
Overview of Deployment
Options on AWS

Peter Dalbhanjan

March 2015

© 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments, conditions

or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities

and liabilities of AWS to its customers are controlled by AWS agreements, and

this document is not part of, nor does it modify, any agreement between AWS

and its customers.

Amazon Web Services – Deployment Options on AWS March 2015

Page 3 of 23

Contents
Introduction 4

AWS Deployment Services 5

AWS Elastic Beanstalk 5

AWS CloudFormation 6

AWS OpsWorks 6

AWS CodeCommit 6

AWS CodePipeline 6

AWS CodeDeploy 7

Amazon EC2 Container Service 7

Common Features 7

Provision 8

Deploy 9

Configure 9

Scale 9

Monitoring 9

Logging 10

Instance Profiles 10

Custom Variables 11

Other AWS Service Integration 11

Tags 11

Strategies for Updating Your Stacks 12

Prebaking AMIs 12

In-place vs Disposable Method 13

Blue-Green Method 15

Hybrid Deployment Model Approach 17

Conclusion 20

Amazon Web Services – Deployment Options on AWS March 2015

Page 4 of 23

Abstract
Amazon Web Services offers multiple options for provisioning your IT

infrastructure and the deployment of your applications. Whether it is a simple

three-tier application or a complex set of workloads, the deployment model varies

from customer to customer. But with the right techniques, AWS can help you pick

the best strategy and tool set for deploying an infrastructure that can handle your

workload.

This whitepaper is intended for anyone looking for information on different

deployment services in AWS. It lays out common features available on these

deployment services, articulates strategies for updating application stacks, and

presents few examples of hybrid deployment models for complex workloads

Introduction
AWS caters to multiple customers with several unique requirements. If you are

an experienced user working on the AWS platform, you are probably aware of the

“one size doesn’t fit all” philosophy. Whether you work in enterprise computing

or hope to create the next big social media or gaming company, AWS provides

multiple customization options to serve a broad range of use cases. The AWS

platform is designed to address scalability, performance, security, ease of

deployment, tools to help migrate applications and an ecosystem of developers

and architects who are deeply involved in the growth of its products and services.

For example, several sizing options are available to roll out an application on

Amazon Elastic Compute Cloud (EC2) instance along with various scaling

mechanics for adding compute and storage capacity.1 For persistent data storage

needs, Amazon Elastic Block Store (EBS) has tiered offerings such as general

purpose (SSD), provisioned IOPS (SSD) and magnetic EBS volumes.2 For data

that is static in nature, you can use Amazon Simple Storage Service (S3)3 and

Amazon Glacier4 for archival purposes. For data that is relational in nature, you

can leverage Amazon Relational Database Service (RDS);5 for data warehousing,

you can use Amazon Redshift.6 If you need storage with pre-defined throughput,

you can leverage Amazon DynamoDB7 and for real-time processing, you can use

Amazon Kinesis.8

http://aws.amazon.com/ec2/
http://aws.amazon.com/ebs/
http://aws.amazon.com/s3/
http://aws.amazon.com/glacier/
http://aws.amazon.com/rds/
http://aws.amazon.com/redshift/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/kinesis/

Amazon Web Services – Deployment Options on AWS March 2015

Page 5 of 23

Similarly, when it comes to deployment services, AWS has multiple options too.

The following diagram summarizes different deployment services in AWS.

Figure 1: Overview of Deployment Services

AWS Deployment Services
AWS offers multiple strategies for provisioning infrastructure. You could use the

building blocks (Amazon EC2, Amazon EBS, Amazon S3, Amazon RDS) and

leverage the integration provided by third-party tools to deploy your application.

But for even greater flexibility, you can consider the automation provided by the

AWS deployment services.

AWS Elastic Beanstalk
AWS Elastic Beanstalk is the fastest and simplest way to get an application up

and running on AWS.9 It is perfect for developers who want to deploy code and

not worry about managing the underlying infrastructure. Elastic Beanstalk is

ideal if you have a standard three tier PHP, Java, Python, Ruby, Node.js, .NET,

Go or Docker application that can run on an app server with a database.10 Elastic

Beanstalk uses Auto Scaling11 and Elastic Load Balancing12 to easily support

highly variable amounts of traffic and works for you if you want to start small and

scale up. Common use cases include web apps, content management systems

(CMS), and API back ends.

http://aws.amazon.com/elasticbeanstalk/
https://www.docker.com/
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/elasticloadbalancing/

Amazon Web Services – Deployment Options on AWS March 2015

Page 6 of 23

AWS CloudFormation
AWS CloudFormation provides the sysadmin, network architect, and other IT

personnel the ability to provision and manage stacks of AWS resources based on

templates you create to model your infrastructure architecture.13 You can manage

anything from a single Amazon EC2 instance to a complex multitier,

multiregional application. Using templates means you can impose version control

on your infrastructure and easily replicate your infrastructure stack quickly and

with repeatability. AWS CloudFormation is recommended if you want a tool for

granular control over the provisioning and management of your own

infrastructure. AWS CodeDeploy is a recommended adjunct to AWS

CloudFormation for managing the application deployments and updates.14

AWS OpsWorks
AWS OpsWorks is an application-management service that makes it easy for both

developers and operations personnel to deploy and operate applications of all

shapes and sizes.15 AWS OpsWorks works best if you want to deploy your code,

have some abstraction from the underlying infrastructure, and have an

application more complex than a three-tier architecture. AWS OpsWorks is also

recommended if you want to manage your infrastructure with a configuration

management system such as Chef.

AWS CodeCommit
AWS CodeCommit is a highly available, highly scalable managed source-control

service that hosts private Git repositories.16 With AWS CodeCommit, you can

store anything from code to binaries and work seamlessly with your existing Git-

based tools. CodeCommit integrates with AWS CodePipeline and AWS

CodeDeploy to streamline your development and release process.

AWS CodePipeline
AWS CodePipeline is a continuous delivery and release automation service for

rapidly releasing new features to users.17 With AWS CodePipeline, you can design

your development workflow for checking in code, building the code, deploying

your application into staging, testing it, and releasing it to production. AWS

CodePipeline can be easily integrated or extended by leveraging third-party tools

into any step of your release process or you can use AWS CodePipeline as an end-

http://aws.amazon.com/cloudformation/
http://aws.amazon.com/codedeploy/
http://aws.amazon.com/opsworks/
http://aws.amazon.com/codecommit/
http://aws.amazon.com/codepipeline/

Amazon Web Services – Deployment Options on AWS March 2015

Page 7 of 23

to-end solution. For best results, use AWS CodeCommit along with AWS

CodePipeline to streamline your development and release cycles.

AWS CodeDeploy
AWS CodeDeploy is a service that coordinates application deployments across

Amazon EC2 instances.18 AWS CodeDeploy works with your existing application

files and deployment scripts, and it can easily reuse existing configuration

management scripts. The service scales with your infrastructure so you can

deploy to as few as one EC2 instance or thousands. AWS CodeDeploy is a good

choice if you want to deploy code to infrastructure managed by yourself or other

people in your organization. Use AWS CodeDeploy to deploy code to

infrastructure that is provisioned and managed with AWS CloudFormation. Even

if you don’t use AWS CloudFormation but you use Amazon EC2 with third-party

integration, AWS CodeDeploy can help manage your application deployment.

Amazon EC2 Container Service
Amazon EC2 Container Service19 is a highly scalable, high performance container

management service that makes it easy to run, stop, and manage Docker

containers on a cluster of Amazon EC2 instances. With Amazon EC2 Container

Service you can manage container-enabled applications with simple API calls, get

the state of your cluster from a centralized service, and gain access to many

familiar Amazon EC2 features like security groups,20 Amazon EBS volumes, and

AWS Identity and Access Management (IAM) roles.21 Amazon EC2 Container

Service is a good option if you are using Docker for a consistent build and

deployment experience, if you want to improve the utilization of your EC2

instances, or as the basis for sophisticated distributed systems.

Common Features
AWS offers several key features that are unique to each deployment service.

However, there are some characteristics that are common to these services. Each

feature can influence service adoption in its own way. The following table

discusses some of the common features in the deployment services:

http://aws.amazon.com/codedeploy/
http://aws.amazon.com/ecs/
https://www.docker.com/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

Amazon Web Services – Deployment Options on AWS March 2015

Page 8 of 23

Deployment

Feature
1

Category Description AWS Elastic

Beanstalk

AWS Cloud

Formation

AWS

OpsWorks

AWS

CodeDeploy

Provision Provision

infrastructure

EC2 instances,

Amazon EBS

volumes, VPC,

etc.

 (Details)
2  (Details)  (Details) N/A

Deploy Deploy

applications

Deploy

applications from

chosen repository

 (Details)
2  (Details)  (Details)  (Details)

Configure Configuration

management

Install software,

configure software

and AWS

resources

 (Details)  (Details)  (Details)

Scale Scalability Automatically

scale to handle

the load

 (Details)  (Details)  (Details) N/A

Monitoring Monitoring Monitor events,

resources,

application health

 (Details)  (Details)  (Details)  (Details)

Logging Troubleshooting,

security

System,

application logs

 (Details)  (Details)  (Details)  (Details)

Instance

profiles

Security Securely access

AWS services

such as Amazon

S3, DynamoDB

 (Details)  (Details)  (Details)  (Details)

Custom

variables

Configuration

management

Pass variables to

application

environments

 (Details)  (Details)  (Details) N/A

Other AWS

service

integration

Service

integration

Integration with

other AWS

services

 (Details)  (Details)  (Details)  (Details)

Tags Security,

troubleshooting,

configuration

management

Automate

configuring tags

on EC2, Amazon

RDS

 (Details)  (Details)  (Details)

1. Lists only the relevant deployment service with the common feature set.

2. Elastic Beanstalk provisions the resources to support either web application that handles HTTP(S) requests or a web application that

handles background-processing tasks.

Provision
As mentioned earlier, you can work with the building blocks such as Amazon

EC2, Amazon EBS, Amazon S3, Amazon Virtual Private Cloud (VPC)

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.concepts.architecture.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-howdoesitwork.html
http://docs.aws.amazon.com/opsworks/latest/userguide/welcome.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.platforms.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/deploying.applications.html
http://docs.aws.amazon.com/opsworks/latest/userguide/workinglayers-servers.html
http://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-steps.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers.html
http://aws.amazon.com/cloudformation/aws-cloudformation-articles-and-tutorials/
http://docs.aws.amazon.com/opsworks/latest/userguide/workinglayers-custom.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.concepts.design.html#concepts.concepts.design.scalability
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/example-templates-autoscaling.html
http://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autoscaling.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.healthstatus.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-monitor-stack.html
http://docs.aws.amazon.com/opsworks/latest/userguide/monitoring.html
http://docs.aws.amazon.com/opsworks/latest/userguide/monitoring.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.loggingS3.title.html
http://blogs.aws.amazon.com/application-management/post/TxPYD8JT4CB5UY/View-CloudFormation-Logs-in-the-Console
http://docs.aws.amazon.com/opsworks/latest/userguide/troubleshoot-debug-log.html
http://docs.aws.amazon.com/codedeploy/latest/userguide/troubleshooting.html#troubleshooting-deploy-failures
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.ec2.html#using-features.managing.ec2.profile
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-instanceprofile.html
http://docs.aws.amazon.com/opsworks/latest/userguide/opsworks-security-appsrole.html
http://docs.aws.amazon.com/codedeploy/latest/userguide/how-to-create-service-role.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_Java.managing.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
http://docs.aws.amazon.com/opsworks/latest/userguide/workingcookbook-attributes.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/AWSHowTo.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/CHAP_TemplateQuickRef.html
http://docs.aws.amazon.com/opsworks/latest/userguide/other-services.html
http://docs.aws.amazon.com/codedeploy/latest/userguide/integrations.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.tagging.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-tagging.html
http://aws.amazon.com/opsworks/faqs/#billing
http://aws.amazon.com/vpc/

Amazon Web Services – Deployment Options on AWS March 2015

Page 9 of 23

individually,22 or you can use the automation provided by deployment services

for provisioning infrastructure components. The advantage of using these

services is the rich feature set they bring for deploying and configuring your

application, monitoring, scalability, integration with other AWS services and

more. A detailed discussion of these features will make this clear.

Deploy
The deployment services can also make it easier to deploy your application on the

underlying infrastructure. You can create an application, specify the source to

your desired deployment service, and let the tool handle the complexity of

provisioning the AWS resources needed to run your application. Despite

providing similar functionality in terms of deployment, each service has its own

unique method for deploying and managing your application.

Configure
In addition to deploying your application, you can use the deployment services to

customize and manage the application configuration. The underlying task could

be replacing custom configuration files (such as httpd.conf) for your custom

web application or updating packages that are required by your application (such

as yum and apt-get repositories). You can customize the software on your

Amazon EC2 instance as well as the infrastructure resources in your stack

configuration.

Scale
Scaling your application fleet during periods of increased demand not only

provides a better experience for your end users but also keeps the cost low. You

can configure Auto Scaling to dynamically add or remove Amazon EC2 instances

based on metrics triggers that you set in Amazon CloudWatch (CPU, memory,

disk I/O, network I/O).23 This type of Auto Scaling configuration is integrated

seamlessly into Elastic Beanstalk and AWS CloudFormation. Similarly, you can

use AWS OpsWorks to automatically manage scaling based on time or load.

Monitoring
Monitoring gives you visibility into the resources you launch in the cloud.

Whether you want to monitor the resource utilization of your overall stack or get

http://aws.amazon.com/cloudwatch/

Amazon Web Services – Deployment Options on AWS March 2015

Page 10 of 23

an overview of your application health, the deployment services help provide this

info from single pane of glass. You can also navigate to the CloudWatch console

to get a system-wide view into all of your resources and operational health. You

can use similar techniques to create alarms for metrics that you want to monitor.

Alarms can send an alert whenever a certain threshold is met or take an action to

mitigate an issue. For example, you can set an alarm that sends an email alert

when an EC2 instance fails on status checks or trigger a scaling event when the

CPU utilization meets certain threshold.

Each deployment services provide the progress of your deployment. You can

track the resources that are being created or removed via AWS Management

Console,24 CLI,25 or APIs.26

Logging
Logging is an important element of your application deployment cycle. Logging

can provide important debugging information or provide key characteristics of

your application behavior. The deployment services make it simpler to access

these logs through a combination of the AWS Management Console, CLI, and API

methods so that you don’t have to log into Amazon EC2 instances to view them.

In addition to built-in features, the deployment services provide seamless

integration with CloudWatch Logs to expand your ability to monitor the system,

application, and custom log files.27 You can use CloudWatch Logs to monitor logs

from EC2 instances in real time, monitor CloudTrail events, or archive log data in

Amazon S3 for future analysis.28

Instance Profiles
Instance profiles29 is a great way of embedding necessary IAM roles required to

carry out an operation to access an AWS resource. These IAM roles can securely

make API requests from your instances to AWS services without requiring you to

manage security credentials. The deployment services integrate seamlessly with

instance profiles to simplify credentials management and relieve you from

hardcoding API keys in your application configuration.

For example, if your application needs to access an Amazon S3 bucket with read-

only permission, you can create an instance profile and assign read-only Amazon

https://console.aws.amazon.com/
https://console.aws.amazon.com/
http://aws.amazon.com/cli/
http://aws.amazon.com/tools/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://aws.amazon.com/cloudtrail/
http://docs.aws.amazon.com/IAM/latest/UserGuide/instance-profiles.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

Amazon Web Services – Deployment Options on AWS March 2015

Page 11 of 23

S3 access in the associated IAM role. The deployment service will take the

complexity of passing these roles to EC2 instance so that your application can

securely access AWS resource with the privileges that you define.

Custom Variables
When you develop an application, you want to customize configuration values

such as database connection strings, security credentials, or other information

that you don’t want to hardcode into your application. Defining variables can

help loosely couple your application configuration and gives you the flexibility to

scale different tiers of your application independently. Embedding variables

outside of your application code also helps improve portability of your

application. Additionally, you can differentiate environments into development,

test, and production based on customized variables. The deployment services

help facilitate customizing variables so that once they are set, the variables

become available to your application environments.

Other AWS Service Integration
AWS deployment services provide easier integration with other AWS services.

Whether you need to load balance across multiple Availability Zones30 by using

Elastic Load Balancing or by using Amazon RDS as a back end, the deployment

services like AWS Elastic Beanstalk, AWS CloudFormation, and AWS OpsWorks

make it simpler to use these services as part of your deployment.

If you need to use other AWS services, you can leverage tool-specific integration

methods to interact with the resource. For example, if you are using Elastic

Beanstalk for deployment and want to use DynamoDB for your back end, you can

customize your environment resources by including a configuration file within

your application source bundle.31 With AWS OpsWorks, you can create custom

recipes to configure the application so that it can access other AWS services.32

Similarly, several template snippets with a number of example scenarios are

available for you to use within your AWS CloudFormation templates.33

Tags
Another advantage of using a deployment service is to reap the benefits of

automating tag usage. A tag consists of a user-defined key and value. You can

define tags based on application, project, cost centers, business division, and

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers.html
http://docs.aws.amazon.com/opsworks/latest/userguide/other-services.html
http://docs.aws.amazon.com/opsworks/latest/userguide/other-services.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/CHAP_TemplateQuickRef.html

Amazon Web Services – Deployment Options on AWS March 2015

Page 12 of 23

more so that you can easily identify a resource. When you use tags during your

deployment steps, the tools automatically propagate the tags to underlying

resources such as Amazon EC2 instances, Auto Scaling groups, or Amazon RDS.

Appropriate use of tagging can provide a better way to manage your costs with

cost allocation reports.34 Cost allocation reports aggregate costs based on tags.

This way, you can determine how much you are spending for each application or

a particular project.

Strategies for Updating Your Stacks
Depending on your choice of deployment service, the strategy for updating your

application code could vary a fair amount. AWS deployment services bring agility

and improve the speed of your application deployment cycle, but using a proper

tool and the right strategy is key for building a robust environment.

The following section looks at how the deployment service can help while

performing application updates. The approaches mentioned below will start with

prebaking machine images and then move to performing in-place and disposable

upgrades.

Prebaking AMIs
An Amazon Machine Image (AMI) is an image consisting of a base operating

system or an application server in the cloud.35 In order to launch an EC2

instance, you need to choose which AMI you will use for installing your

application. A common practice to install an application is during instance boot.

This process is called bootstrapping an instance. AWS CloudFormation provides

multiple options for bootstrapping an application. To review the options in detail,

see Bootstrapping Applications via AWS CloudFormation .36

Note that the bootstrapping process can be slower if you have a complex

application or multiple applications to install. Managing a fleet of applications

with several build tools and dependencies can be a challenging task during

rollouts. Furthermore, your deployment service should be designed to do faster

rollouts to take advantage of Auto Scaling.

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/allocation.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://s3.amazonaws.com/cloudformation-examples/BoostrappingApplicationsWithAWSCloudFormation.pdf

Amazon Web Services – Deployment Options on AWS March 2015

Page 13 of 23

Prebaking is a process of embedding a significant portion of your application

artifacts within your base AMI. During the deployment process you can

customize application installations by using EC2 instance artifacts such as

instance tags, instance metadata, and Auto Scaling groups.

For example, let’s say you are managing a Ruby application that needs Nginx for

the front end; Elasticsearch, Logstash, and Kibana for log processing; and

MongoDB for document management. You can have logical grouping of your base

AMIs that can take 80% of application binaries loaded on these AMI sets. You

can choose to install most applications during the bootstrapping process and

alter the installation based on configuration sets grouped by instance tags, Auto

Scaling groups, or other instance artifacts. You can set a tag on your Nginx

instances (such as Nginx-v-1.6.2). Your update process can query for the instance

tag, validate whether it’s the most current version of Nginx, and then proceed

with the installation. When it’s time to update the prebaked AMI, you can simply

swap your existing AMI with the most recent version in the underlying

deployment service and update the tag.

Deployment services like AWS CloudFormation and AWS OpsWorks are better

suited for the prebaked AMI approach. You can also find multiple third-party

tools for prebaking AMIs. Some well-known ones are packer.io37 and aminator

(built by Netflix).38 You can also choose third-party tools for your configuration

management such as Chef, Puppet, Salt, Ansible, and Capistrano.

In-place vs Disposable Method
The deployment services offer two methods to help you update your application

stack, namely in-place and disposable. An in-place upgrade involves performing

application updates on live Amazon EC2 instances. A disposable upgrade, on the

other hand, involves rolling out a new set of EC2 instances by terminating older

instances.

An in-place upgrade is typically useful in a rapid deployment with a consistent

rollout schedule. It is designed for sessionless applications. You can still use the

in-place upgrade method for stateful applications by implementing a rolling

deployment schedule and by following the guidelines mentioned in the section on

blue-green deployments.

https://www.packer.io/
https://github.com/Netflix/aminator

Amazon Web Services – Deployment Options on AWS March 2015

Page 14 of 23

In contrast, disposable upgrades offer a simpler way to know if your application

has unknown dependencies. The underlying EC2 instance usage is considered

temporary or ephemeral in nature for the period of deployment until the current

release is active. During the new release, a new set of EC2 instances are rolled out

by terminating older instances. This type of upgrade technique is more common

in an immutable infrastructure.

Two services are especially useful for an in-place upgrade: You can use AWS

CodeDeploy to manage the updates while managing application deployment

using the building blocks (Amazon EC2, Amazon EBS, Amazon S3, Amazon RDS)

individually or third-party managed build systems like Github, Jenkins, Travis

CI, or Circle CI. Alternatively, you can use AWS OpsWorks to manage both your

application deployment as well as updates.

For disposable upgrades, you can set up a cloned environment with the

deployment services (AWS Elastic Beanstalk, AWS CloudFormation, and AWS

OpsWorks) or use them in combination with an Auto Scaling configuration to

manage the updates.

In-place Upgrade Method

AWS CodeDeploy is a tool focused on software deployment. You can deploy

applications from Amazon S3 and GitHub repositories using this tool. Once you

prepare deployment content and the underlying Amazon EC2 instances, you can

deploy an application and its revisions on a consistent basis. You can push the

updates to a set of instances called deployment groups that are made of tagged

EC2 instances39 and/or Auto Scaling groups.40 In addition, AWS CodeDeploy

works with various configuration management tools, continuous integration and

deployment systems, and source control systems. You can find complete list of

product integration options in the AWS CodeDeploy documentation.41

Another service to use for managing the entire lifecycle of an application is AWS

OpsWorks. You can use built-in layers or deploy custom layers and recipes to

launch your application stack. In addition, tons of customization options are

available for configuration and pushing application updates. For more

information, read the whitepaper on Managing Multi-Tiered Web Application

with OpsWorks for reviewing strategies to update OpsWorks stacks.42

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#Using_Tags_Console
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#Using_Tags_Console
http://docs.aws.amazon.com/codedeploy/latest/userguide/auto-scaling-integ.html
http://aws.amazon.com/codedeploy/product-integrations/
http://d0.awsstatic.com/whitepapers/managing-multi-tiered-web-applications-with-opsworks.pdf
http://d0.awsstatic.com/whitepapers/managing-multi-tiered-web-applications-with-opsworks.pdf

Amazon Web Services – Deployment Options on AWS March 2015

Page 15 of 23

Disposable Upgrade Method

You can perform disposable upgrades in a couple of ways. You can use an Auto

Scaling policy to define how you want to add (scale out) or remove (scale in)

instances.43 By coupling this with your update strategy, you can control rolling

out of an application update as part of the scaling event.

For example, you can update Auto Scaling to use the new AMI and configure a

termination policy to use OldestInstance during a scale in event. Or you could use

OldestLaunchConfiguration to phase out all instances that use the previous

configuration. If you are using an Elastic Load Balancing (ELB), you can attach

an additional Auto Scaling configuration behind the ELB and use a similar

approach to phase in newer instances while removing older instances.

Similarly, you can configure rolling deployments in conjunction with deployment

services such as AWS Elastic Beanstalk44 and AWS CloudFormation.45 You can

use update policies to describe how instances in an Auto Scaling group are

replaced or modified as part of your update strategy. You can control the number

of instances to get updated concurrently or in batches. You can choose to apply

the updates to certain instances while isolating in-service instances. You can also

specify the time to wait between batched updates. In addition, you can cancel or

roll back an update if you discover a bug in your application code. These features

can help increase the availability of your application during updates. See the next

section on blue-green deployments to address some concerns related to

managing updates for sessionful applications using Auto Scaling.

Blue-Green Method
Blue-green is a method in which you have two identical stacks of your application

running in their own environments. You use various strategies to migrate the

traffic from your current application stack (blue) to a new version of the

application (green). This is a popular technique for deploying applications with

zero downtime. The deployment services like AWS Elastic Beanstalk, AWS

CloudFormation, or AWS OpsWorks are particularly useful as they provide a

simple way to clone your running application stack. You can set up a new version

of your application (green) by simply cloning current version of the application

(blue).

http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AutoScalingBehavior.InstanceTermination.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AutoScalingBehavior.InstanceTermination.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.rollingupdates.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-attribute-updatepolicy.html

Amazon Web Services – Deployment Options on AWS March 2015

Page 16 of 23

For a sessionless web application, the update process is pretty straightforward.

Simply upload the new version of your application and let your deployment

service (AWS Elastic Beanstalk, AWS CloudFormation, or AWS OpsWorks)

deploy a new version (green). To cut over to the new version, you simply replace

the ELB URLs in your DNS records. Elastic Beanstalk has a Swap

Environment URLs feature to facilitate a simpler cutover process. If you use

Amazon Route 53 to manage your DNS records, you need to swap ELB endpoints

for AWS CloudFormation or AWS OpsWorks deployment services.46

Figure 2: Blue-Green Deployment

For applications with session states, the cutover process can be complex. When

you perform an update, you don’t want your end users to experience downtime or

lose data. You should consider storing the sessions outside of your deployment

service because with certain deployment service creating a new stack will recreate

the session database. In particular, consider storing the sessions separately from

your deployment service if you are using Amazon RDS database or Amazon

ElastiCache.47

http://aws.amazon.com/route53/
http://aws.amazon.com/elasticache/
http://aws.amazon.com/elasticache/

Amazon Web Services – Deployment Options on AWS March 2015

Page 17 of 23

Read additional recommendations for achieving zero downtime with Elastic

Beanstalk during your application upgrade.48 Similarly, review the

recommendation for updating AWS CloudFormation stacks while preventing

updates to stack resources.49 In addition, consider monitoring your instances in

the blue deployment and ELB’s connection draining before terminating

instances.50

If you use Amazon Route53 to host your DNS records, you can consider using the

Weighted Round Robin (WRR) feature for migrating from blue to green

deployments. The feature helps to drive the traffic gradually rather than

instantly.51 If your application has a bug, this method helps ensure the blast

radius is minimal as it only affects small number of users. This method also

simplifies rollbacks if they become necessary. In addition, you only use the

required number of instances while you scale up in the green and scale down in

the blue deployment. For example, you can set WRR to allow 10% of the traffic to

go to green deployment while keeping 90% of traffic on blue. You gradually

increase the percentage of green instances until you achieve a full cutover.

Keeping the DNS cache to a shorter TTL on the client side also ensures the client

will connect to green deployment with rapid release cycle thus minimizing bad

DNS caching behavior.

Hybrid Deployment Model Approach
You can also use the deployment services in a hybrid fashion for managing your

application fleet. For example, you can combine the simplicity of managing AWS

infrastructure provided by Elastic Beanstalk and the automation of custom

network segmentation provided by AWS CloudFormation. Leveraging a hybrid

deployment model also simplifies your architecture as it decouples your

deployment method so that you can choose different strategies for updating your

application stack.

A few example scenarios are provided below. These are not exhaustive; they are

meant to give you an idea of hybrid deployment approaches that you can plan for.

Scenario 1: Use AWS CloudFormation to deploy an Elastic Beanstalk application

along with an AWS service integration such as DynamoDB, Amazon RDS, and

Amazon S3.

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.CNAMESwap.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/protect-stack-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/protect-stack-resources.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/config-conn-drain.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html#routing-policy-weighted

Amazon Web Services – Deployment Options on AWS March 2015

Page 18 of 23

Figure 3: Reference Architecture for Scenario 1

Scenario 2: Use AWS CloudFormation to deploy similar application stacks in

AWS OpsWorks and manage the entire infrastructure using AWS

CloudFormation.

Figure 4: Reference Architecture for Scenario 2

Amazon Web Services – Deployment Options on AWS March 2015

Page 19 of 23

Scenario 3: Use AWS CloudFormation to deploy multiple application stacks that

you manage with Elastic Beanstalk and AWS OpsWorks.

Figure 5: Reference Architecture for Scenario 3

Scenario 4: Use AWS CodeDeploy to deploy and manage multiple applications

while provisioning the infrastructure using Amazon EC2 and AWS

CloudFormation.

Amazon Web Services – Deployment Options on AWS March 2015

Page 20 of 23

Figure 6: Reference Architecture for Scenario 4

Conclusion
Amazon Web Services provides number of tools to simplify and automate the

provisioning of infrastructure and deployment of applications. Each deployment

service has a unique approach for managing application deployments and offers

various strategies for updating your application. For best results, focus on your

workload and choose a deployment service that is tailored to your specific needs.

As you plan, consider using hybrid deployment model approach, which uses a

combination of deployment services for managing multiple applications

throughout their lifecycle.

Amazon Web Services – Deployment Options on AWS March 2015

Page 21 of 23

Notes
1 http://aws.amazon.com/ec2/

2 http://aws.amazon.com/ebs/

3 http://aws.amazon.com/s3/

4 http://aws.amazon.com/glacier/

5 http://aws.amazon.com/rds/

6 http://aws.amazon.com/redshift/

7 http://aws.amazon.com/dynamodb/

8 http://aws.amazon.com/kinesis/

9 http://aws.amazon.com/elasticbeanstalk/

10 https://www.docker.com/

11 http://aws.amazon.com/autoscaling/

12 http://aws.amazon.com/elasticloadbalancing/

13 http://aws.amazon.com/cloudformation/

14 http://aws.amazon.com/codedeploy/

15 http://aws.amazon.com/opsworks/

16 http://aws.amazon.com/codecommit/

17 http://aws.amazon.com/codepipeline/

18 http://aws.amazon.com/codedeploy/

19 http://aws.amazon.com/ecs/

20 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-

security.html

21 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-

amazon-ec2.html

22 http://aws.amazon.com/vpc/

http://aws.amazon.com/ec2/
http://aws.amazon.com/ebs/
http://aws.amazon.com/s3/
http://aws.amazon.com/glacier/
http://aws.amazon.com/rds/
http://aws.amazon.com/redshift/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/kinesis/
http://aws.amazon.com/elasticbeanstalk/
https://www.docker.com/
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/cloudformation/
http://aws.amazon.com/codedeploy/
http://aws.amazon.com/opsworks/
http://aws.amazon.com/codecommit/
http://aws.amazon.com/codepipeline/
http://aws.amazon.com/codedeploy/
http://aws.amazon.com/ecs/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://aws.amazon.com/vpc/

Amazon Web Services – Deployment Options on AWS March 2015

Page 22 of 23

23 http://aws.amazon.com/cloudwatch/

24 https://console.aws.amazon.com/

25 http://aws.amazon.com/cli/

26 http://aws.amazon.com/tools/

27

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/Wh

atIsCloudWatchLogs.html

28 http://aws.amazon.com/cloudtrail/

29 http://docs.aws.amazon.com/IAM/latest/UserGuide/instance-profiles.html

30 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-

availability-zones.html

31 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-

containers.html

32 http://docs.aws.amazon.com/opsworks/latest/userguide/other-services.html

33

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/CHAP_

TemplateQuickRef.html

34 http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/allocation.html

35 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

36 https://s3.amazonaws.com/cloudformation-

examples/BoostrappingApplicationsWithAWSCloudFormation.pdf

37 https://www.packer.io/

38 https://github.com/Netflix/aminator

39

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#U

sing_Tags_Console

http://aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/
http://aws.amazon.com/cli/
http://aws.amazon.com/tools/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://aws.amazon.com/cloudtrail/
http://docs.aws.amazon.com/IAM/latest/UserGuide/instance-profiles.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers.html
http://docs.aws.amazon.com/opsworks/latest/userguide/other-services.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/CHAP_TemplateQuickRef.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/CHAP_TemplateQuickRef.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/allocation.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://s3.amazonaws.com/cloudformation-examples/BoostrappingApplicationsWithAWSCloudFormation.pdf
https://s3.amazonaws.com/cloudformation-examples/BoostrappingApplicationsWithAWSCloudFormation.pdf
https://www.packer.io/
https://github.com/Netflix/aminator
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#Using_Tags_Console
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#Using_Tags_Console

Amazon Web Services – Deployment Options on AWS March 2015

Page 23 of 23

40 http://docs.aws.amazon.com/codedeploy/latest/userguide/auto-scaling-

integ.html

41 http://aws.amazon.com/codedeploy/product-integrations/

42 http://d0.awsstatic.com/whitepapers/managing-multi-tiered-web-

applications-with-opsworks.pdf

43

http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AutoScaling

Behavior.InstanceTermination.html

44 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-

features.rollingupdates.html

45 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-

attribute-updatepolicy.html

46 http://aws.amazon.com/route53/

47 http://aws.amazon.com/elasticache/

48 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-

features.CNAMESwap.html

49

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/protect

-stack-resources.html

50

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/co

nfig-conn-drain.html

51 http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-

policy.html#routing-policy-weighted

http://docs.aws.amazon.com/codedeploy/latest/userguide/auto-scaling-integ.html
http://docs.aws.amazon.com/codedeploy/latest/userguide/auto-scaling-integ.html
http://aws.amazon.com/codedeploy/product-integrations/
http://d0.awsstatic.com/whitepapers/managing-multi-tiered-web-applications-with-opsworks.pdf
http://d0.awsstatic.com/whitepapers/managing-multi-tiered-web-applications-with-opsworks.pdf
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AutoScalingBehavior.InstanceTermination.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AutoScalingBehavior.InstanceTermination.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.rollingupdates.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.rollingupdates.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-attribute-updatepolicy.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-attribute-updatepolicy.html
http://aws.amazon.com/route53/
http://aws.amazon.com/elasticache/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.CNAMESwap.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.CNAMESwap.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/protect-stack-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/protect-stack-resources.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/config-conn-drain.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/config-conn-drain.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html#routing-policy-weighted
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html#routing-policy-weighted

