
AWS Cloud Adoption Framework
Platform Perspective

November 2015

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 2 of 19

© 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments, conditions

or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities

and liabilities of AWS to its customers are controlled by AWS agreements, and

this document is not part of, nor does it modify, any agreement between AWS

and its customers.

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 3 of 19

Contents

Abstract 4

Introduction 4

Design Architecture 7

Conceptual Architecture Activity 7

Logical Architecture Activity 8

Considerations 10

Implementation Architecture 11

Considerations 13

Architecture Optimization 14

Cloud Design Principles and Patterns Activity 14

Application Migration Patterns Activity 15

Considerations 17

CAF Taxonomy and Terms 18

Conclusion 19

Notes 19

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 4 of 19

Abstract
The Amazon Web Services (AWS) Cloud Adoption Framework (CAF)1 provides

best practices and prescriptive guidance to accelerate an organization's move to

cloud computing. The CAF guidance is broken into a number of areas of focus

that are relevant to implementing cloud-based IT systems. These focus areas are

called perspectives. Each perspective is covered in a separate whitepaper. This

whitepaper covers the Platform Perspective, which focuses on designing,

implementing, and optimizing the architecture of the AWS technology that you

use in your cloud adoption initiative.

Introduction
Your organization can use the AWS

Cloud Adoption Framework (CAF)

guidance to explore how different

departments can work together on

one or more cloud adoption initiative.

Guidance is separated into the

following focus areas, called

perspectives: Business Perspective,

Platform Perspective, Maturity

Perspective, People Perspective,

Process Perspective, Operations

Perspective, and Security Perspective.

The Platform Perspective components

describe the structure and design of a

cloud-based IT system, or a hybrid IT

system that spans both cloud and

non-cloud environments.

The rest of this whitepaper describes

how the perspectives translate into activities that your organization can perform.

This whitepaper covers design architecture and implementation architecture. You

can also benefit from principles and patterns for rapidly implementing or

Figure 1 Components of the Platform

Perspective

https://d0.awsstatic.com/whitepapers/aws_cloud_adoption_framework.pdf

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 5 of 19

experimenting with new solutions on the cloud, or migrating existing non-cloud

solutions to the cloud, which will be covered as part of optimization.

Embracing Agility

Many organizations already use agile development to increase the velocity of

their anticipated business outcomes. However, some businesses experience

difficulty in achieving agility all the way through to deployment and operations.

Consider embracing agility if you want to increase the velocity of achieving your

anticipated business outcomes. For example, you could form a team to initiate a

project and, with limited analysis, use AWS services to create a proof of concept

(POC). If the POC is successful, you continue. If not, you select a different

approach. The AWS platform creates a low barrier for experimentation, and

allows you to rapidly deploy servers. When you complete your POC experiment

you can shut down the AWS services environment, and no longer pay for

resources. When your solution is ready for end users (the minimally viable

product), you can gather the users’ feedback and use it to inform priorities for

future feature releases. By documenting the different phases of your cloud

journey as it progresses, you can create a complete picture of the IT environment.

Consider storing the artifacts that you create using incremental experimentation

in the source code management system that you use today for storing and

revising your application code.

You can complete the process of describing a business need and transitioning it

into an IT solution using an iterative approach. In addition, you can use an

iterative process to provide delivery teams enough detail so that what they build

provides the intended outcome. Figure 2 illustrates how an IT capability maps to

the services that deliver the capability.

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 6 of 19

When you use an iterative architectural approach, you can focus more time on

business needs and goals. As business needs change and more information is

surfaced, the technical architecture you use to deliver the business capability to

the customer can shift to match the business need. You can also iterate faster,

trying out new things to see if they work with minimal barrier to entry, due to

utility pricing. The iterative approach makes it easier to roll back changes or

stand up a parallel environment to test new features.

You can use a combination of AWS services to create IT capability, and use the

AWS Service Catalog to centrally manage commonly deployed IT services. You

can also use AWS services that provide a specific IT capability, such as Amazon

Glacier for data archiving.

There are several components to consider from the Platform Perspective:

The Design Architecture component: Look at the common design patterns used

in your implementations and identify common needs and redundancies.

The Implementation Architecture component: Look at the security, data handling

and retention, log aggregation, monitoring needs, and common operational

patterns.

The Architecture Optimization component: Identify your optimization strategies,

what tools and processes need to be changed, and what automation can be used.

Figure 2: Example of Architectural Mapping from Capability to Service

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 7 of 19

Design Architecture
The Design Architecture component of the Platform perspective promotes the

engagement of stakeholders from many parts of the organization. In your cloud

adoption scenario, you need to provide different views on your architecture to

each stakeholder. For example, as you work with business sponsors to design a

solution you can contextualize the architecture to describe how IT can be used to

achieve the expected business outcome, and what the costs, returns, and risks

might be.

Prior to an AWS adoption journey, your organization should consider modifying

its governance and architectural principles to include AWS architectural

principles. If you have not done so, then try using the iterative method described

earlier to establish these principles. You can build methodologies and processes

using sprints, just as you build applications. As you build, you can validate the

design of your conceptual architectures against your governance and

architectural principles.

Conceptual Architecture Activity
Conceptual views are technically abstract, but they should be described in a

context that is familiar to business users. Use the conceptual architecture to

define the business context of an IT system with business models. This is where

you balance short-, medium-, and long-term business goals and concerns for IT

initiatives.

Three key components of a conceptual architecture are business vision, goals, and

objectives. Use the conceptual architecture to understand which capabilities will

be needed as part of the logical or functional architecture that will describe the

solution. Figure 3 illustrates an example conceptual architecture that describes

where AWS services are applicable.

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 8 of 19

Using AWS, the creation of a conceptual architecture can become more iterative.

You can use AWS services as part of the development effort by using

experimentation to validate and evolve the approach. As business capability

concepts are proven, development teams can start work on delivering functions

and features into production. With quicker delivery, end-user feedback can be

used to verify whether business objectives and compliance requirements are

being met with the current technical approach.

Implement automated testing to test your rapidly iterating conceptual

architecture. This not only minimizes the introduction of bugs into your

application, but also includes continuous compliance as part of continuous

delivery, helping to ensure that changes to your application do not affect your

organization’s security posture.

Logical Architecture Activity
Logical (or functional) architectural views describe the building blocks of the IT

system and their relationships without getting into the technical details of how

the functionality is implemented. The logical architecture contains the data flow

and capability models that relate to the business models that meet the business

outcomes.

Figure 3 Example of a Conceptual Architecture

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 9 of 19

Quality attributes, dependency mapping, and plans for obsolescence can be

identified, documented, and addressed as part of designing the logical

architecture. A logical architecture (Figure 4) that uses AWS can make use of

geographical duplication as well as the elastic nature of AWS services. Using

design principles that take advantage of these characteristics will allow system

capacities to expand and shrink as loads expand and contract.

You can use different approaches based on the type of project your organization

is designing. Projects with a long duration typically are used in predictable,

repeatable environments or environments where refinement of approach is not

possible or recommended after decisions are made. These types of initiatives are

driven with top-down control over outcome. An example of such an initiative is

shutting down a corporate data center after a decision to move to the cloud.

Initiatives with a short duration are driven with bottom-up freedom over

outcome. Change in direction is expected and may be encouraged for better

alignment with shifting business needs.

There are also hybrid approaches to initiatives where the goal is to migrate and

decompose a monolithic mission-critical solution or environment. These

initiatives will combine the best aspects of heavy up-front planning with the

freedom to innovate as needed to deliver optimized customer outcomes.

Figure 4 Example of a Logical Architecture Diagram

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 10 of 19

Considerations
 Do use feedback from delivered features to review and revise the conceptual

architecture with the business team.

 Do minimize the number of architectural principles to allow the greatest
flexibility in solution development.

 Do stay focused on customer outcomes and business objectives rather than
technical solutions.

 Do experiment with AWS services to experience, learn, and prove that your
logical architecture will achieve the desired business outcome.

 Do focus on short duration project scoping and iterative processes for
systems of interaction where outcomes are more fluid.

 Do consider the practice of creating logical architecture as a dynamic process.

 Do limit the amount of redundant technologies to prevent “technology
sprawl” and allow for focus and specialization.

 Do not make functional and implementation architectures dependent on a
complete conceptual architecture. Consider identifying a key objective and
starting design and delivery of that functionality. Use the feedback from
adoption of the features as input in the evolution of the conceptual
architecture.

 Do not attempt to create the perfect architecture up front. Consider starting
with the highest risk/reward scenario and use experimentation to prove your
approach.

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 11 of 19

Implementation Architecture
The Implementation Architecture component of the AWS CAF Platform

Perspective describes the detailed designs within the IT system and the specific

implementation components and their relationships. This architecture also

defines the implementation of the system’s building blocks by software or

hardware elements.

The implementation architecture for an AWS environment describes the design

of the technical environment. The description is broken into layers, with each

layer providing information for a specific team in the organization. AWS

reference architectures are available at http://aws.amazon.com/architecture.

Figure 5 illustrates a high-level implementation architecture. This artifact works

best online, where you can enable clicking on each item for more information,

and you can plan for automatic updates.

Describing the AWS environment and providing guidance on usage will be a

critical portion of the implementation architecture development. Describing how

resources, accounts, and tagging work, and the how the Amazon Virtual Private

Cloud (VPC) environment is configured provides information that will help the

organization determine which resources are consumed by various systems,

applications, and initiatives.

The Information Architecture should set strategies for deployment, monitoring,

auditing, and logging that will give you exposure to near real-time data. Set

Figure 5 Example of an Implementation Architecture

http://aws.amazon.com/architecture

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 12 of 19

security, data retention, gateway, and routing strategies and policies so your

delivery teams have the information they need to enable control over the AWS

environment as it grows.

Include taxonomy and naming conventions as part of the metrics, monitoring,

and chargeback implementation. The actual running environment will change

continuously and will be best viewed through dashboards with near real-time

information.

Dashboard information can be represented graphically or by using lists. If you

use a graphical dashboard, users could click the graphic to show additional detail.

If you use a list in your dashboard, users familiar with spreadsheets can find

information in well-defined columns. Figure 6 shows a graphical dashboard that

can provide near real-time information.

Consider prescribing a taxonomy and naming convention in the implementation

architecture. Then you can implement this taxonomy as a tagging standard on

AWS resources. To increase confidence and reduce risk, you can leverage the

AWS environment during implementation architecture creation. When you use

AWS, the environment can be created and tested for verification or certification

earlier in the release cycle. Additionally, tools are available through AWS and the

Figure 6 Example of a Graphic-based Near Real-time Dashboard

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 13 of 19

AWS Marketplace that can automate processes and shorten the time needed to

deliver, test, and operate AWS-based environments.

Defining an operational playbook for how you are going to deploy and operate

your systems will help ensure consistency and repeatability of success. This

playbook should also be iterative in nature, with the constructive feedback

implemented in systems that did not have this capacity at the time of creation.

Considerations
 Do identify a network connectivity strategy for AWS services.

 Do outline AWS components to be used (services/features).

 Do define security controls (native vs. third-party tools). Greater details are
available in the AWS CAF Security Perspective whitepaper.

 Do define data security and retention policies (encryption, backups,
snapshots, third-party tools).

 Do create and work toward an automated deployment process to reduce the
impact of human error and introduce portability.

 Do create an operational playbook. More information on this topic is
available in the AWS CAF Operations Perspective whitepaper.

 Do outline a monitoring strategy.

 Do outline a logging strategy that validates that your logging system can
manage the amount of information you decide to collect.

 Do create a strategy for resource tracking as part of your implementation
architecture, ensuring that resources are appropriately tagged at the time of
deployment. This can also be extended into cost allocation tagging.

 Do not let application environments form in an ad hoc fashion. Choose a
strategy to organize your application environments.

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 14 of 19

Architecture Optimization
The Architecture Optimization component of the AWS CAF Platform perspective

promotes the adaptability of an architecture that uses AWS—as business needs

change and as new and better technical solutions become available, your

architectural decisions can be modified and adjusted. Since physical computers

are not purchased, the long lead-time for procurement, staging, burn-in, and

configuration is no longer necessary. Because you can continue to optimize your

architecture during the design phase, this process can completed with less up-

front information; your decisions can change and be implemented as needed.

As you adopt AWS services, a key focus should be on building tacit knowledge in

the organization. Creating a centralized repository with principles, patterns, best

practices, a glossary, and reference architectures will help ensure the rapid

growth of AWS skills in the organization. As you start an automated and agile

deployment process, the centralized information repository allows systems and

people who deploy applications to access the governing principles as well as the

pieces and parts that they own.

Cloud Design Principles and Patterns Activity

Adherence to the software design principles and patterns that you document will

improve quality and productivity and reduce risk during solution development.

All delivery teams can follow these principles when designing and building

solutions. A pattern is a proven approach to achieving a result. You can automate

patterns that you use frequently to improve efficiency, consistency, reliability,

and supportability. Consider following these best practices:

 Provide guidance that captures reusable approaches, leverages an

infrastructure as code approach, and treats that code like application code

(source control, code reviews, etc.).

 Create a baseline of language and understanding across the technical

organization to ease communications. This might include creating a taxonomy

and a dictionary or a glossary describing how things will be named and

organized.

 Educate everyone to a foundational level to provide common language

and understanding. Building fluency in the language of AWS cloud adoption

and explaining the taxonomy and naming conventions will help accelerate

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 15 of 19

familiarity with and ability to use cloud-based technologies and approaches

across the organization.

 Use fast track or factory principles to create common approaches

with reliable results. Provide documentation that describes diagrams, naming

conventions, code review guidance, and so on to provide a common language,

approach, and expectations. Using wiki-based tools for documentation will

allow teams to update documentation and keep it current, and will provide a

single authoritative source for guidance.

 Create a governance process and/or team that ensures and/or audits the

outcome of patterns and intended results.

 Provide an “Andon cord” for the deployment team to use if they see

something that doesn’t fit in with their understanding of patterns.

Application Migration Patterns Activity
Proven approaches for migrating IT systems to the cloud are available as

migration patterns.

Consider organizing applications in a way that helps identify and introduce

patterns that you can use with predictable results. Two of the more commonly

used pivots are business criticality and data classification. Understanding which

categories of data are associated with which applications will provide valuable

insight. Another useful pivot is level of mission criticality. Depending on your

needs, you could also consider organizing by systems of record versus systems of

interaction, monolithic applications versus highly decomposed applications, or

new applications versus applications near the end of life.

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 16 of 19

One approach that you can take is to organize your applications into five groups

based on the action you want to plan for each application. The different actions

include retiring, retaining, replacing, re-hosting, refactoring, and rewriting.

Figure 7 illustrates this five-group application migration pattern.

You can also use an inventory of current data center applications and their

dependencies to determine which applications to migrate and when. This could

potentially allow you to avoid a costly equipment refresh, pushing away from

capital expenditure (CapEx), and taking advantage of AWS utility pricing.

For making decisions about which patterns to leverage, consider creating a

Center of Excellence (CoE) team to select patterns that enable the shortest time

to value. Another approach is to organize and prioritize by ease of effort to

migrate. For example, you could decide to migrate development and test

applications first, followed by self-contained applications, customer training

sites, pre-sale demo portals, and trial applications. During the migration,

consider prioritizing a Tier 1 application to gain visibility and endorsement from

executive sponsors.

Consider developing new applications or refactoring existing applications in the

AWS environment. For existing applications, you could migrate applications to

the AWS cloud environment and prioritize rework or optimization initiatives. The

refactoring can be enabled by the agility of deployment on AWS.

Figure 7 Graphic Representation of an Application Migration Pattern

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 17 of 19

Considerations
 Do consider new applications for migration first.

 Do start development of new capabilities or rewrites of existing capabilities in
the AWS environment.

 Do take advantage of capacity concerns as a reason to prioritize development
in the cloud.

 Do consider using code review (both for application and infrastructure code)
to provide a feedback loop that improves process and reduces technical debt.

 Do consider using wikis to provide access to guidance that can be updated
and maintained over time.

 Do leverage AWS cloud adoption as a way to fast track maturity of combined
roles and skills thinking. This would manifest as a
developer/security/operations mindset and coding architectural models to
validate approach.

 Do use AWS cloud adoption to institutionalize a scalable, service-oriented
architecture (SOA) approach to separate concerns and to enable integration of
reusable services and limit the amount of code maintained.

 Do create patterns that assume failure by building in recovery code with
features such as circuit breaker patterns, caching, and queuing, and
exponential back-off.

 Do write code with an eye towards reuse through exposed API endpoints for
easy discovery, integration, and reuse.

 Do introduce your deployment team to your development team. Empower
both teams to fully appreciate the benefits of scalable infrastructure and
utility pricing.

 Do not optimize a solution before it is well architected.

 Do not start migrations without operational processes defined. Consider
defining backup and recovery guidance as an initial step in a migration effort.

 Do not manually migrate all applications. Consider using automation to scale
and accelerate migration of applications (migration factory).

 Do not wait to automate something. If you’re deploying the same thing twice
manually, invest the time in automation.

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 18 of 19

CAF Taxonomy and Terms
AWS created the Cloud Adoption Framework (CAF) to capture guidance and best

practices from previous customer engagements. An AWS CAF perspective

represents an area of focus relevant to implementing cloud-based IT systems in

organizations. For example, when a cloud solution is to be implemented, the

Platform perspective provides guidance on designing, implementing, and

optimizing the architecture of the AWS technology that you plan to use in your

cloud adoption initiative.

Each CAF perspective is made up of components and activities. A component is a

sub-area of a perspective that represents a specific aspect that needs attention.

This whitepaper explores the components of the Platform perspective. Within

each component, an activity provides prescriptive guidance for creating

actionable plans an organization can use to move to the cloud and to operate

cloud-based solutions.

For example, Design Architecture is one component of the Platform Perspective,

and creating logical architectural views that describe the building blocks of the IT

system and their relationships may be an activity within that component.

When combined, the AWS Cloud Adoption Framework (CAF) and the Cloud

Adoption Methodology (CAM) can be used as guidance during your journey to

the AWS cloud.

Amazon Web Services – Cloud Adoption Framework: Platform Perspective November 2015

Page 19 of 19

Conclusion
Translating business outcomes into technical solutions is still a necessary step in

the IT lifecycle. By adopting AWS services, you have the flexibility to change an

architectural decision after more information is gathered and as assumptions are

tested and technology advances. The Platform Perspective provides an approach

to separating a complex set of ideas and decisions into manageable components.

Use the design component to facilitate discussions with business stakeholders

and provide an abstract level of detail to describe how business outcomes will be

accomplished.

Use the implementation component to facilitate discussions with technical teams

who are responsible for creating, delivering, and maintaining solutions at a level

agreed upon with the business stakeholders.

Use the architecture optimization component for approaches and patterns that

provide predictable and repeatable results. For example, when you use an

application migration pattern you can organize and categorize groups of

applications and follow a common approach to migrating to an AWS

environment. You can also create a small set of principles that all technical team

members can use to help with key decisions. This ensures that a common

approach to making decisions is used across the organization.

Notes

1 https://d0.awsstatic.com/whitepapers/aws_cloud_adoption_framework.pdf

