
Amazon GameLift
Developer Guide

Version

Amazon GameLift Developer Guide

Amazon GameLift Developer Guide

Amazon GameLift: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

Amazon GameLift Developer Guide

Table of Contents
What is Amazon GameLift? .. 1

Why Amazon GameLift? .. 1
Key Features ... 1
Integration Steps ... 2
How GameLift Works .. 2

Key Components .. 2
Configuring Computing Resources ... 3
Handling Capacity and Utilization .. 3
Autoscaling .. 4
Monitoring Fleet Activity and Troubleshooting .. 5

How Players Connect to Games ... 5
Game and Player Session Features .. 5

Tools and Resources .. 6
Core Tools ... 6
Additional Resources ... 7

GameLift SDKs ... 7
For Game Servers .. 7
For Game Clients and Game Services ... 7
SDK Compatibility ... 8

Free Tier and Billing Alerts ... 8
Setting Up ... 9

Set Up Your Project .. 9
Set up an AWS Account .. 9

IAM Policy Examples ... 10
Install the AWS CLI ... 11

Integrating GameLift .. 12
Integrating a Game Server ... 12

Add GameLift to a Game Server ... 13
Server API (C++) Reference ... 15

Integrating a Game Client .. 25
Add GameLift to a Game Client .. 25
Generate Player IDs .. 28
Prep a Game Client in Lumberyard .. 28
Customize the SDK ... 29

GameLift Interactions ... 30
GameLift–Game Server/Client Interactions .. 33

Uploading Your Game ... 34
Package a Build .. 34
Upload a Build .. 35

Working with Fleets ... 37
Choose Computing Resources .. 37

AWS Service Limits ... 38
Create a Fleet .. 38

Create a Fleet (Console) .. 38
Create a Fleet (AWS CLI) .. 39
Debug Fleet Creation Issues ... 40

Change Fleet Capacity ... 41
Edit a Fleet .. 42
Delete a Fleet ... 42
Set Up Autoscaling .. 43

Set Autoscaling with the Console .. 43
Set Autoscaling with the AWS CLI ... 44
Create an Autoscaling Policy Statement ... 44
Tips on Autoscaling ... 46

Run Multiple Processes .. 46

Version
iv

Amazon GameLift Developer Guide

Optimizing for Multiple Processes .. 46
How a Fleet Manages Multiple Processes ... 47
Choosing the Number of Processes per Instance ... 48

Remotely Access Fleet Instances .. 48
Connect to an Instance .. 49
View and Update Remote Instances .. 50

Working with Aliases ... 51
Create an Alias ... 51
Edit an Alias ... 52

Viewing Game Data .. 53
View Your Current GameLift Status ... 53
View Your Builds .. 54

Build Catalog .. 54
Build Detail .. 55

View Your Fleets .. 55
View Fleet Details ... 55

Summary ... 56
Metrics ... 56
Events ... 57
Scaling .. 57
Game sessions ... 59
Build .. 59
Capacity allocation .. 59
Ports ... 59
Logs .. 59

View Game and Player Info .. 60
Game sessions ... 60
Player sessions ... 60
Player information ... 61

View Your Aliases ... 61
Alias Catalog .. 61
Alias Detail ... 61

Logging API Calls ... 63
GameLift Information in CloudTrail ... 63
Understanding GameLift Log File Entries .. 64

Document History .. 66

Version
v

Amazon GameLift Developer Guide
Why Amazon GameLift?

What is Amazon GameLift?

Amazon GameLift is a fully managed service for deploying, operating, and scaling your session-
based multiplayer game servers in the cloud. If you're developing games using Amazon Lumberyard,
GameLift replaces the work required to host your own game servers, including buying and setting up
hardware, and managing ongoing activity, security, storage, and performance tracking. GameLift's
autoscaling features provide additional protection from having to pay for more resources than you
need, while helping to ensure that your players can find and join games fast.

Why Amazon GameLift?
Here are some of the benefits of using GameLift:

• Provide low-latency player experience to support fast-action game play.

• Release session-based, multiplayer games fast, with little or no back-end experience required.

• Reduce engineering and operational effort to deploy and operate game servers.

• Get started fast and pay as you go, with no upfront costs and no long-term commitments.

• Reduce the risks involved in handling fluctuating player traffic.

• Rely on Amazon Web Services (AWS), including Amazon Elastic Compute Cloud (Amazon EC2) for
web-scale cloud computing resources and automatic scaling to manage your hosting capacity.

Key Features
Amazon GameLift includes these features:

• Use the Amazon Lumberyard game engine features to set up GameLift for your game.

• Deploy game servers to run on either Amazon Linux or Windows Server operating systems.

• Provide high-quality game hosting to players around the world by deploying to computing resources
in multiple regions.

• Use autoscaling tools to adjust your game hosting capacity to meet actual player usage and balance
player experience against cost savings.

• Configure game session characteristics, such as maximum number of players allowed, join rules,
and game-specific properties.

• Help players find sessions to join quickly with game session search features.

• Analyze game performance using the GameLift console to track metrics, view game session logs,
and review data on individual game sessions and player sessions.

Version
1

http://aws.amazon.com//ec2/
http://aws.amazon.com/lumberyard/

Amazon GameLift Developer Guide
Integration Steps

• Set up customized health tracking for server processes to detect problems fast and resolve poor-
performing processes.

Integration Steps
If you're using Amazon GameLift for the first time, we recommend that you get familiar with the service
by reading the topics in this section. When you are ready to start using Amazon GameLift, follow this
integration workflow to prepare and deploy your games.

1. Get set up to use Amazon GameLift. Create and configure your AWS account, and install tools
and resources. See Setting Up (p. 9).

2. Prepare your game server for hosting on GameLift.

• Add hooks to your game server code to allow it to interact with the GameLift service. Use either
the Amazon Lumberyard game engine or the GameLift Server SDK. See Integrating your Game
Server for Amazon GameLift (p. 12).

• Upload your game builds to the GameLift service. See Uploading Your Game to Amazon
GameLift (p. 34).

3. Build a fleet of virtual computing resources to host your game. Define the type of resource
instances to use and configure how you want each instance to deploy your game servers. See
Working with Fleets (p. 37).

4. Prepare your game client to connect to GameLift-hosted game sessions. Add hooks to your
game client code to enable players to find and connect to game sessions. Use either the Amazon
Lumberyard game engine or the AWS SDK with GameLift. See Integrating your Game Client for
Amazon GameLift (p. 25).

5. Manage player capacity. Set the number of game sessions to have available for players. You
can adjust capacity manually or use autoscaling to have capacity track player usage patterns. See
Working with Fleets (p. 37) topics on updating capacity and autoscaling.

6. Track performance and usage metrics. Use collected data to learn: (1) how players are
connecting with and playing your game, (2) how well your hosting configuration and capacity
settings are meeting player needs, and (3) how healthy your game servers perform over time and
usage. See Viewing Your Game Data in the Console (p. 53).

Tip
You don't need to have a game ready to start experimenting with GameLift. The GameLift
console offers a quick sample setup that gets you up and running with a sample game server
and client in five easy steps. In addition, the GameLift Getting Started tutorials, in text and
video format, walk you through each step in the process of creating and uploading a build,
setting up a fleet, creating game sessions and connecting a client. The tutorials use a sample
multiplayer game, which is included in the Lumberyard download.

How Amazon GameLift Works
This topic provides an overview of Amazon GameLift components and how the service works to deploy
your multiplayer game servers and manage player traffic.

Key Components
Setting up Amazon GameLift to host your game involves working with the following components:

• A game server is your game's server software running in the cloud. You provide your game servers
to GameLift by uploading a game build, which includes the server executables, supporting assets,

Version
2

https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/
https://gamedev.amazon.com/forums/tutorials#gamelift

Amazon GameLift Developer Guide
Configuring Computing Resources

libraries, and dependencies. GameLift deploys the game server as a set of server processes, each
of which hosts a game session for players.

• The GameLift service manages the virtual resources needed to host your game server processes,
and makes it possible for players to connect to games. It does this by regulating resources to
accommodate player activity, handling players' join requests and directing them to appropriate server
processes, and enforcing rules that control which game servers can be joined. The service also
collects performance data on server process health and player usage.

• A game client is your game's software running on a player's device. It enables a player to connect to
one of your game server processes on GameLift and play your game.

• Optional game services might communicate with the GameLift service for a variety of purposes.
For example, you might create a game service to act as an intermediary between game clients and
servers, such as to manage matchmaking or player authentication.

See Amazon GameLift and Game Client/Server Interactions (p. 30) for a detailed description of how
these components interact.

Configuring Computing Resources
To deploy a game server on GameLift, you create a fleet of virtual computing resources and specify
how you want GameLift to use those resources to host your game. You configure the fleet to use a
specific type of Amazon Elastic Compute Cloud (Amazon EC2) resource, called an instance, based
on how much computing power you need for your game. When running your game server, GameLift
creates and terminates instances as needed to manage capacity. (See GameLift service limits for more
information on how many instances can be used with your AWS account.)

Your fleet configuration also specifies the game build to deploy, and describes how many game server
processes should be run on each instance in the fleet. You'll need to balance the size and type of
instance you're using against the computing requirements of the total number of server processes for
an instance.

Note
GameLift supports multiple regions to optimize gaming performance for players around the
world. Each fleet you set up is configured to deploy your game to a specific region, To make
your game available to players in multiple regions, you must set up a separate fleet for each
region. See a list of available regions for GameLift at AWS Regions and Endpoints.

You may want to assign an alias to a fleet. An alias is a convenient way to genericize how game
clients connect to game servers. Because an alias can be changed to point to any fleet you want,
referencing an alias ID in your client instead of a fleet ID helps you gracefully transition players from
one fleet to another—without having to deploy game client updates.

Once a fleet is active, GameLift is ready to start accepting requests for new game sessions. From this
point on, you can manage fleet configuration, capacity, and utilization as demand requires.

Handling Capacity and Utilization
Here's how GameLift handles capacity and utilization for multiplayer game sessions in real time.

To create a new game session, a game client sends a request to the GameLift service. When
GameLift receives the request, which specifies the fleet and type of game server, it goes through the
following sequence:

1. The GameLift service checks the fleet for any instance with an idle server process of the right type.
If one exists, a new game session is launched and the player can connect to it.

2. If no idle server processes are available, the request to create a new game session fails. The
game client can continue to request a new game session, and requests will fail until an idle server

Version
3

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_gamelift
http://docs.aws.amazon.com/general/latest/gr/rande.html#gamelift-region

Amazon GameLift Developer Guide
Autoscaling

process becomes available. This occurs either when an active game session ends and frees up the
server process, or when fleet capacity is increased and new instances begin running new server
processes.

You can change a fleet's capacity at any time, increasing or decreasing the number of desired
instances. When you increase capacity, GameLift immediately begins the process of starting a new
instance and a new set of idle server processes, which can then host new game sessions as they are
requested. This continues until the new capacity setting is reached.

When you decrease fleet capacity, a scale down event is triggered. GameLift selects instances to
terminate in order to meet the reduced capacity setting. Any instance in the fleet may be terminated,
regardless of whether or not the instance is hosting active game sessions. You can choose to
avoid terminating instances with active game sessions by turning on a feature called game session
protection, either for an individual game session or for an entire fleet. An instance can only be
terminated when none of its server processes are hosting protected game sessions. If a scale down
event is triggered but all instances in the fleet have at least one protected game session, no scale
down action takes place.

While the ability to set fleet capacity lets you control overall usage and costs for your GameLift
resources, it is also possible to control how players can consume fleet resources (that is, create new
game sessions). For games that allow individual players to create game sessions, you can use a
resource creation limit policy to a fleet to restrict the number of game sessions that any one player can
create over a span of time.

Autoscaling
Autoscaling simply automates the process of increasing or decreasing capacity, enabling the
fleet to quickly accommodate changes in player demand. Usage peaks and valleys can fluctuate
unpredictably, making it difficult to manually adjust capacity that strikes a balance between maintaining
enough fleet capacity to accommodate incoming players and avoiding paying for unused resources
during idle times.

The goal of autoscaling is to have GameLift change capacity on the fly in response to player demand.
Autoscaling is a set of rules, based on actual player activity, that you define to tell GameLift when to
increase or reduce capacity. With the right rules in place, GameLift can maintain a capacity level that
always has room for new players without 't running idle servers. Autoscaling rules, called policies, are
based on certain GameLift metrics that track player utilization. These include the number of current
players, the number of available player slots, and the number of idle instances, as well as others.

An autoscaling policy statement takes the following form: "If a specified metric hits or exceeds a
specified threshold value for a specified number of minutes, then change fleet capacity a specified
amount." So, for example, you might decide to use available player slots as an indicator of when
demand is spiking up: "If the number of available player slots falls below 50 for more than 10
consecutive minutes, then increase capacity by 1 instance."

A fleet can have multiple policies in force; each one is evaluated independently. For example, you
might have a policy that tells GameLift to decrease capacity by 10% if the number of idle instances
is more than 5 for 15 minutes. If you also have a policy to decrease capacity based on number of
available player slots, both policies can be triggered as demand decreases. A more common scenario
is to have a set of policies, each of which responds to either increasing demand or decreasing demand.

Autoscaling and game session protection work together to ensure that players are not arbitrarily
dropped as GameLift automatically adjusts capacity and takes down unneeded game servers to save
you money. If autoscaling triggers a scale down but all available instances are hosting active game
sessions and are protected, the scale down fails and capacity does not change. However, the policy
will continue to be evaluated with each metric report; if it continues to trigger a scale down, one will
occur the next time a game session ends. As a result, capacity is automatically adjusted without
affecting active players.

Version
4

Amazon GameLift Developer Guide
Monitoring Fleet Activity and Troubleshooting

Monitoring Fleet Activity and Troubleshooting
Once you have fleets up and running, GameLift collects a variety of information to help you monitor the
performance of your deployed game servers. Use this information to optimize your use of resources,
troubleshoot issues, and gain insight into how players are active in your games.

• Fleet, game session, and player session details – This data includes status, which can help
identify health issues, as well as details such as game session length and player connection time.

• Utilization metrics – GameLift tracks fleet metrics over time:

• For instances: network activity and CPU utilization

• For server processes: number of active processes, new activations, and terminations

• For games and players: number of active game sessions and player sessions

• Server process health – GameLift tracks the health of each server process running on a fleet,
including the number of healthy processes, percent of active processes that are healthy, and number
of abnormal terminations.

• Game session logs – You can have your game servers log session data and set GameLift to collect
and store the logs one the game session ends. Logs can then be downloaded from the service.

All of this data is available through the Amazon GameLift console. The console dashboard presents an
overview of activity across all you builds and fleets as well as the option to drill down to more detailed
information.

How Players Connect to Games
In Amazon GameLift, a game session is a process that is running your game server, which players
can connect to and play. Game sessions are created by making calls to the AWS SDK for Amazon
GameLift from a game client or game service. You can create game sessions only after you have a
game server deployed on a GameLift fleet.

Players connect to a game session by requesting a player session for an existing game session. If
the game session can be joined--that is, it has an open player slot and it is accepting new players,
GameLift reserves a slot for the player. It then gives the game client the information it needs to connect
to the game session and claim the reserved slot.

See more about integrating GameLift into your game client or service in Add Amazon GameLift to Your
Game Client (p. 25).

Game and Player Session Features
GameLift provides several features related to game and player sessions:

Session search and sort

Use session search and sort to populate game session browsers and give players information that
helps them quickly find a session to join. This can be an effective way to lead players to sessions that
are most likely to result in a positive gaming experience. For example, if your game requires a certain
number of players before launching gameplay, directing new players to sessions that are closest to that
minimum helps fill sessions quickly with a minimum of wait time. For games with very short session
lifespans, you might want to hide sessions that are older than a few minutes. Alternatively, session
search can eliminate the need for a session browser altogether, instead backing a "join now" feature
with a well-formulated search and sort expression that gets players into positive gaming experiences
fast. Currently, you can search and/or sort by the following session characteristics:

• Session age – how long the session has been running

Version
5

https://console.aws.amazon.com/gamelift/
http://docs.aws.amazon.com/gamelift/latest/apireference/
http://docs.aws.amazon.com/gamelift/latest/apireference/

Amazon GameLift Developer Guide
Tools and Resources

• Current player count – the number of players currently connected to the game

• Maximum players count – maximum number of players allowed

• Open player slots – whether or not a session has room for a new player to join

• Session name – nonunique name given the session on creation

• Session ID – unique ID number assigned to the session on creation

Custom game properties

Use custom game properties to configure a game session on launch. Define meaningful game
properties and pass them directly to the game server when you create a new game session. Game
properties are formatted as a simple collection of key:value string pairs (ex: ["key": "map", "value":
"WinterGarden"]). You can also retrieve game properties for a game session and display them in a
game session browser to help players find sessions faster and with better results.

Player access control

Set a game session to allow or deny join requests from new players, regardless of the number of
players currently connected. You might use this feature to enable private sessions, to limit access for
troubleshooting or other problem resolution, etc.

Session logs

Have GameLift automatically store logs for completed game sessions. Set up log storage when
integrating GameLift into your game servers. You can access stored logs by downloading them using
the GameLift console or programmatically with the AWS SDK for GameLift.

Utilization data and metrics

Use the Amazon GameLift console to view detailed information on game sessions, including session
metadata and settings as well as player session data. For each game session, you can view a list of
player sessions along with total times played. You can also view metrics data and graphs that track the
number of active game sessions and player sessions over time. See more information at View Data on
Game and Player Sessions (p. 60) and Metrics (p. 56).

Tools and Resources
Amazon GameLift provides a collection of tools and resources for you to use.

Core Tools
Use these tools to work with Amazon GameLift.

Amazon Lumberyard game engine
Amazon Lumberyard comes with Amazon GameLift functionality built in, and integration is handled
automatically. The Amazon GameLift Server SDK can be found in \3rdParty\AWS\GameLift.
See the Lumberyard User Guide for more information.

GameLift SDKs
The GameLift SDKs contain the libraries needed to communicate with the Amazon GameLift
service from your game clients, game servers and game services. Versions of these SDKs are
available with Lumberyard or you can download the latest versions separately. See details in
Amazon GameLift SDKs (p. 7).

Amazon GameLift console
Use the AWS Management Console for GameLift to manage your game deployments, configure
resources, and track player usage and performance metrics. The GameLift console provides a GUI
alternative to managing resources programmatically with the AWS SDK.

Version
6

http://docs.aws.amazon.com/lumberyard/latest/userguide/sample-project-multiplayer.html
https://console.aws.amazon.com/gamelift

Amazon GameLift Developer Guide
Additional Resources

AWS CLI for GameLift
Use this command line tool to make calls to the AWS SDK, including the GameLift API. Download
the AWS Command Line Interface or view the http://docs.aws.amazon.com/cli/latest/reference/
gamelift/AWS CLI Command Reference for GameLift.

Additional Resources
Use these resources to learn and experiment using GameLift with your multiplayer games.

Getting Started tutorials
These video and text tutorials walk you through the process of getting a multiplayer game up and
running on GameLift. using a sample game bundled with the Lumberyard download. Once you
complete the series, you can use the game to explore other GameLift features and tools, such as
autoscaling and performance metrics (no charge if you use the Amazon GameLift free tier).

Sample multiplayer project
The sample Lumberyard project MultiplayerProject is bundled with the Lumberyard download. It
illustrates how to use Lumberyard to integrate a game with GameLift. See the Lumberyard User
Guide for more information.

Other resources
For additional help consult the following resources:

• GameLift forum – Use the GameDev forums to exchange ideas and knowledge, pick up tips,
and get help with issues related to the GameLift service.

• Amazon GameDev Blog – Watch the blog to keep up with new features and get expert tips
from the team.

• GameLift FAQ – Check the FAQ for answers to your general questions about the service and
pricing details.

Amazon GameLift SDKs
Use Amazon GameLift software development kits (SDKs) to develop GameLift-enabled multiplayer
game servers, game clients and game services that need to connect to the GameLift service.

For Game Servers
Create and deploy 64-bit game servers with the GameLift Server SDK. This SDK enables the GameLift
service to deploy and manage game server processes across GameLift virtual resources. Download
the Server SDK or view the API reference documentation (p. 15).

The GameLift Server SDK is available in the following languages:

• C++

You can build game servers to run on the following platforms:

• Windows Server 2012 R2

• Amazon Linux

For Game Clients and Game Services
Create 64-bit game clients and services using the AWS SDK with the GameLift API. This SDK enables
client apps and services to find and manage game sessions and connect players to games being

Version
7

http://aws.amazon.com/cli/
http://aws.amazon.com/cli/
http://docs.aws.amazon.com/cli/latest/reference/gamelift/
http://docs.aws.amazon.com/cli/latest/reference/gamelift/
https://gamedev.amazon.com/forums/tutorials#gamelift
http://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-billing-alerts.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/sample-project-multiplayer.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/setting-up-downloading-lumberyard.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/sample-project-multiplayer.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/sample-project-multiplayer.html
https://gamedev.amazon.com/forums/spaces/123/gamelift-discussion.html
http://aws.amazon.com/blogs/gamedev/
http://aws.amazon.com/gamelift/faq/
http://aws.amazon.com/gamelift/getting-started/
http://aws.amazon.com/gamelift/getting-started/
http://aws.amazon.com/windows/products/ec2/server2012r2/
http://aws.amazon.com/amazon-linux-ami/

Amazon GameLift Developer Guide
SDK Compatibility

hosted on GameLift. You can also use this SDK to programmatically manage your game hosting
resources and access performance and utilization statistics. Download the AWS SDK or view the
GameLift API reference documentation.

The AWS SDK with GameLift is available in the following languages:

• C++

• Java

• .NET

• Go

• Python

• Ruby

• PHP

• JavaScript/Node.js

SDK Compatibility
If you use the GameLift SDKs bundled inside a version of Amazon Lumberyard, your game clients
and servers will be compatible. If you upgrade the GameLift Server SDK independently, however, you
need to use a compatible version of the AWS SDK to ensure that your game clients and services can
successfully connect to your game servers on GameLift.

If your game server uses this
Server SDK version:

It can host game clients built
with this AWS SDK for C++
version*:

Server SDK versions are
available in:

Versions bundled into Amazon
Lumberyard.

Versions bundled into Amazon
Lumberyard.

Lumberyard v.1.0 to v.1.3 (beta)

version 3.0.7 version 0.12.16 (commit) or
later

• Lumberyard v.1.4 or later

• Download from GameLift

version 3.1.0 version 1.10.61 or later Download from GameLift

* Version information for the AWS SDK for C++ can be found in this file: aws-sdk-cpp/aws-cpp-
sdk-core/include/aws/core/VersionConfig.h.

Free Tier and Billing Alerts
Amazon GameLift includes a free tier that provides 125 hours of a c3.large instance per month for one
year. It is possible for the free tier to expire mid-month; therefore, you may want to set up and configure
a billing alert to notify you of billing events, such as when you have reached the free tier threshold. For
more information, see Creating a Billing Alarm.

In addition to receiving billing alerts, you can view your current estimated bill for Amazon GameLift on
the Billing and Cost Management Dashboard. This will allow you to review your resource consumption
and determine if you would like to continue using these resources beyond the free tier allowance and
incur charges, or if you would like to scale down your fleet and avoid incurring charges.

To avoid incurring charges in excess of the free tier, you may want to scale down your fleet when not in
use.

Version
8

http://aws.amazon.com/tools/#sdk
http://docs.aws.amazon.com/gamelift/latest/apireference/
http://docs.aws.amazon.com/gamelift/latest/apireference/
http://sdk.amazonaws.com/cpp/api/LATEST/namespace_aws_1_1_game_lift.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html
http://docs.aws.amazon.com/sdkfornet/v3/apidocs/Index.html
http://docs.aws.amazon.com/sdk-for-go/api/service/gamelift/
https://boto3.readthedocs.io/en/latest/reference/services/gamelift.html
http://docs.aws.amazon.com/sdkforruby/api/Aws/GameLift.html
http://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.GameLift.GameLiftClient.html
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/GameLift.html
https://github.com/aws/aws-sdk-cpp/commit/6e0d1e23267b7e1b002ea37e520783761d2f1785
http://aws.amazon.com/gamelift/getting-started/
http://aws.amazon.com/gamelift/getting-started/
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/free-tier-alarms.html
https://console.aws.amazon.com/billing/home

Amazon GameLift Developer Guide
Set Up Your Project

Setting Up

The topics in this section describe the basic steps needed to begin using Amazon GameLift.

Topics

• Set Up Your Amazon Lumberyard Game Project (p. 9)

• Set up an AWS Account (p. 9)

• Install the AWS CLI (p. 11)

Set Up Your Amazon Lumberyard Game Project
Get your project ready for Amazon GameLift with the following steps. If you have installed Lumberyard,
you may have already completed some of these tasks.

• Install Visual Studio 2013 runtime. Run the installer from the \3rdParty\Redistributables
\Visual Studio 2013 directory or download and run the installer directly from Microsoft.

• Run Setup Assistant to validate that you have installed the appropriate third-party software and
SDKs, including the Amazon GameLift client. LumberyardLauncherBatch.exe is provided in
\dev\Bin64.

• Configure your Lumberyard game project to ensure it compiles properly. Follow these guidelines:

• The server and client executables must link aws-cpp-sdk-core and aws-cpp-sdk-gamelift.

• The server executable must be built on a platform supported by Amazon GameLift. See Amazon
GameLift SDKs (p. 7) for a list of allowed platforms.

• Your project must set the AWS_CUSTOM_MEMORY_MANAGEMENT pre-processor flag to 0 or 1,
depending on your use of a custom memory manager.

Set up an AWS Account
Amazon GameLift is an AWS service, and you must have an AWS account to use GameLift. Creating
an AWS account is free.

For more information on what you can do with an AWS account, see Getting Started with AWS.

Set up your account for GameLift

1. Get an account. Open Amazon Web Services and choose Sign In to the Console. Follow the
prompts to either create a new account or sign into an existing one.

Version
9

http://www.microsoft.com/en-us/download/details.aspx?id=40784
http://aws.amazon.com/getting-started/
http://aws.amazon.com/

Amazon GameLift Developer Guide
IAM Policy Examples

2. Set up user groups and access permissions. Open the AWS Identity and Access Management
(IAM) service console and follow the steps below to define a set of users or user groups and
assign access permissions to them. Permissions are extended to a user or user group by
attaching an IAM policy, which specifies the set of AWS services and actions a user should have
access to. For detailed instructions on using the Console (or the AWS CLI or other tools) to set up
your user groups, see Creating IAM Users.

1. Create an administrative user or user group. Administrative users include anyone who
manages core GameLift resources, such as builds and fleets. To set permissions, you must
create your own policy from scratch. This example (p. 10) illustrates an administrator policy
for GameLift services.

2. Create a player user. A player user represents your game client(s). It enables access to
GameLift client functionality, such as acquiring game session information and joining players
to games. Your game client must use the player user credentials when communicating with
the GameLift service. To set permissions, you must create your own policy from scratch. This
example (p. 10) illustrates a player policy for GameLift services.

IAM Policy Examples for Amazon GameLift
You can use the following examples to create policies and add the appropriate permissions to your IAM
users or user groups.

Simple Policy for Administrators
This policy provides full administrative access to a user. Attach it to a user or user group to permit all
Amazon GameLift actions on all GameLift resources (fleets, aliases, game sessions, player sessions,
etc.).

{
"Version": "2012-10-17",
"Statement":
 {
 "Effect": "Allow",
 "Action": "gamelift:*",
 "Resource": "*"
 }
}

Simple Policy for Players
This policy enables access only to functionality needed by players who are using a game client to
connect to a GameLift-hosted game server. This policy allows a user to get game session information,
create new game sessions, and join a game session.

{
"Version": "2012-10-17",
"Statement":
 {
 "Effect": "Allow",
 "Action": ["gamelift:CreateGameSession",
 "gamelift:DescribeGameSessions", "gamelift:SearchGameSessions",
 "gamelift:CreatePlayerSession"],
 "Resource": "*"
 }
}

Version
10

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

Amazon GameLift Developer Guide
Install the AWS CLI

Install the AWS CLI
You can use the AWS command line interface (AWS CLI) tool to make calls to any action in the AWS
SDK, including the Amazon GameLift API. At a minimum, you'll need to use this tool to upload your
game builds to the GameLift service.

To install the AWS CLI for GameLift

1. Get the tool. Download the latest version of the AWS CLI tool and follow the instructions to install
it. This tool runs on Windows, Linux, OS X, and Unix.

2. Verify installation. Open a command line window or terminal and type aws gamelift help.
If the CLI is correctly installed, you will see a "Welcome to the Amazon GameLift API Reference"
message, followed by a list of GameLift commands.

3. Configure the tool. Type aws configure and enter the following values at the prompts:

• AWS access key ID – Half of the AWS account user credentials, which are generated using the
IAM service. For help, see Get your access key ID and secret access key.

• AWS secret access key – Half of the AWS account user credentials, along with the AWS
access key ID.

• Default region name – Name of a region, such as "us-west-2" you want to set as default.
If you don't set a default region, every command must specify a region using the --region
parameter. See a list of available regions for GameLift at AWS Regions and Endpoints.

• Default output format – Format to receive API responses. Options include "json", "text" or
"table". If you don't enter a default format, the CLI processes your requests but doesn't display
any results.

Version
11

http://aws.amazon.com/cli/
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#gamelift-region

Amazon GameLift Developer Guide
Integrating a Game Server

Integrating the Amazon GameLift
SDKs into Your Games

The Amazon GameLift SDKs provide the libraries needed to enable your game clients and servers
to communicate with the Amazon GameLift service. The SDKs are available as part of the Amazon
Lumberyard game engine download or can be downloaded separately. For more details on the SDKs
and where to get them, see Amazon GameLift SDKs (p. 7).

The topics in this section describe how game clients and servers interact with the GameLift service,
and provide instruction on adding GameLift functionality to your game clients and servers.

Test Out Amazon GameLift

Before you prepare your own game to use GameLift, you can experiment with the service and console
tools using the five-click sample wizard. This wizard uses a sample game to quickly step through the
tasks of uploading and deploying a game server and connecting to it with a game client. Once you
have the sample game server deployed and are connected, you can browse the GameLift console
tools, view or edit configuration settings, and see GameLift's metrics and other tools in action. To
access the sample wizard, sign into the Amazon GameLift console and select Sample Game from the
Amazon GameLift menu.

Topics

• Integrating your Game Server for Amazon GameLift (p. 12)

• Integrating your Game Client for Amazon GameLift (p. 25)

• Amazon GameLift and Game Client/Server Interactions (p. 30)

Integrating your Game Server for Amazon
GameLift

The topics in this section describe how to integrate Amazon GameLift into a multiplayer game server.

Adding Amazon GameLift to your game server is Step 2 on the Integration Steps (p. 2) roadmap. The
integration topics in this section assume that you've created an AWS account and have an existing
game server project.

Topics

• Add Amazon GameLift to Your Game Server (p. 13)

Version
12

https://console.aws.amazon.com/gamelift

Amazon GameLift Developer Guide
Add GameLift to a Game Server

• Amazon GameLift Server API (C++) Reference (p. 15)

Add Amazon GameLift to Your Game Server
Your game server needs to interact with the Amazon GameLift service once it is deployed and running
as multiple server processes on a GameLift fleet. The code you add enables each server process to
communicate with the GameLift service. Server processes must be able to respond to certain events
triggered by the GameLift service and keep GameLift informed about player activity and server process
status. See this complete description of GameLift interactions (p. 30).

Use the GameLift Server SDK for C++ to add GameLift functionality to your game server. For complete
information on the Server SDK, see the Amazon GameLift Server API (C++) Reference (p. 15). For
details on how to get the AWS SDK and version information, see Amazon GameLift SDKs (p. 7).

To integrate GameLift into your game server, add the GameLift Server SDK for C++ to your game
server project and build the following functionality:

• Set up a new server process

• Report server process health

• Start a game session

• Validate a new player

• Report a dropped connection/player session ending

• Stop a game session

• Shut down a server process

Prepare a Server Process

Add code to initialize a GameLift client and notify the GameLift service that the server is ready to host
a game session. This code should run automatically before any GameLift-dependent code, such as on
launch.

1. Initialize the Server SDK. Call InitSDK() (p. 16).

2. Notify GameLift that a game server process is ready to host a game session. Each server process
started on a GameLift instance must call ProcessReady() (p. 17); each call may include the
following information: (1) a port number allowing access to the server process, (2) location of the
log paths for game sessions hosted by the server process, and (3) the references to three callback
functions used by GameLift to trigger certain actions on the server process.

GameLift invokes these callbacks in the following circumstances:

• onHealthCheck is called regularly to request a health status report from the server process.

• onStartGameSession is called when the GameLift service receives request to start a new
game session (CreateGameSession()).

• onProcessTerminate is called when GameLift service needs to force the server process to
terminate, allowing the server process to shut down gracefully.

Your game server code must implement these callback functions. The names are assigned for
convenience; reference the actual names in this ProcessReady() call. For more information on
implementing these functions, see the sections that follow.

You can have multiple server processes running on a fleet instance. Once one server process on
an instance calls ProcessReady() successfully, the GameLift service sets the instance's status to
ACTIVE.

Version
13

http://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html

Amazon GameLift Developer Guide
Add GameLift to a Game Server

Report Server Process Health
Add code to implement the callback function onHealthCheck(). This function is invoked by the
GameLift service regularly to collect health metrics from the server process. The server process's
response to a health check is a binary: healthy or unhealthy. When implementing this callback function,
do the following:

• Evaluate the status of the server process using whatever measures make sense for your game. For
example, you might report the server process as unhealthy if any external dependencies have failed
or if metrics such as memory capacity fall outside a defined limit.

• Complete the health evaluation and respond to the callback within 60 seconds. If the GameLift
service does not receive a response in that time, it will automatically consider the server process to
be unhealthy.

• Return a boolean value: true for healthy, false for unhealthy.

If you do not implement a health check callback, the GameLift service considers the server process to
be healthy unless the process is not responding, in which case it is considered unhealthy.

Server process health is used by GameLift to efficiently end unhealthy processes and free up
resources. If a server process is reported unhealthy or does not respond for three consecutive minutes,
the GameLift service can shut down the process and start a new one. Metrics on a fleet's server
process health is collected and viewable on the GameLift console.

Start a Game Session
Add code to implement the callback function onStartGameSession. This function is invoked by the
GameLift service in response to receiving a CreateGameSession() request from a game client.

The onStartGameSession function takes a GameSession object, provided by the GameLift service,
as an input parameter. This object contains the game session ID and other information that defines the
requested game session. The function should accomplish the following tasks:

• Perform whatever actions are needed to create a new game session. The new game session should
reflect the GameSession object, including creating slots for the specified maximum number of
players and referencing the game session name and ID. The GameLift service provides the same
game session information to the game client.

• Process the game property values specified by the game client in its request. The game properties
are contained in the GameSession object.

• At some point after the new game session is ready to accept players, the server process must call
the server API action ActivateGameSession() (p. 20). In response to a successful call, the
GameLift service changes the game session status to ACTIVE.

Validate a New Player
Add code to verify a player connection request with the GameLift service. This code should run
whenever a new player attempts to connect to the server process and before accepting the connection.

Connection requests from a game client must reference a player session ID. This ID was
issued by the GameLift service and used to reserve a player slot in the game session (in
response to a game client call to CreatePlayerSession()). The game server must call
AcceptPlayerSession() (p. 22) with the referenced player session ID to verify that the
connection request is coming from the same game client that reserved the slot.

Once the player session ID is validated by the GameLift service, the server process can accept the
connection and allow the player to join the game session. If the player session ID is not validated by
the GameLift service, the server process should deny the connection.

Version
14

https://console.aws.amazon.com/gamelift
http://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSession.html

Amazon GameLift Developer Guide
Server API (C++) Reference

Report a Player Session Ending

Add code to notify the GameLift service when a player disconnects from the game session. This code
should run whenever the server process detects a dropped connection.

In the code handling the dropped connection, add a call to the server API action
RemovePlayerSession() (p. 23) with the player session ID associated with the dropped
connection. This notification enables the GameLift service to accurately track the number of current
players and available slots in the game session.

Stop a Game Session

Add code to notify the GameLift service when a game session is ending. The notification enables the
GameLift service to accurately track a server process's availability for new game sessions. This code
should be added to the normal game session ending process.

At the end of the code to stop a game session, add a call to the server API action
TerminateGameSession() (p. 20). On successful receipt of this notification, the GameLift
service changes the game session status to TERMINATED and may immediately start a new game
session.

Note
If stopping a game session will be immediately followed by shutting down the server process,
you can call the server API action ProcessEnding() (p. 19), which terminates both the
game session and the server process.

Shut Down a Server Process

Add code to notify the GameLift service when a server process will shut down. Once called, the
server process can safely end. Shut down may be initiated by the server process or in response to the
GameLift service invoking the onProcessTerminate() callback function.

Add the following code:

• At the end of the game server code that shuts down a server process, add a call to the server API
action ProcessEnding() (p. 19). On receipt of this notification, the GameLift service changes
the server process status to TERMINATED and recycles the instance's resources as needed.

• Implement the callback function onProcessTerminate(). This function simply needs to call the
game server termination code, which now includes the call to ProcessEnding(). This callback
function is invoked by the GameLift service prior to terminating the instance hosting the server
process. A common reason for GameLift service to invoke this call is to shut down an unhealthy
server process. After receiving this call, the server process has five minutes to gracefully disconnect
players, preserve game state data, and perform other cleanup tasks. If the server process calls
ProcessEnding() before five minutes has elapsed, the GameLift service may immediately shut
down the process.

Amazon GameLift Server API (C++) Reference
This GameLift C++ Server API reference can help you prepare your multiplayer game for use with
Amazon GameLift. For details on the integration process, see Add Amazon GameLift to Your Game
Server (p. 13).

This API is defined in GameLiftServerAPI.h, LogParameters.h, and ProcessParameters.h.

Version
15

Amazon GameLift Developer Guide
Server API (C++) Reference

GetSdkVersion()
Returns the current version number of the SDK built into the server process.

Syntax

AwsStringOutcome GetSdkVersion();

Parameters

This action has no parameters.

Return Value

If successful, returns the current SDK version as an AwsStringOutcome object. The returned string
includes the version number only (ex. "3.0.0"). If not successful, returns an error message.

Example

Aws::GameLift::AwsStringOutcome SdkVersionOutcome =
 Aws::GameLift::Server::GetSdkVersion();

InitSDK()
Initializes the GameLift SDK. This method should be called on launch, before any other GameLift-
related initialization occurs.

Syntax

InitSDKOutcome InitSDK();

Parameters

This action has no parameters.

Return Value

If successful, returns an InitSDKOutcome object containing either a pointer to an internal server state,
for use with InitSDKWithExisting() (p. 16), or an error code.

Example

Aws::GameLift::Server::InitSDKOutcome initOutcome =
 Aws::GameLift::Server::InitSDK();

InitSDKWithExisting()
Initializes the GameLift SDK using an existing server state. Use this function if you're invoking the
GameLift API across DLL boundaries. This method should be called on launch, before any other
GameLift-related initialization occurs.

Syntax

InitSDKOutcome InitSDKWithExisting(
 Aws::GameLift::Internal::GameLiftServerState* existingState);

Version
16

Amazon GameLift Developer Guide
Server API (C++) Reference

Parameters

existingState
Pointer to an internal server state, returned when initializing GameLift.

Required: Yes

Return Value

If successful, returns an InitSDKOutcome object containing either a pointer to an internal server state
or an error code.

Example

This example illustrates initializing the SDK using a server state returned from a previous call to either
this action or InitSDK() (p. 16).

initOutcome = Aws::GameLift::Server::InitSDKWithExisting(initOutcome);

ProcessReady()
Notifies the GameLift service that the server process is ready to host game sessions. This method
should be called once the server process is ready to host a game session. The parameters specify
the names of callback functions for GameLift to call in certain circumstances. Game server code must
implement these functions.

This call is synchronous. To make an asynchronous call, use ProcessReadyAsync() (p. 18).

Syntax

GenericOutcome ProcessReady(
 const Aws::GameLift::Server::ProcessParameters
 &processParameters);

Parameters

processParameters
A ProcessParameters (p. 23) object containing information related to the server process.

Required: Yes

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example illustrates both the ProcessReady() (p. 17) call and callback function
implementations.

// Set parameters and call ProcessReady
Aws::String serverLog("serverOut.log"); //Example of a log file
Aws::Vector<Aws::String> logPaths;
logPaths.push_back(serverLog);

int listenPort = 9339;

Version
17

Amazon GameLift Developer Guide
Server API (C++) Reference

Aws::GameLift::Server::ProcessParameters processReadyParameter =
 Aws::GameLift::Server::ProcessParameters(
 std::bind(&Server::onStartGameSession, this, std::placeholders::_1),
 std::bind(&Server::onProcessTerminate, this),
 std::bind(&Server::OnHealthCheck, this),
 listenPort,
 Aws::GameLift::Server::LogParameters(logPaths));

Aws::GameLift::GenericOutcome outcome =
 Aws::GameLift::Server::ProcessReady(processReadyParameter);

// Implement callback functions
void Server::onStartGameSession(Aws::GameLift::Model::GameSession
 myGameSession)
{
 // game-specific tasks when starting a new game session, such as loading
 map
 GenericOutcome outcome =
 Aws::GameLift::Server::ActivateGameSession (maxPlayers);
}

void Server::onProcessTerminate()
{
 // game-specific tasks required to gracefully shut down a game session,
 // such as notifying players, preserving game state data, and other
 cleanup
 GenericOutcome outcome = Aws::GameLift::Server::ProcessEnding();
}

bool Server::onHealthCheck()
{
 bool health;
 // complete health evaluation within 60 seconds and set health
 return health;
}

ProcessReadyAsync()
Notifies the GameLift service that the server process is ready to host game sessions. This method
should be called once the server process is ready to host a game session. The parameters specify
the names of callback functions for GameLift to call in certain circumstances. Game server code must
implement these functions.

This call is asynchronous. To make a synchronous call, use ProcessReady() (p. 17).

Syntax

GenericOutcomeCallable ProcessReadyAsync(
 const Aws::GameLift::Server::ProcessParameters
 &processParameters);

Parameters

processParameters
A ProcessParameters (p. 23) object containing information related to the server process.

Required: Yes

Version
18

Amazon GameLift Developer Guide
Server API (C++) Reference

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

// Set parameters and call ProcessReady
Aws::String serverLog("serverOut.log"); //Example of a log file
Aws::Vector<Aws::String> logPaths;
logPaths.push_back(serverLog);

int listenPort = 9339;

Aws::GameLift::Server::ProcessParameters processReadyParameter =
 Aws::GameLift::Server::ProcessParameters(
 std::bind(&Server::onStartGameSession, this, std::placeholders::_1),
 std::bind(&Server::onProcessTerminate, this),
 std::bind(&Server::OnHealthCheck, this),
 listenPort,
 Aws::GameLift::Server::LogParameters(logPaths));

Aws::GameLift::GenericOutcomeCallable outcome =
 Aws::GameLift::Server::ProcessReadyAsync(processReadyParameter);

// Implement callback functions
void onStartGameSession(Aws::GameLift::Model::GameSession myGameSession)
{
 // game-specific tasks when starting a new game session, such as loading
 map
 GenericOutcome outcome = Aws::GameLift::Server::ActivateGameSession
 (maxPlayers);
}

void onProcessTerminate()
{
 // game-specific tasks required to gracefully shut down a game session,
 // such as notifying players, preserving game state data, and other
 cleanup
 GenericOutcome outcome = Aws::GameLift::Server::ProcessEnding();
}

bool onHealthCheck()
{
 // perform health evaluation and complete within 60 seconds
 return health;
}

ProcessEnding()
Notifies the GameLift service that the server process is shutting down. The call triggers GameLift to
change the instance's status from ACTIVE to TERMINATING. This method should be called after
all other cleanup tasks, including shutting down all active game sessions. GameLift waits at least 30
seconds after receiving this call before terminating the instance.

Syntax

GenericOutcome ProcessEnding();

Version
19

Amazon GameLift Developer Guide
Server API (C++) Reference

Parameters

This action has no parameters.

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

Aws::GameLift::GenericOutcome outcome =
 Aws::GameLift::Server::ProcessEnding();

ActivateGameSession()
Notifies the GameLift service that the server process has activated a game session and is now ready
to receive player connections. This action should be called as part of the onStartGameSession()
callback function, after all game session initialization has been completed.

Syntax

GenericOutcome ActivateGameSession();

Parameters

This action has no parameters.

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example shows ActivateGameSession() being called as part of the onStartGameSession()
callback function.

void onStartGameSession (Aws::GameLift::Model::GameSession myGameSession)
{
 // game-specific tasks when starting a new game session, such as loading
 map
 GenericOutcome outcome =
 Aws::GameLift::Server::ActivateGameSession ();
}

TerminateGameSession()
Notifies the GameLift service that the server process has shut down the game session. (Currently,
each server process hosts only one game session at a time, so there's no need to specify which
session.) This action should be called at the end of the game session shutdown process. After calling
this action, the server process should either call ProcessReady() (p. 17) to signal availability to
host a new game session, or call ProcessEnding() (p. 19) to shut down the server process and
terminate the instance.

Syntax

GenericOutcome TerminateGameSession();

Version
20

Amazon GameLift Developer Guide
Server API (C++) Reference

Parameters

This action has no parameters.

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example illustrates the server process shutting down the current game session, notifying GameLift
that the game session has ended, and signalling the server's availability to host a new game session.

// game-specific tasks required to gracefully shut down a game session,
// such as notifying players, preserving game state data, and other cleanup

Aws::GameLift::GenericOutcome outcome =
 Aws::GameLift::Server::TerminateGameSession();
Aws::GameLift::GenericOutcome outcome =
 Aws::GameLift::Server::ProcessReady(onStartGameSession,
 onProcessTerminate);

UpdatePlayerSessionCreationPolicy()

Updates the current game session's ability to accept new player sessions. A game session can
have its player session creation policy set to either accept or deny all new player sessions (see the
UpdateGameSession() action in the Amazon GameLift Service API Reference).

Syntax

GenericOutcome UpdatePlayerSessionCreationPolicy(
 Aws::GameLift::Model::PlayerSessionCreationPolicy
 newPlayerSessionPolicy);

Parameters

newPlayerSessionPolicy
String value indicating whether or not the game session accepts new players.

Type: Aws::GameLift::Model::PlayerSessionCreationPolicy enum. Valid values include:

• ACCEPT_ALL – Accept all new player sessions.

• DENY_ALL – Deny all new player sessions.

Required: Yes

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

Aws::GameLift::GenericOutcome outcome =

Version
21

http://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateGameSession.html
https://sdk.amazonaws.com/cpp/api/0.9.6-90-g8581d6e/d6/d72/namespace_aws_1_1_game_lift_1_1_model.html#afa8a7527defe9e7ca0caebc239182c53

Amazon GameLift Developer Guide
Server API (C++) Reference

 Aws::GameLift::Server::UpdatePlayerSessionCreationPolicy(Aws::GameLift::Model::PlayerSessionCreationPolicy::ACCEPT_ALL);

GetGameSessionId()

Retrieves the ID of the game session currently being hosted by the server process, if the server
process is active.

Syntax

AwsStringOutcome GetGameSessionId();

Parameters

This action has no parameters.

Return Value

If successful, returns the game session ID as an AwsStringOutcome object. If not successful, returns
an error message.

Example

Aws::GameLift::AwsStringOutcome sessionIdOutcome =
 Aws::GameLift::Server::GetGameSessionId();

AcceptPlayerSession()

Notifies the GameLift service that a player with the specified player session ID has connected to the
server process and requests validation. GameLift verifies that the player session ID is valid—that is,
that the ID was issued to a player in response to a join request. Once validated, GameLift changes the
status of the player slot from RESERVED to ACTIVE.

Syntax

GenericOutcome AcceptPlayerSession(
 const Aws::String& playerSessionId);

Parameters

playerSessionId
Unique ID issued by the GameLift service to a game client in response to a call to the AWS SDK
GameLift API action CreatePlayerSession. The client passes this ID when connecting to the
server process.

Type: Aws::String

Required: Yes

Return Value

Returns a generic outcome consisting of success or failure with an error message. The error
UNEXPECTED_PLAYER_SESSION indicates that the player session ID is invalid.

Version
22

http://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSession.html
http://sdk.amazonaws.com/cpp/api/LATEST/namespace_aws.html#ac45eb95643c91062d4d82a28d453aae7

Amazon GameLift Developer Guide
Server API (C++) Reference

Example

This example illustrates a function for handling a connection request, including validating and rejecting
invalid player session IDs.

void ReceiveConnectingPlayerSessionID (Connection& connection, const
 Aws::String& playerSessionId){
 Aws::GameLift::GenericOutcome connectOutcome =
 Aws::GameLift::Server::AcceptPlayerSession(playerSessionId);
 if(connectOutcome.IsSuccess())
 {
 connectionToSessionMap.emplace(connection, playerSessionId);
 connection.Accept();
 }
 else
 {
 connection.Reject(connectOutcome.GetError().GetMessage();
 }
}

RemovePlayerSession()

Notifies the GameLift service that a player with the specified player session ID has disconnected from
the server process. In response, GameLift changes the player slot to available, which allows it to be
assigned to a new player.

Syntax

GenericOutcome RemovePlayerSession(
 const Aws::String& playerSessionId);

Parameters

playerSessionId
Unique ID issued by the GameLift service to a game client in response to a call to the client API
action CreatePlayerSession. The client passes this ID when connecting to the server process.

Type: Aws::String

Required: Yes

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

Aws::GameLift::GenericOutcome connectOutcome =
 Aws::GameLift::Server::RemovePlayerSession(playerSessionId);

ProcessParameters

This data type contains the set of parameters sent to the GameLift service in a ProcessReady() call.

Version
23

http://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSession.html
http://sdk.amazonaws.com/cpp/api/LATEST/namespace_aws.html#ac45eb95643c91062d4d82a28d453aae7

Amazon GameLift Developer Guide
Server API (C++) Reference

Contents

port
Port number this server process is listening. This value must fall into one of the port ranges
configured for the fleet in use. This port setting is provided to game clients and other applications
in the GameSession and PlayerSession objects.

Type: int

Required: Yes

logParameters
Object containing a list of directory paths indicating where game session logs are saved.

Type: Aws::GameLift::Server::LogParameters (p. 24)

Required: No

onStartGameSession
Name of callback function that the GameLift service calls to activate a new game session.
GameLift calls this function in response to the client request CreateGameSession. The callback
function takes a GameSession object (defined in the Amazon GameLift Service API Reference).

Type: const std::function<void(Aws::GameLift::Model::GameSession)> onStartGameSession

Required: Yes

onProcessTerminate
Name of callback function that the GameLift service calls to force the server process to shut down.
After calling this function, GameLift waits five minutes for the server process to shut down and
respond with a ProcessEnding() (p. 19) call before it shuts down the server process.

Type: std::function<void()> onProcessTerminate

Required: No

onHealthCheck
Name of callback function that the GameLift service calls to request a health status report from the
server process. GameLift calls this function every 60 seconds. After calling this function GameLift
waits 60 seconds for a response, and if none is received. records the server process as unhealthy.

Type: std::function<bool()> onHealthCheck

Required: No

LogParameters

This data type is used to identify where GameLift should look for game session log files to upload
and stor at the end of a game session. This information is communicated to the GameLift service in a
ProcessReady() call.

Contents

logPaths
Array of strings identifying directory paths to game server log files, including game session logs.

Log files are stored on the GameLift instance running the server process, in the directory and
using file names designated by your game server. (Given that instances run multiple server
processes, often simultaneously, you should consider whether or not to assign unique log file
names for each game session.) Each log path must point to a location in your root game build
directory. For example, if your game build is packaged into a directory called "MyGame", your
log path might be MyGame\sessionlogs\. When the game build is deployed to a GameLift

Version
24

http://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide
Integrating a Game Client

instance, the log path would be c:\game\MyGame\sessionLogs (on Windows) or /local/
game/MyGame/sessionLogs.

Type: Aws::Vector<Aws::String>

Required: No

Integrating your Game Client for Amazon
GameLift

The topics in this section describe the Amazon GameLift functionality you can add to a game client or
game service that handles the following tasks:

• Requests information about active game sessions from the GameLift service.

• Joins a player to an existing game session.

• Creates a new game session.

• Changes metadata about an existing game session.

Adding Amazon GameLift to your multiplayer game client is Step 5 in the Integration Steps (p. 2). The
following instructions assume that you've created an AWS account, generated a GameLift-enabled
game server and uploaded it to GameLift, and used GameLift tools (such as the Amazon GameLift
console) to create and configure a virtual fleet to host your game sessions. When adding GameLift to
your game client, you must be able to provide AWS account credentials and specify a fleet to be used
with the client.

For more information on how game clients interact with the Amazon GameLift service and game
servers running on GameLift, see Amazon GameLift and Game Client/Server Interactions (p. 30).

Topics

• Add Amazon GameLift to Your Game Client (p. 25)

• Generate Player IDs (p. 28)

• Prepare Your Game Client in Amazon Lumberyard (p. 28)

• Customize the Amazon GameLift SDK (p. 29)

Add Amazon GameLift to Your Game Client
Use the AWS SDK with Amazon GameLift API to add functionality to your game client. For details on
how to get the AWS SDK and version information, see Amazon GameLift SDKs (p. 7). The following
reference information is available:

• Amazon GameLiftService API Reference – This guide describes the low-level service API calls for
GameLift-related actions.

• AWS SDK for C++ Reference – This guide documents C++ calls to the AWS SDK. Documentation
for other language versions of the AWS SDK with GameLift are also available (see Amazon
GameLift SDKs (p. 7).

To integrate GameLift into your game client, add the AWS SDK to your game client project and build
the following functionality:

• Initialize and set up a GameLift client.

• Find a game session to join or create a new one.

Version
25

http://sdk.amazonaws.com/cpp/api/LATEST/namespace_aws.html#ac45eb95643c91062d4d82a28d453aae7
http://docs.aws.amazon.com/gamelift/latest/apireference/
http://sdk.amazonaws.com/cpp/api/LATEST/

Amazon GameLift Developer Guide
Add GameLift to a Game Client

• Join a game session.

Initialize and Set Up a GameLift Client

Add code to initialize a GameLift client and store some key settings for use with the game client. This
code needs to be located so that it runs before any GameLift-dependent code, such as on launch.

1. Decide whether or not to use the default client configuration or create custom settings.
For custom settings, you must create a custom ClientConfiguration object. See AWS
ClientConfiguration (C++) for object structure and the default settings.

Set a region and endpoint. It is important that you configure your game client to use the correct
region and endpoint. GameLift deploys fleets by region, and game clients can only access fleets in
the region specified in the client configuration. See this list of AWS regions supported by GameLift
for names and endpoints. The default region is US East (N. Virginia), so if you're using any other
region you must create a custom configuration.

2. Initialize a GameLift client. Call Aws::GameLift::GameLiftClient() (C++) using either a client
configuration with the default settings or a custom configuration.

3. Add a mechanism to generate a unique identifier for each player. GameLift requires a unique
player ID to connect to a game session. For more details, see Generating Identifiers for Your
Players.

4. Collect and store the following information to use when contacting GameLift:

• Target fleet – Each game client must specify one fleet to connect to. The client can create new
game sessions or access existing game sessions on any instance in the specified fleet. (The
target fleet must be deployed in the region specified in the client configuration.) You have two
options for identifying a target fleet: (1) Specify the fleet's ID, or (2) specify the ID of an alias
pointing to the fleet. Fleet aliases are highly useful in that you can use them to change fleets
without having to issue a game client update.

• Player ID – This is the unique identifier generated in step 3.

• AWS credentials – All calls to the GameLift service must provide credentials for the AWS
account that hosts the game. This is the account you used to set up your GameLift fleets, and
you should have created an IAM user or user group for players with a permissions policy. You
need to create an Aws::Auth::AWSCredentials (C++) object containing an IAM access key and
secret key for the player user group. For help finding the keys, see Managing Access Keys for
IAM Users.

Find or Create a Game Session

Add code to discover existing game sessions, create a new game session, or both. See How Players
Connect to Games (p. 5) for more information on game sessions.

1. Find existing game sessions. Create a mechanism to retrieve information on game sessions
currently running on the target fleet.

To find active game sessions, call SearchGameSessions. You can specify search criteria or
leave empty to retrieve information on all active sessions. This call returns a GameSession
object, with game session characteristics, for each active game session that matches your search
request.

Filter returned game sessions and present options for players to join. For example, you may want
to filter sessions based on the following characteristics:

• Exclude game sessions that are not accepting new players: PlayerSessionCreationPolicy
= DENY_ALL

Version
26

https://sdk.amazonaws.com/cpp/api/0.9.6-76-gb216290/df/d19/struct_aws_1_1_client_1_1_client_configuration.html
https://sdk.amazonaws.com/cpp/api/0.9.6-76-gb216290/df/d19/struct_aws_1_1_client_1_1_client_configuration.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#gamelift_region
http://sdk.amazonaws.com/cpp/api/LATEST/class_aws_1_1_game_lift_1_1_game_lift_client.html
http://docs.aws.amazon.com/gamelift/latest/developerguide/player-sessions-intro.html
http://docs.aws.amazon.com/gamelift/latest/developerguide/player-sessions-intro.html
http://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-iam-policy-intro.html
https://sdk.amazonaws.com/cpp/api/0.9.6-76-gb216290/d4/d27/class_aws_1_1_auth_1_1_a_w_s_credentials.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_SearchGameSessions.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide
Add GameLift to a Game Client

• Exclude game sessions that are full: CurrentPlayerSessionCount =
MaximumPlayerSessionCount

• Choose game sessions based on length of time the session has been running: evaluate
CreationTime

• Evaluate game session properties

2. Create new game sessions. Create a mechanism to allow players to start a new game sessions
to join.

To create a new session, call CreateGameSession. When creating a new game session, specify
a session name and the maximum number of concurrent players to allow.

When creating a new session, you also have the option to pass a set of properties to the server
process. The GameProperty object is simply an array of key–value pairs in which you define both
the keys, or types, and a set of allowed values that are meaningful to your game. This assumes
you have set up your game server to recognize and act on these properties when received. For
example, you might use game properties to load a certain game map or apply a set of rules to the
game session.

Whether you locate an existing game session to join or create a new one, you'll have a GameSession
object. Use the following API actions to manage game sessions:

• CreateGameSession() – Create new game sessions with custom properties and maximum player
counts.

• DescribeGameSessionDetails() – Get game session metadata for one or multiple game
sessions, including connection information, status, and current player count.

• UpdateGameSession() – Change a game session's metadata and settings as needed.

• SearchGameSessions() – Find game sessions that match certain characteristics.

• GetGameSessionLogUrl – Access stored game session logs.

Join a Game Session

Add code to request access to a game session and connect to the session. Once the client
successfully requests a player session, the client can connect to the server process IP address and
port.

1. Claim a player slot. Create a mechanism to reserve a player slot in a specified game session.

Ask to join a game session by calling CreatePlayerSession and specifying a game session ID
(included in a GameSession object). The GameLift service verifies that the game session can be
joined (that is, it accepts new players and has not reached its maximum number of players), and
reserves a player slot for the requester. If successful, a PlayerSession object is created and
returned, with information the game client needs to connect to the server process that is hosting
the game session.

2. Connect to a game session. Create a mechanism to connect a player to the server process that
is hosting the game session.

Connect to the server process using the IP address and port from either the GameSession object
or the PlayerSession object. Specify the player session ID value to claim the reserved slot. The
game server verifies with the GameLift service that the player trying to connect is entitled to the
reserved slot. If successful, the player joins the game session.

Once connected, the game client and server communicate directly with each other, without
involving GameLift. This framework minimizes the amount of latency in gameplay. When the
client disconnects from the game session, the server process automatically detects the dropped
connection and informs the GameLift service, which tracks the availability of player slots.

Version
27

http://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_GameProperty.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionDetails.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateGameSession.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_SearchGameSessions.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_GetGameSessionLogUrl.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSession.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_PlayerSession.html

Amazon GameLift Developer Guide
Generate Player IDs

Once you've created a player session you'll have a PlayerSession object. Use the following API
actions to manage player sessions:

• CreatePlayerSession() – Create one new player session and reserve a player slot.

• CreatePlayerSessions() – Create multiple player sessions and reserve player slots for each.

• DescribePlayerSessions() – Get metadata for one or multiple player sessions.

Generate Player IDs
Amazon GameLift uses a player session to represent a player connected to a game session. A player
session must be created each time a player connects to a game session. When a player leaves a
game, the player session ends and is not reused.

Amazon GameLift fees are partly based on the number of your end users that connect to Amazon
GameLift. This is the daily active user (DAU) portion of your bill. For more information, see the Amazon
GameLift pricing page.

To allow us to accurately calculate your fees and in order to receive an accurate daily active user count
from Amazon GameLift, you must provide a unique, non-personally identifiable player ID for each
player. For example, you must not use email addresses, phone numbers, real names, or public screen
names for the player ID.

Amazon GameLift provides a file called Lobby.cpp in the MultiplayerProject sample that demonstrates
how to generate a new, random ID number for every player in every new game session. You are not
required to use the sample code; we provide it as an example.

The following sample code in Lobby.cpp will randomly generate unique player IDs:

bool includeBrackets = false;
bool includeDashes = true;
string playerId = AZ::Uuid::CreateRandom().ToString<string>(includeBrackets,
 includeDashes);

If you use this sample code to generate unique player IDs for your game, a player that starts their
game client and logs into the game server three times in one day will appear as three DAU for billing
purposes.

You can also rewrite the code to persist your own unique, non-personally identifiable player IDs.

Prepare Your Game Client in Amazon Lumberyard
All game clients must be configured to enable communication with the Amazon GameLift service,
including specifics on which fleets to use, access credentials, how to connect, etc. The simplest
method is to create a batch file that sets the console variables listed below.

Tip
You don't need to have a game ready to start experimenting with GameLift. The GameLift
console offers a quick sample setup that gets you up and running with a sample game server
and client in five easy steps. In addition, the GameLift Getting Started tutorials, in text and
video format, walk you through each step in the process of creating and uploading a build,
setting up a fleet, creating game sessions and connecting a client. The tutorials use a sample
multiplayer game, which is included in the Lumberyard download.

To prepare the game client

1. In your batch file, set the following console variables to launch the game client. These variables
have been added to \dev\Code\CryEngine\CryNetwork\Lobby\LobbyCvars

Version
28

http://docs.aws.amazon.com/gamelift/latest/apireference/API_PlayerSession.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSession.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSessions.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribePlayerSessions.html
http://aws.amazon.com//gamelift/pricing
http://aws.amazon.com//gamelift/pricing
https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/
https://gamedev.amazon.com/forums/tutorials#gamelift

Amazon GameLift Developer Guide
Customize the SDK

• gamelift_aws_access_key = part of the IAM security credentials (p. 9) for a user with
"player" access in your AWS account

• gamelift_aws_secret_key = part of the IAM security credentials (p. 9) for a user with
"player" access in your AWS account

• gamelift_fleet_id = Unique ID of an active fleet to connect to

• gamelift_alias_id = Unique ID of an alias pointing to a fleet to connect to

• (Optional) gamelift_endpoint = Amazon GameLift server endpoint; the default value is
gamelift.us-west-2.amazonaws.com

• (Optional) gamelift_aws_region = AWS region name; default value is us-west-2

• (Optional) gamelift_player_id = ID that you generate to uniquely identify a player (p. 28)

2. Add the following command to launch the server browser:

Follow this pattern when using a GameLift fleet ID (gamelift_fleet_id):

.\Bin64\[your game executable] +gamelift_fleet_id [your fleet ID]
 +gamelift_aws_region us-west-2 +gamelift_aws_access_key [your AWS access
 key] +gamelift_aws_secret_key [your AWS secret key] +sv_port 64091 +map
 [map name]

Follow this pattern when using a GameLift alias ID (gamelift_alias_id):

.\Bin64\[your game executable] +gamelift_alias_id [your alias ID]
 +gamelift_aws_region us-west-2 +gamelift_aws_access_key [your AWS access
 key] +gamelift_aws_secret_key [your AWS secret key] +sv_port 64091 +map
 [map name]

Customize the Amazon GameLift SDK
You can customize the Amazon GameLift SDK to work with your own tools and integrations.

Custom Memory Management

The AWS native SDK supports custom memory managers.

To use a custom memory manager with the Amazon GameLift SDK

1. Implement Aws::Utils::Memory::MemorySystemInterface with hooks into your memory
manager. This interface has four methods: Begin, End, AllocateMemory, and FreeMemory.

2. Before you begin using AWS native SDK or Amazon GameLift SDK features, call
Aws::Utils::Memory::InitializeMemorySystem(myMemoryInterface).

3. Set the AWS_CUSTOM_MEMORY_MANAGEMENT preprocessor flag to 1.

Logging Integration

The AWS native SDK supports integration with your preferred log system.

To use your own log system

1. Implement Aws::Utils::Logging::LogSystemInterface.

2. Call Aws::Utils::Logging::InitializeAWSLogging(myLogInterface).

Version
29

Amazon GameLift Developer Guide
GameLift Interactions

GameLift Client Configuration

You can preconfigure a GameLift client to use with the Amazon GameLift SDK.

To create a custom GameLift client

1. Create an Aws::Client::ClientConfiguration object and set the properties with your
preferred values.

2. Use the ClientConfiguration object when calling Aws::GameLift::Client::Initialize.

Direct Calls to GameLift Client

You can extend the Amazon GameLift SDK functionality by making calls directly to the GameLift client.

To make a custom call to the GameLift client

1. Call Client::GetGameLiftClient().

2. Create a request object that corresponds to the type of request you want to make.

3. Use the request object to call the method that you want to execute on the client.

You will receive a response object that corresponds to the type of request you made.

Amazon GameLift and Game Client/Server
Interactions

This topic describes the interactions between a client app, a game server, and the Amazon GameLift
service. See also the Amazon GameLift–Game Server/Client Interactions (p. 33) diagram.

Setting up a new server process

1. The GameLift service launches a new server process on an Amazon Elastic Compute Cloud
(Amazon EC2) instance.

2. The server process, as part of the launch process, calls these server API actions:

• InitSDK() to initialize the server SDK.

• ProcessReady() to communicate readiness to accept a game session and specify connection
port and location of game session log files.

It then waits for a callback from the GameLift service.

3. The GameLift service changes the status of the EC2 instance to ACTIVE, with 0 game sessions
and 0 players.

4. The GameLift service begins calling the onHealthCheck callback regularly while the server
process is active. The server process must report either healthy or not healthy within one minute.

Creating a game session

1. The Client app calls the client API action CreateGameSession().

2. The GameLift service searches for an active server with 0 game sessions. When found, it does the
following:

• Creates a new GameSession object, using the port setting reported by the server process in
ProcessReady(), and sets its status to ACTIVATING.

Version
30

Amazon GameLift Developer Guide
GameLift Interactions

• Responds to the client app request with the GameSession object.

• Invokes the onStartGameSession callback on the server process, passing the GameSession
object.

3. The server process runs the onStartGameSession callback function. When ready to accept
player connections, the server process calls the server API action ActivateGameSession() and
waits for player connections.

4. The GameLift service changes the GameSession status to ACTIVE.

Adding a player to a game session:

1. The Client app calls the client API action CreatePlayerSession() with a game session ID.

2. The GameLift service checks the game session status (must be ACTIVE), and looks for an open
player slot in the game session. If a slot is available, it does the following:

• Creates a new PlayerSession object and sets its status to RESERVED.

• Responds to the client app request with the PlayerSession object.

3. The Client app connects directly to the server process with the player session ID.

4. The server process calls the Server API action AcceptPlayerSession() to validate the player
session ID and either accepts or rejects the connection. If accepted, the server process notifies the
GameLift service.

5. The GameLift service does one of the following:

• If the connection is accepted, sets the PlayerSession status to ACTIVE.

• If no response is received within 60 seconds of the client app's original
CreatePlayerSession() call, changes the PlayerSession status to TIMEDOUT and reopens
the player slot in the game session.

Removing a player from a game session

1. The Client app disconnects from the server process.

2. The server process detects the lost connection and calls the server API action
RemovePlayerSession().

3. The GameLift service changes the PlayerSession status to COMPLETED and reopens the
player slot in the game session.

Shutting down a game session

1. The server process calls the server API action TerminateGameSession().

2. The GameLift service does the following:

• Changes the GameSession status to TERMINATED.

• Uploads game session logs to Amazon Simple Storage Service (Amazon S3).

• Updates fleet utilization to indicate the server is idle(0 game sessions, 0 players).

Terminating a server process

1. The server process does the following:

• Runs process to gracefully terminate the server process.

• Calls the server API action ProcessEnding() to inform the GameLift service.

2. The GameLift service does the following:

• Uploads game session logs (if any) to Amazon S3.

• Changes the server process status to TERMINATED.

• Recycles instance resources based on the fleet's runtime configuration.

Version
31

Amazon GameLift Developer Guide
GameLift Interactions

Responding to a shutdown request

1. The GameLift service invokes the server process's onProcessTerminate callback. This call is
used to shut down a server process that has reported unhealthy or not responded with health status
for three consecutive minutes.

2. The server process runs the onProcessTerminate callback function, which triggers the server's
termination process, ending with a call to ProcessEnding().

3. The GameLift service does the following, either in response to receiving the ProcessEnding()
call or after five minutes:

• Uploads game session logs (if any) to Amazon S3.

• Changes the server process status to TERMINATED.

• Recycles instance resources based on the fleet's runtime configuration.

Version
32

Amazon GameLift Developer Guide
GameLift–Game Server/Client Interactions

Amazon GameLift–Game Server/Client Interactions

Version
33

Amazon GameLift Developer Guide
Package a Build

Uploading Your Game to Amazon
GameLift

Before setting up computing resources to host your Amazon GameLift-enabled multiplayer game, you
first need to create a game build and upload it to the GameLift service. A game build includes all the
server executables and dependent files needed to run server processes and host game sessions.
Once you've uploaded a build to GameLift, you can then create a fleet of computing resources to
operate your game.

The topics in this section describe how to package your game build and how to use the AWS CLI tool
to upload it to GameLift.

Tip
You don't need to have a game ready to start experimenting with GameLift. The GameLift
console offers a quick sample setup that gets you up and running with a sample game server
and client in five easy steps. In addition, the GameLift Getting Started tutorials, in text and
video format, walk you through each step in the process of creating and uploading a build,
setting up a fleet, creating game sessions and connecting a client. The tutorials use a sample
multiplayer game, which is included in the Lumberyard download.

Topics

• Package a Build (p. 34)

• Upload a Build (p. 35)

Package a Build
To prepare your Amazon GameLift-enabled game server for uploading to the Amazon GameLift
service for deployment, you need to package all game server files into a build folder. This folder must
include all components required to run your game servers. When deployed, the build will be copied to
each instance in a fleet and used to run your game.

• Game server binaries – The binary files required to run a game server. A build can include binaries
for multiple game servers, as long as they are built to run on the same platform (see supported
platforms (p. 7)).

Version
34

https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/
https://gamedev.amazon.com/forums/tutorials#gamelift

Amazon GameLift Developer Guide
Upload a Build

• Dependencies – Any dependent files required by your game server executables to run. Examples
include assets, configuration files, and dependent libraries.

• Installation instructions – A script file to perform tasks required to configure a fleet instance for the
game. This script is run once, immediately after the build files are copied to the instance. Installation
tasks cannot require any user input. For Windows-based games, create an install batch file named
"install.bat". For Linux games, create a shell script file named "install.sh". These files must
be located at the root of the build folder.

You can use the Amazon Lumberyard Multiplayer project to experiment with creating a build package.
For more information, see the Amazon GameDev tutorials for GameLift.

Upload a Build
Once your game build is packaged (p. 34), use the AWS Command Line Interface (AWS CLI) to
upload the build to the Amazon GameLift service.

To upload your game build

1. Send an upload request. In a command line window, type the following command. Valid values
for the operating-system parameter are WINDOWS_2012 and AMAZON_LINUX. The build
name and version parameters are optional, and can be changed later using the update-build
command.

aws gamelift upload-build --operating-system [supported OS] --build-root
 [build path] --name [user-defined name of build] --build-version [user-
defined build number] --region [region name]

Examples:

aws gamelift upload-build --operating-system AMAZON_LINUX --build-root ~/
mygame --name "My Game Nightly Build" --build-version "build 255" --region
 us-west-2

aws gamelift upload-build --operating-system WINDOWS_2012 --build-root
 "C:\mygame" --name "My Game Nightly Build" --build-version "build 255" --
region us-west-2

Note
Use the --region parameter only if you haven't configured the AWS CLI with a default
region or if you want to specify a different region.

In response to your upload request, the GameLift service returns a unique build ID (such as
build-75bf99cd-2dd8-2039-8074-ab24da1f80e4). Upload time depends on the size of your
game files and the connection speed.

2. Check upload status. Track the progress of your build upload request using either the GameLift
console or the AWS CLI. The AWS CLI command is as follows:

aws gamelift describe-build --build-id [build ID returned with the upload
 request] --region [region name]

Example:
Version

35

https://gamedev.amazon.com/forums/tutorials

Amazon GameLift Developer Guide
Upload a Build

aws gamelift describe-build --build-id "build-75bf99cd-2dd8-2039-8074-
ab24da1f80e4" --region us-west-2

In response to your request, the GameLift service returns a set of metadata about the build,
including status, size of the uploaded files, and a creation time stamp. A build upload in progress
has a status of Initialized and a build size of zero. Once an upload is completed successfully,
it moves to a Ready status. For more information, see DescribeBuild() in the GameLift API
reference.

Once a build reaches a Ready status, you can deploy it with a new GameLift fleet. When you
create a new fleet for the build, GameLift sets up new fleet instances, copies the build files to
each instance, and runs the installation script file (if you included one). Build files are copied to the
following location on the instance:

• For Windows fleets: C:\game

• For Linux fleets: /local/game

To troubleshoot fleet activation problems that might be related to build installation, you can
remotely access a fleet instance for debugging. See Remotely Access Fleet Instances (p. 48).

Version
36

http://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeBuild.html

Amazon GameLift Developer Guide
Choose Computing Resources

Working with Fleets

Amazon GameLift uses the concept of fleets to represent the deployed state of a single server build
across zero or more Amazon Elastic Compute Cloud (Amazon EC2) instances. You can have multiple
fleets per account with the same or different configurations (see AWS service limits on resources per
account). You can delete fleets when you no longer need them. Use the AWS Command Line Interface
(CLI) or the GameLift console to create a fleet.

Tip
You don't need to have a game ready to start experimenting with GameLift. The GameLift
console offers a quick sample setup that gets you up and running with a sample game server
and client in five easy steps. In addition, the GameLift Getting Started tutorials, in text and
video format, walk you through each step in the process of creating and uploading a build,
setting up a fleet, creating game sessions and connecting a client. The tutorials use a sample
multiplayer game, which is included in the Lumberyard download.

Topics

• Choose Computing Resources (p. 37)

• Create a Fleet (p. 38)

• Change Fleet Capacity (p. 41)

• Edit a Fleet (p. 42)

• Delete a Fleet (p. 42)

• Set Up Fleet Autoscaling (p. 43)

• Run Multiple Processes on a Fleet (p. 46)

• Remotely Access Fleet Instances (p. 48)

Choose Computing Resources
Amazon GameLift uses Amazon Elastic Compute Cloud (Amazon EC2) resources to deploy your
game servers and host game sessions for your players. When creating a fleet, you decide what
type of resources to use and how many instances to maintain in the fleet. The more Amazon EC2
instances you have in your fleet, the more game sessions you can run concurrently. Keep in mind
that each instance type has a cost associated with it, and you pay for each instance dedicated to your
fleet. You can increase or decrease the number of instances in a fleet at any time (see Change Fleet
Capacity (p. 41)) but the instance type is fixed once the fleet is created.

When you choose an instance type, you're determining the hardware that will be dedicated to each
instance in the fleet, including computing power, memory, storage, and networking capacity. All

Version
37

http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_gamelift
https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/
https://gamedev.amazon.com/forums/tutorials#gamelift

Amazon GameLift Developer Guide
AWS Service Limits

instances in a fleet use the same instance type, so if you have game servers with different computing
requirements, you need to set up separate fleets.

The platform for a fleet's instances depends on the operating system of the fleet's build (see supported
game server platforms (p. 7)). Learn more about instance types for:

• Microsoft Windows

• Amazon Linux

AWS Service Limits
AWS places limits how many Amazon EC2 instances can be use by an AWS account. Each instance
type has a maximum number allowed per account, and this limit varies by AWS region. Each account
also is limited in the total number of instances used regardless of type of instance. You can access
information on limits in several ways:

• Find general limits for GameLift, as well as all other AWS services on the AWS Service Limits page.

• See limits for a specific region in the GameLift console: Select a region and choose Service limits
from the Amazon GameLift menu. You can also view the total number of instances currently in use in
the region.

• Retrieve the maximum number of instances per AWS account (by region) by using the GameLift API
action DescribeEC2InstanceLimits. This action also returns the number for instances currently active
in the region.

If you need more instances than allowed by AWS service limits, you can request an increase on the
Amazon GameLift Service limits page of the AWS Management Console.

Create a Fleet
You can create a new fleet to host game servers for any game build that has been uploaded to the
Amazon GameLift service and is in a Ready status. Use either the Amazon GameLift console or the
AWS Command Line Interface (p. 11) (CLI) to create a fleet.

Create a Fleet (Console)
To create a fleet with the GameLift console:

1. Open the GameLift console at https://console.aws.amazon.com/gamelift/.

2. On the Builds page, find the build that you want to create a fleet for and verify that its status is
Ready.

3. Select the build (use the option button to the left of the build status) and click Create fleet from
build.

4. On the Create fleet page, complete the Fleet Details section:

• Name – Create a meaningful fleet name so you can easily identify it in a list and in metrics.

• Description – (Optional) Add a short description for your fleet to further aid identification.

• Build – Note that the build information, including name, ID and operating system, is
automatically filled in.

5. Under Instance type, select an Amazon EC2 instance type from the list. Only instance types
matching the selected build's operating system are listed. For help choosing an instance type, see
Choose Computing Resources (p. 37). You cannot change a fleet's instance type once the fleet
is created.

Version
38

http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_gamelift
https://console.aws.amazon.com/gamelift/
http://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeEC2InstanceLimits.html
https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide
Create a Fleet (AWS CLI)

Amazon GameLift provides a free tier with 125 hours of a c3.large instance per month for one
year. To avoid incurring charges in excess of the free tier, you may want to set up billing alerts or
turn on safe scaling for the fleet. For more information, see Free Tier and Billing Alerts (p. 8).

6. Under Capacity allocation, configure the type and number of game server processes to run on
each instance. Each fleet must have one server process configuration defined. Once the fleet is
created, you can edit the fleet to change a fleet's server process configuration.

• Launch path – Type the path to the game executable in your build. All launch paths must start
with the game server location, which varies based on the operating system in use. On Windows
instances, game servers are built to the path C:\game. On Linux instances, game servers are
built to /local/game, so all launch paths must start with this location. Examples: C:\game
\MyGame\server.exe or /local/game/MyGame/server.exe.

• Launch parameters – (Optional) You can pass information to your game executable at launch
time. Type the information as a set of command line parameters here. Example: +sv_port
33435 +start_lobby.

• Concurrent processes – Indicate how many server processes with this configuration to run
concurrently on each instance in the fleet. Check GameLift's limits on number of concurrent
server processes; they depend on which SDK your game server uses.

Click Add configuration to configure another server process. Limits on concurrent server
processes per instance apply to the total of concurrent processes for all configurations. If you're
limited to one process, you can have only one configuration, and concurrent processes must be
set to 1. If you configure the fleet to exceed the limit, the fleet will not be activated.

7. Under Safe scaling policy, turn on this autoscaling policy to ensure that your fleet scales down to
zero instances when there is no activity. Once the fleet is created, you can turn this policy on or off
or set custom autoscaling policies on the fleet's detail page (see the Scaling tab).

8. Under EC2 port settings click Add port settings to define access permissions for inbound traffic
connecting to server processes deployed on this fleet. You can create multiple port settings for a
fleet. At least one port setting must be set for the fleet before any access is allowed. Once the fleet
is created, you can edit the fleet to change a fleet's port settings.

• Port range – Specify a range of port numbers that your game servers can use to allow inbound
connections. A port range must use the format nnnnn[-nnnnn], with values between 1025 and
60000. Example: 1500 or 1500-20000.

• Protocol – Select the type of communication protocol for the fleet to use.

• IP address range – Specify a range of IP addresses valid for instances in this fleet. Use CIDR
notation. Example: 0.0.0.0/0 (This example allows access to anyone trying to connect.)

9. Under Protection policy, choose whether or not to apply game session protection to instances
in this fleet. Instances with protection are not terminated during a scale down event if they are
hosting an active game session with connected players. You can also set protection for individual
game sessions. Once the fleet is created, you can edit the fleet to change the fleet-wide protection
policy.

10. Once you've finished setting the configuration for your new fleet, click Initialize fleet. GameLift
assigns an ID to the new fleet and begins the fleet activation process. You can view the new fleet's
status on the Fleets page. Once the fleet is active, you can change the fleet's capacity (p. 41)
and other configuration settings as needed.

Create a Fleet (AWS CLI)
To create a fleet with the AWS CLI, open a command line window and use the create-fleet
command to define a new fleet. See complete documentation on this command in the AWS CLI
Command Reference. If you haven't yet installed the AWS CLI, see the topic Install the AWS
CLI (p. 11).

Version
39

http://aws.amazon.com//ec2/faqs/#Is_Amazon_EC2_used_in_conjunction_with_Amazon_S3
http://docs.aws.amazon.com/cli/latest/reference/gamelift/create-fleet.html
http://docs.aws.amazon.com/cli/latest/reference/gamelift/create-fleet.html

Amazon GameLift Developer Guide
Debug Fleet Creation Issues

This example creates a new fleet for an uploaded game build in a Ready status. The new fleet uses
The operating system used for the fleet depends on which OS was defined for the game build.

$ aws gamelift create-fleet
--name "Sample test fleet"
--description "The sample test fleet"
--build-id "build-92f061ed-27c9-4a02-b1f4-6f85b2385620"
--ec2-instance-type "c3.large"
--runtime-configuration "ServerProcesses=[{LaunchPath=C:\game\Bin64.dedicated
\MultiplayerProjectLauncher_Server.exe,Parameters=+sv_port 33435
 +start_lobby,ConcurrentExecutions=1}]"
--new-game-session-protection-policy "FullProtection"
--ec2-inbound-permissions
 "FromPort=33435,ToPort=33435,IpRange=0.0.0.0/0,Protocol=UDP"
 "FromPort=33235,ToPort=33235,IpRange=0.0.0.0/0,Protocol=UDP"

If the create-fleet request is successful, GameLift returns a set of fleet attributes that includes the
configuration settings you requested and a new fleet ID. GameLift immediately initiates the fleet
activation process and sets the fleet status to New. You can track the fleet's status and view other fleet
information using these CLI commands:

• describe-fleet-attributes

• describe-fleet-capacity

• describe-fleet-port-settings

• describe-fleet-utilization

• describe-runtime-configuration

Once the fleet is active, you can change the fleet's capacity and other configuration settings as needed
using these commands:

• update-fleet-attributes

• update-fleet-capacity

• update-fleet-port-settings

• update-runtime-configuration

Debug Fleet Creation Issues
Understanding how GameLift sets up a new fleet can help you resolve fleet activation errors.

When a new fleet is created, the GameLift service prepares to build the fleet, passing through a
series of statuses. Problems occurring during this stage will cause the fleet status to move to Error
with meaningful error messaging (for example, an incorrect build path or a service error). Once the
preparation stage is complete, GameLift moves the fleet status to Activating.

To activate the new fleet, GameLift starts a new instance and attempts to deploy the build to it: copying
build files, running an installation script, and launching server processes (as defined in the run-time
configuration). Each server process launched on an instance must report to the GameLift service
when it is ready to host a game session. Once a server process notifies GameLift that it is ready, the
instance status moves to Active, which in turn moves the fleet status to Active.

The most common problem that game developers experience when creating a new fleet is having a
fleet get stuck in an Activating status. Common reasons that a fleet might fail to activate are described
below.

Version
40

http://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-attributes.html
http://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-capacity.html
http://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-port-settings.html
http://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-utilization.html
http://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-runtime-configuration.html
http://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-attributes.html
http://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-capacity.html
http://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-port-settings.html
http://docs.aws.amazon.com/cli/latest/reference/gamelift/update-runtime-configuration.html

Amazon GameLift Developer Guide
Change Fleet Capacity

• Server processes start but fail quickly or report poor health. Other than issues with your game
build, this outcome can happen when trying to run too many server processes simultaneously on the
instance. The optimum number of concurrent processes depends on both the instance type and your
game server's resource requirements. Try reducing the number of concurrent processes, which is set
in the fleet's runtime configuration, to see if performance improves. You can change a fleet's runtime
configuration using either the GameLift console (edit the fleet's capacity allocation settings) or by
calling the AWS CLI command update-runtime-configuration.

Server processes fail to start. Assuming there are no issues with your game build and installation
script (if you provided one), check that you've correctly set the launch path and optional parameters
in the fleet's runtime configuration. You can view the fleet's current run-time configuration using
either the GameLift console (see the Fleet detail page, Capacity Allocation tab (p. 59)) or by
calling the AWS CLI command describe-runtime-configuration.

• Server processes start but fleet fails to activate. If server processes start and continue to run
successfully, but the fleet does not move to Active status, a likely cause is that the server process
is failing to notify GameLift that it is ready to host game sessions. Check that your game server is
correctly calling the Server API action ProcessReady() (see Prepare a Server Process (p. 13)).

For additional troubleshooting, you can also remotely access a fleet instance. See Remotely Access
Fleet Instances (p. 48).

Change Fleet Capacity
You can change a fleet's capacity as needed (within the service limits) as long as the fleet's status is
Active. When you create a new fleet, GameLift automatically sets the capacity to 1, which allows it to
start one new instance of your game server. You can make these changes from either the Amazon
GameLift console or the AWS CLI.

Once you change the fleet's desired capacity, GameLift immediately takes action to make the number
of active instances match desired instances by creating new instances (scaling up) or terminating
existing ones (scaling down).

To change capacity (console)

1. Open the GameLift console at https://console.aws.amazon.com/gamelift/.

2. On the Fleets page, click the name of an active fleet you want to change capacity for. This opens
the fleet's detail page. You can also access a fleet's detail page via the Dashboard.

3. Click Scaling. This tab contains information about current and historical fleet capacity. Under
Scaling Limits, there are several editable values, including Desired. This value tells GameLift
how many active instances to maintain in the fleet and make available to host game sessions. To
change the fleet's capacity, click on the Desired value, edit it, and then click the check mark to
save your change.

Once you change the Desired value, you should start to see the number of Active instances
(shown on the Scaling tab under Instance Counts), change to match the new desired value. This
process can take time, depending on a number of circumstances.

To change capacity (AWS CLI)

• In a command line window, type the update-fleet-capacity command with the following
parameters:

--fleet-id <unique fleet identifier>
--desired-instances <fleet capacity as an integer>

Version
41

http://docs.aws.amazon.com/cli/latest/reference/gamelift/update-runtime-configuration.html
http://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-runtime-configuration.html
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_gamelift
https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide
Edit a Fleet

--max-size <maximum capacity for autoscaling> [Optional]
--min-size <minimum capacity for autoscaling> [Optional]

Example:

aws gamelift update-fleet-capacity
--fleet-id fleet-eead767f-acb4-4c2a-9280-a3c523cbe50f
--desired-capacity 5
--max-size 10
--min-size 1

Edit a Fleet
Use the Edit fleet page in the Amazon GameLift console to update the name, description, server
process configuration, and inbound access permissions for your fleet.

Note
If your build has been deleted or an error has occurred while attempting to retrieve your build,
you may see one of the following Build statuses:

• Deleted – The build for this fleet was deleted. Your fleet will still run properly despite the
build having been deleted.

• Error – An error occurred while attempting to retrieve build information for the fleet.

To edit a fleet

1. Open the GameLift console at https://console.aws.amazon.com/gamelift/.

2. Choose Fleets from the menu bar.

3. On the Fleets page, click the name of the fleet you want to edit.

Note
You can only edit an active fleet.

4. On the selected fleet page, for Actions, choose Edit fleet.

5. On the Edit fleet page, you can edit the following:

• Name – Friendly name for your fleet

• Description – (Optional) Short description for your fleet

• Capacity allocation – Configuration of server process(es) to be run on each instance in the
fleet

• Amazon EC2 port settings – Port range, protocol, and IP address ranges to allow inbound port
settings

6. Click Submit.

Delete a Fleet
In the process of testing or running multiple versions of your game, you might create dozens of fleets
that eventually become unnecessary to maintain. You can delete fleets that you no longer need.
Deleting a fleet also permanently removes associated game sessions and collected data.

Note
You can delete a fleet only after you have scaled it down to 0. Set the desired number of EC2
instances to 0 and then wait for the scaled down state to take effect before you delete the
fleet.

Version
42

https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide
Set Up Autoscaling

To delete a fleet

1. In the Amazon GameLift console, choose Fleets from the menu bar.

2. On the Fleets page, select the fleet you want to delete.

3. On the selected fleet page, for Actions, choose Terminate fleet.

4. In the Terminate fleet dialog box, confirm the deletion by typing the name of the fleet.

5. Click Delete.

Set Up Fleet Autoscaling
Use autoscaling to have Amazon GameLift automatically scale your fleet capacity in response to
activity on your game servers. This topic provides help with creating an autoscaling policy and offers
tips on configuring your fleet to optimize the benefits of autoscaling. For more information on how
autoscaling works, see the Autoscaling (p. 4) section in "How Amazon GameLift Works" overview.

To activate Amazon GameLift's autoscaling feature for a fleet, define one or more autoscaling policies.
The Amazon GameLift console offers a simple tool for creating, updating, and viewing your autoscaling
policies. You can also manage your policies using the AWS Command Line Interface (CLI).

Set Autoscaling with the Console
1. Sign in to the AWS Management Console and open the GameLift console at https://

console.aws.amazon.com/gamelift/.

2. On the Fleets page, click the name of the fleet you want to set an autoscaling policy for. This
opens the fleet's detail page.

3. Click Scaling. This tab contains information about current and historical fleet capacity as well as
options for creating and updating fleet autoscaling policies.

4. Click Add Policy to start a new policy statement. Type a policy name that is unique to this fleet.

5. Create your policy statement by setting the policy parameters. For help setting parameters, see
Create an Autoscaling Policy Statement (p. 44). When done, click the check mark icon to save
the policy. Once saved, GameLift starts evaluating metric data for against the policy within about
ten minutes.

For example, the following policy statement ensures that fleet capacity will always be increased if
the number of idle instances (instances waiting to host a game session) drops below two for longer
than 10 minutes: "If Idle Instances are < 2 for 10 minutes, then scale up by 1 instance".

Version
43

https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide
Set Autoscaling with the AWS CLI

6. When using autoscaling, you should set minimum and maximum capacity limits. In the fleet's
Scaling tab, under Scaling Limits, edit the Minimum and Maximum values.

Set Autoscaling with the AWS CLI
1. In a command line window, type the put-scaling-policy command with the following

parameters. For help setting parameters, see Create an Autoscaling Policy Statement (p. 44).

--fleet-id <unique fleet identifier>
--name "<unique policy name>"
--metric-name <name of metric>
--comparison-operator <comparison operator>
--threshold <threshold integer value>
--evaluation-periods <number of minutes>
--scaling-adjustment-type <adjustment type>
--scaling-adjustment <adjustment amount>

Example:

aws gamelift put-scaling-policy
--fleet-id fleet-eead767f-acb4-4c2a-9280-a3c523cbe50f
--name "scale up when available player sessions is low"
--metric-name AvailablePlayerSessions
--comparison-operator LessThanThreshold
--threshold 50
--evaluation-periods 10
--scaling-adjustment-type ChangeInCapacity
--scaling-adjustment 1

2. When using autoscaling, you should set minimum and maximum capacity limits. Type the
update-fleet-capacity command with the following parameters:

--fleet-id <unique fleet identifier>
--min-size <minimum capacity for autoscaling>
--max-size <maximum capacity for autoscaling>

Example:

aws gamelift update-fleet-capacity
--fleet-id fleet-eead767f-acb4-4c2a-9280-a3c523cbe50f
--min-size 1
--max-size 10

Create an Autoscaling Policy Statement
An autoscaling policy for a fleet makes the following statement: "If a fleet metric meets or crosses a
threshold value for a certain length of time, then change the fleet's capacity by a certain amount."

To construct an autoscaling policy statement, you must specify six key variables:

If <metric name> remains at <comparison operator> <threshold value> for
<evaluation period>, then change fleet capacity using <adjustment type> to/
by <adjustment value>.

Version
44

Amazon GameLift Developer Guide
Create an Autoscaling Policy Statement

For example:

If AvailablePlayerSessions remains at less than 50 for 60 minutes, then
change fleet capacity using ChangeInCapacity by 1 instance.

Metric name
Metrics track some type of activity in your game servers. Each minute, GameLift collects a
heartbeat from every instance, game session, and player session in the fleet. This data, in
aggregate, represents the metric data that autoscaling uses to trigger an increase or decrease in
capacity. An autoscaling policy can be linked to one of six possible metrics:

• AvailablePlayerSessions – Number of player session slots currently available in active
game sessions across the fleet (including player slots in game sessions that are not currently
accepting players). This metric is useful for measuring how close the fleet is to maximum or
minimum capacity.

• IdleInstances – Number of instances in the fleet ready and waiting to host new game sessions.
This metric helps track how quickly a fleet can get new players connected to a game if demand
spikes.

• ActiveGameSessions – Number of active game sessions currently running.

• CurrentPlayerSessions – Number of active or reserved player sessions in the fleet.

• ActiveInstances – Number of instances currently running a game session (this is currently the
same as ActiveGameSessions).

• ActivatingGameSessions – Number of game sessions in the process of being created.

Comparison operator
This variable tells GameLift how to compare the metric data against the threshold. Valid
comparison operators include greater than (>), less than (<), greater than or equal (>=) or less
than or equal (<=).

Threshold value
Threshold value is used to trigger scaling events when the metric value meets or crosses it. This
value is always a positive integer. Depending on the metric selected, it indicates an amount of
player sessions, game sessions, or instances.

Evaluation period
To trigger a scaling event, the metric must meet or cross the threshold for the entire length of an
evaluation period. If the metric retreats from the threshold, the evaluation period starts over again.

Adjustment type & value
This set of variables works together to specify how you want GameLift to adjust fleet capacity
when this policy triggers a scaling event. An autoscaling policy can make any of three types of
adjustments:

• Change in capacity – Increase or decrease current capacity by a specified number of
instances. Set the adjustment value to the number of instances to add or subtract from the fleet.

• Percent change in capacity – Increase or decrease current capacity by a specified percentage.
Set the adjustment value to the percentage you want to increase or decrease the fleet by.
For example, with an adjustment value of 15 percent, a 20-instance fleet is reduced by three
instances.

• Exact capacity – Set capacity to a specified size. Set the adjustment value to the exact number
of instances you want in the fleet.

Note
If you're using the AWS CLI or the AWS SDK for GameLift, use positive adjustment values to
scale up and negative values to scale down. If you're using the Amazon GameLift console,
choose the scale up by or scale down by options.

Version
45

Amazon GameLift Developer Guide
Tips on Autoscaling

Tips on Autoscaling
The following suggestions can help you get the most out of autoscaling.

Use multiple policies

You can have multiple autoscaling policies in force for a fleet at the same time. The most common
scenario is to have one policy to manage scaling up and one to manage scaling down. However, there
are no limits on combining policies.

Multiple policies behave independently. Keep in mind that there is no way to control the sequence of
scaling events. For example, if you have multiple policies driving scaling up, it is possible that player
activity could trigger multiple scaling events simultaneously. For example, the effects of two scale up
policies can easily be compounded if it is possible for player activity to trigger both metrics. Also watch
for policies that trigger each other. For example, you can create an infinite loop if you create scale up
and scale down policies that sets capacity beyond the threshold of each other.

Set maximum and minimum capacity

Each fleet has a maximum and minimum capacity setting. This feature is particularly important when
using autoscaling. Autoscaling will never set capacity to a value outside of this range. By default, newly
created fleets have a minimum of 0 and a maximum of 1. For your autoscaling policy to affect capacity
as intended, you must increase the maximum value.

Fleet capacity is also constrained by limits on the fleet's instance type and on your AWS account. You
cannot set a minimum and maximum that is outside the service and account limits.

Track metrics after a change in capacity

After changing capacity in response to an autoscaling policy, GameLift waits ten minutes before
responding to triggers from that policy. This wait allows GameLift time to add the new instances, launch
the game servers, connect players, and start collecting data from the new instances. During this time,
GameLift continues to evaluate the policy against the metric and track the evaluation period, which
restarts once a scaling event is triggered. This means that a scaling policy could trigger another scaling
event immediately after the wait time is over.

There is no wait time between scaling events triggered by different autoscaling policies.

Run Multiple Processes on a Fleet
This topic provides additional information on how multiple processes per instance are managed on a
fleet and how you can make use of this feature for your games. Depending on how you configure your
fleet, running multiple processes gives you greater control over how efficiently you use your Amazon
GameLift resources, which can potentially reduce overall operating costs for your game.

Optimizing for Multiple Processes
At a minimum, you must do the following to enable multiple processes:

• Create a build (p. 34) that contains all of the game server executables that you want to deploy to a
fleet and upload it to GameLift. All game servers in a build must run on the same platform and be
integrated with GameLift using the GameLift Server SDK for C++, version 3.0.7 or later.

Version
46

Amazon GameLift Developer Guide
How a Fleet Manages Multiple Processes

• Create a run-time configuration with one or more server process configurations and multiple
concurrent processes.

• Game clients connecting to games hosted on this fleet must be integrated using the AWS SDK,
version 2016-08-04 or later.

In addition, implement the following in your game servers to optimize fleet performance:

• Handle server process shutdown scenarios to ensure that GameLift can recycle processes
efficiently. If you don't do this, server processes can't be shut down until they fail.

• Add a shutdown procedure to your game server code, ending with the server API call to
ProcessEnding().

• Implement the callback function OnProcessTerminate() in your game server code to gracefully
handle termination requests from GameLift.

• Make sure that "unhealthy" server processes are shut down and relaunched quickly by defining
what "healthy" and "unhealthy" mean and reporting this status back to GameLift. You do this
by implementing the OnHealthCheck() callback function in your game server code. GameLift
automatically shuts down server processes that are reported unhealthy for three consecutive
minutes. If you don't implement OnHealthCheck(), GameLift assumes a server process is healthy
unless it fails to respond. As a result, poorly performing server processes can continue to exist, using
up resources until they finally fail.

How a Fleet Manages Multiple Processes
Amazon GameLift uses a fleet run-time configuration to manage what processes to maintain on each
instance in the fleet. A run-time configuration is actually made up of one or multiple server process
configurations, each of which identifies the following:

• The path and file name of a server executable in the game build deployed on the fleet

• (Optional) Parameters to pass to the server process on launch

• The number of this server process to maintain concurrently on the instance

When an instance is started in the fleet, the instance immediately begins launching server processes
called for in the run-time configuration. Server process launches on an instance are staggered by a few
seconds, so depending on the total number of server processes configured for an instance, it may take
a few minutes to achieve full capacity.

Over time, server processes end, either by self-terminating (calling the Server SDK
ProcessEnding()) or by being terminated by GameLift. An instance regularly checks that it is running
the number and type of server processes specified in the run-time configuration. If not, the instance
automatically launches server processes as needed to meet the run-time configuration requirements.
As a result, as server processes end, their resources are continually recycled to support new server
processes, and instances generally maintain the expected complement of active server processes.

You can change a fleet's run-time configuration at any time by adding, changing, or removing server
process configurations. Here's how GameLift adopts run-time configuration changes.

1. Before an instance checks that it is running the correct type and number of server processes, it first
requests the latest version of the fleet's run-time configuration from the GameLift service. If you've
changed the run-time configuration, the instance acquires the new version and implements it.

2. The instance checks its active processes against the current run-time configuration and handles
discrepancies as follows:

• The updated run-time configuration removes a server process type. Active server processes that
no longer match the run-time configuration continue to run until they end.

Version
47

Amazon GameLift Developer Guide
Choosing the Number of Processes per Instance

• The updated run-time configuration decreases the number of concurrent processes for a server
process type. Excess server processes of that type continue to run until they end.

• The updated run-time configuration adds a new server process type or increases the concurrent
processes setting for an existing type. New server processes are launched immediately to
match the updated run-time configuration, unless the instance is already running the maximum
number of server processes. In this case, new server processes are launched only when existing
processes end.

Choosing the Number of Processes per Instance
There are effectively three limits to keep in mind when determining the number of concurrent
processes:

• GameLift limits each instance to a maximum number of concurrent processes. Whether your run-
time configuration has one or multiple server process configurations specified , the sum of all
concurrent processes for each server process configuration can't exceed this limit.

• The Amazon EC2 instance type that you choose may limit the number of processes that can be
effectively run concurrently. You need to balance the number of processes against the instance
type size and test different configurations. Key factors include the resource requirements of the
game servers, the number of players to be hosted in each game session, and your performance
expectations.

• The total number of concurrent processes never exceeds the total number specified in the current
run-time configuration. This limit comes into play when you change your run-time configuration,
and ensures that an instance doesn't launch a new set of server processes while the old processes
are still running, potentially overtaxing the instance's resources. Instead, GameLift only starts new
processes when old processes end. Here's an example: An instance is running 10 concurrent
processes of the server executable mygamev1.exe. You update the fleet's run-time configuration
to run 10 concurrent processes of the server executable mygamev2.exe. This means that
the maximum number of concurrent processes on an instance remains at 10. As a result, no
mygamev2.exe processes are launched until a mygamev1.exe process ends.

Remotely Access Fleet Instances
You can remotely access any fleet instance that is currently running in an Amazon GameLift fleet. This
capability is useful for troubleshooting fleet activation issues. You can also use this feature to get real-
time game server activity, such as track log updates or run benchmarking tools using actual player
traffic.

When remotely accessing individual Amazon GameLift instances, keep the following in mind:

• The GameLift service continues to manage fleet activity and capacity. Establishing a remote
connection to an instance does not affect how GameLift manages it in any way. As a result, the
instance continues to execute the fleet runtime configuration, stop and start server processes, create
and terminate game sessions, and allow player connections. In addition, the GameLift service may
terminate the instance at any time as part of a scale down event.

• Making local changes to an instance that is hosting active game sessions and has live players
connected may significantly affect player experience. For example, your local changes have the
potential to drop individual players, crash game sessions or even shut down the entire instance with
multiple game sessions and players affected.

For more information on how games are deployed and managed on Amazon GameLift instances, see
the following topics:

Version
48

http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_gamelift

Amazon GameLift Developer Guide
Connect to an Instance

• How Amazon GameLift Works (p. 2)

• Debug Fleet Creation Issues (p. 40)

• How a Fleet Manages Multiple Processes (p. 47)

Connect to an Instance
You can access remote instances that are running either Windows or Linux. To connect to a Windows
instance, use a remote desktop protocol (RDP) client. To connect to a Linux instance, use an SSH
client.

Use the AWS CLI get the information you need to access a remote instance. For help, see the AWS
CLI Command Reference. If you haven't yet installed the AWS CLI, see the topic Install the AWS
CLI (p. 11).

1. Find the ID of the instance you want to connect to. When requesting access, you must specify
an instance ID. You can get information on all fleet instances using the command describe-
instances with a fleet ID. This example retrieves the first three instances in a fleet:

$ aws gamelift describe-instances
 --fleet-id "fleet-a7abc071-5537-4f0f-b5ee-1b5c1187565f"
 --limit 3

2. Request access credentials for the instance. Once you have an instance ID, use the command
get-instance-access to request access credentials and other information. If successful,
GameLift returns the instance's operating system, IP address, and a set of credentials (user
name and secret key). The credentials format depends on the instance operating system. Use the
following instructions to retrieve credentials for either RDP or SSH.

For Windows instances – To connect to a Windows instance, RDP requires a user name and
password. The get-instance-access request returns these values as simple strings, so you
can use the returned values as is. Example:

$ aws gamelift get-instance-access
 --fleet-id "fleet-a7abc071-5537-4f0f-b5ee-1b5c1187565f"
 --instance-id "i-01463992e435d836c"

For Linux instances – To connect to a Linux instance, SSH requires a user name and private
key. GameLift issues RSA private keys and returns them as a single string, with the newline
character (\n) indicating line breaks. To make the private key usable, you must (1) convert the
string to a .pem file, and (2) set permissions for the new file.

• To convert the string to a properly formatted .pem file, add special parameters to your get-
instance-access request, as shown in the example below. This example automatically
outputs the returned value of Secret to a text file named MyPrivateKey.pem, and replaces all
the \n characters with line breaks.

$ aws gamelift get-instance-access
 --fleet-id "fleet-a7abc071-5537-4f0f-b5ee-1b5c1187565f"
 --instance-id "i-01463992e435d836c"
 --query 'InstanceAccess.Credentials.Secret'
 --output text > MyPrivateKey.pem

• To set permissions on the new file, run the following command

$ chmod 400 MyPrivateKey.pem

Version
49

http://docs.aws.amazon.com/cli/latest/reference/gamelift/
http://docs.aws.amazon.com/cli/latest/reference/gamelift/
http://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-instances.html
http://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-instances.html
http://docs.aws.amazon.com/cli/latest/reference/gamelift/get-instance-access.html

Amazon GameLift Developer Guide
View and Update Remote Instances

3. Open a port for the remote connection. Instances in GameLift fleets can only be accessed
through ports authorized in the fleet configuration. You can view a fleet's port settings using the
command describe-fleet-port-settings.

As a best practice, we recommend opening ports for remote access only when you need them and
closing them when you're finished. Use the command update-fleet-port-settings to add
a port setting for the remote connection (such as 22 for SSH or 3389 for RDP). For the IP range
value, specify the IP addresses for the devices you plan to use to connect (converted to CIDR
format). Example:

$ aws gamelift update-fleet-port-settings
 --fleet-id "fleet-a7abc071-5537-4f0f-b5ee-1b5c1187565f"
 --inbound-permission-authorizations
 "FromPort=22,ToPort=22,IpRange=54.186.139.221/32,Protocol=TCP"

4. Open a remote connection client. Use Remote Desktop for Windows or SSH for Linux
instances. Connect to the instance using the IP address, port setting, and access credentials.

View and Update Remote Instances
When connected to an instance remotely, you have full user and administrative access. This means
you also have the ability to cause errors and failures in game hosting. If the instance is hosting games
with active players, you run the risk of crashing game sessions and dropping players, as well as
disrupting game shutdown processes and causing errors in saved game data and logs.

Hosting resources on an instance can be found in the following locations:

• Game build files. These are the files included in the game build you uploaded to GameLift. They
include one or more game server executables, assets and dependencies. These files are located in
a root directory called game:

• On Windows: c:\game

• On Linux: /local/game

• Game log files. Any log files your game server generates are stored in the game root directory at
whatever directory path you designated.

• GameLift hosting resources. Files used by the GameLift service to manage game hosting are
located in a root directory called Whitewater. These files should not be changed for any reason.

• Runtime configuration. The fleet runtime configuration is not accessible for individual instances.
To test changes to a runtime configuration (launch path, launch parameters, maximum number of
concurrent processes), you must update the fleet-wide runtime configuration (see the AWS SDK
action UpdateRuntimeConfiguration or the AWS CLI update-runtime-configuration).

Version
50

http://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-fleet-port-settings.html
http://docs.aws.amazon.com/cli/latest/reference/gamelift/update-fleet-port-settings.html
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing#CIDR_notation
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing#CIDR_notation
http://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateRuntimeConfiguration.html
http://docs.aws.amazon.com/cli/latest/reference/gamelift/update-runtime-configuration.html

Amazon GameLift Developer Guide
Create an Alias

Working with Aliases

Amazon GameLift uses the term alias to refer to the redirecting of player sessions to a fleet that you
specify. You can use aliases to direct player sessions to fleets that you're testing for launch or to
support multiple game client sessions.

Amazon GameLift uses the term alias to refer to the redirect connection between a fleet and players.
You can decide which fleet you want an alias to resolve to, and you can embed the alias ID into your
game client to control the flow of players to the designated fleet.

There are two types of routing strategies for aliases:

• Simple – A simple alias routes player traffic to the associated fleet. You can update the fleet to
which the alias resolves at any time.

• Terminal – A terminal alias does not resolve to a fleet. Instead, it passes a message back to the
client. For example, you may want to notify players to upgrade their game client versions if they are
attempting to connect to a fleet that is no longer supported.

Create an Alias
You can create a new alias to resolve to a fleet.

To create a new alias

1. Open the GameLift console at https://console.aws.amazon.com/gamelift/.

2. Choose Aliases from the menu bar.

3. On the Aliases page, click Create alias.

4. On the Create alias page, in the Alias details section, do the following:

• Alias name – Type a friendly name so you can easily identify the alias in the catalog.

• Description – (Optional) Type a short description for your alias to add further identification.

5. In the Routing options section, for Type, choose Simple or Terminal:

• If you choose Simple, select an available fleet to associate with your alias. A simple alias routes
player traffic to the associated fleet.

• If you select Terminal, type a message that will be displayed to players. A terminal alias does
not resolve to a fleet but only passes your message to the client.

6. Click Configure alias.

Version
51

https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide
Edit an Alias

Edit an Alias
Use the Edit alias page in the Amazon GameLift console to update the information for your alias.

To edit an alias

1. Open the GameLift console at https://console.aws.amazon.com/gamelift/.

2. Choose Aliases from the menu bar.

3. On the Aliases page, click the name of the alias you want to edit.

4. On the selected alias page, for Actions, choose Edit alias.

5. On the Edit alias page, you can edit the following:

• Alias name – Friendly name for your alias.

• Description – Short description for your alias.

• Type – Routing strategy for player traffic. Select Simple to change the associated fleet or select
Terminal to edit the termination message.

6. Click Submit.

Version
52

https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide
View Your Current GameLift Status

Viewing Your Game Data in the
Console

Amazon GameLift continually collects data for active games to help you understand player behavior
and performance. With the Amazon GameLift console, you can view, manage, and analyze this
information for your builds, fleets, game sessions, and player sessions.

Topics

• View Your Current Amazon GameLift Status (p. 53)

• View Your Builds (p. 54)

• View Your Fleets (p. 55)

• View Fleet Details (p. 55)

• View Data on Game and Player Sessions (p. 60)

• View Your Aliases (p. 61)

View Your Current Amazon GameLift Status
The Dashboard provides a grid view showing the following:

• Uploaded builds

• Created fleets in all statuses

• Created aliases and the fleets they point to (if any)

To open the GameLift dashboard

• In the GameLift console, choose Dashboard from the menu bar.

From the dashboard you can take the following actions:

• Create a new fleet or alias.

• View relationships among items. Click anywhere inside an item box to show the relationships
between that item and others on the dashboard. For example, click a build to display all fleets that
were created with that build. Click a fleet to see the build it was created with and the alias it points to.
To reset the dashboard, click the Reset overview button.

• View details on a build, fleet, or alias. Click the ID number for a item to open the details page.

Version
53

https://console.aws.amazon.com/gamelift/

Amazon GameLift Developer Guide
View Your Builds

View Your Builds
You can view information about all the game server builds you have uploaded to Amazon GameLift
and take actions on them. Builds shown include only those uploaded for the selected region.

Build Catalog
Uploaded builds are shown on the Builds page. To view this page, choose Builds from the GameLift
console menu bar.

The Builds page provides the following summary information for all builds:

• Status – Displays one of three possible status messages:

• Initialized – The build has been created, but the upload has not yet started or the upload is still in
progress.

• Ready – The build has been successfully received and is ready for fleet creation.

• Failed – The build timed out before the binaries were received.

• Build name – Name associated with the uploaded build. A build name is provided when uploading
the build to GameLift, and can be changed using the AWS SDK action UpdateBuild.

• Build ID – Unique ID assigned to the build on upload.

• Version – Version label associated with the uploaded build. A build name is provided when
uploading the build to GameLift, and can be changed using the AWS SDK action UpdateBuild.

• OS – Operating system that the build runs on. The build OS determines what operating system is
installed on a fleet's instances.

• Size – Size, in megabytes (MB) of the build file uploaded to GameLift.

• Date created – Date and time that the build was uploaded to GameLift.

• Fleets – Number of fleets currently deployed with this build.

Version
54

http://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateBuild.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateBuild.html

Amazon GameLift Developer Guide
Build Detail

From this page you can do any of the following:

• Create a new fleet from a build. Select a build and click Create fleet from build.

• Delete a fleet. Select a build and click Delete build.

• Filter and sort the build list. Use the controls at the top of the table.

• View build details. Click a build name to open the build detail page.

Build Detail
Access a build's detail page from either the console dashboard or the Builds page by clicking the build
name. The Build detail page displays the same build summary information as the Builds page. It also
shows a list of fleets created with the build. This list is essentially the fleets catalog, filtered by build. It
includes the same summary information as the Fleets page (p. 55).

View Your Fleets
You can view information on all the fleets created to host your games on Amazon GameLift under
your AWS account. Fleets shown include only those created in the selected region. From the Fleets
page, you can create a new fleet or view additional detail on one selected fleet. A Fleet detail page
contains usage information and metrics; it also lets you view and edit fleet configuration settings, create
or remove the fleet, and access the fleet's game session and player session data.

To view the Fleets page, choose Fleets from the GameLift console's menu bar.

The Fleets page displays the following summary information:

• Status – The status of the fleet, which can be one of these states: New, Downloading, Building,
and Active. A fleet must be in Active status to be able to host game sessions and allow player
connections.

• Fleet name – Friendly name given to the fleet.

• EC2 type – The Amazon EC2 instance type, which determines the computing capacity of fleet's
instances.

• OS – Operating system on each instances in the fleet. A fleet's OS is determined by the build
deployed to it.

• Active – The number of EC2 instances in use for the fleet.

• Desired – The number of EC2 instances GameLift should maintain in the fleet. This value is
configurable (within service limits). GameLift starts or terminates instances as needed to maintain
the desired number of instances.

• Active game sessions – The number of game sessions currently running in the fleet. The data is
delayed five minutes.

• Player sessions – The number of players connected to game sessions in the fleet. The data is
delayed five minutes.

• Uptime – The total length of time the fleet has been running.

• Date created – The date and time the fleet was created.

View Fleet Details
You can access detailed information on any fleet, including configuration settings, scaling settings,
metrics, and game and player data. Access a Fleet detail page from either the console dashboard or
the Fleets page by clicking the fleet name.

Version
55

Amazon GameLift Developer Guide
Summary

The fleet detail page displays a summary table and tabs containing additional information. On this page
you can do the following:

• Update the fleet's metadata and run-time configuration. Choose Actions: Edit fleet.

• Change fleet capacity settings. On the Scaling page, edit values from Minimum, Maximum, and
Desired instances.

• Set or change autoscaling policies. On the Scaling page, add or edit a policy.

• Shut down a fleet. Choose Actions: Terminate fleet.

Summary
The summary table includes the following information:

• Status – Current status of the fleet, which may be New, Downloading, Building, and Active. A
fleet must be active before it can host game sessions or accept player connections.

• Fleet ID – Unique identifier assigned to the fleet.

• EC2 type – Amazon EC2 instance type selected for the fleet when it was created. A fleet's instance
type specifies the computing hardware and capacity used for each instance in the fleet and
determines the instance limits for the fleet.

• OS – Operating system on each instances in the fleet. A fleet's OS is determined by the build
deployed to it.

• Active instances – Number of instances currently in an Active status in the fleet.

• Active servers – Number of server processes currently in an Active status in the fleet. The data has
a five-minute delay.

• Active game sessions – Number of game sessions currently running on instances in the fleet. The
data has a five-minute delay.

• Current player sessions – Number of players currently connected along with the total number of
player slots in active game sessions across the fleet. For example: 25 (connected players) of 100
(possible players) means the fleet can support 75 additional players. The data has a five-minute
delay.

• Protection – Current setting for game session protection (p. 3) for the fleet.

Uptime – Total length of time the fleet has been active.

• Date created – Date and time indicating when the fleet was created.

Metrics
The Metrics tab shows a graphical representation of fleet metrics over time.

To display metrics information in the graph

1. Click one or more metric name to the left of the graph area to add it to the graph display. Metric
names that are turned off are gray. Use the color key to identify which graphed line matches a
selected metric. The following metrics are available:

• Game – These metrics show utilization of the fleet's capacity over time.

• Available player sessions – Number of unused player slots in active game sessions across
the fleet. This number includes open slots in all game sessions regardless of whether or not
the game is currently accepting new players.

• Current player sessions – Number of players currently connected to active game sessions
across the fleet.

Version
56

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

Amazon GameLift Developer Guide
Events

• Player session activations – Number of players joining an active game session. This metric
is useful for tracking how the influx of new players changes over time.

• Active game sessions – Number of game sessions currently running across the fleet.

• Activating game sessions – Number of new game sessions in an ACTIVATING status
across the fleet. Game sessions cannot accept player connections until they are active.

• Server processes – These metrics track the status and health of server processes across the
fleet. The GameLift service regularly polls each active server process for its health.

• Active – Number of server processes in an ACTIVE status. Active server processes are able
to host game sessions.

• Healthy – Number of active server processes that reported healthy in the last health check.

• Percent healthy – Percentage of active server processes that reported healthy in the last
health check.

• Activations – Number of new server processes in an ACTIVATING status across the fleet.
Server processes cannot host a game session until they are active.

• Terminations – Number of server processes that were shut down. This metric includes all
process terminations regardless of reason.

• Abnormal Terminations – Number of server processes did not terminate cleanly; that is, the
server process did not call ProcessEnding() (p. 19) and terminate with a zero exit code.

• Hardware – These metrics reflect utilization of the fleet's computing resources. CPU utilization
is expressed as a percentage.

2. Use the following filters, shown above the graph area, to change how metric data is displayed:

• Data & Period – Offers two options for selecting a date range:

• Use Relative to select a period of time relative to the current time, such as Last hour, Last
day, Last week.

• Use Absolute to specify a period with an arbitrary start and end date/time.

• Granularity – Select a length of time to aggregate data points.

• Refresh rate – Select how often you want the graph display to be updated.

• Format – Select which time format to use in the graph display: UTC (universal coordinated time)
or Local.

• Show Points – Toggle on or off to display discrete data points (as circles) or display lines only.

Events
The Events tab provides a log of all events that have occurred on the fleet, including the event code,
message, and time stamp.

Scaling
The Scaling tab contains information related to fleet capacity, including the current status and a
graphical representation of capacity changes over time. It also provides tools to update capacity limits
and manage autoscaling.

To view current and historical scaling information

1. Go to the top of the Scaling tab. To view the current capacity status for this fleet, look at the
scaling values at the left. These values are defined as follows:

• Scaling Limits – These metrics track the history of changes to capacity limits.

• Minimum – Hard lower limit on the number of instances to maintain in the fleet. Fleet capacity
will not drop below the current minimum during autoscaling or even if desired capacity is set
below the minimum.

Version
57

Amazon GameLift Developer Guide
Scaling

• Desired – The number of active instances currently wanted in the fleet. GameLift's goal
is to make the number of Active instances (explained later) match the number of desired
instances; it achieves this by creating or terminating instances as needed.

• Maximum – Hard upper limit on the number of instances to maintain in the fleet. Fleet
capacity will not exceed the current maximum during autoscaling or if desired capacity is set
above the maximum.

• Instance Counts – These metrics track actual changes in capacity over time.

• Active – Number of instances in the fleet that are running a game server. This number should
match the number of Desired instances; if it does not, then GameLift may be in the process of
scaling up or down, or at the fleet's minimum or maximum limit.

• Idle – Number of active instances in the fleet that are not currently hosting game sessions.
This metric indicates available capacity that is not being utilized.

• Pending – Number of instances GameLift is currently starting up to host game sessions
(scaling up).

• Terminating – Number of instances GameLift is currently in the process of shutting down
(scaling down).

2. To view how fleet capacity has changed over time, display in the graph any or all of the scaling
metrics listed on the left. Click the metric name to add it to the graph. (Metric names are gray when
not in use.) Use the color key to identify which graphed line matches a selected metric.

3. (Optional) Use the following filters, shown above the graph area, to specify how metric data is
displayed in the graph:

• Data & Period – Offers two options for selecting a date range:

• Use Relative to select a period of time relative to the current time, such as Last hour, Last
day, Last week.

• Use Absolute to specify a period with an arbitrary start and end date/time.

• Granularity – Select a length of time to aggregate data points.

• Refresh rate – Select how often you want the graph display to be updated.

• Format – Select which time format to use in the graph display: UTC (universal coordinated time)
or Local.

• Show Points – Toggle on or off to display discrete data points (as circles) or display lines only.

To change fleet capacity

1. Go to the top of the Scaling tab. You can manually set the fleet's capacity by changing the current
values of the fleet's scaling limits. You can edit these values, which are shown along the left side
of the Scaling tab.

2. To specify the number of instances that you want available to host game sessions, set the value of
Desired. GameLift immediately attempts to scale instances up or down to meet the new value. If
the new value you set is above the maximum or below the minimum limits, then GameLift attempts
to scale up or down to that limit.

3. Set the maximum and minimum scaling limits as needed. If the value of Desired instances was or
is now outside the range of your limits, changing these limits causes GameLift to immediately try to
scale up or down to get closer to the Desired value while staying inside the new limit range.

To manage automatic scaling

• Go to the end of the Scaling tab to find tools for setting up autoscaling policies. See Set Up Fleet
Autoscaling (p. 43) for more details on autoscaling and how to manage policies.

Version
58

Amazon GameLift Developer Guide
Game sessions

Game sessions
The Game sessions tab lists past and present contains game sessions hosted on the fleet, including
some detail information. Click a game session ID to access additional game session information,
including player sessions.

• Status – Game session status. Valid statuses are:

• Activating – A game session has been initiated and is preparing to run.

• Active – A game session is running and available to receive players (depending on the session's
player creation policy).

• Terminated – Game session has ended.

• Name – Game generated for the game session.

• ID – Unique identifier assigned by GameLift to the game session.

• IP address – IP address specified for the game session.

• Port – Port number used to connect to the game session.

• Player sessions – Number of players connected to the game sessions along with total possible
players the game session can support. For example: 2 (connected players) of 10 (possible players)
means the fleet can support 8 additional players.

• Uptime – Total length of time the game session has been running.

• Date created – Date and time stamp indicating when the fleet was created.

Build
The Build tab displays the fleet's build-related configuration, which was set when the fleet was created.
Select the build ID to see the full build detail page.

If your build has been deleted or an error has occurred while attempting to retrieve your build, you may
see one of the following status messages:

• Deleted – The build for this fleet was deleted. Your fleet will still run properly despite the build having
been deleted.

• Error – An error occurred while attempting to retrieve build information for the fleet.

Capacity allocation
The Capacity allocation tab displays the run-time configuration for the fleet, which specifies what
server processes to launch on each instance and how. It includes the path for the game server
executable and optional launch parameters. You can change the fleet's capacity allocation either by
editing the fleet in the console or by using the AWS CLI to update the run-time configuration.

Ports
The Ports tab displays the fleet's connection permissions, including IP address and port setting
ranges. You can change connection permissions by either editing the fleet in the console or using the
AWS CLI to update the fleet's port settings.

Logs
The Logs tab lists the locations of log files that GameLift uploads at the end of a game session. Log
paths can only be specified when creating a new fleet from the AWS CLI.

Version
59

http://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide
View Game and Player Info

View Data on Game and Player Sessions
You can view information about the games running on a fleet and as well as individual players.
For more information about game sessions and player sessions, see How Players Connect to
Games (p. 5).

To view game session data

1. In the GameLift console, open the detail page for the fleet you want to study. (Choose Fleets in
the menu bar and click on a fleet name.)

2. Open the Game sessions tab. This tab lists all game sessions hosted on the fleet along with
summary information.

3. Click a game session to view additional information about the game session as well as a list of
players that were connected to the game.

Game sessions
A summary of your game session information is displayed at the top of the page and includes:

• Status – The status of the game session. Valid statuses include:

• Activating – GameLift has created a game session and passed your game properties to the game
server process. The game server interprets the game properties and calls back to GameLift when
it is ready for potential player sessions to connect.

• Active – The game session can support game play with zero or more player sessions connected
to it.

• Terminated – The game session has ended, and player sessions are no longer permitted to
connect to the terminated game session.

• Name – The name automatically generated for the game session.

• IP address – For game sessions with a status of Activating or Active, the IP address used to
connect to the game.

• Port – The port number used to connect to the game session.

• Player sessions – The number of players currently connected to the game session along with the
total number of player slots in the game session. For example, the value 10 of 15 indicates that of
the 15 available slots in the game, 10 are filled and 5 are open.

• Player session creation policy – The policy that determines whether new players can connect to
the game. Values are Accept all or Deny all. For more information, see the GameSession object.

• Uptime – The total length of time the game session has been running.

• Date created – The date and time the game session was created.

Player sessions
The following player session data is collected for each game session:

• Status – The status of the player session. Options include:

• Reserved – Player session has been reserved, but the player has not yet connected.

• Active – Player session is currently connected to the game server.

• Completed – Player session has ended; player is no longer connected.

• Timed Out – Player session was reserved, but the player failed to connect.

• ID – The identifier assigned to the player session.

• Player ID – A unique identifier for the player. Click this ID to get additional player information.

Version
60

https://console.aws.amazon.com/gamelift/
http://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Developer Guide
Player information

• Start time – The time the player connected to the game session.

• End time – The time the player disconnected from the game session.

• Total time – The total length of time the player has been active in the player session.

Player information
View additional information for a selected player, including a list of all games the player connected to
across all fleets in the current region. This information includes the status, start and end times, and
total connected time for each player session. You can click to view data for the relevant game sessions
and fleets.

View Your Aliases
You can view information on all of the fleet aliases you have created and take actions on them on the
Aliases page. Aliases shown include only those created for the selected region.

Alias Catalog
All created aliases are shown on the Aliases catalog page. To view the Aliases page, choose Aliases
from the GameLift console's menu bar.

The Aliases page provides summary information on all builds, including type. From this page you can:

• Create a new alias. click Create alias.

• Filter and sort the aliases list. Use the controls at the top of the table.

• View alias details. Click an alias name to open the alias detail page.

Alias Detail
Access an alias's detail page from either the console dashboard or the Aliases catalog page by clicking
the alias name. The Alias detail page displays a summary of information on the alias.

From this page you can:

• Edit an alias, including changing the name, description, and the fleet ID the alias is associated with.
Click Actions: Edit alias.

• View information on the fleet the alias is currently associated with. This includes the fleet's status and
current utilization (active game sessions and players).

• Delete an alias. Click Actions: Delete alias.

Alias detail information includes:

• Type – The routing option for the alias, which can be one of these:

• Simple – A simple alias routes a player to games on an associated fleet. You can update the alias
to point to a different fleet at any time.

• Terminal – A terminal alias does not point to a fleet. Instead it passes a message back to the
client. This alias type is useful for gracefully notifying players when a set of game servers is no
longer available. For example, a terminal alias might inform players that their game clients are out
of date and provide upgrade options.

• Alias ID – The unique number used to identify the alias.

Version
61

Amazon GameLift Developer Guide
Alias Detail

• Description – The description of the alias.

• Date created – The date and time the alias was created.

Version
62

Amazon GameLift Developer Guide
GameLift Information in CloudTrail

Logging Amazon GameLift API
Calls with AWS CloudTrail

Amazon GameLift is integrated with AWS CloudTrail, a service that captures all of the API calls made
by or on behalf of GameLift in your AWS account and delivers the log files to an Amazon Simple
Storage Service (Amazon S3) bucket that you specify. CloudTrail captures API calls from the GameLift
console or from the GameLift API. Using the information collected by CloudTrail, you can determine
what request was made to GameLift, the source IP address from which the request was made, who
made the request, when it was made, and so on. To learn more about CloudTrail, including how to
configure and enable it, see the AWS CloudTrail User Guide.

GameLift Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to GameLift actions are
tracked in log files. GameLift records are written together with other AWS service records in a log file.
CloudTrail determines when to create and write to a new file based on a time period and file size.

All GameLift actions are logged by CloudTrail. For example, calls to CreateGameSession,
CreatePlayerSession and UpdateGameSession generate entries in the CloudTrail log files. For
the complete list of actions, see the Amazon GameLift API Reference.

Every log entry contains information about who generated the request. The user identity information
in the log helps you determine whether the request was made with root or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userIdentity field in the CloudTrail Event Reference.

You can store your log files in your S3 bucket for as long as you want, but you can also define Amazon
S3 lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted
with Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish Amazon Simple Notification Service (Amazon SNS)
notifications when new log files are delivered if you want to take quick action upon log file delivery. For
more information, see Configuring Amazon SNS Notifications.

You can also aggregate GameLift log files from multiple AWS regions and multiple AWS accounts into
a single S3 bucket. For more information, see Aggregating CloudTrail Log Files to a Single Amazon S3
Bucket.

Version
63

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/gamelift/latest/apireference/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

Amazon GameLift Developer Guide
Understanding GameLift Log File Entries

Understanding GameLift Log File Entries
CloudTrail log files can contain one or more log entries where each entry is made up of multiple JSON-
formatted events. A log entry represents a single request from any source and includes information
about the requested action, any parameters, the date and time of the action, and so on. The log entries
are not guaranteed to be in any particular order. That is, they are not an ordered stack trace of the
public API calls.

The following example shows a CloudTrail log entry that demonstrates the CreateFleet and
DescribeFleetAttributes actions.

{
 "Records": [
 {
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::111122223333:user/myUserName",
 "accountId": "111122223333",
 "accessKeyId": AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2015-12-29T23:40:15Z",
 "eventSource": "gamelift.amazonaws.com",
 "eventName": "CreateFleet",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "[]",
 "requestParameters": {
 "buildId": "build-92b6e8af-37a2-4c10-93bd-4698ea23de8d",
 "eC2InboundPermissions": [
 {
 "ipRange": "10.24.34.0/23",
 "fromPort": 1935,
 "protocol": "TCP",
 "toPort": 1935
 }
],
 "logPaths": [
 "C:\\game\\serverErr.log",
 "C:\\game\\serverOut.log"
],
 "eC2InstanceType": "c4.large",
 "serverLaunchPath": "C:\\game\\MyServer.exe",
 "description": "Test fleet",
 "serverLaunchParameters": "-paramX=baz",
 "name": "My_Test_Server_Fleet"
 },
 "responseElements": {
 "fleetAttributes": {
 "fleetId": "fleet-0bb84136-4f69-4bb2-bfec-a9b9a7c3d52e",
 "serverLaunchPath": "C:\\game\\MyServer.exe",
 "status": "NEW",
 "logPaths": [
 "C:\\game\\serverErr.log",
 "C:\\game\\serverOut.log"
],

Version
64

Amazon GameLift Developer Guide
Understanding GameLift Log File Entries

 "description": "Test fleet",
 "serverLaunchParameters": "-paramX=baz",
 "creationTime": "Dec 29, 2015 11:40:14 PM",
 "name": "My_Test_Server_Fleet",
 "buildId": "build-92b6e8af-37a2-4c10-93bd-4698ea23de8d"
 }
 },
 "requestID": "824a2a4b-ae85-11e5-a8d6-61d5cafb25f2",
 "eventID": "c8fbea01-fbf9-4c4e-a0fe-ad7dc205ce11",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 },
 {
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::111122223333:user/myUserName",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2015-12-29T23:40:15Z",
 "eventSource": "gamelift.amazonaws.com",
 "eventName": "DescribeFleetAttributes",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "[]",
 "requestParameters": {
 "fleetIds": [
 "fleet-0bb84136-4f69-4bb2-bfec-a9b9a7c3d52e"
]
 },
 "responseElements": null,
 "requestID": "82e7f0ec-ae85-11e5-a8d6-61d5cafb25f2",
 "eventID": "11daabcb-0094-49f2-8b3d-3a63c8bad86f",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 },
]
}

Version
65

Amazon GameLift Developer Guide

Document History for Amazon
GameLift

The following table describes important changes to the Amazon GameLift documentation.

Change API Version Description Date

New features:

• Remote access to
GameLift fleet instances

AWS SDK:
2016-11-18

See full release notes.

Developer Guide:

• New topics:

• Remotely Access Fleet
Instances (p. 48) – How to get
access and remotely connect to
GameLift instances.

• Debug Fleet Creation Issues (p. 40)
– Troubleshooting tips for new fleets
that fail to activate.

Service API Reference:

• For remote access:

• GetInstanceAccess (new)

• InstanceAccess (new)

• InstanceCredentials (new)

November
18, 2016

New features:

• Resource creation
protection

• Access to instance data

Updates and corrections:

• Additional help for
Linux.

AWS SDK:
2016-10-13

See full release notes for full description
of this release, as well as changes to
the AWS SDK and the Service API
Reference.

Developer Guide:

• Revised topics:

• How Amazon GameLift Works (p. 2)
– Added description of resource

October 13,
2016

Version
66

http://aws.amazon.com/releasenotes/Amazon-GameLift/2465827527349380
http://docs.aws.amazon.com/gamelift/latest/apireference/API_GetInstanceAccess.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_InstanceAccess.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_InstanceCredentials.html
http://aws.amazon.com/releasenotes/Amazon-GameLift/6795060410299683
http://docs.aws.amazon.com/gamelift/latest/apireference/
http://docs.aws.amazon.com/gamelift/latest/apireference/

Amazon GameLift Developer Guide

Change API Version Description Date

protection, and improved description
of capacity handling.

• Added Linux-specific help:

Package a Build (p. 34) – Install
scripts for Linux.

Upload a Build (p. 35) – New Linux
examples.

Create a Fleet (Console) (p. 38) –
New launch path example for Linux.

Service API Reference:

• CreateFleet and UpdateFleetAttributes
– New ResourceCreationLimitPolicy
parameter.

• ResourceCreationLimitPolicy (new)

• CreateGameSession – New CreatorId
parameter.

• DescribeInstances (new)

New features:

• Game servers can now
run on Linux

AWS SDK:
2016-09-01

AWS SDK
for C++:
1.10.61

Server SDK
for C++:
3.1.0

See full release notes.

Developer Guide:

• New topics:

• Amazon GameLift SDKs (p. 7)
– Reference topic describing all
GameLift SDKs, including supported
languages and operating systems.

Service API Reference:

• New OS parameters were added to
the following:

• upload-build (p. 35) (CLI
only)

• CreateBuild()

• Build

• FleetAttributes

September
1, 2016

Version
67

http://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateFleet.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateFleetAttributes.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_ResourceCreationLimitPolicy.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeInstances.html
http://aws.amazon.com/releasenotes/Amazon-GameLift/1003598564880469
http://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateBuild.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_Build.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_FleetAttributes.html

Amazon GameLift Developer Guide

Change API Version Description Date

New features:

• Game session search

• Customized health
checks

Updates:

• Expanded support for
capacity allocation
(multiple processes per
fleet instance)

• GameLift Server SDK
for C++ now available
for download

• All APIs for game client
integration is now
included in the AWS
SDK.

AWS SDK:
2016-08-04

AWS SDK
for C++:
0.12.16

Server SDK
for C++:
3.0.7

See full release notes.

Developer Guide:

• New topics:

• Amazon GameLift Server API (C
++) Reference (p. 15) – Complete
reference documentation.

• Run Multiple Processes on a
Fleet (p. 46) – Technical overview
of capacity allocation and how to
configure a fleet to run multiple
processes.

• Tools and Resources (p. 6) –
Comprehensive list of tools &
resources, including SDK version
compatibility.

• Revised topics:

• How Players Connect to
Games (p. 5) – Expanded topic
describes features related to game
sessions, including the new search
feature.

• Add Amazon GameLift to Your
Game Server (p. 13) – Integration
steps have been revised for use with
version 3.0.7 Server SDK for C++.

• Add Amazon GameLift to Your
Game Client (p. 25) – Integration
steps have been revised for use with
the AWS SDK for C++.

Service API Reference:

• SearchGameSessions() (new)

August 4,
2016

Version
68

http://aws.amazon.com/releasenotes/Amazon-GameLift/6130207060962462
http://docs.aws.amazon.com/gamelift/latest/apireference/API_SearchGameSessions.html

Amazon GameLift Developer Guide

Change API Version Description Date

Updates:

• New server process
health metrics

• Revised processes for
fleet capacity allocation
and game server launch
settings

• Revised build packaging
instructions

AWS SDK:
2016-06-28

Developer Guide:

• Revised topics:

• Package a Build (p. 34) –
Description now reflects how
GameLift handles an install.bat
file in a game build.

• Create a Fleet (Console) (p. 38) and
Create a Fleet (AWS CLI) (p. 39) –
Instructions for creating a fleet now
cover capacity allocation using a
runtime configuration.

• View Fleet Details (p. 55) and
View Data on Game and Player
Sessions (p. 60) – Console page
descriptions now reflect current
metrics and scaling tabs.

• Amazon GameLift and Game
Client/Server Interactions (p. 30) –
Descriptions and diagram (p. 33)
have been corrected to use
callback function names from the
samples, and to clarify that the
onProcessTerminate()callback
refers to shutting down a game
server, not a game session.

Service API Reference:

• For new capacity allocation:

• CreateFleet() – Runtime
configuration added.

• DescribeRuntimeConfiguration
(new)

• UpdateRuntimeConfiguration
(new)

• For game server launch process:

• GameSession – Port number
added. PlayerSession – Port
number added.

• For health metrics:

• FleetUtilization – New count
added for active server processes.

June 28,
2016

Version
69

Amazon GameLift Developer Guide

Change API Version Description Date

New features:

• Autoscaling

• Game session
protection

• Fleet capacity limits

2016-03-10 Developer Guide:

• New topics:

• Set Up Fleet Autoscaling (p. 43)
– How to set up and manage
autoscaling policies.

• Change Fleet Capacity (p. 41)
– How to change the number of
instances in a fleet and set limits.

• How Amazon GameLift Works (p. 2)
– A technical overview of how
GameLift manages game
deployment across virtual
resources.

• Revised topics:

• Create a Fleet (Console) (p. 38) –
Revised to include settings for game
session protection and safe scaling.

• Other changes:

• Lumberyard-GameLift tutorial was
moved to the GameDev Tutorials
repository.

Service API Reference:

• For autoscaling:

• PutScalingPolicy

• DescribeScalingPolicies

• DeleteScalingPolicy

• For game session protection:

• DescribeGameSessionDetails

• CreateFleet (revised)

• UpdateFleetAttributes
(revised)

• DescribeFleetAttributes
(revised)

• UpdateGameSession (revised)

• For fleet capacity limits:

• UpdateFleetCapacity (revised)

• DescribeFleetCapacity
(revised)

March 10,
2016

Service launch 2016-02-09 Developer Guide and API Reference for
the GameLift service released on AWS.

February 9,
2016

Version
70

https://gamedev.amazon.com/forums/tutorials
https://gamedev.amazon.com/forums/tutorials
http://docs.aws.amazon.com/gamelift/latest/apireference/API_PutScalingPolicy.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeScalingPolicies.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteScalingPolicy.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionDetails.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateFleet.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateFleetAttributes.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetAttributes.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateGameSession.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateFleetCapacity.html
http://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeFleetCapacity.html

	Amazon GameLift
	Table of Contents
	What is Amazon GameLift?
	Why Amazon GameLift?
	Key Features
	Integration Steps
	How Amazon GameLift Works
	Key Components
	Configuring Computing Resources
	Handling Capacity and Utilization
	Autoscaling
	Monitoring Fleet Activity and Troubleshooting

	How Players Connect to Games
	Game and Player Session Features

	Tools and Resources
	Core Tools
	Additional Resources

	Amazon GameLift SDKs
	For Game Servers
	For Game Clients and Game Services
	SDK Compatibility

	Free Tier and Billing Alerts

	Setting Up
	Set Up Your Amazon Lumberyard Game Project
	Set up an AWS Account
	IAM Policy Examples for Amazon GameLift
	Simple Policy for Administrators
	Simple Policy for Players

	Install the AWS CLI

	Integrating the Amazon GameLift SDKs into Your Games
	Integrating your Game Server for Amazon GameLift
	Add Amazon GameLift to Your Game Server
	Prepare a Server Process
	Report Server Process Health
	Start a Game Session
	Validate a New Player
	Report a Player Session Ending
	Stop a Game Session
	Shut Down a Server Process

	Amazon GameLift Server API (C++) Reference
	GetSdkVersion()
	Syntax
	Parameters
	Return Value
	Example

	InitSDK()
	Syntax
	Parameters
	Return Value
	Example

	InitSDKWithExisting()
	Syntax
	Parameters
	Return Value
	Example

	ProcessReady()
	Syntax
	Parameters
	Return Value
	Example

	ProcessReadyAsync()
	Syntax
	Parameters
	Return Value
	Example

	ProcessEnding()
	Syntax
	Parameters
	Return Value
	Example

	ActivateGameSession()
	Syntax
	Parameters
	Return Value
	Example

	TerminateGameSession()
	Syntax
	Parameters
	Return Value
	Example

	UpdatePlayerSessionCreationPolicy()
	Syntax
	Parameters
	Return Value
	Example

	GetGameSessionId()
	Syntax
	Parameters
	Return Value
	Example

	AcceptPlayerSession()
	Syntax
	Parameters
	Return Value
	Example

	RemovePlayerSession()
	Syntax
	Parameters
	Return Value
	Example

	ProcessParameters
	Contents

	LogParameters
	Contents

	Integrating your Game Client for Amazon GameLift
	Add Amazon GameLift to Your Game Client
	Initialize and Set Up a GameLift Client
	Find or Create a Game Session
	Join a Game Session

	Generate Player IDs
	Prepare Your Game Client in Amazon Lumberyard
	Customize the Amazon GameLift SDK
	Custom Memory Management
	Logging Integration
	GameLift Client Configuration
	Direct Calls to GameLift Client

	Amazon GameLift and Game Client/Server Interactions
	Amazon GameLift–Game Server/Client Interactions

	Uploading Your Game to Amazon GameLift
	Package a Build
	Upload a Build

	Working with Fleets
	Choose Computing Resources
	AWS Service Limits

	Create a Fleet
	Create a Fleet (Console)
	Create a Fleet (AWS CLI)
	Debug Fleet Creation Issues

	Change Fleet Capacity
	Edit a Fleet
	Delete a Fleet
	Set Up Fleet Autoscaling
	Set Autoscaling with the Console
	Set Autoscaling with the AWS CLI
	Create an Autoscaling Policy Statement
	Tips on Autoscaling
	Use multiple policies
	Set maximum and minimum capacity
	Track metrics after a change in capacity

	Run Multiple Processes on a Fleet
	Optimizing for Multiple Processes
	How a Fleet Manages Multiple Processes
	Choosing the Number of Processes per Instance

	Remotely Access Fleet Instances
	Connect to an Instance
	View and Update Remote Instances

	Working with Aliases
	Create an Alias
	Edit an Alias

	Viewing Your Game Data in the Console
	View Your Current Amazon GameLift Status
	View Your Builds
	Build Catalog
	Build Detail

	View Your Fleets
	View Fleet Details
	Summary
	Metrics
	Events
	Scaling
	Game sessions
	Build
	Capacity allocation
	Ports
	Logs

	View Data on Game and Player Sessions
	Game sessions
	Player sessions
	Player information

	View Your Aliases
	Alias Catalog
	Alias Detail

	Logging Amazon GameLift API Calls with AWS CloudTrail
	GameLift Information in CloudTrail
	Understanding GameLift Log File Entries

	Document History for Amazon GameLift

