
AWS Serverless Multi-Tier
Architectures

 Using Amazon API Gateway and AWS Lambda

November 2015

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 2 of 19

© 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments, conditions

or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities

and liabilities of AWS to its customers are controlled by AWS agreements, and

this document is not part of, nor does it modify, any agreement between AWS

and its customers.

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 3 of 19

Contents

Abstract 3

Introduction 4

Three-tier Architecture Overview 5

The Serverless Logic Tier 6

Amazon API Gateway 6

AWS Lambda 9

The Data Tier 12

The Presentation Tier 14

Sample Architecture Patterns 14

Mobile Back End 15

Amazon S3 Hosted Website 16

Microservices Environment 17

Conclusion 18

Contributors 18

Notes 19

Abstract
This whitepaper shows you how innovations from Amazon Web Services (AWS)

can change how you can design multi-tiered architectures for popular patterns

such as microservices, mobile back ends, and public websites. Architects and

developers can now use an implementation pattern that includes Amazon API

Gateway and AWS Lambda to reduce the development and operations cycles

required to create and operationally manage multi-tiered applications.

http://aws.amazon.com/api-gateway/
http://aws.amazon.com/api-gateway/
http://aws.amazon.com/lambda/

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 4 of 19

Introduction
The multi-tier application (three-tier, n-tier, etc.) has been a cornerstone

architecture pattern for decades. The multi-tier pattern provides good guidelines

for you to follow to ensure decoupled and scalable application components that

can be separately managed and maintained (often by distinct teams). Multi-

tiered applications are often built using a service-oriented architecture (SOA)

approach to using web services. In this approach, the network acts as the

boundary between tiers. However, there are many undifferentiated aspects of

creating a new web service tier as part of your application. Much of the code

written within a multi-tier web application is a direct result of the pattern itself.

Examples include code that integrates one tier to another, code that defines an

API and a data model that the tiers use to understand each other, and security-

related code that ensures that the tiers’ integration points are not exposed in an

undesired way.

Amazon API Gateway1, a service for creating and managing APIs, and AWS

Lambda2, a service for running arbitrary code functions, can be used together to

simplify the creation of robust multi-tier applications.

Amazon API Gateway’s integration with AWS Lambda enables user defined code

functions to be triggered directly via a user-defined HTTPS request. Regardless of

the request volume required, both the API Gateway and Lambda will scale

automatically to support exactly the needs of your application. When combined,

you can create a tier for your application that allows you to write the code that

matters to your application and not focus on various other undifferentiating

aspects of implementing a multi-tiered architecture—like architecting for high

availability, writing client SDKs, server/operating system (OS) management,

scaling, and implementing a client authorization mechanism.

More recently, AWS has announced the ability to create Lambda functions that

execute within your Amazon Virtual Private Cloud (Amazon VPC)3. This feature

extends the benefits of combining API Gateway and Lambda to include a variety

of use cases where network privacy is required. For example, when you need to

integrate your web service with a relational database that contains sensitive

information. The integration of Lambda and Amazon VPC has indirectly

expanded the capabilities of Amazon API Gateway because it gives developers the

http://aws.amazon.com/api-gateway/
http://aws.amazon.com/lambda/
http://aws.amazon.com/lambda/
https://aws.amazon.com/vpc/

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 5 of 19

ability to define their own set of Internet-accessible HTTPS APIs in front of a

backend that remains private and secure as part of Amazon VPC. You can observe

the benefits of this powerful pattern across each tier of a multi-tiered

architecture. This whitepaper focuses on the most popular example of a multi-

tiered architecture, the three-tier web application. However, you can apply this

multi-tier pattern well beyond a typical three-tier web application.

Three-tier Architecture Overview
The three-tier architecture is a popular pattern for user-facing applications. The

tiers that comprise this architecture include the presentation tier, the logic

tier, and the data tier. The presentation tier represents the component that

users directly interact with (such as a web page, mobile app UI, etc.). The logic

tier contains the code required to translate user actions at the presentation tier to

the functionality that drives the application’s behavior. The data tier consists of

storage media (databases, object stores, caches, file systems, etc.) that hold the

data relevant to the application. Figure 1 shows an example of a simple three-tier

application.

Figure 1: Architectural pattern for a simple three-tier application

 There are many great resources online where you can learn more about the

general three-tier architecture pattern. This whitepaper focuses on a specific

implementation pattern for this architecture using Amazon API Gateway and

AWS Lambda.

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 6 of 19

The Serverless Logic Tier
The logic tier of the three-tier architecture represents the brains of the

application. This is why integrating Amazon API Gateway and AWS Lambda to

form your logic tier can be so revolutionary. The features of the two services allow

you to build a serverless production application that is highly available, scalable,

and secure. Your application could use thousands of servers, however by

leveraging this pattern you do not have to manage a single one. In addition, by

using these managed services together you gain the following benefits:

 No operating systems to choose, secure, patch, or manage.

 No servers to right size, monitor, or scale out.

 No risk to your cost by over-provisioning.

 No risk to your performance by under-provisioning.

 In addition, there are specific features within each service that benefit the multi-

tier architecture pattern.

Amazon API Gateway
Amazon API Gateway is a fully managed service for defining, deploying, and

maintaining APIs. Clients integrate with the APIs using standard HTTPS

requests. Its applicability to a service-oriented multi-tier architecture is obvious.

However, it has specific features and qualities that result it being a powerful edge

for your logic tier.

Integration with AWS Lambda

Amazon API Gateway gives your application a simple way (HTTPS requests) to

leverage the innovation of AWS Lambda directly. API Gateway forms the bridge

that connects your presentation tier and the functions you write in AWS Lambda.

After defining the client/server relationship using your API, the contents of the

client’s HTTPS request are passed to Lambda function for execution. Those

contents include request metadata, request headers, and the request body.

Stable API Performance Across the Globe

Each deployment of Amazon API Gateway includes an Amazon CloudFront4

distribution under the covers. Amazon CloudFront is a content delivery web

https://aws.amazon.com/cloudfront/

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 7 of 19

service that uses Amazon’s global network of edge locations as connection points

for clients integrating with your API. This helps drive down the total response

time latency of your API. Through its use of multiple edge locations across the

world, Amazon CloudFront also provides you capabilities to combat distributed

denial of service (DDoS) attack scenarios. For more information– read the AWS

Best Practices for Combatting DDoS Attacks5 whitepaper.

You can improve the performance of specific API requests by using Amazon API

Gateway to store responses in an optional in-memory cache. This not only

provides performance benefits for repeated API requests, but it also reduces

backend executions, which can reduce your overall cost.

Encourage Innovation

The development work required to build any new application is an investment.

You need to justify that in order for the project to begin. By reducing the amount

of investment required for development tasks and time, you are free to more

experiment and innovate more freely.

For many multi-tier web-service-based applications, the presentation tier is

easily fragmented among users (separate mobile devices, web browsers, etc.).

Those users are also often not bound geographically. A decoupled logic tier,

however, is not physically fragmented by the users. All users depend on the same

infrastructure running your logic tier, which magnifies the importance of the

infrastructure. Cutting corners when initially implementing your logic tier (“we

don’t need to instrument metrics at initial launch;” “initial usage will be low, we’ll

worry about how to scale later;” etc.) is often proposed as a mechanism to deliver

a new application faster. This can lead to technical debt and operational risk

when you have to deploy those changes to an application already running in

production. Amazon API Gateway allows you to cut those corners and deliver

faster because the service has already implemented them for you.

The overall lifetime of an application might be unknown, or it might be known to

be short-lived. Creating a business case for a new multi-tier application can be

difficult for these reasons. It can be made easier when your starting point already

includes the managed features that Amazon API Gateway provides, and where

you only begin to incur infrastructure costs after your APIs begin receiving

requests. For more information, see Amazon API Gateway Pricing.6

https://d0.awsstatic.com/whitepapers/DDoS_White_Paper_June2015.pdf
https://d0.awsstatic.com/whitepapers/DDoS_White_Paper_June2015.pdf
https://aws.amazon.com/api-gateway/pricing/

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 8 of 19

Iterate Rapidly, Stay Agile

With new applications, the user base may still be poorly defined (size, usage

patterns, etc.). The logic tier must remain agile while the user base takes shape.

Your application and business should be able to shift and accommodate the

changing expectations of your early adopters. Amazon API Gateway reduces the

number of development cycles required to take an API from inception to

deployment. Amazon API Gateway provides the ability to create Mock

Integrations7 that allow you to generate API responses directly from API Gateway

that client applications can develop against while, in parallel, full backend logic is

being developed. This benefit applies not only at an API’s first deployment, but

also after the business has decided that the application (and existing API) must

pivot quickly in response to your users. API Gateway and AWS Lambda enable

versioning so that existing functionality and client dependencies can continue

undisturbed while new functionality is released as a separate API/function

version.

Security

Implementing the logic tier of a public three-tier web application as a web service

immediately elevates the topic of security. The application needs to ensure that

only authorized clients have access to your logic tier (which is exposed over the

network). The Amazon API Gateway addresses the topic of security through ways

that can give you confidence that your backend is secure. For access control, do

not rely on providing your client applications with static API key strings; these

can be extracted from clients and used elsewhere. You can take advantage of

several different ways in which Amazon API Gateway contributes to securing

your logic tier:

 All requests to your APIs can be made via HTTPS to enable encryption in

transit.

 Your AWS Lambda functions can restrict access so that there is a trust

relationship only between a particular API within Amazon API Gateway

and a particular function in AWS Lambda. There will be no other way to

invoke that Lambda function except by using the API through which you’ve

chosen to expose it.

 The Amazon API Gateway allows you to generate client SDKs to integrate

with your APIs. That SDK also manages the signing of requests when APIs

http://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-mock-integration.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-mock-integration.html

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 9 of 19

require authentication. Those API credentials used on the client side for

authentication are passed directly to your AWS Lambda function – where

further authentication can occur within code that you own and write, if

needed.

 Each resource/method combination that you create as part of your API is

granted its own specific Amazon Resource Name (ARN) that can be

referenced in AWS Identity and Access Management (IAM)8 policies.

 This means your APIs are treated as first class citizens along with the

other AWS-owned APIs. IAM policies can be fine-grained; they can

reference specific resources/methods of an API created using Amazon

API Gateway.

 API access is enforced by the IAM policies that you create outside the

context of your application code. This means that you do not have to

write any code to be aware of or enforce those access levels. Code

cannot contain bugs or be exploited if it does not exist.

 Authorizing clients using AWS Signature version 4 (SigV4)9

authorization and IAM policies for API access allows those same

credentials to restrict or permit access to other AWS services and

resources as needed (for example, Amazon S3 buckets or Amazon

DynamoDB tables).

AWS Lambda
At its core, AWS Lambda allows arbitrary code written in any of the supported

languages (Node, JVM based, and Python as of November 2015) to be triggered

in response to an event. That event can be one of several programmatic triggers

that AWS makes available, called an event source (see currently supported

event sources here10). Many popular use cases for AWS Lambda revolve around

event-driven data processing workflows, such as processing files stored in

Amazon Simple Storage Service (Amazon S3)11 or streaming data records from

Amazon Kinesis12.

When used in conjunction with Amazon API Gateway, an AWS Lambda function

can exist within the context of a typical web service, and it can be triggered

directly by an HTTPS request. Amazon API Gateway acts as the front door for

your logic tier, but now you need to execute the logic behind those APIs. That’s

where AWS Lambda comes in.

http://aws.amazon.com/iam/
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/lambda/latest/dg/intro-core-components.html#intro-core-components-event-sources
http://docs.aws.amazon.com/lambda/latest/dg/intro-core-components.html#intro-core-components-event-sources
https://aws.amazon.com/s3/
https://aws.amazon.com/kinesis/

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 10 of 19

Your Business Logic Goes Here

AWS Lambda allows you to write code functions, called handlers, which will

execute when triggered by an event. For example, you can write a handler that

will trigger when an event such as an HTTPS request to your API occurs. Lambda

allows you to create modular handlers at your chosen level of granularity (one per

API or one per API method) that can be updated, invoked, and changed

independently. The handler is then free to reach out to any other dependencies it

has (such as other functions you’ve uploaded with your code, libraries, native

binaries, or even external web services). Lambda allows you to package all of your

required dependencies in your function definition during creation. When you

create your function, you specify which method inside your deployment package

will act as the request handler. You are free to reuse the same deployment

package for multiple Lambda function definitions, where each Lambda function

may have a unique handler within the same deployment package. In the server-

less multi-tier architecture pattern, each one of the APIs you create in Amazon

API Gateway will integrate with a Lambda function (and the handler within) that

executes the business logic required.

Amazon VPC Integration

AWS Lambda, the core of your logic tier, will be the component directly

integrating with the data tier. Because the data tier will often contain sensitive

business or user information, the data tier should be tightly secure. For AWS

services with which you can integrate from a Lambda function, you can manage

access control using IAM policies. These services include Amazon S3, Amazon

DynamoDB, Amazon Kinesis, Amazon Simple Queue Service (Amazon SQS),

Amazon Simple Notification Service (Amazon SNS), other AWS Lambda

functions, and more. However, you might have a component that governs its own

access control, such as a relational database. With components such as this you

could achieve better security by deploying them within a private networking

environment—an Amazon Virtual Private Cloud (Amazon VPC)13.

https://aws.amazon.com/vpc/

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 11 of 19

Figure 2: Architectural pattern using a VPC

The use of a VPC means the databases and other storage media that your

business logic depends on can be made inaccessible over the Internet. The VPC

also ensures that the only way to interact with your data from the Internet will be

through the APIs that you’ve defined and the Lambda code functions that you’ve

written.

Security

To execute a Lambda function, it must be triggered by an event or service that has

been permitted to do so via an IAM policy. It is possible to create a Lambda

function that cannot be executed at all unless it is invoked by an API Gateway

request that you define. Your code will only process as part of your valid use case;

defined by the API you’ve created.

Each Lambda function itself assumes an IAM role, an ability that must be granted

via an IAM trust relationship. That IAM role defines the other AWS

services/resources your Lambda function will be able to interact with (such as an

Amazon DynamoDB table or an Amazon S3 bucket). The services your function

has access to will be defined and controlled from outside of the function itself.

This is subtle, but powerful. It allows the code you write to be free from storing or

retrieving AWS credentials: This means you don’t have to hard code API keys,

and you don’t have to write code to retrieve them and store them in memory.

Enabling your Lambda function to call the services it’s allowed to, as defined by

its IAM role, is managed for you by the service itself.

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 12 of 19

The Data Tier
By using AWS Lambda as your logic tier, you have a wide number of data storage

options for your data tier. These options fall into two broad categories: Amazon

VPC hosted data stores and IAM-enabled data stores. AWS Lambda has the

ability to securely integrate with both.

Amazon VPC Hosted Data Stores

The integration of AWS Lambda with Amazon VPC enables functions to integrate

with a variety of data storage technologies in a private and secure manner.

 Amazon RDS14

Use any of the engines that Amazon Relational Database Service (Amazon

RDS) makes available. Connect to Amazon RDS directly from the code

you’ve written in Lambda just as you would outside of Lambda, but with

the advantage of simple integration with the AWS Key Management Service

(AWS KMS) for database credential encryption.

 Amazon ElastiCache15

Integrate your Lambda functions with a managed in-memory cache to

boost the performance of your application.

 Amazon RedShift16

You can build functions that securely query an enterprise data warehouse

for the purpose of building reports, dashboards, or retrieving ad-hoc query

results.

 Private web service hosted by Amazon Elastic Compute Cloud (Amazon

EC2)17

You might have existing applications running as a web service privately

within a VPC. Make HTTP requests over your logically private VPC network

from a Lambda function.

https://aws.amazon.com/rds/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/redshift/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 13 of 19

IAM-Enabled Data Stores

Because AWS Lambda is integrated with IAM, it can use IAM for securing

integration with any AWS service that can be leveraged directly using the AWS

APIs.

 Amazon DynamoDB18

Amazon DynamoDB is the AWS infinitely scalable NoSQL database.

Consider Amazon DynamoDB when you want to retrieve data records

(400KB or smaller as of this writing) with single-digit millisecond

performance, regardless of scale. Using Amazon DynamoDB fine-grained

access control your Lambda functions can follow the best practice of least

privilege when querying specific data in DynamoDB

 Amazon S319

Amazon Simple Storage Service (Amazon S3) provides Internet-scale

object storage. Amazon S3 is designed for durability of 99.999999999% of

objects, so consider using it when your application needs cheap, highly

durable storage. In addition, Amazon S3 is designed for up to 99.99%

availability of objects over a given year, so consider using it when your

application requires highly available storage. Objects stored in Amazon S3

(files, images, logs, any binary data) can be accessed directly via HTTP.

Lambda functions can communicate securely with Amazon S3 via virtual

private endpoints, and data within S3 can be restricted to only the IAM

policy associated with the Lambda function.

 Amazon Elasticsearch Service20

Amazon Elasticsearch Service (Amazon ES) is a managed version of the

popular search and analytics engine, Elasticsearch. Amazon ES provides

managed provisioning of clusters, failure detection, and replacement of

nodes; you can restrict access to the Amazon ES API by using IAM policies.

https://aws.amazon.com/dynamodb/
https://aws.amazon.com/s3/
https://aws.amazon.com/elasticsearch-service/

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 14 of 19

The Presentation Tier
Amazon API Gateway opens up a variety of presentation tier possibilities. An

Internet-accessible HTTPS API can be consumed by any client capable of HTTPS

communication. The following list contains common examples that you could

consider using for your application’s presentation tier:

 Mobile App: In addition to integrating with custom business logic via

Amazon API Gateway and AWS Lambda, you could use Amazon Cognito21

as a mechanism to create and manage user identities.

 Static website content (such as files hosted in Amazon S3): You can enable

your Amazon API Gateway APIs to be cross-origin resource sharing

(CORS)-compliant. This allows web browsers to directly invoke your APIs

from within the static web pages.

 Any other HTTPS-enabled client device: Many connected devices are

capable of communicating via HTTPS. There is nothing unique or

proprietary about how clients communicate with the APIs you create using

Amazon API Gateway; it is pure HTTPS. No specific client software or

licenses are required.

Sample Architecture Patterns
You can implement the following popular architecture patterns using Amazon

API Gateway and AWS Lambda as the glue that forms your logic tier. For each

example, we will only use AWS services that do not require users to manage their

own infrastructure.

https://aws.amazon.com/cognito/

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 15 of 19

Mobile Back End

Figure 3: Architectural pattern for mobile back end

 Presentation Tier: A mobile application running on each user’s

smartphone.

 Logic Tier: Amazon API Gateway and AWS Lambda. The logic tier is

globally distributed by the Amazon CloudFront distribution created as part

of each Amazon API Gateway API. A set of Lambda functions can be

specific to user/device identity management and authentication, and

managed by Amazon Cognito, which provides integration with IAM for

temporary user access credentials as well as with popular third party

identity providers. Other Lambda functions can define the core business

logic for your mobile back end.

 Data Tier: The various data storage services can be leveraged as needed;

options are discussed earlier in this paper.

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 16 of 19

Amazon S3 Hosted Website

Figure 4: Architectural pattern for a static website hosted on Amazon S3

 Presentation Tier: Static website content hosted in Amazon S3,

distributed by Amazon CloudFront. Hosting static website content on

Amazon S3 is a cost-effective alternative to hosting content on server-based

infrastructure. However, for a website to contain rich features, the static

content often must integrate with a dynamic back end.

 Logic Tier: Amazon API Gateway and AWS Lambda. Static web content

hosted in Amazon S3 can directly integrate with Amazon API Gateway,

which can be CORS compliant.

 Data Tier: The various data storage services can be leveraged as needed.

These options are discussed earlier in this paper.

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 17 of 19

Microservices Environment

Figure 5: Architectural pattern for a microservices environment

The Microservices architecture pattern is not bound to the typical three-tier

architecture we have covered in this whitepaper. In a microservices architecture,

there is massive decoupling of software components so the benefits of the multi-

tier architecture are amplified throughout. An API created with Amazon API

Gateway, and functions subsequently executed by AWS Lambda, is all that you

need to build a microservice. Your team is free to use these services to decouple

and fragment your environment to the level of granularity desired.

 In general, a microservices environment can introduce the following difficulties:

repeated overhead for creating each new microservice, issues with optimizing

server density/utilization, complexity of running multiple versions of multiple

microservices simultaneously, and proliferation of client-side code requirements

to integrate with many separate services.

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 18 of 19

However, when you create microservices using the AWS serverless pattern these

problems become simpler to solve and, in some cases, simply outright disappear.

The AWS microservices pattern lower the barrier for the creation of each

subsequent microservice (Amazon API Gateway even allows for the cloning of

existing APIs). Optimizing server utilization is no longer relevant with this

pattern. Both API Gateway and Lambda enable simple versioning capabilities.

Finally, Amazon API Gateway provides programmatically generated client SDKs

in a number of popular languages to reduce integration overhead.

Conclusion
The multi-tier architecture pattern encourages the best practice of creating

application components that are easy to maintain, decoupled, and scalable. When

you create a logic tier where integration occurs via Amazon API Gateway and

computation occurs within AWS Lambda, you are on your way to realizing those

goals while reducing the amount of effort to achieve them. Together, these

services provide a HTTPS API front end for your clients and a secure

environment within your VPC to execute business logic. This allows you to take

advantage of many popular scenarios in which you can use these managed

services instead of managing typical server-based infrastructure yourself.

Contributors
The following individuals and organizations contributed to this document:

Andrew Baird, AWS Solutions Architect

Stefano Buliani, Senior Product Manager, Tech, AWS Mobile

Vyom Nagrani, Senior Product Manager, AWS Mobile

Ajay Nair, Senior Product Manager, AWS Mobile

Amazon Web Services – AWS Serverless Multi-Tier Architectures November 2015

Page 19 of 19

Notes

1 http://aws.amazon.com/api-gateway/

2 http://aws.amazon.com/lambda/

3 https://aws.amazon.com/vpc/

4 https://aws.amazon.com/cloudfront/

5 https://d0.awsstatic.com/whitepapers/DDoS_White_Paper_June2015.pdf

6 https://aws.amazon.com/api-gateway/pricing/

7 http://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-mock-

integration.html

8 http://aws.amazon.com/iam/

9 http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

10 http://docs.aws.amazon.com/lambda/latest/dg/intro-core-

components.html#intro-core-components-event-sources

11 https://aws.amazon.com/s3/

12 https://aws.amazon.com/kinesis/

13 https://aws.amazon.com/vpc/

14 https://aws.amazon.com/rds/

15 https://aws.amazon.com/elasticache/

16 https://aws.amazon.com/redshift/

17 https://aws.amazon.com/ec2/

18 https://aws.amazon.com/dynamodb/

19 https://aws.amazon.com/s3/storage-classes/

20 https://aws.amazon.com/elasticsearch-service/

21 https://aws.amazon.com/cognito/

http://aws.amazon.com/api-gateway/
http://aws.amazon.com/lambda/
https://aws.amazon.com/vpc/
https://aws.amazon.com/cloudfront/
https://d0.awsstatic.com/whitepapers/DDoS_White_Paper_June2015.pdf
https://aws.amazon.com/api-gateway/pricing/
http://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-mock-integration.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-mock-integration.html
http://aws.amazon.com/iam/
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/lambda/latest/dg/intro-core-components.html#intro-core-components-event-sources
http://docs.aws.amazon.com/lambda/latest/dg/intro-core-components.html#intro-core-components-event-sources
https://aws.amazon.com/s3/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/vpc/
https://aws.amazon.com/rds/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/redshift/
https://aws.amazon.com/ec2/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/s3/storage-classes/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/cognito/

