListVersionsRequest;
import com.amazonaws.services.s3.model.ObjectListing;
import com.amazonaws.services.s3.model.S3ObjectSummary;
import com.amazonaws.services.s3.model.S3VersionSummary;
import com.amazonaws.services.s3.model.VersionListing;
import java.util.Iterator;

/**
 * Delete an Amazon S3 bucket.
 *
 * This code expects that you have AWS credentials set up per:
 * http://docs.aws.amazon.com/java-sdk/latest/developer-guide/setup-
credentials.html
 *
 * ++ Warning ++ This code will actually delete the bucket that you specify,
 as
 * well as any objects within it!
 */
public class DeleteBucket
{
 public static void main(String[] args)
 {
 final String USAGE = "\n" +
 "To run this example, supply the name of an S3 bucket\n" +
 "\n" +
 "Ex: DeleteBucket <bucketname>\n";

API Version 2006-03-01
69

http://aws.amazon.com/tools/
http://aws.amazon.com/tools/

Amazon Simple Storage Service Developer Guide
Delete a Bucket

 if (args.length < 1) {
 System.out.println(USAGE);
 System.exit(1);
 }

 String bucket_name = args[0];

 System.out.println("Deleting S3 bucket: " + bucket_name);
 final AmazonS3 s3 = new AmazonS3Client();

 try {
 System.out.println(" - removing objects from bucket");
 ObjectListing object_listing = s3.listObjects(bucket_name);
 while (true) {
 for (Iterator<?> iterator =
 object_listing.getObjectSummaries().iterator();
 iterator.hasNext();) {
 S3ObjectSummary summary =
 (S3ObjectSummary)iterator.next();
 s3.deleteObject(bucket_name, summary.getKey());
 }

 // more object_listing to retrieve?
 if (object_listing.isTruncated()) {
 object_listing =
 s3.listNextBatchOfObjects(object_listing);
 } else {
 break;
 }
 };

 System.out.println(" - removing versions from bucket");
 VersionListing version_listing = s3.listVersions(
 new ListVersionsRequest().withBucketName(bucket_name));
 while (true) {
 for (Iterator<?> iterator =
 version_listing.getVersionSummaries().iterator();
 iterator.hasNext();) {
 S3VersionSummary vs = (S3VersionSummary)iterator.next();
 s3.deleteVersion(

 bucket_name, vs.getKey(), vs.getVersionId());
 }

 if (version_listing.isTruncated()) {
 version_listing = s3.listNextBatchOfVersions(
 version_listing);
 } else {
 break;
 }
 }

 System.out.println(" OK, bucket ready to delete!");
 s3.deleteBucket(bucket_name);
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }
 System.out.println("Done!");

API Version 2006-03-01
70

Amazon Simple Storage Service Developer Guide
Empty a Bucket

 }
}

Empty a Bucket
You can empty a bucket's content (that is, delete all content, but keep the bucket) programmatically
using the AWS SDK. You can also specify lifecycle configuration on a bucket to expire objects so that
Amazon S3 can delete them. There are additional options, such as using Amazon S3 console and
AWS CLI, but there are limitations on this method based on the number of objects in your bucket and
the bucket's versioning status.

Topics

• Empty a Bucket: Using the Amazon S3 console (p. 71)

• Empty a Bucket: Using the AWS CLI (p. 71)

• Empty a Bucket: Using Lifecycle Configuration (p. 72)

• Empty a Bucket: Using the AWS SDKs (p. 72)

Empty a Bucket: Using the Amazon S3 console

The Amazon S3 console supports emptying your bucket provided that the bucket contains less than
100,000 objects. The Amazon S3 console returns an error if you attempt to empty a bucket that
contains more than 100,000 objects. For example, if your bucket has versioning enabled, you can
have one object with 101,000 object versions, and you will not be able to empty this bucket using the
Amazon S3 console.

In the Amazon S3 console, open the context (right-click) menu on the bucket and choose Empty
Bucket.

Empty a Bucket: Using the AWS CLI

You can empty a bucket using the AWS CLI only if the bucket does not have versioning enabled. If
your bucket does not have versioning enabled, you can use the rm (remove) AWS CLI command with
the --recursive parameter to empty a bucket (or remove a subset of objects with a specific key
name prefix).

The following rm command removes objects with key name prefix doc, for example, doc/doc1 and
doc/doc2.

$ aws s3 rm s3://bucket-name/doc --recursive

Use the following command to remove all objects without specifying a prefix.

$ aws s3 rm s3://bucket-name --recursive

For more information, see Using High-Level S3 Commands with the AWS Command Line Interface in
the AWS Command Line Interface User Guide.

Note
You cannot remove objects from a bucket with versioning enabled. Amazon S3 adds a delete
marker when you delete an object, which is what this command will do. For more information
about versioning, see Using Versioning (p. 423).

API Version 2006-03-01
71

http://docs.aws.amazon.com/cli/latest/userguide/using-s3-commands.html

Amazon Simple Storage Service Developer Guide
Bucket Website Configuration

To empty a bucket with versioning enabled, you have the following options:

• Delete the bucket programmatically using the AWS SDK.

• Use the bucket's lifecycle configuration to request that Amazon S3 delete the objects.

• Use the Amazon S3 console (can only use this option if your bucket contains less than 100,000
items—including both object versions and delete markers).

Empty a Bucket: Using Lifecycle Configuration

You can configure lifecycle on you bucket to expire objects and request that Amazon S3 delete expired
objects. You can add lifecycle configuration rules to expire all or a subset of objects with a specific key
name prefix. For example, to remove all objects in a bucket, you can set lifecycle rule to expire objects
one day after creation.

If your bucket has versioning enabled, you can also configure the rule to expire noncurrent objects.

Caution
After your objects expire, Amazon S3 deletes the expired objects. If you just want to empty the
bucket and not delete it, make sure you remove the lifecycle configuration rule you added to
empty the bucket so that any new objects you create in the bucket will remain in the bucket.

For more information, see Object Lifecycle Management (p. 109) and Expiring Objects: General
Considerations (p. 112).

Empty a Bucket: Using the AWS SDKs

You can use the AWS SDKs to empty a bucket or remove a subset of objects with a specific key name
prefix.

For an example of how to empty a bucket using AWS SDK for Java, see Delete a Bucket Using the
AWS SDK for Java (p. 69). The code deletes all objects, regardless of whether the bucket has
versioning enabled or not, and then it deletes the bucket. To just empty the bucket, make sure you
remove the statement that deletes the bucket.

For more information about using other AWS SDKs, see Tools for Amazon Web Services.

Managing Bucket Website Configuration
Topics

• Managing Websites with the AWS Management Console (p. 73)

• Managing Websites with the AWS SDK for Java (p. 73)

• Managing Websites with the AWS SDK for .NET (p. 75)

• Managing Websites with the AWS SDK for PHP (p. 78)

• Managing Websites with the REST API (p. 80)

You can host static websites in Amazon S3 by configuring your bucket for website hosting. For more
information, see Hosting a Static Website on Amazon S3 (p. 449). There are several ways you
can manage your bucket's website configuration. You can use the AWS Management Console to
manage configuration without writing any code. You can programmatically create, update, and delete
the website configuration by using the AWS SDKs. The SDKs provide wrapper classes around the
Amazon S3 REST API. If your application requires it, you can send REST API requests directly from
your application.

API Version 2006-03-01
72

http://aws.amazon.com/tools/

Amazon Simple Storage Service Developer Guide
Using the AWS Management Console

Managing Websites with the AWS Management
Console
For more information, see Configure a Bucket for Website Hosting (p. 451).

Managing Websites with the AWS SDK for Java
The following tasks guide you through using the Java classes to manage website configuration to your
bucket. For more information about the Amazon S3 website feature, see Hosting a Static Website on
Amazon S3 (p. 449).

Managing Website Configuration

1 Create an instance of the AmazonS3 class.

2 To add website configuration to a bucket, execute the
AmazonS3.setBucketWebsiteConfiguration method. You need to provide the
bucket name and the website configuration information, including the index document
and the error document names. You must provide the index document, but the error
document is optional. You provide website configuration information by creating a
BucketWebsiteConfiguration object.

To retrieve website configuration, execute the
AmazonS3.getBucketWebsiteConfiguration method by providing the bucket
name.

To delete your bucket website configuration, execute the
AmazonS3.deleteBucketWebsiteConfiguration method by providing the bucket
name. After you remove the website configuration, the bucket is no longer available from
the website endpoint. For more information, see Website Endpoints (p. 450).

The following Java code sample demonstrates the preceding tasks.

AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());
// Add website configuration.
s3Client.setBucketWebsiteConfiguration(bucketName,
 new BucketWebsiteConfiguration(indexDoc , errorDoc));

// Get website configuration.
BucketWebsiteConfiguration bucketWebsiteConfiguration =
 s3Client.getBucketWebsiteConfiguration(bucketName);

// Delete website configuration.
s3Client.deleteBucketWebsiteConfiguration(bucketName);

API Version 2006-03-01
73

Amazon Simple Storage Service Developer Guide
Using the SDK for Java

Example

The following Java code example adds a website configuration to the specified bucket, retrieves it, and
deletes the website configuration. For instructions on how to create and test a working sample, see
Testing the Java Code Examples (p. 565).

import java.io.IOException;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.BucketWebsiteConfiguration;

public class WebsiteConfiguration {
 private static String bucketName = "*** bucket name ***";
 private static String indexDoc = "*** index document name ***";
 private static String errorDoc = "*** error document name ***";

 public static void main(String[] args) throws IOException {
 AmazonS3 s3Client = new AmazonS3Client(new
 ProfileCredentialsProvider());

 try {
 // Get existing website configuration, if any.
 getWebsiteConfig(s3Client);

 // Set new website configuration.
 s3Client.setBucketWebsiteConfiguration(bucketName,
 new BucketWebsiteConfiguration(indexDoc, errorDoc));

 // Verify (Get website configuration again).
 getWebsiteConfig(s3Client);

 // Delete
 s3Client.deleteBucketWebsiteConfiguration(bucketName);

 // Verify (Get website configuration again)
 getWebsiteConfig(s3Client);

 } catch (AmazonServiceException ase) {
 System.out.println("Caught an AmazonServiceException, which" +
 " means your request made it " +
 "to Amazon S3, but was rejected with an error response" +
 " for some reason.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException, which
 means"+
 " the client encountered " +
 "a serious internal problem while trying to " +
 "communicate with Amazon S3, " +
 "such as not being able to access the network.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }

 private static BucketWebsiteConfiguration getWebsiteConfig(
 AmazonS3 s3Client) {
 System.out.println("Get website config");

 // 1. Get website config.
 BucketWebsiteConfiguration bucketWebsiteConfiguration =
 s3Client.getBucketWebsiteConfiguration(bucketName);
 if (bucketWebsiteConfiguration == null)
 {
 System.out.println("No website config.");
 }
 else
 {
 System.out.println("Index doc:" +
 bucketWebsiteConfiguration.getIndexDocumentSuffix());
 System.out.println("Error doc:" +
 bucketWebsiteConfiguration.getErrorDocument());
 }
 return bucketWebsiteConfiguration;
 }
}

API Version 2006-03-01
74

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for .NET

Managing Websites with the AWS SDK for .NET
The following tasks guide you through using the .NET classes to manage website configuration on your
bucket. For more information about the Amazon S3 website feature, see Hosting a Static Website on
Amazon S3 (p. 449).

Managing Bucket Website Configuration

1 Create an instance of the AmazonS3Client class.

2 To add website configuration to a bucket, execute the PutBucketWebsite method.
You need to provide the bucket name and the website configuration information,
including the index document and the error document names. You must provide the index
document, but the error document is optional. You provide this information by creating a
PutBucketWebsiteRequest object.

To retrieve website configuration, execute the GetBucketWebsite method by providing
the bucket name.

To delete your bucket website configuration, execute the DeleteBucketWebsite
method by providing the bucket name. After you remove the website configuration,
the bucket is no longer available from the website endpoint. For more information, see
Website Endpoints (p. 450).

The following C# code sample demonstrates the preceding tasks.

static IAmazonS3 client;
client = new AmazonS3Client(Amazon.RegionEndpoint.USWest2);

// Add website configuration.
PutBucketWebsiteRequest putRequest = new PutBucketWebsiteRequest()
{
 BucketName = bucketName,
 WebsiteConfiguration = new WebsiteConfiguration()
 {
 IndexDocumentSuffix = indexDocumentSuffix,
 ErrorDocument = errorDocument
 }
};
client.PutBucketWebsite(putRequest);

// Get bucket website configuration.
GetBucketWebsiteRequest getRequest = new GetBucketWebsiteRequest()
{
 BucketName = bucketName
};

GetBucketWebsiteResponse getResponse = client.GetBucketWebsite(getRequest);

// Print configuration data.
Console.WriteLine("Index document: {0}",
 getResponse.WebsiteConfiguration.IndexDocumentSuffix);
Console.WriteLine("Error document: {0}",
 getResponse.WebsiteConfiguration.ErrorDocument);

// Delete website configuration.
DeleteBucketWebsiteRequest deleteRequest = new DeleteBucketWebsiteRequest()
{

API Version 2006-03-01
75

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for .NET

 BucketName = bucketName
};
client.DeleteBucketWebsite(deleteRequest);

API Version 2006-03-01
76

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for .NET

Example

The following C# code example adds a website configuration to the specified bucket. The configuration
specifies both the index document and the error document names. For instructions on how to create
and test a working sample, see Running the Amazon S3 .NET Code Examples (p. 567).

using System;
using System.Configuration;
using System.Collections.Specialized;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class AddWebsiteConfig
 {
 static string bucketName = "*** Provide existing bucket name
 ***";
 static string indexDocumentSuffix = "*** Provide index document name
 ***";
 static string errorDocument = "*** Provide error document name
 ***";
 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 using (client = new
 AmazonS3Client(Amazon.RegionEndpoint.USWest2))
 {
 Console.WriteLine("Adding website configuration");
 AddWebsiteConfiguration(bucketName, indexDocumentSuffix,
 errorDocument);
 }

 // Get bucket website configuration.
 GetBucketWebsiteRequest getRequest = new
 GetBucketWebsiteRequest()
 {
 BucketName = bucketName
 };

 GetBucketWebsiteResponse getResponse =
 client.GetBucketWebsite(getRequest);
 // Print configuration data.
 Console.WriteLine("Index document: {0}",
 getResponse.WebsiteConfiguration.IndexDocumentSuffix);
 Console.WriteLine("Error document: {0}",
 getResponse.WebsiteConfiguration.ErrorDocument);

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static void AddWebsiteConfiguration(string bucketName,
 string indexDocumentSuffix,
 string errorDocument)
 {
 try
 {
 PutBucketWebsiteRequest putRequest = new
 PutBucketWebsiteRequest()
 {
 BucketName = bucketName,
 WebsiteConfiguration = new WebsiteConfiguration()
 {
 IndexDocumentSuffix = indexDocumentSuffix,
 ErrorDocument = errorDocument
 }
 };
 client.PutBucketWebsite(putRequest);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 if (amazonS3Exception.ErrorCode != null &&
 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||
 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))
 {
 Console.WriteLine("Check the provided AWS Credentials.");
 Console.WriteLine("Sign up for service at http://
aws.amazon.com/s3");
 }
 else
 {
 Console.WriteLine(
 "Error:{0}, occurred when adding website
 configuration. Message:'{1}",
 amazonS3Exception.ErrorCode,
 amazonS3Exception.Message);
 }
 }
 }
 }
}

API Version 2006-03-01
77

Amazon Simple Storage Service Developer Guide
Using the SDK for PHP

Managing Websites with the AWS SDK for PHP
This topic guides you through using classes from the AWS SDK for PHP to configure and manage an
Amazon S3 bucket for website hosting. For more information about the Amazon S3 website feature,
see Hosting a Static Website on Amazon S3 (p. 449).

Note
This topic assumes that you are already following the instructions for Using the AWS SDK
for PHP and Running PHP Examples (p. 567) and have the AWS SDK for PHP properly
installed.

The following tasks guide you through using the PHP SDK classes to configure and manage an
Amazon S3 bucket for website hosting.

Configuring a Bucket for Website Hosting

1 Create an instance of an Amazon S3 client by using the Aws\S3\S3Client class factory()
method.

2 To configure a bucket as a website, execute the Aws\S3\S3Client::putBucketWebsite()
method. You need to provide the bucket name and the website configuration information,
including the index document and the error document names. If you don't provide these
document names, this method adds the index.html and error.html default names
to the website configuration. You must verify that these documents are present in the
bucket.

3 To retrieve existing bucket website configuration, execute the Aws
\S3\S3Client::getBucketWebsite() method.

4 To delete website configuration from a bucket, execute the Aws
\S3\S3Client::deleteBucketWebsite() method, passing the bucket name as a parameter.
If you remove the website configuration, the bucket is no longer accessible from the
website endpoints.

The following PHP code sample demonstrates the preceding tasks.

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';

// 1. Instantiate the client.
$s3 = S3Client::factory();

// 2. Add website configuration.
$result = $s3->putBucketWebsite(array(
 'Bucket' => $bucket,
 'IndexDocument' => array('Suffix' => 'index.html'),
 'ErrorDocument' => array('Key' => 'error.html'),
));

// 3. Retrieve website configuration.
$result = $s3->getBucketWebsite(array(
 'Bucket' => $bucket,
));
echo $result->getPath('IndexDocument/Suffix');

API Version 2006-03-01
78

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_putBucketWebsite
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_getBucketWebsite
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_getBucketWebsite
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_deleteBucketWebsite
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_deleteBucketWebsite

Amazon Simple Storage Service Developer Guide
Using the SDK for PHP

// 4.) Delete website configuration.
$result = $s3->deleteBucketWebsite(array(
 'Bucket' => $bucket,
));

Example of Configuring an Bucket Amazon S3 for Website Hosting

The following PHP code example first adds a website configuration to the specified bucket. The
create_website_config method explicitly provides the index document and error document names.
The sample also retrieves the website configuration and prints the response. For more information
about the Amazon S3 website feature, see Hosting a Static Website on Amazon S3 (p. 449).

For instructions on how to create and test a working sample, see Using the AWS SDK for PHP and
Running PHP Examples (p. 567).

<?php

// Include the AWS SDK using the Composer autoloader.
require 'vendor/autoload.php';

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';

// Instantiate the client.
$s3 = S3Client::factory();

// 1.) Add website configuration.
$result = $s3->putBucketWebsite(array(
 'Bucket' => $bucket,
 'IndexDocument' => array('Suffix' => 'index.html'),
 'ErrorDocument' => array('Key' => 'error.html'),
));

// 2.) Retrieve website configuration.
$result = $s3->getBucketWebsite(array(
 'Bucket' => $bucket,
));
echo $result->getPath('IndexDocument/Suffix');

// 3.) Delete website configuration.
$result = $s3->deleteBucketWebsite(array(
 'Bucket' => $bucket,
));

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::deleteBucketWebsite() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::factory() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::getBucketWebsite() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::putBucketWebsite() Method

• AWS SDK for PHP for Amazon S3

• AWS SDK for PHP Documentation

API Version 2006-03-01
79

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_deleteBucketWebsite
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_getBucketWebsite
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_putBucketWebsite
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/index.html

Amazon Simple Storage Service Developer Guide
Using the REST API

Managing Websites with the REST API
You can use the AWS Management Console or the AWS SDK to configure a bucket as a website.
However, if your application requires it, you can send REST requests directly. For more information,
see the following sections in the Amazon Simple Storage Service API Reference.

• PUT Bucket website

• GET Bucket website

• DELETE Bucket website

Amazon S3 Transfer Acceleration
Amazon S3 Transfer Acceleration enables fast, easy, and secure transfers of files over long distances
between your client and an S3 bucket. Transfer Acceleration takes advantage of Amazon CloudFront’s
globally distributed edge locations. As the data arrives at an edge location, data is routed to Amazon
S3 over an optimized network path.

When using Transfer Acceleration, additional data transfer charges may apply. For more information
about pricing, see Amazon S3 Pricing.

Topics

• Why Use Amazon S3 Transfer Acceleration? (p. 80)

• Getting Started with Amazon S3 Transfer Acceleration (p. 81)

• Requirements for Using Amazon S3 Transfer Acceleration (p. 82)

• Amazon S3 Transfer Acceleration Examples (p. 83)

Why Use Amazon S3 Transfer Acceleration?
You might want to use Transfer Acceleration on a bucket for various reasons, including the following:

• You have customers that upload to a centralized bucket from all over the world.

• You transfer gigabytes to terabytes of data on a regular basis across continents.

• You underutilize the available bandwidth over the Internet when uploading to Amazon S3.

For more information about when to use Transfer Acceleration, see Amazon S3 FAQs.

Using the Amazon S3 Transfer Acceleration Speed
Comparison Tool
You can use the Amazon S3 Transfer Acceleration Speed Comparison tool to compare accelerated
and non-accelerated upload speeds across Amazon S3 regions. The Speed Comparison tool uses
multipart uploads to transfer a file from your browser to various Amazon S3 regions with and without
using Transfer Acceleration.

You can access the Speed Comparison tool using either of the following methods:

• Copy the following URL into your browser window, replacing region with the region that you are
using (for example, us-west-2) and yourBucketName with the name of the bucket that you want to
evaluate:

http://s3-accelerate-speedtest.s3-accelerate.amazonaws.com/en/accelerate-
speed-comparsion.html?region=region&origBucketName=yourBucketName

API Version 2006-03-01
80

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETwebsite.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEwebsite.html
http://aws.amazon.com/s3/pricing/
http://aws.amazon.com/s3/faqs/#s3ta
http://s3-accelerate-speedtest.s3-accelerate.amazonaws.com/en/accelerate-speed-comparsion.html

Amazon Simple Storage Service Developer Guide
Getting Started

For a list of the regions supported by Amazon S3, see Regions and Endpoints in the Amazon Web
Services General Reference.

• Use the Amazon S3 console. For details, see Enabling Transfer Acceleration in the Amazon Simple
Storage Service Console User Guide.

Getting Started with Amazon S3 Transfer
Acceleration

To get started using Amazon S3 Transfer Acceleration perform the following steps:

1. Enable Transfer Acceleration on a bucket – For your bucket to work with transfer acceleration,
the bucket name must conform to DNS naming requirements and must not contain periods (".").

You can enable Transfer Acceleration on a bucket any of the following ways:

• Use the Amazon S3 console. For more information, see Enabling Transfer Acceleration in the
Amazon Simple Storage Service Console User Guide.

• Use the REST API PUT Bucket accelerate operation.

• Use the AWS CLI and AWS SDKs. For more information, see Using the AWS SDKs, CLI, and
Explorers (p. 561).

2. Transfer data to and from the acceleration-enabled bucket by using one of the following s3-
accelerate endpoint domain names:

• bucketname.s3-accelerate.amazonaws.com – to access an acceleration-enabled bucket.

• bucketname.s3-accelerate.dualstack.amazonaws.com – to access an acceleration-
enabled bucket over IPv6. Amazon S3 dual-stack endpoints support requests to S3 buckets
over IPv6 and IPv4. The Transfer Acceleration dual-stack endpoint only uses the virtual hosted-
style type of endpoint name. For more information, see Getting Started Making Requests over
IPv6 (p. 13) and Using Amazon S3 Dual-Stack Endpoints (p. 16).

Important
Currently support for the dual-stack accelerated endpoint is only available from the AWS
Java SDK. For an example, see Creating an Amazon S3 Java Client to Use the Transfer
Acceleration Dual-Stack Endpoint (p. 85). Support for the AWS CLI and other AWS
SDKs is coming soon.

Note
You can continue to use the regular endpoint in addition to the accelerate endpoints.

You can point your Amazon S3 PUT object and GET object requests to the s3-accelerate endpoint
domain name after you enable Transfer Acceleration. For example, let's say you currently have a
REST API application using PUT Object that uses the host name mybucket.s3.amazonaws.com
in the PUT request. To accelerate the PUT you simply change the host name in your request to
mybucket.s3-accelerate.amazonaws.com. To go back to using the standard upload speed, simply
change the name back to mybucket.s3.amazonaws.com.

After Transfer Acceleration is enabled, it can take up to 20 minutes for you to realize the
performance benefit. However, the accelerate endpoint will be available as soon as you enable
Transfer Acceleration.

API Version 2006-03-01
81

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
http://docs.aws.amazon.com/AmazonS3/latest/UG/enable-bucket-transfer-acceleration.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/enable-bucket-transfer-acceleration.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTaccelerate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Requirements for Using Amazon S3 Transfer Acceleration

You can use the accelerate endpoint in the AWS CLI, AWS SDKs, and other tools that transfer
data to and from Amazon S3. If you are using the AWS SDKs, some of the supported languages
use an accelerate endpoint client configuration flag so you don't need to explicitly set the endpoint
for Transfer Acceleration to bucketname.s3-accelerate.amazonaws.com. For examples of how
to use an accelerate endpoint client configuration flag, see Amazon S3 Transfer Acceleration
Examples (p. 83).

You can use all of the Amazon S3 operations through the transaction acceleration endpoints, except
for the following the operations: GET Service (list buckets), PUT Bucket (create bucket), and DELETE
Bucket. Also, Amazon S3 Transfer Acceleration does not support cross region copies using PUT
Object - Copy.

Requirements for Using Amazon S3 Transfer
Acceleration
The following are the requirements for using Transfer Acceleration on an S3 bucket:

• Transfer Acceleration is only supported on virtual style requests. For more information about virtual
style requests, see Making Requests Using the REST API (p. 49).

• The name of the bucket used for Transfer Acceleration must be DNS-compliant and must not contain
periods (".").

• Transfer Acceleration must be enabled on the bucket. After enabling Transfer Acceleration on a
bucket it might take up to thirty minutes before the data transfer speed to the bucket increases.

• To access the bucket that is enabled for Transfer Acceleration, you must use the use the endpoint
bucketname.s3-accelerate.amazonaws.com. or the dual-stack endpoint bucketname.s3-
accelerate.dualstack.amazonaws.com to connect to the enabled bucket over IPv6.

• You must be the bucket owner to set the transfer acceleration state. The bucket owner can
assign permissions to other users to allow them to set the acceleration state on a bucket. The
s3:PutAccelerateConfiguration permission permits users to enable or disable Transfer
Acceleration on a bucket. The s3:GetAccelerateConfiguration permission permits users
to return the Transfer Acceleration state of a bucket, which is either Enabled or Suspended.
For more information about these permissions, see Permissions Related to Bucket Subresource
Operations (p. 314) and Managing Access Permissions to Your Amazon S3 Resources (p. 266).

• Transfer Acceleration is not Health Insurance Portability and Accountability Act (HIPAA) compliant.

Important
Transfer Acceleration uses AWS Edge infrastructure (edge locations), which are not Health
Insurance Portability and Accountability Act (HIPAA) compliant. If your organization has
personal health information (PHI) workloads covered under the HIPAA Business Associate
Agreement (BAA), you can't use Transfer Acceleration. For more information, contact AWS
Support at Contact Us.

Related Topics

• GET Bucket accelerate

• PUT Bucket accelerate

API Version 2006-03-01
82

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETE.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETE.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
http://aws.amazon.com/contact-us/
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETaccelerate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTaccelerate.html

Amazon Simple Storage Service Developer Guide
Transfer Acceleration Examples

Amazon S3 Transfer Acceleration Examples
This section provides examples of how to enable Amazon S3 Transfer Acceleration on a bucket and
use the acceleration endpoint for the enabled bucket. Some of the AWS SDK supported languages
(for example, Java and .NET) use an accelerate endpoint client configuration flag so you don't need to
explicitly set the endpoint for Transfer Acceleration to bucketname.s3-accelerate.amazonaws.com.
For more information about Transfer Acceleration, see Amazon S3 Transfer Acceleration (p. 80).

Topics

• Using the Amazon S3 Console (p. 83)

• Using Transfer Acceleration from the AWS Command Line Interface (AWS CLI) (p. 83)

• Using Transfer Acceleration from the AWS SDK for Java (p. 84)

• Using Transfer Acceleration from the AWS SDK for .NET (p. 88)

• Using Transfer Acceleration from the AWS SDK for JavaScript (p. 92)

• Using Transfer Acceleration from the AWS SDK for Python (Boto) (p. 92)

• Using Other AWS SDKs (p. 92)

Using the Amazon S3 Console

For information about enabling Transfer Acceleration on a bucket using the Amazon S3 console, see,
Enabling Transfer Acceleration in the Amazon Simple Storage Service Console User Guide.

Using Transfer Acceleration from the AWS Command Line
Interface (AWS CLI)

This section provides examples of AWS CLI commands used for Transfer Acceleration. For
instructions on setting up the AWS CLI, see Set Up the AWS CLI (p. 563).

Enabling Transfer Acceleration on a Bucket Using the AWS CLI

Use the AWS CLI put-bucket-accelerate-configuration command to enable or suspend Transfer
Acceleration on a bucket. The following example sets Status=Enabled to enable Transfer
Acceleration on a bucket. You use Status=Suspended to suspend Transfer Acceleration.

$ aws s3api put-bucket-accelerate-configuration --bucket bucketname --
accelerate-configuration Status=Enabled

Using the Transfer Acceleration from the AWS CLI

Setting the configuration value use_accelerate_endpoint to true in a profile in your AWS Config
File will direct all Amazon S3 requests made by s3 and s3api AWS CLI commands to the accelerate
endpoint: s3-accelerate.amazonaws.com. Transfer Acceleration must be enabled on your bucket
to use the accelerate endpoint.

All request are sent using the virtual style of bucket addressing: my-bucket.s3-
accelerate.amazonaws.com. Any ListBuckets, CreateBucket, and DeleteBucket requests
will not be sent to the accelerate endpoint as the endpoint does not support those operations. For more
information about use_accelerate_endpoint, see AWS CLI S3 Configuration.

The following example sets use_accelerate_endpoint to true in the default profile.

$ aws configure set default.s3.use_accelerate_endpoint true

API Version 2006-03-01
83

http://docs.aws.amazon.com/AmazonS3/latest/UG/enable-bucket-transfer-acceleration.html
http://docs.aws.amazon.com/cli/latest/reference/s3api/put-bucket-accelerate-configuration.html
http://docs.aws.amazon.com/cli/latest/topic/s3-config.html

Amazon Simple Storage Service Developer Guide
Transfer Acceleration Examples

If you want to use the accelerate endpoint for some AWS CLI commands but not others, you can use
either one of the following two methods:

• You can use the accelerate endpoint per command by setting the --endpoint-url parameter to
https://s3-accelerate.amazonaws.com or http://s3-accelerate.amazonaws.com for
any s3 or s3api command.

• You can setup separate profiles in your AWS Config File. For example, create one
profile that sets use_accelerate_endpoint to true and a profile that does not set
use_accelerate_endpoint. When you execute a command specify which profile you want to use,
depending upon whether or not you want to use the accelerate endpoint.

AWS CLI Examples of Uploading an Object to a Bucket Enabled for Transfer
Acceleration

The following example uploads a file to a bucket enabled for Transfer Acceleration by using the default
profile that has been configured to use the accelerate endpoint.

$ aws s3 cp file.txt s3://bucketname/keyname --region region

The following example uploads a file to a bucket enabled for Transfer Acceleration by using the --
endpoint-url parameter to specify the accelerate endpoint.

$ aws configure set s3.addressing_style virtual
$ aws s3 cp file.txt s3://bucketname/keyname --region region --endpoint-url
 http://s3-accelerate.amazonaws.com

Using Transfer Acceleration from the AWS SDK for Java
This section provides examples of using the AWS SDK for Java for Transfer Acceleration. For
information about how to create and test a working Java sample, see Testing the Java Code
Examples (p. 565).

Enabling Amazon S3 Transfer Acceleration on a Bucket from the AWS SDK for
Java

The following Java example shows how to enable Transfer Acceleration on a bucket.

import java.io.IOException;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Region;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.BucketAccelerateConfiguration;
import com.amazonaws.services.s3.model.BucketAccelerateStatus;
import
 com.amazonaws.services.s3.model.GetBucketAccelerateConfigurationRequest;
import
 com.amazonaws.services.s3.model.SetBucketAccelerateConfigurationRequest;

public class BucketAccelertionConfiguration {

 public static String bucketName = "*** Provide bucket name ***";
 public static AmazonS3Client s3Client;

API Version 2006-03-01
84

Amazon Simple Storage Service Developer Guide
Transfer Acceleration Examples

 public static void main(String[] args) throws IOException {

 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());
 s3Client.setRegion(Region.getRegion(Regions.US_WEST_2));

 // 1. Enable bucket for Amazon S3 Transfer Acceleration.
 s3Client.setBucketAccelerateConfiguration(new
 SetBucketAccelerateConfigurationRequest(bucketName,
 new BucketAccelerateConfiguration(BucketAccelerateStatus.Enabled)));

 // 2. Get the acceleration status of the bucket.
 String accelerateStatus =
 s3Client.getBucketAccelerateConfiguration(new
 GetBucketAccelerateConfigurationRequest(bucketName)).getStatus();

 System.out.println("Acceleration status = " + accelerateStatus);

 }
}

Creating an Amazon S3 Client to Use a Amazon S3 Transfer Acceleration
Endpoint from the AWS SDK for Java

You use the setS3ClientOptions method from the AWS Java SDK to use a transfer acceleration
endpoint when creating an instance of AmazonS3Client.

Creating an Amazon S3 Java Client to Use the Transfer Acceleration Endpoint

The following example shows how to use the setS3ClientOptions method from the AWS Java SDK
to use a transfer acceleration endpoint when creating an instance of AmazonS3Client.

AmazonS3 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());
s3Client.setRegion(Region.getRegion(Regions.US_WEST_2));
s3Client.setS3ClientOptions(S3ClientOptions.builder().setAccelerateModeEnabled(true).build());

Creating an Amazon S3 Java Client to Use the Transfer Acceleration Dual-Stack Endpoint

The following example shows how to use the setS3ClientOptions method from the AWS Java SDK
to use a Transfer Acceleration dual-stack endpoint when creating an instance of AmazonS3Client.

AmazonS3 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());
s3Client.setRegion(Region.getRegion(Regions.US_WEST_2));
s3Client.setS3ClientOptions(S3ClientOptions.builder().enableDualstack().setAccelerateModeEnabled(true).build());

If you are using the AWS Java SDK on Microsoft Windows to use a Transfer Acceleration dual-stack
endpoint, you might have to set the following Java virtual machine (JVM) property.

java.net.preferIPv6Addresses=true

Uploading Objects to a Bucket Enabled for Transfer Acceleration Using the
AWS SDK for Java

The Java examples in this section show how to use the accelerate endpoint to upload objects. You
can use the examples with the Transfer Acceleration dual-stack endpoint by changing the code that
creates an instance of AmazonS3Client as described in Creating an Amazon S3 Java Client to Use
the Transfer Acceleration Dual-Stack Endpoint (p. 85).

API Version 2006-03-01
85

Amazon Simple Storage Service Developer Guide
Transfer Acceleration Examples

For information about how to create and test a working Java sample, see Testing the Java Code
Examples (p. 565).

Java Example: Uploading a Single Object to a Bucket Enabled for Transfer Acceleration

The following Java example shows how to use the accelerate endpoint to upload a single object.

import java.io.File;
import java.io.IOException;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Region;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.S3ClientOptions;
import com.amazonaws.services.s3.model.PutObjectRequest;

public class AcceleratedUploadSingleObject {

 private static String bucketName = "*** Provide bucket name ***";
 private static String keyName = "*** Provide key name ***";
 private static String uploadFileName = "*** Provide file name with full
 path ***";

 public static void main(String[] args) throws IOException {
 AmazonS3 s3Client = new AmazonS3Client(new
 ProfileCredentialsProvider());
 s3Client.setRegion(Region.getRegion(Regions.US_WEST_2));

 // Use Amazon S3 Transfer Acceleration endpoint.

 s3Client.setS3ClientOptions(S3ClientOptions.builder().setAccelerateModeEnabled(true).build());

 try {
 System.out.println("Uploading a new object to S3 from a file
\n");
 File file = new File(uploadFileName);
 s3Client.putObject(new PutObjectRequest(
 bucketName, keyName, file));

 } catch (AmazonServiceException ase) {
 System.out.println("Caught an AmazonServiceException, which "
 +
 "means your request made it " +
 "to Amazon S3, but was rejected with an error
 response" +
 " for some reason.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " +
 ase.getStatusCode());
 System.out.println("AWS Error Code: " +
 ase.getErrorCode());
 System.out.println("Error Type: " +
 ase.getErrorType());

API Version 2006-03-01
86

Amazon Simple Storage Service Developer Guide
Transfer Acceleration Examples

 System.out.println("Request ID: " +
 ase.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException, which "
 +
 "means the client encountered " +
 "an internal error while trying to " +
 "communicate with S3, " +
 "such as not being able to access the network.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }
}

Java Example: Multipart Upload to a Bucket Enabled for Transfer Acceleration

The following Java example shows how to use the accelerate endpoint for a multipart upload.

import java.io.File;

import com.amazonaws.AmazonClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.S3ClientOptions;

import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.Upload;

public class AccelerateMultipartUploadUsingHighLevelAPI {

 private static String EXISTING_BUCKET_NAME = "*** Provide bucket name
 ***";
 private static String KEY_NAME = "*** Provide key name ***";
 private static String FILE_PATH = "*** Provide file name with full path
 ***";

 public static void main(String[] args) throws Exception {

 AmazonS3Client s3Client = new AmazonS3Client(new
 ProfileCredentialsProvider());
 s3Client.configureRegion(Regions.US_WEST_2);

 // Use Amazon S3 Transfer Acceleration endpoint.

 s3Client.setS3ClientOptions(S3ClientOptions.builder().setAccelerateModeEnabled(true).build());

 TransferManager tm = new TransferManager(s3Client);
 System.out.println("TransferManager");
 // TransferManager processes all transfers asynchronously,
 // so this call will return immediately.
 Upload upload = tm.upload(
 EXISTING_BUCKET_NAME, KEY_NAME, new File(FILE_PATH));
 System.out.println("Upload");

 try {
 // Or you can block and wait for the upload to finish
 upload.waitForCompletion();
 System.out.println("Upload complete");

API Version 2006-03-01
87

Amazon Simple Storage Service Developer Guide
Transfer Acceleration Examples

 } catch (AmazonClientException amazonClientException) {
 System.out.println("Unable to upload file, upload was aborted.");
 amazonClientException.printStackTrace();
 }
 }
}

Using Transfer Acceleration from the AWS SDK for .NET

This section provides examples of using the AWS SDK for .NET for Transfer Acceleration. For
information about how to create and test a working .NET sample, see Running the Amazon S3 .NET
Code Examples (p. 567).

.NET Example 1: Enable Transfer Acceleration on a Bucket

The following .NET example shows how to enable Transfer Acceleration on a bucket.

using System;
using System.Collections.Generic;
using Amazon.S3;
using Amazon.S3.Model;
using Amazon.S3.Util;

namespace s3.amazon.com.docsamples
{

 class SetTransferAccelerateState
 {
 private static string bucketName = "Provide bucket name";

 public static void Main(string[] args)
 {
 using (var s3Client = new
 AmazonS3Client(Amazon.RegionEndpoint.USWest2))

 try
 {
 EnableTransferAcclerationOnBucket(s3Client);
 BucketAccelerateStatus bucketAcclerationStatus =
 GetBucketAccelerateState(s3Client);

 Console.WriteLine("Acceleration state = '{0}' ",
 bucketAcclerationStatus);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 if (amazonS3Exception.ErrorCode != null &&

 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||
 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))
 {
 Console.WriteLine("Check the provided AWS
 Credentials.");
 Console.WriteLine(
 "To sign up for the service, go to http://aws.amazon.com/
s3");
 }

API Version 2006-03-01
88

Amazon Simple Storage Service Developer Guide
Transfer Acceleration Examples

 else
 {
 Console.WriteLine(
 "Error occurred. Message:'{0}' when setting transfer
 acceleration",
 amazonS3Exception.Message);
 }
 }
 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static void EnableTransferAcclerationOnBucket(IAmazonS3 s3Client)
 {
 PutBucketAccelerateConfigurationRequest request = new
 PutBucketAccelerateConfigurationRequest
 {
 BucketName = bucketName,
 AccelerateConfiguration = new AccelerateConfiguration
 {
 Status = BucketAccelerateStatus.Enabled
 }
 };

 PutBucketAccelerateConfigurationResponse response =
 s3Client.PutBucketAccelerateConfiguration(request);
 }

 static BucketAccelerateStatus GetBucketAccelerateState(IAmazonS3
 s3Client)
 {
 GetBucketAccelerateConfigurationRequest request = new
 GetBucketAccelerateConfigurationRequest
 {
 BucketName = bucketName
 };

 GetBucketAccelerateConfigurationResponse response =
 s3Client.GetBucketAccelerateConfiguration(request);
 return response.Status;
 }
 }
}

.NET Example 2: Uploading a Single Object to a Bucket Enabled for Transfer
Acceleration

The following .NET example shows how to use the accelerate endpoint to upload a single object.

using System;
using System.Collections.Generic;
using Amazon;
using Amazon.S3;
using Amazon.S3.Model;
using Amazon.S3.Util;

namespace s3.amazon.com.docsamples
{

API Version 2006-03-01
89

Amazon Simple Storage Service Developer Guide
Transfer Acceleration Examples

 public class UploadtoAcceleratedBucket
 {
 private static RegionEndpoint TestRegionEndpoint =
 RegionEndpoint.USWest2;
 private static string bucketName = "Provide bucket name";
 static string keyName = "*** Provide key name ***";
 static string filePath = "*** Provide filename of file to upload with
 the full path ***";

 public static void Main(string[] args)
 {
 using (var client = new AmazonS3Client(new AmazonS3Config
 {
 RegionEndpoint = TestRegionEndpoint,
 UseAccelerateEndpoint = true
 }))

 {
 WriteObject(client);
 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }
 }

 static void WriteObject(IAmazonS3 client)
 {
 try
 {
 PutObjectRequest putRequest = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 FilePath = filePath,
 };
 client.PutObject(putRequest);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 if (amazonS3Exception.ErrorCode != null &&

 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||
 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))
 {
 Console.WriteLine("Check the provided AWS
 Credentials.");
 Console.WriteLine(
 "For service sign up go to http://aws.amazon.com/
s3");
 }
 else
 {
 Console.WriteLine(
 "Error occurred. Message:'{0}' when writing an
 object"
 , amazonS3Exception.Message);
 }
 }

API Version 2006-03-01
90

Amazon Simple Storage Service Developer Guide
Transfer Acceleration Examples

 }
 }
}

.NET Example 3: Multipart Upload to a Bucket Enabled for Transfer
Acceleration

The following .NET example shows how to use the accelerate endpoint for a multipart upload.

using System;
using System.IO;
using Amazon;
using Amazon.S3;
using Amazon.S3.Model;
using Amazon.S3.Transfer;

namespace s3.amazon.com.docsamples
{
 class AcceleratedUploadFileMPUHAPI
 {
 private static RegionEndpoint TestRegionEndpoint =
 RegionEndpoint.USWest2;
 private static string existingBucketName = "Provide bucket name";
 private static string keyName = "*** Provide your object key
 ***";
 private static string filePath = "*** Provide file name with full
 path ***";

 static void Main(string[] args)
 {
 try
 {
 var client = new AmazonS3Client(new AmazonS3Config
 {
 RegionEndpoint = TestRegionEndpoint,
 UseAccelerateEndpoint = true
 });
 using (TransferUtility fileTransferUtility = new
 TransferUtility(client))
 {

 // 1. Upload a file, file name is used as the object key
 name.
 fileTransferUtility.Upload(filePath,
 existingBucketName);
 Console.WriteLine("Upload 1 completed");

 // 2. Specify object key name explicitly.
 fileTransferUtility.Upload(filePath,
 existingBucketName, keyName);
 Console.WriteLine("Upload 2 completed");

 // 3. Upload data from a type of System.IO.Stream.
 using (FileStream fileToUpload =
 new FileStream(filePath, FileMode.Open,
 FileAccess.Read))
 {

API Version 2006-03-01
91

Amazon Simple Storage Service Developer Guide
Requester Pays Buckets

 fileTransferUtility.Upload(fileToUpload,
 existingBucketName,
 keyName);
 }
 Console.WriteLine("Upload 3 completed");

 // 4.Specify advanced settings/options.
 TransferUtilityUploadRequest fileTransferUtilityRequest =
 new TransferUtilityUploadRequest
 {
 BucketName = existingBucketName,
 FilePath = filePath,
 StorageClass = S3StorageClass.ReducedRedundancy,
 PartSize = 6291456, // 6 MB.
 Key = keyName,
 CannedACL = S3CannedACL.PublicRead
 };
 fileTransferUtilityRequest.Metadata.Add("param1",
 "Value1");
 fileTransferUtilityRequest.Metadata.Add("param2",
 "Value2");
 fileTransferUtility.Upload(fileTransferUtilityRequest);
 Console.WriteLine("Upload 4 completed");
 }
 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine("{0} {1}", s3Exception.Message,
 s3Exception.InnerException);
 }
 }
 }
}

Using Transfer Acceleration from the AWS SDK for JavaScript

For an example of enabling Transfer Acceleration by using the AWS SDK for JavaScript, see Calling
the putBucketAccelerateConfiguration operation in the AWS SDK for JavaScript API Reference.

Using Transfer Acceleration from the AWS SDK for Python
(Boto)

For an example of enabling Transfer Acceleration by using the SDK for Python, see
put_bucket_accelerate_configuration in the AWS SDK for Python (Boto 3) API Reference.

Using Other AWS SDKs

For information about using other AWS SDKs, see Sample Code and Libraries.

Requester Pays Buckets
Topics

• Configure Requester Pays by Using the Amazon S3 Console (p. 93)

API Version 2006-03-01
92

http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putBucketAccelerateConfiguration-property
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putBucketAccelerateConfiguration-property
http://boto3.readthedocs.org/en/latest/reference/services/s3.html#S3.Client.put_bucket_accelerate_configuration
http://boto3.readthedocs.org/en/latest/reference/services/s3.html#S3.Client.put_bucket_accelerate_configuration
http://aws.amazon.com/code/

Amazon Simple Storage Service Developer Guide
Configure with the Console

• Configure Requester Pays with the REST API (p. 94)

• DevPay and Requester Pays (p. 96)

• Charge Details (p. 96)

In general, bucket owners pay for all Amazon S3 storage and data transfer costs associated with
their bucket. A bucket owner, however, can configure a bucket to be a Requester Pays bucket. With
Requester Pays buckets, the requester instead of the bucket owner pays the cost of the request and
the data download from the bucket. The bucket owner always pays the cost of storing data.

Typically, you configure buckets to be Requester Pays when you want to share data but not incur
charges associated with others accessing the data. You might, for example, use Requester Pays
buckets when making available large data sets, such as zip code directories, reference data,
geospatial information, or web crawling data.

Important
If you enable Requester Pays on a bucket, anonymous access to that bucket is not allowed.

You must authenticate all requests involving Requester Pays buckets. The request authentication
enables Amazon S3 to identify and charge the requester for their use of the Requester Pays bucket.

When the requester assumes an AWS Identity and Access Management (IAM) role prior to making
their request, the account to which the role belongs is charged for the request. For more information
about IAM roles, see IAM Roles in the IAM User Guide.

After you configure a bucket to be a Requester Pays bucket, requesters must include x-amz-
request-payer in their requests either in the header, for POST, GET and HEAD requests, or as a
parameter in a REST request to show that they understand that they will be charged for the request
and the data download.

Requester Pays buckets do not support the following.

• Anonymous requests

• BitTorrent

• SOAP requests

• You cannot use a Requester Pays bucket as the target bucket for end user logging, or vice versa;
however, you can turn on end user logging on a Requester Pays bucket where the target bucket is
not a Requester Pays bucket.

Configure Requester Pays by Using the Amazon S3
Console
You can configure a bucket for Requester Pays by using the Amazon S3 console.

To configure a bucket for Requester Pays

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. In the Buckets list, click the details icon on the left of the bucket name and then click Properties
to display bucket properties.

3. In the Properties pane, click Requester Pays.

4. Select the Enabled check box.

API Version 2006-03-01
93

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
Configure with the REST API

Configure Requester Pays with the REST API
Topics

• Setting the requestPayment Bucket Configuration (p. 94)

• Retrieving the requestPayment Configuration (p. 95)

• Downloading Objects in Requester Pays Buckets (p. 95)

Setting the requestPayment Bucket Configuration

Only the bucket owner can set the RequestPaymentConfiguration.payer configuration value
of a bucket to BucketOwner, the default, or Requester. Setting the requestPayment resource is
optional. By default, the bucket is not a Requester Pays bucket.

To revert a Requester Pays bucket to a regular bucket, you use the value BucketOwner. Typically,
you would use BucketOwner when uploading data to the Amazon S3 bucket, and then you would set
the value to Requester before publishing the objects in the bucket.

To set requestPayment

• Use a PUT request to set the Payer value to Requester on a specified bucket.

PUT ?requestPayment HTTP/1.1
Host: [BucketName].s3.amazonaws.com
Content-Length: 173
Date: Wed, 01 Mar 2009 12:00:00 GMT
Authorization: AWS [Signature]

<RequestPaymentConfiguration xmlns="http://s3.amazonaws.com/
doc/2006-03-01/">
<Payer>Requester</Payer>
</RequestPaymentConfiguration>

If the request succeeds, Amazon S3 returns a response similar to the following.

HTTP/1.1 200 OK
x-amz-id-2: [id]
x-amz-request-id: [request_id]
Date: Wed, 01 Mar 2009 12:00:00 GMT
Content-Length: 0
Connection: close
Server: AmazonS3
x-amz-request-charged:requester

API Version 2006-03-01
94

Amazon Simple Storage Service Developer Guide
Configure with the REST API

You can set Requester Pays only at the bucket level; you cannot set Requester Pays for specific
objects within the bucket.

You can configure a bucket to be BucketOwner or Requester at any time. Realize, however, that
there might be a small delay, on the order of minutes, before the new configuration value takes effect.

Note
Bucket owners who give out pre-signed URLs should think twice before configuring a bucket
to be Requester Pays, especially if the URL has a very long lifetime. The bucket owner
is charged each time the requester uses a pre-signed URL that uses the bucket owner's
credentials.

Retrieving the requestPayment Configuration

You can determine the Payer value that is set on a bucket by requesting the resource
requestPayment.

To return the requestPayment resource

• Use a GET request to obtain the requestPayment resource, as shown in the following request.

GET ?requestPayment HTTP/1.1
Host: [BucketName].s3.amazonaws.com
Date: Wed, 01 Mar 2009 12:00:00 GMT
Authorization: AWS [Signature]

If the request succeeds, Amazon S3 returns a response similar to the following.

HTTP/1.1 200 OK
x-amz-id-2: [id]
x-amz-request-id: [request_id]
Date: Wed, 01 Mar 2009 12:00:00 GMT
Content-Type: [type]
Content-Length: [length]
Connection: close
Server: AmazonS3

<?xml version="1.0" encoding="UTF-8"?>
<RequestPaymentConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<Payer>Requester</Payer>
</RequestPaymentConfiguration>

This response shows that the payer value is set to Requester.

Downloading Objects in Requester Pays Buckets

Because requesters are charged for downloading data from Requester Pays buckets, the requests
must contain a special parameter, x-amz-request-payer, which confirms that the requester knows
he or she will be charged for the download. To access objects in Requester Pays buckets, requests
must include one of the following.

• For GET, HEAD, and POST requests, include x-amz-request-payer : requester in the
header

• For signed URLs, include x-amz-request-payer=requester in the request

API Version 2006-03-01
95

Amazon Simple Storage Service Developer Guide
DevPay and Requester Pays

If the request succeeds and the requester is charged, the response includes the header x-amz-
request-charged:requester. If x-amz-request-payer is not in the request, Amazon S3 returns
a 403 error and charges the bucket owner for the request.

Note
Bucket owners do not need to add x-amz-request-payer to their requests.
Ensure that you have included x-amz-request-payer and its value in your signature
calculation. For more information, see Constructing the CanonicalizedAmzHeaders
Element (p. 580).

To download objects from a Requester Pays bucket

• Use a GET request to download an object from a Requester Pays bucket, as shown in the following
request.

GET / [destinationObject] HTTP/1.1
Host: [BucketName].s3.amazonaws.com
x-amz-request-payer : requester
Date: Wed, 01 Mar 2009 12:00:00 GMT
Authorization: AWS [Signature]

If the GET request succeeds and the requester is charged, the response includes x-amz-request-
charged:requester.

Amazon S3 can return an Access Denied error for requests that try to get objects from a Requester
Pays bucket. For more information, go to Error Responses.

DevPay and Requester Pays
You can use Amazon DevPay to sell content that is stored in your Requester Pays bucket. For
more information, go to "Using Amazon S3 Requester Pays with DevPay," in the Using Amazon S3
Requester Pays with DevPay.

Charge Details
The charge for successful Requester Pays requests is straightforward: the requester pays for the data
transfer and the request; the bucket owner pays for the data storage. However, the bucket owner is
charged for the request under the following conditions:

• The requester doesn't include the parameter x-amz-request-payer in the header (GET, HEAD, or
POST) or as a parameter (REST) in the request (HTTP code 403).

• Request authentication fails (HTTP code 403).

• The request is anonymous (HTTP code 403).

• The request is a SOAP request.

Buckets and Access Control
Each bucket has an associated access control policy. This policy governs the creation, deletion and
enumeration of objects within the bucket. For more information, see Managing Access Permissions to
Your Amazon S3 Resources (p. 266).

API Version 2006-03-01
96

http://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html
http://docs.aws.amazon.com/AmazonDevPay/latest/DevPayDeveloperGuide/S3RequesterPays.html
http://docs.aws.amazon.com/AmazonDevPay/latest/DevPayDeveloperGuide/S3RequesterPays.html

Amazon Simple Storage Service Developer Guide
Billing and Reporting

Billing and Reporting of Buckets
Fees for object storage and network data transfer are always billed to the owner of the bucket that
contains the object unless the bucket was created as a Requester Pays bucket.

The reporting tools available at the AWS developer portal organize your Amazon S3 usage reports by
bucket. For more information about cost considerations, see Amazon S3 Pricing.

Cost Allocation Tagging
You can use cost allocation tagging to label Amazon S3 buckets so that you can more easily track their
cost against projects or other criteria.

Use tags to organize your AWS bill to reflect your own cost structure. To do this, sign up to get your
AWS account bill with tag key values included. Then, to see the cost of combined resources, organize
your billing information according to resources with the same tag key values. For example, you can tag
several resources with a specific application name, and then organize your billing information to see
the total cost of that application across several services. For more information, see Cost Allocation and
Tagging in About AWS Billing and Cost Management.

A cost allocation tag is a name-value pair that you define and associate with an Amazon S3 bucket.
We recommend that you use a consistent set of tag keys to make it easier to track costs associated
with your Amazon S3 buckets.

Each Amazon S3 bucket has a tag set, which contains all the tags that are assigned to that bucket. A
tag set can contain as many as ten tags, or it can be empty.

If you add a tag that has the same key as an existing tag on a bucket, the new value overwrites the old
value.

AWS does not apply any semantic meaning to your tags: tags are interpreted strictly as character
strings. AWS does not automatically set any tags on buckets.

You can use the Amazon S3 console, the CLI, or the Amazon S3 API to add, list, edit, or delete tags.
For more information about creating tags in the console, go to Managing Cost Allocation Tagging in the
Amazon Simple Storage Service Console User Guide.

The following list describes the characteristics of a cost allocation tag.

• The tag key is the required name of the tag. The string value can contain 1 to 128 Unicode
characters. It cannot be prefixed with "aws:". The string can contain only the set of Unicode letters,
digits, whitespace, '_', '.', '/', '=', '+', '-' (Java regex: "^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$").

• The tag value is a required string value of the tag. The string value can contain from 1 to 256
Unicode characters. It cannot be prefixed with "aws:". The string can contain only the set of Unicode
letters, digits, whitespace, '_', '.', '/', '=', '+', '-' (Java regex: "^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$").

Values do not have to be unique in a tag set, and they can be null. For example, you can have the
same key-value pair in tag sets named project/Trinity and cost-center/Trinity.

API Version 2006-03-01
97

http://aws.amazon.com/s3/pricing/
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/CostAllocationTagging.html

Amazon Simple Storage Service Developer Guide

Working with Amazon S3 Objects

Amazon S3 is a simple key, value store designed to store as many objects as you want. You store
these objects in one or more buckets. An object consists of the following:

• Key – The name that you assign to an object. You use the object key to retrieve the object.
For more information, see Object Key and Metadata (p. 99)

• Version ID – Within a bucket, a key and version ID uniquely identify an object.
The version ID is a string that Amazon S3 generates when you add an object to a bucket. For more
information, see Object Versioning (p. 106).

• Value – The content that you are storing.
An object value can be any sequence of bytes. Objects can range in size from zero to 5 TB. For
more information, see Uploading Objects (p. 157).

• Metadata – A set of name-value pairs with which you can store information regarding the object.
You can assign metadata, referred to as user-defined metadata, to your objects in Amazon S3.
Amazon S3 also assigns system-metadata to these objects, which it uses for managing objects. For
more information, see Object Key and Metadata (p. 99).

• Subresources – Amazon S3 uses the subresource mechanism to store object-specific additional
information.
Because subresources are subordinates to objects, they are always associated with some other
entity such as an object or a bucket. For more information, see Object Subresources (p. 105).

• Access Control Information – You can control access to the objects you store in Amazon S3.
Amazon S3 supports both the resource-based access control, such as an Access Control List (ACL)
and bucket policies, and user-based access control. For more information, see Managing Access
Permissions to Your Amazon S3 Resources (p. 266).

For more information about working with objects, see the following sections. Note that your Amazon
S3 resources (for example buckets and objects) are private by default. You will need to explicitly grant
permission for others to access these resources. For example, you might want to share a video or a
photo stored in your Amazon S3 bucket on your website. That will work only if you either make the
object public or use a presigned URL on your website. For more information about sharing objects, see
Share an Object with Others (p. 152).

Topics

API Version 2006-03-01
98

Amazon Simple Storage Service Developer Guide
Object Key and Metadata

• Object Key and Metadata (p. 99)

• Storage Classes (p. 103)

• Object Subresources (p. 105)

• Object Versioning (p. 106)

• Object Lifecycle Management (p. 109)

• Cross-Origin Resource Sharing (CORS) (p. 131)

• Operations on Objects (p. 142)

Object Key and Metadata
Topics

• Object Keys (p. 99)

• Object Metadata (p. 101)

Each Amazon S3 object has data, a key, and metadata. Object key (or key name) uniquely identifies
the object in a bucket. Object metadata is a set of name-value pairs. You can set object metadata at
the time you upload it. After you upload the object, you cannot modify object metadata. The only way to
modify object metadata is to make a copy of the object and set the metadata.

Object Keys
When you create an object, you specify the key name, which uniquely identifies the object in the
bucket. For example, in the Amazon S3 console (see AWS Management Console), when you highlight
a bucket, a list of objects in your bucket appears. These names are the object keys. The name for a
key is a sequence of Unicode characters whose UTF-8 encoding is at most 1024 bytes long.

Note
If you anticipate that your workload against Amazon S3 will exceed 100 requests per second,
follow the Amazon S3 key naming guidelines for best performance. For information, see
Request Rate and Performance Considerations (p. 518).

Object Key Naming Guidelines

Although you can use any UTF-8 characters in an object key name, the following key naming best
practices help ensure maximum compatibility with other applications. Each application may parse
special characters differently. The following guidelines help you maximize compliance with DNS, web
safe characters, XML parsers, and other APIs.

Safe Characters

The following character sets are generally safe for use in key names:

• Alphanumeric characters [0-9a-zA-Z]

• Special characters !, -, _, ., *, ', (, and)

The following are examples of valid object key names:

• 4my-organization

• my.great_photos-2014/jan/myvacation.jpg

API Version 2006-03-01
99

https://console.aws.amazon.com/s3/home

Amazon Simple Storage Service Developer Guide
Object Keys

• videos/2014/birthday/video1.wmv

Note that the Amazon S3 data model is a flat structure: you create a bucket, and the bucket stores
objects. There is no hierarchy of subbuckets or subfolders; however, you can infer logical hierarchy
using key name prefixes and delimiters as the Amazon S3 console does. The Amazon S3 console
supports a concept of folders. Suppose your bucket (companybucket) has four objects with the
following object keys:

Development/Projects1.xls

Finance/statement1.pdf

Private/taxdocument.pdf

s3-dg.pdf

The console uses the key name prefixes (Development/, Finance/, and Private/) and delimiter
('/') to present a folder structure as shown:

The s3-dg.pdf key does not have a prefix, so its object appears directly at the root level of the
bucket. If you open the Development/ folder, you will see the Project1.xls object in it.

Note
Amazon S3 supports buckets and objects, there is no hierarchy in Amazon S3. However, the
prefixes and delimiters in an object key name, enables the Amazon S3 console and the AWS
SDKs to infer hierarchy and introduce concept of folders.

Characters That Might Require Special Handling

The following characters in a key name may require additional code handling and will likely need to be
URL encoded or referenced as HEX. Some of these are non-printable characters and your browser
may not handle them, which will also require special handling:

Ampersand ("&") Dollar ("$") ASCII character ranges 00–1F
hex (0–31 decimal) and 7F (127
decimal.)

'At' symbol ("@") Equals ("=") Semicolon (";")

Colon (":") Plus ("+") Space – Significant sequences
of spaces may be lost in some
uses (especially multiple
spaces)

API Version 2006-03-01
100

Amazon Simple Storage Service Developer Guide
Object Metadata

Comma (",") Question mark ("?")

Characters to Avoid

You should avoid the following characters in a key name because of significant special handling for
consistency across all applications.

Backslash ("\") Left curly brace ("{") Non-printable ASCII characters
(128–255 decimal characters)

Caret ("^") Right curly brace ("}") Percent character ("%")

Grave accent / back tick ("`") Right square bracket ("]") Quotation marks

'Greater Than' symbol (">") Left square bracket ("[") Tilde ("~")

'Less Than' symbol ("<") 'Pound' character ("#") Vertical bar / pipe ("|")

Object Metadata
There are two kinds of metadata: system metadata and user-defined metadata.

System-Defined Metadata

For each object stored in a bucket, Amazon S3 maintains a set of system metadata. Amazon S3
processes this system metadata as needed. For example, Amazon S3 maintains object creation date
and size metadata and uses this information as part of object management.

There are two categories of system metadata:

• Metadata such as object creation date is system controlled where only Amazon S3 can modify the
value.

• Other system metadata such as the storage class configured for the object and whether the object
has server-side encryption enabled are examples of system metadata whose values you control. If
you have your bucket configured as a website, sometimes you might want to redirect a page request
to another page or an external URL. In this case, a web page is an object in your bucket. Amazon S3
stores the page redirect value as system metadata whose value you control.

When you create objects, you can configure values of these system metadata items or update the
values when you need. For more information about storage class, see Storage Classes (p. 103).
For more information about server-side encryption, see Protecting Data Using Encryption (p. 380).

The following table provides a list of system-defined metadata and whether you can update it.

Name Description Can User
Modify the
Value?

Date Current date and time. No

Content-Length Object size in bytes. No

Last-Modified Object creation date or the last modified date, whichever is
the latest.

No

API Version 2006-03-01
101

Amazon Simple Storage Service Developer Guide
Object Metadata

Name Description Can User
Modify the
Value?

Content-MD5 The base64-encoded 128-bit MD5 digest of the object. No

x-amz-server-side-
encryption

Indicates whether server-side encryption is enabled for the
object, and whether that encryption is from the AWS Key
Management Service (SSE-KMS) or from AWS-Managed
Encryption (SSE-S3). For more information, see Protecting
Data Using Server-Side Encryption (p. 381).

Yes

x-amz-version-id Object version. When you enable versioning on a
bucket, Amazon S3 assigns a version number to objects
added to the bucket. For more information, see Using
Versioning (p. 423).

No

x-amz-delete-marker In a bucket that has versioning enabled, this Boolean
marker indicates whether the object is a delete marker.

No

x-amz-storage-class Storage class used for storing the object. For more
information, see Storage Classes (p. 103).

Yes

x-amz-website-
redirect-location

Redirects requests for the associated object to another
object in the same bucket or an external URL. For
more information, see Configuring a Web Page
Redirect (p. 460).

Yes

x-amz-server-side-
encryption-aws-kms-
key-id

If the x-amz-server-side-encryption is present and has
the value of aws:kms, this indicates the ID of the Key
Management Service (KMS) master encryption key that
was used for the object.

Yes

x-amz-server-side-
encryption-customer-
algorithm

Indicates whether server-side encryption with customer-
provided encryption keys (SSE-C) is enabled. For more
information, see Protecting Data Using Server-Side
Encryption with Customer-Provided Encryption Keys (SSE-
C) (p. 395).

Yes

User-Defined Metadata

When uploading an object, you can also assign metadata to the object. You provide this optional
information as a name-value (key-value) pair when you send a PUT or POST request to create the
object. When uploading objects using the REST API the optional user-defined metadata names must
begin with "x-amz-meta-" to distinguish them from other HTTP headers. When you retrieve the object
using the REST API, this prefix is returned. When uploading objects using the SOAP API, the prefix is
not required. When you retrieve the object using the SOAP API, the prefix is removed, regardless of
which API you used to upload the object.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

When metadata is retrieved through the REST API, Amazon S3 combines headers that have the same
name (ignoring case) into a comma-delimited list. If some metadata contains unprintable characters, it
is not returned. Instead, the x-amz-missing-meta header is returned with a value of the number of
the unprintable metadata entries.

API Version 2006-03-01
102

Amazon Simple Storage Service Developer Guide
Storage Classes

User-defined metadata is a set of key-value pairs. Amazon S3 stores user-defined metadata keys in
lowercase. Each key-value pair must conform to US-ASCII when using REST and UTF-8 when using
SOAP or browser-based uploads via POST.

Note
The PUT request header is limited to 8 KB in size. Within the PUT request header, the user-
defined metadata is limited to 2 KB in size. The size of user-defined metadata is measured by
taking the sum of the number of bytes in the UTF-8 encoding of each key and value.

Storage Classes
Each object in Amazon S3 has a storage class associated with it. For example, if you list all objects in
the bucket, the console shows the storage class for all the objects in the list.

Amazon S3 offers the following storage classes for the objects that you store. You choose one
depending on your use case scenario and performance access requirements. All of these storage
classes offer high durability:

• STANDARD – This storage class is ideal for performance-sensitive use cases and frequently
accessed data.

STANDARD is the default storage class; if you don't specify storage class at the time that you upload
an object, Amazon S3 assumes the STANDARD storage class.

• STANDARD_IA – This storage class (IA, for infrequent access) is optimized for long-lived and less
frequently accessed data, for example backups and older data where of access has diminished, but
the use case still demands high performance.

Note
There is a retrieval fee associated with STANDARD_IA objects which makes it most
suitable for infrequently accessed data. For pricing information, see Amazon S3 Pricing.

For example, initially you might upload objects using the STANDARD storage class, and then use a
bucket lifecycle configuration rule to transition objects (see Object Lifecycle Management (p. 109))
to the STANDARD_IA (or GLACIER) storage class at some point in the object's lifetime. For more
information about lifecycle management, see Object Lifecycle Management (p. 109).

The STANDARD_IA objects are available for real-time access. The table at the end of this section
highlights some of the differences in these storage classes.

The STANDARD_IA storage class is suitable for larger objects greater than 128 Kilobytes that
you want to keep for at least 30 days. For example, bucket lifecycle configuration has minimum
object size limit for Amazon S3 to transition objects. For more information, see Supported
Transitions (p. 110).

• GLACIER – The GLACIER storage class is suitable for archiving data where data access is
infrequent and retrieval time of several hours is acceptable. (Archived objects are not available for
real-time access. You must first restore the objects before you can access them.)

API Version 2006-03-01
103

http://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Storage Classes

The GLACIER storage class uses the very low-cost Amazon Glacier storage service, but you still
manage objects in this storage class through Amazon S3. Note the following about the GLACIER
storage class:

• You cannot specify GLACIER as the storage class at the time that you create an object. You
create GLACIER objects by first uploading objects using STANDARD, RRS, or STANDARD_IA as
the storage class. Then, you transition these objects to the GLACIER storage class using lifecycle
management. For more information, see Object Lifecycle Management (p. 109).

• You must first restore the GLACIER objects before you can access them (STANDARD, RRS,
and STANDARD_IA objects are available for anytime access). For more information, GLACIER
Storage Class: Additional Lifecycle Configuration Considerations (p. 124).

To learn more about the Amazon Glacier service, see the Amazon Glacier Developer Guide.

All the preceding storage classes are designed to sustain the concurrent loss of data in two facilities
(for details, see the following availability and durability table).

In addition to the performance requirements of your application scenario, there is also price/
performance considerations. For the Amazon S3 storage classes and pricing, see Amazon S3 Pricing.

Amazon S3 also offers the following storage class that enables you to save costs by maintaining fewer
redundant copies of your data.

• REDUCED_REDUNDANCY – The Reduced Redundancy Storage (RRS) storage class is designed
for noncritical, reproducible data stored at lower levels of redundancy than the STANDARD storage
class, which reduces storage costs. For example, if you upload an image and use STANDARD
storage class for it, you might compute a thumbnail and save it as an object of the RRS storage
class.

The durability level (see the following table) corresponds to an average annual expected loss of
0.01% of objects. For example, if you store 10,000 objects using the RRS option, you can, on
average, expect to incur an annual loss of a single object per year (0.01% of 10,000 objects).

Note
This annual loss represents an expected average and does not guarantee the loss of less
than 0.01% of objects in a given year.

RRS provides a cost-effective, highly available solution for distributing or sharing content that is
durably stored elsewhere, or for storing thumbnails, transcoded media, or other processed data that
can be easily reproduced.

If an RRS object is lost, Amazon S3 returns a 405 error on requests made to that object.

Amazon S3 can send an event notification to alert a user or start a workflow when it detects that an
RRS object is lost. To receive notifications, you need to add notification configuration to your bucket.
For more information, see Configuring Amazon S3 Event Notifications (p. 472).

The following table summarizes the durability and availability offered by each of the storage classes.

Storage Class Durability (designed for) Availability
(designed for)

Other
Considerations

STANDARD 99.999999999% 99.99% None

STANDARD_IA 99.999999999% 99.9% There is a retrieval
fee associated with

API Version 2006-03-01
104

http://docs.aws.amazon.com/amazonglacier/latest/dev/
http://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Subresources

Storage Class Durability (designed for) Availability
(designed for)

Other
Considerations

STANDARD_IA
objects which
makes it most
suitable for
infrequently
accessed data. For
pricing information,
see Amazon S3
Pricing.

GLACIER 99.999999999% 99.99% (after
you restore
objects)

GLACIER objects
are not available for
real-time access.
You must first
restore archived
objects before
you can access
them and restoring
objects can take
3-4 hours. For more
information, see
Restoring Archived
Objects (p. 125).

RRS 99.99% 99.99% None

Object Subresources
Amazon S3 defines a set of subresources associated with buckets and objects. Subresources are
subordinates to objects; that is, subresources do not exist on their own, they are always associated
with some other entity, such as an object or a bucket.

The following table lists the subresources associated with Amazon S3 objects.

Subresource Description

acl Contains a list of grants identifying the grantees and the permissions granted. When
you create an object, the acl identifies the object owner as having full control over
the object. You can retrieve an object ACL or replace it with updated list of grants.
Any update to an ACL requires you to replace the existing ACL. For more information
about ACLs, see Managing Access with ACLs (p. 364)

torrent Amazon S3 supports the BitTorrent protocol. Amazon S3 uses the torrent
subresource to return the torrent file associated with the specific object. To retrieve a
torrent file, you specify the torrent subresource in your GET request. Amazon S3
creates a torrent file and returns it. You can only retrieve the torrent subresource,
you cannot create, update or delete the torrent subresource. For more information,
see Using BitTorrent with Amazon S3 (p. 532).

API Version 2006-03-01
105

http://aws.amazon.com/s3/pricing/
http://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Versioning

Object Versioning
Versioning enables you to keep multiple versions of an object in one bucket, for example, my-
image.jpg (version 111111) and my-image.jpg (version 222222). You might want to enable
versioning to protect yourself from unintended overwrites and deletions or to archive objects so that
you can retrieve previous versions of them.

Note
The SOAP API does not support versioning. SOAP support over HTTP is deprecated, but it is
still available over HTTPS. New Amazon S3 features will not be supported for SOAP.

Object versioning can be used in combination with Object Lifecycle Management (p. 109), allowing
you to customize your data retention needs while controlling your related storage costs. For more
information about adding lifecycle configuration to versioning-enabled buckets using the AWS
Management Console, see Lifecycle Configuration for a Bucket with Versioning in the Amazon Simple
Storage Service Console User Guide.

Important
If you have an object expiration lifecycle policy in your non-versioned bucket and you want to
maintain the same permanent delete behavior when you enable versioning, you must add a
noncurrent expiration policy. The noncurrent expiration lifecycle policy will manage the deletes
of the noncurrent object versions in the version-enabled bucket. (A version-enabled bucket
maintains one current and zero or more noncurrent object versions.)

You must explicitly enable versioning on your bucket. By default, versioning is disabled. Regardless
of whether you have enabled versioning, each object in your bucket has a version ID. If you have not
enabled versioning, then Amazon S3 sets the version ID value to null. If you have enabled versioning,
Amazon S3 assigns a unique version ID value for the object. When you enable versioning on a bucket,
existing objects, if any, in the bucket are unchanged: the version IDs (null), contents, and permissions
remain the same.

Enabling and suspending versioning is done at the bucket level. When you enable versioning
for a bucket, all objects added to it will have a unique version ID. Unique version IDs are
randomly generated, Unicode, UTF-8 encoded, URL-ready, opaque strings that are at most
1024 bytes long. An example version ID is 3/L4kqtJlcpXroDTDmJ+rmSpXd3dIbrHY
+MTRCxf3vjVBH40Nr8X8gdRQBpUMLUo. Only Amazon S3 generates version IDs. They cannot be
edited.

Note
For simplicity, we will use much shorter IDs in all our examples.

When you PUT an object in a versioning-enabled bucket, the noncurrent version is not overwritten.
The following figure shows that when a new version of photo.gif is PUT into a bucket that already
contains an object with the same name, the original object (ID = 111111) remains in the bucket,
Amazon S3 generates a new version ID (121212), and adds the newer version to the bucket.

API Version 2006-03-01
106

http://docs.aws.amazon.com/AmazonS3/latest/UG/lifecycle-configuration-bucket-with-versioning.html

Amazon Simple Storage Service Developer Guide
Versioning

This functionality prevents you from accidentally overwriting or deleting objects and affords you the
opportunity to retrieve a previous version of an object.

When you DELETE an object, all versions remain in the bucket and Amazon S3 inserts a delete marker,
as shown in the following figure.

The delete marker becomes the current version of the object. By default, GET requests retrieve the
most recently stored version. Performing a simple GET Object request when the current version is a
delete marker returns a 404 Not Found error, as shown in the following figure.

API Version 2006-03-01
107

Amazon Simple Storage Service Developer Guide
Versioning

You can, however, GET a noncurrent version of an object by specifying its version ID. In the following
figure, we GET a specific object version, 111111. Amazon S3 returns that object version even though
it's not the current version.

You can permanently delete an object by specifying the version you want to delete. Only the owner
of an Amazon S3 bucket can permanently delete a version. The following figure shows how DELETE
versionId permanently deletes an object from a bucket and that Amazon S3 doesn't insert a delete
marker.

API Version 2006-03-01
108

Amazon Simple Storage Service Developer Guide
Lifecycle Management

You can add additional security by configuring a bucket to enable MFA (Multi-Factor Authentication)
Delete. When you do, the bucket owner must include two forms of authentication in any request
to delete a version or change the versioning state of the bucket. For more information, see MFA
Delete (p. 424).

For more information, see Using Versioning (p. 423).

Object Lifecycle Management
This section provides an overview of the Amazon S3 lifecycle feature that you can use to manage
lifecycle of objects in your bucket.

What Is Lifecycle Configuration?
You manage an object's lifecycle by using a lifecycle configuration, which defines how Amazon S3
manages objects during their lifetime. Lifecycle configuration enables you to simplify the lifecycle
management of your objects, such as automated transition of less-frequently accessed objects to low-
cost storage alternatives and scheduled deletions. You can configure as many as 1000 lifecycle rules
per bucket.

You can define lifecycle configuration rules for objects that have a well-defined lifecycle. You can use
lifecycle configurations for objects you want to switch to different storage classes or delete during their
lifecycle, for example:

• If you are uploading periodic logs to your bucket, your application might need these logs for a week
or a month after creation, and after that you might want to delete them.

• Some documents are frequently accessed for a limited period of time. After that, these documents
are less frequently accessed. Over time, you might not need real-time access to these objects,
but your organization or regulations might require you to archive them for a longer period and then
optionally delete them later.

• You might also upload some types of data to Amazon S3 primarily for archival purposes, for example
digital media archives, financial and healthcare records, raw genomics sequence data, long-term
database backups, and data that must be retained for regulatory compliance.

API Version 2006-03-01
109

Amazon Simple Storage Service Developer Guide
How Do I Configure a Lifecycle?

How Do I Configure a Lifecycle?
You can specify a lifecycle configuration as XML. A lifecycle configuration comprises a set of rules with
predefined actions that you want Amazon S3 to perform on objects during their lifetime. These actions
include:

• Transition actions in which you define when objects transition to another Amazon S3 storage class.
For example, you may choose to transition objects to the STANDARD_IA (IA, for infrequent access)
storage class 30 days after creation, or archive objects to the GLACIER storage class one year after
creation.

• Expiration actions in which you specify when the objects expire. Then, Amazon S3 deletes the
expired objects on your behalf.

For more information about lifecycle rules, see Lifecycle Configuration Elements (p. 113).

Amazon S3 stores the configuration as a "lifecycle" subresource attached to your bucket. Using the
Amazon S3 API, you can PUT, GET, or DELETE a lifecycle configuration. For more information, see
PUT Bucket lifecycle, GET Bucket lifecycle, or DELETE Bucket lifecycle. You can also configure
the lifecycle by using the Amazon S3 console or programmatically by using the AWS SDK wrapper
libraries, and if you need to you can also make the REST API calls directly. Then, Amazon S3 applies
the lifecycle rules to all or specific objects identified in the rule.

Transitioning Objects: General Considerations
You can add rules in a lifecycle configuration to transition objects to another Amazon S3 storage
class. For example, you might transition objects to the STANDARD_IA storage class when you know
those objects are infrequently accessed. You might also want to archive objects that don't need real-
time access to the GLACIER storage class. The following sections describe transitioning related
considerations and constraints.

Supported Transitions
In a lifecycle configuration you can define rules to transition objects from one storage class to another.
The following are supported transitions:

• From the STANDARD or REDUCED_REDUNDANCY storage classes to STANDARD_IA. The
following constraints apply:

• Amazon S3 does not transition objects less than 128 Kilobytes in size to the STANDARD_IA
storage class. Cost benefits of transitioning to STANDARD_IA can be realized for larger objects.
For smaller objects it is not cost effective and Amazon S3 will not transition them.

• Objects must be stored at least 30 days in the current storage class before you can transition
them to STANDARD_IA. For example, you cannot create a lifecycle rule to transition objects to the
STANDARD_IA storage class one day after creation.

Transitions before the first 30 days are not supported because often younger objects are accessed
more frequently or deleted sooner than is suitable for STANDARD_IA.

• If you are transitioning noncurrent objects (versioned bucket scenario), you can transition to
STANDARD_IA only objects that are at least 30 days noncurrent.

• From any storage class to GLACIER.

For more information, see GLACIER Storage Class: Additional Lifecycle Configuration
Considerations (p. 124).

• You can combine these rules to manage an object's complete lifecycle, including a first transition to
STANDARD_IA, a second transition to GLACIER for archival, and an expiration.

API Version 2006-03-01
110

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETElifecycle.html

Amazon Simple Storage Service Developer Guide
Transitioning Objects: General Considerations

Note
When configuring lifecycle, the API will not allow you to create a lifecycle policy in which
you specify both of these transitions, but the GLACIER transition occurs less than 30 days
after the STANDARD_IA transition. This is because such a lifecycle policy may increase
costs because of the minimum 30 day storage charge associated with the STANDARD_IA
storage class. For more information about cost considerations, see Amazon S3 Pricing.

For example, suppose the objects you create have a well-defined lifecycle. Initially the objects are
frequently accessed for a period of 30 days. After the initial period, the frequency of access diminishes
where objects are infrequently accessed for up to 90 days. After that, the objects are no longer needed.
You may choose to archive or delete them. You can use a lifecycle configuration to define transition
and expiration of objects that matches this example scenario (transition to STANDARD_IA 30 days
after creation and transition to GLACIER 90 days after creation, and perhaps expire them after certain
number of days). As you tier down the object's storage class in the transition, you can benefit from the
storage cost savings. For more information about cost considerations, see Amazon S3 Pricing.

You can think of lifecycle transitions as supporting storage class tiers (see Storage Classes (p. 103)),
which offer different costs and benefits. You may choose to transition an object to another storage
class in the object's lifetime for cost saving considerations and lifecycle configuration enables you to
do that. For example, to manage storage costs, you might configure lifecycle to change an object's
storage class from the STANDARD, which is most available and durable storage class, to the
STANDARD_IA (IA, for infrequent access), and then to the GLACIER storage class (where the objects
are archived and only available after you restore). These transitions can lower your storage costs.

The following are not supported transitions:

• You cannot transition from STANDARD_IA to STANDARD or REDUCED_REDUNDANCY.

• You cannot transition from GLACIER to any other storage class.

• You cannot transition from any storage class to REDUCED_REDUNDANCY.

Transitioning to the GLACIER storage class (Object Archival)
Using lifecycle configuration, you can transition objects to the GLACIER storage class—that is, archive
data to Amazon Glacier, a lower-cost storage solution. Before you archive objects, note the following:

• Objects in the GLACIER storage class are not available in real time.

Archived objects are Amazon S3 objects, but before you can access an archived object, you must
first restore a temporary copy of it. The restored object copy is available only for the duration you
specify in the restore request. After that, Amazon S3 deletes the temporary copy, and the object
remains archived in Amazon Glacier.

Note that object restoration from an archive can take up to five hours.

You can restore an object by using the Amazon S3 console or programmatically by using the AWS
SDKs wrapper libraries or the Amazon S3 REST API in your code. For more information, see POST
Object restore.

• The transition of objects to the GLACIER storage class is one-way.

You cannot use a lifecycle configuration rule to convert the storage class of an object from
GLACIER to Standard or RRS. If you want to change the storage class of an already archived
object to either Standard or RRS, you must use the restore operation to make a temporary copy
first. Then use the copy operation to overwrite the object as a STANDARD, STANDARD_IA, or
REDUCED_REDUNDANCY object.

API Version 2006-03-01
111

http://aws.amazon.com/s3/pricing/
http://aws.amazon.com/s3/pricing/
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html

Amazon Simple Storage Service Developer Guide
Expiring Objects: General Considerations

• The GLACIER storage class objects are visible and available only through Amazon S3, not through
Amazon Glacier.

Amazon S3 stores the archived objects in Amazon Glacier; however, these are Amazon S3 objects,
and you can access them only by using the Amazon S3 console or the API. You cannot access the
archived objects through the Amazon Glacier console or the API.

Expiring Objects: General Considerations
When an object reaches the end of its lifetime, Amazon S3 queues it for removal and removes it
asynchronously. There may be a delay between the expiration date and the date at which Amazon S3
removes an object. You are not charged for storage time associated with an object that has expired.

To find when an object is scheduled to expire, you can use the HEAD Object or the GET Object APIs.
These APIs return response headers that provide object expiration information.

There are additional cost considerations if you put lifecycle policy to expire objects that have been in
STANDARD_IA for less than 30 days, or GLACIER for less than 90 days. For more information about
cost considerations, see Amazon S3 Pricing.

Lifecycle and Other Bucket Configurations
In addition to lifecycle configuration your bucket can have other configurations associated. This is
section explains how lifecycle configuration relates to other bucket configurations.

Lifecycle and Versioning

You can add lifecycle configuration to nonversioned buckets and versioning-enabled buckets. For
more information, see Object Versioning (p. 106). A versioning-enabled bucket maintains one current
and zero or more noncurrent object versions. You can define separate lifecycle rules for current and
noncurrent versions.

For more information, see Lifecycle Configuration Elements (p. 113). For information about
versioning, see Object Versioning (p. 106).

Lifecycle and MFA Enabled Buckets

Lifecycle configuration on MFA-enabled buckets is not supported.

Lifecycle and Logging

If you have logging enabled on your bucket, Amazon S3 reports the results of expiration action as
follows:

• If the lifecycle expiration action results in Amazon S3 permanently removing the object, Amazon S3
reports it as operation S3.EXPIRE.OBJECT in the log record.

• For a versioning-enabled bucket, if the lifecycle expiration action results in a logical deletion of
current version, in which Amazon S3 adds a delete marker, Amazon S3 reports the logical deletion
as operation S3.CREATE.DELETEMARKER in the log record. For more information, see Object
Versioning (p. 106).

• When Amazon S3 transitions object to the GLACIER storage class it reports it as operation
S3.TRANSITION.OBJECT in the log record to indicate it has initiated the operation. When it is
transition to the STANDARD_IA storage class, it is reported as S3.TRANSITION_SIA.OBJECT.

API Version 2006-03-01
112

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
http://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

Related Topics

• Lifecycle Configuration Elements (p. 113)

• GLACIER Storage Class: Additional Lifecycle Configuration Considerations (p. 124)

• Specifying a Lifecycle Configuration (p. 125)

Lifecycle Configuration Elements
Topics

• ID Element (p. 114)

• Status Element (p. 114)

• Prefix Element (p. 114)

• Elements to Describe Lifecycle Actions (p. 115)

• Examples of Lifecycle Configuration (p. 117)

You specify a lifecycle policy configuration as XML. It consists of one or more lifecycle rules. Each rule
consists of the following:

• Rule metadata that include a rule ID, and status indicating whether the rule is enabled or disabled. If
a rule is disabled, Amazon S3 will not perform any actions specified in the rule.

• Prefix identifying objects by the key prefix to which the rule applies.

• One or more transition/expiration actions with a date or a time period in the object's lifetime when
you want Amazon S3 to perform the specified action.

The following are two introductory example configurations.

Example 1. Lifecycle configuration

Suppose you want to transition objects with key prefix documents/ to the GLACIER storage class one
year after you create them, and then permanently remove them 10 years after you created them. You
can accomplish this by attaching the following lifecycle configuration to the bucket.

<LifecycleConfiguration>
 <Rule>
 <ID>sample-rule</ID>
 <Prefix>documents/</Prefix>
 <Status>Enabled</Status>
 <Transition>
 <Days>365</Days>
 <StorageClass>GLACIER</StorageClass>
 </Transition>
 <Expiration>
 <Days>3650</Days>
 </Expiration>
 </Rule>
</LifecycleConfiguration>

The lifecycle configuration defines one rule that applies to objects with the key name prefix
documents/. The rule specifies two actions (Transition and Expiration). The rule is in effect because
the rule status is Enabled.

API Version 2006-03-01
113

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

Example 2. Lifecycle configuration on a versioning-enabled bucket

If your bucket is versioning-enabled, you have one current object version and zero or more noncurrent
versions. For more information, see Object Versioning (p. 106).

For a versioning-enabled bucket, the lifecycle actions apply as follows:

• Transition and Expiration actions apply to current versions.

• NoncurrentVersionTransition and NoncurrentVersionExpiration actions apply to
noncurrent versions.

The following example lifecycle configuration has one rule that applies to objects with key name prefix
logs/. The rule specifies two actions for noncurrent versions:

• The NoncurrentVersionTransition action directs Amazon S3 to transition noncurrent objects to
the GLACIER storage class 30 days after the objects become noncurrent.

• The NoncurrentVersionExpiration action directs Amazon S3 to permanently remove the
noncurrent objects 180 days after they become noncurrent.

<LifecycleConfiguration>
 <Rule>
 <ID>sample-rule</ID>
 <Prefix>logs/</Prefix>
 <Status>Enabled</Status>
 <NoncurrentVersionTransition>
 <NoncurrentDays>30</NoncurrentDays>
 <StorageClass>GLACIER</StorageClass>
 </NoncurrentVersionTransition>
 <NoncurrentVersionExpiration>
 <NoncurrentDays>180</NoncurrentDays>
 </NoncurrentVersionExpiration>
 </Rule>
</LifecycleConfiguration>

The following sections describe these XML elements in a lifecycle configuration.

ID Element

A lifecycle configuration can have up to 1000 rules. The ID element uniquely identifies a rule.

Status Element

The Status element value can be either Enabled or Disabled. If a rule is disabled, Amazon S3 will not
perform any of the actions defined in the rule.

Prefix Element

The Prefix element identifies objects to which the rule applies. If you specify an empty prefix, the rule
applies to all objects in the bucket. If you specify a key name prefix, the rule applies only to the objects
whose key name begins with specified string. For more information about object keys, see Object
Keys (p. 99).

API Version 2006-03-01
114

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

Elements to Describe Lifecycle Actions

You can direct Amazon S3 to perform specific actions in an object's lifetime by specifying one or
more of the following predefined actions in a lifecycle rule. The effect of these actions depend on the
versioning state of your bucket.

• Transition action element – You specify the Transition action to transition objects from
one storage class to another. For more information about transitioning objects, see Supported
Transitions (p. 110). When a specified date or time period in the object's lifetime is reached,
Amazon S3 performs the transition.

For a versioned bucket (versioning-enabled or versioning-suspended bucket), the Transition
action applies to the current object version. To manage noncurrent versions, Amazon S3 defines the
NoncurrentVersionTranstion action (described below).

• Expiration action element – The Expiration action expires objects identified in the rule. Amazon
S3 makes all expired objects unavailable. Whether the objects are permanently removed depends
on the versioning state of the bucket.

Important
Object expiration lifecycle polices do not remove incomplete multipart uploads. To remove
incomplete multipart uploads you must use the AbortIncompleteMultipartUpload lifecycle
configuration action that is described later in this section.

• Non-versioned bucket – The Expiration action results in Amazon S3 permanently removing
the object.

• Versioned bucket – For a versioned bucket, versioning-enabled or versioning-suspended, (see
Using Versioning (p. 423)), there are several considerations that guide how Amazon S3 handles
the expiration action. Regardless of the version state, the following applies:

• The expiration action applies only to the current version (no impact on noncurrent object
versions).

• Amazon S3 will not take any action if there are one or more object versions and the delete
marker is the current version.

• If the current object version is the only object version and it is also a delete marker (also referred
as the "expired object delete marker", where all object versions are deleted and you only have
a delete marker remaining), Amazon S3 will remove the expired object delete marker. You can
also use the expiration action to direct Amazon S3 to remove any expired object delete markers.
For an example, see Example 8: Removing Expired Object Delete Markers (p. 121).

Important
Amazon S3 will remove an expired object delete marker no sooner than 48 hours after
the object expired.

The additional considerations for Amazon S3 to manage expiration are as follows:

• Versioning-enabled bucket

If current object version is not a delete marker, Amazon S3 adds a delete marker with a unique
version ID, making the current version noncurrent, and the delete marker the current version.

• Versioning-suspended bucket

In a versioning-suspended bucket the expiration action causes Amazon S3 to create a delete
marker with null as the version ID. This delete marker will replace any object version with a null
version ID in the version hierarchy, which effectively deletes the object.

API Version 2006-03-01
115

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

In addition, Amazon S3 provides the following actions that you can use to manage noncurrent object
versions in a versioned bucket (versioning-enabled and versioning-suspended buckets).

• NoncurrentVersionTransition action element – Use this action to specify how long (from the time
the objects became noncurrent) you want the objects to remain in the current storage class before
Amazon S3 transitions them to the specified storage class. For more information about transitioning
objects, see Supported Transitions (p. 110).

• NoncurrentVersionExpiration action element – Use this action to specify how long (from the time
the objects became noncurrent) you want to retain noncurrent object versions before Amazon S3
permanently removes them. The deleted object cannot be recovered.

This delayed removal of noncurrent objects can be helpful when you need to correct any accidental
deletes or overwrites. For example, you can configure an expiration rule to delete noncurrent
versions five days after they become noncurrent. For example, suppose on 1/1/2014 10:30 AM
UTC, you create an object called photo.gif (version ID 111111). On 1/2/2014 11:30 AM UTC,
you accidentally delete photo.gif (version ID 111111), which creates a delete marker with a new
version ID (such as version ID 4857693). You now have five days to recover the original version
of photo.gif (version ID 111111) before the deletion is permanent. On 1/8/2014 00:00 UTC, the
lifecycle rule for expiration executes and permanently deletes photo.gif (version ID 111111), five
days after it became a noncurrent version.

Important
Object expiration lifecycle polices do not remove incomplete multipart uploads. To remove
incomplete multipart uploads you must use the AbortIncompleteMultipartUpload lifecycle
configuration action that is described later in this section.

In addition to the transition and expiration actions, you can use the following lifecycle configuration
action to direct Amazon S3 to abort incomplete multipart uploads.

• AbortIncompleteMultipartUpload action element – Use this element to set a maximum time (in
days) that you want to allow multipart uploads to remain in progress. If the applicable multipart
uploads (determined by the key name prefix specified in the lifecycle rule) are not successfully
completed within the predefined time period, Amazon S3 will abort the incomplete multipart
uploads. For more information, see Aborting Incomplete Multipart Uploads Using a Bucket Lifecycle
Policy (p. 167).

How Amazon S3 Calculates How Long an Object Has Been Noncurrent

In a versioning-enabled bucket, you can have multiple versions of an object, there is always one
current version, and zero or more noncurrent versions. Each time you upload an object, the current
version is retained as noncurrent version and the newly added version, the successor, become current.
To determine the number of days an object is noncurrent, Amazon S3 looks at when its successor was
created. Amazon S3 uses the number of days since its successor was created as the number of days
an object is noncurrent.

Restoring Previous Versions of an Object When Using Lifecycle Configurations
As explained in detail in the topic Restoring Previous Versions (p. 442), there are two
methods to retrieve previous versions of an object.

1. By copying a noncurrent version of the object into the same bucket. The copied object
becomes the current version of that object, and all object versions are preserved.

2. By permanently deleting the current version of the object. When you delete the current
object version, you, in effect, turn the noncurrent version into the current version of that
object.

When using lifecycle configuration rules with versioning-enabled buckets, we recommend as a
best practice that you use the first method.

API Version 2006-03-01
116

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

Because of Amazon S3's eventual consistency semantics, a current version that you
permanently deleted may not disappear until the changes propagate (Amazon S3 may
be unaware of this deletion). And in the meantime, the lifecycle you configured to expire
noncurrent objects may permanently remove noncurrent objects, including the one you want
to restore. So, copying the old version, as recommended in the first method, is the safer
alternative.

Lifecycle Rules: Based on the Object Age

You can specify a time period in number of days from the creation (or modification) of the objects when
Amazon S3 can take the action.

When you specify number of days in the Transition and Expiration actions in a lifecycle
configuration, note the following:

• It is the number of days since object creation when the action will be taken.

• Amazon S3 calculates the time by adding the number of days specified in the rule to the object
creation time and rounding the resulting time to the next day midnight UTC. For example, if an
object was created at 1/15/2014 10:30 AM UTC and you specify 3 days in a transition rule, then the
transition date of the object would be calculated as 1/19/2014 00:00 UTC.

Note
Amazon S3 maintains only the last modified date for each object. For example, the Amazon
S3 console shows the Last Modified date in the object Properties pane. When you initially
create a new object, this date reflects the date the object is created. If you replace the object,
the date will change accordingly. So when we use the term creation date, it is synonymous
with the term last modified date.

When specifying the number of days in the NoncurrentVersionTransition and
NoncurrentVersionExpiration actions in a lifecycle configuration, note the following:

• It is the number of days from when the version of the object becomes noncurrent (that is, since the
object was overwritten or deleted), as the time period for when Amazon S3 will take the action on the
specified object or objects.

• Amazon S3 calculates the time by adding the number of days specified in the rule to the time when
the new successor version of the object is created and rounding the resulting time to the next day
midnight UTC. For example, in your bucket, you have a current version of an object that was created
at 1/1/2014 10:30 AM UTC, if the new successor version of the object that replaces the current
version is created at 1/15/2014 10:30 AM UTC and you specify 3 days in a transition rule, then the
transition date of the object would be calculated as 1/19/2014 00:00 UTC.

Lifecycle Rules: Based on a Specific Date

When specifying an action in a lifecycle configuration, you can specify a date when you want Amazon
S3 to take the action. The date-based rules trigger action on all objects created on or before this
date. For example, a rule to transition to GLACIER on 6/30/2015 will transition all objects created on
or before this date (note that the rule applies every day after the specified date and not just on the
specified date as long as the rule is in effect).

Note
You cannot create the date-based rule using the AWS Management Console, but you can
view, disable, or delete such rules.

Examples of Lifecycle Configuration

This section provides examples of lifecycle configuration. Each example shows how you can specify
XML in each of the example scenarios.

API Version 2006-03-01
117

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

Example 1: Specify a Lifecycle Rule for a Subset of Objects in a Bucket

The following lifecycle configuration rule is applied to a subset of objects with key name prefix
projectdocs/. The rule specifies two actions requesting Amazon S3 the following:

• Transition objects to the GLACIER storage class 365 days (one year) after creation.

• Delete objects (the Expiration action) objects 3650 days (10 years) after creation.

<LifecycleConfiguration>
 <Rule>
 <ID>Transition and Expiration Rule</ID>
 <Prefix>projectdocs/</Prefix>
 <Status>Enabled</Status>
 <Transition>
 <Days>365</Days>
 <StorageClass>GLACIER</StorageClass>
 </Transition>
 <Expiration>
 <Days>3650</Days>
 </Expiration>
 </Rule>
</LifecycleConfiguration>

Instead of specifying object age in terms of days after creation, you can specify a date for each action;
however, you cannot use both Date and Days in the same rule.

Example 2: Specify a Lifecycle Rule that Applies to All Objects in the Bucket

If you specify an empty Prefix in a lifecycle rule, it applies to all objects in the bucket. Suppose you
create a bucket only for archiving objects to GLACIER. You can set lifecycle configuration requesting
Amazon S3 to transition objects to the GLACIER storage class immediately after creation as shown.

The lifecycle configuration defines one rule with an empty Prefix. The rule specifies a Transition
action requesting Amazon S3 to transition objects to the GLACIER storage class 0 days after creation
in which case objects are eligible for archival to Amazon Glacier at midnight UTC following creation.

<LifecycleConfiguration>
 <Rule>
 <ID>Archive all object same-day upon creation</ID>
 <Prefix></Prefix>
 <Status>Enabled</Status>
 <Transition>
 <Days>0</Days>
 <StorageClass>GLACIER</StorageClass>
 </Transition>
 </Rule>
</LifecycleConfiguration>

Example 3: Disable a Lifecycle Rule

You can temporarily disable a lifecycle rule. The following lifecycle configuration specifies two rules;
however, one of them is disabled. Amazon S3 will not perform any action specified in a rule that is
disabled.

<LifecycleConfiguration>
 <Rule>

API Version 2006-03-01
118

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

 <ID>30 days log objects expire rule</ID>
 <Prefix>logs/</Prefix>
 <Status>Enabled</Status>
 <Transition>
 <Days>0</Days>
 <StorageClass>GLACIER</StorageClass>
 </Transition>
 </Rule>
 <Rule>
 <ID>1 year documents expire rule</ID>
 <Prefix>documents/</Prefix>
 <Status>Disabled</Status>
 <Transition>
 <Days>0</Days>
 <StorageClass>GLACIER</StorageClass>
 </Transition>
 </Rule>
</LifecycleConfiguration>

Example 4: Tiering Down Storage Class Over Object Lifetime

In this example, you leverage lifecycle configuration to tier-down the storage class of objects over
their lifetime. This tiering down can help reduce storage costs. For more information about pricing, see
Amazon S3 Pricing.

The following lifecycle configuration specifies a rule that applies to objects with key name prefix logs/.
The rule specifies the following actions:

• Two transition actions:

• Transition objects to the STANDARD_IA storage class 30 days after creation.

• Transition objects to the GLACIER storage class 90 days after creation.

• An expiration action directing Amazon S3 to delete objects a year after creation.

<LifecycleConfiguration>
 <Rule>
 <ID>example-id</ID>
 <Prefix>logs/</Prefix>
 <Status>Enabled</Status>
 <Transition>
 <Days>30</Days>
 <StorageClass>STANDARD_IA</StorageClass>
 </Transition>
 <Transition>
 <Days>90</Days>
 <StorageClass>GLACIER</StorageClass>
 </Transition>
 <Expiration>
 <Days>365</Days>
 </Expiration>
 </Rule>
</LifecycleConfiguration>

Note
You can use one rule to describe all lifecycle actions if all actions apply to the same set of
objects (identified by the prefix). Otherwise, you can add multiple rules each specify a different
key name prefix.

API Version 2006-03-01
119

http://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

Example 5: Specify Multiple Rules

You can specify multiple rules if you want different lifecycle actions of different objects. The following
lifecycle configuration has two rules:

• Rule 1 applies to objects with key name prefix classA/. It directs Amazon S3 to transition objects to
the GLACIER storage class one year after creation and expire these objects 10 years after creation.

• Rule 2 applies to objects with key name prefix classB/. It directs Amazon S3 to transition objects to
the STANDARD_IA storage class 90 days after creation and delete then one year after creation.

<LifecycleConfiguration>
 <Rule>
 <ID>ClassADocRule</ID>
 <Prefix>classA/</Prefix>
 <Status>Enabled</Status>
 <Transition>
 <Days>365</Days>
 <StorageClass>GLACIER</StorageClass>
 </Transition>
 <Expiration>
 <Days>3650</Days>
 </Expiration>
 </Rule>
 <Rule>
 <ID>ClassBDocRule</ID>
 <Prefix>classB/</Prefix>
 <Status>Enabled</Status>
 <Transition>
 <Days>90</Days>
 <StorageClass>STANDARD_IA</StorageClass>
 </Transition>
 <Expiration>
 <Days>365</Days>
 </Expiration>
 </Rule>
</LifecycleConfiguration>

Example 6: Specify Multiple Rules with Overlapping Prefixes

In the following example you have two rules that specify overlapping prefixes.

• First rule specifies empty prefix indicating all objects in the bucket.

• Second rule specifies subset of objects in the bucket with key name prefix logs/.

These overlapping prefixes are fine, there is no conflict; Rule 1 requests Amazon S3 to delete all
objects one year after creation, and Rule 2 requests Amazon S3 to transition subset of objects to the
STANDARD_IA storage class 30 days after creation.

<LifecycleConfiguration>
 <Rule>
 <ID>Rule 1</ID>
 <Prefix></Prefix>
 <Status>Enabled</Status>

API Version 2006-03-01
120

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

 <Expire>
 <Days>365</Days>
 </Expire>
 </Rule>
 <Rule>
 <ID>Rule 2</ID>
 <Prefix>logs/</Prefix>
 <Status>Enabled</Status>
 <Transition>
 <StorageClass>STANDARD_IA<StorageClass>
 <Days>30</Days>
 </Transition>
 </Rule>
</LifecycleConfiguration>

Example 7: Specify a Lifecycle Rule for a Versioning-Enable Bucket

Suppose you have a versioning-enabled bucket, which means that for each object you have a
current version and zero or more noncurrent versions. You want to maintain one year worth of
history and then delete the noncurrent versions. For more information about versioning, see Object
Versioning (p. 106).

Also you want to save storage costs by moving noncurrent versions to GLACIER 30 days after they
become noncurrent (assuming cold data for which you will not need real-time access). In addition, you
also expect frequency of access of the current versions to diminish 90 days after creation so you might
choose to move these objects to the STANDARD_IA storage class.

<LifecycleConfiguration>
 <Rule>
 <ID>sample-rule</ID>
 <Prefix></Prefix>
 <Status>Enabled</Status>
 <Transition>
 <Days>90</Days>
 <StorageClass>STANDARD_IA</StorageClass>
 </Transition>
 <NoncurrentVersionTransition>
 <NoncurrentDays>30</NoncurrentDays>
 <StorageClass>GLACIER</StorageClass>
 </NoncurrentVersionTransition>
 <NoncurrentVersionExpiration>
 <NoncurrentDays>365</NoncurrentDays>
 </NoncurrentVersionExpiration>
 </Rule>
</LifecycleConfiguration>

Example 8: Removing Expired Object Delete Markers

A versioning-enabled bucket has one current version and one or more noncurrent versions for each
object. When you delete an object, note that

• If you don't specify a version ID in your delete request, Amazon S3 adds a delete marker instead of
deleting the object. The current object version become noncurrent, and the delete marker becomes
the current version.

• If you specify a version ID in your delete request, Amazon S3 deletes the object version permanently
(a delete marker is not created).

• A delete marker with zero noncurrent versions is referred to as the expired object delete marker.

API Version 2006-03-01
121

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

This example shows a scenario that can create expired object delete markers in your bucket and how
you can use lifecycle configuration to direct Amazon S3 to remove the expired object delete markers.

Suppose you write a lifecycle policy that specifies the NoncurrentVersionExpiration action to
remove the noncurrent versions 30 days after they become noncurrent as shown:

<LifecycleConfiguration>
 <Rule>
 ...
 <NoncurrentVersionExpiration>
 <NoncurrentDays>30</NoncurrentDays>
 </NoncurrentVersionExpiration>
 </Rule>
</LifecycleConfiguration>

Note that the NoncurrentVersionExpiration action does not apply to the current object versions,
it only removes noncurrent versions.

For current object versions, you have the following options to manage their lifetime depending on
whether or not the current object versions follow a well-defined lifecycle:

• Current object versions follow a well-defined lifecycle.

In this case you can use lifecycle policy with the Expiration action to direct Amazon S3 to remove
current versions as shown in the following example:

<LifecycleConfiguration>
 <Rule>
 ...
 <Expiration>
 <Days>60</Days>
 </Expiration>
 <NoncurrentVersionExpiration>
 <NoncurrentDays>30</NoncurrentDays>
 </NoncurrentVersionExpiration>
 </Rule>
</LifecycleConfiguration>

Amazon S3 removes current versions 60 days after they are created by adding a delete marker for
each of the current object versions. This makes the current version noncurrent and the delete marker
becomes the current version (see Using Versioning (p. 423)).

The NoncurrentVersionExpiration action in the same lifecycle configuration removes
noncurrent objects 30 days after they become noncurrent. Thus all object versions are removed and
you have expired object delete markers, but Amazon S3 will detect and remove expired object delete
markers for you.

• Current object versions don't have a well-defined lifecycle.

In this case you might remove the objects manually when you don't need them, creating
a delete marker with one or more noncurrent versions. If lifecycle configuration with
NoncurrentVersionExpiration action removes all the noncurrent versions, you now have expired
object delete markers.

Specifically for this scenario, Amazon S3 lifecycle configuration provides Expiration action where
you can request S3 to remove the expired object delete markers:

<LifecycleConfiguration>

API Version 2006-03-01
122

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

 <Rule>
 ...
 <Expiration>
 <ExpiredObjectDeleteMarker>true</ExpiredObjectDeleteMarker>
 </Expiration>
 <NoncurrentVersionExpiration>
 <NoncurrentDays>30</NoncurrentDays>
 </NoncurrentVersionExpiration>
 </Rule>
</LifecycleConfiguration>

By setting the ExpiredObjectDeleteMarker element to true in the Expiration action, you direct
Amazon S3 to remove expired object delete markers. Amazon S3 will remove an expired object delete
marker no sooner than 48 hours after the object expired.

The following put-bucket-lifecycle CLI command adds the lifecycle configuration for the
specified bucket.

$ aws s3api put-bucket-lifecycle \
--bucket bucketname \
--lifecycle-configuration filename-containing-lifecycle-configuration

Note
If you have trouble getting the following test procedure to work, make sure that you have the
latest version of the AWS CLI installed.

To test the CLI command, do the following:

1. Set up the AWS CLI. For instructions, see Set Up the AWS CLI (p. 563).

2. Save the following example lifecycle configuration in a file (lifecycle.json). The example policy
specifies empty prefix so it applies to all objects. You could specify a key name prefix to limit
action to a subset of objects.

{
 "Rules": [
 {
 "Status": "Enabled",
 "Prefix": "",
 "Expiration": {
 "ExpiredObjectDeleteMarker": true
 },
 "ID": "TestOnly"
 }
]
}

3. Run the following CLI command to set lifecycle configuration on your bucket.

$ aws s3api put-bucket-lifecycle \
--bucket bucketname \
--lifecycle-configuration file://lifecycle.json

4. To verify, retrieve the lifecycle configuration using the get-bucket-lifecycle CLI command.

$ aws s3api get-bucket-lifecycle \

API Version 2006-03-01
123

Amazon Simple Storage Service Developer Guide
GLACIER Storage Class: Additional Considerations

--bucket bucketname

5. To delete the lifecycle configuration use the delete-bucket-lifecycle CLI command.

aws s3api delete-bucket-lifecycle \
--bucket bucketname

GLACIER Storage Class: Additional Lifecycle
Configuration Considerations
Topics

• Cost Considerations (p. 124)

• Restoring Archived Objects (p. 125)

For objects that you do not need to access in real time, Amazon S3 also offers the GLACIER storage
class. This storage class is suitable for objects stored primarily for archival purposes. For more
information, see Storage Classes (p. 103).

The lifecycle configuration enables a one-way transition to the GLACIER storage class. To change the
storage class from GLACIER to other storage classes, you must restore the object, as discussed in the
following section, and then make a copy of the restored object.

Cost Considerations

If you are planning to archive infrequently accessed data for a period of months or years, the GLACIER
storage class will usually reduce your storage costs. You should, however, consider the following in
order to ensure that the GLACIER storage class is appropriate for you:

• Storage overhead charges – When you transition objects to the GLACIER storage class, a fixed
amount of storage is added to each object to accommodate metadata for managing the object.

• For each object archived to Amazon Glacier, Amazon S3 uses 8 KB of storage for the name of
the object and other metadata. Amazon S3 stores this metadata so that you can get a real-time
list of your archived objects by using the Amazon S3 API (see Get Bucket (List Objects)). You are
charged standard Amazon S3 rates for this additional storage.

• For each archived object, Amazon Glacier adds 32 KB of storage for index and related metadata.
This extra data is necessary to identify and restore your object. You are charged Amazon Glacier
rates for this additional storage.

If you are archiving small objects, consider these storage charges. Also consider aggregating a large
number of small objects into a smaller number of large objects in order to reduce overhead costs.

• Number of days you plan to keep objects archived – Amazon Glacier is a long-term archival
solution. Deleting data that is archived to Amazon Glacier is free if the objects you delete are
archived for three months or longer. If you delete or overwrite an object within three months of
archiving it, Amazon S3 charges a prorated early deletion fee.

• Glacier archive request charges – Each object that you transition to the GLACIER storage class
constitutes one archive request. There is a cost for each such request. If you plan to transition a
large number of objects, consider the request costs.

• Glacier data restore charges – Amazon Glacier is designed for long-term archival of data that you
will access infrequently. Data restore charges are based on how quickly you restore data, which is
measured as your peak billable restore rate in GB/hr for the entire month. Within a month, you are
charged only for the peak billable restore rate, and there is no charge for restoring data at less than

API Version 2006-03-01
124

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
Specifying a Lifecycle Configuration

the monthly peak billable restore rate. Before initiating a large restore, carefully review the pricing
FAQ to determine how you will be billed for restoring data.

When you archive objects to Amazon Glacier by using object lifecycle management, Amazon S3
transitions these objects asynchronously. There may be a delay between the transition date in the
lifecycle configuration rule and the date of the physical transition. You are charged Amazon Glacier
prices based on the transition date specified in the rule.

The Amazon S3 product detail page provides pricing information and example calculations for
archiving Amazon S3 objects. For more information, see the following topics:

• How is my storage charge calculated for Amazon S3 objects archived to Amazon Glacier?

• How am I charged for deleting objects from Amazon Glacier that are less than 3 months old?

• Amazon S3 Pricing for storage costs for the Standard and GLACIER storage classes. This page also
provides Glacier Archive Request costs.

• How will I be charged for restoring large amounts of data from Amazon Glacier?

Restoring Archived Objects

Archived objects are not accessible in real-time. You must first initiate a restore request and then wait
until a temporary copy of the object is available for the duration that you specify in the request. Restore
jobs typically complete in three to five hours, so it is important that you archive only objects that you will
not need to access in real time.

After you receive a temporary copy of the restored object, the object's storage class remains GLACIER
(a GET or HEAD request will return GLACIER as the storage class). Note that when you restore an
archive you are paying for both the archive (GLACIER rate) and a copy you restored temporarily (RRS
rate). For information about pricing, see Amazon S3 Pricing.

You can restore an object copy programmatically or by using the Amazon S3 console. Amazon S3 will
process only one restore request at a time per object. You can use both the console and the Amazon
S3 API to check the restoration status and to find out when Amazon S3 will delete the restored copy.

Restoring GLACIER Objects by Using Amazon S3 Console

For information about restoring archived objects, stored using the GLACIER storage class, by using the
Amazon S3 console, see Restore an Archived Object Using the Amazon S3 Console (p. 259).

Restoring GLACIER Objects Programmatically

You can restore GLACIER objects programmatically directly from your application by using either the
AWS SDKs or the Amazon S3 API. When you use the AWS SDKs, the Amazon S3 API provides
appropriate wrapper libraries to simplify your programming tasks; however, when the request is sent
over the wire, the SDK sends the preceding XML in the request body. For information about restoring
objects programmatically, see Restoring Archived Objects (p. 259).

Specifying a Lifecycle Configuration
Topics

• Manage an Object's Lifecycle Using the AWS Management Console (p. 126)

• Manage Object Lifecycle Using the AWS SDK for Java (p. 127)

• Manage Object Lifecycle Using the AWS SDK for .NET (p. 129)

• Manage an Object's Lifecycle Using the AWS SDK for Ruby (p. 131)

• Manage Object Lifecycle Using the REST API (p. 131)

API Version 2006-03-01
125

http://aws.amazon.com/s3/faqs/#How_will_I_be_charged_when_restoring_large_amounts_of_data_from_Amazon_Glacier
http://aws.amazon.com/s3/faqs/#How_will_I_be_charged_when_restoring_large_amounts_of_data_from_Amazon_Glacier
http://aws.amazon.com/s3/faqs/#How_is_my_storage_charge_calculated_for_Amazon_S3_objects_archived_to_Amazon_Glacier
http://aws.amazon.com/s3/faqs/#How_am_I_charged_for_deleting_objects_from_Amazon_Glacier_that_are_less_than_3_months_old
http://aws.amazon.com/s3/pricing/
http://aws.amazon.com/s3/faqs/#How_will_I_be_charged_when_restoring_large_amounts_of_data_from_Amazon_Glacier
http://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Specifying a Lifecycle Configuration

You can set a lifecycle configuration on a bucket either by programmatically using the Amazon S3
API or by using the Amazon S3 console. When you add a lifecycle configuration to a bucket, there is
usually some lag before a new or updated lifecycle configuration is fully propagated to all the Amazon
S3 systems. Expect a delay of a few minutes before the lifecycle configuration fully takes effect. This
delay can also occur when you delete a lifecycle configuration.

When you disable or delete a lifecycle rule, after a small delay Amazon S3 stops scheduling new
objects for deletion or transition. Any objects that were already scheduled will be unscheduled and will
not be deleted or transitioned.

Note
When you add a lifecycle configuration to a bucket, the configuration rules apply to
both existing objects and objects that you add later. For example, if you add a lifecycle
configuration rule with an expiration action today that causes objects with a specific prefix to
expire 30 days after creation, Amazon S3 will queue for removal any existing objects that are
more than 30 days old.

There may be a lag between when the lifecycle configuration rules are satisfied and when the action
triggered by satisfying the rule is taken. However, changes in billing happen as soon as the lifecycle
configuration rule is satisfied even if the action is not yet taken. One example is you are not charged for
storage after the object expiration time even if the object is not deleted immediately. Another example
is you are charged Amazon Glacier storage rates as soon as the object transition time elapses even if
the object is not transitioned to Amazon Glacier immediately.

For information about specifying the lifecycle by using the Amazon S3 console or programmatically by
using AWS SDKs, click the links provided at the beginning of this topic.

Manage an Object's Lifecycle Using the AWS Management
Console

You can specify lifecycle rules on a bucket using the Amazon S3 console. In the console, the bucket
Properties provides a Lifecycle tab as shown in the following example screen shot. For more
information, see Object Lifecycle Management (p. 109).

Step-by-Step Instructions

For instructions on how to setup lifecycle rules using the AWS Management Console, see Managing
Lifecycle Configuration in the Amazon S3 Console User Guide.

API Version 2006-03-01
126

http://docs.aws.amazon.com/AmazonS3/latest/UG/LifecycleConfiguration.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/LifecycleConfiguration.html

Amazon Simple Storage Service Developer Guide
Specifying a Lifecycle Configuration

Manage Object Lifecycle Using the AWS SDK for Java

You can use the AWS SDK for Java to manage lifecycle configuration on a bucket. For more
information about managing lifecycle configuration, see Object Lifecycle Management (p. 109).

The example code in this topic does the following:

• Add lifecycle configuration with two rules:

• A rule that applies to objects with the glacierobjects/ key name prefix. The rule specifies a
transition action that directs Amazon S3 to transition these objects to the GLACIER storage class.
Because the number of days specified is 0, the objects become eligible for archival immediately.

• A rule that applies to objects with the projectdocs/ key name prefix. The rule specifies two
transition actions, directing Amazon S3 to first transition objects to the STANDARD_IA (IA, for
infrequent access) storage class 30 days after creation, and then transition to the GLACIER
storage class 365 days after creation. The rule also specifies expiration action directing Amazon
S3 to delete these objects 3650 days after creation.

• Retrieves the lifecycle configuration.

• Updates the configuration by adding another rule that applies to objects with the
YearlyDocuments/ key name prefix. The expiration action in this rule directs Amazon S3 to delete
these objects 3650 days after creation.

Note
When you add a lifecycle configuration to a bucket, any existing lifecycle configuration
is replaced. To update existing lifecycle configuration, you must first retrieve the existing
lifecycle configuration, make changes and then add the revised lifecycle configuration to the
bucket.

API Version 2006-03-01
127

Amazon Simple Storage Service Developer Guide
Specifying a Lifecycle Configuration

Example Java Code Example

The following Java code example provides a complete code listing that adds, updates, and deletes
a lifecycle configuration to a bucket. You need to update the code and provide your bucket name to
which the code can add the example lifecycle configuration.

For instructions on how to create and test a working sample, see Testing the Java Code
Examples (p. 565).

import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Calendar;
import java.util.List;
import java.util.TimeZone;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.AmazonS3Exception;
import com.amazonaws.services.s3.model.BucketLifecycleConfiguration;
import
 com.amazonaws.services.s3.model.BucketLifecycleConfiguration.Transition;
import com.amazonaws.services.s3.model.StorageClass;

public class LifecycleConfiguration {
 public static String bucketName = "*** Provide bucket name ***";
 public static AmazonS3Client s3Client;

 public static void main(String[] args) throws IOException {
 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());
 try {

 BucketLifecycleConfiguration.Rule rule1 =
 new BucketLifecycleConfiguration.Rule()
 .withId("Archive immediately rule")
 .withPrefix("glacierobjects/")
 .addTransition(new Transition()
 .withDays(0)
 .withStorageClass(StorageClass.Glacier))
 .withStatus(BucketLifecycleConfiguration.ENABLED.toString());

 BucketLifecycleConfiguration.Rule rule2 =
 new BucketLifecycleConfiguration.Rule()
 .withId("Archive and then delete rule")
 .withPrefix("projectdocs/")
 .addTransition(new Transition()
 .withDays(30)

 .withStorageClass(StorageClass.StandardInfrequentAccess))
 .addTransition(new Transition()
 .withDays(365)

 .withStorageClass(StorageClass.Glacier))
 .withExpirationInDays(3650)
 .withStatus(BucketLifecycleConfiguration.ENABLED.toString());

 BucketLifecycleConfiguration configuration =
 new BucketLifecycleConfiguration()
 .withRules(Arrays.asList(rule1, rule2));

 // Save configuration.
 s3Client.setBucketLifecycleConfiguration(bucketName,
 configuration);

 // Retrieve configuration.
 configuration =
 s3Client.getBucketLifecycleConfiguration(bucketName);

 // Add a new rule.
 configuration.getRules().add(
 new BucketLifecycleConfiguration.Rule()
 .withId("NewRule")
 .withPrefix("YearlyDocuments/")
 .withExpirationInDays(3650)
 .withStatus(BucketLifecycleConfiguration.
 ENABLED.toString())
);
 // Save configuration.
 s3Client.setBucketLifecycleConfiguration(bucketName,
 configuration);

 // Retrieve configuration.
 configuration =
 s3Client.getBucketLifecycleConfiguration(bucketName);

 // Verify there are now three rules.
 configuration =
 s3Client.getBucketLifecycleConfiguration(bucketName);
 System.out.format("Expected # of rules = 3; found: %s\n",
 configuration.getRules().size());

 System.out.println("Deleting lifecycle configuration. Next, we
 verify deletion.");
 // Delete configuration.
 s3Client.deleteBucketLifecycleConfiguration(bucketName);

 // Retrieve nonexistent configuration.
 configuration =
 s3Client.getBucketLifecycleConfiguration(bucketName);
 String s = (configuration == null) ? "No configuration found." :
 "Configuration found.";
 System.out.println(s);

 } catch (AmazonS3Exception amazonS3Exception) {
 System.out.format("An Amazon S3 error occurred. Exception: %s",
 amazonS3Exception.toString());
 } catch (Exception ex) {
 System.out.format("Exception: %s", ex.toString());
 }
 }
}

API Version 2006-03-01
128

Amazon Simple Storage Service Developer Guide
Specifying a Lifecycle Configuration

Manage Object Lifecycle Using the AWS SDK for .NET

You can use the AWS SDK for .NET to manage lifecycle configuration on a bucket. For more
information about managing lifecycle configuration, see Object Lifecycle Management (p. 109). The
example code in this topic does the following:

• Add lifecycle configuration with two rules:

• A rule that applies to objects with the glacierobjects/ key name prefix. The rule specifies a
transition action that directs Amazon S3 to transition these objects to the GLACIER storage class.
Because the number of days specified is 0, the objects become eligible for archival immediately.

• A rule that applies to objects with the projectdocs/ key name prefix. The rule specifies two
transition actions, directing Amazon S3 to first transition objects to the STANDARD_IA (IA, for
infrequent access) storage class 30 days after creation, and then transition to the GLACIER
storage class 365 days after creation. The rule also specifies expiration action directing Amazon
S3 to delete these objects 3650 days after creation.

• Retrieves the lifecycle configuration.

• Updates the configuration by adding another rule that applies to objects with the
YearlyDocuments/ key name prefix. The expiration action in this rule directs Amazon S3 to delete
these objects 3650 days after creation.

Note
When you add a lifecycle configuration to a bucket, any existing lifecycle configuration
is replaced. To update existing lifecycle configuration, you must first retrieve the existing
lifecycle configuration, make changes and then add the revised lifecycle configuration to the
bucket.

API Version 2006-03-01
129

Amazon Simple Storage Service Developer Guide
Specifying a Lifecycle Configuration

Example .NET Code Example

The following C# code example provides complete code listing that adds, updates, and deletes a
lifecycle configuration to a bucket. You need to update the code and provide your bucket name to
which the code can add the example lifecycle configuration.

Note
The following code works with the latest version of the .NET SDK.

For instructions on how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 567).

using System;
using System.Collections.Generic;
using System.Diagnostics;
using Amazon.S3;
using Amazon.S3.Model;

namespace aws.amazon.com.s3.documentation
{
 class LifeCycleTest
 {
 static string bucketName = "*** provide bucket name ***";

 public static void Main(string[] args)
 {
 try
 {
 using (var client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 var lifeCycleConfiguration = new LifecycleConfiguration()
 {
 Rules = new List<LifecycleRule>
 {
 new LifecycleRule
 {
 Id = "Archive immediately rule",
 Prefix = "glacierobjects/",
 Status = LifecycleRuleStatus.Enabled,
 Transitions = new List<LifecycleTransition>
 {
 new LifecycleTransition
 {
 Days = 0,
 StorageClass =
 S3StorageClass.Glacier
 }
 },
 },
 new LifecycleRule
 {
 Id = "Archive and then delete rule",
 Prefix = "projectdocs/",
 Status = LifecycleRuleStatus.Enabled,
 Transitions = new List<LifecycleTransition>
 {
 new LifecycleTransition
 {
 Days = 30,
 StorageClass =
 S3StorageClass.StandardInfrequentAccess
 },
 new LifecycleTransition
 {
 Days = 365,
 StorageClass = S3StorageClass.Glacier
 }
 },
 Expiration = new LifecycleRuleExpiration()
 {
 Days = 3650
 }
 }
 }
 };

 // Add the configuration to the bucket
 PutLifeCycleConfiguration(client,
 lifeCycleConfiguration);

 // Retrieve an existing configuration
 lifeCycleConfiguration =
 GetLifeCycleConfiguration(client);

 // Add a new rule.
 lifeCycleConfiguration.Rules.Add(new LifecycleRule
 {
 Id = "NewRule",
 Prefix = "YearlyDocuments/",
 Expiration = new LifecycleRuleExpiration()
 {
 Days = 3650
 }
 });

 // Add the configuration to the bucket
 PutLifeCycleConfiguration(client,
 lifeCycleConfiguration);

 // Verify that there are now three rules
 lifeCycleConfiguration =
 GetLifeCycleConfiguration(client);
 Console.WriteLine("Expected # of rulest=3; found:{0}",
 lifeCycleConfiguration.Rules.Count);

 // Delete the configuration
 DeleteLifecycleConfiguration(client);

 // Retrieve a nonexistent configuration
 lifeCycleConfiguration =
 GetLifeCycleConfiguration(client);
 Debug.Assert(lifeCycleConfiguration == null);
 }

 Console.WriteLine("Example complete. To continue, click
 Enter...");
 Console.ReadKey();
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 Console.WriteLine("S3 error occurred. Exception: " +
 amazonS3Exception.ToString());
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.ToString());
 }
 }

 static void PutLifeCycleConfiguration(IAmazonS3 client,
 LifecycleConfiguration configuration)
 {

 PutLifecycleConfigurationRequest request = new
 PutLifecycleConfigurationRequest
 {
 BucketName = bucketName,
 Configuration = configuration
 };

 var response = client.PutLifecycleConfiguration(request);
 }

 static LifecycleConfiguration GetLifeCycleConfiguration(IAmazonS3
 client)
 {
 GetLifecycleConfigurationRequest request = new
 GetLifecycleConfigurationRequest
 {
 BucketName = bucketName

 };
 var response = client.GetLifecycleConfiguration(request);
 var configuration = response.Configuration;
 return configuration;
 }

 static void DeleteLifecycleConfiguration(IAmazonS3 client)
 {
 DeleteLifecycleConfigurationRequest request = new
 DeleteLifecycleConfigurationRequest
 {
 BucketName = bucketName
 };
 client.DeleteLifecycleConfiguration(request);
 }
 }
}

API Version 2006-03-01
130

Amazon Simple Storage Service Developer Guide
Cross-Origin Resource Sharing (CORS)

Manage an Object's Lifecycle Using the AWS SDK for Ruby

You can use the AWS SDK for Ruby to manage lifecycle configuration on a bucket by using the class
AWS::S3::BucketLifecycleConfiguration. For more information about using the AWS SDK for Ruby with
Amazon S3, go to Using the AWS SDK for Ruby - Version 2 (p. 569). For more information about
managing lifecycle configuration, see Object Lifecycle Management (p. 109).

Manage Object Lifecycle Using the REST API

You can use the AWS Management Console to set the lifecycle configuration on your bucket. If your
application requires it, you can also send REST requests directly. The following sections in the Amazon
Simple Storage Service API Reference describe the REST API related to the lifecycle configuration.

• PUT Bucket lifecycle

• GET Bucket lifecycle

• DELETE Bucket lifecycle

Cross-Origin Resource Sharing (CORS)
Cross-origin resource sharing (CORS) defines a way for client web applications that are loaded in one
domain to interact with resources in a different domain. With CORS support in Amazon S3, you can
build rich client-side web applications with Amazon S3 and selectively allow cross-origin access to your
Amazon S3 resources.

This section provides an overview of CORS. The subtopics describe how you can enable CORS using
the Amazon S3 console, or programmatically using the Amazon S3 REST API and the AWS SDKs.

Topics

• Cross-Origin Resource Sharing: Use-case Scenarios (p. 131)

• How Do I Configure CORS on My Bucket? (p. 132)

• How Does Amazon S3 Evaluate the CORS Configuration On a Bucket? (p. 134)

• Enabling Cross-Origin Resource Sharing (CORS) (p. 134)

• Troubleshooting CORS Issues (p. 142)

Cross-Origin Resource Sharing: Use-case
Scenarios
The following are example scenarios for using CORS:

• Scenario 1: Suppose you are hosting a website in an Amazon S3 bucket named website as
described in Hosting a Static Website on Amazon S3 (p. 449). Your users load the website
endpoint http://website.s3-website-us-east-1.amazonaws.com. Now you want to use
JavaScript on the web pages that are stored in this bucket to be able to make authenticated GET
and PUT requests against the same bucket by using the Amazon S3's API endpoint for the bucket,
website.s3.amazonaws.com. A browser would normally block JavaScript from allowing those
requests, but with CORS, you can configure your bucket to explicitly enable cross-origin requests
from website.s3-website-us-east-1.amazonaws.com.

• Scenario 2: Suppose you want to host a web font from your S3 bucket. Again, browsers require a
CORS check (also referred as a preflight check) for loading web fonts, so you would configure the
bucket that is hosting the web font to allow any origin to make these requests.

API Version 2006-03-01
131

http://docs.aws.amazon.com/sdkforruby/api/Aws/S3/BucketLifecycle.html
http://docs.aws.amazon.com/sdkforruby/api/Aws/S3/BucketLifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETElifecycle.html

Amazon Simple Storage Service Developer Guide
How Do I Configure CORS on My Bucket?

How Do I Configure CORS on My Bucket?
To configure your bucket to allow cross-origin requests, you create a CORS configuration, an XML
document with rules that identify the origins that you will allow to access your bucket, the operations
(HTTP methods) will support for each origin, and other operation-specific information.

You can add up to 100 rules to the configuration. You add the XML document as the cors subresource
to the bucket either programmatically or by using the Amazon S3 console. For more information, see
Enabling Cross-Origin Resource Sharing (CORS) (p. 134).

The following example cors configuration has three rules, which are specified as CORSRule elements:

• The first rule allows cross-origin PUT, POST, and DELETE requests from the https://
www.example1.com origin. The rule also allows all headers in a preflight OPTIONS request through
the Access-Control-Request-Headers header. In response to any preflight OPTIONS request,
Amazon S3 will return any requested headers.

• The second rule allows same cross-origin requests as the first rule but the rule applies to another
origin, https://www.example2.com.

• The third rule allows cross-origin GET requests from all origins. The '*' wildcard character refers to all
origins.

<CORSConfiguration>
 <CORSRule>
 <AllowedOrigin>http://www.example1.com</AllowedOrigin>

 <AllowedMethod>PUT</AllowedMethod>
 <AllowedMethod>POST</AllowedMethod>
 <AllowedMethod>DELETE</AllowedMethod>

 <AllowedHeader>*</AllowedHeader>
 </CORSRule>
 <CORSRule>
 <AllowedOrigin>http://www.example2.com</AllowedOrigin>

 <AllowedMethod>PUT</AllowedMethod>
 <AllowedMethod>POST</AllowedMethod>
 <AllowedMethod>DELETE</AllowedMethod>

 <AllowedHeader>*</AllowedHeader>
 </CORSRule>
 <CORSRule>
 <AllowedOrigin>*</AllowedOrigin>
 <AllowedMethod>GET</AllowedMethod>
 </CORSRule>
</CORSConfiguration>

The CORS configuration also allows optional configuration parameters, as shown in the following
CORS configuration. In this example, the following CORS configuration allows cross-origin PUT and
POST requests from the http://www.example.com origin.

<CORSConfiguration>
 <CORSRule>
 <AllowedOrigin>http://www.example.com</AllowedOrigin>
 <AllowedMethod>PUT</AllowedMethod>
 <AllowedMethod>POST</AllowedMethod>

API Version 2006-03-01
132

Amazon Simple Storage Service Developer Guide
How Do I Configure CORS on My Bucket?

 <AllowedMethod>DELETE</AllowedMethod>
 <AllowedHeader>*</AllowedHeader>
 <MaxAgeSeconds>3000</MaxAgeSeconds>
 <ExposeHeader>x-amz-server-side-encryption</
ExposeHeader>
 <ExposeHeader>x-amz-request-id</
ExposeHeader>
 <ExposeHeader>x-amz-id-2</ExposeHeader>
 </CORSRule>
</CORSConfiguration>

The CORSRule element in the preceding configuration includes the following optional elements:

• MaxAgeSeconds—Specifies the amount of time in seconds (in this example, 3000) that the browser
will cache an Amazon S3 response to a preflight OPTIONS request for the specified resource. By
caching the response, the browser does not have to send preflight requests to Amazon S3 if the
original request is to be repeated.

• ExposeHeader—Identifies the response headers (in this example, x-amz-server-side-
encryption, x-amz-request-id, and x-amz-id-2) that customers will be able to access from
their applications (for example, from a JavaScript XMLHttpRequest object).

AllowedMethod Element

In the CORS configuration, you can specify the following values for the AllowedMethod element.

• GET

• PUT

• POST

• DELETE

• HEAD

AllowedOrigin Element

In the AllowedOrigin element you specify the origins that you want to allow cross-domain requests
from, for example, http://www.example.com. The origin string can contain at most one * wildcard
character, such as http://*.example.com. You can optionally specify * as the origin to enable all
the origins to send cross-origin requests. You can also specify https to enable only secure origins.

AllowedHeader Element

The AllowedHeader element specifies which headers are allowed in a preflight request through
the Access-Control-Request-Headers header. Each header name in the Access-Control-
Request-Headers header must match a corresponding entry in the rule. Amazon S3 will send only
the allowed headers in a response that were requested. For a sample list of headers that can be used
in requests to Amazon S3, go to Common Request Headers in the Amazon Simple Storage Service
API Reference guide.

Each AllowedHeader string in the rule can contain at most one * wildcard character. For example,
<AllowedHeader>x-amz-*</AllowedHeader> will enable all Amazon-specific headers.

ExposeHeader Element

Each ExposeHeader element identifies a header in the response that you want customers to be able
to access from their applications (for example, from a JavaScript XMLHttpRequest object). For a list

API Version 2006-03-01
133

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTCommonRequestHeaders.html

Amazon Simple Storage Service Developer Guide
How Does Amazon S3 Evaluate the
CORS Configuration On a Bucket?

of common Amazon S3 response headers, go to Common Response Headers in the Amazon Simple
Storage Service API Reference guide.

MaxAgeSeconds Element

The MaxAgeSeconds element specifies the time in seconds that your browser can cache the response
for a preflight request as identified by the resource, the HTTP method, and the origin.

How Does Amazon S3 Evaluate the CORS
Configuration On a Bucket?
When Amazon S3 receives a preflight request from a browser, it evaluates the CORS configuration for
the bucket and uses the first CORSRule rule that matches the incoming browser request to enable a
cross-origin request. For a rule to match, the following conditions must be met:

• The request's Origin header must match an AllowedOrigin element.

• The request method (for example, GET or PUT) or the Access-Control-Request-Method
header in case of a preflight OPTIONS request must be one of the AllowedMethod elements.

• Every header listed in the request's Access-Control-Request-Headers header on the preflight
request must match an AllowedHeader element.

Note
The ACLs and policies continue to apply when you enable CORS on the bucket.

Enabling Cross-Origin Resource Sharing (CORS)
Enable cross-origin resource sharing by setting a CORS configuration on your bucket using the AWS
Management Console, the REST API, or the AWS SDKs.

Topics

• Enabling Cross-Origin Resource Sharing (CORS) Using the AWS Management Console (p. 134)

• Enabling Cross-Origin Resource Sharing (CORS) Using the AWS SDK for Java (p. 134)

• Enabling Cross-Origin Resource Sharing (CORS) Using the AWS SDK for .NET (p. 138)

• Enabling Cross-Origin Resource Sharing (CORS) Using the REST API (p. 142)

Enabling Cross-Origin Resource Sharing (CORS) Using the
AWS Management Console

You can use the AWS Management Console to set a CORS configuration on your bucket. For
instructions, see Editing Bucket Permissions in the Amazon S3 Console User Guide.

Enabling Cross-Origin Resource Sharing (CORS) Using the
AWS SDK for Java

You can use the AWS SDK for Java to manage cross-origin resource sharing (CORS) for a bucket. For
more information about CORS, see Cross-Origin Resource Sharing (CORS) (p. 131).

This section provides sample code snippets for following tasks, followed by a complete example
program demonstrating all tasks.

API Version 2006-03-01
134

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTCommonResponseHeaders.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingBucketPermissions.html

Amazon Simple Storage Service Developer Guide
Enabling CORS

• Creating an instance of the Amazon S3 client class

• Creating and adding a CORS configuration to a bucket

• Updating an existing CORS configuration

Cross-Origin Resource Sharing Methods

AmazonS3Client() Constructs an AmazonS3Client object.

setBucketCrossOriginConfiguration()Sets the CORS configuration that to be applied to the bucket. If
a configuration already exists for the specified bucket, the new
configuration will replace the existing one.

getBucketCrossOriginConfiguration()Retrieves the CORS configuration for the specified bucket. If no
configuration has been set for the bucket, the Configuration header
in the response will be null.

deleteBucketCrossOriginConfiguration()Deletes the CORS configuration for the specified bucket.

For more information about the AWS SDK for Java API, go to AWS SDK for Java API Reference .

Creating an Instance of the Amazon S3 Client Class

The following snippet creates a new AmazonS3Client instance for a class called CORS_JavaSDK.
This example retrieves the values for accessKey and secretKey from the AwsCredentials.properties
file.

AmazonS3Client client;
client = new AmazonS3Client(new ProfileCredentialsProvider());

Creating and Adding a CORS Configuration to a Bucket

To add a CORS configuration to a bucket:

1. Create a CORSRule object that describes the rule.

2. Create a BucketCrossOriginConfiguration object, and then add the rule to the configuration
object.

3. Add the CORS configuration to the bucket by calling the
client.setBucketCrossOriginConfiguration method.

The following snippet creates two rules, CORSRule1 and CORSRule2, and then adds each rule to the
rules array. By using the rules array, it then adds the rules to the bucket bucketName.

// Add a sample configuration
BucketCrossOriginConfiguration configuration = new
 BucketCrossOriginConfiguration();

List<CORSRule> rules = new ArrayList<CORSRule>();

CORSRule rule1 = new CORSRule()
 .withId("CORSRule1")
 .withAllowedMethods(Arrays.asList(new CORSRule.AllowedMethods[] {
 CORSRule.AllowedMethods.PUT, CORSRule.AllowedMethods.POST,
 CORSRule.AllowedMethods.DELETE}))

API Version 2006-03-01
135

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/s3/AmazonS3Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/s3/AmazonS3Client.html#setBucketCrossOriginConfiguration(java.lang.String,%20com.amazonaws.services.s3.model.BucketCrossOriginConfiguration)
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/s3/AmazonS3Client.html#getBucketCrossOriginConfiguration(java.lang.String)
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/s3/AmazonS3Client.html#deleteBucketCrossOriginConfiguration(java.lang.String)
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/

Amazon Simple Storage Service Developer Guide
Enabling CORS

 .withAllowedOrigins(Arrays.asList(new String[] {"http://
*.example.com"}));

CORSRule rule2 = new CORSRule()
.withId("CORSRule2")
.withAllowedMethods(Arrays.asList(new CORSRule.AllowedMethods[] {
 CORSRule.AllowedMethods.GET}))
.withAllowedOrigins(Arrays.asList(new String[] {"*"}))
.withMaxAgeSeconds(3000)
.withExposedHeaders(Arrays.asList(new String[] {"x-amz-server-side-
encryption"}));

configuration.setRules(Arrays.asList(new CORSRule[] {rule1, rule2}));

// Save the configuration
client.setBucketCrossOriginConfiguration(bucketName, configuration);

Updating an Existing CORS Configuration

To update an existing CORS configuration

1. Get a CORS configuration by calling the client.getBucketCrossOriginConfiguration
method.

2. Update the configuration information by adding or deleting rules to the list of rules.

3. Add the configuration to a bucket by calling the
client.getBucketCrossOriginConfiguration method.

The following snippet gets an existing configuration and then adds a new rule with the ID NewRule.

// Get configuration.
BucketCrossOriginConfiguration configuration =
 client.getBucketCrossOriginConfiguration(bucketName);

// Add new rule.
CORSRule rule3 = new CORSRule()
.withId("CORSRule3")
.withAllowedMethods(Arrays.asList(new CORSRule.AllowedMethods[] {
 CORSRule.AllowedMethods.HEAD}))
.withAllowedOrigins(Arrays.asList(new String[] {"http://www.example.com"}));

List<CORSRule> rules = configuration.getRules();
rules.add(rule3);
configuration.setRules(rules);

// Save configuration.
client.setBucketCrossOriginConfiguration(bucketName, configuration);

API Version 2006-03-01
136

Amazon Simple Storage Service Developer Guide
Enabling CORS

Example Program Listing

The following Java program incorporates the preceding tasks.

For information about creating and testing a working sample, see Testing the Java Code
Examples (p. 565).

import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.BucketCrossOriginConfiguration;
import com.amazonaws.services.s3.model.CORSRule;

public class Cors {

 /**
 * @param args
 * @throws IOException
 */
 public static AmazonS3Client client;
 public static String bucketName = "***provide bucket name***";

 public static void main(String[] args) throws IOException {
 client = new AmazonS3Client(new ProfileCredentialsProvider());

 // Create a new configuration request and add two rules
 BucketCrossOriginConfiguration configuration = new
 BucketCrossOriginConfiguration();

 List<CORSRule> rules = new ArrayList<CORSRule>();

 CORSRule rule1 = new CORSRule()
 .withId("CORSRule1")
 .withAllowedMethods(Arrays.asList(new CORSRule.AllowedMethods[]
 {
 CORSRule.AllowedMethods.PUT,
 CORSRule.AllowedMethods.POST, CORSRule.AllowedMethods.DELETE}))
 .withAllowedOrigins(Arrays.asList(new String[] {"http://
*.example.com"}));

 CORSRule rule2 = new CORSRule()
 .withId("CORSRule2")
 .withAllowedMethods(Arrays.asList(new CORSRule.AllowedMethods[] {
 CORSRule.AllowedMethods.GET}))
 .withAllowedOrigins(Arrays.asList(new String[] {"*"}))
 .withMaxAgeSeconds(3000)
 .withExposedHeaders(Arrays.asList(new String[] {"x-amz-server-side-
encryption"}));

 configuration.setRules(Arrays.asList(new CORSRule[] {rule1, rule2}));

 // Add the configuration to the bucket.
 client.setBucketCrossOriginConfiguration(bucketName, configuration);

 // Retrieve an existing configuration.
 configuration = client.getBucketCrossOriginConfiguration(bucketName);
 printCORSConfiguration(configuration);

 // Add a new rule.
 CORSRule rule3 = new CORSRule()
 .withId("CORSRule3")
 .withAllowedMethods(Arrays.asList(new CORSRule.AllowedMethods[] {
 CORSRule.AllowedMethods.HEAD}))
 .withAllowedOrigins(Arrays.asList(new String[] {"http://
www.example.com"}));

 rules = configuration.getRules();
 rules.add(rule3);
 configuration.setRules(rules);
 client.setBucketCrossOriginConfiguration(bucketName, configuration);
 System.out.format("Added another rule: %s\n", rule3.getId());

 // Verify that the new rule was added.
 configuration = client.getBucketCrossOriginConfiguration(bucketName);
 System.out.format("Expected # of rules = 3, found %s",
 configuration.getRules().size());

 // Delete the configuration.
 client.deleteBucketCrossOriginConfiguration(bucketName);

 // Try to retrieve configuration.
 configuration = client.getBucketCrossOriginConfiguration(bucketName);
 System.out.println("\nRemoved CORS configuration.");
 printCORSConfiguration(configuration);
 }

 static void printCORSConfiguration(BucketCrossOriginConfiguration
 configuration)
 {

 if (configuration == null)
 {
 System.out.println("\nConfiguration is null.");
 return;
 }

 System.out.format("\nConfiguration has %s rules:\n",
 configuration.getRules().size());
 for (CORSRule rule : configuration.getRules())
 {
 System.out.format("Rule ID: %s\n", rule.getId());
 System.out.format("MaxAgeSeconds: %s\n",
 rule.getMaxAgeSeconds());
 System.out.format("AllowedMethod: %s\n",
 rule.getAllowedMethods().toArray());
 System.out.format("AllowedOrigins: %s\n",
 rule.getAllowedOrigins());
 System.out.format("AllowedHeaders: %s\n",
 rule.getAllowedHeaders());
 System.out.format("ExposeHeader: %s\n",
 rule.getExposedHeaders());
 }
 }
}

API Version 2006-03-01
137

Amazon Simple Storage Service Developer Guide
Enabling CORS

Enabling Cross-Origin Resource Sharing (CORS) Using the
AWS SDK for .NET
You can use the AWS SDK for .NET to manage cross-origin resource sharing (CORS) for a bucket.
For more information about CORS, see Cross-Origin Resource Sharing (CORS) (p. 131).

This section provides sample code for the tasks in the following table, followed by a complete example
program listing.

Managing Cross-Origin Resource Sharing

1 Create an instance of the AmazonS3Client class.

2 Create a new CORS configuration.

3 Retrieve and modify an existing CORS configuration.

4 Add the configuration to the bucket.

Cross-Origin Resource Sharing Methods

AmazonS3Client() Constructs AmazonS3Client with the credentials defined in the
App.config file.

PutCORSConfiguration() Sets the CORS configuration that should be applied to the bucket.
If a configuration already exists for the specified bucket, the new
configuration will replace the existing one.

GetCORSConfiguration() Retrieves the CORS configuration for the specified bucket. If no
configuration has been set for the bucket, the Configuration header
in the response will be null.

DeleteCORSConfiguration() Deletes the CORS configuration for the specified bucket.

For more information about the AWS SDK for .NET API, go to Using the AWS SDK for .NET (p. 566).

Creating an Instance of the AmazonS3 Class

The following sample creates an instance of the AmazonS3Client class.

static IAmazonS3 client;
using (client = new AmazonS3Client(Amazon.RegionEndpoint.USWest2))

Adding a CORS Configuration to a Bucket

To add a CORS configuration to a bucket:

1. Create a CORSConfiguration object describing the rule.

2. Create a PutCORSConfigurationRequest object that provides the bucket name and the CORS
configuration.

3. Add the CORS configuration to the bucket by calling client.PutCORSConfiguration.

The following sample creates two rules, CORSRule1 and CORSRule2, and then adds each rule to the
rules array. By using the rules array, it then adds the rules to the bucket bucketName.

// Add a sample configuration

API Version 2006-03-01
138

http://docs.aws.amazon.com/sdkfornet/latest/apidocs/Index.html?page=TS3_S3NET4_5.html&tocid=Amazon_S3_AmazonS3Client
http://docs.aws.amazon.com/sdkfornet/latest/apidocs/Index.html?page=TS3PutCORSConfigurationRequest_NET4_5.html&tocid=Amazon_S3_Model_PutCORSConfigurationRequest
http://docs.aws.amazon.com/sdkfornet/latest/apidocs/Index.html?page=TS3GetCORSConfigurationRequest_NET4_5.html&tocid=Amazon_S3_Model_GetCORSConfigurationRequest
http://docs.aws.amazon.com/sdkfornet/latest/apidocs/Index.html?page=TS3DeleteCORSConfigurationRequest_NET4_5.html&tocid=Amazon_S3_Model_DeleteCORSConfigurationRequest

Amazon Simple Storage Service Developer Guide
Enabling CORS

CORSConfiguration configuration = new CORSConfiguration
{
 Rules = new System.Collections.Generic.List<CORSRule>
 {
 new CORSRule
 {
 Id = "CORSRule1",
 AllowedMethods = new List<string> {"PUT", "POST", "DELETE"},
 AllowedOrigins = new List<string> {"http://*.example.com"}
 },
 new CORSRule
 {
 Id = "CORSRule2",
 AllowedMethods = new List<string> {"GET"},
 AllowedOrigins = new List<string> {"*"},
 MaxAgeSeconds = 3000,
 ExposeHeaders = new List<string> {"x-amz-server-side-encryption"}
 }
 }
};

// Save the configuration
PutCORSConfiguration(configuration);

static void PutCORSConfiguration(CORSConfiguration configuration)
{

 PutCORSConfigurationRequest request = new PutCORSConfigurationRequest
 {
 BucketName = bucketName,
 Configuration = configuration
 };

 var response = client.PutCORSConfiguration(request);
}

Updating an Existing CORS Configuration

To update an existing CORS configuration

1. Get a CORS configuration by calling the client.GetCORSConfiguration method.

2. Update the configuration information by adding or deleting rules.

3. Add the configuration to a bucket by calling the client.PutCORSConfiguration method.

The following snippet gets an existing configuration and then adds a new rule with the ID NewRule.

// Get configuration.
configuration = GetCORSConfiguration();
// Add new rule.
configuration.Rules.Add(new CORSRule
{
 Id = "NewRule",
 AllowedMethods = new List<string> { "HEAD" },
 AllowedOrigins = new List<string> { "http://www.example.com" }
});

// Save configuration.

API Version 2006-03-01
139

Amazon Simple Storage Service Developer Guide
Enabling CORS

PutCORSConfiguration(configuration);

API Version 2006-03-01
140

Amazon Simple Storage Service Developer Guide
Enabling CORS

Example Program Listing

The following C# program incorporates the preceding tasks.

For information about creating and testing a working sample, see Running the Amazon S3 .NET Code
Examples (p. 567).

using System;
using System.Configuration;
using System.Collections.Specialized;
using System.Net;
using Amazon.S3;
using Amazon.S3.Model;
using Amazon.S3.Util;
using System.Diagnostics;
using System.Collections.Generic;

namespace s3.amazon.com.docsamples
{
 class CORS
 {
 static string bucketName = "*** Provide bucket name ***";

 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 try
 {
 using (client = new
 AmazonS3Client(Amazon.RegionEndpoint.USWest2))
 {
 // Create a new configuration request and add two rules

 CORSConfiguration configuration = new CORSConfiguration
 {
 Rules = new System.Collections.Generic.List<CORSRule>
 {
 new CORSRule
 {
 Id = "CORSRule1",
 AllowedMethods = new List<string> {"PUT", "POST",
 "DELETE"},
 AllowedOrigins = new List<string> {"http://
*.example.com"}
 },
 new CORSRule
 {
 Id = "CORSRule2",
 AllowedMethods = new List<string> {"GET"},
 AllowedOrigins = new List<string> {"*"},
 MaxAgeSeconds = 3000,
 ExposeHeaders = new List<string> {"x-amz-server-
side-encryption"}
 }
 }
 };

 // Add the configuration to the bucket
 PutCORSConfiguration(configuration);

 // Retrieve an existing configuration
 configuration = GetCORSConfiguration();

 // Add a new rule.
 configuration.Rules.Add(new CORSRule
 {
 Id = "CORSRule3",
 AllowedMethods = new List<string> { "HEAD" },
 AllowedOrigins = new List<string> { "http://
www.example.com" }
 });

 // Add the configuration to the bucket
 PutCORSConfiguration(configuration);

 // Verify that there are now three rules
 configuration = GetCORSConfiguration();
 Console.WriteLine();
 Console.WriteLine("Expected # of rulest=3; found:{0}",
 configuration.Rules.Count);
 Console.WriteLine();
 Console.WriteLine("Pause before configuration delete. To
 continue, click Enter...");
 Console.ReadKey();

 // Delete the configuration
 DeleteCORSConfiguration();

 // Retrieve a nonexistent configuration
 configuration = GetCORSConfiguration();
 Debug.Assert(configuration == null);
 }

 Console.WriteLine("Example complete.");
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 Console.WriteLine("S3 error occurred. Exception: " +
 amazonS3Exception.ToString());
 Console.ReadKey();
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.ToString());
 Console.ReadKey();
 }

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static void PutCORSConfiguration(CORSConfiguration configuration)
 {

 PutCORSConfigurationRequest request = new
 PutCORSConfigurationRequest
 {
 BucketName = bucketName,
 Configuration = configuration
 };

 var response = client.PutCORSConfiguration(request);
 }

 static CORSConfiguration GetCORSConfiguration()
 {
 GetCORSConfigurationRequest request = new
 GetCORSConfigurationRequest
 {
 BucketName = bucketName

 };
 var response = client.GetCORSConfiguration(request);
 var configuration = response.Configuration;
 PrintCORSRules(configuration);
 return configuration;
 }

 static void DeleteCORSConfiguration()
 {
 DeleteCORSConfigurationRequest request = new
 DeleteCORSConfigurationRequest
 {
 BucketName = bucketName
 };
 client.DeleteCORSConfiguration(request);
 }

 static void PrintCORSRules(CORSConfiguration configuration)
 {
 Console.WriteLine();

 if (configuration == null)
 {
 Console.WriteLine("\nConfiguration is null");
 return;
 }

 Console.WriteLine("Configuration has {0} rules:",
 configuration.Rules.Count);
 foreach (CORSRule rule in configuration.Rules)
 {
 Console.WriteLine("Rule ID: {0}", rule.Id);
 Console.WriteLine("MaxAgeSeconds: {0}", rule.MaxAgeSeconds);
 Console.WriteLine("AllowedMethod: {0}", string.Join(", ",
 rule.AllowedMethods.ToArray()));
 Console.WriteLine("AllowedOrigins: {0}", string.Join(", ",
 rule.AllowedOrigins.ToArray()));
 Console.WriteLine("AllowedHeaders: {0}", string.Join(", ",
 rule.AllowedHeaders.ToArray()));
 Console.WriteLine("ExposeHeader: {0}", string.Join(", ",
 rule.ExposeHeaders.ToArray()));
 }
 }
 }
}

API Version 2006-03-01
141

Amazon Simple Storage Service Developer Guide
Troubleshooting CORS

Enabling Cross-Origin Resource Sharing (CORS) Using the
REST API

You can use the AWS Management Console to set CORS configuration on your bucket. If your
application requires it, you can also send REST requests directly. The following sections in the
Amazon Simple Storage Service API Reference describe the REST API actions related to the CORS
configuration:

• PUT Bucket cors

• GET Bucket cors

• DELETE Bucket cors

• OPTIONS object

Troubleshooting CORS Issues
When you are accessing buckets set with the CORS configuration, if you encounter unexpected
behavior the following are some troubleshooting actions you can take:

1. Verify that the CORS configuration is set on the bucket.

For instructions, go to Editing Bucket Permissions in the Amazon Simple Storage Service
Console User Guide. If you have the CORS configuration set, the console displays an Edit CORS
Configuration link in the Permissions section of the Properties bucket.

2. Capture the complete request and response using a tool of your choice. For each request Amazon
S3 receives, there must exist one CORS rule matching the data in your request, as follows:

a. Verify the request has the Origin header.

If the header is missing, Amazon S3 does not treat the request as a cross-origin request and
does not send CORS response headers back in the response.

b. Verify that the Origin header in your request matches at least one of the AllowedOrigin
elements in the specific CORSRule.

The scheme, the host, and the port values in the Origin request header must match the
AllowedOrigin in the CORSRule. For example, if you set the CORSRule to allow the
origin http://www.example.com, then both https://www.example.com and http://
www.example.com:80 origins in your request do not match the allowed origin in your
configuration.

c. Verify that the Method in your request (or the method specified in the Access-Control-
Request-Method in case of a preflight request) is one of the AllowedMethod elements in the
same CORSRule.

d. For a preflight request, if the request includes an Access-Control-Request-Headers header,
verify that the CORSRule includes the AllowedHeader entries for each value in the Access-
Control-Request-Headers header.

Operations on Objects
Amazon S3 enables you to store, retrieve, and delete objects. You can retrieve an entire object or a
portion of an object. If you have enabled versioning on your bucket, you can retrieve a specific version
of the object. You can also retrieve a subresource associated with your object and update it where
applicable. You can make a copy of your existing object. Depending on the object size, the following
upload and copy related considerations apply:

API Version 2006-03-01
142

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTcors.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETcors.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEcors.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTOPTIONSobject.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingBucketPermissions.html

Amazon Simple Storage Service Developer Guide
Getting Objects

• Uploading objects—You can upload objects of up to 5 GB in size in a single operation. For objects
greater than 5 GB you must use the multipart upload API.
Using the multipart upload API you can upload objects up to 5 TB each. For more information, see
Uploading Objects Using Multipart Upload API (p. 165).

• Copying objects—The copy operation creates a copy of an object that is already stored in Amazon
S3.
You can create a copy of your object up to 5 GB in size in a single atomic operation. However, for
copying an object greater than 5 GB, you must use the multipart upload API. For more information,
see Copying Objects (p. 212).

You can use the REST API (see Making Requests Using the REST API (p. 49)) to work with objects or
use one of the following AWS SDK libraries:

• AWS SDK for Java

• AWS SDK for .NET

• AWS SDK for PHP

These libraries provide a high-level abstraction that makes working with objects easy. However, if your
application requires, you can use the REST API directly.

Getting Objects
Topics

• Related Resources (p. 144)

• Get an Object Using the AWS SDK for Java (p. 144)

• Get an Object Using the AWS SDK for .NET (p. 147)

• Get an Object Using the AWS SDK for PHP (p. 150)

• Get an Object Using the REST API (p. 152)

• Share an Object with Others (p. 152)

You can retrieve objects directly from Amazon S3. You have the following options when retrieving an
object:

• Retrieve an entire object—A single GET operation can return you the entire object stored in
Amazon S3.

• Retrieve object in parts—Using the Range HTTP header in a GET request, you can retrieve a
specific range of bytes in an object stored in Amazon S3.
You resume fetching other parts of the object whenever your application is ready. This resumable
download is useful when you need only portions of your object data. It is also useful where network
connectivity is poor and you need to react to failures.

Note
Amazon S3 doesn't support retrieving multiple ranges of data per GET request.

When you retrieve an object, its metadata is returned in the response headers. There are times when
you want to override certain response header values returned in a GET response. For example, you
might override the Content-Disposition response header value in your GET request. The REST
GET Object API (see GET Object) allows you to specify query string parameters in your GET request
to override these values.

The AWS SDK for Java, .NET and PHP also provide necessary objects you can use to specify values
for these response headers in your GET request.

API Version 2006-03-01
143

http://aws.amazon.com/sdk-for-java/
http://aws.amazon.com/sdk-for-net/
http://aws.amazon.com/sdk-for-php/
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

Amazon Simple Storage Service Developer Guide
Getting Objects

When retrieving objects that are stored encrypted using server-side encryption you will need to provide
appropriate request headers. For more information, see Protecting Data Using Encryption (p. 380).

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 561)

Get an Object Using the AWS SDK for Java
When you download an object, you get all of object's metadata and a stream from which to read
the contents. You should read the content of the stream as quickly as possible because the data is
streamed directly from Amazon S3 and your network connection will remain open until you read all the
data or close the input stream.

Downloading Objects

1 Create an instance of the AmazonS3Client class.

2 Execute one of the AmazonS3Client.getObject() method. You need to provide the
request information, such as bucket name, and key name. You provide this information by
creating an instance of the GetObjectRequest class.

3 Execute one of the getObjectContent() methods on the object returned to get a
stream on the object data and process the response.

The following Java code sample demonstrates the preceding tasks.

AmazonS3 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());

S3Object object = s3Client.getObject(
 new GetObjectRequest(bucketName, key));
InputStream objectData = object.getObjectContent();
// Process the objectData stream.
objectData.close();

The GetObjectRequest object provides several options, including conditional downloading of objects
based on modification times, ETags, and selectively downloading a range of an object. The following
Java code sample demonstrates how you can specify a range of data bytes to retrieve from an object.

AmazonS3 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());

GetObjectRequest rangeObjectRequest = new GetObjectRequest(
 bucketName, key);
rangeObjectRequest.setRange(0, 10); // retrieve 1st 11 bytes.
S3Object objectPortion = s3Client.getObject(rangeObjectRequest);

InputStream objectData = objectPortion.getObjectContent();
// Process the objectData stream.
objectData.close();

When retrieving an object, you can optionally override the response header values (see Getting
Objects (p. 143)) by using the ResponseHeaderOverrides object and setting the corresponding
request property, as shown in the following Java code sample.

GetObjectRequest request = new GetObjectRequest(bucketName, key);

API Version 2006-03-01
144

Amazon Simple Storage Service Developer Guide
Getting Objects

ResponseHeaderOverrides responseHeaders = new ResponseHeaderOverrides();
responseHeaders.setCacheControl("No-cache");
responseHeaders.setContentDisposition("attachment; filename=testing.txt");

// Add the ResponseHeaderOverides to the request.
request.setResponseHeaders(responseHeaders);

API Version 2006-03-01
145

Amazon Simple Storage Service Developer Guide
Getting Objects

Example

The following Java code example retrieves an object from a specified Amazon S3 bucket.
For instructions on how to create and test a working sample, see Testing the Java Code
Examples (p. 565).

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.GetObjectRequest;
import com.amazonaws.services.s3.model.S3Object;

public class GetObject {
 private static String bucketName = "*** provide bucket name ***";
 private static String key = "*** provide object key ***";

 public static void main(String[] args) throws IOException {
 AmazonS3 s3Client = new AmazonS3Client(new
 ProfileCredentialsProvider());
 try {
 System.out.println("Downloading an object");
 S3Object s3object = s3Client.getObject(new GetObjectRequest(
 bucketName, key));
 System.out.println("Content-Type: " +
 s3object.getObjectMetadata().getContentType());
 displayTextInputStream(s3object.getObjectContent());

 // Get a range of bytes from an object.

 GetObjectRequest rangeObjectRequest = new GetObjectRequest(
 bucketName, key);
 rangeObjectRequest.setRange(0, 10);
 S3Object objectPortion = s3Client.getObject(rangeObjectRequest);

 System.out.println("Printing bytes retrieved.");
 displayTextInputStream(objectPortion.getObjectContent());

 } catch (AmazonServiceException ase) {
 System.out.println("Caught an AmazonServiceException, which" +
 " means your request made it " +
 "to Amazon S3, but was rejected with an error response" +
 " for some reason.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException, which
 means"+
 " the client encountered " +
 "an internal error while trying to " +
 "communicate with S3, " +
 "such as not being able to access the network.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }

 private static void displayTextInputStream(InputStream input)
 throws IOException {
 // Read one text line at a time and display.
 BufferedReader reader = new BufferedReader(new
 InputStreamReader(input));
 while (true) {
 String line = reader.readLine();
 if (line == null) break;

 System.out.println(" " + line);
 }
 System.out.println();
 }
}

API Version 2006-03-01
146

Amazon Simple Storage Service Developer Guide
Getting Objects

Get an Object Using the AWS SDK for .NET
The following tasks guide you through using the .NET classes to retrieve an object or a portion of the
object, and save it locally to a file.

Downloading Objects

1 Create an instance of the AmazonS3 class.

2 Execute one of the AmazonS3.GetObject methods. You need to provide information
such as bucket name, file path, or a stream. You provide this information by creating an
instance of the GetObjectRequest class.

3 Execute one of the GetObjectResponse.WriteResponseStreamToFile methods to
save the stream to a file.

The following C# code sample demonstrates the preceding tasks. The examples saves the object to a
file on your desktop.

static IAmazonS3 client;
using (client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1))
{
 GetObjectRequest request = new GetObjectRequest
 {
 BucketName = bucketName,
 Key = keyName
 };

 using (GetObjectResponse response = client.GetObject(request))
 {
 string dest =
 Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.Desktop),
 keyName);
 if (!File.Exists(dest))
 {
 response.WriteResponseStreamToFile(dest);
 }
 }
}

Instead of reading the entire object you can read only the portion of the object data by specifying the
byte range in the request, as shown in the following C# code sample.

GetObjectRequest request = new GetObjectRequest
{
 BucketName = bucketName,
 Key = keyName,
 ByteRange = new ByteRange(0, 10)
};

When retrieving an object, you can optionally override the response header values (see Getting
Objects (p. 143)) by using the ResponseHeaderOverrides object and setting the corresponding
request property, as shown in the following C# code sample. You can use this feature to indicate the
object should be downloaded into a different filename that the object key name.

GetObjectRequest request = new GetObjectRequest
{

API Version 2006-03-01
147

Amazon Simple Storage Service Developer Guide
Getting Objects

 BucketName = bucketName,
 Key = keyName
};

ResponseHeaderOverrides responseHeaders = new ResponseHeaderOverrides();
responseHeaders.CacheControl = "No-cache";
responseHeaders.ContentDisposition = "attachment; filename=testing.txt";

request.ResponseHeaderOverrides = responseHeaders;

API Version 2006-03-01
148

Amazon Simple Storage Service Developer Guide
Getting Objects

ExampleThe following C# code example retrieves an object from an Amazon S3 bucket. From the response,
the example reads the object data using the GetObjectResponse.ResponseStream property. The
example also shows how you can use the GetObjectResponse.Metadata collection to read object
metadata. If the object you retrieve has the x-amz-meta-title metadata, the code will print the
metadata value.
For instructions on how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 567).

using System;
using System.IO;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class GetObject
 {
 static string bucketName = "*** bucket name ***";
 static string keyName = "*** object key ***";
 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 try
 {
 Console.WriteLine("Retrieving (GET) an object");
 string data = ReadObjectData();
 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine(s3Exception.Message,
 s3Exception.InnerException);
 }
 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static string ReadObjectData()
 {
 string responseBody = "";

 using (client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 GetObjectRequest request = new GetObjectRequest
 {
 BucketName = bucketName,
 Key = keyName
 };

 using (GetObjectResponse response =
 client.GetObject(request))
 using (Stream responseStream = response.ResponseStream)
 using (StreamReader reader = new
 StreamReader(responseStream))
 {
 string title = response.Metadata["x-amz-meta-title"];
 Console.WriteLine("The object's title is {0}", title);

 responseBody = reader.ReadToEnd();
 }
 }
 return responseBody;
 }
 }
}

API Version 2006-03-01
149

Amazon Simple Storage Service Developer Guide
Getting Objects

Get an Object Using the AWS SDK for PHP

This topic guides you through using a class from the AWS SDK for PHP to retrieve an object. You can
retrieve an entire object or specify a byte range to retrieve from the object.

Note
This topic assumes that you are already following the instructions for Using the AWS SDK
for PHP and Running PHP Examples (p. 567) and have the AWS SDK for PHP properly
installed.

Downloading an Object

1 Create an instance of an Amazon S3 client by using the Aws\S3\S3Client class factory()
method.

2 Execute the Aws\S3\S3Client::getObject() method. You must provide a bucket name and
a key name in the array parameter's required keys, Bucket and Key.

Instead of retrieving the entire object you can retrieve a specific byte range from the
object data. You provide the range value by specifying the array parameter's Range key
in addition to the required keys.

You can save the object you retrieved from Amazon S3 to a file in your local file system
by specifying a file path to where to save the file in the array parameter's SaveAs key, in
addition to the required keys, Bucket and Key.

The following PHP code sample demonstrates the preceding tasks for downloading an object.

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';
$filepath = '*** Your File Path ***';

// Instantiate the client.
$s3 = S3Client::factory();

// Get an object.
$result = $s3->getObject(array(
 'Bucket' => $bucket,
 'Key' => $keyname
));

// Get a range of bytes from an object.
$result = $s3->getObject(array(
 'Bucket' => $bucket,
 'Key' => $keyname,
 'Range' => 'bytes=0-99'
));

// Save object to a file.
$result = $s3->getObject(array(
 'Bucket' => $bucket,
 'Key' => $keyname,
 'SaveAs' => $filepath
));

API Version 2006-03-01
150

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_getObject

Amazon Simple Storage Service Developer Guide
Getting Objects

When retrieving an object, you can optionally override the response header values (see Getting
Objects (p. 143)) by adding the array parameter's response keys, ResponseContentType,
ResponseContentLanguage, ResponseContentDisposition, ResponseCacheControl, and
ResponseExpires, to the getObject() method, as shown in the following PHP code sample.

$result = $s3->getObject(array(
 'Bucket' => $bucket,
 'Key' => $keyname,
 'ResponseContentType' => 'text/plain',
 'ResponseContentLanguage' => 'en-US',
 'ResponseContentDisposition' => 'attachment; filename=testing.txt',
 'ResponseCacheControl' => 'No-cache',
 'ResponseExpires' => gmdate(DATE_RFC2822, time() + 3600),
));

Example of Downloading an Object Using PHP

The following PHP example retrieves an object and displays object content in the browser. The
example illustrates the use of the getObject() method. For information about running the PHP
examples in this guide, go to Running PHP Examples (p. 568).

<?php

// Include the AWS SDK using the Composer autoloader.
require 'vendor/autoload.php';

use Aws\S3\S3Client;
use Aws\S3\Exception\S3Exception;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

// Instantiate the client.
$s3 = S3Client::factory();

try {
 // Get the object
 $result = $s3->getObject(array(
 'Bucket' => $bucket,
 'Key' => $keyname
));

 // Display the object in the browser
 header("Content-Type: {$result['ContentType']}");
 echo $result['Body'];
} catch (S3Exception $e) {
 echo $e->getMessage() . "\n";
}

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::factory() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::getObject() Method

• AWS SDK for PHP for Amazon S3 - Downloading Objects

API Version 2006-03-01
151

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_getObject
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html#downloading-objects

Amazon Simple Storage Service Developer Guide
Getting Objects

• AWS SDK for PHP for Amazon S3

• AWS SDK for PHP Documentation

Get an Object Using the REST API

You can use the AWS SDK to retrieve object keys from a bucket. However, if your application requires
it, you can send REST requests directly. You can send a GET request to retrieve object keys. For more
information about the request and response format, go to Get Object.

Share an Object with Others

Topics

• Generate a Pre-signed Object URL using AWS Explorer for Visual Studio (p. 152)

• Generate a Pre-signed Object URL using AWS SDK for Java (p. 152)

• Generate a Pre-signed Object URL using AWS SDK for .NET (p. 155)

All objects by default are private. Only the object owner has permission to access these objects.
However, the object owner can optionally share objects with others by creating a pre-signed URL,
using their own security credentials, to grant time-limited permission to download the objects.

When you create a pre-signed URL for your object, you must provide your security credentials, specify
a bucket name, an object key, specify the HTTP method (GET to download the object) and expiration
date and time. The pre-signed URLs are valid only for the specified duration.

Anyone who receives the pre-signed URL can then access the object. For example, if you have a video
in your bucket and both the bucket and the object are private, you can share the video with others by
generating a pre-signed URL.

Note
Anyone with valid security credentials can create a pre-signed URL. However, in order to
successfully access an object, the pre-signed URL must be created by someone who has
permission to perform the operation that the pre-signed URL is based upon.

You can generate pre-signed URL programmatically using the AWS SDK for Java and .NET.

Generate a Pre-signed Object URL using AWS Explorer for Visual Studio

If you are using Visual Studio, you can generate a pre-signed URL for an object without writing any
code by using AWS Explorer for Visual Studio. Anyone with this URL can download the object. For
more information, go to Using Amazon S3 from AWS Explorer.

For instructions about how to install the AWS Explorer, see Using the AWS SDKs, CLI, and
Explorers (p. 561).

Generate a Pre-signed Object URL using AWS SDK for Java

The following tasks guide you through using the Java classes to generate a pre-signed URL.

Downloading Objects

1 Create an instance of the AmazonS3 class. For information about providing credentials,
see Using the AWS SDK for Java (p. 564). These credentials are used in creating a
signature for authentication when you generate a pre-signed URL.

2 Execute the AmazonS3.generatePresignedUrl method to generate a pre-signed
URL.

API Version 2006-03-01
152

http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/index.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
http://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/using-s3.html

Amazon Simple Storage Service Developer Guide
Getting Objects

You provide information including a bucket name, an object key, and an expiration date
by creating an instance of the GeneratePresignedUrlRequest class. The request
by default sets the verb to GET. To use the pre-signed URL for other operations, for
example PUT, you must explicitly set the verb when you create the request.

The following Java code sample demonstrates the preceding tasks.

AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());

java.util.Date expiration = new java.util.Date();
long msec = expiration.getTime();
msec += 1000 * 60 * 60; // 1 hour.
expiration.setTime(msec);

GeneratePresignedUrlRequest generatePresignedUrlRequest =
 new GeneratePresignedUrlRequest(bucketName, objectKey);
generatePresignedUrlRequest.setMethod(HttpMethod.GET); // Default.
generatePresignedUrlRequest.setExpiration(expiration);

URL s = s3client.generatePresignedUrl(generatePresignedUrlRequest);

API Version 2006-03-01
153

Amazon Simple Storage Service Developer Guide
Getting Objects

Example
The following Java code example generates a pre-signed URL that you can give to others so that they
can retrieve the object. You can use the generated pre-signed URL to retrieve the object. To use the
pre-signed URL for other operations, such as put an object, you must explicitly set the verb in the
GetPreSignedUrlRequest. For instructions about how to create and test a working sample, see
Testing the Java Code Examples (p. 565).
import java.io.IOException;
import java.net.URL;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.HttpMethod;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.GeneratePresignedUrlRequest;

public class GeneratePreSignedUrl {
 private static String bucketName = "*** Provide a bucket name ***";
 private static String objectKey = "*** Provide an object key ***";

 public static void main(String[] args) throws IOException {
 AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());

 try {
 System.out.println("Generating pre-signed URL.");
 java.util.Date expiration = new java.util.Date();
 long milliSeconds = expiration.getTime();
 milliSeconds += 1000 * 60 * 60; // Add 1 hour.
 expiration.setTime(milliSeconds);

 GeneratePresignedUrlRequest generatePresignedUrlRequest =
 new GeneratePresignedUrlRequest(bucketName, objectKey);
 generatePresignedUrlRequest.setMethod(HttpMethod.GET);
 generatePresignedUrlRequest.setExpiration(expiration);

 URL url = s3client.generatePresignedUrl(generatePresignedUrlRequest);

 System.out.println("Pre-Signed URL = " + url.toString());
 } catch (AmazonServiceException exception) {
 System.out.println("Caught an AmazonServiceException, " +
 "which means your request made it " +
 "to Amazon S3, but was rejected with an error response " +
 "for some reason.");
 System.out.println("Error Message: " + exception.getMessage());
 System.out.println("HTTP Code: " + exception.getStatusCode());
 System.out.println("AWS Error Code:" + exception.getErrorCode());
 System.out.println("Error Type: " + exception.getErrorType());
 System.out.println("Request ID: " + exception.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException, " +
 "which means the client encountered " +
 "an internal error while trying to communicate" +
 " with S3, " +
 "such as not being able to access the network.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }
}

API Version 2006-03-01
154

Amazon Simple Storage Service Developer Guide
Getting Objects

Generate a Pre-signed Object URL using AWS SDK for .NET

The following tasks guide you through using the .NET classes to generate a pre-signed URL.

Downloading Objects

1 Create an instance of the AmazonS3 class. For information about providing your
credentials see Using the AWS SDK for .NET (p. 566). These credentials are used in
creating a signature for authentication when you generate a pre-signed URL.

2 Execute the AmazonS3.GetPreSignedURL method to generate a pre-signed URL.

You provide information including a bucket name, an object key, and an expiration date
by creating an instance of the GetPreSignedUrlRequest class.

The following C# code sample demonstrates the preceding tasks.

static IAmazonS3 s3Client;
s3Client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1)

GetPreSignedUrlRequest request1 = new GetPreSignedUrlRequest()
{
 BucketName = bucketName,
 Key = objectKey,
 Expires = DateTime.Now.AddMinutes(5)
};

string url = s3Client.GetPreSignedURL(request1);

API Version 2006-03-01
155

Amazon Simple Storage Service Developer Guide
Getting Objects

Example

The following C# code example generates a pre-signed URL for a specific object. For instructions
about how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 567).

using System;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class GeneratePresignedURL
 {
 static string bucketName ="*** Provide a bucket name ***";
 static string objectKey = "*** Provide an object name ***";
 static IAmazonS3 s3Client;

 public static void Main(string[] args)
 {

 using (s3Client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 string urlString = GeneratePreSignedURL();
 }

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static string GeneratePreSignedURL()
 {
 string urlString = "";
 GetPreSignedUrlRequest request1 = new GetPreSignedUrlRequest
 {
 BucketName = bucketName,
 Key = objectKey,
 Expires = DateTime.Now.AddMinutes(5)

 };

 try
 {
 urlString = s3Client.GetPreSignedURL(request1);
 //string url = s3Client.GetPreSignedURL(request1);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 if (amazonS3Exception.ErrorCode != null &&
 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||
 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))
 {
 Console.WriteLine("Check the provided AWS Credentials.");
 Console.WriteLine(
 "To sign up for service, go to http://aws.amazon.com/
s3");
 }
 else
 {
 Console.WriteLine(
 "Error occurred. Message:'{0}' when listing objects",
 amazonS3Exception.Message);
 }
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }

 return urlString;

 }
 }
}

API Version 2006-03-01
156

Amazon Simple Storage Service Developer Guide
Uploading Objects

Uploading Objects
Depending on the size of the data you are uploading, Amazon S3 offers the following options:

• Upload objects in a single operation—With a single PUT operation you can upload objects up to 5
GB in size.
For more information, see Uploading Objects in a Single Operation (p. 157).

• Upload objects in parts—Using the Multipart upload API you can upload large objects, up to 5 TB.
The Multipart Upload API is designed to improve the upload experience for larger objects. You can
upload objects in parts. These object parts can be uploaded independently, in any order, and in
parallel. You can use a Multipart Upload for objects from 5 MB to 5 TB in size. For more information,
see Uploading Objects Using Multipart Upload API (p. 165).

We encourage Amazon S3 customers to use Multipart Upload for objects greater than 100 MB.

Topics

• Uploading Objects in a Single Operation (p. 157)

• Uploading Objects Using Multipart Upload API (p. 165)

• Uploading Objects Using Pre-Signed URLs (p. 206)

When uploading objects you optionally request Amazon S3 to encrypt your object before saving it
on disks in its data centers and decrypt it when you download the objects. For more information, see
Protecting Data Using Encryption (p. 380).

Related Topics

• Using the AWS SDKs, CLI, and Explorers (p. 561)

Uploading Objects in a Single Operation

Topics

• Upload an Object Using the AWS SDK for Java (p. 157)

• Upload an Object Using the AWS SDK for .NET (p. 159)

• Upload an Object Using the AWS SDK for PHP (p. 161)

• Upload an Object Using the AWS SDK for Ruby (p. 163)

• Upload an Object Using the REST API (p. 164)

You can use the AWS SDK to upload objects. The SDK provides wrapper libraries for you to upload
data easily. However, if your application requires it, you can use the REST API directly in your
application.

Upload an Object Using the AWS SDK for Java

The following tasks guide you through using the Java classes to upload a file. The API provides several
variations, called overloads, of the putObject method to easily upload your data.

Uploading Objects

1 Create an instance of the AmazonS3Client.

2 Execute one of the AmazonS3Client.putObject overloads depending on whether you
are uploading data from a file, or a stream.

API Version 2006-03-01
157

Amazon Simple Storage Service Developer Guide
Uploading Objects

The following Java code sample demonstrates the preceding tasks.

AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());

s3client.putObject(new PutObjectRequest(bucketName, keyName, file));

Example

The following Java code example uploads a file to an Amazon S3 bucket. For instructions on how to
create and test a working sample, see Testing the Java Code Examples (p. 565).

import java.io.File;
import java.io.IOException;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.PutObjectRequest;

public class UploadObjectSingleOperation {
 private static String bucketName = "*** Provide bucket name ***";
 private static String keyName = "*** Provide key ***";
 private static String uploadFileName = "*** Provide file name ***";

 public static void main(String[] args) throws IOException {
 AmazonS3 s3client = new AmazonS3Client(new
 ProfileCredentialsProvider());
 try {
 System.out.println("Uploading a new object to S3 from a file\n");
 File file = new File(uploadFileName);
 s3client.putObject(new PutObjectRequest(
 bucketName, keyName, file));

 } catch (AmazonServiceException ase) {
 System.out.println("Caught an AmazonServiceException, which " +
 "means your request made it " +
 "to Amazon S3, but was rejected with an error response" +
 " for some reason.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException, which " +
 "means the client encountered " +
 "an internal error while trying to " +
 "communicate with S3, " +
 "such as not being able to access the network.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }
}

API Version 2006-03-01
158

Amazon Simple Storage Service Developer Guide
Uploading Objects

Upload an Object Using the AWS SDK for .NET

The tasks in the following process guide you through using the .NET classes to upload an object. The
API provides several variations, overloads, of the PutObject method to easily upload your data.

Uploading Objects

1 Create an instance of the AmazonS3 class.

2 Execute one of the AmazonS3.PutObject. You need to provide information such as a
bucket name, file path, or a stream. You provide this information by creating an instance
of the PutObjectRequest class.

The following C# code sample demonstrates the preceding tasks.

static IAmazonS3 client;
client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1);
PutObjectRequest request = new PutObjectRequest()
{
 BucketName = bucketName,
 Key = keyName,
 FilePath = filePath
};
PutObjectResponse response2 = client.PutObject(request);

API Version 2006-03-01
159

Amazon Simple Storage Service Developer Guide
Uploading Objects

Example

The following C# code example uploads an object. The object data is provided as a text string in the
code. The example uploads the object twice.

• The first PutObjectRequest specifies only the bucket name, key name, and a text string
embedded in the code as sample object data.

• The second PutObjectRequest provides additional information including the optional object
metadata and a ContentType header. The request specifies a file name to upload.

Each successive call to AmazonS3.PutObject replaces the previous upload. For instructions on how
to create and test a working sample, see Running the Amazon S3 .NET Code Examples (p. 567).

using System;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class UploadObject
 {
 static string bucketName = "*** bucket name ***";
 static string keyName = "*** key name when object is created ***";
 static string filePath = "*** absolute path to a sample file to
 upload ***";

 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 using (client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 Console.WriteLine("Uploading an object");
 WritingAnObject();
 }

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static void WritingAnObject()
 {
 try
 {
 PutObjectRequest putRequest1 = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 ContentBody = "sample text"
 };

 PutObjectResponse response1 = client.PutObject(putRequest1);

 // 2. Put object-set ContentType and add metadata.
 PutObjectRequest putRequest2 = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 FilePath = filePath,
 ContentType = "text/plain"
 };
 putRequest2.Metadata.Add("x-amz-meta-title", "someTitle");

 PutObjectResponse response2 = client.PutObject(putRequest2);

 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 if (amazonS3Exception.ErrorCode != null &&
 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||
 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))
 {
 Console.WriteLine("Check the provided AWS Credentials.");
 Console.WriteLine(
 "For service sign up go to http://aws.amazon.com/
s3");
 }
 else
 {
 Console.WriteLine(
 "Error occurred. Message:'{0}' when writing an
 object"
 , amazonS3Exception.Message);
 }
 }
 }
 }
}

API Version 2006-03-01
160

Amazon Simple Storage Service Developer Guide
Uploading Objects

Upload an Object Using the AWS SDK for PHP

This topic guides you through using classes from the AWS SDK for PHP to upload an object of up to
5 GB in size. For larger files you must use multipart upload API. For more information, see Uploading
Objects Using Multipart Upload API (p. 165).

Note
This topic assumes that you are already following the instructions for Using the AWS SDK
for PHP and Running PHP Examples (p. 567) and have the AWS SDK for PHP properly
installed.

Uploading Objects

1 Create an instance of an Amazon S3 client by using the Aws\S3\S3Client class factory()
method.

2 Execute the Aws\S3\S3Client::putObject() method. You must provide a bucket name and
a key name in the array parameter's required keys, Bucket and Key.

If you are uploading a file, you specify the file name by adding the array parameter with
the SourceFile key. You can also provide the optional object metadata using the array
parameter.

The following PHP code sample demonstrates how to create an object by uploading a file specified in
the SourceFile key in the putObject method's array parameter.

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';
// $filepath should be absolute path to a file on disk
$filepath = '*** Your File Path ***';

// Instantiate the client.
$s3 = S3Client::factory();

// Upload a file.
$result = $s3->putObject(array(
 'Bucket' => $bucket,
 'Key' => $keyname,
 'SourceFile' => $filepath,
 'ContentType' => 'text/plain',
 'ACL' => 'public-read',
 'StorageClass' => 'REDUCED_REDUNDANCY',
 'Metadata' => array(
 'param1' => 'value 1',
 'param2' => 'value 2'
)
));

echo $result['ObjectURL'];

Instead of specifying a file name, you can provide object data inline by specifying the array parameter
with the Body key, as shown in the following PHP code example.

use Aws\S3\S3Client;

API Version 2006-03-01
161

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_putObject

Amazon Simple Storage Service Developer Guide
Uploading Objects

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

// Instantiate the client.
$s3 = S3Client::factory();

// Upload data.
$result = $s3->putObject(array(
 'Bucket' => $bucket,
 'Key' => $keyname,
 'Body' => 'Hello, world!'
));

echo $result['ObjectURL'];

Example of Creating an Object in an Amazon S3 bucket by Uploading Data

The following PHP example creates an object in a specified bucket by uploading data using the
putObject() method. For information about running the PHP examples in this guide, go to Running
PHP Examples (p. 568).

<?php

// Include the AWS SDK using the Composer autoloader.
require 'vendor/autoload.php';

use Aws\S3\S3Client;
use Aws\S3\Exception\S3Exception;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

// Instantiate the client.
$s3 = S3Client::factory();

try {
 // Upload data.
 $result = $s3->putObject(array(
 'Bucket' => $bucket,
 'Key' => $keyname,
 'Body' => 'Hello, world!',
 'ACL' => 'public-read'
));

 // Print the URL to the object.
 echo $result['ObjectURL'] . "\n";
} catch (S3Exception $e) {
 echo $e->getMessage() . "\n";
}

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::factory() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::putObject() Method

• AWS SDK for PHP for Amazon S3

• AWS SDK for PHP Documentation

API Version 2006-03-01
162

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_putObject
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/index.html

Amazon Simple Storage Service Developer Guide
Uploading Objects

Upload an Object Using the AWS SDK for Ruby

The following tasks guide you through using a Ruby script to upload an object for either version of the
SDK for Ruby.

Using AWS SDK for Ruby - Version 2

The AWS SDK for Ruby - Version 2 has two ways of uploading an object to Amazon S3. The first is a
managed file uploader, which makes it easy to upload files of any size from disk.

Uploading a File

1 Create an instance of the Aws::S3::Resource class.

2 Reference the target object by bucket name and key.

2 Call#upload_file on the object.

require 'aws-sdk'

s3 = Aws::S3::Resource.new(region:'us-west-2')
obj = s3.bucket('bucket-name').object('key')
obj.upload_file('/path/to/source/file')

The second way that SDK for Ruby - Version 2 can upload an object is to use the #put method of
Aws::S3::Object. This is useful if the object is a string or an IO object that is not a file on disk.

Put Object

1 Create an instance of the Aws::S3::Resource class.

2 Reference the target object by bucket name and key.

2 Call#put passing in the string or IO object.

require 'aws-sdk'

s3 = Aws::S3::Resource.new(region:'us-west-2')
obj = s3.bucket('bucket-name').object('key')

string data
obj.put(body: 'Hello World!')

IO object
File.open('source', 'rb') do |file|
 obj.put(body: file)
end

Using AWS SDK for Ruby - Version 1

The API provides a #write method that can take options that you can use to specify how to upload
your data.

Uploading Objects - SDK for Ruby - Version 1

1 Create an instance of the AWS::S3 class by providing your AWS credentials.

API Version 2006-03-01
163

Amazon Simple Storage Service Developer Guide
Uploading Objects

2 Use the AWS::S3::S3Object#write method which takes a data parameter and options
hash which allow you to upload data from a file, or a stream.

The following code sample for the SDK for Ruby - Version 1 demonstrates the preceding tasks and
uses the options hash :file to specify the path to the file to upload.

s3 = AWS::S3.new

Upload a file.
key = File.basename(file_name)
s3.buckets[bucket_name].objects[key].write(:file => file_name)

Example

The following SDK for Ruby - Version 1 script example uploads a file to an Amazon S3 bucket. For
instructions about how to create and test a working sample, see Using the AWS SDK for Ruby -
Version 2 (p. 569).

#!/usr/bin/env ruby

require 'rubygems'
require 'aws-sdk'

bucket_name = '*** Provide bucket name ***'
file_name = '*** Provide file name ****'

Get an instance of the S3 interface.
s3 = AWS::S3.new

Upload a file.
key = File.basename(file_name)
s3.buckets[bucket_name].objects[key].write(:file => file_name)
puts "Uploading file #{file_name} to bucket #{bucket_name}."

Upload an Object Using the REST API

You can use AWS SDK to upload an object. However, if your application requires it, you can send
REST requests directly. You can send a PUT request to upload data in a single operation. For more
information, see PUT Object.

API Version 2006-03-01
164

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Uploading Objects

Uploading Objects Using Multipart Upload API

Topics

• Multipart Upload Overview (p. 165)

• Using the AWS Java SDK for Multipart Upload (High-Level API) (p. 172)

• Using the AWS Java SDK for Multipart Upload (Low-Level API) (p. 177)

• Using the AWS .NET SDK for Multipart Upload (High-Level API) (p. 181)

• Using the AWS .NET SDK for Multipart Upload (Low-Level API) (p. 190)

• Using the AWS PHP SDK for Multipart Upload (High-Level API) (p. 196)

• Using the AWS PHP SDK for Multipart Upload (Low-Level API) (p. 200)

• Using the AWS SDK for Ruby for Multipart Upload (p. 204)

• Using the REST API for Multipart Upload (p. 205)

Multipart upload allows you to upload a single object as a set of parts. Each part is a contiguous portion
of the object's data. You can upload these object parts independently and in any order. If transmission
of any part fails, you can retransmit that part without affecting other parts. After all parts of your object
are uploaded, Amazon S3 assembles these parts and creates the object. In general, when your object
size reaches 100 MB, you should consider using multipart uploads instead of uploading the object in a
single operation.

Using multipart upload provides the following advantages:

• Improved throughput—You can upload parts in parallel to improve throughput.

• Quick recovery from any network issues—Smaller part size minimizes the impact of restarting a
failed upload due to a network error.

• Pause and resume object uploads—You can upload object parts over time. Once you initiate a
multipart upload there is no expiry; you must explicitly complete or abort the multipart upload.

• Begin an upload before you know the final object size—You can upload an object as you are
creating it.

For more information, see Multipart Upload Overview (p. 165).

Multipart Upload Overview

Topics

• Concurrent Multipart Upload Operations (p. 167)

• Multipart Upload and Pricing (p. 167)

• Aborting Incomplete Multipart Uploads Using a Bucket Lifecycle Policy (p. 167)

• Quick Facts (p. 169)

• API Support for Multipart Upload (p. 169)

• Multipart Upload API and Permissions (p. 169)

The Multipart upload API enables you to upload large objects in parts. You can use this API to upload
new large objects or make a copy of an existing object (see Operations on Objects (p. 142)).

Multipart uploading is a three-step process: You initiate the upload, you upload the object parts, and
after you have uploaded all the parts, you complete the multipart upload. Upon receiving the complete
multipart upload request, Amazon S3 constructs the object from the uploaded parts, and you can then
access the object just as you would any other object in your bucket.

API Version 2006-03-01
165

Amazon Simple Storage Service Developer Guide
Uploading Objects

You can list of all your in-progress multipart uploads or get a list of the parts that you have uploaded for
a specific multipart upload. Each of these operations is explained in this section.

Multipart Upload Initiation

When you send a request to initiate a multipart upload, Amazon S3 returns a response with an upload
ID, which is a unique identifier for your multipart upload. You must include this upload ID whenever
you upload parts, list the parts, complete an upload, or abort an upload. If you want to provide any
metadata describing the object being uploaded, you must provide it in the request to initiate multipart
upload.

Parts Upload

When uploading a part, in addition to the upload ID, you must specify a part number. You can choose
any part number between 1 and 10,000. A part number uniquely identifies a part and its position in
the object you are uploading. If you upload a new part using the same part number as a previously
uploaded part, the previously uploaded part is overwritten. Whenever you upload a part, Amazon S3
returns an ETag header in its response. For each part upload, you must record the part number and
the ETag value. You need to include these values in the subsequent request to complete the multipart
upload.

Note
After you initiate a multipart upload and upload one or more parts, you must either complete
or abort the multipart upload in order to stop getting charged for storage of the uploaded parts.
Only after you either complete or abort a multipart upload will Amazon S3 free up the parts
storage and stop charging you for the parts storage.

Multipart Upload Completion (or Abort)

When you complete a multipart upload, Amazon S3 creates an object by concatenating the parts in
ascending order based on the part number. If any object metadata was provided in the initiate multipart
upload request, Amazon S3 associates that metadata with the object. After a successful complete
request, the parts no longer exist. Your complete multipart upload request must include the upload
ID and a list of both part numbers and corresponding ETag values. Amazon S3 response includes an
ETag that uniquely identifies the combined object data. This ETag will not necessarily be an MD5 hash
of the object data. You can optionally abort the multipart upload. After aborting a multipart upload, you
cannot upload any part using that upload ID again. All storage that any parts from the aborted multipart
upload consumed is then freed. If any part uploads were in-progress, they can still succeed or fail even
after you aborted. To free all storage consumed by all parts, you must abort a multipart upload only
after all part uploads have completed.

Multipart Upload Listings

You can list the parts of a specific multipart upload or all in-progress multipart uploads. The list parts
operation returns the parts information that you have uploaded for a specific multipart upload. For each
list parts request, Amazon S3 returns the parts information for the specified multipart upload, up to a
maximum of 1,000 parts. If there are more than 1,000 parts in the multipart upload, you must send a
series of list part requests to retrieve all the parts. Note that the returned list of parts doesn't include
parts that haven't completed uploading.

Note
Only use the returned listing for verification. You should not use the result of this listing
when sending a complete multipart upload request. Instead, maintain your own list of the
part numbers you specified when uploading parts and the corresponding ETag values that
Amazon S3 returns.

Using the list multipart uploads operation, you can obtain a list of multipart uploads in progress. An in-
progress multipart upload is an upload that you have initiated, but have not yet completed or aborted.
Each request returns at most 1000 multipart uploads. If there are more than 1,000 multipart uploads in
progress, you need to send additional requests to retrieve the remaining multipart uploads.

API Version 2006-03-01
166

Amazon Simple Storage Service Developer Guide
Uploading Objects

Concurrent Multipart Upload Operations

In a distributed development environment, it is possible for your application to initiate several updates
on the same object at the same time. Your application might initiate several multipart uploads using
the same object key. For each of these uploads, your application can then upload parts and send
a complete upload request to Amazon S3 to create the object. When the buckets have versioning
enabled, completing a multipart upload always creates a new version. For buckets that do not have
versioning enabled, it is possible that some other request received between the time when a multipart
upload is initiated and when it is completed might take precedence.

Note
It is possible for some other request received between the time you initiated a multipart upload
and completed it to take precedence. For example, if another operation deletes a key after
you initiate a multipart upload with that key, but before you complete it, the complete multipart
upload response might indicate a successful object creation without you ever seeing the
object.

Multipart Upload and Pricing

Once you initiate a multipart upload, Amazon S3 retains all the parts until you either complete or
abort the upload. Throughout its lifetime, you are billed for all storage, bandwidth, and requests for
this multipart upload and its associated parts. If you abort the multipart upload, Amazon S3 deletes
upload artifacts and any parts that you have uploaded, and you are no longer billed for them. For more
information about pricing, see Amazon S3 Pricing.

Aborting Incomplete Multipart Uploads Using a Bucket Lifecycle Policy

After you initiate a multipart upload, you begin uploading parts. Amazon S3 stores these parts, but it
creates the object from the parts only after you upload all of them and send a successful request
to complete the multipart upload (you should verify that your request to complete multipart upload is
successful). Upon receiving the complete multipart upload request, Amazon S3 assembles the parts
and creates an object.

If you don't send the complete multipart upload request successfully, Amazon S3 will not assemble
the parts and will not create any object. Therefore, the parts remain in Amazon S3 and you pay for the
parts that are stored in Amazon S3. As a best practice, we recommend you configure a lifecycle rule
(using the AbortIncompleteMultipartUpload action) to minimize your storage costs.

Amazon S3 supports a bucket lifecycle rule that you can use to direct Amazon S3 to abort multipart
uploads that don't complete within a specified number of days after being initiated. When a multipart
upload is not completed within the time frame, it becomes eligible for an abort operation and Amazon
S3 aborts the multipart upload (and deletes the parts associated with the multipart upload).

The following is an example lifecycle configuration that specifies a rule with the
AbortIncompleteMultipartUpload action.

<LifecycleConfiguration>
 <Rule>
 <ID>sample-rule</ID>
 <Prefix></Prefix>
 <Status>Enabled</Status>
 <AbortIncompleteMultipartUpload>
 <DaysAfterInitiation>7</DaysAfterInitiation>
 </AbortIncompleteMultipartUpload>
 </Rule>
</LifecycleConfiguration>

In the example, the rule does not specify a value for the Prefix element (object key name prefix) and
therefore it applies to all objects in the bucket for which you initiated multipart uploads. Any multipart

API Version 2006-03-01
167

http://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Uploading Objects

uploads that were initiated and did not complete within seven days become eligible for an abort
operation (the action has no effect on completed multipart uploads).

For more information about the bucket lifecycle configuration, see Object Lifecycle
Management (p. 109).

Note
if the multipart upload is completed within the number of days specified in the rule, the
AbortIncompleteMultipartUpload lifecycle action does not apply (that is, Amazon S3
will not take any action). Also, this action does not apply to objects, no objects are deleted by
this lifecycle action.

The following put-bucket-lifecycle CLI command adds the lifecycle configuration for the
specified bucket.

$ aws s3api put-bucket-lifecycle \
 --bucket bucketname \
 --lifecycle-configuration filename-containing-lifecycle-
configuration

To test the CLI command, do the following:

1. Set up the AWS CLI. For instructions, see Set Up the AWS CLI (p. 563).

2. Save the following example lifecycle configuration in a file (lifecycle.json). The example
configuration specifies empty prefix and therefore it applies to all objects in the bucket. You can
specify a prefix to restrict the policy to a subset of objects.

{
 "Rules": [
 {
 "ID": "Test Rule",
 "Status": "Enabled",
 "Prefix": "",
 "AbortIncompleteMultipartUpload": {
 "DaysAfterInitiation": 7
 }
 }
]
}

3. Run the following CLI command to set lifecycle configuration on your bucket.

aws s3api put-bucket-lifecycle \
--bucket bucketname \
--lifecycle-configuration file://lifecycle.json

4. To verify, retrieve the lifecycle configuration using the get-bucket-lifecycle CLI command.

aws s3api get-bucket-lifecycle \
--bucket bucketname

5. To delete the lifecycle configuration use the delete-bucket-lifecycle CLI command.

aws s3api delete-bucket-lifecycle \

API Version 2006-03-01
168

Amazon Simple Storage Service Developer Guide
Uploading Objects

--bucket bucketname

Quick Facts

The following table provides multipart upload core specifications. For more information, see Multipart
Upload Overview (p. 165).

Item Specification

Maximum object size 5 TB

Maximum number of parts per upload 10,000

Part numbers 1 to 10,000 (inclusive)

Part size 5 MB to 5 GB, last part can be < 5 MB

Maximum number of parts returned
for a list parts request

1000

Maximum number of multipart
uploads returned in a list multipart
uploads request

1000

API Support for Multipart Upload

You can use an AWS SDK to upload an object in parts. The following AWS SDK libraries support
multipart upload:

• AWS SDK for Java

• AWS SDK for .NET

• AWS SDK for PHP

These libraries provide a high-level abstraction that makes uploading multipart objects easy. However,
if your application requires, you can use the REST API directly. The following sections in the Amazon
Simple Storage Service API Reference describe the REST API for multipart upload.

• Initiate Multipart Upload

• Upload Part

• Upload Part (Copy)

• Complete Multipart Upload

• Abort Multipart Upload

• List Parts

• List Multipart Uploads

Multipart Upload API and Permissions

An individual must have the necessary permissions to use the multipart upload operations. You can
use ACLs, the bucket policy, or the user policy to grant individuals permissions to perform these
operations. The following table lists the required permissions for various multipart upload operations
when using ACLs, bucket policy, or the user policy.

API Version 2006-03-01
169

http://aws.amazon.com/sdk-for-java/
http://aws.amazon.com/sdk-for-net/
http://aws.amazon.com/sdk-for-php/
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPartCopy.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadComplete.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadAbort.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListParts.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListMPUpload.html

Amazon Simple Storage Service Developer Guide
Uploading Objects

Action Required Permissions

Initiate
Multipart
Upload

You must be allowed to perform the s3:PutObject action on an object to initiate
multipart upload.

The bucket owner can allow other principals to perform the s3:PutObject action.

Initiator Container element that identifies who initiated the multipart upload. If the initiator is
an AWS account, this element provides the same information as the Owner element.
If the initiator is an IAM User, this element provides the user ARN and display name.

Upload Part You must be allowed to perform the s3:PutObject action on an object to upload a
part.

Only the initiator of a multipart upload can upload parts. The bucket owner must
allow the initiator to perform the s3:PutObject action on an object in order for the
initiator to upload a part for that object.

Upload Part
(Copy)

You must be allowed to perform the s3:PutObject action on an object to upload
a part. Because your are uploading a part from an existing object, you must be
allowed s3:GetObject on the source object.

Only the initiator of a multipart upload can upload parts. The bucket owner must
allow the initiator to perform the s3:PutObject action on an object in order for the
initiator to upload a part for that object.

Complete
Multipart
Upload

You must be allowed to perform the s3:PutObject action on an object to complete
a multipart upload.

Only the initiator of a multipart upload can complete that multipart upload. The
bucket owner must allow the initiator to perform the s3:PutObject action on an
object in order for the initiator to complete a multipart upload for that object.

Abort
Multipart
Upload

You must be allowed to perform the s3:AbortMultipartUpload action to abort a
multipart upload.

By default, the bucket owner and the initiator of the multipart upload are allowed to
perform this action. If the initiator is an IAM user, that user's AWS account is also
allowed to abort that multipart upload.

In addition to these defaults, the bucket owner can allow other principals to perform
the s3:AbortMultipartUpload action on an object. The bucket owner can deny
any principal the ability to perform the s3:AbortMultipartUpload action.

List Parts You must be allowed to perform the s3:ListMultipartUploadParts action to
list parts in a multipart upload.

By default, the bucket owner has permission to list parts for any multipart upload to
the bucket. The initiator of the multipart upload has the permission to list parts of the
specific multipart upload. If the multipart upload initiator is an IAM user, the AWS
account controlling that IAM user also has permission to list parts of that upload.

In addition to these defaults, the bucket owner can allow other principals to perform
the s3:ListMultipartUploadParts action on an object. The bucket owner can
also deny any principal the ability to perform the s3:ListMultipartUploadParts
action.

List Multipart
Uploads

You must be allowed to perform the s3:ListBucketMultipartUploads action on
a bucket to list multipart uploads in progress to that bucket.

In addition to the default, the bucket owner can allow other principals to perform the
s3:ListBucketMultipartUploads action on the bucket.

API Version 2006-03-01
170

Amazon Simple Storage Service Developer Guide
Uploading Objects

For information on the relationship between ACL permissions and permissions in access policies, see
Mapping of ACL Permissions and Access Policy Permissions (p. 366). For information on IAM users,
go to Working with Users and Groups.

API Version 2006-03-01
171

http://docs.aws.amazon.com/IAM/latest/UserGuide/

Amazon Simple Storage Service Developer Guide
Uploading Objects

Using the AWS Java SDK for Multipart Upload (High-Level API)

Topics

• Upload a File (p. 172)

• Abort Multipart Uploads (p. 173)

• Track Multipart Upload Progress (p. 174)

The AWS SDK for Java exposes a high-level API that simplifies multipart upload (see Uploading
Objects Using Multipart Upload API (p. 165)). You can upload data from a file or a stream. You
can also set advanced options, such as the part size you want to use for the multipart upload, or
the number of threads you want to use when uploading the parts concurrently. You can also set
optional object properties, the storage class, or ACL. You use the PutObjectRequest and the
TransferManagerConfiguration classes to set these advanced options. The TransferManager
class of the Java API provides the high-level API for you to upload data.

When possible, TransferManager attempts to use multiple threads to upload multiple parts of a
single upload at once. When dealing with large content sizes and high bandwidth, this can have a
significant increase on throughput.

In addition to file upload functionality, the TransferManager class provides a method for you to abort
multipart upload in progress. You must provide a Date value, and then the API aborts all the multipart
uploads that were initiated before the specified date.

Upload a File

The following tasks guide you through using the high-level Java classes to upload a file. The API
provides several variations, called overloads, of the upload method to easily upload your data.

High-Level API File Uploading Process

1 Create an instance of the TransferManager class.

2 Execute one of the TransferManager.upload overloads depending on whether you
are uploading data from a file, or a stream.

The following Java code example demonstrates the preceding tasks.

API Version 2006-03-01
172

Amazon Simple Storage Service Developer Guide
Uploading Objects

Example

The following Java code example uploads a file to an Amazon S3 bucket. For instructions on how to
create and test a working sample, see Testing the Java Code Examples (p. 565).

import java.io.File;

import com.amazonaws.AmazonClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.Upload;

public class UploadObjectMultipartUploadUsingHighLevelAPI {

 public static void main(String[] args) throws Exception {
 String existingBucketName = "*** Provide existing bucket name ***";
 String keyName = "*** Provide object key ***";
 String filePath = "*** Path to and name of the file to
 upload ***";

 TransferManager tm = new TransferManager(new
 ProfileCredentialsProvider());
 System.out.println("Hello");
 // TransferManager processes all transfers asynchronously,
 // so this call will return immediately.
 Upload upload = tm.upload(
 existingBucketName, keyName, new File(filePath));
 System.out.println("Hello2");

 try {
 // Or you can block and wait for the upload to finish
 upload.waitForCompletion();
 System.out.println("Upload complete.");
 } catch (AmazonClientException amazonClientException) {
 System.out.println("Unable to upload file, upload was aborted.");
 amazonClientException.printStackTrace();
 }
 }
}

Abort Multipart Uploads

The TransferManager class provides a method, abortMultipartUploads, to abort multipart
uploads in progress. An upload is considered to be in progress once you initiate it and until you
complete it or abort it. You provide a Date value and this API aborts all the multipart uploads, on that
bucket, that were initiated before the specified Date and are still in progress.

Because you are billed for all storage associated with uploaded parts (see Multipart Upload and
Pricing (p. 167)), it is important that you either complete the multipart upload to have the object created
or abort the multipart upload to remove any uploaded parts.

The following tasks guide you through using the high-level Java classes to abort multipart uploads.

High-Level API Multipart Uploads Aborting Process

1 Create an instance of the TransferManager class.

2 Execute the TransferManager.abortMultipartUploads method by passing the
bucket name and a Date value.

API Version 2006-03-01
173

Amazon Simple Storage Service Developer Guide
Uploading Objects

The following Java code example demonstrates the preceding tasks.

Example

The following Java code aborts all multipart uploads in progress that were initiated on a specific bucket
over a week ago. For instructions on how to create and test a working sample, see Testing the Java
Code Examples (p. 565).

import java.util.Date;

import com.amazonaws.AmazonClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.transfer.TransferManager;

public class AbortMPUUsingHighLevelAPI {

 public static void main(String[] args) throws Exception {
 String existingBucketName = "*** Provide existing bucket name ***";

 TransferManager tm = new TransferManager(new
 ProfileCredentialsProvider());

 int sevenDays = 1000 * 60 * 60 * 24 * 7;
 Date oneWeekAgo = new Date(System.currentTimeMillis() - sevenDays);

 try {
 tm.abortMultipartUploads(existingBucketName, oneWeekAgo);
 } catch (AmazonClientException amazonClientException) {
 System.out.println("Unable to upload file, upload was aborted.");
 amazonClientException.printStackTrace();
 }
 }
}

Note
You can also abort a specific multipart upload. For more information, see Abort a Multipart
Upload (p. 180).

Track Multipart Upload Progress

The high-level multipart upload API provides a listen interface, ProgressListener, to track the
upload progress when uploading data using the TransferManager class. To use the event in
your code, you must import the com.amazonaws.services.s3.model.ProgressEvent and
com.amazonaws.services.s3.model.ProgressListener types.

Progress events occurs periodically and notify the listener that bytes have been transferred.

The following Java code sample demonstrates how you can subscribe to the ProgressEvent event
and write a handler.

TransferManager tm = new TransferManager(new ProfileCredentialsProvider());

PutObjectRequest request = new PutObjectRequest(
 existingBucketName, keyName, new File(filePath));

// Subscribe to the event and provide event handler.
request.setProgressListener(new ProgressListener() {
 public void progressChanged(ProgressEvent event) {
 System.out.println("Transferred bytes: " +

API Version 2006-03-01
174

Amazon Simple Storage Service Developer Guide
Uploading Objects

 event.getBytesTransfered());
 }
});

API Version 2006-03-01
175

Amazon Simple Storage Service Developer Guide
Uploading Objects

Example

The following Java code uploads a file and uses the ProgressListener to track the upload
progress. For instructions on how to create and test a working sample, see Testing the Java Code
Examples (p. 565).

import java.io.File;

import com.amazonaws.AmazonClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.model.PutObjectRequest;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.Upload;

public class TrackMPUProgressUsingHighLevelAPI {

 public static void main(String[] args) throws Exception {
 String existingBucketName = "*** Provide bucket name ***";
 String keyName = "*** Provide object key ***";
 String filePath = "*** file to upload ***";

 TransferManager tm = new TransferManager(new
 ProfileCredentialsProvider());

 // For more advanced uploads, you can create a request object
 // and supply additional request parameters (ex: progress listeners,
 // canned ACLs, etc.)
 PutObjectRequest request = new PutObjectRequest(
 existingBucketName, keyName, new File(filePath));

 // You can ask the upload for its progress, or you can
 // add a ProgressListener to your request to receive notifications
 // when bytes are transferred.
 request.setGeneralProgressListener(new ProgressListener() {
 @Override
 public void progressChanged(ProgressEvent progressEvent) {
 System.out.println("Transferred bytes: " +
 progressEvent.getBytesTransferred());
 }
 });

 // TransferManager processes all transfers asynchronously,
 // so this call will return immediately.
 Upload upload = tm.upload(request);

 try {
 // You can block and wait for the upload to finish
 upload.waitForCompletion();
 } catch (AmazonClientException amazonClientException) {
 System.out.println("Unable to upload file, upload aborted.");
 amazonClientException.printStackTrace();
 }
 }
}

API Version 2006-03-01
176

Amazon Simple Storage Service Developer Guide
Uploading Objects

Using the AWS Java SDK for Multipart Upload (Low-Level API)

Topics

• Upload a File (p. 177)

• List Multipart Uploads (p. 180)

• Abort a Multipart Upload (p. 180)

The AWS SDK for Java exposes a low-level API that closely resembles the Amazon S3 REST API
for multipart upload (see Uploading Objects Using Multipart Upload API (p. 165). Use the low-level
API when you need to pause and resume multipart uploads, vary part sizes during the upload, or do
not know the size of the data in advance. Use the high-level API (see Using the AWS Java SDK for
Multipart Upload (High-Level API) (p. 172)) whenever you don't have these requirements.

Upload a File

The following tasks guide you through using the low-level Java classes to upload a file.

Low-Level API File Uploading Process

1 Create an instance of the AmazonS3Client class.

2 Initiate multipart upload by executing the
AmazonS3Client.initiateMultipartUpload method. You will need to provide the
required information, i.e., bucket name and key name, to initiate the multipart upload by
creating an instance of the InitiateMultipartUploadRequest class.

3 Save the upload ID that the AmazonS3Client.initiateMultipartUpload method
returns. You will need to provide this upload ID for each subsequent multipart upload
operation.

4 Upload parts. For each part upload, execute the AmazonS3Client.uploadPart
method. You need to provide part upload information, such as upload ID, bucket
name, and the part number. You provide this information by creating an instance of the
UploadPartRequest class.

5 Save the response of the AmazonS3Client.uploadPart method in a list. This
response includes the ETag value and the part number you will need to complete the
multipart upload.

6 Repeat tasks 4 and 5 for each part.

7 Execute the AmazonS3Client.completeMultipartUpload method to complete the
multipart upload.

The following Java code sample demonstrates the preceding tasks.

AmazonS3 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());

// Create a list of UploadPartResponse objects. You get one of these for
// each part upload.
List<PartETag> partETags = new ArrayList<PartETag>();

// Step 1: Initialize.
InitiateMultipartUploadRequest initRequest = new
 InitiateMultipartUploadRequest(
 existingBucketName,
 keyName);
InitiateMultipartUploadResult initResponse =

API Version 2006-03-01
177

Amazon Simple Storage Service Developer Guide
Uploading Objects

 s3Client.initiateMultipartUpload(initRequest);

File file = new File(filePath);
long contentLength = file.length();
long partSize = 5 * 1024 * 1024; // Set part size to 5 MB.

try {
 // Step 2: Upload parts.
 long filePosition = 0;
 for (int i = 1; filePosition < contentLength; i++) {
 // Last part can be less than 5 MB. Adjust part size.
 partSize = Math.min(partSize, (contentLength - filePosition));

 // Create request to upload a part.
 UploadPartRequest uploadRequest = new UploadPartRequest()
 .withBucketName(existingBucketName).withKey(keyName)
 .withUploadId(initResponse.getUploadId()).withPartNumber(i)
 .withFileOffset(filePosition)
 .withFile(file)
 .withPartSize(partSize);

 // Upload part and add response to our list.
 partETags.add(s3Client.uploadPart(uploadRequest).getPartETag());

 filePosition += partSize;
 }

 // Step 3: Complete.
 CompleteMultipartUploadRequest compRequest = new
 CompleteMultipartUploadRequest(existingBucketName,
 keyName,
 initResponse.getUploadId(),
 partETags);

 s3Client.completeMultipartUpload(compRequest);
} catch (Exception e) {
 s3Client.abortMultipartUpload(new AbortMultipartUploadRequest(
 existingBucketName, keyName, initResponse.getUploadId()));
}

API Version 2006-03-01
178

Amazon Simple Storage Service Developer Guide
Uploading Objects

Example

The following Java code example uploads a file to an Amazon S3 bucket. For instructions on how to
create and test a working sample, see Testing the Java Code Examples (p. 565).

import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.AbortMultipartUploadRequest;
import com.amazonaws.services.s3.model.CompleteMultipartUploadRequest;
import com.amazonaws.services.s3.model.InitiateMultipartUploadRequest;
import com.amazonaws.services.s3.model.InitiateMultipartUploadResult;
import com.amazonaws.services.s3.model.PartETag;
import com.amazonaws.services.s3.model.UploadPartRequest;

public class UploadObjectMPULowLevelAPI {

 public static void main(String[] args) throws IOException {
 String existingBucketName = "*** Provide-Your-Existing-BucketName
 ***";
 String keyName = "*** Provide-Key-Name ***";
 String filePath = "*** Provide-File-Path ***";

 AmazonS3 s3Client = new AmazonS3Client(new
 ProfileCredentialsProvider());

 // Create a list of UploadPartResponse objects. You get one of these
 // for each part upload.
 List<PartETag> partETags = new ArrayList<PartETag>();

 // Step 1: Initialize.
 InitiateMultipartUploadRequest initRequest = new
 InitiateMultipartUploadRequest(existingBucketName, keyName);
 InitiateMultipartUploadResult initResponse =
 s3Client.initiateMultipartUpload(initRequest);

 File file = new File(filePath);
 long contentLength = file.length();
 long partSize = 5242880; // Set part size to 5 MB.

 try {
 // Step 2: Upload parts.
 long filePosition = 0;
 for (int i = 1; filePosition < contentLength; i++) {
 // Last part can be less than 5 MB. Adjust part size.
 partSize = Math.min(partSize, (contentLength - filePosition));

 // Create request to upload a part.
 UploadPartRequest uploadRequest = new UploadPartRequest()
 .withBucketName(existingBucketName).withKey(keyName)

 .withUploadId(initResponse.getUploadId()).withPartNumber(i)
 .withFileOffset(filePosition)
 .withFile(file)
 .withPartSize(partSize);

 // Upload part and add response to our list.
 partETags.add(
 s3Client.uploadPart(uploadRequest).getPartETag());

 filePosition += partSize;
 }

 // Step 3: Complete.
 CompleteMultipartUploadRequest compRequest = new
 CompleteMultipartUploadRequest(
 existingBucketName,
 keyName,
 initResponse.getUploadId(),
 partETags);

 s3Client.completeMultipartUpload(compRequest);
 } catch (Exception e) {
 s3Client.abortMultipartUpload(new AbortMultipartUploadRequest(
 existingBucketName, keyName,
 initResponse.getUploadId()));
 }
 }
}

API Version 2006-03-01
179

Amazon Simple Storage Service Developer Guide
Uploading Objects

List Multipart Uploads

The following tasks guide you through using the low-level Java classes to list all in-progress multipart
uploads on a bucket.

Low-Level API Multipart Uploads Listing Process

1 Create an instance of the ListMultipartUploadsRequest class and provide the
bucket name.

2 Execute the AmazonS3Client.listMultipartUploads method. The method returns
an instance of the MultipartUploadListing class that gives you information about
the multipart uploads in progress.

The following Java code sample demonstrates the preceding tasks.

ListMultipartUploadsRequest allMultpartUploadsRequest =
 new ListMultipartUploadsRequest(existingBucketName);
MultipartUploadListing multipartUploadListing =
 s3Client.listMultipartUploads(allMultpartUploadsRequest);

Abort a Multipart Upload

You can abort an in-progress multipart upload by calling the AmazonS3.abortMultipartUpload
method. This method deletes any parts that were uploaded to Amazon S3 and frees up the resources.
You must provide the upload ID, bucket name, and key name. The following Java code sample
demonstrates how to abort an in-progress multipart upload.

InitiateMultipartUploadRequest initRequest =
 new InitiateMultipartUploadRequest(existingBucketName, keyName);
InitiateMultipartUploadResult initResponse =
 s3Client.initiateMultipartUpload(initRequest);

AmazonS3 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());
s3Client.abortMultipartUpload(new AbortMultipartUploadRequest(
 existingBucketName, keyName, initResponse.getUploadId()));

Note
Instead of a specific multipart upload, you can abort all your multipart uploads initiated before
a specific time that are still in progress. This clean-up operation is useful to abort old multipart
uploads that you initiated but neither completed nor aborted. For more information, see Abort
Multipart Uploads (p. 173).

API Version 2006-03-01
180

Amazon Simple Storage Service Developer Guide
Uploading Objects

Using the AWS .NET SDK for Multipart Upload (High-Level API)

Topics

• Upload a File (p. 181)

• Upload a Directory (p. 183)

• Abort Multipart Uploads (p. 185)

• Track Multipart Upload Progress (p. 186)

The AWS SDK for .NET exposes a high-level API that simplifies multipart upload (see Uploading
Objects Using Multipart Upload API (p. 165)). You can upload data from a file, directory, or a stream.
When uploading data from a file, if you don't provide the object's key name, the API uses the file
name for the object's key name. You must provide the object's key name if you are uploading data
from a stream. You can optionally set advanced options such as the part size you want to use for the
multipart upload, number of threads you want to use when uploading the parts concurrently, optional
file metadata, the storage class (STANDARD or REDUCED_REDUNDANCY), or ACL. The high-level
API provides the TransferUtilityUploadRequest class to set these advanced options.

The TransferUtility class provides a method for you to abort multipart uploads in progress. You
must provide a DateTime value, and then the API aborts all the multipart uploads that were initiated
before the specified date and time.

Upload a File

The following tasks guide you through using the high-level .NET classes to upload a file. The API
provides several variations, overloads, of the Upload method to easily upload your data.

High-Level API File Uploading Process

1 Create an instance of the TransferUtility class by providing your AWS credentials.

2 Execute one of the TransferUtility.Upload overloads depending on whether you
are uploading data from a file, a stream, or a directory.

The following C# code sample demonstrates the preceding tasks.

TransferUtility utility = new TransferUtility();
utility.Upload(filePath, existingBucketName);

When uploading large files using the .NET API, timeout might occur even while
data is being written to the request stream. You can set explicit timeout using the
TransferUtilityConfig.DefaultTimeout as demonstrated in the following C# code sample.

TransferUtilityConfig config = new TransferUtilityConfig();
config.DefaultTimeout = 11111;
TransferUtility utility = new TransferUtility(config);

API Version 2006-03-01
181

Amazon Simple Storage Service Developer Guide
Uploading Objects

Example

The following C# code example uploads a file to an Amazon S3 bucket. The example illustrates
the use of various TransferUtility.Upload overloads to upload a file; each successive call to
upload replaces the previous upload. For instructions on how to create and test a working sample, see
Running the Amazon S3 .NET Code Examples (p. 567)

using System;
using System.IO;
using Amazon.S3;
using Amazon.S3.Transfer;

namespace s3.amazon.com.docsamples
{
 class UploadFileMPUHighLevelAPI
 {
 static string existingBucketName = "*** Provide bucket name ***";
 static string keyName = "*** Provide your object key ***";
 static string filePath = "*** Provide file name ***";

 static void Main(string[] args)
 {
 try
 {
 TransferUtility fileTransferUtility = new
 TransferUtility(new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1));

 // 1. Upload a file, file name is used as the object key
 name.
 fileTransferUtility.Upload(filePath, existingBucketName);
 Console.WriteLine("Upload 1 completed");

 // 2. Specify object key name explicitly.
 fileTransferUtility.Upload(filePath,
 existingBucketName, keyName);
 Console.WriteLine("Upload 2 completed");

 // 3. Upload data from a type of System.IO.Stream.
 using (FileStream fileToUpload =
 new FileStream(filePath, FileMode.Open, FileAccess.Read))
 {
 fileTransferUtility.Upload(fileToUpload,
 existingBucketName, keyName);
 }
 Console.WriteLine("Upload 3 completed");

 // 4.Specify advanced settings/options.
 TransferUtilityUploadRequest fileTransferUtilityRequest = new
 TransferUtilityUploadRequest
 {
 BucketName = existingBucketName,
 FilePath = filePath,
 StorageClass = S3StorageClass.ReducedRedundancy,
 PartSize = 6291456, // 6 MB.
 Key = keyName,
 CannedACL = S3CannedACL.PublicRead
 };
 fileTransferUtilityRequest.Metadata.Add("param1", "Value1");
 fileTransferUtilityRequest.Metadata.Add("param2", "Value2");
 fileTransferUtility.Upload(fileTransferUtilityRequest);
 Console.WriteLine("Upload 4 completed");
 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine(s3Exception.Message,
 s3Exception.InnerException);
 }
 }
 }
}

API Version 2006-03-01
182

Amazon Simple Storage Service Developer Guide
Uploading Objects

Upload a Directory

Using the TransferUtility class you can also upload an entire directory. By default, Amazon S3
only uploads the files at the root of the specified directory. You can, however, specify to recursively
upload files in all the subdirectories.

You can also specify filtering expressions to select files, in the specified directory, based on some
filtering criteria. For example, to upload only the .pdf files from a directory you specify a "*.pdf" filter
expression.

When uploading files from a directory you cannot specify the object's key name. It is constructed from
the file's location in the directory as well as its name. For example, assume you have a directory, c:
\myfolder, with the following structure:

C:\myfolder
 \a.txt
 \b.pdf
 \media\
 An.mp3

When you upload this directory, Amazon S3 uses the following key names:

a.txt
b.pdf
media/An.mp3

The following tasks guide you through using the high-level .NET classes to upload a directory.

High-Level API Directory Uploading Process

1 Create an instance of the TransferUtility class by providing your AWS credentials.

2 Execute one of the TransferUtility.UploadDirectory overloads.

The following C# code sample demonstrates the preceding tasks.

TransferUtility utility = new TransferUtility();
utility.UploadDirectory(directoryPath, existingBucketName);

API Version 2006-03-01
183

Amazon Simple Storage Service Developer Guide
Uploading Objects

ExampleThe following C# code example uploads a directory to an Amazon S3 bucket. The example illustrates
the use of various TransferUtility.UploadDirectory overloads to upload a directory, each
successive call to upload replaces the previous upload. For instructions on how to create and test a
working sample, see Running the Amazon S3 .NET Code Examples (p. 567).using System;
using System.IO;
using Amazon.S3;
using Amazon.S3.Transfer;

namespace s3.amazon.com.docsamples
{
 class UploadDirectoryMPUHighLevelAPI
 {
 static string existingBucketName = "*** Provide bucket name ***";
 static string directoryPath = "*** Provide directory name ***";

 static void Main(string[] args)
 {
 try
 {
 TransferUtility directoryTransferUtility =
 new TransferUtility(new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1));

 // 1. Upload a directory.
 directoryTransferUtility.UploadDirectory(directoryPath,
 existingBucketName);
 Console.WriteLine("Upload statement 1 completed");

 // 2. Upload only the .txt files from a directory.
 // Also, search recursively.
 directoryTransferUtility.UploadDirectory(
 directoryPath,
 existingBucketName,
 "*.txt",
 SearchOption.AllDirectories);
 Console.WriteLine("Upload statement 2 completed");

 // 3. Same as 2 and some optional configuration
 // Search recursively for .txt files to upload).
 TransferUtilityUploadDirectoryRequest request =
 new TransferUtilityUploadDirectoryRequest
 {
 BucketName = existingBucketName,
 Directory = directoryPath,
 SearchOption = SearchOption.AllDirectories,
 SearchPattern = "*.txt"
 };

 directoryTransferUtility.UploadDirectory(request);
 Console.WriteLine("Upload statement 3 completed");
 }

 catch (AmazonS3Exception e)
 {
 Console.WriteLine(e.Message, e.InnerException);
 }
 }
 }
}

API Version 2006-03-01
184

Amazon Simple Storage Service Developer Guide
Uploading Objects

Abort Multipart Uploads

The TransferUtility class provides a method, AbortMultipartUploads, to abort multipart
uploads in progress. An upload is considered to be in-progress once you initiate it and until you
complete it or abort it. You provide a DateTime value and this API aborts all the multipart uploads, on
that bucket, that were initiated before the specified DateTime and in progress.

Because you are billed for all storage associated with uploaded parts (see Multipart Upload and
Pricing (p. 167)), it is important that you either complete the multipart upload to have the object created
or abort the multipart upload to remove any uploaded parts.

The following tasks guide you through using the high-level .NET classes to abort multipart uploads.

High-Level API Multipart Uploads Aborting Process

1 Create an instance of the TransferUtility class by providing your AWS credentials.

2 Execute the TransferUtility.AbortMultipartUploads method by passing the
bucket name and a DateTime value.

The following C# code sample demonstrates the preceding tasks.

TransferUtility utility = new TransferUtility();
utility.AbortMultipartUploads(existingBucketName, DateTime.Now.AddDays(-7));

API Version 2006-03-01
185

Amazon Simple Storage Service Developer Guide
Uploading Objects

Example

The following C# code aborts all multipart uploads in progress that were initiated on a specific bucket
over a week ago. For instructions on how to create and test a working sample, see Running the
Amazon S3 .NET Code Examples (p. 567).

using System;
using Amazon.S3;
using Amazon.S3.Transfer;

namespace s3.amazon.com.docsamples
{
 class AbortMPUUsingHighLevelAPI
 {
 static string existingBucketName = "***Provide bucket name***";

 static void Main(string[] args)
 {
 try
 {
 TransferUtility transferUtility =
 new TransferUtility(new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1));
 // Aborting uploads that were initiated over a week ago.
 transferUtility.AbortMultipartUploads(
 existingBucketName, DateTime.Now.AddDays(-7));
 }

 catch (AmazonS3Exception e)
 {
 Console.WriteLine(e.Message, e.InnerException);
 }
 }
 }
}

Note
You can also abort a specific multipart upload. For more information, see List Multipart
Uploads (p. 194).

Track Multipart Upload Progress

The high-level multipart upload API provides an event,
TransferUtilityUploadRequest.UploadProgressEvent, to track the upload progress when
uploading data using the TransferUtility class.

The event occurs periodically and returns multipart upload progress information such as the total
number of bytes to transfer, and the number of bytes transferred at the time event occurred.

The following C# code sample demonstrates how you can subscribe to the UploadProgressEvent
event and write a handler.

TransferUtility fileTransferUtility =
 new TransferUtility(new AmazonS3Client(Amazon.RegionEndpoint.USEast1));

// Use TransferUtilityUploadRequest to configure options.
// In this example we subscribe to an event.
TransferUtilityUploadRequest uploadRequest =
 new TransferUtilityUploadRequest

API Version 2006-03-01
186

Amazon Simple Storage Service Developer Guide
Uploading Objects

 {
 BucketName = existingBucketName,
 FilePath = filePath,
 Key = keyName
 };

uploadRequest.UploadProgressEvent +=
 new EventHandler<UploadProgressArgs>
 (uploadRequest_UploadPartProgressEvent);

fileTransferUtility.Upload(uploadRequest);

static void uploadRequest_UploadPartProgressEvent(object sender,
 UploadProgressArgs e)
{
 // Process event.
 Console.WriteLine("{0}/{1}", e.TransferredBytes, e.TotalBytes);
}

API Version 2006-03-01
187

Amazon Simple Storage Service Developer Guide
Uploading Objects

ExampleThe following C# code example uploads a file to an Amazon S3 bucket and tracks the progress
by subscribing to the TransferUtilityUploadRequest.UploadProgressEvent event. For
instructions on how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 567).
using System;
using System.Collections.Specialized;
using System.Configuration;
using Amazon.S3;
using Amazon.S3.Transfer;

namespace s3.amazon.com.docsamples
{
 class TrackMPUUsingHighLevelAPI
 {
 static string existingBucketName = "*** Provide bucket name ***";
 static string keyName = "*** Provide key name ***";
 static string filePath = "*** Provide file to upload ***";

 static void Main(string[] args)
 {
 try
 {
 TransferUtility fileTransferUtility =
 new TransferUtility(new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1));

 // Use TransferUtilityUploadRequest to configure options.
 // In this example we subscribe to an event.
 TransferUtilityUploadRequest uploadRequest =
 new TransferUtilityUploadRequest
 {
 BucketName = existingBucketName,
 FilePath = filePath,
 Key = keyName
 };

 uploadRequest.UploadProgressEvent +=
 new EventHandler<UploadProgressArgs>
 (uploadRequest_UploadPartProgressEvent);

 fileTransferUtility.Upload(uploadRequest);
 Console.WriteLine("Upload completed");
 }

 catch (AmazonS3Exception e)
 {
 Console.WriteLine(e.Message, e.InnerException);
 }
 }

 static void uploadRequest_UploadPartProgressEvent(
 object sender, UploadProgressArgs e)
 {
 // Process event.
 Console.WriteLine("{0}/{1}", e.TransferredBytes, e.TotalBytes);
 }
 }
}

API Version 2006-03-01
188

Amazon Simple Storage Service Developer Guide
Uploading Objects

API Version 2006-03-01
189

Amazon Simple Storage Service Developer Guide
Uploading Objects

Using the AWS .NET SDK for Multipart Upload (Low-Level API)

Topics

• Upload a File (p. 190)

• List Multipart Uploads (p. 194)

• Track Multipart Upload Progress (p. 194)

• Abort a Multipart Upload (p. 194)

The AWS SDK for .NET exposes a low-level API that closely resembles the Amazon S3 REST API for
multipart upload (see Using the REST API for Multipart Upload (p. 205)). Use the low-level API when
you need to pause and resume multipart uploads, vary part sizes during the upload, or do not know the
size of the data in advance. Use the high-level API (see Using the AWS .NET SDK for Multipart Upload
(High-Level API) (p. 181)), whenever you don't have these requirements.

Upload a File

The following tasks guide you through using the low-level .NET classes to upload a file.

Low-Level API File UploadingProcess

1 Create an instance of the AmazonS3Client class, by providing your AWS credentials.

2 Initiate multipart upload by executing the
AmazonS3Client.InitiateMultipartUpload method. You will need to provide
information required to initiate the multipart upload by creating an instance of the
InitiateMultipartUploadRequest class.

3 Save the Upload ID that the AmazonS3Client.InitiateMultipartUpload method
returns. You will need to provide this upload ID for each subsequent multipart upload
operation.

4 Upload the parts. For each part upload, execute the AmazonS3Client.UploadPart
method. You will need to provide part upload information such as upload ID, bucket
name, and the part number. You provide this information by creating an instance of the
UploadPartRequest class.

5 Save the response of the AmazonS3Client.UploadPart method in a list. This
response includes the ETag value and the part number you will later need to complete
the multipart upload.

6 Repeat tasks 4 and 5 for each part.

7 Execute the AmazonS3Client.CompleteMultipartUpload method to complete the
multipart upload.

The following C# code sample demonstrates the preceding tasks.

IAmazonS3 s3Client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1);

// List to store upload part responses.
List<UploadPartResponse> uploadResponses = new List<UploadPartResponse>();

// 1. Initialize.
InitiateMultipartUploadRequest initiateRequest = new
 InitiateMultipartUploadRequest
 {
 BucketName = existingBucketName,

API Version 2006-03-01
190

Amazon Simple Storage Service Developer Guide
Uploading Objects

 Key = keyName
 };

InitiateMultipartUploadResponse initResponse =
 s3Client.InitiateMultipartUpload(initRequest);

// 2. Upload Parts.
long contentLength = new FileInfo(filePath).Length;
long partSize = 5242880; // 5 MB

try
{
 long filePosition = 0;
 for (int i = 1; filePosition < contentLength; i++)
 {

 // Create request to upload a part.
 UploadPartRequest uploadRequest = new UploadPartRequest
 {
 BucketName = existingBucketName,
 Key = keyName,
 UploadId = initResponse.UploadId,
 PartNumber = i,
 PartSize = partSize,
 FilePosition = filePosition,
 FilePath = filePath
 };

 // Upload part and add response to our list.
 uploadResponses.Add(s3Client.UploadPart(uploadRequest));

 filePosition += partSize;
 }

 // Step 3: complete.
 CompleteMultipartUploadRequest completeRequest = new
 CompleteMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = keyName,
 UploadId = initResponse.UploadId,
 };

 CompleteMultipartUploadResponse completeUploadResponse =
 s3Client.CompleteMultipartUpload(completeRequest);

}
catch (Exception exception)
{
 Console.WriteLine("Exception occurred: {0}", exception.Message);
 AbortMultipartUploadRequest abortMPURequest = new
 AbortMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = keyName,
 UploadId = initResponse.UploadId
 };
 s3Client.AbortMultipartUpload(abortMPURequest);

API Version 2006-03-01
191

Amazon Simple Storage Service Developer Guide
Uploading Objects

}

Note
When uploading large objects using the .NET API, timeout might occur even while
data is being written to the request stream. You can set explicit timeout using the
UploadPartRequest.

API Version 2006-03-01
192

Amazon Simple Storage Service Developer Guide
Uploading Objects

Example

The following C# code example uploads a file to an Amazon S3 bucket. For instructions on how to
create and test a working sample, see Running the Amazon S3 .NET Code Examples (p. 567).

using System;
using System.Collections.Generic;
using System.IO;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class UploadFileMPULowLevelAPI
 {
 static string existingBucketName = "*** bucket name ***";
 static string keyName = "*** key name ***";
 static string filePath = "*** file path ***";

 static void Main(string[] args)
 {
 IAmazonS3 s3Client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1);

 // List to store upload part responses.
 List<UploadPartResponse> uploadResponses = new
 List<UploadPartResponse>();

 // 1. Initialize.
 InitiateMultipartUploadRequest initiateRequest = new
 InitiateMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = keyName
 };

 InitiateMultipartUploadResponse initResponse =
 s3Client.InitiateMultipartUpload(initiateRequest);

 // 2. Upload Parts.
 long contentLength = new FileInfo(filePath).Length;
 long partSize = 5 * (long)Math.Pow(2, 20); // 5 MB

 try
 {
 long filePosition = 0;
 for (int i = 1; filePosition < contentLength; i++)
 {
 UploadPartRequest uploadRequest = new UploadPartRequest
 {
 BucketName = existingBucketName,
 Key = keyName,
 UploadId = initResponse.UploadId,
 PartNumber = i,
 PartSize = partSize,
 FilePosition = filePosition,
 FilePath = filePath
 };

 // Upload part and add response to our list.
 uploadResponses.Add(s3Client.UploadPart(uploadRequest));

 filePosition += partSize;
 }

 // Step 3: complete.
 CompleteMultipartUploadRequest completeRequest = new
 CompleteMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = keyName,
 UploadId = initResponse.UploadId,
 //PartETags = new List<PartETag>(uploadResponses)

 };
 completeRequest.AddPartETags(uploadResponses);

 CompleteMultipartUploadResponse completeUploadResponse =
 s3Client.CompleteMultipartUpload(completeRequest);

 }
 catch (Exception exception)
 {
 Console.WriteLine("Exception occurred: {0}",
 exception.Message);
 AbortMultipartUploadRequest abortMPURequest = new
 AbortMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = keyName,
 UploadId = initResponse.UploadId
 };
 s3Client.AbortMultipartUpload(abortMPURequest);
 }
 }
 }
}

API Version 2006-03-01
193

Amazon Simple Storage Service Developer Guide
Uploading Objects

List Multipart Uploads

The following tasks guide you through using the low-level .NET classes to list all in-progress multipart
uploads on a bucket.

Low-Level API Multipart Uploads Listing Process

1 Create an instance of the ListMultipartUploadsRequest class and provide the
bucket name.

2 Execute the AmazonS3Client.ListMultipartUploads method. The method
returns an instance of the ListMultipartUploadsResponse class, providing you the
information about the in-progress multipart uploads.

The following C# code sample demonstrates the preceding tasks.

 ListMultipartUploadsRequest request = new ListMultipartUploadsRequest
{
 BucketName = existingBucketName
};

Track Multipart Upload Progress

The low-level multipart upload API provides an event,
UploadPartRequest.StreamTransferProgress, to track the upload progress.

The event occurs periodically and returns multipart upload progress information such as the total
number of bytes to transfer, and the number of bytes transferred at the time event occurred.

The following C# code sample demonstrates how you can subscribe to the
StreamTransferProgress event and write a handler.

UploadPartRequest uploadRequest = new UploadPartRequest
 {
 // provide request data.
 };

 uploadRequest.StreamTransferProgress +=
 new
 EventHandler<StreamTransferProgressArgs>(UploadPartProgressEventCallback);

...
public static void UploadPartProgressEventCallback(object sender,
 StreamTransferProgressArgs e)
{
 // Process event.
 Console.WriteLine("{0}/{1}", e.TransferredBytes, e.TotalBytes);
}

Abort a Multipart Upload

You can abort an in-progress multipart upload by calling the AmazonS3Client.AbortMultipartUpload
method. This method deletes any parts that were uploaded to S3 and free up the resources. You must
provide the upload ID, bucket name and the key name. The following C# code sample demonstrates
how you can abort a multipart upload in progress.

s3Client.AbortMultipartUpload(new AbortMultipartUploadRequest

API Version 2006-03-01
194

Amazon Simple Storage Service Developer Guide
Uploading Objects

{
 BucketName = existingBucketName,
 Key = keyName,
 UploadId = uploadID
};

Note
Instead of a specific multipart upload, you can abort all your in-progress multipart uploads
initiated prior to a specific time. This clean up operation is useful to abort old multipart uploads
that you initiated but neither completed or aborted. For more information, see Abort Multipart
Uploads (p. 185).

API Version 2006-03-01
195

Amazon Simple Storage Service Developer Guide
Uploading Objects

Using the AWS PHP SDK for Multipart Upload (High-Level API)

Amazon S3 allows you to upload large files in multiple parts. You must use a multipart upload for
files larger than 5 GB. The AWS SDK for PHP exposes the high-level Aws\S3\Model\MultipartUpload
\UploadBuilder class that simplifies multipart uploads.

The Aws\S3\Model\MultipartUpload\UploadBuilder class is best used for a simple multipart
upload. If you need to pause and resume multipart uploads, vary part sizes during the upload, or do not
know the size of the data in advance, you should use the low-level PHP API. For more information, see
Using the AWS PHP SDK for Multipart Upload (Low-Level API) (p. 200).

For more information about multipart uploads, see Uploading Objects Using Multipart Upload
API (p. 165). For information on uploading files that are less than 5GB in size, see Upload an Object
Using the AWS SDK for PHP (p. 161).

Upload a File Using the High-Level Multipart Upload

This topic guides you through using the high-level Aws\S3\Model\MultipartUpload
\UploadBuilder class from the AWS SDK for PHP for multipart file uploads.

Note
This topic assumes that you are already following the instructions for Using the AWS SDK
for PHP and Running PHP Examples (p. 567) and have the AWS SDK for PHP properly
installed.

High-Level Multipart File Upload Process

1 Create an instance of an Amazon S3 client by using the Aws\S3\S3Client class factory()
method.

2 Create an instance of the UploadBuilder using the Amazon S3 Aws\S3\Model
\MultipartUpload\UploadBuilder class newInstance() method, which is inherited
from the Aws\Common\Model\MultipartUpload\AbstractUploadBuilder class. For the
UploadBuilder object set the client, the bucket name, and the key name using the
setClient(), setBucket(), and setKey() methods. Set the path and name of the file you
want to upload with the setSource() method.

3 Execute the UploadBuilder object's build() method to build the appropriate uploader
transfer object based on the builder options you set. (The transfer object is of a subclass
of the Aws\S3\Model\MultipartUpload\AbstractTransfer class.)

4 Execute the upload() method of the built transfer object to perform the upload.

The following PHP code sample demonstrates how to upload a file using the high-level
UploadBuilder object.

use Aws\Common\Exception\MultipartUploadException;
use Aws\S3\Model\MultipartUpload\UploadBuilder;
use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

// Instantiate the client.
$s3 = S3Client::factory();

// Prepare the upload parameters.
$uploader = UploadBuilder::newInstance()
 ->setClient($s3)
 ->setSource('/path/to/large/file.mov')

API Version 2006-03-01
196

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Common.Model.MultipartUpload.AbstractUploadBuilder.html#_newInstance
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Common.Model.MultipartUpload.AbstractUploadBuilder.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Common.Model.MultipartUpload.AbstractUploadBuilder.html#_setClient
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html#_setBucket
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html#_setKey
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Common.Model.MultipartUpload.AbstractUploadBuilder.html#_setSource
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html#_build
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.AbstractTransfer.html

Amazon Simple Storage Service Developer Guide
Uploading Objects

 ->setBucket($bucket)
 ->setKey($keyname)
 ->build();

// Perform the upload. Abort the upload if something goes wrong.
try {
 $uploader->upload();
 echo "Upload complete.\n";
} catch (MultipartUploadException $e) {
 $uploader->abort();
 echo "Upload failed.\n";
 echo $e->getMessage() . "\n";
}

API Version 2006-03-01
197

Amazon Simple Storage Service Developer Guide
Uploading Objects

Example of a Multipart Upload of a File to an Amazon S3 Bucket Using the High-level
UploadBuilder

The following PHP example uploads a file to an Amazon S3 bucket. The example demonstrates how
to set advanced options for the UploadBuilder object. For example, you can use the setMinPartSize()
method to set the part size you want to use for the multipart upload and the setOption() method to set
optional file metadata or an access control list (ACL).

The example also demonstrates how to upload file parts in parallel by setting the concurrency option
using the setConcurrency() method for the UploadBuilder object. The example creates a transfer object
that will attempt to upload three parts in parallel until the entire file has been uploaded. For information
about running the PHP examples in this guide, go to Running PHP Examples (p. 568).

<?php

// Include the AWS SDK using the Composer autoloader.
require 'vendor/autoload.php';

use Aws\Common\Exception\MultipartUploadException;
use Aws\S3\Model\MultipartUpload\UploadBuilder;
use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

// Instantiate the client.
$s3 = S3Client::factory();

// Prepare the upload parameters.
$uploader = UploadBuilder::newInstance()
 ->setClient($s3)
 ->setSource('/path/to/large/file.mov')
 ->setBucket($bucket)
 ->setKey($keyname)
 ->setMinPartSize(25 * 1024 * 1024)
 ->setOption('Metadata', array(
 'param1' => 'value1',
 'param2' => 'value2'
))
 ->setOption('ACL', 'public-read')
 ->setConcurrency(3)
 ->build();

// Perform the upload. Abort the upload if something goes wrong.
try {
 $uploader->upload();
 echo "Upload complete.\n";
} catch (MultipartUploadException $e) {
 $uploader->abort();
 echo "Upload failed.\n";
 echo $e->getMessage() . "\n";
}

Related Resources

• AWS SDK for PHP Aws\Common\Model\MultipartUpload\AbstractUploadBuilder Class

• AWS SDK for PHP Aws\Common\Model\MultipartUpload\AbstractUploadBuilder::newInstance()
Method

API Version 2006-03-01
198

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html#_setMinPartSize
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html#_setOption
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html#_setConcurrency
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Common.Model.MultipartUpload.AbstractUploadBuilder.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Common.Model.MultipartUpload.AbstractUploadBuilder.html#_newInstance
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Common.Model.MultipartUpload.AbstractUploadBuilder.html#_newInstance

Amazon Simple Storage Service Developer Guide
Uploading Objects

• AWS SDK for PHP Aws\Common\Model\MultipartUpload\AbstractUploadBuilder::SetSource()
Method

• AWS SDK for PHP for Amazon S3 Aws\S3\Model\MultipartUpload\UploadBuilder Class

• AWS SDK for PHP for Amazon S3 Aws\S3\Model\MultipartUpload\UploadBuilder::build() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\Model\MultipartUpload\UploadBuilder:setMinPartSize()
Method

• AWS SDK for PHP for Amazon S3 Aws\S3\Model\MultipartUpload\UploadBuilder:setOption() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\Model\MultipartUpload\UploadBuilder:setConcurrency()
Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::factory() Method

• AWS SDK for PHP for Amazon S3 - Uploading Large Files Using Multipart Uploads

• AWS SDK for PHP for Amazon S3

• AWS SDK for PHP Documentation

API Version 2006-03-01
199

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Common.Model.MultipartUpload.AbstractUploadBuilder.html#_setSource
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.Common.Model.MultipartUpload.AbstractUploadBuilder.html#_setSource
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html#_setMinPartSize
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html#_setMinPartSize
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html#_setOption
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html#_setConcurrency
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html#_setConcurrency
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html#uploading-large-files-using-multipart-uploads
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/index.html

Amazon Simple Storage Service Developer Guide
Uploading Objects

Using the AWS PHP SDK for Multipart Upload (Low-Level API)

Topics

• Upload a File in Multiple Parts Using the PHP SDK Low-Level API (p. 200)

• List Multipart Uploads Using the Low-Level AWS SDK for PHP API (p. 203)

• Abort a Multipart Upload (p. 203)

The AWS SDK for PHP exposes a low-level API that closely resembles the Amazon S3 REST API for
multipart upload (see Using the REST API for Multipart Upload (p. 205)). Use the low-level API when
you need to pause and resume multipart uploads, vary part sizes during the upload, or do not know the
size of the data in advance. Use the AWS SDK for PHP high-level abstractions (see Using the AWS
PHP SDK for Multipart Upload (High-Level API) (p. 196)) whenever you don't have these requirements.

Upload a File in Multiple Parts Using the PHP SDK Low-Level API

This topic guides you through using low-level multipart upload classes from the AWS SDK for PHP to
upload a file in multiple parts.

Note
This topic assumes that you are already following the instructions for Using the AWS SDK
for PHP and Running PHP Examples (p. 567) and have the AWS SDK for PHP properly
installed.

PHP SDK Low-Level API Multipart File Upload Process

1 Create an instance of an Amazon S3 client by using the Aws\S3\S3Client class factory()
method.

2 Initiate multipart upload by executing the Aws\S3\S3Client::createMultipartUpload()
method. You must provide a bucket name and a key name in the array parameter's
required keys, Bucket and Key.

Retrieve and save the UploadID from the response body. The UploadID is used in
each subsequent multipart upload operation.

3 Upload the file in parts by executing the Aws\S3\S3Client::uploadPart() method for
each file part until the end of the file is reached. The required array parameter keys for
upload_part() are Bucket, Key, UploadId, and PartNumber. You must increment
the value passed as the argument for the PartNumber key for each subsequent call to
upload_part() to upload each successive file part.

Save the response of each of the upload_part() methods calls in an array. Each
response includes the ETag value you will later need to complete the multipart upload.

4 Execute the Aws\S3\S3Client::completeMultipartUpload() method to complete the
multipart upload. The required array parameters for completeMultipartUpload()
are Bucket, Key, and UploadId.

The following PHP code example demonstrates uploading a file in multiple parts using the PHP SDK
low-level API.

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';
$filename = '*** Path to and Name of the File to Upload ***';

// 1. Instantiate the client.

API Version 2006-03-01
200

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_createMultipartUpload
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_uploadPart
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_completeMultipartUpload

Amazon Simple Storage Service Developer Guide
Uploading Objects

$s3 = S3Client::factory();

// 2. Create a new multipart upload and get the upload ID.
$response = $s3->createMultipartUpload(array(
 'Bucket' => $bucket,
 'Key' => $keyname
));
$uploadId = $response['UploadId'];

// 3. Upload the file in parts.
$file = fopen($filename, 'r');
$parts = array();
$partNumber = 1;
while (!feof($file)) {
 $result = $s3->uploadPart(array(
 'Bucket' => $bucket,
 'Key' => $key,
 'UploadId' => $uploadId,
 'PartNumber' => $partNumber,
 'Body' => fread($file, 5 * 1024 * 1024),
));
 $parts[] = array(
 'PartNumber' => $partNumber++,
 'ETag' => $result['ETag'],
);
}

// 4. Complete multipart upload.
$result = $s3->completeMultipartUpload(array(
 'Bucket' => $bucket,
 'Key' => $key,
 'UploadId' => $uploadId,
 'Parts' => $parts,
));
$url = $result['Location'];

fclose($file);

API Version 2006-03-01
201

Amazon Simple Storage Service Developer Guide
Uploading Objects

Example of Uploading a File to an Amazon S3 Bucket Using the Low-level Multipart
Upload PHP SDK API

The following PHP code example uploads a file to an Amazon S3 bucket using the low-level PHP API
multipart upload. For information about running the PHP examples in this guide, go to Running PHP
Examples (p. 568).

<?php

// Include the AWS SDK using the Composer autoloader
require 'vendor/autoload.php';

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';
$filename = '*** Path to and Name of the File to Upload ***';

// 1. Instantiate the client.
$s3 = S3Client::factory();

// 2. Create a new multipart upload and get the upload ID.
$result = $s3->createMultipartUpload(array(
 'Bucket' => $bucket,
 'Key' => $keyname,
 'StorageClass' => 'REDUCED_REDUNDANCY',
 'ACL' => 'public-read',
 'Metadata' => array(
 'param1' => 'value 1',
 'param2' => 'value 2',
 'param3' => 'value 3'
)
));
$uploadId = $result['UploadId'];

// 3. Upload the file in parts.
try {
 $file = fopen($filename, 'r');
 $parts = array();
 $partNumber = 1;
 while (!feof($file)) {
 $result = $s3->uploadPart(array(
 'Bucket' => $bucket,
 'Key' => $keyname,
 'UploadId' => $uploadId,
 'PartNumber' => $partNumber,
 'Body' => fread($file, 5 * 1024 * 1024),
));
 $parts[] = array(
 'PartNumber' => $partNumber++,
 'ETag' => $result['ETag'],
);

 echo "Uploading part {$partNumber} of {$filename}.\n";
 }
 fclose($file);
} catch (S3Exception $e) {
 $result = $s3->abortMultipartUpload(array(
 'Bucket' => $bucket,
 'Key' => $keyname,
 'UploadId' => $uploadId
));

 echo "Upload of {$filename} failed.\n";
}

// 4. Complete multipart upload.
$result = $s3->completeMultipartUpload(array(
 'Bucket' => $bucket,
 'Key' => $keyname,
 'UploadId' => $uploadId,
 'Parts' => $parts,
));
$url = $result['Location'];

echo "Uploaded {$filename} to {$url}.\n";

API Version 2006-03-01
202

Amazon Simple Storage Service Developer Guide
Uploading Objects

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::factory() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::createMultipartUpload() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::uploadPart()Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::completeMultipartUpload() Method

• AWS SDK for PHP for Amazon S3

• AWS SDK for PHP Documentation

List Multipart Uploads Using the Low-Level AWS SDK for PHP API

This topic guides you through using the low-level API classes from the AWS SDK for PHP to list all in-
progress multipart uploads on a bucket.

Note
This topic assumes that you are already following the instructions for Using the AWS SDK
for PHP and Running PHP Examples (p. 567) and have the AWS SDK for PHP properly
installed.

PHP SDK Low-Level API Multipart Uploads Listing Process

1 Create an instance of an Amazon S3 client by using the Aws\S3\S3Client class factory()
method.

2 Execute the Aws\S3\S3Client::listMultipartUploads() method by providing a bucket
name. The method returns all of the in-progress multipart uploads on the specified
bucket.

The following PHP code sample demonstrates listing all in-progress multipart uploads on a bucket.

use Aws\S3\S3Client;

$s3 = S3Client::factory();

$bucket = '*** Your Bucket Name ***';

$result = $s3->listMultipartUploads(array('Bucket' => $bucket));

print_r($result->toArray());

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::factory() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::listMultipartUploads() Method

• AWS SDK for PHP for Amazon S3

• AWS SDK for PHP Documentation

Abort a Multipart Upload

This topic describes how to use a class from the AWS SDK for PHP to abort a multipart upload that is
in progress.

API Version 2006-03-01
203

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_createMultipartUpload
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_uploadPart
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_completeMultipartUpload
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/index.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_listMultipartUploads
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_listMultipartUploads
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/index.html

Amazon Simple Storage Service Developer Guide
Uploading Objects

Note
This topic assumes that you are already following the instructions for Using the AWS SDK
for PHP and Running PHP Examples (p. 567) and have the AWS SDK for PHP properly
installed.

Aborting a Multipart Upload

1 Create an instance of an Amazon S3 client by using the Aws\S3\S3Client class factory()
method.

2 Execute the Aws\S3\S3Client::abortMultipartUpload() method. You must provide a bucket
name, a key name, and the upload ID, in the array parameter's required keys, Bucket,
Key, and UploadId.

The abortMultipartUpload() method deletes any parts that were uploaded to
Amazon S3 and frees up the resources.

Example of Aborting a Multipart Upload

The following PHP code example demonstrates how you can abort a multipart upload in progress. The
example illustrates the use of the abortMultipartUpload() method. For information about running
the PHP examples in this guide, go to Running PHP Examples (p. 568).

<?php

// Include the AWS SDK using the Composer autoloader.
require 'vendor/autoload.php';

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

// Instantiate the client.
$s3 = S3Client::factory();

// Abort the multipart upload.
$s3->abortMultipartUpload(array(
 'Bucket' => $bucket,
 'Key' => $keyname,
 'UploadId' =>
 'VXBsb2FkIElExampleBlbHZpbmcncyBtExamplepZS5tMnRzIHVwbG9hZ',
));

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::factory() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::abortMultipartUpload() Method

• AWS SDK for PHP for Amazon S3

• AWS SDK for PHP Documentation

Using the AWS SDK for Ruby for Multipart Upload

The AWS SDK for Ruby supports Amazon S3 multipart uploads by using the class
AWS::S3::MultipartUpload. For more information about using the AWS SDK for Ruby with Amazon S3,
go to Using the AWS SDK for Ruby - Version 2 (p. 569).

API Version 2006-03-01
204

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_abortMultipartUpload
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_abortMultipartUpload
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/index.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/S3/MultipartUpload.html

Amazon Simple Storage Service Developer Guide
Uploading Objects

Using the REST API for Multipart Upload

The following sections in the Amazon Simple Storage Service API Reference describe the REST API
for multipart upload.

• Initiate Multipart Upload

• Upload Part

• Complete Multipart Upload

• Abort Multipart Upload

• List Parts

• List Multipart Uploads

You can use these APIs to make your own REST requests, or you can use one the SDKs we provide.
For more information about the SDKs, see API Support for Multipart Upload (p. 169).

API Version 2006-03-01
205

http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadComplete.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadAbort.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListParts.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListMPUpload.html

Amazon Simple Storage Service Developer Guide
Uploading Objects

Uploading Objects Using Pre-Signed URLs

Topics

• Upload an Object Using a Pre-Signed URL (AWS SDK for Java) (p. 206)

• Upload an Object Using a Pre-Signed URL (AWS SDK for .NET) (p. 209)

• Upload an Object Using a Pre-Signed URL (AWS SDK for Ruby) (p. 211)

A pre-signed URL gives you access to the object identified in the URL, provided that the creator
of the pre-signed URL has permissions to access that object. That is, if you receive a pre-signed
URL to upload an object, you can upload the object only if the creator of the pre-signed URL has the
necessary permissions to upload that object.

All objects and buckets by default are private. The pre-signed URLs are useful if you want your user/
customer to be able upload a specific object to your bucket, but you don't require them to have AWS
security credentials or permissions. When you create a pre-signed URL, you must provide your
security credentials, specify a bucket name, an object key, an HTTP method (PUT for uploading
objects), and an expiration date and time. The pre-signed URLs are valid only for the specified
duration.

You can generate a pre-signed URL programmatically using the AWS SDK for Java or the AWS
SDK for .NET. If you are using Visual Studio, you can also use AWS Explorer to generate a pre-
signed object URL without writing any code. Anyone who receives a valid pre-signed URL can then
programmatically upload an object.

For more information, go to Using Amazon S3 from AWS Explorer.

For instructions about how to install AWS Explorer, see Using the AWS SDKs, CLI, and
Explorers (p. 561).

Note
Anyone with valid security credentials can create a pre-signed URL. However, in order to
successfully upload an object, the pre-signed URL must be created by someone who has
permission to perform the operation that the pre-signed URL is based upon.

Upload an Object Using a Pre-Signed URL (AWS SDK for Java)

The following tasks guide you through using the Java classes to upload an object using a pre-signed
URL.

Uploading Objects

1 Create an instance of the AmazonS3 class.

2 Generate a pre-signed URL by executing the AmazonS3.generatePresignedUrl
method.

You provide a bucket name, an object key, and an expiration date by creating an instance
of the GeneratePresignedUrlRequest class. You must specify the HTTP verb PUT
when creating this URL if you want to use it to upload an object.

3 Anyone with the pre-signed URL can upload an object.

The upload creates an object or replaces any existing object with the same key that is
specified in the pre-signed URL.

The following Java code sample demonstrates the preceding tasks.

AmazonS3 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());

java.util.Date expiration = new java.util.Date();

API Version 2006-03-01
206

http://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/using-s3.html

Amazon Simple Storage Service Developer Guide
Uploading Objects

long msec = expiration.getTime();
msec += 1000 * 60 * 60; // Add 1 hour.
expiration.setTime(msec);

GeneratePresignedUrlRequest generatePresignedUrlRequest = new
 GeneratePresignedUrlRequest(bucketName, objectKey);
generatePresignedUrlRequest.setMethod(HttpMethod.PUT);
generatePresignedUrlRequest.setExpiration(expiration);

URL s = s3client.generatePresignedUrl(generatePresignedUrlRequest);

// Use the pre-signed URL to upload an object.

API Version 2006-03-01
207

Amazon Simple Storage Service Developer Guide
Uploading Objects

Example

The following Java code example generates a pre-signed URL. The example code then uses the
pre-signed URL to upload sample data as an object. For instructions about how to create and test a
working sample, see Testing the Java Code Examples (p. 565).

import java.io.IOException;
import java.io.OutputStreamWriter;
import java.net.HttpURLConnection;
import java.net.URL;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.HttpMethod;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.GeneratePresignedUrlRequest;

public class GeneratePresignedUrlAndUploadObject {
 private static String bucketName = "*** bucket name ***";
 private static String objectKey = "*** object key ***";

 public static void main(String[] args) throws IOException {
 AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());

 try {
 System.out.println("Generating pre-signed URL.");
 java.util.Date expiration = new java.util.Date();
 long milliSeconds = expiration.getTime();
 milliSeconds += 1000 * 60 * 60; // Add 1 hour.
 expiration.setTime(milliSeconds);

 GeneratePresignedUrlRequest generatePresignedUrlRequest =
 new GeneratePresignedUrlRequest(bucketName, objectKey);
 generatePresignedUrlRequest.setMethod(HttpMethod.PUT);
 generatePresignedUrlRequest.setExpiration(expiration);

 URL url = s3client.generatePresignedUrl(generatePresignedUrlRequest);

 UploadObject(url);

 System.out.println("Pre-Signed URL = " + url.toString());
 } catch (AmazonServiceException exception) {
 System.out.println("Caught an AmazonServiceException, " +
 "which means your request made it " +
 "to Amazon S3, but was rejected with an error response " +
 "for some reason.");
 System.out.println("Error Message: " + exception.getMessage());
 System.out.println("HTTP Code: " + exception.getStatusCode());
 System.out.println("AWS Error Code:" + exception.getErrorCode());
 System.out.println("Error Type: " + exception.getErrorType());
 System.out.println("Request ID: " + exception.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException, " +
 "which means the client encountered " +
 "an internal error while trying to communicate" +
 " with S3, " +
 "such as not being able to access the network.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }

 public static void UploadObject(URL url) throws IOException
 {
 HttpURLConnection connection=(HttpURLConnection) url.openConnection();
 connection.setDoOutput(true);
 connection.setRequestMethod("PUT");
 OutputStreamWriter out = new OutputStreamWriter(
 connection.getOutputStream());
 out.write("This text uploaded as object.");
 out.close();
 int responseCode = connection.getResponseCode();
 System.out.println("Service returned response code " + responseCode);

 }
}

API Version 2006-03-01
208

Amazon Simple Storage Service Developer Guide
Uploading Objects

Upload an Object Using a Pre-Signed URL (AWS SDK for .NET)

The following tasks guide you through using the .NET classes to upload an object using a pre-signed
URL.

Uploading Objects

1 Create an instance of the AmazonS3 class.

These credentials are used in creating a signature for authentication when you generate
a pre-signed URL.

2 Generate a pre-signed URL by executing the AmazonS3.GetPreSignedURL method.

You provide a bucket name, an object key, and an expiration date by creating an instance
of the GetPreSignedUrlRequest class. You must specify the HTTP verb PUT when
creating this URL if you plan to use it to upload an object.

3 Anyone with the pre-signed URL can upload an object. You can create an instance of the
HttpWebRequest class by providing the pre-signed URL and uploading the object.

The following C# code sample demonstrates the preceding tasks.

IAmazonS3 client;
client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1);
// Generate a pre-signed URL.
GetPreSignedUrlRequest request = new GetPreSignedUrlRequest
 {
 BucketName = bucketName,
 Key = objectKey,
 Verb = HttpVerb.PUT,
 Expires = DateTime.Now.AddMinutes(5)
 };
string url = null;
 url = s3Client.GetPreSignedURL(request);

// Upload a file using the pre-signed URL.
HttpWebRequest httpRequest = WebRequest.Create(url) as HttpWebRequest;
httpRequest.Method = "PUT";
using (Stream dataStream = httpRequest.GetRequestStream())
{
 // Upload object.
}

HttpWebResponse response = httpRequest.GetResponse() as HttpWebResponse;

API Version 2006-03-01
209

Amazon Simple Storage Service Developer Guide
Uploading Objects

Example

The following C# code example generates a pre-signed URL for a specific object and uses it to upload
a file. For instructions about how to create and test a working sample, see Running the Amazon
S3 .NET Code Examples (p. 567).

using System;
using System.IO;
using System.Net;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class UploadObjcetUsingPresignedURL
 {
 static IAmazonS3 s3Client;
 // File to upload.
 static string filePath = "*** Specify file to upload ***";
 // Information to generate pre-signed object URL.
 static string bucketName = "*** Provide bucket name ***";
 static string objectKey = "*** Provide object key for the new object
 ***";

 public static void Main(string[] args)
 {
 try
 {
 using (s3Client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 string url = GeneratePreSignedURL();
 UploadObject(url);

 }
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 if (amazonS3Exception.ErrorCode != null &&
 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||
 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))
 {
 Console.WriteLine("Check the provided AWS Credentials.");
 Console.WriteLine(
 "To sign up for service, go to http://aws.amazon.com/
s3");
 }
 else
 {
 Console.WriteLine(
 "Error occurred. Message:'{0}' when listing objects",
 amazonS3Exception.Message);
 }
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static void UploadObject(string url)
 {
 HttpWebRequest httpRequest = WebRequest.Create(url) as
 HttpWebRequest;
 httpRequest.Method = "PUT";
 using (Stream dataStream = httpRequest.GetRequestStream())
 {
 byte[] buffer = new byte[8000];
 using (FileStream fileStream = new FileStream(filePath,
 FileMode.Open, FileAccess.Read))
 {
 int bytesRead = 0;
 while ((bytesRead = fileStream.Read(buffer, 0,
 buffer.Length)) > 0)
 {
 dataStream.Write(buffer, 0, bytesRead);
 }
 }
 }

 HttpWebResponse response = httpRequest.GetResponse() as
 HttpWebResponse;
 }

 static string GeneratePreSignedURL()
 {
 GetPreSignedUrlRequest request = new GetPreSignedUrlRequest
 {
 BucketName = bucketName,
 Key = objectKey,
 Verb = HttpVerb.PUT,
 Expires = DateTime.Now.AddMinutes(5)
 };

 string url = null;
 url = s3Client.GetPreSignedURL(request);
 return url;
 }
 }
}

API Version 2006-03-01
210

Amazon Simple Storage Service Developer Guide
Uploading Objects

Upload an Object Using a Pre-Signed URL (AWS SDK for Ruby)

The following tasks guide you through using a Ruby script to upload an object using a pre-signed URL
for either version of the SDK for Ruby.

Topics

• Using AWS SDK for Ruby - Version 2 (p. 211)

• Using AWS SDK for Ruby - Version 1 (p. 212)

Using AWS SDK for Ruby - Version 2

The following tasks guide you through using a Ruby script to upload an object using a pre-signed URL
for SDK for Ruby - Version 2.

Uploading Objects - SDK for Ruby - Version 2

1 Create an instance of the Aws::S3::Resource class.

2 You provide a bucket name and an object key by calling the #bucket[] and the
#object[] methods of your Aws::S3::Resource class instance.

Generate a pre-signed URL by creating an instance of the URI class and use it to parse
the .presigned_url method of your Aws::S3::Resource class instance. You
must specify :put as an argument to .presigned_url, and you must specify PUT to
Net::HTTP::Session#send_request if you want to upload an object.

3 Anyone with the pre-signed URL can upload an object.

The upload creates an object or replaces any existing object with the same key that is
specified in the pre-signed URL.

The following Ruby code sample demonstrates the preceding tasks for SDK for Ruby - Version 2.

#Uploading an object using a pre-signed URL for SDK for Ruby - Version 2.

require 'aws-sdk-resources'
require 'net/http'

s3 = Aws::S3::Resource.new(region:'us-west-2')

obj = s3.bucket('BucketName').object('KeyName')
Replace BucketName with the name of your bucket.
Replace KeyName with the name of the object you are creating or replacing.

url = URI.parse(obj.presigned_url(:put))

body = "Hello World!"
This is the contents of your object. In this case, it's a simple string.

Net::HTTP.start(url.host) do |http|
 http.send_request("PUT", url.request_uri, body, {
This is required, or Net::HTTP will add a default unsigned content-type.
 "content-type" => "",
 })
end

puts obj.get.body.read

API Version 2006-03-01
211

Amazon Simple Storage Service Developer Guide
Copying Objects

This will print out the contents of your object to the terminal window.

Using AWS SDK for Ruby - Version 1

Uploading Objects - SDK for Ruby - Version 1

1 Create an instance of the AWS:S3 class.

2 You provide a bucket name and an object key by calling the #bucket[] and the
#object[] methods of your AWS::S3::S3Object class instance.

Generate a pre-signed URL by calling the .url_for method of your AWS::S3 class
instance. You must specify :put as an argument to .url_for, and you must specify
PUT to Net::HTTP::Session#send_request if you want to upload an object.

3 Anyone with the pre-signed URL can upload an object.

The upload creates an object or replaces any existing object with the same key that is
specified in the pre-signed URL.

The following Ruby code sample demonstrates the preceding tasks for AWS SDK for Ruby - Version 1.

#Uploading an object using a pre-signed URL for SDK for Ruby - Version 1.

require 'aws-sdk-v1'
require 'net/http'

s3 = AWS::S3.new(region:'us-west-2')

obj = s3.buckets['BucketName'].objects['KeyName']
Replace BucketName with the name of your bucket.
Replace KeyName with the name of the object you are creating or replacing.

url = obj.url_for(:write, :content_type => "text/plain")

body = "Hello World!"
This is the contents of your object. In this case, it's a simple string.

Net::HTTP.start(url.host) do |http|
 http.send_request("PUT", url.request_uri, body, {"content-type" => "text/
plain",})
The content-type must be specified in the pre-signed url.
 end

puts obj.read
This will print out the contents of your object to the terminal window.

puts obj.content_type
This will print out the content type of your object to the terminal window.

Copying Objects
Topics

• Related Resources (p. 213)

• Copying Objects in a Single Operation (p. 213)

API Version 2006-03-01
212

Amazon Simple Storage Service Developer Guide
Copying Objects

• Copying Objects Using the Multipart Upload API (p. 223)

The copy operation creates a copy of an object that is already stored in Amazon S3. You can create
a copy of your object up to 5 GB in a single atomic operation. However, for copying an object that is
greater than 5 GB, you must use the multipart upload API. Using the copy operation, you can:

• Create additional copies of objects

• Rename objects by copying them and deleting the original ones

• Move objects across Amazon S3 locations (e.g., us-west-1 and EU)

• Change object metadata

Each Amazon S3 object has metadata. It is a set of name-value pairs. You can set object metadata
at the time you upload it. After you upload the object, you cannot modify object metadata. The only
way to modify object metadata is to make copy of the object and set the metadata. In the copy
operation you set the same object as the source and target.

Each object has metadata. Some of it is system metadata and other user-defined. Users control
some of the system metadata such as storage class configuration to use for the object, and configure
server-side encryption. When you copy an object, user-controlled system metadata and user-defined
metadata are also copied. Amazon S3 resets the system controlled metadata. For example, when you
copy an object, Amazon S3 resets creation date of copied object. You don't need to set any of these
values in your copy request.

When copying an object, you might decide to update some of the metadata values. For example,
if your source object is configured to use standard storage, you might choose to use reduced
redundancy storage for the object copy. You might also decide to alter some of the user-defined
metadata values present on the source object. Note that if you choose to update any of the object's
user configurable metadata (system or user-defined) during the copy, then you must explicitly specify
all the user configurable metadata, even if you are only changing only one of the metadata values,
present on the source object in your request.

For more information about the object metadata, see Object Key and Metadata (p. 99).

Note
Copying objects across locations incurs bandwidth charges.

Note
If the source object is archived in Amazon Glacier (the storage class of the object is
GLACIER), you must first restore a temporary copy before you can copy the object to another
bucket. For information about archiving objects, see GLACIER Storage Class: Additional
Lifecycle Configuration Considerations (p. 124).

When copying objects you can request Amazon S3 to save the target object encrypted using an
AWS Key Management Service (KMS) encryption key, an Amazon S3-managed encryption key,
or a customer-provided encryption key. Accordingly you must specify encryption information in
your request. If the copy source is an object that stored in Amazon S3 using server-side encryption
with customer provided key, you will need to provide encryption information in your request so
Amazon S3 can decrypt the object for copying. For more information, see Protecting Data Using
Encryption (p. 380).

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 561)

Copying Objects in a Single Operation

Topics

API Version 2006-03-01
213

Amazon Simple Storage Service Developer Guide
Copying Objects

• Copy an Object Using the AWS SDK for Java (p. 214)

• Copy an Object Using the AWS SDK for .NET (p. 215)

• Copy an Object Using the AWS SDK for PHP (p. 218)

• Copy an Object Using the AWS SDK for Ruby (p. 221)

• Copy an Object Using the REST API (p. 221)

The examples in this section show how to copy objects up to 5 GB in a single operation. For copying
objects greater than 5 GB, you must use multipart upload API. For more information, see Copying
Objects Using the Multipart Upload API (p. 223).

Copy an Object Using the AWS SDK for Java

The following tasks guide you through using the Java classes to copy an object in Amazon S3.

Copying Objects

1 Create an instance of the AmazonS3Client class.

2 Execute one of the AmazonS3Client.copyObject methods. You need to provide the
request information, such as source bucket name, source key name, destination bucket
name, and destination key. You provide this information by creating an instance of the
CopyObjectRequest class or optionally providing this information directly with the
AmazonS3Client.copyObject method.

The following Java code sample demonstrates the preceding tasks.

AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());
s3client.copyObject(sourceBucketName, sourceKey,
 destinationBucketName, destinationKey);

API Version 2006-03-01
214

Amazon Simple Storage Service Developer Guide
Copying Objects

Example

The following Java code example makes a copy of an object. The copied object with a different key
is saved in the same source bucket. For instructions on how to create and test a working sample, see
Testing the Java Code Examples (p. 565).

import java.io.IOException;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.CopyObjectRequest;

public class CopyObjectSingleOperation {
 private static String bucketName = "*** Provide bucket name ***";
 private static String key = "*** Provide key *** ";
 private static String destinationKey = "*** Provide dest. key ***";

 public static void main(String[] args) throws IOException {
 AmazonS3 s3client = new AmazonS3Client(new
 ProfileCredentialsProvider());
 try {
 // Copying object
 CopyObjectRequest copyObjRequest = new CopyObjectRequest(
 bucketName, key, bucketName, destinationKey);
 System.out.println("Copying object.");
 s3client.copyObject(copyObjRequest);

 } catch (AmazonServiceException ase) {
 System.out.println("Caught an AmazonServiceException, " +
 "which means your request made it " +
 "to Amazon S3, but was rejected with an error " +
 "response for some reason.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException, " +
 "which means the client encountered " +
 "an internal error while trying to " +
 " communicate with S3, " +
 "such as not being able to access the network.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }
}

Copy an Object Using the AWS SDK for .NET

The following tasks guide you through using the high-level .NET classes to upload a file. The API
provides several variations, overloads, of the Upload method to easily upload your data.

API Version 2006-03-01
215

Amazon Simple Storage Service Developer Guide
Copying Objects

Copying Objects

1 Create an instance of the AmazonS3 class.

2 Execute one of the AmazonS3.CopyObject. You need to provide information such as
source bucket, source key name, target bucket, and target key name. You provide this
information by creating an instance of the CopyObjectRequest class.

The following C# code sample demonstrates the preceding tasks.

static IAmazonS3 client;
client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1);

CopyObjectRequest request = new CopyObjectRequest()
{
 SourceBucket = bucketName,
 SourceKey = objectKey,
 DestinationBucket = bucketName,
 DestinationKey = destObjectKey
};
CopyObjectResponse response = client.CopyObject(request);

API Version 2006-03-01
216

Amazon Simple Storage Service Developer Guide
Copying Objects

Example

The following C# code example makes a copy of an object. You will need to update code and provide
your bucket names, and object keys. For instructions on how to create and test a working sample, see
Running the Amazon S3 .NET Code Examples (p. 567).

using System;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class CopyObject
 {
 static string sourceBucket = "*** Bucket on which to enable
 logging ***";
 static string destinationBucket = "*** Bucket where you want logs
 stored ***";
 static string objectKey = "*** Provide key name ***";
 static string destObjectKey = "*** Provide destination key name
 ***";
 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 using (client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 Console.WriteLine("Copying an object");
 CopyingObject();
 }
 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static void CopyingObject()
 {
 try
 {
 CopyObjectRequest request = new CopyObjectRequest
 {
 SourceBucket = sourceBucket,
 SourceKey = objectKey,
 DestinationBucket = destinationBucket,
 DestinationKey = destObjectKey
 };
 CopyObjectResponse response = client.CopyObject(request);
 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine(s3Exception.Message,
 s3Exception.InnerException);
 }
 }
 }
}

API Version 2006-03-01
217

Amazon Simple Storage Service Developer Guide
Copying Objects

Copy an Object Using the AWS SDK for PHP

This topic guides you through using classes from the AWS SDK for PHP to copy a single object and
multiple objects within Amazon S3, from one bucket to another or within the same bucket.

Note
This topic assumes that you are already following the instructions for Using the AWS SDK
for PHP and Running PHP Examples (p. 567) and have the AWS SDK for PHP properly
installed.

The following tasks guide you through using PHP SDK classes to copy an object that is already stored
in Amazon S3.

Copying an Object

1 Create an instance of an Amazon S3 client by using the Aws\S3\S3Client class factory()
method.

2 To copy an object, execute the Aws\S3\S3Client::copyObject() method. You need to
provide information such as source bucket, source key name, target bucket, and target
key name.

The following PHP code sample demonstrates using the copyObject() method to copy an object that
is already stored in Amazon S3.

use Aws\S3\S3Client;

$sourceBucket = '*** Your Source Bucket Name ***';
$sourceKeyname = '*** Your Source Object Key ***';
$targetBucket = '*** Your Target Bucket Name ***';
$targetKeyname = '*** Your Target Key Name ***';

// Instantiate the client.
$s3 = S3Client::factory();

// Copy an object.
$s3->copyObject(array(
 'Bucket' => $targetBucket,
 'Key' => $targetKeyname,
 'CopySource' => "{$sourceBucket}/{$sourceKeyname}",
));

The following tasks guide you through using PHP classes to make multiple copies of an object within
Amazon S3.

Copying Objects

1 Create an instance of an Amazon S3 client by using the Aws\S3\S3Client class
factory() method.

2 To make multiple copies of an object, you execute a batch of calls to the Amazon S3
client getCommand() method, which is inherited from the Guzzle\Service\Client class.
You provide the CopyObject command as the first argument and an array containing
the source bucket, source key name, target bucket, and target key name as the second
argument.

The following PHP code sample demonstrates making multiple copies of an object that is stored in
Amazon S3.

API Version 2006-03-01
218

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_copyObject
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Guzzle.Service.Client.html#_getCommand
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Guzzle.Service.Client.html

Amazon Simple Storage Service Developer Guide
Copying Objects

use Aws\S3\S3Client;

$sourceBucket = '*** Your Source Bucket Name ***';
$sourceKeyname = '*** Your Source Object Key ***';
$targetBucket = '*** Your Target Bucket Name ***';
$targetKeyname = '*** Your Target Key Name ***';

// Instantiate the client.
$s3 = S3Client::factory();

// Perform a batch of CopyObject operations.
$batch = array();
for ($i = 1; $i <= 3; $i++) {
 $batch[] = $s3->getCommand('CopyObject', array(
 'Bucket' => $targetBucket,
 'Key' => "{targetKeyname}-{$i}",
 'CopySource' => "{$sourceBucket}/{$sourceKeyname}",
));
}
try {
 $successful = $s3->execute($batch);
 $failed = array();
} catch (\Guzzle\Service\Exception\CommandTransferException $e) {
 $successful = $e->getSuccessfulCommands();
 $failed = $e->getFailedCommands();
}

API Version 2006-03-01
219

Amazon Simple Storage Service Developer Guide
Copying Objects

Example of Copying Objects within Amazon S3

The following PHP example illustrates the use of the copyObject() method to copy a single object
within Amazon S3 and using a batch of calls to CopyObject using the getcommand() method to
make multiple copies of an object.

<?php

// Include the AWS SDK using the Composer autoloader.
require 'vendor/autoload.php';

use Aws\S3\S3Client;

$sourceBucket = '*** Your Source Bucket Name ***';
$sourceKeyname = '*** Your Source Object Key ***';
$targetBucket = '*** Your Target Bucket Name ***';

// Instantiate the client.
$s3 = S3Client::factory();

// Copy an object.
$s3->copyObject(array(
 'Bucket' => $targetBucket,
 'Key' => "{$sourceKeyname}-copy",
 'CopySource' => "{$sourceBucket}/{$sourceKeyname}",
));

// Perform a batch of CopyObject operations.
$batch = array();
for ($i = 1; $i <= 3; $i++) {
 $batch[] = $s3->getCommand('CopyObject', array(
 'Bucket' => $targetBucket,
 'Key' => "{$sourceKeyname}-copy-{$i}",
 'CopySource' => "{$sourceBucket}/{$sourceKeyname}",
));
}
try {
 $successful = $s3->execute($batch);
 $failed = array();
} catch (\Guzzle\Service\Exception\CommandTransferException $e) {
 $successful = $e->getSuccessfulCommands();
 $failed = $e->getFailedCommands();
}

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::copyObject() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::factory() Method

• AWS SDK for PHP for Amazon S3 Guzzle\Service\Client Class

• AWS SDK for PHP for Amazon S3 Guzzle\Service\Client::getCommand() Method

• AWS SDK for PHP for Amazon S3

• AWS SDK for PHP Documentation

API Version 2006-03-01
220

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_copyObject
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Guzzle.Service.Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Guzzle.Service.Client.html#_getCommand
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/index.html

Amazon Simple Storage Service Developer Guide
Copying Objects

Copy an Object Using the AWS SDK for Ruby

The following tasks guide you through using the Ruby classes to copy an object in Amazon S3, from
one bucket to another or to copy an object within the same bucket.

Copying Objects

1 Create an instance of the AWS::S3 class by providing your AWS credentials.

2 Execute either the AWS::S3::S3Object#copy_to or
AWS::S3::S3Object#copy_from method. You need to provide the request
information, such as source bucket name, source key name, destination bucket name,
and destination key.

The following Ruby code sample demonstrates the preceding tasks using the #copy_to method to
copy an object from one bucket to another.

s3 = AWS::S3.new

Upload a file and set server-side encryption.
bucket1 = s3.buckets[source_bucket]
bucket2 = s3.buckets[target_bucket]
obj1 = bucket1.objects[source_key]
obj2 = bucket2.objects[target_key]

obj1.copy_to(obj2)

Example

The following Ruby script example makes a copy of an object using the #copy_from method. The
copied object with a different key is saved in the same source bucket. For instructions about how to
create and test a working sample, see Using the AWS SDK for Ruby - Version 2 (p. 569).

#!/usr/bin/env ruby

require 'rubygems'
require 'aws-sdk'

bucket_name = '*** Provide bucket name ***'
source_key = '*** Provide source key ***'
target_key = '*** Provide target key ***'

Get an instance of the S3 interface.
s3 = AWS::S3.new

Copy the object.
s3.buckets[bucket_name].objects[target_key].copy_from(source_key)

puts "Copying file #{source_key} to #{target_key}."

Copy an Object Using the REST API

This example describes how to copy an object using REST. For more information about the REST API,
go to PUT Object (Copy).

This example copies the flotsam object from the pacific bucket to the jetsam object of the
atlantic bucket, preserving its metadata.

API Version 2006-03-01
221

http://docs.aws.amazon.com/sdkforruby/api/Aws/S3/Object.html#copy_to-instance_method
http://docs.aws.amazon.com/sdkforruby/api/Aws/S3/Object.html#copy_from-instance_method
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html

Amazon Simple Storage Service Developer Guide
Copying Objects

PUT /jetsam HTTP/1.1
Host: atlantic.s3.amazonaws.com
x-amz-copy-source: /pacific/flotsam
Authorization: AWS AKIAIOSFODNN7EXAMPLE:ENoSbxYByFA0UGLZUqJN5EUnLDg=
Date: Wed, 20 Feb 2008 22:12:21 +0000

The signature was generated from the following information.

PUT\r\n
\r\n
\r\n
Wed, 20 Feb 2008 22:12:21 +0000\r\n

x-amz-copy-source:/pacific/flotsam\r\n
/atlantic/jetsam

Amazon S3 returns the following response that specifies the ETag of the object and when it was last
modified.

HTTP/1.1 200 OK
x-amz-id-2: Vyaxt7qEbzv34BnSu5hctyyNSlHTYZFMWK4FtzO+iX8JQNyaLdTshL0KxatbaOZt
x-amz-request-id: 6B13C3C5B34AF333
Date: Wed, 20 Feb 2008 22:13:01 +0000

Content-Type: application/xml
Transfer-Encoding: chunked
Connection: close
Server: AmazonS3
<?xml version="1.0" encoding="UTF-8"?>

<CopyObjectResult>
 <LastModified>2008-02-20T22:13:01</LastModified>
 <ETag>"7e9c608af58950deeb370c98608ed097"</ETag>
</CopyObjectResult>

API Version 2006-03-01
222

Amazon Simple Storage Service Developer Guide
Copying Objects

Copying Objects Using the Multipart Upload API

Topics

• Copy an Object Using the AWS SDK for Java Multipart Upload API (p. 223)

• Copy an Object Using the AWS SDK for .NET Multipart Upload API (p. 226)

• Copy Object Using the REST Multipart Upload API (p. 229)

The examples in this section show you how to copy objects greater than 5 GB using the multipart
upload API. You can copy objects less than 5 GB in a single operation. For more information, see
Copying Objects in a Single Operation (p. 213).

Copy an Object Using the AWS SDK for Java Multipart Upload API

The following task guides you through using the Java SDK to copy an Amazon S3 object from one
source location to another, such as from one bucket to another. You can use the code demonstrated
here to copy objects greater than 5 GB. For objects less than 5 GB, use the single operation copy
described in Copy an Object Using the AWS SDK for Java (p. 214).

Copying Objects

1 Create an instance of the AmazonS3Client class by providing your AWS credentials.

2 Initiate a multipart copy by executing the
AmazonS3Client.initiateMultipartUpload method. Create an instance of
InitiateMultipartUploadRequest. You will need to provide a bucket name and a
key name.

3 Save the upload ID from the response object that the
AmazonS3Client.initiateMultipartUpload method returns. You will need to
provide this upload ID for each subsequent multipart upload operation.

4 Copy all the parts. For each part copy, create a new instance of the CopyPartRequest
class and provide part information including source bucket, destination bucket, object key,
uploadID, first byte of the part, last byte of the part, and the part number.

5 Save the response of the CopyPartRequest method in a list. The response includes the
ETag value and the part number. You will need the part number to complete the multipart
upload.

6 Repeat tasks 4 and 5 for each part.

7 Execute the AmazonS3Client.completeMultipartUpload method to complete the
copy.

The following Java code sample demonstrates the preceding tasks.

// Step 1: Create instance and provide credentials.
AmazonS3Client s3Client = new AmazonS3Client(new
 PropertiesCredentials(
 LowLevel_LargeObjectCopy.class.getResourceAsStream(
 "AwsCredentials.properties")));

// Create lists to hold copy responses
List<CopyPartResult> copyResponses =
 new ArrayList<CopyPartResult>();

API Version 2006-03-01
223

Amazon Simple Storage Service Developer Guide
Copying Objects

// Step 2: Initialize
InitiateMultipartUploadRequest initiateRequest =
 new InitiateMultipartUploadRequest(targetBucketName, targetObjectKey);

InitiateMultipartUploadResult initResult =
 s3Client.initiateMultipartUpload(initiateRequest);

// Step 3: Save upload Id.
String uploadId = initResult.getUploadId();

try {

 // Get object size.
 GetObjectMetadataRequest metadataRequest =
 new GetObjectMetadataRequest(sourceBucketName, sourceObjectKey);

 ObjectMetadata metadataResult =
 s3Client.getObjectMetadata(metadataRequest);
 long objectSize = metadataResult.getContentLength(); // in bytes

 // Step 4. Copy parts.
 long partSize = 5 * (long)Math.pow(2.0, 20.0); // 5 MB
 long bytePosition = 0;
 for (int i = 1; bytePosition < objectSize; i++)
 {
 // Step 5. Save copy response.
 CopyPartRequest copyRequest = new CopyPartRequest()
 .withDestinationBucketName(targetBucketName)
 .withDestinationKey(targetObjectKey)
 .withSourceBucketName(sourceBucketName)
 .withSourceKey(sourceObjectKey)
 .withUploadId(initResult.getUploadId())
 .withFirstByte(bytePosition)
 .withLastByte(bytePosition + partSize -1 >= objectSize ?
 objectSize - 1 : bytePosition + partSize - 1)
 .withPartNumber(i);

 copyResponses.add(s3Client.copyPart(copyRequest));
 bytePosition += partSize;
 }
 // Step 7. Complete copy operation.
 CompleteMultipartUploadResult completeUploadResponse =
 s3Client.completeMultipartUpload(completeRequest);
} catch (Exception e) {
 System.out.println(e.getMessage());
}

API Version 2006-03-01
224

Amazon Simple Storage Service Developer Guide
Copying Objects

Example

The following Java code example copies an object from one Amazon S3 bucket to another.
For instructions on how to create and test a working sample, see Testing the Java Code
Examples (p. 565).

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import com.amazonaws.auth.PropertiesCredentials;
import com.amazonaws.services.s3.*;
import com.amazonaws.services.s3.model.*;

public class LowLevel_LargeObjectCopy {

 public static void main(String[] args) throws IOException {
 String sourceBucketName = "*** Source-Bucket-Name ***";
 String targetBucketName = "*** Target-Bucket-Name ***";
 String sourceObjectKey = "*** Source-Object-Key ***";
 String targetObjectKey = "*** Target-Object-Key ***";
 AmazonS3Client s3Client = new AmazonS3Client(new
 PropertiesCredentials(
 LowLevel_LargeObjectCopy.class.getResourceAsStream(
 "AwsCredentials.properties")));

 // List to store copy part responses.

 List<CopyPartResult> copyResponses =
 new ArrayList<CopyPartResult>();

 InitiateMultipartUploadRequest initiateRequest =
 new InitiateMultipartUploadRequest(targetBucketName,
 targetObjectKey);

 InitiateMultipartUploadResult initResult =
 s3Client.initiateMultipartUpload(initiateRequest);

 try {
 // Get object size.
 GetObjectMetadataRequest metadataRequest =
 new GetObjectMetadataRequest(sourceBucketName, sourceObjectKey);

 ObjectMetadata metadataResult =
 s3Client.getObjectMetadata(metadataRequest);
 long objectSize = metadataResult.getContentLength(); // in bytes

 // Copy parts.
 long partSize = 5 * (long)Math.pow(2.0, 20.0); // 5 MB

 long bytePosition = 0;
 for (int i = 1; bytePosition < objectSize; i++)
 {
 CopyPartRequest copyRequest = new CopyPartRequest()
 .withDestinationBucketName(targetBucketName)
 .withDestinationKey(targetObjectKey)
 .withSourceBucketName(sourceBucketName)
 .withSourceKey(sourceObjectKey)
 .withUploadId(initResult.getUploadId())
 .withFirstByte(bytePosition)
 .withLastByte(bytePosition + partSize -1 >= objectSize ?
 objectSize - 1 : bytePosition + partSize - 1)
 .withPartNumber(i);

 copyResponses.add(s3Client.copyPart(copyRequest));
 bytePosition += partSize;

 }
 CompleteMultipartUploadRequest completeRequest = new
 CompleteMultipartUploadRequest(
 targetBucketName,
 targetObjectKey,
 initResult.getUploadId(),
 GetETags(copyResponses));

 CompleteMultipartUploadResult completeUploadResponse =
 s3Client.completeMultipartUpload(completeRequest);
 } catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }

 // Helper function that constructs ETags.
 static List<PartETag> GetETags(List<CopyPartResult> responses)
 {
 List<PartETag> etags = new ArrayList<PartETag>();
 for (CopyPartResult response : responses)
 {
 etags.add(new PartETag(response.getPartNumber(),
 response.getETag()));
 }
 return etags;
 }
}

API Version 2006-03-01
225

Amazon Simple Storage Service Developer Guide
Copying Objects

Copy an Object Using the AWS SDK for .NET Multipart Upload API

The following task guides you through using the .NET SDK to copy an Amazon S3 object from one
source location to another, such as from one bucket to another. You can use the code demonstrated
here to copy objects that are greater than 5 GB. For objects less than 5 GB, use the single operation
copy described in Copy an Object Using the AWS SDK for .NET (p. 215).

Copying Objects

1 Create an instance of the AmazonS3Client class by providing your AWS credentials.

2 Initiate a multipart copy by executing the
AmazonS3Client.InitiateMultipartUpload method. Create an instance of the
InitiateMultipartUploadRequest. You will need to provide a bucket name and key
name.

3 Save the upload ID from the response object that the
AmazonS3Client.InitiateMultipartUpload method returns. You will need to
provide this upload ID for each subsequent multipart upload operation.

4 Copy all the parts. For each part copy, create a new instance of the CopyPartRequest
class and provide part information including source bucket, destination bucket, object key,
uploadID, first byte of the part, last byte of the part, and the part number.

5 Save the response of the CopyPartRequest method in a list. The response includes the
ETag value and the part number you will need to complete the multipart upload.

6 Repeat tasks 4 and 5 for each part.

7 Execute the AmazonS3Client.CompleteMultipartUpload method to complete the
copy.

The following C# code sample demonstrates the preceding tasks.

// Step 1. Create instance and provide credentials.
IAmazonS3 s3Client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1);

// List to store upload part responses.
List<UploadPartResponse> uploadResponses = new List<UploadPartResponse>();
List<CopyPartResponse> copyResponses = new List<CopyPartResponse>();
InitiateMultipartUploadRequest initiateRequest =
 new InitiateMultipartUploadRequest
 {
 BucketName = targetBucket,
 Key = targetObjectKey
 };

// Step 2. Initialize.
InitiateMultipartUploadResponse initResponse =
 s3Client.InitiateMultipartUpload(initiateRequest);

// Step 3. Save Upload Id.
String uploadId = initResponse.UploadId;

try
{
 // Get object size.
 GetObjectMetadataRequest metadataRequest = new GetObjectMetadataRequest

API Version 2006-03-01
226

Amazon Simple Storage Service Developer Guide
Copying Objects

 {
 BucketName = sourceBucket,
 Key = sourceObjectKey
 };

 GetObjectMetadataResponse metadataResponse =
 s3Client.GetObjectMetadata(metadataRequest);
 long objectSize = metadataResponse.ContentLength; // in bytes

 // Copy parts.
 long partSize = 5 * (long)Math.Pow(2, 20); // 5 MB

 long bytePosition = 0;
 for (int i = 1; bytePosition < objectSize; i++)
 {

 CopyPartRequest copyRequest = new CopyPartRequest
 {
 DestinationBucket = targetBucket,
 DestinationKey = targetObjectKey,
 SourceBucket = sourceBucket,
 SourceKey = sourceObjectKey,
 UploadId = uploadId,
 FirstByte = bytePosition,
 LastByte = bytePosition + partSize - 1 >= objectSize ?
 objectSize - 1 : bytePosition + partSize - 1,
 PartNumber = i
 };

 copyResponses.Add(s3Client.CopyPart(copyRequest));

 bytePosition += partSize;
 }
 CompleteMultipartUploadRequest completeRequest =
 new CompleteMultipartUploadRequest
 {
 BucketName = targetBucket,
 Key = targetObjectKey,
 UploadId = initResponse.UploadId
 };

 completeRequest.AddPartETags(copyResponses);
 CompleteMultipartUploadResponse completeUploadResponse =
 s3Client.CompleteMultipartUpload(completeRequest);

}
catch (Exception e) {
 Console.WriteLine(e.Message);
}

API Version 2006-03-01
227

Amazon Simple Storage Service Developer Guide
Copying Objects

Example

The following C# code example copies an object from one Amazon S3 bucket to another. For
instructions on how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 567).

using System;
using System.Collections.Generic;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class CopyObjectUsingMPUapi
 {

 static string sourceBucket = "*** Source bucket name ***";
 static string targetBucket = "*** Target bucket name ***";
 static string sourceObjectKey = "*** Source object key ***";
 static string targetObjectKey = "*** Target object key ***";

 static void Main(string[] args)
 {
 IAmazonS3 s3Client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1);

 // List to store upload part responses.
 List<UploadPartResponse> uploadResponses = new
 List<UploadPartResponse>();

 List<CopyPartResponse> copyResponses = new
 List<CopyPartResponse>();
 InitiateMultipartUploadRequest initiateRequest =
 new InitiateMultipartUploadRequest
 {
 BucketName = targetBucket,
 Key = targetObjectKey
 };

 InitiateMultipartUploadResponse initResponse =
 s3Client.InitiateMultipartUpload(initiateRequest);
 String uploadId = initResponse.UploadId;

 try
 {
 // Get object size.
 GetObjectMetadataRequest metadataRequest = new
 GetObjectMetadataRequest
 {
 BucketName = sourceBucket,
 Key = sourceObjectKey
 };

 GetObjectMetadataResponse metadataResponse =
 s3Client.GetObjectMetadata(metadataRequest);
 long objectSize = metadataResponse.ContentLength; // in bytes

 // Copy parts.
 long partSize = 5 * (long)Math.Pow(2, 20); // 5 MB

 long bytePosition = 0;
 for (int i = 1; bytePosition < objectSize; i++)
 {

 CopyPartRequest copyRequest = new CopyPartRequest
 {
 DestinationBucket = targetBucket,
 DestinationKey = targetObjectKey,
 SourceBucket = sourceBucket,
 SourceKey = sourceObjectKey,
 UploadId = uploadId,
 FirstByte = bytePosition,
 LastByte = bytePosition + partSize - 1 >=
 objectSize ? objectSize - 1 : bytePosition + partSize - 1,
 PartNumber = i
 };

 copyResponses.Add(s3Client.CopyPart(copyRequest));

 bytePosition += partSize;
 }
 CompleteMultipartUploadRequest completeRequest =
 new CompleteMultipartUploadRequest
 {
 BucketName = targetBucket,
 Key = targetObjectKey,
 UploadId = initResponse.UploadId
 };

 completeRequest.AddPartETags(copyResponses);
 CompleteMultipartUploadResponse completeUploadResponse =
 s3Client.CompleteMultipartUpload(completeRequest);

 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
 }

 // Helper function that constructs ETags.
 static List<PartETag> GetETags(List<CopyPartResponse> responses)
 {
 List<PartETag> etags = new List<PartETag>();
 foreach (CopyPartResponse response in responses)
 {
 etags.Add(new PartETag(response.PartNumber, response.ETag));
 }
 return etags;
 }
 }
}

API Version 2006-03-01
228

Amazon Simple Storage Service Developer Guide
Listing Object Keys

Copy Object Using the REST Multipart Upload API

The following sections in the Amazon Simple Storage Service API Reference describe the REST API
for multipart upload. For copying an existing object you use the Upload Part (Copy) API and specify the
source object by adding the x-amz-copy-source request header in your request.

• Initiate Multipart Upload

• Upload Part

• Upload Part (Copy)

• Complete Multipart Upload

• Abort Multipart Upload

• List Parts

• List Multipart Uploads

You can use these APIs to make your own REST requests, or you can use one the SDKs we provide.
For more information about the SDKs, see API Support for Multipart Upload (p. 169).

Listing Object Keys
Keys can be listed by prefix. By choosing a common prefix for the names of related keys and marking
these keys with a special character that delimits hierarchy, you can use the list operation to select and
browse keys hierarchically. This is similar to how files are stored in directories within a file system.

Amazon S3 exposes a list operation that lets you enumerate the keys contained in a bucket. Keys
are selected for listing by bucket and prefix. For example, consider a bucket named "dictionary" that
contains a key for every English word. You might make a call to list all the keys in that bucket that start
with the letter "q". List results are always returned in UTF-8 binary order.

Both the SOAP and REST list operations return an XML document that contains the names of
matching keys and information about the object identified by each key.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

Groups of keys that share a prefix terminated by a special delimiter can be rolled up by that common
prefix for the purposes of listing. This enables applications to organize and browse their keys
hierarchically, much like how you would organize your files into directories in a file system. For
example, to extend the dictionary bucket to contain more than just English words, you might form
keys by prefixing each word with its language and a delimiter, such as "French/logical". Using this
naming scheme and the hierarchical listing feature, you could retrieve a list of only French words. You
could also browse the top-level list of available languages without having to iterate through all the
lexicographically intervening keys.

For more information on this aspect of listing, see Listing Keys Hierarchically Using a Prefix and
Delimiter (p. 230).

List Implementation Efficiency

List performance is not substantially affected by the total number of keys in your bucket, nor by the
presence or absence of the prefix, marker, maxkeys, or delimiter arguments. For information on
improving overall bucket performance, including the list operation, see Request Rate and Performance
Considerations (p. 518).

API Version 2006-03-01
229

http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPartCopy.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadComplete.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadAbort.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListParts.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListMPUpload.html

Amazon Simple Storage Service Developer Guide
Listing Object Keys

Iterating Through Multi-Page Results

As buckets can contain a virtually unlimited number of keys, the complete results of a list query can
be extremely large. To manage large result sets, Amazon S3 API support pagination to split them
into multiple responses. Each list keys response returns a page of up to 1,000 keys with an indicator
indicating if the response is truncated. You send a series of list keys requests until you have received
all the keys. AWS SDK wrapper libraries provide the same pagination.

The following Java and .NET SDK examples show how to use pagination when listing keys in a bucket:

• Listing Keys Using the AWS SDK for Java (p. 231)

• Listing Keys Using the AWS SDK for .NET (p. 233)

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 561)

Listing Keys Hierarchically Using a Prefix and Delimiter

The prefix and delimiter parameters limit the kind of results returned by a list operation. Prefix limits
results to only those keys that begin with the specified prefix, and delimiter causes list to roll up all keys
that share a common prefix into a single summary list result.

The purpose of the prefix and delimiter parameters is to help you organize and then browse your keys
hierarchically. To do this, first pick a delimiter for your bucket, such as slash (/), that doesn't occur in
any of your anticipated key names. Next, construct your key names by concatenating all containing
levels of the hierarchy, separating each level with the delimiter.

For example, if you were storing information about cities, you might naturally organize them by
continent, then by country, then by province or state. Because these names don't usually contain
punctuation, you might select slash (/) as the delimiter. The following examples use a slash (/)
delimiter.

• Europe/France/Aquitaine/Bordeaux

• North America/Canada/Quebec/Montreal

• North America/USA/Washington/Bellevue

• North America/USA/Washington/Seattle

If you stored data for every city in the world in this manner, it would become awkward to manage
a flat key namespace. By using Prefix and Delimiter with the list operation, you can use the
hierarchy you've created to list your data. For example, to list all the states in USA, set Delimiter='/'
and Prefix='North America/USA/'. To list all the provinces in Canada for which you have data, set
Delimiter='/' and Prefix='North America/Canada/'.

A list request with a delimiter lets you browse your hierarchy at just one level, skipping over and
summarizing the (possibly millions of) keys nested at deeper levels. For example, assume you have a
bucket (ExampleBucket) the following keys.

sample.jpg

photos/2006/January/sample.jpg

photos/2006/February/sample2.jpg

photos/2006/February/sample3.jpg

API Version 2006-03-01
230

Amazon Simple Storage Service Developer Guide
Listing Object Keys

photos/2006/February/sample4.jpg

The sample bucket has only the sample.jpg object at the root level. To list only the root level
objects in the bucket you send a GET request on the bucket with "/" delimiter character. In response,
Amazon S3 returns the sample.jpg object key because it does not contain the "/" delimiter character.
All other keys contain the delimiter character. Amazon S3 groups these keys and return a single
CommonPrefixes element with prefix value photos/ that is a substring from the beginning of these
keys to the first occurrence of the specified delimiter.

<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Name>ExampleBucket</Name>
 <Prefix></Prefix>
 <Marker></Marker>
 <MaxKeys>1000</MaxKeys>
 <Delimiter>/</Delimiter>
 <IsTruncated>false</IsTruncated>
 <Contents>
 <Key>sample.jpg</Key>
 <LastModified>2011-07-24T19:39:30.000Z</LastModified>
 <ETag>"d1a7fb5eab1c16cb4f7cf341cf188c3d"</ETag>
 <Size>6</Size>
 <Owner>
 <ID>75cc57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</
ID>
 <DisplayName>displayname</DisplayName>
 </Owner>
 <StorageClass>STANDARD</StorageClass>
 </Contents>
 <CommonPrefixes>
 <Prefix>photos/</Prefix>
 </CommonPrefixes>
</ListBucketResult>

Listing Keys Using the AWS SDK for Java

The following Java code example lists object keys in a bucket. If the response is truncated
(<IsTruncated> is true in the response), the code loop continues. Each subsequent request specifies
the continuation-token in the request and sets its value to the <NextContinuationToken>
returned by Amazon S3 in the previous response.

API Version 2006-03-01
231

Amazon Simple Storage Service Developer Guide
Listing Object Keys

Example
For instructions on how to create and test a working sample, see Testing the Java Code
Examples (p. 565).import java.io.IOException;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.ListObjectsRequest;
import com.amazonaws.services.s3.model.ListObjectsV2Request;
import com.amazonaws.services.s3.model.ListObjectsV2Result;
import com.amazonaws.services.s3.model.ObjectListing;
import com.amazonaws.services.s3.model.S3ObjectSummary;

public class ListKeys {
 private static String bucketName = "***bucket name***";

 public static void main(String[] args) throws IOException {
 AmazonS3 s3client = new AmazonS3Client(new
 ProfileCredentialsProvider());
 try {
 System.out.println("Listing objects");
 final ListObjectsV2Request req = new
 ListObjectsV2Request().withBucketName(bucketName).withMaxKeys(2);
 ListObjectsV2Result result;
 do {
 result = s3client.listObjectsV2(req);

 for (S3ObjectSummary objectSummary :
 result.getObjectSummaries()) {
 System.out.println(" - " + objectSummary.getKey() + " " +
 "(size = " + objectSummary.getSize() +
 ")");
 }
 System.out.println("Next Continuation Token : " +
 result.getNextContinuationToken());
 req.setContinuationToken(result.getNextContinuationToken());
 } while(result.isTruncated() == true);

 } catch (AmazonServiceException ase) {
 System.out.println("Caught an AmazonServiceException, " +
 "which means your request made it " +
 "to Amazon S3, but was rejected with an error response "
 +
 "for some reason.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException, " +
 "which means the client encountered " +
 "an internal error while trying to communicate" +
 " with S3, " +
 "such as not being able to access the network.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }
}

API Version 2006-03-01
232

Amazon Simple Storage Service Developer Guide
Listing Object Keys

Listing Keys Using the AWS SDK for .NET

The following C# code example lists object keys in a bucket. If the response is truncated
(<IsTruncated> is true in the response), the code loop continues. Each subsequent request specifies
the continuation-token in the request and sets its value to the <NextContinuationToken>
returned by Amazon S3 in the previous response.

API Version 2006-03-01
233

Amazon Simple Storage Service Developer Guide
Listing Object Keys

Example

For instructions on how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 567).

 using System;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class ListObjects
 {
 static string bucketName = "***bucket name***";
 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 using (client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 Console.WriteLine("Listing objects stored in a bucket");
 ListingObjects();
 }

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static void ListingObjects()
 {
 try
 {
 ListObjectsV2Request request = new ListObjectsV2Request
 {
 BucketName = bucketName,
 MaxKeys = 10
 };
 ListObjectsV2Response response;
 do
 {
 response = client.ListObjectsV2(request);

 // Process response.
 foreach (S3Object entry in response.S3Objects)
 {
 Console.WriteLine("key = {0} size = {1}",
 entry.Key, entry.Size);
 }
 Console.WriteLine("Next Continuation Token: {0}",
 response.NextContinuationToken);
 request.ContinuationToken =
 response.NextContinuationToken;
 } while (response.IsTruncated == true);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 if (amazonS3Exception.ErrorCode != null &&

 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||
 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))
 {
 Console.WriteLine("Check the provided AWS
 Credentials.");
 Console.WriteLine(
 "To sign up for service, go to http://aws.amazon.com/
s3");
 }
 else
 {
 Console.WriteLine(
 "Error occurred. Message:'{0}' when listing objects",
 amazonS3Exception.Message);
 }
 }
 }
 }
}

API Version 2006-03-01
234

Amazon Simple Storage Service Developer Guide
Listing Object Keys

Listing Keys Using the AWS SDK for PHP
This topic guides you through using classes from the AWS SDK for PHP to list the object keys
contained in an Amazon S3 bucket.

Note
This topic assumes that you are already following the instructions for Using the AWS SDK
for PHP and Running PHP Examples (p. 567) and have the AWS SDK for PHP properly
installed.

To list the object keys contained in a bucket using the AWS SDK for PHP you first must list the objects
contained in the bucket and then extract the key from each of the listed objects. When listing objects in
a bucket you have the option of using the low-level Aws\S3\S3Client::listObjects() method or the high-
level Aws\S3\Iterator\ListObjects iterator.

The low-level listObjects() method maps to the underlying Amazon S3 REST API. Each
listObjects() request returns a page of up to 1,000 objects. If you have more than 1,000 objects
in the bucket, your response will be truncated and you will need to send another listObjects()
request to retrieve the next set of 1,000 objects.

You can use the high-level ListObjects iterator to make your task of listing the objects contained
in a bucket a bit easier. To use the ListObjects iterator to create a list of objects you execute
the Amazon S3 client getIterator() method that is inherited from Guzzle\Service\Client class with
the ListObjects command as the first argument and an array to contain the returned objects
from the specified bucket as the second argument. When used as a ListObjects iterator the
getIterator() method returns all the objects contained in the specified bucket. There is no 1,000
object limit, so you don't need to worry if the response is truncated or not.

The following tasks guide you through using the PHP Amazon S3 client methods to list the objects
contained in a bucket from which you can list the object keys.

Listing Object Keys

1 Create an instance of an Amazon S3 client by using the Aws\S3\S3Client class factory
method.

2 Execute the high-level Amazon S3 client getIterator() method with the
ListObjects command as the first argument and an array to contain the returned
objects from the specified bucket as the second argument.
Or you can execute the low-level Amazon S3 client listObjects() method with an
array to contain the returned objects from the specified bucket as the argument.

3 Extract the object key from each object in the list of returned objects.

The following PHP code sample demonstrates how to list the objects contained in a bucket from which
you can list the object keys.

use Aws\S3\S3Client;

// Instantiate the client.
$s3 = S3Client::factory();

$bucket = '*** Bucket Name ***';

// Use the high-level iterators (returns ALL of your objects).
$objects = $s3->getIterator('ListObjects', array('Bucket' => $bucket));

echo "Keys retrieved!\n";
foreach ($objects as $object) {

API Version 2006-03-01
235

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_listObjects
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Iterator.ListObjectsIterator.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Guzzle.Service.Client.html#_getIteratorgetIterator
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Guzzle.Service.Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory

Amazon Simple Storage Service Developer Guide
Listing Object Keys

 echo $object['Key'] . "\n";
}

// Use the plain API (returns ONLY up to 1000 of your objects).
$result = $s3->listObjects(array('Bucket' => $bucket));

echo "Keys retrieved!\n";
foreach ($result['Contents'] as $object) {
 echo $object['Key'] . "\n";
}

Example of Listing Object Keys

The following PHP example demonstrates how to list the keys from a specified bucket. It shows how
to use the high-level getIterator() method to list the objects in a bucket and then how to extract
the key from each of the objects in the list. It also show how to use the low-level listObjects()
method to list the objects in a bucket and then how to extract the key from each of the objects in
the list returned. For information about running the PHP examples in this guide, go to Running PHP
Examples (p. 568).

<?php

// Include the AWS SDK using the Composer autoloader.
require 'vendor/autoload.php';

use Aws\S3\S3Client;
use Aws\S3\Exception\S3Exception;

$bucket = '*** Your Bucket Name ***';

// Instantiate the client.
$s3 = S3Client::factory();

// Use the high-level iterators (returns ALL of your objects).
try {
 $objects = $s3->getIterator('ListObjects', array(
 'Bucket' => $bucket
));

 echo "Keys retrieved!\n";
 foreach ($objects as $object) {
 echo $object['Key'] . "\n";
 }
} catch (S3Exception $e) {
 echo $e->getMessage() . "\n";
}

// Use the plain API (returns ONLY up to 1000 of your objects).
try {
 $result = $s3->listObjects(array('Bucket' => $bucket));

 echo "Keys retrieved!\n";
 foreach ($result['Contents'] as $object) {
 echo $object['Key'] . "\n";
 }
} catch (S3Exception $e) {
 echo $e->getMessage() . "\n";
}

API Version 2006-03-01
236

Amazon Simple Storage Service Developer Guide
Deleting Objects

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\Iterator\ListObjects

• AWS SDK for PHP for Amazon S3 Guzzle\Service\Client Class

• AWS SDK for PHP for Amazon S3 Guzzle\Service\Client::getIterator() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::factory() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::listObjects() Method

• AWS SDK for PHP for Amazon S3

• AWS SDK for PHP Documentation

Listing Keys Using the REST API

You can use the AWS SDK to list the object keys in a bucket. However, if your application requires it,
you can send REST requests directly. You can send a GET request to return some or all of the objects
in a bucket or you can use selection criteria to return a subset of the objects in a bucket. For more
information, go to GET Bucket (List Objects) Version 2.

Deleting Objects
Topics

• Deleting Objects from a Version-Enabled Bucket (p. 237)

• Deleting Objects from an MFA-Enabled Bucket (p. 238)

• Related Resources (p. 238)

• Deleting One Object Per Request (p. 238)

• Deleting Multiple Objects Per Request (p. 246)

You can delete one or more objects directly from Amazon S3. You have the following options when
deleting an object:

• Delete a single object—Amazon S3 provides the DELETE API that you can use to delete one
object in a single HTTP request.

• Delete multiple objects—Amazon S3 also provides the Multi-Object Delete API that you can use to
delete up to 1000 objects in a single HTTP request.

When deleting objects from a bucket that is not version-enabled, you provide only the object key name,
however, when deleting objects from a version-enabled bucket, you can optionally provide version ID
of the object to delete a specific version of the object.

Deleting Objects from a Version-Enabled Bucket

If your bucket is version-enabled, then multiple versions of the same object can exist in the bucket.
When working with version-enabled buckets, the delete API enables the following options:

• Specify a non-versioned delete request—That is, you specify only the object's key, and not
the version ID. In this case, Amazon S3 creates a delete marker and returns its version ID in the
response. This makes your object disappear from the bucket. For information about object versioning
and the delete marker concept, see Object Versioning (p. 106).

• Specify a versioned delete request—That is, you specify both the key and also a version ID. In this
case the following two outcomes are possible:

API Version 2006-03-01
237

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Iterator.ListObjectsIterator.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Guzzle.Service.Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Guzzle.Service.Client.html#_getIteratorgetIterator
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_listObjects
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/index.html
http://docs.aws.amazon.com/AmazonS3/latest/API/v2-RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
Deleting Objects

• If the version ID maps to a specific object version, then Amazon S3 deletes the specific version of
the object.

• If the version ID maps to the delete marker of that object, Amazon S3 deletes the delete marker.
This makes the object reappear in your bucket.

Deleting Objects from an MFA-Enabled Bucket

When deleting objects from an Multi Factor Authentication (MFA) enabled bucket, note the following:

• If you provide an invalid MFA token, the request always fails.

• If you have MFA-enabled bucket, and you make a versioned delete request (you provide an object
key and version ID), the request will fail if you don't provide a valid MFA token. In addition, when
using the Multi-Object Delete API on an MFA-enabled bucket, if any of the deletes is a versioned
delete request (that is, you specify object key and version ID), the entire request will fail if you don't
provide MFA token.

On the other hand, in the following cases the request succeeds:

• If you have an MFA enabled bucket, and you make a non-versioned delete request (you are not
deleting a versioned object), and you don't provide MFA token, the delete succeeds.

• If you have a Multi-Object Delete request specifying only non-versioned objects to delete from an
MFA-enabled bucket, and you don't provide an MFA token, the deletions succeed.

For information on MFA delete, see MFA Delete (p. 424).

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 561)

Deleting One Object Per Request

Topics

• Deleting an Object Using the AWS SDK for Java (p. 238)

• Deleting an Object Using the AWS SDK for .NET (p. 242)

• Deleting an Object Using the AWS SDK for PHP (p. 245)

• Deleting an Object Using the REST API (p. 246)

Amazon S3 provides the DELETE API (see DELETE Object) for you to delete one object per request.
To learn more about object deletion, see Deleting Objects (p. 237).

You can use the REST API directly or use the wrapper libraries provided by the AWS SDKs that can
simplify your application development.

Deleting an Object Using the AWS SDK for Java

The following tasks guide you through using the AWS SDK for Java classes to delete an object.

Deleting an Object (Non-Versioned Bucket)

1 Create an instance of the AmazonS3Client class.

API Version 2006-03-01
238

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html

Amazon Simple Storage Service Developer Guide
Deleting Objects

2 Execute one of the AmazonS3Client.deleteObject methods.

You can provide a bucket name and an object name as parameters or provide the same
information in a DeleteObjectRequest object and pass the object as a parameter.

If you have not enabled versioning on the bucket, the operation deletes the object. If you
have enabled versioning, the operation adds a delete marker. For more information, see
Deleting One Object Per Request (p. 238).

The following Java sample demonstrates the preceding steps. The sample uses the
DeleteObjectRequest class to provide a bucket name and an object key.

AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());

s3client.deleteObject(new DeleteObjectRequest(bucketName, keyName));

Deleting a Specific Version of an Object (Version-Enabled Bucket)

1 Create an instance of the AmazonS3Client class.

2 Execute one of the AmazonS3Client.deleteVersion methods.

You can provide a bucket name and an object key directly as parameters or use the
DeleteVersionRequest to provide the same information.

The following Java sample demonstrates the preceding steps. The sample uses the
DeleteVersionRequest class to provide a bucket name, an object key, and a version Id.

AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());

s3client.deleteObject(new DeleteVersionRequest(bucketName, keyName,
 versionId));

API Version 2006-03-01
239

Amazon Simple Storage Service Developer Guide
Deleting Objects

Example 1: Deleting an Object (Non-Versioned Bucket)

The following Java example deletes an object from a bucket. If you have not enabled versioning on
the bucket, Amazon S3 deletes the object. If you have enabled versioning, Amazon S3 adds a delete
marker and the object is not deleted. For information about how to create and test a working sample,
see Testing the Java Code Examples (p. 565).

import java.io.IOException;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.DeleteObjectRequest;

public class DeleteAnObjectNonVersionedBucket {

 private static String bucketName = "*** Provide a Bucket Name ***";
 private static String keyName = "*** Provide a Key Name ****";

 public static void main(String[] args) throws IOException {
 AmazonS3 s3Client = new AmazonS3Client(new
 ProfileCredentialsProvider());
 try {
 s3Client.deleteObject(new DeleteObjectRequest(bucketName,
 keyName));
 } catch (AmazonServiceException ase) {
 System.out.println("Caught an AmazonServiceException.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }
}

API Version 2006-03-01
240

Amazon Simple Storage Service Developer Guide
Deleting Objects

Example 2: Deleting an Object (Versioned Bucket)

The following Java example deletes a specific version of an object from a versioned bucket. The
deleteObject request removes the specific object version from the bucket.

To test the sample, you must provide a bucket name. The code sample performs the following tasks:

1. Enable versioning on the bucket.

2. Add a sample object to the bucket. In response, Amazon S3 returns the version ID of the newly
added object.

3. Delete the sample object using the deleteVersion method. The DeleteVersionRequest class
specifies both an object key name and a version ID.

For information about how to create and test a working sample, see Testing the Java Code
Examples (p. 565).

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.util.Random;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.BucketVersioningConfiguration;
import com.amazonaws.services.s3.model.CannedAccessControlList;
import com.amazonaws.services.s3.model.DeleteVersionRequest;
import com.amazonaws.services.s3.model.ObjectMetadata;
import com.amazonaws.services.s3.model.PutObjectRequest;
import com.amazonaws.services.s3.model.PutObjectResult;
import
 com.amazonaws.services.s3.model.SetBucketVersioningConfigurationRequest;

public class DeleteAnObjectVersionEnabledBucket {

 static String bucketName = "*** Provide a Bucket Name ***";
 static String keyName = "*** Provide a Key Name ****";
 static AmazonS3Client s3Client;

 public static void main(String[] args) throws IOException {
 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());
 try {
 // Make the bucket version-enabled.
 enableVersioningOnBucket(s3Client, bucketName);

 // Add a sample object.
 String versionId = putAnObject(keyName);

 s3Client.deleteVersion(
 new DeleteVersionRequest(
 bucketName,
 keyName,
 versionId));

 } catch (AmazonServiceException ase) {
 System.out.println("Caught an AmazonServiceException.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException.");
 System.out.println("Error Message: " + ace.getMessage());
 }

 }

 static void enableVersioningOnBucket(AmazonS3Client s3Client,
 String bucketName) {
 BucketVersioningConfiguration config = new
 BucketVersioningConfiguration()
 .withStatus(BucketVersioningConfiguration.ENABLED);
 SetBucketVersioningConfigurationRequest
 setBucketVersioningConfigurationRequest = new
 SetBucketVersioningConfigurationRequest(
 bucketName, config);

 s3Client.setBucketVersioningConfiguration(setBucketVersioningConfigurationRequest);
 }

 static String putAnObject(String keyName) {
 String content = "This is the content body!";
 String key = "ObjectToDelete-" + new Random().nextInt();
 ObjectMetadata metadata = new ObjectMetadata();
 metadata.setHeader("Subject", "Content-As-Object");
 metadata.setHeader("Content-Length", content.length());
 PutObjectRequest request = new PutObjectRequest(bucketName, key,
 new ByteArrayInputStream(content.getBytes()), metadata)
 .withCannedAcl(CannedAccessControlList.AuthenticatedRead);
 PutObjectResult response = s3Client.putObject(request);
 return response.getVersionId();
 }
}

API Version 2006-03-01
241

Amazon Simple Storage Service Developer Guide
Deleting Objects

Deleting an Object Using the AWS SDK for .NET

You can delete an object from a bucket. If you have versioning enabled on the bucket, you can also
delete a specific version of an object.

The following tasks guide you through using the .NET classes to delete an object.

Deleting an Object (Non-Versioned Bucket)

1 Create an instance of the AmazonS3Client class by providing your AWS credentials.

2 Execute the AmazonS3.DeleteObject method by providing a bucket name and an
object key in an instance of DeleteObjectRequest.

If you have not enabled versioning on the bucket, the operation deletes the object. If you
have enabled versioning, the operation adds a delete marker. For more information, see
Deleting One Object Per Request (p. 238).

The following C# code sample demonstrates the preceding steps.

static IAmazonS3 client;
client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1);

DeleteObjectRequest deleteObjectRequest =
 new DeleteObjectRequest
 {
 BucketName = bucketName,
 Key = keyName
 };

using (client = Amazon.AWSClientFactory.CreateAmazonS3Client(
 accessKeyID, secretAccessKeyID))
{
 client.DeleteObject(deleteObjectRequest);
}

Deleting a Specific Version of an Object (Version-Enabled Bucket)

1 Create an instance of the AmazonS3Client class by providing your AWS credentials.

2 Execute the AmazonS3.DeleteObject method by providing a bucket name, an object
key name, and object version Id in an instance of DeleteObjectRequest.

The DeleteObject method deletes the specific version of the object.

The following C# code sample demonstrates the preceding steps.

IAmazonS3 client
client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1)

DeleteObjectRequest deleteObjectRequest = new DeleteObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 VersionId = versionID
 };

API Version 2006-03-01
242

Amazon Simple Storage Service Developer Guide
Deleting Objects

using (client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1))
{
 client.DeleteObject(deleteObjectRequest);
 Console.WriteLine("Deleting an object");
}

Example 1: Deleting an Object (Non-Versioned Bucket)

The following C# code example deletes an object from a bucket. It does not provide a version Id in
the delete request. If you have not enabled versioning on the bucket, Amazon S3 deletes the object.
If you have enabled versioning, Amazon S3 adds a delete marker and the object is not deleted. For
information about how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 567).

using System;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class DeleteObjectNonVersionedBucket
 {
 static string bucketName = "*** Provide a bucket name ***";
 static string keyName = "*** Provide a key name ****";
 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 using (client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 DeleteObjectRequest deleteObjectRequest = new
 DeleteObjectRequest
 {
 BucketName = bucketName,
 Key = keyName
 };
 try
 {
 client.DeleteObject(deleteObjectRequest);
 Console.WriteLine("Deleting an object");
 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine(s3Exception.Message,
 s3Exception.InnerException);
 }
 }
 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }
 }
}

API Version 2006-03-01
243

Amazon Simple Storage Service Developer Guide
Deleting Objects

Example 2: Deleting an Object (Versioned Bucket)

The following C# code example deletes an object from a versioned bucket. The
DeleteObjectRequest instance specifies an object key name and a version ID. The DeleteObject
method removes the specific object version from the bucket.

To test the sample, you must provide a bucket name. The code sample performs the following tasks:

1. Enable versioning on the bucket.

2. Add a sample object to the bucket. In response, Amazon S3 returns the version ID of the newly
added object. You can also obtain version IDs of an object by sending a ListVersions request.

var listResponse = client.ListVersions(new ListVersionsRequest { BucketName
 = bucketName, Prefix = keyName });

3. Delete the sample object using the DeleteObject method. The DeleteObjectRequest class
specifies both an object key name and a version ID.

For information about how to create and test a working sample, see Running the Amazon S3 .NET
Code Examples (p. 567).

using System;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class DeleteObjectVersion
 {
 static string bucketName = "*** Provide a Bucket Name ***";
 static string keyName = "*** Provide a Key Name ***";
 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 using (client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 try
 {
 // Make the bucket version-enabled.
 EnableVersioningOnBucket(bucketName);

 // Add a sample object.
 string versionID = PutAnObject(keyName);

 // Delete the object by specifying an object key and a
 version ID.
 DeleteObjectRequest request = new DeleteObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 VersionId = versionID
 };
 Console.WriteLine("Deleting an object");
 client.DeleteObject(request);

 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine(s3Exception.Message,
 s3Exception.InnerException);
 }
 }
 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static void EnableVersioningOnBucket(string bucketName)
 {

 PutBucketVersioningRequest setBucketVersioningRequest = new
 PutBucketVersioningRequest
 {
 BucketName = bucketName,
 VersioningConfig = new S3BucketVersioningConfig { Status =
 VersionStatus.Enabled }
 };
 client.PutBucketVersioning(setBucketVersioningRequest);
 }

 static string PutAnObject(string objectKey)
 {

 PutObjectRequest request = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = objectKey,
 ContentBody = "This is the content body!"
 };

 PutObjectResponse response = client.PutObject(request);
 return response.VersionId;

 }
 }
}

API Version 2006-03-01
244

Amazon Simple Storage Service Developer Guide
Deleting Objects

Deleting an Object Using the AWS SDK for PHP

This topic guides you through using classes from the AWS SDK for PHP to delete an object from a
non-versioned bucket. For information on deleting an object from a versioned bucket, see Deleting an
Object Using the REST API (p. 246).

Note
This topic assumes that you are already following the instructions for Using the AWS SDK
for PHP and Running PHP Examples (p. 567) and have the AWS SDK for PHP properly
installed.

Deleting One Object (Non-Versioned Bucket)

1 Create an instance of an Amazon S3 client by using the Aws\S3\S3Client class factory()
method.

2 Execute the Aws\S3\S3Client::deleteObject() method. You must provide a bucket name
and a key name in the array parameter's required keys, Bucket and Key.

If you have not enabled versioning on the bucket, the operation deletes the object. If you
have enabled versioning, the operation adds a delete marker. For more information, see
Deleting Objects (p. 237).

The following PHP code sample demonstrates how to delete an object from an Amazon S3 bucket
using the deleteObject() method.

use Aws\S3\S3Client;

$s3 = S3Client::factory();

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

$result = $s3->deleteObject(array(
 'Bucket' => $bucket,
 'Key' => $keyname
));

API Version 2006-03-01
245

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_deleteObject

Amazon Simple Storage Service Developer Guide
Deleting Objects

Example Deleting an Object from a Non-Versioned Bucket

The following PHP code example deletes an object from a bucket. It does not provide a version Id in
the delete request. If you have not enabled versioning on the bucket, Amazon S3 deletes the object.
If you have enabled versioning, Amazon S3 adds a delete marker and the object is not deleted. For
information about running the PHP examples in this guide, go to Running PHP Examples (p. 568).
For information on deleting an object from a versioned bucket, see Deleting an Object Using the REST
API (p. 246).

<?php

// Include the AWS SDK using the Composer autoloader.
require 'vendor/autoload.php';

use Aws\S3\S3Client;

$s3 = S3Client::factory();

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

$result = $s3->deleteObject(array(
 'Bucket' => $bucket,
 'Key' => $keyname
));

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::factory() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::deleteObject() Method

• AWS SDK for PHP for Amazon S3

• AWS SDK for PHP Documentation

Deleting an Object Using the REST API

You can use the AWS SDKs to delete an object. However, if your application requires it, you can send
REST requests directly. For more information, go to DELETE Object in the Amazon Simple Storage
Service API Reference.

Deleting Multiple Objects Per Request

Topics

• Deleting Multiple Objects Using the AWS SDK for Java (p. 247)

• Deleting Multiple Objects Using the AWS SDK for .NET (p. 251)

• Deleting Multiple Objects Using the AWS SDK for PHP (p. 255)

• Deleting Multiple Objects Using the REST API (p. 259)

Amazon S3 provides the Multi-Object Delete API (see Delete - Multi-Object Delete) that enables you to
delete multiple objects in a single request. The API supports two modes for the response; verbose and
quiet. By default, the operation uses verbose mode in which the response includes the result each keys
deletion that was encountered in your request. In quiet mode, the response includes only keys where
the delete operation encountered an error.

API Version 2006-03-01
246

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_deleteObject
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/index.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html
http://docs.aws.amazon.com/AmazonS3/latest/API/multiobjectdeleteapi.html

Amazon Simple Storage Service Developer Guide
Deleting Objects

If all keys were successfully deleted when using the quiet mode, Amazon S3 returns empty response.

To learn more about object deletion, see Deleting Objects (p. 237).

You can use the REST API directly or use the AWS SDKs.

Deleting Multiple Objects Using the AWS SDK for Java

The following tasks guide you through using the AWS SDK for Java classes to delete multiple objects
in a single HTTP request.

Deleting Multiple Objects (Non-Versioned Bucket)

1 Create an instance of the AmazonS3Client class.

2 Create an instance of the DeleteObjectsRequest class and provide a list of objects
keys you want to delete.

3 Execute the AmazonS3Client.deleteObjects method.

The following Java code sample demonstrates the preceding steps.

DeleteObjectsRequest multiObjectDeleteRequest = new
 DeleteObjectsRequest(bucketName);

List<KeyVersion> keys = new ArrayList<KeyVersion>();
keys.add(new KeyVersion(keyName1));
keys.add(new KeyVersion(keyName2));
keys.add(new KeyVersion(keyName3));

multiObjectDeleteRequest.setKeys(keys);

try {
 DeleteObjectsResult delObjRes =
 s3Client.deleteObjects(multiObjectDeleteRequest);
 System.out.format("Successfully deleted all the %s items.\n",
 delObjRes.getDeletedObjects().size());

} catch (MultiObjectDeleteException e) {
 // Process exception.
}

In the event of an exception, you can review the MultiObjectDeleteException to determine which
objects failed to delete and why as shown in the following Java example.

System.out.format("%s \n", e.getMessage());
System.out.format("No. of objects successfully deleted = %s\n",
 e.getDeletedObjects().size());
System.out.format("No. of objects failed to delete = %s\n",
 e.getErrors().size());
System.out.format("Printing error data...\n");
for (DeleteError deleteError : e.getErrors()){
 System.out.format("Object Key: %s\t%s\t%s\n",
 deleteError.getKey(), deleteError.getCode(),
 deleteError.getMessage());
}

API Version 2006-03-01
247

Amazon Simple Storage Service Developer Guide
Deleting Objects

The following tasks guide you through deleting objects from a version-enabled bucket.

Deleting Multiple Objects (Version-Enabled Bucket)

1 Create an instance of the AmazonS3Client class.

2 Create an instance of the DeleteObjectsRequest class and provide a list of objects
keys and optionally the version IDs of the objects that you want to delete.

If you specify the version ID of the object that you want to delete, Amazon S3 deletes the
specific object version. If you don't specify the version ID of the object that you want to
delete, Amazon S3 adds a delete marker. For more information, see Deleting One Object
Per Request (p. 238).

3 Execute the AmazonS3Client.deleteObjects method.

The following Java code sample demonstrates the preceding steps.

List<KeyVersion> keys = new ArrayList<KeyVersion>();
// Provide a list of object keys and versions.

DeleteObjectsRequest multiObjectDeleteRequest = new
 DeleteObjectsRequest(bucketName)
.withKeys(keys);

try {
 DeleteObjectsResult delObjRes =
 s3Client.deleteObjects(multiObjectDeleteRequest);
 System.out.format("Successfully deleted all the %s items.\n",
 delObjRes.getDeletedObjects().size());

} catch (MultiObjectDeleteException e) {
 // Process exception.
}

API Version 2006-03-01
248

Amazon Simple Storage Service Developer Guide
Deleting Objects

Example 1: Multi-Object Delete (Non-Versioned Bucket)

The following Java code example uses the Multi-Object Delete API to delete objects from a non-
versioned bucket. The example first uploads the sample objects to the bucket and then uses the
deleteObjects method to delete the objects in a single request.

For information about how to create and test a working sample, see Testing the Java Code
Examples (p. 565).

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.CannedAccessControlList;
import com.amazonaws.services.s3.model.DeleteObjectsRequest;
import com.amazonaws.services.s3.model.DeleteObjectsRequest.KeyVersion;
import com.amazonaws.services.s3.model.DeleteObjectsResult;
import com.amazonaws.services.s3.model.MultiObjectDeleteException;
import
 com.amazonaws.services.s3.model.MultiObjectDeleteException.DeleteError;
import com.amazonaws.services.s3.model.ObjectMetadata;
import com.amazonaws.services.s3.model.PutObjectRequest;
import com.amazonaws.services.s3.model.PutObjectResult;

public class DeleteMultipleObjectsNonVersionedBucket {

 static String bucketName = "*** Provide a bucket name ***";
 static AmazonS3Client s3Client;

 public static void main(String[] args) throws IOException {

 try {
 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());
 // Upload sample objects.Because the bucket is not version-
enabled,
 // the KeyVersions list returned will have null values for
 version IDs.
 List<KeyVersion> keysAndVersions1 = putObjects(3);

 // Delete specific object versions.
 multiObjectNonVersionedDelete(keysAndVersions1);

 } catch (AmazonServiceException ase) {
 System.out.println("Caught an AmazonServiceException.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }

 static List<KeyVersion> putObjects(int number) {
 List<KeyVersion> keys = new ArrayList<KeyVersion>();
 String content = "This is the content body!";
 for (int i = 0; i < number; i++) {
 String key = "ObjectToDelete-" + new Random().nextInt();
 ObjectMetadata metadata = new ObjectMetadata();
 metadata.setHeader("Subject", "Content-As-Object");
 metadata.setHeader("Content-Length", (long)content.length());
 PutObjectRequest request = new PutObjectRequest(bucketName, key,
 new ByteArrayInputStream(content.getBytes()), metadata)

 .withCannedAcl(CannedAccessControlList.AuthenticatedRead);
 PutObjectResult response = s3Client.putObject(request);
 KeyVersion keyVersion = new KeyVersion(key,
 response.getVersionId());
 keys.add(keyVersion);
 }
 return keys;
 }

 static void multiObjectNonVersionedDelete(List<KeyVersion> keys) {

 // Multi-object delete by specifying only keys (no version ID).
 DeleteObjectsRequest multiObjectDeleteRequest = new
 DeleteObjectsRequest(
 bucketName).withQuiet(false);

 // Create request that include only object key names.
 List<KeyVersion> justKeys = new ArrayList<KeyVersion>();
 for (KeyVersion key : keys) {
 justKeys.add(new KeyVersion(key.getKey()));
 }
 multiObjectDeleteRequest.setKeys(justKeys);
 // Execute DeleteObjects - Amazon S3 add delete marker for each
 object
 // deletion. The objects no disappear from your bucket (verify).
 DeleteObjectsResult delObjRes = null;
 try {
 delObjRes = s3Client.deleteObjects(multiObjectDeleteRequest);
 System.out.format("Successfully deleted all the %s items.\n",
 delObjRes.getDeletedObjects().size());
 } catch (MultiObjectDeleteException mode) {
 printDeleteResults(mode);
 }
 }
 static void printDeleteResults(MultiObjectDeleteException mode) {
 System.out.format("%s \n", mode.getMessage());
 System.out.format("No. of objects successfully deleted = %s\n",
 mode.getDeletedObjects().size());
 System.out.format("No. of objects failed to delete = %s\n",
 mode.getErrors().size());
 System.out.format("Printing error data...\n");
 for (DeleteError deleteError : mode.getErrors()){
 System.out.format("Object Key: %s\t%s\t%s\n",
 deleteError.getKey(), deleteError.getCode(),
 deleteError.getMessage());
 }
 }
}

API Version 2006-03-01
249

Amazon Simple Storage Service Developer Guide
Deleting Objects

Example 2: Multi-Object Delete (Version-Enabled Bucket)

The following Java code example uses the Multi-Object Delete API to delete objects from a version-
enabled bucket.

Before you can test the sample, you must create a sample bucket and provide the bucket name in the
example. You can use the AWS Management Console to create a bucket.

The example performs the following actions:

1. Enable versioning on the bucket.

2. Perform a versioned-delete.

The example first uploads the sample objects. In response, Amazon S3 returns the version IDs for
each sample object that you uploaded. The example then deletes these objects using the Multi-
Object Delete API. In the request, it specifies both the object keys and the version IDs (that is,
versioned delete).

3. Perform a non-versioned delete.

The example uploads the new sample objects. Then, it deletes the objects using the Multi-Object
API. However, in the request, it specifies only the object keys. In this case, Amazon S3 adds the
delete markers and the objects disappear from your bucket.

4. Delete the delete markers.

To illustrate how the delete markers work, the sample deletes the delete markers. In the Multi-Object
Delete request, it specifies the object keys and the version IDs of the delete markers it received in
the response in the preceding step. This action makes the objects reappear in your bucket.

For information about how to create and test a working sample, see Testing the Java Code
Examples (p. 565).

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.BucketVersioningConfiguration;
import com.amazonaws.services.s3.model.CannedAccessControlList;
import com.amazonaws.services.s3.model.DeleteObjectsRequest;
import com.amazonaws.services.s3.model.DeleteObjectsRequest.KeyVersion;
import com.amazonaws.services.s3.model.DeleteObjectsResult;
import com.amazonaws.services.s3.model.DeleteObjectsResult.DeletedObject;
import com.amazonaws.services.s3.model.MultiObjectDeleteException;
import
 com.amazonaws.services.s3.model.MultiObjectDeleteException.DeleteError;
import com.amazonaws.services.s3.model.ObjectMetadata;
import com.amazonaws.services.s3.model.PutObjectRequest;
import com.amazonaws.services.s3.model.PutObjectResult;
import
 com.amazonaws.services.s3.model.SetBucketVersioningConfigurationRequest;

public class DeleteMultipleObjectsVersionEnabledBucket {

 static String bucketName = "*** Provide a bucket name ***";
 static AmazonS3Client s3Client;

 public static void main(String[] args) throws IOException {

 try {
 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());

 // 1. Enable versioning on the bucket.
 enableVersioningOnBucket(s3Client, bucketName);

 // 2a. Upload sample objects.
 List<KeyVersion> keysAndVersions1 = putObjects(3);
 // 2b. Delete specific object versions.
 multiObjectVersionedDelete(keysAndVersions1);

 // 3a. Upload samples objects.
 List<KeyVersion> keysAndVersions2 = putObjects(3);
 // 3b. Delete objects using only keys. Amazon S3 creates a delete
 marker and
 // returns its version Id in the response.
 DeleteObjectsResult response =
 multiObjectNonVersionedDelete(keysAndVersions2);
 // 3c. Additional exercise - using multi-object versioned delete,
 remove the
 // delete markers received in the preceding response. This
 results in your objects
 // reappear in your bucket
 multiObjectVersionedDeleteRemoveDeleteMarkers(response);

 } catch (AmazonServiceException ase) {
 System.out.println("Caught an AmazonServiceException.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }

 static void enableVersioningOnBucket(AmazonS3Client s3Client,
 String bucketName) {
 BucketVersioningConfiguration config = new
 BucketVersioningConfiguration()
 .withStatus(BucketVersioningConfiguration.ENABLED);
 SetBucketVersioningConfigurationRequest
 setBucketVersioningConfigurationRequest = new
 SetBucketVersioningConfigurationRequest(
 bucketName, config);

 s3Client.setBucketVersioningConfiguration(setBucketVersioningConfigurationRequest);
 }

 static List<KeyVersion> putObjects(int number) {
 List<KeyVersion> keys = new ArrayList<KeyVersion>();
 String content = "This is the content body!";
 for (int i = 0; i < number; i++) {
 String key = "ObjectToDelete-" + new Random().nextInt();
 ObjectMetadata metadata = new ObjectMetadata();
 metadata.setHeader("Subject", "Content-As-Object");
 metadata.setHeader("Content-Length", (long)content.length());
 PutObjectRequest request = new PutObjectRequest(bucketName, key,
 new ByteArrayInputStream(content.getBytes()), metadata)

 .withCannedAcl(CannedAccessControlList.AuthenticatedRead);
 PutObjectResult response = s3Client.putObject(request);
 KeyVersion keyVersion = new KeyVersion(key,
 response.getVersionId());
 keys.add(keyVersion);
 }
 return keys;
 }

 static void multiObjectVersionedDelete(List<KeyVersion> keys) {
 DeleteObjectsRequest multiObjectDeleteRequest = new
 DeleteObjectsRequest(
 bucketName).withKeys(keys);

 DeleteObjectsResult delObjRes = null;
 try {
 delObjRes = s3Client.deleteObjects(multiObjectDeleteRequest);
 System.out.format("Successfully deleted all the %s items.\n",
 delObjRes.getDeletedObjects().size());
 } catch(MultiObjectDeleteException mode) {
 printDeleteResults(mode);
 }
 }

 static DeleteObjectsResult multiObjectNonVersionedDelete(List<KeyVersion>
 keys) {

 // Multi-object delete by specifying only keys (no version ID).
 DeleteObjectsRequest multiObjectDeleteRequest = new
 DeleteObjectsRequest(
 bucketName);

 // Create request that include only object key names.
 List<KeyVersion> justKeys = new ArrayList<KeyVersion>();
 for (KeyVersion key : keys) {
 justKeys.add(new KeyVersion(key.getKey()));
 }

 multiObjectDeleteRequest.setKeys(justKeys);
 // Execute DeleteObjects - Amazon S3 add delete marker for each
 object
 // deletion. The objects no disappear from your bucket (verify).
 DeleteObjectsResult delObjRes = null;
 try {
 delObjRes = s3Client.deleteObjects(multiObjectDeleteRequest);
 System.out.format("Successfully deleted all the %s items.\n",
 delObjRes.getDeletedObjects().size());
 } catch (MultiObjectDeleteException mode) {
 printDeleteResults(mode);
 }
 return delObjRes;
 }
 static void multiObjectVersionedDeleteRemoveDeleteMarkers(
 DeleteObjectsResult response) {

 List<KeyVersion> keyVersionList = new ArrayList<KeyVersion>();
 for (DeletedObject deletedObject : response.getDeletedObjects()) {
 keyVersionList.add(new KeyVersion(deletedObject.getKey(),
 deletedObject.getDeleteMarkerVersionId()));
 }
 // Create a request to delete the delete markers.
 DeleteObjectsRequest multiObjectDeleteRequest2 = new
 DeleteObjectsRequest(
 bucketName).withKeys(keyVersionList);

 // Now delete the delete marker bringing your objects back to the
 bucket.
 DeleteObjectsResult delObjRes = null;
 try {
 delObjRes = s3Client.deleteObjects(multiObjectDeleteRequest2);
 System.out.format("Successfully deleted all the %s items.\n",
 delObjRes.getDeletedObjects().size());
 } catch (MultiObjectDeleteException mode) {
 printDeleteResults(mode);
 }
 }
 static void printDeleteResults(MultiObjectDeleteException mode) {
 System.out.format("%s \n", mode.getMessage());
 System.out.format("No. of objects successfully deleted = %s\n",
 mode.getDeletedObjects().size());
 System.out.format("No. of objects failed to delete = %s\n",
 mode.getErrors().size());
 System.out.format("Printing error data...\n");
 for (DeleteError deleteError : mode.getErrors()){
 System.out.format("Object Key: %s\t%s\t%s\n",
 deleteError.getKey(), deleteError.getCode(),
 deleteError.getMessage());
 }
 }
}

API Version 2006-03-01
250

Amazon Simple Storage Service Developer Guide
Deleting Objects

Deleting Multiple Objects Using the AWS SDK for .NET

The following tasks guide you through using the AWS SDK for .NET classes to delete multiple objects
in a single HTTP request.

Deleting Multiple Objects (Non-Versioned Bucket)

1 Create an instance of the AmazonS3Client class.

2 Create an instance of the DeleteObjectsRequest class and provide list of the object
keys you want to delete.

3 Execute the AmazonS3Client.DeleteObjects method.

If one or more objects fail to delete, Amazon S3 throws a DeleteObjectsException.

The following C# code sample demonstrates the preceding steps.

DeleteObjectsRequest multiObjectDeleteRequest = new DeleteObjectsRequest();
multiObjectDeleteRequest.BucketName = bucketName;

multiObjectDeleteRequest.AddKey("<object Key>", null); // version ID is null.
multiObjectDeleteRequest.AddKey("<object Key>", null);
multiObjectDeleteRequest.AddKey("<object Key>", null);

try
{
 DeleteObjectsResponse response =
 client.DeleteObjects(multiObjectDeleteRequest);
 Console.WriteLine("Successfully deleted all the {0} items",
 response.DeletedObjects.Count);
}
catch (DeleteObjectsException e)
{
 // Process exception.
}

The DeleteObjectsRequest can also take the list of KeyVersion objects as parameter. For bucket
without versioning, version ID is null.

List<KeyVersion> keys = new List<KeyVersion>();
KeyVersion keyVersion = new KeyVersion
 {
 Key = key,
 VersionId = null // For buckets without versioning.
 };

keys.Add(keyVersion);
List<KeyVersion> keys = new List<KeyVersion>();
...
DeleteObjectsRequest multiObjectDeleteRequest = new DeleteObjectsRequest
{
 BucketName = bucketName,
 Objects = keys // This includes the object keys and null version IDs.
};

API Version 2006-03-01
251

Amazon Simple Storage Service Developer Guide
Deleting Objects

In the event of an exception, you can review the DeleteObjectsException to determine which
objects failed to delete and why as shown in the following C# code example.

DeleteObjectsResponse errorResponse = e.Response;
Console.WriteLine("No. of objects successfully deleted = {0}",
 errorResponse.DeletedObjects.Count);
Console.WriteLine("No. of objects failed to delete = {0}",
 errorResponse.DeleteErrors.Count);
Console.WriteLine("Printing error data...");
foreach (DeleteError deleteError in errorResponse.DeleteErrors)
{
 Console.WriteLine("Object Key: {0}\t{1}\t{2}", deleteError.Key,
 deleteError.Code, deleteError.Message);
}

The following tasks guide you through deleting objects from a version-enabled bucket.

Deleting Multiple Objects (Version-Enabled Bucket)

1 Create an instance of the AmazonS3Client class.

2 Create an instance of the DeleteObjectsRequest class and provide a list of object
keys and optionally the version IDs of the objects that you want to delete.

If you specify the version ID of the object you want to delete, Amazon S3 deletes the
specific object version. If you don't specify the version ID of the object that you want to
delete, Amazon S3 adds a delete marker. For more information, see Deleting One Object
Per Request (p. 238).

3 Execute the AmazonS3Client.DeleteObjects method.

The following C# code sample demonstrates the preceding steps.

List<KeyVersion> keysAndVersions = new List<KeyVersion>();
// provide a list of object keys and versions.

DeleteObjectsRequest multiObjectDeleteRequest = new DeleteObjectsRequest
 {
 BucketName = bucketName,
 Objects = keysAndVersions
 };

try
{
 DeleteObjectsResponse response =
 client.DeleteObjects(multiObjectDeleteRequest);
 Console.WriteLine("Successfully deleted all the {0} items",
 response.DeletedObjects.Count);
}
catch (DeleteObjectsException e)
{
 // Process exception.
}

API Version 2006-03-01
252

Amazon Simple Storage Service Developer Guide
Deleting Objects

Example 1: Multi-Object Delete (Non-Versioned Bucket)

The following C# code example uses the Multi-Object API to delete objects from a bucket that is
not version-enabled. The example first uploads the sample objects to the bucket and then uses the
DeleteObjects method to delete the objects in a single request. In the DeleteObjectsRequest,
the example specifies only the object key names because the version IDs are null.

For information about how to create and test a working sample, see Running the Amazon S3 .NET
Code Examples (p. 567).

using System;
using System.Collections.Generic;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class DeleteMultipleObjects
 {
 static string bucketName = "*** Provide a bucket name ***";
 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 using (client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 var keysAndVersions = PutObjects(3);
 // Delete the objects.
 MultiObjectDelete(keysAndVersions);
 }

 Console.WriteLine("Click ENTER to continue.....");
 Console.ReadLine();
 }

 static void MultiObjectDelete(List<KeyVersion> keys)
 {
 // a. multi-object delete by specifying the key names and version
 IDs.
 DeleteObjectsRequest multiObjectDeleteRequest = new
 DeleteObjectsRequest
 {
 BucketName = bucketName,
 Objects = keys // This includes the object keys and null
 version IDs.
 };
 multiObjectDeleteRequest.AddKey("AWSSDKcopy2.dll", null);
 try
 {
 DeleteObjectsResponse response =
 client.DeleteObjects(multiObjectDeleteRequest);
 Console.WriteLine("Successfully deleted all the {0} items",
 response.DeletedObjects.Count);
 }
 catch (DeleteObjectsException e)
 {
 PrintDeletionReport(e);
 }
 }

 private static void PrintDeletionReport(DeleteObjectsException e)
 {
 // var errorResponse = e.ErrorResponse;
 DeleteObjectsResponse errorResponse = e.Response;
 Console.WriteLine("x {0}", errorResponse.DeletedObjects.Count);

 Console.WriteLine("No. of objects successfully deleted = {0}",
 errorResponse.DeletedObjects.Count);
 Console.WriteLine("No. of objects failed to delete = {0}",
 errorResponse.DeleteErrors.Count);

 Console.WriteLine("Printing error data...");
 foreach (DeleteError deleteError in errorResponse.DeleteErrors)
 {
 Console.WriteLine("Object Key: {0}\t{1}\t{2}",
 deleteError.Key, deleteError.Code, deleteError.Message);
 }
 }

 static List<KeyVersion> PutObjects(int number)
 {
 List<KeyVersion> keys = new List<KeyVersion>();
 for (int i = 0; i < number; i++)
 {
 string key = "ExampleObject-" + new System.Random().Next();
 PutObjectRequest request = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = key,
 ContentBody = "This is the content body!",

 };

 PutObjectResponse response = client.PutObject(request);
 KeyVersion keyVersion = new KeyVersion
 {
 Key = key,
 // For non-versioned bucket operations, we only need
 object key.
 // VersionId = response.VersionId
 };
 keys.Add(keyVersion);
 }
 return keys;
 }
 }
}

API Version 2006-03-01
253

Amazon Simple Storage Service Developer Guide
Deleting Objects

Example 2: Multi-Object Delete (Version-Enabled Bucket)

The following C# code example uses the Multi-Object API to delete objects from a version-enabled
bucket. In addition to showing the DeleteObjects Multi-Object Delete API usage, it also illustrates how
versioning works in a version-enabled bucket.

Before you can test the sample, you must create a sample bucket and provide the bucket name in the
example. You can use the AWS Management Console to create a bucket.

The example performs the following actions:

1. Enable versioning on the bucket.

2. Perform a versioned-delete.

The example first uploads the sample objects. In response, Amazon S3 returns the version IDs for
each sample object that you uploaded. The example then deletes these objects using the Multi-
Object Delete API. In the request, it specifies both the object keys and the version IDs (that is,
versioned delete).

3. Perform a non-versioned delete.

The example uploads the new sample objects. Then, it deletes the objects using the Multi-Object
API. However, in the request, it specifies only the object keys. In this case, Amazon S3 adds the
delete markers and the objects disappear from your bucket.

4. Delete the delete markers.

To illustrate how the delete markers work, the sample deletes the delete markers. In the Multi-Object
Delete request, it specifies the object keys and the version IDs of the delete markers it received in
the response in the preceding step. This action makes the objects reappear in your bucket.

For information about how to create and test a working sample, see Running the Amazon S3 .NET
Code Examples (p. 567).

using System;
using System.Collections.Generic;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class DeleteMultipleObjectsVersionedBucket
 {
 static string bucketName = "*** Provide a bucket name ***";
 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 using (client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {

 // 1. Enable versioning on the bucket.
 EnableVersioningOnBucket(bucketName);

 // 2a. Upload the sample objects.
 var keysAndVersions1 = PutObjects(3);
 // 2b. Delete the specific object versions.
 VersionedDelete(keysAndVersions1);

 // 3a. Upload the sample objects.
 var keysAndVersions2 = PutObjects(3);

 // 3b. Delete objects using only keys. Amazon S3 creates a
 delete marker and
 // returns its version Id in the response.
 List<DeletedObject> deletedObjects =
 NonVersionedDelete(keysAndVersions2);

 // 3c. Additional exercise - using a multi-object versioned
 delete, remove the
 // delete markers received in the preceding response. This
 results in your objects
 // reappearing in your bucket.
 RemoveMarkers(deletedObjects);
 }

 Console.WriteLine("Click ENTER to continue.....");
 Console.ReadLine();
 }

 private static void PrintDeletionReport(DeleteObjectsException e)
 {
 var errorResponse = e.Response;
 Console.WriteLine("No. of objects successfully deleted = {0}",
 errorResponse.DeletedObjects.Count);
 Console.WriteLine("No. of objects failed to delete = {0}",
 errorResponse.DeleteErrors.Count);
 Console.WriteLine("Printing error data...");
 foreach (DeleteError deleteError in errorResponse.DeleteErrors)
 {
 Console.WriteLine("Object Key: {0}\t{1}\t{2}",
 deleteError.Key, deleteError.Code, deleteError.Message);
 }
 }

 static void EnableVersioningOnBucket(string bucketName)
 {
 PutBucketVersioningRequest setBucketVersioningRequest = new
 PutBucketVersioningRequest
 {
 BucketName = bucketName,
 VersioningConfig = new S3BucketVersioningConfig { Status =
 VersionStatus.Enabled }
 };
 client.PutBucketVersioning(setBucketVersioningRequest);
 }

 static void VersionedDelete(List<KeyVersion> keys)
 {
 // a. Perform a multi-object delete by specifying the key names
 and version IDs.
 DeleteObjectsRequest multiObjectDeleteRequest = new
 DeleteObjectsRequest
 {
 BucketName = bucketName,
 Objects = keys // This includes the object keys and specific
 version IDs.
 };
 try
 {
 Console.WriteLine("Executing VersionedDelete...");
 DeleteObjectsResponse response =
 client.DeleteObjects(multiObjectDeleteRequest);
 Console.WriteLine("Successfully deleted all the {0} items",
 response.DeletedObjects.Count);
 }
 catch (DeleteObjectsException e)
 {
 PrintDeletionReport(e);
 }
 }

 static List<DeletedObject> NonVersionedDelete(List<KeyVersion> keys)
 {
 // Create a request that includes only the object key names.
 DeleteObjectsRequest multiObjectDeleteRequest = new
 DeleteObjectsRequest();
 multiObjectDeleteRequest.BucketName = bucketName;

 foreach (var key in keys)
 {
 multiObjectDeleteRequest.AddKey(key.Key);
 }
 // Execute DeleteObjects - Amazon S3 add delete marker for each
 object
 // deletion. The objects disappear from your bucket.
 // You can verify that using the Amazon S3 console.
 DeleteObjectsResponse response;
 try
 {
 Console.WriteLine("Executing NonVersionedDelete...");
 response = client.DeleteObjects(multiObjectDeleteRequest);
 Console.WriteLine("Successfully deleted all the {0} items",
 response.DeletedObjects.Count);
 }
 catch (DeleteObjectsException e)
 {
 PrintDeletionReport(e);
 throw; // Some deletes failed. Investigate before continuing.
 }
 // This response contains the DeletedObjects list which we use to
 delete the delete markers.
 return response.DeletedObjects;
 }

 private static void RemoveMarkers(List<DeletedObject> deletedObjects)
 {
 List<KeyVersion> keyVersionList = new List<KeyVersion>();

 foreach (var deletedObject in deletedObjects)
 {
 KeyVersion keyVersion = new KeyVersion
 {
 Key = deletedObject.Key,
 VersionId = deletedObject.DeleteMarkerVersionId
 };
 keyVersionList.Add(keyVersion);
 }
 // Create another request to delete the delete markers.
 var multiObjectDeleteRequest = new DeleteObjectsRequest
 {
 BucketName = bucketName,
 Objects = keyVersionList
 };

 // Now, delete the delete marker to bring your objects back to
 the bucket.
 try
 {
 Console.WriteLine("Removing the delete markers");
 var deleteObjectResponse =
 client.DeleteObjects(multiObjectDeleteRequest);
 Console.WriteLine("Successfully deleted all the {0} delete
 markers",

 deleteObjectResponse.DeletedObjects.Count);
 }
 catch (DeleteObjectsException e)
 {
 PrintDeletionReport(e);
 }
 }

 static List<KeyVersion> PutObjects(int number)
 {
 List<KeyVersion> keys = new List<KeyVersion>();

 for (int i = 0; i < number; i++)
 {
 string key = "ObjectToDelete-" + new System.Random().Next();
 PutObjectRequest request = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = key,
 ContentBody = "This is the content body!",

 };

 PutObjectResponse response = client.PutObject(request);
 KeyVersion keyVersion = new KeyVersion
 {
 Key = key,
 VersionId = response.VersionId
 };

 keys.Add(keyVersion);
 }
 return keys;
 }
 }
}

API Version 2006-03-01
254

Amazon Simple Storage Service Developer Guide
Deleting Objects

Deleting Multiple Objects Using the AWS SDK for PHP

This topic guides you through using classes from the AWS SDK for PHP to delete multiple objects from
versioned and non-versioned Amazon S3 buckets. For more information about versioning, see Using
Versioning (p. 423).

Note
This topic assumes that you are already following the instructions for Using the AWS SDK
for PHP and Running PHP Examples (p. 567) and have the AWS SDK for PHP properly
installed.

The following tasks guide you through using the PHP SDK classes to delete multiple objects from a
non-versioned bucket.

Deleting Multiple Objects (Non-Versioned Bucket)

1 Create an instance of an Amazon S3 client by using the Aws\S3\S3Client class factory()
method.

2 Execute the Aws\S3\S3Client::deleteObjects() method. You need to provide a bucket
name and an array of object keys as parameters. You can specify up to 1000 keys.

The following PHP code sample demonstrates deleting multiple objects from an Amazon S3 non-
versioned bucket.

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname1 = '*** Your Object Key1 ***';
$keyname2 = '*** Your Object Key2 ***';
$keyname3 = '*** Your Object Key3 ***';

$s3 = S3Client::factory();

// Delete objects from a bucket
$result = $s3->deleteObjects(array(
 'Bucket' => $bucket,
 'Objects' => array(
 array('Key' => $keyname1),
 array('Key' => $keyname2),
 array('Key' => $keyname3),
)
));

The following tasks guide you through deleting multiple objects from an Amazon S3 version-enabled
bucket.

Deleting Multiple Objects (Version-Enabled Bucket)

1 Create an instance of an Amazon S3 client by using the Aws\S3\S3Client class
factory() method.

2 Execute the Aws\S3\S3Client::deleteObjects() method and provide a list of
objects keys and optionally the version IDs of the objects that you want to delete.

If you specify version ID of the object that you want to delete, Amazon S3 deletes the
specific object version. If you don't specify the version ID of the object that you want to

API Version 2006-03-01
255

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_deleteObjects

Amazon Simple Storage Service Developer Guide
Deleting Objects

delete, Amazon S3 adds a delete marker. For more information, see Deleting One Object
Per Request (p. 238).

The following PHP code sample demonstrates deleting multiple objects from an Amazon S3 version-
enabled bucket.

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';
$versionId1 = '*** Your Object Key Version ID1 ***';
$versionId2 = '*** Your Object Key Version ID2 ***';
$versionId3 = '*** Your Object Key Version ID3 ***';

$s3 = S3Client::factory();

// Delete object versions from a versioning-enabled bucket.
$result = $s3->deleteObjects(array(
 'Bucket' => $bucket,
 'Objects' => array(
 array('Key' => $keyname, 'VersionId' => $versionId1),
 array('Key' => $keyname, 'VersionId' => $versionId2),
 array('Key' => $keyname, 'VersionId' => $versionId3),
)
));

Amazon S3 returns a response that shows the objects that were deleted and objects it could not delete
because of errors (for example, permission errors).

The following PHP code sample prints the object keys for objects that were deleted. It also prints the
object keys that were not deleted and the related error messages.

echo "The following objects were deleted successfully:\n";
foreach ($result['Deleted'] as $object) {
 echo "Key: {$object['Key']}, VersionId: {$object['VersionId']}\n";
}

echo "\nThe following objects could not be deleted:\n";
foreach ($result['Errors'] as $object) {
 echo "Key: {$object['Key']}, VersionId: {$object['VersionId']}\n";
}

API Version 2006-03-01
256

Amazon Simple Storage Service Developer Guide
Deleting Objects

Example 1: Multi-Object Delete (Non-Versioned Bucket)

The following PHP code example uses the deleteObjects() method to delete multiple objects from
a bucket that is not version-enabled.

The example performs the following actions:

1. Creates a few objects by using the Aws\S3\S3Client::putObject() method.

2. Lists the objects and gets the keys of the created objects using the Aws\S3\S3Client::listObjects()
method.

3. Performs a non-versioned delete by using the Aws\S3\S3Client::deleteObjects() method.

For information about running the PHP examples in this guide, go to Running PHP
Examples (p. 568).

<?php

// Include the AWS SDK using the Composer autoloader.
require 'vendor/autoload.php';

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';

// Instantiate the client.
$s3 = S3Client::factory();

// 1. Create a few objects.
for ($i = 1; $i <= 3; $i++) {
 $s3->putObject(array(
 'Bucket' => $bucket,
 'Key' => "key{$i}",
 'Body' => "content {$i}",
));
}

// 2. List the objects and get the keys.
$keys = $s3->listObjects(array('Bucket' => $bucket))
 ->getPath('Contents/*/Key');

// 3. Delete the objects.
$result = $s3->deleteObjects(array(
 'Bucket' => $bucket,
 'Objects' => array_map(function ($key) {
 return array('Key' => $key);
 }, $keys),
));

API Version 2006-03-01
257

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_putObject
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_listObjects

Amazon Simple Storage Service Developer Guide
Deleting Objects

Example 2: Multi-Object Delete (Version-Enabled Bucket)

The following PHP code example uses the deleteObjects() method to delete multiple objects from
a version-enabled bucket.

The example performs the following actions:

1. Enables versioning on the bucket by using the Aws\S3\S3Client::putBucketVersioning() method.

2. Creates a few versions of an object by using the Aws\S3\S3Client::putObject() method.

3. Lists the objects versions and gets the keys and version IDs for the created object versions using
the Aws\S3\S3Client::listObjectVersions() method.

4. Performs a versioned-delete by using the Aws\S3\S3Client::deleteObjects() method with
the retrieved keys and versions IDs.

5. Disables versioning on the bucket by using the Aws\S3\S3Client::putBucketVersioning()
method.

For information about running the PHP examples in this guide, go to Running PHP
Examples (p. 568).

<?php

// Include the AWS SDK using the Composer autoloader.
require 'vendor/autoload.php';

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

// Instantiate the client.
$s3 = S3Client::factory();

// 1. Enable object versioning for the bucket.
$s3->putBucketVersioning(array(
 'Bucket' => $bucket,
 'Status' => 'Enabled',
));

// 2. Create a few versions of an object.
for ($i = 1; $i <= 3; $i++) {
 $s3->putObject(array(
 'Bucket' => $bucket,
 'Key' => $keyname,
 'Body' => "content {$i}",
));
}

// 3. List the objects versions and get the keys and version IDs.
$versions = $s3->listObjectVersions(array('Bucket' => $bucket))
 ->getPath('Versions');

// 4. Delete the object versions.
$result = $s3->deleteObjects(array(
 'Bucket' => $bucket,
 'Objects' => array_map(function ($version) {
 return array(
 'Key' => $version['Key'],
 'VersionId' => $version['VersionId']
);
 }, $versions),
));

echo "The following objects were deleted successfully:\n";
foreach ($result['Deleted'] as $object) {
 echo "Key: {$object['Key']}, VersionId: {$object['VersionId']}\n";
}

echo "\nThe following objects could not be deleted:\n";
foreach ($result['Errors'] as $object) {
 echo "Key: {$object['Key']}, VersionId: {$object['VersionId']}\n";
}

// 5. Suspend object versioning for the bucket.
$s3->putBucketVersioning(array(
 'Bucket' => $bucket,
 'Status' => 'Suspended',
));

API Version 2006-03-01
258

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_putBucketVersioning
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_listObjectVersions

Amazon Simple Storage Service Developer Guide
Restoring Archived Objects

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::factory() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::deleteObject() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::listObjects() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::listObjectVersions() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::putObject() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::putBucketVersioning() Method

• AWS SDK for PHP for Amazon S3

• AWS SDK for PHP Documentation

Deleting Multiple Objects Using the REST API

You can use the AWS SDKs to delete multiple objects using the Multi-Object Delete API. However, if
your application requires it, you can send REST requests directly. For more information, go to Delete
Multiple Objects in the Amazon Simple Storage Service API Reference.

Restoring Archived Objects
Objects archived to Amazon Glacier are not accessible in real-time. You must first initiate a restore
request and then wait until a temporary copy of the object is available for the duration that you specify
in the request. Restore jobs typically complete in three to five hours, so it is important that you archive
only objects that you will not need to access in real time. For more information about archiving objects
to Amazon Glacier, see Transitioning to the GLACIER storage class (Object Archival) (p. 111).

After you receive a temporary copy of the restored object, the object's storage class remains GLACIER
(a GET or HEAD request will return GLACIER as the storage class). Note that when you restore an
archive you pay for both the archive (GLACIER rate) and a copy you restored temporarily (RRS rate).
For information about pricing, see Amazon S3 Pricing.

You can restore an archived object programmatically or by using the Amazon S3 console. Amazon S3
processes only one restore request at a time per object. The following topics describe how to use both
the console and the Amazon S3 API to check the restoration status and to find out when Amazon S3
will delete the restored copy:

Topics

• Restore an Archived Object Using the Amazon S3 Console (p. 259)

• Restore an Archived Object Using the AWS SDK for Java (p. 261)

• Restore an Archived Object Using the AWS SDK for .NET (p. 262)

• Restore an Archived Object Using the REST API (p. 265)

Restore an Archived Object Using the Amazon S3 Console

You can use the Amazon S3 console to restore a copy of an object that has been archived to Amazon
Glacier. In the console, you right-click the object and then choose Initiate Restore.

API Version 2006-03-01
259

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_deleteObject
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_listObjects
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_listObjectVersions
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_putObject
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_putBucketVersioning
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/index.html
http://docs.aws.amazon.com/AmazonS3/latest/API/multiobjectdeleteapi.html
http://docs.aws.amazon.com/AmazonS3/latest/API/multiobjectdeleteapi.html
http://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Restoring Archived Objects

You specify the number of days you want the object copy restored.

It takes about three to five hours for Amazon S3 to complete the restoration. The object properties in
the console shows the object restoration status.

When object copy is restored, the object properties in the console shows the object is restored and
when Amazon S3 will remove the restored copy. The console also gives you option to modify the
restoration period.

Note that when you restore an archive you are paying for both the archive and a copy you restored
temporarily. For information about pricing, see Amazon S3 Pricing.

Amazon S3 restores a temporary copy of the object only for the specified duration. After that Amazon
S3 deletes the restored object copy. You can modify the expiration period of a restored copy, by

API Version 2006-03-01
260

http://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Restoring Archived Objects

reissuing a restore, in which case Amazon S3 updates the expiration period, relative to the current
time.

Amazon S3 calculates expiration time of the restored object copy by adding the number of days
specified in the restoration request to the current time and rounding the resulting time to the next day
midnight UTC. For example, if an object was created on 10/15/2012 10:30 am UTC and the restoration
period was specified as 3 days, then the restored copy expires on 10/19/2012 00:00 UTC at which time
Amazon S3 delete the object copy.

You can restore an object copy for any number of days. However you should restore objects only
for the duration you need because of the storage costs associated with the object copy. For pricing
information, see Amazon S3 Pricing.

Restore an Archived Object Using the AWS SDK for Java

The following tasks guide you through use the AWS SDK for Java to initiate a restoration of an
archived object.

Downloading Objects

1 Create an instance of the AmazonS3Client class.

2 Create an instance of RestoreObjectRequest class by providing bucket name, object
key to restore and the number of days for which you the object copy restored.

3 Execute one of the AmazonS3.RestoreObject methods to initiate the archive
restoration.

The following Java code sample demonstrates the preceding tasks.

String bucketName = "examplebucket";
String objectkey = "examplekey";
AmazonS3Client s3Client = new AmazonS3Client();

RestoreObjectRequest request = new RestoreObjectRequest(bucketName,
 objectkey, 2);
s3Client.restoreObject(request);

Amazon S3 maintains the restoration status in the object metadata. You can retrieve object metadata
and check the value of the RestoreInProgress property as shown in the following Java code
snippet.

String bucketName = "examplebucket";
String objectkey = "examplekey";
AmazonS3Client s3Client = new AmazonS3Client();

client = new AmazonS3Client();

GetObjectMetadataRequest request = new GetObjectMetadataRequest(bucketName,
 objectKey);

ObjectMetadata response = s3Client.getObjectMetadata(request);

Boolean restoreFlag = response.getOngoingRestore();
System.out.format("Restoration status: %s.\n",
 (restoreFlag == true) ? "in progress" : "finished");

API Version 2006-03-01
261

http://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Restoring Archived Objects

Example

The following Java code example initiates a restoration request for the specified archived object. You
must update the code and provide a bucket name and an archived object key name. For instructions
on how to create and test a working sample, see Testing the Java Code Examples (p. 565).

import java.io.IOException;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.AmazonS3Exception;
import com.amazonaws.services.s3.model.GetObjectMetadataRequest;
import com.amazonaws.services.s3.model.ObjectMetadata;
import com.amazonaws.services.s3.model.RestoreObjectRequest;

public class RestoreArchivedObject {

 public static String bucketName = "*** Provide bucket name ***";
 public static String objectKey = "*** Provide object key name ***";
 public static AmazonS3Client s3Client;

 public static void main(String[] args) throws IOException {
 AmazonS3Client s3Client = new AmazonS3Client(new
 ProfileCredentialsProvider());

 try {

 RestoreObjectRequest requestRestore = new
 RestoreObjectRequest(bucketName, objectKey, 2);
 s3Client.restoreObject(requestRestore);

 GetObjectMetadataRequest requestCheck = new
 GetObjectMetadataRequest(bucketName, objectKey);
 ObjectMetadata response = s3Client.getObjectMetadata(requestCheck);

 Boolean restoreFlag = response.getOngoingRestore();
 System.out.format("Restoration status: %s.\n",
 (restoreFlag == true) ? "in progress" : "finished");

 } catch (AmazonS3Exception amazonS3Exception) {
 System.out.format("An Amazon S3 error occurred. Exception: %s",
 amazonS3Exception.toString());
 } catch (Exception ex) {
 System.out.format("Exception: %s", ex.toString());
 }
 }
}

Restore an Archived Object Using the AWS SDK for .NET

The following tasks guide you through using the AWS SDK for .NET to initiate a restoration of an
archived object.

Downloading Objects

1 Create an instance of the AmazonS3 class.

API Version 2006-03-01
262

Amazon Simple Storage Service Developer Guide
Restoring Archived Objects

2 Create an instance of RestoreObjectRequest class by providing bucket name, object
key to restore and the number of days for which you the object copy restored.

3 Execute one of the AmazonS3.RestoreObject methods to initiate the archive
restoration.

The following C# code sample demonstrates the preceding tasks.

IAmazonS3 client;
string bucketName = "examplebucket";
string objectKey = "examplekey";

client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1);

RestoreObjectRequest restoreRequest = new RestoreObjectRequest()
 {
 BucketName = bucketName,
 Key = objectKey,
 Days = 2
 };

client.RestoreObject(restoreRequest);

Amazon S3 maintains the restoration status in the object metadata. You can retrieve object metadata
and check the value of the RestoreInProgress property as shown in the following C# code snippet.

IAmazonS3 client;
string bucketName = "examplebucket";
string objectKey = "examplekey";

client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1);

GetObjectMetadataRequest metadataRequest = new GetObjectMetadataRequest()
{
 BucketName = bucketName,
 Key = objectKey
};
GetObjectMetadataResponse response =
 client.GetObjectMetadata(metadataRequest);
Console.WriteLine("Restoration status: {0}", response.RestoreInProgress);
if (response.RestoreInProgress == false)
 Console.WriteLine("Restored object copy expires on: {0}",
 response.RestoreExpiration);

API Version 2006-03-01
263

Amazon Simple Storage Service Developer Guide
Restoring Archived Objects

Example

The following C# code example initiates a restoration request for the specified archived object.
You must update the code and provide a bucket name and an archived object key name. For
instructions on how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 567).

using System;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class RestoreArchivedObject
 {
 static string bucketName = "*** provide bucket name ***";
 static string objectKey = "*** archived object keyname ***";

 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 try
 {
 using (client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 RestoreObject(client, bucketName, objectKey);
 CheckRestorationStatus(client, bucketName, objectKey);
 }

 Console.WriteLine("Example complete. To continue, click
 Enter...");
 Console.ReadKey();
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 Console.WriteLine("S3 error occurred. Exception: " +
 amazonS3Exception.ToString());
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.ToString());
 }
 }

 static void RestoreObject(IAmazonS3 client, string bucketName, string
 objectKey)
 {
 RestoreObjectRequest restoreRequest = new RestoreObjectRequest
 {
 BucketName = bucketName,
 Key = objectKey,
 Days = 2
 };
 RestoreObjectResponse response =
 client.RestoreObject(restoreRequest);
 }

 static void CheckRestorationStatus(IAmazonS3 client, string
 bucketName, string objectKey)
 {
 GetObjectMetadataRequest metadataRequest = new
 GetObjectMetadataRequest
 {
 BucketName = bucketName,
 Key = objectKey
 };
 GetObjectMetadataResponse response =
 client.GetObjectMetadata(metadataRequest);
 Console.WriteLine("Restoration status: {0}",
 response.RestoreInProgress);
 if (response.RestoreInProgress == false)
 Console.WriteLine("Restored object copy expires on: {0}",
 response.RestoreExpiration);
 }
 }
}

API Version 2006-03-01
264

Amazon Simple Storage Service Developer Guide
Restoring Archived Objects

Restore an Archived Object Using the REST API

Amazon S3 provides an API for you to initiate an archive restoration. For more information, go to POST
Object restore in the Amazon Simple Storage Service API Reference.

API Version 2006-03-01
265

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html

Amazon Simple Storage Service Developer Guide
Introduction

Managing Access Permissions to
Your Amazon S3 Resources

By default, all Amazon S3 resources—buckets, objects, and related subresources (for example,
lifecycle configuration and website configuration)—are private: only the resource owner, an AWS
account that created it, can access the resource. The resource owner can optionally grant access
permissions to others by writing an access policy.

Amazon S3 offers access policy options broadly categorized as resource-based policies and user
policies. Access policies you attach to your resources (buckets and objects) are referred to as
resource-based policies. For example, bucket policies and access control lists (ACLs) are resource-
based policies. You can also attach access policies to users in your account. These are called user
policies. You may choose to use resource-based policies, user policies, or some combination of
these to manage permissions to your Amazon S3 resources. The introductory topics provide general
guidelines for managing permissions.

We recommend you first review the access control overview topics. For more information, see
Introduction to Managing Access Permissions to Your Amazon S3 Resources (p. 266). Then for more
information about specific access policy options, see the following topics:

• Using Bucket Policies and User Policies (p. 308)

• Managing Access with ACLs (p. 364)

Introduction to Managing Access Permissions to
Your Amazon S3 Resources

Topics

• Overview of Managing Access (p. 267)

• How Amazon S3 Authorizes a Request (p. 272)

• Guidelines for Using the Available Access Policy Options (p. 277)

• Example Walkthroughs: Managing Access to Your Amazon S3 Resources (p. 280)

The topics in this section provide an overview of managing access permissions to your Amazon S3
resources and provides guidelines for when to use which access control method. The topic also
provides introductory example walkthroughs. We recommend you review these topics in order.

API Version 2006-03-01
266

Amazon Simple Storage Service Developer Guide
Overview

Overview of Managing Access
Topics

• Amazon S3 Resources (p. 267)

• Resource Operations (p. 268)

• Managing Access to Resources (Access Policy Options) (p. 268)

• So Which Access Control Method Should I Use? (p. 271)

• Related Topics (p. 271)

When granting permissions, you decide who is getting them, which Amazon S3 resources they are
getting permissions for, and specific actions you want to allow on those resources.

Amazon S3 Resources

Buckets and objects are primary Amazon S3 resources, and both have associated subresources. For
example, bucket subresources include the following:

• lifecycle – Stores lifecycle configuration information (see Object Lifecycle Management (p. 109)).

• website – Stores website configuration information if you configure your bucket for website hosting
(see Hosting a Static Website on Amazon S3 (p. 449).

• versioning – Stores versioning configuration (see PUT Bucket versioning).

• policy and acl (Access Control List) – Store access permission information for the bucket.

• cors (Cross-Origin Resource Sharing) – Supports configuring your bucket to allow cross-origin
requests (see Cross-Origin Resource Sharing (CORS) (p. 131)).

• logging – Enables you to request Amazon S3 to save bucket access logs.

Object subresources include the following:

• acl – Stores a list of access permissions on the object. This topic discusses how to use this
subresource to manage object permissions (see Managing Access with ACLs (p. 364)).

• restore – Supports temporarily restoring an archived object (see POST Object restore). An object
in the Glacier storage class is an archived object. To access the object, you must first initiate a
restore request, which restores a copy of the archived object. In the request, you specify the number
of days that you want the restored copy to exist. For more information about archiving objects, see
Object Lifecycle Management (p. 109).

About the Resource Owner

By default, all Amazon S3 resources are private. Only a resource owner can access the resource. The
resource owner refers to the AWS account that creates the resource. For example:

• The AWS account that you use to create buckets and objects owns those resources.

• If you create an AWS Identity and Access Management (IAM) user in your AWS account, your AWS
account is the parent owner. If the IAM user uploads an object, the parent account, to which the user
belongs, owns the object.

• A bucket owner can grant cross-account permissions to another AWS account (or users in another
account) to upload objects. In this case, the AWS account that uploads objects owns those objects.
The bucket owner does not have permissions on the objects that other accounts own, with the
following exceptions:

• The bucket owner pays the bills. The bucket owner can deny access to any objects, or delete any
objects in the bucket, regardless of who owns them.

API Version 2006-03-01
267

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTVersioningStatus.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html

Amazon Simple Storage Service Developer Guide
Overview

• The bucket owner can archive any objects or restore archived objects regardless of who owns
them. Archival refers to the storage class used to store the objects. For more information, see
Object Lifecycle Management (p. 109).

Important
AWS recommends not using the root credentials of your AWS account to make requests.
Instead, create an IAM user, and grant that user full access. We refer to these users as
administrator users. You can use the administrator user credentials, instead of root credentials
of your account, to interact with AWS and perform tasks, such as create a bucket, create
users, and grant them permissions. For more information, go to Root Account Credentials vs.
IAM User Credentials in the AWS General Reference and IAM Best Practices in the IAM User
Guide.

The following diagram shows an AWS account owning resources, the IAM users, buckets, and objects.

Resource Operations

Amazon S3 provides a set of operations to work with the Amazon S3 resources. For a list of available
operations, go to Operations on Buckets and Operations on Objects in the Amazon Simple Storage
Service API Reference.

Managing Access to Resources (Access Policy Options)

Managing access refers to granting others (AWS accounts and users) permission to perform the
resource operations by writing an access policy. For example, you can grant PUT Object permission
to a user in an AWS account so the user can upload objects to your bucket. In addition to granting
permissions to individual users and accounts, you can grant permissions to everyone (also referred
as anonymous access) or to all authenticated users (users with AWS credentials). For example, if you
configure your bucket as a website, you may want to make objects public by granting the GET Object
permission to everyone.

Access policy describes who has access to what. You can associate an access policy with a resource
(bucket and object) or a user. Accordingly, you can categorize the available Amazon S3 access
policies as follows:

• Resource-based policies – Bucket policies and access control lists (ACLs) are resource-based
because you attach them to your Amazon S3 resources.

API Version 2006-03-01
268

http://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
http://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketOps.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectOps.html

Amazon Simple Storage Service Developer Guide
Overview

• ACL – Each bucket and object has an ACL associated with it. An ACL is a list of grants identifying
grantee and permission granted. You use ACLs to grant basic read/write permissions to other
AWS accounts. ACLs use an Amazon S3–specific XML schema.

The following is an example bucket ACL. The grant in the ACL shows a bucket owner as having
full control permission.

<?xml version="1.0" encoding="UTF-8"?>
<AccessControlPolicy xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Owner>
 <ID>*** Owner-Canonical-User-ID ***</ID>
 <DisplayName>owner-display-name</DisplayName>
 </Owner>
 <AccessControlList>
 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="Canonical User">
 <ID>*** Owner-Canonical-User-ID ***</ID>
 <DisplayName>display-name</DisplayName>
 </Grantee>
 <Permission>FULL_CONTROL</Permission>
 </Grant>
 </AccessControlList>
</AccessControlPolicy>

Both bucket and object ACLs use the same XML schema.

• Bucket Policy – For your bucket, you can add a bucket policy to grant other AWS accounts or IAM
users permissions for the bucket and the objects in it. Any object permissions apply only to the
objects that the bucket owner creates. Bucket policies supplement, and in many cases, replace
ACL-based access policies.

The following is an example bucket policy. You express bucket policy (and user policy) using a
JSON file. The policy grants anonymous read permission on all objects in a bucket. The bucket
policy has one statement, which allows the s3:GetObject action (read permission) on objects in
a bucket named examplebucket. By specifying the principal with a wild card (*), the policy
grants anonymous access.

API Version 2006-03-01
269

Amazon Simple Storage Service Developer Guide
Overview

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect":"Allow",
 "Principal": "*",
 "Action":["s3:GetObject"],
 "Resource":["arn:aws:s3:::examplebucket/*"]
 }
]
}

• User policies – You can use AWS Identity and Access Management (IAM) to manage access to
your Amazon S3 resources. Using IAM, you can create IAM users, groups, and roles in your account
and attach access policies to them granting them access to AWS resources including Amazon S3.

For more information about IAM, go to AWS Identity and Access Management (IAM) product detail
page.

The following is an example of a user policy. You cannot grant anonymous permissions in an IAM
user policy, because the policy is attached to a user. The example policy allows the associated user
that it's attached to perform six different Amazon S3 actions on a bucket and the objects in it. You
can attach this policy to a specific IAM user, group, or role.

{
 "Statement": [
 {
 "Effect":"Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:DeleteObject",
 "s3:ListAllMyBuckets",
 "s3:GetBucketLocation",
 "s3:ListBucket"
],
 "Resource":"arn:aws:s3:::examplebucket/*"
 }
]
}

API Version 2006-03-01
270

http://aws.amazon.com/iam/

Amazon Simple Storage Service Developer Guide
Overview

When Amazon S3 receives a request, it must evaluate all the access policies to determine whether to
authorize or deny the request. For more information about how Amazon S3 evaluates these policies,
see How Amazon S3 Authorizes a Request (p. 272).

So Which Access Control Method Should I Use?

With the options available to write an access policy, the following questions arise:

• When should I use which access control method? For example, to grant bucket permissions, should
I use bucket policy or bucket ACL? I own a bucket and the objects in the bucket. Should I use a
resource-based access policy or an IAM user policy? If I use a resource-based access policy, should
I use a bucket policy or an object ACL to manage object permissions?

• I own a bucket, but I don't own all of the objects in it. How are access permissions managed for the
objects that somebody else owns?

• If I grant access by using a combination of these access policy options, how does Amazon S3
determine if a user has permission to perform a requested operation?

The following sections explains these access control alternatives, how Amazon S3 evaluates
access control mechanisms, when to use which access control method, and also provide example
walkthroughs.

How Amazon S3 Authorizes a Request (p. 272)

Guidelines for Using the Available Access Policy Options (p. 277)

Example Walkthroughs: Managing Access to Your Amazon S3 Resources (p. 280)

Related Topics

We recommend that you first review the introductory topics that explain the options available for you
to manage access to your Amazon S3 resources. For more information, see Introduction to Managing
Access Permissions to Your Amazon S3 Resources (p. 266). You can then use the following topics for
more information about specific access policy options.

• Using Bucket Policies and User Policies (p. 308)

• Managing Access with ACLs (p. 364)

API Version 2006-03-01
271

Amazon Simple Storage Service Developer Guide
How Amazon S3 Authorizes a Request

How Amazon S3 Authorizes a Request
Topics

• Related Topics (p. 273)

• How Amazon S3 Authorizes a Request for a Bucket Operation (p. 273)

• How Amazon S3 Authorizes a Request for an Object Operation (p. 276)

When Amazon S3 receives a request—for example, a bucket or an object operation—it first verifies
that the requester has the necessary permissions. Amazon S3 evaluates all the relevant access
policies, user policies, and resource-based policies (bucket policy, bucket ACL, object ACL) in deciding
whether to authorize the request. The following are some of the example scenarios:

• If the requester is an IAM user, Amazon S3 must determine if the parent AWS account to which the
user belongs has granted the user necessary permission to perform the operation. In addition, if the
request is for a bucket operation, such as a request to list the bucket content, Amazon S3 must verify
that the bucket owner has granted permission for the requester to perform the operation.

Note
To perform a specific operation on a resource, an IAM user needs permission from both the
parent AWS account to which it belongs and the AWS account that owns the resource.

• If the request is for an operation on an object that the bucket owner does not own, in addition to
making sure the requester has permissions from the object owner, Amazon S3 must also check the
bucket policy to ensure the bucket owner has not set explicit deny on the object.

Note
A bucket owner (who pays the bill) can explicitly deny access to objects in the bucket
regardless of who owns it. The bucket owner can also delete any object in the bucket

In order to determine whether the requester has permission to perform the specific operation, Amazon
S3 does the following, in order, when it receives a request:

1. Converts all the relevant access policies (user policy, bucket policy, ACLs) at run time into a set of
policies for evaluation.

2. Evaluates the resulting set of policies in the following steps. In each step, Amazon S3 evaluates a
subset of policies in a specific context, based on the context authority.

a. User context – In the user context, the parent account to which the user belongs is the context
authority.

Amazon S3 evaluates a subset of policies owned by the parent account. This subset includes
the user policy that the parent attaches to the user. If the parent also owns the resource in the
request (bucket, object), Amazon S3 also evaluates the corresponding resource policies (bucket
policy, bucket ACL, and object ACL) at the same time.

A user must have permission from the parent account to perform the operation.

This step applies only if the request is made by a user in an AWS account. If the request is made
using root credentials of an AWS account, Amazon S3 skips this step.

b. Bucket context – In the bucket context, Amazon S3 evaluates policies owned by the AWS
account that owns the bucket.

If the request is for a bucket operation, the requester must have permission from the bucket
owner. If the request is for an object, Amazon S3 evaluates all the policies owned by the bucket
owner to check if the bucket owner has not explicitly denied access to the object. If there is an
explicit deny set, Amazon S3 does not authorize the request.

API Version 2006-03-01
272

Amazon Simple Storage Service Developer Guide
How Amazon S3 Authorizes a Request

c. Object context – If the request is for an object, Amazon S3 evaluates the subset of policies
owned by the object owner.

The following sections describe in detail and provide examples:

• How Amazon S3 Authorizes a Request for a Bucket Operation (p. 273)

• How Amazon S3 Authorizes a Request for an Object Operation (p. 276)

Related Topics

We recommend you first review the introductory topics that explain the options for managing access to
your Amazon S3 resources. For more information, see Introduction to Managing Access Permissions
to Your Amazon S3 Resources (p. 266). You can then use the following topics for more information
about specific access policy options.

• Using Bucket Policies and User Policies (p. 308)

• Managing Access with ACLs (p. 364)

How Amazon S3 Authorizes a Request for a Bucket Operation

When Amazon S3 receives a request for a bucket operation, Amazon S3 converts all the relevant
permissions—resource-based permissions (bucket policy, bucket access control list (ACL)) and IAM
user policy if the request is from a user—into a set of policies to evaluate at run time. It then evaluates
the resulting set of policies in a series of steps according to a specific context—user context or bucket
context.

1. User context – If the requester is an IAM user, the user must have permission from the parent
AWS account to which it belongs. In this step, Amazon S3 evaluates a subset of policies owned by
the parent account (also referred to as the context authority). This subset of policies includes the
user policy that the parent account attaches to the user. If the parent also owns the resource in the
request (in this case, the bucket), Amazon S3 also evaluates the corresponding resource policies
(bucket policy and bucket ACL) at the same time. Whenever a request for a bucket operation is
made, the server access logs record the canonical user ID of the requester. For more information,
see Server Access Logging (p. 547).

2. Bucket context – The requester must have permissions from the bucket owner to perform a
specific bucket operation. In this step, Amazon S3 evaluates a subset of policies owned by the AWS
account that owns the bucket.

The bucket owner can grant permission by using a bucket policy or bucket ACL. Note that, if the
AWS account that owns the bucket is also the parent account of an IAM user, then it can configure
bucket permissions in a user policy.

The following is a graphical illustration of the context-based evaluation for bucket operation.

API Version 2006-03-01
273

Amazon Simple Storage Service Developer Guide
How Amazon S3 Authorizes a Request

The following examples illustrate the evaluation logic.

Example 1: Bucket Operation Requested by Bucket Owner

In this example, the bucket owner sends a request for a bucket operation using the root credentials of
the AWS account.

Amazon S3 performs the context evaluation as follows:

1. Because the request is made by using root credentials of an AWS account, the user context is not
evaluated .

2. In the bucket context, Amazon S3 reviews the bucket policy to determine if the requester has
permission to perform the operation. Amazon S3 authorizes the request.

Example 2: Bucket Operation Requested by an AWS Account That Is Not the
Bucket Owner

In this example, a request is made using root credentials of AWS account 1111-1111-1111 for a bucket
operation owned by AWS account 2222-2222-2222. No IAM users are involved in this request.

In this case, Amazon S3 evaluates the context as follows:

1. Because the request is made using root credentials of an AWS account, the user context is not
evaluated.

2. In the bucket context, Amazon S3 examines the bucket policy. If the bucket owner (AWS account
2222-2222-2222) has not authorized AWS account 1111-1111-1111 to perform the requested

API Version 2006-03-01
274

Amazon Simple Storage Service Developer Guide
How Amazon S3 Authorizes a Request

operation, Amazon S3 denies the request. Otherwise, Amazon S3 grants the request and performs
the operation.

Example 3: Bucket Operation Requested by an IAM User Whose Parent AWS
Account Is Also the Bucket Owner

In the example, the request is sent by Jill, an IAM user in AWS account 1111-1111-1111, which also
owns the bucket.

Amazon S3 performs the following context evaluation:

1. Because the request is from an IAM user, in the user context, Amazon S3 evaluates all policies that
belong to the parent AWS account to determine if Jill has permission to perform the operation.

In this example, parent AWS account 1111-1111-1111, to which the user belongs, is also the bucket
owner. As a result, in addition to the user policy, Amazon S3 also evaluates the bucket policy and
bucket ACL in the same context, because they belong to the same account.

2. Because Amazon S3 evaluated the bucket policy and bucket ACL as part of the user context, it does
not evaluate the bucket context.

Example 4: Bucket Operation Requested by an IAM User Whose Parent AWS
Account Is Not the Bucket Owner

In this example, the request is sent by Jill, an IAM user whose parent AWS account is
1111-1111-1111, but the bucket is owned by another AWS account, 2222-2222-2222.

Jill will need permissions from both the parent AWS account and the bucket owner. Amazon S3
evaluates the context as follows:

1. Because the request is from an IAM user, Amazon S3 evaluates the user context by reviewing
the policies authored by the account to verify that Jill has the necessary permissions. If Jill has
permission, then Amazon S3 moves on to evaluate the bucket context; if not, it denies the request.

2. In the bucket context, Amazon S3 verifies that bucket owner 2222-2222-2222 has granted Jill (or
her parent AWS account) permission to perform the requested operation. If she has that permission,
Amazon S3 grants the request and performs the operation; otherwise, Amazon S3 denies the
request.

API Version 2006-03-01
275

Amazon Simple Storage Service Developer Guide
How Amazon S3 Authorizes a Request

How Amazon S3 Authorizes a Request for an Object Operation

When Amazon S3 receives a request for an object operation, it converts all the relevant permissions
—resource-based permissions (object access control list (ACL), bucket policy, bucket ACL) and IAM
user policies—into a set of policies to be evaluated at run time. It then evaluates the resulting set of
policies in a series of steps. In each step, it evaluates a subset of policies in three specific contexts—
user context, bucket context, and object context.

1. User context – If the requester is an IAM user, the user must have permission from the parent
AWS account to which it belongs. In this step, Amazon S3 evaluates a subset of policies owned
by the parent account (also referred as the context authority). This subset of policies includes the
user policy that the parent attaches to the user. If the parent also owns the resource in the request
(bucket, object), Amazon S3 evaluates the corresponding resource policies (bucket policy, bucket
ACL, and object ACL) at the same time.

Note
If the parent AWS account owns the resource (bucket or object), it can grant resource
permissions to its IAM user by using either the user policy or the resource policy.

2. Bucket context – In this context, Amazon S3 evaluates policies owned by the AWS account that
owns the bucket.

If the AWS account that owns the object in the request is not same as the bucket owner, in the
bucket context Amazon S3 checks the policies if the bucket owner has explicitly denied access to
the object. If there is an explicit deny set on the object, Amazon S3 does not authorize the request.

3. Object context – The requester must have permissions from the object owner to perform a specific
object operation. In this step, Amazon S3 evaluates the object ACL.

Note
If bucket and object owners are the same, access to the object can be granted in the
bucket policy, which is evaluated at the bucket context. If the owners are different, the
object owners must use an object ACL to grant permissions. If the AWS account that owns
the object is also the parent account to which the IAM user belongs, it can configure object
permissions in a user policy, which is evaluated at the user context. For more information
about using these access policy alternatives, see Guidelines for Using the Available Access
Policy Options (p. 277).

The following is an illustration of the context-based evaluation for an object operation.

Example 1: Object Operation Request

In this example, IAM user Jill, whose parent AWS account is 1111-1111-1111, sends an object
operation request (for example, Get object) for an object owned by AWS account 3333-3333-3333 in a
bucket owned by AWS account 2222-2222-2222.

API Version 2006-03-01
276

Amazon Simple Storage Service Developer Guide
Guidelines for Using the Available Access Policy Options

Jill will need permission from the parent AWS account, the bucket owner, and the object owner.
Amazon S3 evaluates the context as follows:

1. Because the request is from an IAM user, Amazon S3 evaluates the user context to verify that the
parent AWS account 1111-1111-1111 has given Jill permission to perform the requested operation.
If she has that permission, Amazon S3 evaluates the bucket context. Otherwise, Amazon S3 denies
the request.

2. In the bucket context, the bucket owner, AWS account 2222-2222-2222, is the context authority.
Amazon S3 evaluates the bucket policy to determine if the bucket owner has explicitly denied Jill
access to the object.

3. In the object context, the context authority is AWS account 3333-3333-3333, the object owner.
Amazon S3 evaluates the object ACL to determine if Jill has permission to access the object. If she
does, Amazon S3 authorizes the request.

Guidelines for Using the Available Access Policy
Options
Amazon S3 supports resource-based policies and user policies to manage access to your Amazon
S3 resources (see Managing Access to Resources (Access Policy Options) (p. 268)). Resource-
based policies include bucket policies, bucket ACLs, and object ACLs. This section describes specific
scenarios for using resource-based access policies to manage access to your Amazon S3 resources.

When to Use an ACL-based Access Policy (Bucket and Object
ACLs)

Both buckets and objects have associated ACLs that you can use to grant permissions. The following
sections describe scenarios for using object ACLs and bucket ACLs.

When to Use an Object ACL

In addition to an object ACL, there are other ways an object owner can manage object permissions.
For example:

• If the AWS account that owns the object also owns the bucket, then it can write a bucket policy to
manage the object permissions.

• If the AWS account that owns the object wants to grant permission to a user in its account, it can use
a user policy.

So when do you use object ACLs to manage object permissions? The following are the scenarios when
you use object ACLs to manage object permissions.

API Version 2006-03-01
277

Amazon Simple Storage Service Developer Guide
Guidelines for Using the Available Access Policy Options

• An object ACL is the only way to manage access to objects not owned by the bucket owner
– An AWS account that owns the bucket can grant another AWS account permission to upload
objects. The bucket owner does not own these objects. The AWS account that created the object
must grant permissions using object ACLs.

Note
A bucket owner cannot grant permissions on objects it does not own. For example, a bucket
policy granting object permissions applies only to objects owned by the bucket owner.
However, the bucket owner, who pays the bills, can write a bucket policy to deny access to
any objects in the bucket, regardless of who owns it. The bucket owner can also delete any
objects in the bucket.

• Permissions vary by object and you need to manage permissions at the object level – You can
write a single policy statement granting an AWS account read permission on millions of objects with
a specific key name prefix. For example, grant read permission on objects starting with key name
prefix "logs". However, if your access permissions vary by object, granting permissions to individual
objects using a bucket policy may not be practical. Also the bucket policies are limited to 20 KB in
size.

In this case, you may find using object ACLs a suitable alternative. Although, even an object ACL is
also limited to a maximum of 100 grants (see Access Control List (ACL) Overview (p. 364)).

• Object ACLs control only object-level permissions – There is a single bucket policy for the entire
bucket, but object ACLs are specified per object.

An AWS account that owns a bucket can grant another AWS account permission to manage access
policy. It allows that account to change anything in the policy. To better manage permissions,
you may choose not to give such a broad permission, and instead grant only the READ-ACP and
WRITE-ACP permissions on a subset of objects. This limits the account to manage permissions only
on specific objects by updating individual object ACLs.

When to Use a Bucket ACL

The only recommended use case for the bucket ACL is to grant write permission to the Amazon S3
Log Delivery group to write access log objects to your bucket (see Server Access Logging (p. 547)).
If you want Amazon S3 to deliver access logs to your bucket, you will need to grant write permission
on the bucket to the Log Delivery group. The only way you can grant necessary permissions to the Log
Delivery group is via a bucket ACL, as shown in the following bucket ACL fragment.

<?xml version="1.0" encoding="UTF-8"?>
<AccessControlPolicy xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Owner>
 ...
 </Owner>
 <AccessControlList>
 <Grant>
 ...
 </Grant>
 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="Group">
 <URI>http://acs.amazonaws.com/groups/s3/LogDelivery</URI>
 </Grantee>
 <Permission>WRITE</Permission>
 </Grant>
 </AccessControlList>
</AccessControlPolicy>

API Version 2006-03-01
278

Amazon Simple Storage Service Developer Guide
Guidelines for Using the Available Access Policy Options

When to Use a Bucket Policy

If an AWS account that owns a bucket wants to grant permission to users in its account, it can use
either a bucket policy or a user policy. But in the following scenarios, you will need to use a bucket
policy.

• You want to manage cross-account permissions for all Amazon S3 permissions – You can
use ACLs to grant cross-account permissions to other accounts, but ACLs support only a finite
set of permission (What Permissions Can I Grant? (p. 366)), these don't include all Amazon S3
permissions. For example, you cannot grant permissions on bucket subresources (see Managing
Access Permissions to Your Amazon S3 Resources (p. 266)) using an ACL.

Although both bucket and user policies support granting permission for all Amazon S3 operations
(see Specifying Permissions in a Policy (p. 312)), the user policies are for managing permissions
for users in your account. For cross-account permissions to other AWS accounts or users in another
account, you must use a bucket policy.

When to Use a User Policy

In general, you can use either a user policy or a bucket policy to manage permissions. You may
choose to manage permissions by creating users and managing permissions individually by attaching
policies to users (or user groups), or you may find that resource-based policies, such as a bucket
policy, work better for your scenario.

Note that AWS Identity and Access Management (IAM) enables you to create multiple users
within your AWS account and manage their permissions via user policies. An IAM user must have
permissions from the parent account to which it belongs, and from the AWS account that owns the
resource the user wants to access. The permissions can be granted as follows:

• Permission from the parent account – The parent account can grant permissions to its user by
attaching a user policy.

• Permission from the resource owner – The resource owner can grant permission to either the
IAM user (using a bucket policy) or the parent account (using a bucket policy, bucket ACL, or object
ACL).

This is akin to a child who wants to play with a toy that belongs to someone else. In this case, the child
must get permission from a parent to play with the toy and permission from the toy owner.

Permission Delegation

If an AWS account owns a resource, it can grant those permissions to another AWS account. That
account can then delegate those permissions, or a subset of them, to users in the account. This is
referred to as permission delegation. But an account that receives permissions from another account
cannot delegate permission cross-account to another AWS account.

Related Topics

We recommend you first review all introductory topics that explain how you manage access to your
Amazon S3 resources and related guidelines. For more information, see Introduction to Managing
Access Permissions to Your Amazon S3 Resources (p. 266). You can then use the following topics for
more information about specific access policy options.

• Using Bucket Policies and User Policies (p. 308)

• Managing Access with ACLs (p. 364)

API Version 2006-03-01
279

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

Example Walkthroughs: Managing Access to Your
Amazon S3 Resources
This topic provides the following introductory walkthrough examples for granting access to Amazon S3
resources. These examples use the AWS Management Console to create resources (buckets, objects,
users) and grant them permissions. The examples then show you how to verify permissions using the
command line tools, so you don't have to write any code. We provide commands using both the AWS
Command Line Interface (CLI) and the AWS Tools for Windows PowerShell.

• Example 1: Bucket Owner Granting Its Users Bucket Permissions (p. 284)

The IAM users you create in your account have no permissions by default. In this exercise, you grant
a user permission to perform bucket and object operations.

• Example 2: Bucket Owner Granting Cross-Account Bucket Permissions (p. 289)

In this exercise, a bucket owner, Account A, grants cross-account permissions to another AWS
account, Account B. Account B then delegates those permissions to users in its account.

• Managing object permissions when the object and bucket owners are not the same

The example scenarios in this case are about a bucket owner granting object permissions to others,
but not all objects in the bucket are owned by the bucket owner. What permissions does the bucket
owner need, and how can it delegate those permissions?

The AWS account that creates a bucket is called the bucket owner. The owner can grant other AWS
accounts permission to upload objects, and the AWS accounts that create objects own them. The
bucket owner has no permissions on those objects created by other AWS accounts. If the bucket
owner writes a bucket policy granting access to objects, the policy does not apply to objects that are
owned by other accounts.

In this case, the object owner must first grant permissions to the bucket owner using an object ACL.
The bucket owner can then delegate those object permissions to others, to users in its own account,
or to another AWS account, as illustrated by the following examples.

• Example 3: Bucket Owner Granting Its Users Permissions to Objects It Does Not Own (p. 295)

In this exercise, the bucket owner first gets permissions from the object owner. The bucket owner
then delegates those permissions to users in its own account.

• Example 4: Bucket Owner Granting Cross-account Permission to Objects It Does Not
Own (p. 299)

After receiving permissions from the object owner, the bucket owner cannot delegate permission
to other AWS accounts because cross-account delegation is not supported (see Permission
Delegation (p. 279)). Instead, the bucket owner can create an IAM role with permissions to
perform specific operations (such as get object) and allow another AWS account to assume that
role. Anyone who assumes the role can then access objects. This example shows how a bucket
owner can use an IAM role to enable this cross-account delegation.

Before You Try the Example Walkthroughs
These examples use the AWS Management Console to create resources and grant permissions. And
to test permissions, the examples use the command line tools, AWS Command Line Interface (CLI)
and AWS Tools for Windows PowerShell, so you don't need to write any code. To test permissions you
will need to set up one of these tools. For more information, see Setting Up the Tools for the Example
Walkthroughs (p. 281).

In addition, when creating resources these examples don't use root credentials of an AWS account.
Instead, you create an administrator user in these accounts to perform these tasks.

API Version 2006-03-01
280

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

About Using an Administrator User to Create Resources and Grant
Permissions

AWS Identity and Access Management (IAM) recommends not using the root credentials of your AWS
account to make requests. Instead, create an IAM user, grant that user full access, and then use
that user's credentials to interact with AWS. We refer to this user as an administrator user. For more
information, go to Root Account Credentials vs. IAM User Credentials in the AWS General Reference
and IAM Best Practices in the IAM User Guide.

All example walkthroughs in this section use the administrator user credentials. If you have not created
an administrator user for your AWS account, the topics show you how.

Note that to sign in to the AWS Management Console using the user credentials, you will need to use
the IAM User Sign-In URL. The IAM console provides this URL for your AWS account. The topics show
you how to get the URL.

Setting Up the Tools for the Example Walkthroughs

The introductory examples (see Example Walkthroughs: Managing Access to Your Amazon S3
Resources (p. 280)) use the AWS Management Console to create resources and grant permissions.
And to test permissions, the examples use the command line tools, AWS Command Line Interface
(CLI) and AWS Tools for Windows PowerShell, so you don't need to write any code. To test
permissions, you must set up one of these tools.

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide.

Getting Set Up with the AWS Command Line Interface

Installing the AWS Command Line Interface

Configuring the AWS Command Line Interface

2. Set the default profile.

You will store user credentials in the AWS CLI config file. Create a default profile in the config file
using your AWS account credentials.

[default]
aws_access_key_id = access key ID
aws_secret_access_key = secret access key
region = us-west-2

3. Verify the setup by entering the following command at the command prompt. Both these
commands don't provide credentials explicitly, so the credentials of the default profile are used.

• Try the help command

aws help

• Use aws s3 ls to get a list of buckets on the configured account.

aws s3 ls

API Version 2006-03-01
281

http://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

As you go through the example walkthroughs, you will create users, and you will save user credentials
in the config files by creating profiles, as the following example shows. Note that these profiles have
names (AccountAadmin and AccountBadmin):

[profile AccountAadmin]
aws_access_key_id = User AccountAadmin access key ID
aws_secret_access_key = User AccountAadmin secret access key
region = us-west-2

[profile AccountBadmin]
aws_access_key_id = Account B access key ID
aws_secret_access_key = Account B secret access key
region = us-east-1

To execute a command using these user credentials, you add the --profile parameter specifying
the profile name. The following AWS CLI command retrieves a listing of objects in examplebucket
and specifies the AccountBadmin profile.

aws s3 ls s3://examplebucket --profile AccountBadmin

Alternatively, you can configure one set of user credentials as the default profile by changing the
AWS_DEFAULT_PROFILE environment variable from the command prompt. Once you've done this,
whenever you execute AWS CLI commands without the --profile parameter, the AWS CLI will use
the profile you set in the environment variable as the default profile.

$ export AWS_DEFAULT_PROFILE=AccountAadmin

To set up AWS Tools for Windows PowerShell

1. Download and configure the AWS Tools for Windows PowerShell. For instructions, go to
Download and Install the AWS Tools for Windows PowerShell in the AWS Tools for Windows
PowerShell User Guide.

Note
In order to load the AWS Tools for Windows PowerShell module, you need to enable
PowerShell script execution. For more information, go to Enable Script Execution in the
AWS Tools for Windows PowerShell User Guide.

2. For these exercises, you will specify AWS credentials per session using the Set-
AWSCredentials command. The command saves the credentials to a persistent store (-
StoreAs parameter).

Set-AWSCredentials -AccessKey AccessKeyID -SecretKey SecretAccessKey -
storeas string

3. Verify the setup.

• Execute the Get-Command to retrieve a list of available commands you can use for Amazon S3
operations.

Get-Command -module awspowershell -noun s3* -StoredCredentials string

• Execute the Get-S3Object command to retrieve a list of objects in a bucket.

Get-S3Object -BucketName bucketname -StoredCredentials string

API Version 2006-03-01
282

http://docs.aws.amazon.com/powershell/latest/userguide/pstools-getting-set-up.html#pstools-installing-download
http://docs.aws.amazon.com/powershell/latest/userguide/pstools-getting-set-up.html#enable-script-execution

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

For a list of commands, go to Amazon Simple Storage Service Cmdlets.

Now you are ready to try the exercises. Follow the links provided at the beginning of the section.

API Version 2006-03-01
283

http://docs.aws.amazon.com/powershell/latest/reference/Index.html

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

Example 1: Bucket Owner Granting Its Users Bucket
Permissions

Topics

• Step 0: Preparing for the Walkthrough (p. 285)

• Step 1: Create Resources (a Bucket and an IAM User) in Account A and Grant
Permissions (p. 285)

• Step 2: Test Permissions (p. 287)

In this exercise, an AWS account owns a bucket, and it has an IAM user in the account. The
user by default has no permissions. The parent account must grant permissions to the user to
perform any tasks. Both the bucket owner and the parent account to which the user belongs are the
same. Therefore, the AWS account can use a bucket policy, a user policy, or both to grant its user
permissions on the bucket. You will grant some permissions using a bucket policy and grant other
permissions using a user policy.

The following steps summarize the walkthrough:

1. Account administrator creates a bucket policy granting a set of permissions to the user.

2. Account administrator attaches a user policy to the user granting additional permissions.

3. User then tries permissions granted via both the bucket policy and the user policy.

For this example, you will need an AWS account. Instead of using the root credentials of the account,
you will create an administrator user (see About Using an Administrator User to Create Resources and
Grant Permissions (p. 281)). We refer to the AWS account and the administrator user as follows:

Account ID Account Referred To As Administrator User in the
Account

1111-1111-1111 Account A AccountAadmin

All the tasks of creating users and granting permissions are done in the AWS Management Console.
To verify permissions, the walkthrough uses the command line tools, AWS Command Line Interface
(CLI) and AWS Tools for Windows PowerShell, to verify the permissions, so you don't need to write
any code.

API Version 2006-03-01
284

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

Step 0: Preparing for the Walkthrough

1. Make sure you have an AWS account and that it has a user with administrator privileges.

a. Sign up for an account, if needed. We refer to this account as Account A.

i. Go to http://aws.amazon.com/s3 and click Sign Up.

ii. Follow the on-screen instructions.

AWS will notify you by email when your account is active and available for you to use.

b. In Account A, create an administrator user AccountAadmin. Using Account A credentials, sign
in to the IAM console and do the following:

i. Create user AccountAadmin and note down the user security credentials.

For instructions, see Creating an IAM User in Your AWS Account in the IAM User Guide.

ii. Grant AccountAadmin administrator privileges by attaching a user policy giving full
access.

For instructions, see Working with Policies in the IAM User Guide.

iii. Note down the IAM User Sign-In URL for AccountAadmin. You will need to use this URL
when signing in to the AWS Management Console. For more information about where to
find it, see How Users Sign in to Your Account in IAM User Guide. Note down the URL for
each of the accounts.

2. Set up either the AWS Command Line Interface (CLI) or the AWS Tools for Windows PowerShell.
Make sure you save administrator user credentials as follows:

• If using the AWS CLI, create two profiles, AccountAadmin and AccountBadmin, in the config file.

• If using the AWS Tools for Windows PowerShell, make sure you store credentials for the
session as AccountAadmin and AccountBadmin.

For instructions, see Setting Up the Tools for the Example Walkthroughs (p. 281).

Step 1: Create Resources (a Bucket and an IAM User) in Account A and Grant
Permissions

Using the credentials of user AccountAadmin in Account A, and the special IAM user sign-in URL, sign
in to the AWS Management Console and do the following:

1. Create Resources (a bucket and an IAM user)

a. In the Amazon S3 console create a bucket. Note down the AWS region in which you created
it. For instructions, go to Creating a Bucket in the Amazon Simple Storage Service Console
User Guide.

b. In the IAM console, do the following:

i. Create a user, Dave.

For instructions, see Creating IAM Users (AWS Management Console) in the IAM User
Guide.

ii. Note down the UserDave credentials.

iii. Note down the Amazon Resource Name (ARN) for user Dave. In the IAM console, select
the user, and the Summary tab provides the user ARN.

2. Grant Permissions.

API Version 2006-03-01
285

http://aws.amazon.com/s3
https://console.aws.amazon.com/iam/home?#home
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

Because the bucket owner and the parent account to which the user belongs are the same, the
AWS account can grant user permissions using a bucket policy, a user policy, or both. In this
example, you do both. If the object is also owned by the same account, the bucket owner can
grant object permissions in the bucket policy (or an IAM policy).

a. In the Amazon S3 console, attach the following bucket policy to examplebucket.

The policy has two statements.

• The first statement grants Dave the bucket operation permissions
s3:GetBucketLocation and s3:ListBucket.

• The second statement grants the s3:GetObject permission. Because Account A also
owns the object, the account administrator is able to grant the s3:GetObject permission.

In the Principal statement, Dave is identified by his user ARN. For more information about
policy elements, see Access Policy Language Overview (p. 308).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA-ID:user/Dave"
 },
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::examplebucket"
]
 },
 {
 "Sid": "statement2",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA-ID:user/Dave"
 },
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/*"
]
 }
]
}

b. Create an inline policy for the user Dave by using the following policy. The policy grants Dave
the s3:PutObject permission. You need to update the policy by providing your bucket
name.

{
 "Version": "2012-10-17",

API Version 2006-03-01
286

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

 "Statement": [
 {
 "Sid": "PermissionForObjectOperations",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/*"
]
 }
]
}

For instructions, see Working with Inline Policies in the IAM User Guide. Note you need to
sign in to the console using Account B credentials.

Step 2: Test Permissions

Using Dave's credentials, verify that the permissions work. You can use either of the following two
procedures.

Test Using the AWS CLI

1. Update the AWS CLI config file by adding the following UserDaveAccountA profile. For more
information, see Setting Up the Tools for the Example Walkthroughs (p. 281).

[profile UserDaveAccountA]
aws_access_key_id = access-key
aws_secret_access_key = secret-access-key
region = us-east-1

2. Verify that Dave can perform the operations as granted in the user policy. Upload a sample object
using the following AWS CLI put-object command.

The --body parameter in the command identifies the source file to upload. For example, if the file
is in the root of the C: drive on a Windows machine, you specify c:\HappyFace.jpg. The --key
parameter provides the key name for the object.

aws s3api put-object --bucket examplebucket --key HappyFace.jpg --
body HappyFace.jpg --profile UserDaveAccountA

Execute the following AWS CLI command to get the object.

aws s3api get-object --bucket examplebucket --
key HappyFace.jpg OutputFile.jpg --profile UserDaveAccountA

Test Using the AWS Tools for Windows PowerShell

1. Store Dave's credentials as AccountADave. You then use these credentials to PUT and GET an
object.

set-awscredentials -AccessKey AccessKeyID -SecretKey SecretAccessKey -
storeas AccountADave

API Version 2006-03-01
287

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_inline-using.html

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

2. Upload a sample object using the AWS Tools for Windows PowerShell Write-S3Object
command using user Dave's stored credentials.

Write-S3Object -bucketname examplebucket -key HappyFace.jpg -
file HappyFace.jpg -StoredCredentials AccountADave

Download the previously uploaded object.

Read-S3Object -bucketname examplebucket -key HappyFace.jpg -
file Output.jpg -StoredCredentials AccountADave

API Version 2006-03-01
288

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

Example 2: Bucket Owner Granting Cross-Account Bucket
Permissions

Topics

• Step 0: Preparing for the Walkthrough (p. 290)

• Step 1: Do the Account A Tasks (p. 291)

• Step 2: Do the Account B Tasks (p. 292)

• Step 3: Extra Credit: Try Explicit Deny (p. 293)

• Step 4: Clean Up (p. 294)

An AWS account—for example, Account A—can grant another AWS account, Account B, permission
to access its resources such as buckets and objects. Account B can then delegate those permissions
to users in its account. In this example scenario, a bucket owner grants cross-account permission to
another account to perform specific bucket operations.

Note
Account A can also directly grant a user in Account B permissions using a bucket policy.
But the user will still need permission from the parent account, Account B, to which the user
belongs, even if Account B does not have permissions from Account A. As long as the user
has permission from both the resource owner and the parent account, the user will be able to
access the resource.

The following is a summary of the walkthrough steps:

1. Account A administrator user attaches a bucket policy granting cross-account permissions to
Account B to perform specific bucket operations.

Note that administrator user in Account B will automatically inherit the permissions.

2. Account B administrator user attaches user policy to the user delegating the permissions it received
from Account A.

3. User in Account B then verifies permissions by accessing an object in the bucket owned by Account
A.

For this example, you need two accounts. The following table shows how we refer to these accounts
and the administrator users in them. Per IAM guidelines (see About Using an Administrator User to
Create Resources and Grant Permissions (p. 281)) we do not use the account root credentials in this
walkthrough. Instead, you create an administrator user in each account and use those credentials in
creating resources and granting them permissions.

API Version 2006-03-01
289

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

AWS Account ID Account Referred To As Administrator User in the
Account

1111-1111-1111 Account A AccountAadmin

2222-2222-2222 Account B AccountBadmin

All the tasks of creating users and granting permissions are done in the AWS Management Console.
To verify permissions, the walkthrough uses the command line tools, AWS Command Line Interface
(CLI) and AWS Tools for Windows PowerShell, so you don't need to write any code.

Step 0: Preparing for the Walkthrough

1. Make sure you have two AWS accounts and that each account has one administrator user as
shown in the table in the preceding section.

a. Sign up for an AWS account, if needed.

i. Go to http://aws.amazon.com/s3/ and click Create an AWS Account.

ii. Follow the on-screen instructions.

AWS will notify you by email when your account is active and available for you to use.

b. Using Account A credentials, sign in to the IAM console to create the administrator user:

i. Create user AccountAadmin and note down the security credentials. For instructions, see
Creating an IAM User in Your AWS Account in the IAM User Guide.

ii. Grant AccountAadmin administrator privileges by attaching a user policy giving full
access. For instructions, see Working with Policies in the IAM User Guide.

c. While you are in the IAM console, note down the IAM User Sign-In URL on the Dashboard.
All users in the account must use this URL when signing in to the AWS Management Console.

For more information, see How Users Sign in to Your Account in IAM User Guide.

d. Repeat the preceding step using Account B credentials and create administrator user
AccountBadmin.

2. Set up either the AWS Command Line Interface (CLI) or the AWS Tools for Windows PowerShell.
Make sure you save administrator user credentials as follows:

• If using the AWS CLI, create two profiles, AccountAadmin and AccountBadmin, in the config file.

• If using the AWS Tools for Windows PowerShell, make sure you store credentials for the
session as AccountAadmin and AccountBadmin.

For instructions, see Setting Up the Tools for the Example Walkthroughs (p. 281).

3. Save the administrator user credentials, also referred to as profiles. You can use the profile name
instead of specifying credentials for each command you enter. For more information, see Setting
Up the Tools for the Example Walkthroughs (p. 281).

a. Add profiles in the AWS CLI config file for each of the administrator users in the two accounts.

[profile AccountAadmin]
aws_access_key_id = access-key-ID
aws_secret_access_key = secret-access-key
region = us-east-1

[profile AccountBadmin]
aws_access_key_id = access-key-ID

API Version 2006-03-01
290

http://aws.amazon.com/s3/
https://console.aws.amazon.com/iam/home?#home
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

aws_secret_access_key = secret-access-key
region = us-east-1

b. If you are using the AWS Tools for Windows PowerShell

set-awscredentials –AccessKey AcctA-access-key-ID –SecretKey AcctA-
secret-access-key –storeas AccountAadmin
set-awscredentials –AccessKey AcctB-access-key-ID –SecretKey AcctB-
secret-access-key –storeas AccountBadmin

Step 1: Do the Account A Tasks

Step 1.1: Sign In to the AWS Management Console

Using the IAM user sign-in URL for Account A first sign in to the AWS Management Console as
AccountAadmin user. This user will create a bucket and attach a policy to it.

Step 1.2: Create a Bucket

1. In the Amazon S3 console, create a bucket. This exercise assumes the bucket is created in the
US East (N. Virginia) region and is named examplebucket.

For instructions, go to Creating a Bucket in the Amazon Simple Storage Service Console User
Guide.

2. Upload a sample object to the bucket.

For instructions, go to Add an Object to a Bucket in the Amazon Simple Storage Service Getting
Started Guide.

Step 1.3: Attach a Bucket Policy to Grant Cross-Account Permissions to Account B

The bucket policy grants the s3:GetBucketLocation and s3:ListBucket permissions to Account
B. It is assumed you are still signed into the console using AccountAadmin user credentials.

1. Attach the following bucket policy to examplebucket. The policy grants Account B permission for
the s3:GetBucketLocation and s3:ListBucket actions.

For instructions on editing bucket permissions, go to Editing Bucket Permissions in the Amazon
Simple Storage Service Console User Guide. Follow these steps to add a bucket policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Example permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:root"
 },
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::examplebucket"
]

API Version 2006-03-01
291

http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingBucketPermissions.html

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

 }
]
}

2. Verify Account B (and thus its administrator user) can perform the operations.

• Using the AWS CLI

aws s3 ls s3://examplebucket --profile AccountBadmin
aws s3api get-bucket-location --bucket examplebucket --profile
 AccountBadmin

• Using the AWS Tools for Windows PowerShell

get-s3object -BucketName example2bucket -StoredCredentials
 AccountBadmin
get-s3bucketlocation -BucketName example2bucket -StoredCredentials
 AccountBadmin

Step 2: Do the Account B Tasks

Now the Account B administrator creates a user, Dave, and delegates the Dave permissions received
from Account A.

Step 2.1: Sign In to the AWS Management Console

Using the IAM user sign-in URL for Account B, first sign in to the AWS Management Console as
AccountBadmin user.

Step 2.2: Create User Dave in Account B

1. In the IAM console, create a user, Dave.

For instructions, see Creating IAM Users (AWS Management Console) in the IAM User Guide.

2. Note down the UserDave credentials.

Step 2.3: Delegate Permissions to User Dave

• Create an inline policy for the user Dave by using the following policy. You will need to update the
policy by providing your bucket name.

It is assumed you are signed in to the console using AccountBadmin user credentials.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Example",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::examplebucket"
]
 }

API Version 2006-03-01
292

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

]
}

For instructions, see Working with Inline Policies in the IAM User Guide.

Step 2.4: Test Permissions

Now Dave in Account B can list the contents of examplebucket owned by Account A. You can verify
the permissions using either of the following procedures.

Test Using the AWS CLI

1. Add the UserDave profile to the AWS CLI config file. For more information about the config file,
see Setting Up the Tools for the Example Walkthroughs (p. 281).

[profile UserDave]
aws_access_key_id = access-key
aws_secret_access_key = secret-access-key
region = us-east-1

2. At the command prompt, enter the following AWS CLI command to verify Dave can now get
an object list from the examplebucket owned by Account A. Note the command specifies the
UserDave profile.

aws s3 ls s3://examplebucket --profile UserDave

Dave does not have any other permissions. So if he tries any other operation—for example, the
following get bucket location—Amazon S3 returns permission denied.

aws s3api get-bucket-location --bucket examplebucket --profile UserDave

Test Using AWS Tools for Windows PowerShell

1. Store Dave's credentials as AccountBDave.

set-awscredentials -AccessKey AccessKeyID -SecretKey SecretAccessKey -
storeas AccountBDave

2. Try the List Bucket command.

get-s3object -BucketName example2bucket -StoredCredentials AccountBDave

Dave does not have any other permissions. So if he tries any other operation—for example, the
following get bucket location—Amazon S3 returns permission denied.

get-s3bucketlocation -BucketName example2bucket -StoredCredentials
 AccountBDave

Step 3: Extra Credit: Try Explicit Deny

You can have permissions granted via an ACL, a bucket policy, and a user policy. But if there is
an explicit deny set via either a bucket policy or a user policy, the explicit deny takes precedence

API Version 2006-03-01
293

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_inline-using.html

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

over any other permissions. For testing, let's update the bucket policy and explicitly deny Account B
the s3:ListBucket permission. The policy also grants s3:ListBucket permission, but explicit
deny takes precedence, and Account B or users in Account B will not be able to list objects in
examplebucket.

1. Using credentials of user AccountAadmin in Account A, replace the bucket policy by the following.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Example permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:root"
 },
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::examplebucket"
]
 },
 {
 "Sid": "Deny permission",
 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:root"
 },
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::examplebucket"
]
 }
]
}

2. Now if you try to get a bucket list using AccountBadmin credentials, you will get access denied.

• Using the AWS CLI:

aws s3 ls s3://examplebucket --profile AccountBadmin

• Using the AWS Tools for Windows PowerShell:

get-s3object -BucketName example2bucket -StoredCredentials AccountBDave

Step 4: Clean Up

1. After you are done testing, you can do the following to clean up.

• Sign in to the AWS Management Console (AWS Management Console) using Account A
credentials, and do the following:

API Version 2006-03-01
294

https://console.aws.amazon.com/

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

• In the Amazon S3 console, remove the bucket policy attached to examplebucket. In the
bucket Properties, delete the policy in the Permissions section.

• If the bucket is created for this exercise, in the Amazon S3 console, delete the objects and
then delete the bucket.

• In the IAM console, remove the AccountAadmin user.

2. Sign in to the AWS Management Console (AWS Management Console) using Account B
credentials. In the IAM console, delete user AccountBadmin.

Example 3: Bucket Owner Granting Its Users Permissions to
Objects It Does Not Own

Topics

• Step 0: Preparing for the Walkthrough (p. 296)

• Step 1: Do the Account A Tasks (p. 297)

• Step 2: Do the Account B Tasks (p. 298)

• Step 3: Test Permissions (p. 298)

• Step 4: Clean Up (p. 299)

The scenario for this example is that a bucket owner wants to grant permission to access objects, but
not all objects in the bucket are owned by the bucket owner. How can a bucket owner grant permission
on objects it does not own? For this example, the bucket owner is trying to grant permission to users in
its own account.

A bucket owner can enable other AWS accounts to upload objects. These objects are owned by the
accounts that created them. The bucket owner does not own objects that were not created by the
bucket owner. Therefore, for the bucket owner to grant access to these objects, the object owner must
first grant permission to the bucket owner using an object ACL. The bucket owner can then delegate
those permissions via a bucket policy. In this example, the bucket owner delegates permission to users
in its own account.

The following is a summary of the walkthrough steps:

1. Account A administrator user attaches a bucket policy with two statements.

• Allow cross-account permission to Account B to upload objects.

API Version 2006-03-01
295

https://console.aws.amazon.com/

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

• Allow a user in its own account to access objects in the bucket.

2. Account B administrator user uploads objects to the bucket owned by Account A.

3. Account B administrator updates the object ACL adding grant that gives the bucket owner full-
control permission on the object.

4. User in Account A verifies by accessing objects in the bucket, regardless of who owns them.

For this example, you need two accounts. The following table shows how we refer to these accounts
and the administrator users in these accounts. Per IAM guidelines (see About Using an Administrator
User to Create Resources and Grant Permissions (p. 281)) we do not use the account root credentials
in this walkthrough. Instead, you create an administrator user in each account and use those
credentials in creating resources and granting them permissions.

AWS Account ID Account Referred To As Administrator User in the
Account

1111-1111-1111 Account A AccountAadmin

2222-2222-2222 Account B AccountBadmin

All the tasks of creating users and granting permissions are done in the AWS Management Console.
To verify permissions, the walkthrough uses the command line tools, AWS Command Line Interface
(CLI) and AWS Tools for Windows PowerShell, so you don't need to write any code.

Step 0: Preparing for the Walkthrough

1. Make sure you have two AWS accounts and each account has one administrator user as shown in
the table in the preceding section.

a. Sign up for an AWS account, if needed.

i. Go to http://aws.amazon.com/s3/ and click Create an AWS Account.

ii. Follow the on-screen instructions. AWS will notify you by email when your account is
active and available for you to use.

b. Using Account A credentials, sign in to the IAM console and do the following to create an
administrator user:

• Create user AccountAadmin and note down security credentials. For more information
about adding users, see Creating an IAM User in Your AWS Account in the IAM User
Guide.

• Grant AccountAadmin administrator privileges by attaching a user policy giving full access.
For instructions, see Working with Policies in the IAM User Guide.

• In the IAM console Dashboard, note down the IAM User Sign-In URL. Users in this
account must use this URL when signing in to the AWS Management Console. For more
information, see How Users Sign in to Your Account in IAM User Guide.

c. Repeat the preceding step using Account B credentials and create administrator user
AccountBadmin.

2. Set up either the AWS Command Line Interface (CLI) or the AWS Tools for Windows PowerShell.
Make sure you save administrator user credentials as follows:

• If using the AWS CLI, create two profiles, AccountAadmin and AccountBadmin, in the config file.

• If using the AWS Tools for Windows PowerShell, make sure you store credentials for the
session as AccountAadmin and AccountBadmin.

For instructions, see Setting Up the Tools for the Example Walkthroughs (p. 281).

API Version 2006-03-01
296

http://aws.amazon.com/s3/
https://console.aws.amazon.com/iam/home?#home
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

Step 1: Do the Account A Tasks

Step 1.1: Sign In to the AWS Management Console

Using the IAM user sign-in URL for Account A first sign in to the AWS Management Console as
AccountAadmin user. This user will create a bucket and attach a policy to it.

Step 1.2: Create a Bucket, a User, and Add a Bucket Policy Granting User Permissions

1. In the Amazon S3 console, create a bucket. This exercise assumes the bucket is created in the
US East (N. Virginia) region and the name is examplebucket.

For instructions, go to Creating a Bucket in the Amazon Simple Storage Service Console User
Guide.

2. In the IAM console, create a user Dave.

For instructions, see Creating IAM Users (AWS Management Console) in the IAM User Guide.

3. Note down the Dave credentials.

4. In the Amazon S3 console, attach the following bucket policy to examplebucket bucket. For
instructions, go to Editing Bucket Permissions in the Amazon Simple Storage Service Console
User Guide. Follow steps to add a bucket policy.

The policy grants Account B the s3:PutObject and s3:ListBucket permissions. The policy
also grants user Dave the s3:GetObject permission.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:root"
 },
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/*"
]
 },
 {
 "Sid": "Statement3",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA-ID:user/Dave"
 },
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/*"
]
 }
]
}

API Version 2006-03-01
297

http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingBucketPermissions.html

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

Step 2: Do the Account B Tasks

Now that Account B has permissions to perform operations on Account A's bucket, the Account B
administrator will do the following;

• Upload an object to Account A's bucket.

• Add a grant in the object ACL to allow Account A, bucket owner, full control.

Using the AWS CLI

1. Using the put-object AWS CLI command, upload an object. The --body parameter in the
command identifies the source file to upload. For example, if the file is on C: drive of a Windows
machine, you would specify c:\HappyFace.jpg. The --key parameter provides the key name
for the object.

aws s3api put-object --bucket examplebucket --key HappyFace.jpg --body
 HappyFace.jpg --profile AccountBadmin

2. Add a grant to the object ACL to allow the bucket owner full control of the object.

aws s3api put-object-acl --bucket examplebucket --key HappyFace.jpg --
grant-full-control id="AccountA-CanonicalUserID" --profile AccountBadmin

Using the AWS Tools for Windows PowerShell

1. Using the Write-S3Object AWS Tools for Windows PowerShell command, upload an object.

Write-S3Object -BucketName examplebucket -key HappyFace.jpg -file
 HappyFace.jpg -StoredCredentials AccountBadmin

2. Add a grant to the object ACL to allow the bucket owner full control of the object.

Set-S3ACL -BucketName examplebucket -Key HappyFace.jpg -CannedACLName
 "bucket-owner-full-control" -StoredCreden

Step 3: Test Permissions

Now verify user Dave in Account A can access the object owned by Account B.

Using the AWS CLI

1. Add user Dave credentials to the AWS CLI config file and create a new profile,
UserDaveAccountA. For more information, see Setting Up the Tools for the Example
Walkthroughs (p. 281).

[profile UserDaveAccountA]
aws_access_key_id = access-key
aws_secret_access_key = secret-access-key
region = us-east-1

2. Execute the get-object AWS CLI command to download HappyFace.jpg and save it locally.
You provide user Dave credentials by adding the --profile parameter.

API Version 2006-03-01
298

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

aws s3api get-object --bucket examplebucket --key
 HappyFace.jpg Outputfile.jpg --profile UserDaveAccountA

Using the AWS Tools for Windows PowerShell

1. Store user Dave AWS credentials, as UserDaveAccountA, to persistent store.

Set-AWSCredentials -AccessKey UserDave-AccessKey -SecretKey UserDave-
SecretAccessKey -storeas UserDaveAccountA

2. Execute the Read-S3Object command to download the HappyFace.jpg object and save it
locally. You provide user Dave credentials by adding the -StoredCredentials parameter.

Read-S3Object -BucketName examplebucket -Key HappyFace.jpg -file
 HappyFace.jpg -StoredCredentials UserDaveAccountA

Step 4: Clean Up

1. After you are done testing, you can do the following to clean up.

• Sign in to the AWS Management Console (AWS Management Console) using Account A
credentials, and do the following:

• In the Amazon S3 console, remove the bucket policy attached to examplebucket. In the
bucket Properties, delete the policy in the Permissions section.

• If the bucket is created for this exercise, in the Amazon S3 console, delete the objects and
then delete the bucket.

• In the IAM console, remove the AccountAadmin user.

2. Sign in to the AWS Management Console (AWS Management Console) using Account B
credentials. In the IAM console, delete user AccountBadmin.

Example 4: Bucket Owner Granting Cross-account Permission
to Objects It Does Not Own

Topics

• Background: Cross-Account Permissions and Using IAM Roles (p. 300)

• Step 0: Preparing for the Walkthrough (p. 301)

• Step 1: Do the Account A Tasks (p. 302)

• Step 2: Do the Account B Tasks (p. 305)

• Step 3: Do the Account C Tasks (p. 305)

• Step 4: Clean Up (p. 307)

• Related Resources (p. 307)

In this example scenario, you own a bucket and you have enabled other AWS accounts to upload
objects. That is, your bucket can have objects that other AWS accounts own.

Now, suppose as a bucket owner, you need to grant cross-account permission on objects, regardless
of who the owner is, to a user in another account. For example, that user could be a billing application
that needs to access object metadata. There are two core issues:

API Version 2006-03-01
299

https://console.aws.amazon.com/
https://console.aws.amazon.com/

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

• The bucket owner has no permissions on those objects created by other AWS accounts. So for the
bucket owner to grant permissions on objects it does not own, the object owner, the AWS account
that created the objects, must first grant permission to the bucket owner. The bucket owner can then
delegate those permissions.

• Bucket owner account can delegate permissions to users in its own account (see Example 3:
Bucket Owner Granting Its Users Permissions to Objects It Does Not Own (p. 295)), but it cannot
delegate permissions to other AWS accounts, because cross-account delegation is not supported.

In this scenario, the bucket owner can create an AWS Identity and Access Management (IAM) role
with permission to access objects, and grant another AWS account permission to assume the role
temporarily enabling it to access objects in the bucket.

Background: Cross-Account Permissions and Using IAM Roles

IAM roles enable several scenarios to delegate access to your resources, and cross-account access
is one of the key scenarios. In this example, the bucket owner, Account A, uses an IAM role to
temporarily delegate object access cross-account to users in another AWS account, Account C. Each
IAM role you create has two policies attached to it:

• A trust policy identifying another AWS account that can assume the role.

• An access policy defining what permissions—for example, s3:GetObject—are allowed when
someone assumes the role. For a list of permissions you can specify in a policy, see Specifying
Permissions in a Policy (p. 312).

The AWS account identified in the trust policy then grants its user permission to assume the role. The
user can then do the following to access objects:

• Assume the role and, in response, get temporary security credentials.

• Using the temporary security credentials, access the objects in the bucket.

For more information about IAM roles, go to IAM Roles in IAM User Guide.

The following is a summary of the walkthrough steps:

1. Account A administrator user attaches a bucket policy granting Account B conditional permission to
upload objects.

API Version 2006-03-01
300

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

2. Account A administrator creates an IAM role, establishing trust with Account C, so users in that
account can access Account A. The access policy attached to the role limits what user in Account C
can do when the user accesses Account A.

3. Account B administrator uploads an object to the bucket owned by Account A, granting full-control
permission to the bucket owner.

4. Account C administrator creates a user and attaches a user policy that allows the user to assume
the role.

5. User in Account C first assumes the role, which returns the user temporary security credentials.
Using those temporary credentials, the user then accesses objects in the bucket.

For this example, you need three accounts. The following table shows how we refer to these accounts
and the administrator users in these accounts. Per IAM guidelines (see About Using an Administrator
User to Create Resources and Grant Permissions (p. 281)) we do not use the account root credentials
in this walkthrough. Instead, you create an administrator user in each account and use those
credentials in creating resources and granting them permissions

AWS Account ID Account Referred To As Administrator User in the
Account

1111-1111-1111 Account A AccountAadmin

2222-2222-2222 Account B AccountBadmin

3333-3333-3333 Account C AccountCadmin

Step 0: Preparing for the Walkthrough

Note
You may want to open a text editor and write down some of the information as you walk
through the steps. In particular, you will need account IDs, canonical user IDs, IAM User Sign-
in URLs for each account to connect to the console, and Amazon Resource Names (ARNs) of
the IAM users, and roles.

1. Make sure you have three AWS accounts and each account has one administrator user as shown
in the table in the preceding section.

a. Sign up for AWS accounts, as needed. We refer to these accounts as Account A, Account B,
and Account C.

i. Go to http://aws.amazon.com/s3/ and click Create an AWS Account.

ii. Follow the on-screen instructions.

AWS will notify you by email when your account is active and available for you to use.

b. Using Account A credentials, sign in to the IAM console and do the following to create an
administrator user:

• Create user AccountAadmin and note down security credentials. For more information
about adding users, see Creating an IAM User in Your AWS Account in the IAM User
Guide.

• Grant AccountAadmin administrator privileges by attaching a user policy giving full access.
For instructions, see Working with Policies in the IAM User Guide.

• In the IAM Console Dashboard, note down the IAM User Sign-In URL. Users in this
account must use this URL when signing in to the AWS Management Console. For more
information, go to How Users Sign In to Your Account in IAM User Guide.

API Version 2006-03-01
301

http://aws.amazon.com/s3/
https://console.aws.amazon.com/iam/home?#home
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

c. Repeat the preceding step to create administrator users in Account B and Account C.

2. For Account C, note down the account ID.

When you create an IAM role in Account A, the trust policy grants Account C permission to
assume the role by specifying the account ID. You can find account information as follows:

a. Go to http://aws.amazon.com/ and from the My Account/Console drop-down menu, select
Security Credentials.

b. Sign in using appropriate account credentials.

c. Click Account Identifiers and note down the AWS Account ID and the Canonical User ID.

3. When creating a bucket policy, you will need the following information. Note down these values:

• Canonical user ID of Account A – When the Account A administrator grants conditional upload
object permission to the Account B administrator, the condition specifies the canonical user ID of
the Account A user that must get full-control of the objects.

Note
The canonical user ID is the Amazon S3–only concept. It is s 64-character obfuscated
version of the account ID.

• User ARN for Account B administrator – You can find the user ARN in the IAM console. You
will need to select the user and find the user's ARN in the Summary tab.

In the bucket policy, you grant AccountBadmin permission to upload objects and you specify the
user using the ARN. Here's an example ARN value:

arn:aws:iam::AccountB-ID:user/AccountBadmin

4. Set up either the AWS Command Line Interface (CLI) or the AWS Tools for Windows PowerShell.
Make sure you save administrator user credentials as follows:

• If using the AWS CLI, create profiles, AccountAadmin and AccountBadmin, in the config file.

• If using the AWS Tools for Windows PowerShell, make sure you store credentials for the
session as AccountAadmin and AccountBadmin.

For instructions, see Setting Up the Tools for the Example Walkthroughs (p. 281).

Step 1: Do the Account A Tasks

In this example, Account A is the bucket owner. So user AccountAadmin in Account A will create a
bucket, attach a bucket policy granting the Account B administrator permission to upload objects,
create an IAM role granting Account C permission to assume the role so it can access objects in the
bucket.

Step 1.1: Sign In to the AWS Management Console

Using the IAM User Sign-in URL for Account A, first sign in to the AWS Management Console as
AccountAadmin user. This user will create a bucket and attach a policy to it.

Step 1.2: Create a Bucket and Attach a Bucket Policy

In the Amazon S3 console, do the following:

1. Create a bucket. This exercise assumes the bucket name is examplebucket.

For instructions, go to Creating a Bucket in the Amazon Simple Storage Service Console User
Guide.

API Version 2006-03-01
302

http://aws.amazon.com/
http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

2. Attach the following bucket policy granting conditional permission to the Account B administrator
permission to upload objects.

You need to update the policy by providing your own values for examplebucket, AccountB-ID,
and the CanonicalUserId-of-AWSaccountA-BucketOwner.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "111",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:user/AccountBadmin"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::examplebucket/*"
 },
 {
 "Sid": "112",
 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:user/AccountBadmin"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "StringNotEquals": {
 "s3:x-amz-grant-full-control": "id=CanonicalUserId-of-
AWSaccountA-BucketOwner"
 }
 }
 }
]
}

Step 1.3: Create an IAM Role to Allow Account C Cross-Account Access in Account A

In the IAM console, create an IAM role ("examplerole") that grants Account C permission to assume
the role. Make sure you are still signed in as the Account A administrator because the role must be
created in Account A.

1. Before creating the role, prepare the managed policy that defines the permissions that the role
requires. You attach this policy to the role in a later step.

a. In the navigation pane on the left, click Policies and then click Create Policy.

b. Next to Create Your Own Policy, click Select.

c. Enter access-accountA-bucket in the Policy Name field.

d. Copy the following access policy and paste it into the Policy Document field. The access
policy grants the role s3:GetObject permission so when Account C user assumes the role,
it can only perform the s3:GetObject operation.

{
 "Version": "2012-10-17",
 "Statement": [
 {

API Version 2006-03-01
303

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::examplebucket/*"
 }
]
}

e. Click Create Policy.

The new policy appears in the list of managed policies.

2. In the navigation pane on the left, click Roles and then click Create New Role.

3. Enter examplerole for the role name, and then click Next Step.

4. Under Select Role Type, select Role for Cross-Account Access, and then click the Select
button next to Provide access between AWS accounts you own.

5. Enter the Account C account ID.

For this walkthrough you do not need to require users to have multi-factor authentication (MFA) to
assume the role, so leave that option unselected.

6. Click Next Step to set the permissions that will be associated with the role.

7. Select the box next to the access-accountA-bucket policy that you created and then click Next
Step.

The Review page appears so you can confirm the settings for the role before it's created. One very
important item to note on this page is the link that you can send to your users who need to use
this role. Users who click the link go straight to the Switch Role page with the Account ID and Role
Name fields already filled in. You can also see this link later on the Role Summary page for any
cross-account role.

8. After reviewing the role, click Create Role.

The examplerole role is displayed in the list of roles.

9. Click the role name examplerole.

10. Select the Trust Relationships tab.

11. Click Show policy document and verify the trust policy shown matches the following policy.

The following trust policy establishes trust with Account C, by allowing it the sts:AssumeRole
action. For more information, go to AssumeRole in the AWS Security Token Service API
Reference.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountC-ID:root"
 },
 "Action": "sts:AssumeRole"
 }
]
}

12. Note down the Amazon Resource Name (ARN) of the examplerole role you created.

Later in the following steps, you attach a user policy to allow an IAM user to assume this role, and
you identify the role by the ARN value.

API Version 2006-03-01
304

http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

Step 2: Do the Account B Tasks

The examplebucket owned by Account A needs objects owned by other accounts. In this step, the
Account B administrator uploads an object using the command line tools.

• Using the put-object AWS CLI command, upload an object to the examplebucket.

aws s3api put-object --bucket examplebucket --key HappyFace.jpg
 --body HappyFace.jpg --grant-full-control id="canonicalUserId-
ofTheBucketOwner" --profile AccountBadmin

Note the following:

• The --Profile parameter specifies AccountBadmin profile, so the object is owned by Account
B.

• The parameter grant-full-control grants the bucket owner full-control permission on the
object as required by the bucket policy.

• The --body parameter identifies the source file to upload. For example, if the file is on the C:
drive of a Windows computer, you specify c:\HappyFace.jpg.

Step 3: Do the Account C Tasks

In the preceding steps, Account A has already created a role, examplerole, establishing trust with
Account C. This allows users in Account C to access Account A. In this step, Account C administrator
creates a user (Dave) and delegates him the sts:AssumeRole permission it received from Account
A. This will allow Dave to assume the examplerole and temporarily gain access to Account A.
The access policy that Account A attached to the role will limit what Dave can do when he accesses
Account A—specifically, get objects in examplebucket.

Step 3.1: Create a User in Account C and Delegate Permission to Assume examplerole

1. Using the IAM user sign-in URL for Account C, first sign in to the AWS Management Console as
AccountCadmin user.

2. In the IAM console, create a user Dave.

For instructions, see Creating IAM Users (AWS Management Console) in the IAM User Guide.

3. Note down the Dave credentials. Dave will need these credentials to assume the examplerole
role.

4. Create an inline policy for the Dave IAM user to delegate the sts:AssumeRole permission to
Dave on the examplerole role in account A.

a. In the navigation pane on the left, click Users.

b. Click the user name Dave.

c. On the user details page, select the Permissions tab and then expand the Inline Policies
section.

d. Choose click here (or Create User Policy).

e. Click Custom Policy, and then click Select.

f. Enter a name for the policy in the Policy Name field.

g. Copy the following policy into the Policy Document field.

You will need to update the policy by providing the Account A ID.

{

API Version 2006-03-01
305

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["sts:AssumeRole"],
 "Resource": "arn:aws:iam::AccountA-ID:role/examplerole"
 }
]
}

h. Click Apply Policy

5. Save Dave's credentials to the config file of the AWS CLI by adding another profile,
AccountCDave.

[profile AccountCDave]
aws_access_key_id = UserDaveAccessKeyID
aws_secret_access_key = UserDaveSecretAccessKey
region = us-west-2

Step 3.2: Assume Role (examplerole) and Access Objects

Now Dave can access objects in the bucket owned by Account A as follows:

• Dave first assumes the examplerole using his own credentials. This will return temporary
credentials.

• Using the temporary credentials, Dave will then access objects in Account A's bucket.

1. At the command prompt, execute the following AWS CLI assume-role command using the
AccountCDave profile.

You will need to update the ARN value in the command by providing the Account A ID where
examplerole is defined.

aws sts assume-role --role-arn arn:aws:iam::accountA-ID:role/examplerole
 --profile AccountCDave --role-session-name test

In response, AWS Security Token Service (STS) returns temporary security credentials (access
key ID, secret access key, and a security token).

2. Save the temporary security credentials in the AWS CLI config file under the TempCred profile.

[profile TempCred]
aws_access_key_id = temp-access-key-ID
aws_secret_access_key = temp-secret-access-key
aws_security_token = security-token
region = us-west-2

3. At the command prompt, execute the following AWS CLI command to access objects using the
temporary credentials. For example, the command specifies the head-object API to retrieve object
metadata for the HappyFace.jpg object.

aws s3api get-object --bucket examplebucket --
key HappyFace.jpg SaveFileAs.jpg --profile TempCred

API Version 2006-03-01
306

Amazon Simple Storage Service Developer Guide
Example Walkthroughs: Managing Access

Because the access policy attached to examplerole allows the actions, Amazon S3 processes
the request. You can try any other action on any other object in the bucket.

If you try any other action—for example, get-object-acl—you will get permission denied
because the role is not allowed that action.

aws s3api get-object-acl --bucket examplebucket --key HappyFace.jpg --
profile TempCred

We used user Dave to assume the role and access the object using temporary credentials. It could
also be an application in Account C that accesses objects in examplebucket. The application can
obtain temporary security credentials, and Account C can delegate the application permission to
assume examplerole.

Step 4: Clean Up

1. After you are done testing, you can do the following to clean up.

• Sign in to the AWS Management Console (AWS Management Console) using account A
credentials, and do the following:

• In the Amazon S3 console, remove the bucket policy attached to examplebucket. In the
bucket Properties, delete the policy in the Permissions section.

• If the bucket is created for this exercise, in the Amazon S3 console, delete the objects and
then delete the bucket.

• In the IAM console, remove the examplerole you created in Account A.

• In the IAM console, remove the AccountAadmin user.

2. Sign in to the AWS Management Console (AWS Management Console) using Account B
credentials. In the IAM console, delete user AccountBadmin.

3. Sign in to the AWS Management Console (AWS Management Console) using Account C
credentials. In the IAM console, delete user AccountCadmin and user Dave.

Related Resources

• Creating a Role to Delegate Permissions to an IAM User in the IAM User Guide.

• Tutorial: Delegate Access Across AWS Accounts Using IAM Roles in the IAM User Guide.

• Working with Policies in the IAM User Guide.

API Version 2006-03-01
307

https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial-cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Using Bucket Policies and User Policies
Topics

• Access Policy Language Overview (p. 308)

• Bucket Policy Examples (p. 334)

• User Policy Examples (p. 343)

Bucket policy and user policy are two of the access policy options available for you to grant permission
to your Amazon S3 resources. Both use JSON-based access policy language. The topics in this
section describe the key policy language elements, with emphasis on Amazon S3–specific details, and
provide example bucket and user policies.

Important
We recommend you first review the introductory topics that explain the basic concepts
and options available for you to manage access to your Amazon S3 resources. For
more information, see Introduction to Managing Access Permissions to Your Amazon S3
Resources (p. 266).

Access Policy Language Overview
The topics in this section describe the basic elements used in bucket and user policies as used in
Amazon S3. For complete policy language information, see the Overview of IAM Policies and the AWS
IAM Policy Reference topics in the IAM User Guide.

Note
Bucket policies are limited to 20 KB in size.

Common Elements in an Access Policy
In its most basic sense, a policy contains the following elements:

• Resources – Buckets and objects are the Amazon S3 resources for which you can allow or deny
permissions. In a policy, you use the Amazon Resource Name (ARN) to identify the resource.

• Actions – For each resource, Amazon S3 supports a set of operations. You identify resource
operations you will allow (or deny) by using action keywords (see Specifying Permissions in a
Policy (p. 312)).

For example, the s3:ListBucket permission will allow the user permission to the Amazon S3 GET
Bucket (List Objects) operation.

• Effect – What the effect will be when the user requests the specific action—this can be either allow
or deny.

If you do not explicitly grant access to (allow) a resource, access is implicitly denied. You can also
explicitly deny access to a resource, which you might do in order to make sure that a user cannot
access it, even if a different policy grants access.

• Principal – The account or user who is allowed access to the actions and resources in the
statement. You specify a principal only in a bucket policy. It is the user, account, service, or other
entity who is the recipient of this permission. In a user policy, the user to which the policy is attached
is the implicit principal.

The following example bucket policy shows the preceding common policy elements. The policy
allows Dave, a user in account Account-ID, s3:GetBucketLocation, s3:ListBucket and
s3:GetObject Amazon S3 permissions on the examplebucket bucket.

{

API Version 2006-03-01
308

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ExampleStatement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::Account-ID:user/Dave"
 },
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::examplebucket"
]
 }
]
}

Because this is a bucket policy, it includes the Principal element, which specifies who gets the
permission.

For more information about the access policy elements, see the following topics:

• Specifying Resources in a Policy (p. 309)

• Specifying a Principal in a Policy (p. 310)

• Specifying Permissions in a Policy (p. 312)

• Specifying Conditions in a Policy (p. 315)

The following topics provide additional policy examples:

• Bucket Policy Examples (p. 334)

• User Policy Examples (p. 343)

Specifying Resources in a Policy

The following is the common Amazon Resource Name (ARN) format to identify any resources in AWS.

arn:partition:service:region:namespace:relative-id

For your Amazon S3 resources,

• aws is a common partition name. If your resources are in China (Beijing) region, aws-cn is the
partition name.

• s3 is the service.

• you don't specify region and namespace.

• For Amazon S3, it can be a bucket-name or a bucket-name/object-key. You can use wild
card.

Then the ARN format for Amazon S3 resources reduces to:

arn:aws:s3:::bucket_name

API Version 2006-03-01
309

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

arn:aws:s3:::bucket_name/key_name

The following are examples of Amazon S3 resource ARNs.

• This ARN identifies the /developers/design_info.doc object in the examplebucket bucket.

arn:aws:s3:::examplebucket/developers/design_info.doc

• You can use wildcards as part of the resource ARN. You can use wildcard characters (* and ?) within
any ARN segment (the parts separated by colons). An asterisk (*) represents any combination of
zero or more characters and a question mark (?) represents any single character. You can have use
multiple * or ? characters in each segment, but a wildcard cannot span segments.

• This ARN uses wildcard '*' in relative-ID part of the ARN to identify all objects in the
examplebucket bucket.

arn:aws:s3:::examplebucket/*

This ARN uses '*' to indicate all Amazon S3 resources (all bucket and objects in your account).

arn:aws:s3:::*

• This ARN uses both wildcards, '*', and '?', in the relative-ID part. It identifies all objects in buckets
such as example1bucket, example2bucket, example3bucket and so on.

arn:aws:s3:::example?bucket/*

• You can use policy variables in Amazon S3 ARNs. At policy evaluation time, these predefined
variables are replaced by their corresponding values. Suppose you organize your bucket as a
collection of folders, one folder for each of your users. The folder name is the same as the user
name. To grant users permission to their folders, you can specify a policy variable in the resource
ARN:

arn:aws:s3:::bucket_name/developers/${aws:username}/

At run time, when the policy is evaluated, the variable ${aws:username} in the resource ARN is
substituted with the user name making the request.

For more information, see the following resources:

• Resource in the IAM User Guide

• IAM Policy Variables Overview in the IAM User Guide.

• ARNs in the AWS General Reference

For more information about other access policy language elements, see Access Policy Language
Overview (p. 308).

Specifying a Principal in a Policy

The Principal element specifies the user, account, service, or other entity that is allowed or denied
access to a resource. The Principal element is relevant only in a bucket policy; you don't specify it in
a user policy because you attach user policy directly to a specific user. The following are examples of
specifying Principal. For more information, see Principal in the IAM User Guide.

API Version 2006-03-01
310

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Resource
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Principal

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

• To grant permissions to an AWS account, identify the account using the following format.

"AWS":"account-ARN"

For example:

"Principal":{"AWS":"arn:aws:iam::AccountNumber-WithoutHyphens:root"}

Amazon S3 also supports canonical user ID, an obfuscated form of the AWS account ID. You can
specify this ID using the following format.

"CanonicalUser":"64-digit-alphanumeric-value"

For example:

"Principal":{"CanonicalUser":"64-digit-alphanumeric-value"}

To find the canonical user ID associated with your AWS account

1. Go to http://aws.amazon.com/ and from the My Account/Console drop-down menu, select
Security Credentials.

2. Sign in using appropriate account credentials.

3. Click Account Identifiers.

• To grant permission to an IAM user within your account, you must provide a "AWS":"user-ARN"
name-value pair.

"Principal":{"AWS":"arn:aws:iam::account-number-without-
hyphens:user/username"}

• To grant permission to everyone, also referred as anonymous access, you set the wildcard, "*",
as the Principal value. For example, if you configure your bucket as a website, you want all the
objects in the bucket to be publicly accessible. The following are equivalent:

"Principal":"*"

"Principal":{"AWS":"*"}

• You can require that your users access your Amazon S3 content by using CloudFront URLs (instead
of Amazon S3 URLs) by creating a CloudFront origin access identity, and then changing the
permissions either on your bucket or on the objects in your bucket. The format for specifying the
origin access identity in a Principal statement is:

"Principal":{"CanonicalUser":"Amazon S3 Canonical User ID assigned to origin
 access identity"}

For more information, see Using an Origin Access Identity to Restrict Access to Your Amazon S3
Content in the Amazon CloudFront Developer Guide.

For more information about other access policy language elements, see Access Policy Language
Overview (p. 308).

API Version 2006-03-01
311

http://aws.amazon.com/
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

Specifying Permissions in a Policy

Amazon S3 defines a set of permissions that you can specify in a policy. These are keywords, each of
which maps to specific Amazon S3 operations (see Operations on Buckets, and Operations on Objects
in the Amazon Simple Storage Service API Reference).

Topics

• Permissions for Object Operations (p. 312)

• Permissions Related to Bucket Operations (p. 313)

• Permissions Related to Bucket Subresource Operations (p. 314)

Permissions for Object Operations

This section provides a list of the permissions for object operations that you can specify in a policy.

Amazon S3 Permissions for Object Operations

Permissions Amazon S3 Operations

s3:GetObject GET Object, HEAD Object, GET Object Torrent

When you grant this permission on a version-enabled bucket, you always get
the latest version data.

s3:GetObjectVersionGET Object, HEAD Object, GET Object Torrent

To grant permission for version specific object data, you must grant this
permission. That is, when you specify version number when making any of
these requests, you need this Amazon S3 permission.

s3:PutObject PUT Object, POST Object, Initiate Multipart Upload, Upload Part, Complete
Multipart Upload PUT Object - Copy

s3:GetObjectAcl GET Object ACL

s3:GetObjectVersionAclGET ACL (for a Specific Version of the Object)

s3:PutObjectAcl PUT Object ACL

s3:PutObjectVersionAclPUT Object (for a Specific Version of the Object)

s3:DeleteObject DELETE Object

s3:DeleteObjectVersionDELETE Object (a Specific Version of the Object)

s3:ListMultipartUploadPartsList Parts

s3:AbortMultipartUploadAbort Multipart Upload

s3:GetObjectTorrentGET Object Torrent

s3:GetObjectVersionTorrentGET Object Torrent versioning

s3:RestoreObjectPOST Object restore

The following example bucket policy grants the s3:PutObject and the s3:PutObjectAcl
permissions to a user (Dave). If you remove the Principal element, you can attach the policy
to a user. These are object operations, and accordingly the relative-id portion of the Resource

API Version 2006-03-01
312

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketOps.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectOps.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETtorrent.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETtorrent.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadComplete.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadComplete.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPartCopy.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/objectGetAclVersions.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListParts.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadAbort.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETtorrent.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETtorrent.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

ARN identifies objects (examplebucket/*). For more information, see Specifying Resources in a
Policy (p. 309).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:user/Dave"
 },
 "Action": ["s3:PutObject","s3:PutObjectAcl"],
 "Resource": "arn:aws:s3:::examplebucket/*"
 }
]
}

You can use a wildcard to grant permission for all Amazon S3 actions.

"Action": "*"

Permissions Related to Bucket Operations

This section provides a list of the permissions related to bucket operations that you can specify in a
policy.

Amazon S3 Permissions Related to Bucket Operations

Permission
Keywords

Amazon S3 Operation(s) Covered

s3:CreateBucket PUT Bucket

s3:DeleteBucket DELETE Bucket

s3:ListBucket GET Bucket (List Objects), HEAD Bucket

s3:ListBucketVersionsGET Bucket Object versions

s3:ListAllMyBucketsGET Service

s3:ListBucketMultipartUploadsList Multipart Uploads

The following example user policy grants the s3:CreateBucket, s3:ListAllMyBuckets, and
the s3:GetBucketLocation permissions to a user. Note that for all these permissions, you set the
relative-id part of the Resource ARN to "*". For all other bucket actions, you must specify a bucket
name. For more information, see Specifying Resources in a Policy (p. 309).

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"statement1",
 "Effect":"Allow",
 "Action":[

API Version 2006-03-01
313

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETE.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketHEAD.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListMPUpload.html

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

 "s3:CreateBucket", "s3:ListAllMyBuckets", "s3:GetBucketLocation"

],
 "Resource":[
 "arn:aws:s3:::*"
]
 }
]
}

Note that, if your user is going to use the console to view buckets, and see content of any
of these buckets, the console will need the user to have the s3:ListAllMyBuckets and
s3:GetBucketLocation permissions. For an example walkthrough, see An Example Walkthrough:
Using user policies to control access to your bucket (p. 348).

Permissions Related to Bucket Subresource Operations

This section provides a list of the permissions related to bucket subresource operations that you can
specify in a policy.

Amazon S3 Permissions Related to Bucket Subresource Operations

Permissions Amazon S3 Operation(s) Covered

s3:GetAccelerateConfiguration GET Bucket accelerate

s3:PutAccelerateConfiguration PUT Bucket accelerate

s3:GetBucketAcl GET Bucket acl

s3:PutBucketAcl PUT Bucket acl

s3:GetBucketCORS GET Bucket cors

s3:PutBucketCORS PUT Bucket cors

s3:GetBucketVersioning GET Bucket versioning

s3:PutBucketVersioning PUT Bucket versioning

s3:GetBucketRequestPayment GET Bucket requestPayment

s3:PutBucketRequestPayment PUT Bucket requestPayment

s3:GetBucketLocation GET Bucket location

s3:GetBucketPolicy GET Bucket policy

s3:DeleteBucketPolicy DELETE Bucket policy

s3:PutBucketPolicy PUT Bucket policy

s3:GetBucketNotification GET Bucket notification

s3:PutBucketNotification PUT Bucket notification

s3:GetBucketLogging GET Bucket logging

s3:PutBucketLogging PUT Bucket logging

s3:GetBucketTagging GET Bucket tagging

s3:PutBucketTagging PUT Bucket tagging

API Version 2006-03-01
314

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETaccelerate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTaccelerate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETcors.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTcors.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETversioningStatus.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTVersioningStatus.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTrequestPaymentGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTrequestPaymentPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlocation.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETpolicy.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEpolicy.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTpolicy.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETnotification.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTnotification.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlogging.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlogging.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETtagging.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTtagging.html

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

Permissions Amazon S3 Operation(s) Covered

s3:GetBucketWebsite GET Bucket website

s3:PutBucketWebsite PUT Bucket website

s3:DeleteBucketWebsite DELETE Bucket website

s3:GetLifecycleConfiguration GET Bucket lifecycle

s3:PutLifecycleConfiguration PUT Bucket lifecycle

s3:PutReplicationConfiguration PUT Bucket replication

s3:GetReplicationConfiguration GET Bucket replication

s3:DeleteReplicationConfigurationDELETE Bucket replication

The following user policy grants the s3:GetBucketAcl permission on the examplebucket bucket to
user Dave.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::Account-ID:user/Dave"
 },
 "Action": [
 "s3:GetObjectVersion",
 "s3:GetBucketAcl"
],
 "Resource": "arn:aws:s3:::examplebucket"
 }
]
}

You can delete objects either by explicitly calling the DELETE Object API or by configuring its lifecycle
(see Object Lifecycle Management (p. 109)) so that Amazon S3 can remove the objects when their
lifetime expires. To explicitly block users or accounts from deleting objects, you must explicitly deny
them s3:DeleteObject, s3:DeleteObjectVersion, and s3:PutLifecycleConfiguration
permissions. Note that, by default, users have no permissions. But as you create users, add users to
groups, and grant them permissions, it is possible for users to get certain permissions that you did not
intend to give. That is where you can use explicit deny, which supersedes all other permissions a user
might have and denies the user permissions for specific actions.

Specifying Conditions in a Policy
The access policy language allows you to specify conditions when granting permissions.
The Condition element (or Condition block) lets you specify conditions for when a policy is in
effect. In the Condition element, which is optional, you build expressions in which you use Boolean
operators (equal, less than, etc.) to match your condition against values in the request. For example,
when granting a user permission to upload an object, the bucket owner can require the object be
publicly readable by adding the StringEquals condition as shown here:

{

API Version 2006-03-01
315

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETwebsite.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEwebsite.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTreplication.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETreplication.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEreplication.html

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/*"
],
 "Condition": {
 "StringEquals": {
 "s3:x-amz-acl": [
 "public-read"
]
 }
 }
 }
]
}

The Condition block specifies the StringEquals condition that is applied to the specified key-
value pair, "s3:x-amz-acl":["public-read"]. There is a set of predefined keys you can use in
expressing a condition. The example uses the s3:x-amz-acl condition key. This condition requires
user to include the x-amz-acl header with value public-read in every PUT object request.

For more information about specifying conditions in an access policy language, see Condition in the
IAM User Guide.

The following topics describe AWS-wide and Amazon S3–specific condition keys and provide example
policies.

Topics

• Available Condition Keys (p. 316)

• Amazon S3 Condition Keys for Object Operations (p. 318)

• Amazon S3 Condition Keys for Bucket Operations (p. 328)

Available Condition Keys

The predefined keys available for specifying conditions in an Amazon S3 access policy can be
classified as follows:

• AWS-wide keys – AWS provides a set of common keys that are supported by all AWS services that
support policies. These keys that are common to all services are called AWS-wide keys and use the
prefix aws:. For a list of AWS-wide keys, see Available Keys for Conditions in the IAM User Guide.
There are also keys that are specific to Amazon S3, which use the prefix s3:. Amazon S3–specific
keys are discussed in the next bulleted item.

The new condition keys aws:sourceVpce and aws:sourceVpc are used in bucket policies for
VPC endpoints. For examples of using these condition keys, see Example Bucket Policies for VPC
Endpoints for Amazon S3 (p. 341).

The following example bucket policy allows authenticated users permission to use
the s3:GetObject action if the request originates from a specific range of IP addresses
(192.168.143.*), unless the IP address is 192.168.143.188. In the condition block, the IpAddress

API Version 2006-03-01
316

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Condition
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

and the NotIpAddress are conditions, and each condition is provided a key-value pair for
evaluation. Both the key-value pairs in this example use the aws:SourceIp AWS-wide key.

Note
The IPAddress and NotIpAddress key values specified in the condition uses CIDR
notation as described in RFC 4632. For more information, go to http://www.rfc-editor.org/rfc/
rfc4632.txt.

{
 "Version": "2012-10-17",
 "Id": "S3PolicyId1",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Principal": "*",
 "Action":["s3:GetObject"] ,
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition" : {
 "IpAddress" : {
 "aws:SourceIp": "192.168.143.0/24"
 },
 "NotIpAddress" : {
 "aws:SourceIp": "192.168.143.188/32"
 }
 }
 }
]
}

• Amazon S3–specific keys – In addition to the AWS-wide keys there are a set of condition keys that
are applicable only in the context of granting Amazon S3 specific permissions. These Amazon S3–
specific keys use the prefix s3:. For a list of Amazon S3–specific keys, see Actions and Condition
Context Keys for Amazon S3 in the IAM User Guide.

For example, the following bucket policy allows the s3:PutObject permission for two AWS
accounts if the request includes the x-amz-acl header making the object publicly readable.

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid":"AddCannedAcl",
 "Effect":"Allow",
 "Principal": {
 "AWS": ["arn:aws:iam::account1-
ID:root","arn:aws:iam::account2-ID:root"]
 },
 "Action":["s3:PutObject"],
 "Resource": ["arn:aws:s3:::examplebucket/*"],
 "Condition": {
 "StringEquals": {
 "s3:x-amz-acl":["public-read"]
 }
 }
 }
]

API Version 2006-03-01
317

http://www.rfc-editor.org/rfc/rfc4632.txt
http://www.rfc-editor.org/rfc/rfc4632.txt
http://docs.aws.amazon.com/IAM/latest/UserGuide/list_s3.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/list_s3.html

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

}

The Condition block uses the StringEquals condition and it is provided a key-value pair,
"s3:x-amz-acl":["public-read", for evaluation. In the key-value pair, the s3:x-amz-acl is
an Amazon S3–specific key, as indicated by the prefix s3:.

Important
Not all conditions make sense for all actions. For example, it makes sense to include an
s3:LocationConstraint condition on a policy that grants the s3:CreateBucket Amazon
S3 permission, but not for the s3:GetObject permission. Amazon S3 can test for semantic
errors of this type that involve Amazon S3–specific conditions. However, if you are creating a
policy for an IAM user and you include a semantically invalid Amazon S3 condition, no error is
reported, because IAM cannot validate Amazon S3 conditions.

The following section describes the condition keys that can be used to grant conditional permission
for bucket and object operations. In addition, there are condition keys related to Amazon S3 Signature
Version 4 authentication. For more information, go to Amazon S3 Signature Version 4 Authentication
Specific Policy Keys in the Amazon Simple Storage Service API Reference.

Amazon S3 Condition Keys for Object Operations

The following table shows which Amazon S3 conditions you can use with which Amazon S3 actions.
Example policies are provided following the table. Note the following about the Amazon S3–specific
condition keys described in the following table:

• The condition key names are preceded by the prefix s3:. For example,
s3:x-amz-acl
.

• Each condition key maps to the same name request header allowed by the API on which the
condition can be set. That is, these condition keys dictate behavior of the same name request
headers. For example:

• The condition key s3:x-amz-acl that you can use to grant condition permission for the
s3:PutObject
permission defines behavior of the x-amz-acl request header that the PUT Object API supports.

• The condition key s3:VersionId that you can use to grant conditional permission for the
s3:GetObjectVersion
permission defines behavior of the versionId query parameter that you set in a GET Object
request.

Permission Applicable Condition Keys
(or keywords)

Description

s3:PutObject • s3:x-amz-acl
(for canned ACL
permissions)

• s3:x-amz-grant-permi
ssion
(for explicit permissions),
where permission can
be:

read, write, read-
acp, write-acp,
full-control

The PUT Object operation allows
access control list (ACL)–specific
headers that you can use to grant
ACL-based permissions. Using these
keys, the bucket owner can set a
condition to require specific access
permissions when the user uploads an
object.

For an example policy, see Example 1:
Granting s3:PutObject permission with
a condition requiring the bucket owner
to get full control (p. 323).

API Version 2006-03-01
318

http://docs.aws.amazon.com/AmazonS3/latest/API/bucket-policy-s3-sigv4-conditions.html
http://docs.aws.amazon.com/AmazonS3/latest/API/bucket-policy-s3-sigv4-conditions.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

Permission Applicable Condition Keys
(or keywords)

Description

For more information about ACLs,
see Access Control List (ACL)
Overview (p. 364).

s3:x-amz-copy-source To copy an object you use the PUT
Object API (see PUT Object) and
specify the source using the x-amz-
copy-source header. Using this key,
the bucket owner can restrict the copy
source to a specific bucket, a specific
folder in the bucket, or a specific object
in a bucket.

For a policy example, see Example 3:
Granting s3:PutObject permission to
copy objects with a restriction on the
copy source (p. 325).

s3:x-amz-server-side-
encryption

When you upload an object, you
can use the x-amz-server-side-
encryption header to request
Amazon S3 to encrypt the object
when it is saved, using an envelope
encryption key managed either by
AWS Key Management Service
(KMS) or by Amazon S3 (see
Protecting Data Using Server-Side
Encryption (p. 381)).

When granting the s3:PutObject
permission, the bucket owner can add
a condition using this key to require
the user to specify this header in the
request. A bucket owner can grant
such conditional permission to ensure
that objects the user uploads are
encrypted when they are saved.

For a policy example, see Example 1:
Granting s3:PutObject permission with
a condition requiring the bucket owner
to get full control (p. 323).

API Version 2006-03-01
319

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

Permission Applicable Condition Keys
(or keywords)

Description

s3:x-amz-server-side
-encryption-aws-kms-
key-id

When you upload an object, you
can use the x-amz-server-side-
encryption-aws-kms-key-id
header to request Amazon S3 to
encrypt the object using the specified
AWS KMS key when it is saved (see
Protecting Data Using Server-Side
Encryption with AWS KMS–Managed
Keys (SSE-KMS) (p. 381)).

When granting the s3:PutObject
permission, the bucket owner can add
a condition using this key to restrict
the AWS KMS key ID used for object
encryption to a specific value.

A bucket owner can grant such
conditional permission to ensure that
objects the user uploads are encrypted
with a specific key when they are
saved.

The KMS key you specify in the policy
must use the following format:

arn:aws:kms:region:acct-
id:key/key-id

s3:x-amz-metadata-di
rective

When you copy an object using the
PUT Object API (see PUT Object)
you can optionally add the x-amz-
metadata-directive header to
specify whether you want the object
metadata copied from the source
object or replaced with metadata
provided in the request.

Using this key bucket, an owner can
add a condition to enforce certain
behavior when objects are uploaded.

Valid values: COPY | REPLACE. The
default is COPY.

API Version 2006-03-01
320

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

Permission Applicable Condition Keys
(or keywords)

Description

s3:x-amz-storage-class By default s3:PutObject stores
objects using the STANDARD storage
class, but you can use the x-amz-
storage-class request header to
specify a different storage class.

When granting the s3:PutObject
permission, you can use the s3:x-
amz-storage-class condition
key to restrict which storage class to
use when storing uploaded objects.
For more information about storage
classes, see Storage Classes.

For an example policy, see Example 5:
Restrict object uploads to objects with
a specific storage class (p. 327).

Valid Values: STANDARD
| STANDARD_IA |
REDUCED_REDUNDANCY. The default is
STANDARD.

s3:PutObjectAcl • s3:x-amz-acl
(for canned ACL
permissions)

• s3:x-amz-grant-permi
ssion
(for explicit permissions),
where permission can
be:

read, write, read-
acp, write-acp,
grant-full-control

The PUT Object acl API (see
PUT Object acl) sets the access
control list (ACL) on the specified
object. The operation supports ACL-
related headers. When granting this
permission, the bucket owner can
add conditions using these keys to
require certain permissions. For more
information about ACLs, see Access
Control List (ACL) Overview (p. 364).

For example, the bucket owner may
want to retain control of the object
regardless of who owns the object.
To accomplish this, the bucket owner
can add a condition using one of these
keys to require the user to include
specific permissions to the bucket
owner.

API Version 2006-03-01
321

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html#storage-class-intro
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

Permission Applicable Condition Keys
(or keywords)

Description

s3:GetObjectVersion s3:VersionId This Amazon S3 permission
enables the user to perform a set
of Amazon S3 API operations (see
Amazon S3 Permissions for Object
Operations (p. 312)). For a version-
enabled bucket, you can specify the
object version to retrieve data for.

By adding a condition using this key,
the bucket owner can restrict the user
to accessing data only for a specific
version of the object. For an example
policy, see Example 4: Granting
access to a specific version of an
object (p. 327).

s3:GetObjectVersionA
cl

s3:VersionId For a version-enabled bucket, this
Amazon S3 permission allows a user
to get the ACL for a specific version of
the object.

The bucket owner can add a condition
using the key to restrict the user to a
specific version of the object.

s3:VersionId For a version-enabled bucket, you
can specify the object version in the
PUT Object acl request to set ACL
on a specific object version. Using
this condition, the bucket owner can
restrict the user to setting an ACL only
on a specific version of an object.

s3:PutObjectVersionA
cl

• s3:x-amz-acl
(for canned ACL
permissions)

• s3:x-amz-grant-permi
ssion
(for explicit permissions),
where permission can
be:

read, write, read-
acp, write-acp,
grant-full-control

For a version-enabled bucket, this
Amazon S3 permission allows you to
set an ACL on a specific version of the
object.

For a description of these condition
keys, see the s3:PutObjectACL
permission in this table.

API Version 2006-03-01
322

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

Permission Applicable Condition Keys
(or keywords)

Description

s3:DeleteObjectVersi
on

s3:VersionId For a version-enabled bucket, this
Amazon S3 permission allows the
user to delete a specific version of the
object.

The bucket owner can add a condition
using this key to limit the user's ability
to delete only a specific version of the
object.

For an example of using this condition
key, see Example 4: Granting
access to a specific version of an
object (p. 327). The example is
about granting the
s3:GetObjectVersion
action, but the policy shows the use of
this condition key.

Example 1: Granting s3:PutObject permission with a condition requiring the bucket owner to
get full control

Suppose Account A owns a bucket and the account administrator wants to grant Dave, a user in
Account B, permissions to upload objects. By default, objects that Dave uploads are owned by Account
B, and Account A has no permissions on these objects. Because the bucket owner is paying the bills, it
wants full permissions on the objects that Dave uploads. The Account A administrator can accomplish
this by granting the s3:PutObject permission to Dave, with a condition that the request include ACL-
specific headers, that either grants full permission explicitly or uses a canned ACL (see PUT Object).

• Require the x-amz-full-control header in the request with full control permission to the bucket
owner.

The following bucket policy grants the s3:PutObject permission to user Dave with a condition
using the s3:x-amz-grant-full-control condition key, which requires the request to include
the x-amz-full-control header.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:user/Dave"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "StringEquals": {
 "s3:x-amz-grant-full-control": "id=AccountA-CanonicalUserID"
 }
 }
 }
]

API Version 2006-03-01
323

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

}

Note
This example is about cross-account permission. However, if Dave, who is getting the
permission, belongs to the AWS account that owns the bucket, then this conditional
permission is not necessary, because the parent account to which Dave belongs owns
objects the user uploads.

The preceding bucket policy grants conditional permission to user Dave in Account B. While this
policy is in effect, it is possible for Dave to get the same permission without any condition via some
other policy. For example, Dave can belong to a group and you grant the group s3:PutObject
permission without any condition. To avoid such permission loopholes, you can write a stricter
access policy by adding explicit deny. In this example, we explicitly deny user Dave upload
permission if he does not include the necessary headers in the request granting full permissions to
the bucket owner. Explicit deny always supersedes any other permission granted. The following is
the revised access policy example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:user/AccountBadmin"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "StringEquals": {
 "s3:x-amz-grant-full-control": "id=AccountA-
CanonicalUserID"
 }
 }
 },
 {
 "Sid": "statement2",
 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:user/AccountBadmin"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "StringNotEquals": {
 "s3:x-amz-grant-full-control": "id=AccountA-
CanonicalUserID"
 }
 }
 }
]
}

If you have two AWS accounts, you can test the policy using the AWS CLI. You attach the policy
and, using Dave's credentials, test the permission using the following AWS CLI put-object
command. You provide Dave's credentials by adding the --profile parameter. You grant full
control permission to the bucket owner by adding the --grant-full-control parameter. For

API Version 2006-03-01
324

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

more information about setting up and using the AWS CLI, see Setting Up the Tools for the Example
Walkthroughs (p. 281).

aws s3api put-object --bucket examplebucket --key HappyFace.jpg --body c:
\HappyFace.jpg --grant-full-control id="AccountA-CanonicalUserID" --profile
 AccountBUserProfile

• Require the x-amz-acl header with a canned ACL granting full control permission to the bucket
owner.

To require the x-amz-acl header in the request, you can replace the key-value pair in the
Condition block and specify the s3:x-amz-acl condition key as shown below.

"Condition": {
 "StringNotEquals": {
 "s3:x-amz-acl": "bucket-owner-full-control"
 }

To test the permission using the AWS CLI, you specify the --acl parameter. The AWS CLI then
adds the x-amz-acl header when it sends the request.

aws s3api put-object --bucket examplebucket --key HappyFace.jpg --body c:
\HappyFace.jpg --acl "bucket-owner-full-control" --profile AccountBadmin

Example 2: Granting s3:PutObject permission requiring objects stored using server-side
encryption

Suppose Account A owns a bucket and the account administrator wants to grant Jane, a user in
Account A, permission to upload objects with a condition that Jane always request server-side
encryption so that Amazon S3 saves objects encrypted. The Account A administrator can accomplish
using the s3:x-amz-server-side-encryption condition key as shown. The key-value pair in the
Condition block specifies the s3:x-amz-server-side-encryption key.

"Condition": {
 "StringNotEquals": {
 "s3:x-amz-server-side-encryption": "AES256"
 }

When testing the permission using AWS CLI, you will need to add the required parameter using the --
server-side-encryption parameter.

aws s3api put-object --bucket example1bucket --key HappyFace.jpg --body c:
\HappyFace.jpg --server-side-encryption "AES256" --profile AccountntBadmin

Example 3: Granting s3:PutObject permission to copy objects with a restriction on the copy
source

In the PUT Object request, when you specify a source object, it is a copy operation (see PUT Object -
Copy). Accordingly, the bucket owner can grant a user permission to copy objects with restrictions on
the source. For example:

• allow copying objects only from the sourcebucket bucket.

• allow copying objects from the sourcebucket bucket, and only the objects whose key name prefix
start with public/ f. For example, sourcebucket/public/*

API Version 2006-03-01
325

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

• allow copying only a specific object from the sourcebucket. For example, sourcebucket/
example.jpg.

The following bucket policy grants user Dave s3:PutObject permission that allows him to copy only
objects with a condition that the request include the s3:x-amz-copy-source header and the header
value specify the /examplebucket/public/* key name prefix.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "cross-account permission to user in your own account",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA-ID:user/Dave"
 },
 "Action": ["s3:PutObject"],
 "Resource": "arn:aws:s3:::examplebucket/*"
 },
 {
 "Sid": "Deny your user permission to upload object if copy source
 is not /bucket/folder",
 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA-ID:user/Dave"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "StringNotLike": {
 "s3:x-amz-copy-source": "examplebucket/public/*"
 }
 }
 }
]
}

You can test the permission using the AWS CLI copy-object command. You specify the source
by adding the --copy-source parameter, the key name prefix must match that the prefix allowed
in the policy. You will need to provide user Dave credentials using the --profile parameter.
For more information about setting up AWS CLI, see Setting Up the Tools for the Example
Walkthroughs (p. 281).

aws s3api copy-object --bucket examplebucket --key HappyFace.jpg
--copy-source examplebucket/public/PublicHappyFace1.jpg --profile
 AccountADave

Note that the preceding policy uses the StringNotLike condition. To grant permission to copy only a
specific object you will need to change the condition from StringNotLike to StringNotEquals and
then specify the exact object key as shown.

"Condition": {
 "StringNotEquals": {
 "s3:x-amz-copy-source": "examplebucket/public/
PublicHappyFace1.jpg"
 }

API Version 2006-03-01
326

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

}

Example 4: Granting access to a specific version of an object

Suppose Account A owns a version-enabled bucket. The bucket has several versions of the
HappyFace.jpg object. The account administrator now wants to grant its user (Dave) permission
to get only a specific version of the object. The account administrator can accomplish this by
granting Dave s3:GetObjectVersion permission conditionally as shown. The key-value pair in the
Condition block specifies the s3:VersionId condition key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA-ID:user/Dave"
 },
 "Action": ["s3:GetObjectVersion"],
 "Resource": "arn:aws:s3:::examplebucketversionenabled/
HappyFace.jpg"
 },
 {
 "Sid": "statement2",
 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA-ID:user/Dave"
 },
 "Action": ["s3:GetObjectVersion"],
 "Resource": "arn:aws:s3:::examplebucketversionenabled/
HappyFace.jpg",
 "Condition": {
 "StringNotEquals": {
 "s3:VersionId": "AaaHbAQitwiL_h47_44lRO2DDfLlBO5e"
 }
 }
 }
]
}

In this case, Dave will need to know the exact object version ID to retrieve the object.

You can test the permissions using the AWS CLI get-object command with the --version-id
parameter identifying the specific object version. The command retrieves the object and saves it to the
OutputFile.jpg file.

aws s3api get-object --bucket examplebucketversionenabled --key HappyFace.jpg
 OutputFile.jpg --version-id AaaHbAQitwiL_h47_44lRO2DDfLlBO5e --profile
 AccountADave

Example 5: Restrict object uploads to objects with a specific storage class

Suppose Account A owns a bucket and the account administrator wants to restrict Dave, a user in
Account A, to be able to only upload objects to the bucket that will be stored with the STANDARD_IA
storage class. The Account A administrator can accomplish this by using the s3:x-amz-storage-
class condition key as shown in the following example bucket policy.

API Version 2006-03-01
327

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA-ID:user/Dave"
 },
 "Action": "s3:PutObject",
 "Resource": [
 "arn:aws:s3:::examplebucket/*"
],
 "Condition": {
 "StringEquals": {
 "s3:x-amz-storage-class": [
 "STANDARD_IA"
]
 }
 }
 }
]
}

Amazon S3 Condition Keys for Bucket Operations

The following table shows list of bucket operation–specific permissions you can grant in policies, and
for each of the permissions, the available keys you can use in specifying a condition.

Permission Applicable Condition Keys Description

• s3:x-amz-acl
(for canned ACL
permissions)

• s3:x-amz-grant-permi
ssion
(for explicit permissions),
where permission can be:

read, write, read-
acp, write-acp, full
-control

The Create Bucket API (see PUT
Bucket) supports ACL-specific
headers. Using these condition keys,
you can require a user to set these
headers in the request granting
specific permissions.

s3:CreateBucket

s3:LocationConstraint Using this condition key, you can
restrict user to create bucket in a
specific region. For a policy example,
see Example 1: Allow a user to
create a bucket but only in a specific
region (p. 331).

s3:ListBucket s3:prefix Using this condition key, you can limit
the response of the Get Bucket (List
Objects) API (see GET Bucket (List
Objects)) to key names with specific
prefix.

The Get Bucket (List Objects) API
returns list of object keys in the

API Version 2006-03-01
328

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

Permission Applicable Condition Keys Description

specified bucket. This API supports
the prefix header to retrieve only the
object keys with a specific prefix. This
condition key relates to the prefix
header.

For example, the Amazon S3
console supports the folder concept
using key name prefixes. So if you
have two objects with key names
public/object1.jpg and public/
object2.jpg, the console shows the
objects under the public folder. If you
organize your object keys using such
prefixes, you can grant
s3:ListBucket
permission with the condition that
will allow the user to get a list of key
names with a specific prefix.

For a policy example, see Example 2:
Allow a user to get a list of objects in
a bucket according to a specific prefix
 (p. 332).

s3:delimiter If you organize your object key names
using prefixes and delimiters, you
can use this condition key to require
the user to specify the delimiter
parameter in the Get Bucket (List
Objects) request. In this case, the
response Amazon S3 returns is a list
of object keys with common prefixes
grouped together. For an example of
using prefixes and delimiters, go to
Get Bucket (List Objects).

s3:max-keys Using this condition, you can limit the
number of keys Amazon S3 returns
in response to the Get Bucket (List
Objects) request by requiring the user
to specify the max-keys parameter.
By default the API returns up to 1000
key names.
For a list of numeric conditions you
can use, see Numeric Condition
Operators in the IAM User Guide.

API Version 2006-03-01
329

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html#RESTBucketGET-responses-examples-sample-request-using-prefix-and-delimiter
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_Numeric
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_Numeric

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

Permission Applicable Condition Keys Description

s3:prefix If your bucket is version-enabled, you
can use the GET Bucket Object
versions API (see GET Bucket
Object versions) to retrieve metadata
of all of the versions of objects. For
this API, the bucket owner must grant
the
s3:ListBucketVersions
permission in the policy.

Using this condition key, you can limit
the response of the API to key names
with a specific prefix by requiring the
user to specify the prefix parameter
in the request with a specific value.

For example, the Amazon S3 console
supports the folder concept of
using key name prefixes. If you
have two objects with key names
public/object1.jpg and public/
object2.jpg, the console shows the
objects under the public folder. If you
organize your object keys using such
prefixes, you can grant
s3:ListBucket
permission with the condition that will
allow a use to get a list of key names
with a specific prefix.

For a policy example, see Example 2:
Allow a user to get a list of objects in
a bucket according to a specific prefix
 (p. 332).

s3:delimiter If you organize your object key names
using prefixes and delimiters, you
can use this condition key to require
the user to specify the delimiter
parameter in the GET Bucket Object
versions request. In this case, the
response Amazon S3 returns is a list
of object keys with common prefixes
grouped together.

s3:ListBucketVersion
s

s3:max-keys Using this condition you can limit the
number of keys Amazon S3 returns in
response to the GET Bucket Object
versions request by requiring the user
to specify the max-keys parameter.
By default, the API returns up to
1000 key names. For a list of numeric
conditions you can use, see Numeric
Condition Operators in the IAM User
Guide.

API Version 2006-03-01
330

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_Numeric
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_Numeric

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

Permission Applicable Condition Keys Description

s3:PutBucketAcl • s3:x-amz-acl
(for canned ACL
permissions)

• s3:x-amz-grant-permi
ssion
(for explicit permissions),
where permission can be:

read, write, read-
acp, write-acp, full
-control

The PUT Bucket acl API (see
PUT Bucket) supports ACL-specific
headers. You can use these condition
keys to require a user to set these
headers in the request.

Example 1: Allow a user to create a bucket but only in a specific region

Suppose an AWS account administrator wants to grant its user (Dave), permission to create a bucket
in the South America (São Paulo) region only. The account administrator can attach the following user
policy granting the s3:CreateBucket permission with a condition as shown. The key-value pair in
the Condition block specifies the s3:LocationConstraint key and the sa-east-1 region as its
value.

Note
In this example, the bucket owner is granting permission to one of its users, so either a bucket
policy or a user policy can be used. This example shows a user policy.

For a list of Amazon S3 regions, go to Regions and Endpoints in the Amazon Web Services General
Reference.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"statement1",
 "Effect":"Allow",
 "Action":[
 "s3:CreateBucket"
],
 "Resource":[
 "arn:aws:s3:::*"
],
 "Condition": {
 "StringLike": {
 "s3:LocationConstraint": "sa-east-1"
 }
 }
 }
]
}

This policy restricts the user from creating a bucket in any other region except sa-east-1. However,
it is possible some other policy will grant this user permission to create buckets in another region.
For example, if the user belongs to a group, the group may have a policy attached to it allowing all
users in the group permission to create buckets in some other region. To ensure the user does not get
permission to create buckets in any other region, you can add an explicit deny statement in this policy.

{

API Version 2006-03-01
331

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"statement1",
 "Effect":"Allow",
 "Action":[
 "s3:CreateBucket"
],
 "Resource":[
 "arn:aws:s3:::*"
],
 "Condition": {
 "StringLike": {
 "s3:LocationConstraint": "sa-east-1"
 }
 }
 },
 {
 "Sid":"statement2",
 "Effect":"Deny",
 "Action":[
 "s3:CreateBucket"
],
 "Resource":[
 "arn:aws:s3:::*"
],
 "Condition": {
 "StringNotLike": {
 "s3:LocationConstraint": "sa-east-1"
 }
 }
 }
]
}

The Deny statement uses the StringNotLike condition. That is, a create bucket request will be
denied if the location constraint is not "sa-east-1". The explicit deny will not allow the user to create a
bucket in any other region, no matter what other permission the user gets.

You can test the policy using the following create-bucket AWS CLI command. This example uses
the bucketconfig.txt file to specify the location constraint. Note the Windows file path. You will
need to update the bucket name and path as appropriate. You must provide user credentials using the
--profile parameter. For more information about setting up and using the AWS CLI, see Setting Up
the Tools for the Example Walkthroughs (p. 281).

aws s3api create-bucket --bucket examplebucket --profile AccountADave --
create-bucket-configuration file://c:/Users/someUser/bucketconfig.txt

The bucketconfig.txt file specifies the configuration as follows

{"LocationConstraint": "sa-east-1"}

Example 2: Allow a user to get a list of objects in a bucket according to a specific prefix

A bucket owner can restrict a user to list content of a specific folder in the bucket. This is useful if
objects in the bucket are organized by key name prefixes, the Amazon S3 console then uses the
prefixes to show a folder hierarchy (only the console supports the concept of folders; the Amazon S3
API supports only buckets and objects).

API Version 2006-03-01
332

Amazon Simple Storage Service Developer Guide
Access Policy Language Overview

In this example, the bucket owner and the parent account to which the user belongs are the same. So
the bucket owner can use either a bucket policy or a user policy. First, we show a user policy.

The following user policy grants the s3:ListBucket permission (see GET Bucket (List Objects)) with
a condition that requires the user to specify the prefix in the request with the value projects.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"statement1",
 "Effect":"Allow",
 "Action":[
 "s3:ListBucket"
],
 "Resource":[
 "arn:aws:s3:::examplebucket"
],
 "Condition" : {
 "StringEquals" : {
 "s3:prefix": "projects"
 }
 }
 },
 {
 "Sid":"statement2",
 "Effect":"Deny",
 "Action":[
 "s3:ListBucket"
],
 "Resource":[
 "arn:aws:s3:::examplebucket"
],
 "Condition" : {
 "StringNotEquals" : {
 "s3:prefix": "projects"
 }
 }
 }
]
}

The condition restricts the user to listing object keys with the projects prefix. The added explicit
deny will deny user request for listing keys with any other prefix no matter what other permissions the
user might have. For example, it is possible that the user gets permission to list object keys without
any restriction, for example either by updates to the preceding user policy or via a bucket policy. But
because explicit deny always supersedes, the user request to list keys other than the project prefix
will be denied.

The preceding policy is a user policy. If you add the Principal element to the policy, identifying the
user, you now have a bucket policy as shown.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"statement1",
 "Effect":"Allow",

API Version 2006-03-01
333

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
Bucket Policy Examples

 "Principal": {
 "AWS": "arn:aws:iam::BucketOwner-accountID:user/user-name"
 },
 "Action":[
 "s3:ListBucket"
],
 "Resource":[
 "arn:aws:s3:::examplebucket"
],
 "Condition" : {
 "StringEquals" : {
 "s3:prefix": "examplefolder"
 }
 }
 },
 {
 "Sid":"statement2",
 "Effect":"Deny",
 "Principal": {
 "AWS": "arn:aws:iam::BucketOwner-AccountID:user/user-name"
 },
 "Action":[
 "s3:ListBucket"
],
 "Resource":[
 "arn:aws:s3:::examplebucket"
],
 "Condition" : {
 "StringNotEquals" : {
 "s3:prefix": "examplefolder"
 }
 }
 }
]
}

You can test the policy using the following list-object AWS CLI command. In the command, you
provide user credentials using the --profile parameter. For more information about setting up and
using the AWS CLI, see Setting Up the Tools for the Example Walkthroughs (p. 281).

aws s3api list-objects --bucket examplebucket --prefix examplefolder --
profile AccountADave

Now if the bucket is version-enabled, to list the objects in the bucket, instead of s3:ListBucket
permission, you must grant the s3:ListBucketVersions permission in the preceding policy. This
permission also supports the s3:prefix condition key.

Bucket Policy Examples
This section presents a few examples of typical use cases for bucket policies. The policies use
"bucket" and "examplebucket" strings in the resource value. To test these policies, you need to replace
these strings with your bucket name. For information about access policy language, see Access Policy
Language Overview (p. 308).

You can use the AWS Policy Generator to create a bucket policy for your Amazon S3 bucket. You can
then use the generated document to set your bucket policy by using the Amazon S3 console, by a
number of third-party tools, or via your application.

API Version 2006-03-01
334

http://awspolicygen.s3.amazonaws.com/policygen.html
https://console.aws.amazon.com/s3/home

Amazon Simple Storage Service Developer Guide
Bucket Policy Examples

Note
When testing permissions using the Amazon S3 console, you will need to grant additional
permissions that the console requires—s3:ListAllMyBuckets, s3:GetBucketLocation,
and s3:ListBucket permissions. For an example walkthrough that grants permissions to
users and tests them using the console, see An Example Walkthrough: Using user policies to
control access to your bucket (p. 348).

Topics

• Granting Permissions to Multiple Accounts with Added Conditions (p. 335)

• Granting Read-Only Permission to an Anonymous User (p. 335)

• Restricting Access to Specific IP Addresses (p. 336)

• Restricting Access to a Specific HTTP Referrer (p. 337)

• Granting Permission to an Amazon CloudFront Origin Identity (p. 338)

• Adding a Bucket Policy to Require MFA Authentication (p. 339)

• Granting Cross-Account Permissions to Upload Objects While Ensuring the Bucket Owner Has Full
Control (p. 340)

• Example Bucket Policies for VPC Endpoints for Amazon S3 (p. 341)

Granting Permissions to Multiple Accounts with Added
Conditions

The following example policy grants the s3:PutObject and s3:PutObjectAcl permissions to
multiple AWS accounts and requires that any request for these operations include the public-read
canned ACL. For more information, see Specifying Permissions in a Policy (p. 312) and Specifying
Conditions in a Policy (p. 315).

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AddCannedAcl",
 "Effect":"Allow",
 "Principal": {"AWS":
 ["arn:aws:iam::111122223333:root","arn:aws:iam::444455556666:root"]},
 "Action":["s3:PutObject","s3:PutObjectAcl"],
 "Resource":["arn:aws:s3:::examplebucket/*"],
 "Condition":{"StringEquals":{"s3:x-amz-acl":["public-read"]}}
 }
]
}

Granting Read-Only Permission to an Anonymous User

The following example policy grants the s3:GetObject permission to any public anonymous users.
(For a list of permissions and operations they allow, see Specifying Permissions in a Policy (p. 312).)
This permission allows anyone to read the object data, which is useful for when you configure your
bucket as a website and want everyone to be able to read objects in the bucket.

{
 "Version":"2012-10-17",
 "Statement":[
 {

API Version 2006-03-01
335

Amazon Simple Storage Service Developer Guide
Bucket Policy Examples

 "Sid":"AddPerm",
 "Effect":"Allow",
 "Principal": "*",
 "Action":["s3:GetObject"],
 "Resource":["arn:aws:s3:::examplebucket/*"]
 }
]
}

Restricting Access to Specific IP Addresses

The following example grants permissions to any user to perform any Amazon S3 operations on
objects in the specified bucket. However, the request must originate from the range of IP addresses
specified in the condition.

The condition in this statement identifies the 54.240.143.* range of allowed Internet Protocol version 4
(IPv4) IP addresses, with one exception: 54.240.143.188.

The Condition block uses the IpAddress and NotIpAddress conditions and the aws:SourceIp
condition key, which is an AWS-wide condition key. For more information about these condition keys,
see Specifying Conditions in a Policy (p. 315). The aws:sourceIp IPv4 values use the standard
CIDR notation. For more information, see IP Address Condition Operators in the IAM User Guide.

{
 "Version": "2012-10-17",
 "Id": "S3PolicyId1",
 "Statement": [
 {
 "Sid": "IPAllow",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "IpAddress": {"aws:SourceIp": "54.240.143.0/24"},
 "NotIpAddress": {"aws:SourceIp": "54.240.143.188/32"}
 }
 }
]
}

Allowing IPv4 and IPv6 Addresses

When you start using IPv6 addresses, we recommend that you update all of your organization's
policies with your IPv6 address ranges in addition to your existing IPv4 ranges to ensure that the
policies continue to work as you make the transition to IPv6.

The following example bucket policy shows how to mix IPv4 and IPv6 address ranges to cover all
of your organization's valid IP addresses. The example policy would allow access to the example IP
addresses 54.240.143.1 and 2001:DB8:1234:5678::1 and would deny access to the addresses
54.240.143.129 and 2001:DB8:1234:5678:ABCD::1.

The IPv6 values for aws:sourceIp must be in standard CIDR format. For IPv6 we support using ::
to represent a range of 0s, for example, 2032001:DB8:1234:5678::/64. For more information, see IP
Address Condition Operators in the IAM User Guide.

{

API Version 2006-03-01
336

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_IPAddress
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_IPAddress
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_IPAddress

Amazon Simple Storage Service Developer Guide
Bucket Policy Examples

 "Id":"PolicyId2",
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowIPmix",
 "Effect":"Allow",
 "Principal":"*",
 "Action":"s3:*",
 "Resource":"arn:aws:s3:::examplebucket/*",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "54.240.143.0/24",
 "2001:DB8:1234:5678::/64"
]
 },
 "NotIpAddress": {
 "aws:SourceIp": [
 "54.240.143.128/30",
 "2001:DB8:1234:5678:ABCD::/80"
]
 }
 }
 }
]
}

Restricting Access to a Specific HTTP Referrer

Suppose you have a website with domain name (www.example.com or example.com) with links
to photos and videos stored in your S3 bucket, examplebucket. By default, all the S3 resources
are private, so only the AWS account that created the resources can access them. To allow read
access to these objects from your website, you can add a bucket policy that allows s3:GetObject
permission with a condition, using the aws:referer key, that the get request must originate from
specific webpages. The following policy specifies the StringLike condition with the aws:Referer
condition key.

{
 "Version":"2012-10-17",
 "Id":"http referer policy example",
 "Statement":[
 {
 "Sid":"Allow get requests originating from www.example.com and
 example.com.",
 "Effect":"Allow",
 "Principal":"*",
 "Action":"s3:GetObject",
 "Resource":"arn:aws:s3:::examplebucket/*",
 "Condition":{
 "StringLike":{"aws:Referer":["http://www.example.com/*","http://
example.com/*"]}
 }
 }
]
}

Make sure the browsers you use include the http referer header in the request.

API Version 2006-03-01
337

Amazon Simple Storage Service Developer Guide
Bucket Policy Examples

You can further secure access to objects in the examplebucket bucket by adding explicit deny to the
bucket policy as shown in the following example. Explicit deny supersedes any permission you might
grant to objects in the examplebucket bucket using other means such as ACLs or user policies.

{
 "Version": "2012-10-17",
 "Id": "http referer policy example",
 "Statement": [
 {
 "Sid": "Allow get requests referred by www.example.com and
 example.com.",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "StringLike": {"aws:Referer": ["http://www.example.com/*","http://
example.com/*"]}
 }
 },
 {
 "Sid": "Explicit deny to ensure requests are allowed only from
 specific referer.",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "StringNotLike": {"aws:Referer": ["http://www.example.com/
","http://example.com/"]}
 }
 }
]
}

Granting Permission to an Amazon CloudFront Origin Identity

The following example bucket policy grants a CloudFront Origin Identity permission to get (list) all
objects in your Amazon S3 bucket. The CloudFront Origin Identity is used to enable the CloudFront
private content feature. The policy uses the CanonicalUser prefix, instead of AWS, to specify a
Canonical User ID. To learn more about CloudFront support for serving private content, go to the
Serving Private Content topic in the Amazon CloudFront Developer Guide. You must specify the
canonical user ID for your CloudFront distribution's origin access identity. For instructions about finding
the canonical user ID, see Specifying a Principal in a Policy (p. 310).

{
 "Version":"2012-10-17",
 "Id":"PolicyForCloudFrontPrivateContent",
 "Statement":[
 {
 "Sid":" Grant a CloudFront Origin Identity access to support private
 content",
 "Effect":"Allow",
 "Principal":
{"CanonicalUser":"79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be"},
 "Action":"s3:GetObject",
 "Resource":"arn:aws:s3:::example-bucket/*"

API Version 2006-03-01
338

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/PrivateContent.html

Amazon Simple Storage Service Developer Guide
Bucket Policy Examples

 }
]
}

Adding a Bucket Policy to Require MFA Authentication

Amazon S3 supports MFA-protected API access, a feature that can enforce multi-factor authentication
for access to your Amazon S3 resources. Multi-factor authentication provides an extra level of security
you can apply to your AWS environment. It is a security feature that requires users to prove physical
possession of an MFA device by providing a valid MFA code. For more information, go to AWS Multi-
Factor Authentication. You can require MFA authentication for any requests to access your Amazon S3
resources.

You can enforce the MFA authentication requirement using the aws:MultiFactorAuthAge key in a
bucket policy. IAM users can access Amazon S3 resources by using temporary credentials issued by
the AWS Security Token Service (STS). You provide the MFA code at the time of the STS request.

When Amazon S3 receives a request with MFA authentication, the aws:MultiFactorAuthAge key
provides a numeric value indicating how long ago (in seconds) the temporary credential was created.
If the temporary credential provided in the request was not created using an MFA device, this key
value is null (absent). In a bucket policy, you can add a condition to check this value, as shown in the
following example bucket policy. The policy denies any Amazon S3 operation on the /taxdocuments
folder in the examplebucket bucket if the request is not MFA authenticated. To learn more about
MFA authentication, see Using Multi-Factor Authentication (MFA) in AWS in the IAM User Guide.

{
 "Version": "2012-10-17",
 "Id": "123",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::examplebucket/taxdocuments/*",
 "Condition": { "Null": { "aws:MultiFactorAuthAge": true }}
 }
]
}

The Null condition in the Condition block evaluates to true if the aws:MultiFactorAuthAge key
value is null, indicating that the temporary security credentials in the request were created without the
MFA key.

The following bucket policy is an extension of the preceding bucket policy. It includes two policy
statements. One statement allows the s3:GetObject permission on a bucket (examplebucket)
to everyone and another statement further restricts access to the examplebucket/taxdocuments
folder in the bucket by requiring MFA authentication.

{
 "Version": "2012-10-17",
 "Id": "123",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Deny",
 "Principal": "*",

API Version 2006-03-01
339

http://aws.amazon.com/mfa/
http://aws.amazon.com/mfa/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

Amazon Simple Storage Service Developer Guide
Bucket Policy Examples

 "Action": "s3:*",
 "Resource": "arn:aws:s3:::examplebucket/taxdocuments/*",
 "Condition": { "Null": { "aws:MultiFactorAuthAge": true } }
 },
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": "*",
 "Action": ["s3:GetObject"],
 "Resource": "arn:aws:s3:::examplebucket/*"
 }
]
}

You can optionally use a numeric condition to limit the duration for which the
aws:MultiFactorAuthAge key is valid, independent of the lifetime of the temporary security
credential used in authenticating the request. For example, the following bucket policy, in addition
to requiring MFA authentication, also checks how long ago the temporary session was created. The
policy denies any operation if the aws:MultiFactorAuthAge key value indicates that the temporary
session was created more than an hour ago (3,600 seconds).

{
 "Version": "2012-10-17",
 "Id": "123",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::examplebucket/taxdocuments/*",
 "Condition": {"Null": {"aws:MultiFactorAuthAge": true }}
 },
 {
 "Sid": "",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::examplebucket/taxdocuments/*",
 "Condition": {"NumericGreaterThan": {"aws:MultiFactorAuthAge": 3600 }}
 },
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": "*",
 "Action": ["s3:GetObject"],
 "Resource": "arn:aws:s3:::examplebucket/*"
 }
]
}

Granting Cross-Account Permissions to Upload Objects While
Ensuring the Bucket Owner Has Full Control
You can allow another AWS account to upload objects to your bucket. However, you may decide
that as a bucket owner you must have full control of the objects uploaded to your bucket. The
following policy enforces that a specific AWS account (111111111111) be denied the ability to upload

API Version 2006-03-01
340

Amazon Simple Storage Service Developer Guide
Bucket Policy Examples

objects unless that account grants full-control access to the bucket owner identified by the email
address (xyz@amazon.com). The StringEquals condition in the policy specifies the s3:x-amz-
grant-full-control condition key to express the requirement (see Specifying Conditions in a
Policy (p. 315)).

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"111",
 "Effect":"Allow",
 "Principal":{"AWS":"1111111111"},
 "Action":"s3:PutObject",
 "Resource":"arn:aws:s3:::examplebucket/*"
 },
 {
 "Sid":"112",
 "Effect":"Deny",
 "Principal":{"AWS":"1111111111" },
 "Action":"s3:PutObject",
 "Resource":"arn:aws:s3:::examplebucket/*",
 "Condition": {
 "StringNotEquals": {"s3:x-amz-grant-full-control":
["emailAddress=xyz@amazon.com"]}
 }
 }
]
}

Example Bucket Policies for VPC Endpoints for Amazon S3

You can use Amazon S3 bucket policies to control access to buckets from specific Amazon Virtual
Private Cloud (Amazon VPC) endpoints, or specific VPCs. This section contains example bucket
policies that can be used to control S3 bucket access from VPC endpoints. To learn how to set up VPC
endpoints, go to the VPC Endpoints topic in the Amazon VPC User Guide.

Amazon VPC enables you to launch Amazon Web Services (AWS) resources into a virtual network
that you define. A VPC endpoint enables you to create a private connection between your VPC and
another AWS service without requiring access over the Internet, through a VPN connection, through a
NAT instance, or through AWS Direct Connect.

A VPC endpoint for Amazon S3 is a logical entity within a VPC that allows connectivity only to Amazon
S3. The VPC endpoint routes requests to Amazon S3 and routes responses back to the VPC. VPC
endpoints only change how requests are routed, Amazon S3 public endpoints and DNS names will
continue to work with VPC endpoints. For important information about using Amazon VPC endpoints
with Amazon S3, go to the Endpoints for Amazon S3 topic in the Amazon VPC User Guide.

VPC endpoints for Amazon S3 provides two ways to control access to your Amazon S3 data:

• You can control what requests, users, or groups are allowed through a specific VPC endpoint. For
information on this type of access control, go to the VPC Endpoints - Controlling Access to Services
topic in the Amazon VPC User Guide.

• You can control which VPCs or VPC endpoints have access to your S3 buckets by using S3 bucket
policies. For examples of this type of bucket policy access control, see the following topics on
restricting access.

Topics

API Version 2006-03-01
341

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html#vpc-endpoints-s3
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html#vpc-endpoints-access

Amazon Simple Storage Service Developer Guide
Bucket Policy Examples

• Restricting Access to a Specific VPC Endpoint (p. 342)

• Restricting Access to a Specific VPC (p. 342)

• Related Resources (p. 343)

Restricting Access to a Specific VPC Endpoint

The following is an example of an S3 bucket policy that allows access to a specific bucket,
examplebucket, only from the VPC endpoint with the ID vpce-1a2b3c4d. The policy uses
the aws:sourceVpce condition key to restrict access to the specified VPC endpoint. The
aws:sourceVpce condition key does not require an ARN for the VPC endpoint resource, only the
VPC endpoint ID. For more information about using conditions in a policy, see Specifying Conditions in
a Policy (p. 315).

{
 "Version": "2012-10-17",
 "Id": "Policy1415115909152",
 "Statement": [
 {
 "Sid": "Access-to-specific-VPCE-only",
 "Action": "s3:*",
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::examplebucket",
 "arn:aws:s3:::examplebucket/*"],
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpce": "vpce-1a2b3c4d"
 }
 },
 "Principal": "*"
 }
]
}

Restricting Access to a Specific VPC

You can create a bucket policy that restricts access to a specific VPC by using the aws:sourceVpc
condition key. This is useful if you have multiple VPC endpoints configured in the same VPC, and you
want to manage access to your S3 buckets for all of your endpoints. The following is an example of a
policy that allows VPC vpc-111bbb22 to access examplebucket. The vpc-111bbb22 condition key
does not require an ARN for the VPC resource, only the VPC ID.

{
 "Version": "2012-10-17",
 "Id": "Policy1415115909153",
 "Statement": [
 {
 "Sid": "Access-to-specific-VPC-only",
 "Action": "s3:*",
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::examplebucket",
 "arn:aws:s3:::examplebucket/*"],
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpc": "vpc-111bbb22"
 }
 },

API Version 2006-03-01
342

Amazon Simple Storage Service Developer Guide
User Policy Examples

 "Principal": "*"
 }
]
}

Related Resources

• VPC Endpoints in the Amazon VPC User Guide

• Bucket Policy Examples (p. 334)

User Policy Examples
This section shows several IAM user policies for controlling user access to Amazon S3. For information
about access policy language, see Access Policy Language Overview (p. 308).

The following example policies will work if you test them programmatically; however, in order to use
them with the Amazon S3 console, you will need to grant additional permissions that are required by
the console. For information about using policies such as these with the Amazon S3 console, see An
Example Walkthrough: Using user policies to control access to your bucket (p. 348).

Topics

• Example: Allow an IAM user access to one of your buckets (p. 343)

• Example: Allow each IAM user access to a folder in a bucket (p. 344)

• Example: Allow a group to have a shared folder in Amazon S3 (p. 347)

• Example: Allow all your users to read objects in a portion of the corporate bucket (p. 347)

• Example: Allow a partner to drop files into a specific portion of the corporate bucket (p. 347)

• An Example Walkthrough: Using user policies to control access to your bucket (p. 348)

Example: Allow an IAM user access to one of your buckets

In this example, you want to grant an IAM user in your AWS account access to one of your buckets,
examplebucket, and allow the user to add, update, and delete objects.

In addition to granting the s3:PutObject, s3:GetObject, and s3:DeleteObject permissions
to the user, the policy also grants the s3:ListAllMyBuckets, s3:GetBucketLocation, and
s3:ListBucket permissions. These are the additional permissions required by the console. For
an example walkthrough that grants permissions to users and tests them using the console, see An
Example Walkthrough: Using user policies to control access to your bucket (p. 348).

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:ListAllMyBuckets"
],
 "Resource":"arn:aws:s3:::*"
 },
 {
 "Effect":"Allow",
 "Action":[

API Version 2006-03-01
343

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html

Amazon Simple Storage Service Developer Guide
User Policy Examples

 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource":"arn:aws:s3:::examplebucket"
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:GetObject",
 "s3:DeleteObject"
],
 "Resource":"arn:aws:s3:::examplebucket/*"
 }
]
}

Example: Allow each IAM user access to a folder in a bucket

In this example, you want two IAM users, Alice and Bob, to have access to your bucket,
examplebucket, so they can add, update, and delete objects. However, you want to restrict each
user’s access to a single folder in the bucket. You might create folders with names that match the user
names.

examplebucket
 Alice/
 Bob/

To grant each user access only to his or her folder, you can write a policy for each user and attach it
individually. For example, you can attach the following policy to user Alice to allow her specific Amazon
S3 permissions on the examplebucket/Alice folder.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:DeleteObject",
 "s3:DeleteObjectVersion"
],
 "Resource":"arn:aws:s3:::examplebucket/Alice/*"
 }
]
}

You then attach a similar policy to user Bob, identifying folder Bob in the Resource value.

Instead of attaching policies to individual users, though, you can write a single policy that uses a
policy variable and attach the policy to a group. You will first need to create a group and add both
Alice and Bob to the group. The following example policy allows a set of Amazon S3 permissions in
the examplebucket/${aws:username} folder. When the policy is evaluated, the policy variable
${aws:username} is replaced by the requester's user name. For example, if Alice sends a request

API Version 2006-03-01
344

Amazon Simple Storage Service Developer Guide
User Policy Examples

to put an object, the operation is allowed only if Alice is uploading the object to the examplebucket/
Alice folder.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:DeleteObject",
 "s3:DeleteObjectVersion"
],
 "Resource":"arn:aws:s3:::examplebucket/${aws:username}/*"
 }
]
}

Note
When using policy variables you must explicitly specify version 2012-10-17 in the policy. The
default version of the access policy language, 2008-10-17, does not support policy variables.

If you want to test the preceding policy on the Amazon S3 console, the console requires permission
for additional Amazon S3 permissions, as shown in the following policy. For information about how the
console uses these permissions, see An Example Walkthrough: Using user policies to control access
to your bucket (p. 348).

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AllowGroupToSeeBucketListInTheConsole",
 "Action": ["s3:ListAllMyBuckets", "s3:GetBucketLocation"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::*"]
 },
 {
 "Sid": "AllowRootLevelListingOfTheBucket",
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::examplebucket"],
 "Condition":{
 "StringEquals":{
 "s3:prefix":[""], "s3:delimiter":["/"]
 }
 }
 },
 {
 "Sid": "AllowListBucketOfASpecificUserPrefix",
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::examplebucket"],
 "Condition":{ "StringLike":{"s3:prefix":["${aws:username}/*"] }
 }
 },
 {

API Version 2006-03-01
345

Amazon Simple Storage Service Developer Guide
User Policy Examples

 "Sid": "AllowUserSpecificActionsOnlyInTheSpecificUserPrefix",
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:DeleteObject",
 "s3:DeleteObjectVersion"
],
 "Resource":"arn:aws:s3:::examplebucket/${aws:username}/*"
 }
]
}

Note
In the 2012-10-17 version of the policy, policy variables start with $. This change in syntax can
potentially create a conflict if your object key includes a $. For example, to include an object
key my$file in a policy, you specify the $ character with ${$}, my${$}file.

Although IAM user names are friendly, human-readable identifiers, they are not required to be globally
unique. For example, if user Bob leaves the organization and another Bob joins, then new Bob could
access old Bob's information. Instead of using user names, you could create folders based on user
IDs. Each user ID is unique. In this case, you will need to modify the preceding policy to use the
${aws:userid} policy variable. For more information about user identifiers, see IAM Identifiers in the
IAM User Guide.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:DeleteObject",
 "s3:DeleteObjectVersion"
],
 "Resource":"arn:aws:s3:::my_corporate_bucket/home/${aws:userid}/*"
 }
]
}

Allow non-IAM users (mobile app users) access to folders in a bucket

Suppose you want to develop a mobile app, a game that stores users' data in an S3 bucket. For each
app user, you want to create a folder in your bucket. You also want to limit each user’s access to his or
her own folder. But you cannot create folders before someone downloads your app and starts playing
the game, because you don’t have a user ID.

In this case, you can require users to sign in to your app by using public identity providers such as
Login with Amazon, Facebook, or Google. After users have signed in to your app through one of these
providers, they have a user ID that you can use to create user-specific folders at run time.

You can then use web identity federation in AWS Security Token Service to integrate information from
the identity provider with your app and to get temporary security credentials for each user. You can
then create IAM policies that allow the app to access your bucket and perform such operations as

API Version 2006-03-01
346

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html

Amazon Simple Storage Service Developer Guide
User Policy Examples

creating user-specific folders and uploading data. For more information about web identity federation,
see About Web Identity Federation in the IAM User Guide.

Example: Allow a group to have a shared folder in Amazon S3

Attaching the following policy to the group grants everybody in the group access to the following folder
in Amazon S3: my_corporate_bucket/share/marketing. Group members are allowed to access
only the specific Amazon S3 permissions shown in the policy and only for objects in the specified
folder.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:DeleteObject",
 "s3:DeleteObjectVersion"
],
 "Resource":"arn:aws:s3:::my_corporate_bucket/share/marketing/*"
 }
]
}

Example: Allow all your users to read objects in a portion of the
corporate bucket

In this example, we create a group called AllUsers, which contains all the IAM users that are
owned by the AWS account. We then attach a policy that gives the group access to GetObject and
GetObjectVersion, but only for objects in the my_corporate_bucket/readonly folder.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource":"arn:aws:s3:::my_corporate_bucket/readonly/*"
 }
]
}

Example: Allow a partner to drop files into a specific portion of
the corporate bucket

In this example, we create a group called WidgetCo that represents a partner company. We create an
IAM user for the specific person or application at the partner company that needs access, and then we
put the user in the group.

API Version 2006-03-01
347

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_oidc.html

Amazon Simple Storage Service Developer Guide
User Policy Examples

We then attach a policy that gives the group PutObject access to the following folder in the corporate
bucket: my_corporate_bucket/uploads/widgetco.

We want to prevent the WidgetCo group from doing anything else with the bucket, so we add a
statement that explicitly denies permission to any Amazon S3 permissions except PutObject on any
Amazon S3 resource in the AWS account. This step is necessary only if there's a broad policy in use
elsewhere in your AWS account that gives users wide access to Amazon S3 resources.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":"s3:PutObject",
 "Resource":"arn:aws:s3:::my_corporate_bucket/uploads/widgetco/*"
 },
 {
 "Effect":"Deny",
 "NotAction":"s3:PutObject",
 "Resource":"arn:aws:s3:::my_corporate_bucket/uploads/widgetco/*"
 },
 {
 "Effect":"Deny",
 "Action":"s3:*",
 "NotResource":"arn:aws:s3:::my_corporate_bucket/uploads/widgetco/*"
 }
]
}

An Example Walkthrough: Using user policies to control
access to your bucket

This walkthrough explains how user permissions work with Amazon S3. We will create a bucket with
folders, and then we'll create AWS Identity and Access Management users in your AWS account and
grant those users incremental permissions on your Amazon S3 bucket and the folders in it.

Topics

• Background: Basics of Buckets and Folders (p. 349)

• Walkthrough Example (p. 350)

• Step 0: Preparing for the Walkthrough (p. 350)

• Step 1: Create a Bucket (p. 351)

• Step 2: Create IAM Users and a Group (p. 352)

• Step 3: Verify that IAM Users Have No Permissions (p. 352)

• Step 4: Grant Group-Level Permissions (p. 352)

• Step 5: Grant IAM User Alice Specific Permissions (p. 357)

• Step 6: Grant IAM User Bob Specific Permissions (p. 361)

• Step 7: Secure the Private Folder (p. 361)

• Cleanup (p. 363)

• Related Resources (p. 363)

API Version 2006-03-01
348

Amazon Simple Storage Service Developer Guide
User Policy Examples

Background: Basics of Buckets and Folders

The Amazon S3 data model is a flat structure: you create a bucket, and the bucket stores objects.
There is no hierarchy of subbuckets or subfolders; however, you can emulate a folder hierarchy. Tools
such as the Amazon S3 Console can present a view of these logical folders and subfolders in your
bucket, as shown here:

The console shows that a bucket named companybucket has three folders, Private, Development,
and Finance, and an object, s3-dg.pdf. The console uses the object names (keys) to create a logical
hierarchy with folders and subfolders. Consider the following examples:

• When you create the Development folder, the console creates an object with the key
Development/. Note the trailing '/' delimiter.

• When you upload an object named Projects1.xls in the Development folder, the console uploads
the object and gives it the key Development/Projects1.xls.

In the key, Development is the prefix and '/' is the delimiter. The Amazon S3 API supports
prefixes and delimiters in its operations. For example, you can get a list of all objects from a bucket
with a specific prefix and delimiter. In the console, when you double-click the Development folder,
the console lists the objects in that folder. In the following example, the Development folder contains
one object.

When the console lists the Development folder in the companybucket bucket, it sends a request to
Amazon S3 in which it specifies a prefix of Development and a delimiter of '/' in the request. The
console's response looks just like a folder list in your computer's file system. The preceding example
shows that the bucket companybucket has an object with the key Development/Projects1.xls.

The console is using object keys to infer a logical hierarchy; Amazon S3 has no physical hierarchy,
only buckets that contain objects in a flat file structure. When you create objects by using the Amazon
S3 API, you can use object keys that imply a logical hierarchy.

When you create a logical hierarchy of objects, you can manage access to individual folders, as we will
do in this walkthrough.

Before going into the walkthrough, you need to familiarize yourself with one more concept, the "root-
level" bucket content. Suppose your companybucket bucket has the following objects:

Private/privDoc1.txt

Private/privDoc2.zip

API Version 2006-03-01
349

Amazon Simple Storage Service Developer Guide
User Policy Examples

Development/project1.xls

Development/project2.xls

Finance/Tax2011/document1.pdf

Finance/Tax2011/document2.pdf

s3-dg.pdf

These object keys create a logical hierarchy with Private, Development and the Finance as root-
level folders and s3-dg.pdf as a root-level object. When you click the bucket name in the Amazon
S3 console, the root-level items appear as shown. The console shows the top-level prefixes (Private/,
Development/ and Finance/) as root-level folders. The object key s3-dg.pdf has no prefix, and so it
appears as a root-level item.

Walkthrough Example

The example for this walkthrough is as follows:

• You create a bucket and then add three folders (Private, Development, and Finance) to it.

• You have two users, Alice and Bob. You want Alice to access only the Development folder and Bob
to access only the Finance folder, and you want to keep the Private folder content private. In the
walkthrough, you manage access by creating AWS Identity and Access Management (IAM) users
(we will use the same user names, Alice and Bob) and grant them the necessary permissions.

IAM also supports creating user groups and granting group-level permissions that apply to all users
in the group. This helps you better manage permissions. For this exercise, both Alice and Bob will
need some common permissions. So you will also create a group named Consultants and then add
both Alice and Bob to the group. You will first grant permissions by attaching a group policy to the
group. Then you will add user-specific permissions by attaching policies to specific users.

Note
The walkthrough uses companybucket as the bucket name, Alice and Bob as the IAM users,
and Consultants as the group name. Because Amazon S3 requires that bucket names be
globally unique, you will need to replace the bucket name with a name that you create.

Step 0: Preparing for the Walkthrough

In this example, you will use your AWS account credentials to create IAM users. Initially, these users
have no permissions. You will incrementally grant these users permissions to perform specific Amazon
S3 actions. To test these permissions, you will sign in to the console with each user's credentials.
As you incrementally grant permissions as an AWS account owner and test permissions as an IAM
user, you need to sign in and out, each time using different credentials. You can do this testing with
one browser, but the process will go faster if you can use two different browsers: use one browser to

API Version 2006-03-01
350

Amazon Simple Storage Service Developer Guide
User Policy Examples

connect to the AWS Management Console with your AWS account credentials and another to connect
with the IAM user credentials.

To sign into the AWS Management Console with your AWS account credentials, go to https://
console.aws.amazon.com/. An IAM user cannot sign in by using the same link. An IAM user must use
an IAM-enabled sign-in page. As the account owner, you can provide this link to your users.

To provide a sign-in link for IAM users

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the Navigation pane, click IAM Dashboard .

3. Note the URL under IAM users sign in link:. You will give this link to IAM users to sign in to the
console with their IAM user name and password.

For more information about IAM, go to The AWS Management Console Sign-in Page in the IAM User
Guide.

Step 1: Create a Bucket

In this step, you will sign in to the Amazon S3 console with your AWS account credentials, create a
bucket, add folders (Development, Finance, Private) to the bucket, and upload one or two sample
documents in each folder.

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Create a bucket.
For step-by-step instructions, go to Creating a Bucket in the Amazon Simple Storage Service
Console User Guide.

3. Upload one document to the bucket.
This exercise assumes you have the s3-dg.pdf document at the root level of this bucket. If you
upload a different document, substitute its file name for s3-dg.pdf.

4. Add three folders named Private, Finance, and Development to the bucket.

For step-by-step instructions to create a folder, go to Creating a Folder in the Amazon Simple
Storage Service Console User Guide.

5. Upload one or two documents to each folder.

For this exercise, assume you have uploaded a couple of documents in each folder, resulting in
the bucket having objects with the following keys:

Private/privDoc1.txt

Private/privDoc2.zip

Development/project1.xls

Development/project2.xls

Finance/Tax2011/document1.pdf

Finance/Tax2011/document2.pdf

s3-dg.pdf

For step-by-step instructions, go to Uploading Objects into Amazon S3 in the Amazon Simple
Storage Service Console User Guide.

API Version 2006-03-01
351

https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/console.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaFolder.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html

Amazon Simple Storage Service Developer Guide
User Policy Examples

Step 2: Create IAM Users and a Group

Now use the IAM console to add two IAM users, Alice and Bob, to your AWS account. Also create an
administrative group named Consultants, and then add both users to the group.

Caution
When you add users and a group, do not attach any policies that grant permissions to these
users. At first, these users will not have any permissions. In the following sections, you will
incrementally grant permissions. You must first ensure that you have assigned passwords to
these IAM users. You will use these user credentials to test Amazon S3 actions and verify that
the permissions work as expected.

For step-by-instructions on creating a new IAM user, see Creating an IAM User in Your AWS Account
in the IAM User Guide.

For step-by-step instructions on creating an administrative group, see Creating Your First IAM User
and Administrators Group section in the IAM User Guide.

Step 3: Verify that IAM Users Have No Permissions

If you are using two browsers, you can now use the second browser to sign into the console using one
of the IAM user credentials.

1. Using the IAM user sign-in link (see To provide a sign-in link for IAM users (p. 351)), sign into the
AWS console using either of the IAM user credentials.

2. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

Verify the following console message telling you that you have no permissions.

Now, let's begin granting incremental permissions to the users. First, you will attach a group policy that
grants permissions that both users must have.

Step 4: Grant Group-Level Permissions

We want all our users to be able to do the following:

• List all buckets owned by the parent account

To do so, Bob and Alice must have permission for the s3:ListAllMyBuckets action.

• List root-level items, folders, and objects, in the companybucket bucket.

To do so, Bob and Alice must have permission for the s3:ListBucket action on the
companybucket bucket.

Now we'll create a policy that grants these permissions and then we'll attach it to the Consultants
group.

Step 4.1: Grant Permission to List All Buckets

In this step you'll create a managed policy that grants the users minimum permissions to enable them
to list all buckets owned by the parent account and then you'll attach the policy to the Consultants
group. When you attach the managed policy to a user or a group, you allow the user or group
permission to obtain a list of buckets owned by the parent AWS account.

API Version 2006-03-01
352

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
User Policy Examples

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

Note
Since you'll be granting user permissions sign in with your AWS account credentials, not
as an IAM user.

2. Create the managed policy.

a. In the navigation pane on the left, click Policies and then click Create Policy.

b. Next to Create Your Own Policy, click Select.

c. Enter AllowGroupToSeeBucketListInTheConsole in the Policy Name field.

d. Copy the following access policy and paste it into the Policy Document field.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowGroupToSeeBucketListInTheConsole",
 "Action": ["s3:ListAllMyBuckets"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::*"]
 }
]
}

A policy is a JSON document. In the document, a Statement is an array of objects, each
describing a permission using a collection of name value pairs. The preceding policy
describes one specific permission. The Action specifies the type of access. In the policy, the
s3:ListAllMyBuckets is a predefined Amazon S3 action. This action covers the Amazon
S3 GET Service operation, which returns list of all buckets owned by the authenticated
sender. The Effect element value determine if specific permission is allowed or denied.

3. Attach the AllowGroupToSeeBucketListInTheConsole managed policy that you created to
the Consultants group.

For step-by-step instructions for attaching a managed policy, see Working with Managed Policies
Using the AWS Management Console in the IAM User Guide.

You attach policy documents to IAM users and groups in the IAM console. Because we want both
our users to be able to list the buckets, we attach the policy to the group.

4. Test the permission.

a. Using the IAM user sign-in link (see To provide a sign-in link for IAM users (p. 351)), sign
into the AWS console using any one of IAM user credentials.

b. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

The console should now list all the buckets but not the objects in any of the buckets.

API Version 2006-03-01
353

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#policies_using-managed-console
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#policies_using-managed-console
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
User Policy Examples

Step 4.2: Enable Users to List Root-Level Content of a Bucket

Now let's allow all users to list the root-level companybucket bucket items. When a user clicks the
company bucket in the Amazon S3 console, he or she will be able to see the root-level items in the
bucket.

Remember, we are using companybucket for illustration. You must use the name of the bucket that
you created for this exercise.

To understand what request the console sends to Amazon S3 when you click a bucket name, the
response Amazon S3 returns, and how the console interprets the response, it is necessary to take a
little deep dive.

When you click a bucket name, the console sends the GET Bucket (List Objects) request to Amazon
S3. This request includes the following parameters:

• prefix parameter with an empty string as its value.

• delimiter parameter with / as its value.

The following is an example request:

GET ?prefix=&delimiter=/ HTTP/1.1
Host: companybucket.s3.amazonaws.com
Date: Wed, 01 Aug 2012 12:00:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+FIEXAMPLE=

Amazon S3 returns a response that includes the following <ListBucketResult/> element:

<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Name>companybucket</Name>
 <Prefix></Prefix>
 <Delimiter>/</Delimiter>
 ...
 <Contents>
 <Key>s3-dg.pdf</Key>
 ...
 </Contents>
 <CommonPrefixes>
 <Prefix>Development/</Prefix>
 </CommonPrefixes>
 <CommonPrefixes>
 <Prefix>Finance/</Prefix>
 </CommonPrefixes>
 <CommonPrefixes>
 <Prefix>Private/</Prefix>
 </CommonPrefixes>
</ListBucketResult>

API Version 2006-03-01
354

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
User Policy Examples

The key s3-dg.pdf does not contain the '/' delimiter, and Amazon S3 returns the key in the
<Contents/> element. However, all other keys in our example bucket contain the '/' delimiter.
Amazon S3 groups these keys and returns a <CommonPrefixes/> element for each of the distinct
prefix values Development/, Finance/, and /Private that is a substring from the beginning of
these keys to the first occurrence of the specified '/' delimiter.

The console interprets this result and displays the root-level items as three folders and one object key.

Now, if Bob or Alice double-clicks the Development folder, the console sends the GET Bucket (List
Objects) request to Amazon S3 with the prefix and the delimiter parameters set to the following
values:

• prefix parameter with value Development/.

• delimiter parameter with '/' value.

In response, Amazon S3 returns the object keys that start with the specified prefix.

<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Name>companybucket</Name>
 <Prefix>Development</Prefix>
 <Delimiter>/</Delimiter>
 ...
 <Contents>
 <Key>Project1.xls</Key>
 ...
 </Contents>
 <Contents>
 <Key>Project2.xls</Key>
 ...
 </Contents>
</ListBucketResult>

The console shows the object keys:

Now, let's return to granting users permission to list the root-level bucket items. To list bucket content,
users need permission to call the s3:ListBucket action, as shown in the following policy statement.
To ensure that they see only the root-level content, we add a condition that users must specify an
empty prefix in the request—that is, they are not allowed to double-click any of our root-level folders.

API Version 2006-03-01
355

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
User Policy Examples

Finally, we will add a condition to require folder-style access by requiring user requests to include the
delimiter parameter with value '/'.

{
 "Sid": "AllowRootLevelListingOfCompanyBucket",
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::companybucket"],
 "Condition":{
 "StringEquals":{
 "s3:prefix":[""], "s3:delimiter":["/"]
 }
 }
}

When you use the Amazon S3 console, note that when you click a bucket, the console first sends
the GET Bucket location request to find the AWS region where the bucket is deployed. Then the
console uses the region-specific endpoint for the bucket to send the GET Bucket (List Objects)
request. As a result, if users are going to use the console, you must grant permission for the
s3:GetBucketLocation action as shown in the following policy statement:

{
 "Sid": "RequiredByS3Console",
 "Action": ["s3:GetBucketLocation"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::*"]
}

To enable users to list root-level bucket content

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

Use your AWS account credentials, not the credentials of an IAM user, to sign in to the console.

2. Replace the existing AllowGroupToSeeBucketListInTheConsole managed policy that is
attached to the Consultants group with the following policy, which also allows the s3:ListBucket
action. Remember to replace companybucket in the policy Resource with the name of your
bucket.

For step-by-step instructions, see Editing Customer Managed Policies in the IAM User Guide.
When following the step-by-step instructions, make sure to follow the directions for applying your
changes to all principal entities that the policy is attached to.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid":
 "AllowGroupToSeeBucketListAndAlsoAllowGetBucketLocationRequiredForListBucket",
 "Action": ["s3:ListAllMyBuckets", "s3:GetBucketLocation"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::*"]
 },
 {
 "Sid": "AllowRootLevelListingOfCompanyBucket",
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",

API Version 2006-03-01
356

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlocation.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#edit-managed-policy-console

Amazon Simple Storage Service Developer Guide
User Policy Examples

 "Resource": ["arn:aws:s3:::companybucket"],
 "Condition":{
 "StringEquals":{
 "s3:prefix":[""], "s3:delimiter":["/"]
 }
 }
 }
]
}

3. Test the updated permissions.

1. Using the IAM user sign-in link (see To provide a sign-in link for IAM users (p. 351)), sign in
to the AWS Management Console.

Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Click the bucket that you created for this exercise, and the console will now show the root-
level bucket items. If you click any folders in the bucket, you will not be able to see the folder
content, because you have not yet granted those permissions.

This test succeeds when users use the Amazon S3 console because when you click a bucket in the
console, the console implementation sends a request that includes the prefix parameter with an
empty string as its value and the delimiter parameter with '/' as its value.

Step 4.3: Summary of the Group Policy

The net effect of the group policy that you added is to grant the IAM users Alice and Bob the following
minimum permissions:

• List all buckets owned by the parent account.

• See root-level items in the companybucket bucket.

However, the users still cannot do much. Let's grant user-specific permissions, as follows:

• Permit Alice to get and put objects in the Development folder.

• Permit Bob to get and put objects in the Finance folder.

For user-specific permissions, you attach a policy to the specific user, not to the group. In the following
section, you grant Alice permission to work in the Development folder. You can repeat the steps to
grant similar permission to Bob to work in the Finance folder.

Step 5: Grant IAM User Alice Specific Permissions

Now we grant additional permissions to Alice so she can see the content of the Development folder
and get and put objects in that folder.

API Version 2006-03-01
357

https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
User Policy Examples

Step 5.1: Grant IAM User Alice Permission to List the Development Folder Content

For Alice to list the Development folder content, you must apply a policy to the Alice user that grants
permission for the s3:ListBucket action on the companybucket bucket, provided the request
includes the prefix Development/. Because we want this policy to be applied only to the user Alice
we'll use an inline policy. For more information about inline policies, see Managed Policies and Inline
Policies in the IAM User Guide.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

Use your AWS account credentials, not the credentials of an IAM user, to sign in to the console.

2. Create an inline policy to grant the user Alice permission to list the Development folder content.

a. In the navigation pane on the left, click Users.

b. Click the user name Alice.

c. On the user details page, select the Permissions tab and then expand the Inline Policies
section.

d. Choose click here (or Create User Policy).

e. Click Custom Policy, and then click Select.

f. Enter a name for the policy in the Policy Name field.

g. Copy the following policy into the Policy Document field.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowListBucketIfSpecificPrefixIsIncludedInRequest",
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::companybucket"],
 "Condition":{ "StringLike":{"s3:prefix":["Development/*"] }
 }
 }
]
}

3. Test the change to Alice's permissions:

a. Using the IAM user sign in link (see To provide a sign-in link for IAM users (p. 351)), sign in
to the AWS Management Console.

b. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

c. In the Amazon S3 console, verify that Alice can see the list of objects in the Development/
folder in the bucket.

When the user clicks the /Development folder to see the list of objects in it, the Amazon
S3 console sends the ListObjects request to Amazon S3 with the prefix /Development.
Because the user is granted permission to see the object list with the prefix Development
and delimiter '/', Amazon S3 returns the list of objects with the key prefix Development/,
and the console displays the list.

API Version 2006-03-01
358

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
User Policy Examples

Step 5.2: Grant IAM User Alice Permissions to Get and Put Objects in the Development Folder

For Alice to get and put objects in the Development folder, she needs permission to call the
s3:GetObject and s3:PutObject actions. The following policy statements grant these permissions,
provided the request includes the prefix parameter with a value of Development/.

{
 "Sid":"AllowUserToReadWriteObjectData",
 "Action":["s3:GetObject", "s3:PutObject"],
 "Effect":"Allow",
 "Resource":["arn:aws:s3:::companybucket/Development/*"]
 }

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

Use your AWS account credentials, not the credentials of an IAM user, to sign in to the console.

2. Edit the inline policy you created in the previous step.

a. In the navigation pane on the left, click Users.

b. Click the user name Alice.

c. On the user details page, select the Permissions tab and then expand the Inline Policies
section.

d. Click Edit Policy next to the name of the policy you created in the previous step.

e. Copy the following policy into the Policy Document field replacing the existing policy.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Sid":"AllowListBucketIfSpecificPrefixIsIncludedInRequest",
 "Action":["s3:ListBucket"],
 "Effect":"Allow",
 "Resource":["arn:aws:s3:::companybucket"],
 "Condition":{
 "StringLike":{"s3:prefix":["Development/*"]
 }
 }
 },
 {
 "Sid":"AllowUserToReadWriteObjectDataInDevelopmentFolder",
 "Action":["s3:GetObject", "s3:PutObject"],
 "Effect":"Allow",
 "Resource":["arn:aws:s3:::companybucket/Development/*"]
 }
]

API Version 2006-03-01
359

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
User Policy Examples

}

3. Test the updated policy:

1. Using the IAM user sign-in link (see To provide a sign-in link for IAM users (p. 351)), sign
into the AWS Management Console.

2. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

3. In the Amazon S3 console, verify that Alice can now add an object and download an object in
the Development folder.

Step 5.3: Explicitly Deny IAM User Alice Permissions to Any Other Folders in the Bucket

User Alice can now list the root-level content in the companybucket bucket. She can also get and
put objects in the Development folder. If you really want to tighten the access permissions, you could
explicitly deny Alice access to any other folders in the bucket. If there is any other policy (bucket policy
or ACL) that grants Alice access to any other folders in the bucket, this explicit deny overrides those
permissions.

You can add the following statement to the user Alice policy that requires all requests that Alice sends
to Amazon S3 to include the prefix parameter, whose value can be either Development/* or an
empty string.

{
 "Sid": "ExplicitlyDenyAnyRequestsForAllOtherFoldersExceptDevelopment",
 "Action": ["s3:ListBucket"],
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::companybucket"],
 "Condition":{ "StringNotLike": {"s3:prefix":["Development/*"] },
 "Null" : {"s3:prefix":false }
 }
}

Note that there are two conditional expressions in the Condition block. The result of these conditional
expressions is combined by using the logical AND. If both conditions are true, the result of the
combined condition is true.

• The Null conditional expression ensures that requests from Alice include the prefix parameter.

The prefix parameter requires folder-like access. If you send a request without the prefix
parameter, Amazon S3 returns all the object keys.

If the request includes the prefix parameter with a null value, the expression will evaluate to
true, and so the entire Condition will evaluate to true. You must allow an empty string as value
of the prefix parameter. You recall from the preceding discussion, allowing the null string allows
Alice to retrieve root-level bucket items as the console does in the preceding discussion. For more
information, see Step 4.2: Enable Users to List Root-Level Content of a Bucket (p. 354).

• The StringNotLike conditional expression ensures that if the value of the prefix parameter is
specified and is not Development/*, the request will fail.

Follow the steps in the preceding section and again update the inline policy you created for user Alice.

Copy the following policy into the Policy Document field replacing the existing policy.

{
 "Statement":[
 {

API Version 2006-03-01
360

https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
User Policy Examples

 "Sid":"AllowListBucketIfSpecificPrefixIsIncludedInRequest",
 "Action":["s3:ListBucket"],
 "Effect":"Allow",
 "Resource":["arn:aws:s3:::companybucket"],
 "Condition":{
 "StringLike":{"s3:prefix":["Development/*"]
 }
 }
 },
 {
 "Sid":"AllowUserToReadWriteObjectDataInDevelopmentFolder",
 "Action":["s3:GetObject", "s3:PutObject"],
 "Effect":"Allow",
 "Resource":["arn:aws:s3:::companybucket/Development/*"]
 },
 {
 "Sid":
 "ExplicitlyDenyAnyRequestsForAllOtherFoldersExceptDevelopment",
 "Action": ["s3:ListBucket"],
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::companybucket"],
 "Condition":{ "StringNotLike": {"s3:prefix":["Development/*"] },
 "Null" : {"s3:prefix":false }
 }
 }
]
}

Step 6: Grant IAM User Bob Specific Permissions

Now you want to grant Bob permission to the Finance folder. Follow the steps you used earlier to grant
permissions to Alice, but replace the Development folder with the Finance folder. For step-by-step
instructions, see Step 5: Grant IAM User Alice Specific Permissions (p. 357).

Step 7: Secure the Private Folder

In this example, you have only two users. You granted all the minimum required permissions at the
group level and granted user-level permissions only when you really need to permissions at the
individual user level. This approach helps minimize the effort of managing permissions. As the number
of users increases, managing permissions can become cumbersome. For example, we don't want any
of the users in this example to access the content of the Private folder. How do you ensure you don't
accidentally grant a user permission to it? You add a policy that explicitly denies access to the folder.
An explicit deny overrides any other permissions. To ensure that the Private folder remains private, you
can add the follow two deny statements to the group policy:

• Add the following statement to explicitly deny any action on resources in the Private folder
(companybucket/Private/*).

{
 "Sid": "ExplictDenyAccessToPrivateFolderToEveryoneInTheGroup",
 "Action": ["s3:*"],
 "Effect": "Deny",
 "Resource":["arn:aws:s3:::companybucket/Private/*"]
}

• You also deny permission for the list objects action when the request specifies the Private/ prefix.
In the console, if Bob or Alice double-clicks the Private folder, this policy causes Amazon S3 to
return an error response.

API Version 2006-03-01
361

Amazon Simple Storage Service Developer Guide
User Policy Examples

{
 "Sid": "DenyListBucketOnPrivateFolder",
 "Action": ["s3:ListBucket"],
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::*"],
 "Condition":{
 "StringLike":{"s3:prefix":["Private/"]}
 }
}

Replace the Consultants group policy with an updated policy that includes the preceding deny
statements. After the updated policy is applied, none of the users in the group will be able to access
the Private folder in your bucket.

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

Use your AWS account credentials, not the credentials of an IAM user, to sign in to the console.

2. Replace the existing AllowGroupToSeeBucketListInTheConsole managed policy
that is attached to the Consultants group with the following policy. Remember to replace
companybucket in the policy with the name of your bucket.

For instructions, see Editing Customer Managed Policies in the IAM User Guide. When following
the instructions, make sure to follow the directions for applying your changes to all principal
entities that the policy is attached to.

{
 "Statement": [
 {
 "Sid":
 "AllowGroupToSeeBucketListAndAlsoAllowGetBucketLocationRequiredForListBucket",
 "Action": ["s3:ListAllMyBuckets", "s3:GetBucketLocation"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::*"]
 },
 {
 "Sid": "AllowRootLevelListingOfCompanyBucket",
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::companybucket"],
 "Condition":{
 "StringEquals":{"s3:prefix":[""]}
 }
 },
 {
 "Sid": "RequireFolderStyleList",
 "Action": ["s3:ListBucket"],
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::*"],
 "Condition":{
 "StringNotEquals":{"s3:delimiter":"/"}
 }
 },
 {
 "Sid": "ExplictDenyAccessToPrivateFolderToEveryoneInTheGroup",
 "Action": ["s3:*"],

API Version 2006-03-01
362

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#edit-managed-policy-console

Amazon Simple Storage Service Developer Guide
User Policy Examples

 "Effect": "Deny",
 "Resource":["arn:aws:s3:::companybucket/Private/*"]
 },
 {
 "Sid": "DenyListBucketOnPrivateFolder",
 "Action": ["s3:ListBucket"],
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::*"],
 "Condition":{
 "StringLike":{"s3:prefix":["Private/"]}
 }
 }
]
}

Cleanup

In order to clean up, go to the IAM console and remove the users Alice and Bob. For step-by-step
instructions, go to Deleting an IAM User in the IAM User Guide.

To ensure that you aren't charged further for storage, you should also delete the objects and the
bucket that you created for this exercise .

Related Resources

• Working with Policies in the IAM User Guide.

API Version 2006-03-01
363

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html#id_users_deleting
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html

Amazon Simple Storage Service Developer Guide
Managing Access with ACLs

Managing Access with ACLs
Topics

• Access Control List (ACL) Overview (p. 364)

• Managing ACLs (p. 369)

Access control lists (ACLs) is one of the resource-based access policy option (see Overview of
Managing Access (p. 267)) you can use to manage access to your buckets and objects. You can use
ACLs to grant basic read/write permissions to other AWS accounts. There are limits to managing
permissions using ACLs. For example, you can grant permissions only to other AWS accounts,
you cannot grant permissions to users in your account. You cannot grant conditional permissions,
nor can you explicitly deny permissions. ACLs are suitable for specific scenarios. For example, if a
bucket owner allows other AWS accounts to upload objects, permissions to these objects can only be
managed using object ACL by the AWS account that owns the object. You should read the following
introductory topics that explain the basic concepts and options available for you to manage access to
your Amazon S3 resources and guidelines for when to use which access policy options.

• Introduction to Managing Access Permissions to Your Amazon S3 Resources (p. 266)

• Guidelines for Using the Available Access Policy Options (p. 277)

Access Control List (ACL) Overview
Topics

• Who Is a Grantee? (p. 365)

• What Permissions Can I Grant? (p. 366)

• Sample ACL (p. 367)

• Canned ACL (p. 368)

• How to Specify an ACL (p. 369)

Amazon S3 Access Control Lists (ACLs) enable you to manage access to buckets and objects. Each
bucket and object has an ACL attached to it as a subresource. It defines which AWS accounts or
groups are granted access and the type of access. When a request is received against a resource,
Amazon S3 checks the corresponding ACL to verify the requester has the necessary access
permissions.

When you create a bucket or an object, Amazon S3 creates a default ACL that grants the resource
owner full control over the resource as shown in the following sample bucket ACL (the default object
ACL has the same structure).

<?xml version="1.0" encoding="UTF-8"?>
<AccessControlPolicy xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Owner>
 <ID>*** Owner-Canonical-User-ID ***</ID>
 <DisplayName>owner-display-name</DisplayName>
 </Owner>
 <AccessControlList>
 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="Canonical User">
 <ID>*** Owner-Canonical-User-ID ***</ID>

API Version 2006-03-01
364

Amazon Simple Storage Service Developer Guide
Access Control List (ACL) Overview

 <DisplayName>display-name</DisplayName>
 </Grantee>
 <Permission>FULL_CONTROL</Permission>
 </Grant>
 </AccessControlList>
</AccessControlPolicy>

The sample ACL includes an Owner element identifying the owner via the AWS account's canonical
user ID. The Grant element identifies the grantee (either an AWS account or a predefined group), and
the permission granted. This default ACL has one Grant element for the owner. You grant permissions
by adding Grant elements, each grant identifying the grantee and the permission.

Note
An ACL can have up to 100 grants.

Who Is a Grantee?

A grantee can be an AWS account or one of the predefined Amazon S3 groups. You grant permission
to an AWS account by the email address or the canonical user ID. However, if you provide an email in
your grant request, Amazon S3 finds the canonical user ID for that account and adds it to the ACL. The
resulting ACLs will always contain the canonical user ID for the AWS account, not the AWS account's
email address.

Important
You cannot use an email address to specify a grantee for any AWS region that was created
after 12/8/2014. The following regions were created after 12/8/2014: US East (Ohio), Asia
Pacific (Mumbai), Asia Pacific (Seoul), EU (Frankfurt), China (Beijing), and AWS GovCloud
(US) regions.

Finding an AWS Account Canonical User ID

The canonical user ID is associated with your AWS account. You can get a canonical user ID only
when you sign in to the AWS Management console by using the root credentials of your AWS account.
You cannot use any other credentials, for example, you cannot use IAM user or federated user
credentials to get this ID. For information about security credentials, see How Do I Get Security
Credentials?.

To find the canonical user ID for your AWS account

1. Sign in to the AWS Management Console at http://aws.amazon.com/console using your AWS root
credentials (do not use IAM or federated user credentials).

2. Go to Security Credentials.

3. In the Account Identifiers section, find the canonical user ID associated with your AWS account.

You can also look up the canonical user ID of an AWS account by reading the ACL of a bucket or an
object to which the AWS account has access permissions. When an individual AWS account is granted
permissions by a grant request, a grant entry is added to the ACL with the AWS account's canonical
user ID. For more information about the canonical user ID, go to AWS Account Identifiers.

Amazon S3 Predefined Groups

Amazon S3 has a set of predefined groups. When granting account access to a group, you specify one
of our URIs instead of a canonical user ID. We provide the following predefined groups:

• Authenticated Users group – Represented by http://acs.amazonaws.com/groups/global/
AuthenticatedUsers.

API Version 2006-03-01
365

http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://aws.amazon.com/console
https://console.aws.amazon.com/iam/home?#security_credential
http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html

Amazon Simple Storage Service Developer Guide
Access Control List (ACL) Overview

This group represents all AWS accounts. Access permission to this group allows any AWS account
to access the resource. However, all requests must be signed (authenticated).

• All Users group – Represented by http://acs.amazonaws.com/groups/global/AllUsers.
Access permission to this group allows anyone to access the resource. The requests can be signed
(authenticated) or unsigned (anonymous). Unsigned requests omit the Authentication header in the
request.

• Log Delivery group – Represented by http://acs.amazonaws.com/groups/s3/
LogDelivery.
WRITE permission on a bucket enables this group to write server access logs (see Server Access
Logging (p. 547)) to the bucket.

Note
When using ACLs, a grantee can be an AWS account or one of the predefined Amazon S3
groups. However, the grantee cannot be an Identity and Access Management (IAM) user. For
more information about AWS users and permissions within IAM, go to Using AWS Identity and
Access Management.

Note
When you grant other AWS accounts access to your resources, be aware that the AWS
accounts can delegate their permissions to users under their accounts. This is known as
cross-account access. For information about using cross-account access, see Creating a Role
to Delegate Permissions to an IAM User in the IAM User Guide.

What Permissions Can I Grant?
The following table lists the set of permissions Amazon S3 supports in an ACL. Note that the set
of ACL permissions is same for object ACL and bucket ACL. However, depending on the context
(bucket ACL or object ACL), these ACL permissions grant permissions for specific bucket or the object
operations. The table lists the permission and describes what they mean in the context of object and
bucket permissions.

Permission When granted on a bucket When granted on an object

READ Allows grantee to list the objects in the
bucket

Allows grantee to read the object data
and its metadata

WRITE Allows grantee to create, overwrite, and
delete any object in the bucket

Not applicable

READ_ACP Allows grantee to read the bucket ACL Allows grantee to read the object ACL

WRITE_ACP Allows grantee to write the ACL for the
applicable bucket

Allows grantee to write the ACL for the
applicable object

FULL_CONTROL Allows grantee the READ, WRITE,
READ_ACP, and WRITE_ACP
permissions on the bucket

Allows grantee the READ, READ_ACP,
and WRITE_ACP permissions on the
object

Mapping of ACL Permissions and Access Policy Permissions

As shown in the preceding table, ACL allows only a finite set of permissions, compared to the number
of permissions you can set in an access policy (see Specifying Permissions in a Policy (p. 312)).
Each of these permissions allow one or more Amazon S3 operations. The following table shows how
each of the ACL permissions map to the corresponding access policy permissions. As you can see,
access policy allows more permissions than ACL does, you use ACL to primarily grant basic read/
write permissions, similar to file system permissions. For more information about when to use ACL, see
Guidelines for Using the Available Access Policy Options (p. 277).

API Version 2006-03-01
366

http://docs.aws.amazon.com/IAM/latest/UserGuide/
http://docs.aws.amazon.com/IAM/latest/UserGuide/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

Amazon Simple Storage Service Developer Guide
Access Control List (ACL) Overview

ACL
Permission

Corresponding access policy
permissions when the ACL
permission is granted on a bucket

Corresponding access policy
permissions when the ACL
permission is granted on an object

READ s3:ListBucket,
s3:ListBucketVersions, and
s3:ListBucketMultipartUploads

s3:GetObject,
s3:GetObjectVersion, and
s3:GetObjectTorrent

WRITE s3:PutObject and
s3:DeleteObject.

In addition, when the grantee is
the bucket owner, granting WRITE
permission in a bucket ACL allows the
s3:DeleteObjectVersion action
to be performed on any version in that
bucket.

Not applicable

READ_ACP s3:GetBucketAcl s3:GetObjectAcl and
s3:GetObjectVersionAcl

WRITE_ACP s3:PutBucketAcl s3:PutObjectAcl and
s3:PutObjectVersionAcl

FULL_CONTROL It is equivalent to granting READ,
WRITE, READ_ACP, and WRITE_ACP
ACL permissions. Accordingly, this
ACL permission maps to combination
of corresponding access policy
permissions.

It is equivalent to granting READ,
READ_ACP, and WRITE_ACP ACL
permissions. Accordingly, this ACL
permission maps to combination
of corresponding access policy
permissions.

Sample ACL
The following sample ACL on a bucket identifies the resource owner and a set of grants. The
format is the XML representation of an ACL in the Amazon S3 REST API. The bucket owner has
FULL_CONTROL of the resource. In addition, the ACL shows how permissions are granted on a
resource to two AWS accounts, identified by canonical user ID, and two of the predefined Amazon S3
groups discussed in the preceding section.

<?xml version="1.0" encoding="UTF-8"?>
<AccessControlPolicy xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Owner>
 <ID>Owner-canonical-user-ID</ID>
 <DisplayName>display-name</DisplayName>
 </Owner>
 <AccessControlList>
 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="CanonicalUser">
 <ID>Owner-canonical-user-ID</ID>
 <DisplayName>display-name</DisplayName>
 </Grantee>
 <Permission>FULL_CONTROL</Permission>
 </Grant>

 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="CanonicalUser">

API Version 2006-03-01
367

Amazon Simple Storage Service Developer Guide
Access Control List (ACL) Overview

 <ID>user1-canonical-user-ID</ID>
 <DisplayName>display-name</DisplayName>
 </Grantee>
 <Permission>WRITE</Permission>
 </Grant>

 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="CanonicalUser">
 <ID>user2-canonical-user-ID</ID>
 <DisplayName>display-name</DisplayName>
 </Grantee>
 <Permission>READ</Permission>
 </Grant>

 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="Group">
 <URI>http://acs.amazonaws.com/groups/global/AllUsers</URI>
 </Grantee>
 <Permission>READ</Permission>
 </Grant>
 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="Group">
 <URI>http://acs.amazonaws.com/groups/s3/LogDelivery</URI>
 </Grantee>
 <Permission>WRITE</Permission>
 </Grant>

 </AccessControlList>
</AccessControlPolicy>

Canned ACL

Amazon S3 supports a set of predefined grants, known as canned ACLs. Each canned ACL has a
predefined a set of grantees and permissions. The following table lists the set of canned ACLs and the
associated predefined grants.

Canned ACL Applies to Permissions added to ACL

private Bucket and
object

Owner gets FULL_CONTROL. No one else has access
rights (default).

public-read Bucket and
object

Owner gets FULL_CONTROL. The AllUsers group (see
Who Is a Grantee? (p. 365)) gets READ access.

public-read-write Bucket and
object

Owner gets FULL_CONTROL. The AllUsers group gets
READ and WRITE access. Granting this on a bucket is
generally not recommended.

aws-exec-read Bucket and
object

Owner gets FULL_CONTROL. Amazon EC2 gets READ
access to GET an Amazon Machine Image (AMI) bundle
from Amazon S3.

authenticated-read Bucket and
object

Owner gets FULL_CONTROL. The AuthenticatedUsers
group gets READ access.

API Version 2006-03-01
368

Amazon Simple Storage Service Developer Guide
Managing ACLs

Canned ACL Applies to Permissions added to ACL

bucket-owner-read Object Object owner gets FULL_CONTROL. Bucket owner gets
READ access. If you specify this canned ACL when
creating a bucket, Amazon S3 ignores it.

bucket-owner-full-
control

Object Both the object owner and the bucket owner get
FULL_CONTROL over the object. If you specify this canned
ACL when creating a bucket, Amazon S3 ignores it.

log-delivery-write Bucket The LogDelivery group gets WRITE and READ_ACP
permissions on the bucket. For more information on logs,
see (Server Access Logging (p. 547)).

Note
You can specify only one of these canned ACLs in your request.

You specify a canned ACL in your request using the x-amz-acl request header. When Amazon S3
receives a request with a canned ACL in the request, it adds the predefined grants to the ACL of the
resource.

How to Specify an ACL

Amazon S3 APIs enable you to set an ACL when you create a bucket or an object. Amazon S3
also provides API to set an ACL on an existing bucket or an object. These API provide you with the
following methods to set an ACL:

• Set ACL using request headers— When you send a request to create a resource (bucket or
object), you set an ACL using the request headers. Using these headers, you can either specify a
canned ACL or specify grants explicitly (identifying grantee and permissions explicitly).

• Set ACL using request body— When you send a request to set an ACL on a existing resource, you
can set the ACL either in the request header or in the body.

For more information, see Managing ACLs (p. 369).

Managing ACLs
Topics

• Managing ACLs in the AWS Management Console (p. 369)

• Managing ACLs Using the AWS SDK for Java (p. 370)

• Managing ACLs Using the AWS SDK for .NET (p. 374)

• Managing ACLs Using the REST API (p. 379)

There are several ways you can add grants to your resource ACL. You can use the AWS Management
Console, which provides a UI to manage permissions without writing any code. You can use the REST
API or use one of the AWS SDKs. These libraries further simplify your programming tasks.

Managing ACLs in the AWS Management Console

AWS Management Console provides a UI for you to grant ACL-based access permissions to your
buckets and objects. The Properties pane includes the Permissions tab where you can grant ACL-
based access permissions. The following screen shot shows the Permissions for a bucket.

API Version 2006-03-01
369

Amazon Simple Storage Service Developer Guide
Managing ACLs

It shows the list of grants found in the bucket ACL. For each grant, it shows the grantee and a set of
check boxes showing the permissions granted. The permission names in the console are different than
the ACL permission names. The preceding illustration shows the mapping between the two.

The preceding illustration shows a grantee with FULL_CONTROL permissions; note that all the check
boxes are selected. All the UI components shown, except the Add bucket policy link, relate to the
ACL-based permissions. The UI allows you to add or remove permissions. To add permissions, click
Add more permissions, and to delete a permission, highlight the line and click X to the right of it.
When you are done updating permissions, click Save to update the ACL. The console sends the
necessary request to Amazon S3 to update the ACL on the specific resource.

For step-by-step instructions, go to Editing Object Permissions and Editing Bucket Permissions in the
Amazon Simple Storage Service Console User Guide.

Managing ACLs Using the AWS SDK for Java

Setting an ACL when Creating a Resource

When creating a resource (buckets and objects), you can grant permissions (see Access Control List
(ACL) Overview (p. 364)) by adding an AccessControlList in your request. For each permission,
you explicitly specify the grantee and the permission.

For example, the following Java code snippet sends a PutObject request to upload an object. In the
request, the code snippet specifies permissions to two AWS accounts and the Amazon S3 AllUsers
group. The PutObject call includes the object data in the request body and the ACL grants in the
request headers (see PUT Object).

String bucketName = "bucket-name";
String keyName = "object-key";
String uploadFileName = "file-name";

AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());

AccessControlList acl = new AccessControlList();
acl.grantPermission(new
 CanonicalGrantee("d25639fbe9c19cd30a4c0f43fbf00e2d3f96400a9aa8dabfbbebe1906Example"),
 Permission.ReadAcp);
acl.grantPermission(GroupGrantee.AllUsers, Permission.Read);
acl.grantPermission(new EmailAddressGrantee("user@email.com"),
 Permission.WriteAcp);

File file = new File(uploadFileName);
s3client.putObject(new PutObjectRequest(bucketName, keyName,
 file).withAccessControlList(acl));

For more information about uploading objects, see Working with Amazon S3 Objects (p. 98).

API Version 2006-03-01
370

http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingPermissionsonanObject.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingBucketPermissions.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Managing ACLs

In the preceding code snippet, in granting each permission you explicitly identified a grantee and a
permission. Alternatively, you can specify a canned (predefined) ACL (see Canned ACL (p. 368))
in your request when creating a resource. The following Java code snippet creates a bucket and
specifies a LogDeliveryWrite canned ACL in the request to grant write permission to the Amazon
S3 LogDelivery group.

String bucketName = "bucket-name";
AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());

s3client.createBucket(new CreateBucketRequest
 (bucketName).withCannedAcl(CannedAccessControlList.LogDeliveryWrite));

For information about the underlying REST API, go to PUT Bucket.

Updating ACL on an Existing Resource

You can set ACL on an existing object or a bucket. You create an instance of the
AccessControlList class and grant permissions and call the appropriate set ACL method. The
following Java code snippet calls the setObjectAcl method to set ACL on an existing object.

String bucketName = "bucket-name";
String keyName = "object-key";

AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());

AccessControlList acl = new AccessControlList();
acl.grantPermission(new
 CanonicalGrantee("d25639fbe9c19cd30a4c0f43fbf00e2d3f96400a9aa8dabfbbebe1906Example"),
 Permission.ReadAcp);
acl.grantPermission(GroupGrantee.AuthenticatedUsers, Permission.Read);
acl.grantPermission(new EmailAddressGrantee("user@email.com"),
 Permission.WriteAcp);
Owner owner = new Owner();
owner.setId("852b113e7a2f25102679df27bb0ae12b3f85be6f290b936c4393484beExample");
owner.setDisplayName("display-name");
acl.setOwner(owner);

s3client.setObjectAcl(bucketName, keyName, acl);

Note
In the preceding code snippet, you can optionally read an existing ACL first, by calling the
getObjectAcl method, add new grants to it, and then set the revised ACL on the resource.

Instead of granting permissions by explicitly specifying grantees and permissions explicitly, you can
also specify a canned ACL in your request. The following Java code snippet sets the ACL on an
existing object. In the request, the snippet specifies the canned ACL AuthenticatedRead to grant
read access to the Amazon S3 Authenticated Users group.

String bucketName = "bucket-name";
String keyName = "object-key";

AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());

s3client.setObjectAcl(bucketName, keyName,
 CannedAccessControlList.AuthenticatedRead);

API Version 2006-03-01
371

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html

Amazon Simple Storage Service Developer Guide
Managing ACLs

An Example

The following Java code example first creates a bucket. In the create request, it specifies a public-
read canned ACL. It then retrieves the ACL in an AccessControlList instance, clears grants, and
adds new grants to the AccessControlList. Finally, it saves the updated AccessControlList,
that is, it replaces the bucket ACL subresource.

The following Java code example performs the following tasks:

• Create a bucket. In the request, it specifies a log-delivery-write canned ACL, granting write
permission to the LogDelivery Amazon S3 group.

• Read the ACL on the bucket.

• Clear existing permissions and add the new permission to the ACL.

• Call setBucketAcl to add the new ACL to the bucket.

Note
To test the following code example, you must update the code and provide your credentials,
and also provide the canonical user ID and email address of the accounts that you want to
grant permissions to.

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collection;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.Bucket;
import com.amazonaws.services.s3.model.CannedAccessControlList;
import com.amazonaws.services.s3.model.CanonicalGrantee;
import com.amazonaws.services.s3.model.CreateBucketRequest;
import com.amazonaws.services.s3.model.Grant;
import com.amazonaws.services.s3.model.GroupGrantee;
import com.amazonaws.services.s3.model.Permission;
import com.amazonaws.services.s3.model.Region;

public class ACLExample {
 private static String bucketName = "*** Provide bucket name ***";

 public static void main(String[] args) throws IOException {
 AmazonS3 s3Client = new AmazonS3Client(new
 ProfileCredentialsProvider());

 Collection<Grant> grantCollection = new ArrayList<Grant>();
 try {
 // 1. Create bucket with Canned ACL.
 CreateBucketRequest createBucketRequest =
 new CreateBucketRequest(bucketName,
 Region.US_Standard).withCannedAcl(CannedAccessControlList.LogDeliveryWrite);

 Bucket resp = s3Client.createBucket(createBucketRequest);

API Version 2006-03-01
372

Amazon Simple Storage Service Developer Guide
Managing ACLs

 // 2. Update ACL on the existing bucket.
 AccessControlList bucketAcl = s3Client.getBucketAcl(bucketName);

 // (Optional) delete all grants.
 bucketAcl.getGrants().clear();

 // Add grant - owner.
 Grant grant0 = new Grant(
 new
 CanonicalGrantee("852b113e7a2f25102679df27bb0ae12b3f85be6f290b936c4393484beExample"),
 Permission.FullControl);
 grantCollection.add(grant0);

 // Add grant using canonical user id.
 Grant grant1 = new Grant(
 new
 CanonicalGrantee("d25639fbe9c19cd30a4c0f43fbf00e2d3f96400a9aa8dabfbbebe1906Example"),
 Permission.Write);
 grantCollection.add(grant1);

 // Grant LogDelivery group permission to write to the bucket.
 Grant grant3 = new Grant(GroupGrantee.LogDelivery,
 Permission.Write);
 grantCollection.add(grant3);

 bucketAcl.getGrants().addAll(grantCollection);

 // Save (replace) ACL.
 s3Client.setBucketAcl(bucketName, bucketAcl);

 } catch (AmazonServiceException ase) {
 System.out.println("Caught an AmazonServiceException, which" +
 " means your request made it " +
 "to Amazon S3, but was rejected with an error response" +
 " for some reason.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException, which
 means"+
 " the client encountered " +
 "a serious internal problem while trying to " +
 "communicate with S3, " +
 "such as not being able to access the network.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }
}

API Version 2006-03-01
373

Amazon Simple Storage Service Developer Guide
Managing ACLs

Managing ACLs Using the AWS SDK for .NET

Setting an ACL When Creating a Resource

When creating a resource (buckets and objects), you can grant permissions by specifying a collection
of Grants (see Access Control List (ACL) Overview (p. 364)) in your request. For each Grant, you
create an S3Grant object explicitly specifying the grantee and the permission.

For example, the following C# code sample sends a PUT Bucket request to create a bucket and
then a PutObject request to put a new object in the new bucket. In the request, the code specifies
permissions for full control for the owner and WRITE permission for the Amazon S3 Log Delivery
group. The PutObject call includes the object data in the request body and the ACL grants in the
request headers (see PUT Object).

static string bucketName = "*** Provide existing bucket name ***";
static string newBucketName = "*** Provide a name for a new bucket ***";
static string newKeyName = "*** Provide a name for a new key ***";

IAmazonS3 client;
client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1);

// Retrieve ACL from one of the owner's buckets
S3AccessControlList acl = client.GetACL(new GetACLRequest
{
 BucketName = bucketName,
}).AccessControlList;

// Describe grant for full control for owner.
S3Grant grant1 = new S3Grant
{
 Grantee = new S3Grantee { CanonicalUser = acl.Owner.Id },
 Permission = S3Permission.FULL_CONTROL
};

// Describe grant for write permission for the LogDelivery group.
S3Grant grant2 = new S3Grant
{
 Grantee = new S3Grantee { URI = "http://acs.amazonaws.com/groups/s3/
LogDelivery" },
 Permission = S3Permission.WRITE
};

PutBucketRequest request = new PutBucketRequest()
{
 BucketName = newBucketName,
 BucketRegion = S3Region.US,
 Grants = new List<S3Grant> { grant1, grant2 }
};
PutBucketResponse response = client.PutBucket(request);

PutObjectRequest objectRequest = new PutObjectRequest()
{
 ContentBody = "Object data for simple put.",
 BucketName = newBucketName,
 Key = newKeyName,
 Grants = new List<S3Grant> { grant1 }
};
PutObjectResponse objectResponse = client.PutObject(objectRequest);

API Version 2006-03-01
374

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Managing ACLs

For more information about uploading objects, see Working with Amazon S3 Objects (p. 98).

In the preceding code sample, for each S3Grant you explicitly identify a grantee and permission.
Alternatively, you can specify a canned (predefined) ACL (see Canned ACL (p. 368)) in your
request when creating a resource. The following C# code sample creates an object and specifies
a LogDeliveryWrite canned ACL in the request to grant the Log Delivery group WRITE and
READ_ACP permissions on the bucket.

static string newBucketName = "*** Provide existing bucket name ***";
static string keyName = "*** Provide key name ***";

IAmazonS3 client;
client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1);

PutBucketRequest request = new PutBucketRequest()
{
 BucketName = newBucketName,
 BucketRegion = S3Region.US,
 // Add canned ACL.
 CannedACL = S3CannedACL.LogDeliveryWrite
};
PutBucketResponse response = client.PutBucket(request);

For information about the underlying REST API, go to PUT Bucket.

Updating ACL on an Existing Resource

You can set an ACL on an existing object or a bucket by calling the AmazonS3Client.PutACL
method. You create an instance of the S3AccessControlList class with a list of ACL grants and
include the list in the PutACL request.

The following C# code sample reads an existing ACL first, using the AmazonS3Client.GetACL
method, add new grants to it, and then sets the revised ACL on the object.

static string bucketName = "*** Provide existing bucket name ***";
static string keyName = "*** Provide key name ***";

IAmazonS3 client;
client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1);

// Retrieve ACL for object
S3AccessControlList acl = client.GetACL(new GetACLRequest
{
 BucketName = bucketName,
 Key = keyName
}).AccessControlList;

// Retrieve owner
Owner owner = acl.Owner;

// Clear existing grants.
acl.Grants.Clear();

// First, add grant to reset owner's full permission
// (previous clear statement removed all permissions).
S3Grant grant0 = new S3Grant
{
 Grantee = new S3Grantee { CanonicalUser = acl.Owner.Id }
};

API Version 2006-03-01
375

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html

Amazon Simple Storage Service Developer Guide
Managing ACLs

acl.AddGrant(grant0.Grantee, S3Permission.FULL_CONTROL);

// Describe grant for permission using email address.
S3Grant grant1 = new S3Grant
{
 Grantee = new S3Grantee { EmailAddress = emailAddress },
 Permission = S3Permission.WRITE_ACP
};

// Describe grant for permission to the LogDelivery group.
S3Grant grant2 = new S3Grant
{
 Grantee = new S3Grantee { URI = "http://acs.amazonaws.com/groups/s3/
LogDelivery" },
 Permission = S3Permission.WRITE
};

// Create new ACL.
S3AccessControlList newAcl = new S3AccessControlList
{
 Grants = new List<S3Grant> { grant1, grant2 },
 Owner = owner
};

// Set new ACL.
PutACLResponse response = client.PutACL(new PutACLRequest
{
 BucketName = bucketName,
 Key = keyName,
 AccessControlList = newAcl
});

Instead of creating S3Grant objects and specifying grantee and permission explicitly, you can also
specify a canned ACL in your request. The following C# code sample sets a canned ACL on a new
bucket. The sample request specifies an AuthenticatedRead canned ACL to grant read access to
the Amazon S3 Authenticated Users group.

static string newBucketName = "*** Provide new bucket name ***";

IAmazonS3 client;
client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1);

PutBucketRequest request = new PutBucketRequest()
{
 BucketName = newBucketName,
 BucketRegion = S3Region.US,
 // Add canned ACL.
 CannedACL = S3CannedACL.AuthenticatedRead
};
PutBucketResponse response = client.PutBucket(request);

An Example

The following C# code example performs the following tasks:

• Create a bucket. In the request, it specifies a log-delivery-write canned ACL, granting write
permission to the LogDelivery Amazon S3 group.

• Read the ACL on the bucket.

API Version 2006-03-01
376

Amazon Simple Storage Service Developer Guide
Managing ACLs

• Clear existing permissions and add new the permission to the ACL.

• Call PutACL request to add the new ACL to the bucket.

For instructions on how to create and test a working example, see Running the Amazon S3 .NET Code
Examples (p. 567).

using System;
using System.Collections.Specialized;
using System.Configuration;
using Amazon.S3;
using Amazon.S3.Model;
using Amazon.S3.Util;
using System.Collections.Generic;

namespace s3.amazon.com.docsamples
{
 class ManageACLs
 {
 static string bucketName = "*** Provide existing bucket name ***";
 static string newBucketName = "*** Provide a name for a new bucket ***";
 static string keyName = "*** Provide key name ***";
 static string newKeyName = "*** Provide a name for a new key ***";
 static string emailAddress = "*** Provide email address ***";

 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 try
 {
 using (client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 // Add bucket (specify canned ACL).
 AddBucketWithCannedACL(newBucketName);

 // Get ACL on a bucket.
 GetBucketACL(bucketName);

 // Add (replace) ACL on an object in a bucket.
 AddACLToExistingObject(bucketName, keyName);

 Console.WriteLine("Example complete.");
 }
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 if (amazonS3Exception.ErrorCode != null &&
 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||
 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))
 {
 Console.WriteLine("Check the provided AWS Credentials.");
 Console.WriteLine("For service sign up go to http://aws.amazon.com/
s3");
 }
 else
 {
 Console.WriteLine(

API Version 2006-03-01
377

Amazon Simple Storage Service Developer Guide
Managing ACLs

 "Error occurred. Message:'{0}' when writing an object"
 , amazonS3Exception.Message);
 }
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static void AddBucketWithCannedACL(string bucketName)
 {
 PutBucketRequest request = new PutBucketRequest()
 {
 BucketName = newBucketName,
 BucketRegion = S3Region.US,
 // Add canned ACL.
 CannedACL = S3CannedACL.LogDeliveryWrite
 };
 PutBucketResponse response = client.PutBucket(request);
 }

 static void GetBucketACL(string bucketName)
 {
 GetACLResponse response = client.GetACL(new GetACLRequest
 {
 BucketName = bucketName
 });

 // GetACLResponse response = client.GetACL(request);
 S3AccessControlList accessControlList = response.AccessControlList;
 //response.Dispose();
 }

 static void AddACLToExistingObject(string bucketName, string keyName)
 {
 // Retrieve ACL for object
 S3AccessControlList acl = client.GetACL(new GetACLRequest
 {
 BucketName = bucketName,
 Key = keyName
 }).AccessControlList;

 // Retrieve owner
 Owner owner = acl.Owner;

 // Clear existing grants.
 acl.Grants.Clear();

 // First, add grant to reset owner's full permission
 // (previous clear statement removed all permissions).
 S3Grant grant0 = new S3Grant
 {
 Grantee = new S3Grantee { CanonicalUser = acl.Owner.Id }
 };
 acl.AddGrant(grant0.Grantee, S3Permission.FULL_CONTROL);

API Version 2006-03-01
378

Amazon Simple Storage Service Developer Guide
Managing ACLs

 // Describe grant for permission using email address.
 S3Grant grant1 = new S3Grant
 {
 Grantee = new S3Grantee { EmailAddress = emailAddress },
 Permission = S3Permission.WRITE_ACP
 };

 // Describe grant for permission to the LogDelivery group.
 S3Grant grant2 = new S3Grant
 {
 Grantee = new S3Grantee { URI = "http://acs.amazonaws.com/groups/
s3/LogDelivery" },
 Permission = S3Permission.WRITE
 };

 // Create new ACL.
 S3AccessControlList newAcl = new S3AccessControlList
 {
 Grants = new List<S3Grant> { grant1, grant2 },
 Owner = owner
 };

 // Set new ACL.
 PutACLResponse response = client.PutACL(new PutACLRequest
 {
 BucketName = bucketName,
 Key = keyName,
 AccessControlList = newAcl
 });

 // Get and print response.
 Console.WriteLine(client.GetACL(new GetACLRequest()
 {
 BucketName = bucketName,
 Key = keyName
 }
));
 }
 }
}

Managing ACLs Using the REST API

For information on the REST API support for managing ACLs, see the following sections in the
Amazon Simple Storage Service API Reference:

• GET Bucket acl

• PUT Bucket acl

• GET Object acl

• PUT Object acl

• PUT Object

• PUT Bucket

• PUT Object - Copy

• Initiate Multipart Upload

API Version 2006-03-01
379

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html

Amazon Simple Storage Service Developer Guide
Data Encryption

Protecting Data in Amazon S3

Topics

• Protecting Data Using Encryption (p. 380)

• Using Reduced Redundancy Storage (p. 420)

• Using Versioning (p. 423)

Amazon S3 provides a highly durable storage infrastructure designed for mission-critical and primary
data storage. Objects are redundantly stored on multiple devices across multiple facilities in an
Amazon S3 region. To help better ensure data durability, Amazon S3 PUT and PUT Object copy
operations synchronously store your data across multiple facilities before returning SUCCESS. Once
the objects are stored, Amazon S3 maintains their durability by quickly detecting and repairing any lost
redundancy.

Amazon S3 also regularly verifies the integrity of data stored using checksums. If Amazon S3 detects
data corruption, it is repaired using redundant data. In addition, Amazon S3 calculates checksums on
all network traffic to detect corruption of data packets when storing or retrieving data.

Amazon S3's standard storage is:

• Backed with the Amazon S3 Service Level Agreement

• Designed to provide 99.999999999% durability and 99.99% availability of objects over a given year

• Designed to sustain the concurrent loss of data in two facilities

Amazon S3 further protects your data using versioning. You can use versioning to preserve, retrieve,
and restore every version of every object stored in your Amazon S3 bucket. With versioning, you can
easily recover from both unintended user actions and application failures. By default, requests retrieve
the most recently written version. You can retrieve older versions of an object by specifying a version of
the object in a request.

Protecting Data Using Encryption
Topics

• Protecting Data Using Server-Side Encryption (p. 381)

API Version 2006-03-01
380

http://aws.amazon.com/s3/sla/

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

• Protecting Data Using Client-Side Encryption (p. 409)

Data protection refers to protecting data while in-transit (as it travels to and from Amazon S3) and at
rest (while it is stored on disks in Amazon S3 data centers). You can protect data in transit by using
SSL or by using client-side encryption. You have the following options of protecting data at rest in
Amazon S3.

• Use Server-Side Encryption – You request Amazon S3 to encrypt your object before saving it on
disks in its data centers and decrypt it when you download the objects.

• Use Client-Side Encryption – You can encrypt data client-side and upload the encrypted data to
Amazon S3. In this case, you manage the encryption process, the encryption keys, and related tools.

Protecting Data Using Server-Side Encryption
Server-side encryption is about data encryption at rest—that is, Amazon S3 encrypts your data at the
object level as it writes it to disks in its data centers and decrypts it for you when you access it. As
long as you authenticate your request and you have access permissions, there is no difference in the
way you access encrypted or unencrypted objects. For example, if you share your objects using a
presigned URL, that URL works the same way for both encrypted and unencrypted objects.

Note
You can't apply different types of server-side encryption to the same object simultaneously.

You have three mutually exclusive options depending on how you choose to manage the encryption
keys:

• Use Server-Side Encryption with Amazon S3-Managed Keys (SSE-S3) – Each object is
encrypted with a unique key employing strong multi-factor encryption. As an additional safeguard, it
encrypts the key itself with a master key that it regularly rotates. Amazon S3 server-side encryption
uses one of the strongest block ciphers available, 256-bit Advanced Encryption Standard (AES-256),
to encrypt your data. For more information, see Protecting Data Using Server-Side Encryption with
Amazon S3-Managed Encryption Keys (SSE-S3) (p. 387).

• Use Server-Side Encryption with AWS KMS-Managed Keys (SSE-KMS) – Similar to SSE-
S3, but with some additional benefits along with some additional charges for using this service.
There are separate permissions for the use of an envelope key (that is, a key that protects your
data's encryption key) that provides added protection against unauthorized access of your objects
in S3. SSE-KMS also provides you with an audit trail of when your key was used and by whom.
Additionally, you have the option to create and manage encryption keys yourself, or use a default
key that is unique to you, the service you're using, and the region you're working in. For more
information, see Protecting Data Using Server-Side Encryption with AWS KMS–Managed Keys
(SSE-KMS) (p. 381).

• Use Server-Side Encryption with Customer-Provided Keys (SSE-C) – You manage the
encryption keys and Amazon S3 manages the encryption, as it writes to disks, and decryption, when
you access your objects. For more information, see Protecting Data Using Server-Side Encryption
with Customer-Provided Encryption Keys (SSE-C) (p. 395).

Note
When you list objects in your bucket, the list API will return a list of all objects, regardless of
whether they are encrypted.

Protecting Data Using Server-Side Encryption with AWS KMS–
Managed Keys (SSE-KMS)
Server-side encryption is about protecting data at rest. AWS Key Management Service (AWS KMS) is
a service that combines secure, highly available hardware and software to provide a key management

API Version 2006-03-01
381

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

system scaled for the cloud. AWS KMS uses customer master keys (CMKs) to encrypt your Amazon
S3 objects. You use AWS KMS via the Encryption Keys section in the IAM console or via AWS KMS
APIs to centrally create encryption keys, define the policies that control how keys can be used, and
audit key usage to prove they are being used correctly. You can use these keys to protect your data in
Amazon S3 buckets.

The first time you add an SSE-KMS–encrypted object to a bucket in a region, a default CMK is created
for you automatically. This key is used for SSE-KMS encryption unless you select a CMK that you
created separately using AWS Key Management Service. Creating your own CMK gives you more
flexibility, including the ability to create, rotate, disable, and define access controls, and to audit the
encryption keys used to protect your data.

For more information, see What is AWS Key Management Service? in the AWS Key Management
Service Developer Guide. If you use AWS KMS, there are additional charges for using AWS-KMS
keys. For more information, see AWS Key Management Service Pricing.

Note
If you are uploading or accessing objects encrypted by SSE-KMS, you need to use AWS
Signature Version 4 for added security. For more information on how to do this using an AWS
SDK, see Specifying Signature Version in Request Authentication.

The highlights of SSE-KMS are:

• You can choose to create and manage encryption keys yourself, or you can choose to use your
default service key uniquely generated on a customer by service by region level.

• The ETag in the response is not the MD5 of the object data.

• The data keys used to encrypt your data are also encrypted and stored alongside the data they
protect.

• Auditable master keys can be created, rotated, and disabled from the IAM console.

• The security controls in AWS KMS can help you meet encryption-related compliance requirements.

Amazon S3 supports bucket policies that you can use if you require server-side encryption for all
objects that are stored in your bucket. For example, the following bucket policy denies upload object
(s3:PutObject) permission to everyone if the request does not include the x-amz-server-side-
encryption header requesting server-side encryption with SSE-KMS.

{
 "Version":"2012-10-17",
 "Id":"PutObjPolicy",
 "Statement":[{
 "Sid":"DenyUnEncryptedObjectUploads",
 "Effect":"Deny",
 "Principal":"*",
 "Action":"s3:PutObject",
 "Resource":"arn:aws:s3:::YourBucket/*",
 "Condition":{
 "StringNotEquals":{
 "s3:x-amz-server-side-encryption":"aws:kms"
 }
 }
 }
]
}

Amazon S3 also supports the s3:x-amz-server-side-encryption-aws-kms-key-id condition
key, which you can use to require a specific KMS key for object encryption. The KMS key you specify
in the policy must use the "arn:aws:kms:region:acct-id:key/key-id" format.

API Version 2006-03-01
382

http://docs.aws.amazon.com/kms/latest/developerguide/overview.html
http://aws.amazon.com/kms/pricing
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAWSSDK.html#specify-signature-version

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

Note
When you upload an object, you can specify the KMS key using the x-amz-server-side-
encryption-aws-kms-key-id header. If the header is not present in the request, Amazon
S3 assumes the default KMS key. Regardless, the KMS key ID that Amazon S3 uses for
object encryption must match the KMS key ID in the policy, otherwise Amazon S3 denies the
request.

Important
All GET and PUT requests for an object protected by AWS KMS will fail if they are not made
via SSL or by using SigV4.

SSE-KMS encrypts only the object data. Any object metadata is not encrypted.

Using AWS Key Management Service in the Amazon S3 Management
Console

For more information about using KMS-Managed Encryption Keys in the Amazon S3 Management
Console, go to Uploading Objects into Amazon S3 in the Amazon Simple Storage Service User Guide.

API Support for AWS Key Management Service in Amazon S3

The object creation REST APIs (see Specifying the AWS Key Management Service in Amazon S3
Using the REST API (p. 386)) provide a request header, x-amz-server-side-encryption that
you can use to request SSE-KMS with the value of aws:kms. There's also x-amz-server-side-
encryption-aws-kms-key-id, which specifies the ID of the AWS KMS master encryption key
that was used for the object. The Amazon S3 API also supports encryption context, with the x-amz-
server-side-encryption-context header.

The encryption context can be any value that you want, provided that the header adheres to the
Base64-encoded JSON format. However, because the encryption context is not encrypted and
because it is logged if AWS CloudTrail logging is turned on, the encryption context should not include
sensitive information. We further recommend that your context describe the data being encrypted or
decrypted so that you can better understand the CloudTrail events produced by AWS KMS. For more
information, see Encryption Context in the AWS Key Management Service Developer Guide.

Also, Amazon S3 may append a predefined key of aws:s3:arn with the value equal to the object's ARN
for the encryption context that you provide. This only happens if the key aws:s3:arn is not already in the
encryption context that you provided, in which case this predefined key is appended when Amazon S3
processes your Put requests. If this aws:s3:arn key is already present in your encryption context, the
key is not appended a second time to your encryption context.

Having this predefined key as a part of your encryption context means that you can track relevant
requests in CloudTrail, so you’ll always be able to see which S3 object's ARN was used with which
encryption key. In addition, this predefined key as a part of your encryption context guarantees that the
encryption context is not identical between different S3 objects, which provides additional security for
your objects. Your full encryption context will be validated to have the value equal to the object's ARN.

The following Amazon S3 APIs support these request headers.

• PUT operation — When uploading data using the PUT API (see PUT Object), you can specify these
request headers.

• Initiate Multipart Upload — When uploading large objects using the multipart upload API, you can
specify these headers. You specify these headers in the initiate request (see Initiate Multipart
Upload).

• POST operation — When using a POST operation to upload an object (see POST Object), instead of
the request headers, you provide the same information in the form fields.

• COPY operation — When you copy an object (see PUT Object - Copy), you have both a source
object and a target object. When you pass SSE-KMS headers with the COPY operation, they will be
applied only to the target object.

API Version 2006-03-01
383

http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/kms/latest/developerguide/encryption-context.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

The AWS SDKs also provide wrapper APIs for you to request SSE-KMS with Amazon S3.

Specifying the AWS Key Management Service in Amazon S3 Using the AWS
SDKs

Topics

• AWS SDK for Java (p. 384)

• AWS SDK for .NET (p. 385)

When using AWS SDKs, you can request Amazon S3 to use AWS Key Management Service (AWS
KMS)–managed encryption keys. This section provides examples of using the AWS SDKs for Java
and .NET. For information about other SDKs, go to Sample Code and Libraries.

AWS SDK for Java

This section explains various Amazon S3 operations using the AWS SDK for Java and how you use
the AWS KMS–managed encryption keys.

Put Operation

When uploading an object using the AWS SDK for Java, you can request Amazon S3 to use an AWS
KMS–managed encryption key by adding the SSEAwsKeyManagementParams property as shown in
the following request:

PutObjectRequest putRequest = new PutObjectRequest(bucketName,
 keyName, file).withSSEAwsKeyManagementParams(new
 SSEAwsKeyManagementParams());

In this case, Amazon S3 uses the default master key (see Protecting Data Using Server-Side
Encryption with AWS KMS–Managed Keys (SSE-KMS) (p. 381)). You can optionally create your own
key and specify that in the request.

PutObjectRequest putRequest = new PutObjectRequest(bucketName,
 keyName, file).withSSEAwsKeyManagementParams(new
 SSEAwsKeyManagementParams(keyID));

For more information about creating keys, go to Programming the AWS KMS API in the AWS Key
Management Service Developer Guide.

For working code examples of uploading an object, see the following topics. You will need to update
those code examples and provide encryption information as shown in the preceding code fragment.

• For uploading an object in a single operation, see Upload an Object Using the AWS SDK for
Java (p. 157)

• For a multipart upload, see the following topics:

• Using high-level multipart upload API, see Upload a File (p. 172)

• If you are using the low-level multipart upload API, see Upload a File (p. 177)

Copy Operation

When copying objects, you add the same request properties (ServerSideEncryptionMethod
and ServerSideEncryptionKeyManagementServiceKeyId) to request Amazon S3 to use an
AWS KMS–managed encryption key. For more information about copying objects, see Copying
Objects (p. 212).

API Version 2006-03-01
384

http://aws.amazon.com/code
http://docs.aws.amazon.com/kms/latest/developerguide/programming-top.html

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

Pre-signed URLs

When creating a pre-signed URL for an object encrypted using an AWS KMS–managed encryption
key, you must explicitly specify Signature Version 4:

ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setSignerOverride("AWSS3V4SignerType");
AmazonS3Client s3client = new AmazonS3Client(
 new ProfileCredentialsProvider(), clientConfiguration);
...

For a code example, see Generate a Pre-signed Object URL using AWS SDK for Java (p. 152).

AWS SDK for .NET

This section explains various Amazon S3 operations using the AWS SDK for .NET and how you use
the AWS KMS–managed encryption keys.

Put Operation

When uploading an object using the AWS SDK for .NET, you can request Amazon S3 to use an AWS
KMS–managed encryption key by adding the ServerSideEncryptionMethod property as shown in
the following request:

PutObjectRequest putRequest = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 // other properties.
 ServerSideEncryptionMethod = ServerSideEncryptionMethod.AWSKMS
 };

In this case, Amazon S3 uses the default master key (see Protecting Data Using Server-Side
Encryption with AWS KMS–Managed Keys (SSE-KMS) (p. 381)). You can optionally create your own
key and specify that in the request.

PutObjectRequest putRequest1 = new PutObjectRequest
{
 BucketName = bucketName,
 Key = keyName,
 // other properties.
 ServerSideEncryptionMethod = ServerSideEncryptionMethod.AWSKMS,
 ServerSideEncryptionKeyManagementServiceKeyId = keyId
};

For more information about creating keys, see Programming the AWS KMS API in the AWS Key
Management Service Developer Guide.

For working code examples of uploading an object, see the following topics. You will need to update
these code examples and provide encryption information as shown in the preceding code fragment.

• For uploading an object in a single operation, see Upload an Object Using the AWS SDK
for .NET (p. 159)

• For multipart upload see the following topics:

• Using high-level multipart upload API, see Upload a File (p. 181)

API Version 2006-03-01
385

http://docs.aws.amazon.com/kms/latest/developerguide/programming-top.html

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

• Using low-level multipart upload API, see Upload a File (p. 190)

Copy Operation

When copying objects, you add the same request properties (ServerSideEncryptionMethod
and ServerSideEncryptionKeyManagementServiceKeyId) to request Amazon S3 to use an
AWS KMS–managed encryption key. For more information about copying objects, see Copying
Objects (p. 212).

Pre-signed URLs

When creating a pre-signed URL for an object encrypted using an AWS KMS–managed encryption
key, you must explicitly specify Signature Version 4:

AWSConfigs.S3Config.UseSignatureVersion4 = true;

For a code example, see Generate a Pre-signed Object URL using AWS SDK for .NET (p. 155).

Specifying the AWS Key Management Service in Amazon S3 Using the REST
API

At the time of object creation—that is, when you are uploading a new object or making a copy of
an existing object—you can specify the use of server-side encryption with AWS KMS–managed
encryption keys (SSE-KMS) to encrypt your data by adding the x-amz-server-side-encryption
header to the request. Set the value of the header to the encryption algorithm aws:kms. Amazon S3
confirms that your object is stored using SSE-KMS by returning the response header x-amz-server-
side-encryption.

The following REST upload APIs accept the x-amz-server-side-encryption request header.

• PUT Object

• PUT Object - Copy

• POST Object

• Initiate Multipart Upload

When uploading large objects using the multipart upload API, you can specify SSE-KMS by adding the
x-amz-server-side-encryption header to the Initiate Multipart Upload request with the value of
aws:kms. When copying an existing object, regardless of whether the source object is encrypted or
not, the destination object is not encrypted unless you explicitly request server-side encryption.

The response headers of the following REST APIs return the x-amz-server-side-encryption
header when an object is stored using server-side encryption.

• PUT Object

• PUT Object - Copy

• POST Object

• Initiate Multipart Upload

• Upload Part

• Upload Part - Copy

• Complete Multipart Upload

• Get Object

• Head Object

API Version 2006-03-01
386

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPartCopy.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadComplete.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

Note
Encryption request headers should not be sent for GET requests and HEAD requests if your
object uses SSE-KMS or you’ll get an HTTP 400 BadRequest error.

Protecting Data Using Server-Side Encryption with Amazon
S3-Managed Encryption Keys (SSE-S3)

Server-side encryption is about protecting data at rest. Server-side encryption with Amazon S3-
managed encryption keys (SSE-S3) employs strong multi-factor encryption. Amazon S3 encrypts each
object with a unique key. As an additional safeguard, it encrypts the key itself with a master key that it
regularly rotates. Amazon S3 server-side encryption uses one of the strongest block ciphers available,
256-bit Advanced Encryption Standard (AES-256), to encrypt your data.

Amazon S3 supports bucket policies that you can use if you require server-side encryption for all
objects that are stored in your bucket. For example, the following bucket policy denies upload object
(s3:PutObject) permission to everyone if the request does not include the x-amz-server-side-
encryption header requesting server-side encryption.

{
 "Version": "2012-10-17",
 "Id": "PutObjPolicy",
 "Statement": [
 {
 "Sid": "DenyIncorrectEncryptionHeader",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::YourBucket/*",
 "Condition": {
 "StringNotEquals": {
 "s3:x-amz-server-side-encryption": "AES256"
 }
 }
 },
 {
 "Sid": "DenyUnEncryptedObjectUploads",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::YourBucket/*",
 "Condition": {
 "Null": {
 "s3:x-amz-server-side-encryption": "true"
 }
 }
 }
]
}

Server-side encryption encrypts only the object data. Any object metadata is not encrypted.

API Support for Server-Side Encryption

The object creation REST APIs (see Specifying Server-Side Encryption Using the REST
API (p. 394)) provide a request header, x-amz-server-side-encryption that you can use to
request server-side encryption.

API Version 2006-03-01
387

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

The following Amazon S3 APIs support these headers.

• PUT operation — When uploading data using the PUT API (see PUT Object), you can specify these
request headers.

• Initiate Multipart Upload — When uploading large objects using the multipart upload API, you can
specify these headers. You specify these headers in the initiate request (see Initiate Multipart
Upload).

• POST operation — When using a POST operation to upload an object (see POST Object), instead of
the request headers, you provide the same information in the form fields.

• COPY operation — When you copy an object (see PUT Object - Copy), you have both a source
object and a target object.

The AWS SDKs also provide wrapper APIs for you to request server-side encryption. You can also use
the AWS Management Console to upload objects and request server-side encryption.

Note
You can't enforce whether or not objects are encrypted with SSE-S3 when they are uploaded
using pre-signed URLs. This is because the only way you can specify server-side encryption
is through the AWS Management Console or through an HTTP request header. For more
information, see Specifying Conditions in a Policy (p. 315).

Specifying Server-Side Encryption Using the AWS SDK for Java

When using the AWS SDK for Java to upload an object, you can use the ObjectMetadata property
of the PutObjectRequest to set the x-amz-server-side-encryption request header (see
Specifying Server-Side Encryption Using the REST API (p. 394)). When you call the PutObject
method of the AmazonS3 client as shown in the following Java code sample, Amazon S3 encrypts and
saves the data.

File file = new File(uploadFileName);
PutObjectRequest putRequest = new PutObjectRequest(
 bucketName, keyName, file);

// Request server-side encryption.
ObjectMetadata objectMetadata = new ObjectMetadata();
objectMetadata.setSSEAlgorithm(ObjectMetadata.AES_256_SERVER_SIDE_ENCRYPTION);

putRequest.setMetadata(objectMetadata);

PutObjectResult response = s3client.putObject(putRequest);
System.out.println("Uploaded object encryption status is " +
 response.getSSEAlgorithm());

In response, Amazon S3 returns the encryption algorithm used for encrypting your object data, which
you can check using the getSSEAlgorithm method.

For a working sample that shows how to upload an object, see Upload an Object Using the AWS SDK
for Java (p. 157). For server-side encryption, add the ObjectMetadata property to your request.

When uploading large objects using multipart upload API, you can request server-side encryption for
the object that you are uploading.

• When using the low-level multipart upload API (see Upload a File (p. 177)) to
upload a large object, you can specify server-side encryption when you initiate the
multipart upload. That is, you add the ObjectMetadata property by calling the
InitiateMultipartUploadRequest.setObjectMetadata method.

API Version 2006-03-01
388

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

• When using the high-level multipart upload API (see Using the AWS Java SDK for Multipart Upload
(High-Level API) (p. 172)), the TransferManager class provides methods to upload objects. You
can call any of the upload methods that take ObjectMetadata as a parameter.

Determining the Encryption Algorithm Used

To determine the encryption state of an existing object, you can retrieve the object metadata as shown
in the following Java code sample.

GetObjectMetadataRequest request2 =
 new GetObjectMetadataRequest(bucketName, keyName);

ObjectMetadata metadata = s3client.getObjectMetadata(request2);

System.out.println("Encryption algorithm used: " +
 metadata.getSSEAlgorithm());

If server-side encryption is not used for the object that is stored in Amazon S3, the method returns null.

Changing Server-Side Encryption of an Existing Object (Copy Operation)

To change the encryption state of an existing object, you make a copy of the object and delete the
source object. Note that, by default, the copy API will not encrypt the target, unless you explicitly
request server-side encryption. You can request the encryption of the target object by using the
ObjectMetadata property to specify server-side encryption in the CopyObjectRequest as shown in
the following Java code sample.

CopyObjectRequest copyObjRequest = new CopyObjectRequest(
sourceBucket, sourceKey, targetBucket, targetKey);

// Request server-side encryption.
ObjectMetadata objectMetadata = new ObjectMetadata();
objectMetadata.setSSEAlgorithm(ObjectMetadata.AES_256_SERVER_SIDE_ENCRYPTION);

copyObjRequest.setNewObjectMetadata(objectMetadata);

CopyObjectResult response = s3client.copyObject(copyObjRequest);
System.out.println("Copied object encryption status is " +
 response.getSSEAlgorithm());

For a working sample of how to copy an object, see Copy an Object Using the AWS SDK for
Java (p. 214). You can specify server-side encryption in the CopyObjectRequest object as shown in
the preceding code sample.

Specifying Server-Side Encryption Using the AWS SDK for .NET

When using the AWS SDK for .NET to upload an object, you can use the
WithServerSideEncryptionMethod property of PutObjectRequest to set the x-amz-server-
side-encryption request header (see Specifying Server-Side Encryption Using the REST
API (p. 394)). When you call the PutObject method of the AmazonS3 client as shown in the
following C# code sample, Amazon S3 encrypts and saves the data.

static AmazonS3 client;
client = new AmazonS3Client(accessKeyID, secretAccessKeyID);

API Version 2006-03-01
389

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

PutObjectRequest request = new PutObjectRequest();
request.WithContentBody("Object data for simple put.")
 .WithBucketName(bucketName)
 .WithKey(keyName)
 .WithServerSideEncryptionMethod(ServerSideEncryptionMethod.AES256);

S3Response response = client.PutObject(request);

// Check the response header to determine if the object is encrypted.
ServerSideEncryptionMethod destinationObjectEncryptionStatus =
 response.ServerSideEncryptionMethod;

In response, Amazon S3 returns the encryption algorithm that is used to encrypt your object data,
which you can check using the ServerSideEncryptionMethod property.

For a working sample of how to upload an object, see Upload an Object Using the AWS SDK
for .NET (p. 159). For server-side encryption, set the ServerSideEncryptionMethod property by
calling the WithServerSideEncryptionMethod method.

To upload large objects using the multipart upload API, you can specify server-side encryption for the
objects that you are uploading.

• When using the low-level multipart upload API (see Using the AWS .NET SDK for
Multipart Upload (Low-Level API) (p. 190)) to upload a large object, you can specify
server-side encryption in your InitiateMultipartUpload request. That is, you set the
ServerSideEncryptionMethod property to your InitiateMultipartUploadRequest by
calling the WithServerSideEncryptionMethod method.

• When using the high-level multipart upload API (see Using the AWS .NET SDK for Multipart
Upload (High-Level API) (p. 181)), the TransferUtility class provides methods (Upload and
UploadDirectory) to upload objects. In this case, you can request server-side encryption using
the TransferUtilityUploadRequest and TransferUtilityUploadDirectoryRequest
objects.

Determining the Encryption Algorithm Used

To determine the encryption state of an existing object, you can retrieve the object metadata as shown
in the following C# code sample.

AmazonS3 client;
client = new AmazonS3Client(accessKeyID, secretAccessKeyID);

ServerSideEncryptionMethod objectEncryption;

GetObjectMetadataRequest metadataRequest = new GetObjectMetadataRequest()
 .WithBucketName(bucketName)
 .WithKey(keyName);

objectEncryption = client.GetObjectMetadata(metadataRequest)
 .ServerSideEncryptionMethod;

The encryption algorithm is specified with an enum. If the stored object is not encrypted (default
behavior), then the ServerSideEncryptionMethod property of the object will default to None.

Changing Server-Side Encryption of an Existing Object (Copy Operation)

To change the encryption state of an existing object, you can make a copy of the object and delete
the source object. Note that, by default, the copy API will not encrypt the target, unless you explicitly

API Version 2006-03-01
390

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

request server-side encryption of the destination object. The following C# code sample makes a copy
of an object. The request explicitly specifies server-side encryption for the destination object.

AmazonS3 client;
client = new AmazonS3Client(accessKeyID, secretAccessKeyID);

CopyObjectResponse response = client.CopyObject(new CopyObjectRequest()
 .WithSourceBucket(sourceBucketName)
 .WithSourceKey(sourceObjetKey)
 .WithDestinationBucket(targetBucketName)
 .WithDestinationKey(targetObjectKey)

 .WithServerSideEncryptionMethod(ServerSideEncryptionMethod.AES256)
);
// Check the response header to determine if the object is encrypted.
ServerSideEncryptionMethod destinationObjectEncryptionStatus =
 response.ServerSideEncryptionMethod;

For a working sample of how to copy an object, see Copy an Object Using the AWS SDK
for .NET (p. 215). You can specify server-side encryption in the CopyObjectRequest object as shown
in the preceding code sample.

Specifying Server-Side Encryption Using the AWS SDK for PHP

This topic guides you through using classes from the AWS SDK for PHP to add server-side encryption
to objects you are uploading to Amazon S3.

Note
This topic assumes that you are already following the instructions for Using the AWS SDK
for PHP and Running PHP Examples (p. 567) and have the AWS SDK for PHP properly
installed.

You can use the Aws\S3\S3Client::putObject() method to upload an object to Amazon S3. For
a working sample of how to upload an object, see Upload an Object Using the AWS SDK for
PHP (p. 161).

To add the x-amz-server-side-encryption request header (see Specifying Server-Side
Encryption Using the REST API (p. 394)) to your upload request, specify the array parameter's
ServerSideEncryption key with the value AES256 as shown in the following PHP code sample.

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';
// $filepath should be absolute path to a file on disk
$filepath = '*** Your File Path ***';

// Instantiate the client.
$s3 = S3Client::factory();

// Upload a file with server-side encryption.
$result = $s3->putObject(array(
 'Bucket' => $bucket,
 'Key' => $keyname,
 'SourceFile' => $filepath,
 'ServerSideEncryption' => 'AES256',
));

API Version 2006-03-01
391

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_putObject

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

In response, Amazon S3 returns the x-amz-server-side-encryption header with the value of the
encryption algorithm used to encrypt your object data.

To upload large objects using the multipart upload API, you can specify server-side encryption for the
objects that you are uploading.

• When using the low-level multipart upload API (see Using the AWS PHP SDK for Multipart
Upload (Low-Level API) (p. 200)), you can specify server-side encryption when you call the Aws
\S3\S3Client::createMultipartUpload() method. To add the x-amz-server-side-encryption
request header to your request, specify the array parameter's ServerSideEncryption key with
the value AES256.

• When using the high-level multipart upload, you can specify server-side encryption
using the Aws\S3\Model\MultipartUpload\UploadBuilder:setOption() method like
setOption('ServerSideEncryption','AES256'). For an example of using the setOption()
method with the high-level UploadBuilder, see Using the AWS PHP SDK for Multipart Upload (High-
Level API) (p. 196).

Determining Encryption Algorithm Used

To determine the encryption state of an existing object, retrieve the object metadata by calling the Aws
\S3\S3Client::headObject() method as shown in the following PHP code sample.

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

// Instantiate the client.
$s3 = S3Client::factory();

// Check which server-side encryption algorithm is used.
$result = $s3->headObject(array(
 'Bucket' => $bucket,
 'Key' => $keyname,
));
echo $result['ServerSideEncryption'];

Changing Server-Side Encryption of an Existing Object (Copy Operation)

To change the encryption state of an existing object, make a copy of the object using the Aws
\S3\S3Client::copyObject() method and delete the source object. Note that by default copyObject()
will not encrypt the target, unless you explicitly request server-side encryption of the destination object
using the array parameter's ServerSideEncryption key with the value AES256. The following PHP
code sample makes a copy of an object and adds server-side encryption to the copied object.

use Aws\S3\S3Client;

$sourceBucket = '*** Your Source Bucket Name ***';
$sourceKeyname = '*** Your Source Object Key ***';

$targetBucket = '*** Your Target Bucket Name ***';
$targetKeyname = '*** Your Target Object Key ***';

// Instantiate the client.
$s3 = S3Client::factory();

// Copy an object and add server-side encryption.

API Version 2006-03-01
392

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_createMultipartUpload()
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_createMultipartUpload()
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html#_setOption
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_headObject
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_headObject
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_copyObject
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_copyObject

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

$result = $s3->copyObject(array(
 'Bucket' => $targetBucket,
 'Key' => $targetKeyname,
 'CopySource' => "{$sourceBucket}/{$sourceKeyname}",
 'ServerSideEncryption' => 'AES256',
));

For a working sample of how to copy an object, see Copy an Object Using the AWS SDK for
PHP (p. 218).

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::factory() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::copyObject() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::createMultipartUpload() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::headObject() Method

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client::putObject() Method

• Aws\S3\Model\MultipartUpload\UploadBuilder:setOption() Method

• AWS SDK for PHP for Amazon S3

• AWS SDK for PHP Documentation

Specifying Server-Side Encryption Using the AWS SDK for Ruby

When using the AWS SDK for Ruby to upload an object, you can specify that the object be stored at
rest encrypted by specifying an options hash server_side_encryption in the #write instance
method. When you read the object back, it is automatically decrypted.

The following Ruby script sample demonstrates how to specify that a file uploaded to Amazon S3 be
encrypted at rest.

Upload a file and set server-side encryption.
key_name = File.basename(file_name)
s3.buckets[bucket_name].objects[key_name].write(:file =>
 file_name, :server_side_encryption => :aes256)

For a working sample that shows how to upload an object, see Upload an Object Using the AWS SDK
for Ruby (p. 163).

Determining the Encryption Algorithm Used

To check the encryption algorithm that is used for encrypting an object data at rest, use the
#server_side_encryption method of the S3Object instance. The following code sample
demonstrates how to determine the encryption state of an existing object.

Determine server-side encryption of an object.
enc = s3.buckets[bucket_name].objects[key_name].server_side_encryption
enc_state = (enc != nil) ? enc : "not set"
puts "Encryption of #{key_name} is #{enc_state}."

If server-side encryption is not used for the object that is stored in Amazon S3, the method returns null.

API Version 2006-03-01
393

http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_factory
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_copyObject
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_createMultipartUpload
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_headObject
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.S3Client.html#_putObject
http://docs.aws.amazon.com/aws-sdk-php-2/latest/class-Aws.S3.Model.MultipartUpload.UploadBuilder.html#_setOption
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/index.html

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

Changing Server-Side Encryption of an Existing Object (Copy Operation)

To change the encryption state of an existing object, make a copy of the object and delete the source
object. The Ruby API S3Object class has #copy_from and #copy_to methods that you can use to
copy objects. Note that, by default, the copy methods will not encrypt the target, unless you explicitly
request server-side encryption. You can request the encryption of the target object by specifying the
server_side_encryption value in the options hash argument as shown in the following Ruby code
sample. The code sample demonstrates how to use the #copy_to method.

s3 = AWS::S3.new

Upload a file and set server-side encryption.
bucket1 = s3.buckets[source_bucket]
bucket2 = s3.buckets[target_bucket]
obj1 = bucket1.objects[source_key]
obj2 = bucket2.objects[target_key]

obj1.copy_to(obj2, :server_side_encryption => :aes256)

For a working sample of how to copy an object, see Copy an Object Using the AWS SDK for
Ruby (p. 221).

Specifying Server-Side Encryption Using the REST API

At the time of object creation—that is, when you are uploading a new object or making a copy of an
existing object—you can specify if you want Amazon S3 to encrypt your data by adding the x-amz-
server-side-encryption header to the request. Set the value of the header to the encryption
algorithm AES256 that Amazon S3 supports. Amazon S3 confirms that your object is stored using
server-side encryption by returning the response header x-amz-server-side-encryption.

The following REST upload APIs accept the x-amz-server-side-encryption request header.

• PUT Object

• PUT Object - Copy

• POST Object

• Initiate Multipart Upload

When uploading large objects using the multipart upload API, you can specify server-side encryption
by adding the x-amz-server-side-encryption header to the Initiate Multipart Upload request.
When copying an existing object, regardless of whether the source object is encrypted or not, the
destination object is not encrypted unless you explicitly request server-side encryption.

The response headers of the following REST APIs return the x-amz-server-side-encryption
header when an object is stored using server-side encryption.

• PUT Object

• PUT Object - Copy

• POST Object

• Initiate Multipart Upload

• Upload Part

• Upload Part - Copy

• Complete Multipart Upload

• Get Object

• Head Object

API Version 2006-03-01
394

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPartCopy.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadComplete.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

Note
Encryption request headers should not be sent for GET requests and HEAD requests if your
object uses SSE-S3 or you’ll get an HTTP 400 BadRequest error.

Specifying Server-Side Encryption Using the AWS Management Console

When uploading an object using the AWS Management Console, you can specify server-side
encryption. For an example of how to upload an object, go to Uploading Objects into Amazon S3.

When you copy an object using the AWS Management Console, the console copies the object as is.
That is, if the copy source is encrypted, the target object will be encrypted. For an example of how to
copy an object using the console, go to Copying an Object. The console also allows you to update
properties of one or more objects. For example, you can select one or more objects and select server-
side encryption

Protecting Data Using Server-Side Encryption with Customer-
Provided Encryption Keys (SSE-C)
Server-side encryption is about protecting data at rest. Using server-side encryption with customer-
provided encryption keys (SSE-C) allows you to set your own encryption keys. With the encryption key
you provide as part of your request, Amazon S3 manages both the encryption, as it writes to disks, and
decryption, when you access your objects. Therefore, you don't need to maintain any code to perform
data encryption and decryption. The only thing you do is manage the encryption keys you provide.

When you upload an object, Amazon S3 uses the encryption key you provide to apply AES-256
encryption to your data and removes the encryption key from memory.

Important
Amazon S3 does not store the encryption key you provide. Instead, we store a randomly
salted HMAC value of the encryption key in order to validate future requests. The salted
HMAC value cannot be used to derive the value of the encryption key or to decrypt the
contents of the encrypted object. That means, if you lose the encryption key, you lose the
object.

When you retrieve an object, you must provide the same encryption key as part of your request.
Amazon S3 first verifies that the encryption key you provided matches, and then decrypts the object
before returning the object data to you.

The highlights of SSE-C are:

• You must use https.

Important
Amazon S3 will reject any requests made over http when using SSE-C. For security
considerations, we recommend you consider any key you send erroneously using http to be
compromised. You should discard the key, and rotate as appropriate.

• The ETag in the response is not the MD5 of the object data.

• You manage a mapping of which encryption key was used to encrypt which object. Amazon S3 does
not store encryption keys. You are responsible for tracking which encryption key you provided for
which object.

• If your bucket is versioning-enabled, each object version you upload using this feature can have
its own encryption key. You are responsible for tracking which encryption key was used for which
object version.

• Because you manage encryption keys on the client side, you manage any additional safeguards,
such as key rotation, on the client side.

Caution
If you lose the encryption key any GET request for an object without its encryption key will
fail, and you lose the object.

API Version 2006-03-01
395

http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/MakingaCopyofanObject.html

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

Using SSE-C

When using server-side encryption with customer-provided encryption keys (SSE-C), you must provide
encryption key information using the following request headers.

Name Description

x-amz-server-
side-encryption-
customer-algorithm

Use this header to specify the encryption algorithm. The header value
must be "AES256".

x-amz-server-
side-encryption-
customer-key

Use this header to provide the 256-bit, base64-encoded encryption key
for Amazon S3 to use to encrypt or decrypt your data.

x-amz-server-
side-encryption-
customer-key-MD5

Use this header to provide the base64-encoded 128-bit MD5 digest
of the encryption key according to RFC 1321. Amazon S3 uses this
header for a message integrity check to ensure the encryption key was
transmitted without error.

You can use AWS SDK wrapper libraries to add these headers to your request. If you need to, you can
make the Amazon S3 REST API calls directly in your application.

Note
You cannot use the Amazon S3 console to upload an object and request SSE-C. You also
cannot use the console to update (for example, change the storage class or add metadata) an
existing object stored using SSE-C.

The following Amazon S3 APIs support these headers.

• GET operation — When retrieving objects using the GET API (see GET Object), you can specify the
request headers. Torrents are not supported for objects encrypted using SSE-C.

• HEAD operation — To retrieve object metadata using the HEAD API (see HEAD Object), you can
specify these request headers.

• PUT operation — When uploading data using the PUT API (see PUT Object), you can specify these
request headers.

• Multipart Upload — When uploading large objects using the multipart upload API, you can specify
these headers. You specify these headers in the initiate request (see Initiate Multipart Upload) and
each subsequent part upload request (Upload Part). For each part upload request, the encryption
information must be the same as what you provided in the initiate multipart upload request.

• POST operation — When using a POST operation to upload an object (see POST Object), instead of
the request headers, you provide the same information in the form fields.

• Copy operation — When you copy an object (see PUT Object - Copy), you have both a source
object and a target object. Accordingly, you have the following to consider:

• If you want the target object encrypted using server-side encryption with AWS-managed keys, you
must provide the x-amz-server-side-encryption request header.

• If you want the target object encrypted using SSE-C, you must provide encryption information
using the three headers described in the preceding table.

• If the source object is encrypted using SSE-C, you must provide encryption key information using
the following headers so that Amazon S3 can decrypt the object for copying.

Name Description

x-amz-copy-source
-server-side

Include this header to specify the algorithm Amazon S3 should use to
decrypt the source object. This value must be AES256.

API Version 2006-03-01
396

http://tools.ietf.org/html/rfc1321
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

Name Description

-encryption-
customer-algorithm

x-amz-copy-source
-server-side
-encryption-
customer-key

Include this header to provide the base64-encoded encryption key for
Amazon S3 to use to decrypt the source object. This encryption key
must be the one that you provided Amazon S3 when you created the
source object; otherwise, Amazon S3 will not be able to decrypt the
object.

x-amz-copy-
source-server-
side-encryption-
customer-key-MD5

Include this header to provide the base64-encoded 128-bit MD5
digest of the encryption key according to RFC 1321.

Presigned URL and SSE-C

You can generate a presigned URL that can be used for operations such as upload a new object,
retrieve an existing object, or object metadata. Presigned URLs support the SSE-C as follows:

• When creating a presigned URL, you must specify the algorithm using the x-amz-server-side-
encryption-customer-algorithm in the signature calculation.

• When using the presigned URL to upload a new object, retrieve an existing object, or retrieve only
object metadata, you must provide all the encryption headers in your client application.

For more information, see the following topics:

• Specifying Server-Side Encryption with Customer-Provided Encryption Keys Using the AWS Java
SDK (p. 397)

• Specifying Server-Side Encryption with Customer-Provided Encryption Keys Using the .NET
SDK (p. 403)

• Specifying Server-Side Encryption with Customer-Provided Encryption Keys Using the REST
API (p. 409)

Specifying Server-Side Encryption with Customer-Provided Encryption Keys
Using the AWS Java SDK

The following Java code example illustrates server-side encryption with customer-provided keys (SSE-
C) (see Protecting Data Using Server-Side Encryption with Customer-Provided Encryption Keys (SSE-
C) (p. 395)). The example performs the following operations; each operation shows how you specify
SSE-C related headers in the request:

• Put object – upload an object requesting server-side encryption using a customer-provided
encryption key.

• Get object – download the object that you uploaded in the previous step. The example shows that in
the Get request you must provide the same encryption information that you provided at the time you
uploaded the object, so that Amazon S3 can decrypt the object before returning it.

• Get object metadata – The request shows the same encryption information that you specified when
creating the object is required to retrieve the object's metadata.

• Copy object – This example makes a copy of the previously uploaded object. Because the source
object is stored using SSE-C, you must provide the encryption information in your copy request.
By default, the object copy will not be encrypted. But in this example, you request that Amazon S3
store the object copy encrypted by using SSE-C, and therefore you must provide SSE-C encryption
information for the target as well.

API Version 2006-03-01
397

http://tools.ietf.org/html/rfc1321

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

Note
This example shows how to upload an object in a single operation. When using the multipart
upload API to upload large objects, you provide the same encryption information that you
provide in your request, as shown in the following example. For multipart upload AWS SDK for
Java examples, see Using the AWS Java SDK for Multipart Upload (High-Level API) (p. 172)
and Using the AWS Java SDK for Multipart Upload (Low-Level API) (p. 177).

The AWS SDK for Java provides the SSECustomerKey class for you to add the required encryption
information (see Using SSE-C (p. 396)) in your request. You are required to provide only the
encryption key. The Java SDK sets the values for the MD5 digest of the encryption key and the
algorithm.

For information about how to create and test a working sample, see Testing the Java Code
Examples (p. 565).

import java.io.BufferedReader;
import java.io.File;
import java.io.IOException;
import java.io.InputStreamReader;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;

import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.CopyObjectRequest;
import com.amazonaws.services.s3.model.GetObjectMetadataRequest;
import com.amazonaws.services.s3.model.GetObjectRequest;
import com.amazonaws.services.s3.model.ObjectMetadata;
import com.amazonaws.services.s3.model.PutObjectRequest;
import com.amazonaws.services.s3.model.S3Object;
import com.amazonaws.services.s3.model.S3ObjectInputStream;
import com.amazonaws.services.s3.model.SSECustomerKey;

public class ServerSideEncryptionUsingClientSideEncryptionKey {
 private static String bucketName = "*** Provide bucket name ***";
 private static String keyName = "*** Provide key ***";
 private static String uploadFileName = "*** Provide file name ***";
 private static String targetKeyName = "*** provide target key ***";
 private static AmazonS3 s3client;

 public static void main(String[] args) throws IOException,
 NoSuchAlgorithmException {
 s3client = new AmazonS3Client(new ProfileCredentialsProvider());
 try {
 System.out.println("Uploading a new object to S3 from a file\n");
 File file = new File(uploadFileName);
 // Create encryption key.
 SecretKey secretKey = generateSecretKey();
 SSECustomerKey sseKey = new SSECustomerKey(secretKey);

 // 1. Upload object.
 uploadObject(file, sseKey);

API Version 2006-03-01
398

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

 // 2. Download object.
 downloadObject(sseKey);

 // 3. Get object metadata (and verify AES256 encryption).
 retrieveObjectMetadata(sseKey);

 // 4. Copy object (both source and object use SSE-C).
 copyObject(sseKey);

 } catch (AmazonServiceException ase) {
 System.out.println("Caught an AmazonServiceException, which " +
 "means your request made it " +
 "to Amazon S3, but was rejected with an error response" +
 " for some reason.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException, which " +
 "means the client encountered " +
 "an internal error while trying to " +
 "communicate with S3, " +
 "such as not being able to access the network.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }

 private static void copyObject(SSECustomerKey sseKey) {
 // Create new encryption key for target so it is saved using sse-c
 SecretKey secretKey2 = generateSecretKey();
 SSECustomerKey newSseKey = new SSECustomerKey(secretKey2);

 CopyObjectRequest copyRequest = new CopyObjectRequest(bucketName,
 keyName, bucketName, targetKeyName)
 .withSourceSSECustomerKey(sseKey)
 .withDestinationSSECustomerKey(newSseKey);

 s3client.copyObject(copyRequest);
 System.out.println("Object copied");
 }

 private static void retrieveObjectMetadata(SSECustomerKey sseKey) {
 GetObjectMetadataRequest getMetadataRequest = new
 GetObjectMetadataRequest(bucketName, keyName)
 .withSSECustomerKey(sseKey);

 ObjectMetadata objectMetadata =
 s3client.getObjectMetadata(getMetadataRequest);
 System.out.println("object size " +
 objectMetadata.getContentLength());
 System.out.println("Metadata retrieved");
 }

 private static PutObjectRequest uploadObject(File file, SSECustomerKey
 sseKey) {
 // 1. Upload Object.

API Version 2006-03-01
399

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

 PutObjectRequest putObjectRequest = new PutObjectRequest(bucketName,
 keyName, file)
 .withSSECustomerKey(sseKey);

 s3client.putObject(putObjectRequest);
 System.out.println("Object uploaded");
 return putObjectRequest;
 }

 private static void downloadObject(SSECustomerKey sseKey) throws
 IOException {
 // Get a range of bytes from an object.
 GetObjectRequest getObjectRequest = new GetObjectRequest(bucketName,
 keyName)
 .withSSECustomerKey(sseKey);

 S3Object s3Object = s3client.getObject(getObjectRequest);

 System.out.println("Printing bytes retrieved.");
 displayTextInputStream(s3Object.getObjectContent());
 }

 private static void displayTextInputStream(S3ObjectInputStream input)
 throws IOException {
 // Read one text line at a time and display.
 BufferedReader reader = new BufferedReader(new
 InputStreamReader(input));
 while (true) {
 String line = reader.readLine();
 if (line == null) break;

 System.out.println(" " + line);
 }
 System.out.println();
 }

 private static SecretKey generateSecretKey() {
 try {
 KeyGenerator generator = KeyGenerator.getInstance("AES");
 generator.init(256, new SecureRandom());
 return generator.generateKey();
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(-1);
 return null;
 }
 }
}

Other Amazon S3 Operations and SSE-C

The example in the preceding section shows how to request server-side encryption with customer-
provided keys (SSE-C) in the PUT, GET, Head, and Copy operations. This section describes other
APIs that support SSE-C.

To upload large objects, you can use multipart upload API (see Uploading Objects Using Multipart
Upload API (p. 165)). You can use either high-level or low-level APIs to upload large objects. These
APIs support encryption-related headers in the request.

API Version 2006-03-01
400

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

• When using the high-level Transfer-Utility API, you provide the encryption-specific headers in the
TransferManager (see Using the AWS Java SDK for Multipart Upload (High-Level API) (p. 172)).

• When using the low-level API, you provide encryption-related information in the initiate multipart
upload request, followed by identical encryption information in the subsequent upload part requests.
You do not need to provide any encryption-specific headers in your complete multipart upload
request. For examples, see Using the AWS Java SDK for Multipart Upload (Low-Level API) (p. 177).

The following example uses TransferManager to create objects and shows how to provide SSE-C
related information. The example does the following:

• Create an object using the TransferManager.upload method. In the PutObjectRequest
instance, you provide encryption key information to request that Amazon S3 store the object
encrypted using the customer-provided encryption key.

• Make a copy of the object by calling the TransferManager.copy method. In the
CopyObjectRequest, this example requests Amazon S3 to store the object copy also encrypted
using a customer-provided encryption key. Because the source object is encrypted using SSE-C,
the CopyObjectRequest also provides the encryption key of the source object so Amazon S3
can decrypt the object before it can copy.

import java.io.File;
import java.security.SecureRandom;

import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;

import com.amazonaws.AmazonClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.model.CopyObjectRequest;
import com.amazonaws.services.s3.model.PutObjectRequest;
import com.amazonaws.services.s3.model.SSECustomerKey;
import com.amazonaws.services.s3.transfer.Copy;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.Upload;

public class ServerSideEncryptionCopyObjectUsingHLwithSSEC {

 public static void main(String[] args) throws Exception {
 String existingBucketName = "*** Provide existing bucket name ***";
 String fileToUpload = "*** file path ***";
 String keyName = "*** New object key ***";
 String targetKeyName = "*** Key name for object copy ***";

 TransferManager tm = new TransferManager(new
 ProfileCredentialsProvider());

 // 1. first create an object from a file.
 PutObjectRequest putObjectRequest = new
 PutObjectRequest(existingBucketName, keyName, new File(fileToUpload));

 // we want object stored using SSE-C. So we create encryption key.
 SecretKey secretKey1 = generateSecretKey();
 SSECustomerKey sseCustomerEncryptionKey1 = new
 SSECustomerKey(secretKey1);

 putObjectRequest.setSSECustomerKey(sseCustomerEncryptionKey1);
 // now create object.
 //Upload upload = tm.upload(existingBucketName, keyName, new
 File(sourceFile));

API Version 2006-03-01
401

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

 Upload upload = tm.upload(putObjectRequest);
 try {
 // Or you can block and wait for the upload to finish
 upload.waitForCompletion();
 //tm.getAmazonS3Client().putObject(putObjectRequest);
 System.out.println("Object created.");
 } catch (AmazonClientException amazonClientException) {
 System.out.println("Unable to upload file, upload was aborted.");
 amazonClientException.printStackTrace();
 }

 // 2. Now make object copy (in the same bucket). Store target using
 sse-c.
 CopyObjectRequest copyObjectRequest = new
 CopyObjectRequest(existingBucketName, keyName, existingBucketName,
 targetKeyName);

 SecretKey secretKey2 = generateSecretKey();
 SSECustomerKey sseTargetObjectEncryptionKey = new
 SSECustomerKey(secretKey2);

 copyObjectRequest.setSourceSSECustomerKey(sseCustomerEncryptionKey1);

 copyObjectRequest.setDestinationSSECustomerKey(sseTargetObjectEncryptionKey);

 // TransferManager processes all transfers asynchronously,
 // so this call will return immediately.
 Copy copy = tm.copy(copyObjectRequest);
 try {
 // Or you can block and wait for the upload to finish
 copy.waitForCompletion();
 System.out.println("Copy complete.");
 } catch (AmazonClientException amazonClientException) {
 System.out.println("Unable to upload file, upload was aborted.");
 amazonClientException.printStackTrace();
 }
 }

 private static SecretKey generateSecretKey() {
 KeyGenerator generator;
 try {
 generator = KeyGenerator.getInstance("AES");
 generator.init(256, new SecureRandom());
 return generator.generateKey();
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(-1);
 return null;
 }
 }

}

API Version 2006-03-01
402

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

Specifying Server-Side Encryption with Customer-Provided Encryption Keys
Using the .NET SDK

The following C# code example illustrates server-side encryption with customer-provided keys (SSE-
C) (see Protecting Data Using Server-Side Encryption with Customer-Provided Encryption Keys (SSE-
C) (p. 395)). The example performs the following operations, each operation shows how you specify
SSE-C–related headers in the request:

• Put object – upload an object requesting server-side encryption using customer-provided encryption
keys.

• Get object – download the object uploaded in the previous step. It shows that the request must
provide the same encryption information for Amazon S3 to decrypt the object so that it can return it
to you.

• Get object metadata – The request shows that the same encryption information you specified when
creating the object is required to retrieve the object metadata.

• Copy object – This example makes a copy of the previously uploaded object. Because the source
object is stored using SSE-C, you must provide encryption information in your copy request. By
default, the object copy will not be encrypted. But in this example, you request that Amazon S3 store
the object copy encrypted using SSE-C, and therefore you provide encryption-related information for
the target as well.

Note
When using multipart upload API to upload large objects, you provide the same encryption
information that you provide in your request as shown in the following example. For multipart
upload .NET SDK examples, see Using the AWS .NET SDK for Multipart Upload (High-Level
API) (p. 181) and Using the AWS .NET SDK for Multipart Upload (Low-Level API) (p. 190).

For information about how to create and test a working sample, see Running the Amazon S3 .NET
Code Examples (p. 567).

using System;
using System.IO;
using System.Security.Cryptography;
using Amazon.S3;
using Amazon.S3.Model;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace s3.amazon.com.docsamples
{
 class SSEClientEncryptionKeyObjectOperations
 {
 static string bucketName = "*** bucket name ***";
 static string keyName = "*** object key name for new object
 ***";
 static string copyTargetKeyName = "*** copy operation target object
 key name ***";

 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 using (client = new
 AmazonS3Client(Amazon.RegionEndpoint.USWest2))
 {
 try
 {
 // Create encryption key.

API Version 2006-03-01
403

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

 Aes aesEncryption = Aes.Create();
 aesEncryption.KeySize = 256;
 aesEncryption.GenerateKey();
 string base64Key =
 Convert.ToBase64String(aesEncryption.Key);

 // 1. Upload object.
 PutObjectRequest putObjectRequest =
 UploadObject(base64Key);
 // 2. Download object (and also verify content is same as
 what you uploaded).
 DownloadObject(base64Key, putObjectRequest);
 // 3. Get object metadata (and also verify AES256
 encryption).
 GetObjectMetadata(base64Key);
 // 4. Copy object (both source and target objects use
 server-side encryption with
 // customer-provided encryption key.
 CopyObject(aesEncryption, base64Key);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 if (amazonS3Exception.ErrorCode != null &&

 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||

 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))
 {
 Console.WriteLine("Check the provided AWS
 Credentials.");
 Console.WriteLine(
 "For service sign up go to http://aws.amazon.com/
s3");
 }
 else
 {
 Console.WriteLine(
 "Error occurred. Message:'{0}' when writing an
 object"
 , amazonS3Exception.Message);
 }
 }
 }

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 private static void CopyObject(Aes aesEncryption, string base64Key)
 {
 aesEncryption.GenerateKey();
 string copyBase64Key = Convert.ToBase64String(aesEncryption.Key);

 CopyObjectRequest copyRequest = new CopyObjectRequest
 {
 SourceBucket = bucketName,
 SourceKey = keyName,
 DestinationBucket = bucketName,

API Version 2006-03-01
404

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

 DestinationKey = copyTargetKeyName,
 // Source object encryption information.
 CopySourceServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 CopySourceServerSideEncryptionCustomerProvidedKey =
 base64Key,
 // Target object encryption information.
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = copyBase64Key
 };
 client.CopyObject(copyRequest);
 }

 private static void DownloadObject(string base64Key, PutObjectRequest
 putObjectRequest)
 {
 GetObjectRequest getObjectRequest = new GetObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 // Provide encryption information of the object stored in S3.
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key
 };

 using (GetObjectResponse getResponse =
 client.GetObject(getObjectRequest))
 using (StreamReader reader = new
 StreamReader(getResponse.ResponseStream))
 {
 string content = reader.ReadToEnd();
 Assert.AreEqual(putObjectRequest.ContentBody, content);
 Assert.AreEqual(ServerSideEncryptionCustomerMethod.AES256,
 getResponse.ServerSideEncryptionCustomerMethod);
 }
 }

 private static void GetObjectMetadata(string base64Key)
 {
 GetObjectMetadataRequest getObjectMetadataRequest = new
 GetObjectMetadataRequest
 {
 BucketName = bucketName,
 Key = keyName,

 // Object stored in S3 is encrypted. So provide necessary
 encryption information.
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key
 };

 GetObjectMetadataResponse getObjectMetadataResponse =
 client.GetObjectMetadata(getObjectMetadataRequest);
 Assert.AreEqual(ServerSideEncryptionCustomerMethod.AES256,
 getObjectMetadataResponse.ServerSideEncryptionCustomerMethod);
 }

API Version 2006-03-01
405

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

 private static PutObjectRequest UploadObject(string base64Key)
 {
 PutObjectRequest putObjectRequest = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 ContentBody = "sample text",
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key
 };
 PutObjectResponse putObjectResponse =
 client.PutObject(putObjectRequest);
 return putObjectRequest;
 }
 }
}

Other Amazon S3 Operations and SSE-C

The example in the preceding section shows how to request server-side encryption with customer-
provided key (SSE-C) in the PUT, GET, Head, and Copy operations. This section describes other APIs
that support SSE-C.

To upload large objects, you can use multipart upload API (see Uploading Objects Using Multipart
Upload API (p. 165)). You can use either high-level or low-level APIs to upload large objects. These
APIs support encryption-related headers in the request.

• When using high-level Transfer-Utility API, you provide the encryption-specific headers in the
TransferUtilityUploadRequest as shown. For code examples, see Using the AWS .NET SDK
for Multipart Upload (High-Level API) (p. 181).

TransferUtilityUploadRequest request = new TransferUtilityUploadRequest()
{
 FilePath = filePath,
 BucketName = existingBucketName,
 Key = keyName,
 // Provide encryption information.
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key,
};

• When using the low-level API, you provide encryption-related information in the initiate multipart
upload request, followed by identical encryption information in the subsequent upload part requests.
You do not need to provide any encryption-specific headers in your complete multipart upload
request. For examples, see Using the AWS .NET SDK for Multipart Upload (Low-Level API) (p. 190).

The following is a low-level multipart upload example that makes a copy of an existing large object.
In the example, the object to be copied is stored in Amazon S3 using SSE-C, and you want to save
the target object also using SSE-C. In the example, you do the following:

• Initiate a multipart upload request by providing an encryption key and related information.

• Provide source and target object encryption keys and related information in the
CopyPartRequest.

• Obtain the size of the source object to be copied by retrieving the object metadata.

• Upload the objects in 5 MB parts.

API Version 2006-03-01
406

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

using System;
using System.Collections.Generic;
using System.Security.Cryptography;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class SSECLowLevelMPUcopyObject
 {
 static string existingBucketName = "*** bucket name ***";
 static string sourceKeyName = "*** key name ***";
 static string targetKeyName = "*** key name ***";

 static void Main(string[] args)
 {
 IAmazonS3 s3Client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1);
 List<CopyPartResponse> uploadResponses = new
 List<CopyPartResponse>();

 Aes aesEncryption = Aes.Create();
 aesEncryption.KeySize = 256;
 aesEncryption.GenerateKey();
 string base64Key = Convert.ToBase64String(aesEncryption.Key);

 // 1. Initialize.
 InitiateMultipartUploadRequest initiateRequest = new
 InitiateMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = targetKeyName,
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key,

 };

 InitiateMultipartUploadResponse initResponse =
 s3Client.InitiateMultipartUpload(initiateRequest);

 // 2. Upload Parts.
 long partSize = 5 * (long)Math.Pow(2, 20); // 5 MB
 long firstByte = 0;
 long lastByte = partSize;

 try
 {
 // First find source object size. Because object is stored
 encrypted with
 // customer provided key you need to provide encryption
 information in your request.
 GetObjectMetadataRequest getObjectMetadataRequest = new
 GetObjectMetadataRequest()
 {
 BucketName = existingBucketName,
 Key = sourceKeyName,

API Version 2006-03-01
407

Amazon Simple Storage Service Developer Guide
Server-Side Encryption

 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = "***source
 object encryption key ***"
 };

 GetObjectMetadataResponse getObjectMetadataResponse =
 s3Client.GetObjectMetadata(getObjectMetadataRequest);

 long filePosition = 0;
 for (int i = 1; filePosition <
 getObjectMetadataResponse.ContentLength; i++)
 {
 CopyPartRequest copyPartRequest = new CopyPartRequest
 {
 UploadId = initResponse.UploadId,
 // Source.
 SourceBucket = existingBucketName,
 SourceKey = sourceKeyName,
 // Source object is stored using SSE-C. Provide
 encryption information.
 CopySourceServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 CopySourceServerSideEncryptionCustomerProvidedKey =
 "***source object encryption key ***",
 FirstByte = firstByte,
 // If the last part is smaller then our normal part
 size then use the remaining size.
 LastByte = lastByte >
 getObjectMetadataResponse.ContentLength ?
 getObjectMetadataResponse.ContentLength - 1 :
 lastByte,

 // Target.
 DestinationBucket = existingBucketName,
 DestinationKey = targetKeyName,
 PartNumber = i,
 // Ecnryption information for the target object.
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key
 };
 uploadResponses.Add(s3Client.CopyPart(copyPartRequest));
 filePosition += partSize;
 firstByte += partSize;
 lastByte += partSize;
 }

 // Step 3: complete.
 CompleteMultipartUploadRequest completeRequest = new
 CompleteMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = targetKeyName,
 UploadId = initResponse.UploadId,
 };
 completeRequest.AddPartETags(uploadResponses);

 CompleteMultipartUploadResponse completeUploadResponse =

API Version 2006-03-01
408

Amazon Simple Storage Service Developer Guide
Client-Side Encryption

 s3Client.CompleteMultipartUpload(completeRequest);
 }
 catch (Exception exception)
 {
 Console.WriteLine("Exception occurred: {0}",
 exception.Message);
 AbortMultipartUploadRequest abortMPURequest = new
 AbortMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = targetKeyName,
 UploadId = initResponse.UploadId
 };
 s3Client.AbortMultipartUpload(abortMPURequest);
 }
 }
 }
}

Specifying Server-Side Encryption with Customer-Provided Encryption Keys
Using the REST API

The following Amazon S3 REST APIs support headers related to server-side encryption with customer-
provided encryption keys. For more information about these headers, see Using SSE-C (p. 396).

• GET Object

• HEAD Object

• PUT Object

• PUT Object - Copy

• POST Object

• Initiate Multipart Upload

• Upload Part

• Upload Part - Copy

Protecting Data Using Client-Side Encryption
Client-side encryption refers to encrypting data before sending it to Amazon S3. You have the following
two options for using data encryption keys:

• Use an AWS KMS-managed customer master key

• Use a client-side master key

Option 1: Using an AWS KMS–Managed Customer Master Key
(CMK)

When using an AWS KMS-managed customer master key for client-side data encryption, you don't
have to worry about providing any encryption keys to the Amazon S3 encryption client (for example,
the AmazonS3EncryptionClient in the AWS SDK for Java). Instead, you provide only an AWS KMS
customer master key ID (CMK ID), and the client does the rest. This is how it works:

API Version 2006-03-01
409

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPartCopy.html

Amazon Simple Storage Service Developer Guide
Client-Side Encryption

• When uploading an object – Using the CMK ID, the client first sends a request to AWS KMS for a
key that it can use to encrypt your object data. In response, AWS KMS returns a randomly generated
data encryption key. In fact, AWS KMS returns two versions of the data encryption key:

• A plain text version that the client uses to encrypt the object data.

• A cipher blob of the same data encryption key that the client uploads to Amazon S3 as object
metadata.

Note
The client obtains a unique data encryption key for each object it uploads.

For a working example, see Example: Client-Side Encryption (Option 1: Using an AWS KMS–
Managed Customer Master Key (AWS SDK for Java)) (p. 411).

• When downloading an object – The client first downloads the encrypted object from Amazon S3
along with the cipher blob version of the data encryption key stored as object metadata. The client
then sends the cipher blob to AWS KMS to get the plain text version of the same, so that it can
decrypt the object data.

For more information about AWS KMS, go to What is the AWS Key Management Service? in the AWS
Key Management Service Developer Guide.

Option 2: Using a Client-Side Master Key
This section shows how to provide your client-side master key in the client-side data encryption
process.

Important
Your client-side master keys and your unencrypted data are never sent to AWS; therefore, it is
important that you safely manage your encryption keys. If you lose them, you won't be able to
decrypt your data.

This is how it works:

• When uploading an object – You provide a client-side master key to the Amazon S3 encryption
client (for example, AmazonS3EncryptionClient when using the AWS SDK for Java). The client
uses this master key only to encrypt the data encryption key that it generates randomly. The process
works like this:

1. The Amazon S3 encryption client locally generates a one-time-use symmetric key (also known as
a data encryption key or data key). It uses this data key to encrypt the data of a single S3 object
(for each object, the client generates a separate data key).

2. The client encrypts the data encryption key using the master key you provide.

The client uploads the encrypted data key and its material description as part of the object
metadata. The material description helps the client later determine which client-side master key to
use for decryption (when you download the object, the client decrypts it).

3. The client then uploads the encrypted data to Amazon S3 and also saves the encrypted data key
as object metadata (x-amz-meta-x-amz-key) in Amazon S3 by default.

• When downloading an object – The client first downloads the encrypted object from Amazon S3
along with the metadata. Using the material description in the metadata, the client first determines
which master key to use to decrypt the encrypted data key. Using that master key, the client decrypts
the data key and uses it to decrypt the object.

The client-side master key you provide can be either a symmetric key or a public/private key pair. For
examples, see Examples: Client-Side Encryption (Option 2: Using a Client-Side Master Key (AWS SDK
for Java)) (p. 412).

For more information, see the Client-Side Data Encryption with the AWS SDK for Java and Amazon
S3 article.

API Version 2006-03-01
410

http://docs.aws.amazon.com/kms/latest/developerguide/overview.html
http://aws.amazon.com/articles/2850096021478074
http://aws.amazon.com/articles/2850096021478074

Amazon Simple Storage Service Developer Guide
Client-Side Encryption

The following AWS SDKs support client-side encryption:

• AWS SDK for Java

• AWS SDK for .NET

• AWS SDK for Ruby

Example: Client-Side Encryption (Option 1: Using an AWS
KMS–Managed Customer Master Key (AWS SDK for Java))

The following Java code example uploads an object to Amazon S3. The example uses a KMS-
managed customer master key (CMK) to encrypt data on the client-side before uploading to Amazon
S3. You will need the CMK ID in the code.

For more information about how client-side encryption using a KMS-managed CMK works, see Option
1: Using an AWS KMS–Managed Customer Master Key (CMK) (p. 409).

For instructions on how to create and test a working sample, see Testing the Java Code
Examples (p. 565). You will need to update the code by providing your bucket name and a CMK ID.

import java.io.ByteArrayInputStream;
import java.util.Arrays;

import junit.framework.Assert;

import org.apache.commons.io.IOUtils;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Region;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3EncryptionClient;
import com.amazonaws.services.s3.model.CryptoConfiguration;
import com.amazonaws.services.s3.model.KMSEncryptionMaterialsProvider;
import com.amazonaws.services.s3.model.ObjectMetadata;
import com.amazonaws.services.s3.model.PutObjectRequest;
import com.amazonaws.services.s3.model.S3Object;

public class testKMSkeyUploadObject {

 private static AmazonS3EncryptionClient encryptionClient;

 public static void main(String[] args) throws Exception {
 String bucketName = "***bucket name***";
 String objectKey = "ExampleKMSEncryptedObject";
 String kms_cmk_id = "***AWS KMS customer master key ID***";

 KMSEncryptionMaterialsProvider materialProvider = new
 KMSEncryptionMaterialsProvider(kms_cmk_id);

 encryptionClient = new AmazonS3EncryptionClient(new
 ProfileCredentialsProvider(), materialProvider,
 new CryptoConfiguration().withKmsRegion(Regions.US_EAST_1))
 .withRegion(Region.getRegion(Regions.US_EAST_1));

 // Upload object using the encryption client.
 byte[] plaintext = "Hello World, S3 Client-side Encryption Using
 Asymmetric Master Key!"

API Version 2006-03-01
411

http://aws.amazon.com/sdk-for-java/
http://aws.amazon.com/sdk-for-net/
http://aws.amazon.com/sdk-for-ruby/

Amazon Simple Storage Service Developer Guide
Client-Side Encryption

 .getBytes();
 System.out.println("plaintext's length: " + plaintext.length);
 encryptionClient.putObject(new PutObjectRequest(bucketName,
 objectKey,
 new ByteArrayInputStream(plaintext), new ObjectMetadata()));

 // Download the object.
 S3Object downloadedObject = encryptionClient.getObject(bucketName,
 objectKey);
 byte[] decrypted = IOUtils.toByteArray(downloadedObject
 .getObjectContent());

 // Verify same data.
 Assert.assertTrue(Arrays.equals(plaintext, decrypted));
 }
}

Examples: Client-Side Encryption (Option 2: Using a Client-
Side Master Key (AWS SDK for Java))

This section provides code examples of client-side encryption. As described in the overview (see
Protecting Data Using Client-Side Encryption (p. 409)) the client-side master key you provide can
be either a symmetric key or a public/private key pair. This section provides examples of both types
of master keys, symmetric master key (256-bit Advanced Encryption Standard (AES) secret key) and
asymmetric master key (1024-bit RSA key pair).

Topics

• Example 1: Encrypt and Upload a File Using a Client-Side Symmetric Master Key (p. 412)

• Example 2: Encrypt and Upload a File to Amazon S3 Using a Client-Side Asymmetric Master
Key (p. 416)

Note
If you get a cipher encryption error message when you use the encryption API for the first
time, your version of the JDK may have a Java Cryptography Extension (JCE) jurisdiction
policy file that limits the maximum key length for encryption and decryption transformations to
128 bits. The AWS SDK requires a maximum key length of 256 bits. To check your maximum
key length, use the getMaxAllowedKeyLength method of the javax.crypto.Cipher
class. To remove the key length restriction, install the Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction Policy Files at the Java SE download page.

Example 1: Encrypt and Upload a File Using a Client-Side Symmetric Master
Key

This section provides example code using the AWS SDK for Java to do the following:

• First create a 256-bit AES symmetric master key and save it to a file.

• Upload an object to Amazon S3 using an S3 encryption client that first encrypts sample data on the
client-side. The example also downloads the object and verifies that the data is the same.

Example 1a: Creating a Symmetric Master Key

Run this code to first generate a 256-bit AES symmetric master key for encrypted uploads to Amazon
S3. The example saves the master key to a file (secret.key) in a temp directory (on Windows, it is the
c:\Users\<username>\AppData\Local\Tmp folder.

API Version 2006-03-01
412

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Amazon Simple Storage Service Developer Guide
Client-Side Encryption

For instructions on how to create and test a working sample, see Using the AWS SDK for
Java (p. 564).

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.X509EncodedKeySpec;
import java.util.Arrays;

import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;

import org.junit.Assert;

public class GenerateSymmetricMasterKey {

 private static final String keyDir =
 System.getProperty("java.io.tmpdir");
 private static final String keyName = "secret.key";

 public static void main(String[] args) throws Exception {

 //Generate symmetric 256 bit AES key.
 KeyGenerator symKeyGenerator = KeyGenerator.getInstance("AES");
 symKeyGenerator.init(256);
 SecretKey symKey = symKeyGenerator.generateKey();

 //Save key.
 saveSymmetricKey(keyDir, symKey);

 //Load key.
 SecretKey symKeyLoaded = loadSymmetricAESKey(keyDir, "AES");

 Assert.assertTrue(Arrays.equals(symKey.getEncoded(),
 symKeyLoaded.getEncoded()));
 }

 public static void saveSymmetricKey(String path, SecretKey secretKey)
 throws IOException {
 X509EncodedKeySpec x509EncodedKeySpec = new X509EncodedKeySpec(
 secretKey.getEncoded());
 FileOutputStream keyfos = new FileOutputStream(path + "/" + keyName);
 keyfos.write(x509EncodedKeySpec.getEncoded());
 keyfos.close();
 }

 public static SecretKey loadSymmetricAESKey(String path, String
 algorithm)
 throws IOException, NoSuchAlgorithmException,
 InvalidKeySpecException, InvalidKeyException{
 //Read private key from file.
 File keyFile = new File(path + "/" + keyName);
 FileInputStream keyfis = new FileInputStream(keyFile);
 byte[] encodedPrivateKey = new byte[(int)keyFile.length()];

API Version 2006-03-01
413

Amazon Simple Storage Service Developer Guide
Client-Side Encryption

 keyfis.read(encodedPrivateKey);
 keyfis.close();

 //Generate secret key.
 return new SecretKeySpec(encodedPrivateKey, "AES");
 }
}

This code example is for demonstration purposes only. For production use, you should consult your
security engineer on how to obtain or generate the client-side master key.

Example 1b: Uploading a File to Amazon S3 Using a Symmetric Key

Run this code to encrypt sample data using a symmetric master key created by the preceding code
example. The example uses an S3 encryption client to encrypt the data on the client-side and then
upload it to Amazon S3.

For instructions on how to create and test a working sample, see Using the AWS SDK for
Java (p. 564).

import java.io.ByteArrayInputStream;
import java.util.Arrays;
import java.util.Iterator;
import java.util.UUID;

import javax.crypto.SecretKey;

import org.apache.commons.io.IOUtils;
import org.joda.time.DateTime;
import org.joda.time.format.DateTimeFormat;
import org.junit.Assert;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3EncryptionClient;
import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.ListVersionsRequest;
import com.amazonaws.services.s3.model.ObjectListing;
import com.amazonaws.services.s3.model.ObjectMetadata;
import com.amazonaws.services.s3.model.PutObjectRequest;
import com.amazonaws.services.s3.model.S3Object;
import com.amazonaws.services.s3.model.S3ObjectSummary;
import com.amazonaws.services.s3.model.S3VersionSummary;
import com.amazonaws.services.s3.model.StaticEncryptionMaterialsProvider;
import com.amazonaws.services.s3.model.VersionListing;

public class S3ClientSideEncryptionWithSymmetricMasterKey {
 private static final String masterKeyDir =
 System.getProperty("java.io.tmpdir");
 private static final String bucketName = UUID.randomUUID() + "-"
 + DateTimeFormat.forPattern("yyMMdd-hhmmss").print(new
 DateTime());
 private static final String objectKey = UUID.randomUUID().toString();

 public static void main(String[] args) throws Exception {
 SecretKey mySymmetricKey = GenerateSymmetricMasterKey
 .loadSymmetricAESKey(masterKeyDir, "AES");

 EncryptionMaterials encryptionMaterials = new EncryptionMaterials(

API Version 2006-03-01
414

Amazon Simple Storage Service Developer Guide
Client-Side Encryption

 mySymmetricKey);

 AmazonS3EncryptionClient encryptionClient = new
 AmazonS3EncryptionClient(
 new ProfileCredentialsProvider(),
 new StaticEncryptionMaterialsProvider(encryptionMaterials));
 // Create the bucket
 encryptionClient.createBucket(bucketName);

 // Upload object using the encryption client.
 byte[] plaintext = "Hello World, S3 Client-side Encryption Using
 Asymmetric Master Key!"
 .getBytes();
 System.out.println("plaintext's length: " + plaintext.length);
 encryptionClient.putObject(new PutObjectRequest(bucketName,
 objectKey,
 new ByteArrayInputStream(plaintext), new ObjectMetadata()));

 // Download the object.
 S3Object downloadedObject = encryptionClient.getObject(bucketName,
 objectKey);
 byte[] decrypted = IOUtils.toByteArray(downloadedObject
 .getObjectContent());

 // Verify same data.
 Assert.assertTrue(Arrays.equals(plaintext, decrypted));
 deleteBucketAndAllContents(encryptionClient);
 }

 private static void deleteBucketAndAllContents(AmazonS3 client) {
 System.out.println("Deleting S3 bucket: " + bucketName);
 ObjectListing objectListing = client.listObjects(bucketName);

 while (true) {
 for (Iterator<?> iterator =
 objectListing.getObjectSummaries().iterator(); iterator.hasNext();) {
 S3ObjectSummary objectSummary = (S3ObjectSummary)
 iterator.next();
 client.deleteObject(bucketName, objectSummary.getKey());
 }

 if (objectListing.isTruncated()) {
 objectListing = client.listNextBatchOfObjects(objectListing);
 } else {
 break;
 }
 };
 VersionListing list = client.listVersions(new
 ListVersionsRequest().withBucketName(bucketName));
 for (Iterator<?> iterator = list.getVersionSummaries().iterator();
 iterator.hasNext();) {
 S3VersionSummary s = (S3VersionSummary)iterator.next();
 client.deleteVersion(bucketName, s.getKey(), s.getVersionId());
 }
 client.deleteBucket(bucketName);
 }
}

API Version 2006-03-01
415

Amazon Simple Storage Service Developer Guide
Client-Side Encryption

Example 2: Encrypt and Upload a File to Amazon S3 Using a Client-Side
Asymmetric Master Key

This section provides example code using the AWS SDK for Java to first create a 1024-bit RSA key
pair. The example then uses that key pair as the client-side master key for the purpose of encrypting
and upload a file.

This is how it works:

• First create a 1024-bit RSA key pair (asymmetric master key) and save it to a file.

• Upload an object to Amazon S3using an S3 encryption client that encrypts sample data on the client-
side. The example also downloads the object and verifies that the data is the same.

Example 2a: Creating a 1024-bit RSA Key Pair

Run this code to first generate a 1024-bit key pair (asymmetric master key). The example saves the
master key to a file (secret.key) in a temp directory (on Windows, it is the c:\Users\<username>
\AppData\Local\Tmp folder.

For instructions on how to create and test a working sample, see Using the AWS SDK for
Java (p. 564).

import static org.junit.Assert.assertTrue;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import java.util.Arrays;

public class GenerateAsymmetricMasterKey {
 private static final String keyDir =
 System.getProperty("java.io.tmpdir");
 private static final SecureRandom srand = new SecureRandom();

 public static void main(String[] args) throws Exception {
 // Generate RSA key pair of 1024 bits
 KeyPair keypair = genKeyPair("RSA", 1024);
 // Save to file system
 saveKeyPair(keyDir, keypair);
 // Loads from file system
 KeyPair loaded = loadKeyPair(keyDir, "RSA");
 // Sanity check
 assertTrue(Arrays.equals(keypair.getPublic().getEncoded(), loaded
 .getPublic().getEncoded()));
 assertTrue(Arrays.equals(keypair.getPrivate().getEncoded(), loaded
 .getPrivate().getEncoded()));
 }

API Version 2006-03-01
416

Amazon Simple Storage Service Developer Guide
Client-Side Encryption

 public static KeyPair genKeyPair(String algorithm, int bitLength)
 throws NoSuchAlgorithmException {
 KeyPairGenerator keyGenerator =
 KeyPairGenerator.getInstance(algorithm);
 keyGenerator.initialize(1024, srand);
 return keyGenerator.generateKeyPair();
 }

 public static void saveKeyPair(String dir, KeyPair keyPair)
 throws IOException {
 PrivateKey privateKey = keyPair.getPrivate();
 PublicKey publicKey = keyPair.getPublic();

 X509EncodedKeySpec x509EncodedKeySpec = new X509EncodedKeySpec(
 publicKey.getEncoded());
 FileOutputStream fos = new FileOutputStream(dir + "/public.key");
 fos.write(x509EncodedKeySpec.getEncoded());
 fos.close();

 PKCS8EncodedKeySpec pkcs8EncodedKeySpec = new PKCS8EncodedKeySpec(
 privateKey.getEncoded());
 fos = new FileOutputStream(dir + "/private.key");
 fos.write(pkcs8EncodedKeySpec.getEncoded());
 fos.close();
 }

 public static KeyPair loadKeyPair(String path, String algorithm)
 throws IOException, NoSuchAlgorithmException,
 InvalidKeySpecException {
 // read public key from file
 File filePublicKey = new File(path + "/public.key");
 FileInputStream fis = new FileInputStream(filePublicKey);
 byte[] encodedPublicKey = new byte[(int) filePublicKey.length()];
 fis.read(encodedPublicKey);
 fis.close();

 // read private key from file
 File filePrivateKey = new File(path + "/private.key");
 fis = new FileInputStream(filePrivateKey);
 byte[] encodedPrivateKey = new byte[(int) filePrivateKey.length()];
 fis.read(encodedPrivateKey);
 fis.close();

 // Convert them into KeyPair
 KeyFactory keyFactory = KeyFactory.getInstance(algorithm);
 X509EncodedKeySpec publicKeySpec = new X509EncodedKeySpec(
 encodedPublicKey);
 PublicKey publicKey = keyFactory.generatePublic(publicKeySpec);

 PKCS8EncodedKeySpec privateKeySpec = new PKCS8EncodedKeySpec(
 encodedPrivateKey);
 PrivateKey privateKey = keyFactory.generatePrivate(privateKeySpec);

 return new KeyPair(publicKey, privateKey);
 }
}

API Version 2006-03-01
417

Amazon Simple Storage Service Developer Guide
Client-Side Encryption

This code example is for demonstration purposes only. For production use, you should consult your
security engineer on how to obtain or generate the client-side master key.

Example 2b: Uploading a File to Amazon S3 Using a Key Pair

Run this code to encrypt sample data using a symmetric master key created by the preceding code
example. The example uses an S3 encryption client to encrypt the data on the client-side and then
upload it to Amazon S3.

For instructions on how to create and test a working sample, see Using the AWS SDK for
Java (p. 564).

import java.io.ByteArrayInputStream;
import java.io.File;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import java.util.Arrays;
import java.util.Iterator;
import java.util.UUID;

import org.apache.commons.io.FileUtils;
import org.apache.commons.io.IOUtils;
import org.joda.time.DateTime;
import org.joda.time.format.DateTimeFormat;
import org.junit.Assert;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3EncryptionClient;
import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.ListVersionsRequest;
import com.amazonaws.services.s3.model.ObjectListing;
import com.amazonaws.services.s3.model.ObjectMetadata;
import com.amazonaws.services.s3.model.PutObjectRequest;
import com.amazonaws.services.s3.model.S3Object;
import com.amazonaws.services.s3.model.S3ObjectSummary;
import com.amazonaws.services.s3.model.S3VersionSummary;
import com.amazonaws.services.s3.model.StaticEncryptionMaterialsProvider;
import com.amazonaws.services.s3.model.VersionListing;

public class S3ClientSideEncryptionAsymmetricMasterKey {
 private static final String keyDir =
 System.getProperty("java.io.tmpdir");
 private static final String bucketName = UUID.randomUUID() + "-"
 + DateTimeFormat.forPattern("yyMMdd-hhmmss").print(new
 DateTime());
 private static final String objectKey = UUID.randomUUID().toString();

 public static void main(String[] args) throws Exception {

 // 1. Load keys from files
 byte[] bytes = FileUtils.readFileToByteArray(new File(
 keyDir + "private.key"));
 KeyFactory kf = KeyFactory.getInstance("RSA");
 PKCS8EncodedKeySpec ks = new PKCS8EncodedKeySpec(bytes);

API Version 2006-03-01
418

Amazon Simple Storage Service Developer Guide
Client-Side Encryption

 PrivateKey pk = kf.generatePrivate(ks);

 bytes = FileUtils.readFileToByteArray(new File(keyDir +
 "public.key"));
 PublicKey publicKey = KeyFactory.getInstance("RSA").generatePublic(
 new X509EncodedKeySpec(bytes));

 KeyPair loadedKeyPair = new KeyPair(publicKey, pk);

 // 2. Construct an instance of AmazonS3EncryptionClient.
 EncryptionMaterials encryptionMaterials = new EncryptionMaterials(
 loadedKeyPair);
 AmazonS3EncryptionClient encryptionClient = new
 AmazonS3EncryptionClient(
 new ProfileCredentialsProvider(),
 new StaticEncryptionMaterialsProvider(encryptionMaterials));
 // Create the bucket
 encryptionClient.createBucket(bucketName);
 // 3. Upload the object.
 byte[] plaintext = "Hello World, S3 Client-side Encryption Using
 Asymmetric Master Key!"
 .getBytes();
 System.out.println("plaintext's length: " + plaintext.length);
 encryptionClient.putObject(new PutObjectRequest(bucketName,
 objectKey,
 new ByteArrayInputStream(plaintext), new ObjectMetadata()));

 // 4. Download the object.
 S3Object downloadedObject = encryptionClient.getObject(bucketName,
 objectKey);
 byte[] decrypted = IOUtils.toByteArray(downloadedObject
 .getObjectContent());
 Assert.assertTrue(Arrays.equals(plaintext, decrypted));
 deleteBucketAndAllContents(encryptionClient);
 }

 private static void deleteBucketAndAllContents(AmazonS3 client) {
 System.out.println("Deleting S3 bucket: " + bucketName);
 ObjectListing objectListing = client.listObjects(bucketName);

 while (true) {
 for (Iterator<?> iterator =
 objectListing.getObjectSummaries().iterator(); iterator.hasNext();) {
 S3ObjectSummary objectSummary = (S3ObjectSummary)
 iterator.next();
 client.deleteObject(bucketName, objectSummary.getKey());
 }

 if (objectListing.isTruncated()) {
 objectListing = client.listNextBatchOfObjects(objectListing);
 } else {
 break;
 }
 };
 VersionListing list = client.listVersions(new
 ListVersionsRequest().withBucketName(bucketName));
 for (Iterator<?> iterator = list.getVersionSummaries().iterator();
 iterator.hasNext();) {
 S3VersionSummary s = (S3VersionSummary)iterator.next();

API Version 2006-03-01
419

Amazon Simple Storage Service Developer Guide
Reduced Redundancy Storage

 client.deleteVersion(bucketName, s.getKey(), s.getVersionId());
 }
 client.deleteBucket(bucketName);
 }
}

Using Reduced Redundancy Storage
Topics

• Setting the Storage Class of an Object You Upload (p. 421)

• Changing the Storage Class of an Object in Amazon S3 (p. 421)

Amazon S3 stores objects according to their storage class. It assigns the storage class to an object
when it is written to Amazon S3. You can assign objects a specific storage class (standard or
reduced redundancy) only when you write the objects to an Amazon S3 bucket or when you copy
objects that are already stored in Amazon S3. Standard is the default storage class. For information
about storage classes, see Object Key and Metadata (p. 99).

In order to reduce storage costs, you can use reduced redundancy storage for noncritical, reproducible
data at lower levels of redundancy than Amazon S3 provides with standard storage. The lower level
of redundancy results in less durability and availability, but in many cases, the lower costs can make
reduced redundancy storage an acceptable storage solution. For example, it can be a cost-effective
solution for sharing media content that is durably stored elsewhere. It can also make sense if you are
storing thumbnails and other resized images that can be easily reproduced from an original image.

Reduced redundancy storage is designed to provide 99.99% durability of objects over a given year.
This durability level corresponds to an average annual expected loss of 0.01% of objects. For example,
if you store 10,000 objects using the RRS option, you can, on average, expect to incur an annual loss
of a single object per year (0.01% of 10,000 objects).

Note
This annual loss represents an expected average and does not guarantee the loss of less
than 0.01% of objects in a given year.

Reduced redundancy storage stores objects on multiple devices across multiple facilities, providing
400 times the durability of a typical disk drive, but it does not replicate objects as many times as
Amazon S3 standard storage. In addition, reduced redundancy storage is designed to sustain the loss
of data in a single facility.

If an object in reduced redundancy storage has been lost, Amazon S3 will return a 405 error on
requests made to that object. Amazon S3 also offers notifications for reduced redundancy storage
object loss: you can configure your bucket so that when Amazon S3 detects the loss of an RRS
object, a notification will be sent through Amazon Simple Notification Service (Amazon SNS). You can
then replace the lost object. To enable notifications, you can use the Amazon S3 console to set the
Notifications property of your bucket.

API Version 2006-03-01
420

Amazon Simple Storage Service Developer Guide
Setting the Storage Class of an Object You Upload

Latency and throughput for reduced redundancy storage are the same as for standard storage. For
more information about cost considerations, see Amazon S3 Pricing.

Setting the Storage Class of an Object You Upload
To set the storage class of an object you upload to RRS, you set x-amz-storage-class to
REDUCED_REDUNDANCY in a PUT request.

How to Set the Storage Class of an Object You're Uploading to RRS

• Create a PUT Object request setting the x-amz-storage-class request header to
REDUCED_REDUNDANCY.

You must have the correct permissions on the bucket to perform the PUT operation. The default
value for the storage class is STANDARD (for regular Amazon S3 storage).

The following example sets the storage class of my-image.jpg to RRS.

PUT /my-image.jpg HTTP/1.1
Host: myBucket.s3.amazonaws.com
Date: Wed, 12 Oct 2009 17:50:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+FIEXAMPLE=
Content-Type: image/jpeg
Content-Length: 11434
Expect: 100-continue
x-amz-storage-class: REDUCED_REDUNDANCY

Changing the Storage Class of an Object in Amazon
S3
Topics

• Return Code for Lost Data (p. 423)

You can also change the storage class of an object that is already stored in Amazon S3 by copying it
to the same key name in the same bucket. To do that, you use the following request headers in a PUT
Object copy request:

• x-amz-metadata-directive set to COPY

API Version 2006-03-01
421

http://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Changing the Storage Class of an Object in Amazon S3

• x-amz-storage-class set to STANDARD, STANDARD_IA, or REDUCED_REDUNDANCY

Important
To optimize the execution of the copy request, do not change any of the other metadata in the
PUT Object copy request. If you need to change metadata other than the storage class, set
x-amz-metadata-directive to REPLACE for better performance.

How to Rewrite the Storage Class of an Object in Amazon S3

• Create a PUT Object copy request and set the x-amz-storage-class request header to
REDUCED_REDUNDANCY (for RRS) or STANDARD (for regular Amazon S3 storage) or STANDARD_IA
(for Standard-Infrequent Access), and make the target name the same as the source name.

You must have the correct permissions on the bucket to perform the copy operation.

The following example sets the storage class of my-image.jpg to RRS.

PUT /my-image.jpg HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 GMT
x-amz-copy-source: /bucket/my-image.jpg
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=
x-amz-storage-class: REDUCED_REDUNDANCY
x-amz-metadata-directive: COPY

The following example sets the storage class of my-image.jpg to Standard.

PUT /my-image.jpg HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 GMT
x-amz-copy-source: /bucket/my-image.jpg
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=
x-amz-storage-class: STANDARD
x-amz-metadata-directive: COPY

The following example sets the storage class of my-image.jpg to Standard-Infrequent Access.

PUT /my-image.jpg HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Sat, 30 Apr 2016 23:29:37 GMT
x-amz-copy-source: /bucket/my-image.jpg
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=
x-amz-storage-class: STANDARD_IA
x-amz-metadata-directive: COPY

Note
If you copy an object and fail to include the x-amz-storage-class request header, the
storage class of the target object defaults to STANDARD.

It is not possible to change the storage class of a specific version of an object. When you copy it,
Amazon S3 gives it a new version ID.

Note
When an object is written in a copy request, the entire object is rewritten in order to apply the
new storage class.

API Version 2006-03-01
422

Amazon Simple Storage Service Developer Guide
Versioning

For more information about versioning, see Using Versioning (p. 423).

Return Code for Lost Data

If Amazon S3 detects that an object has been lost, any subsequent GET, or HEAD operations, or PUT
Object copy operation that uses the lost object as the source object, will result in a 405 Method
Not Allowed error. Once an object is marked lost, Amazon S3 will never be able to recover the
object. In this situation, you can either delete the key, or upload a copy of the object.

Using Versioning
Versioning is a means of keeping multiple variants of an object in the same bucket. You can use
versioning to preserve, retrieve, and restore every version of every object stored in your Amazon S3
bucket. With versioning, you can easily recover from both unintended user actions and application
failures.

In one bucket, for example, you can have two objects with the same key, but different version IDs, such
as photo.gif (version 111111) and photo.gif (version 121212).

Versioning-enabled buckets enable you to recover objects from accidental deletion or overwrite. For
example:

• If you delete an object, instead of removing it permanently, Amazon S3 inserts a delete marker,
which becomes the current object version. You can always restore the previous version. For more
information, see Deleting Object Versions (p. 437).

• If you overwrite an object, it results in a new object version in the bucket. You can always restore the
previous version.

Important
If you have an object expiration lifecycle policy in your non-versioned bucket and you want to
maintain the same permanent delete behavior when you enable versioning, you must add a
noncurrent expiration policy. The noncurrent expiration lifecycle policy will manage the deletes
of the noncurrent object versions in the version-enabled bucket. (A version-enabled bucket
maintains one current and zero or more noncurrent object versions.) For more information,
see Lifecycle Configuration for a Bucket with Versioning in the Amazon Simple Storage
Service Console User Guide.

Buckets can be in one of three states: unversioned (the default), versioning-enabled, or versioning-
suspended.

Important
Once you version-enable a bucket, it can never return to an unversioned state. You can,
however, suspend versioning on that bucket.

API Version 2006-03-01
423

http://docs.aws.amazon.com/AmazonS3/latest/UG/lifecycle-configuration-bucket-with-versioning.html

Amazon Simple Storage Service Developer Guide
How to Configure Versioning on a Bucket

The versioning state applies to all (never some) of the objects in that bucket. The first time you enable
a bucket for versioning, objects in it are thereafter always versioned and given a unique version ID.
Note the following:

• Objects stored in your bucket before you set the versioning state have a version ID of null.
When you enable versioning, existing objects in your bucket do not change. What changes is how
Amazon S3 handles the objects in future requests. For more information, see Managing Objects in a
Versioning-Enabled Bucket (p. 428).

• The bucket owner (or any user with appropriate permissions) can suspend versioning to stop
accruing object versions. When you suspend versioning, existing objects in your bucket do not
change. What changes is how Amazon S3 handles objects in future requests. For more information,
see Managing Objects in a Versioning-Suspended Bucket (p. 444).

How to Configure Versioning on a Bucket
You can configure bucket versioning using any of the following methods:

• Configure versioning using the Amazon S3 console.

• Configure versioning programmatically using the AWS SDKs

Both the console and the SDKs call the REST API Amazon S3 provides to manage versioning.

Note
If you need to, you can also make the Amazon S3 REST API calls directly from your code.
However, this can be cumbersome because it requires you to write code to authenticate
your requests.

Each bucket you create has a versioning subresource (see Bucket Configuration Options (p. 61))
associated with it. By default, your bucket is unversioned, and accordingly the versioning
subresource stores empty versioning configuration.

<VersioningConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
</VersioningConfiguration>

To enable versioning, you send a request to Amazon S3 with a versioning configuration that includes
a status.

<VersioningConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Status>Enabled</Status>
</VersioningConfiguration>

To suspend versioning, you set the status value to Suspended.

The bucket owner, an AWS account that created the bucket (root account), and authorized users can
configure the versioning state of a bucket. For more information about permissions, see Managing
Access Permissions to Your Amazon S3 Resources (p. 266).

For an example of configuring versioning, see Examples of Enabling Bucket Versioning (p. 426).

MFA Delete
You can optionally add another layer of security by configuring a bucket to enable MFA (Multi-Factor
Authentication) Delete, which requires additional authentication for either of the following operations.

• Change the versioning state of your bucket

API Version 2006-03-01
424

Amazon Simple Storage Service Developer Guide
Related Topics

• Permanently delete an object version

MFA Delete requires two forms of authentication together:

• Your security credentials

• The concatenation of a valid serial number, a space, and the six-digit code displayed on an approved
authentication device

MFA Delete thus provides added security in the event, for example, your security credentials are
compromised.

To enable or disable MFA delete, you use the same API that you use to configure versioning on a
bucket. Amazon S3 stores the MFA Delete configuration in the same versioning subresource that
stores the bucket's versioning status.

<VersioningConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Status>VersioningState</Status>
 <MfaDelete>MfaDeleteState</MfaDelete>
</VersioningConfiguration>

To use MFA Delete, you can use either a hardware or virtual MFA device to generate an authentication
code. The following example shows a generated authentication code displayed on a hardware device.

Note
MFA Delete and MFA-protected API access are features intended to provide protection
for different scenarios. You configure MFA Delete on a bucket to ensure that data in your
bucket cannot be accidentally deleted. MFA-protected API access is used to enforce another
authentication factor (MFA code) when accessing sensitive Amazon S3 resources. You
can require any operations against these Amazon S3 resources be done with temporary
credentials created using MFA. For an example, see Adding a Bucket Policy to Require MFA
Authentication (p. 339).

For more information on how to purchase and activate an authentication device, see http://
aws.amazon.com/iam/details/mfa/.

Note
The bucket owner, the AWS account that created the bucket (root account), and all authorized
IAM users can enable versioning, but only the bucket owner (root account) can enable MFA
delete.

Related Topics
For more information, see the following topics:

Examples of Enabling Bucket Versioning (p. 426)

Managing Objects in a Versioning-Enabled Bucket (p. 428)

Managing Objects in a Versioning-Suspended Bucket (p. 444)

API Version 2006-03-01
425

http://aws.amazon.com/iam/details/mfa/
http://aws.amazon.com/iam/details/mfa/

Amazon Simple Storage Service Developer Guide
Examples

Examples of Enabling Bucket Versioning
Topics

• Using the Amazon S3 Console (p. 426)

• Using the AWS SDK for Java (p. 426)

• Using the AWS SDK for .NET (p. 427)

• Using Other AWS SDKs (p. 428)

This section provides examples of enabling versioning on a bucket. The examples first enable
versioning on a bucket and then retrieve versioning status. For an introduction, see Using
Versioning (p. 423).

Using the Amazon S3 Console
For more information about enabling versioning on a bucket using the Amazon S3 console, see Enable
Versioning in the Amazon Simple Storage Service Console User Guide.

Using the AWS SDK for Java
For instructions on how to create and test a working sample, see Testing the Java Code
Examples (p. 565).

import java.io.IOException;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Region;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.AmazonS3Exception;
import com.amazonaws.services.s3.model.BucketVersioningConfiguration;
import
 com.amazonaws.services.s3.model.SetBucketVersioningConfigurationRequest;

public class BucketVersioningConfigurationExample {
 public static String bucketName = "*** bucket name ***";
 public static AmazonS3Client s3Client;

 public static void main(String[] args) throws IOException {
 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());
 s3Client.setRegion(Region.getRegion(Regions.US_EAST_1));
 try {

 // 1. Enable versioning on the bucket.
 BucketVersioningConfiguration configuration =
 new BucketVersioningConfiguration().withStatus("Enabled");

 SetBucketVersioningConfigurationRequest
 setBucketVersioningConfigurationRequest =
 new SetBucketVersioningConfigurationRequest(bucketName,configuration);

 s3Client.setBucketVersioningConfiguration(setBucketVersioningConfigurationRequest);

 // 2. Get bucket versioning configuration information.
 BucketVersioningConfiguration conf =
 s3Client.getBucketVersioningConfiguration(bucketName);

API Version 2006-03-01
426

http://docs.aws.amazon.com/AmazonS3/latest/UG/enable-bucket-versioning.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/enable-bucket-versioning.html

Amazon Simple Storage Service Developer Guide
Examples

 System.out.println("bucket versioning configuration status: " +
 conf.getStatus());

 } catch (AmazonS3Exception amazonS3Exception) {
 System.out.format("An Amazon S3 error occurred. Exception: %s",
 amazonS3Exception.toString());
 } catch (Exception ex) {
 System.out.format("Exception: %s", ex.toString());
 }
 }
}

Using the AWS SDK for .NET

For information about how to create and test a working sample, see Running the Amazon S3 .NET
Code Examples (p. 567).

using System;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class BucketVersioningConfiguration
 {
 static string bucketName = "*** bucket name ***";

 public static void Main(string[] args)
 {
 using (var client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 try
 {
 EnableVersioningOnBucket(client);
 string bucketVersioningStatus =
 RetrieveBucketVersioningConfiguration(client);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 if (amazonS3Exception.ErrorCode != null &&

 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||

 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))
 {
 Console.WriteLine("Check the provided AWS
 Credentials.");
 Console.WriteLine(
 "To sign up for service, go to http://aws.amazon.com/
s3");
 }
 else
 {
 Console.WriteLine(
 "Error occurred. Message:'{0}' when listing
 objects",

API Version 2006-03-01
427

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Enabled Bucket

 amazonS3Exception.Message);
 }
 }
 }

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static void EnableVersioningOnBucket(IAmazonS3 client)
 {

 PutBucketVersioningRequest request = new
 PutBucketVersioningRequest
 {
 BucketName = bucketName,
 VersioningConfig = new S3BucketVersioningConfig
 {
 Status = VersionStatus.Enabled
 }
 };

 PutBucketVersioningResponse response =
 client.PutBucketVersioning(request);
 }

 static string RetrieveBucketVersioningConfiguration(IAmazonS3 client)
 {
 GetBucketVersioningRequest request = new
 GetBucketVersioningRequest
 {
 BucketName = bucketName
 };

 GetBucketVersioningResponse response =
 client.GetBucketVersioning(request);
 return response.VersioningConfig.Status;
 }
 }
}

Using Other AWS SDKs
For information about using other AWS SDKs, see Sample Code and Libraries.

Managing Objects in a Versioning-Enabled Bucket
Topics

• Adding Objects to Versioning-Enabled Buckets (p. 429)

• Listing Objects in a Versioning-Enabled Bucket (p. 430)

• Retrieving Object Versions (p. 435)

• Deleting Object Versions (p. 437)

• Transitioning Object Versions (p. 442)

• Restoring Previous Versions (p. 442)

• Versioned Object Permissions (p. 443)

API Version 2006-03-01
428

http://aws.amazon.com/code/

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Enabled Bucket

Objects stored in your bucket before you set the versioning state have a version ID of null. When you
enable versioning, existing objects in your bucket do not change. What changes is how Amazon S3
handles the objects in future requests. The topics in this section explain various object operations in a
versioning-enabled bucket.

Adding Objects to Versioning-Enabled Buckets

Topics

• Using the Console (p. 429)

• Using the AWS SDKs (p. 429)

• Using the REST API (p. 429)

Once you enable versioning on a bucket, Amazon S3 automatically adds a unique version ID to every
object stored (using PUT, POST, or COPY) in the bucket.

The following figure shows that Amazon S3 adds a unique version ID to an object when it is added to a
versioning-enabled bucket.

Using the Console

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service
Console User Guide.

Using the AWS SDKs

For examples of uploading objects using the AWS SDKs for Java, .NET, and PHP, see Uploading
Objects (p. 157). The examples for uploading objects in nonversioned and versioning-enabled buckets
are the same, although in the case of versioning-enabled buckets, Amazon S3 assigns a version
number. Otherwise, the version number is null.

For information about using other AWS SDKs, see Sample Code and Libraries.

Using the REST API

Adding Objects to Versioning-Enabled Buckets

1 Enable versioning on a bucket using a PUT Bucket versioning request. For more
information, see PUT Bucket versioning.

2 Send a PUT, POST, or COPY request to store an object in the bucket.

API Version 2006-03-01
429

http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://aws.amazon.com/code/
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTVersioningStatus.html

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Enabled Bucket

When you add an object to a versioning-enabled bucket, Amazon S3 returns the version ID of the
object in the x-amz-versionid response header, for example:

x-amz-version-id: 3/L4kqtJlcpXroDTDmJ+rmSpXd3dIbrHY

Note
Normal Amazon S3 rates apply for every version of an object stored and transferred. Each
version of an object is the entire object; it is not just a diff from the previous version. Thus, if
you have three versions of an object stored, you are charged for three objects.

Note
The version ID values that Amazon S3 assigns are URL safe (can be included as part of a
URI).

Listing Objects in a Versioning-Enabled Bucket

Topics

• Using the Console (p. 430)

• Using the AWS SDKs (p. 430)

• Using the REST API (p. 433)

This section provides an example of listing object versions from a versioning-enabled bucket.
Amazon S3 stores object version information in the versions subresource (see Bucket Configuration
Options (p. 61)) associated with the bucket.

Using the Console

If your bucket is versioning-enabled, the console provides buttons for you to optionally show or hide
object versions. If you hide object versions, the console shows only the list of the latest object versions.

Using the AWS SDKs

The code examples in this section retrieve an object listing from a version-enabled bucket. Each
request returns up to 1000 versions. If you have more, you will need to send a series of requests
to retrieve a list of all versions. To illustrate how pagination works, the code examples limit the
response to two object versions. If there are more than two object versions in the bucket, the response
returns the IsTruncated element with the value "true" and also includes the NextKeyMarker and
NextVersionIdMarker elements whose values you can use to retrieve the next set of object keys.
The code example includes these values in the subsequent request to retrieve the next set of objects.

For information about using other AWS SDKs, see Sample Code and Libraries.

Using the AWS SDK for Java

For information about how to create and test a working sample, see Testing the Java Code
Examples (p. 565).

import java.io.IOException;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.ListVersionsRequest;
import com.amazonaws.services.s3.model.S3VersionSummary;
import com.amazonaws.services.s3.model.VersionListing;

API Version 2006-03-01
430

http://aws.amazon.com/code/

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Enabled Bucket

public class ListKeysVersionEnabledBucket {
 private static String bucketName = "*** bucket name ***";

 public static void main(String[] args) throws IOException {
 AmazonS3 s3client = new AmazonS3Client(new
 ProfileCredentialsProvider());
 try {
 System.out.println("Listing objects");

 ListVersionsRequest request = new ListVersionsRequest()
 .withBucketName(bucketName)
 .withMaxResults(2);
 // you can specify .withPrefix to obtain version list for a
 specific object or objects with
 // the specified key prefix.

 VersionListing versionListing;
 do {
 versionListing = s3client.listVersions(request);
 for (S3VersionSummary objectSummary :
 versionListing.getVersionSummaries()) {
 System.out.println(" - " + objectSummary.getKey() + " "
 +
 "(size = " + objectSummary.getSize() + ")" +
 "(versionID= " + objectSummary.getVersionId() + ")");

 }
 request.setKeyMarker(versionListing.getNextKeyMarker());

 request.setVersionIdMarker(versionListing.getNextVersionIdMarker());
 } while (versionListing.isTruncated());
 } catch (AmazonServiceException ase) {
 System.out.println("Caught an AmazonServiceException, " +
 "which means your request made it " +
 "to Amazon S3, but was rejected with an error response "
 +
 "for some reason.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException, " +
 "which means the client encountered " +
 "an internal error while trying to communicate" +
 " with S3, " +
 "such as not being able to access the network.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }
}

Using the AWS SDK for .NET

For information about how to create and test a working sample, see Running the Amazon S3 .NET
Code Examples (p. 567).

using System;

API Version 2006-03-01
431

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Enabled Bucket

using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class ListObjectsVersioningEnabledBucket
 {
 static string bucketName = "*** bucket name ***";

 public static void Main(string[] args)
 {
 using (var client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 Console.WriteLine("Listing objects stored in a bucket");

 GetObjectListWithAllVersions(client);
 }

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static void GetObjectListWithAllVersions(IAmazonS3 client)
 {
 try
 {
 ListVersionsRequest request = new ListVersionsRequest()
 {
 BucketName = bucketName,
 // You can optionally specify key name prefix in the
 request
 // if you want list of object versions of a specific
 object.

 // For this example we limit response to return list of 2
 versions.
 MaxKeys = 2
 };
 do
 {
 ListVersionsResponse response =
 client.ListVersions(request);
 // Process response.
 foreach (S3ObjectVersion entry in response.Versions)
 {
 Console.WriteLine("key = {0} size = {1}",
 entry.Key, entry.Size);
 }

 // If response is truncated, set the marker to get the
 next
 // set of keys.
 if (response.IsTruncated)
 {
 request.KeyMarker = response.NextKeyMarker;
 request.VersionIdMarker =
 response.NextVersionIdMarker;
 }

API Version 2006-03-01
432

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Enabled Bucket

 else
 {
 request = null;
 }
 } while (request != null);

 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 if (amazonS3Exception.ErrorCode != null &&
 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||
 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))
 {
 Console.WriteLine("Check the provided AWS Credentials.");
 Console.WriteLine(
 "To sign up for service, go to http://aws.amazon.com/
s3");
 }
 else
 {
 Console.WriteLine(
 "Error occurred. Message:'{0}' when listing objects",
 amazonS3Exception.Message);
 }
 }
 }
 }
}

Using the REST API

To list all of the versions of all of the objects in a bucket, you use the versions subresource in a
GET Bucket request. Amazon S3 can retrieve only a maximum of 1000 objects, and each object
version counts fully as an object. Therefore, if a bucket contains two keys (e.g., photo.gif and
picture.jpg), and the first key has 990 versions and the second key has 400 versions; a single
request would retrieve all 990 versions of photo.gif and only the most recent 10 versions of
picture.jpg.

Amazon S3 returns object versions in the order in which they were stored, with the most recently
stored returned first.

To list all object versions in a bucket

• In a GET Bucket request, include the versions sub-resource.

GET /?versions HTTP/1.1
Host: bucketName.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 +0000
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=

Retrieving a Subset of Objects in a Bucket

This section discusses the following two example scenarios:

• You want to retrieve a subset of all object versions in a bucket, for example, retrieve all versions of a
specific object.

API Version 2006-03-01
433

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Enabled Bucket

• The number of object versions in the response exceeds the value for max-key (1000 by default), so
that you have to submit a second request to retrieve the remaining object versions.

To retrieve a subset of object versions, you use the request parameters for GET Bucket. For more
information, see GET Bucket.

Example 1: Retrieving All Versions of Only a Specific Object

You can retrieve all versions of an object using the versions subresource and the prefix request
parameter using the following process. For more information about prefix, see GET Bucket.

Retrieving All Versions of a Key

1 Set the prefix parameter to the key of the object you want to retrieve.

2 Send a GET Bucket request using the versions subresource and prefix.
GET /?versions&prefix=objectName HTTP/1.1

Example Retrieving Objects Using a Prefix

The following example retrieves objects whose key is or begins with myObject.

GET /?versions&prefix=myObject HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=

You can use the other request parameters to retrieve a subset of all versions of the object. For more
information, see GET Bucket.

Example 2: Retrieving a Listing of Additional Objects if the Response Is Truncated

If the number of objects that could be returned in a GET request exceeds the value of max-keys,
the response contains <isTruncated>true</isTruncated>, and includes the first key (in
NextKeyMarker) and the first version ID (in NextVersionIdMarker) that satisfy the request, but
were not returned. You use those returned values as the starting position in a subsequent request to
retrieve the additional objects that satisfy the GET request.

Use the following process to retrieve additional objects that satisfy the original GET Bucket
versions request from a bucket. For more information about key-marker, version-id-marker,
NextKeyMarker, and NextVersionIdMarker, see GET Bucket.

Retrieving Additional Responses that Satisfy the Original GET Request

1 Set the value of key-marker to the key returned in NextKeyMarker in
the previous response.

2 Set the value of version-id-marker to the version ID returned in
NextVersionIdMarker in the previous response.

3 Send a GET Bucket versions request using key-marker and
version-id-marker.

API Version 2006-03-01
434

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Enabled Bucket

Example Retrieving Objects Starting with a Specified Key and Version ID

GET /?versions&key-marker=myObject&version-id-marker=298459348571 HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=

Retrieving Object Versions

A simple GET request retrieves the current version of an object. The following figure shows how GET
returns the current version of the object, photo.gif.

To retrieve a specific version, you have to specify its version ID. The following figure shows that a GET
versionId request retrieves the specified version of the object (not necessarily the current one).

Using the Console

For instructions see, Downloading an Object in the Amazon Simple Storage Service Console User
Guide. You will need to click the Show button in the console to list all object versions.

API Version 2006-03-01
435

http://docs.aws.amazon.com/AmazonS3/latest/UG/DownloadinganObject.html

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Enabled Bucket

Using the AWS SDKs

For examples of uploading objects using AWS SDKs for Java, .NET, and PHP, see Getting
Objects (p. 143). The examples for uploading objects in a nonversioned and versioning-enabled
buckets are the same, although in the case of versioning-enabled buckets, Amazon S3 assigns a
version number. Otherwise, the version number is null.

For information about using other AWS SDKs, see Sample Code and Libraries.

Using REST

To retrieve a specific object version

1. Set versionId to the ID of the version of the object you want to retrieve.

2. Send a GET Object versionId request.

Example Retrieving a Versioned Object

The following request retrieves version L4kqtJlcpXroDTDmpUMLUo of my-image.jpg.

GET /my-image.jpg?versionId=L4kqtJlcpXroDTDmpUMLUo HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=

Related Topics

Retrieving the Metadata of an Object Version (p. 436)

Retrieving the Metadata of an Object Version

If you only want to retrieve the metadata of an object (and not its content), you use the HEAD operation.
By default, you get the metadata of the most recent version. To retrieve the metadata of a specific
object version, you specify its version ID.

To retrieve the metadata of an object version

1. Set versionId to the ID of the version of the object whose metadata you want to retrieve.

2. Send a HEAD Object versionId request.

Example Retrieving the Metadata of a Versioned Object

The following request retrieves the metadata of version 3HL4kqCxf3vjVBH40Nrjfkd of my-image.jpg.

HEAD /my-image.jpg?versionId=3HL4kqCxf3vjVBH40Nrjfkd HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=

The following shows a sample response.

HTTP/1.1 200 OK
x-amz-id-2: ef8yU9AS1ed4OpIszj7UDNEHGran
x-amz-request-id: 318BC8BC143432E5

API Version 2006-03-01
436

http://aws.amazon.com/code/

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Enabled Bucket

x-amz-version-id: 3HL4kqtJlcpXroDTDmjVBH40Nrjfkd
Date: Wed, 28 Oct 2009 22:32:00 GMT
Last-Modified: Sun, 1 Jan 2006 12:00:00 GMT
ETag: "fba9dede5f27731c9771645a39863328"
Content-Length: 434234
Content-Type: text/plain
Connection: close
Server: AmazonS3

Deleting Object Versions

You can delete object versions whenever you want. In addition, you can also define lifecycle
configuration rules for objects that have a well-defined lifecycle to request Amazon S3 to expire current
object versions or permanently remove noncurrent object versions. When your bucket is version-
enabled or versioning is suspended, the lifecycle configuration actions work as follows:

• The Expiration action applies to the current object version and instead of deleting the current
object version, Amazon S3 retains the current version as a noncurrent version by adding a delete
marker, which then becomes the current version.

• The NoncurrentVersionExpiration action applies to noncurrent object versions, and Amazon
S3 permanently removes these object versions. You cannot recover permanently removed objects.

For more information, see Object Lifecycle Management (p. 109).

A DELETE request has the following use cases:

• When versioning is enabled, a simple DELETE cannot permanently delete an object.
Instead, Amazon S3 inserts a delete marker in the bucket, and that marker becomes the current
version of the object with a new ID. When you try to GET an object whose current version is a delete
marker, Amazon S3 behaves as though the object has been deleted (even though it has not been
erased) and returns a 404 error.

The following figure shows that a simple DELETE does not actually remove the specified object.
Instead, Amazon S3 inserts a delete marker.

• To permanently delete versioned objects, you must use DELETE Object versionId.

The following figure shows that deleting a specified object version permanently removes that object.

API Version 2006-03-01
437

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Enabled Bucket

Using the Console

For instructions see, Deleting an Object in the Amazon Simple Storage Service Console User Guide.
You will need to click the Show button in the console to list all object versions.

Using the AWS SDKs

For examples of uploading objects using the AWS SDKs for Java, .NET, and PHP, see Deleting
Objects (p. 237). The examples for uploading objects in nonversioned and versioning-enabled buckets
are the same, although in the case of versioning-enabled buckets, Amazon S3 assigns a version
number. Otherwise, the version number is null.

For information about using other AWS SDKs, see Sample Code and Libraries.

Using REST

To a delete a specific version of an object

• In a DELETE, specify a version ID.

Example Deleting a Specific Version

The following example shows how to delete version UIORUnfnd89493jJFJ of photo.gif.

DELETE /photo.gif?versionId=UIORUnfnd89493jJFJ HTTP/1.1

Host: bucket.s3.amazonaws.com
Date: Wed, 12 Oct 2009 17:50:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+FIEXAMPLE=
Content-Type: text/plain
Content-Length: 0

Related Topics

Using MFA Delete (p. 439)

API Version 2006-03-01
438

http://docs.aws.amazon.com/AmazonS3/latest/UG/DeletinganObject.html
http://aws.amazon.com/code/

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Enabled Bucket

Working with Delete Markers (p. 439)

Removing Delete Markers (p. 441)

Using Versioning (p. 423)

Using MFA Delete

If a bucket's versioning configuration is MFA Delete–enabled, the bucket owner must include the x-
amz-mfa request header in requests to permanently delete an object version or change the versioning
state of the bucket. Requests that include x-amz-mfa must use HTTPS. The header's value is the
concatenation of your authentication device's serial number, a space, and the authentication code
displayed on it. If you do not include this request header, the request fails.

For more information about authentication devices, see http://aws.amazon.com/iam/details/mfa/.

Example Deleting an Object from an MFA Delete Enabled Bucket

The following example shows how to delete my-image.jpg (with the specified version), which is
in a bucket configured with MFA Delete enabled. Note the space between [SerialNumber] and
[AuthenticationCode]. For more information, see DELETE Object.

DELETE /my-image.jpg?versionId=3HL4kqCxf3vjVBH40Nrjfkd HTTPS/1.1
Host: bucketName.s3.amazonaws.com
x-amz-mfa: 20899872 301749
Date: Wed, 28 Oct 2009 22:32:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=

For more information about enabling MFA delete, see MFA Delete (p. 424).

Working with Delete Markers

A delete marker is a placeholder (marker) for a versioned object that was named in a simple DELETE
request. Because the object was in a versioning-enabled bucket, the object was not deleted. The
delete marker, however, makes Amazon S3 behave as if it had been deleted.

A delete marker has a key name (or key) and version ID like any other object. However, a delete
marker differs from other objects in the following ways:

• It does not have data associated with it.

• It is not associated with an access control list (ACL) value.

• It does not retrieve anything from a GET request because it has no data; you get a 404 error.

• The only operation you can use on a delete marker is DELETE, and only the bucket owner can issue
such a request.

Delete markers accrue a nominal charge for storage in Amazon S3. The storage size of a delete
marker is equal to the size of the key name of the delete marker. A key name is a sequence of Unicode
characters. The UTF-8 encoding adds from 1 to 4 bytes of storage to your bucket for each character
in the name. For more information about key names, see Object Keys (p. 99). For information about
deleting a delete marker, see Removing Delete Markers (p. 441).

Only Amazon S3 can create a delete marker, and it does so whenever you send a DELETE Object
request on an object in a versioning-enabled or suspended bucket. The object named in the DELETE
request is not actually deleted. Instead, the delete marker becomes the current version of the object.
(The object's key name (or key) becomes the key of the delete marker.) If you try to get an object and
its current version is a delete marker, Amazon S3 responds with:

API Version 2006-03-01
439

http://aws.amazon.com/iam/details/mfa/
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Enabled Bucket

• A 404 (Object not found) error

• A response header, x-amz-delete-marker: true

The response header tells you that the object accessed was a delete marker. This response header
never returns false; if the value is false, Amazon S3 does not include this response header in the
response.

The following figure shows how a simple GET on an object, whose current version is a delete marker,
returns a 404 No Object Found error.

The only way to list delete markers (and other versions of an object) is by using the versions
subresource in a GET Bucket versions request. A simple GET does not retrieve delete marker
objects. The following figure shows that a GET Bucket request does not return objects whose current
version is a delete marker.

API Version 2006-03-01
440

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Enabled Bucket

Removing Delete Markers

To delete a delete marker, you must specify its version ID in a DELETE Object versionId request.
If you use a DELETE request to delete a delete marker (without specifying the version ID of the delete
marker), Amazon S3 does not delete the delete marker, but instead, inserts another delete marker.

The following figure shows how a simple DELETE on a delete marker removes nothing, but adds a new
delete marker to a bucket.

In a versioning-enabled bucket, this new delete marker would have a unique version ID. So, it's
possible to have multiple delete markers of the same object in one bucket.

To permanently delete a delete marker, you must include its version ID in a DELETE Object
versionId request. The following figure shows how a DELETE Object versionId request
permanently removes a delete marker. Only the owner of a bucket can permanently remove a delete
marker.

The effect of removing the delete marker is that a simple GET request will now retrieve the current
version (121212) of the object.

API Version 2006-03-01
441

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Enabled Bucket

To permanently remove a delete marker

1. Set versionId to the ID of the version to the delete marker you want to remove.

2. Send a DELETE Object versionId request.

Example Removing a Delete Marker

The following example removes the delete marker for photo.gif version 4857693.

DELETE /photo.gif?versionId=4857693 HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=

When you delete a delete marker, Amazon S3 includes in the response:

204 NoContent
x-amz-version-id: versionID
x-amz-delete-marker: true

Transitioning Object Versions

You can define lifecycle configuration rules for objects that have a well-defined lifecycle to transition
object versions to the GLACIER storage class at a specific time in the object's lifetime. For more
information, see Object Lifecycle Management (p. 109).

Restoring Previous Versions

One of the value propositions of versioning is the ability to retrieve previous versions of an object.
There are two approaches to doing so:

• Copy a previous version of the object into the same bucket

The copied object becomes the current version of that object and all object versions are preserved.

• Permanently delete the current version of the object

When you delete the current object version, you, in effect, turn the previous version into the current
version of that object.

Because all object versions are preserved, you can make any earlier version the current version
by copying a specific version of the object into the same bucket. In the following figure, the source
object (ID = 111111) is copied into the same bucket. Amazon S3 supplies a new ID (88778877) and it
becomes the current version of the object. So, the bucket has both the original object version (111111)
and its copy (88778877).

API Version 2006-03-01
442

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Enabled Bucket

A subsequent GET will retrieve version 88778877.

The following figure shows how deleting the current version (121212) of an object, which leaves the
previous version (111111) as the current object.

A subsequent GET will retrieve version 111111.

Versioned Object Permissions

Permissions are set at the version level. Each version has its own object owner; an AWS account that
creates the object version is the owner. So, you can set different permissions for different versions of
the same object. To do so, you must specify the version ID of the object whose permissions you want
to set in a PUT Object versionId acl request. For a detailed description and instructions on using
ACLs, see Managing Access Permissions to Your Amazon S3 Resources (p. 266).

API Version 2006-03-01
443

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Suspended Bucket

Example Setting Permissions for an Object Version

The following request sets the permission of the grantee, BucketOwner@amazon.com, to
FULL_CONTROL on the key, my-image.jpg, version ID, 3HL4kqtJvjVBH40Nrjfkd.

PUT /my-image.jpg?acl&versionId=3HL4kqtJvjVBH40Nrjfkd HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=
Content-Length: 124

<AccessControlPolicy>
 <Owner>
 <ID>75cc57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID>
 <DisplayName>mtd@amazon.com</DisplayName>
 </Owner>
 <AccessControlList>
 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="CanonicalUser">

 <ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
 <DisplayName>BucketOwner@amazon.com</DisplayName>
 </Grantee>
 <Permission>FULL_CONTROL</Permission>
 </Grant>
 </AccessControlList>
 </AccessControlPolicy>

Likewise, to get the permissions of a specific object version, you must specify its version ID in a GET
Object versionId acl request. You need to include the version ID because, by default, GET
Object acl returns the permissions of the current version of the object.

Example Retrieving the Permissions for a Specified Object Version

In the following example, Amazon S3 returns the permissions for the key, my-image.jpg, version ID,
DVBH40Nr8X8gUMLUo.

GET /my-image.jpg?versionId=DVBH40Nr8X8gUMLUo&acl HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU

For more information, see GET Object acl.

Managing Objects in a Versioning-Suspended
Bucket
Topics

• Adding Objects to Versioning-Suspended Buckets (p. 445)

• Retrieving Objects from Versioning-Suspended Buckets (p. 446)

• Deleting Objects from Versioning-Suspended Buckets (p. 446)

API Version 2006-03-01
444

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETacl.html

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Suspended Bucket

You suspend versioning to stop accruing new versions of the same object in a bucket. You might do
this because you only want a single version of an object in a bucket, or you might not want to accrue
charges for multiple versions.

When you suspend versioning, existing objects in your bucket do not change. What changes is
how Amazon S3 handles objects in future requests. The topics in this section explain various object
operations in a versioning-suspended bucket.

Adding Objects to Versioning-Suspended Buckets

Once you suspend versioning on a bucket, Amazon S3 automatically adds a null version ID to every
subsequent object stored thereafter (using PUT, POST, or COPY) in that bucket.

The following figure shows how Amazon S3 adds the version ID of null to an object when it is added
to a version-suspended bucket.

If a null version is already in the bucket and you add another object with the same key, the added
object overwrites the original null version.

If there are versioned objects in the bucket, the version you PUT becomes the current version of the
object. The following figure shows how adding an object to a bucket that contains versioned objects
does not overwrite the object already in the bucket. In this case, version 111111 was already in the
bucket. Amazon S3 attaches a version ID of null to the object being added and stores it in the bucket.
Version 111111 is not overwritten.

If a null version already exists in a bucket, the null version is overwritten, as shown in the following
figure.

API Version 2006-03-01
445

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Suspended Bucket

Note that although the key and version ID (null) of null version are the same before and after the PUT,
the contents of the null version originally stored in the bucket is replaced by the contents of the object
PUT into the bucket.

Retrieving Objects from Versioning-Suspended Buckets

A GET Object request returns the current version of an object whether you've enabled versioning on
a bucket or not. The following figure shows how a simple GET returns the current version of an object.

Deleting Objects from Versioning-Suspended Buckets

If versioning is suspended, a DELETE request:

• Can only remove an object whose version ID is null

Doesn't remove anything if there isn't a null version of the object in the bucket.

• Inserts a delete marker into the bucket.

The following figure shows how a simple DELETE removes a null version and Amazon S3 inserts a
delete marker in its place with a version ID of null.

API Version 2006-03-01
446

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Suspended Bucket

Remember that a delete marker doesn't have content, so you lose the content of the null version when
a delete marker replaces it.

The following figure shows a bucket that doesn't have a null version. In this case, the DELETE removes
nothing; Amazon S3 just inserts a delete marker.

Even in a versioning-suspended bucket, the bucket owner can permanently delete a specified version.
The following figure shows that deleting a specified object version permanently removes that object.
Only the bucket owner can delete a specified object version.

API Version 2006-03-01
447

Amazon Simple Storage Service Developer Guide
Managing Objects in a Versioning-Suspended Bucket

API Version 2006-03-01
448

Amazon Simple Storage Service Developer Guide

Hosting a Static Website on
Amazon S3

Topics

• Website Endpoints (p. 450)

• Configure a Bucket for Website Hosting (p. 451)

• Example Walkthroughs - Hosting Websites On Amazon S3 (p. 462)

You can host a static website on Amazon S3. On a static website, individual web pages include static
content. They may also contain client-side scripts. By contrast, a dynamic website relies on server-side
processing, including server-side scripts such as PHP, JSP, or ASP.NET. Amazon S3 does not support
server-side scripting.

Note
Amazon Web Services (AWS) has resources for hosting dynamic websites. To learn more
about website hosting on AWS, go to Websites and Website Hosting.

To host your static website, you configure an Amazon S3 bucket for website hosting and then upload
your website content to the bucket. The website is then available at the region-specific website
endpoint of the bucket:

<bucket-name>.s3-website-<AWS-region>.amazonaws.com

For a list of region specific website endpoints for Amazon S3, see Website Endpoints (p. 450). For
example, suppose you create a bucket called examplebucket in the US East (N. Virginia) Region and
configure it as a website. The following example URLs provide access to your website content:

• This URL returns a default index document that you configured for the website.

http://examplebucket.s3-website-us-east-1.amazonaws.com/

• This URL requests the photo.jpg object, which is stored at the root level in the bucket.

http://examplebucket.s3-website-us-east-1.amazonaws.com/photo.jpg

• This URL requests the docs/doc1.html object in your bucket.

API Version 2006-03-01
449

http://aws.amazon.com/websites/

Amazon Simple Storage Service Developer Guide
Website Endpoints

http://examplebucket.s3-website-us-east-1.amazonaws.com/docs/doc1.html

Using Your Own Domain

Instead of accessing the website by using an Amazon S3 website endpoint, you can use your own
domain, such as example.com to serve your content. Amazon S3, in conjunction with Amazon
Route 53, supports hosting a website at the root domain. For example if you have the root domain
example.com and you host your website on Amazon S3, your website visitors can access the site
from their browser by typing either http://www.example.com or http://example.com. For an
example walkthrough, see Example: Setting Up a Static Website Using a Custom Domain (p. 464).

To configure a bucket for website hosting, you add website configuration to the bucket. For more
information, see Configure a Bucket for Website Hosting (p. 451).

Website Endpoints
Topics

• Key Differences Between the Amazon Website and the REST API Endpoint (p. 451)

When you configure a bucket for website hosting, the website is available via the region-specific
website endpoint. Website endpoints are different from the endpoints where you send REST API
requests. For more information about the endpoints, see Request Endpoints (p. 13).

The two general forms of an Amazon S3 website endpoint are as follows:

bucket-name.s3-website-region.amazonaws.com

bucket-name.s3-website.region.amazonaws.com

For example, if your bucket is named example-bucket and it resides in the US East (N. Virginia)
region, the website is available at the following Amazon S3 website endpoint:

http://example-bucket.s3-website-us-east-1.amazonaws.com/

Or, if your bucket is named example-bucket and it resides in the EU (Frankfurt) region, the website
is available at the following Amazon S3 website endpoint:

http://example-bucket.s3-website.eu-central-1.amazonaws.com/

For a list of AWS regions and the corresponding Amazon S3 website endpoints, see Amazon Simple
Storage Service Website Endpoints in the AWS General Reference.

In order for your customers to access content at the website endpoint, you must make all your content
publicly readable. To do so, you can use a bucket policy or an ACL on an object to grant the necessary
permissions.

Note
Requester Pays buckets or DevPay buckets do not allow access through the website
endpoint. Any request to such a bucket will receive a 403 Access Denied response. For
more information, see Requester Pays Buckets (p. 92).

API Version 2006-03-01
450

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_website_region_endpoints
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_website_region_endpoints

Amazon Simple Storage Service Developer Guide
Key Differences Between the Amazon
Website and the REST API Endpoint

If you have a registered domain, you can add a DNS CNAME entry to point to the Amazon S3
website endpoint. For example, if you have registered domain, www.example-bucket.com, you
could create a bucket www.example-bucket.com, and add a DNS CNAME record that points
to www.example-bucket.com.s3-website-<region>.amazonaws.com. All requests to
http://www.example-bucket.com will be routed to www.example-bucket.com.s3-website-
<region>.amazonaws.com. For more information, see Virtual Hosting of Buckets (p. 50).

Key Differences Between the Amazon Website and
the REST API Endpoint
The website endpoint is optimized for access from a web browser. The following table describes the
key differences between the Amazon REST API endpoint and the website endpoint.

Key Difference REST API Endpoint Website Endpoint

Access control Supports both public and private
content.

Supports only publicly readable content.

Error message
handling

Returns an XML-formatted error
response.

Returns an HTML document.

Redirection
support

Not applicable Supports both object-level and bucket-
level redirects.

Requests
supported

Supports all bucket and object
operations

Supports only GET and HEAD requests
on objects.

Responses to
GET and HEAD
requests at the
root of a bucket

Returns a list of the object keys in the
bucket.

Returns the index document that is
specified in the website configuration.

Secure Sockets
Layer (SSL)
support

Supports SSL connections. Does not support SSL connections.

Configure a Bucket for Website Hosting
Topics

• Overview (p. 451)

• Syntax for Specifying Routing Rules (p. 454)

• Index Document Support (p. 457)

• Custom Error Document Support (p. 458)

• Configuring a Web Page Redirect (p. 460)

• Permissions Required for Website Access (p. 462)

Overview
To configure a bucket for static website hosting, you add a website configuration to your bucket. The
configuration includes the following information:

• Index document

API Version 2006-03-01
451

Amazon Simple Storage Service Developer Guide
Overview

When you type a URL such as http://example.com you are not requesting a specific page. In this
case the web server serves a default page, for the directory where the requested website content
is stored. This default page is referred to as index document, and is typically named index.html.
When you configure a bucket for website hosting, you must specify an index document. Amazon S3
returns this index document when requests are made to the root domain or any of the subfolders.
For more information, see Index Documents and Folders (p. 457).

• Error document

If an error occurs, Amazon S3 returns an HTML error document. For 4XX class errors, you can
optionally provide your own custom error document, in which you can provide additional guidance to
your users. For more information, see Custom Error Document Support (p. 458).

• Redirects all requests

If your root domain is example.com and you want to serve requests for both http://
example.com and http://www.example.com, you can create two buckets named example.com
and www.example.com, maintain website content in only one bucket, say, example.com, and
configure the other bucket to redirect all requests to the example.com bucket.

• Advanced conditional redirects

You can conditionally route requests according to specific object key names or prefixes in the
request, or according to the response code. For example, suppose that you delete or rename
an object in your bucket. You can add a routing rule that redirects the request to another object.
Suppose that you want to make a folder unavailable. You can add a routing rule to redirect the
request to another page, which explains why the folder is no longer available. You can also add a
routing rule to handle an error condition by routing requests that return the error to another domain,
where the error will be processed.

You can manage your buckets website configuration using the Amazon S3 console. The bucket
Properties panel in the console enables you to specify the website configuration.

API Version 2006-03-01
452

https://console.aws.amazon.com/s3/home

Amazon Simple Storage Service Developer Guide
Overview

To host a static website on Amazon S3, you need only provide the name of the index document.

To redirect all requests to the bucket's website endpoint to another host, you only need to provide host
name.

However, when configuring bucket for website hosting, you can optionally specify advanced redirection
rules.

You describe the rules using XML. The following section provides general syntax and examples of
specifying redirection rules.

API Version 2006-03-01
453

Amazon Simple Storage Service Developer Guide
Syntax for Specifying Routing Rules

Syntax for Specifying Routing Rules
The following is a general syntax for defining the routing rules in a website configuration:

<RoutingRules> =
 <RoutingRules>
 <RoutingRule>...</RoutingRule>
 [<RoutingRule>...</RoutingRule>
 ...]
 </RoutingRules>

<RoutingRule> =
 <RoutingRule>
 [<Condition>...</Condition>]
 <Redirect>...</Redirect>
 </RoutingRule>

<Condition> =
 <Condition>
 [<KeyPrefixEquals>...</KeyPrefixEquals>]
 [<HttpErrorCodeReturnedEquals>...</HttpErrorCodeReturnedEquals>]
 </Condition>
 Note: <Condition> must have at least one child element.

<Redirect> =
 <Redirect>
 [<HostName>...</HostName>]
 [<Protocol>...</Protocol>]
 [<ReplaceKeyPrefixWith>...</ReplaceKeyPrefixWith>]
 [<ReplaceKeyWith>...</ReplaceKeyWith>]
 [<HttpRedirectCode>...</HttpRedirectCode>]
 </Redirect>
 Note: <Redirect> must have at least one child element.
 Also, you can have either ReplaceKeyPrefix with or
 ReplaceKeyWith,
 but not both.

The following table describes the elements in the routing rule.

Name Description

RoutingRules Container for a collection of RoutingRule elements.

RoutingRule A rule that identifies a condition and the redirect that is applied when
the condition is met.

Condition: A RoutingRules, container must contain at least one
routing rule.

Condition Container for describing a condition that must be met for the
specified redirect to be applied. If the routing rule does not include a
condition, the rule is applied to all requests.

KeyPrefixEquals The object key name prefix from which requests will be redirected.

KeyPrefixEquals is required if
HttpErrorCodeReturnedEquals is not specified. If both
KeyPrefixEquals and HttpErrorCodeReturnedEquals are
specified, both must be true for the condition to be met.

API Version 2006-03-01
454

Amazon Simple Storage Service Developer Guide
Syntax for Specifying Routing Rules

Name Description

HttpErrorCodeReturnedEqualsThe HTTP error code that must match for the redirect to apply. In the
event of an error, if the error code meets this value, then specified
redirect applies.

HttpErrorCodeReturnedEquals is required if
KeyPrefixEquals is not specified. If both KeyPrefixEquals and
HttpErrorCodeReturnedEquals are specified, both must be true
for the condition to be met.

Redirect Container element that provides instructions for redirecting the
request. You can redirect requests to another host, or another
page, or you can specify another protocol to use. A RoutingRule
must have a Redirect element. A Redirect element must
contain at least one of the following sibling elements: Protocol,
HostName, ReplaceKeyPrefixWith, ReplaceKeyWith or
HttpRedirectCode.

Protocol The protocol, http or https, to be used in the Location header that is
returned in the response.

Protocol is not required if one of its siblings is supplied.

HostName The host name to be used in the Location header that is returned in
the response.

HostName is not required if one of its siblings is supplied.

ReplaceKeyPrefixWith The object key name prefix that will replace the value of
KeyPrefixEquals in the redirect request.

ReplaceKeyPrefixWith is not required if one of its siblings is
supplied. It can be supplied only if ReplaceKeyWith is not supplied.

ReplaceKeyWith The object key to be used in the Location header that is returned in
the response.

ReplaceKeyWith is not required if one of its siblings is supplied. It
can be supplied only if ReplaceKeyPrefixWith is not supplied.

HttpRedirectCode The HTTP redirect code to be used in the Location header that is
returned in the response.

HttpRedirectCode is not required if one of its siblings is supplied.

The following are some of the examples:

API Version 2006-03-01
455

Amazon Simple Storage Service Developer Guide
Syntax for Specifying Routing Rules

Example 1: Redirect after renaming a key prefix

Suppose your bucket contained the following objects:

index.html

docs/article1.html

docs/article2.html

Now you decided to rename the folder from docs/ to documents/. After you make this change,
you will need to redirect requests for prefix /docs to documents/. For example, request for docs/
article1.html will need to be redirected to documents/article1.html.

In this case you add the following routing rule to the website configuration:

 <RoutingRules>
 <RoutingRule>
 <Condition>
 <KeyPrefixEquals>docs/</KeyPrefixEquals>
 </Condition>
 <Redirect>
 <ReplaceKeyPrefixWith>documents/</ReplaceKeyPrefixWith>
 </Redirect>
 </RoutingRule>
 </RoutingRules>

Example 2: Redirect requests for a deleted folder to a page

Suppose you delete the images/ folder (that is, you delete all objects with key prefix images/). You
can add a routing rule that redirects requests for any object with the key prefix images/ to a page
named folderdeleted.html.

 <RoutingRules>
 <RoutingRule>
 <Condition>
 <KeyPrefixEquals>images/</KeyPrefixEquals>
 </Condition>
 <Redirect>
 <ReplaceKeyWith>folderdeleted.html</ReplaceKeyWith>
 </Redirect>
 </RoutingRule>
 </RoutingRules>

API Version 2006-03-01
456

Amazon Simple Storage Service Developer Guide
Index Document Support

Example 3: Redirect for an HTTP error

Suppose that when a requested object is not found, you want to redirect requests to an Amazon
EC2 instance. You can add a redirection rule so that when an HTTP status code 404 (Not Found) is
returned the site visitor is redirected to an EC2 instance that will handle the request. The following
example also inserts the object key prefix report-404/ in the redirect. For example, if you request
a page ExamplePage.html and it results in a HTTP 404 error, the request is redirected to a page
report-404/ExamplePage.html on the specified EC2 instance. If there is no routing rule and the
HTTP error 404 occurs, the error document specified in the configuration is returned.

 <RoutingRules>
 <RoutingRule>
 <Condition>
 <HttpErrorCodeReturnedEquals>404</HttpErrorCodeReturnedEquals >
 </Condition>
 <Redirect>
 <HostName>ec2-11-22-333-44.compute-1.amazonaws.com</HostName>
 <ReplaceKeyPrefixWith>report-404/</ReplaceKeyPrefixWith>
 </Redirect>
 </RoutingRule>
 </RoutingRules>

Index Document Support
An index document is a webpage that is returned when a request is made to the root of a website or
any subfolder. For example, if a user enters http://www.example.com in the browser, the user is
not requesting any specific page. In that case, Amazon S3 serves up the index document, which is
sometimes referred to as the default page

When you configure your bucket as a website, you should provide the name of the index document.
You must upload an object with this name and configure it to be publicly readable. For information
about configuring a bucket as a website, see Example: Setting Up a Static Website (p. 463).

The trailing slash at the root-level URL is optional. For example, if you configure your website with
index.html as the index document, either of the following two URLs will return index.html.

http://example-bucket.s3-website-region.amazonaws.com/
http://example-bucket.s3-website-region.amazonaws.com

For more information about Amazon S3 website endpoints, see Website Endpoints (p. 450).

Index Documents and Folders

In Amazon S3, a bucket is a flat container of objects; it does not provide any hierarchical organization
as the file system on your computer does. You can create a logical hierarchy by using object key
names that imply a folder structure. For example, consider a bucket with three objects and the
following key names.

sample1.jpg

photos/2006/Jan/sample2.jpg

photos/2006/Feb/sample3.jpg

Although these are stored with no physical hierarchical organization, you can infer the following logical
folder structure from the key names.

API Version 2006-03-01
457

Amazon Simple Storage Service Developer Guide
Custom Error Document Support

sample1.jpg object is at the root of the bucket

sample2.jpg object is in the photos/2006/Jan subfolder, and

sample3.jpg object is in photos/2006/Feb subfolder.

The folder concept that Amazon S3 console supports is based on object key names. To continue the
previous example, the console displays the ExampleBucket with a photos folder.

You can upload objects to the bucket or to the photos folder within the bucket. If you add the object
sample.jpg to the bucket, the key name is sample.jpg. If you upload the object to the photos
folder, the object key name is photos/sample.jpg.

If you create such a folder structure in your bucket, you must have an index document at each level.
When a user specifies a URL that resembles a folder lookup, the presence or absence of a trailing
slash determines the behavior of the website. For example, the following URL, with a trailing slash,
returns the photos/index.html index document.

http://example-bucket.s3-website-region.amazonaws.com/photos/

However, if you exclude the trailing slash from the preceding URL, Amazon S3 first looks for an object
photos in the bucket. If the photos object is not found, then it searches for an index document,
photos/index.html. If that document is found, Amazon S3 returns a 302 Found message and
points to the photos/ key. For subsequent requests to photos/, Amazon S3 returns photos/
index.html. If the index document is not found, Amazon S3 returns an error.

Custom Error Document Support
The following table lists the subset of HTTP response codes that Amazon S3 returns when an error
occurs.

HTTP Error Code Description

301 Moved
Permanently

When a user sends a request directly to the Amazon S3 website endpoints
(http://s3-website-<region>.amazonaws.com/), Amazon S3 returns a
301 Moved Permanently response and redirects those requests to http://
aws.amazon.com/s3/.

302 Found When Amazon S3 receives a request for a key x, http://<bucket>.s3-
website-<region>.amazonaws.com/x, without a trailing slash, it first
looks for the object with the keyname x. If the object is not found, Amazon

API Version 2006-03-01
458

Amazon Simple Storage Service Developer Guide
Custom Error Document Support

HTTP Error Code Description

S3 determines that the request is for subfolder x and redirects the request by
adding a slash at the end, and returns 302 Found.

304 Not Modified Amazon S3 users request headers If-Modified-Since, If-Unmodified-
Since, If-Match and/or If-None-Match to determine whether the
requested object is same as the cached copy held by the client. If the object is
the same, the website endpoint returns a 304 Not Modified response.

400 Malformed
Request

The website endpoint responds with a 400 Malformed Request when a user
attempts to access a bucket through the incorrect regional endpoint.

403 Forbidden The website endpoint responds with a 403 Forbidden when a user request
translates to an object that is not publicly readable. The object owner must
make the object publicly readable using a bucket policy or an ACL.

404 Not Found The website endpoint responds with 404 Not Found for the following reasons:

• Amazon S3 determines the website URL refers to an object key that does
not exist

• Amazon infers the request is for an index document that does not exist

• A bucket specified in the URL does not exist

• A bucket specified in the URL exists, however, it is not configured as a
website

You can create a custom document that is returned for 404 Not Found. Make
sure the document is uploaded to the bucket configured as a website, and that
the website hosting configuration is set to use the document.

For information on how Amazon S3 interprets the URL as a request for an
object or an index document, see Index Document Support (p. 457).

500 Service Error The website endpoint responds with a 500 Service Error when an internal
server error occurs.

503 Service
Unavailable

The website endpoint responds with a 503 Service Unavailable when Amazon
S3 determines that you need to reduce your request rate.

For each of these errors, Amazon S3 returns a predefined HTML as shown in the following sample
HTML returned for 403 Forbidden response.

API Version 2006-03-01
459

Amazon Simple Storage Service Developer Guide
Configuring a Redirect

You can optionally provide a custom error document with a user-friendly error message and with
additional help. You provide this custom error document as part of adding website configuration to your
bucket. Amazon S3 returns your custom error document for only the HTTP 4XX class of error codes.

Error Documents and Browser Behavior

When an error occurs, Amazon S3 returns an HTML error document. If you have configured your
website with a custom error document, Amazon S3 returns that error document. However, note that
when an error occurs, some browsers display their own error message, ignoring the error document
Amazon S3 returns. For example, when an HTTP 404 Not Found error occurs, Chrome might display
its own error ignoring the error document that Amazon S3 returns.

Configuring a Web Page Redirect
If your Amazon S3 bucket is configured for website hosting, you can redirect requests for an object to
another object in the same bucket or to an external URL. You set the redirect by adding the x-amz-
website-redirect-location property to the object metadata. The website then interprets the
object as 301 redirect. To redirect a request to another object, you set the redirect location to the key of
the target object. To redirect a request to an external URL, you set the redirect location to the URL that
you want. For more information about object metadata, see System-Defined Metadata (p. 101).

A bucket configured for website hosting has both the website endpoint and the REST endpoint. A
request for a page that is configured as a 301 redirect has the following possible outcomes, depending
on the endpoint of the request:

• Region-specific website endpoint – Amazon S3 redirects the page request according to the value
of the x-amz-website-redirect-location property.

• REST endpoint – Amazon S3 does not redirect the page request. It returns the requested object.

For more information about the endpoints, see Key Differences Between the Amazon Website and the
REST API Endpoint (p. 451).

You can set a page redirect from the Amazon S3 console or by using the Amazon S3 REST API

Page Redirect Support in the Amazon S3 Console

You can use the Amazon S3 console to set the website redirect location in the metadata of the object.
When you set a page redirect, you can either keep or delete the source object content. For example,
suppose you have a page1.html object in your bucket. To redirect any requests for this page to another
object, page2.html, you can do one of the following:

• To keep the content of the page1.html object and only redirect page requests, under Properties
for page1.html, click the Metadata tab. Add Website Redirect Location to the metadata, as shown
in the following example, and set its value to /page2.html. The / prefix in the value is required.

API Version 2006-03-01
460

Amazon Simple Storage Service Developer Guide
Configuring a Redirect

You can also set the value to an external URL, such as http://www.example.com.

• To delete the content of the page1.html object and redirect requests, you can upload a new
zero-byte object with the same key, page1.html, to replace the existing object, and then specify
Website Redirect Location for page1.html in the upload process. For information about
uploading an object, go to Uploading Objects into Amazon S3 in the Amazon Simple Storage Service
Console User Guide.

Setting a Page Redirect from the REST API

The following Amazon S3 API actions support the x-amz-website-redirect-location header
in the request. Amazon S3 stores the header value in the object metadata as x-amz-website-
redirect-location.

• PUT Object

• Initiate Multipart Upload

• POST Object

• PUT Object - Copy

When setting a page redirect you can either keep or delete the object content. For example, suppose
you have a page1.html object in your bucket.

• To keep the content of page1.html and only redirect page requests, you can submit a PUT Object
- Copy request to create a new page1.html object that uses the existing page1.html object as
the source. In your request, you set the x-amz-website-redirect-location header. When the
request is complete, you have the original page with its content unchanged, but Amazon S3 redirects
any requests for the page to the redirect location that you specify.

• To delete the content of the page1.html object and redirect requests for the page, you can send a
PUT Object request to upload a zero-byte object that has the same object key, page1.html. In the
PUT request, you set x-amz-website-redirect-location for page1.html to the new object.
When the request is complete, page1.html has no content, and any requests will be redirected to
the location that is specified by x-amz-website-redirect-location.

When you retrieve the object using the GET Object action, along with other object metadata, Amazon
S3 returns the x-amz-website-redirect-location header in the response.

API Version 2006-03-01
461

http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

Amazon Simple Storage Service Developer Guide
Permissions Required for Website Access

Permissions Required for Website Access
When you configure a bucket as a website, you must make the objects that you want to serve publicly
readable. To do so, you write a bucket policy that grants everyone s3:GetObject permission. On the
website endpoint, if a user requests an object that does not exist, Amazon S3 returns HTTP response
code 404 (Not Found). If the object exists but you have not granted read permission on the object,
the website endpoint returns HTTP response code 403 (Access Denied). The user can use the
response code to infer if a specific object exists or not. If you do not want this behavior, you should not
enable website support for your bucket.

The following sample bucket policy grants everyone access to the objects in the specified folder. For
more information on bucket policies, see Using Bucket Policies and User Policies (p. 308).

{
 "Version":"2012-10-17",
 "Statement":[{
 "Sid":"PublicReadGetObject",
 "Effect":"Allow",
 "Principal": "*",
 "Action":["s3:GetObject"],
 "Resource":["arn:aws:s3:::example-bucket/*"
]
 }
]
}

Note
The bucket policy applies only to objects owned by the bucket owner. If your bucket contains
objects not owned by the bucket owner, then public READ permission on those objects should
be granted using the object ACL.

You can grant public read permission to your objects by using either a bucket policy or an object ACL.
To make an object publicly readable using an ACL, you grant READ permission to the AllUsers group
as shown in the following grant element. You add this grant element to the object ACL. For information
on managing ACLs, see Managing Access with ACLs (p. 364).

<Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="Group">
 <URI>http://acs.amazonaws.com/groups/global/AllUsers</URI>
 </Grantee>
 <Permission>READ</Permission>
</Grant>

Example Walkthroughs - Hosting Websites On
Amazon S3

Topics

• Example: Setting Up a Static Website (p. 463)

• Example: Setting Up a Static Website Using a Custom Domain (p. 464)

This section provides two examples. In the first example, you configure a bucket for website hosting,
upload a sample index document, and test the website using the Amazon S3 website endpoint for the

API Version 2006-03-01
462

Amazon Simple Storage Service Developer Guide
Example: Setting Up a Static Website

bucket. The second example shows how you can use your own domain such as example.com, instead
of the Amazon S3 bucket website endpoint, and serve content from an Amazon S3 bucket configured
as a website. The example also shows how Amazon S3 offers the root domain support.

Example: Setting Up a Static Website
You can configure an Amazon S3 bucket to function like a website. This example walks you through
the steps of hosting a website on Amazon S3. In the following procedure, you will use the AWS
Management Console to perform the necessary tasks:

1. Create an Amazon S3 bucket and configure it as a website (see To create a bucket and configure it
as a website (p. 463)).

2. Add a bucket policy that make the bucket content public (see To add a bucket policy that makes
your bucket content publicly available (p. 463)).

The content that you serve at the website endpoint must be publicly readable. You can grant the
necessary permissions by adding a bucket policy or using Access Control List (ACL). Here we
describe adding a bucket policy.

3. Upload an index document (see To upload an index document (p. 464)).

4. Test your website using the Amazon S3 bucket website endpoint (Test your website (p. 464)).

To create a bucket and configure it as a website

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Create a bucket.

For step-by-step instructions, go to Create a bucket in Amazon Simple Storage Service Console
User Guide.
For bucket naming guidelines, see Bucket Restrictions and Limitations (p. 62). If you have your
registered domain name, for additional information about bucket naming, see Customizing
Amazon S3 URLs with CNAMEs (p. 53).

3. Open the bucket Properties panel, click Static Website Hosting, and do the following:

1. Select the Enable website hosting.

2. In the Index Document box, add the name of your index document. This name is typically
index.html.

3. Click Save to save the website configuration.

4. Note down the Endpoint.

This is the Amazon S3-provided website endpoint for your bucket. You will use this endpoint
in the following steps to test your website.

To add a bucket policy that makes your bucket content publicly available

1. In bucket Properties panel, click the Permissions.

2. Click Add Bucket Policy.

3. Copy the following bucket policy, and then paste it in the Bucket Policy Editor.

{
 "Version":"2012-10-17",
 "Statement":[{
 "Sid":"PublicReadForGetBucketObjects",
 "Effect":"Allow",

API Version 2006-03-01
463

https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html

Amazon Simple Storage Service Developer Guide
Example: Setting Up a Static

Website Using a Custom Domain

 "Principal": "*",
 "Action":["s3:GetObject"],
 "Resource":["arn:aws:s3:::example-bucket/*"
]
 }
]
}

4. In the policy, replace example-bucket with the name of your bucket.

5. Click Save.

To upload an index document

1. Create a document. The file name must be same as the name that you provided for the index
document earlier.

2. Using the console, upload the index document to your bucket.
For instructions, go to Uploading Objects into Amazon S3 in the Amazon Simple Storage Service
Console User Guide.

Test your website

• Enter the following URL in the browser, replacing example-bucket with the name of your
bucket and website-region with the name of the region where you deployed your bucket. For
information about region names, see Website Endpoints (p. 450)).

http://example-bucket.s3-website-region.amazonaws.com

If your browser displays your index.html page, the website was successfully deployed.

Note
HTTPS access to the website is not supported.

You now have a website hosted on Amazon S3. This website is available at the Amazon S3 website
endpoint. However, you might have a domain such as example.com that you want to use to serve
the content from the website you created. You might also want to use Amazon S3's root domain
support to serve requests for both the http://www.example.com and http://example.com. This
requires additional steps. For an example, see Example: Setting Up a Static Website Using a Custom
Domain (p. 464).

Example: Setting Up a Static Website Using a
Custom Domain
Topics

• Before You Begin (p. 465)

• Step 1: Register a Domain (p. 465)

• Step 2: Create and Configure Buckets and Upload Data (p. 465)

• Step 3: Create and Configure Amazon Route 53 Hosted Zone (p. 468)

• Step 4: Switch to Amazon Route 53 as Your DNS Provider (p. 470)

• Step 5: Testing (p. 471)

API Version 2006-03-01
464

http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html

Amazon Simple Storage Service Developer Guide
Example: Setting Up a Static

Website Using a Custom Domain

Suppose you want to host your static website on Amazon S3. You have registered a domain, for
example, example.com, and you want requests for http://www.example.com and http://
example.com to be served from your Amazon S3 content.

Whether you have an existing static website that you now want to host on Amazon S3 or you are
starting from scratch, this example will help you host websites on Amazon S3.

Before You Begin
As you walk through the steps in this example, note that you will work with the following services:

Domain registrar of your choice– If you do not already have a registered domain name, such as
example.com, you will need to create and register one with a registrar of your choice. You can
typically register a domain for a small yearly fee. For procedural information about registering a domain
name, see the web site of the registrar

Amazon S3– You will use Amazon S3 to create buckets, upload a sample website page, configure
permissions so everyone can see the content, and then configure the buckets for website hosting. In
this example, because you want to allow requests for both http://www.example.com and http://
example.com, you will create two buckets; however, you will host content in only one bucket. You will
configure the other Amazon S3 bucket to redirect requests to the bucket that hosts the content.

Amazon Route 53– You will configure Amazon Route 53 as your DNS provider. You will create a
hosted zone in Amazon Route 53 for your domain and configure applicable DNS records. If you are
switching from an existing DNS provider, you will need to ensure that you have transferred all of the
DNS records for your domain.

As you walk through this example, a basic familiarity with domains, Domain Name System (DNS),
CNAME records, and A records would be helpful. A detailed explanation of these concepts is beyond
the scope of this guide, but your domain registrar should provide any basic information that you need.

In this step, we use Amazon Route 53, however most registrars can be used to define a CNAME
record pointing to an Amazon S3 bucket.

Note
All the steps in this example use example.com as a domain name. You will need to replace
this domain name with the one you registered.

Step 1: Register a Domain
If you already have a registered domain, you can skip this step. If you are new to hosting a website,
your first step is to register a domain, such as example.com, with a registrar of your choice.

After you have chosen a registrar, you will register your domain name according to the instructions at
the registrar’s website. For a list of registrar web sites that you can use to register your domain name,
see Information for Registrars and Registrants at the ICANN.org website.

When you have a registered domain name, your next task is to create and configure Amazon S3
buckets for website hosting and to upload your website content.

Step 2: Create and Configure Buckets and Upload Data
In this example, to support requests from both the root domain such as example.com and subdomain
such as www.example.com, you will create two buckets. One bucket will contain the content and you
will configure the other bucket to redirect requests. You perform the following tasks in Amazon S3
console to create and configure your website:

1. Create two buckets.

2. Configure these buckets for website hosting.

3. Test the Amazon S3 provided bucket website endpoint.

API Version 2006-03-01
465

https://www.icann.org/resources/pages/registrars-0d-2012-02-25-en

Amazon Simple Storage Service Developer Guide
Example: Setting Up a Static

Website Using a Custom Domain

Step 2.1: Create Two Buckets

The bucket names must match the names of the website that you are hosting. For example, to host
your example.com website on Amazon S3, you would create a bucket named example.com. To host
a website under www.example.com, you would name the bucket www.example.com. In this example,
your website will support requests from both example.com and www.example.com.

In this step, you will sign in to the Amazon S3 console with your AWS account credentials and create
the following two buckets.

• example.com

• www.example.com

Note
To create the buckets for this example, follow these steps. As you walk through this example,
substitute the domain name that you registered for example.com.

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Create two buckets that match your domain name and subdomain. For instance, example.com
and www.example.com.
For step-by-step instructions, go to Creating a Bucket in the Amazon Simple Storage Service
Console User Guide.

Note
Like domains, subdomains must have their own Amazon S3 buckets, and the buckets
must share the exact names as the subdomains. In this example, we are creating the
www.example.com subdomain, so we need to have an Amazon S3 bucket named
www.example.com as well.

3. Upload your website data to the example.com bucket.

You will host your content out of the root domain bucket (example.com), and you will redirect
requests for www.example.com to the root domain bucket. Note that you can store content in
either bucket. For this example you will host content in example.com bucket. The content can be
text files, family photos, videos—whatever you want. If you have not yet created a website, then
you only need one file for this example. You can upload any file. For example, you can create a file
using the following HTML and upload it the bucket. The file name of the home page of a website is
typically index.html, but you can give it any name. In a later step, you will provide this file name as
the index document name for your website.

<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>My Website Home Page</title>
</head>
<body>
 <h1>Welcome to my website</h1>
 <p>Now hosted on Amazon S3!</p>
</body>
</html>

For step-by-step instructions, go to Uploading Objects into Amazon S3 in the Amazon Simple
Storage Service Console User Guide.

4. Configure permissions for your objects to make them publicly accessible.

Attach the following bucket policy to the example.com bucket substituting the name of your
bucket for example.com. For step-by-step instructions to attach a bucket policy, go to Editing
Bucket Permissions in the Amazon Simple Storage Service Console User Guide.

API Version 2006-03-01
466

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingBucketPermissions.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingBucketPermissions.html

Amazon Simple Storage Service Developer Guide
Example: Setting Up a Static

Website Using a Custom Domain

{
 "Version":"2012-10-17",
 "Statement":[{
 "Sid":"AddPerm",
 "Effect":"Allow",
 "Principal": "*",
 "Action":["s3:GetObject"],
 "Resource":["arn:aws:s3:::example.com/*"
]
 }
]
}

You now have two buckets, example.com and www.example.com, and you have uploaded
your website content to the example.com bucket. In the next step, you will configure
www.example.com to redirect requests to your example.com bucket. By redirecting requests you
can maintain only one copy of your website content and both visitors who specify “www” in their
browsers and visitors that only specify the root domain will both be routed to the same website
content in your example.com bucket.

Step 2.2: Configure Buckets for Website Hosting

When you configure a bucket for website hosting, you can access the website using the Amazon S3
assigned bucket website endpoint.

In this step, you will configure both buckets for website hosting. First, you will configure example.com
as a website and then you'll configure www.example.com to redirect all requests to the example.com
bucket.

To configure example.com bucket for website hosting

1. Configure example.com bucket for website hosting. In the Index Document box, type the name
that you gave your index page.

For step-by-step-instructions, go to Managing Bucket Website Configuration in the Amazon Simple
Storage Service Console User Guide. Make a note of the URL for the website endpoint. You will
need it later.

API Version 2006-03-01
467

http://docs.aws.amazon.com/AmazonS3/latest/UG/ConfiguringBucketWebsite.html

Amazon Simple Storage Service Developer Guide
Example: Setting Up a Static

Website Using a Custom Domain

2. To test the website, enter the Endpoint URL in your browser.

Your browser will display the index document page. Next, you will configure www.example.com
bucket to redirect all requests for www.example.com to example.com.

To redirect requests from www.example.com to example.com

1. In the Amazon S3 console, in the Buckets list, right-click www.example.com and then click
Properties.

2. Under Static Website Hosting, click Redirect all requests to another host name. In the
Redirect all requests box, type example.com.

3. To test the website, enter the Endpoint URL in your browser.

Your request will be redirected and the browser will display the index document for example.com.

The following Amazon S3 bucket website endpoints are accessible to any internet user:

example.com.s3-website-us-east-1.amazonaws.com

http://www.example.com.s3-website-us-east-1.amazonaws.com

Now you will do additional configuration to serve requests from the domain you registered in the
preceding step. For example, if you registered a domain example.com, you want to serve requests
from the following URLs :

http://example.com

http://www.example.com

In the next step, we will use Amazon Route 53 to enable customers to use the URLs above to navigate
to your site.

Step 3: Create and Configure Amazon Route 53 Hosted Zone

Now you will configure Amazon Route 53 as your Domain Name System (DNS) provider. You must
use Amazon Route 53 if you want to serve content from your root domain, such as example.com. You
will create a hosted zone, which holds the DNS records associated with your domain:

API Version 2006-03-01
468

Amazon Simple Storage Service Developer Guide
Example: Setting Up a Static

Website Using a Custom Domain

• An alias record that maps the domain example.com to the example.com bucket. This is the bucket
that you configured as a website endpoint in step 2.2.

• Another alias record that maps the subdomain www.example.com to the www.example.com bucket.
You configured this bucket to redirect requests to the example.com bucket in step 2.2.

Step 3.1: Create a Hosted Zone for Your Domain

Go to the Amazon Route 53 console at https://console.aws.amazon.com/route53 and then create
a hosted zone for your domain. For instructions, go to Creating a Hosted Zone in the http://
docs.aws.amazon.com/Route53/latest/DeveloperGuide/.

The following example shows the hosted zone created for the example.com domain. Write down the
Amazon Route 53 name servers (NS) for this domain. You will need them later.

Step 3.2: Add Alias Records for example.com and www.example.com

The alias records that you add to the hosted zone for your domain will map example.com and
www.example.com to the corresponding Amazon S3 buckets. Instead of using IP addresses, the alias
records use the Amazon S3 website endpoints. Amazon Route 53 maintains a mapping between the
alias records and the IP addresses where the Amazon S3 buckets reside.

For step-by-step instructions, see Creating Resource Record Sets by Using the Amazon Route 53
Console in the Amazon Route 53 Developer Guide.

The following screenshot shows the alias record for example.com as an illustration. You will also need
to create an alias record for www.example.com.

API Version 2006-03-01
469

https://console.aws.amazon.com/route53/home
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/MigratingDNS.html#Step_CreateHostedZone
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-creating.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-creating.html

Amazon Simple Storage Service Developer Guide
Example: Setting Up a Static

Website Using a Custom Domain

To enable this hosted zone, you must use Amazon Route 53 as the DNS server for your domain
example.com. Before you switch, if you are moving an existing website to Amazon S3, you must
transfer DNS records associated with your domain example.com to the hosted zone that you created
in Amazon Route 53 for your domain. If you are creating a new website, you can go directly to step 4.

Note
Creating, changing, and deleting resource record sets take time to propagate to the Route
53 DNS servers. Changes generally propagate to all Route 53 name servers in a couple of
minutes. In rare circumstances, propagation can take up to 30 minutes.

Step 3.3: Transfer Other DNS Records from Your Current DNS Provider to
Amazon Route 53

Before you switch to Amazon Route 53 as your DNS provider, you must transfer any remaining DNS
records from your current DNS provider, including MX records, CNAME records, and A records, to
Amazon Route 53. You don't need to transfer the following records:

• NS records– Instead of transferring these, you replace their values with the name server values that
are provided by Amazon Route 53.

• SOA record– Amazon Route 53 provides this record in the hosted zone with a default value.

Migrating required DNS records is a critical step to ensure the continued availability of all the existing
services hosted under the domain name.

Step 4: Switch to Amazon Route 53 as Your DNS Provider
To switch to Amazon Route 53 as your DNS provider, you must go to your current DNS provider
and update the name server (NS) record to use the name servers in your delegation set in Amazon
Route 53.

API Version 2006-03-01
470

Amazon Simple Storage Service Developer Guide
Example: Setting Up a Static

Website Using a Custom Domain

Go to your DNS provider site and update the NS record with the delegation set values of the hosted
zone as shown in the following Amazon Route 53 console screenshot. For more information, go to
Updating Your DNS Service's Name Server Records in Amazon Route 53 Developer Guide.

When the transfer to Amazon Route 53 is complete, there are tools that you can use to verify the name
server for your domain has indeed changed. On a Linux computer, you can use the dig DNS lookup
utility. For example, this dig command:

dig +recurse +trace www.example.com any

returns the following output (only partial output is shown). The output shows the same four name
servers the name servers on Amazon Route 53 hosted zone you created for example.com domain.

...
example.com. 172800 IN NS ns-9999.awsdns-99.com.
example.com. 172800 IN NS ns-9999.awsdns-99.org.
example.com. 172800 IN NS ns-9999.awsdns-99.co.uk.
example.com. 172800 IN NS ns-9999.awsdns-99.net.

www.example.com. 300 IN CNAME www.example.com.s3-website-us-
east-1.amazonaws.com.
...

Step 5: Testing

To verify that the website is working correctly, in your browser, try the following URLs:

• http://example.com - Displays the index document in the example.com bucket.

• http://www.example.com- Redirects your request to http://example.com.

In some cases, you may need to clear the cache to see the expected behavior.

API Version 2006-03-01
471

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/MigratingDNS.html#Step_UpdateRegistrar

Amazon Simple Storage Service Developer Guide
Overview

Configuring Amazon S3 Event
Notifications

The Amazon S3 notification feature enables you to receive notifications when certain events happen
in your bucket. To enable notifications, you must first add a notification configuration identifying
the events you want Amazon S3 to publish, and the destinations where you want Amazon S3 to
send the event notifications. You store this configuration in the notification subresource (see Bucket
Configuration Options (p. 61)) associated with a bucket. Amazon S3 provides an API for you to
manage this subresource.

Topics

• Overview (p. 472)

• How to Enable Event Notifications (p. 473)

• Event Notification Types and Destinations (p. 475)

• Configuring Notifications with Object Key Name Filtering (p. 476)

• Granting Permissions to Publish Event Notification Messages to a Destination (p. 481)

• Example Walkthrough 1: Configure a Bucket for Notifications (Message Destination: SNS Topic
and SQS Queue) (p. 483)

• Example Walkthrough 2: Configure a Bucket for Notifications (Message Destination: AWS
Lambda) (p. 489)

• Event Message Structure (p. 489)

Overview
Currently, Amazon S3 can publish the following events:

• A new object created event—Amazon S3 supports multiple APIs to create objects. You can request
notification when only a specific API is used (e.g., s3:ObjectCreated:Put) or you can use a
wildcard (e.g., s3:ObjectCreated:*) to request notification when an object is created regardless
of the API used.

• An object removal event—Amazon S3 supports deletes of versioned and unversioned objects. For
information about object versioning, see Object Versioning (p. 106) and Using Versioning (p. 423).

You can request notification when an object is deleted or a versioned object is
permanently deleted by using the s3:ObjectRemoved:Delete event type. Or you

API Version 2006-03-01
472

Amazon Simple Storage Service Developer Guide
How to Enable Event Notifications

can request notification when a delete marker is created for a versioned object by
using s3:ObjectRemoved:DeleteMarkerCreated. You can also use a wildcard
s3:ObjectRemoved:* to request notification anytime an object is deleted. For information about
deleting versioned objects, see Deleting Object Versions (p. 437).

• A Reduced Redundancy Storage (RRS) object lost event—Amazon S3 sends a notification message
when it detects that an object of the RRS storage class has been lost.

For a list of supported event types, see Supported Event Types (p. 475).

Amazon S3 supports the following destinations where it can publish events:

• Amazon Simple Notification Service (Amazon SNS) topic

Amazon SNS is a flexible, fully managed push messaging service. Using this service, you can push
messages to mobile devices or distributed services. With SNS you can publish a message once, and
deliver it one or more times. An SNS topic is an access point that allows recipients to dynamically
subscribe to for event notification. For more information about SNS, go to the Amazon SNS product
detail page.

• Amazon Simple Queue Service (Amazon SQS) queue

Amazon SQS is a scalable and fully managed message queuing service. You can use SQS
to transmit any volume of data without requiring other services to be always available. In your
notification configuration you can request that Amazon S3 publish events to an SQS queue. For
more information about SQS, go to Amazon SQS product detail page.

• AWS Lambda

AWS Lambda is a compute service that makes it easy for you to build applications that respond
quickly to new information. AWS Lambda runs your code in response to events such as image
uploads, in-app activity, website clicks, or outputs from connected devices. You can use AWS
Lambda to extend other AWS services with custom logic, or create your own back-end that operates
at AWS scale, performance, and security. With AWS Lambda, you can easily create discrete, event-
driven applications that execute only when needed and scale automatically from a few requests per
day to thousands per second.

AWS Lambda can run custom code in response to Amazon S3 bucket events. You upload your
custom code to AWS Lambda and create what is called a Lambda function. When Amazon S3
detects an event of a specific type (for example, an object created event), it can publish the event
to AWS Lambda and invoke your function in Lambda. In response, AWS Lambda executes your
function. For more information, go to AWS Lambda product detail page.

The following sections offer more detail about how to enable event notifications on a bucket. The
subtopics also provide example walkthroughs to help you explore the notification feature.

• Example Walkthrough 1: Configure a Bucket for Notifications (Message Destination: SNS Topic and
SQS Queue) (p. 483)

• Example Walkthrough 2: Configure a Bucket for Notifications (Message Destination: AWS
Lambda) (p. 489)

How to Enable Event Notifications
Enabling notifications is a bucket-level operation; that is, you store notification configuration information
in the notification subresource associated with a bucket. You can use any of the following methods to
manage notification configuration:

• Using the Amazon S3 console

API Version 2006-03-01
473

http://aws.amazon.com/sns/
http://aws.amazon.com/sqs/
http://aws.amazon.com/lambda/

Amazon Simple Storage Service Developer Guide
How to Enable Event Notifications

The console UI enables you to set a notification configuration on a bucket without having to write
any code. For instruction, go to Enabling Event Notifications in the Amazon Simple Storage Service
Console User Guide.

• Programmatically using the AWS SDKs

Note
If you need to, you can also make the Amazon S3 REST API calls directly from your code.
However, this can be cumbersome because it requires you to write code to authenticate
your requests.

Internally, both the console and the SDKs call the Amazon S3 REST API to manage notification
subresources associated with the bucket. For notification configuration using AWS SDK examples,
see the walkthrough link provided in the preceding section.

Regardless of the method you use, Amazon S3 stores the notification configuration as XML in the
notification subresource associated with a bucket. For information about bucket subresources, see
Bucket Configuration Options (p. 61)). By default, notifications are not enabled for any type of event.
Therefore, initially the notification subresource stores an empty configuration.

<NotificationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
</NotificationConfiguration>

To enable notifications for events of specific types, you replace the XML with the appropriate
configuration that identifies the event types you want Amazon S3 to publish and the destination
where you want the events published. For each destination, you add a corresponding XML
configuration. For example:

• Publish event messages to an SQS queue—To set an SQS queue as the notification destination
for one or more event types, you add the QueueConfiguration.

<NotificationConfiguration>
 <QueueConfiguration>
 <Id>optional-id-string</Id>
 <Queue>sqs-queue-arn</Queue>
 <Event>event-type</Event>
 <Event>event-type</Event>
 ...
 </QueueConfiguration>
 ...
</NotificationConfiguration>

• Publish event messages to an SNS topic—To set an SNS topic as the notification destination for
specific event types, you add the TopicConfiguration.

<NotificationConfiguration>
 <TopicConfiguration>
 <Id>optional-id-string</Id>
 <Topic>sns-topic-arn</Topic>
 <Event>event-type</Event>
 <Event>event-type</Event>
 ...
 </TopicConfiguration>
 ...
</NotificationConfiguration>

API Version 2006-03-01
474

http://docs.aws.amazon.com/AmazonS3/latest/UG/SettingBucketNotifications.html

Amazon Simple Storage Service Developer Guide
Event Notification Types and Destinations

• Invoke the AWS Lambda function and provide an event message as an argument—To
set a Lambda function as the notification destination for specific event types, you add the
CloudFunctionConfiguration.

<NotificationConfiguration>
 <CloudFunctionConfiguration>
 <Id>optional-id-string</Id>
 <CloudFunction>cloud-function-arn</CloudFunction>
 <Event>event-type</Event>
 <Event>event-type</Event>
 ...
 </CloudFunctionConfiguration>
 ...
</NotificationConfiguration>

To remove all notifications configured on a bucket, you save an empty
<NotificationConfiguration/> element in the notification subresource.

When Amazon S3 detects an event of the specific type, it publishes a message with the event
information. For more information, see Event Message Structure (p. 489).

Event Notification Types and Destinations
This section describes the event notification types that are supported by Amazon S3 and the type of
destinations where the notifications can be published.

Supported Event Types
Amazon S3 can publish events of the following types. You specify these event types in the notification
configuration.

Event types Description

s3:ObjectCreated:*

s3:ObjectCreated:Put

s3:ObjectCreated:Post

s3:ObjectCreated:Copy

s3:ObjectCreated:CompleteMultipartUpload

Amazon S3 APIs such as PUT, POST, and COPY can
create an object. Using these event types, you can enable
notification when an object is created using a specific API,
or you can use the s3:ObjectCreated:* event type to request
notification regardless of the API that was used to create an
object.

You will not receive event notifications from failed operations.

s3:ObjectRemoved:*

s3:ObjectRemoved:Delete

s3:ObjectRemoved:DeleteMarkerCreated

By using the ObjectRemoved event types, you can enable
notification when an object or a batch of objects is removed
from a bucket.

You can request notification when an object is deleted or
a versioned object is permanently deleted by using the
s3:ObjectRemoved:Delete event type. Or you can request
notification when a delete marker is created for a versioned
object by using s3:ObjectRemoved:DeleteMarkerCreated. For
information about deleting versioned objects, see Deleting
Object Versions (p. 437). You can also use a wildcard
s3:ObjectRemoved:* to request notification anytime an
object is deleted.

API Version 2006-03-01
475

Amazon Simple Storage Service Developer Guide
Supported Destinations

Event types Description

You will not receive event notifications from automatic deletes
from lifecycle policies or from failed operations.

s3:ReducedRedundancyLostObject You can use this event type to request Amazon S3 to send a
notification message when Amazon S3 detects that an object
of the RRS storage class is lost.

Supported Destinations
Amazon S3 can send event notification messages to the following destinations. You specify the ARN
value of these destinations in the notification configuration.

• Publish event messages to an Amazon Simple Notification Service (Amazon SNS) topic

• Publish event messages to an Amazon Simple Queue Service (Amazon SQS) queue

• Publish event messages to AWS Lambda by invoking a Lambda function and providing the event
message as an argument

You must grant Amazon S3 permissions to post messages to an Amazon SNS topic or an Amazon
SQS queue. You must also grant Amazon S3 permission to invoke an AWS Lambda function on your
behalf. For information about granting these permissions, see Granting Permissions to Publish Event
Notification Messages to a Destination (p. 481).

Configuring Notifications with Object Key Name
Filtering

You can configure notifications to be filtered by the prefix and suffix of the key name of objects. For
example, you can set up a configuration so that you are sent a notification only when image files with
a ".jpg" extension are added to a bucket. Or you can have a configuration that delivers a notification
to an Amazon SNS topic when an object with the prefix "images/" is added to the bucket, while having
notifications for objects with a "logs/" prefix in the same bucket delivered to an AWS Lambda function.

You can setup notification configurations that use object key name filtering in the Amazon S3 console
and by using Amazon S3 APIs through the AWS SDKs or the REST APIs directly. For information
about using the console UI to set a notification configuration on a bucket, go to Enabling Event
Notifications in the Amazon Simple Storage Service Console User Guide.

Amazon S3 stores the notification configuration as XML in the notification subresource associated
with a bucket as described in How to Enable Event Notifications (p. 473). You use the Filter XML
structure to define the rules for notifications to be filtered by the prefix and/or suffix of an object key
name. For information about the details of the Filter XML structure, see PUT Bucket notification in
the Amazon Simple Storage Service API Reference.

Notification configurations that use Filter cannot define filtering rules with overlapping prefixes,
overlapping suffixes, or prefix and suffix overlapping. The following sections have examples of valid
notification configurations with object key name filtering and examples of notification configurations that
are invalid because of prefix/suffix overlapping.

API Version 2006-03-01
476

http://docs.aws.amazon.com/AmazonS3/latest/UG/SettingBucketNotifications.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/SettingBucketNotifications.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTnotification.html

Amazon Simple Storage Service Developer Guide
Examples of Valid Notification Configurations

with Object Key Name Filtering

Examples of Valid Notification Configurations with
Object Key Name Filtering
The following notification configuration contains a queue configuration identifying an Amazon SQS
queue for Amazon S3 to publish events to of the s3:ObjectCreated:Put type. The events will be
published whenever an object that has a prefix of images/ and a jpg suffix is PUT to a bucket.

<NotificationConfiguration>
 <QueueConfiguration>
 <Id>1</Id>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>prefix</Name>
 <Value>images/</Value>
 </FilterRule>
 <FilterRule>
 <Name>suffix</Name>
 <Value>jpg</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 <Queue>arn:aws:sqs:us-west-2:444455556666:s3notificationqueue</Queue>
 <Event>s3:ObjectCreated:Put</Event>
 </QueueConfiguration>
 </NotificationConfiguration>

The following notification configuration has multiple non-overlapping prefixes. The configuration defines
that notifications for PUT requests in the images/ folder will go to queue-A while notifications for PUT
requests in the logs/ folder will go to queue-B.

<NotificationConfiguration>
 <QueueConfiguration>
 <Id>1</Id>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>prefix</Name>
 <Value>images/</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 <Queue>arn:aws:sqs:us-west-2:444455556666:sqs-queue-A</Queue>
 <Event>s3:ObjectCreated:Put</Event>
 </QueueConfiguration>
 <QueueConfiguration>
 <Id>2</Id>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>prefix</Name>
 <Value>logs/</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 <Queue>arn:aws:sqs:us-west-2:444455556666:sqs-queue-B</Queue>

API Version 2006-03-01
477

Amazon Simple Storage Service Developer Guide
Examples of Valid Notification Configurations

with Object Key Name Filtering

 <Event>s3:ObjectCreated:Put</Event>
 </QueueConfiguration>
 </NotificationConfiguration>

The following notification configuration has multiple non-overlapping suffixes. The configuration defines
that all .jpg images newly added to the bucket will be processed by Lambda cloud-function-A and all
newly added .png images will be processed by cloud-function-B. The suffixes .png and .jpg are not
overlapping even though they have the same last letter. Two suffixes are considered overlapping if a
given string can end with both suffixes. A string cannot end with both .png and .jpg so the suffixes in
the example configuration are not overlapping suffixes.

<NotificationConfiguration>
 <CloudFunctionConfiguration>
 <Id>1</Id>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>suffix</Name>
 <Value>.jpg</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 <CloudFunction>arn:aws:lambda:us-west-2:444455556666:cloud-function-A</
CloudFunction>
 <Event>s3:ObjectCreated:Put</Event>
 </CloudFunctionConfiguration>
 <CloudFunctionConfiguration>
 <Id>2</Id>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>suffix</Name>
 <Value>.png</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 <CloudFunction>arn:aws:lambda:us-west-2:444455556666:cloud-function-B</
CloudFunction>
 <Event>s3:ObjectCreated:Put</Event>
 </CloudFunctionConfiguration>
 </NotificationConfiguration>

Your notification configurations that use Filter cannot define filtering rules with overlapping prefixes
for the same event types, unless the overlapping prefixes are used with suffixes that do not overlap.
The following example configuration shows how objects created with a common prefix but non-
overlapping suffixes can be delivered to different destinations.

<NotificationConfiguration>
 <CloudFunctionConfiguration>
 <Id>1</Id>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>prefix</Name>
 <Value>images</Value>
 </FilterRule>
 <FilterRule>

API Version 2006-03-01
478

Amazon Simple Storage Service Developer Guide
Examples of Notification Configurations
with Invalid Prefix/Suffix Overlapping

 <Name>suffix</Name>
 <Value>.jpg</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 <CloudFunction>arn:aws:lambda:us-west-2:444455556666:cloud-function-A</
CloudFunction>
 <Event>s3:ObjectCreated:Put</Event>
 </CloudFunctionConfiguration>
 <CloudFunctionConfiguration>
 <Id>2</Id>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>prefix</Name>
 <Value>images</Value>
 </FilterRule>
 <FilterRule>
 <Name>suffix</Name>
 <Value>.png</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 <CloudFunction>arn:aws:lambda:us-west-2:444455556666:cloud-function-B</
CloudFunction>
 <Event>s3:ObjectCreated:Put</Event>
 </CloudFunctionConfiguration>
</NotificationConfiguration>

Examples of Notification Configurations with Invalid
Prefix/Suffix Overlapping
Your notification configurations that use Filter, for the most part, cannot define filtering rules with
overlapping prefixes, overlapping suffixes, or overlapping combinations of prefixes and suffixes for the
same event types. (You can have overlapping prefixes as long as the suffixes do not overlap. For an
example, see Configuring Notifications with Object Key Name Filtering (p. 476).)

You can use overlapping object key name filters with different event types. For example, you could
create a notification configuration that uses the prefix image/ for the ObjectCreated:Put event type
and the prefix image/ for the ObjectDeleted:* event type.

You will get an error if you try to save an notification configuration that has invalid overlapping name
filters for the same event types, when using the AWS Amazon S3 console or when using the Amazon
S3 API. This section shows examples of notification configurations that are invalid because of
overlapping name filters.

Any existing notification configuration rule is assumed to have a default prefix and suffix that match
any other prefix and suffix respectively. The following notification configuration is invalid because it
has overlapping prefixes, where the root prefix overlaps with any other prefix. (The same thing would
be true if we were using suffix instead of prefix in this example. The root suffix overlaps with any other
suffix.)

<NotificationConfiguration>
 <TopicConfiguration>
 <Topic>arn:aws:sns:us-west-2:444455556666:sns-notification-one</
Topic>
 <Event>s3:ObjectCreated:*</Event>

API Version 2006-03-01
479

Amazon Simple Storage Service Developer Guide
Examples of Notification Configurations
with Invalid Prefix/Suffix Overlapping

 </TopicConfiguration>
 <TopicConfiguration>
 <Topic>arn:aws:sns:us-west-2:444455556666:sns-notification-two</
Topic>
 <Event>s3:ObjectCreated:*</Event>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>prefix</Name>
 <Value>images</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 </TopicConfiguration>
 </NotificationConfiguration>

The following notification configuration is invalid because it has overlapping suffixes. Two suffixes are
considered overlapping if a given string can end with both suffixes. A string can end with jpg and pg
so the suffixes are overlapping. (The same is true for prefixes, two prefixes are considered overlapping
if a given string can begin with both prefixes.)

 <NotificationConfiguration>
 <TopicConfiguration>
 <Topic>arn:aws:sns:us-west-2:444455556666:sns-topic-one</Topic>
 <Event>s3:ObjectCreated:*</Event>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>suffix</Name>
 <Value>jpg</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 </TopicConfiguration>
 <TopicConfiguration>
 <Topic>arn:aws:sns:us-west-2:444455556666:sns-topic-two</Topic>
 <Event>s3:ObjectCreated:Put</Event>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>suffix</Name>
 <Value>pg</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 </TopicConfiguration>
</NotificationConfiguration

The following notification configuration is invalid because it has overlapping prefixes and suffixes.

<NotificationConfiguration>
 <TopicConfiguration>
 <Topic>arn:aws:sns:us-west-2:444455556666:sns-topic-one</Topic>
 <Event>s3:ObjectCreated:*</Event>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>prefix</Name>

API Version 2006-03-01
480

Amazon Simple Storage Service Developer Guide
Granting Permissions to Publish Event
Notification Messages to a Destination

 <Value>images</Value>
 </FilterRule>
 <FilterRule>
 <Name>suffix</Name>
 <Value>jpg</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 </TopicConfiguration>
 <TopicConfiguration>
 <Topic>arn:aws:snsus-west-2:444455556666:sns-topic-two</Topic>
 <Event>s3:ObjectCreated:Put</Event>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>suffix</Name>
 <Value>jpg</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 </TopicConfiguration>
</NotificationConfiguration>

Granting Permissions to Publish Event
Notification Messages to a Destination

Before Amazon S3 can publish messages to a destination, you must grant the Amazon S3 principal the
necessary permissions to call the relevant API to publish messages to an SNS topic, an SQS queue, or
a Lambda function.

Granting Permissions to Invoke an AWS Lambda
Function
Amazon S3 publishes event messages to AWS Lambda by invoking a Lambda function and providing
the event message as an argument.

When you use the Amazon S3 console to configure event notifications on an Amazon S3 bucket for
a Lambda function, the Amazon S3 console will set up the necessary permissions on the Lambda
function so that Amazon S3 has permissions to invoke the function from the bucket. For more
information, see Enabling Event Notifications in the Amazon Simple Storage Service Console User
Guide.

You can also grant Amazon S3 permissions from AWS Lambda to invoke your Lambda function. For
more information, see Tutorial: Using AWS Lambda with Amazon S3 in the AWS Lambda Developer
Guide.

Granting Permissions to Publish Messages to an
SNS Topic or an SQS Queue
You attach an IAM policy to the destination SNS topic or SQS queue to grant Amazon S3 permissions
to publish messages to the SNS topic or SQS queue.

Example of an IAM policy that you attach to the destination SNS topic.

API Version 2006-03-01
481

http://docs.aws.amazon.com/AmazonS3/latest/UG/SettingBucketNotifications.html
http://docs.aws.amazon.com/lambda/latest/dg/with-s3-example.html

Amazon Simple Storage Service Developer Guide
Granting Permissions to Publish Messages

to an SNS Topic or an SQS Queue

{
 "Version": "2008-10-17",
 "Id": "example-ID",
 "Statement": [
 {
 "Sid": "example-statement-ID",
 "Effect": "Allow",
 "Principal": {
 "Service": "s3.amazonaws.com"
 },
 "Action": [
 "SNS:Publish"
],
 "Resource": "SNS-ARN",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:s3:*:*:bucket-name"
 }
 }
 }
]
}

Example of an IAM policy that you attach to the destination SQS queue.

{
 "Version": "2008-10-17",
 "Id": "example-ID",
 "Statement": [
 {
 "Sid": "example-statement-ID",
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "SQS:SendMessage"
],
 "Resource": "SQS-ARN",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:s3:*:*:bucket-name"
 }
 }
 }
]
}

Note that for both the Amazon SNS and Amazon SQS IAM policies, you can specify the StringLike
condition in the policy, instead of the ArnLike condition.

"Condition": {
 "StringLike": {
 "aws:SourceArn": "arn:aws:s3:*:*:bucket-name"
 }
 }

API Version 2006-03-01
482

Amazon Simple Storage Service Developer Guide
Example Walkthrough 1

For an example of how to attach a policy to a SNS topic or an SQS queue, see Example Walkthrough
1: Configure a Bucket for Notifications (Message Destination: SNS Topic and SQS Queue) (p. 483).

For more information about permissions, see the following topics:

• Example Cases for Amazon SNS Access Control in the Amazon Simple Notification Service
Developer Guide

• Access Control Using AWS Identity and Access Management (IAM) in the Amazon Simple Queue
Service Developer Guide

Example Walkthrough 1: Configure a Bucket for
Notifications (Message Destination: SNS Topic
and SQS Queue)

Topics

• Walkthrough Summary (p. 483)

• Step 1: Create an Amazon SNS Topic (p. 484)

• Step 2: Create an Amazon SQS Queue (p. 484)

• Step 3: Add a Notification Configuration to Your Bucket (p. 485)

• Step 4: Test the Setup (p. 489)

Walkthrough Summary
In this walkthrough you add notification configuration on a bucket requesting Amazon S3 to:

• Publish events of the s3:ObjectCreated:* type to an Amazon SQS topic.

• Publish events of the s3:ReducedRedundancyLostObject type to an Amazon SNS topic.

For information about notification configuration, see Configuring Amazon S3 Event
Notifications (p. 472).

You can do all these steps using the console, without writing any code. In addition, code examples,
using AWS SDKs for Java and .NET are also provided so you can add notification configuration
programmatically.

You will do the following in this walkthrough:

1. Create an Amazon SNS topic.

Using the Amazon SNS console, you create an SNS topic and subscribe to the topic so that any
events posted to it are delivered to you. You will specify email as the communications protocol. After
you create a topic, Amazon SNS will send an email. You must click a link in the email to confirm the
topic subscription.

You will attach an access policy to the topic to grant Amazon S3 permission to post messages.

2. Create an Amazon SQS queue.

Using the Amazon SQS console, you create an SQS queue. You can access any messages
Amazon S3 sends to the queue programmatically. But for this walkthrough, you will verify notification
messages in the console.

API Version 2006-03-01
483

http://docs.aws.amazon.com/sns/latest/dg/AccessPolicyLanguage_UseCases_Sns.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html

Amazon Simple Storage Service Developer Guide
Step 1: Create an Amazon SNS Topic

You will attach an access policy to the topic to grant Amazon S3 permission to post messages.

3. Add notification configuration to a bucket.

Step 1: Create an Amazon SNS Topic
Follow the steps to create and subscribe to an Amazon Simple Notification Service (Amazon SNS)
topic.

1. Using Amazon SNS console create a topic. For instructions, go to Create a Topic in the Amazon
Simple Notification Service Developer Guide.

2. Subscribe to the topic. For this exercise, use email as the communications protocol. For
instructions, go to Subscribe to a Topic in the Amazon Simple Notification Service Developer
Guide.

You will get email requesting you to confirm your subscription to the topic. Confirm the
subscription.

3. Replace the access policy attached to the topic by the following policy. You must update the policy
by providing the your SNS topic ARN and bucket name.:

{
 "Version": "2008-10-17",
 "Id": "example-ID",
 "Statement": [
 {
 "Sid": "example-statement-ID",
 "Effect": "Allow",
 "Principal": {
 "AWS":"*"
 },
 "Action": [
 "SNS:Publish"
],
 "Resource": "SNS-topic-ARN",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:s3:*:*:bucket-name"
 }
 }
 }
]
}

4. Note the topic ARN.

The SNS topic you created is another resource in your AWS account, and it has a unique Amazon
Resource Name (ARN). You will need this ARN in the next step. The ARN will be of the following
format:

arn:aws:sns:aws-region:account-id:topic-name

Step 2: Create an Amazon SQS Queue
Follow the steps to create and subscribe to an Amazon Simple Queue Service (Amazon SQS) queue.

API Version 2006-03-01
484

http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
http://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html

Amazon Simple Storage Service Developer Guide
Step 3: Add a Notification Configuration to Your Bucket

1. Using the Amazon SQS console, create a queue. For instructions, go to Create a Queue in the
Amazon Simple Queue Service Getting Started Guide .

2. Replace the access policy attached to the queue with the following policy (in the SQS console, you
select the queue, and in the Permissions tab, click Edit Policy Document (Advanced).

{
 "Version": "2008-10-17",
 "Id": "example-ID",
 "Statement": [
 {
 "Sid": "example-statement-ID",
 "Effect": "Allow",
 "Principal": {
 "AWS":"*"
 },
 "Action": [
 "SQS:SendMessage"
],
 "Resource": "SQS-queue-ARN",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:s3:*:*:bucket-name"
 }
 }
 }
]
}

3. Note the queue ARN

The SQS queue you created is another resource in your AWS account, and it has a unique
Amazon Resource Name (ARN). You will need this ARN in the next step. The ARN will be of the
following format:

arn:aws:sqs:aws-region:account-id:queue-name

Step 3: Add a Notification Configuration to Your
Bucket
You can enable bucket notifications either by using the Amazon S3 console or programmatically
by using AWS SDKs. Choose any one of the options to configure notifications on your bucket. This
section provides code examples using the AWS SDKs for Java and .NET.

Step 3 (option a): Enable Notifications on a Bucket Using the
Console

Using the Amazon S3 console, add a notification configuration requesting Amazon S3 to:

• Publish events of the s3:ObjectCreated:* type to your Amazon SQS queue.

• Publish events of the s3:ReducedRedundancyLostObject type to your Amazon SNS topic.

After you save the notification configuration, Amazon S3 will post a test message, which you will get via
email.

API Version 2006-03-01
485

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/CreatingQueue.html

Amazon Simple Storage Service Developer Guide
Step 3: Add a Notification Configuration to Your Bucket

For instructions, go to Enabling Notifications in the Amazon Simple Storage Service Console User
Guide.

Step 3 (option b): Enable Notifications on a Bucket Using the
AWS SDK for .NET
The following C# code example provides a complete code listing that adds a notification configuration
to a bucket. You will need to update the code and provide your bucket name and SNS topic ARN. For
information about how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 567).

using System;
using System.Collections.Generic;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class EnableNotifications
 {
 static string bucketName = "***bucket name***";
 static string snsTopic = "***SNS topic ARN***";
 static string sqsQueue = "***SQS queue ARN***";

 static string putEventType = "s3:ObjectCreated:Put";
 static string rrsObjectLostType = "s3:ObjectCreated:Copy";

 public static void Main(string[] args)
 {
 using (var client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 Console.WriteLine("Enabling Notification on a bucket");
 EnableNotification(client);
 }

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static void EnableNotification(IAmazonS3 client)
 {
 try
 {
 List<Amazon.S3.Model.TopicConfiguration> topicConfigurations
 = new List<TopicConfiguration>();

 topicConfigurations.Add(new TopicConfiguration()
 {
 Event = rrsObjectLostType,
 Topic = snsTopic
 });

 List<Amazon.S3.Model.QueueConfiguration> queueConfigurations
 = new List<QueueConfiguration>();
 queueConfigurations.Add(new QueueConfiguration()
 {
 Events = new List<string> { putEventType },

API Version 2006-03-01
486

http://docs.aws.amazon.com/AmazonS3/latest/UG/SettingBucketNotifications.html

Amazon Simple Storage Service Developer Guide
Step 3: Add a Notification Configuration to Your Bucket

 Queue = sqsQueue
 });

 PutBucketNotificationRequest request = new
 PutBucketNotificationRequest
 {
 BucketName = bucketName,
 TopicConfigurations = topicConfigurations,
 QueueConfigurations = queueConfigurations
 };

 PutBucketNotificationResponse response =
 client.PutBucketNotification(request);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 if (amazonS3Exception.ErrorCode != null &&
 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||
 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))
 {
 Console.WriteLine("Check the provided AWS Credentials.");
 Console.WriteLine(
 "To sign up for service, go to http://aws.amazon.com/
s3");
 }
 else
 {
 Console.WriteLine(
 "Error occurred. Message:'{0}' when enabling
 notifications.",
 amazonS3Exception.Message);
 }
 }
 }
 }
}

Step 3 (option c): Enable Notifications on a Bucket Using the
AWS SDK for Java

The following Java code example provides a complete code listing that adds a notification configuration
to a bucket. You will need to update the code and provide your bucket name and SNS topic
ARN. For instructions on how to create and test a working sample, see Testing the Java Code
Examples (p. 565).

import java.io.IOException;
import java.util.Collection;
import java.util.EnumSet;
import java.util.LinkedList;

import com.amazonaws.AmazonClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.AmazonS3Exception;
import com.amazonaws.services.s3.model.BucketNotificationConfiguration;

API Version 2006-03-01
487

Amazon Simple Storage Service Developer Guide
Step 3: Add a Notification Configuration to Your Bucket

import com.amazonaws.services.s3.model.TopicConfiguration;
import com.amazonaws.services.s3.model.QueueConfiguration;
import com.amazonaws.services.s3.model.S3Event;
import
 com.amazonaws.services.s3.model.SetBucketNotificationConfigurationRequest;

public class NotificationConfigurationOnABucket {
 private static String bucketName = "*** bucket name ***";
 private static String snsTopicARN = "*** SNS Topic ARN ***";
 private static String sqsQueueARN = "*** SQS Queue ARN ***";

 public static void main(String[] args) throws IOException {
 AmazonS3 s3client = new AmazonS3Client(new
 ProfileCredentialsProvider());
 try {
 System.out.println("Setting notification configuration on a
 bucket.\n");

 BucketNotificationConfiguration notificationConfiguration = new
 BucketNotificationConfiguration();
 notificationConfiguration.addConfiguration(
 "snsTopicConfig",
 new TopicConfiguration(snsTopicARN, EnumSet
 .of(S3Event.ReducedRedundancyLostObject)));

 notificationConfiguration.addConfiguration(
 "sqsQueueConfig",
 new QueueConfiguration(sqsQueueARN, EnumSet
 .of(S3Event.ObjectCreated)));

 SetBucketNotificationConfigurationRequest request =
 new SetBucketNotificationConfigurationRequest(bucketName,
 notificationConfiguration);

 s3client.setBucketNotificationConfiguration(request);

 } catch (AmazonS3Exception ase) {
 System.out.println("Caught an AmazonServiceException, which "
 + "means your request made it "
 + "to Amazon S3, but was rejected with an error response"
 + " for some reason.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 System.out.println("Error XML" + ase.getErrorResponseXml());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException, which "
 + "means the client encountered "
 + "an internal error while trying to "
 + "communicate with S3, "
 + "such as not being able to access the network.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }
}

API Version 2006-03-01
488

Amazon Simple Storage Service Developer Guide
Step 4: Test the Setup

Step 4: Test the Setup
Now you can test the setup by uploading an object to your bucket and verify the event notification in
the Amazon SQS console. For instructions, go to Receiving a Message in the Amazon Simple Queue
Service Getting Started Guide.

Example Walkthrough 2: Configure a Bucket
for Notifications (Message Destination: AWS
Lambda)

For an example of using Amazon S3 notifications with AWS Lambda, see Using AWS Lambda with
Amazon S3 in the AWS Lambda Developer Guide.

Event Message Structure
The notification message Amazon S3 sends to publish an event is a JSON message with the following
structure. Note the following:

• The responseElements key value is useful if you want to trace the request by following up with
Amazon S3 support. Both x-amz-request-id and x-amz-id-2 help Amazon S3 to trace the
individual request. These values are the same as those that Amazon S3 returned in the response to
your original PUT request, which initiated the event.

• The s3 key provides information about the bucket and object involved in the event. Note that the
object keyname value is URL encoded. For example "red flower.jpg" becomes "red+flower.jpg".

• The sequencer key provides a way to determine the sequence of events. Event notifications are not
guaranteed to arrive in the order that the events occurred. However, notifications from events that
create objects (PUTs) and delete objects contain a sequencer, which can be used to determine the
order of events for a given object key.

If you compare the sequencer strings from two event notifications on the same object key, the
event notification with the greater sequencer hexadecimal value is the event that occurred later.
If you are using event notifications to maintain a separate database or index of your Amazon S3
objects, you will probably want to compare and store the sequencer values as you process each
event notification.

Note that:

• sequencer cannot be used to determine order for events on different object keys.

• The sequencers can be of different lengths. So to compare these values, you first right pad the
shorter value with zeros and then do lexicographical comparison.

{
 "Records":[
 {
 "eventVersion":"2.0",
 "eventSource":"aws:s3",
 "awsRegion":"us-east-1",
 "eventTime":The time, in ISO-8601 format, for example,
 1970-01-01T00:00:00.000Z, when S3 finished processing the request,

API Version 2006-03-01
489

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/ReceiveMessage.html
http://docs.aws.amazon.com/lambda/latest/dg/with-s3.html
http://docs.aws.amazon.com/lambda/latest/dg/with-s3.html

Amazon Simple Storage Service Developer Guide
Event Message Structure

 "eventName":"event-type",
 "userIdentity":{
 "principalId":"Amazon-customer-ID-of-the-user-who-caused-the-
event"
 },
 "requestParameters":{
 "sourceIPAddress":"ip-address-where-request-came-from"
 },
 "responseElements":{
 "x-amz-request-id":"Amazon S3 generated request ID",
 "x-amz-id-2":"Amazon S3 host that processed the request"
 },
 "s3":{
 "s3SchemaVersion":"1.0",
 "configurationId":"ID found in the bucket notification
 configuration",
 "bucket":{
 "name":"bucket-name",
 "ownerIdentity":{
 "principalId":"Amazon-customer-ID-of-the-bucket-owner"
 },
 "arn":"bucket-ARN"
 },
 "object":{
 "key":"object-key",
 "size":object-size,
 "eTag":"object eTag",
 "versionId":"object version if bucket is versioning-enabled,
 otherwise null",
 "sequencer": "a string representation of a hexadecimal value
 used to determine event sequence,
 only used with PUTs and DELETEs"
 }
 }
 },
 {
 // Additional events
 }
]
}

The following are example messages:

• Test message—When you configure an event notification on a bucket, Amazon S3 sends the
following test message:

{
 "Service":"Amazon S3",
 "Event":"s3:TestEvent",
 "Time":"2014-10-13T15:57:02.089Z",
 "Bucket":"bucketname",
 "RequestId":"5582815E1AEA5ADF",
 "HostId":"8cLeGAmw098X5cv4Zkwcmo8vvZa3eH3eKxsPzbB9wrR
+YstdA6Knx4Ip8EXAMPLE"
}

• Example message when an object is created using the PUT request—The following message is an
example of a message Amazon S3 sends to publish an s3:ObjectCreated:Put event:

API Version 2006-03-01
490

Amazon Simple Storage Service Developer Guide
Event Message Structure

{
 "Records":[
 {
 "eventVersion":"2.0",
 "eventSource":"aws:s3",
 "awsRegion":"us-east-1",
 "eventTime":"1970-01-01T00:00:00.000Z",
 "eventName":"ObjectCreated:Put",
 "userIdentity":{
 "principalId":"AIDAJDPLRKLG7UEXAMPLE"
 },
 "requestParameters":{
 "sourceIPAddress":"127.0.0.1"
 },
 "responseElements":{
 "x-amz-request-id":"C3D13FE58DE4C810",
 "x-amz-id-2":"FMyUVURIY8/IgAtTv8xRjskZQpcIZ9KG4V5Wp6S7S/
JRWeUWerMUE5JgHvANOjpD"
 },
 "s3":{
 "s3SchemaVersion":"1.0",
 "configurationId":"testConfigRule",
 "bucket":{
 "name":"mybucket",
 "ownerIdentity":{
 "principalId":"A3NL1KOZZKExample"
 },
 "arn":"arn:aws:s3:::mybucket"
 },
 "object":{
 "key":"HappyFace.jpg",
 "size":1024,
 "eTag":"d41d8cd98f00b204e9800998ecf8427e",
 "versionId":"096fKKXTRTtl3on89fVO.nfljtsv6qko",
 "sequencer":"0055AED6DCD90281E5"
 }
 }
 }
]
}

API Version 2006-03-01
491

Amazon Simple Storage Service Developer Guide
Use-case Scenarios

Cross-Region Replication

Cross-region replication is a bucket-level feature that enables automatic, asynchronous copying of
objects across buckets in different AWS regions. To activate this feature, you add a replication
configuration to your source bucket. In the configuration, you provide information such as the
destination bucket where you want objects replicated to. You can request Amazon S3 to replicate all
or a subset of objects with specific key name prefixes. For example, you can configure cross-region
replication to replicate only objects with the key name prefix Tax/. This causes Amazon S3 to replicate
objects with a key such as Tax/doc1 or Tax/doc2, but not an object with the key Legal/doc3.

The object replicas in the destination bucket are exact replicas of the objects in the source bucket.
They have the same key names and the same metadata—for example, creation time, owner, user-
defined metadata, version ID, ACL, and storage class (assuming you did not explicitly specify different
storage class for object replicas in the replication configuration). Amazon S3 encrypts all data in transit
across AWS regions using SSL. You can also optionally specify storage class to use when Amazon S3
creates object replicas (if you don't specify this Amazon S3 assume storage class of the source object).

Use-case Scenarios
You might configure cross-region replication on a bucket for various reasons, including these:

• Compliance requirements – Although, by default, Amazon S3 stores your data across multiple
geographically distant Availability Zones, compliance requirements might dictate that you store data
at even further distances. Cross-region replication allows you to replicate data between distant AWS
regions to satisfy these compliance requirements.

• Minimize latency – Your customers are in two geographic locations. To minimize latency in
accessing objects, you can maintain object copies in AWS regions that are geographically closer to
your users.

• Operational reasons – You have compute clusters in two different regions that analyze the same set
of objects. You might choose to maintain object copies in those regions.

Optionally, if you have cost considerations, you can direct Amazon S3 to use the STANDARD_IA
storage class for object replicas. For more information about cost considerations, see Amazon S3
Pricing.

API Version 2006-03-01
492

http://aws.amazon.com/s3/pricing/
http://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Requirements

Requirements
Requirements for cross-region replication:

• The source and destination buckets must be versioning-enabled. For more information about
versioning, see Using Versioning (p. 423).

• The source and destination buckets must be in different AWS regions. For a list of AWS regions
where you can create a bucket, see Regions and Endpoints in the AWS General Reference.

• You can replicate objects from a source bucket to only one destination bucket.

• Amazon S3 must have permission to replicate objects from that source bucket to the destination
bucket on your behalf.

You can grant these permissions by creating an IAM role that Amazon S3 can assume. You must
grant this role permissions for Amazon S3 actions so that when Amazon S3 assumes this role, it can
perform replication tasks. For more information about IAM roles, see Create an IAM Role (p. 495).

• If the source bucket owner also owns the object, the bucket owner has full permissions to replicate
the object. If not, the source bucket owner must have permission for the Amazon S3 actions
s3:GetObjectVersion and s3:GetObjectVersionACL to read the object and object ACL. For
more information about Amazon S3 actions, see Specifying Permissions in a Policy (p. 312). For
more information about resources and ownership, see Amazon S3 Resources (p. 267).

• If you are setting up cross-region replication in a cross-account scenario (where the source and
destination buckets are owned by different AWS accounts), the source bucket owner must have
permission to replicate objects in the destination bucket.

The destination bucket owner needs to grant these permissions via a bucket policy. For an example,
see Walkthrough 2: Configure Cross-Region Replication Where Source and Destination Buckets Are
Owned by Different AWS Accounts (p. 501).

Related Topics
What Is and Is Not Replicated (p. 493)

How to Set Up Cross-Region Replication (p. 495)

How to Find Replication Status of an Object (p. 509)

Cross-Region Replication and Other Bucket Configurations (p. 511)

Walkthrough 1: Configure Cross-Region Replication Where Source and Destination Buckets Are
Owned by the Same AWS Account (p. 500)

Walkthrough 2: Configure Cross-Region Replication Where Source and Destination Buckets Are
Owned by Different AWS Accounts (p. 501)

What Is and Is Not Replicated
This section explains what Amazon S3 replicates and what it does not replicate after you add a
replication configuration on a bucket.

What Is Replicated
Amazon S3 replicates the following:

API Version 2006-03-01
493

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide
What Is Not Replicated

• Any new objects created after you add a replication configuration, with exceptions described in the
next section.

• Objects created with server-side encryption using the Amazon S3-managed encryption key. The
replicated copy of the object is also encrypted using server-side encryption using the Amazon S3-
managed encryption key.

• Amazon S3 replicates only objects in the source bucket for which the bucket owner has permission
to read objects and read ACLs. For more information about resource ownership, see About the
Resource Owner (p. 267).

• Any object ACL updates are replicated, although there can be some delay before Amazon S3 can
bring the two in sync. This applies only to objects created after you add a replication configuration to
the bucket.

Delete Operation and Cross-Region Replication

If you delete an object from the source bucket, the cross-region replication behavior is as follows:

• If a DELETE request is made without specifying an object version ID, Amazon S3 adds a delete
marker, which cross-region replication replicates to the destination bucket. For more information
about versioning and delete markers, see Using Versioning (p. 423).

• If a DELETE request specifies a particular object version ID to delete, Amazon S3 deletes that
object version in the source bucket, but it does not replicate the deletion in the destination bucket (in
other words, it does not delete the same object version from the destination bucket). This behavior
protects data from malicious deletions.

What Is Not Replicated
Amazon S3 does not replicate the following:

• Amazon S3 does not retroactively replicate objects that existed before you added replication
configuration.

• Objects created with server-side encryption using either customer-provided (SSE-C) or AWS KMS–
managed encryption (SSE-KMS) keys are not replicated. For more information about server-side
encryption, see Protecting Data Using Server-Side Encryption (p. 381).

Amazon S3 does not keep the encryption keys you provide after the object is created in the source
bucket so it cannot decrypt the object for replication, and therefore it does not replicate the object.

• Amazon S3 does not replicate objects in the source bucket for which the bucket owner does not
have permissions. If the object owner is different from the bucket owner, see Granting Cross-
Account Permissions to Upload Objects While Ensuring the Bucket Owner Has Full Control (p. 340).

• Updates to bucket-level subresources are not replicated. This allows you to have different bucket
configurations on the source and destination buckets. For more information about resources, see
Amazon S3 Resources (p. 267).

• Only customer actions are replicated. Actions performed by lifecycle configuration are not replicated.
For more information lifecycle configuration, see Object Lifecycle Management (p. 109).

For example, if lifecycle configuration is enabled only on your source bucket, Amazon S3 creates
delete markers for expired objects, but it does not replicate those markers. However, you can have
the same lifecycle configuration on both the source and destination buckets if you want the same
lifecycle actions to happen to both buckets.

• Objects in the source bucket that are replicas, created by another cross-region replication, are not
replicated.

Suppose you configure cross-region replication where bucket A is the source and bucket B is the
destination. Now suppose you add another cross-region replication where bucket B is the source and

API Version 2006-03-01
494

Amazon Simple Storage Service Developer Guide
Related Topics

bucket C is the destination. In this case, objects in bucket B that are replicas of objects in bucket A
will not be replicated to bucket C.

Related Topics
Cross-Region Replication (p. 492)

How to Set Up Cross-Region Replication (p. 495)

How to Find Replication Status of an Object (p. 509)

How to Set Up Cross-Region Replication
To set up cross-region replication, you need two buckets—source and destination. These buckets must
be versioning-enabled and in different AWS regions. For a list of AWS regions where you can create a
bucket, see Regions and Endpoints in the AWS General Reference.

Important
If you have an object expiration lifecycle policy in your non-versioned bucket and you want to
maintain the same permanent delete behavior when you enable versioning, you must add a
noncurrent expiration policy. The noncurrent expiration lifecycle policy will manage the deletes
of the noncurrent object versions in the version-enabled bucket. (A version-enabled bucket
maintains one current and zero or more noncurrent object versions.) For more information,
see Lifecycle Configuration for a Bucket with Versioning in the Amazon Simple Storage
Service Console User Guide.

You can replicate objects from a source bucket to only one destination bucket. If both of the buckets
are owned by the same AWS account, do the following to set up cross-region replication from the
source to the destination bucket:

• Create an IAM role to grant Amazon S3 permission to replicate objects on your behalf.

• Add a replication configuration on the source bucket.

In addition, if the source and destination buckets are owned by two different AWS accounts, the
destination bucket owner must also add a bucket policy to grant the source bucket owner permissions
to perform replication actions.

Create an IAM Role
By default, all Amazon S3 resources—buckets, objects, and related subresources—are private: only
the resource owner can access the resource. So, Amazon S3 needs permission to read objects
from the source bucket and replicate them to the destination bucket. You grant these permissions by
creating an IAM role. When you create an IAM role, you attach the following role policies:

• A trust policy in which you trust Amazon S3 to assume the role as shown:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"s3.amazonaws.com"

API Version 2006-03-01
495

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
http://docs.aws.amazon.com/AmazonS3/latest/UG/lifecycle-configuration-bucket-with-versioning.html

Amazon Simple Storage Service Developer Guide
Create an IAM Role

 },
 "Action":"sts:AssumeRole"
 }
]
}

Note
The Principal in the policy identifies Amazon S3. For more information about IAM roles,
see IAM Roles in the IAM User Guide.

• An access policy in which you grant the role permission to perform the replication task on your
behalf. The following access policy grants these permissions:

• The s3:GetReplicationConfiguration and s3:ListBucket permissions on the source
bucket so Amazon S3 can retrieve replication configuration and list bucket (the current permission
model requires the s3:ListBucket permission to access the delete markers).

• The s3:GetObjectVersion and s3:GetObjectVersionAcl permissions on all objects in the
versioning-enabled source bucket. This allows Amazon S3 to get a specific object version and
ACL on it.

• The s3:ReplicateObject and s3:ReplicateDelete permissions on objects in the destination
bucket so that Amazon S3 can replicate objects or delete markers from the destination bucket. For
information about delete markers, see Delete Operation and Cross-Region Replication (p. 494).

For a list of Amazon S3 actions, see Specifying Permissions in a Policy (p. 312).

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetReplicationConfiguration",
 "s3:ListBucket"
],
 "Resource":[
 "arn:aws:s3:::source-bucket"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetObjectVersion",
 "s3:GetObjectVersionAcl"
],
 "Resource":[
 "arn:aws:s3:::source-bucket/*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:ReplicateObject",
 "s3:ReplicateDelete"
],
 "Resource":"arn:aws:s3:::destination-bucket/*"
 }
]
}

API Version 2006-03-01
496

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Simple Storage Service Developer Guide
Add Replication Configuration

Add Replication Configuration
When you add a replication configuration to a bucket, Amazon S3 stores the configuration as XML. The
following are example configurations. For more information about the XML structure, see PUT Bucket
replication in the Amazon Simple Storage Service API Reference.

Example 1: Replication Configuration with One Rule Requesting

The following replication configuration has one rule. It requests Amazon S3 to replicate all objects
to the specified destination bucket. The rule specifies an empty prefix indicating all objects. The
configuration also specifies an IAM role Amazon S3 can assume to replicate objects on your behalf.

<?xml version="1.0" encoding="UTF-8"?>
<ReplicationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Role>arn:aws:iam::account-id:role/role-name</Role>
 <Rule>
 <Status>Enabled</Status>
 <Prefix></Prefix>
 <Destination><Bucket>arn:aws:s3:::destinationbucket</Bucket></
Destination>
 </Rule>
</ReplicationConfiguration>

If the <Rule> does not specify storage class, Amazon S3 uses the storage class of the source object
to create object replica. You can optionally specify a storage class, as shown, which Amazon S3 uses
to create replicas. Note that the <StorageClass> element cannot be empty.

<?xml version="1.0" encoding="UTF-8"?>
<ReplicationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Role>arn:aws:iam::account-id:role/role-name</Role>
 <Rule>
 <Status>Enabled</Status>
 <Prefix></Prefix>
 <Destination>
 <Bucket>arn:aws:s3:::destinationbucket</Bucket>
 <StorageClass>storage-class</StorageClass>
 </Destination>
 </Rule>
</ReplicationConfiguration>

The storage class you specify can be any of the storage classes that Amazon S3 supports, except the
GLACIER storage class. You can only transition objects to the GLACIER storage class using lifecycle.
For more information, see PUT Bucket replication. For more information about lifecycle management,
see Object Lifecycle Management (p. 109). For more information about storage classes, see Storage
Classes (p. 103).

API Version 2006-03-01
497

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTreplication.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTreplication.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTreplication.html

Amazon Simple Storage Service Developer Guide
Add Replication Configuration

Example 2: Replication Configuration with Two Rules, Each Specifying a Key Name
Prefix

The following replication configuration specifies two rules. The first rule requests Amazon S3 to
replicate objects with the key name prefix TaxDocs/. The second rule requests Amazon S3 to
replicate objects with key name prefix ProjectDocs/. For example, Amazon S3 replicates objects
with key names TaxDocs/doc1.pdf and ProjectDocs/project1.txt, but it does not replicate
any object with the key name PersonalDoc/documentA. Note that both rules specify the same
destination bucket.

<?xml version="1.0" encoding="UTF-8"?>
<ReplicationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Role>arn:aws:iam::account-id:role/role-name</Role>
 <Rule>
 <Prefix>TaxDocs</Prefix>
 ...
 </Rule>
 <Rule>
 <Prefix>ProjectDocs</Prefix>
 ...
 </Rule>
</ReplicationConfiguration>

Note that you cannot specify overlapping prefixes. The following example configuration has two rules
specifying overlapping prefixes TaxDocs/ and TaxDocs/2015, which is not allowed.

<ReplicationConfiguration>
 <Role>arn:aws:iam::account-id:role/role-name</Role>
 <Rule>
 <Prefix>TaxDocs</Prefix>
 <Status>Enabled</Status>
 <Destination>
 <Bucket>arn:aws:s3:::destinationbucket</Bucket>
 </Destination>
 </Rule>
 <Rule>
 <Prefix>TaxDocs/2015</Prefix>
 <Status>Enabled</Status>
 <Destination>
 <Bucket>arn:aws:s3:::destinationbucket</Bucket>
 </Destination>
 </Rule>
</ReplicationConfiguration>

When adding replication configuration to a bucket, you have two scenarios to consider depending on
who owns the source and destination buckets.

Scenario 1: Buckets Owned by the Same AWS Account
When both the source and destination buckets are owned by the same AWS account, you can use
the Amazon S3 console to set up cross-region replication. Assuming you have source and destination
buckets that are both versioning-enabled, you can use the console to add replication configuration on
the source bucket. For more information, see the following topics:

• Walkthrough 1: Configure Cross-Region Replication Where Source and Destination Buckets Are
Owned by the Same AWS Account (p. 500)

• Enabling Cross-Region Replication in the Amazon Simple Storage Service Console User Guide.

API Version 2006-03-01
498

http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html

Amazon Simple Storage Service Developer Guide
Add Replication Configuration

Scenario 2: Buckets Owned by Different AWS Accounts

When the source and destination buckets are owned by two different AWS accounts, you cannot add
replication configuration using the console because you cannot specify that a destination bucket is
owned by another AWS account in the console. Instead, you need to add replication configuration
programmatically using AWS SDKs or the AWS Command Line Interface. To do this, you need to
specify a replication configuration as XML. The following is an example replication configuration:

<?xml version="1.0" encoding="UTF-8"?>
<ReplicationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Role>arn:aws:iam::46173example:role/CrrRoleName</Role>
 <Rule>
 <Status>Enabled</Status>
 <Prefix>TaxDocs</Prefix>
 <Destination><Bucket>arn:aws:s3:::destinationbucket</Bucket></
Destination>
 </Rule>
</ReplicationConfiguration>

The configuration requests Amazon S3 to replicate objects with the key prefix TaxDocs/ to the
destinationbucket. The configuration also specifies an IAM role that Amazon S3 can assume
to replicate objects on your behalf. For more information about the XML structure, see PUT Bucket
replication in the Amazon Simple Storage Service API Reference.

Because the destination bucket is owned by another AWS account, the destination bucket owners
must also grant the source bucket owner permissions to replicate (replicate and delete) objects as
shown:

{
 "Version":"2008-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "AWS":"arn:aws:iam::AWS account ID that owns the source
 bucket:root"
 },
 "Action":["s3:ReplicateObject", "s3:ReplicateDelete"],
 "Resource":"arn:aws:s3:::destination bucket/*"
 }
]
}

This bucket policy on the destination bucket grants source bucket owner permissions for the Amazon
S3 object operations (s3:ReplicateObject and s3:ReplicateDelete) on the destination bucket.

For an example walkthrough, see Walkthrough 2: Configure Cross-Region Replication Where Source
and Destination Buckets Are Owned by Different AWS Accounts (p. 501).

Related Topics

Cross-Region Replication (p. 492)

What Is and Is Not Replicated (p. 493)

Walkthrough 1: Configure Cross-Region Replication Where Source and Destination Buckets Are
Owned by the Same AWS Account (p. 500)

API Version 2006-03-01
499

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTreplication.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTreplication.html

Amazon Simple Storage Service Developer Guide
Walkthrough 1: Same AWS Account

Walkthrough 2: Configure Cross-Region Replication Where Source and Destination Buckets Are
Owned by Different AWS Accounts (p. 501)

How to Find Replication Status of an Object (p. 509)

Troubleshooting Cross-Region Replication in Amazon S3 (p. 511)

Walkthrough 1: Configure Cross-Region Replication
Where Source and Destination Buckets Are Owned
by the Same AWS Account
In this section, you create two buckets (source and destination) in different AWS regions, enable
versioning on both the buckets, and then configure cross-region replication on the source bucket.

1. Create two buckets.

a. Create a source bucket in an AWS region. For example, US West (Oregon) (us-west-2). For
instructions, see Creating a Bucket in the Amazon Simple Storage Service Console User
Guide.

b. Create a destination bucket in another AWS region. For example, US East (N. Virginia) region
(us-east-1).

2. Enable versioning on both buckets. For instructions, see Enabling Bucket Versioning in the
Amazon Simple Storage Service Console User Guide.

Important
If you have an object expiration lifecycle policy in your non-versioned bucket and you
want to maintain the same permanent delete behavior when you enable versioning, you
must add a noncurrent expiration policy. The noncurrent expiration lifecycle policy will
manage the deletes of the noncurrent object versions in the version-enabled bucket.
(A version-enabled bucket maintains one current and zero or more noncurrent object
versions.) For more information, see Lifecycle Configuration for a Bucket with Versioning
in the Amazon Simple Storage Service Console User Guide.

3. Enable cross-region replication on the source bucket. You decide if you want to replicate all
objects or only objects with a specific prefix (when using the console, think of this as deciding if
you want to replicate only objects from a specific folder). For instructions, see Enabling Cross-
Region Replication in the Amazon Simple Storage Service Console User Guide.

4. Test the setup as follows:

a. Create objects in the source bucket and verify that Amazon S3 replicated the objects in
the destination bucket. The amount of time it takes for Amazon S3 to replicate an object
depends on the object size. For information about finding replication status, see How to Find
Replication Status of an Object (p. 509).

b. Update the object's ACL in the source bucket and verify that changes appear in the
destination bucket. For instructions, see Editing Object Permissions in the Amazon Simple
Storage Service Console User Guide.

c. Update the object's metadata and verify that the changes appear in the destination bucket.
For instructions, see Editing Object Metadata in the Amazon Simple Storage Service Console
User Guide.

Remember that the replicas are exact copies of the objects in the source bucket.

Related Topics
Cross-Region Replication (p. 492)

API Version 2006-03-01
500

http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/enable-bucket-versioning.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/lifecycle-configuration-bucket-with-versioning.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/cross-region-replication.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/cross-region-replication.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingPermissionsonanObject.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingtheMetadataofanObject.html

Amazon Simple Storage Service Developer Guide
Walkthrough 2: Different AWS Accounts

Walkthrough 2: Configure Cross-Region Replication Where Source and Destination Buckets Are
Owned by Different AWS Accounts (p. 501)

What Is and Is Not Replicated (p. 493)

How to Find Replication Status of an Object (p. 509)

Walkthrough 2: Configure Cross-Region Replication
Where Source and Destination Buckets Are Owned
by Different AWS Accounts
In this walkthrough, you set up cross-region replication on the source bucket owned by one account to
replicate objects in a destination bucket owned by another account.

The process is the same as setting up cross-region replication when both buckets are owned by the
same account, except that you do one extra step—the destination bucket owner must create a bucket
policy granting the source bucket owner permission for replication actions.

In this exercise, you perform all of the steps using the console, except creating an IAM role and setting
a replication configuration on the source bucket. You perform these steps using either the AWS CLI or
the AWS SDK for Java.

1. Create two buckets.

a. Create a source bucket in an AWS region. For example, Oregon (us-west-2) in Account A.
For instructions, go to Creating a Bucket in the Amazon Simple Storage Service Console User
Guide.

b. Create a destination bucket in another AWS region. For example, US East (N. Virginia) region
(us-east-1) in Account B.

2. Enable versioning on both the buckets. For instructions, see Enabling Bucket Versioning in the
Amazon Simple Storage Service Console User Guide.

Important
If you have an object expiration lifecycle policy in your non-versioned bucket and you
want to maintain the same permanent delete behavior when you enable versioning, you
must add a noncurrent expiration policy. The noncurrent expiration lifecycle policy will
manage the deletes of the noncurrent object versions in the version-enabled bucket.
(A version-enabled bucket maintains one current and zero or more noncurrent object
versions.) For more information, see Lifecycle Configuration for a Bucket with Versioning
in the Amazon Simple Storage Service Console User Guide.

3. Add the following bucket policy on the destination bucket to allow the source bucket owner
permission for replication actions:

{
 "Version":"2008-10-17",
 "Id":"",
 "Statement":[
 {
 "Sid":"Stmt123",
 "Effect":"Allow",
 "Principal":{
 "AWS":"arn:aws:iam::AWS-ID-Account-A:root"
 },
 "Action":["s3:ReplicateObject", "s3:ReplicateDelete"],
 "Resource":"arn:aws:s3:::destination-bucket/*"
 }

API Version 2006-03-01
501

http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/enable-bucket-versioning.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/lifecycle-configuration-bucket-with-versioning.html

Amazon Simple Storage Service Developer Guide
Walkthrough 2: Different AWS Accounts

]
}

For instructions, see Editing Bucket Permissions in the Amazon Simple Storage Service Console
User Guide.

4. Create an IAM role in Account A. Then, Account A specifies this role when adding replication
configuration on the source bucket in the following step.

Use the AWS CLI to create this IAM role. For instructions about how to setup the AWS CLI, see
Setting Up the Tools for the Example Walkthroughs (p. 281).

a. Copy the following policy and save it to a file called S3-role-trust-policy.json. The
policy grants Amazon S3 permission to assume the role.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"s3.amazonaws.com"
 },
 "Action":"sts:AssumeRole"
 }
]
}

b. Copy the following policy and save it to a file called S3-role-permissions-policy.json.
This access policy grants permission for various Amazon S3 bucket and object actions. In the
following step, you add the policy to the IAM role you are creating.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetObjectVersion",
 "s3:GetObjectVersionAcl"
],
 "Resource":[
 "arn:aws:s3:::source-bucket/*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:ListBucket",
 "s3:GetReplicationConfiguration"
],
 "Resource":[
 "arn:aws:s3:::source-bucket"
]
 },
 {
 "Effect":"Allow",
 "Action":[

API Version 2006-03-01
502

http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingBucketPermissions.html

Amazon Simple Storage Service Developer Guide
Walkthrough 2: Different AWS Accounts

 "s3:ReplicateObject",
 "s3:ReplicateDelete"
],
 "Resource":"arn:aws:s3:::destination-bucket/*"
 }
]
}

c. Run the following CLI command to create a role:

$ aws iam create-role \
--role-name RoleForS3CrossAccountCrossRegionReplication \
--assume-role-policy-document file://S3-role-trust-policy.json

d. Run the following CLI command to create a policy:

$ aws iam create-policy \
--policy-name PolicyForS3CrossAccountCrossRegionReplication \
--policy-document file://S3-role-permissions-policy.json

e. Write down the policy ARN that is returned in the output by the preceding command.

f. Run the following CLI command to attach the policy to the role:

$ aws iam attach-role-policy \
--role-name RoleForS3CrossAccountCrossRegionReplication \
--policy-arn policy-arn

Now Account A has created a role that the necessary Amazon S3 actions so it can replicate
objects.

5. Enable cross-region replication on the source bucket in Account A. In the replication configuration
you add one rule requesting Amazon S3 to replicate objects with the key name prefix Tax/ to the
specified destination bucket. Amazon S3 saves the replication configuration as XML as shown in
the following example:

<ReplicationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Role>arn:aws:iam::AWS-ID-Account-A:role/role-name</Role>
 <Rule>
 <Status>Enabled</Status>
 <Prefix>Tax</Prefix>
 <Destination><Bucket>arn:aws:s3:::destination-bucket</Bucket></
Destination>
 </Rule>
</ReplicationConfiguration>

You can add the replication configuration to your source bucket using either the AWS CLI or AWS
SDK.

• Using AWS CLI.

The AWS CLI requires you to specify the configuration as JSON. Save the following JSON in a
file (replication.json). You need to provide your bucket name and IAM role ARN.

{
 "Role": "arn:aws:iam::AWS-ID-Account-A:role/role-name",
 "Rules": [
 {

API Version 2006-03-01
503

Amazon Simple Storage Service Developer Guide
Walkthrough 2: Different AWS Accounts

 "Prefix": "Tax",
 "Status": "Enabled",
 "Destination": {
 "Bucket": "arn:aws:s3:::destination-bucket"
 }
 }
]
}

Then, run the CLI command to add replication configuration to your source bucket:

$ aws s3api put-bucket-replication \
--bucket source-bucket \
--replication-configuration file://replication.json

For instructions on how to set up the AWS CLI, see Setting Up the Tools for the Example
Walkthroughs (p. 281).

Account A can use the get-bucket-replication command to retrieve the replication
configuration:

$ aws s3api get-bucket-replication \
--bucket source-bucket

• Using the AWS SDK for Java.

For a code example, see How to Set Up Cross-Region Replication Using the AWS SDK for
Java (p. 505).

6. Test the setup as follows:

• Using Account A credentials, create objects in the source bucket and verify that Amazon S3
replicated the objects in the destination bucket owned by Account B. Time it takes for Amazon
S3 to replicate an object depends on the object size. For information about finding replication
status, see How to Find Replication Status of an Object (p. 509).

Note
When you upload objects in the source bucket the object key name must have a Tax
prefix (for example, Tax/document.pdf). Accordingly to the replication configuration
Account A added to the source bucket, Amazon S3 will only replicate objects with the
Tax prefix.

• Update an object's ACL in the source bucket and verify that changes appear in the destination
bucket.

For instructions, go to Editing Object Permissions in the Amazon Simple Storage Service
Console User Guide.

• Update the object's metadata and verify that the changes appear in the destination bucket.

For instructions, go to Editing Object Metadata in the Amazon Simple Storage Service Console
User Guide.

Remember, the replicas are exact copies of the objects in the source bucket.

Related Topics

Cross-Region Replication (p. 492)
API Version 2006-03-01

504

http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingPermissionsonanObject.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingtheMetadataofanObject.html

Amazon Simple Storage Service Developer Guide
Using the Console

What Is and Is Not Replicated (p. 493)

How to Find Replication Status of an Object (p. 509)

Walkthrough 1: Configure Cross-Region Replication Where Source and Destination Buckets Are
Owned by the Same AWS Account (p. 500)

How to Set Up Cross-Region Replication Using the
Console
When both the source and destination buckets are owned by the same AWS account, you can add
replication configuration on the source bucket using the Amazon S3 console. For more information, see
the following topics:

• Walkthrough 1: Configure Cross-Region Replication Where Source and Destination Buckets Are
Owned by the Same AWS Account (p. 500)

• Managing Cross-Region Replication in the Amazon Simple Storage Service Console User Guide.

• Cross-Region Replication (p. 492)

• How to Set Up Cross-Region Replication (p. 495)

How to Set Up Cross-Region Replication Using the
AWS SDK for Java
When the source and destination buckets are owned by two different AWS accounts, you can use
either the AWS CLI or one of the AWS SDKs to add replication configuration on the source bucket.
You cannot use the console to add the replication configuration because the console does not provide
a way for you to specify a destination bucket owned by another AWS account at the time you add
replication configuration on a source bucket. For more information, see How to Set Up Cross-Region
Replication (p. 495).

The following AWS SDK for Java code example first adds replication configuration to a bucket
and then retrieves it. You need to update the code by providing your bucket names and IAM role
ARN. For instructions on how to create and test a working sample, see Testing the Java Code
Examples (p. 565).

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.BucketReplicationConfiguration;
import com.amazonaws.services.s3.model.ReplicationDestinationConfig;
import com.amazonaws.services.s3.model.ReplicationRule;
import com.amazonaws.services.s3.model.ReplicationRuleStatus;

public class CrossRegionReplicationComplete {
 private static String sourceBucketName = "source-bucket";
 private static String roleARN = "arn:aws:iam::account-id:role/role-
name";
 private static String destinationBucketArn = "arn:aws:s3:::destination-
bucket";

API Version 2006-03-01
505

http://docs.aws.amazon.com/AmazonS3/latest/UG/cross-region-replication.html

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for Java

 public static void main(String[] args) throws IOException {
 AmazonS3 s3Client = new AmazonS3Client(new
 ProfileCredentialsProvider());
 try {
 Map<String, ReplicationRule> replicationRules = new
 HashMap<String, ReplicationRule>();
 replicationRules.put(
 "a-sample-rule-id",
 new ReplicationRule()
 .withPrefix("Tax/")
 .withStatus(ReplicationRuleStatus.Enabled)
 .withDestinationConfig(
 new ReplicationDestinationConfig()
 .withBucketARN(destinationBucketArn)

 .withStorageClass(StorageClass.Standard_Infrequently_Accessed)
)
);
 s3Client.setBucketReplicationConfiguration(
 sourceBucketName,
 new BucketReplicationConfiguration()
 .withRoleARN(roleARN)
 .withRules(replicationRules)
);
 BucketReplicationConfiguration replicationConfig =
 s3Client.getBucketReplicationConfiguration(sourceBucketName);

 ReplicationRule rule = replicationConfig.getRule("a-sample-rule-
id");

 System.out.println("Destination Bucket ARN : " +
 rule.getDestinationConfig().getBucketARN());
 System.out.println("Prefix : " + rule.getPrefix());
 System.out.println("Status : " + rule.getStatus());

 } catch (AmazonServiceException ase) {
 System.out.println("Caught an AmazonServiceException, which" +
 " means your request made it " +
 "to Amazon S3, but was rejected with an error response" +
 " for some reason.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException, which
 means"+
 " the client encountered " +
 "a serious internal problem while trying to " +
 "communicate with Amazon S3, " +
 "such as not being able to access the network.");
 System.out.println("Error Message: " + ace.getMessage());
 }
 }
}

API Version 2006-03-01
506

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for .NET

Related Topics

Cross-Region Replication (p. 492)

How to Set Up Cross-Region Replication (p. 495)

How to Set Up Cross-Region Replication Using the
AWS SDK for .NET
When the source and destination buckets are owned by two different AWS accounts, you can use
either the AWS CLI or one of the AWS SDKs to add replication configuration on the source bucket.
You cannot use the console to add the replication configuration because the console does not provide
a way for you to specify a destination bucket owned by another AWS account at the time you add
replication configuration on a source bucket. For more information, see How to Set Up Cross-Region
Replication (p. 495).

The following AWS SDK for .NET code example first adds replication configuration to a bucket and
then retrieves it. You need to update the code by providing your bucket names and IAM role ARN.
For instructions on how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 567).

using System;
using System.Collections.Generic;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class CrossRegionReplication
 {
 static string sourceBucket = "source-bucket";
 static string destinationBucketArn = "arn:aws:s3:::destination-
bucket";
 static string roleArn = "arn:aws:iam::account-
id:role/role-name";

 public static void Main(string[] args)
 {
 try
 {
 using (var client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 EnableReplication(client);
 RetrieveReplicationConfiguration(client);
 }

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 if (amazonS3Exception.ErrorCode != null &&
 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||
 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))

API Version 2006-03-01
507

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for .NET

 {
 Console.WriteLine("Check the provided AWS Credentials.");
 Console.WriteLine(
 "To sign up for service, go to http://aws.amazon.com/
s3");
 }
 else
 {
 Console.WriteLine(
 "Error occurred. Message:'{0}' when enabling
 notifications.",
 amazonS3Exception.Message);
 }
 }

 }

 static void EnableReplication(IAmazonS3 client)
 {
 ReplicationConfiguration replConfig = new
 ReplicationConfiguration
 {
 Role = roleArn,
 Rules =
 {
 new ReplicationRule
 {
 Prefix = "Tax",
 Status = ReplicationRuleStatus.Enabled,
 Destination = new ReplicationDestination
 {
 BucketArn = destinationBucketArn
 }
 }
 }
 };

 PutBucketReplicationRequest putRequest = new
 PutBucketReplicationRequest
 {
 BucketName = sourceBucket,
 Configuration = replConfig
 };

 PutBucketReplicationResponse putResponse =
 client.PutBucketReplication(putRequest);
 }

 private static void RetrieveReplicationConfiguration(IAmazonS3
 client)
 {
 // Retrieve the configuration.
 GetBucketReplicationRequest getRequest = new
 GetBucketReplicationRequest
 {
 BucketName = sourceBucket
 };
 GetBucketReplicationResponse getResponse =
 client.GetBucketReplication(getRequest);

API Version 2006-03-01
508

Amazon Simple Storage Service Developer Guide
Replication Status Information

 // Print.
 Console.WriteLine("Printing replication configuration
 information...");

 Console.WriteLine("Role ARN: {0}",
 getResponse.Configuration.Role);
 foreach (var rule in getResponse.Configuration.Rules)
 {
 Console.WriteLine("ID: {0}", rule.Id);
 Console.WriteLine("Prefix: {0}", rule.Prefix);
 Console.WriteLine("Status: {0}", rule.Status);
 }
 }
 }
}

Related Topics
Cross-Region Replication (p. 492)

How to Set Up Cross-Region Replication (p. 495)

How to Find Replication Status of an Object
In cross-region replication, you have a source bucket on which you configure replication and a
destination bucket where Amazon S3 replicates objects. When you request an object (GET Object) or
object metadata (HEAD Object) from these buckets, Amazon S3 returns the x-amz-replication-
status header in the response as follow:

• If requesting an object from the source bucket — Amazon S3 returns the x-amz-replication-
status header if the object in your request is eligible for replication.

For example, suppose in your replication configuration you specify the object prefix TaxDocs
requesting Amazon S3 to replicate objects with the key name prefix TaxDocs. Then, any objects
you upload with this key name prefix—for example, TaxDocs/document1.pdf—are eligible
for replication. For any object request with this key name prefix, Amazon S3 returns the x-amz-
replication-status header with one of the following values for the object's replication status:
PENDING, COMPLETED, or FAILED.

• If requesting an object from the destination bucket — Amazon S3 returns the x-amz-
replication-status header with value REPLICA if the object in your request is a replica that
Amazon S3 created.

You can find the object replication state in the console, using the AWS CLI, or programmatically using
the AWS SDK.

• In the console, you choose the object and choose Properties to view object properties, including the
replication status.

• You can use the head-object AWS CLI command as shown to retrieve object metadata
information:

aws s3api head-object --bucket source-bucket --key object-key --version-
id object-version-id

The command returns object metadata information including the ReplicationStatus as shown in
the following example response:

API Version 2006-03-01
509

Amazon Simple Storage Service Developer Guide
Related Topics

{
 "AcceptRanges":"bytes",
 "ContentType":"image/jpeg",
 "LastModified":"Mon, 23 Mar 2015 21:02:29 GMT",
 "ContentLength":3191,
 "ReplicationStatus":"COMPLETED",
 "VersionId":"jfnW.HIMOfYiD_9rGbSkmroXsFj3fqZ.",
 "ETag":"\"6805f2cfc46c0f04559748bb039d69ae\"",
 "Metadata":{

 }
}

• You can use the AWS SDKs to retrieve replication state of an object. Following are code fragments
using AWS SDK for Java and AWS SDK for .NET.

• AWS SDK for Java

GetObjectMetadataRequest metadataRequest = new
 GetObjectMetadataRequest(bucketName, bucketName);
metadataRequest.setKey(key);
ObjectMetadata metadata = s3Client.getObjectMetadata(metadataRequest);

System.out.println("Replication Status : " +
 metadata.getRawMetadataValue(Headers.OBJECT_REPLICATION_STATUS));

• AWS SDK for .NET

GetObjectMetadataRequest getmetadataRequest = new GetObjectMetadataRequest
 {
 BucketName = sourceBucket,
 Key = objectKey
 };

GetObjectMetadataResponse getmetadataResponse =
 client.GetObjectMetadata(getmetadataRequest);
Console.WriteLine("Object replication status: {0}",
 getmetadataResponse.ReplicationStatus);

Note
If you decide to delete an object from a source bucket that has replication enabled, you
should check the replication status of the object before deletion to ensure the object has been
replicated.
If lifecycle configuration is enabled on the source bucket, Amazon S3 puts any lifecycle
actions on hold until it marks the objects status as either COMPLETED or FAILED.

Related Topics
Cross-Region Replication (p. 492)

API Version 2006-03-01
510

Amazon Simple Storage Service Developer Guide
Troubleshooting

Troubleshooting Cross-Region Replication in
Amazon S3

After configuring cross-region replication, if you don't see the object replica created in the destination
bucket, try the following troubleshooting methods:

• The time it takes for Amazon S3 to replicate an object depends on the object size. For large objects,
it can take up to several hours. If the object in question is large, check to see if the replicated object
appears in the destination bucket again at a later time.

• In the replication configuration on the source bucket:

• Verify that the destination bucket ARN is correct.

• Verify that the key name prefix is correct. For example, if you set the configuration to replicate
objects with the prefix Tax, then only objects with key names such as Tax/document1 or Tax/
document2 are replicated. An object with the key name document3 will not be replicated.

• Verify the status is enabled.

• If the destination bucket is owned by another AWS account, verify that the bucket owner has a
bucket policy on the destination bucket that allows the source bucket owner to replicate objects.

• If an object replica does not appear in the destination bucket, note the following:

• An object in a source bucket that is itself a replica created by another replication configuration,
Amazon S3 does not replicate the replica. For example, if you set replication configuration from
bucket A to bucket B to bucket C, Amazon S3 will not replicate object replicas in bucket B.

• A bucket owner can grant other AWS accounts permission to upload objects. By default, the
bucket owner does not have any permissions on the objects created by the other account. And
the replication configuration will replicate only the objects for which the bucket owner has access
permissions. The bucket owner can grant other AWS accounts permissions to create objects
conditionally requiring explicit access permissions on those objects. For an example policy, see
Granting Cross-Account Permissions to Upload Objects While Ensuring the Bucket Owner Has
Full Control (p. 340).

Related Topics
Cross-Region Replication (p. 492)

Cross-Region Replication and Other Bucket
Configurations

In addition to replication configuration, Amazon S3 supports several other bucket configuration options
including:

• Configure versioning on a bucket. For more information, see Using Versioning (p. 423).

• Configure a bucket for website hosting. For more information, see Hosting a Static Website on
Amazon S3 (p. 449).

• Configure bucket access via a bucket policy or ACL. For more information, see Using Bucket
Policies and User Policies (p. 308) and see Managing Access with ACLs (p. 364).

• Configure a bucket to store access logs. For more information, Server Access Logging (p. 547).

• Configure the lifecycle for objects in the bucket. For more information, see Object Lifecycle
Management (p. 109).

API Version 2006-03-01
511

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration and Object Replicas

This section explains how bucket replication configuration influences behavior of other bucket
configurations:

Lifecycle Configuration and Object Replicas
The time it takes for Amazon S3 to replicate an object depends on object size. For large objects, it can
take several hours. Even though it might take some time before a replica is available in the destination
bucket, creation time of the replica remains the same as the corresponding object in the source bucket.
Therefore, if you have a lifecycle policy on the destination bucket, note that lifecycle rules honor the
original creation time of the object, not when the replica became available in the destination bucket.

Versioning Configuration and Replication
Configuration
Both the source and destination buckets must be versioning-enabled when you configure replication
on a bucket. After you enable versioning on both the source and destination buckets, and configure
replication on the source bucket, note that:

• If you attempt to disable versioning on the source bucket, Amazon S3 returns an error. You must
remove the replication configuration before you can disable versioning on the source bucket.

• If you disable versioning on the destination bucket, Amazon S3 stops replication.

Logging Configuration and Replication Configuration
If you have logging enabled on any bucket and Amazon S3 is delivering logs to your source bucket
where you also have replication enabled, Amazon S3 replicates the log objects.

Related Topics
Cross-Region Replication (p. 492)

API Version 2006-03-01
512

Amazon Simple Storage Service Developer Guide
Request Redirection and the REST API

Request Routing

Topics

• Request Redirection and the REST API (p. 513)

• DNS Considerations (p. 516)

Programs that make requests against buckets created using the <CreateBucketConfiguration> API
must support redirects. Additionally, some clients that do not respect DNS TTLs might encounter
issues.

This section describes routing and DNS issues to consider when designing your service or application
for use with Amazon S3.

Request Redirection and the REST API

Overview
Amazon S3 uses the Domain Name System (DNS) to route requests to facilities that can process
them. This system works very effectively. However, temporary routing errors can occur.

If a request arrives at the wrong Amazon S3 location, Amazon S3 responds with a temporary redirect
that tells the requester to resend the request to a new endpoint.

If a request is incorrectly formed, Amazon S3 uses permanent redirects to provide direction on how to
perform the request correctly.

Important
Every Amazon S3 program must be designed to handle redirect responses. The only
exception is for programs that work exclusively with buckets that were created without
<CreateBucketConfiguration>. For more information on location constraints, see
Accessing a Bucket (p. 60).

API Version 2006-03-01
513

Amazon Simple Storage Service Developer Guide
DNS Routing

DNS Routing
DNS routing routes requests to appropriate Amazon S3 facilities.

The following figure shows an example of DNS routing.

1 The client makes a DNS request to get an object stored on Amazon S3.

2 The client receives one or more IP addresses for facilities that can process the request.

3 The client makes a request to Amazon S3 Facility B.

4 Facility B returns a copy of the object.

Temporary Request Redirection
A temporary redirect is a type of error response that signals to the requester that he should resend his
request to a different endpoint.

Due to the distributed nature of Amazon S3, requests can be temporarily routed to the wrong facility.
This is most likely to occur immediately after buckets are created or deleted. For example, if you
create a new bucket and immediately make a request to the bucket, you might receive a temporary
redirect, depending on the location constraint of the bucket. If you created the bucket in the US East

API Version 2006-03-01
514

Amazon Simple Storage Service Developer Guide
Temporary Request Redirection

(N. Virginia) region (s3.amazonaws.com endpoint) you will not see the redirect because this is also the
default endpoint. However, if bucket is created in any other region, any requests for the bucket will go
to the default endpoint while the bucket's DNS entry is propagated. The default endpoint will redirect
the request to the correct endpoint with a HTTP 302 response.

Temporary redirects contain a URI to the correct facility which you can use to immediately resend the
request.

Important
Do not reuse an endpoint provided by a previous redirect response. It might appear to work
(even for long periods of time), but might provide unpredictable results and will eventually fail
without notice.

The following figure shows an example of a temporary redirect.

1 The client makes a DNS request to get an object stored on Amazon S3.

2 The client receives one or more IP addresses for facilities that can process the request.

3 The client makes a request to Amazon S3 Facility B.

4 Facility B returns a redirect indicating the object is available from Location C.

5 The client resends the request to Facility C.

6 Facility C returns a copy of the object.

API Version 2006-03-01
515

Amazon Simple Storage Service Developer Guide
Permanent Request Redirection

Permanent Request Redirection
A permanent redirect indicates that your request addressed a resource inappropriately. For example,
permanent redirects occur if you use a path-style request to access a bucket that was created using
<CreateBucketConfiguration>. For more information, see Accessing a Bucket (p. 60).

To help you find these errors during development, this type of redirect does not contain a Location
HTTP header that allows you to automatically follow the request to the correct location. Consult the
resulting XML error document for help using the correct Amazon S3 endpoint.

Example REST API Redirect

HTTP/1.1 307 Temporary Redirect
Location: http://johnsmith.s3-gztb4pa9sq.amazonaws.com/photos/puppy.jpg?
rk=e2c69a31
Content-Type: application/xml
Transfer-Encoding: chunked
Date: Fri, 12 Oct 2007 01:12:56 GMT
Server: AmazonS3

<?xml version="1.0" encoding="UTF-8"?>
<Error>
 <Code>TemporaryRedirect</Code>
 <Message>Please re-send this request to the specified temporary endpoint.
 Continue to use the original request endpoint for future requests.</
Message>
 <Endpoint>johnsmith.s3-gztb4pa9sq.amazonaws.com</Endpoint>
</Error>

Example SOAP API Redirect

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

<soapenv:Body>
 <soapenv:Fault>
 <Faultcode>soapenv:Client.TemporaryRedirect</Faultcode>
 <Faultstring>Please re-send this request to the specified temporary
 endpoint.
 Continue to use the original request endpoint for future requests.</
Faultstring>
 <Detail>
 <Bucket>images</Bucket>
 <Endpoint>s3-gztb4pa9sq.amazonaws.com</Endpoint>
 </Detail>
 </soapenv:Fault>
</soapenv:Body>

DNS Considerations
One of the design requirements of Amazon S3 is extremely high availability. One of the ways we meet
this requirement is by updating the IP addresses associated with the Amazon S3 endpoint in DNS

API Version 2006-03-01
516

Amazon Simple Storage Service Developer Guide
DNS Considerations

as needed. These changes are automatically reflected in short-lived clients, but not in some long-
lived clients. Long-lived clients will need to take special action to re-resolve the Amazon S3 endpoint
periodically to benefit from these changes. For more information about virtual machines (VMs). refer to
the following:

• For Java, Sun's JVM caches DNS lookups forever by default; go to the "InetAddress Caching"
section of the InetAddress documentation for information on how to change this behavior.

• For PHP, the persistent PHP VM that runs in the most popular deployment configurations caches
DNS lookups until the VM is restarted. Go to the getHostByName PHP docs.

API Version 2006-03-01
517

http://docs.oracle.com/javase/1.5.0/docs/api/java/net/InetAddress.html
http://us2.php.net/manual/en/function.gethostbyname.php

Amazon Simple Storage Service Developer Guide
Request Rate and Performance Considerations

Performance Optimization

This section discusses Amazon S3 best practices for optimizing performance in the following topics.

Topics

• Request Rate and Performance Considerations (p. 518)

• TCP Window Scaling (p. 521)

• TCP Selective Acknowledgement (p. 522)

Note
For more information about high performance tuning, see Enabling High Performance Data
Transfers at the Pittsburgh Supercomputing Center (PSC) website.

Request Rate and Performance Considerations
This topic discusses Amazon S3 best practices for optimizing performance depending on your request
rates. If your workload in an Amazon S3 bucket routinely exceeds 100 PUT/LIST/DELETE requests
per second or more than 300 GET requests per second, follow the guidelines in this topic to ensure the
best performance and scalability.

Amazon S3 scales to support very high request rates. If your request rate grows steadily, Amazon S3
automatically partitions your buckets as needed to support higher request rates. However, if you expect
a rapid increase in the request rate for a bucket to more than 300 PUT/LIST/DELETE requests per
second or more than 800 GET requests per second, we recommend that you open a support case to
prepare for the workload and avoid any temporary limits on your request rate. To open a support case,
go to Contact Us.

Note
The Amazon S3 best practice guidelines in this topic apply only if you are routinely processing
100 or more requests per second. If your typical workload involves only occasional bursts of
100 requests per second and less than 800 requests per second, you don't need to follow
these guidelines.
If your workload in Amazon S3 uses Server-Side Encryption with AWS Key Management
Service (SSE-KMS), go to Limits in the AWS Key Management Service Developer Guide to
get more information on the request rates supported for your use case.

The Amazon S3 best practice guidance given in this topic is based on two types of workloads:

• Workloads that include a mix of request types – If your requests are typically a mix of GET, PUT,
DELETE, or GET Bucket (list objects), choosing appropriate key names for your objects will ensure

API Version 2006-03-01
518

http://www.psc.edu/index.php/networking/641-tcp-tune
http://www.psc.edu/index.php/networking/641-tcp-tune
http://aws.amazon.com/contact-us/
http://docs.aws.amazon.com/kms/latest/developerguide/limits.html

Amazon Simple Storage Service Developer Guide
Workloads with a Mix of Request Types

better performance by providing low-latency access to the Amazon S3 index. It will also ensure
scalability regardless of the number of requests you send per second.

• Workloads that are GET-intensive – If the bulk of your workload consists of GET requests, we
recommend using the Amazon CloudFront content delivery service.

Topics

• Workloads with a Mix of Request Types (p. 519)

• GET-Intensive Workloads (p. 521)

Workloads with a Mix of Request Types
When uploading a large number of objects, customers sometimes use sequential numbers or date
and time values as part of their key names. For example, you might choose key names that use some
combination of the date and time, as shown in the following example, where the prefix includes a
timestamp:

examplebucket/2013-26-05-15-00-00/cust1234234/photo1.jpg
examplebucket/2013-26-05-15-00-00/cust3857422/photo2.jpg
examplebucket/2013-26-05-15-00-00/cust1248473/photo2.jpg
examplebucket/2013-26-05-15-00-00/cust8474937/photo2.jpg
examplebucket/2013-26-05-15-00-00/cust1248473/photo3.jpg
...
examplebucket/2013-26-05-15-00-01/cust1248473/photo4.jpg
examplebucket/2013-26-05-15-00-01/cust1248473/photo5.jpg
examplebucket/2013-26-05-15-00-01/cust1248473/photo6.jpg
examplebucket/2013-26-05-15-00-01/cust1248473/photo7.jpg
...

The sequence pattern in the key names introduces a performance problem. To understand the issue,
let's look at how Amazon S3 stores key names.

Amazon S3 maintains an index of object key names in each AWS region. Object keys are stored in
UTF-8 binary ordering across multiple partitions in the index. The key name dictates which partition
the key is stored in. Using a sequential prefix, such as timestamp or an alphabetical sequence,
increases the likelihood that Amazon S3 will target a specific partition for a large number of your keys,
overwhelming the I/O capacity of the partition. If you introduce some randomness in your key name
prefixes, the key names, and therefore the I/O load, will be distributed across more than one partition.

If you anticipate that your workload will consistently exceed 100 requests per second, you should avoid
sequential key names. If you must use sequential numbers or date and time patterns in key names,
add a random prefix to the key name. The randomness of the prefix more evenly distributes key names
across multiple index partitions. Examples of introducing randomness are provided later in this topic.

Note
The guidelines provided for the key name prefixes in the following section also apply to the
bucket name. When Amazon S3 stores a key name in the index, it stores the bucket names as
part of the key name (for example, examplebucket/object.jpg).

Example 1: Add a Hex Hash Prefix to Key Name

One way to introduce randomness to key names is to add a hash string as prefix to the key name. For
example, you can compute an MD5 hash of the character sequence that you plan to assign as the
key name. From the hash, pick a specific number of characters, and add them as the prefix to the key
name. The following example shows key names with a four-character hash.

API Version 2006-03-01
519

Amazon Simple Storage Service Developer Guide
Workloads with a Mix of Request Types

Note
A hashed prefix of three or four characters should be sufficient. We strongly recommend using
a hexadecimal hash as the prefix.

examplebucket/232a-2013-26-05-15-00-00/cust1234234/photo1.jpg
examplebucket/7b54-2013-26-05-15-00-00/cust3857422/photo2.jpg
examplebucket/921c-2013-26-05-15-00-00/cust1248473/photo2.jpg
examplebucket/ba65-2013-26-05-15-00-00/cust8474937/photo2.jpg
examplebucket/8761-2013-26-05-15-00-00/cust1248473/photo3.jpg
examplebucket/2e4f-2013-26-05-15-00-01/cust1248473/photo4.jpg
examplebucket/9810-2013-26-05-15-00-01/cust1248473/photo5.jpg
examplebucket/7e34-2013-26-05-15-00-01/cust1248473/photo6.jpg
examplebucket/c34a-2013-26-05-15-00-01/cust1248473/photo7.jpg
...

Note that this randomness does introduce some interesting challenges. Amazon S3 provides a GET
Bucket (List Objects) operation, which returns a UTF-8 binary ordered list of key names. Here are
some side-effects:

• Because of the hashed prefixes, however, the listing will appear randomly ordered.

• The problem gets compounded if you want to list object keys with specific date in the key name. The
preceding example uses 4 character hex hash, so there are 65536 possible character combinations
(4 character prefix, and each character can be any of the hex characters 0-f). So you will be sending
65536 List Bucket requests each with a specific prefix that is a combination of 4-digit hash and the
date. For example, suppose you want to find all keys with 2013-26-05 in the key name. Then you will
send List Bucket requests with prefixes such [0-f][0-f][0-f][0-f]2013-26-05.

You can optionally add more prefixes in your key name, before the hash string, to group objects. The
following example adds animations/ and videos/ prefixes to the key names.

examplebucket/animations/232a-2013-26-05-15-00-00/cust1234234/animation1.obj
examplebucket/animations/7b54-2013-26-05-15-00-00/cust3857422/animation2.obj
examplebucket/animations/921c-2013-26-05-15-00-00/cust1248473/animation3.obj
examplebucket/videos/ba65-2013-26-05-15-00-00/cust8474937/video2.mpg
examplebucket/videos/8761-2013-26-05-15-00-00/cust1248473/video3.mpg
examplebucket/videos/2e4f-2013-26-05-15-00-01/cust1248473/video4.mpg
examplebucket/videos/9810-2013-26-05-15-00-01/cust1248473/video5.mpg
examplebucket/videos/7e34-2013-26-05-15-00-01/cust1248473/video6.mpg
examplebucket/videos/c34a-2013-26-05-15-00-01/cust1248473/video7.mpg
...

In this case, the ordered list returned by the GET Bucket (List Objects) operation will be grouped by the
prefixes animations and videos.

Note
Again, the prefixes you add to group objects should not have sequences, or you will again
overwhelm a single index partition.

Example 2: Reverse the Key Name String

Suppose your application uploads objects with key names whose prefixes include an increasing
sequence of application IDs.

examplebucket/2134857/data/start.png

API Version 2006-03-01
520

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
GET-Intensive Workloads

examplebucket/2134857/data/resource.rsrc
examplebucket/2134857/data/results.txt
examplebucket/2134858/data/start.png
examplebucket/2134858/data/resource.rsrc
examplebucket/2134858/data/results.txt
examplebucket/2134859/data/start.png
examplebucket/2134859/data/resource.rsrc
examplebucket/2134859/data/results.txt

In this key naming scheme, write operations will overwhelm a single index partition. If you reverse the
application ID strings, however, you have the key names with random prefixes:

examplebucket/7584312/data/start.png
examplebucket/7584312/data/resource.rsrc
examplebucket/7584312/data/results.txt
examplebucket/8584312/data/start.png
examplebucket/8584312/data/resource.rsrc
examplebucket/8584312/data/results.txt
examplebucket/9584312/data/start.png
examplebucket/9584312/data/resource.rsrc
examplebucket/9584312/data/results.txt

Reversing the key name string lays the groundwork for Amazon S3 to start with the following partitions,
one for each distinct first character in the key name. The examplebucket refers to the name of the
bucket where you upload application data.

examplebucket/7
examplebucket/8
examplebucket/9

This example illustrate how Amazon S3 can use the first character of the key name for partitioning,
but for very large workloads (more than 2000 requests per seconds or for bucket that contain billions
of objects), Amazon S3 can use more characters for the partitioning scheme. Amazon S3 can
automatically split these partitions further as the key count and request rate increase over time.

GET-Intensive Workloads
If your workload is mainly sending GET requests, in addition to the preceding guidelines, you should
consider using Amazon CloudFront for performance optimization.

Integrating Amazon CloudFront with Amazon S3, you can distribute content to your users with low
latency and a high data transfer rate. You will also send fewer direct requests to Amazon S3, which will
reduce your costs.

For example, suppose you have a few objects that are very popular. Amazon CloudFront will fetch
those objects from Amazon S3 and cache them. Amazon CloudFront can then serve future requests
for the objects from its cache, reducing the number of GET requests it sends to Amazon S3. For more
information, go to the Amazon CloudFront product detail page.

TCP Window Scaling
TCP window scaling allows you to improve network throughput performance between your operating
system and application layer and Amazon S3 by supporting window sizes larger than 64 KB. At

API Version 2006-03-01
521

http://aws.amazon.com/cloudfront/

Amazon Simple Storage Service Developer Guide
TCP Selective Acknowledgement

the start of the TCP session, a client advertises its supported receive window WSCALE factor, and
Amazon S3 responds with its supported receive window WSCALE factor for the upstream direction.

Although TCP window scaling can improve performance, it can be challenging to set correctly. Make
sure to adjust settings at both the application and kernel level. For more information about TCP window
scaling, refer to your operating system's documentation and go to RFC 1323.

TCP Selective Acknowledgement
TCP selective acknowledgement is designed to increase recovery time after a large number of packet
losses. TCP selective acknowledgement is supported by most newer operating systems, but might
have to be enabled. For more information about TCP selective acknowledgements, refer to the
documentation that accompanied your operating system and go to RFC 2018.

API Version 2006-03-01
522

http://www.ietf.org/rfc/rfc1323.txt
http://www.ietf.org/rfc/rfc2018.txt

Amazon Simple Storage Service Developer Guide
Monitoring Tools

Monitoring Amazon S3

Monitoring is an important part of maintaining the reliability, availability, and performance of Amazon
S3 and your AWS solutions. You should collect monitoring data from all of the parts of your AWS
solution so that you can more easily debug a multi-point failure if one occurs. Before you start
monitoring Amazon S3; however, you should create a monitoring plan that includes answers to the
following questions:

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

Topics

• Monitoring Tools (p. 523)

• Monitoring Daily Storage Metrics with Amazon CloudWatch (p. 524)

• Logging Amazon S3 API Calls By Using AWS CloudTrail (p. 527)

Monitoring Tools
AWS provides various tools that you can use to monitor Amazon S3. You can configure some of these
tools to do the monitoring for you, while some of the tools require manual intervention. We recommend
that you automate monitoring tasks as much as possible.

Automated Monitoring Tools
You can use the following automated monitoring tools to watch Amazon S3 and report when something
is wrong:

API Version 2006-03-01
523

Amazon Simple Storage Service Developer Guide
Manual Tools

• Amazon CloudWatch Alarms – Watch a single metric over a time period that you specify, and
perform one or more actions based on the value of the metric relative to a given threshold over a
number of time periods. The action is a notification sent to an Amazon Simple Notification Service
(Amazon SNS) topic or Auto Scaling policy. CloudWatch alarms do not invoke actions simply
because they are in a particular state; the state must have changed and been maintained for a
specified number of periods. For more information, see Monitoring Daily Storage Metrics with
Amazon CloudWatch (p. 524).

• AWS CloudTrail Log Monitoring – Share log files between accounts, monitor CloudTrail log files
in real time by sending them to CloudWatch Logs, write log processing applications in Java, and
validate that your log files have not changed after delivery by CloudTrail. For more information, see
Logging Amazon S3 API Calls By Using AWS CloudTrail (p. 527).

Manual Monitoring Tools
Another important part of monitoring Amazon S3 involves manually monitoring those items that the
CloudWatch alarms don't cover. The Amazon S3, CloudWatch, Trusted Advisor, and other AWS
console dashboards provide an at-a-glance view of the state of your AWS environment. You may want
to enable server access logging, which tracks requests for access to your bucket. Each access log
record provides details about a single access request, such as the requester, bucket name, request
time, request action, response status, and error code, if any. For more information, see Server Access
Logging (p. 547) in the Amazon Simple Storage Service Developer Guide.

• Amazon S3 dashboard shows:

• Your buckets and the objects and properties they contain.

• CloudWatch home page shows:

• Current alarms and status

• Graphs of alarms and resources

• Service health status

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services you care about

• Graph metric data to troubleshoot issues and discover trends

• Search and browse all your AWS resource metrics

• Create and edit alarms to be notified of problems

• AWS Trusted Advisor can help you monitor your AWS resources to improve performance, reliability,
security, and cost effectiveness. Four Trusted Advisor checks are available to all users; more than
50 checks are available to users with a Business or Enterprise support plan. For more information,
see AWS Trusted Advisor.

Trusted Advisor has these checks that relate to Amazon S3:

• Checks of the logging configuration of Amazon S3 buckets.

• Security checks for Amazon S3 buckets that have open access permissions.

• Fault tolerance checks for Amazon S3 buckets that do not have versioning enabled, or have
versioning suspended.

Monitoring Daily Storage Metrics with Amazon
CloudWatch

You can monitor bucket storage using CloudWatch, which collects and processes storage data
from Amazon S3 into readable, daily metrics. These statistics are recorded for a period of fifteen

API Version 2006-03-01
524

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html
http://aws.amazon.com/premiumsupport/trustedadvisor/

Amazon Simple Storage Service Developer Guide
Metrics and Dimensions

months, so that you can access historical information and gain a better perspective on how your
web application or service is performing. By default, Amazon S3 storage metric data is automatically
received and aggregated daily by CloudWatch. These daily storage metrics for Amazon S3 are
provided to all customers at no additional cost. For more information on CloudWatch, see What Are
Amazon CloudWatch, Amazon CloudWatch Events, and Amazon CloudWatch Logs? in the Amazon
CloudWatch User Guide.

Topics

• Metrics and Dimensions (p. 525)

• Accessing CloudWatch Metrics (p. 526)

• Related Resources (p. 526)

Metrics and Dimensions
The storage metrics and dimensions that Amazon S3 sends to CloudWatch are listed below.

Amazon S3 CloudWatch Metrics

The Amazon S3 namespace for CloudWatch is AWS/S3.

The following metrics are available from the Amazon S3 service.

Metric Description

BucketSizeBytes The amount of data in bytes stored in a bucket in the Standard storage
class, Standard - Infrequent Access (Standard_IA) storage class, or the
Reduced Redundancy Storage (RRS) class.

Valid storage type filters: StandardStorage, or StandardIAStorage, or
ReducedRedundancyStorage (see StorageType dimension)

NumberOfObjects The total number of objects stored in a bucket for all storage classes
except for the GLACIER storage class.

Valid storage type filters: AllStorageTypes only (see StorageType
dimension)

Amazon S3 CloudWatch Dimensions

The following dimensions are used to filter Amazon S3 metrics.

Dimension Description

BucketName This dimension filters the data you request for the identified bucket
only.

StorageType This dimension filters the data you have stored in a bucket
by the type of storage. The types are StandardStorage for
the Standard storage class, StandardIAStorage for the
Standard_IA storage class, ReducedRedundancyStorage
for the Reduced Redundancy Storage (RRS) class, and
AllStorageTypes. The AllStorageTypes type includes the
Standard, Standard_IA, and RRS storage classes, it does not
include the GLACIER storage class.

API Version 2006-03-01
525

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html

Amazon Simple Storage Service Developer Guide
Accessing CloudWatch Metrics

Accessing CloudWatch Metrics
You can use the following procedures to view the storage metrics for Amazon S3. Note that the in
order to get the Amazon S3 metrics involved, you must set a start and end timestamps. For metrics for
any given 24 hour period, set the time period to 86400 seconds, the number of seconds in a day. Also,
remember to set the BucketName and StorageType dimensions.

For example, if you were using the AWS CLI to get the average of a specific bucket's size, in bytes,
you could use the following command.

aws cloudwatch get-metric-statistics --metric-name BucketSizeBytes
 --namespace AWS/S3 --start-time 2016-10-19T00:00:00Z --end-
time 2016-10-20T00:00:00Z --statistics Average --unit Bytes --
region us-west-2 --dimensions Name=BucketName,Value=ExampleBucket
 Name=StorageType,Value=StandardStorage --period 86400 --output json

Which in turn would have the following output.

{
 "Datapoints": [
 {
 "Timestamp": "2016-10-19T00:00:00Z",
 "Average": 1025328.0,
 "Unit": "Bytes"
 }
],
 "Label": "BucketSizeBytes"
}

To view metrics using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Metrics.

3. Select the S3 namespace.

4. (Optional) To view a metric, type its name in the search field.

5. (Optional) To filter by the StorageTypedimension, type the name of the storage class in the
search field.

To view a list of valid metrics stored for your AWS account using the AWS CLI

• At a command prompt, use the following command:

aws cloudwatch list-metrics --namespace "AWS/S3"

Related Resources
• Amazon CloudWatch Logs API Reference

• Amazon CloudWatch User Guide

• list-metrics action in the AWS Command Line Interface Reference.

API Version 2006-03-01
526

https://console.aws.amazon.com/cloudwatch
http://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/cli/latest/reference/cloudwatch/list-metrics.html

Amazon Simple Storage Service Developer Guide
Logging API Calls with AWS CloudTrail

• get-metric-statistics action in the AWS Command Line Interface Reference.

Logging Amazon S3 API Calls By Using AWS
CloudTrail

Amazon S3 is integrated with CloudTrail, a service that captures specific API calls made to Amazon S3
from your AWS account and delivers the log files to an Amazon S3 bucket that you specify. CloudTrail
captures API calls made from the Amazon S3 console or from the Amazon S3 API.

Using the information collected by CloudTrail, you can determine what request was made to Amazon
S3, the source IP address from which the request was made, who made the request, when it was
made, and so on. This information helps you to track changes made to your AWS resources and to
troubleshoot operational issues. CloudTrail makes it easier to ensure compliance with internal policies
and regulatory standards. To learn more about CloudTrail, including how to configure and enable it,
see the AWS CloudTrail User Guide.

Amazon S3 Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to certain Amazon S3
actions are tracked in CloudTrail log files. Amazon S3 records are written together with other AWS
service records in a log file. CloudTrail determines when to create and write to a new file based on a
time period and file size.

The tables in this section list the Amazon S3 actions that are supported for logging by CloudTrail.

Amazon S3 Actions Tracked by CloudTrail Logging

REST API Name API Event Name Used in CloudTrail Log

DELETE Bucket DeleteBucket

DELETE Bucket cors DeleteBucketCors

DELETE Bucket lifecycle DeleteBucketLifecycle

DELETE Bucket policy DeleteBucketPolicy

DELETE Bucket replication DeleteBucketReplication

DELETE Bucket tagging DeleteBucketTagging

DELETE Bucket website DeleteBucketWebsite

GET Bucket acl GetBucketAcl

GET Bucket cors GetBucketCors

GET Bucket lifecycle GetBucketLifecycle

GET Bucket policy GetBucketPolicy

GET Bucket location GetBucketLocation

GET Bucket logging GetBucketLogging

GET Bucket notification GetBucketNotification

API Version 2006-03-01
527

http://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETE.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEcors.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETElifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEpolicy.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEreplication.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEtagging.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEwebsite.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETcors.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETpolicy.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlocation.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlogging.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETnotification.html

Amazon Simple Storage Service Developer Guide
Amazon S3 Information in CloudTrail

REST API Name API Event Name Used in CloudTrail Log

GET Bucket replication GetBucketReplication

GET Bucket tagging GetBucketTagging

GET Bucket requestPayment GetBucketRequestPay

GET Bucket versioning GetBucketVersioning

GET Bucket website GetBucketWebsite

GET Service (List all buckets) ListBuckets

PUT Bucket CreateBucket

PUT Bucket acl PutBucketAcl

PUT Bucket cors PutBucketCors

PUT Bucket lifecycle PutBucketLifecycle

PUT Bucket policy PutBucketPolicy

PUT Bucket logging PutBucketLogging

PUT Bucket notification PutBucketNotification

PUT Bucket replication PutBucketReplication

PUT Bucket requestPayment PutBucketRequestPay

PUT Bucket tagging PutBucketTagging

PUT Bucket versioning PutBucketVersioning

PUT Bucket website PutBucketWebsite

CloudTrail tracks Amazon S3 SOAP API calls. Amazon S3 SOAP support over HTTP is deprecated,
but it is still available over HTTPS. For more information about Amazon S3 SOAP support, see
Appendix A: Using the SOAP API (p. 571).

Important
Newer Amazon S3 features are not supported for SOAP. We recommend that you use either
the REST API or the AWS SDKs.

Amazon S3 SOAP Actions Tracked by CloudTrail Logging

SOAP API Name API Event Name Used in CloudTrail Log

ListAllMyBuckets ListBuckets

CreateBucket CreateBucket

DeleteBucket DeleteBucket

GetBucketAccessControlPolicy GetBucketAcl

SetBucketAccessControlPolicy PutBucketAcl

GetBucketLoggingStatus GetBucketLogging

SetBucketLoggingStatus PutBucketLogging

API Version 2006-03-01
528

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETreplication.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETtagging.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTrequestPaymentGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETversioningStatus.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETwebsite.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTcors.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTpolicy.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlogging.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTnotification.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTreplication.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTrequestPaymentPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTtagging.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTVersioningStatus.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
http://docs.aws.amazon.com/AmazonS3/latest/API/SOAPListAllMyBuckets.html
http://docs.aws.amazon.com/AmazonS3/latest/API/SOAPCreateBucket.html
http://docs.aws.amazon.com/AmazonS3/latest/API/SOAPDeleteBucket.html
http://docs.aws.amazon.com/AmazonS3/latest/API/SOAPGetBucketAccessControlPolicy.html
http://docs.aws.amazon.com/AmazonS3/latest/API/SOAPSetBucketAccessControlPolicy.html
http://docs.aws.amazon.com/AmazonS3/latest/API/SOAPGetBucketLoggingStatus.html
http://docs.aws.amazon.com/AmazonS3/latest/API/SOAPSetBucketLoggingStatus.html

Amazon Simple Storage Service Developer Guide
Using CloudTrail Logs with Amazon S3

Server Access Logs and CloudWatch Logs

Every log entry contains information about who generated the request. The user identity information
in the log helps you determine whether the request was made with root or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userIdentity field in the CloudTrail Event Reference.

You can store your log files in your bucket for as long as you want, but you can also define Amazon
S3 lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by
using Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered
if you want to take quick action upon log file delivery. For more information, see Configuring Amazon
Simple Notification Service Notifications for CloudTrail.

You can also aggregate Amazon S3 log files from multiple AWS regions and multiple AWS accounts
into a single Amazon S3 bucket. For more information, see Receiving CloudTrail Log Files from
Multiple Regions.

Using CloudTrail Logs with Amazon S3 Server
Access Logs and CloudWatch Logs
You can use AWS CloudTrail logs together with server access logs for Amazon S3. CloudTrail logs
provide you with detailed API tracking for operations on your S3 bucket, while server access logs for
Amazon S3 provide you visibility into object-level operations on your data in Amazon S3. For more
information about server access logs, see Server Access Logging (p. 547).

You can also use CloudTrail logs together with CloudWatch for Amazon S3. CloudTrail integration
with CloudWatch logs delivers S3 bucket level API activity captured by CloudTrail to a CloudWatch log
stream in the CloudWatch log group you specify. You can create CloudWatch alarms for monitoring
specific API activity and receive email notifications when the specific API activity occurs. For more
information about CloudWatch alarms for monitoring specific API activity, see the AWS CloudTrail User
Guide. For more information about using CloudWatch with Amazon S3, see Monitoring Daily Storage
Metrics with Amazon CloudWatch (p. 524).

Understanding Amazon S3 Log File Entries
CloudTrail log files contain one or more log entries where each entry is made up of multiple JSON-
formatted events. A log entry represents a single request from any source and includes information
about the requested action, any parameters, the date and time of the action, and so on. The log entries
are not guaranteed to be in any particular order. That is, they are not an ordered stack trace of the
public API calls.

The following example shows a CloudTrail log entry that demonstrates the DELETE Bucket policy,
PUT Bucket acl, and GET Bucket versioning actions.

{
 "Records": [
 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "111122223333",
 "arn": "arn:aws:iam::111122223333:user/myUserName",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2015-08-26T20:46:31Z",
 "eventSource": "s3.amazonaws.com",

API Version 2006-03-01
529

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEpolicy.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETversioningStatus.html

Amazon Simple Storage Service Developer Guide
Understanding Amazon S3 Log File Entries

 "eventName": "DeleteBucketPolicy",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "[]",
 "requestParameters": {
 "bucketName": "myawsbucket"
 },
 "responseElements": null,
 "requestID": "47B8E8D397DCE7A6",
 "eventID": "cdc4b7ed-e171-4cef-975a-ad829d4123e8",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 },
 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "111122223333",
 "arn": "arn:aws:iam::111122223333:user/myUserName",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2015-08-26T20:46:31Z",
 "eventSource": "s3.amazonaws.com",
 "eventName": "PutBucketAcl",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "",
 "userAgent": "[]",
 "requestParameters": {
 "bucketName": "",
 "AccessControlPolicy": {
 "AccessControlList": {
 "Grant": {
 "Grantee": {
 "xsi:type": "CanonicalUser",
 "xmlns:xsi": "http://www.w3.org/2001/XMLSchema-
instance",
 "ID":
 "d25639fbe9c19cd30a4c0f43fbf00e2d3f96400a9aa8dabfbbebe1906Example"
 },
 "Permission": "FULL_CONTROL"
 }
 },
 "xmlns": "http://s3.amazonaws.com/doc/2006-03-01/",
 "Owner": {
 "ID":
 "d25639fbe9c19cd30a4c0f43fbf00e2d3f96400a9aa8dabfbbebe1906Example"
 }
 }
 },
 "responseElements": null,
 "requestID": "BD8798EACDD16751",
 "eventID": "607b9532-1423-41c7-b048-ec2641693c47",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 },
 {
 "eventVersion": "1.03",

API Version 2006-03-01
530

Amazon Simple Storage Service Developer Guide
Related Resources

 "userIdentity": {
 "type": "IAMUser",
 "principalId": "111122223333",
 "arn": "arn:aws:iam::111122223333:user/myUserName",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2015-08-26T20:46:31Z",
 "eventSource": "s3.amazonaws.com",
 "eventName": "GetBucketVersioning",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "",
 "userAgent": "[]",
 "requestParameters": {
 "bucketName": "myawsbucket"
 },
 "responseElements": null,
 "requestID": "07D681279BD94AED",
 "eventID": "f2b287f3-0df1-4961-a2f4-c4bdfed47657",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 }
]
}

Related Resources
• AWS CloudTrail User Guide

• CloudTrail Event Reference

API Version 2006-03-01
531

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference.html

Amazon Simple Storage Service Developer Guide
How You are Charged for BitTorrent Delivery

Using BitTorrent with Amazon S3

Topics

• How You are Charged for BitTorrent Delivery (p. 532)

• Using BitTorrent to Retrieve Objects Stored in Amazon S3 (p. 533)

• Publishing Content Using Amazon S3 and BitTorrent (p. 534)

BitTorrent is an open, peer-to-peer protocol for distributing files. You can use the BitTorrent protocol
to retrieve any publicly-accessible object in Amazon S3. This section describes why you might want to
use BitTorrent to distribute your data out of Amazon S3 and how to do so.

Amazon S3 supports the BitTorrent protocol so that developers can save costs when distributing
content at high scale. Amazon S3 is useful for simple, reliable storage of any data. The default
distribution mechanism for Amazon S3 data is via client/server download. In client/server distribution,
the entire object is transferred point-to-point from Amazon S3 to every authorized user who requests
that object. While client/server delivery is appropriate for a wide variety of use cases, it is not optimal
for everybody. Specifically, the costs of client/server distribution increase linearly as the number of
users downloading objects increases. This can make it expensive to distribute popular objects.

BitTorrent addresses this problem by recruiting the very clients that are downloading the object as
distributors themselves: Each client downloads some pieces of the object from Amazon S3 and
some from other clients, while simultaneously uploading pieces of the same object to other interested
"peers." The benefit for publishers is that for large, popular files the amount of data actually supplied by
Amazon S3 can be substantially lower than what it would have been serving the same clients via client/
server download. Less data transferred means lower costs for the publisher of the object.

Note
You can get torrent only for objects that are less than 5 GB in size.

How You are Charged for BitTorrent Delivery
There is no extra charge for use of BitTorrent with Amazon S3. Data transfer via the BitTorrent
protocol is metered at the same rate as client/server delivery. To be precise, whenever a downloading

API Version 2006-03-01
532

Amazon Simple Storage Service Developer Guide
Using BitTorrent to Retrieve Objects Stored in Amazon S3

BitTorrent client requests a "piece" of an object from the Amazon S3 "seeder," charges accrue just
as if an anonymous request for that piece had been made using the REST or SOAP protocol. These
charges will appear on your Amazon S3 bill and usage reports in the same way. The difference is that
if a lot of clients are requesting the same object simultaneously via BitTorrent, then the amount of data
Amazon S3 must serve to satisfy those clients will be lower than with client/server delivery. This is
because the BitTorrent clients are simultaneously uploading and downloading amongst themselves.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

The data transfer savings achieved from use of BitTorrent can vary widely depending on how popular
your object is. Less popular objects require heavier use of the "seeder" to serve clients, and thus the
difference between BitTorrent distribution costs and client/server distribution costs might be small for
such objects. In particular, if only one client is ever downloading a particular object at a time, the cost of
BitTorrent delivery will be the same as direct download.

Using BitTorrent to Retrieve Objects Stored in
Amazon S3

Any object in Amazon S3 that can be read anonymously can also be downloaded via BitTorrent.
Doing so requires use of a BitTorrent client application. Amazon does not distribute a BitTorrent client
application, but there are many free clients available. The Amazon S3BitTorrent implementation has
been tested to work with the official BitTorrent client (go to http://www.bittorrent.com/).

The starting point for a BitTorrent download is a .torrent file. This small file describes for BitTorrent
clients both the data to be downloaded and where to get started finding that data. A .torrent file is a
small fraction of the size of the actual object to be downloaded. Once you feed your BitTorrent client
application an Amazon S3 generated .torrent file, it should start downloading immediately from Amazon
S3 and from any "peer" BitTorrent clients.

Retrieving a .torrent file for any publicly available object is easy. Simply add a "?torrent" query string
parameter at the end of the REST GET request for the object. No authentication is required. Once you
have a BitTorrent client installed, downloading an object using BitTorrent download might be as easy
as opening this URL in your web browser.

There is no mechanism to fetch the .torrent for an Amazon S3 object using the SOAP API.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

API Version 2006-03-01
533

http://www.bittorrent.com/

Amazon Simple Storage Service Developer Guide
Publishing Content Using Amazon S3 and BitTorrent

Example

This example retrieves the Torrent file for the "Nelson" object in the "quotes" bucket.

Sample Request

GET /quotes/Nelson?torrent HTTP/1.0
Date: Wed, 25 Nov 2009 12:00:00 GMT

Sample Response

HTTP/1.1 200 OK
x-amz-request-id: 7CD745EBB7AB5ED9
Date: Wed, 25 Nov 2009 12:00:00 GMT
Content-Disposition: attachment; filename=Nelson.torrent;
Content-Type: application/x-bittorrent
Content-Length: 537
Server: AmazonS3

<body: a Bencoded dictionary as defined by the BitTorrent specification>

Publishing Content Using Amazon S3 and
BitTorrent

Every anonymously readable object stored in Amazon S3 is automatically available for download using
BitTorrent. The process for changing the ACL on an object to allow anonymous READ operations is
described in Managing Access Permissions to Your Amazon S3 Resources (p. 266).

You can direct your clients to your BitTorrent accessible objects by giving them the .torrent file directly
or by publishing a link to the ?torrent URL of your object. One important thing to note is that the .torrent
file describing an Amazon S3 object is generated on-demand, the first time it is requested (via the
REST ?torrent resource). Generating the .torrent for an object takes time proportional to the size of that
object. For large objects, this time can be significant. Therefore, before publishing a ?torrent link, we
suggest making the first request for it yourself. Amazon S3 might take several minutes to respond to
this first request, as it generates the .torrent file. Unless you update the object in question, subsequent
requests for the .torrent will be fast. Following this procedure before distributing a ?torrent link will
ensure a smooth BitTorrent downloading experience for your customers.

To stop distributing a file using BitTorrent, simply remove anonymous access to it. This can be
accomplished by either deleting the file from Amazon S3, or modifying your access control policy to
prohibit anonymous reads. After doing so, Amazon S3 will no longer act as a "seeder" in the BitTorrent
network for your file, and will no longer serve the .torrent file via the ?torrent REST API. However,
after a .torrent for your file is published, this action might not stop public downloads of your object that
happen exclusively using the BitTorrent peer to peer network.

API Version 2006-03-01
534

Amazon Simple Storage Service Developer Guide
Amazon S3 Customer Data Isolation

Using Amazon DevPay with
Amazon S3

Topics

• Amazon S3 Customer Data Isolation (p. 535)

• Amazon DevPay Token Mechanism (p. 536)

• Amazon S3 and Amazon DevPay Authentication (p. 536)

• Amazon S3 Bucket Limitation (p. 537)

• Amazon S3 and Amazon DevPay Process (p. 538)

• Additional Information (p. 538)

Amazon DevPay enables you to charge customers for using your Amazon S3 product through
Amazon's authentication and billing infrastructure. You can charge any amount for your product
including usage charges (storage, transactions, and bandwidth), monthly fixed charges, and a one-time
charge.

Once a month, Amazon bills your customers for you. AWS then deducts the fixed Amazon DevPay
transaction fee and pays you the difference. AWS then separately charges you for the Amazon S3
usage costs incurred by your customers and the percentage-based Amazon DevPay fee.

If your customers do not pay their bills, AWS turns off access to Amazon S3 (and your product). AWS
handles all payment processing.

Amazon S3 Customer Data Isolation
Amazon DevPay requests store and access data on behalf of the users of your product. The resources
created by your application are owned by your users; unless you modify the ACL, you cannot read or
modify the user's data.

Data stored by your product is isolated from other Amazon DevPay products and general Amazon
S3 access. Customers that store data in Amazon S3 through your product can only access that
data through your product. The data cannot be accessed through other Amazon DevPay products or
through a personal AWS account.

Two users of a product can only access each others data if your application explicitly grants access
through the ACL.

API Version 2006-03-01
535

Amazon Simple Storage Service Developer Guide
Example

Example
The following figure illustrates allowed, disallowed, and conditional (discretionary) data access.

Betty's access is limited as follows:

• She can access Lolcatz data through the Lolcatz product. If she attempts to access her Lolcatz data
through another product or a personal AWS account, her requests will be denied.

• She can access Alvin's eScrapBook data through the eScrapBook product if access is explicitly
granted.

Amazon DevPay Token Mechanism
To enable you to make requests on behalf of your customers and ensure that your customers are billed
for use of your application, your application must send two tokens with each request: the product token
and the user token.

The product token identifies your product; you must have one product token for each Amazon DevPay
product that you provide. The user token identifies a user in relationship to your product; you must
have a user token for each user/product combination. For example, if you provide two products and a
user subscribes to each, you must obtain a separate user token for each product.

For information on obtaining product and user tokens, refer to the Amazon DevPay Amazon DevPay
Getting Started Guide.

Amazon S3 and Amazon DevPay Authentication
Although the token mechanism uniquely identifies a customer and product, it does not provide
authentication.

API Version 2006-03-01
536

Amazon Simple Storage Service Developer Guide
Amazon S3 Bucket Limitation

Normally, your applications communicate directly with Amazon S3 using your Access Key ID and
Secret Access Key. For Amazon DevPay, Amazon S3 authentication works a little differently.

If your Amazon DevPay product is a web application, you securely store the Secret Access Key on
your servers and use the user token to specify the customer for which requests are being made.

However, if your Amazon S3 application is installed on your customers' computers, your application
must obtain an Access Key ID and a Secret Access Key for each installation and must use those
credentials when communicating with Amazon S3.

The following figure shows the differences between authentication for web applications and user
applications.

Amazon S3 Bucket Limitation
Each of your customers can have up to 100 buckets for each Amazon DevPay product that you sell.
For example, if a customer uses three of your products, the customer can have up to 300 buckets
(100 * 3) plus any buckets outside of your Amazon DevPay products (i.e., buckets in Amazon DevPay
products from other developers and the customer's personal AWS account).

If your customers require more than 100 buckets in an account, they can submit a bucket limit increase
request. For information about how to increase your bucket limit, go to AWS Service Limits in the AWS
General Reference.

API Version 2006-03-01
537

http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Simple Storage Service Developer Guide
Amazon S3 and Amazon DevPay Process

Amazon S3 and Amazon DevPay Process
Following is a high-level overview of the Amazon DevPay process.

Launch Process

1 A customer signs up for your product through Amazon.

2 The customer receives an activation key.

3 The customer enters the activation key into your application.

4 Your application communicates with Amazon and obtains the user's token. If your application
is installed on the user's computer, it also obtains an Access Key ID and Secret Access Key on
behalf of the customer.

5 Your application provides the customer's token and the application product token when
making Amazon S3 requests on behalf of the customer. If your application is installed on the
customer's computer, it authenticates with the customer's credentials.

6 Amazon uses the customer's token and your product token to determine who to bill for the
Amazon S3 usage.

7 Once a month, Amazon processes usage data and bills your customers according to the terms
you defined.

8 AWS deducts the fixed Amazon DevPay transaction fee and pays you the difference. AWS
then separately charges you for the Amazon S3 usage costs incurred by your customers and
the percentage-based Amazon DevPay fee.

Additional Information
For information about using, setting up, and integrating with Amazon DevPay, go to Amazon DevPay

API Version 2006-03-01
538

http://docs.aws.amazon.com/AmazonDevPay/latest/DevPayDeveloperGuide/

Amazon Simple Storage Service Developer Guide
The REST Error Response

Handling REST and SOAP Errors

Topics

• The REST Error Response (p. 539)

• The SOAP Error Response (p. 541)

• Amazon S3 Error Best Practices (p. 541)

This section describes REST and SOAP errors and how to handle them.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

The REST Error Response
Topics

• Response Headers (p. 540)

• Error Response (p. 540)

If a REST request results in an error, the HTTP reply has:

• An XML error document as the response body

• Content-Type: application/xml

• An appropriate 3xx, 4xx, or 5xx HTTP status code

Following is an example of a REST Error Response.

<?xml version="1.0" encoding="UTF-8"?>
<Error>
 <Code>NoSuchKey</Code>
 <Message>The resource you requested does not exist</Message>
 <Resource>/mybucket/myfoto.jpg</Resource>
 <RequestId>4442587FB7D0A2F9</RequestId>

API Version 2006-03-01
539

Amazon Simple Storage Service Developer Guide
Response Headers

</Error>

For more information about Amazon S3 errors, go to ErrorCodeList.

Response Headers
Following are response headers returned by all operations:

• x-amz-request-id: A unique ID assigned to each request by the system. In the unlikely event
that you have problems with Amazon S3, Amazon can use this to help troubleshoot the problem.

• x-amz-id-2: A special token that will help us to troubleshoot problems.

Error Response
Topics

• Error Code (p. 540)

• Error Message (p. 540)

• Further Details (p. 540)

When an Amazon S3 request is in error, the client receives an error response. The exact format of
the error response is API specific: For example, the REST error response differs from the SOAP error
response. However, all error responses have common elements.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

Error Code

The error code is a string that uniquely identifies an error condition. It is meant to be read and
understood by programs that detect and handle errors by type. Many error codes are common
across SOAP and REST APIs, but some are API-specific. For example, NoSuchKey is universal, but
UnexpectedContent can occur only in response to an invalid REST request. In all cases, SOAP fault
codes carry a prefix as indicated in the table of error codes, so that a NoSuchKey error is actually
returned in SOAP as Client.NoSuchKey.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

Error Message

The error message contains a generic description of the error condition in English. It is intended for
a human audience. Simple programs display the message directly to the end user if they encounter
an error condition they don't know how or don't care to handle. Sophisticated programs with more
exhaustive error handling and proper internationalization are more likely to ignore the error message.

Further Details

Many error responses contain additional structured data meant to be read and understood by a
developer diagnosing programming errors. For example, if you send a Content-MD5 header with a
REST PUT request that doesn't match the digest calculated on the server, you receive a BadDigest

API Version 2006-03-01
540

http://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html

Amazon Simple Storage Service Developer Guide
The SOAP Error Response

error. The error response also includes as detail elements the digest we calculated, and the digest
you told us to expect. During development, you can use this information to diagnose the error. In
production, a well-behaved program might include this information in its error log.

The SOAP Error Response
Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

In SOAP, an error result is returned to the client as a SOAP fault, with the HTTP response code 500.
If you do not receive a SOAP fault, then your request was successful. The Amazon S3 SOAP fault
code is comprised of a standard SOAP 1.1 fault code (either "Server" or "Client") concatenated with
the Amazon S3-specific error code. For example: "Server.InternalError" or "Client.NoSuchBucket". The
SOAP fault string element contains a generic, human readable error message in English. Finally, the
SOAP fault detail element contains miscellaneous information relevant to the error.

For example, if you attempt to delete the object "Fred", which does not exist, the body of the SOAP
response contains a "NoSuchKey" SOAP fault.

Example

<soapenv:Body>
 <soapenv:Fault>
 <Faultcode>soapenv:Client.NoSuchKey</Faultcode>
 <Faultstring>The specified key does not exist.</Faultstring>
 <Detail>
 <Key>Fred</Key>
 </Detail>
 </soapenv:Fault>
</soapenv:Body>

For more information about Amazon S3 errors, go to ErrorCodeList.

Amazon S3 Error Best Practices
When designing an application for use with Amazon S3, it is important to handle Amazon S3 errors
appropriately. This section describes issues to consider when designing your application.

Retry InternalErrors
Internal errors are errors that occur within the Amazon S3 environment.

Requests that receive an InternalError response might not have processed. For example, if a PUT
request returns InternalError, a subsequent GET might retrieve the old value or the updated value.

If Amazon S3 returns an InternalError response, retry the request.

Tune Application for Repeated SlowDown errors
As with any distributed system, S3 has protection mechanisms which detect intentional or unintentional
resource over-consumption and react accordingly. SlowDown errors can occur when a high request

API Version 2006-03-01
541

http://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html

Amazon Simple Storage Service Developer Guide
Isolate Errors

rate triggers one of these mechanisms. Reducing your request rate will decrease or eliminate errors
of this type. Generally speaking, most users will not experience these errors regularly; however, if you
would like more information or are experiencing high or unexpected SlowDown errors, please post
to our Amazon S3 developer forum https://forums.aws.amazon.com/ or sign up for AWS Premium
Support http://aws.amazon.com/premiumsupport/.

Isolate Errors
Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

Amazon S3 provides a set of error codes that are used by both the SOAP and REST API. The SOAP
API returns standard Amazon S3 error codes. The REST API is designed to look like a standard HTTP
server and interact with existing HTTP clients (e.g., browsers, HTTP client libraries, proxies, caches,
and so on). To ensure the HTTP clients handle errors properly, we map each Amazon S3 error to an
HTTP status code.

HTTP status codes are less expressive than Amazon S3 error codes and contain less information
about the error. For example, the NoSuchKey and NoSuchBucket Amazon S3 errors both map to the
HTTP 404 Not Found status code.

Although the HTTP status codes contain less information about the error, clients that understand
HTTP, but not the Amazon S3 API, will usually handle the error correctly.

Therefore, when handling errors or reporting Amazon S3 errors to end users, use the Amazon S3 error
code instead of the HTTP status code as it contains the most information about the error. Additionally,
when debugging your application, you should also consult the human readable <Details> element of
the XML error response.

API Version 2006-03-01
542

https://forums.aws.amazon.com/
http://aws.amazon.com/premiumsupport/

Amazon Simple Storage Service Developer Guide
General: Getting my Amazon S3 request IDs

Troubleshooting Amazon S3

The following section discusses common issues that you might encounter when you work with Amazon
S3.

General: Getting my Amazon S3 request IDs
Whenever you need to contact AWS Support due to encountering errors or unexpected behavior
in Amazon S3, you will need to get the request IDs associated with the failed action. Getting these
request IDs enables AWS Support to help you resolve the problems you're experiencing. Request IDs
come in pairs, are returned in every response that Amazon S3 processes (even the erroneous ones),
and can be accessed through verbose logs. There are a number of common methods for getting your
request IDs.

Once you've recovered these logs, copy and retain those two values, as you'll need the pair of them
when you contact AWS Support.

Topics

• Using HTTP (p. 543)

• Using a Web Browser (p. 544)

• Using an AWS SDK (p. 544)

• Using the AWS CLI (p. 545)

• Using Windows PowerShell (p. 545)

Using HTTP
You can obtain your request IDs, x-amz-request-id and x-amz-id-2 by logging the bits of an
HTTP request before the it reaches the target application. There are a variety of 3rd party tools that
can be used to recover verbose logs for HTTP requests. Choose one you trust, and run the tool,
listening on the port that your Amazon S3 traffic travels on, as you send out another Amazon S3 HTTP
request.

For HTTP requests, the pair of request IDs will look like the following examples.

x-amz-request-id: 79104EXAMPLEB723

API Version 2006-03-01
543

Amazon Simple Storage Service Developer Guide
Using a Web Browser

x-amz-id-2: IOWQ4fDEXAMPLEQM+ey7N9WgVhSnQ6JEXAMPLEZb7hSQDASK+Jd1vEXAMPLEa3Km

Note
HTTPS requests are encrypted and hidden in most packet captures.

Using a Web Browser
Most web browsers have developer tools that allow you to view request headers.

For web browser based requests that return an error, the pair of requests IDs will look like the following
examples.

<Error><Code>AccessDenied</Code><Message>Access Denied</Message>
<RequestId>79104EXAMPLEB723</RequestId><HostId>IOWQ4fDEXAMPLEQM
+ey7N9WgVhSnQ6JEXAMPLEZb7hSQDASK+Jd1vEXAMPLEa3Km</HostId></Error>

For obtaining the request ID pair from successful requests, you'll need to use the developer tools to
look at the HTTP response headers. For information about developer tools for specific browsers, see
Amazon S3 Troubleshooting - How to recover your S3 request IDs in the AWS Developer Forums.

Using an AWS SDK
The following sections include information for configuring logging using an AWS SDK. While you can
enable verbose logging on every request and response, you should not enable logging in production
systems since large requests/responses can cause significant slow down in an application.

For AWS SDK requests, the pair of request IDs will look like the following examples.

Status Code: 403, AWS Service: Amazon S3, AWS Request ID: 79104EXAMPLEB723
AWS Error Code: AccessDenied AWS Error Message: Access Denied
S3 Extended Request ID: IOWQ4fDEXAMPLEQM+ey7N9WgVhSnQ6JEXAMPLEZb7hSQDASK
+Jd1vEXAMPLEa3Km

Using the SDK for PHP

You can configure logging using PHP. For more information, see How can I see what data is sent over
the wire? in the FAQ for the AWS SDK for PHP.

Using the SDK for Java

You can enable logging for specific requests or responses, allowing you to catch and return only the
relevant headers. To do this, import the com.amazonaws.services.s3.s3ResponseMetadata
class. Afterwards, you can store the request in a variable before performing the actual request. Call
getCachedResponseMetadata(AmazonWebServiceRequest request).getRequestID() to get
the logged request or response.

Example

PutObjectRequest req = new PutObjectRequest(bucketName, key,
 createSampleFile());
s3.putObject(req);
S3ResponseMetadata md = s3.getCachedResponseMetadata(req);
System.out.println("Host ID: " + md.getHostId() + " RequestID: " +
 md.getRequestId());

API Version 2006-03-01
544

http://docs.aws.amazon.com/aws-sdk-php/guide/latest/faq.html#how-can-i-see-what-data-is-sent-over-the-wire
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/faq.html#how-can-i-see-what-data-is-sent-over-the-wire

Amazon Simple Storage Service Developer Guide
Using the AWS CLI

Alternatively, you can use verbose logging of every Java request and response. For more information,
see Verbose Wire Logging in the Logging AWS SDK for Java Calls topic in the AWS SDK for Java
Developer Guide.

Using the AWS SDK for .NET

You can configure logging in AWS SDK for .NET using the built in System.Diagnostics logging tool.
For more information, see the Logging with the AWS SDK for .NET .NET Development blog post.

Note
By default, the returned log will only contain error information. The config file needs to have
AWSLogMetrics (and optionally, AWSResponseLogging) added to get the request IDs.

Using the SDK for Python

You can configure logging in Python by adding the following lines to your code to output debug
information to a file.

import logging
logging.basicConfig(filename="mylog.log", level=logging.DEBUG)

If you’re using the Boto Python interface for AWS, you can set the debug level to two as per the Boto
docs, here.

Using the SDK for Ruby

You can get your request IDs using either the SDK for Ruby - Version 1 or Version 2.

• Using the SDK for Ruby - Version 1– You can enable HTTP wire logging globally with the following
line of code.

s3 = AWS::S3.new(:logger => Logger.new($stdout), :http_wire_trace => true)

• Using the SDK for Ruby - Version 2– You can enable HTTP wire logging globally with the following
line of code.

s3 = Aws::S3::Client.new(:logger => Logger.new($stdout), :http_wire_trace =>
 true)

Using the AWS CLI
You can get your request IDs in the AWS CLI by adding --debug to your command.

Using Windows PowerShell
For information on recovering logs with Windows PowerShell, see the Response Logging in AWS
Tools for Windows PowerShell .NET Development blog post.

Related Topics
For other troubleshooting and support topics, see the following:

API Version 2006-03-01
545

http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-logging.html#sdk-net-logging-verbose
http://blogs.aws.amazon.com/net/post/TxZLWAOFZJQWRP/Logging-with-the-AWS-SDK-for-NET
http://docs.pythonboto.org/en/latest/boto_config_tut.html#boto
http://blogs.aws.amazon.com/net/post/Tx1UX89ARJV7UC7/Response-Logging-in-AWS-Tools-for-Windows-oPowerShell
http://blogs.aws.amazon.com/net/post/Tx1UX89ARJV7UC7/Response-Logging-in-AWS-Tools-for-Windows-oPowerShell

Amazon Simple Storage Service Developer Guide
Related Topics

Troubleshooting CORS Issues (p. 142)

Handling REST and SOAP Errors (p. 539)

AWS Support Documentation

For troubleshooting information regarding third party tools, see Getting Amazon S3 request IDs in the
AWS Developer Forums.

API Version 2006-03-01
546

http://aws.amazon.com/documentation/aws-support/
https://forums.aws.amazon.com/thread.jspa?threadID=182409

Amazon Simple Storage Service Developer Guide
Overview

Server Access Logging

Overview
In order to track requests for access to your bucket, you can enable access logging. Each access log
record provides details about a single access request, such as the requester, bucket name, request
time, request action, response status, and error code, if any. Access log information can be useful in
security and access audits. It can also help you learn about your customer base and understand your
Amazon S3 bill.

Note
There is no extra charge for enabling server access logging on an Amazon S3 bucket;
however, any log files the system delivers to you will accrue the usual charges for storage.
(You can delete the log files at any time.) No data transfer charges will be assessed for log file
delivery, but access to the delivered log files is charged the same as any other data transfer.

By default, logging is disabled. To enable access logging, you must do the following:

• Turn on the log delivery by adding logging configuration on the bucket for which you want Amazon
S3 to deliver access logs. We will refer to this bucket as the source bucket.

• Grant the Amazon S3 Log Delivery group write permission on the bucket where you want the access
logs saved. We will refer to this bucket as the target bucket.

To turn on log delivery, you provide the following logging configuration information:

• Name of the target bucket name where you want Amazon S3 to save the access logs as objects.
You can have logs delivered to any bucket that you own, including the source bucket. We
recommend that you save access logs in a different bucket so you can easily manage the logs. If you
choose to save access logs in the same bucket as the source bucket, we recommend you specify a
prefix to all log object keys so that you can easily identify the log objects.

Note
Both the source and target buckets must be owned by the same AWS account.

• (Optional) A prefix for Amazon S3 to assign to all log object keys. The prefix will make it simpler for
you to locate the log objects.

For example, if you specify the prefix value logs/, each log object that Amazon S3 creates will
begin with the logs/ prefix in its key, as in this example:

API Version 2006-03-01
547

Amazon Simple Storage Service Developer Guide
Log Object Key Format

logs/2013-11-01-21-32-16-E568B2907131C0C0

The key prefix can help when you delete the logs. For example, you can set a lifecycle configuration
rule for Amazon S3 to delete objects with a specific key prefix. For more information, see Deleting
Log Files (p. 560).

• (Optional) Permissions so that others can access the generated logs. By default, the bucket owner
always has full access to the log objects. You can optionally grant access to other users.

Log Object Key Format
Amazon S3 uses the following object key format for the log objects it uploads in the target bucket:

TargetPrefixYYYY-mm-DD-HH-MM-SS-UniqueString

In the key, YYYY, mm, DD, HH, MM and SS are the digits of the year, month, day, hour, minute, and
seconds (respectively) when the log file was delivered.

A log file delivered at a specific time can contain records written at any point before that time. There is
no way to know whether all log records for a certain time interval have been delivered or not.

The UniqueString component of the key is there to prevent overwriting of files. It has no meaning, and
log processing software should ignore it.

How are Logs Delivered?
Amazon S3 periodically collects access log records, consolidates the records in log files, and then
uploads log files to your target bucket as log objects. If you enable logging on multiple source buckets
that identify the same target bucket, the target bucket will have access logs for all those source
buckets, but each log object will report access log records for a specific source bucket.

Amazon S3 uses a special log delivery account, called the Log Delivery group, to write access logs.
These writes are subject to the usual access control restrictions. You will need to grant the Log
Delivery group write permission on the target bucket by adding a grant entry in the bucket's access
control list (ACL). If you use the Amazon S3 console to enable logging on a bucket, the console will
both enable logging on the source bucket and update the ACL on the target bucket to grant write
permission to the Log Delivery group.

Best Effort Server Log Delivery
Server access log records are delivered on a best effort basis. Most requests for a bucket that is
properly configured for logging will result in a delivered log record, and most log records will be
delivered within a few hours of the time that they were recorded.

The completeness and timeliness of server logging, however, is not guaranteed. The log record for a
particular request might be delivered long after the request was actually processed, or it might not be
delivered at all. The purpose of server logs is to give you an idea of the nature of traffic against your
bucket. It is not meant to be a complete accounting of all requests. It is rare to lose log records, but
server logging is not meant to be a complete accounting of all requests.

It follows from the best-effort nature of the server logging feature that the usage reports available at the
AWS portal (Billing and Cost Management reports on the AWS Management Console) might include
one or more access requests that do not appear in a delivered server log.

API Version 2006-03-01
548

https://console.aws.amazon.com/

Amazon Simple Storage Service Developer Guide
Bucket Logging Status Changes Take Effect Over Time

Bucket Logging Status Changes Take Effect Over
Time
Changes to the logging status of a bucket take time to actually affect the delivery of log files. For
example, if you enable logging for a bucket, some requests made in the following hour might be
logged, while others might not. If you change the target bucket for logging from bucket A to bucket B,
some logs for the next hour might continue to be delivered to bucket A, while others might be delivered
to the new target bucket B. In all cases, the new settings will eventually take effect without any further
action on your part.

Related Topics
For more information about server access logging, see the following topics.

• Enabling Logging Using the Console (p. 549)

• Enabling Logging Programmatically (p. 551)

• Server Access Log Format (p. 554)

• Deleting Log Files (p. 560)

Enabling Logging Using the Console
To enable logging (see Server Access Logging (p. 547)) the Amazon S3 console provides a Logging
section in the bucket Properties:

When you enable logging on a bucket the console will both enable logging on the source bucket and
add a grant in the target bucket's ACL granting write permission to the Log Delivery group.

API Version 2006-03-01
549

https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
Enabling Logging Using the Console

To enable logging on a bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Under All Buckets, click the bucket for which access requests will be logged.

3. In the Details pane, click Properties

4. Under Logging, do the following:

• Select the Enabled check box

• In the Target Bucket box, click the name of the bucket that will receive the log objects.

• (optional) To specify a key prefix for log objects, in the Target Prefix box, type the prefix that
you want.

5. Click Save.

To disable logging on a bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Under All Buckets, click the bucket for which access requests will be logged.

3. In the Details pane, click Properties Under Logging, clear the Enabled check box.

4. Click Save.

For information about enable logging programmatically, see Enabling Logging
Programmatically (p. 551).

For information about the log record format, including the list of fields and their descriptions, see Server
Access Log Format (p. 554).

API Version 2006-03-01
550

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
Enabling Logging Programmatically

Enabling Logging Programmatically
Topics

• Enabling logging (p. 551)

• Granting the Log Delivery Group WRITE and READ_ACP Permissions (p. 551)

• Example: AWS SDK for .NET (p. 552)

You can enable or disable logging programmatically by using either the Amazon S3 API or the AWS
SDKs. To do so, you both enable logging on the bucket and grant the Log Delivery group permission to
write logs to the target bucket.

Enabling logging

To enable logging, you submit a PUT Bucket logging request to add the logging configuration on
source bucket. The request specifies the target bucket and, optionally, the prefix to be used with all log
object keys. The following example identifies logbucket as the target bucket and logs/ as the prefix.

<BucketLoggingStatus xmlns="http://doc.s3.amazonaws.com/2006-03-01">
 <LoggingEnabled>
 <TargetBucket>logbucket</TargetBucket>
 <TargetPrefix>logs/</TargetPrefix>
 </LoggingEnabled>
</BucketLoggingStatus>

The log objects are written and owned by the Log Delivery account and the bucket owner is granted full
permissions on the log objects. In addition, you can optionally grant permissions to other users so that
they may access the logs. For more information, see PUT Bucket logging.

Amazon S3 also provides the GET Bucket logging API to retrieve logging configuration on a
bucket. To delete logging configuration you send the PUT Bucket logging request with empty
<BucketLoggingStatus> empty.

<BucketLoggingStatus xmlns="http://doc.s3.amazonaws.com/2006-03-01">
</BucketLoggingStatus>

You can use either the Amazon S3 API or the AWS SDK wrapper libraries to enable logging on a
bucket.

Granting the Log Delivery Group WRITE and
READ_ACP Permissions

Amazon S3 writes the log files to the target bucket as a member of the predefined Amazon S3 group
Log Delivery. These writes are subject to the usual access control restrictions. You will need to grant
s3:GetObjectAcl and s3:PutObject permissions to this group by adding grants to the access control list
(ACL) of the target bucket. The Log Delivery group is represented by the following URL.

http://acs.amazonaws.com/groups/s3/LogDelivery

To grant WRITE and READ_ACP permissions, you have to add the following grants. For information
about ACLs, see Managing Access with ACLs (p. 364).

API Version 2006-03-01
551

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlogging.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlogging.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlogging.html

Amazon Simple Storage Service Developer Guide
Example: AWS SDK for .NET

<Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="Group">
 <URI>http://acs.amazonaws.com/groups/s3/LogDelivery</URI>
 </Grantee>
 <Permission>WRITE</Permission>
</Grant>
<Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="Group">
 <URI>http://acs.amazonaws.com/groups/s3/LogDelivery</URI>
 </Grantee>
 <Permission>READ_ACP</Permission>
</Grant>

For examples of adding ACL grants programmatically using AWS SDKs, see Managing ACLs Using
the AWS SDK for Java (p. 370) and Managing ACLs Using the AWS SDK for .NET (p. 374).

Example: AWS SDK for .NET
The following C# example enables logging on a bucket. You will need to create two buckets, source
bucket and target bucket. The example first grants the Log Delivery group necessary permission to
write logs to the target bucket and then enable logging on the source bucket. For more information, see
Enabling Logging Programmatically (p. 551). For instructions on how to create and test a working
sample, see Running the Amazon S3 .NET Code Examples (p. 567).

using System;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class ServerAccesLogging
 {
 static string sourceBucket = "*** Provide bucket name ***"; // On
 which to enable logging.
 static string targetBucket = "*** Provide bucket name ***"; // Where
 access logs can be stored.
 static string logObjectKeyPrefix = "Logs";
 static IAmazonS3 client;

 public static void Main(string[] args)
 {
 using (client = new
 AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 Console.WriteLine("Enabling logging on source bucket...");
 try
 {
 // Step 1 - Grant Log Delivery group permission to write
 log to the target bucket.
 GrantLogDeliveryPermissionToWriteLogsInTargetBucket();
 // Step 2 - Enable logging on the source bucket.
 EnableDisableLogging();
 }
 catch (AmazonS3Exception amazonS3Exception)
 {

API Version 2006-03-01
552

Amazon Simple Storage Service Developer Guide
Example: AWS SDK for .NET

 if (amazonS3Exception.ErrorCode != null &&

 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||

 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))
 {
 Console.WriteLine("Check the provided AWS
 Credentials.");
 Console.WriteLine(
 "To sign up for service, go to http://aws.amazon.com/
s3");
 }
 else
 {
 Console.WriteLine(
 "Error occurred. Message:'{0}' when enabling
 logging",
 amazonS3Exception.Message);
 }
 }
 }

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static void GrantLogDeliveryPermissionToWriteLogsInTargetBucket()
 {
 S3AccessControlList bucketACL = new S3AccessControlList();
 GetACLResponse aclResponse = client.GetACL(new GetACLRequest
 { BucketName = targetBucket });
 bucketACL = aclResponse.AccessControlList;
 bucketACL.AddGrant(new S3Grantee { URI = "http://
acs.amazonaws.com/groups/s3/LogDelivery" }, S3Permission.WRITE);
 bucketACL.AddGrant(new S3Grantee { URI = "http://
acs.amazonaws.com/groups/s3/LogDelivery" }, S3Permission.READ_ACP);
 PutACLRequest setACLRequest = new PutACLRequest
 {
 AccessControlList = bucketACL,
 BucketName = targetBucket
 };
 client.PutACL(setACLRequest);
 }

 static void EnableDisableLogging()
 {
 S3BucketLoggingConfig loggingConfig = new S3BucketLoggingConfig
 {
 TargetBucketName = targetBucket,
 TargetPrefix = logObjectKeyPrefix
 };

 // Send request.
 PutBucketLoggingRequest putBucketLoggingRequest = new
 PutBucketLoggingRequest
 {
 BucketName = sourceBucket,
 LoggingConfig = loggingConfig

API Version 2006-03-01
553

Amazon Simple Storage Service Developer Guide
Log Format

 };
 PutBucketLoggingResponse response =
 client.PutBucketLogging(putBucketLoggingRequest);
 }
 }
}

Server Access Log Format
The server access log files consist of a sequence of new-line delimited log records. Each log record
represents one request and consists of space delimited fields. The following is an example log
consisting of six log records.

79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 mybucket [06/Feb/2014:00:00:38 +0000] 192.0.2.3
 79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 3E57427F3EXAMPLE REST.GET.VERSIONING - "GET /mybucket?versioning HTTP/1.1"
 200 - 113 - 7 - "-" "S3Console/0.4" -
79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 mybucket [06/Feb/2014:00:00:38 +0000] 192.0.2.3
 79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 891CE47D2EXAMPLE REST.GET.LOGGING_STATUS - "GET /mybucket?logging HTTP/1.1"
 200 - 242 - 11 - "-" "S3Console/0.4" -
79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 mybucket [06/Feb/2014:00:00:38 +0000] 192.0.2.3
 79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 A1206F460EXAMPLE REST.GET.BUCKETPOLICY - "GET /mybucket?policy HTTP/1.1" 404
 NoSuchBucketPolicy 297 - 38 - "-" "S3Console/0.4" -
79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 mybucket [06/Feb/2014:00:01:00 +0000] 192.0.2.3
 79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 7B4A0FABBEXAMPLE REST.GET.VERSIONING - "GET /mybucket?versioning HTTP/1.1"
 200 - 113 - 33 - "-" "S3Console/0.4" -
79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 mybucket [06/Feb/2014:00:01:57 +0000] 192.0.2.3
 79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 DD6CC733AEXAMPLE REST.PUT.OBJECT s3-dg.pdf "PUT /mybucket/s3-dg.pdf
 HTTP/1.1" 200 - - 4406583 41754 28 "-" "S3Console/0.4" -
79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 mybucket [06/Feb/2014:00:03:21 +0000] 192.0.2.3
 79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 BC3C074D0EXAMPLE REST.GET.VERSIONING - "GET /mybucket?versioning HTTP/1.1"
 200 - 113 - 28 - "-" "S3Console/0.4" -

Note
Any field can be set to "-" to indicate that the data was unknown or unavailable, or that the
field was not applicable to this request.

The following list describes the log record fields.

Bucket Owner
The canonical user ID of the owner of the source bucket.

Example Entry

API Version 2006-03-01
554

Amazon Simple Storage Service Developer Guide
Log Format

79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be

Bucket
The name of the bucket that the request was processed against. If the system receives a
malformed request and cannot determine the bucket, the request will not appear in any server
access log.

Example Entry

mybucket

Time
The time at which the request was received. The format, using strftime() terminology, is as
follows: [%d/%b/%Y:%H:%M:%S %z]

Example Entry

[06/Feb/2014:00:00:38 +0000]

Remote IP
The apparent Internet address of the requester. Intermediate proxies and firewalls might obscure
the actual address of the machine making the request.

Example Entry

192.0.2.3

Requester
The canonical user ID of the requester, or the string "Anonymous" for unauthenticated requests. If
the requester was an IAM user, this field will return the requester's IAM user name along with the
AWS root account that the IAM user belongs to. This identifier is the same one used for access
control purposes.

Example Entry

79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be

Request ID
The request ID is a string generated by Amazon S3 to uniquely identify each request.

Example Entry

3E57427F33A59F07

Operation
The operation listed here is declared as SOAP.operation,
REST.HTTP_method.resource_type, WEBSITE.HTTP_method.resource_type, or
BATCH.DELETE.OBJECT.

Example Entry

REST.PUT.OBJECT

API Version 2006-03-01
555

Amazon Simple Storage Service Developer Guide
Log Format

Key
The "key" part of the request, URL encoded, or "-" if the operation does not take a key parameter.

Example Entry

/photos/2014/08/puppy.jpg

Request-URI
The Request-URI part of the HTTP request message.

Example Entry

"GET /mybucket/photos/2014/08/puppy.jpg?x-foo=bar"

HTTP status
The numeric HTTP status code of the response.

Example Entry

200

Error Code
The Amazon S3 Error Code (p. 540), or "-" if no error occurred.

Example Entry

NoSuchBucket

Bytes Sent
The number of response bytes sent, excluding HTTP protocol overhead, or "-" if zero.

Example Entry

2662992

Object Size
The total size of the object in question.

Example Entry

3462992

Total Time
The number of milliseconds the request was in flight from the server's perspective. This value is
measured from the time your request is received to the time that the last byte of the response is
sent. Measurements made from the client's perspective might be longer due to network latency.

Example Entry

70

Turn-Around Time
The number of milliseconds that Amazon S3 spent processing your request. This value is
measured from the time the last byte of your request was received until the time the first byte of
the response was sent.

API Version 2006-03-01
556

Amazon Simple Storage Service Developer Guide
Custom Access Log Information

Example Entry

10

Referrer
The value of the HTTP Referrer header, if present. HTTP user-agents (e.g. browsers) typically set
this header to the URL of the linking or embedding page when making a request.

Example Entry

"http://www.amazon.com/webservices"

User-Agent
The value of the HTTP User-Agent header.

Example Entry

"curl/7.15.1"

Version Id
The version ID in the request, or "-" if the operation does not take a versionId parameter.

Example Entry

3HL4kqtJvjVBH40Nrjfkd

Custom Access Log Information
You can include custom information to be stored in the access log record for a request by adding
a custom query-string parameter to the URL for the request. Amazon S3 will ignore query-string
parameters that begin with "x-", but will include those parameters in the access log record for
the request, as part of the Request-URI field of the log record. For example, a GET request for
"s3.amazonaws.com/mybucket/photos/2014/08/puppy.jpg?x-user=johndoe" will work the same as
the same request for "s3.amazonaws.com/mybucket/photos/2014/08/puppy.jpg", except that the "x-
user=johndoe" string will be included in the Request-URI field for the associated log record. This
functionality is available in the REST interface only.

Programming Considerations for Extensible Server
Access Log Format
From time to time, we might extend the access log record format by adding new fields to the end of
each line. Code that parses server access logs must be written to handle trailing fields that it does not
understand.

Additional Logging for Copy Operations
A copy operation involves a GET and a PUT. For that reason, we log two records when performing a
copy operation. The previous table describes the fields related to the PUT part of the operation. The
following list describes the fields in the record that relate to the GET part of the copy operation.

Bucket Owner
The canonical user ID of the bucket that stores the object being copied.

API Version 2006-03-01
557

Amazon Simple Storage Service Developer Guide
Additional Logging for Copy Operations

Example Entry

79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be

Bucket
The name of the bucket that stores the object being copied.

Example Entry

mybucket

Time
The time at which the request was received. The format, using strftime() terminology, is as
follows: [%d/%B/%Y:%H:%M:%S %z]

Example Entry

[06/Feb/2014:00:00:38 +0000]

Remote IP
The apparent Internet address of the requester. Intermediate proxies and firewalls might obscure
the actual address of the machine making the request.

Example Entry

192.0.2.3

Requester
The canonical user ID of the requester, or the string "Anonymous" for unauthenticated requests. If
the requester was an IAM user, this field will return the requester's IAM user name along with the
AWS root account that the IAM user belongs to. This identifier is the same one used for access
control purposes.

Example Entry

79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be

Request ID
The request ID is a string generated by Amazon S3 to uniquely identify each request.

Example Entry

3E57427F33A59F07

Operation
The operation listed here is declared as SOAP.operation,
REST.HTTP_method.resource_type, WEBSITE.HTTP_method.resource_type, or
BATCH.DELETE.OBJECT.

Example Entry

REST.COPY.OBJECT_GET

Key
The "key" of the object being copied or "-" if the operation does not take a key parameter.

API Version 2006-03-01
558

Amazon Simple Storage Service Developer Guide
Additional Logging for Copy Operations

Example Entry

/photos/2014/08/puppy.jpg

Request-URI
The Request-URI part of the HTTP request message.

Example Entry

"GET /mybucket/photos/2014/08/puppy.jpg?x-foo=bar"

HTTP status
The numeric HTTP status code of the GET portion of the copy operation.

Example Entry

200

Error Code
The Amazon S3 Error Code (p. 540), of the GET portion of the copy operation or "-" if no error
occurred.

Example Entry

NoSuchBucket

Bytes Sent
The number of response bytes sent, excluding HTTP protocol overhead, or "-" if zero.

Example Entry

2662992

Object Size
The total size of the object in question.

Example Entry

3462992

Total Time
The number of milliseconds the request was in flight from the server's perspective. This value is
measured from the time your request is received to the time that the last byte of the response is
sent. Measurements made from the client's perspective might be longer due to network latency.

Example Entry

70

Turn-Around Time
The number of milliseconds that Amazon S3 spent processing your request. This value is
measured from the time the last byte of your request was received until the time the first byte of
the response was sent.

API Version 2006-03-01
559

Amazon Simple Storage Service Developer Guide
Deleting Log Files

Example Entry

10

Referrer
The value of the HTTP Referrer header, if present. HTTP user-agents (e.g. browsers) typically set
this header to the URL of the linking or embedding page when making a request.

Example Entry

"http://www.amazon.com/webservices"

User-Agent
The value of the HTTP User-Agent header.

Example Entry

"curl/7.15.1"

Version Id
The version ID of the object being copied or "-" if the x-amz-copy-source header didn’t specify a
versionId parameter as part of the copy source.

Example Entry

3HL4kqtJvjVBH40Nrjfkd

Deleting Log Files
A logging enabled bucket (see Server Access Logging (p. 547)) can have many server log objects
created over time. Your application might need these access logs for a specific period after creation,
and after that you may want to delete them. You can use Amazon S3 lifecycle configuration to set rules
so that Amazon S3 automatically queues these objects for deletion at the end of their life.

If you specified a prefix in your logging configuration, you can set lifecycle configuration rule to delete
log objects with that prefix. For example, if you log objects have prefix logs/ after a specified time,
you can set lifecycle configuration rule to delete objects with prefix /logs. For more information about
lifecycle configuration, see Object Lifecycle Management (p. 109).

API Version 2006-03-01
560

Amazon Simple Storage Service Developer Guide

Using the AWS SDKs, CLI, and
Explorers

Topics

• Specifying Signature Version in Request Authentication (p. 562)

• Set Up the AWS CLI (p. 563)

• Using the AWS SDK for Java (p. 564)

• Using the AWS SDK for .NET (p. 566)

• Using the AWS SDK for PHP and Running PHP Examples (p. 567)

• Using the AWS SDK for Ruby - Version 2 (p. 569)

• Using the AWS SDK for Python (Boto) (p. 570)

You can use the AWS SDKs when developing applications with Amazon S3. The AWS SDKs simplify
your programming tasks by wrapping the underlying REST API. Mobile SDKs are also available for
building connected mobile applications using AWS. This section provides an overview of using AWS
SDKs for developing Amazon S3 applications. This section also describes how you can test the AWS
SDK code samples provided in this guide.

In addition to the AWS SDKs, AWS Explorers are available for Visual Studio and Eclipse for Java IDE.
In this case, the SDKs and the explorers are available bundled together as AWS Toolkits.

You can also use the AWS Command Line Interface (CLI) to manage Amazon S3 buckets and objects.

AWS Toolkit for Eclipse

The AWS Toolkit for Eclipse includes both the AWS SDK for Java and AWS Explorer for Eclipse. The
AWS Explorer for Eclipse is an open source plug-in for Eclipse for Java IDE that makes it easier for
developers to develop, debug, and deploy Java applications using AWS. The easy to use GUI interface
enables you to access and administer your AWS infrastructure including Amazon S3. You can perform
common operations such as manage your buckets and objects, set IAM policies, while developing
applications, all from within the context of Eclipse for Java IDE. For set up instructions, see Set up the
Toolkit. For examples of using the explorer, see How to Access AWS Explorer.

API Version 2006-03-01
561

http://docs.aws.amazon.com/eclipse-toolkit/latest/user-guide/setup-install.html
http://docs.aws.amazon.com/eclipse-toolkit/latest/user-guide/setup-install.html
http://docs.aws.amazon.com/eclipse-toolkit/latest/user-guide/open-aws-explorer.html

Amazon Simple Storage Service Developer Guide
Specifying Signature Version in Request Authentication

AWS Toolkit for Visual Studio

AWS Explorer for Visual Studio is an extension for Microsoft Visual Studio that makes it easier for
developers to develop, debug, and deploy .NET applications using Amazon Web Services. The easy-
to-use GUI enables you to access and administer your AWS infrastructure including Amazon S3. You
can perform common operations such as managing your buckets and objects or setting IAM policies,
while developing applications, all from within the context of Visual Studio. For set up instructions, go to
Setting Up the AWS Toolkit for Visual Studio. For examples of using Amazon S3 using the explorer, go
to Using Amazon S3 from AWS Explorer.

AWS SDKs

You can download only the SDKs. For information about downloading the SDK libraries, go to Sample
Code Libraries.

AWS CLI

The AWS Command Line Interface (CLI) is a unified tool to manage your AWS services, including
Amazon S3. For information about downloading the AWS CLI, go to AWS Command Line Interface.

Specifying Signature Version in Request
Authentication

In the Asia Pacific (Mumbai), Asia Pacific (Seoul), EU (Frankfurt) and China (Beijing) regions, Amazon
S3 supports only Signature Version 4. In all other regions, Amazon S3 supports both Signature Version
4 and Signature Version 2.

For all AWS regions, AWS SDKs use Signature Version 4 by default to authenticate requests. When
using AWS SDKs that were released before May 2016, you may be required to request Signature
Version 4 as shown in the following table:

SDK Requesting Signature Version 4 for Request Authentication

AWS CLI For the default profile, run the following command.

$ aws configure set default.s3.signature_version
 s3v4

For a custom profile, run the following command.

$ aws configure set
 profile.your_profile_name.s3.signature_version
 s3v4

Java SDK Add the following in your code.

System.setProperty(SDKGlobalConfiguration.ENABLE_S3_SIGV4_SYSTEM_PROPERTY,
 "true");

Or, on the command line, specify the following.

-Dcom.amazonaws.services.s3.enableV4

API Version 2006-03-01
562

http://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/tkv_setup.html
http://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/using-s3.html
http://aws.amazon.com/code/
http://aws.amazon.com/code/
http://aws.amazon.com/cli/

Amazon Simple Storage Service Developer Guide
Set Up the AWS CLI

SDK Requesting Signature Version 4 for Request Authentication

JavaScript SDK Set the signatureVersion parameter to v4 when constructing
the client.

var s3 = new AWS.S3({signatureVersion: 'v4'});

PHP SDK Set the signature parameter to v4 when constructing the
Amazon S3 service client.

<?php

$s3 = \Aws\S3\S3Client::factory(array('signature'
 => 'v4'));

Python-Boto SDK Specify the following in the .boto, default config file.

[s3] use-sigv4 = True

Ruby SDK Ruby SDK - Version 1: Set the :s3_signature_version
parameter to :v4 when constructing the client.

s3 = AWS::S3::Client.new(:s3_signature_version
 => :v4)

Ruby SDK - Version 2: Set the signature_version parameter
to v4 when constructing the client.

s3 = Aws::S3::Client.new(signature_version: 'v4')

.NET SDK Add the following to the code before creating the S3 client.

AWSConfigs.S3UseSignatureVersion4 = true;

Or, add the following to the config file.

<appSettings>
 <add key="AWS.S3.UseSignatureVersion4"
 value='true"/>
</appSettings>

Set Up the AWS CLI
Follow the steps to download and configure AWS Command Line Interface (AWS CLI).

Note
Services in AWS, such as Amazon S3, require that you provide credentials when you
access them, so that the service can determine whether you have permissions to access the
resources owned by that service. The console requires your password. You can create access
keys for your AWS account to access the AWS CLI or API. However, we don't recommend

API Version 2006-03-01
563

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for Java

that you access AWS using the credentials for your AWS account. Instead, we recommend
that you use AWS Identity and Access Management (IAM). Create an IAM user, add the user
to an IAM group with administrative permissions, and then grant administrative permissions
to the IAM user that you created. You can then access AWS using a special URL and that
IAM user's credentials. For instructions, go to Creating Your First IAM User and Administrators
Group in the IAM User Guide.

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide.

• Getting Set Up with the AWS Command Line Interface

• Configuring the AWS Command Line Interface

2. Add a named profile for the administrator user in the AWS CLI config file. You use this profile
when executing the AWS CLI commands.

[adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available AWS regions, see Regions and Endpoints in the AWS General Reference.

3. Verify the setup by entering the following commands at the command prompt.

• Try the help command to verify that the AWS CLI is installed on your computer:

aws help

• Try an S3 command to verify the user can reach Amazon S3. This command lists buckets in
your account. The AWS CLI uses the adminuser credentials to authenticate the request.

 aws s3 ls --profile adminuser

Using the AWS SDK for Java
The AWS SDK for Java provides an API for the Amazon S3 bucket and object operations. For object
operations, in addition to providing the API to upload objects in a single operation, the SDK provides
API to upload large objects in parts (see Uploading Objects Using Multipart Upload API (p. 165)). The
API gives you the option of using a high-level or low-level API.

Low-Level API

The low-level APIs correspond to the underlying Amazon S3 REST operations, such as create, update,
and delete operations that apply to buckets and objects. When you upload large objects using the low-
level multipart upload API, it provides greater control such as letting you pause and resume multipart
uploads, vary part sizes during the upload, or to begin uploads when you do not know the size of the
data in advance. If you do not have these requirements, use the high-level API to upload objects.

High-Level API

For uploading objects, the SDK provides a higher level of abstraction by providing the
TransferManager class. The high-level API is a simpler API, where in just a few lines of code you

API Version 2006-03-01
564

http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Simple Storage Service Developer Guide
The Java API Organization

can upload files and streams to Amazon S3. You should use this API to upload data unless you need
to control the upload as described in the preceding Low-Level API section.

For smaller data size the TransferManager API uploads data in a single operation. However,
the TransferManager switches to using the multipart upload API when data size reaches certain
threshold. When possible, the TransferManager uses multiple threads to concurrently upload the
parts. If a part upload fails, the API retries the failed part upload up to three times. However, these are
configurable options using the TransferManagerConfiguration class.

Note
When using a stream for the source of data, the TransferManager class will not do
concurrent uploads.

The Java API Organization
The following packages in the AWS SDK for Java provide the API:

• com.amazonaws.services.s3—Provides the implementation APIs for Amazon S3 bucket and object
operations.
For example, it provides methods to create buckets, upload objects, get objects, delete objects, and
to list keys.

• com.amazonaws.services.s3.transfer—Provides the high-level API data upload.
This high-level API is designed to further simplify uploading objects to Amazon S3. It includes the
TransferManager class. It is particularly useful when uploading large objects in parts. It also
include the TransferManagerConfiguration class which you can use to configure the minimum
part size for uploading parts and the threshold in bytes of when to use multipart uploads.

• com.amazonaws.services.s3.model—Provides the low-level API classes to create requests and
process responses.
For example, it includes the GetObjectRequest class to describe your get object
request, the ListObjectRequest class to describe your list keys requests, and the
InitiateMultipartUploadRequest and InitiateMultipartUploadResult classes when
initiating a multipart upload.

For more information about the AWS SDK for Java API, go to AWS SDK for Java API Reference.

Testing the Java Code Examples
The easiest way to get started with the Java code examples is to install the latest AWS Toolkit for
Eclipse. For information on setting up your Java development environment and the AWS Toolkit for
Eclipse, see Installing the AWS SDK for Java in the AWS SDK for Java Developer Guide.

The following tasks guide you through the creation and testing of the Java code examples provided in
this guide.

General Process of Creating Java Code Examples

1 Create an AWS credentials profile file as described in Set Up your AWS Credentials for
Use with the AWS SDK for Java in the AWS SDK for Java Developer Guide.

2 Create a new AWS Java project in Eclipse. The project is pre-configured with the AWS
SDK for Java.

3 Copy the code from the section you are reading to your project.

4 Update the code by providing any required data. For example, if uploading a file, provide
the file path and the bucket name.

API Version 2006-03-01
565

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-install-sdk.html
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/set-up-creds.html
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/set-up-creds.html

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for .NET

5 Run the code. Verify that the object is created by using the AWS Management
Console. For more information about the AWS Management Console, go to http://
aws.amazon.com/console/.

Using the AWS SDK for .NET
Topics

• The .NET API Organization (p. 566)

• Running the Amazon S3 .NET Code Examples (p. 567)

The AWS SDK for .NET provides the API for the Amazon S3 bucket and object operations. For object
operations, in addition to providing the API to upload objects in a single operation, the SDK provides
the API to upload large objects in parts (see Uploading Objects Using Multipart Upload API (p. 165)).
The API gives you the option of using a high-level or low-level API.

Low-Level API

The low-level APIs correspond to the underlying Amazon S3 REST operations, including the create,
update, and delete operations that apply to buckets and objects. When you upload large objects using
the low-level multipart upload API (see Uploading Objects Using Multipart Upload API (p. 165)) it
provides greater control, such as letting you pause and resume multipart uploads, vary part sizes
during the upload, or to begin uploads when you do not know the size of the data in advance. If you do
not have these requirements, use the high-level API for uploading objects.

High-Level API

For uploading objects, the SDK provides a higher level of abstraction by providing the
TransferUtility class. The high-level API is a simpler API, where in just a few lines of code you
can upload files and streams to Amazon S3. You should use this API to upload data unless you need
to control the upload as described in the preceding Low-Level API section.

For smaller data size the TransferUtility API uploads data in a single operation. However,
the TransferUtility switches to using the multipart upload API when data size reaches certain
threshold. By default, it uses multiple threads to concurrently upload the parts. If a part upload fails, the
API retries the failed part upload up to three times. However, these are configurable options.

Note
When using a stream for the source of data, the TransferUtility class will not do
concurrent uploads.

The .NET API Organization
When writing Amazon S3 applications using the AWS SDK for .NET, you use the AWSSDK.dll. The
following namespaces in this assembly provide the multipart upload API:

• Amazon.S3.Transfer—Provides the high-level API to upload your data in parts.
It includes the TransferUtility class that enables you to specify a file, directory, or
stream for uploading your data. It also includes the TransferUtilityUploadRequest and
TransferUtilityUploadDirectoryRequest classes to configure advanced settings such
as the number of concurrent threads, part size, object metadata, the storage class (STANDARD,
REDUCED_REDUNDANCY) and object ACL.

• Amazon.S3—Provides the implementation for the low-level APIs.
It provides methods that correspond to the Amazon S3 REST multipart upload API (see Using the
REST API for Multipart Upload (p. 205)).

API Version 2006-03-01
566

http://aws.amazon.com/console/
http://aws.amazon.com/console/

Amazon Simple Storage Service Developer Guide
Running the Amazon S3 .NET Code Examples

• Amazon.S3.Model—Provides the low-level API classes to create requests and process responses.
For example, it provides the InitiateMultipartUploadRequest and
InitiateMultipartUploadResponse classes you can use when initiating a multipart upload, and
the UploadPartRequest and UploadPartResponse classes when uploading parts.

For more information about the AWS SDK for .NET API, go to AWS SDK for .NET Reference.

Running the Amazon S3 .NET Code Examples
The easiest way to get started with the .NET code examples is to install the AWS SDK for .NET. For
more information, go to AWS SDK for .NET.

Note
The examples in this guide are AWS SDK for .NET version 2.0 compliant.

The following tasks guide you through creating and testing the C# code samples provided in this
section.

General Process of Creating .NET Code Examples

1 Create a credentials profile for your AWS credentials as described in the AWS SDK
for .NET topic Configuring AWS Credentials.

2 Create a new Visual Studio project using the AWS Empty Project template.

3 Replace the code in the project file, Program.cs, with the code in the section you are
reading.

4 Run the code. Verify that the object is created using the AWS Management Console.
For more information about AWS Management Console, go to http://aws.amazon.com/
console/.

Using the AWS SDK for PHP and Running PHP
Examples

The AWS SDK for PHP provides access to the API for Amazon S3 bucket and object operations. The
SDK gives you the option of using the service's low-level API or using higher-level abstractions.

The SDK is available at AWS SDK for PHP, which also has instructions for installing and getting
started with the SDK.

Note
The setup for using the AWS SDK for PHP depends on your environment and how you want
to run your application. To set up your environment to run the examples in this documentation,
see the AWS SDK for PHP Getting Started Guide.

AWS SDK for PHP Levels

Low-Level API

The low-level APIs correspond to the underlying Amazon S3 REST operations, including the create,
update, and delete operations on buckets and objects. The low-level APIs provide greater control over
these operations. For example, you can batch your requests and execute them in parallel, or when
using the multipart upload API (see Uploading Objects Using Multipart Upload API (p. 165)), you can

API Version 2006-03-01
567

http://docs.aws.amazon.com/sdkfornet/latest/apidocs/Index.html
http://aws.amazon.com/sdk-for-net/
http://docs.aws.amazon.com/AWSSdkDocsNET/latest/DeveloperGuide/net-dg-config-creds.html
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/sdk-for-php/
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/index.html

Amazon Simple Storage Service Developer Guide
Running PHP Examples

manage the object parts individually. Note that these low-level API calls return a result that includes all
the Amazon S3 response details.

High-Level Abstractions
The high-level abstractions are intended to simplify common use cases. For
example, for uploading large objects using the low-level API, you must first
call Aws\S3\S3Client::createMultipartUpload(), then call the Aws
\S3\S3Client::uploadPart() method to uploads object parts and then call the Aws
\S3\S3Client::completeMultipartUpload() method to complete the upload. Instead, you could
use the higher-level Aws\S3\Model\MultipartUpload\UploadBuilder object that simplifies
creating a multipart upload.

Another example of using a higher-level abstraction is when enumerating objects in a bucket you can
use the iterators feature of the AWS SDK for PHP to return all the object keys, regardless of how many
objects you have stored in the bucket. If you use the low-level API the response returns only up to
1,000 keys and if you have more than a 1,000 objects in the bucket, the result will be truncated and
you will have to manage the response and check for any truncation.

Running PHP Examples
The following procedure describes how to run the PHP code examples in this guide.

To Run the PHP Code Examples

1 Download and install the AWS SDK for PHP, and then verify that your environment meets
the minimum requirements as described in the AWS SDK for PHP Getting Started Guide.

2 Install the AWS SDK for PHP according to the instructions in the AWS SDK for PHP
Getting Started Guide. Depending on the installation method that you use, you might
have to modify your code to resolve dependencies among the PHP extensions.

All of the PHP code samples in this document use the Composer dependency manager
that is described in the AWS SDK for PHP Getting Started Guide. Each code sample
includes the following line to include its dependencies:

require 'vendor/autoload.php';

3 Create a credentials profile for your AWS credentials as described in the AWS SDK for
PHP topic Using the AWS credentials file and credential profiles. At run time, when you
create a new Amazon S3 client object, the client will obtain your AWS credentials from
the credentials profile.

4 Copy the example code from the document to your project. Depending upon your
environment, you might need to add lines to the code example that reference your
configuration and SDK files.

For example, to load a PHP example in a browser, add the following to the top of the PHP
code, and then save it as a PHP file (extension .php) in the Web application directory
(such as www or htdocs):

<?php
header('Content-Type: text/plain; charset=utf-8');

// Include the AWS SDK using the Composer autoloader
require 'vendor/autoload.php';

API Version 2006-03-01
568

http://aws.amazon.com/sdk-for-php/
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/index.html
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/index.html
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/index.html
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/index.html
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/credentials.html#using-the-aws-credentials-file-and-credential-profiles

Amazon Simple Storage Service Developer Guide
Related Resources

5 Test the example according to your setup.

Related Resources
• AWS SDK for PHP for Amazon S3

• AWS SDK for PHP Documentation

Using the AWS SDK for Ruby - Version 2
The AWS SDK for Ruby provides an API for Amazon S3 bucket and object operations. For object
operations, you can use the API to upload objects in a single operation or upload large objects in
parts (see Uploading Objects Using Multipart Upload). However, the API for a single operation upload
can accept large objects as well and behind the scenes manage the upload in parts for you thereby
reducing the amount of script you need to write.

The Ruby API Organization
When creating Amazon S3 applications using the AWS SDK for Ruby, you must install the SDK for
Ruby gem. For more information, see the AWS SDK for Ruby - Version 2. Once installed, you can
access the API, including the following key classes:

• Aws::S3::Resource—Represents the interface to Amazon S3 for the Ruby SDK and provides
methods for creating and enumerating buckets.

The S3 class provides the #buckets instance method for accessing existing buckets or creating
new ones.

• Aws::S3::Bucket—Represents an Amazon S3 bucket.

The Bucket class provides the #object(key) and #objects methods for accessing the objects
in a bucket, as well as methods to delete a bucket and return information about a bucket, like the
bucket policy.

• Aws::S3::Object—Represents an Amazon S3 object identified by its key.
The Object class provides methods for getting and setting properties of an object, specifying the
storage class for storing objects, and setting object permissions using access control lists. The
Object class also has methods for deleting, uploading and copying objects. When uploading objects
in parts, this class provides options for you to specify the order of parts uploaded and the part size.

For more information about the AWS SDK for Ruby API, go to AWS SDK for Ruby - Version 2.

Testing the Ruby Script Examples
The easiest way to get started with the Ruby script examples is to install the latest AWS SDK for
Ruby gem. For information about installing or updating to the latest gem, go to AWS SDK for Ruby -
Version 2. The following tasks guide you through the creation and testing of the Ruby script examples
assuming that you have installed the AWS SDK for Ruby.

General Process of Creating and Testing Ruby Script Examples

1 To access AWS, you must provide a set of credentials for your SDK for Ruby application.
For more information, see Setting up AWS Credentials for Use with the SDK for Ruby.

API Version 2006-03-01
569

http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/service-s3.html
http://docs.aws.amazon.com/aws-sdk-php-2/guide/latest/index.html
http://docs.aws.amazon.com/sdkforruby/api/index.html
http://docs.aws.amazon.com/sdkforruby/api/index.html
http://docs.aws.amazon.com/sdkforruby/api/index.html
http://docs.aws.amazon.com/sdkforruby/api/index.html
http://docs.aws.amazon.com/sdk-for-ruby/latest/developer-guide/aws-ruby-sdk-getting-started.html#aws-ruby-sdk-configuration

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for Python (Boto)

2 Create a new SDK for Ruby script and add the following lines to the top of the script.

#!/usr/bin/env ruby

require 'rubygems'
require 'aws-sdk'

The first line is the interpreter directive and the two require statements import two
required gems into your script.

3 Copy the code from the section you are reading to your script.

4 Update the code by providing any required data. For example, if uploading a file, provide
the file path and the bucket name.

5 Run the script. Verify changes to buckets and objects by using the AWS Management
Console. For more information about the AWS Management Console, go to http://
aws.amazon.com/console/.

Ruby Samples

The following links contain samples to help get you started with the SDK for Ruby - Version 2:

• Using the AWS SDK for Ruby Version 2 (p. 67)

• Upload an Object Using the AWS SDK for Ruby (p. 163)

Using the AWS SDK for Python (Boto)
Boto is a Python package that provides interfaces to AWS including Amazon S3. For more information
about Boto, go to the AWS SDK for Python (Boto). The getting started link on this page provides step-
by-step instructions to get started.

API Version 2006-03-01
570

http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://aws.amazon.com/sdk-for-python/

Amazon Simple Storage Service Developer Guide
Appendix A: Using the SOAP API

Appendices

This Amazon Simple Storage Service Developer Guide appendix include the following sections.

Topics

• Appendix A: Using the SOAP API (p. 571)

• Appendix B: Authenticating Requests (AWS Signature Version 2) (p. 574)

Appendix A: Using the SOAP API
Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

This section contains information specific to the Amazon S3 SOAP API.

Note
SOAP requests, both authenticated and anonymous, must be sent to Amazon S3 using SSL.
Amazon S3 returns an error when you send a SOAP request over HTTP.

Common SOAP API Elements
Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

You can interact with Amazon S3 using SOAP 1.1 over HTTP. The Amazon S3 WSDL,
which describes the Amazon S3 API in a machine-readable way, is available at: http://
doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl. The Amazon S3 schema is available at http://
doc.s3.amazonaws.com/2006-03-01/AmazonS3.xsd.

Most users will interact with Amazon S3 using a SOAP toolkit tailored for their language and
development environment. Different toolkits will expose the Amazon S3 API in different ways. Please
refer to your specific toolkit documentation to understand how to use it. This section illustrates the
Amazon S3 SOAP operations in a toolkit-independent way by exhibiting the XML requests and
responses as they appear "on the wire."

Common Elements
You can include the following authorization-related elements with any SOAP request:

API Version 2006-03-01
571

http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.xsd
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.xsd

Amazon Simple Storage Service Developer Guide
Authenticating SOAP Requests

• AWSAccessKeyId: The AWS Access Key ID of the requester

• Timestamp: The current time on your system

• Signature: The signature for the request

Authenticating SOAP Requests
Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

Every non-anonymous request must contain authentication information to establish the identity of the
principal making the request. In SOAP, the authentication information is put into the following elements
of the SOAP request:

• Your AWS Access Key ID

Note
When making authenticated SOAP requests, temporary security credentials are not
supported. For more information about types of credentials, see Making Requests (p. 11).

• Timestamp: This must be a dateTime (go to http://www.w3.org/TR/xmlschema-2/
#dateTime) in the Coordinated Universal Time (Greenwich Mean Time) time zone, such as
2009-01-01T12:00:00.000Z. Authorization will fail if this timestamp is more than 15 minutes
away from the clock on Amazon S3 servers.

• Signature: The RFC 2104 HMAC-SHA1 digest (go to http://www.ietf.org/rfc/rfc2104.txt) of the
concatenation of "AmazonS3" + OPERATION + Timestamp, using your AWS Secret Access Key as
the key. For example, in the following CreateBucket sample request, the signature element would
contain the HMAC-SHA1 digest of the value "AmazonS3CreateBucket2009-01-01T12:00:00.000Z":

For example, in the following CreateBucket sample request, the signature element would contain the
HMAC-SHA1 digest of the value "AmazonS3CreateBucket2009-01-01T12:00:00.000Z":

Example

<CreateBucket xmlns="http://doc.s3.amazonaws.com/2006-03-01">
 <Bucket>quotes</Bucket>
 <Acl>private</Acl>
 <AWSAccessKeyId>AKIAIOSFODNN7EXAMPLE</AWSAccessKeyId>
 <Timestamp>2009-01-01T12:00:00.000Z</Timestamp>
 <Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>
</CreateBucket>

Note
SOAP requests, both authenticated and anonymous, must be sent to Amazon S3 using SSL.
Amazon S3 returns an error when you send a SOAP request over HTTP.

Important
Due to different interpretations regarding how extra time precision should be dropped, .NET
users should take care not to send Amazon S3 overly specific time stamps. This can be
accomplished by manually constructing DateTime objects with only millisecond precision.

Setting Access Policy with SOAP
Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

API Version 2006-03-01
572

http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.ietf.org/rfc/rfc2104.txt

Amazon Simple Storage Service Developer Guide
Setting Access Policy with SOAP

Access control can be set at the time a bucket or object is written by including the "AccessControlList"
element with the request to CreateBucket, PutObjectInline, or PutObject. The
AccessControlList element is described in Managing Access Permissions to Your Amazon S3
Resources (p. 266). If no access control list is specified with these operations, the resource is created
with a default access policy that gives the requester FULL_CONTROL access (this is the case even if
the request is a PutObjectInline or PutObject request for an object that already exists).

Following is a request that writes data to an object, makes the object readable by anonymous
principals, and gives the specified user FULL_CONTROL rights to the bucket (Most developers will
want to give themselves FULL_CONTROL access to their own bucket).

Example

Following is a request that writes data to an object and makes the object readable by anonymous
principals.

Sample Request

<PutObjectInline xmlns="http://doc.s3.amazonaws.com/2006-03-01">
 <Bucket>quotes</Bucket>
 <Key>Nelson</Key>
 <Metadata>
 <Name>Content-Type</Name>
 <Value>text/plain</Value>
 </Metadata>
 <Data>aGEtaGE=</Data>
 <ContentLength>5</ContentLength>
 <AccessControlList>
 <Grant>
 <Grantee xsi:type="CanonicalUser">

 <ID>75cc57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID>
 <DisplayName>chriscustomer</DisplayName>
 </Grantee>
 <Permission>FULL_CONTROL</Permission>
 </Grant>
 <Grant>
 <Grantee xsi:type="Group">
 <URI>http://acs.amazonaws.com/groups/global/AllUsers<URI>
 </Grantee>
 <Permission>READ</Permission>
 </Grant>
 </AccessControlList>
 <AWSAccessKeyId>AKIAIOSFODNN7EXAMPLE</AWSAccessKeyId>
 <Timestamp>2009-03-01T12:00:00.183Z</Timestamp>
 <Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>
</PutObjectInline>

Sample Response

<PutObjectInlineResponse xmlns="http://s3.amazonaws.com/doc/2006-03-01">
 <PutObjectInlineResponse>
 <ETag>"828ef3fdfa96f00ad9f27c383fc9ac7f"</ETag>
 <LastModified>2009-01-01T12:00:00.000Z</LastModified>
 </PutObjectInlineResponse>
</PutObjectInlineResponse>

The access control policy can be read or set for an existing bucket or object using
the GetBucketAccessControlPolicy, GetObjectAccessControlPolicy,

API Version 2006-03-01
573

Amazon Simple Storage Service Developer Guide
Appendix B: Authenticating

Requests (AWS Signature Version 2)

SetBucketAccessControlPolicy, and SetObjectAccessControlPolicy methods. For more
information, see the detailed explanation of these methods.

Appendix B: Authenticating Requests (AWS
Signature Version 2)

Topics

• Authenticating Requests Using the REST API (p. 575)

• Signing and Authenticating REST Requests (p. 576)

• Browser-Based Uploads Using POST (AWS Signature Version 2) (p. 587)

Note
This topic explains authenticating requests using Signature Version 2. Amazon S3 now
supports the latest Signature Version 4, which is supported in all regions; it is the only version
supported for new AWS regions. For more information, go to Authenticating Requests (AWS
Signature Version 4) in the Amazon Simple Storage Service API Reference.

API Version 2006-03-01
574

http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html

Amazon Simple Storage Service Developer Guide
Authenticating Requests Using the REST API

Authenticating Requests Using the REST API
When accessing Amazon S3 using REST, you must provide the following items in your request so the
request can be authenticated:

Request Elements

• AWS Access Key Id – Each request must contain the access key ID of the identity you are using to
send your request.

• Signature – Each request must contain a valid request signature, or the request is rejected.

A request signature is calculated using your secret access key, which is a shared secret known only
to you and AWS.

• Time stamp – Each request must contain the date and time the request was created, represented
as a string in UTC.

• Date – Each request must contain the time stamp of the request.

Depending on the API action you're using, you can provide an expiration date and time for the
request instead of or in addition to the time stamp. See the authentication topic for the particular
action to determine what it requires.

Following are the general steps for authenticating requests to Amazon S3. It is assumed you have the
necessary security credentials, access key ID and secret access key.

1 Construct a request to AWS.

API Version 2006-03-01
575

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

2 Calculate the signature using your secret access key.

3 Send the request to Amazon S3. Include your access key ID and the signature in your
request. Amazon S3 performs the next three steps.

4 Amazon S3 uses the access key ID to look up your secret access key.

5 Amazon S3 calculates a signature from the request data and the secret access key using
the same algorithm that you used to calculate the signature you sent in the request.

6 If the signature generated by Amazon S3 matches the one you sent in the request, the
request is considered authentic. If the comparison fails, the request is discarded, and
Amazon S3 returns an error response.

Detailed Authentication Information
For detailed information about REST authentication, see Signing and Authenticating REST
Requests (p. 576).

Signing and Authenticating REST Requests
Topics

• Using Temporary Security Credentials (p. 577)

API Version 2006-03-01
576

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

• The Authentication Header (p. 578)

• Request Canonicalization for Signing (p. 579)

• Constructing the CanonicalizedResource Element (p. 579)

• Constructing the CanonicalizedAmzHeaders Element (p. 580)

• Positional versus Named HTTP Header StringToSign Elements (p. 580)

• Time Stamp Requirement (p. 580)

• Authentication Examples (p. 581)

• REST Request Signing Problems (p. 585)

• Query String Request Authentication Alternative (p. 585)

Note
This topic explains authenticating requests using Signature Version 2. Amazon S3 now
supports the latest Signature Version 4. This latest signature version is supported in all
regions and any new regions after January 30, 2014 will support only Signature Version 4. For
more information, go to Authenticating Requests (AWS Signature Version 4) in the Amazon
Simple Storage Service API Reference.

Authentication is the process of proving your identity to the system. Identity is an important factor in
Amazon S3 access control decisions. Requests are allowed or denied in part based on the identity of
the requester. For example, the right to create buckets is reserved for registered developers and (by
default) the right to create objects in a bucket is reserved for the owner of the bucket in question. As a
developer, you'll be making requests that invoke these privileges, so you'll need to prove your identity
to the system by authenticating your requests. This section shows you how.

Note
The content in this section does not apply to HTTP POST. For more information, see Browser-
Based Uploads Using POST (AWS Signature Version 2) (p. 587).

The Amazon S3 REST API uses a custom HTTP scheme based on a keyed-HMAC (Hash Message
Authentication Code) for authentication. To authenticate a request, you first concatenate selected
elements of the request to form a string. You then use your AWS secret access key to calculate the
HMAC of that string. Informally, we call this process "signing the request," and we call the output of the
HMAC algorithm the signature, because it simulates the security properties of a real signature. Finally,
you add this signature as a parameter of the request by using the syntax described in this section.

When the system receives an authenticated request, it fetches the AWS secret access key that you
claim to have and uses it in the same way to compute a signature for the message it received. It
then compares the signature it calculated against the signature presented by the requester. If the
two signatures match, the system concludes that the requester must have access to the AWS secret
access key and therefore acts with the authority of the principal to whom the key was issued. If the two
signatures do not match, the request is dropped and the system responds with an error message.

Example Authenticated Amazon S3 REST Request

GET /photos/puppy.jpg HTTP/1.1
Host: johnsmith.s3.amazonaws.com
Date: Mon, 26 Mar 2007 19:37:58 +0000

Authorization: AWS AKIAIOSFODNN7EXAMPLE:frJIUN8DYpKDtOLCwo//yllqDzg=

Using Temporary Security Credentials

If you are signing your request using temporary security credentials (see Making Requests (p. 11)), you
must include the corresponding security token in your request by adding the x-amz-security-token
header.

API Version 2006-03-01
577

http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

When you obtain temporary security credentials using the AWS Security Token Service API, the
response includes temporary security credentials and a session token. You provide the session token
value in the x-amz-security-token header when you send requests to Amazon S3. For information
about the AWS Security Token Service API provided by IAM, go to Action in the AWS Security Token
Service API Reference Guide .

The Authentication Header

The Amazon S3 REST API uses the standard HTTP Authorization header to pass authentication
information. (The name of the standard header is unfortunate because it carries authentication
information, not authorization.) Under the Amazon S3 authentication scheme, the Authorization header
has the following form:

Authorization: AWS AWSAccessKeyId:Signature

Developers are issued an AWS access key ID and AWS secret access key when they register. For
request authentication, the AWSAccessKeyId element identifies the access key ID that was used to
compute the signature and, indirectly, the developer making the request.

The Signature element is the RFC 2104 HMAC-SHA1 of selected elements from the request, and
so the Signature part of the Authorization header will vary from request to request. If the request
signature calculated by the system matches the Signature included with the request, the requester
will have demonstrated possession of the AWS secret access key. The request will then be processed
under the identity, and with the authority, of the developer to whom the key was issued.

Following is pseudogrammar that illustrates the construction of the Authorization request header.
(In the example, \n means the Unicode code point U+000A, commonly called newline).

Authorization = "AWS" + " " + AWSAccessKeyId + ":" + Signature;

Signature = Base64(HMAC-SHA1(YourSecretAccessKeyID, UTF-8-Encoding-
Of(StringToSign)));

StringToSign = HTTP-Verb + "\n" +
 Content-MD5 + "\n" +
 Content-Type + "\n" +
 Date + "\n" +
 CanonicalizedAmzHeaders +
 CanonicalizedResource;

CanonicalizedResource = ["/" + Bucket] +
 <HTTP-Request-URI, from the protocol name up to the query string> +
 [subresource, if present. For example "?acl", "?location", "?logging", or
 "?torrent"];

CanonicalizedAmzHeaders = <described below>

HMAC-SHA1 is an algorithm defined by RFC 2104 - Keyed-Hashing for Message Authentication
. The algorithm takes as input two byte-strings, a key and a message. For Amazon S3 request
authentication, use your AWS secret access key (YourSecretAccessKeyID) as the key, and the
UTF-8 encoding of the StringToSign as the message. The output of HMAC-SHA1 is also a byte
string, called the digest. The Signature request parameter is constructed by Base64 encoding this
digest.

API Version 2006-03-01
578

http://docs.aws.amazon.com/STS/latest/APIReference/API_Operations.html
http://www.ietf.org/rfc/rfc2104.txt

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

Request Canonicalization for Signing

Recall that when the system receives an authenticated request, it compares the computed request
signature with the signature provided in the request in StringToSign. For that reason, you must
compute the signature by using the same method used by Amazon S3. We call the process of putting a
request in an agreed-upon form for signing canonicalization.

Constructing the CanonicalizedResource Element

CanonicalizedResource represents the Amazon S3 resource targeted by the request. Construct it
for a REST request as follows:

Launch Process

1 Start with an empty string ("").

2 If the request specifies a bucket using the HTTP Host header (virtual hosted-style), append the
bucket name preceded by a "/" (e.g., "/bucketname"). For path-style requests and requests that
don't address a bucket, do nothing. For more information about virtual hosted-style requests, see
Virtual Hosting of Buckets (p. 50).

For a virtual hosted-style request "https://johnsmith.s3.amazonaws.com/photos/puppy.jpg", the
CanonicalizedResource is "/johnsmith".

For the path-style request, "https://s3.amazonaws.com/johnsmith/photos/puppy.jpg", the
CanonicalizedResource is "".

3 Append the path part of the un-decoded HTTP Request-URI, up-to but not including the query
string.

For a virtual hosted-style request "https://johnsmith.s3.amazonaws.com/photos/puppy.jpg", the
CanonicalizedResource is "/johnsmith/photos/puppy.jpg".

For a path-style request, "https://s3.amazonaws.com/johnsmith/photos/puppy.jpg",
the CanonicalizedResource is "/johnsmith/photos/puppy.jpg". At this point, the
CanonicalizedResource is the same for both the virtual hosted-style and path-style request.

For a request that does not address a bucket, such as GET Service, append "/".

4 If the request addresses a subresource, such as ?versioning, ?location, ?acl, ?torrent,
?lifecycle, or ?versionid, append the subresource, its value if it has one, and the question
mark. Note that in case of multiple subresources, subresources must be lexicographically sorted
by subresource name and separated by '&', e.g., ?acl&versionId=value.

The subresources that must be included when constructing the CanonicalizedResource Element
are acl, lifecycle, location, logging, notification, partNumber, policy, requestPayment, torrent,
uploadId, uploads, versionId, versioning, versions, and website.

If the request specifies query string parameters overriding the response header values (see Get
Object), append the query string parameters and their values. When signing, you do not encode
these values; however, when making the request, you must encode these parameter values.
The query string parameters in a GET request include response-content-type, response-
content-language, response-expires, response-cache-control, response-
content-disposition, and response-content-encoding.

The delete query string parameter must be included when you create the
CanonicalizedResource for a multi-object Delete request.

Elements of the CanonicalizedResource that come from the HTTP Request-URI should be signed
literally as they appear in the HTTP request, including URL-Encoding meta characters.

The CanonicalizedResource might be different than the HTTP Request-URI. In particular, if your
request uses the HTTP Host header to specify a bucket, the bucket does not appear in the HTTP

API Version 2006-03-01
579

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

Request-URI. However, the CanonicalizedResource continues to include the bucket. Query string
parameters might also appear in the Request-URI but are not included in CanonicalizedResource.
For more information, see Virtual Hosting of Buckets (p. 50).

Constructing the CanonicalizedAmzHeaders Element

To construct the CanonicalizedAmzHeaders part of StringToSign, select all HTTP request headers
that start with 'x-amz-' (using a case-insensitive comparison), and use the following process.

CanonicalizedAmzHeaders Process

1 Convert each HTTP header name to lowercase. For example, 'X-Amz-Date' becomes 'x-
amz-date'.

2 Sort the collection of headers lexicographically by header name.

3 Combine header fields with the same name into one "header-name:comma-separated-value-
list" pair as prescribed by RFC 2616, section 4.2, without any whitespace between values. For
example, the two metadata headers 'x-amz-meta-username: fred' and 'x-amz-meta-
username: barney' would be combined into the single header 'x-amz-meta-username:
fred,barney'.

4 "Unfold" long headers that span multiple lines (as allowed by RFC 2616, section 4.2) by
replacing the folding whitespace (including new-line) by a single space.

5 Trim any whitespace around the colon in the header. For example, the header 'x-amz-meta-
username: fred,barney' would become 'x-amz-meta-username:fred,barney'

6 Finally, append a newline character (U+000A) to each canonicalized header in the resulting
list. Construct the CanonicalizedResource element by concatenating all headers in this list into
a single string.

Positional versus Named HTTP Header StringToSign
Elements

The first few header elements of StringToSign (Content-Type, Date, and Content-MD5) are
positional in nature. StringToSign does not include the names of these headers, only their values
from the request. In contrast, the 'x-amz-' elements are named. Both the header names and the
header values appear in StringToSign.

If a positional header called for in the definition of StringToSign is not present in your request (for
example, Content-Type or Content-MD5 are optional for PUT requests and meaningless for GET
requests), substitute the empty string ("") for that position.

Time Stamp Requirement

A valid time stamp (using either the HTTP Date header or an x-amz-date alternative) is mandatory
for authenticated requests. Furthermore, the client timestamp included with an authenticated request
must be within 15 minutes of the Amazon S3 system time when the request is received. If not, the
request will fail with the RequestTimeTooSkewed error code. The intention of these restrictions is to
limit the possibility that intercepted requests could be replayed by an adversary. For stronger protection
against eavesdropping, use the HTTPS transport for authenticated requests.

Note
The validation constraint on request date applies only to authenticated requests that do
not use query string authentication. For more information, see Query String Request
Authentication Alternative (p. 585).

API Version 2006-03-01
580

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

Some HTTP client libraries do not expose the ability to set the Date header for a request. If you
have trouble including the value of the 'Date' header in the canonicalized headers, you can set the
timestamp for the request by using an 'x-amz-date' header instead. The value of the x-amz-date
header must be in one of the RFC 2616 formats (http://www.ietf.org/rfc/rfc2616.txt). When an x-amz-
date header is present in a request, the system will ignore any Date header when computing the
request signature. Therefore, if you include the x-amz-date header, use the empty string for the Date
when constructing the StringToSign. See the next section for an example.

Authentication Examples

The examples in this section use the (non-working) credentials in the following table.

Parameter Value

AWSAccessKeyId AKIAIOSFODNN7EXAMPLE

AWSSecretAccessKey wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

In the example StringToSigns, formatting is not significant, and \n means the Unicode code point U
+000A, commonly called newline. Also, the examples use "+0000" to designate the time zone. You can
use "GMT" to designate timezone instead, but the signatures shown in the examples will be different.

Example Object GET

This example gets an object from the johnsmith bucket.

Request StringToSign

GET /photos/puppy.jpg HTTP/1.1
Host: johnsmith.s3.amazonaws.com
Date: Tue, 27 Mar 2007 19:36:42
 +0000

Authorization: AWS
 AKIAIOSFODNN7EXAMPLE:
bWq2s1WEIj+Ydj0vQ697zp+IXMU=

GET\n
\n
\n
Tue, 27 Mar 2007 19:36:42 +0000\n
/johnsmith/photos/puppy.jpg

Note that the CanonicalizedResource includes the bucket name, but the HTTP Request-URI does not.
(The bucket is specified by the Host header.)

API Version 2006-03-01
581

http://www.ietf.org/rfc/rfc2616.txt

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

Example Object PUT

This example puts an object into the johnsmith bucket.

Request StringToSign

PUT /photos/puppy.jpg HTTP/1.1
Content-Type: image/jpeg
Content-Length: 94328
Host: johnsmith.s3.amazonaws.com
Date: Tue, 27 Mar 2007 21:15:45
 +0000

Authorization: AWS
 AKIAIOSFODNN7EXAMPLE:
MyyxeRY7whkBe+bq8fHCL/2kKUg=

PUT\n
\n
image/jpeg\n
Tue, 27 Mar 2007 21:15:45 +0000\n
/johnsmith/photos/puppy.jpg

Note the Content-Type header in the request and in the StringToSign. Also note that the Content-MD5
is left blank in the StringToSign, because it is not present in the request.

Example List

This example lists the content of the johnsmith bucket.

Request StringToSign

GET /?prefix=photos&max-keys=50&marker=puppy
 HTTP/1.1
User-Agent: Mozilla/5.0
Host: johnsmith.s3.amazonaws.com
Date: Tue, 27 Mar 2007 19:42:41 +0000

Authorization: AWS AKIAIOSFODNN7EXAMPLE:
htDYFYduRNen8P9ZfE/s9SuKy0U=

GET\n
\n
\n
Tue, 27 Mar 2007 19:42:41
 +0000\n
/johnsmith/

Note the trailing slash on the CanonicalizedResource and the absence of query string parameters.

Example Fetch

This example fetches the access control policy subresource for the 'johnsmith' bucket.

Request StringToSign

GET /?acl HTTP/1.1
Host: johnsmith.s3.amazonaws.com
Date: Tue, 27 Mar 2007 19:44:46 +0000

Authorization: AWS AKIAIOSFODNN7EXAMPLE:
c2WLPFtWHVgbEmeEG93a4cG37dM=

GET\n
\n
\n
Tue, 27 Mar 2007 19:44:46
 +0000\n
/johnsmith/?acl

Notice how the subresource query string parameter is included in the CanonicalizedResource.

API Version 2006-03-01
582

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

Example Delete

This example deletes an object from the 'johnsmith' bucket using the path-style and Date alternative.

Request StringToSign

DELETE /johnsmith/photos/puppy.jpg
 HTTP/1.1
User-Agent: dotnet
Host: s3.amazonaws.com
Date: Tue, 27 Mar 2007 21:20:27 +0000

x-amz-date: Tue, 27 Mar 2007 21:20:26
 +0000
Authorization: AWS
 AKIAIOSFODNN7EXAMPLE:lx3byBScXR6KzyMaifNkardMwNk=

DELETE\n
\n
\n
Tue, 27 Mar 2007 21:20:26 +0000\n
/johnsmith/photos/puppy.jpg

Note how we used the alternate 'x-amz-date' method of specifying the date (because our client library
prevented us from setting the date, say). In this case, the x-amz-date takes precedence over the
Date header. Therefore, date entry in the signature must contain the value of the x-amz-date header.

API Version 2006-03-01
583

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

Example Upload

This example uploads an object to a CNAME style virtual hosted bucket with metadata.

Request StringToSign

PUT /db-backup.dat.gz HTTP/1.1
User-Agent: curl/7.15.5
Host: static.johnsmith.net:8080
Date: Tue, 27 Mar 2007 21:06:08 +0000

x-amz-acl: public-read
content-type: application/x-download
Content-MD5: 4gJE4saaMU4BqNR0kLY+lw==
X-Amz-Meta-ReviewedBy:
 joe@johnsmith.net
X-Amz-Meta-ReviewedBy:
 jane@johnsmith.net
X-Amz-Meta-FileChecksum: 0x02661779
X-Amz-Meta-ChecksumAlgorithm: crc32
Content-Disposition: attachment;
 filename=database.dat
Content-Encoding: gzip
Content-Length: 5913339

Authorization: AWS
 AKIAIOSFODNN7EXAMPLE:
ilyl83RwaSoYIEdixDQcA4OnAnc=

PUT\n
4gJE4saaMU4BqNR0kLY+lw==\n
application/x-download\n
Tue, 27 Mar 2007 21:06:08 +0000\n

x-amz-acl:public-read\n
x-amz-meta-
checksumalgorithm:crc32\n
x-amz-meta-
filechecksum:0x02661779\n
x-amz-meta-reviewedby:
joe@johnsmith.net,jane@johnsmith.net
\n
/static.johnsmith.net/db-
backup.dat.gz

Notice how the 'x-amz-' headers are sorted, trimmed of whitespace, and converted to lowercase. Note
also that multiple headers with the same name have been joined using commas to separate values.

Note how only the Content-Type and Content-MD5 HTTP entity headers appear in the
StringToSign. The other Content-* entity headers do not.

Again, note that the CanonicalizedResource includes the bucket name, but the HTTP Request-URI
does not. (The bucket is specified by the Host header.)

Example List All My Buckets

Request StringToSign

GET / HTTP/1.1
Host: s3.amazonaws.com
Date: Wed, 28 Mar 2007 01:29:59 +0000

Authorization: AWS
 AKIAIOSFODNN7EXAMPLE:qGdzdERIC03wnaRNKh6OqZehG9s=

GET\n
\n
\n
Wed, 28 Mar 2007 01:29:59
 +0000\n
/

API Version 2006-03-01
584

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

Example Unicode Keys

Request StringToSign

GET /dictionary/fran%C3%A7ais/pr
%c3%a9f%c3%a8re HTTP/1.1
Host: s3.amazonaws.com
Date: Wed, 28 Mar 2007 01:49:49 +0000
Authorization: AWS
 AKIAIOSFODNN7EXAMPLE:DNEZGsoieTZ92F3bUfSPQcbGmlM=

GET\n
\n
\n
Wed, 28 Mar 2007 01:49:49 +0000\n
/dictionary/fran%C3%A7ais/pr%c3%a9f
%c3%a8re

Note
The elements in StringToSign that were derived from the Request-URI are taken literally,
including URL-Encoding and capitalization.

REST Request Signing Problems

When REST request authentication fails, the system responds to the request with an XML error
document. The information contained in this error document is meant to help developers diagnose the
problem. In particular, the StringToSign element of the SignatureDoesNotMatch error document
tells you exactly what request canonicalization the system is using.

Some toolkits silently insert headers that you do not know about beforehand, such as adding the
header Content-Type during a PUT. In most of these cases, the value of the inserted header remains
constant, allowing you to discover the missing headers by using tools such as Ethereal or tcpmon.

Query String Request Authentication Alternative

You can authenticate certain types of requests by passing the required information as query-string
parameters instead of using the Authorization HTTP header. This is useful for enabling direct
third-party browser access to your private Amazon S3 data without proxying the request. The idea is
to construct a "pre-signed" request and encode it as a URL that an end-user's browser can retrieve.
Additionally, you can limit a pre-signed request by specifying an expiration time.

Note
For examples of using the AWS SDKs to generating pre-signed URLs, see Share an Object
with Others (p. 152).

Creating a Signature

Following is an example query string authenticated Amazon S3 REST request.

GET /photos/puppy.jpg
?
AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE&Expires=1141889120&Signature=vjbyPxybdZaNmGa
%2ByT272YEAiv4%3D HTTP/1.1
Host: johnsmith.s3.amazonaws.com
Date: Mon, 26 Mar 2007 19:37:58 +0000

The query string request authentication method doesn't require any special HTTP headers. Instead,
the required authentication elements are specified as query string parameters:

API Version 2006-03-01
585

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

Query String
Parameter Name

Example Value Description

AWSAccessKeyId AKIAIOSFODNN7EXAMPLE Your AWS access key ID. Specifies
the AWS secret access key used to
sign the request and, indirectly, the
identity of the developer making the
request.

Expires 1141889120 The time when the signature expires,
specified as the number of seconds
since the epoch (00:00:00 UTC on
January 1, 1970). A request received
after this time (according to the server)
will be rejected.

Signature vjbyPxybdZaNmGa
%2ByT272YEAiv4%3D

The URL encoding of the Base64
encoding of the HMAC-SHA1 of
StringToSign.

The query string request authentication method differs slightly from the ordinary method but only in the
format of the Signature request parameter and the StringToSign element. Following is pseudo-
grammar that illustrates the query string request authentication method.

Signature = URL-Encode(Base64(HMAC-SHA1(YourSecretAccessKeyID, UTF-8-
Encoding-Of(StringToSign))));

StringToSign = HTTP-VERB + "\n" +
 Content-MD5 + "\n" +
 Content-Type + "\n" +
 Expires + "\n" +
 CanonicalizedAmzHeaders +
 CanonicalizedResource;

YourSecretAccessKeyID is the AWS secret access key ID that Amazon assigns to you when
you sign up to be an Amazon Web Service developer. Notice how the Signature is URL-Encoded
to make it suitable for placement in the query string. Note also that in StringToSign, the HTTP
Date positional element has been replaced with Expires. The CanonicalizedAmzHeaders and
CanonicalizedResource are the same.

Note
In the query string authentication method, you do not use the Date or the x-amz-date
request header when calculating the string to sign.

API Version 2006-03-01
586

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Example Query String Request Authentication

Request StringToSign

GET /photos/puppy.jpg?
AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE&
 Signature=NpgCjnDzrM
%2BWFzoENXmpNDUsSn8%3D&
 Expires=1175139620 HTTP/1.1

Host: johnsmith.s3.amazonaws.com

GET\n
\n
\n
1175139620\n

/johnsmith/photos/puppy.jpg

We assume that when a browser makes the GET request, it won't provide a Content-MD5 or a
Content-Type header, nor will it set any x-amz- headers, so those parts of the StringToSign are left
blank.

Using Base64 Encoding

HMAC request signatures must be Base64 encoded. Base64 encoding converts the signature into a
simple ASCII string that can be attached to the request. Characters that could appear in the signature
string like plus (+), forward slash (/), and equals (=) must be encoded if used in a URI. For example,
if the authentication code includes a plus (+) sign, encode it as %2B in the request. Encode a forward
slash as %2F and equals as %3D.

For examples of Base64 encoding, refer to the Amazon S3 Authentication Examples (p. 581).

Browser-Based Uploads Using POST (AWS
Signature Version 2)
Amazon S3 supports POST, which allows your users to upload content directly to Amazon S3. POST is
designed to simplify uploads, reduce upload latency, and save you money on applications where users
upload data to store in Amazon S3.

Note
The request authentication discussed in this section is based on AWS Signature Version 2, a
protocol for authenticating inbound API requests to AWS services.
Amazon S3 now supports Signature Version 4, a protocol for authenticating inbound API
requests to AWS services, in all AWS regions. At this time, AWS regions created before
January 30, 2014 will continue to support the previous protocol, Signature Version 2. Any
new regions after January 30, 2014 will support only Signature Version 4 and therefore all
requests to those regions must be made with Signature Version 4. For more information, see
Authenticating Requests in Browser-Based Uploads Using POST (AWS Signature Version 4)
in the Amazon Simple Storage Service API Reference.

The following figure shows an upload using Amazon S3 POST.

API Version 2006-03-01
587

http://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-authentication-HTTPPOST.html

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Uploading Using POST

1 The user opens a web browser and accesses your web page.

2 Your web page contains an HTTP form that contains all the information necessary for the
user to upload content to Amazon S3.

3 The user uploads content directly to Amazon S3.

Note
Query string authentication is not supported for POST.

HTML Forms (AWS Signature Version 2)

Topics

• HTML Form Encoding (p. 589)

• HTML Form Declaration (p. 589)

• HTML Form Fields (p. 590)

• Policy Construction (p. 592)

• Constructing a Signature (p. 595)

• Redirection (p. 595)

When you communicate with Amazon S3, you normally use the REST or SOAP API to perform put,
get, delete, and other operations. With POST, users upload data directly to Amazon S3 through their
browsers, which cannot process the SOAP API or create a REST PUT request.

API Version 2006-03-01
588

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

To allow users to upload content to Amazon S3 by using their browsers, you use HTML forms. HTML
forms consist of a form declaration and form fields. The form declaration contains high-level information
about the request. The form fields contain detailed information about the request, as well as the policy
that is used to authenticate it and ensure that it meets the conditions that you specify.

Note
The form data and boundaries (excluding the contents of the file) cannot exceed 20 KB.

This section explains how to use HTML forms.

HTML Form Encoding

The form and policy must be UTF-8 encoded. You can apply UTF-8 encoding to the form by specifying
it in the HTML heading or as a request header.

Note
The HTML form declaration does not accept query string authentication parameters.

The following is an example of UTF-8 encoding in the HTML heading:

<html>
 <head>
 ...
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 ...
 </head>
 <body>

The following is an example of UTF-8 encoding in a request header:

Content-Type: text/html; charset=UTF-8

HTML Form Declaration

The form declaration has three components: the action, the method, and the enclosure type. If any of
these values is improperly set, the request fails.

The action specifies the URL that processes the request, which must be set to the URL
of the bucket. For example, if the name of your bucket is "johnsmith", the URL is "http://
johnsmith.s3.amazonaws.com/".

Note
The key name is specified in a form field.

The method must be POST.

The enclosure type (enctype) must be specified and must be set to multipart/form-data for both file
uploads and text area uploads. For more information, go to RFC 1867.

API Version 2006-03-01
589

http://www.ietf.org/rfc/rfc1867.txt

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Example

The following example is a form declaration for the bucket "johnsmith".

<form action="http://johnsmith.s3.amazonaws.com/" method="post"

enctype="multipart/form-data">

HTML Form Fields

The following table describes fields that can be used within an HTML form.

Note
The variable ${filename} is automatically replaced with the name of the file provided by the
user and is recognized by all form fields. If the browser or client provides a full or partial path
to the file, only the text following the last slash (/) or backslash (\) will be used. For example,
"C:\Program Files\directory1\file.txt" will be interpreted as "file.txt". If no file or file name is
provided, the variable is replaced with an empty string.

Field Name Description Required

AWSAccessKeyId The AWS Access Key ID of the owner of the
bucket who grants an anonymous user access
for a request that satisfies the set of constraints
in the policy. This field is required if the request
includes a policy document.

Conditional

acl An Amazon S3 access control list (ACL). If an
invalid access control list is specified, an error is
generated. For more information on ACLs, see
Access Control Lists (p. 8).

Type: String

Default: private

Valid Values: private | public-read |
public-read-write | aws-exec-read |
authenticated-read | bucket-owner-
read | bucket-owner-full-control

No

Cache-Control, Content-
Type, Content-
Disposition, Content-
Encoding, Expires

REST-specific headers. For more information,
see PUT Object.

No

key The name of the uploaded key.

To use the filename provided by the user,
use the ${filename} variable. For example, if
user Betty uploads the file lolcatz.jpg and you
specify /user/betty/${filename}, the file is stored
as /user/betty/lolcatz.jpg.

For more information, see Object Key and
Metadata (p. 99).

Yes

policy Security policy describing what is permitted in
the request. Requests without a security policy

No

API Version 2006-03-01
590

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Field Name Description Required

are considered anonymous and will succeed
only on publicly writable buckets.

success_action_redirect,
redirect

The URL to which the client is redirected upon
successful upload. Amazon S3 appends the
bucket, key, and etag values as query string
parameters to the URL.

If success_action_redirect is not specified,
Amazon S3 returns the empty document type
specified in the success_action_status field.

If Amazon S3 cannot interpret the URL, it
ignores the field.

If the upload fails, Amazon S3 displays an error
and does not redirect the user to a URL.

For more information, see
Redirection (p. 595).

Note
The redirect field name is deprecated
and support for the redirect field name
will be removed in the future.

No

success_action_status The status code returned to the client upon
successful upload if success_action_redirect is
not specified.

Valid values are 200, 201, or 204 (default).

If the value is set to 200 or 204, Amazon S3
returns an empty document with a 200 or 204
status code.

If the value is set to 201, Amazon S3 returns
an XML document with a 201 status code.
For information about the content of the XML
document, see POST Object.

If the value is not set or if it is set to an invalid
value, Amazon S3 returns an empty document
with a 204 status code.

Note
Some versions of the Adobe Flash
player do not properly handle HTTP
responses with an empty body. To
support uploads through Adobe
Flash, we recommend setting
success_action_status to 201.

No

API Version 2006-03-01
591

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Field Name Description Required

signature The HMAC signature constructed by using
the secret access key that corresponds to
the provided AWSAccessKeyId. This field is
required if a policy document is included with
the request.

For more information, see Using Auth Access .

Conditional

x-amz-security-token A security token used by Amazon DevPay and
session credentials

If the request is using Amazon DevPay then it
requires two x-amz-security-token form
fields: one for the product token and one for the
user token. For more information, go to Using
DevPay.

If the request is using session credentials, then
it requires one x-amz-security-token form.
For more information, see Temporary Security
Credentials in the IAM User Guide.

No

Other field names prefixed with
x-amz-meta-

User-specified metadata.

Amazon S3 does not validate or use this data.

For more information, see PUT Object.

No

file File or text content.

The file or content must be the last field in the
form. Any fields below it are ignored.

You cannot upload more than one file at a time.

Yes

Policy Construction

Topics

• Expiration (p. 593)

• Conditions (p. 593)

• Condition Matching (p. 594)

• Character Escaping (p. 595)

The policy is a UTF-8 and Base64-encoded JSON document that specifies conditions that the
request must meet and is used to authenticate the content. Depending on how you design your policy
documents, you can use them per upload, per user, for all uploads, or according to other designs that
meet your needs.

Note
Although the policy document is optional, we highly recommend it over making a bucket
publicly writable.

The following is an example of a policy document:

{ "expiration": "2007-12-01T12:00:00.000Z",

API Version 2006-03-01
592

http://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingDevPay.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingDevPay.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

 "conditions": [

 {"acl": "public-read" },

 {"bucket": "johnsmith" },

 ["starts-with", "$key", "user/eric/"],

]

}

The policy document contains the expiration and conditions.

Expiration

The expiration element specifies the expiration date of the policy in ISO 8601 UTC date format. For
example, "2007-12-01T12:00:00.000Z" specifies that the policy is not valid after midnight UTC on
2007-12-01. Expiration is required in a policy.

Conditions

The conditions in the policy document validate the contents of the uploaded object. Each form field that
you specify in the form (except AWSAccessKeyId, signature, file, policy, and field names that have an
x-ignore- prefix) must be included in the list of conditions.

Note
If you have multiple fields with the same name, the values must be separated by commas.
For example, if you have two fields named "x-amz-meta-tag" and the first one has a value
of "Ninja" and second has a value of "Stallman", you would set the policy document to
Ninja,Stallman.
All variables within the form are expanded before the policy is validated. Therefore, all
condition matching should be performed against the expanded fields. For example, if you
set the key field to user/betty/${filename}, your policy might be ["starts-with",
"$key", "user/betty/"]. Do not enter ["starts-with", "$key", "user/betty/
${filename}"]. For more information, see Condition Matching (p. 594).

The following table describes policy document conditions.

Element Name Description

acl Specifies conditions that the ACL must meet.

Supports exact matching and starts-with.

content-length-range Specifies the minimum and maximum allowable size for the
uploaded content.

Supports range matching.

Cache-Control, Content-Type,
Content-Disposition, Content-
Encoding, Expires

REST-specific headers.

Supports exact matching and starts-with.

key The name of the uploaded key.

Supports exact matching and starts-with.

success_action_redirect, redirect The URL to which the client is redirected upon successful
upload.

API Version 2006-03-01
593

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Element Name Description

Supports exact matching and starts-with.

success_action_status The status code returned to the client upon successful upload if
success_action_redirect is not specified.

Supports exact matching.

x-amz-security-token Amazon DevPay security token.

Each request that uses Amazon DevPay requires two x-
amz-security-token form fields: one for the product token
and one for the user token. As a result, the values must be
separated by commas. For example, if the user token is
eW91dHViZQ== and the product token is b0hnNVNKWVJIQTA=,
you set the policy entry to: { "x-amz-security-token":
"eW91dHViZQ==,b0hnNVNKWVJIQTA=" }.

For more information about Amazon DevPay, see Using
DevPay .

Other field names prefixed with x-
amz-meta-

User-specified metadata.

Supports exact matching and starts-with.

Note
If your toolkit adds additional fields (e.g., Flash adds filename), you must add them to the
policy document. If you can control this functionality, prefix x-ignore- to the field so Amazon
S3 ignores the feature and it won't affect future versions of this feature.

Condition Matching

The following table describes condition matching types. Although you must specify one condition
for each form field that you specify in the form, you can create more complex matching criteria by
specifying multiple conditions for a form field.

Condition Description

Exact Matches Exact matches verify that fields match specific values. This example indicates that
the ACL must be set to public-read:

{"acl": "public-read" }

This example is an alternate way to indicate that the ACL must be set to public-
read:

["eq", "$acl", "public-read"]

Starts With If the value must start with a certain value, use starts-with. This example indicates
that the key must start with user/betty:

["starts-with", "$key", "user/betty/"]

Matching Any
Content

To configure the policy to allow any content within a field, use starts-with with an
empty value. This example allows any success_action_redirect:

API Version 2006-03-01
594

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingDevPay.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingDevPay.html

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Condition Description

["starts-with", "$success_action_redirect", ""]

Specifying
Ranges

For fields that accept ranges, separate the upper and lower ranges with a comma.
This example allows a file size from 1 to 10 megabytes:

["content-length-range", 1048579, 10485760]

Character Escaping

The following table describes characters that must be escaped within a policy document.

Escape
Sequence

Description

\\ Backslash

\$ Dollar sign

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\uxxxx All Unicode characters

Constructing a Signature

Step Description

1 Encode the policy by using UTF-8.

2 Encode those UTF-8 bytes by using Base64.

3 Sign the policy with your secret access key by using HMAC SHA-1.

4 Encode the SHA-1 signature by using Base64.

For general information about authentication, see Using Auth Access .

Redirection

This section describes how to handle redirects.

General Redirection

On completion of the POST request, the user is redirected to the location that you specified in
the success_action_redirect field. If Amazon S3 cannot interpret the URL, it ignores the
success_action_redirect field.

API Version 2006-03-01
595

http://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

If success_action_redirect is not specified, Amazon S3 returns the empty document type
specified in the success_action_status field.

If the POST request fails, Amazon S3 displays an error and does not provide a redirect.

Pre-Upload Redirection

If your bucket was created using <CreateBucketConfiguration>, your end users might require a
redirect. If this occurs, some browsers might handle the redirect incorrectly. This is relatively rare but is
most likely to occur right after a bucket is created.

Upload Examples (AWS Signature Version 2)

Topics

• File Upload (p. 596)

• Text Area Upload (p. 599)

Note
The request authentication discussed in this section is based on AWS Signature Version 2, a
protocol for authenticating inbound API requests to AWS services.
Amazon S3 now supports Signature Version 4, a protocol for authenticating inbound API
requests to AWS services, in all AWS regions. At this time, AWS regions created before
January 30, 2014 will continue to support the previous protocol, Signature Version 2. Any
new regions after January 30, 2014 will support only Signature Version 4 and therefore all
requests to those regions must be made with Signature Version 4. For more information, see
Examples: Browser-Based Upload using HTTP POST (Using AWS Signature Version 4) in the
Amazon Simple Storage Service API Reference.

File Upload

This example shows the complete process for constructing a policy and form that can be used to
upload a file attachment.

Policy and Form Construction

The following policy supports uploads to Amazon S3 for the johnsmith bucket.

{ "expiration": "2007-12-01T12:00:00.000Z",
 "conditions": [
 {"bucket": "johnsmith"},
 ["starts-with", "$key", "user/eric/"],
 {"acl": "public-read"},
 {"success_action_redirect": "http://johnsmith.s3.amazonaws.com/
successful_upload.html"},
 ["starts-with", "$Content-Type", "image/"],
 {"x-amz-meta-uuid": "14365123651274"},
 ["starts-with", "$x-amz-meta-tag", ""]
]
}

This policy requires the following:

• The upload must occur before 12:00 UTC on December 1, 2007.

• The content must be uploaded to the johnsmith bucket.

• The key must start with "user/eric/".

• The ACL is set to public-read.

• The success_action_redirect is set to http://johnsmith.s3.amazonaws.com/successful_upload.html.

API Version 2006-03-01
596

http://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-post-example.html

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

• The object is an image file.

• The x-amz-meta-uuid tag must be set to 14365123651274.

• The x-amz-meta-tag can contain any value.

The following is a Base64-encoded version of this policy.

eyAiZXhwaXJhdGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXRpb25zIjogWwogICAgeyJidWNrZXQiOiAiam9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJdLAogICAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOiAiaHR0cDovL2pvaG5zbWl0aC5zMy5hbWF6b25hd3MuY29tL3N1Y2Nlc3NmdWxfdXBsb2FkLmh0bWwifSwKICAgIFsic3RhcnRzLXdpdGgiLCAiJENvbnRlbnQtVHlwZSIsICJpbWFnZS8iXSwKICAgIHsieC1hbXotbWV0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1tZXRhLXRhZyIsICIiXQogIF0KfQo=

Using your credentials create a signature, for example 0RavWzkygo6QX9caELEqKi9kDbU= is the
signature for the preceding policy document.

The following form supports a POST request to the johnsmith.net bucket that uses this policy.

<html>
 <head>
 ...
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 ...
 </head>
 <body>
 ...
 <form action="http://johnsmith.s3.amazonaws.com/" method="post"
 enctype="multipart/form-data">
 Key to upload: <input type="input" name="key" value="user/eric/" />

 <input type="hidden" name="acl" value="public-read" />
 <input type="hidden" name="success_action_redirect" value="http://
johnsmith.s3.amazonaws.com/successful_upload.html" />
 Content-Type: <input type="input" name="Content-Type" value="image/
jpeg" />

 <input type="hidden" name="x-amz-meta-uuid" value="14365123651274" />
 Tags for File: <input type="input" name="x-amz-meta-tag" value="" /><br /
>
 <input type="hidden" name="AWSAccessKeyId" value="AKIAIOSFODNN7EXAMPLE" /
>
 <input type="hidden" name="Policy" value="POLICY" />
 <input type="hidden" name="Signature" value="SIGNATURE" />
 File: <input type="file" name="file" />

 <!-- The elements after this will be ignored -->
 <input type="submit" name="submit" value="Upload to Amazon S3" />
 </form>
 ...
</html>

Sample Request

This request assumes that the image uploaded is 117,108 bytes; the image data is not included.

POST / HTTP/1.1
Host: johnsmith.s3.amazonaws.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.10)
 Gecko/20071115 Firefox/2.0.0.10
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5

API Version 2006-03-01
597

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Content-Type: multipart/form-data; boundary=9431149156168
Content-Length: 118698

--9431149156168
Content-Disposition: form-data; name="key"

user/eric/MyPicture.jpg
--9431149156168
Content-Disposition: form-data; name="acl"

public-read
--9431149156168
Content-Disposition: form-data; name="success_action_redirect"

http://johnsmith.s3.amazonaws.com/successful_upload.html
--9431149156168
Content-Disposition: form-data; name="Content-Type"

image/jpeg
--9431149156168
Content-Disposition: form-data; name="x-amz-meta-uuid"

14365123651274
--9431149156168
Content-Disposition: form-data; name="x-amz-meta-tag"

Some,Tag,For,Picture
--9431149156168
Content-Disposition: form-data; name="AWSAccessKeyId"

AKIAIOSFODNN7EXAMPLE
--9431149156168
Content-Disposition: form-data; name="Policy"

eyAiZXhwaXJhdGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXRpb25zIjogWwogICAgeyJidWNrZXQiOiAiam9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJdLAogICAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOiAiaHR0cDovL2pvaG5zbWl0aC5zMy5hbWF6b25hd3MuY29tL3N1Y2Nlc3NmdWxfdXBsb2FkLmh0bWwifSwKICAgIFsic3RhcnRzLXdpdGgiLCAiJENvbnRlbnQtVHlwZSIsICJpbWFnZS8iXSwKICAgIHsieC1hbXotbWV0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1tZXRhLXRhZyIsICIiXQogIF0KfQo=
--9431149156168
Content-Disposition: form-data; name="Signature"

0RavWzkygo6QX9caELEqKi9kDbU=
--9431149156168
Content-Disposition: form-data; name="file"; filename="MyFilename.jpg"
Content-Type: image/jpeg

...file content...
--9431149156168
Content-Disposition: form-data; name="submit"

Upload to Amazon S3
--9431149156168--

Sample Response

HTTP/1.1 303 Redirect
x-amz-request-id: 1AEE782442F35865

API Version 2006-03-01
598

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

x-amz-id-2: cxzFLJRatFHy+NGtaDFRR8YvI9BHmgLxjvJzNiGGICARZ/mVXHj7T+qQKhdpzHFh
Content-Type: application/xml
Date: Wed, 14 Nov 2007 21:21:33 GMT
Connection: close
Location: http://johnsmith.s3.amazonaws.com/
successful_upload.html?bucket=johnsmith&key=user/eric/
MyPicture.jpg&etag="39d459dfbc0faabbb5e179358dfb94c3"
Server: AmazonS3

Text Area Upload

Topics

• Policy and Form Construction (p. 599)

• Sample Request (p. 600)

• Sample Response (p. 601)

The following example shows the complete process for constructing a policy and form to upload a text
area. Uploading a text area is useful for submitting user-created content, such as blog postings.

Policy and Form Construction

The following policy supports text area uploads to Amazon S3 for the johnsmith bucket.

{ "expiration": "2007-12-01T12:00:00.000Z",
 "conditions": [
 {"bucket": "johnsmith"},
 ["starts-with", "$key", "user/eric/"],
 {"acl": "public-read"},
 {"success_action_redirect": "http://johnsmith.s3.amazonaws.com/
new_post.html"},
 ["eq", "$Content-Type", "text/html"],
 {"x-amz-meta-uuid": "14365123651274"},
 ["starts-with", "$x-amz-meta-tag", ""]
]
}

This policy requires the following:

• The upload must occur before 12:00 GMT on 2007-12-01.

• The content must be uploaded to the johnsmith bucket.

• The key must start with "user/eric/".

• The ACL is set to public-read.

• The success_action_redirect is set to http://johnsmith.s3.amazonaws.com/new_post.html.

• The object is HTML text.

• The x-amz-meta-uuid tag must be set to 14365123651274.

• The x-amz-meta-tag can contain any value.

Following is a Base64-encoded version of this policy.

eyAiZXhwaXJhdGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXR
pb25zIjogWwogICAgeyJidWNrZXQiOiAiam9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJd
LAogICAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOiAiaHR0cDovL2pvaG5zbWl0a
C5zMy5hbWF6b25hd3MuY29tL25ld19wb3N0Lmh0bWwifSwKICAgIFsiZXEiLCAiJENvbnRlbnQtVHlwZSIsICJ0ZXh0L2h0bWwiXSwKI
CAgIHsieC1hbXotbWV0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1tZXRhLXRhZy

API Version 2006-03-01
599

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

IsICIiXQogIF0KfQo=

Using your credentials, create a signature. For example, qA7FWXKq6VvU68lI9KdveT1cWgF= is the
signature for the preceding policy document.

The following form supports a POST request to the johnsmith.net bucket that uses this policy.

<html>
 <head>
 ...
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 ...
 </head>
 <body>
 ...
 <form action="http://johnsmith.s3.amazonaws.com/" method="post"
 enctype="multipart/form-data">
 Key to upload: <input type="input" name="key" value="user/eric/" />

 <input type="hidden" name="acl" value="public-read" />
 <input type="hidden" name="success_action_redirect" value="http://
johnsmith.s3.amazonaws.com/new_post.html" />
 <input type="hidden" name="Content-Type" value="text/html" />
 <input type="hidden" name="x-amz-meta-uuid" value="14365123651274" />
 Tags for File: <input type="input" name="x-amz-meta-tag" value="" /><br /
>
 <input type="hidden" name="AWSAccessKeyId" value="AKIAIOSFODNN7EXAMPLE" /
>
 <input type="hidden" name="Policy" value="POLICY" />
 <input type="hidden" name="Signature" value="SIGNATURE" />
 Entry: <textarea name="file" cols="60" rows="10">

Your blog post goes here.

 </textarea>

 <!-- The elements after this will be ignored -->
 <input type="submit" name="submit" value="Upload to Amazon S3" />
 </form>
 ...
</html>

Sample Request

This request assumes that the image uploaded is 117,108 bytes; the image data is not included.

POST / HTTP/1.1
Host: johnsmith.s3.amazonaws.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.10)
 Gecko/20071115 Firefox/2.0.0.10
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Content-Type: multipart/form-data; boundary=178521717625888
Content-Length: 118635

API Version 2006-03-01
600

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

-178521717625888
Content-Disposition: form-data; name="key"

ser/eric/NewEntry.html
--178521717625888
Content-Disposition: form-data; name="acl"

public-read
--178521717625888
Content-Disposition: form-data; name="success_action_redirect"

http://johnsmith.s3.amazonaws.com/new_post.html
--178521717625888
Content-Disposition: form-data; name="Content-Type"

text/html
--178521717625888
Content-Disposition: form-data; name="x-amz-meta-uuid"

14365123651274
--178521717625888
Content-Disposition: form-data; name="x-amz-meta-tag"

Interesting Post
--178521717625888
Content-Disposition: form-data; name="AWSAccessKeyId"

AKIAIOSFODNN7EXAMPLE
--178521717625888
Content-Disposition: form-data; name="Policy"
eyAiZXhwaXJhdGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXRpb25zIjogWwogICAgeyJidWNrZXQiOiAiam9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJdLAogICAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOiAiaHR0cDovL2pvaG5zbWl0aC5zMy5hbWF6b25hd3MuY29tL25ld19wb3N0Lmh0bWwifSwKICAgIFsiZXEiLCAiJENvbnRlbnQtVHlwZSIsICJ0ZXh0L2h0bWwiXSwKICAgIHsieC1hbXotbWV0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1tZXRhLXRhZyIsICIiXQogIF0KfQo=

--178521717625888
Content-Disposition: form-data; name="Signature"

qA7FWXKq6VvU68lI9KdveT1cWgF=
--178521717625888
Content-Disposition: form-data; name="file"

...content goes here...
--178521717625888
Content-Disposition: form-data; name="submit"

Upload to Amazon S3
--178521717625888--

Sample Response

HTTP/1.1 303 Redirect
x-amz-request-id: 1AEE782442F35865
x-amz-id-2: cxzFLJRatFHy+NGtaDFRR8YvI9BHmgLxjvJzNiGGICARZ/mVXHj7T+qQKhdpzHFh
Content-Type: application/xml
Date: Wed, 14 Nov 2007 21:21:33 GMT
Connection: close
Location: http://johnsmith.s3.amazonaws.com/
new_post.html?bucket=johnsmith&key=user/eric/
NewEntry.html&etag=40c3271af26b7f1672e41b8a274d28d4
Server: AmazonS3

API Version 2006-03-01
601

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

POST with Adobe Flash

This section describes how to use POST with Adobe Flash.

Adobe Flash Player Security

By default, the Adobe Flash Player security model prohibits Adobe Flash Players from making network
connections to servers outside the domain that serves the SWF file.

To override the default, you must upload a publicly readable crossdomain.xml file to the bucket that will
accept POST uploads. The following is a sample crossdomain.xml file.

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM
"http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
<allow-access-from domain="*" secure="false" />
</cross-domain-policy>

Note
For more information about the Adobe Flash security model, go to the Adobe website.
Adding the crossdomain.xml file to your bucket allows any Adobe Flash Player to connect to
the crossdomain.xml file within your bucket; however, it does not grant access to the actual
Amazon S3 bucket.

Adobe Flash Considerations

The FileReference API in Adobe Flash adds the Filename form field to the POST request. When
you build Adobe Flash applications that upload to Amazon S3 by using the FileReference API action,
include the following condition in your policy:

['starts-with', '$Filename', '']

Some versions of the Adobe Flash Player do not properly handle HTTP responses that have
an empty body. To configure POST to return a response that does not have an empty body, set
success_action_status to 201. Amazon S3 will then return an XML document with a 201 status
code. For information about the content of the XML document, see POST Object. For information about
form fields, see HTML Form Fields (p. 590).

API Version 2006-03-01
602

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html

Amazon Simple Storage Service Developer Guide

Amazon S3 Resources

Following is a table that lists related resources that you'll find useful as you work with this service.

Resource Description

Amazon Simple Storage Service
Getting Started Guide

The Getting Started Guide provides a quick tutorial of the
service based on a simple use case.

Amazon Simple Storage Service API
Reference

The API Reference describes Amazon S3 operations in
detail.

Amazon S3Technical FAQ The FAQ covers the top questions developers have asked
about this product.

Amazon S3 Release Notes The Release Notes give a high-level overview of the
current release. They specifically note any new features,
corrections, and known issues.

AWS Developer Resource Center A central starting point to find documentation, code
samples, release notes, and other information to help you
build innovative applications with AWS.

AWS Management Console The console allows you to perform most of the functions of
Amazon S3without programming.

https://forums.aws.amazon.com/ A community-based forum for developers to discuss
technical questions related to AWS.

AWS Support Center The home page for AWS Technical Support, including
access to our Developer Forums, Technical FAQs, Service
Status page, and Premium Support.

AWS Premium Support The primary web page for information about AWS Premium
Support, a one-on-one, fast-response support channel to
help you build and run applications on AWS Infrastructure
Services.

Amazon S3 product information The primary web page for information about Amazon S3.

Contact Us A central contact point for inquiries concerning AWS billing,
account, events, abuse etc.

API Version 2006-03-01
603

http://docs.aws.amazon.com/AmazonS3/latest/gsg/
http://docs.aws.amazon.com/AmazonS3/latest/gsg/
http://docs.aws.amazon.com/AmazonS3/latest/API/
http://docs.aws.amazon.com/AmazonS3/latest/API/
http://aws.amazon.com/s3/faqs/
http://aws.amazon.com/releasenotes/Amazon%20S3
http://aws.amazon.com/resources/
http://aws.amazon.com/console/
https://forums.aws.amazon.com/
http://aws.amazon.com/support
http://aws.amazon.com/premiumsupport/
http://aws.amazon.com/s3/
http://aws.amazon.com/contact-us/

Amazon Simple Storage Service Developer Guide

Resource Description

Conditions of Use Detailed information about the copyright and trademark
usage at Amazon.com and other topics.

API Version 2006-03-01
604

http://aws.amazon.com/legal

Amazon Simple Storage Service Developer Guide

Document History

The following table describes the important changes since the last release of the Amazon Simple
Storage Service Developer Guide.

Relevant Dates to this History:

• Current product version: 2006-03-01

• Last documentation update: October 17, 2016

Change Description Date

US East (Ohio) Region Amazon S3 is now available in the US East (Ohio) Region.
For more information about Amazon S3 regions and
endpoints, see Regions and Endpoints in the AWS General
Reference.

In this
release

IPv6 support for
Amazon S3 Transfer
Acceleration

Amazon S3 now supports Internet Protocol version 6
(IPv6) for Amazon S3 Transfer Acceleration. You can
connect to Amazon S3 over IPv6 by using the new
dual-stack for Transfer Acceleration endpoint. For more
information, see Getting Started with Amazon S3 Transfer
Acceleration (p. 81).

October 6,
2016

IPv6 support Amazon S3 now supports Internet Protocol version 6 (IPv6).
You can access Amazon S3 over IPv6 by using dual-stack
endpoints. For more information, see Making Requests to
Amazon S3 over IPv6 (p. 13).

August 11,
2016

Asia Pacific (Mumbai)
Region

Amazon S3 is now available in the Asia Pacific (Mumbai)
Region. For more information about Amazon S3 regions and
endpoints, see Regions and Endpoints in the AWS General
Reference.

June 27,
2016

Amazon S3 Transfer
Acceleration

Amazon S3 Transfer Acceleration enables fast, easy,
and secure transfers of files over long distances between
your client and an S3 bucket. Transfer Acceleration takes
advantage of Amazon CloudFront’s globally distributed edge
locations.

For more information, see Amazon S3 Transfer
Acceleration (p. 80).

April 19,
2016

API Version 2006-03-01
605

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide

Change Description Date

Lifecycle support to
remove expired object
delete markers

Lifecycle configuration Expiration action now allows
you to direct Amazon S3 to remove expired object delete
markers in a versioned bucket. For more information, see
Elements to Describe Lifecycle Actions (p. 115).

March 16,
2016

Bucket lifecycle
configuration now
supports action to abort
incomplete multipart
uploads

Bucket lifecycle configuration now supports the
AbortIncompleteMultipartUpload action that you can
use to direct Amazon S3 to abort multipart uploads that
don't complete within a specified number of days after being
initiated. When a multipart upload becomes eligible for an
abort operation, Amazon S3 deletes any uploaded parts and
aborts the multipart upload.

For conceptual information, see the following topics in the
Amazon Simple Storage Service Developer Guide:

• Aborting Incomplete Multipart Uploads Using a Bucket
Lifecycle Policy (p. 167)

• Elements to Describe Lifecycle Actions (p. 115)

The following APIs have been updated to support the new
action:

• PUT Bucket lifecycle – The XML configuration now allows
you to specify the AbortIncompleteMultipartUpload
action in a lifecycle configuration rule.

• List Parts and Initiate Multipart Upload – Both of these
APIs now return two additional response headers
(x-amz-abort-date, and x-amz-abort-rule-
id) if the bucket has a lifecycle rule that specifies the
AbortIncompleteMultipartUpload action. These
headers in the response indicate when the initiated
multipart upload will become eligible for abort operation
and which lifecycle rule is applicable.

March 16,
2016

Asia Pacific (Seoul)
region

Amazon S3 is now available in the Asia Pacific (Seoul)
region. For more information about Amazon S3 regions and
endpoints, see Regions and Endpoints in the AWS General
Reference.

January 6,
2016

New condition key
and a Multipart Upload
change

IAM policies now support an Amazon S3 s3:x-amz-
storage-class condition key. For more information, see
Specifying Conditions in a Policy (p. 315).

You no longer need to be the initiator of a multipart upload to
upload parts and complete the upload. For more information,
see Multipart Upload API and Permissions (p. 169).

December
14, 2015

Renamed the US
Standard region

Changed the region name string from "US Standard" to "US
East (N. Virginia)." This is only a region name update, there
is no change in the functionality.

December
11, 2015

API Version 2006-03-01
606

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListParts.html
http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide

Change Description Date

New storage class Amazon S3 now offers a new storage class, STANDARD_IA
(IA, for infrequent access) for storing objects. This storage
class is optimized for long-lived and less frequently
accessed data. For more information, see Storage
Classes (p. 103).

Lifecycle configuration feature updates now allow you
to transition objects to the STANDARD_IA storage
class. For more information, see Object Lifecycle
Management (p. 109).

Previously, the cross-region replication feature used the
storage class of the source object for object replicas.
Now, when you configure cross-region replication you can
specify a storage class for the object replica created in the
destination bucket. For more information, see Cross-Region
Replication (p. 492).

September
16, 2015

AWS CloudTrail
integration

New AWS CloudTrail integration allows you to record
Amazon S3 API activity in your S3 bucket. You can use
CloudTrail to track S3 bucket creations or deletions, access
control modifications, or lifecycle policy changes. For more
information, see Logging Amazon S3 API Calls By Using
AWS CloudTrail (p. 527).

September
1, 2015

Bucket limit increase Amazon S3 now supports bucket limit increases. By default,
customers can create up to 100 buckets in their AWS
account. Customers who need additional buckets can
increase that limit by submitting a service limit increase. For
information about how to increase your bucket limit, go to
AWS Service Limits in the AWS General Reference. For
more information, see Creating a Bucket (p. 59) and Bucket
Restrictions and Limitations (p. 62).

August 4,
2015

Consistency model
update

Amazon S3 now supports read-after-write consistency
for new objects added to Amazon S3 in the US East (N.
Virginia) region. Prior to this update, all regions except
US East (N. Virginia) region supported read-after-write
consistency for new objects uploaded to Amazon S3. With
this enhancement, Amazon S3 now supports read-after-
write consistency in all regions for new objects added to
Amazon S3. Read-after-write consistency allows you to
retrieve objects immediately after creation in Amazon S3.
For more information, see Regions (p. 4).

August 4,
2015

Event notifications Amazon S3 event notifications have been updated to
add notifications when objects are deleted and to add
filtering on object names with prefix and suffix matching.
For more information, see Configuring Amazon S3 Event
Notifications (p. 472).

July 28,
2015

API Version 2006-03-01
607

http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Simple Storage Service Developer Guide

Change Description Date

Amazon CloudWatch
integration

New Amazon CloudWatch integration allows you to
monitor and set alarms on your Amazon S3 usage through
CloudWatch metrics for Amazon S3. Supported metrics
include total bytes for standard storage, total bytes for
Reduced-Redundancy storage, and total number of objects
for a given S3 bucket. For more information, see Monitoring
Daily Storage Metrics with Amazon CloudWatch (p. 524).

July 28,
2015

Support for deleting
and emptying non-
empty buckets

Amazon S3 now supports deleting and emptying non-empty
buckets. For more information, see Deleting or Emptying a
Bucket (p. 67).

July 16,
2015

Bucket policies
for Amazon VPC
endpoints

Amazon S3 has added support for bucket policies for
Amazon Virtual Private Cloud (Amazon VPC) endpoints.
You can use S3 bucket policies to control access to buckets
from specific Amazon VPC endpoints, or specific VPCs.
VPC endpoints are easy to configure, are highly reliable, and
provide a secure connection to Amazon S3 without requiring
a gateway or a NAT instance. For more information, see
Example Bucket Policies for VPC Endpoints for Amazon
S3 (p. 341).

April 29,
2015

Event notifications Amazon S3 event notifications have been updated to
support the switch to resource-based permissions for AWS
Lambda functions. For more information, see Configuring
Amazon S3 Event Notifications (p. 472).

April 9,
2015

Cross-region
replication

Amazon S3 now supports cross-region replication. Cross-
region replication is the automatic, asynchronous copying of
objects across buckets in different AWS regions. For more
information, see Cross-Region Replication (p. 492).

March 24,
2015

Event notifications Amazon S3 now supports new event types and
destinations in a bucket notification configuration.
Prior to this release, Amazon S3 supported only the
s3:ReducedRedundancyLostObject event type and an
Amazon SNS topic as the destination. For more information
about the new event types, see Configuring Amazon S3
Event Notifications (p. 472).

November
13, 2014

Server-side encryption
with customer-provided
encryption keys

Server-side encryption with AWS Key Management Service
(KMS)

Amazon S3 now supports server-side encryption using
AWS Key Management Service. This feature allows you to
manage the envelope key through KMS, and Amazon S3
calls KMS to access the envelope key within the permissions
you set.

For more information about server-side encryption with
KMS, see Protecting Data Using Server-Side Encryption
with AWS Key Management Service.

November
12, 2014

EU (Frankfurt) region Amazon S3 is now available in the EU (Frankfurt) region. October 23,
2014

API Version 2006-03-01
608

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html

Amazon Simple Storage Service Developer Guide

Change Description Date

Server-side encryption
with customer-provided
encryption keys

Amazon S3 now supports server-side encryption using
customer-provided encryption keys (SSE-C). Server-side
encryption enables you to request Amazon S3 to encrypt
your data at rest. When using SSE-C, Amazon S3 encrypts
your objects with the custom encryption keys that you
provide. Since Amazon S3 performs the encryption for you,
you get the benefits of using your own encryption keys
without the cost of writing or executing your own encryption
code.

For more information about SSE-C, see Server-Side
Encryption (Using Customer-Provided Encryption Keys).

June 12,
2014

Lifecycle support for
versioning

Prior to this release, lifecycle configuration was supported
only on nonversioned buckets. Now you can configure
lifecycle on both nonversioned and versioning-enabled
buckets. For more information, see Object Lifecycle
Management (p. 109).

May 20,
2014

Access control topics
revised

Revised Amazon S3 access control documentation. For
more information, see Managing Access Permissions to
Your Amazon S3 Resources (p. 266).

April 15,
2014

Server access logging
topic revised

Revised server access logging documentation. For more
information, see Server Access Logging (p. 547).

November
26, 2013

.NET SDK samples
updated to version 2.0

.NET SDK samples in this guide are now compliant to
version 2.0.

November
26, 2013

SOAP Support Over
HTTP Deprecated

SOAP support over HTTP is deprecated, but it is still
available over HTTPS. New Amazon S3 features will not be
supported for SOAP. We recommend that you use either the
REST API or the AWS SDKs.

September
20, 2013

IAM policy variable
support

The IAM access policy language now supports variables.
When a policy is evaluated, any policy variables are
replaced with values that are supplied by context-based
information from the authenticated user’s session. You
can use policy variables to define general purpose policies
without explicitly listing all the components of the policy.
For more information about policy variables, see IAM Policy
Variables Overview in the IAM User Guide.

For examples of policy variables in Amazon S3, see User
Policy Examples (p. 343).

April 3,
2013

Console support for
Requester Pays

You can now configure your bucket for Requester Pays
by using the Amazon S3 console. For more information,
see Configure Requester Pays by Using the Amazon S3
Console (p. 93).

December
31, 2012

API Version 2006-03-01
609

http://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html

Amazon Simple Storage Service Developer Guide

Change Description Date

Root domain support
for website hosting

Amazon S3 now supports hosting static websites at the
root domain. Visitors to your website can access your site
from their browser without specifying "www" in the web
address (e.g., "example.com"). Many customers already
host static websites on Amazon S3 that are accessible from
a "www" subdomain (e.g., "www.example.com"). Previously,
to support root domain access, you needed to run your own
web server to proxy root domain requests from browsers
to your website on Amazon S3. Running a web server to
proxy requests introduces additional costs, operational
burden, and another potential point of failure. Now, you
can take advantage of the high availability and durability of
Amazon S3 for both "www" and root domain addresses. For
more information, see Hosting a Static Website on Amazon
S3 (p. 449).

December
27, 2012

Console revision Amazon S3 console has been updated. The documentation
topics that refer to the console have been revised
accordingly.

December
14, 2012

Support for Archiving
Data to Amazon
Glacier

Amazon S3 now support a storage option that enables you
to utilize Amazon Glacier's low-cost storage service for
data archival. To archive objects, you define archival rules
identifying objects and a timeline when you want Amazon S3
to archive these objects to Amazon Glacier. You can easily
set the rules on a bucket using the Amazon S3 console or
programmatically using the Amazon S3 API or AWS SDKs.

For more information, see Object Lifecycle
Management (p. 109).

November
13, 2012

Support for Website
Page Redirects

For a bucket that is configured as a website, Amazon S3
now supports redirecting a request for an object to another
object in the same bucket or to an external URL. For more
information, see Configuring a Web Page Redirect (p. 460).

For information about hosting websites, see Hosting a Static
Website on Amazon S3 (p. 449).

October 4,
2012

Support for Cross-
Origin Resource
Sharing (CORS)

Amazon S3 now supports Cross-Origin Resource Sharing
(CORS). CORS defines a way in which client web
applications that are loaded in one domain can interact
with or access resources in a different domain. With CORS
support in Amazon S3, you can build rich client-side web
applications on top of Amazon S3 and selectively allow
cross-domain access to your Amazon S3 resources. For
more information, see Cross-Origin Resource Sharing
(CORS) (p. 131).

August 31,
2012

Support for Cost
Allocation Tags

Amazon S3 now supports cost allocation tagging, which
allows you to label S3 buckets so you can more easily
track their cost against projects or other criteria. For more
information about using tagging for buckets, see Cost
Allocation Tagging (p. 97).

August 21,
2012

API Version 2006-03-01
610

Amazon Simple Storage Service Developer Guide

Change Description Date

Support for MFA-
protected API access
in bucket policies

Amazon S3 now supports MFA-protected API access, a
feature that can enforce AWS Multi-Factor Authentication for
an extra level of security when accessing your Amazon S3
resources. It is a security feature that requires users to prove
physical possession of an MFA device by providing a valid
MFA code. For more information, go to AWS Multi-Factor
Authentication. You can now require MFA authentication for
any requests to access your Amazon S3 resources.

To enforce MFA authentication, Amazon S3 now supports
the aws:MultiFactorAuthAge key in a bucket policy. For
an example bucket policy, see Adding a Bucket Policy to
Require MFA Authentication (p. 339).

July 10,
2012

Object Expiration
support

You can use Object Expiration to schedule automatic
removal of data after a configured time period. You set
object expiration by adding lifecycle configuration to a
bucket.

27
December
2011

New region supported Amazon S3 now supports the South America (São
Paulo) region. For more information, see Accessing a
Bucket (p. 60).

December
14, 2011

Multi-Object Delete Amazon S3 now supports Multi-Object Delete API that
enables you to delete multiple objects in a single request.
With this feature, you can remove large numbers of objects
from Amazon S3 more quickly than using multiple individual
DELETE requests. For more information, see Deleting
Objects (p. 237).

December
7, 2011

New region supported Amazon S3 now supports the US West (Oregon) region. For
more information, see Buckets and Regions (p. 60).

November
8, 2011

Documentation Update Documentation bug fixes. November
8, 2011

Documentation Update In addition to documentation bug fixes, this release includes
the following enhancements:

• New server-side encryption sections using the AWS SDK
for PHP (see Specifying Server-Side Encryption Using the
AWS SDK for PHP (p. 391)) and the AWS SDK for Ruby
(see Specifying Server-Side Encryption Using the AWS
SDK for Ruby (p. 393)).

• New section on creating and testing Ruby samples (see
Using the AWS SDK for Ruby - Version 2 (p. 569)).

October 17,
2011

Server-side encryption
support

Amazon S3 now supports server-side encryption. It enables
you to request Amazon S3 to encrypt your data at rest,
that is, encrypt your object data when Amazon S3 writes
your data to disks in its data centers. In addition to REST
API updates, the AWS SDK for Java and .NET provide
necessary functionality to request server-side encryption.
You can also request server-side encryption when uploading
objects using AWS Management Console. To learn more
about data encryption, go to Using Data Encryption.

October 4,
2011

API Version 2006-03-01
611

http://aws.amazon.com/iam/details/mfa/
http://aws.amazon.com/iam/details/mfa/
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html

Amazon Simple Storage Service Developer Guide

Change Description Date

Documentation Update In addition to documentation bug fixes, this release includes
the following enhancements:

• Added Ruby and PHP samples to the Making
Requests (p. 11) section.

• Added sections describing how to generate and use pre-
signed URLs. For more information, see Share an Object
with Others (p. 152) and Uploading Objects Using Pre-
Signed URLs (p. 206).

• Updated an existing section to introduce AWS Explorers
for Eclipse and Visual Studio. For more information, see
Using the AWS SDKs, CLI, and Explorers (p. 561).

September
22, 2011

Support for sending
requests using
temporary security
credentials

In addition to using your AWS account and IAM user security
credentials to send authenticated requests to Amazon
S3, you can now send requests using temporary security
credentials you obtain from AWS Identity and Access
Management (IAM). You can use the AWS Security Token
Service API or the AWS SDK wrapper libraries to request
these temporary credentials from IAM. You can request
these temporary security credentials for your own use or
hand them out to federated users and applications. This
feature enables you to manage your users outside AWS and
provide them with temporary security credentials to access
your AWS resources.

For more information, see Making Requests (p. 11).

For more information about IAM support for temporary
security credentials, see Temporary Security Credentials in
the IAM User Guide.

August 3,
2011

Multipart Upload API
extended to enable
copying objects up to 5
TB

Prior to this release, Amazon S3 API supported copying
objects of up to 5 GB in size. To enable copying objects
larger than 5 GB, Amazon S3 now extends the multipart
upload API with a new operation, Upload Part (Copy).
You can use this multipart upload operation to copy objects
up to 5 TB in size. For more information, see Copying
Objects (p. 212).

For conceptual information about multipart upload API, see
Uploading Objects Using Multipart Upload API (p. 165).

June 21,
2011

SOAP API calls over
HTTP disabled

To increase security, SOAP API calls over HTTP are
disabled. Authenticated and anonymous SOAP requests
must be sent to Amazon S3 using SSL.

June 6,
2011

API Version 2006-03-01
612

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Amazon Simple Storage Service Developer Guide

Change Description Date

IAM enables cross-
account delegation

Previously, to access an Amazon S3 resource, an IAM user
needed permissions from both the parent AWS account
and the Amazon S3 resource owner. With cross-account
access, the IAM user now only needs permission from the
owner account. That is, If a resource owner grants access to
an AWS account, the AWS account can now grant its IAM
users access to these resources.

For more information, see Creating a Role to Delegate
Permissions to an IAM User in the IAM User Guide.

For more information on specifying principals in a bucket
policy, see Specifying a Principal in a Policy (p. 310).

June 6,
2011

New link This service's endpoint information is now located in the
AWS General Reference. For more information, go to
Regions and Endpoints in AWS General Reference.

March 1,
2011

Support for hosting
static websites in
Amazon S3

Amazon S3 introduces enhanced support for hosting static
websites. This includes support for index documents and
custom error documents. When using these features,
requests to the root of your bucket or a subfolder (e.g.,
http://mywebsite.com/subfolder) returns your index
document instead of the list of objects in your bucket. If
an error is encountered, Amazon S3 returns your custom
error message instead of an Amazon S3 error message. For
more information, see Hosting a Static Website on Amazon
S3 (p. 449).

February
17, 2011

Response Header API
Support

The GET Object REST API now allows you to change the
response headers of the REST GET Object request for
each request. That is, you can alter object metadata in
the response, without altering the object itself. For more
information, see Getting Objects (p. 143).

January 14,
2011

Large object support Amazon S3 has increased the maximum size of an object
you can store in an S3 bucket from 5 GB to 5 TB. If you are
using the REST API you can upload objects of up to 5 GB
size in a single PUT operation. For larger objects, you must
use the Multipart Upload REST API to upload objects in
parts. For more information, see Uploading Objects Using
Multipart Upload API (p. 165).

December
9, 2010

Multipart upload Multipart upload enables faster, more flexible uploads into
Amazon S3. It allows you to upload a single object as a set
of parts. For more information, see Uploading Objects Using
Multipart Upload API (p. 165).

November
10, 2010

Canonical ID support in
bucket policies

You can now specify canonical IDs in bucket policies.
For more information, see Access Policy Language
Overview (p. 308)

September
17, 2010

Amazon S3 works with
IAM

This service now integrates with AWS Identity and Access
Management (IAM). For more information, go to AWS
Services That Work with IAM in the IAM User Guide.

September
2, 2010

API Version 2006-03-01
613

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Simple Storage Service Developer Guide

Change Description Date

Notifications The Amazon S3 notifications feature enables you to
configure a bucket so that Amazon S3 publishes a message
to an Amazon Simple Notification Service (Amazon SNS)
topic when Amazon S3 detects a key event on a bucket.
For more information, see Setting Up Notification of Bucket
Events (p. 472).

July 14,
2010

Bucket policies Bucket policies is an access management system you use
to set access permissions across buckets, objects, and sets
of objects. This functionality supplements and in many cases
replaces access control lists. For more information, see
Using Bucket Policies and User Policies (p. 308).

July 6, 2010

Path-style syntax
available in all regions

Amazon S3 now supports the path-style syntax for any
bucket in the US Classic Region, or if the bucket is in the
same region as the endpoint of the request. For more
information, see Virtual Hosting (p. 50).

June 9,
2010

New endpoint for EU
(Ireland)

Amazon S3 now provides an endpoint for EU (Ireland):
http://s3-eu-west-1.amazonaws.com.

June 9,
2010

Console You can now use Amazon S3 through the AWS
Management Console. You can read about all of the
Amazon S3 functionality in the console in the Amazon
Simple Storage Service Console User Guide.

June 9,
2010

Reduced Redundancy Amazon S3 now enables you to reduce your storage costs
by storing objects in Amazon S3 with reduced redundancy.
For more information, see Reduced Redundancy
Storage (p. 6).

May 12,
2010

New region supported Amazon S3 now supports the Asia Pacific (Singapore)
region. For more information, see Buckets and
Regions (p. 60).

April 28,
2010

Object Versioning This release introduces object versioning. All objects now
can have a key and a version. If you enable versioning for
a bucket, Amazon S3 gives all objects added to a bucket a
unique version ID. This feature enables you to recover from
unintended overwrites and deletions. For more information,
see Versioning (p. 8) and Using Versioning (p. 423).

February 8,
2010

New region supported Amazon S3 now supports the US West (N. California)
region. The new endpoint for requests to this Region is
s3-us-west-1.amazonaws.com. For more information, see
Buckets and Regions (p. 60).

December
2, 2009

AWS SDK for .NET AWS now provides libraries, sample code, tutorials, and
other resources for software developers who prefer to build
applications using .NET language-specific APIs instead
of REST or SOAP. These libraries provide basic functions
(not included in the REST or SOAP APIs), such as request
authentication, request retries, and error handling so that it's
easier to get started. For more information about language-
specific libraries and resources, see Using the AWS SDKs,
CLI, and Explorers (p. 561).

November
11, 2009

API Version 2006-03-01
614

Amazon Simple Storage Service Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

API Version 2006-03-01
615

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon Simple Storage Service
	Table of Contents
	What Is Amazon S3?
	How Do I...?

	Introduction to Amazon S3
	Overview of Amazon S3 and This Guide
	Advantages to Amazon S3
	Amazon S3 Concepts
	Buckets
	Objects
	Keys
	Regions
	Amazon S3 Data Consistency Model
	Concurrent Applications

	Features
	Reduced Redundancy Storage
	Bucket Policies
	AWS Identity and Access Management
	Access Control Lists
	Versioning
	Operations

	Amazon S3 Application Programming Interfaces (API)
	The REST Interface
	The SOAP Interface

	Paying for Amazon S3
	Related Services

	Making Requests
	About Access Keys
	AWS Account Access Keys
	IAM User Access Keys
	Temporary Security Credentials

	Request Endpoints
	Making Requests to Amazon S3 over IPv6
	Getting Started Making Requests over IPv6
	Making Requests over IPv6 by Using Dual-Stack Endpoints
	Features Not Available over IPv6
	Amazon S3 IPv6 Access from Amazon EC2

	Using IPv6 Addresses in IAM Policies
	Testing IP Address Compatibility
	Using Amazon S3 Dual-Stack Endpoints
	Amazon S3 Dual-Stack Endpoints
	Using Dual-Stack Endpoints from the AWS CLI
	Using Dual-Stack Endpoints from the AWS SDKs
	AWS Java SDK Dual-Stack Endpoint Example
	AWS .NET SDK Dual-Stack Endpoint Example

	Using Dual-Stack Endpoints from the REST API

	Making Requests Using the AWS SDKs
	Making Requests Using AWS Account or IAM User Credentials
	Making Requests Using AWS Account or IAM User Credentials - AWS SDK for Java
	Related Resources

	Making Requests Using AWS Account or IAM User Credentials - AWS SDK for .NET
	Related Resources

	Making Requests Using AWS Account or IAM User Credentials - AWS SDK for PHP
	Related Resources

	Making Requests Using AWS Account or IAM User Credentials - AWS SDK for Ruby

	Making Requests Using IAM User Temporary Credentials
	Making Requests Using IAM User Temporary Credentials - AWS SDK for Java
	Related Resources

	Making Requests Using IAM User Temporary Credentials - AWS SDK for .NET
	Related Resources

	Making Requests Using AWS Account or IAM User Temporary Credentials - AWS SDK for PHP
	Related Resources

	Making Requests Using IAM User Temporary Credentials - AWS SDK for Ruby

	Making Requests Using Federated User Temporary Credentials
	Making Requests Using Federated User Temporary Credentials - AWS SDK for Java
	Related Resources

	Making Requests Using Federated User Temporary Credentials - AWS SDK for .NET
	Related Resources

	Making Requests Using Federated User Temporary Credentials - AWS SDK for PHP
	Related Resources

	Making Requests Using Federated User Temporary Credentials - AWS SDK for Ruby

	Making Requests Using the REST API
	Making Requests to Dual-Stack Endpoints by Using the REST API
	Virtual Hosting of Buckets
	HTTP Host Header Bucket Specification
	Examples
	Customizing Amazon S3 URLs with CNAMEs
	Limitations
	Backward Compatibility

	Request Redirection and the REST API
	Redirects and HTTP User-Agents
	Redirects and 100-Continue
	Redirect Example

	Working with Amazon S3 Buckets
	Creating a Bucket
	About Permissions

	Accessing a Bucket
	Bucket Configuration Options
	Bucket Restrictions and Limitations
	Rules for Bucket Naming
	Challenges with Non–DNS-Compliant Bucket Names

	Examples of Creating a Bucket
	Using the Amazon S3 Console
	Using the AWS SDK for Java
	Using the AWS SDK for .NET
	Using the AWS SDK for Ruby Version 2
	Using Other AWS SDKs

	Deleting or Emptying a Bucket
	Delete a Bucket
	Delete a Bucket: Using the Amazon S3 Console
	Delete a Bucket: Using the AWS CLI
	Delete a Bucket: Using Lifecycle Configuration
	Delete a Bucket: Using the AWS SDKs
	Delete a Bucket Using the AWS SDK for Java

	Empty a Bucket
	Empty a Bucket: Using the Amazon S3 console
	Empty a Bucket: Using the AWS CLI
	Empty a Bucket: Using Lifecycle Configuration
	Empty a Bucket: Using the AWS SDKs

	Managing Bucket Website Configuration
	Managing Websites with the AWS Management Console
	Managing Websites with the AWS SDK for Java
	Managing Websites with the AWS SDK for .NET
	Managing Websites with the AWS SDK for PHP
	Related Resources

	Managing Websites with the REST API

	Amazon S3 Transfer Acceleration
	Why Use Amazon S3 Transfer Acceleration?
	Using the Amazon S3 Transfer Acceleration Speed Comparison Tool

	Getting Started with Amazon S3 Transfer Acceleration
	Requirements for Using Amazon S3 Transfer Acceleration
	Amazon S3 Transfer Acceleration Examples
	Using the Amazon S3 Console
	Using Transfer Acceleration from the AWS Command Line Interface (AWS CLI)
	Enabling Transfer Acceleration on a Bucket Using the AWS CLI
	Using the Transfer Acceleration from the AWS CLI
	AWS CLI Examples of Uploading an Object to a Bucket Enabled for Transfer Acceleration

	Using Transfer Acceleration from the AWS SDK for Java
	Enabling Amazon S3 Transfer Acceleration on a Bucket from the AWS SDK for Java
	Creating an Amazon S3 Client to Use a Amazon S3 Transfer Acceleration Endpoint from the AWS SDK for Java
	Creating an Amazon S3 Java Client to Use the Transfer Acceleration Endpoint
	Creating an Amazon S3 Java Client to Use the Transfer Acceleration Dual-Stack Endpoint

	Uploading Objects to a Bucket Enabled for Transfer Acceleration Using the AWS SDK for Java
	Java Example: Uploading a Single Object to a Bucket Enabled for Transfer Acceleration
	Java Example: Multipart Upload to a Bucket Enabled for Transfer Acceleration

	Using Transfer Acceleration from the AWS SDK for .NET
	.NET Example 1: Enable Transfer Acceleration on a Bucket
	.NET Example 2: Uploading a Single Object to a Bucket Enabled for Transfer Acceleration
	.NET Example 3: Multipart Upload to a Bucket Enabled for Transfer Acceleration

	Using Transfer Acceleration from the AWS SDK for JavaScript
	Using Transfer Acceleration from the AWS SDK for Python (Boto)
	Using Other AWS SDKs

	Requester Pays Buckets
	Configure Requester Pays by Using the Amazon S3 Console
	Configure Requester Pays with the REST API
	Setting the requestPayment Bucket Configuration
	Retrieving the requestPayment Configuration
	Downloading Objects in Requester Pays Buckets

	DevPay and Requester Pays
	Charge Details

	Buckets and Access Control
	Billing and Reporting of Buckets
	Cost Allocation Tagging

	Working with Amazon S3 Objects
	Object Key and Metadata
	Object Keys
	Object Key Naming Guidelines
	Safe Characters
	Characters That Might Require Special Handling
	Characters to Avoid

	Object Metadata
	System-Defined Metadata
	User-Defined Metadata

	Storage Classes
	Object Subresources
	Object Versioning
	Object Lifecycle Management
	What Is Lifecycle Configuration?
	How Do I Configure a Lifecycle?
	Transitioning Objects: General Considerations
	Supported Transitions
	Transitioning to the GLACIER storage class (Object Archival)

	Expiring Objects: General Considerations
	Lifecycle and Other Bucket Configurations
	Lifecycle and Versioning
	Lifecycle and MFA Enabled Buckets
	Lifecycle and Logging

	Lifecycle Configuration Elements
	ID Element
	Status Element
	Prefix Element
	Elements to Describe Lifecycle Actions
	Lifecycle Rules: Based on the Object Age
	Lifecycle Rules: Based on a Specific Date

	Examples of Lifecycle Configuration
	Example 1: Specify a Lifecycle Rule for a Subset of Objects in a Bucket
	Example 2: Specify a Lifecycle Rule that Applies to All Objects in the Bucket
	Example 3: Disable a Lifecycle Rule
	Example 4: Tiering Down Storage Class Over Object Lifetime
	Example 5: Specify Multiple Rules
	Example 6: Specify Multiple Rules with Overlapping Prefixes
	Example 7: Specify a Lifecycle Rule for a Versioning-Enable Bucket
	Example 8: Removing Expired Object Delete Markers

	GLACIER Storage Class: Additional Lifecycle Configuration Considerations
	Cost Considerations
	Restoring Archived Objects
	Restoring GLACIER Objects by Using Amazon S3 Console
	Restoring GLACIER Objects Programmatically

	Specifying a Lifecycle Configuration
	Manage an Object's Lifecycle Using the AWS Management Console
	Step-by-Step Instructions

	Manage Object Lifecycle Using the AWS SDK for Java
	Manage Object Lifecycle Using the AWS SDK for .NET
	Manage an Object's Lifecycle Using the AWS SDK for Ruby
	Manage Object Lifecycle Using the REST API

	Cross-Origin Resource Sharing (CORS)
	Cross-Origin Resource Sharing: Use-case Scenarios
	How Do I Configure CORS on My Bucket?
	AllowedMethod Element
	AllowedOrigin Element
	AllowedHeader Element
	ExposeHeader Element
	MaxAgeSeconds Element

	How Does Amazon S3 Evaluate the CORS Configuration On a Bucket?
	Enabling Cross-Origin Resource Sharing (CORS)
	Enabling Cross-Origin Resource Sharing (CORS) Using the AWS Management Console
	Enabling Cross-Origin Resource Sharing (CORS) Using the AWS SDK for Java
	Enabling Cross-Origin Resource Sharing (CORS) Using the AWS SDK for .NET
	Enabling Cross-Origin Resource Sharing (CORS) Using the REST API

	Troubleshooting CORS Issues

	Operations on Objects
	Getting Objects
	Related Resources
	Get an Object Using the AWS SDK for Java
	Get an Object Using the AWS SDK for .NET
	Get an Object Using the AWS SDK for PHP
	Related Resources

	Get an Object Using the REST API
	Share an Object with Others
	Generate a Pre-signed Object URL using AWS Explorer for Visual Studio
	Generate a Pre-signed Object URL using AWS SDK for Java
	Generate a Pre-signed Object URL using AWS SDK for .NET

	Uploading Objects
	Uploading Objects in a Single Operation
	Upload an Object Using the AWS SDK for Java
	Upload an Object Using the AWS SDK for .NET
	Upload an Object Using the AWS SDK for PHP
	Related Resources

	Upload an Object Using the AWS SDK for Ruby
	Using AWS SDK for Ruby - Version 2
	Using AWS SDK for Ruby - Version 1

	Upload an Object Using the REST API

	Uploading Objects Using Multipart Upload API
	Multipart Upload Overview
	Concurrent Multipart Upload Operations
	Multipart Upload and Pricing
	Aborting Incomplete Multipart Uploads Using a Bucket Lifecycle Policy
	Quick Facts
	API Support for Multipart Upload
	Multipart Upload API and Permissions

	Using the AWS Java SDK for Multipart Upload (High-Level API)
	Upload a File
	Abort Multipart Uploads
	Track Multipart Upload Progress

	Using the AWS Java SDK for Multipart Upload (Low-Level API)
	Upload a File
	List Multipart Uploads
	Abort a Multipart Upload

	Using the AWS .NET SDK for Multipart Upload (High-Level API)
	Upload a File
	Upload a Directory
	Abort Multipart Uploads
	Track Multipart Upload Progress

	Using the AWS .NET SDK for Multipart Upload (Low-Level API)
	Upload a File
	List Multipart Uploads
	Track Multipart Upload Progress
	Abort a Multipart Upload

	Using the AWS PHP SDK for Multipart Upload (High-Level API)
	Upload a File Using the High-Level Multipart Upload
	Related Resources

	Using the AWS PHP SDK for Multipart Upload (Low-Level API)
	Upload a File in Multiple Parts Using the PHP SDK Low-Level API
	Related Resources

	List Multipart Uploads Using the Low-Level AWS SDK for PHP API
	Related Resources

	Abort a Multipart Upload
	Related Resources

	Using the AWS SDK for Ruby for Multipart Upload
	Using the REST API for Multipart Upload

	Uploading Objects Using Pre-Signed URLs
	Upload an Object Using a Pre-Signed URL (AWS SDK for Java)
	Upload an Object Using a Pre-Signed URL (AWS SDK for .NET)
	Upload an Object Using a Pre-Signed URL (AWS SDK for Ruby)
	Using AWS SDK for Ruby - Version 2
	Using AWS SDK for Ruby - Version 1

	Copying Objects
	Related Resources
	Copying Objects in a Single Operation
	Copy an Object Using the AWS SDK for Java
	Copy an Object Using the AWS SDK for .NET
	Copy an Object Using the AWS SDK for PHP
	Related Resources

	Copy an Object Using the AWS SDK for Ruby
	Copy an Object Using the REST API

	Copying Objects Using the Multipart Upload API
	Copy an Object Using the AWS SDK for Java Multipart Upload API
	Copy an Object Using the AWS SDK for .NET Multipart Upload API
	Copy Object Using the REST Multipart Upload API

	Listing Object Keys
	Iterating Through Multi-Page Results
	Related Resources

	Listing Keys Hierarchically Using a Prefix and Delimiter
	Listing Keys Using the AWS SDK for Java
	Listing Keys Using the AWS SDK for .NET
	Listing Keys Using the AWS SDK for PHP
	Related Resources

	Listing Keys Using the REST API

	Deleting Objects
	Deleting Objects from a Version-Enabled Bucket
	Deleting Objects from an MFA-Enabled Bucket
	Related Resources
	Deleting One Object Per Request
	Deleting an Object Using the AWS SDK for Java
	Deleting an Object Using the AWS SDK for .NET
	Deleting an Object Using the AWS SDK for PHP
	Related Resources

	Deleting an Object Using the REST API

	Deleting Multiple Objects Per Request
	Deleting Multiple Objects Using the AWS SDK for Java
	Deleting Multiple Objects Using the AWS SDK for .NET
	Deleting Multiple Objects Using the AWS SDK for PHP
	Related Resources

	Deleting Multiple Objects Using the REST API

	Restoring Archived Objects
	Restore an Archived Object Using the Amazon S3 Console
	Restore an Archived Object Using the AWS SDK for Java
	Restore an Archived Object Using the AWS SDK for .NET
	Restore an Archived Object Using the REST API

	Managing Access Permissions to Your Amazon S3 Resources
	Introduction to Managing Access Permissions to Your Amazon S3 Resources
	Overview of Managing Access
	Amazon S3 Resources
	About the Resource Owner

	Resource Operations
	Managing Access to Resources (Access Policy Options)
	So Which Access Control Method Should I Use?
	Related Topics

	How Amazon S3 Authorizes a Request
	Related Topics
	How Amazon S3 Authorizes a Request for a Bucket Operation
	Example 1: Bucket Operation Requested by Bucket Owner
	Example 2: Bucket Operation Requested by an AWS Account That Is Not the Bucket Owner
	Example 3: Bucket Operation Requested by an IAM User Whose Parent AWS Account Is Also the Bucket Owner
	Example 4: Bucket Operation Requested by an IAM User Whose Parent AWS Account Is Not the Bucket Owner

	How Amazon S3 Authorizes a Request for an Object Operation
	Example 1: Object Operation Request

	Guidelines for Using the Available Access Policy Options
	When to Use an ACL-based Access Policy (Bucket and Object ACLs)
	When to Use an Object ACL
	When to Use a Bucket ACL

	When to Use a Bucket Policy
	When to Use a User Policy
	Permission Delegation

	Related Topics

	Example Walkthroughs: Managing Access to Your Amazon S3 Resources
	Before You Try the Example Walkthroughs
	About Using an Administrator User to Create Resources and Grant Permissions

	Setting Up the Tools for the Example Walkthroughs
	Example 1: Bucket Owner Granting Its Users Bucket Permissions
	Step 0: Preparing for the Walkthrough
	Step 1: Create Resources (a Bucket and an IAM User) in Account A and Grant Permissions
	Step 2: Test Permissions

	Example 2: Bucket Owner Granting Cross-Account Bucket Permissions
	Step 0: Preparing for the Walkthrough
	Step 1: Do the Account A Tasks
	Step 1.1: Sign In to the AWS Management Console
	Step 1.2: Create a Bucket
	Step 1.3: Attach a Bucket Policy to Grant Cross-Account Permissions to Account B

	Step 2: Do the Account B Tasks
	Step 2.1: Sign In to the AWS Management Console
	Step 2.2: Create User Dave in Account B
	Step 2.3: Delegate Permissions to User Dave
	Step 2.4: Test Permissions

	Step 3: Extra Credit: Try Explicit Deny
	Step 4: Clean Up

	Example 3: Bucket Owner Granting Its Users Permissions to Objects It Does Not Own
	Step 0: Preparing for the Walkthrough
	Step 1: Do the Account A Tasks
	Step 1.1: Sign In to the AWS Management Console
	Step 1.2: Create a Bucket, a User, and Add a Bucket Policy Granting User Permissions

	Step 2: Do the Account B Tasks
	Step 3: Test Permissions
	Step 4: Clean Up

	Example 4: Bucket Owner Granting Cross-account Permission to Objects It Does Not Own
	Background: Cross-Account Permissions and Using IAM Roles
	Step 0: Preparing for the Walkthrough
	Step 1: Do the Account A Tasks
	Step 1.1: Sign In to the AWS Management Console
	Step 1.2: Create a Bucket and Attach a Bucket Policy
	Step 1.3: Create an IAM Role to Allow Account C Cross-Account Access in Account A

	Step 2: Do the Account B Tasks
	Step 3: Do the Account C Tasks
	Step 3.1: Create a User in Account C and Delegate Permission to Assume examplerole
	Step 3.2: Assume Role (examplerole) and Access Objects

	Step 4: Clean Up
	Related Resources

	Using Bucket Policies and User Policies
	Access Policy Language Overview
	Common Elements in an Access Policy
	Specifying Resources in a Policy
	Specifying a Principal in a Policy
	Specifying Permissions in a Policy
	Permissions for Object Operations
	Permissions Related to Bucket Operations
	Permissions Related to Bucket Subresource Operations

	Specifying Conditions in a Policy
	Available Condition Keys
	Amazon S3 Condition Keys for Object Operations
	Example 1: Granting s3:PutObject permission with a condition requiring the bucket owner to get full control
	Example 2: Granting s3:PutObject permission requiring objects stored using server-side encryption
	Example 3: Granting s3:PutObject permission to copy objects with a restriction on the copy source
	Example 4: Granting access to a specific version of an object
	Example 5: Restrict object uploads to objects with a specific storage class

	Amazon S3 Condition Keys for Bucket Operations
	Example 1: Allow a user to create a bucket but only in a specific region
	Example 2: Allow a user to get a list of objects in a bucket according to a specific prefix

	Bucket Policy Examples
	Granting Permissions to Multiple Accounts with Added Conditions
	Granting Read-Only Permission to an Anonymous User
	Restricting Access to Specific IP Addresses
	Allowing IPv4 and IPv6 Addresses

	Restricting Access to a Specific HTTP Referrer
	Granting Permission to an Amazon CloudFront Origin Identity
	Adding a Bucket Policy to Require MFA Authentication
	Granting Cross-Account Permissions to Upload Objects While Ensuring the Bucket Owner Has Full Control
	Example Bucket Policies for VPC Endpoints for Amazon S3
	Restricting Access to a Specific VPC Endpoint
	Restricting Access to a Specific VPC
	Related Resources

	User Policy Examples
	Example: Allow an IAM user access to one of your buckets
	Example: Allow each IAM user access to a folder in a bucket
	Allow non-IAM users (mobile app users) access to folders in a bucket

	Example: Allow a group to have a shared folder in Amazon S3
	Example: Allow all your users to read objects in a portion of the corporate bucket
	Example: Allow a partner to drop files into a specific portion of the corporate bucket
	An Example Walkthrough: Using user policies to control access to your bucket
	Background: Basics of Buckets and Folders
	Walkthrough Example
	Step 0: Preparing for the Walkthrough
	Step 1: Create a Bucket
	Step 2: Create IAM Users and a Group
	Step 3: Verify that IAM Users Have No Permissions
	Step 4: Grant Group-Level Permissions
	Step 4.1: Grant Permission to List All Buckets
	Step 4.2: Enable Users to List Root-Level Content of a Bucket
	Step 4.3: Summary of the Group Policy

	Step 5: Grant IAM User Alice Specific Permissions
	Step 5.1: Grant IAM User Alice Permission to List the Development Folder Content
	Step 5.2: Grant IAM User Alice Permissions to Get and Put Objects in the Development Folder
	Step 5.3: Explicitly Deny IAM User Alice Permissions to Any Other Folders in the Bucket

	Step 6: Grant IAM User Bob Specific Permissions
	Step 7: Secure the Private Folder
	Cleanup
	Related Resources

	Managing Access with ACLs
	Access Control List (ACL) Overview
	Who Is a Grantee?
	Finding an AWS Account Canonical User ID
	Amazon S3 Predefined Groups

	What Permissions Can I Grant?
	Mapping of ACL Permissions and Access Policy Permissions

	Sample ACL
	Canned ACL
	How to Specify an ACL

	Managing ACLs
	Managing ACLs in the AWS Management Console
	Managing ACLs Using the AWS SDK for Java
	Setting an ACL when Creating a Resource
	Updating ACL on an Existing Resource
	An Example

	Managing ACLs Using the AWS SDK for .NET
	Setting an ACL When Creating a Resource
	Updating ACL on an Existing Resource
	An Example

	Managing ACLs Using the REST API

	Protecting Data in Amazon S3
	Protecting Data Using Encryption
	Protecting Data Using Server-Side Encryption
	Protecting Data Using Server-Side Encryption with AWS KMS–Managed Keys (SSE-KMS)
	Using AWS Key Management Service in the Amazon S3 Management Console
	API Support for AWS Key Management Service in Amazon S3
	Specifying the AWS Key Management Service in Amazon S3 Using the AWS SDKs
	AWS SDK for Java
	Put Operation
	Copy Operation
	Pre-signed URLs

	AWS SDK for .NET
	Put Operation
	Copy Operation
	Pre-signed URLs

	Specifying the AWS Key Management Service in Amazon S3 Using the REST API

	Protecting Data Using Server-Side Encryption with Amazon S3-Managed Encryption Keys (SSE-S3)
	API Support for Server-Side Encryption
	Specifying Server-Side Encryption Using the AWS SDK for Java
	Determining the Encryption Algorithm Used
	Changing Server-Side Encryption of an Existing Object (Copy Operation)

	Specifying Server-Side Encryption Using the AWS SDK for .NET
	Determining the Encryption Algorithm Used
	Changing Server-Side Encryption of an Existing Object (Copy Operation)

	Specifying Server-Side Encryption Using the AWS SDK for PHP
	Determining Encryption Algorithm Used
	Changing Server-Side Encryption of an Existing Object (Copy Operation)
	Related Resources

	Specifying Server-Side Encryption Using the AWS SDK for Ruby
	Determining the Encryption Algorithm Used
	Changing Server-Side Encryption of an Existing Object (Copy Operation)

	Specifying Server-Side Encryption Using the REST API
	Specifying Server-Side Encryption Using the AWS Management Console

	Protecting Data Using Server-Side Encryption with Customer-Provided Encryption Keys (SSE-C)
	Using SSE-C
	Presigned URL and SSE-C
	Specifying Server-Side Encryption with Customer-Provided Encryption Keys Using the AWS Java SDK
	Other Amazon S3 Operations and SSE-C

	Specifying Server-Side Encryption with Customer-Provided Encryption Keys Using the .NET SDK
	Other Amazon S3 Operations and SSE-C

	Specifying Server-Side Encryption with Customer-Provided Encryption Keys Using the REST API

	Protecting Data Using Client-Side Encryption
	Option 1: Using an AWS KMS–Managed Customer Master Key (CMK)
	Option 2: Using a Client-Side Master Key
	Example: Client-Side Encryption (Option 1: Using an AWS KMS–Managed Customer Master Key (AWS SDK for Java))
	Examples: Client-Side Encryption (Option 2: Using a Client-Side Master Key (AWS SDK for Java))
	Example 1: Encrypt and Upload a File Using a Client-Side Symmetric Master Key
	Example 1a: Creating a Symmetric Master Key
	Example 1b: Uploading a File to Amazon S3 Using a Symmetric Key

	Example 2: Encrypt and Upload a File to Amazon S3 Using a Client-Side Asymmetric Master Key
	Example 2a: Creating a 1024-bit RSA Key Pair
	Example 2b: Uploading a File to Amazon S3 Using a Key Pair

	Using Reduced Redundancy Storage
	Setting the Storage Class of an Object You Upload
	Changing the Storage Class of an Object in Amazon S3
	Return Code for Lost Data

	Using Versioning
	How to Configure Versioning on a Bucket
	MFA Delete
	Related Topics
	Examples of Enabling Bucket Versioning
	Using the Amazon S3 Console
	Using the AWS SDK for Java
	Using the AWS SDK for .NET
	Using Other AWS SDKs

	Managing Objects in a Versioning-Enabled Bucket
	Adding Objects to Versioning-Enabled Buckets
	Using the Console
	Using the AWS SDKs
	Using the REST API

	Listing Objects in a Versioning-Enabled Bucket
	Using the Console
	Using the AWS SDKs
	Using the AWS SDK for Java
	Using the AWS SDK for .NET

	Using the REST API
	Retrieving a Subset of Objects in a Bucket
	Example 1: Retrieving All Versions of Only a Specific Object
	Example 2: Retrieving a Listing of Additional Objects if the Response Is Truncated

	Retrieving Object Versions
	Using the Console
	Using the AWS SDKs
	Using REST
	Related Topics
	Retrieving the Metadata of an Object Version

	Deleting Object Versions
	Using the Console
	Using the AWS SDKs
	Using REST
	Related Topics
	Using MFA Delete
	Working with Delete Markers
	Removing Delete Markers

	Transitioning Object Versions
	Restoring Previous Versions
	Versioned Object Permissions

	Managing Objects in a Versioning-Suspended Bucket
	Adding Objects to Versioning-Suspended Buckets
	Retrieving Objects from Versioning-Suspended Buckets
	Deleting Objects from Versioning-Suspended Buckets

	Hosting a Static Website on Amazon S3
	Website Endpoints
	Key Differences Between the Amazon Website and the REST API Endpoint

	Configure a Bucket for Website Hosting
	Overview
	Syntax for Specifying Routing Rules
	Index Document Support
	Index Documents and Folders

	Custom Error Document Support
	Configuring a Web Page Redirect
	Page Redirect Support in the Amazon S3 Console
	Setting a Page Redirect from the REST API

	Permissions Required for Website Access

	Example Walkthroughs - Hosting Websites On Amazon S3
	Example: Setting Up a Static Website
	Example: Setting Up a Static Website Using a Custom Domain
	Before You Begin
	Step 1: Register a Domain
	Step 2: Create and Configure Buckets and Upload Data
	Step 2.1: Create Two Buckets
	Step 2.2: Configure Buckets for Website Hosting

	Step 3: Create and Configure Amazon Route 53 Hosted Zone
	Step 3.1: Create a Hosted Zone for Your Domain
	Step 3.2: Add Alias Records for example.com and www.example.com
	Step 3.3: Transfer Other DNS Records from Your Current DNS Provider to Amazon Route 53

	Step 4: Switch to Amazon Route 53 as Your DNS Provider
	Step 5: Testing

	Configuring Amazon S3 Event Notifications
	Overview
	How to Enable Event Notifications
	Event Notification Types and Destinations
	Supported Event Types
	Supported Destinations

	Configuring Notifications with Object Key Name Filtering
	Examples of Valid Notification Configurations with Object Key Name Filtering
	Examples of Notification Configurations with Invalid Prefix/Suffix Overlapping

	Granting Permissions to Publish Event Notification Messages to a Destination
	Granting Permissions to Invoke an AWS Lambda Function
	Granting Permissions to Publish Messages to an SNS Topic or an SQS Queue

	Example Walkthrough 1: Configure a Bucket for Notifications (Message Destination: SNS Topic and SQS Queue)
	Walkthrough Summary
	Step 1: Create an Amazon SNS Topic
	Step 2: Create an Amazon SQS Queue
	Step 3: Add a Notification Configuration to Your Bucket
	Step 3 (option a): Enable Notifications on a Bucket Using the Console
	Step 3 (option b): Enable Notifications on a Bucket Using the AWS SDK for .NET
	Step 3 (option c): Enable Notifications on a Bucket Using the AWS SDK for Java

	Step 4: Test the Setup

	Example Walkthrough 2: Configure a Bucket for Notifications (Message Destination: AWS Lambda)
	Event Message Structure

	Cross-Region Replication
	Use-case Scenarios
	Requirements
	Related Topics
	What Is and Is Not Replicated
	What Is Replicated
	Delete Operation and Cross-Region Replication

	What Is Not Replicated
	Related Topics

	How to Set Up Cross-Region Replication
	Create an IAM Role
	Add Replication Configuration
	Scenario 1: Buckets Owned by the Same AWS Account
	Scenario 2: Buckets Owned by Different AWS Accounts
	Related Topics

	Walkthrough 1: Configure Cross-Region Replication Where Source and Destination Buckets Are Owned by the Same AWS Account
	Related Topics

	Walkthrough 2: Configure Cross-Region Replication Where Source and Destination Buckets Are Owned by Different AWS Accounts
	Related Topics

	How to Set Up Cross-Region Replication Using the Console
	How to Set Up Cross-Region Replication Using the AWS SDK for Java
	Related Topics

	How to Set Up Cross-Region Replication Using the AWS SDK for .NET
	Related Topics

	How to Find Replication Status of an Object
	Related Topics

	Troubleshooting Cross-Region Replication in Amazon S3
	Related Topics

	Cross-Region Replication and Other Bucket Configurations
	Lifecycle Configuration and Object Replicas
	Versioning Configuration and Replication Configuration
	Logging Configuration and Replication Configuration
	Related Topics

	Request Routing
	Request Redirection and the REST API
	Overview
	DNS Routing
	Temporary Request Redirection
	Permanent Request Redirection

	DNS Considerations

	Performance Optimization
	Request Rate and Performance Considerations
	Workloads with a Mix of Request Types
	Example 1: Add a Hex Hash Prefix to Key Name
	Example 2: Reverse the Key Name String

	GET-Intensive Workloads

	TCP Window Scaling
	TCP Selective Acknowledgement

	Monitoring Amazon S3
	Monitoring Tools
	Automated Monitoring Tools
	Manual Monitoring Tools

	Monitoring Daily Storage Metrics with Amazon CloudWatch
	Metrics and Dimensions
	Amazon S3 CloudWatch Metrics
	Amazon S3 CloudWatch Dimensions

	Accessing CloudWatch Metrics
	Related Resources

	Logging Amazon S3 API Calls By Using AWS CloudTrail
	Amazon S3 Information in CloudTrail
	Using CloudTrail Logs with Amazon S3 Server Access Logs and CloudWatch Logs
	Understanding Amazon S3 Log File Entries
	Related Resources

	Using BitTorrent with Amazon S3
	How You are Charged for BitTorrent Delivery
	Using BitTorrent to Retrieve Objects Stored in Amazon S3
	Publishing Content Using Amazon S3 and BitTorrent

	Using Amazon DevPay with Amazon S3
	Amazon S3 Customer Data Isolation
	Example

	Amazon DevPay Token Mechanism
	Amazon S3 and Amazon DevPay Authentication
	Amazon S3 Bucket Limitation
	Amazon S3 and Amazon DevPay Process
	Additional Information

	Handling REST and SOAP Errors
	The REST Error Response
	Response Headers
	Error Response
	Error Code
	Error Message
	Further Details

	The SOAP Error Response
	Amazon S3 Error Best Practices
	Retry InternalErrors
	Tune Application for Repeated SlowDown errors
	Isolate Errors

	Troubleshooting Amazon S3
	General: Getting my Amazon S3 request IDs
	Using HTTP
	Using a Web Browser
	Using an AWS SDK
	Using the SDK for PHP
	Using the SDK for Java
	Using the AWS SDK for .NET
	Using the SDK for Python
	Using the SDK for Ruby

	Using the AWS CLI
	Using Windows PowerShell

	Related Topics

	Server Access Logging
	Overview
	Log Object Key Format
	How are Logs Delivered?
	Best Effort Server Log Delivery
	Bucket Logging Status Changes Take Effect Over Time

	Related Topics
	Enabling Logging Using the Console
	Enabling Logging Programmatically
	Enabling logging
	Granting the Log Delivery Group WRITE and READ_ACP Permissions
	Example: AWS SDK for .NET

	Server Access Log Format
	Custom Access Log Information
	Programming Considerations for Extensible Server Access Log Format
	Additional Logging for Copy Operations

	Deleting Log Files

	Using the AWS SDKs, CLI, and Explorers
	Specifying Signature Version in Request Authentication
	Set Up the AWS CLI
	Using the AWS SDK for Java
	The Java API Organization
	Testing the Java Code Examples

	Using the AWS SDK for .NET
	The .NET API Organization
	Running the Amazon S3 .NET Code Examples

	Using the AWS SDK for PHP and Running PHP Examples
	AWS SDK for PHP Levels
	Low-Level API
	High-Level Abstractions

	Running PHP Examples
	Related Resources

	Using the AWS SDK for Ruby - Version 2
	The Ruby API Organization
	Testing the Ruby Script Examples

	Using the AWS SDK for Python (Boto)

	Appendices
	Appendix A: Using the SOAP API
	Common SOAP API Elements
	Common Elements

	Authenticating SOAP Requests
	Setting Access Policy with SOAP

	Appendix B: Authenticating Requests (AWS Signature Version 2)
	Authenticating Requests Using the REST API
	Detailed Authentication Information

	Signing and Authenticating REST Requests
	Using Temporary Security Credentials
	The Authentication Header
	Request Canonicalization for Signing
	Constructing the CanonicalizedResource Element
	Constructing the CanonicalizedAmzHeaders Element
	Positional versus Named HTTP Header StringToSign Elements
	Time Stamp Requirement
	Authentication Examples
	REST Request Signing Problems
	Query String Request Authentication Alternative
	Creating a Signature
	Using Base64 Encoding

	Browser-Based Uploads Using POST (AWS Signature Version 2)
	HTML Forms (AWS Signature Version 2)
	HTML Form Encoding
	HTML Form Declaration
	HTML Form Fields
	Policy Construction
	Expiration
	Conditions
	Condition Matching
	Character Escaping

	Constructing a Signature
	Redirection
	General Redirection
	Pre-Upload Redirection

	Upload Examples (AWS Signature Version 2)
	File Upload
	Policy and Form Construction
	Sample Request
	Sample Response

	Text Area Upload
	Policy and Form Construction
	Sample Request
	Sample Response

	POST with Adobe Flash
	Adobe Flash Player Security
	Adobe Flash Considerations

	Amazon S3 Resources
	Document History
	AWS Glossary

