
Lumberyard
User Guide

Version 1.6

Lumberyard User Guide

Lumberyard User Guide

Lumberyard: User Guide
Copyright ©

Lumberyard User Guide

Table of Contents
What is Lumberyard? .. 1

Professional-Grade AAA Engine .. 1
Beautiful Worlds ... 1
Compelling Characters ... 1
Robust Networking .. 2
Real-time Gameplay Editing ... 2
Modular gems .. 2
Wwise LTX .. 2
and more... .. 2

Integrated with AWS ... 2
Amazon GameLift ... 2
Cloud Canvas .. 2
AWS SDK for C++ .. 3

Integrated with Twitch .. 3
Twitch ChatPlay .. 3
Twitch JoinIn .. 3

Free, with Source ... 3
Lumberyard Systems ... 3
Lumberyard Editors and Tools .. 4
Lumberyard Asset File Types ... 5

Setting Up Lumberyard .. 9
System Requirements .. 9
Downloading Lumberyard ... 10

Using the Lumberyard Installer to Download Lumberyard ... 10
Upgrading Lumberyard ... 11

Upgrading Lumberyard with an Existing Version in Source Control 12
Upgrading Lumberyard without an Existing Version in Source Control 12
Upgrading Lumberyard without Source Control .. 12
Upgrading Your Game Projects ... 13

Files to Exclude When Upgrading Lumberyard ... 13
Using Lumberyard Setup Assistant to Set Up Your Development Environment 14

Running Lumberyard Setup Assistant ... 15
Using Lumberyard Setup Assistant Batch .. 16
Customizing Lumberyard Setup Assistant ... 18

Enabling a Firewall .. 20
Migrating Lumberyard Projects .. 21

Lumberyard 1.6 ... 21
Migrating GridMate Service Sessions ... 21
Migrating from CryUnitTest to AzTest ... 22

Lumberyard 1.5 ... 23
Migrating Your Project ... 23
Migrating Your Gems ... 24

Using Lumberyard Editor .. 33
Lumberyard Editor Interface .. 34

Viewport .. 34
Toolbars .. 35
Rollup Bar .. 35
Bottom Toolbar ... 35
Console ... 36

Using the Menu Bar in Lumberyard Editor ... 36
File Menu ... 37
File Configure Menu .. 37
Edit Menu .. 38
Modify Menu .. 39
Display Menu ... 39

Version 1.6
iv

Lumberyard User Guide

AI Menu ... 40
Audio Menu .. 41
Clouds Menu .. 41
Game Menu ... 42
Physics Menu ... 42
Prefabs Menu ... 42
Terrain Menu .. 43
Tools Menu .. 43
View Menu ... 44
AWS Menu .. 45
Commerce Menu ... 45
Help Menu ... 45

Using the Top Toolbars .. 45
EditMode Toolbar .. 46
Object Toolbar .. 46
Editors Toolbar ... 46

Using the Bottom Toolbar ... 47
Status .. 47
Lock Selection .. 47
Coordinates/Transforms ... 47
Set Vector .. 48
Speed Control .. 48
Terrain Collision .. 48
AI/Physics .. 48
No Sync Player ... 48
Goto Position .. 48
Mute Audio .. 49
VR Preview .. 49

Using Shortcut Keys .. 49
Using the Viewport .. 51

Changing the View .. 51
Using the Rollup Bar ... 52

Objects Tab ... 52
Terrain Tab .. 52
Modeling Tab ... 54
Render/Debug Tab .. 54
Layers Tab ... 56

Using the Console Window ... 56
Configuring Console Variables .. 57

Customizing Your Workspace ... 58
Docking Windows and Toolbars .. 58
Customizing Toolbars and Menus .. 58
Changing Preferences .. 60

Restoring Default Settings for Lumberyard Editor ... 66
AI System .. 68

Spawning AI Agents .. 68
Using Flow Graph to Spawn AI Agents ... 69
Using Auto Disable for Agents .. 69
Debugging Agent Spawning Issues .. 70

AI Navigation .. 70
Multi-Layer Navigation Mesh (MNM) ... 71
Creating Navigation Areas .. 71
Selecting an AI Navigation Type .. 72
Setting Navigation Exclusion Areas .. 72
Adding Navigation Seed Points ... 73
Using Flow Graph for AI Navigation ... 73
Regenerating the Navigation Mesh .. 73
Off-Mesh AI Navigation .. 74

Version 1.6
v

Lumberyard User Guide

Tutorial: Basic AI Navigation ... 75
Debugging AI Navigation .. 76

Agent Perception ... 77
Using Flow Graph to Set Agent Perception ... 78
Using AI Anchors to Set Agent Perception .. 78
Using Console Variables to Set Agent Perception .. 79
Debugging AI Agent Perception Issues ... 80

AI Communications ... 80
Using Database View to Set AI Communication ... 80
Using AI Communication Channels .. 81
Using the CommConfig Property ... 82
Using GoalPipes to Trigger Communication ... 83
Using Voice Libraries for AI Speech ... 83
Using Flow Graph for Setting AI Communications .. 83
Using AI Signals Among Agents .. 83

AI Modular Behavior Tree .. 85
Standard MBT Nodes .. 86
Common AI MBT Nodes .. 90
Game AI MBT Nodes ... 105
Helicopter AI MBT Nodes ... 110

AI Agent Debugging ... 115
Using the AI Debug Recorder ... 115
Using the AI Debug Viewer ... 116
Using AI Debug Console Variables .. 118
Using AI Bubbles for Error Messaging .. 121
Using AILog and AISignals Files .. 122

Asset Pipeline ... 123
Asset Processor .. 124

Configuration .. 125
Batch Processing .. 125
Debugging .. 125

Live Reloading and VFS ... 125
Shader Compiler Proxy .. 126
Game Startup Sequence .. 126
Missing Asset Resolver Tool ... 127
Technical Information: Asset IDs and File Paths ... 127

Asset IDs and File Paths .. 127
Converting Asset IDs to Full Paths ... 128
Live Update Messages ... 129

Audio System ... 130
Audio System Architecture .. 131
Installing Audiokinetic Wwise LTX .. 131

Installing Wwise LTX .. 132
Running the Wwise LTX Authoring Tool .. 132

Using the Audio Controls Editor ... 132
Using Audiokinetic Wwise LTX .. 134

ATL Default Controls .. 135
do_nothing control ... 135
get_focus control ... 135
lose_focus control .. 135
mute_all control ... 135
object_speed control .. 135
object_velocity_tracking control .. 135
ObstructionOcclusionCalculationType control ... 136
unmute_all control ... 136

Audio PlayTriggers and StopTriggers .. 136
Placing Triggers in Game ... 136
PlayTrigger Set ... 136

Version 1.6
vi

Lumberyard User Guide

StopTrigger Set ... 136
Both Triggers Set .. 137

Obstructing and Occluding Sounds .. 137
Obstructing Sounds ... 137
Sound Obstruction for Surface Types ... 138
Occluding Sounds ... 138
Raycasts .. 138
Debugging Raycasts .. 138

Audio Flow Graph Nodes ... 139
Adding Ambient Sounds to Levels .. 139

Setting Up the AudioAreaAmbience entity ... 140
Setting Up the AudioAreaEntity entity ... 141
Using Shape Priorities .. 142

Adding Reverb Effects to Levels .. 142
Setting Distance Values ... 143

Adding Collision Sounds to Levels ... 144
Adding Sound to Trackview Sequences .. 145
Adding Sound to Animations ... 145

Adding Sound to Mannequin ... 146
Audio Console Variables Commands .. 147

Characters and Animation ... 151
Working With Character Assets ... 151

Modeling Characters .. 152
Rigging Characters .. 154
Physicalizing Characters (Ragdoll) ... 157
Using Inverse Kinematics (IK) ... 168

Maya Export Tools .. 177
Accessing Maya Export Tools ... 178
Setting Time Working Units for Maya ... 179
Geometry Validation ... 179
Exporting Static Meshes ... 179
Exporting Characters .. 181
Exporting Materials .. 183
Exporting Animations ... 184
Exporting Blendshapes ... 185
Exporting Level of Details (LODs) .. 185
Exporting an Alembic Cache ... 187
Setting Export Options ... 188

3ds Max Export Tools .. 189
Exporting Static Meshes and Characters ... 189
Exporting Materials .. 191
Exporting Bones and Animations ... 191
Exporting Levels of Detail (LODs) .. 193
Configuring Log Options ... 194

Working with the FBX Importer .. 195
Importing Materials with the FBX Importer ... 197
Importing Physics Mesh for a Static Object .. 198
Additional FBX Importer Features and Settings .. 200
Using Rules .. 201
Using Multiple UV Streams ... 203

Using Geppetto ... 204
Geppetto Display Options ... 207
Creating a Character Definition .. 210
Character Attachments ... 211
Animating Characters ... 224

Mannequin System .. 247
Mannequin System Files .. 247
Creating a Mannequin Entity ... 250

Version 1.6
vii

Lumberyard User Guide

Using Mannequin Editor ... 250
Synchronizing Multiple Characters .. 276
Using Flow Graph with Mannequin ... 277
Debugging Mannequin System Issues .. 277

Cinematics System .. 279
Cinematics Best Practices .. 279
Using Track View Editor ... 280

Track View Toolbars .. 280
Using Cutscene Animation Curves (Curve Editor) ... 281

Track View Nodes ... 281
Comment Node ... 281
Console Variable Node ... 282
Director (Scene) Node .. 282
Entity Nodes ... 284
Environment Node ... 286
Event Node .. 286
Material Node ... 287
Script Variable Node .. 288
Shadows Setup Node .. 288
Full Screen Effect Nodes .. 289

Creating Scenes .. 291
Setting Sequence Properties ... 291
Playing a Sequence ... 294
Changing Playback Speed .. 295

Managing Track Events .. 295
Linking Track View Events with Flow Graph .. 296

Cinematics Cameras .. 296
Moving a Camera .. 297
Setting Camera Focus .. 297
Creating Camera Shake ... 298
Blending a Camera .. 299
Pointing a Camera ... 301
Following with a Camera .. 301
Setting a First Person View Camera ... 302
Importing a Camera from Autodesk .. 302
Exporting a Camera to Autodesk ... 303

Cinematics Lighting .. 304
Animating a Light .. 304
Cinematic Lighting Best Practices .. 305

Animating Characters in Scenes .. 306
Importing and Exporting Transform Animations .. 306
Adding Geometry to a Sequence ... 307
Animated Character Tracks in Cutscenes .. 308
Moving an Entity in a Scene ... 308
Adding Scene Character Attachments ... 309
Using Look IK in Scenes .. 309
Blending Cinematic Animations .. 311
Using Track View Animation Curves ... 311
Pre-caching Cinematic Animations ... 312

Adding Player Interactivity ... 313
Looping and Jumping in a Scene ... 313
Pausing a Scene ... 314
Adding a Dead-Man Switch to a Scene ... 315
Setting Player Look Around .. 316
Adding Force Feedback ... 317

Using Layers for Scenes .. 318
Capturing Image Frames .. 318

Capturing Image Frames using Render Output ... 318

Version 1.6
viii

Lumberyard User Guide

Capturing Image Frames using a Capture Track ... 318
Capturing Image Frames using Console Variables .. 319

Debugging Cinematic Scenes .. 319
Component Entity System ... 320

Component Palette .. 320
Component Palette Attributes .. 322

Entity Outliner ... 323
Parenting .. 323
Filtering .. 323
Slices ... 323

Entity Inspector ... 323
File Browser ... 324

Asset Drag and Drop ... 325
Filtering .. 326
File Operations .. 326

Component Reference .. 327
Attachment Component .. 328
Audio Environment Component .. 329
Audio Rtpc Component .. 330
Audio Switch Component .. 331
Audio Trigger Component ... 332
Behavior Tree Component .. 334
Camera Component ... 336
Camera Rig Component ... 336
Camera Target Component ... 340
Constraint Component .. 341
Decal Component .. 349
Event Action Binding Component ... 350
Flow Graph Component .. 353
Input Configuration Component .. 354
Lens Flare Component ... 358
Light Component ... 361
Lua Script Component .. 365
Mannequin Component .. 367
Mannequin Scope Context Component ... 373
Navigation Component ... 374
Particle Component ... 377
Character Physics Component ... 379
Physics Component ... 384
Mesh Collider Component ... 386
Primitive Collider Component .. 387
Rag Doll Component .. 387
Shapes Components .. 390
Simple Animation Component .. 392
Simple State Component .. 397
Skinned Mesh Component .. 399
Spawner Component .. 400
Static Mesh Component ... 402
Tag Component .. 404
Trigger Area Component .. 406

Working with Entities .. 410
Creating an Entity .. 410
Adding and Removing Components .. 410
Finding an Entity ... 411
Editing Component Properties ... 412

Working with Slices ... 413
Creating a Slice .. 413
Instantiating a Slice ... 413

Version 1.6
ix

Lumberyard User Guide

Modifying a Slice and Pushing Changes ... 413
Cloning a Slice .. 414
Inheriting a Slice (Data Cascading) .. 414
Slice Reloading ... 415

Object and Entity System ... 416
Using the Designer Tool ... 416

Designer Tool Settings ... 417
Selection Tools ... 419
Shape Tools ... 420
Edit Tools ... 422
Modify Tools ... 422
Texture Tools .. 423
Miscellaneous Tools ... 425

Using the Measurement System Tool ... 425
Using the Object Selector ... 426

Finding an Object .. 426
Object Selector Table ... 428

Brushes ... 429
DrawLast .. 430

Prefabs .. 430
Common Parameters and Properties .. 432

Entity Properties .. 432
Entity Parameters .. 432
Scripting and Flow Graph Entity Parameters .. 433
Entity Links ... 434
Entity Events .. 435
Attached Entities ... 436
Shape Parameters ... 437

Entity Reference .. 438
Actor Entity ... 439
AI Control Objects ... 439
Anim Entities .. 444
Archetype Entity .. 444
Area Entities ... 445
Audio Entities .. 451
Boid Entity .. 457
Camera Entities ... 460
Geom Entities ... 460
Light Entities ... 461
Lightning Arc Entity .. 465
Miscellaneous Entities .. 467
Particle Entities ... 469
Physics Entities ... 470
Rain Entity ... 478
Render Entities ... 479
River Entity ... 480
Road Entity .. 481
Rope Entity .. 482
Snow Entity .. 484
Tornado Entity .. 484
Trigger Entities .. 485

Flow Graph System ... 487
Using Flow Graph Editor .. 487
Flow Graph Scripts .. 488

Level Flowgraphs .. 489
Global Flowgraphs ... 489
Flow Graph Prefabs ... 489
External Files .. 489

Version 1.6
x

Lumberyard User Guide

Managing Flow Graphs .. 489
Saving Flow Graphs .. 490
Grouping Flow Graphs ... 491
Importing and Exporting Flow Graphs ... 491

Using Flow Graph Nodes ... 491
Node Input/Output Ports ... 492
Adding Entity Nodes .. 493
Adding Component Nodes .. 493
Managing Nodes ... 493

Creating Flow Graph Nodes .. 494
Output Ports ... 495
Input Ports ... 496
Trigger Ports ... 500
Update Event .. 500

Flow Graph Node Reference ... 500
Actor Nodes ... 502
AI Nodes .. 506
AISequence Nodes .. 525
Animations Nodes ... 532
Audio Nodes ... 541
Camera Nodes .. 545
ComponentEntity Nodes ... 547
CustomAction Nodes .. 557
Debug Nodes .. 560
Dialog Nodes .. 572
Dynamic Response Nodes .. 574
Engine Nodes ... 577
Entity Nodes ... 579
Environment Nodes ... 593
FeatureTest Nodes .. 598
Game Nodes .. 600
Helicopter Nodes ... 606
Image Nodes .. 608
Input Nodes .. 619
Interpolate Nodes .. 638
Intersection Tests Nodes .. 644
Iterator Nodes ... 645
JSON Nodes .. 648
Kinect Nodes .. 650
Logic Nodes ... 652
Material Nodes .. 662
MaterialFX Nodes .. 665
Math Nodes .. 666
Mission Nodes .. 685
Module Nodes ... 689
Movement Nodes .. 693
Physics Nodes .. 696
Prefab Nodes .. 702
ProceduralMaterial Nodes ... 703
Stereo Nodes .. 714
String Nodes ... 715
System Nodes .. 719
Time Nodes .. 720
Twitch Nodes .. 730
Vec3 Nodes .. 738
Vehicle Nodes ... 745
Video Nodes ... 756
Weapon Nodes ... 757

Version 1.6
xi

Lumberyard User Guide

XML Nodes .. 760
Using Flow Graph Links ... 772
Using Flow Graph Tokens .. 773
Managing Flow Graph Modules ... 773

Module Node Ports .. 774
Debugging Flow Graph ... 775

Using Flow Graph Debugger ... 775
Using Console Variables .. 775

Placing Cached Shadows ... 776
Recommended Settings .. 776
Related Console Variables .. 776

Gems ... 778
Modular Gems System ... 779

Gem Assets .. 779
Gem Code ... 779
Gem JSON File ... 780
Gem List File .. 781

Lumberyard Gems ... 782
Boids Gem ... 782
Camera Framework Gem ... 789
Cloud Gem ... 789
Cloud Canvas Gem ... 795
GameEffect Gem ... 796
GameLift Gem .. 796
Gestures Gem .. 797
Input Management Framework Gem ... 807
Lightning Arc Gem ... 807
Metastream Gem ... 814
Multiplayer Gem .. 818
Physics Entities Gem ... 822
Process Life Management Gem ... 822
Rain Gem .. 823
Snow Gem ... 827
Substance Gem .. 831
Tornadoes Gem .. 831
UiBasics Gem ... 836
UiDemo Gem .. 836
User Login Default Gem ... 836
Woodland Asset Collection Gem .. 836

Levels and Environment ... 838
Creating a New Level .. 838
Creating Terrain .. 839

Using the Terrain Heightmap ... 840
Using Terrain Texture Layers .. 843
Creating Landforms and Topography .. 848
Creating Bodies of water .. 851
Copying and Moving Terrain Areas .. 857
Importing and Exporting Terrain Blocks ... 858
Importing Splat Maps ... 858

Adding Sky Effects .. 860
Creating a Dynamic Daytime Sky ... 861
Creating a Dynamic Night Sky ... 863
Creating Time of Day Sky Effects .. 864
Creating a Static Sky (SkyBox) .. 867

Adding Weather Effects .. 868
Adding Wind Effects .. 868
Adding Clouds .. 870

Working with Layers .. 872

Version 1.6
xii

Lumberyard User Guide

Managing Level Layers .. 872
Assigning Objects to Layers .. 873
Streaming and Switching Layers .. 874

Adding Vegetation ... 875
Vegetation Best Practices ... 876
Vegetation Recommendations ... 876
Vegetation Texture Mapping .. 876
Adding Trees and Bushes .. 877
Adding Grass .. 877
Adding Vegetation Bending Effects ... 878
Vegetation Parameters ... 880
Vegetation Debugging .. 881

Mobile Support .. 882
Android Support .. 882

Prerequisites ... 882
Setting Up Your PC ... 883
Setting Up Your Mac ... 883
Configuring Your Game Project for Android ... 885
Building Game Assets for Android Games ... 888
Building Shaders for Android Games .. 890
Building Android Games ... 892
Android Debugging .. 893
Deploying Android Games .. 894
Running Android Games .. 896
Using Virtual File System with Android ... 898
Using a Samsung Device with Lumberyard .. 900
Using Lumberyard with Android Studio ... 900

iOS Support .. 905
Prerequisites ... 906
Setting Up Your Mac ... 906
Building Game Assets for iOS Games .. 907
Building Shaders for iOS Games ... 908
Building and Deploying iOS Games .. 909
iOS Debugging and Troubleshooting .. 912
Creating iOS Games .. 913
Preparing Lumberyard iOS Games for Distribution .. 914
Using Virtual File System with iOS ... 914

Design Considerations for Creating Mobile Games Using Lumberyard .. 916
Input .. 916
Game Logic .. 917
Application Lifecycle ... 918

Adding IP Addresses to Allow Access to the Asset Processor and Remote Console 919
OS X Support ... 920

Prerequisites ... 920
Setting Up Your Mac ... 920
Building Game Assets for OS X Games .. 921

Sharing Game Assets Between PCs and Macs .. 922
Building Shaders for OS X Games ... 922
Building and Deploying OS X Games ... 923
OS X Debugging and Troubleshooting .. 925
Creating OS X Games ... 926

Particle Effects System .. 928
Particles Best Practices .. 929
Using the Particle Editor ... 929

Using the Preview Window ... 931
Customizing the UI .. 931

Using the Gradient Editor ... 932
Working with Color Gradients .. 933

Version 1.6
xiii

Lumberyard User Guide

Using Particle Editor Shortcut Keys .. 933
Managing Particle Libraries ... 934

Adding Particle Libraries ... 935
Importing Particle Libraries .. 935
Exporting Particle Libraries ... 936
Using Particle Libraries ... 936

Creating Custom Attribute Panels .. 937
Particle Trails .. 938

Particle Trail Parameters .. 939
Particle Trail Visibility ... 939

GPU Particles ... 940
Attribute Comment ... 940
GPU Emitter Attribute ... 940
GPU Particles Attribute ... 941
GPU Lighting Attribute .. 943
GPU Size Attribute .. 944
GPU Rotation Attribute ... 945
GPU Movement Attribute .. 945
GPU Particle Parameter Modifiers .. 946

Particle Level Of Detail (LOD) ... 947
Level Of Detail Panel ... 947
LOD Level Panel ... 949

Managing Emitters ... 950
Creating Emitters ... 950
Duplicating Emitters ... 950
Creating Child Emitters ... 951
Editing Emitters ... 951
Organizing Emitters in a Library ... 951
Reverting Changes to Emitter Attributes .. 952

Advanced Particle Techniques ... 952
Attaching Particle Effects to Basic Geometry Entities ... 952
Attaching Particles to Breakable Objects ... 952
Attaching Particles to Character Animations ... 953
Generating Particles from Surface Properties ... 953

Particle Entity Parameters and Properties ... 954
Particle Attributes and Parameters Reference .. 956

Using the Curve Editor ... 956
Attribute Comment ... 957
Emitter Attribute .. 957
Particles Attribute ... 962
Lighting Attribute ... 967
Size Attribute .. 968
Particle Rotation Parameters ... 970
Movement Attribute .. 971
Collision Attribute .. 973
Visibility Attribute ... 975
Advanced Attribute .. 977
Configuration Attribute .. 978
Audio Attribute .. 979

Particle Debugging .. 980
Physics System ... 981

Physics Proxies ... 981
Geometry Guidelines and Best Practices ... 982
Debugging Physics Proxy Issues ... 982

Sounds and Physics .. 983
Debugging Physics .. 984

Project Configurator ... 985
Creating and Launching Game Projects .. 986

Version 1.6
xiv

Lumberyard User Guide

Enabling Gems ... 986
Using Lmbr.exe ... 987

Project Commands .. 987
Gem Commands ... 987

Troubleshooting the Project Configurator ... 988
Rendering and Graphics ... 990

Materials and Shaders ... 990
Shader Rendering System .. 991
Shader Reference .. 1002
Selecting Material Surface Type ... 1034
Setting Material Opacity .. 1034
Setting Material Lighting and Color Settings ... 1034
Material ID Mapping in Autodesk 3ds Max ... 1035
Working with Textures .. 1044
Working with Substances .. 1055
Parallax Mapping ... 1057
Using Vertex Colors ... 1059
Customizing Post-Processing Effects .. 1059

Lighting and Shadows .. 1062
Environment Lighting .. 1062
Environment Shadows .. 1067

Voxel-based Global Illumination (SVOGI) ... 1069
Integration Modes .. 1070
Voxel GI Parameters .. 1070
Debugging .. 1071
Current Limits .. 1072

Render Cameras and Effects ... 1072
Fog Systems ... 1072
Rendering Cameras ... 1084

Sample Projects and Levels .. 1088
Samples Project .. 1091

Getting Started Project ... 1091
Samples Projects ... 1091
Twitch Chat Basics .. 1103

Multiplayer Sample Project .. 1103
MultiplayerLobby .. 1103
MultiplayerGame .. 1104
GameLiftLobby .. 1105

Legacy Sample Project (GameSDK) ... 1105
Beach City Sample Project .. 1106
Woodland Asset Package ... 1107
FeatureTests Project .. 1108

FeatureTest Controls .. 1109
FeatureTest Levels .. 1109

Testing, Profiling, and Debugging ... 1112
Using AZ Test Scanner .. 1112

Creating Unit and Integration Test Builds ... 1112
Running Unit and Integration Test Builds ... 1113

Statoscope Profiler ... 1116
User Interface ... 1116
Logging Data .. 1118
Filtering Data .. 1119
Data Groups ... 1120
Creating Data Groups ... 1125
Guidelines and Best Practices ... 1126

Debugging Issues .. 1127
Using Console Debug Views ... 1127

Troubleshooting ... 1129

Version 1.6
xv

Lumberyard User Guide

Viewing Error Log .. 1129
Error Message Reference ... 1129
Art Assets Errors ... 1129

Twitch ChatPlay System ... 1130
Setting up a Twitch ChatPlay Channel .. 1131
Listening for Twitch Keywords ... 1132
Using Flow Graph with Twitch ChatPlay .. 1133
Twitch ChatPlay Voting ... 1133
Twitch ChatPlay Console Variables .. 1133
Generating and Setting a Twitch Client ID ... 1134

Generate a Client ID .. 1134
Set the Client ID .. 1134

Troubleshooting Twitch ChatPlay ... 1135
Twitch JoinIn ... 1135
Twitch API .. 1136

UI System .. 1137
Using the UI Editor .. 1137
Working with UI Canvases .. 1138

Navigating the Viewport .. 1139
Changing the Canvas Size .. 1140
Previewing Canvases ... 1140
Configuring Canvas Properties ... 1143
Associating Canvases with UI Flow Graph Nodes ... 1144
Loading Canvases in the Flow Graph Editor .. 1145
Loading Canvases in Lua ... 1147
Placing UI Canvases in the 3D World ... 1151

UI Elements .. 1152
Configuring UI Anchors and Offsets .. 1153
Using and Creating UI Prefabs .. 1153

UI Components ... 1154
Adding or Deleting Components ... 1155
Transform2D – Managing UI Anchors and Offsets ... 1155
Visual Components .. 1158
Interactive Components .. 1160
Layout Components ... 1170
Other Components ... 1171

Implementing New Fonts .. 1172
Adding New Fonts ... 1173
Creating Font Families .. 1173
Configuring Font Rendering Quality .. 1175

Using the Animation Editor .. 1176
Recording Animation Data ... 1177
Playing Animation Sequences .. 1178
Editing Animation Data ... 1178

UI Flow Graph Nodes ... 1185
UIe Flow Graph Nodes ... 1185
UI Flow Graph Nodes ... 1241

Virtual Reality .. 1305
Configuring your Project for Virtual Reality ... 1305
Configuring Required Console Variables .. 1306

Optional Console Variables ... 1307
Setting Up Virtual Reality with Flow Graph .. 1307

VR:ControllerTracking ... 1307
VR:DeviceInfo ... 1308
VR:TransformInfo ... 1308
VR:Dynamics:Controllers ... 1309
VR:Dynamics:HMD ... 1309
VR:OpenVR:Playspace ... 1310

Version 1.6
xvi

Lumberyard User Guide

VR:RecenterPose .. 1310
VR:VREnabled .. 1310
VR:SetTrackingLevel .. 1311
VR:TransformInfo ... 1311
VR:VREnabled .. 1311
Setting Up a Basic Virtual Reality Flow Graph .. 1311
Setting Up a Custom Playspace with Flow Graph ... 1313

Previewing your Virtual Reality Project .. 1316
Debugging your Virtual Reality Project .. 1316

Waf Build System .. 1318
Waf File System .. 1318

Waf File List (*.waf_files) .. 1319
Waf Branch Spec (waf_branch_spec.py) ... 1320
Waf Projects File (project.json) .. 1321
Waf Spec Files (*.json) ... 1324
Waf Module Files (wscript) .. 1326
Waf Default Settings (default_settings.json) .. 1328
Waf User Settings (user_settings.options) .. 1328

Waf Commands and Options ... 1334
Waf Configuration .. 1334
Build Configuration ... 1335
Multiplayer Configuration ... 1338

Waf Supported Platforms and Compilers ... 1338
Waf Project Settings ... 1339

Platform and Configuration Targeting .. 1341
Features ... 1341

Waf Extensions ... 1342
Compiling with Incredibuild .. 1342
Compiling with QT ... 1343
Compiling with Visual Studio ... 1344

Using Waf .. 1344
Adding a Game Project .. 1345
Adding a Spec .. 1347
Adding a Build Module ... 1349

Adding User Settings to Waf ... 1357
Getter Function ... 1357
Validator Function .. 1359
Hinter Function .. 1360

Adding Qt 5 Content to Waf .. 1360
MOC (Meta-Object Compiler) Files ... 1361
QRC (QT Resource Collection) files ... 1361
UI Files .. 1361
Qt Linguist (TS) files .. 1362

Using Uber Files .. 1362
Configuring Waf ... 1363

Debugging Waf ... 1363
Game Builds ... 1365

Compiling Game Code ... 1366
Creating Release Builds for PC ... 1366

Running a Build from Visual Studio .. 1368
Creating Minimal Release Builds .. 1368

Using Visual Studio .. 1369
Compiling Shaders for Release Builds .. 1369
Adding Custom Game Icons .. 1369
Universal Remote Console .. 1370

Issuing Commands .. 1371
Glossary ... 1372
Lumberyard Blog, Forums, and Feedback ... 1377

Version 1.6
xvii

Lumberyard User Guide

Legal ... 1378
Lumberyard Redistributables ... 1378
Alternate Web Services .. 1380

Version 1.6
xviii

Lumberyard User Guide
Professional-Grade AAA Engine

What is Lumberyard?

Amazon Lumberyard is a free, cross-platform, 3D game engine that allows you to create the highest-
quality games, connect your games to the vast compute and storage of the AWS cloud, and engage
fans on Twitch. By starting game projects with Lumberyard, you can spend more of your time creating
great gameplay and building communities of fans, and less time on the undifferentiated heavy lifting of
building a game engine and managing server infrastructure.

Lumberyard includes everything a professional game developer would expect, from a full-featured
editor, to native code performance and stunning visuals, and hundreds of other ready-to-use features
like performant networking, character and animation editors, particle editor, UI editor, audio tools, and
more. Additionally, Lumberyard unlocks huge scale with AWS and Twitch so that you can more easily
build live multiplayer and community-driven games.

Professional-Grade AAA Engine
You can use Lumberyard to build rich, engaging, world-class games with the highest ceiling of quality
through its comprehensive and proven toolset and runtime performance that has been highly optimized
over many years. Lumberyard includes support for:

Beautiful Worlds
The visuals technology of Lumberyard can beautifully bring to life any virtual environment. Built
on technology that has created award-winning graphical fidelity and benchmark-setting graphical
performance, Lumberyard is capable of producing near-photorealistic environments and stunning real-
time effects. Your artists get a powerful toolbox to create world-class visuals, such as physically based
shaders, dynamic global illumination, a particle effects editor, vegetation tools, real-time dynamic water
caustics, volumetric fog, and filmic features such as color grading, motion blur, depth of field, and
integrated HDR lens flares.

Compelling Characters
Your artists can use Lumberyard to create believable characters and high-fidelity performances.
Lumberyard's character tool, Geppetto, combines animation, attachments, and physics simulations
with blendshape, blendspace, and animation layering. Combined with Lumberyard's animation tool,
Mannequin, animators can bring believable characters and creatures to life with features that include
animation sequencing, transitions, game logic procedures, ragdoll physics, and more.

Version 1.6
1

Lumberyard User Guide
Robust Networking

Robust Networking
Lumberyard introduces GridMate, a robust and flexible networking solution designed for efficient
bandwidth usage and low-latency communications. You can easily synchronize objects over the
network with GridMate's replica framework. GridMate's session management integrates with major
online console services and lets you handle peer-to-peer and client server topologies with host
migration.

Real-time Gameplay Editing
Real-time gameplay editing enables you to iterate on gameplay and immediately see your results,
without waiting for builds or leaving the editor. Lumberyard's asynchronous asset processing system
automatically converts and optimizes your game assets in real time, so that you can import game
objects, fine tune behavior, and play the game you have created.

Modular gems
Lumberyard's Modular Gems system gives you a library of pre-built features that can be used to
quickly start new projects or prototype ideas. Modular gems give you increased control over which
technologies you want to include in your game project. You can create your own modular gems or use
any of the gems included with Lumberyard, such as weather effects, a boids-based ambient creature
system, lightning effects, a camera framework, and more.

Wwise LTX
Lumberyard includes a version of Audiokinetic's advanced, feature-rich sound engine. With minimal
dependency on engineers, sound designers and composers can work independently to author rich
soundscapes for your games.

and more...
Additional discipline-specific toolsets provide the opportunity to create unique, thrilling, and
differentiated content. With terrain tools, weather effects, input systems, cover systems, perception
handling, Lua support, drillers, pathfinding, goal-driven planning, and more, Lumberyard provides the
tools to help achieve your vision.

Integrated with AWS
Lumberyard is deeply integrated with AWS so you can build live and multiplayer games with
dramatically less cost, time, and technical risk. AWS integrations include:

Amazon GameLift
Using Amazon GameLift, a new AWS service for deploying, operating, and scaling session-based
multiplayer games, you can quickly scale high performance game servers up and down to meet player
demand, without any additional engineering effort.

Cloud Canvas
You can build live, online game features, such as a community news feed, daily gifts, or in-game
notifications, in minutes using Lumberyard's Cloud Canvas tool. With Cloud Canvas' drag-and-drop
visual scripting interface, you can build gameplay that connects to AWS services, such as Amazon
DynamoDB, AWS Lambda, and Amazon S3.

Version 1.6
2

Lumberyard User Guide
AWS SDK for C++

AWS SDK for C++
The AWS SDK for C++ provides C++ APIs for numerous AWS services including Amazon S3, Amazon
EC2, Amazon DynamoDB, and more, with support for all major native platforms. You can use the SDK
to quickly integrate AWS components into your game. For more information, see AWS SDK for C++.

Integrated with Twitch
Lumberyard is integrated with Twitch so that you can build games that engage with more than 1.7
million monthly broadcasters and more than 100 million monthly viewers on Twitch.

Twitch ChatPlay
The Twitch ChatPlay feature within Lumberyard helps you build gameplay that interacts in real time
with Twitch viewers. For example, you can build a game where viewers can vote on game outcomes,
gift power-ups to their favorite players, or change the level based on the number of viewers watching
the player. Using the Lumberyard Flow Graph visual scripting tool, you can create chat channel
commands for your game. For example, you can build a multiplayer game where viewers can vote to
drop grenades to the broadcaster by typing #boom in the Twitch chat channel.

Twitch JoinIn
The Twitch JoinIn feature within Lumberyard lets you build multiplayer games that allow Twitch
broadcasters to instantly invite fans to join them side-by-side in the game. Once invited, a fan can jump
into the broadcaster's game with a single click in the Twitch chat channel, while others continue to
watch.

Free, with Source
Lumberyard is free, including source code. You can deeply customize Lumberyard for your team
and vision for your project today, and for future projects in years to come. There are no seat fees,
subscription fees, or requirements to share revenue. Only pay for the AWS services you choose to use.
For more information, see the Lumberyard Licensing FAQ.

Topics

• Lumberyard Systems (p. 3)

• Lumberyard Editors and Tools (p. 4)

• Lumberyard Asset File Types (p. 5)

Lumberyard Systems
Lumberyard consists of the following major systems:

• AI System (p. 68)

• Asset Pipeline (p. 123)

• Audio System (p. 130)

• Characters and Animation (p. 151)

• Cinematics System (p. 279)

• Component Entity System (p. 320)

• Object and Entity System (p. 416)

Version 1.6
3

https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/lumberyard/faq/

Lumberyard User Guide
Lumberyard Editors and Tools

• Flow Graph System (p. 487) (Visual scripting)

• Levels and Environment (p. 838)

• Materials and Shaders (p. 990)

• Modular Gems System (p. 779)

• Particle Effects System (p. 928)

• Project Configurator (p. 985)

• Shader Rendering System (p. 991)

• Twitch ChatPlay System (p. 1130)

• UI System (p. 1137)

• Virtual Reality (p. 1305)

• Waf Build System (p. 1318)

Lumberyard Editors and Tools
Lumberyard provides the following suite of applications, editors, and tools for game development.

Tool Name Description

AI Debugger Debugs AI agent behaviors and consists of the AI Debug Recorder and
AI Debug Viewer

Asset Browser Displays all game assets available for use

Asset Processor Runs in the background when you launch Lumberyard Editor, monitoring
input folders for changes in source files and automatically generating
platform-specific game assets as they change

Audio Controls Editor Manages audio translation layer (ATL) controls and events for the Audio
system

Geppetto Manages character animations, attachments, and physics simulations
along with blendspace and animation layering

Component Palette Lists available components for the component entity system

Console Runs editor commands and lists available console variables

Database View Displays various object libraries such as entities, particles, and prefabs

Entity Inspector Displays the ID and name for component entity system objects

Entity Outliner Displays all component entities used for a level

FBX Importer Imports single static meshes and materials from FBX

Flow Graph Implements complex game logic using a visual scripting system

Layer Editor Creates and manages layers for levels

Lens Flare Editor Creates and manages camera lens flare effects

Sun Trajectory Tool Creates and manages dynamic sky lighting effects

LOD Generator Generates geometry and material level of detail (LOD)

Lumberyard Editor Acts as the main workspace editor and game viewport; loads the Rollup
Bar and console by default

Version 1.6
4

Lumberyard User Guide
Lumberyard Asset File Types

Tool Name Description

Lumberyard Setup
Assistant

Ensures you have the necessary runtime software and SDKs installed to
successfully run Lumberyard

Lumberyard Tools Exports static and skinned geometry, skeletons, materials, and animation

Mannequin Editor Manages the high-level character Mannequin system and includes the
FragmentID Editor, Fragment Editor, Tag Definition Editor, Transition
Editor, Sequence Previewer, Animation Database Editor, and Context
Editor

Material Editor Applies final material setup, texture mapping, and shader parameters

Measurement System
Tool

Measures the length of segmented objects like roads, rivers, and paths

Missing Asset Resolver Searches for assets that have moved and references their new locations

Modular Gems System Provides a library of prebuilt features that you can use to quickly start
new projects or prototype ideas

Particle Editor Creates and simulates explosions, fire, sparks, and other visual effects

Project Configurator Standalone application used to tell the Waf build system which gems to
include in the game build

Resource Compiler Compresses and processes source game asset files and creates
package files

Rollup Bar Accesses and places objects, vegetation, modified terrain, and modeling
tools; includes display options, profile tools, and layer controls

Script Terminal Runs various scripts in a terminal window

Smart Objects Editor Creates and manages smart objects, which are used to interact with
other objects according to complex rules

Substance Editor Imports substance .sbsar files, edits material properties, and exports
them as textures

Terrain Editor Generates terrain and sculpts terrain elements in your level

Terrain Texture Layers Creates and paints terrain texture layers in your level

Time of Day Editor Creates and manages day-night cycles and other dynamic sky effects

Track View Editor Creates and manages cinematic scenes and sequences; consists of the
Track Editor and Curves Editor

UI Editor Creates, manages, and simulates user interface elements for your game,
such as menus and heads-up displays (HUD)

Universal Remote
Console

Used to connect to a remote instance of Lumberyard running on mobile
devices

Lumberyard Asset File Types
The following tables list the various asset data file types supported or used in Lumberyard.

Version 1.6
5

Lumberyard User Guide
Lumberyard Asset File Types

In addition, Lumberyard supports the .xml file format that is used for various purposes as well as the
following image file formats:

• .tif

• .png

• .jpg

• .tga

• .bmp

• .pgm

• .raw

• .r16

3D Art Asset File Types

The following file formats are used for static geometry.

File Type Where Created Description

*.cgf (Static Geometry
File)

DCC tool Contains static geometry data, such as grouped
triangles, tangent spaces, vertex colors, physics
data, and spherical harmonics data.

*.chr (Character Asset
File)

DCC tool The base character used for animations.

*.cdf (Character
Definition File)

Lumberyard Defines the base character and associated
attachments. This file is created using Geppetto
and contains a reference to the .chr file.

*skin (Character
Skinned Render Mesh)

DCC tool Contains skinned character data, including the
mesh, vertex weighting, vertex colors, and morph
targets.

*.fbx (Filmbox File) DCC Tool Contains mesh, material, camera, and animation
data. Provides interoperability between DCC tools.

*.scenesettings (Scene
Settings File)

Lumberyard Contains configuration and rules settings from an
.fbx file.

*.abc (Alembic Cache
File)

DCC tool Contains non-procedural, application-independent
set of baked geometric data such as baked
meshes and their materials.

*.cax (CAD/CAE
Exchange File)

Lumberyard Contains compressed game assets read from the
.abc file and streamed in-game on demand from
disk.

*.trb (Terrain Block File) Lumberyard Contains terrain data and associated level objects
such as water and vegetation.

Material and Texture File Types

File Type Where Created Description

*.mtl (Material File) DCC Tool

Version 1.6
6

Lumberyard User Guide
Lumberyard Asset File Types

File Type Where Created Description

*.dds (DirectDraw
Surface)

DCC tool Contains compressed source texture files.

*.sbsar (Substance Files) Allegorithmic
Substance
Designer

Contains procedural materials.

Animation File Types

For more information on these file types, see Character Animation Files (p. 226).

File Type Where Created Description

*.adb (Animation
Database File)

Lumberyard Used by the Mannequin system to store fragments
and transitions. This is typically referred to from the
character Lua file and other systems such the hit
death reaction system.

*.i_caf
(Intermediate
Character Animation
File)

DCC tool Contains the animated bone data for one or more
characters in uncompressed format.

*.animsettings
(Animation Settings File)

Lumberyard Contains per-animation compression settings. This
is a sidecar file that is stored next to the .i_caf file
and describes how it should be compiled by the
Asset Pipeline.

*.caf (Character
Animation File)

Lumberyard The compressed version of the intermediate
.i_caf file. Contains on-demand asset data that
is streamed in and out of the game as needed at
runtime.

*.chrparams (Character
Parameters File)

Lumberyard Contains skeletal characters. Has the same name
as the .chr file to which it refers to.

*.dba (Animation
Database)

Lumberyard Contains multiple compressed .caf animation files
that are streamed in and out of the game together.
Created by the Resource Compiler and defined in
the .chrparams file.

*.animevents (Animation
Events Database)

Lumberyard Stores a list of assets with timed event markups.
Geppetto is used to create this file, which gets
mapped to the .chrparams file.

*.bspace (Blend Space
File)

Lumberyard Define how multiple animation assets are blended
together. Blend spaces are parameterized at
runtime with movement parameters such as
movement speed, movement direction, turning
angle, or slope.

*.comb (Blend Space
Combination File)

Lumberyard Combines multiple blend spaces into one,
usually of a higher order, and represents a
multidimensional blend space.

*.grp (Group Files) DCC Tool Exported animation sequences used for Track
View sequences.

Version 1.6
7

Lumberyard User Guide
Lumberyard Asset File Types

Audio Asset File Types

File Type Where Created Description

*.bnk (Soundbank File) Audiokinetic
Wwise

Contains compiled sound data and metadata.

*.wem (Encoded Media
File)

Audiokinetic
Wwise

Compiled streamable audio file.

Version 1.6
8

Lumberyard User Guide
System Requirements

Setting Up Lumberyard

Lumberyard supports the following platforms: PC, Xbox One, PlayStation 4, Android, iOS, and OS X.
In order to develop games for the Xbox One or PlayStation 4, you must pass Microsoft and Sony's
screening process, respectively. For information about console support, see Developing Games for
Xbox One and Become a Registered Developer [for PlayStation]. For information about developing for
mobile devices, see Mobile Support (p. 882). For information about developing for OS X, see OS X
Support (p. 920).

Topics

• System Requirements (p. 9)

• Downloading Lumberyard (p. 10)

• Upgrading Lumberyard (p. 11)

• Files to Exclude When Upgrading Lumberyard (p. 13)

• Using Lumberyard Setup Assistant to Set Up Your Development Environment (p. 14)

• Enabling a Firewall (p. 20)

System Requirements
Lumberyard requires the following hardware and software:

• Windows 7 64-bit

• 3GHz minimum quad-core processor

• 8 GB RAM minimum

• 2 GB minimum DX11 or later compatible video card

• Nvidia driver version 368.81 or AMD driver version 16.15.2211 graphics card

• 60 GB minimum of free disk space

• Visual Studio 2013 Update 4 or later (required to compile Lumberyard Editor and tools)

• Visual C++ Redistributable Packages for Visual Studio 2013

If you do not already have Visual C++ Redistributable Packages for Visual Studio 2013 installed, do
one of the following:

Version 1.6
9

http://www.xbox.com/en-US/developers/home
http://www.xbox.com/en-US/developers/home
https://www.playstation.com/en-us/develop/

Lumberyard User Guide
Downloading Lumberyard

• After you have installed Lumberyard, run the installer from the following location: \dev
\Bin64\Redistributables\Visual Studio 2013

• Download and run the installer directly from Microsoft: Visual C++ Redistributable Packages for
Visual Studio 2013

For information about installing third-party software and SDKs, see Using Lumberyard Setup Assistant
to Set Up Your Development Environment (p. 14).

Downloading Lumberyard
This topic includes information about downloading Lumberyard using the Lumberyard Installer, and
links to more information about installing required third-party software. Upon completing the installation
process, you will be able to use Lumberyard, Lumberyard Editor, and other engine tools.

Note
Be sure you have the hardware and software required to use Lumberyard. For information,
see System Requirements (p. 9).

The Lumberyard directory includes the following folders and files:

• dev

• _WAF_ – Waf build system files

• Bin64 – Binaries directory and configuration files for the resource compiler

• Code – Source files directory and solution files

• Editor – Editor assets

• Engine – Engine assets

• Gems – Optional systems and assets

• MultiplayerProject – Multiplayer sample project

• ProjectTemplates – Configuration files, libraries, and scripts for the empty template

• SamplesProject – Sample project

• Tools – Third-party tools and plugins

• 3rdParty

• Third-party software required to use or compile Lumberyard

• Wwise LTX – Software for authoring game audio

• docs

• Release Notes

• Lumberyard Getting Started Guide

Using the Lumberyard Installer to Download
Lumberyard
The Lumberyard Installer provides a simpler way for you to download and install Lumberyard. After you
specify the install location, the Lumberyard Installer extracts the Lumberyard files and adds shortcuts
for the Lumberyard Setup Assistant, Project Configurator, and Lumberyard Editor on your desktop and
in the Start menu. The installer also allows you to resume an interrupted download.

If you have an existing Lumberyard project, we recommend installing the latest version of Lumberyard
in a new directory. For information, see Upgrading Lumberyard (p. 11).Version 1.6

10

https://www.microsoft.com/en-us/download/details.aspx?id=40784
https://www.microsoft.com/en-us/download/details.aspx?id=40784

Lumberyard User Guide
Upgrading Lumberyard

Note
If you encounter errors during file extraction about AssetProcessor.exe,
AssetProcessor_temp.exe, or CrySystem.dll, check whether your antivirus software is
placing these files in quarantine and, if possible, grant exceptions for the affected files.

To download Lumberyard using the installer

1. On the Lumberyard Downloads page, under Amazon Lumberyard, click Download Lumberyard.

2. Run the Lumberyard Installer executable.

3. On the Welcome page, click Install to install to the default location. You can change the install
location by clicking Options.

4. Follow the instructions onscreen to complete your installation.

5. On the Installation Successfully Completed page, click Launch to install required third-party
software and SDKs using Lumberyard Setup Assistant. For information, see Running Lumberyard
Setup Assistant (p. 15).

Upgrading Lumberyard
If you have an existing version of Lumberyard installed on your computer, you have several options for
upgrading:

• Upgrade Lumberyard with an existing version in source control

• Upgrade Lumberyard without an existing version in source control

• Upgrade Lumberyard without source control

We recommend using source control, which allows relationships to be created between the installed
versions of Lumberyard and the changes you make to your projects, among other benefits like revision
history.

Note
When choosing a source control solution, keep in mind that Lumberyard provides plugins and
tools for working with Perforce.

To set up Lumberyard in source control

1. Download and install Lumberyard. For information, see Downloading Lumberyard (p. 10).

2. Check into source control a pristine, unmodified version of Lumberyard. For information about
file types to ignore, see Files to Exclude When Upgrading Lumberyard (p. 13). For information
about the Lumberyard directory structure, see Downloading Lumberyard (p. 10).

3. In source control, create a new branch off the pristine Lumberyard branch to use for development.

Version 1.6
11

http://aws.amazon.com/gamedev/lumberyard/downloads

Lumberyard User Guide
Upgrading Lumberyard with an

Existing Version in Source Control

4. Make changes to the new development branch only.

Upgrading Lumberyard with an Existing Version in
Source Control
Before you begin upgrading, check into source control the previous pristine version of Lumberyard.

To upgrade Lumberyard with an existing version in source control

1. In Windows Explorer, locate the directory where you installed the previous pristine version of
Lumberyard. Delete the contents of this directory to remove the files from source control.

2. Download and install the new version of Lumberyard to the empty directory. Ensure the directory
structure is identical to the previous version.

3. Using source control, reconcile the files in the directory with the files in the pristine Lumberyard
branch. For example, if you use Perforce, click Actions, Reconcile Offline Work.

4. Build and test the reconciled version locally to ensure it works.

5. Submit the reconciled version to the pristine Lumberyard branch as the new version of
Lumberyard.

6. Integrate the updated, pristine Lumberyard branch into your development branch.

Upgrading Lumberyard without an Existing Version
in Source Control
Follow these steps to prepare your source control to upgrade Lumberyard.

To upgrade Lumberyard without an existing version in source control

1. Check into source control the pristine version of Lumberyard that you used to create your game
project.

2. Create a new branch off the pristine Lumberyard branch to use for development.

3. In Windows Explorer, locate the directory for the new development branch and delete the
contents.

4. Copy the files from your existing game project to the empty directory.

5. Using source control, reconcile the files in the development branch directory with the files in
source control. Accept your changes.

6. Follow the steps in Upgrading Lumberyard with an Existing Version in Source Control (p. 12).

Upgrading Lumberyard without Source Control
You can upgrade Lumberyard without using source control; however, we do not recommend this
method.

To upgrade Lumberyard without source control

1. Download and install the latest version of Lumberyard to a location that will not overwrite any
previous versions. For information, see Downloading Lumberyard (p. 10).

2. Use Lumberyard Setup Assistant to install the third-party software and SDKs required to run
Lumberyard. For information, see Running Lumberyard Setup Assistant (p. 15).

3. Configure and compile the Samples Project to test your build environment.

Version 1.6
12

Lumberyard User Guide
Upgrading Your Game Projects

Upgrading Your Game Projects
Once you have upgraded Lumberyard, you can upgrade each of your game projects.

To upgrade your game project

1. Copy your project's code (located in the \dev\Code\[project name] directory) and game
folder (located in the \dev\[project name] directory) to the new Lumberyard directory.

2. Create a project.json file for your project with the following:

{
 "project_name": "[project name]",
 "product_name": "[project name]",
 "executable_name": "[project name]Launcher",
 "code_folder": "Code/[project name]",
 "modules" : ["[project name]"]
}

Replace all instances of [project name] with your project's name.

For example, if your project was called MyProject, the project.json file would include the
following:

{
 "project_name": "MyProject",
 "product_name": "MyProject",
 "executable_name": "MyProjectLauncher",
 "code_folder": "Code/MyProject",
 "modules" : ["MyProject"]
}

3. Save the project.json file in the \dev\[project name] directory.

4. Run the Project Configurator (located in the \dev\Bin64 directory) and set your game project as
the default project. Close the Project Configurator when done.

5. Edit the wscript file (located in the \dev\code\project name\Game directory) to ensure the
includes under #Common appear as follows:

#==============================
Common
#==============================
 includes = ['.' ,
 bld.Path('Code/CryEngine/CryCommon'),
 bld.Path('Code/CryEngine/CryAction')],

6. In a command line window, locate the new dev folder and run the following: lmbr_waf
configure build_win_x64_profile -p all

Files to Exclude When Upgrading Lumberyard
When adding Lumberyard to source control, there are various files that you should exclude because
they are generated, temporary, or developer-specific.

File types and folders in the entire repository to exclude

Version 1.6
13

Lumberyard User Guide
Using Lumberyard Setup Assistant to

Set Up Your Development Environment

• *.ilk

• *.suo

• *.user

• *.o

• *.temp

• *.bootstrap.digests

• *.log

• *.exp

• *.vssettings

• *.exportlog

• *.mayaSwatches

• *.ma.swatches

• *.dds

• *.bak

• *.bak2

• *.options

• *.pyc

• *.db

• Solutions

• BinTemp

• Cache

File types and folders in the \dev\Code directory to exclude

• SDKs

File types and folders in each game folder (SamplesProject, MultiplayerProject, etc.) to exclude

• Compiled assets

• *.dds

• *.caf

• *.$animsettings

• Editor backup files – *.bak*

• Pak files that are exported from level files in the editor – *.pak

Using Lumberyard Setup Assistant to Set Up Your
Development Environment

Use the Lumberyard Setup Assistant application to validate that you have installed the third-party
software required to run Lumberyard.

Lumberyard Setup Assistant offers the following benefits:

• Ensures you have the required runtime software installed

• Ensures you have the required SDKs located in the source tree

• Provides plugins for certain programs detected

• Validates registry settings, paths, and libraries

Version 1.6
14

Lumberyard User Guide
Running Lumberyard Setup Assistant

You should run this application periodically and after you make any changes to your environment, to
validate and repair settings and paths. You can also customize the application with a configuration file
to easily integrate your specific directory structure.

Prerequisites

Lumberyard Setup Assistant is supported on the Windows operating system.

To use Lumberyard Setup Assistant, you need Visual Studio 2013 runtime. If you do not already have
Visual Studio 2013 runtime installed, do one of the following:

• Install the runtime from the following location:

\3rdParty\Redistributables\VisualStudio2013

• Download and install the runtime directly from Microsoft

Topics

• Running Lumberyard Setup Assistant (p. 15)

• Using Lumberyard Setup Assistant Batch (p. 16)

• Customizing Lumberyard Setup Assistant (p. 18)

Running Lumberyard Setup Assistant
Before you run Lumberyard Setup Assistant, verify that 3rdParty.txt appears in the \3rdParty
directory and that engineroot.txt appears in the \dev directory. These files are required for
Lumberyard Setup Assistant to properly detect third-party software and SDKs.

To use Lumberyard Setup Assistant

1. Open the directory where you extracted Lumberyard. Run SetupAssistant.bat.

2. Verify that the engine root path is correct.

3. On the Get started page, select what you want to do:

• Run your game project

• Run the Lumberyard Editor and tools – Use Lumberyard Editor to create a game.

• Compile the game code* – Compile the game code to include any changes you have made.

• Compile the engine and asset pipeline* – Compile the engine code and asset pipeline to
include any changes you have made.

• Compile the Lumberyard Editor and tools* – Compile Lumberyard tools to include any changes
you have made.

• Compile for Android devices*

• Compile for IOS devices*

*If you select any of the starred options, you may later see new dependencies in the Install
software and Required SDKs pages. If so, follow the instructions to obtain each software and third-
party SDK that you do not yet have installed.

Version 1.6
15

http://www.microsoft.com/en-us/download/details.aspx?id=40784

Lumberyard User Guide
Using Lumberyard Setup Assistant Batch

4. Click Next.

5. Follow the instructions on each page.

6. When you have all the required software and SDKs installed for your implementation, click
Configure project or Launch Lumberyard. For information, see Project Configurator (p. 985) or
Using Lumberyard Editor (p. 33).

7. Log in to your existing Amazon account or create a new account to access the editor.

Using Lumberyard Setup Assistant Batch
The command line version of Lumberyard Setup Assistant is useful for server and build administrators
and developers who would like to create a batch file to run the same configuration on multiple
machines.

The command line version of Lumberyard Setup Assistant is provided in the \dev\Bin64 directory as
an executable file called SetupAssistantBatch.exe.

To use Lumberyard Setup Assistant Batch

1. Open a command prompt.

2. Change the directory to where you extracted Lumberyard.

Example: cd D:\lumberyard-build\dev\Bin64

3. Run the SetupAssistantBatch.exe.

Example: D:\lumberyard-build\dev\Bin64\SetupAssistantBatch.exe

4. Modify as needed. See the commands list below.

Version 1.6
16

Lumberyard User Guide
Using Lumberyard Setup Assistant Batch

Commands

Command Description

--help Lists all commands and descriptions

--3rdpartypath Sets the third-party directory to the specified
parameter

--sdkpath Sets the location of the Lumberyard SDK to the
specified parameter

Note
This command expects a root where
Lumberyardroot.txt is located.

--disablecapability Disables the specified tasks (capabilities):

• Run your game project

• Run the Lumberyard Editor and tools

• Compile the game code

• Compile the engine and asset pipeline

• Compile the Lumberyard Editor and tools

• Compile for Android devices

• Compile for iOS devices

Note
Tasks are disabled by default.

--enablecapability Enables the specified tasks:

• Run your game project

• Run the Lumberyard Editor and tools

• Compile the game code

• Compile the engine and asset pipeline

• Compile the Lumberyard Editor and tools

• Compile for Android devices

• Compile for iOS devices

--all Enables all tasks

--none Disables all tasks

--no-modify-environment Prevents Lumberyard Setup Assistant from
changing your environment variables

Examples

The following example sets the paths, clear all selected tasks, and set the selected task as "Run
game":

setupassistantbatch.exe --3rdpartypath "d:\myLumberyard\3rdParty" --sdkpath
 "d:\myLumberyard\dev" --none --enablecapability rungame

Version 1.6
17

Lumberyard User Guide
Customizing Lumberyard Setup Assistant

If the command runs smoothly, the exit code for this program is 0.

The following example disables all tasks (capabilities) and enable only the compilation tasks. This is
common for hosting a build server:

setupassistantbatch.exe --none --enablecapability compilegame --
enablecapability compileLumberyard --enablecapability compilesandbox

Customizing Lumberyard Setup Assistant
The \dev\Bin64 directory includes an external configuration file called
SetupAssistantConfig.json. You can use the JSON file to customize Lumberyard Setup
Assistant for your project. The settings in this file are prioritized above internal default settings.

Refer to the SetupAssistantConfig.json example file for example configuration data. You can
copy and paste this information into your JSON file.

After you finish making your changes to the JSON file, run the SetupAssistantBatch.exe in a
command line. This helps validate your changes for any syntax errors, for example a missing comma.

Enabling and Disabling Features

Based on your project requirements, you can enable or disable certain software and SDKs. The
SetupAssistantConfig.ini file includes a list of commented code. Uncomment the lines to disable
a specific feature.

;just uncomment the SDKs you want to disable
;By default every SDK, software, and third-party plugin is enabled
[DisabledSDKS]
;boost="disabled"
;python="disabled"
;maya2013="disabled"
;maya2014="disabled"
;maya2015="disabled"
;max2015="disabled"
;photoshop="disabled"
;mysql="disabled"

Adding New Third-Party SDKs

In addition to enabling or disabling certain software and SDKs, you can edit the
SetupAssistantConfig.json file to add new, third-party SDKs to your project configuration.

When you add third-party SDKs to the SetupAssistantConfig.json file, which is loaded after the
internal configuration file, the JSON file removes and replaces entries in the internal configuration. This
allows you to customize your project configuration without having to recompile.

To add new tasks (capabilities)

• In the SetupAssistantConfig.json file, add the task(s) to the Capabilities section. Update
the SDKs to include the appropriate tags.

To remove existing SDKs

• In the SetupAssistantConfig.json file, create a remove entry with the same identifier.

Version 1.6
18

Lumberyard User Guide
Customizing Lumberyard Setup Assistant

Note
When you specify the destination of your code directory, you can use $CODEFOLDERNAME$ or
specify the actual name. The code directory is the location where SDKs are expected and is
relative to the SDK root. For example, you can change CodeFolderName to myGame/A/b/c.

SDK Fields

You may need to provide information for the following SDK fields.

identifier
Identifier that is not localized and can be used later to refer to the SDK. Must be one word and use
only lowercase letters.

remove
Eliminates an existing entry if set to true. The remove and identifier fields are required to
remove an entry.

name
Name of SDK; internal SDKs use identiferName, which is localized. Custom SDKs can use any
name without any language restrictions.

description
Brief description of SDK; internal SDKs use identifierDescriptionSummary, which is
localized. Custom SDKs can use any description. UTF-8 is supported.

detailedInstructions
(Optional) Detailed instructions to obtain the SDK.

tags
Tags to which the SDK applies. For example, if you need the SDK to run the game, you would add
the rungame tag.

symlinks
List of symlink dictionaries for all junctions (symbolic links) to establish between the 3rdParty
directory and the code base. Each symlink uses the following form:

• source – Source directory, relative to the 3rdParty directory

• destination – Destination directory, relative to the SDK root

• exampleFile – File that should be located in both the source and destination folders, to
validate the link is established

Configuring Advanced Settings

The SetupAssistantConfig.json file has the following configuration settings in the root element
(dictionary):

CodeFolderName
Location of the code directory, relative to Lumberyardroot.txt. You can specify relative paths
such as .. and ../.. (use forward slash marks) or relative paths with multiple components such
as code/mycode/stuff.

ToolsFolderName
Location of the tools directory, relative to the Lumberyardroot.txt file. The default directory is
Tools, but you can specify relative folders such as ../tools.

RememberLumberyardRootFolder
Saves the Lumberyard root that the user browsed between sessions if set to true. Autodetects the
Lumberyard root based on the executable location if set to false. The default value is false.

Remember3rdPartyFolder
Saves the third-party directory that the user browsed between sessions if set to true. Autodetects
the third-party directory based on the executable location if set to false. The default value is false.

Version 1.6
19

Lumberyard User Guide
Enabling a Firewall

Customizing the Maya Environment

The \Tools\Maya\Plugins directory includes the Lumberyard Maya plugin, and the \Tools\Maya
\script directory includes the MEL and Python scripts. To enable the Maya plugin functionality,
Lumberyard Setup Assistant modifies your Maya.ENV to add the required variables to your Maya
configuration.

If you use your own Maya tools in addition to the exporter and pipeline tools that Lumberyard provides,
you can use the SetupAssistantConfig.json file to add your project-specific paths to the Maya
ENV. Update the Maya paths in the MayaEnvironments tag in the JSON file.

Refer to the SetupAssistantConfig.json example file for example configuration data.

In the following example, $TOOLSFOLDER$ is a macro that is substituted with the appropriate tools
directory; however, you can also use relative paths, relative to the game project’s root directory that
includes Lumberyardroot.txt:

"MayaEnvironments" :
 [
 {
 "comment" : "an example entry showing how you can add a path to
 MAYA_PLUG_IN_PATH in maya.env",
 "identifier" : "MAYA_PLUG_IN_PATH",
 "paths" :["$TOOLSFOLDER$/maya/plugins"]
 },
 {
 "comment" : "an example entry showing how you can add paths to
 MAYA_SCRIPT_PATH in maya.env",
 "identifier" : "MAYA_SCRIPT_PATH",
 "paths" :["%DHTECH_SCRIPT_PATH%\\%DHTECH_GAME_PATH%","%DHTECH_SCRIPT_PATH
%\\animation"]
 },
],

Updating the Code or Tools Location

If your project requires moving the Lumberyard code or tools directory so that it’s no longer
located in a subfolder called Code or Tools relative to the Lumberyard root, you can edit the
SetupAssistantConfig.json file to update the location of the directory. Ensure the updated
directory includes the Lumberyardroot.txt file.

Enabling a Firewall
You can help protect your environment by enabling the firewall settings on all computers running the
Asset Processor or Lumberyard Editor to do the following:

• Exclude external connections to ports 4600, 9432, 9433, and 45643 from untrusted IP addresses.

• Exclude connections from every address except 127.0.0.1.

• If you have multiple computers that work together (e.g. a PC and a Mac), you must allow
connections to ports 4600, 9432, 9433, and 45643 from the IP addresses for these computers, but
exclude all other connections.

Refer to the documentation for your operating system for how to manage your firewall settings.

Version 1.6
20

Lumberyard User Guide
Lumberyard 1.6

Migrating Lumberyard Projects

If you are upgrading your projects to a newer version of Lumberyard, use the following guides to
ensure the proper migration of earlier Lumberyard projects and components.

Lumberyard 1.6
If you are upgrading your projects to Lumberyard 1.6, use the following instructions to migrate
GridMate service sessions and the framework for your tests.

Migrating GridMate Service Sessions
In Lumberyard 1.6, the way that GridMate handles session services has been refactored to enable
multiple session services to co-exist. Previously only a single session service could be active and all
requests were made through a generalized interface. The generalized interface has been removed
and now EBuses must be used to communicate with each session service. The following changes may
require you to migrate built-in services to the new methods or to update any custom services that you
have created.

RegisterService
RegisterService now uses GridMateServiceId to associate with the given service. The ID is
used to unregister the service and should be unique to each instance of the service.

The following changes are required:

• Any calls to RegisterService must now pass along this ID.

• Any calls to the templated function StartGridMateService will work for the built-in session
services (LANSessionService, XBoneSessionService, PSNSessionService, and
GameliftSessionService).

• Any custom session services that are registered through the function must now implement the
static function GetGridMateServiceId inside the class definition.

• The macro GRIDMATE_SERVICE_ID intakes the service name and creates the appropriate
function. For example, GRIDMATE_SERVICE_ID(MyCustomSessionService).

UnregisterService
UnregisterService now uses GridMateServiceId instead of GridMateService*.

Version 1.6
21

Lumberyard User Guide
Migrating from CryUnitTest to AzTest

The following changes are required:

• A new template function called StopGridMateService helps to standardize the helpers
workflow. This helper will work for the built-in session services (LANSessionService,
XBoneSessionService, PSNSessionService, and GameliftSessionService).

• Any custom session services that want to use this method must implement the static function
GetGridMateServiceId inside the class definition.

• The macro GRIDMATE_SERVICE_ID intakes the service name and creates the appropriate
function. For example, GRIDMATE_SERVICE_ID(MyCustomSessionService).

HostSession, JoinSession, and StartGridSearch
HostSession, JoinSession (all varieties), and StartGridSearch have been removed from the
IGridMate class.

The following changes are required:

• The removed methods no longer make sense when deciding which session service to use. Multiple
session services offer the ability to accept different search parameters and implement a different
subset of the join requests.

• Each built-in session service (LANSessionService, XBoneSessionService,
PSNSessionService, and GameliftSessionService) now implements an EBus that exposes
the specific methods for the session service. The EBus is identified by the IGridMate* instance to
which the service is registered. Any calls to the IGridMate* methods must be replaced by service-
specific EBus calls.

Host, Connect, and ListServers Nodes
The general purpose flow graph nodes for Host, Connect, and ListServers have been removed
because the general purpose interface no longer exists.

The following changes are required:

• Flow graph nodes were created for each of the built-in session services (LANSessionService,
XBoneSessionService, PSNSessionService, and GameliftSessionService). These service-
specific nodes must be used in order to create a unified flow. For an example of how these nodes
work in a multi-platform game, see the MultiplayerLobby level in the Multiplayer Project.

Migrating from CryUnitTest to AzTest
In Lumberyard 1.6, the CryUnitTest framework for writing tests is no longer available. The AzTest
framework, which is built on top of GoogleTest and GoogleMock, replaces CryUnitTest. If you have
tests written in CryUnitTest, follow these steps to use the AzTest framework for your tests.

To migrate from CryUnitTest to AzTest, you must:

• A. Modify tests to use GoogleTest macros

• B. Move tests into test build files

• C. Build and run tests

A. Modify Tests to Use GoogleTest Macros
Simply convert the CryUnitTest tests to GoogleTest tests by replacing the following macros. You must
also replace CryUnitTest.h with AzTest/AzTest.h in your .cpp files to get the new macros.

Version 1.6
22

Lumberyard User Guide
Lumberyard 1.5

CryUnitTest GoogleTest

CRY_UNIT_TEST_SUITE(SuiteName) No replacement. You can safely remove these
from your code.

CRY_UNIT_TEST(TestName) TEST(SuiteName, TestName)

CRY_UNIT_TEST_FIXTURE(FixtureName) class FixtureName :
public ::testing::Test

CRY_UNIT_TEST_WITH_FIXTURE(TestName,
FixtureName)

TEST_F(FixtureName, TestName)

CRY_UNIT_TEST_ASSERT(Condition) ASSERT_TRUE(condition)

CRY_UNIT_TEST_CHECK_CLOSE(ValueA,
ValueB, Epsilon)

ASSERT_NEAR(ValueA, ValueB, Epsilon)

CRY_UNIT_TEST_CHECK_EQUAL(ValueA,
ValueB)

ASSERT_EQ(ValueA, ValueB)

CRY_UNIT_TEST_CHECK_DIFFERENT(ValueA,
ValueB)

ASSERT_NE(ValueA, ValueB)

B. Move Tests into Test Build Files
AzTest and GoogleTest are not included in normal builds, they are only included in test builds. Tests
must be configured to only build in test builds. For more information about creating test builds and
running tests, see Using AZ Test Scanner (p. 1112).

If your CryUnitTest tests are interspersed with regular engine code, you must move those tests into a
separate .cpp file. You can then add the .cpp files to a test-specific .waf_files file. All modules
and gems that are shipped with Lumberyard have a *_test.waf_files file. You can add new test
files to these *_test.waf_files files. If your module or gem does not have a *_test.waf_files
file, you can create one and reference it in the module's wscript file.

C. Build and Run Tests
After you complete these migration steps, you can build and run your new tests. For more information,
see Using AZ Test Scanner (p. 1112).

If you encounter issues where your tests no longer work properly, your tests may be relying on in-
engine code to pass. If this occurs, you must specify that your tests are integration tests by using the
INTEG_TEST macro instead of TEST.

Lumberyard 1.5
If you are upgrading your projects to Lumberyard 1.5, use the following instructions to migrate your
projects and convert your gems.

Migrating Your Project
Lumberyard 1.5 introduces application descriptor files, which list all modules used by a project. Each
project requires two application descriptor files in its asset directory:

• dev/<project_asset_directory>/Config/Game.xml

Version 1.6
23

Lumberyard User Guide
Migrating Your Gems

• dev/<project_asset_directory>/Config/Editor.xml

Create these files by running the Bin64\lmbr.exe projects populate-appdescriptors
command from the command line.

If you change gems using the Project Configurator, Lumberyard automatically updates the application
descriptor files. If you manually edit a project's gems.json file, however, you must update these files
by running the Bin64\lmbr.exe projects populate-appdescriptors command from the
command line.

Migrating Your Gems
Beginning in Lumberyard version 1.5, gems with code should be built as AZ modules. Gems built as
AZ modules are better integrated with the Lumberyard's new component entity system (p. 320). As of
Lumberyard 1.5, all gems that ship with Lumberyard have been migrated to be AZ modules.

Legacy gems built with Lumberyard 1.4 or earlier are still supported, but to avoid issues, we strongly
recommend that you migrate them. If your custom gems make use of the component entity system,
you should migrate your gems immediately.

To migrate a gem, you modify the initialization code and change the gem's public API to use event
buses. To accomplish this, you must:

• A. Rename your gem files

• B. Modify your gem code

• C. Edit your gem.json file

• D. Migrate your config files

Perform these procedures for each of your Lumberyard pre-1.5 custom gems.

A. Rename Your Gem.h File
In this step, you rename your IGem.h file.

To rename your gem.h file

1. Rename Include\<GemName>\I<GemName>Gem.h to Include\<GemName>\<GemName>Bus.h

(Remove the I character and Gem, and add Bus).

2. Update your <GemName>.waf_files to account for the file that you renamed in the first step.

B. Modify Your Gem Code

To edit your gem code

1. Update the include statements that refer to the file that you renamed in the first procedure.

2. Make the following changes to <GemName>Bus.h.

a. Change the class name from I<GemName>Gem to <GemName>Bus.

b. Change the base class from IGem to AZ::EBusTraits.

c. Remove the CRYINTERFACE_DECLARE macro.

d. Add the following to the top of the class to make it a single handler bus:

public:
//

Version 1.6
24

http://docs.aws.amazon.com/lumberyard/latest/developerguide/az-modules-intro.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Migrating Your Gems

// EBusTraits
static const AZ::EBusHandlerPolicy HandlerPolicy =
 AZ::EBusHandlerPolicy::Single;
static const AZ::EBusAddressPolicy AddressPolicy =
 AZ::EBusAddressPolicy::Single;
//

e. Add the following after the class definition:

using <GemName>RequestBus = AZ::EBus<<GemName>Requests>;

An example of all of these changes is ILightningArcGem.h (now LightningArcBus.h),
which before looked like this:

// ILightningArcGem.h
#pragma once
#include "IGem.h"

class CLightningGameEffect;
class CScriptBind_LightningArc;

class ILightningArcGem
 : public IGem
{
public:
 CRYINTERFACE_DECLARE(ILightningArcGem, 0xf1b3a17f9c61410a,
 0x8783fc1ff9854125);
public:
 virtual CScriptBind_LightningArc* GetScriptBind() const = 0;
 virtual CLightningGameEffect* GetGameEffect() const = 0;
};

And after looks like:

// LightningArcBus.h
#pragma once
#include <AzCore/EBus/EBus.h>

class CLightningGameEffect;
class CScriptBind_LightningArc;

class LightningArcRequests
 : public AZ::EBusTraits
{
public:

 //
 // EBusTraits overrides
 static const AZ::EBusHandlerPolicy HandlerPolicy =
 AZ::EBusHandlerPolicy::Single;
 static const AZ::EBusAddressPolicy AddressPolicy =
 AZ::EBusAddressPolicy::Single;

 //

 virtual CScriptBind_LightningArc* GetScriptBind() const = 0;
 virtual CLightningGameEffect* GetGameEffect() const = 0;

Version 1.6
25

Lumberyard User Guide
Migrating Your Gems

};
using LightningArcRequestBus = AZ::EBus<LightningArcRequests>;

3. Convert all calls through the GemManager to your code with calls to
EBUS_EVENT(<GemName>RequestBus, etc.). For more information, see Event Bus (EBus). Here
is an example:

// BEFORE: calling through the GemManager
CLightningGameEffect* gameEffect =
 GetISystem()>GetGemManager()>GetGem<ILightningArcGem>()->GetGameEffect();

// AFTER: calling through the EBus
CLightningGameEffect* gameEffect = nullptr;
EBUS_EVENT_RESULT(gameEffect, LightningArcRequestBus, GetGameEffect);

4. Make the following modifications to the <GemName>Gem.h file.

a. Change the <GemName>Gem base class from I<GemName>Gem to CryHooksModule

b. In the <GemName>Gem class, add inheritance from <GemName>RequestBus::Handler.

Note
Other classes can implement the bus handler instead. For example, the OpenVR
Gem creates a system component to handle bus requests.

c. Replace the GEM_IMPLEMENT_WITH_INTERFACE line with one declaring type information.
This requires the class name, a unique UUID (Visual Studio has a tool you can use to get
unique values), and the module base class. For example:

AZ_RTTI(LightningArcGem, "{89724952-ADBF-478A-AFFE-784BD0952E2D}",
 CryHooksModule);

d. Declare a default constructor and destructor. These used to be declared by the
GEM_IMPLEMENT_WITH_INTERFACE macro.

The following example, from LightningArcGem.h shows what the file looked like before the
changes:

// LightningArcGem.h
#ifndef _GEM_LIGHTNINGARC_H_
#define _GEM_LIGHTNINGARC_H_
#include <GameEffectSystem/IGameEffectSystem.h>
#include "LightningArc/ILightningArcGem.h"

class LightningArcGem
 : public ILightningArcGem
 , public GameEffectSystemNotificationBus::Handler
{
public:
 GEM_IMPLEMENT_WITH_INTERFACE(LightningArcGem, ILightningArcGem,
 0x8eccf081ff02476f, 0xb8ec7c4c20cc603c)
 void OnSystemEvent(ESystemEvent event, UINT_PTR wparam, UINT_PTR
 lparam) override;
 void PostSystemInit();
 void Shutdown();
public:
 CScriptBind_LightningArc* GetScriptBind() const override;
 CLightningGameEffect* GetGameEffect() const override;
protected:
 CLightningGameEffect* m_gameEffect;

Version 1.6
26

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html
https://msdn.microsoft.com/en-us/library/ms241442%28v=vs.80%29.aspx

Lumberyard User Guide
Migrating Your Gems

 CScriptBind_LightningArc* m_lightningArcScriptBind;
 int g_gameFXLightningProfile;

 //
 // GameEffectSystemNotificationBus
 void OnReleaseGameEffects() override;

 //
};
#endif //_GEM_LIGHTNINGARC_H_

Here is the LightningArcGem.h file after the changes are made:

// LightningArcGem.h
#ifndef _GEM_LIGHTNINGARC_H_
#define _GEM_LIGHTNINGARC_H_
#include <GameEffectSystem/IGameEffectSystem.h>
#include <LightningArc/LightningArcBus.h>

class LightningArcGem
 : public CryHooksModule
 , public LightningArcRequestBus::Handler
 , public GameEffectSystemNotificationBus::Handler
{
public:
 AZ_RTTI(LightningArcGem, "{89724952-ADBF-478A-AFFE-784BD0952E2D}",
 CryHooksModule);
 LightningArcGem();
 ~LightningArcGem() override;
 void OnSystemEvent(ESystemEvent event, UINT_PTR wparam, UINT_PTR
 lparam) override;
 void PostSystemInit();
 void Shutdown();
public:
 CScriptBind_LightningArc* GetScriptBind() const override;
 CLightningGameEffect* GetGameEffect() const override;
protected:
 CLightningGameEffect* m_gameEffect = nullptr;
 CScriptBind_LightningArc* m_lightningArcScriptBind = nullptr;
 int g_gameFXLightningProfile;

 //
 // GameEffectSystemNotificationBus
 void OnReleaseGameEffects() override;

 //
};
#endif //_GEM_LIGHTNINGARC_H_

5. Perform the following steps to modify your <GemName>Gem.cpp file.

a. If your gem contains AZ::Component instances, register them in the constructor:

<GemName>Gem::<GemName>Gem()
{
 m_descriptors.insert(m_descriptors.back(), {
 <MyComponent>::CreateDescriptor(),
 };

Version 1.6
27

Lumberyard User Guide
Migrating Your Gems

 ...}

b. If this class inherits from <GemName>RequestBus::Handler, connect to the bus in the
constructor and disconnect in the destructor:

<GemName>Gem::<GemName>Gem()
{
 ...
 <GemName>RequestBus::Handler::BusConnect();
}

<GemName>Gem::~<GemName>Gem()
{
 <GemName>RequestBus::Handler::BusDisconnect();
 ...
}

c. If there is a call to RegisterFlowNodes(), replace it with
RegisterExternalFlowNodes().

d. Perform the following steps to convert the REGISTER_GEM macro to
AZ_DECLARE_MODULE_CLASS:

i. Copy the all lower-case UUID from your gem.json file.

ii. Replace GEM_REGISTER(<GemName>Gem) with:

AZ_DECLARE_MODULE_CLASS(<GemName>_<GemUUID>, fully qualified module
 class, usually <GemName>::<GemName>Gem)

The following example, LightningArcGem.cpp, shows what the file looked like before the
changes:

// LightningArcGem.cpp
#include "StdAfx.h"
#include <platform_impl.h>
#include <IEntityClass.h>
#include "LightningArcGem.h"
#include <FlowSystem/Nodes/FlowBaseNode.h>
#include "LightningArc.h"
#include "LightningGameEffect.h"
#include "ScriptBind_LightningArc.h"

LightningArcGem::LightningArcGem() {}

LightningArcGem::~LightningArcGem() {}

void LightningArcGem::PostSystemInit()
{
 REGISTER_CVAR(g_gameFXLightningProfile, 0, 0, "Toggles game effects
 system lightning arc profiling");
 // Init GameEffect
 m_gameEffect = new CLightningGameEffect();
 m_gameEffect->Initialize();
 // Init ScriptBind
 m_lightningArcScriptBind = new CScriptBind_LightningArc(GetISystem());
 // Init GameObjectExtension

Version 1.6
28

Lumberyard User Guide
Migrating Your Gems

 // Originally registered with REGISTER_GAME_OBJECT(pFramework,
 LightningArc, "Scripts/Entities/Environment/LightningArc.lua");
 // If more objects need registered, consider bringing the macro back
 along with the GameFactory wrapper.
 IEntityClassRegistry::SEntityClassDesc clsDesc;
 clsDesc.sName = "LightningArc";
 clsDesc.sScriptFile = "Scripts/Entities/Environment/LightningArc.lua";
 static CLightningArcCreator _creator;
 GetISystem()->GetIGame()->GetIGameFramework()->GetIGameObjectSystem()-
>RegisterExtension("LightningArc", &_creator, &clsDesc);
}

void LightningArcGem::Shutdown()
{
 SAFE_DELETE(m_gameEffect);
 SAFE_DELETE(m_lightningArcScriptBind);
}

void LightningArcGem::OnSystemEvent(ESystemEvent event, UINT_PTR wparam,
 UINT_PTR lparam)
{
 switch (event)
 {
 case ESYSTEM_EVENT_GAME_POST_INIT:
 IComponentFactoryRegistry::RegisterAllComponentFactoryNodes(*gEnv-
>pEntitySystem->GetComponentFactoryRegistry());
 GameEffectSystemNotificationBus::Handler::BusConnect();
 break;
 case ESYSTEM_EVENT_FLOW_SYSTEM_REGISTER_EXTERNAL_NODES:
 RegisterFlowNodes();
 break;
 // Called on ESYSTEM_EVENT_GAME_POST_INIT_DONE instead of
 ESYSTEM_EVENT_GAME_POST_INIT because the GameEffectSystem Gem
 // uses ESYSTEM_EVENT_GAME_POST_INIT to initialize, and this requires
 that has happened already.
 case ESYSTEM_EVENT_GAME_POST_INIT_DONE:
 PostSystemInit();
 break;
 case ESYSTEM_EVENT_FULL_SHUTDOWN:
 case ESYSTEM_EVENT_FAST_SHUTDOWN:
 GameEffectSystemNotificationBus::Handler::BusDisconnect();
 Shutdown();
 break;
 }
}

CScriptBind_LightningArc* LightningArcGem::GetScriptBind() const
{
 return m_lightningArcScriptBind;
}

CLightningGameEffect* LightningArcGem::GetGameEffect() const
{
 return m_gameEffect;
}

void LightningArcGem::OnReleaseGameEffects()
{
 Shutdown();

Version 1.6
29

Lumberyard User Guide
Migrating Your Gems

}

GEM_REGISTER(LightningArcGem)

After the changes, LightningArcGem.cpp looks like this:

// LightningArcGem.cpp
#include "StdAfx.h"
#include <platform_impl.h>
#include <IEntityClass.h>
#include "LightningArcGem.h"
#include <FlowSystem/Nodes/FlowBaseNode.h>
#include "LightningArc.h"
#include "LightningGameEffect.h"
#include "ScriptBind_LightningArc.h"

LightningArcGem::LightningArcGem()
{
 LightningArcRequestBus::Handler::BusConnect();
}

LightningArcGem::~LightningArcGem()
{
 LightningArcRequestBus::Handler::BusDisconnect();
}

void LightningArcGem::PostSystemInit()
{
 REGISTER_CVAR(g_gameFXLightningProfile, 0, 0, "Toggles game effects
 system lightning arc profiling");
 // Init GameEffect
 m_gameEffect = new CLightningGameEffect();
 m_gameEffect->Initialize();
 // Init ScriptBind
 m_lightningArcScriptBind = new CScriptBind_LightningArc(GetISystem());
 // Init GameObjectExtension
 // Originally registered with REGISTER_GAME_OBJECT(pFramework,
 LightningArc, "Scripts/Entities/Environment/LightningArc.lua");
 // If more objects need registered, consider bringing the macro back
 along with the GameFactory wrapper.
 IEntityClassRegistry::SEntityClassDesc clsDesc;
 clsDesc.sName = "LightningArc";
 clsDesc.sScriptFile = "Scripts/Entities/Environment/LightningArc.lua";
 static CLightningArcCreator _creator;
 GetISystem()->GetIGame()->GetIGameFramework()->GetIGameObjectSystem()-
>RegisterExtension("LightningArc", &_creator, &clsDesc);
}

void LightningArcGem::Shutdown()
{
 SAFE_DELETE(m_gameEffect);
 SAFE_DELETE(m_lightningArcScriptBind);
}

void LightningArcGem::OnSystemEvent(ESystemEvent event, UINT_PTR wparam,
 UINT_PTR lparam)
{
 switch (event)

Version 1.6
30

Lumberyard User Guide
Migrating Your Gems

 {
 case ESYSTEM_EVENT_GAME_POST_INIT:
 IComponentFactoryRegistry::RegisterAllComponentFactoryNodes(*gEnv-
>pEntitySystem->GetComponentFactoryRegistry());
 GameEffectSystemNotificationBus::Handler::BusConnect();
 break;
 case ESYSTEM_EVENT_FLOW_SYSTEM_REGISTER_EXTERNAL_NODES:
 RegisterExternalFlowNodes();
 break;
 // Called on ESYSTEM_EVENT_GAME_POST_INIT_DONE instead of
 ESYSTEM_EVENT_GAME_POST_INIT because the GameEffectSystem Gem
 // uses ESYSTEM_EVENT_GAME_POST_INIT to initialize, and this requires
 that has happened already.
 case ESYSTEM_EVENT_GAME_POST_INIT_DONE:
 PostSystemInit();
 break;
 case ESYSTEM_EVENT_FULL_SHUTDOWN:
 case ESYSTEM_EVENT_FAST_SHUTDOWN:
 GameEffectSystemNotificationBus::Handler::BusDisconnect();
 Shutdown();
 break;
 }
}

CScriptBind_LightningArc* LightningArcGem::GetScriptBind() const
{
 return m_lightningArcScriptBind;
}

CLightningGameEffect* LightningArcGem::GetGameEffect() const
{
 return m_gameEffect;
}

void LightningArcGem::OnReleaseGameEffects()
{
 Shutdown();
}

AZ_DECLARE_MODULE_CLASS(LightningArc_4c28210b23544635aa15be668dbff15d,
 LightningArcGem)

C. Edit Your Gem.json File

A simple change in your gem.json file signals Lumberyard that your gem is now an AZ module.

To edit the gem.json file

1. Open gem.json.

2. Increment GemFormatVersion to 3.

D. Migrate Your Config Files

The final step is to update your game's configuration files so that it recognizes your gem as a proper
AZ module.

Version 1.6
31

Lumberyard User Guide
Migrating Your Gems

To migrate your config files

1. Open a command prompt and use the cd command to navigate to the Bin64 directory.

2. Type the following command:

lmbr.exe projects populate-appdescriptors

Version 1.6
32

Lumberyard User Guide

Using Lumberyard Editor

Lumberyard Editor is the primary workspace editor for Lumberyard and combines a running game with
a full suite of tools to edit the game. You can access Lumberyard Editor by navigating to \dev\Bin64
and double-clicking Editor.exe.

Note
When starting Lumberyard for the first time, if you encounter errors about
AssetProcessor.exe, AssetProcessor_temp.exe, or CrySystem.dll, check whether
your antivirus software is placing these files in quarantine and, if possible, grant exceptions for
the affected files.

Lumberyard Editor consists of various menus, toolbars, and a viewport window. By default,
Lumberyard Editor also opens the Rollup Bar for object selection and the console window for console
variables.

Topics

• Lumberyard Editor Interface (p. 34)

• Using the Menu Bar in Lumberyard Editor (p. 36)

• Using the Top Toolbars (p. 45)

Version 1.6
33

Lumberyard User Guide
Lumberyard Editor Interface

• Using the Bottom Toolbar (p. 47)

• Using Shortcut Keys (p. 49)

• Using the Viewport (p. 51)

• Using the Rollup Bar (p. 52)

• Using the Console Window (p. 56)

• Customizing Your Workspace (p. 58)

• Restoring Default Settings for Lumberyard Editor (p. 66)

Lumberyard Editor Interface
Lumberyard Editor has the following main panels and bars:

• Viewport – 3D viewport window that displays the game environment and allows you to view, create,
and interact with assets

• Rollup Bar – Right pane that provides access to objects (AI and asset entities), terrain tools,
modeling, and a layer organizer

• Toolbars – Top and bottom toolbars that provide quick access to the most commonly used functions
and features; the toolbars can be customized based on your preferences

• Console – Console log window that shows console command variables

Tip
You can enter game mode by pressing CTRL+G on your keyboard. Press Esc to exit game
mode and enter editing mode.

Viewport
To fly around your level, move your mouse cursor over the view port and hold down the right mouse
button. With the right mouse button pressed, move the mouse to look around and press the A, W, S
and D keys to move. Hold down the Shift key to move at 10x your normal speed.

For more information, see Using the Viewport (p. 51).

Version 1.6
34

Lumberyard User Guide
Toolbars

Toolbars
The toolbars at the top of Lumberyard Editor provide quick access to the most commonly used
functions and features. Use the four buttons shown in the image to select, move, rotate, and scale
objects. You can also use the hot keys 1, 2, 3, and 4 to accomplish these actions.

For example, you can move an object by clicking the move button, clicking the object you want to move
in the viewport, and dragging the object to a new location with your mouse.

For more information, see Using the Top Toolbars (p. 45).

Rollup Bar
The Rollup Bar is a multi-tabbed window used for multiple purposes. Each section on the Objects tab
has different objects you can add to your level.

For more information, see Using the Rollup Bar (p. 52).

Bottom Toolbar
You can use the Go to position button in the bottom toolbar to navigate to a precise X, Y, and Z
location in the viewport. To transport to a point above the terrain, you can change the X, Y, and Z
values to 1024, 1024, and 34, respectively.

For more information, see Using the Bottom Toolbar (p. 47).

Version 1.6
35

Lumberyard User Guide
Console

If it doesn't appear as if you're moving, you can select a faster move speed by entering a number in the
Speed field or by clicking one of the preset speed buttons: 0.1, 1, or 10.

Console
Enter commands in the console window to change settings for your game or execute functionality, such
as connecting to a server or banning a player. The console window also displays warnings and errors
for your game level, such as missing textures and models.

For more information, see Using the Console Window (p. 56).

Tip
You can access the console while in-game by pressing the tilde (~) key.

Using the Menu Bar in Lumberyard Editor
You can use the main menu bar in Lumberyard Editor to access basic file operations and display
options to more advanced features, such as terrain and level editing tools and AI settings.

You can perform many of these commands by using the toolbar buttons or keyboard shortcuts.

Version 1.6
36

Lumberyard User Guide
File Menu

File Menu
The File menu includes commands for file handling, such as open and save level file, show log file,
and a list of recently loaded levels.

Menu Item Description

New Creates a new level

Open Opens an existing level

Save Saves the level

Save As Saves the level with a new name

Save Modified External Layers Saves only the external layers that have been modified since the
last save

Save Level Resources Saves all assets used in the level

Load Objects Loads objects from the game directory

Save Objects Save objects to a .grp (group) file

Switch Projects Close the current project

Configure Project Configure Gems and settings for projects

Export to Engine Exports the level data to the level.pak file so the level can be
played in game mode

Export Selected Objects Saves the selected geometry to an .obj or .fbxfile

Export Occlusion Mesh Exports the occlusion mesh

Show Log File Shows the log file containing all text printed in the console

Global Preferences Customize configuration, keyboard, and editor settings

Recent files list Lists recently opened levels

Exit Quits Lumberyard Editor, prompting you to save first if changes
are detected

File Configure Menu
The File, Global Preferences, Configure menu allows you to quickly switch between predefined
viewport quality settings to check memory footprints, visual quality differences, and features available
in the different modes.

Menu Item Description

Very High Enables very high-resolution display settings (some DX11 specific)

Version 1.6
37

Lumberyard User Guide
Edit Menu

Menu Item Description

High Enables high-resolution display settings

Medium Enables medium-resolution display settings

Low Enables low-resolution display settings

XBoxOne Emulates Xbox One display setting

PS4 Emulates PlayStation 4 display settings

Android Emulates Android display settings

iOS Emulates Apple iOS display settings

Edit Menu
The Edit menu includes commands for object manipulation and selection.

Menu Item Description

Undo Reverts the last action

Redo Applies the last action

Select • All – Selects all visible, non-frozen objects

• None – Deselects the objects that are currently selected

• Invert – Inverts the selection, so the unselected object becomes
selected and the objects currently selected become deselected

• Objects – Opens the Select Objects tool

• Lock Selection – Locks the selected object

• Next Selection Mask – Selects the next selection mask

Hide Selection Hides the selected object

Show Last Hidden Shows the last hidden object

Unhide All Unhides all hidden objects

Link Creates hierarchies between objects

Unlink Removes the link between linked objects

Group Groups multiple selected objects together and draws a green box
around those objects

Ungroup Ungroups all grouped objects

Open Group Opens the group so you can modify individual objects

Close Group Closes the group

Attach to Group Adds the selected object to the selected group

Detach from Group Removes the selected object from the selected group

Freeze Selection Freezes the selected object

Version 1.6
38

Lumberyard User Guide
Modify Menu

Menu Item Description

Unfreeze All Unfreezes all frozen objects

Hold Saves the current state

Fetch Restores the saved state

Delete Deletes the selected object

Clone Duplicates the selected object

Modify Menu
The Modify menu includes commands for modifying and changing attributes and properties such as
height, alignment, and material of objects and entities.

Menu Item Description

Convert to Converts the selected object to a brush, geom entity, designer
object, StaticEntity, or GameVolume

Sub Object Mode Selects and edits various geometry components, if an object is
selected using the edit mesh function

Set Object(s) Height Moves the object to a specified height (in meters) above the terrain

Rename Object(s) Renames the selected object

Transform Mode • Select Mode

• Move

• Rotate

• Scale

• Select Terrain

Constrain Limits movement to the X, Y, Z axes, XY planes, or to the surface
of the terrain and objects

Align Aligns an object to the grid, to another object, or to the selected
surface, which moves the pivot point of the object

Snap Snaps an object to the grid or a rotational increment

Fast Rotate Quickly rotates the selected object on the selected axis with the
degree value specified for Rotate Angle

Display Menu
The Display menu allows you to toggle display features for level design, entity placement, and object
manipulation. You can also access other commands, such as Remember/Goto Location and viewport
navigation speed.

Version 1.6
39

Lumberyard User Guide
AI Menu

Menu Item Description

Toggle Fullscreen MainWindow Toggles the viewport to and from full screen mode when the
viewport is not docked in Lumberyard Editor

Wireframe Enables wireframe rendering view

Ruler Enables the Ruler tool to measure distance

Grid Settings Sets grid line spacing, angle snapping, and rotation and translation
settings

Switch Camera • Default Camera – Selects the default camera

• Sequence Camera – Selects the camera used in a Track View
sequence

• Selected Camera Object – Selects the camera entity

• Cycle Camera – Selects the next camera

Change Move Speed Changes movement speed of all objects in the level

Goto Coordinates Specifies the camera position in XYZ coordinates, and moves the
camera to that position

Goto Selection Jumps to the currently selected object in the viewport

Goto Location Jumps to one of 10 predefined locations in the viewport

Remember Location Saves up to 10 locations in the viewport

Configure Layout Selects a preconfigured layout

Cycle Viewports Changes the viewport to the next view type

Show/Hide Helpers Shows or hides all helper objects

AI Menu
The AI menu includes commands for generating AI navigation and updating the AI system within a
level.

Menu Item Description

Generate All AI Generates all AI navigation and performs the tasks listed below

Generate Triangulation Generates triangulation of the navigation mesh used for outdoor
levels

Generate 3D Navigation
Volumes

Generates 3D navigation data for 3D volumes used by alien
AI agents; volumes are defined by AINavigationModifier and a
Volume NavType

Generate Flight Navigation Generates 2.5D navigation data for volumes used by flying AI
agents; volumes are defined by AINavigationModifier and a
Flight NavType

Generate Waypoints Generates links for indoor waypoints

Version 1.6
40

Lumberyard User Guide
Audio Menu

Menu Item Description

Validate Navigation Checks navigation data for various problems (for example, bad
object placement, overlapping forbidden areas, corruptions) and
displays warnings if any problems are found

Clear All Navigation Removes all navigation information from the level

Generate Spawner Entity Code Looks for AI entity classes and generates an .ent file for each;
associates an entity class name with the Lua base file for that
entity

Generate 3D Debug Voxels Generates debugging information for volume navigation regions
when the ai_DebugDraw console variable is enabled

Create New Navigation Area Creates a new navigation area

Request a full MNM rebuild Performs a full rebuild of all MNM mesh data

Show Navigation Areas Displays MNM navigation areas

Add Navigation Seed Adds a navigation seed entity

Continuous Update Toggles continuous MNM data updates; if disabled, mesh data will
not update until a rebuild is requested

Visualize Navigation
Accessibility

Displays inaccessible areas in red and accessible areas in blue

MediumSizedCharacters Toggles the navigation debug display

Generate Cover Surfaces Generates cover surface data

AIPoint Pick Link Combines AI navigation modifier points

AIPoint Pick Impass Link Restricts AI navigation modifier points so AI cannot walk on them

Audio Menu
The Audio menu includes commands for showing the music currently playing and accessing the sound
and dialog browsers.

Menu Item Description

Stop All Sounds Silences all sounds in the level

Refresh Audio Refreshes all sounds in the level

Clouds Menu
The Clouds menu allows you to create, open, close, and delete your custom cloud assets.

Menu Item Description

Create Creates a new cloud asset

Destroy Deletes a created cloud asset

Version 1.6
41

Lumberyard User Guide
Game Menu

Menu Item Description

Open Opens the selected cloud asset

Close Closes the selected cloud asset

Game Menu
The Game menu includes commands for enabling the game mode and testing newly created features.

Menu Item Description

Switch to Game Enables game mode (press Esc to exit game mode)

Enable Physics/AI Enables physics and AI

Terrain Collision Makes the camera collide with the terrain so you cannot fly under
the terrain surface

Synchronize Player with
Camera

Sets the player position relative to the camera position

Edit Equipment-Packs Opens the Equipment Packs window

Toggle SP/MP GameRules Toggles between SinglePlayer and TeamInstantAction game
rules

Physics Menu
The Physics menu includes commands to make physics simulations.

Menu Item Description

Get Physics State Retrieves the current physics state

Reset Physics State Resets the physics state to its original position

Simulate Objects Makes objects respond to the force of gravity

Prefabs Menu
The Prefab menu includes commands to make prefabs from a selection, reload prefabs, and add
selected objects to the prefab library.

Menu Item Description

Create Prefab from Selected
Object(s)

Creates a new prefab from selected objects

Add Selected Object(s) to
Prefab

Adds selected objects to the prefab

Clone Selected Object(s) Clones selected objects

Version 1.6
42

Lumberyard User Guide
Terrain Menu

Menu Item Description

Extract Selected Object(s) Extracts selected objects from the prefab

Open All Opens all prefabs

Close All Closes all prefabs

Reload All Reloads all prefabs

Terrain Menu
The Terrain menu allows you to access view panes and tools that affect the game world and terrain
appearance.

Menu Item Description

Edit Terrain Opens the Terrain Editor

Terrain Texture Layers Opens the Terrain Texture Layers tool

Export/Import Megaterrain
Texture

Exports or imports the megaterrain texture

Sun Trajectory Tool Opens the Sun Trajectory Tool

Time Of Day Opens the Time of Day Editor

Reload Terrain Reloads the selected terrain

Export Terrain Block Exports a section of the terrain to a terrain block .trb file

Import Terrain Block Imports terrain from a saved .trb file

Resize Terrain Opens the Terrain Resize tool

Terrain Modify Opens the Terrain, Modify panel in the Rollup Bar

Edit Vegetation Opens the Vegetation panel in the Rollup Bar

Paint Layers Opens the Layer Painter panel in the Rollup Bar

Refine Terrain Texture Tiles Divides the terrain tiles into smaller sections

Tools Menu
The Tools menu allows you to reload scripts, textures, geometry, and terrain. Other commands include
user command configuration and check level for errors.

Menu Item Description

Reload Scripts Reloads all entities

Reload Textures/Shaders Reloads all textures and shaders used in the level

Reload Geometry Reloads geometries used in the level

Version 1.6
43

Lumberyard User Guide
View Menu

Menu Item Description

Reload Terrain Reloads all terrain

Resolve Missing Objects/
Materials

Runs a check through the level and attempts to resolve all object
and material issues

Enable file change monitoring Enables monitoring of file changes

Clear Registry Data Clears all custom toolbar registry data

Check Level for Errors Checks the level for errors (e.g. duplicate objects and missing
assets) and displays a list in the console window

Check Object Positions Checks the positions of all objects in the level

Save Level Statistics Saves level statistics to the yourlevelname.xml file in the
TestResults folder

Advanced • Compile Script – Compiles an entity script

• Reduce Working Set – Reduces memory consumption

• Update Procedural Vegetation – Updates all procedural
vegetation

Configure Toolbox Macros Opens the Tools Configuration window for creating shortcuts to
the console commands

Toolbox Macros Displays the shortcuts to the console and Lumberyard Editor
commands, as specified in the Configure User Commands
window

Script Help Opens the Script Help window, which lists all commands,
descriptions, and examples

View Menu
The View menu allows you to customize Lumberyard Editor and provides access to the various editors,
user layouts, and skins.

Menu Item Description

Open View Pane Lists all Lumberyard Editor tools and sub-editors

For more information about the tools and sub-editors, see
Lumberyard Editors and Tools (p. 4).

Show Rollup Bar Displays the Rollup Bar panel

Show Console Displays the console window

Show Quick Access Bar Displays the quick access bar

Layouts • Save Layout – Saves the current layout

• Restore Default Layout – Restores the default layout

Version 1.6
44

Lumberyard User Guide
AWS Menu

AWS Menu
The AWS menu allows you to sign up for an Amazon Web Services (AWS) account.

Menu Item Description

Sign up for AWS Goes to http://aws.amazon.com/

Commerce Menu
The Commerce menu allows you to learn how to submit your game to Amazon's Digital Software
store.

Menu Item Description

Merch by Amazon Goes to https://merch.amazon.com/landing

Publishing on Amazon Goes to https://developer.amazon.com/appsandservices/solutions/
platforms/mac-pc

Help Menu
The Help menu includes a link to the online help documentation, support contact information, and
Lumberyard Editor version information.

Menu Item Description

Getting Started Links to the online Lumberyard Getting Started Guide and
Tutorials

Documentation Links to the online Lumberyard Glossary, User Guide, GameLift
Documentation, and Release Notes

GameDev Resources Links to the GameDev Blog, Twitch Channel, Tutorials, Forums,
and AWS Support

Give Us Feedback Lists contact information for Lumberyard support

About Lumberyard Displays the version of Lumberyard Editor

Using the Top Toolbars
Lumberyard Editor provides toolbars that allow you to quickly and easily access the various editors.
You can configure and customize these toolbars to fit your needs. For example, you can right-click the
toolbar to toggle the display of the following:

• EditMode Toolbar

• Object Toolbar

• Editors Toolbar

• Substance Toolbar

Version 1.6
45

http://aws.amazon.com/
https://merch.amazon.com/landing
https://developer.amazon.com/appsandservices/solutions/platforms/mac-pc
https://developer.amazon.com/appsandservices/solutions/platforms/mac-pc

Lumberyard User Guide
EditMode Toolbar

You can arrange toolbars horizontally at the top of the editor, vertically on the edges, or undocked from
the editor.

In addition to using the toolbar, you can access the various editors by clicking View, Open View Pane.

For more information about the bottom toolbar, see Using the Bottom Toolbar (p. 47).

For more information about accessing functions by using keyboard shortcut keys, see Using Shortcut
Keys (p. 49).

EditMode Toolbar

The EditMode toolbar includes various tools for general level editing:

• A – Reverts or applies the last command

• B – Links or unlinks the selected object

• C – Filters what you can select in the viewport: all, brushes, no brushes, entities, prefabs, areas,
shapes, AI points, decals, solids, or no solids

• D – Translation tools used to select an object or object type, move an object, rotate an object, scale
an object, select a terrain area, or rotate a terrain area

• E – Selects the reference coordinate system

• F – Specifies the axis constraint by locking on the X, Y, and Z axis

• G – Object placement tools used to follow the terrain, snap to objects, snap to grid, snap to angle, or
show the ruler

• H – Asset organization tools used to open the object selector, create a selection, delete a selection,
save selected objects, or load selected objects

• I – Selects the current layer

Object Toolbar

The Object toolbar includes various tools for object alignment and manipulation:

• A – Goes to the selected object

• B – Aligns the selection to an object by choosing the source object, clicking the tool, and then
clicking the target object

• C – Aligns the object to the grid

• D – Sets the object's height

• E – Aligns the object to the terrain surface normal (hold Ctrl for object surface normal alignment)

• F – Freezes or unfreezes the selected object

• G – Vertex snapping for the selected object

• H – Resets the physics state for the selected object, get the physics state for the selected object, or
simulate physics on the selected object

Editors Toolbar

Version 1.6
46

Lumberyard User Guide
Using the Bottom Toolbar

The Editors toolbar includes 19 buttons that are used to access various tools:

• A – Opens the Asset Browser

• B – Opens the Layer Editor

• C – Opens the LOD Generator

• E – Opens the Material Editor

• F – Opens Geppetto (character and animation tools)

• G – Opens the Mannequin Editor

• H – Opens Flow Graph

• I – Opens the AI Debugger

• J – Opens the Track View Editor

• K – Opens the Audio Controls Editor

• L – Opens the Terrain Editor

• M – Opens the Terrain Texture Layers Editor

• N – Opens the Particle Editor

• O – Opens the Time of Day Editor

• P – Opens the Sun Trajectory Tool

• Q – Opens the Database View

• R – Opens the UI Editor

• S – Opens the Substance Editor

Using the Bottom Toolbar
Lumberyard Editor includes a bottom status/toolbar that is used for the purposes below.

Status
The status bar (1) displays the number of selected object(s) and provides functional hints for buttons
or menu items in Lumberyard Editor. The status line is located at the bottom of the screen.

Lock Selection
The Lock Selection button (2) toggles selection locking, preventing you from inadvertently selecting
something else in a level.

When your selection is locked, you can click or drag the mouse anywhere in the viewport without losing
your selection. To deselect or alter your selection, click Lock Selection again to unlock the selection.

Coordinates/Transforms

The coordinates/transform area (3) shows the position of the cursor or the status of a transform, and
allows you to enter new transform values. The information in these fields vary based on your tasks:

• When creating an object or moving the mouse in the viewport, these fields show the cursor location
in absolute world coordinates.

• When transforming an object by dragging it in the viewport, these fields show coordinates relative to
the object's coordinates before the transformation started.

Version 1.6
47

Lumberyard User Guide
Set Vector

• While transforming an object, these fields change to spinners in which you can directly type values.

• When the transform button is active and a single object is selected, but you are not dragging the
object, these fields show the absolute coordinates for the current transform.

• While the transform button is active and multiple objects are selected, these fields show the previous
selection's transform coordinates.

Set Vector
The Set Vector button (4) allows you to set the vector scale for your selected object(s). You can lock
the proportions by clicking the lock button.

Speed Control
The Speed button (5) allows you to change the speed of all movements in the viewport. The three
buttons to the right of the Speed change the speed to 0.1, 1, or 10. You can also manually set the
speed by entering your values into the fields or using the spinners to adjust the speed up or down.

Terrain Collision
The Terrain Collision button (6) toggles terrain collision. You can enable terrain collision to inhibit
camera movement below the terrain surface.

AI/Physics
The AI/Physics button (7) toggles physics simulation and AI, allowing you to test physics and AI
behavior directly in the editor without entering game mode.

No Sync Player
The No Sync Player button (8) detaches the player entity from the camera. While in editor mode, a
character entity is attached to the camera that is otherwise always synchronized. The No Sync Player
function can be useful with AI or Physics enabled, when you don't want to activate triggers while
navigating through a level.

Goto Position

Version 1.6
48

Lumberyard User Guide
Mute Audio

The Goto Position button (9) opens the Go to position dialog box to jump to a specific location in the
level. You can enter positional coordinates or use the spinners to specify values. If you click the Go To
button, you immediately move the viewport to the specified coordinate.

Mute Audio
The Mute Audio button (10) mutes audio and all sounds in the level.

VR Preview
The VR Preview button (11) previews your game project in virtual reality mode (p. 1316) when a
virtual reality (p. 1305) gem is enabled.

Using Shortcut Keys
Lumberyard supports the following keyboard shortcut keys.

Shortcut key Function

W Move forward in the viewport

A Move backward in the viewport

S Move left in the viewport

D Move right in the viewport

F Freeze the selected object

G Toggle snap-to-grid

H Hide the selected object

M Open the Material Editor

Q Toggle camera or terrain collision

Z Go to the selected object

F3 Toggle the wireframe view

Alt+middle mouse button Rotate around the selected object

Ctrl+D Duplicate the selected object

Ctrl+E Export the level

Ctrl+F Unfreeze all objects

Ctrl+G Enter game mode (Esc to exit)

Ctrl+H Unhide all hidden objects

Ctrl+O Open a level

Ctrl+P Enable AI or physics

Ctrl+S Save the level

Version 1.6
49

Lumberyard User Guide
Using Shortcut Keys

Shortcut key Function

Ctrl+Z Undo the last operation

Ctrl+Shift+Z Redo the last operation

Ctrl+Alt+F Restore the saved state

Ctrl+Alt+H Save the current state

Ctrl+Shift+Space Lock the selection

Ctrl+Tab Cycle the viewport perspective

Ctrl+Shift+L Load objects from the game directory

Ctrl+Shift+S Save the selected object

Ctrl+F1 (or F2, F3, F4, F5, F6,
F7, F8, F9, F10, F11, F12)

Save the viewport location

Shift+F1 (or F2, F3, F4, F5, F6,
F7, F8, F9, F10, F11, F12)

Move to the saved viewport location

1 Select the object

2 Select and move the object

3 Select and rotate the object

4 Select and scale the object

5 Select the terrain area

Ctrl+1 Follow the terrain

Ctrl+2 Lock on the XY plane

Ctrl+3 Lock on the X axis

Ctrl+4 Lock on the Y axis

Ctrl+5 Lock on the Z axis

~ Open the console window

[Increase the brush radius size

] Decrease the brush radius size

Shift+[Decrease the hardness shape of the fall-off curve between the
inner and outer radius of the brush

Shift+] Increase the hardness shape of the fall-off curve between the inner
and outer radius of the brush

Shift+Spacebar Show or hide helpers

Version 1.6
50

Lumberyard User Guide
Using the Viewport

Using the Viewport
The viewport window (called Perspective in Lumberyard Editor) displays the scene that is rendered by
the engine. The viewport is where the majority of level design occurs, such as object placement, terrain
editing, in-editor play testing, and asset creation and interaction. You can also use dynamic and flexible
tools to understand the 3D relationships among objects in a level.

You can split the viewport into several sub-viewports to customize the layout and set viewing options.
Right-click Perspective to access the context menu options available:

To the right of the Perspective header is a search field, field of view and screen ratio information, and
options to show or hide debug information.

At the bottom of the viewport window is a navigation bar that you can use to input xyz coordinates and
camera speed and toggle AI and physics.

Changing the View
You can change the perspective of the viewport by selecting View, Open View Pane,
Top/Front/Left/Perspective/Map.

• Top view – Shows a top-down view of your level, including bounding boxes and line-based helpers.
Terrain geometry is not shown.

• Front view – Shows a front view of your level, including bounding boxes and line-based helpers.
Terrain geometry is not shown.

• Left view – Shows a view of your level from the left side, including bounding boxes and line-based
helpers. Terrain geometry is not shown.

• Perspective view – Shows a view of your level using the default camera perspective, showing all
level content. This is the most commonly used view.

Version 1.6
51

Lumberyard User Guide
Using the Rollup Bar

• Map view – Shows an overhead map of the level, including helper, terrain, and texture information.

Using the Rollup Bar
The Rollup Bar is a separate panel within Lumberyard Editor that provides display options; profile
tools; layer controls; and object creation, vegetation, terrain modifying, and solid modeling tools. There
are five tabs in the Rollup Bar.

Objects Tab
The Objects tab includes the majority of objects and entities, and the interfaces to various local object
and brush databases.

The following buttons are on this tab:

• AI

• Actor Entity

• Archetype Entity

• Area

• Audio

• Brush

• Custom

• Designer

• Entity

• Geom Entity

• Misc

• Particle Entity

• Prefab

Terrain Tab
The Terrain tab includes the tools to modify terrain and vegetation.

Version 1.6
52

Lumberyard User Guide
Terrain Tab

The following buttons are on this tab:

• Modify

• Holes

• Vegetation

• Environment

• Layer Painter

• Move Area

• Mini Map

Version 1.6
53

Lumberyard User Guide
Modeling Tab

Modeling Tab

The following buttons are on this tab:

• Selection Type

• Selection

• Select by Sub-Material ID

• Soft Selection

• Display Selection

• Display Type

• Display Normals

Render/Debug Tab
The Render/Debug tab includes access rendering, display, and debug options. With the exception of
Hide Helpers, Virtual Memory Info, and Renderer Resources Stats, you can also use a console
variable to access these options from the console window.

Version 1.6
54

Lumberyard User Guide
Render/Debug Tab

The following sections and subpanels are on this tab:

• Hide by Category

• Render Settings

• Profile Options

• Render Mode

• Ai Options

• Debug/Profile Options

Version 1.6
55

Lumberyard User Guide
Layers Tab

• Stereo Settings

Note
In the Render Settings section, the Shadow Maps setting must first be enabled/disabled
before you can enable/disable the Global Illumination setting. These two settings work
together.

Layers Tab
The Layers tab includes the tools to create and manage level layers.

The following buttons are on this tab:

• New Layer

• Delete Layer

• Layer Settings

• Export Layer

• Import Layers

• Save All Modified External Layers

• Freeze Read-Only External Layers

• Hide/Show Layers (eye icon)

• Freeze/Unfreeze Layers (arrow icon)

Using the Console Window
In Lumberyard Editor the console window displays a running list of all editor commands, processes,
and output. Click the icon at the bottom left corner of the window to display a dialog box of all available
console variables.

Version 1.6
56

Lumberyard User Guide
Configuring Console Variables

You can enter console commands in the Console Variables dialog box or in the text field to the right of
the icon in the console window. For tips and instructions, hover over the console variable.

To export a list of all console variables, use the DumpCommandsVars console command. For more
information about the console, see CryConsole in the Lumberyard Developer Guide.

Configuring Console Variables
Console variables (CVARs) are a type of variable that you can manipulate in Lumberyard's console
interface.

CVARs can also be set in code, flow graphs, or specified in configuration files. CVARs are executed in
the following order:

Version 1.6
57

http://docs.aws.amazon.com/lumberyard/latest/developerguide/system-cryconsole.html

Lumberyard User Guide
Customizing Your Workspace

• Configuration files:

• The game.cfg file in your project folder

• The lumberyardroot\dev\system_gamesystem.cfg file for your game system

• The lumberyardroot\dev\engine\config\user.cfg file

• The level.cfg file in your project's level folder

• Code

• Flow graphs

• Console variables typed directly into the console (p. 56)

The order of execution is also the override order. That is, for example, CVARs set in flow graphs
override any identical CVARs set in code, but CVARs set in code override those set in configuration
files (and level.cfg overrides user.cfg, and so on). Finally, any CVARs typed directly into the
console override all the other CVAR settings.

Customizing Your Workspace
You can customize the size setting for the toolbar icon (ed_toolbarIconSize) in the Editor.cfg file.
By default, the toolbar icon size is set to 0 (32 pixels).

Docking Windows and Toolbars
Docking helpers automatically appear when you drag a window over another window or Lumberyard
Editor itself.

To dock a window to the left of the viewport, drag the window by its title bar and move it to the left of
the main view window, onto the docking button. To undock a window, drag the title bar and move the
selection window away. Avoid the docking buttons to prevent from accidentally redocking the window.

Customizing Toolbars and Menus
You can use the Customize dialog box to customize preset toolbars and create custom user toolbars
and menus. To do so, right-click anywhere on the main toolbar and select Customize. You can create,
rename, and delete any custom toolbars and menus, as well as reset them to their original settings.
There are four tabs available.

Customizing Toolbars

Docking helpers automatically appear when you drag a window over another window or Lumberyard
Editor itself.

Version 1.6
58

Lumberyard User Guide
Customizing Toolbars and Menus

Commands Tab

You can use the Commands tab to drag and drop menu commands to any menu category.

Options Tab

You can use the Options tab to set whether full menus are displayed immediately or after a short time
delay. You can also customize the size of the menu icons, whether to display tool tips, and whether to
employ animated effects in the menus.

Version 1.6
59

Lumberyard User Guide
Changing Preferences

Keyboard Tab

You can use the Keyboard tab to select which categories to display in the main menu.

Changing Preferences
You can change the default preferences to customize the look and functionality of Lumberyard Editor.
Open the Preferences window by selecting File, Global Preferences, Editor Settings.

Version 1.6
60

Lumberyard User Guide
Changing Preferences

General Settings

You can change the general Lumberyard Editor settings and file settings.

General Settings

Parameter Description

Show Geometry Preview Panel Display a preview window for the selected object

Show Geometry Tree Browser
Panel

Display the geometry tree browser panel

Hide Objects by Config Spec Hide objects as determined by the minimal specifications and
configuration specifications

Enable Source Control Enable Perforce version control

External Layers: Save Only
Modified

Save only the modified external layers

Freeze Read-Only External
Layer on Load

Freeze the read-only external layers when loading the level

Frozen Layers are Selectable Allow objects in frozen layers to be selected

Console Background Change the background color for the console

Show Welcome to Lumberyard
Editor at Startup

Display the Welcome to Lumberyard Editor dialog box at startup

Autoload Last Level at Startup Load the level that was last loaded

Version 1.6
61

Lumberyard User Guide
Changing Preferences

Parameter Description

Show Time in Console Display the time in the console window

Toolbar Icon Size Adjust the toolbar icon size; default = 0 (32 pixels)

Stylus Mode Enable stylus mode for tablets and other pointing devices

Enable Double-Clicking in
Layer Editor

Allow double-clicking in the Layer Editor

Undo Levels Specify the maximum number of times you can undo a level;
default = 50

Range Adjust the distance from the cursor to include objects in Deep
Selection; default = 1

Vertex Cube Size Adjust the vertex cube size

Render Penetrated
Boundboxes

Render penetrated boundboxes

File Settings

Parameter Description

Backup on Save Create a backup file when you save

Maximum Save Backups Specify the maximum number of saved backups

Standard Temporary Directory Specify the location of the default temporary directory to use;
default = [root]\Temp

Autosave Camera Tag Points Save the modified camera tag points

Scripts Editor Specify the text editor to use for scripts

Shaders Editor Specify the text editor to use for shaders

BSpace Editor Specify the text editor to use for bspaces

Texture Editor Specify the program to use for textures

Animation Editor Specify the program to use for animations

Enable Enable autobackup

Time Interval Specify the frequency of autobackup (in minutes)

Maximum Backups Specify the maximum number of autobackups

Remind Time Specify the frequency of autobackup reminders (in minutes)

Viewport

You can change the default settings for the viewport.

Version 1.6
62

Lumberyard User Guide
Changing Preferences

General Settings

Parameter Description

Synchronize 2D Viewports Enable synchronization of 2D viewports to move and correspond
with each other

Perspective View FOV Specify the field of vision for the viewport

Perspective View Aspect Ratio Specify the length of the aspect ratio for the viewport, where height
= 1

Enable Right-Click Context
Menu

Enable or disable the context menu that displays by right-clicking
in the viewport

Show 4:3 Aspect Ratio Frame Display a 4:3 aspect ratio frame to show what is visible in game
mode

Highlight Selected Geometry Highlight the selected geometry

Highlight Selected Vegetation Highlight the selected vegetation

Highlight Geometry on Mouse
Over

Highlight geometry on hover over

Hide Cursor when Captured Show or hide the mouse cursor in the viewport

Drag Square Size Specify the size of the drag square to prevent from accidentally
moving objects when selecting

Display Object Links Display entity links in the viewport

Display Animation Tracks Display the animation path for any objects in track view; one line =
one frame

Always Show Radii Display the area of effect (radius) for certain entities

Always Show Prefab Bounds Display the prefab boundary helpers

Always Show Prefab Objects Display the prefab object helpers

Show Bounding Boxes Display a boundary box around each object

Always Draw Entity Labels Display entity names

Always Show Trigger Bounds Display the trigger boundary helpers

Show Object Icons Display object icons

Scale Object Icons with
Distance

Scale object icons relative to distance

Show Helpers of Frozen
Objects

Display the frozen object helper icons

Fill Selected Shapes Highlight the inside area of a selected shape

Show Snapping Grid Guide Display the grid in the viewport

Display Dimension Figures Display the measurement dimensions of selected assets; you must
enable helpers

Swap X/Y Axis Reverse the x-axis and y-axis

Version 1.6
63

Lumberyard User Guide
Changing Preferences

Parameter Description

Map Texture Resolution Specify the resolution for the displayed map

Enabled Display object names

Distance Specify the visibility distance for text labels

Prefab Bounding Box Specify the color for the prefab bounding box

Group Bounding Box Specify the color for the group bounding box

Entity Bounding Box Specify the color for the entity bounding box

Bounding Box Highlight Alpha Specify the amount of alpha to add to the bounding box

Geometry Color Specify the geometry color

Solid Brush Geometry Color Specify the color of the solid brush geometry

Geometry Highlight Alpha Specify the amount of alpha to add to the geometry

Child Geometry Highlight Alpha Specify the amount of alpha to add to the child geometry

Movement Settings

Parameter Description

Camera Movement Speed Specify the speed of all movements in the viewport

Camera Rotation Speed Specify the speed of the mouse while controlling the viewport
camera

Fast Movement Scale Specify the multiplier for the camera speed; e.g. a value of 2
doubles the movement speed of the camera

Wheel Zoom Speed Specify the speed of the camera zoom when using the mouse
wheel

Gizmo Settings

Parameter Description

Size Specify the size of the xyz-axes gizmo

Text Labels Display the xyz-axes labels

Max Count Specify the maximum number of xyz-axes gizmos that can display
onscreen at one time

Helpers Scale Specify the size of onscreen helpers, including AIAnchors,
Tagpoints, and CoverSurfaces

Tagpoint Scale Multiplier Specify the scale of the Tagpoint helper sphere and the base
helper scale value

Ruler Sphere Scale Specify the scale of the locator sphere size when using the Ruler
tool

Version 1.6
64

Lumberyard User Guide
Changing Preferences

Parameter Description

Ruler Sphere Transparency Specify the transparency level of the locator sphere when using
the Ruler tool

Debug Settings

Parameter Description

Show Mesh Statistic Display the level of detail information, such as tris and verts, for
selectable objects

Warning Icons Draw Distance Specify the distance to which to display warning icons in the
viewport

Show Scale Warnings Display an icon and warning text for objects that have been scaled

Show Rotation Warnings Display an icon and warning text for objects that have been scaled

Flow Graph

You can change the default settings for Flow Graph.

General Settings

Parameter Description

Automatic Migration Update and reconnect port connection changes

Show NodeIDs Display an ID for each node

Show Tooltip Display a tooltip for each node on hover over

Edges on Top of Nodes Enable edges on top of nodes

Highlight Edges of Selected
Nodes

Highlight the incoming and outgoing edges for the selected nodes

Color Settings

Specify the colors to use for the following elements in the Flow Graph Editor:

• Arrows

• Highlight for the in and out arrows

• Highlight for the port edges

• Node outlines

• Node backgrounds

• Backgrounds for custom nodes

• Selected nodes

• Title text

• Text

• Backgrounds

• Grids

Version 1.6
65

Lumberyard User Guide
Restoring Default Settings for Lumberyard Editor

• Breakpoints

• Entity ports

• Quick search backgrounds and text

• Debug node backgrounds and titles

Mannequin

You can change the default settings for the Mannequin system.

General Settings

Parameter Description

Default Preview File Specify the preview file; the default file is \Animations
\Mannequin\Preview\playerPreview1P.xml

Size of Tracks Specify the height of the tracks for the dope sheet; minimum = 14,
maximum = 32

Ctrl to Snap Scrubbing Snap scrubbing by holding the Ctrl key

Timeline Wheel Zoom Speed Specify the speed of the mouse wheel when zooming on the
Mannequin timeline

Restoring Default Settings for Lumberyard Editor
If you have customized your workspace, you can reset the settings in Lumberyard Editor to the default
settings at any time. To do so, select View, Layouts, Restore Default Layout.

If you require more granular control to restore Lumberyard Editor settings, you can delete the relevant
keys in the Windows registry.

Important
Exercise caution when editing the Windows registry. Not following the instructions carefully
may result in a corrupt Windows installation.

To edit the Windows registry

1. On your Windows desktop, click Start and type regedit in the search box.

2. In the Registry Editor, navigate to HKEY_CURRENT_USER\Software\Amazon\Lumberyard
\Editor.

3. Right-click the applicable folder(s) and select Delete.

The default settings are restored the next time you start Lumberyard Editor.

Version 1.6
66

Lumberyard User Guide
Restoring Default Settings for Lumberyard Editor

Version 1.6
67

Lumberyard User Guide
Spawning AI Agents

AI System

In the context of a game, AI refers to the technology or system used to endow seemingly-intelligent
actions and behaviors to an agent or character, called the AI agent.

Specifically, an AI agent is a game entity that can use information to make decisions in pursuit of one
or more goals. An AI agent can perceive its surroundings, navigate through its environment, interact
with other objects, communicate with other agents or players, and exhibit a vast number of various
actions and behaviors toward the end goal. Sophisticated AI behaviors can be triggered, event-driven
or be scripted.

The selection strip at the bottom of Lumberyard Editor features controls to enable AI. The AI/Physics
button turns AI simulation on and off, and allows you to test AI agent behavior directly without entering
game mode.

The pause and next step buttons are used for stepping through the Ai system one frame at a time for
debugging. To use these correctly, first click the pause button, then click the AI/Physics button, then
click the next step button.

Make sure to disable the pause button again to return to normal operation.

For information on AI entities, see AI Control Objects (p. 439).

Topics

• Spawning AI Agents (p. 68)

• AI Navigation (p. 70)

• Agent Perception (p. 77)

• AI Communications (p. 80)

• AI Modular Behavior Tree (p. 85)

• AI Agent Debugging (p. 115)

Spawning AI Agents
This section discusses how to spawn, activate, and deactivate one or more AI agents in your level.

Topics

Version 1.6
68

Lumberyard User Guide
Using Flow Graph to Spawn AI Agents

• Using Flow Graph to Spawn AI Agents (p. 69)

• Using Auto Disable for Agents (p. 69)

• Debugging Agent Spawning Issues (p. 70)

Using Flow Graph to Spawn AI Agents
You can use the following AI flow graph nodes to spawn AI agents. An archetype entity is based
on a regular entity and specifies individual parameter values for that entity. If the value of an
archetype entity parameter is changed, all instances of that archetype entity in the level are updated
automatically.

• Entity:SpawnArchetype

• Entity:Spawn

To access Flow Graph nodes

1. In Rollup Bar , click AI, TagPoint and enter a name.

2. In the current level, click to place the tag point.

3. Right-click the tag point, click Create Flow Graph, and enter a name.

4. In Lumberyard Editor, click View, Open View Pane, Flow Graph.

5. In Flow Graph, under Flow Graphs, select the new flow graph just created.

6. Right-click anywhere in the graph, click Add Node, and then click to create the following nodes:

a. Game:Start

b. Entity:SpawnArchetype

c. Entity:EntityPos

7. Drag node outputs to node inputs to create the following links:

a. Game:Start output links to Entity:SpawnArchetype Spawn

b. Entity:EntityPos pos links to Entity:SpawnArchetype Pos

c. Entity:EntityPos rotate links to Entity:SpawnArchetype Rotate

d. Entity:EntityPos scale links to Entity:SpawnArchetype Scale

8. For Entity:SpawnArchetype, click Archetype and make a selection from the menu.

9. For Entity:EntityPos, right-click Choose Entity, click Assign graph, entity, <Graph Entity>, and
enter the name of the tag point created in step 6.

Using Auto Disable for Agents
You can save processor time by not updating distant AI agents. To control this on a global and on a
per-agent basis, enable the AutoDisable property.

To enable AutoDisable using Rollup Bar

1. In Rollup Bar, on the Objects tab, click Entity and select your asset.

2. Under Entity Properties2, select the AutoDisable check box.

To enable AutoDisable using Flow Graph

1. In Lumberyard Editor, click View, Open View Pane, Flow Graph.

2. Under Flow Graphs, select your asset.

Version 1.6
69

Lumberyard User Guide
Debugging Agent Spawning Issues

3. Right-click anywhere in the graph and then click Add Node, AI, AutoDisable.

4. In the AI:AutoDisable node, click ON to enable AutoDisable.

Note
You can also enable AutoDisable by setting the console variable ai_UpdateAllAlways value
to 0.

Debugging Agent Spawning Issues
You can use the following console variables to debug AI entity pool issues:

Unless otherwise noted, variable type is Boolean and default value is 0.

• ai_StatsDisplayMode 1 - Useful to check the number of currently active AI agents.

• es_DebugPool 1 - Used to debug entity pools.

• es_DebugPoolFilter – Enter the name of the entity pool as the value.

The following represents different information that is available from debug output:

• Bookmarked Entities - Number of entities marked as being created through pools. It should be
greater than 0 if you have AI agents in your level that should be marked.

• Pool Name - The entity pool whose information is about to follow. The name should be assigned to
the es_DebugPoolFilter variable to get more information about the pool. The color highlight on this
text means the following:

• White means the pool has no issues.

• Yellow means the pool has reached maximum capacity at some point during the level. It is a
warning -the pool is still being used correctly, but at the maximum.

• Red means the pool reached its maximum capacity and another entity was trying to be prepared
from the pool, but failed.

• Not In Use - The current number of slots in the entity pool that are not in use.

• In Use - The current number of slots in the entity pool that are currently being used. Below this
output, the AI that is currently prepared from the pool and exists is shown, followed by their EntityId.

• Pool Definitions - The entity classes that exist in the pool. Max count (size of the pool) is displayed
on the first line. The color highlight of the class name displays information about how that class has
been used with the pool, as follows:

• White means no entities have been prepared from the pool yet of that class type.

• Green means at least one entity has been prepared and all so far have been prepared
successfully.

• Red means at least one entity has been prepared but it failed when being prepared.

AI Navigation
Lumberyard has a robust set of tools and methods for moving AI agents around – from simple point-to-
point navigation to complex sets of scripted navigation behaviors.

AI agents come in different sizes and with different physical properties that impact how they navigate
through a game level. AI agent types that can navigate include animate entities such as humans and
aliens, and vehicles such as cars, boats, and aircraft.

Each AI has its own navigation mesh that defines the 3D volume where it can move around in. This
navigation mesh is called the Multi-Layer Navigation Mesh (MNM), and is comprised of 3D navigation
areas, exclusion areas where it cannot move in, and navigation seed points.

Version 1.6
70

Lumberyard User Guide
Multi-Layer Navigation Mesh (MNM)

You define where and how an AI agent moves around in the navigation mesh using Flow Graph logic.
Flow Graph allows you to quickly create complex scripted movements and animations for AI agents as
they navigate throughout the area.

AI agents can also move along defined paths between navigation meshes - this is called off-mesh
navigation.

Topics

• Multi-Layer Navigation Mesh (MNM) (p. 71)

• Creating Navigation Areas (p. 71)

• Selecting an AI Navigation Type (p. 72)

• Setting Navigation Exclusion Areas (p. 72)

• Adding Navigation Seed Points (p. 73)

• Using Flow Graph for AI Navigation (p. 73)

• Regenerating the Navigation Mesh (p. 73)

• Off-Mesh AI Navigation (p. 74)

• Tutorial: Basic AI Navigation (p. 75)

• Debugging AI Navigation (p. 76)

Multi-Layer Navigation Mesh (MNM)
An MNM mesh is automatically created for each navigation area that is added to a level. During the
mesh generation process, the terrain, voxels, static objects, and rigid bodies with zero mass are all
accounted for in determining whether an AI agent can move through or must move around something.

When a navigation mesh is created, the navigation areas are split in small volumes called tiles, which
have a fixed size of 8m x 8m x 8m. Tiles in turns consist of voxels. The smaller the voxel size, the more
accurate (and more expensive) the generated mesh.

AI Pathfinding
Lumberyard uses the A* algorithm for pathfinding to search all the triangles of the navigation mesh,
with the distance to the destination as the heuristic. The smaller the mesh, the faster the search.

The pathfinding algorithm is asynchronously time-sliced in that requests for paths are not processed
immediately but are added to the queue, so it can take a few frames to get the result.

AI agents must stay within the navigation mesh to be able to follow a path defined by the pathfinding
algorithm. If an agent gets to the boundary of the mesh, it tries to find the closest triangle within a
certain range.

Creating Navigation Areas
For a navigation mesh to be generated, a navigation area needs to be first added to your level. The
bottom plane of the navigation area must be underneath the lowest point of the terrain the AI traverses,
and the top plane of the navigation area must be above the height of the AI agent placed at the highest
point of the terrain, allowing for plenty of clearance. If this is not done, the navigation mesh fails. A
successfully created mesh will be blue in color.

Note
The ai_DebugDrawNavigation console variable must be set to 1, 2, or 3 in order that the
navigable surface is displayed.

To create a Navigation Area

1. In Lumberyard Editor, click AI, Create New Navigation Area.

Version 1.6
71

Lumberyard User Guide
Selecting an AI Navigation Type

2. In the Rollup Bar, under NavigationArea, edit the Area parameter to be a non-zero value.

3. Under NavigationArea, edit the Height parameter so that the area is tall enough to enclose any
hills or valleys in the terrain, as needed.

4. Click AI, Show Navigation Areas.

5. In the level, drag and click to define a shape enclosing the area that the AI agent navigates
through.

6. Double-click to complete the shape.

To edit a Navigation Area

1. In your level, hover over the where you want to make a change. Once the shape turns orange,
click it.

2. In Rollup Bar, under AI, NavigationArea, Edit Options, click Edit Shape.

3. To create a new vertex in the navigation area, press Ctrl and click on a line in the area.

4. To delete a portion of the navigation area, double-click on a vertex in the area.

Selecting an AI Navigation Type
Each AI agent needs to have a navigation type assigned, either animate (human-based) or inanimate
(vehicle-based). The following AI agent properties are relevant from a navigation perspective:

• AgentType - MediumSizedCharacters or VehicleMedium

• voxelSize - 0.125m x 0.125m x 0.125m minimum

• radius - agent radius, in voxels

• climbableHeight - maximum climbable height of maximum slope, in voxels

• maxWaterHeight - maximum walkable water depth, in voxels

To assign a navigation type for an AI agent

1. In Lumberyard Editor, click View, Open View Pane, DataBase View.

2. On the Entity Library tab, click the Load Library button and select your asset file.

3. Under Class Properties pane, for Navigation Type, make a selection. This sets the navigation
type for all AI agents.

4. In Rollup Bar, under Objects, AI, NavigationArea, NavigationArea Params, make a selection.

Setting Navigation Exclusion Areas
If you don't want an AI agent to navigate through certain areas, you can set exclusion areas within the
navigation mesh, as follows:

Exclusion areas are colored red. Besides exclusion areas, AI agents cannot navigate through walls,
objects, and the terrain itself.

To set a navigation exclusion area

1. In your level, select a navigation area.

2. In Rollup Bar, click AI, Navigation Area.

3. Under NavigationArea Params, select the Exclusion check box.

4. In your level, click to position the desired exclusion area.

Version 1.6
72

Lumberyard User Guide
Adding Navigation Seed Points

5. Double-click to complete defining the exclusion area shape.

Adding Navigation Seed Points
Navigation seed points are specific accessible locations within navigation meshes that are normally
inaccessible due to terrain or other obstructions. Seed points notify the Lumberyard pathfinding system
that these locations are accessible for AI agent navigation. For example, an AI agent located on an
island could “teleport” to a seed point on an adjacent mountainous island.

To add a navigation seed point

1. In Lumberyard Editor, click AI, Add Navigation Seed.

2. In your level, click to position the seed.

Navigation seed point are represented by a seed icon. Areas of the mesh that are accessible by AI
agents from navigation seed points are displayed in blue, all other areas are in red. You can use the
console variable ai_MNMCalculateAccessibility to calculate accessibility.

Using Flow Graph for AI Navigation
Flow graphs are a visual way to define AI navigational logic by creating and linking navigation nodes
together. Flow Graph is accessed from Lumberyard Editor by clicking View, Open View Pane, Flow
Graph.

The navigation-related nodes are:

AISequence:Animation – Moves the AI to a location using a specified animation for the defined
Stance, and plays an animation once the target has been reached.

AISequence:ApproachAndEnterVehicle – Moves the AI agent to and then inside a vehicle, using a
specified animation for the supplied Stance.

AISequence:Move – Moves the AI to a location using a specified animation for the supplied Stance.

AISequence:MoveAlongPath – Moves the AI along a path indicated by the supplied PathName,
using the appropriate animations for the supplied Stance.

Movement:MoveEntityTo – Moves the AI along a path indicated by the supplied PathName, using the
appropriate animations for the supplied Stance.

Vehicle:DriveForward – Drives a vehicle forward at a specified time and speed.

Vehicle:FollowPath – Moves the vehicle along a defined off-mesh path at a specified speed.

Vehicle:ChaseTarget – Moves the vehicle along a defined off-mesh path, following a target vehicle
and attempting to maintain a line of sight.

AI:RegenerateMNM – Regenerates the mesh at specified minimum and maximum positions. This is
useful after the terrain has changed or an object has moved.

Regenerating the Navigation Mesh
There are situations where the navigation mesh must be dynamically updated in real time in order for
an AI agent to make sense of its environment. For example, when an object is destroyed the AI agent
can now navigate through the space.

Version 1.6
73

Lumberyard User Guide
Off-Mesh AI Navigation

Dynamically generating a navigation mesh could also place an AI agent outside of the mesh, leading to
stuck or inconsistent behavior.

You can regenerate the entire mesh or a portion of it.

Complete Mesh Regeneration

If you want to regenerate the entire navigation mesh, do the following:

To completely regenerate the navigation mesh

• In Lumberyard Editor, select the mesh and then click AI, Request a Full MNM rebuild.

Partial Mesh Regeneration

There are two methods for regenerating a portion of a navigation mesh. Both methods only regenerate
the relevant portion of the mesh. By not regenerating the entire mesh, performance is kept high.

The following method is a non-runtime generation of the mesh.

To partially regenerate the navigation mesh

• In Lumberyard Editor, click AI and enable Continuous Update.

You can also do a runtime partial regeneration of the mesh using the following Flow Graph nodes. Flow
Graph is accessed from Lumberyard Editor by clicking View, Open View Pane, Flow Graph.

Entity:GetBounds – Obtains the bounding box size, in local or world-space coordinates, for any entity
in the mesh. This gives information about the location inside the mesh that requires updating, such as
where an object moved to and how big it is.

AI:RegenerateMNM – Specifies the minimum and maximum world-space coordinates of where the
navigation mesh regenerates at run-time in response to geometry changes, such as a bridge collapsing
or a path becoming blocked, for example.

Off-Mesh AI Navigation
Any AI agent navigation that does not occur inside an MNM mesh is referred to as off-mesh navigation.
Off-mesh navigation can be implemented using AI Paths or Smart Objects.

Topics

• Using AI Paths for Navigation (p. 74)

• Using Smart Objects for AI Navigation (p. 75)

Using AI Paths for Navigation

An AI path is a control object that is used to guide an AI agent from point to point along a specified
route in a level. AI paths are useful for AI agents that need to traverse between two navigation meshes.

To create an AI Path

1. In Rollup Bar, click AI, AIPath.

2. Under AIPath Params, set properties and parameter values as needed:

Version 1.6
74

Lumberyard User Guide
Tutorial: Basic AI Navigation

a. Road – Used for CRoadNavRegion::CreateRoad and road navigation. Links with other
nearby roads for land-based vehicles.

b. ValidatePath – If enabled, the path displays validation information when selected.

c. Closed – If true, the path is a loop.

3. Click File, Export to Lumberyard. This is a necessary step for the navigation system.

Unless absolutely necessary, AI path navigation should be Uninterruptable, meaning nothing should
disrupt or block an AI agent moving along a path.

To set AI Path movement as uninterruptible

1. In Lumberyard Editor, click View, Open View Pane, Flow Graph.

2. Under Graphs, Global, AI actions, select the AI agent.

3. In the AISequence:Start node, clear the Interruptible check box.

You can add an AI Path to Flow Graph logic as follows:

To add an AI Path to Flow Graph

1. In Flow Graph, under Graphs, Level, Entities, select the applicable flow graph.

2. Right-click anywhere in the graph, and then click Add Node, AISequence, MoveAlongPath.

3. In the AISequence:MoveAlongPath node, for PathName, type the name of the AI Path value
from the Rollup Bar.

Using Smart Objects for AI Navigation

Smart Objects are an advanced type of AI Control Object that are used to interact with other objects
using rules. Smart Objects can be used for AI movements that would otherwise be impossible to
navigate within a mesh. Smart Objects can be used to have AI Agents duck, jump, rappel and kick
down doors.

As an example, a Smart Object could be used for an agent running alongside the top wall of a building
(first mesh) and then leaping onto a lamp post below (second mesh).

For an AI agent to be able to use a Smart Object, its AgentType definition should list one or more
SmartObjectUserClasses.

When using a Smart Object, make sure its flow graph entrance (AI:SmartObjectHelper Start) and exit
(AI:SmartObjectHelper End) helper points are within the two connected navigation meshes. They
then automatically connect two meshes together when positioned correctly.

To set AI agent movement using Smart Objects

1. In Rollup Bar, click AI, SmartObject.

2. Under SmartObject Properties, for SmartObjectClass, click the ... button.

3. In Smart Object Classes, select your asset, and then select the desired movements

Tutorial: Basic AI Navigation
This tutorial covers basic AI agent navigation through a level. A tagpoint is used to obtain the
destination location within the navigation area.

Version 1.6
75

Lumberyard User Guide
Debugging AI Navigation

The position coordinates for the TagPoint are dynamic, meaning you can move the TagPoint around
and the AI updates its new destination coordinates accordingly.

To make an AI agent navigate

1. In Rollup Bar, on the Objects tab, click AI, NavigationArea.

2. In the level, click to define boundary nodes for the navigation area, then double-click to complete.

3. In Rollup Bar, click AI, TagPoint, then click to place it in the level.

4. In Rollup Bar, click Entity, AI, select your asset, then click to place it in the level.

Note
Use the legacy GameSDK sample project, which contains the AI assets, to see this folder
in the UI. For more information, see Legacy Sample Project (GameSDK) (p. 1105).

5. In Rollup Bar, click Entity, Default, FlowgraphEntity, then click to place it in the level.

6. In the level, right-click the flow graph entity, click Create Flow Graph, and name it.

7. In Flow Graph, under Flow Graphs, select the flow graph entity.

8. Right-click anywhere in the graph, click Add Node, and create the following nodes:

a. Game:Start

b. AISequence:Start

c. AISequence:Move

d. AISequence:End

e. Entity:EntityPos

9. Click and drag to create links between the outputs and inputs of the nodes as follows:

a. Game:Start output to AISequence:Start Start

b. AISequence:Start Link to AISequence:Move Start

c. AISequence:Move Done to AISequence:End End

d. Entity:EntityPos pos to AISequence:Move Position

10. For each of the three AISequence nodes, do the following:

a. Select the entity in the entity tree to assign it.

b. Right-click the top bar of the node.

c. click Assign Selected Entity, Choose Entity.

d. Enter the name of the AI agent selected.

11. For the Entity:EntityPos node, do the following:

a. Select the tagpoint in the entity tree.

b. Right-click the entity top bar of the node.

c. Click Assign Selected Entity, Choose Entity.

d. Enter the name of the tagpoint.

12. Press Ctrl+G to test the AI agent navigation to the tagpoint.

Debugging AI Navigation
In addition to using the AI Debug Recorder and AI Debug Viewer, you can also use specific console
variables to debug AI agent navigation issues.

Using Console Variables to Debug AI Navigation
There are a number of console variables that can be used for agent navigation mesh (MNM)
debugging. Some statistics display at the top-right corner of the screen.

Version 1.6
76

Lumberyard User Guide
Agent Perception

When debugging Smart Object navigation, make sure that all entities have the right classes assigned,
and that the correct actions are set to execute.

ai_DebugDrawNavigation
General variable for AI navigation debugging.

Values: 1 =displays mesh and contour | 2 =also display triangles | 3 =also display tiles and
external links

ai_DrawSmartObjects
Displays Smart Objects.

Values: 0 =hide | 1 =show

ai_debugMNMAgentType
Mesh agent type for which debugging information is displayed.

ai_MNMPathFinderQuota
Path finding quota per frame.

Units: seconds

ai_MNMPathFinderDebug
Displays pathfinder debugging statistics, including queue size, average and maximum number of
A* search steps, and average and maximum search time.

Values: 0 =hide | 1 =show

ai_MNMProfileMemory
Displays memory statistics.

Values: 0 =hide | 1 =show

ai_DrawPath
Draw path.

ai_DrawPathFollower
Draw path follower.

Debugging the Navigation Mesh

Use the following procedure as a start to debug the navigation mesh:

To debug the navigation mesh

1. Set the variable ai_DebugDrawNavigation value to 3.

2. Create and place a TagPoint with the name MNMDebugLocator within a tile of the mesh you
want to debug.

3. Press Backspace to switch between the display of the different mesh generation steps.

Agent Perception
AI agents can perceive their environment. Specifically they can see objects in their vicinity, hear
sounds, react to collisions, and understand speech.

Topics

• Using Flow Graph to Set Agent Perception (p. 78)

• Using AI Anchors to Set Agent Perception (p. 78)

• Using Console Variables to Set Agent Perception (p. 79)

Version 1.6
77

Lumberyard User Guide
Using Flow Graph to Set Agent Perception

• Debugging AI Agent Perception Issues (p. 80)

Using Flow Graph to Set Agent Perception
You can use the following AI flow graph nodes to affect agent perception. The perception scaling
nodes are important as they control the degree to which AI agents can see or hear their surroundings.

• AI:AIAwarenessToPlayer – The degree to which an AI agent is aware of the player's faction. Red is
the most aware, while green is the least aware.

• AI:AIGlobalPerceptionScaling – The degree of perception (as a percentage) for all AI agents or
factions in a level.

• AI:PerceptionScale – The degree of perception (as a percentage) for a single AI agent.

• AI:AlertnessState – The degree to which any faction or AI agent type is aware of other factions or
agent types.

• AI:GroupAlertness – Similar to AI:AlertnessState, but by group ID.

• Input:SpeechRecognition – Enables or disables Kinect speech recognition on the Xbox One.

• Input:SpeechRecognitionEnabled – Queries the availability of Kinect speech recognition on Xbox
One.

• Input:SpeechRecognitionListener – Listens for a specific Kinect voice command.

• AI:AttentionTarget – Gets the target of an AI agent's attention as a position or entityID.

To access Flow Graph perception nodes

1. Open Flow Graph.

2. In the Flow Graphs pane, select your asset.

3. Right-click anywhere in the graph, then click Add Node, AI (or Input) to access the nodes.

You can use additional flow graph logic to fine-tune AI agent control and determine how agent
awareness varies with the agent's surroundings, as shown below.

Using AI Anchors to Set Agent Perception
Another way to control AI agent perception is to use AI anchors. Unlike the Flow Graph method, which
relies on logic, this method relies on object placement and level markup.

There are four AI anchors for controlling an AI agent's perception: LIGHTSPOT_LIGHT,
LIGHTSPOT_MEDIUM, LIGHTSPOT_DARK, and LIGHTSPOT_SUPERDARK. As you might expect,
LIGHTSPOT_SUPERDARK gives an agent the least amount of perception.

Version 1.6
78

Lumberyard User Guide
Using Console Variables to Set Agent Perception

These settings limit the visibility for the AI agent inside the specified radius. If a player is inside this
radius, the agent has a diminished perception of the player.

Note
To reduce demands on performance, use these AI anchors in place of visual light entities or
the Sun.

To use AI Anchors for setting perception

1. In Rollup Bar, on the Objects tab, click AI, AIAnchor.

2. Under AIAnchor Properties, double-click AnchorType.

3. In AI Anchors, select one of the four anchors.

4. Select Enabled.

5. Click radius and enter a value in meters.

Using Console Variables to Set Agent Perception
You can also use console variables (cvars) to affect AI agent perception. Console variables are
accessed by clicking the "..." button in the lower right corner of Lumberyard Editor.

Unless otherwise noted, the variable type is Boolean and the default value is 0.

• ai_IgnorePlayer – Determines the degree to which the agent ignores players. A setting of 1 is the
same as 0% perception scale (agent ignores players).

• ai_IgnoreBulletRainStimulus – Determines whether AI agents perceive bullets passing near them.

• ai_IgnoreVisibilityChecks – Returns certain visibility checks as false.

• ai_IgnoreVisualStimulus – Notifies the Perception Handler to always ignore visual stimulus.

• ai_IgnoreSoundStimulus – Determines whether the agent ignores all sounds. Visual and tactile
stimuli are not affected.

• ai_SoundPerception – Determines the degree to which the agent can hear sounds. A setting of 0
causes the agent to ignore all sounds (useful for debugging purposes when used in conjunction with
ai_DebugDraw). Default value: 1

• ai_EnablePerceptionStanceVisibleRange – Determines the maximum perception range for AI
based on the player's stance.

• ai_CrouchVisibleRange – Determines the perception range for AI agents when the player is
crouching and ai_EnablePerceptionStanceVisibleRange is enabled. Default value: 15.0

• ai_ProneVisibleRange – Determines the perception range for AI agents when the player is prone
and ai_EnablePerceptionStanceVisibleRange is enabled. Default value: 6.0

For the next three variables, if the isAffectedByLight property is true, this determines the scaling factor
for the AI agent's visual perception range under the LIGHTSPOT lighting conditions.

• ai_SightRangeDarkIllumMod – Has the same effect as the LIGHTSPOT_DARK anchor type.
Default value: 0.5

• ai_SightRangeMediumIllumMod – Has the same effect as the LIGHTSPOT_MEDIUM anchor type.
Default value: 0.8

• ai_SightRangeSuperDarkIllumMod – Has the same effect as the LIGHTSPOT_SUPERDARK
anchor type. Default value: 0.25

To set perception properties using Database View

1. In Lumberyard Editor, click View, Open View Pane, DataBase View.

Version 1.6
79

Lumberyard User Guide
Debugging AI Agent Perception Issues

2. On the Entity Library tab, click Load Library to select the applicable entity file.

3. Select the AI entity in the entity tree.

4. In the center pane, under Perception, enable properties and set parameter values as needed.

Debugging AI Agent Perception Issues
For debugging specific AI perception issues, use the following console variables. To debug generic AI
issues, see AI Agent Debugging (p. 115).

Unless otherwise noted, variable type is Boolean and default value is 0.

• ai_DebugGlobalPerceptionScale – Displays global perception scale multipliers.

• ai_DrawPerceptionIndicators – Displays indicators showing the enemy's current perception level of
player.

• ai_DrawPerceptionDebugging - Displays indicators showing how the enemy view intersects with
perception modifiers.

• ai_DrawPerceptionModifiers - Displays perception modifier areas in game mode.

• ai_DrawPerceptionHandlerModifiers – Displays perception handler modifiers on a specific AI
agent. Requires an AIName as the parameter.

• ai_DebugPerceptionManager – Displays perception manager performance overlay.

• ai_DebugDrawLightLevel – Displays the AI light level. Useful for debugging with lightspot anchors.

• ai_DrawAgentFOV – Displays the FOV cone for AI agents. Requires ai_DebugDraw to be enabled.

• ai_DrawAgentStats – Displays information about agents. Nadlt=name/alertness/distances/light
level/target.

• ai_DrawAttentionTargetPositions – Displays position markers for the AI agent's current attention
target.

AI Communications
AI agents can speak (or make sounds) at various times in the game and send signals to each other to
affect their behaviors.

Note
Communications are not played if an AI agent is currently executing a smart object action.

Topics

• Using Database View to Set AI Communication (p. 80)

• Using AI Communication Channels (p. 81)

• Using the CommConfig Property (p. 82)

• Using GoalPipes to Trigger Communication (p. 83)

• Using Voice Libraries for AI Speech (p. 83)

• Using Flow Graph for Setting AI Communications (p. 83)

• Using AI Signals Among Agents (p. 83)

Using Database View to Set AI Communication
There are several communication-related properties and parameters that can also be set using the
Database View tool.

Version 1.6
80

Lumberyard User Guide
Using AI Communication Channels

To set communication properties using Database View

1. In Lumberyard Editor, click View, Open View Pane, DataBase View.

2. On the Entity Library tab, click the Load Library button to select the applicable entity file.

3. Select the AI entity from the entity tree.

4. In the center pane, under Class Properties, enable properties and set parameter values as
needed:

a. CommConfig - select Basic or Human.

b. Commrange - enter the communication range as needed.

Using AI Communication Channels
AI communication channels are used to determine whether an AI agent can communicate at a given
time, depending on whether the communication channel is occupied or free. Communication channels
are XML-based and can be nested and this determines if a parent communication channel is occupied
depending on whether a child communication channel is occupied.

A sample configuration file with multiple communication channels is shown below:

 <!--ChannelConfig.xml-->
 <Communications>
 <ChannelConfig>
 <Channel name="Global" minSilence="1.5" flushSilence="0.5"
 type="global">
 <Channel name="Group" minSilence="1.5" flushSilence="0.5"
 type="group">
 <Channel name="Search" minSilence="6.5" type="group"/
>
 <Channel name="Reaction" priority="2" minSilence="2"
 flushSilence="0.5" type="group"/>
 <Channel name="Threat" priority="4" minSilence="0.5"
 flushSilence="0.5" type="group"/>
 </Channel>
 <Channel name="Personal" priority="1" minSilence="2"
 actorMinSilence="3" type="personal"/>
 </Channel>
 </ChannelConfig>
 </Communications>

Where,

• minSilence – Minimum time (in seconds) for which the Channel remains occupied after the
Communication has completed.

• flushSilence – Time (in seconds) for which a Channel remains occupied after flushing the Channel.
It is used to override the imposed silence time for the Channel which is no longer playing a
Communication. If this attribute is not specified, the value of minSilence is used.

• actorMinSilence – Minimum imposed time (in seconds) to restrict AI actors from playing voice
libraries after starting a Communication.

• ignoreActorSilence – Ignore (AI) actor Communication restrictions from the script.

• type – Personal, group, or global.

• name – Name of the channel.

Version 1.6
81

Lumberyard User Guide
Using the CommConfig Property

• priority – Priority level.

Using the CommConfig Property
The CommConfig property (see Using Database View to Set AI Communication (p. 80)) determines
which communications (and how) an AI agent can play. This property has a value of Basic or Human,
whose properties and attributed are defined by two XML files.

A sample BasicCommunications.xml file is shown below:

<Communications>
 <!--Animation + Sound Event example (needs state using the action/signal
 in the animation graph)-->
 <Config name="Surprise">
 <Communication name="comm_anim" finishMethod="animation" blocking="all"
 forceAnimation="1">
 <Variation animationName="Surprise" soundName="sounds/
interface:player:heartbeat" />
 </Communication>
 </Config>

 <!--Sound Event example-->
 <Config name="Welcome">
 <Communication name="comm_welcome" finishMethod="sound" blocking="none">
 <Variation soundName="sounds/dialog:dialog:welcome" />
 </Communication>
 </Config>

 <!--Auto generated Voice Library examples-->
 <Config name="SDK_Example_NPC_01">
 <AutoGenerateCommunication voiceLib="npc_01_example" finishMethod="voice"
 blocking="none" />
 </Config>

 <Config name="SDK_Example_NPC_02">
 <AutoGenerateCommunication voiceLib="npc_02_example" finishMethod="voice"
 blocking="none" />
 </Config>
</Communications>

Where,

• name: Basic or Human, as specified by the CommConfig property.

• choiceMethod: Method used to choose a variation: Random, Sequence, RandomSequence, or
Match.

• responseChoiceMethod: Method used to choose a variation: Random, Sequence,
RandomSequence, or Match.

• animationName: Animation graph input value

• lookAtTarget: : Valid values are 1|0, true|false, or yes|no. Makes the AI look at the target.

• finishMethod: Any or all of: animation, sound, voice, timeout, all. It defines the way to determine
when the communication is finished - after the animation is finished, or time interval has elapsed.

• blocking: movement, fire, all, none. It allows to disable the movement or firing of the AI.

• animationType: signal or action

• voiceLib: The name of the Voice Library to extract Communication names from.

Version 1.6
82

Lumberyard User Guide
Using GoalPipes to Trigger Communication

Using GoalPipes to Trigger Communication
To trigger a Communication event, use the goalop "communicate" as follows:

<GoalPipe name="Cover2_Communicate">
 <Communicate name="comm_welcome" channel="Search" expirity="0.5"/>
</GoalPipe>

Where,

• name is the name of the actual communication (sound or voice). This is defined by the CommConfig
property.

• channel is the name of the Communication Channel this AI is Using. The channel is defined in the
Communication Channel file.

• expirity (expiry) is the maximum allowable delay in triggering the communication event when the
Communication Channel is temporarily occupied. If the communication event couldn't be triggered
within this time period, it is discarded.

Using Voice Libraries for AI Speech
Voice Libraries are XML-based Excel files used to support localized AI agent speech, sub-titles, and
lip-syncing.

The specific voice library file is assigned in the Communication Configurations XML file using the
<AutoGenerateCommunication> element and associated attributes. For more information, see
Using the CommConfig Property (p. 82).

For each different AI signal, a specific sound file is used that plays a specific sound or speech snippet.
AI agents are assigned a specific voice library file using the esVoice property.

Using Flow Graph for Setting AI Communications
There is one AI Flow Graph node used to effect agent communications, as follows:

To access Flow Graph communication nodes

1. In Lumberyard Editor, click View, Available View Pane, Flow Graph.

2. In Flow Graph, under Flow Graphs, select the applicable AI agent.

3. Right-click anywhere in the graph, then click Add Node, AI, SetCommunicationVariable.

Using AI Signals Among Agents
AI signals allow agents to communicate with each other. An AI signal is sent by one AI agent to
another AI agent, to a subset of agents, or to itself. You can also specify how AI agents react to
received signals.

Sending AI Signals

The method used to send an AI signal is as follows:

AI:Signal(signalfilter_, signal_type, *MySignalName*, sender_entity_id);

Where,

Version 1.6
83

Lumberyard User Guide
Using AI Signals Among Agents

signalfilter_
Defines which AI agents receive the signal. It can be chosen among a fixed set of symbols that
have the prefix SIGNALFILTER_. The list of available signal filters is shown below.

signal_type
Type of signal.

Values: 1 = The entity receiving the signal processes it only if it's enabled and it's not set to
ignorant (see AI:MakePuppetIgnorant for details). | 0 = The entity receiving the signal processes it
if it's not set to Ignorant. | -1 = The entity receiving the signal processes it unconditionally.

MySignalName
The signal identifier. It can be any non-empty string; for the signal recipient, it must be a function
with the same name either in its current behavior, its default behavior, or in the DEFAULT.lua
script file in order to react to the received signal.

sender_entity_id
The entity id of the signal recipient. This is usually the ID of the recipient, but can also be the entity
ID of the sender if the signal will be sent to the sending agent.

Signalfilter Parameters

Parameter Description

0 The entity specified with the entity_id parameter.

SIGNALFILTER_LASTOP The entity's last operation target (if it has one).

SIGNALFILTER_TARGET The current entity's attention target.

SIGNALFILTER_GROUPONLY All the entities in the sender's group, i.e. the entities with its same
group id, in the sender's communication range.

SIGNALFILTER_SUPERGROUP All the entities in the sender's group, i.e. the entities with its same
group id, in the whole level.

SIGNALFILTER_SPECIESONLY All the entities of the same sender's species, in the sender's
communication range.

SIGNALFILTER_SUPERSPECIESAll the entities of the same sender's species, in the whole level.

SIGNALFILTER_HALFOFGROUPHalf the entities of the sender's group (you cannot specify which
entities).

SIGNALFILTER_NEARESTGROUPThe nearest entity to the sender in its group.

SIGNALFILTER_NEARESTINCOMMThe nearest entity to the sender in its group, if in its
communication range.

SIGNALFILTER_ANYONEINCOMMAll of the entities in the sender's communication range.

SIGNALID_READIBILITY This special signal is used to make the entity recipient perform a
readability event (sound/animation).

Receiving AI Signals
A signal that is received by an AI agent can cause an agent to change its behavior, as follows:

 Behavior1 = {
 OnEnemySeen = *Behavior1*,

Version 1.6
84

Lumberyard User Guide
AI Modular Behavior Tree

 OnEnemyMemory = *Behavior2*,
 MySignalName = *MyNewBehavior*,
}

For example, if an AI agent is currently in Behavior1 and receives the signal MySignalName, after
having executed the callback function above it will then switch its behavior to MyNewBehavior.

The MySignalName function is defined as follows:

MySignalName = function(self, entity, sender)

Where,

self is the AI agent behavior

entity is the AI agent

sender is the signal sender

This function is actually a callback which, similar to system events, can be defined in the recipient
entity's current behavior, the default idle behavior (if it's not present in current behavior), or in the
Scripts/AI/Behaviors/Default.lua script file (if not present in the default idle behavior).

Signal behaviors can be inherited, such as when a signal is used to initiate more than one behavior at
a time.

AI Modular Behavior Tree
The Modular Behavior Tree (MBT) is a collection of XML-based nodes that describe rules, behaviors,
and tasks for AI agents to follow. The Modular Behavior Tree Editor is used to create trees and nodes
for AI agents, and is accessed from Lumberyard Editor by clicking View, Open View Pane, Modular
Behavior Tree Editor.

AI signals are sent either from the MBT itself using the Signal node or from code. A signal sets a tree
variable to true or false when it is triggered. Tree variables can then be used to make decisions in
the tree. Timestamps are set when an AI signal comes in, and can be used to check how long ago
something happened.

An example tree structure is shown here:

<BehaviorTree>
 <Root>
 <Sequence>
 <Log message="Test" />
 <WaitForEvent name="OnEnemySeen" />
 <Move to="Target" speed="Walk" stance="Stand"
 fireMode="BurstWhileMoving" />
 <Halt />
 </Sequence>
 </Root>
</BehaviorTree>

Each node can have parameters to configure the behavior of its execution. When passing an
unacceptable value the parsing of the node could fail and an error message could be found inside the
Editor.log or Game.log files.

Version 1.6
85

Lumberyard User Guide
Standard MBT Nodes

Topics

• Standard MBT Nodes (p. 86)

• Common AI MBT Nodes (p. 90)

• Game AI MBT Nodes (p. 105)

• Helicopter AI MBT Nodes (p. 110)

Standard MBT Nodes
The following standard Modular Behavior Tree nodes are supported. Thse nodes can be found at Code
\CryEngine\CryCommon\BehaviorTree\.

Loop node

The Loop node runs one child multiple times or until the child fails to run. If the count is not specified, it
is considered infinite.

Parameters

• count : The maximum number of times a child of the Loop node is run

Behavior

• Success: If the count is reached for the child

• Failure: If the child fails to run

Example

<Loop count="3">
 <SomeChildNode />
</Loop>

LoopUntilSuccess node

The LoopUntilSuccess node runs one child until it succeeds. A maximum number of attempts can be
specified. If no maximum number of attempts is specified or if it's set to less than or equal to 0 then the
node will attempt to run the child repeatedly until the child succeeds.

Parameters

• attemptCount: The maximum amount of possible attempts to make the child succeeding.

Behavior

• Success: If the child succeeds

• Failure: If the maximum amount of allowed attempts is reached.

Example

<LoopUntilSuccess attemptCount="5">
 <SomeChildNode />
</LoopUntilSuccess>

Version 1.6
86

Lumberyard User Guide
Standard MBT Nodes

Parallel node
The Parallel node run its children in parallel. A maximum of 32 children are allowed. If success and
failure limits are reached at the same time, the node will succeed.

Parameters

• failureMode : The mode used to evaluate when the node fails. Accepted values are any or all.
Default value = any.

• successMode: The mode used to evaluate when the node succeeds. Accepted values are any or
all. Default value = all.

Behavior

• Success: If any or all children succeed.

• Failure: If any or all children fail.

Example

<Parallel successMode="any" failureMode="all">
 <SomeChildNode1 />
 <SomeChildNode2 />
 <SomeChildNode3 />
</Parallel>

Selector node
The Selector node runs its children one at a time, stopping at the first one that succeeds.

Parameters

No parameters

Behavior

• Success: As soon as one of the children succeed. The remaining children are not run

• Failure: If all children fail.

Example

<Selector>
 <SomeChildNode1 />
 <SomeChildNode2ToExecuteIfSomeChildNode1Fails />
 <SomeChildNode3ToExecuteIfSomeChildNode2Fails />
</Selector>

Sequence node
The Sequence node runs its children one at a time in order. A maximum of 255 children are allowed.

Parameters

No parameters

Behavior

Version 1.6
87

Lumberyard User Guide
Standard MBT Nodes

• Success: If all children succeed.

• Failure: If any children fail

Example

<Sequence>
 <SomeChildNode1 />
 <SomeChildNode2 />
 <SomeChildNode3 />
</Sequence>

StateMachine node
The StateMachine is a composite node allowed to have one or more children. The children of a
StateMachine node must be of the type State.

Only one child at any given time is allowed to be run and the first one defined is the first one to be run.

The current status of a StateMachine node is the same as that of the child that is currently selected to
be run.

Parameters

None

Behavior

• Success: If the child State node succeeds

• Failure: If the child State node fails

Example

<StateMachine>
 <State />
 <State name="State1" />
 <State name="State2" />
</StateMachine>

StateMachine:State node
The State node is the basic block of a StateMachine node. Each State node must have a BehaviorTree
node and may also have a Transitions block.

A State node runs the content of its BehaviorTree node and can transition to another state (or itself) as
specified in the Transitions block.

If a State node transitions into itself while running, it will first be terminated, re-initialized, and then
updated again.

Parameters

• name : The name of the state. It must be unique for the scope of the StateMachine node.

Behavior

• Success: If the BehaviorTree node succeeds

Version 1.6
88

Lumberyard User Guide
Standard MBT Nodes

• Failure: If the BehaviorTree node fails

Example

<State name="StateName">
 <Transitions>
 <Transition onEvent="EventOrTransitionSignalName" to="OtherStateName" />
 </Transitions>
 <BehaviorTree>
 <SomeChildNode />
 </BehaviorTree>
</State>

The Transitions tag must have the following parameters:

• onEvent: Identifies the string name of the event that could cause the transition to happen

• to: Identifies the state name where transitioning to

SuppressFailure node

The SuppressFailure node owns and runs one child. It will succeed irregardless of the result of the
child's execution.

Parameters

None

Behavior

• Success: As soon as the child finishes.

Example

<SuppressFailure>
 <SomeChildThatCanFail />
</SuppressFailure>

Timeout node

The Timeout node fails after a certain amount of time has passed.

Parameters

• duration : Number of seconds before the failure of the node occurs

Behavior

• Failure: if it runs for more than the amount of time specified by the duration parameter

Example

<Timeout duration=5" />

Version 1.6
89

Lumberyard User Guide
Common AI MBT Nodes

Wait node
The Wait node succeeds after a certain amount of time has passed.

Parameters

• duration : The amount of seconds before the failure of the node occurs

• variation: The extra amount of time that will be added on top of the specified duration. This allows
random variations between different executions of the node

Behavior

• Success: As soon as it runs for more than the amount of time specified by the duration parameter
plus the random variation

Example

<Wait duration="5" variation="1" />

Common AI MBT Nodes
The following common AI Modular Behavior Tree nodes are supported.

AnimateFragment node
This node plays an Mannequin animation fragment and waits until the animation finishes.

Parameters

• name: The name of the fragment to play.

Behavior

• Success: If the animation is correctly played or if no operation was needed.

• Failure: If an error occurs while trying to queue the request to play the specified fragment..

Example

<AnimateFragment name="SomeFragmentName" />

Bubble node
Used to display a message in a bubble above the agent.

• message: The message that should be shown in the speech bubble.

• duration: The number of seconds to show the message. Default = 0.

• balloon: Shows the message in a balloon about the AI agent. 1 will show the message in a balloon
above the agent; 0 will not. Default = 1.

• log: Writes the message to a general-purpose log. 1 will write to the log; 0 will not Default = 1.

None.

Version 1.6
90

Lumberyard User Guide
Common AI MBT Nodes

Behavior

• Success: Succeeds immediately after having queued the message to be displayed.

Example

<Bubble message="MessageToBeDisplayedAndOrLogged" duration="5.0"
 balloon="true" log="true" />

Move node

Used to move the agent from the current position to the specified destination. If the destination is a
target then the end position is updated if not reached while the target moves.

Parameters

• speed: Movement speed, which can be any of the following: Walk, Run, or Sprint.

• stance: Stance, which can be any of the following: Relaxed, Alerted, or Stand. Default = Stand.

• bodyOrientation: Body orientation, which can be any of the following:
FullyTowardsMovementDirection, FullyTowardsAimOrLook, or HalfwayTowardsAimOrLook. Default
= HalfwayTowardsAimOrLook.

• moveToCover: True if the agent is moving into cover; otherwise false. Default = false.

• turnTowardsMovementDirectionBeforeMovingTrue if the agent should first turn into the direction
of movement before actually moving; false if not. Default = false.

• strafe: True if the agent is allowed to strafe; false it not. Default = false.

• glanceInMovementDirection: True if the agent is allowed to glance in the direction of movement;
false if it should always look at its look-at target. Default = false.

• to: Movement destination, which can be one of the following: Target, Cover, RefPoint. or LastOp.

• Target: The current attention target.

• Cover: The current cover position.

• RefPoint: The current reference position.

• LastOp: The position of the last successful position related operation.

• stopWithinDistance: If within this distance from the target, stop moving. Default = 0.0.

• stopDistanceVariation: Additional random stopping distance, Default = 0.0.

• fireMode: Fire mode while moving: Default - Off.

• Off: Do not fire.

• Burst: Fire in bursts - living targets only.

• Continuous: Fire continuously - living targets only.

• Forced: Fire continuously - allow any target.

• Aim: Aim target only - allow any target

• Secondary: Fire secondary weapon.

• SecondarySmoke: Fire smoke grenade

• Melee: Melee.

• Kill: No missing, shoot directly at the target, no matter what aggression/attackRange/accuracy is.

• BurstWhileMoving: Fire in bursts, while moving and too far away from the target.

• PanicSpread: Fire randomly in the general direction of the target.

• BurstDrawFire: Fire in bursts, in an attempt to draw enemy fire.

• MeleeForced: Melee, without distance restrictions.

• BurstSnipe: Fire in burst, aiming for a head-shot.

Version 1.6
91

Lumberyard User Guide
Common AI MBT Nodes

• AimSweep: Keep aiming at the target, but not allowed to fire.

• BurstOnce: Fire a single burst.

• avoidDangers: 1 if dangers should be avoided while moving, 0 if they can be ignored. Default = 1.

• avoidGroupMates: 1 if group mates should be avoided while moving, 0 if they can be ignored.
Default = 1.

• considerActorsAsPathObstacles: 1 if any actor should be considered a path obstacle that the
path-finder should avoid, 0 if they can be ignored. Default = 0.

• lengthToTrimFromThePathEnd: The resulting path-finder path will be trimmed by the specified
amount of distance. Positive values will trim from the end of the path; negative values will trim from
the start of the path. Default = 0.0.

Behavior

• Success: If the destination is reached.

• Failure: If the destination is deemed unreachable.

Example

<Move to="DestinationType" stance="StanceName" fireMode="FiremodeName"
 speed="SpeedName" stopWithinDistance="3c " />

QueryTPS node

This node performs a Tactical Position System query and waits for a result.

Parameters

• name: The name of the TPS query to use.

• register: Where to store result of the TPS query: RefPoint or Cover. Default = Cover.

Behavior

• Success: If the TPS returns a tactical position.

• Failure: If the TPS does not find a tactical position.

Example

<QueryTPS name="NameOfTheQuery" register="NameOfTheRegister" />

IfTime node

This node executes the child node if the time condition is satisfied.

Parameters

• since: Name of the time stamp used for the condition.

• isMoreThan: Defines the condition to be a comparison if the value of the time stamp is more than
this value (exclusive with the parameter 'isLessThan').

• isLessThan: Defines the condition to be a comparison if the value of the time stamp is less than this
value (exclusive with the parameter 'isMoreThan').

Version 1.6
92

Lumberyard User Guide
Common AI MBT Nodes

• orNeverBeenSet: (Optional) Changes the behavior of the node in case the time stamp was never
set, instead of failing the node will succeed.

Behavior

• Success: If orNeverBeenSet is true.

• Failure: If the time condition is not satisfied or if the time stamp was not previously set.

Example

<IfTime since="FragGrenadeThrownInGroup" isMoreThan="5.0" orNeverBeenSet="1">
 <ThrowGrenade type="frag" />
</IfTime>

WaitUntilTime node
This node executes the child node if the time condition is satisfied.

Parameters

• since: Name of the time stamp used for the condition.

• isMoreThan: Defines the condition to be a comparison if the value of the time stamp is more than
this value (exclusive with the parameter 'isLessThan').

• isLessThan: Defines the condition to be a comparison if the value of the time stamp is less than this
value (exclusive with the parameter 'isMoreThan').

• orNeverBeenSet: (Optional) Changes the behavior of the node in case the time stamp was never
set, instead of failing the node will succeed.

Behavior

• Success: The time stamp was not set previously set and the parameter succeedIfNeverBeenSet is
true. Otherwise, the node returns the result of the execution of its child node.

Example

<WaitUntilTime since="BeingShotAt" isMoreThan="7" />

AssertTime node
This node node succeeds if the time condition is satisfied.

Parameters

• since: Name of the time stamp used for the condition.

• isMoreThan: Defines the condition to be a comparison if the value of the time stamp is more than
this value (exclusive with the parameter 'isLessThan').

• isLessThan: Defines the condition to be a comparison if the value of the time stamp is less than this
value (exclusive with the parameter 'isMoreThan').

• orNeverBeenSet: (Optional) Changes the behavior of the node in case the time stamp was never
set, instead of failing the node will succeed.

Behavior

Version 1.6
93

Lumberyard User Guide
Common AI MBT Nodes

• Success: If the time condition is true or the orNeverBeenSet parameter is true.

• Failure: If the time stamp was not previously set.

Example

<AssertTime since="GroupLostSightOfTarget" isLessThan="10"
 orNeverBeenSet="1" />

Priority:Case node
This node executes the child with the current highest priority. The priorities are derived from the order
in which the children are defined and the satisfaction of their individual conditions, so that the highest
priority goes to the first child to have its condition met.

The children's conditions must be specified with the use of Case nodes with the exception of the last
child which is considered to be the default case, meaning that its condition is always true and cannot
be specified.

Parameters

• condition: Specifies the condition of the child.

Behavior

The node returns the result of the execution of the child node.

Example

<Priority>
 <Case condition="TargetInCloseRange and TargetVisible">
 <Melee target="AttentionTarget" />
 </Case>
 <Case>
 <Look at="Target" />
 </Case>
</Priority>

LuaGate node
This node executes the child node if the result from running a lua snippet is true.

Parameters

• code: The lua code to be executed.

Behavior

• Failure: If the lua code returns a value different from true. Otherwise, the node returns the result of
the execution of its child node.

Example

<LuaGate code="return AI.GetGroupScopeUserCount(entity.id,
 'DeadBodyInvestigator') == 0">

Version 1.6
94

Lumberyard User Guide
Common AI MBT Nodes

RandomGate node
This node executes or not the child node based on a random chance.

Parameters

• opensWithChance: The chance of executing the child node (0.0 - 1.0).

Behavior

• Failure: If the child is not executed. Otherwise, the node returns the result of the execution of its
child node.

Example

<RandomGate opensWithChance="0.5">

AdjustCoverStance node
This node updates the agent's cover stance based on the maximum height in which his current cover is
still effective.

Parameters

• duration: (Optional) The amount of seconds the node will execute. Use 'continuous' for unlimited
time.

• variation: (Optional) The extra random amount of seconds that will be added on top of the specified
duration, in the range (0, variation).

Behavior

• Success: If the duration of execution elapses.

• Failure: If the child is not in cover.

Example

<AdjustCoverStance duration="5.0" variation="1.0"/>

SetAlertness node
This node sets the agent's alertness value.

Parameters

• value: The alertness value (0-2).

Behavior

The node succeeds immediately.

Example

<SetAlertness value="1" />

Version 1.6
95

Lumberyard User Guide
Common AI MBT Nodes

Log node

This node adds a message to the agent's personal log.

Parameters

• message: The message to be logged.

Behavior

The node succeeds immediately.

Example

<Log message="Investigating suspicious activity." />

Communicate node

This node requests the communication manager to play one of the agent's readabilities.

Parameters

• name: The name of the communication to be played.

• channel: The channel on which the communication is to be set.

• waitUntilFinished: (Optional) Specifies if the execution should wait for the end of the
communication before finishing.

• timeout: (Optional) The threshold defining the maximum amount of seconds the node will wait.

• expiry: (Optional) The amount of seconds the communication can wait for the channel to be clear.

• minSilence: (Optional) The amount of seconds the channel will be silenced after the communication
is played.

• ignoreSound: (Optional) Sets the sound component of the communication to be ignored.

• ignoreAnim: (Optional) Sets the animation component of the communication to be ignored.

Behavior

• Success: If the timeout elapses or when the readability is complete if the node is set to wait until the
communication is finished.

• Failure:

Example

<Communicate name="Advancing" channel="Tactic" expiry="1.0"
 waitUntilFinished="0" />

Animate node

This node sets the agent to play an animation.

Parameters

• name: The name of the animation to be played.

• urgent: (Optional) Adds the urgent flag to the animation.

Version 1.6
96

Lumberyard User Guide
Common AI MBT Nodes

• loop: (Optional) Adds the loop flag to the animation.

• setBodyDirectionTowardsAttentionTarget: (Optional) Changes the body target direction to be
facing the attention target.

Behavior

• Success: If the animation failed to be initialized or when it is finished.

Example

<Animate name="LookAround" loop="1"/>

Signal node

This node sends a signal to the AI system.

Parameters

• name: The name of the signal to be sent.

• filter: (Optional) The filter to be applied to the signal in the AI system.

Behavior

The node succeeds immediately.

Example

<Signal name="StartedJumpAttack" />

SendTransitionSignal node

This node sends a signal destined for a state machine node on the behavior tree, with the explicit intent
of causing a change of state.

Parameters

• name: The name of the signal to be sent.

Behavior

The node does not succeed or fail.

Example

<SendTransitionSignal name="LeaveSearch" />

Stance node

This node sets the stance of the agent.

Parameters

• name: The name of the stance to be set: Relaxed, Alerted, Crouch, Stand.

Version 1.6
97

Lumberyard User Guide
Common AI MBT Nodes

• stanceToUseIfSlopeIsTooSteep: (Optional) The alternative stance to be used in case the slope is
too steep.

• allowedSlopeNormalDeviationFromUpInDegrees: (Optional) Defines how steep can the slope be
for this stance.

Behavior

The node succeeds immediately.

Example

<Stance name="Crouch" allowedSlopeNormalDeviationFromUpInDegrees="30"
stanceToUseIfSlopeIsTooSteep="Stand" />

IfCondition node

This node executes the child node if the specified condition is satisfied.

Parameters

• condition: Specifies the condition to be checked.

Behavior

The node returns the result of the child's execution if the condition is true, otherwise it fails.

Example

<IfCondition condition="TargetVisible">
 <Communicate name="AttackNoise" channel="BattleChatter" expiry="2.0"
waitUntilFinished="1" />
</IfCondition>

AssertCondition node

This node succeeds if the specified condition is satisfied.

Parameters

• condition: Specifies the condition to be checked.

Behavior

The node succeeds if the condition is true, otherwise it fails.

Example

<AssertCondition condition="HasTarget" />

LuaWrapper node

This node executes the child node with the additional option of running a lua script on the start and/or
end of that execution.

Version 1.6
98

Lumberyard User Guide
Common AI MBT Nodes

Parameters

• onEnter: (Optional) The code to be executed at the start.

• onExit: (Optional) The code to be executed at the end.

Behavior

The node returns the result of the child's execution.

Example

<LuaWrapper onEnter="entity:EnableSearchModule()"
onExit="entity:DisableSearchModule()">
 <Animate name="AI_SearchLookAround" />
</LuaWrapper>

ExecuteLua node

This node executes a lua script.

Parameters

• code: The code to be executed.

Behavior

The node always succeeds.

Example

<ExecuteLua code="entity:SetEyeColor(entity.EyeColors.Relaxed)" />

AssertLua node

This node executes Lua code and translates the return value of that code from true or false to success
or failure. It can then be used to build preconditions in the Modular Behavior Tree.

Parameters

• code: The code to be executed.

Behavior

Succeeds if the Lua code returns value is true, otherwise it fails.

Example

<AssertLua code="return entity:IsClosestToTargetInGroup()" />

GroupScope node

This node tries to enter the agent in a group scope, which is limited by the specified amount of
concurrent users. If the node succeeds to do that, then the child node is executed.

Version 1.6
99

Lumberyard User Guide
Common AI MBT Nodes

Parameters

• name: The name of the group scope to be entered.

• allowedConcurrentUsers: (Optional) The maximum number of simultaneous users of that can be in
the specified group scope.

Behavior

The node fails if the agent could not enter the group scope, otherwise returns the result of the
execution of the child.

Example

<GroupScope name="DeadBodyInvestigator" allowedConcurrentUsers="1">
 <SendTransitionSignal name="GoToPrepareToInvestigateDeadBody" />
</GroupScope>

Look node

This node adds a location for the agent to look at and clears it when the node stops executing.

Parameters

• at: The location to look at: ClosestGroupMember, RefPoint,Target.

Behavior

The nodes does not succeed or fail.

Example

<Look at="ClosestGroupMember" />

Aim node

This node sets the location where the agent should aim, clearing it when the node stops executing.

Parameters

• at: The location to look at: RefPoint,Target.

• angleThreshold: (Optional) The tolerance angle for the agent to be considered aiming in the desired
direction.

• durationOnceWithinThreshold: (Optional) The amount of seconds to keep on aiming.

Behavior

• Success: If after aiming in the desired direction for the specified time, if the location is not valid or if
the timeout elapses.

Example

<Aim at="Target" durationOnceWithinThreshold="2.0" />

Version 1.6
100

Lumberyard User Guide
Common AI MBT Nodes

AimAroundWhileUsingAMachineGun node

This node updates the aim direction of the agent for when he is using a mounted machine gun.

Parameters

• maxAngleRange: (Optional) The maximum amount to deviate from the original position.

• minSecondsBeweenUpdates: (Optional) The minimum amount of delay between updates.

• useReferencePointForInitialDirectionAndPivotPosition:

Behavior

The node does not succeed or fail.

Example

<AimAroundWhileUsingAMachingGun minSecondsBeweenUpdates="2.5"
 maxAngleRange="30"
useReferencePointForInitialDirectionAndPivotPosition="1"/>

ClearTargets node

This node clears the agent's targets information.

Parameters

None.

Behavior

The node succeeds immediately.

Example

<ClearTargets />

StopMovement node

This node sends a request to the Movement System to stop all the movements.

This may not always immediately physically stop the agent. The Movement System may be dependent
on the influence of animations and physics, for example, which may result in a natural stop and not an
immediate stop.

Parameters

• waitUntilStopped: 1 if the node should wait for the Movement System to have processed the
request; 0 if not.

• waitUntilIdleAnimation: 1 if the node should wait until the Motion_Idle animation fragment started
running in Mannequin, 0 if not.

Behavior

• Success: If the stop request has been completed.

Version 1.6
101

Lumberyard User Guide
Common AI MBT Nodes

Example

<StopMovement waitUntilStopped="1" waitUntilIdleAnimation="0" />

Teleport node

This node teleports the character when the destination point and the source point are both outside of
the camera view.

Parameters

None.

Behavior

• Success: After the character is teleported.

Example

<Teleport />

SmartObjectStateWrapper node

This node executes the child node with the additional option of setting certain smart objects states on
the start and/or end of that execution.

Parameters

• onEnter: (Optional) The smart object states to set at the start of the child's execution.

• onExit: (Optional) The smart object states to set at the end of the child's execution.

Behavior

The node returns the result of the execution of its child node.

Example

<SmartObjectStatesWrapper onEnter="InSearch" onExit="-InSearch">
 <Animate name="LookAround" />
</SmartObjectStatesWrapper>

CheckTargetCanBeReached node

This node checks if the agent's attention target can be reached.

Parameters

• mode: Defines the target to use: UseLiveTarget or UseAttentionTarget.

Behavior

• Success: If it can reach the target.

Version 1.6
102

Lumberyard User Guide
Common AI MBT Nodes

• Failure: If it cannot reach the target.

Example

<CheckIfTargetCanBeReached mode="UseLiveTarget" />

MonitorCondition node

This node continuously checks for the state of a specified condition.

Parameters

• condition: Specifies the condition to be checked.

Behavior

• Success: When the condition is satisfied.

Example

<MonitorCondition condition="TargetVisible" />

AnimationTagWrapper node

This node executes the child node, adding an animation tag for the agent on the beginning of that
execution and clearing it on the end.

Parameters

• name: The animation tag to be set.

Behavior

The node returns the result of the execution of its child node.

Example

<AnimationTagWrapper name="ShootFromHip">
 <Shoot at="Target" stance="Stand" duration="5" fireMode="Burst" />
</AnimationTagWrapper>

ShootFromCover node

This node sets the agent to shoot at the target from cover and adjusts his stance accordingly.

Parameters

• duration: The number of seconds the node should execute.

• fireMode: The firemode to be used for shooting.

• aimObstructedTimeout: (Optional) The number of seconds the aim is allowed to be obstructed.

Behavior

Version 1.6
103

Lumberyard User Guide
Common AI MBT Nodes

• Success: If the duration of execution elapses.

• Failure: If the agent is not in cover, if there's no shoot posture or if the aim obstructed timeout
elapses.

Example

<ShootFromCover duration="10" fireMode="Burst" aimObstructedTimeout="3" />

Shoot node

This node sets the agent to shoot at a target or a location.

Parameters

• duration: The number of seconds the node should execute.

• at: The location to shoot at: AttentionTarget, ReferencePoint, LocalSpacePosition.

• fireMode: The fire mode to be used for shooting.

• stance: The stance to be set while shooting: Relaxed, Alerted, Crouch, Stand.

• position: (Mandatory only if the target is a local space position). The local space position to be used
as the target.

• stanceToUseIfSlopeIsTooSteep: (Optional) The alternative stance to be used in case the slope is
too steep.

• allowedSlopeNormalDeviationFromUpInDegrees: (Optional) Defines how steep can the slope be
for this stance.

• aimObstructedTimeout: (Optional) The amount of seconds the aim is allowed to be obstructed.

Behavior

• Success: If the duration of execution elapses.

• Failure: If the aim obstructed timeout elapses

Example

<Shoot at="Target" stance="Crouch" fireMode="Burst" duration="5"
allowedSlopeNormalDeviationFromUpInDegrees="30"
stanceToUseIfSlopeIsTooSteep="Stand" />

ThrowGrenade node

This node sets the agent to attempt a grenade throw.

Parameters

• timeout: The maximum amount of seconds the node will wait for the grenade to be thrown.

• type: The type of grenade: emp, frag, smoke.

Behavior

• Success: If a grenade is thrown before it times out.

• Failure: If a grenade is not thrown before it times out.

Version 1.6
104

Lumberyard User Guide
Game AI MBT Nodes

Example

<ThrowGrenade type="emp" timeout="3" />

PullDownThreatLevel node

This node sets the agent to lower his notion the target's threat.

Parameters

None.

Behavior

The node succeeds immediately.

Example

<PullDownThreatLevel to="Suspect" />

Game AI MBT Nodes
Game AI Modular Behavior Tree nodes are mostly used to offer specific game functionality. Each type
of game may have multiple character types and each type may need to trigger specific logic to perform
action in the game. Game-specific nodes are generally not suitable for general use and may need to be
tweaked to fit the needs of your game.

Melee node

The Melee node will trigger a melee attack against an agent target. The Melee node succeeds
irregardless of whether the melee attack is performed and damages the target or not.

A melee attack is performed when the following conditions are satisfied:

• If the failIfTargetNotInNavigationMesh paramter is set, the target must be on a valid walkable
position. Certain melee animations could move the character pushing it outside the navigable area
while trying to melee a target outside the navigation mesh (MNM).

• If the target is not between the threshold angle specified by the entity lua value
melee.angleThreshold.

Parameters

• target: The target of the melee. This parameter could be set as AttentionTarget or a generic
RefPoint.

• cylinderRadius: The radius of the cylinder used for the collision check of the hit.

• hitType: The type of hit that is sent to the game rules. Default is
CGameRules::EHitType::Melee.

• failIfTargetNotInNavigationMesh: Determines whether the node should not try to melee a target
that is outside the navigation mesh. This will only cause the melee attack to not be performed - the
Melee node will still succeed.

• materialEffect: The material effect used when the melee attack hits the target.

Behavior

Version 1.6
105

Lumberyard User Guide
Game AI MBT Nodes

• Success: Occurs irregardless of the actual execution of the melee attack.

Example

<Melee target="AttentionTarget" cylinderRadius="1.5"
hitType="hitTypeName" materialEffect="materialEffectName" />

The following is an example lua file that defines the specific character in use:

melee =
{
 damage = 400,
 hitRange = 1.8,
 knockdownChance = 0.1,
 impulse = 600,
 angleThreshold = 180,
},

The following table lists the various parameters one can use in the lua file:

Parameters

• damage: Defines the amount of damage the melee attack inflicts onthe target.

• hitRange: Defines the height of the cylinder used to check if the melee attack can hit the target.

• knockdownChance: Defines the probability that a successful melee attack knocks down the player.

• impulse: Defines the amount of the impulse that is applied to the player in case of a successful
melee attack.

• angleThreshold: Threshold between the agent direction and the direction between the agent and
the target to allow a melee attack to be attempted.

KeepTargetAtADistance node

This node keeps the live target at a distance by physically pushing the target away if it is within the
deined minimum distance.

This is useful when there's an action close to the player and you want to avoid clipping through the
camera. This is preferable to increasing the capsule size since that will affect how the character can
fit through tight passages. This node is mostly used in parallel with other actions that need to be
performed while the player is not too close to the agent.

Parameters

• distance: The minimum distance allowed between the player and the agent.

• impulsePower: The power of the impulse used to keep the player at least at the minimum distance.

Behavior

The node never succeeds or fails. Once executed, it is always running until out of the scope of the
executed nodes.

Example

<KeepTargetAtADistance distance="1.8" impulsePower="1.5" />

Version 1.6
106

Lumberyard User Guide
Game AI MBT Nodes

SuppressHitReactions node

This node enables anddisables the hit reaction system for the agent during its execution.

Parameters

None.

Behavior

• Success: If the child succeeds

• Failure: If the child fails.

Example

<SuppressHitReactions>
 <SomeChildNode />
</SuppressHitReactions>

InflateAgentCollisionRadiusUsingPhysicTricksTrick node

This node uses a feature of the physics system to inflate the capsule of the agent such that it has one
radius for collisions with the player, and a different radius for collisions with the world.

Parameters

• radiusForAgentVsPlayer: The radius use to calculate the collision between the agent and the
player.

• radiusForAgentVsWorld: The radius used to calculate the collision between the agent and the
world.

Behavior

The node never succeeds or fails but always runs.

Example

<InflateAgentCollisionRadiusUsingPhysicsTrick radiusForAgentVsPlayer="1.0"
 radiusForAgentVsWorld="0.5" />

ScorcherDeploy:RunWhileDeploying node

This node and the following one are special decorator nodes that the Scorcher uses to deploy and
undeploy as part of the shooting phase. These two nodes rely on external Lua scripts and various
signals to work properly. In this this way you don't have to explicitly expose more functionality from the
AI system libraries.

This node must contain exactly one child node that runs while the Scorcher is in the processes of
deployment getting ready for an attack. It can be used, for example, to control aiming before actually
shooting.

Parameters

None.

Behavior

Version 1.6
107

Lumberyard User Guide
Game AI MBT Nodes

• Success: If the child node succeeds.

• Failure: If the child node fails.

Example

ScorcherDeploy:RunWhileDeployed node

This node must contain exactly one child node that controls the actual aiming and firing.

Parameters

None.

Behavior

• Success: If the child node succeeds. This will make the parent node start the undeployment
sequence.

• Failure: If the child node fails.

Example

<ScorcherDeploy maxDeployDuration="1.0">
 <RunWhileDeploying>
 <SomeChildNode>
 </RunWhileDeploying>
 <RunWhileDeployed>
 <SomeOtherChildNode>
 </RunWhileDeployed>
</ScorcherDeploy>

HeavyShootMortar node

Used to control the shooting of heavy mortar. It tries to simplify and to centralize the check of the pre-
condition and the initialization of the weapon plus the re-selection of the primary weapon.

Parameters

• to: (Optional) Defines the target of the shooting. Possible values: Target or RefPoint. Default is
Target.

• firemode: (Optional) The Heavy X-Pak (or Mortar) has two different firemodes. Possible values:
Charge or BurstMortar. Default is Charge.

• timeout: (Optional) Defines the maximum time the node can try to perform the shooting. Default
value is 5.0 seconds.

• aimingTimeBeforeShooting: (Optional) Defines the time in which the Heavy will aim before starting
the shooting. Default is 1.0 seconds. This amount of time must be larger than the global timeout.

• minAllowedDistanceFromTarget: (Optional) Defines the minimum distance from the Target to
allow shooting. Default is 10.0 m.

Behavior

• Success: The node succeeds when the shooting succeeds.

• Failure: The node fails if the timeout is reached, if the Heavy is closer to the target than the
minAllowedDistanceFromTarget value, or if there obstructions two meters in front of the Heavy

Version 1.6
108

Lumberyard User Guide
Game AI MBT Nodes

(a cylinder check is performed to avoid this condition in front of the mortar if there is an object the
Heavy tries to shoot at.)

Example

<HeavyShootMortar to="RefPoint" fireMode="Charge"
 aimingTimeBeforeShooting="2" timeout="7" />

SquadScope node

Used to enter a squad scope, which is limited by the specified amount of concurrent users. If the node
succeeds to do that, then the child node is executed.

Parameters

• name: The name of the squad scope to enter.

• allowedConcurrentUsers: (Optional) Number of allowed concurrent users in the specified scope.
Default value = 1.

Behavior

• Success: The node succeeds when the child succeeds.

• Failure: The node fails if it can't enter the specified scope or if the child fails.

Example

<SquadScope name="ANameForTheScope" allowedConcurrentUsers="5">
 <SomeChildNode />
</SquadScope>

SendSquadEvent node

Used to send an event only to the squad members.

Parameters

• name: Name of the event to be sent.

Behavior

The node succeeds after having sent the event. The node never fails.

Example

<SendSquadEvent name="ANameForTheEvent" />

IfSquadCount node

This node checks if a squad contains a specific amount of members and if so executes its child.

Parameters

Version 1.6
109

Lumberyard User Guide
Helicopter AI MBT Nodes

One of the following parameters must be specified.

• isGreaterThan: (Optional) To succeed, checks if the number of members is greater than the
specified number.

• isLesserThan: (Optional) To succeed, checks if the number of members is lesser than the specified
number.

• equals: (Optional) To succeed, checks if the number of members is equal to the specified number.

Behavior

• Success: If the number of members satisfies the specified condition.

• Failure: If otherwise.

Example

<IfSquadCount isGreaterThan="1">
 <SomeChildNode />
</IfSquadCount>

Helicopter AI MBT Nodes
The following flying vehicle AI Modular Behavior Tree nodes are supported.

Hover node

Used to let a flying agent hover at its current position.

Parameters

None.

Behavior

This node never finishes by itself and will continue to hover the agent until it is forced to terminate.

Example

<Hover />

FlyShoot node

Used to let a flying agent shoot at its attention target, when possible from its current position. If the
secondary weapon system is used, then the node will only open fire if the weapons are deemed to be
able to hit close enough to the target. Otherwise normal firing rules are applied.

Parameters

• useSecondaryWeapon: 1 if the secondary weapon system should be used (these are often rocket
launchers); 0 if not

Default value: 0

Behavior

Version 1.6
110

Lumberyard User Guide
Helicopter AI MBT Nodes

This node never finishes by itself and the agent will continue shoot until it is forced to terminate.

Example

<FlyShoot useSecondaryWeapon="1"/>

Fly node

Used to let an agent fly around by following a path. Paths should be assigned to the agent via a flow
graph.

Upon arrival, the ArrivedCloseToPathEnd and ArrivedAtPathEnd events are emitted.

Parameters

• desiredSpeed: The desired speed to move along the path in meters/second.

Default value: 15.0

• pathRadius: The radius of the path in meters. The agent will try to stay within this distance from the
line segments of the path.

Default value: 1.0

• lookAheadDistance: How far long the path, in meters, to look ahead for generating "attractor points"
to fly to.

Default value: 3.0

• decelerateDistance: When nearing the end of the path, the agent will start to decelerate at the
specified distance in meters.

Default value: 10.0

• maxStartDistanceAlongNonLoopingPath: When linking up with a non-looping path, this is the
maximum distance in meters that the node is allowed to scan ahead to find the closest point to the
path where to start at. This can be useful, for example, to prevent the agent from snapping to the
path at a position that is seemingly closer but is actually behind a wall after a U-turn.

Default value: 30.0

• loopAlongPath: 1 if the agent should follow the path in an endless loop; 0 if not.

Default value: 0

• startPathFromClosestLocation: 1 if the agent should start following the path at its closest position;
0 if it should start following it from the very first path waypoint.

Default value: 0

• pathEndDistance: The distance towards the end of the path at which the node should start sending
some arrival notification events.

Default value: 1.0

• goToRefPoint: 1 if the current reference point should be appended to the end of the path; 0 if not.

Default value: 0

Behavior

• Success: If the agent arrived at the end of the path.

• Failure: If no valid path was assigned to the agent.

Version 1.6
111

Lumberyard User Guide
Helicopter AI MBT Nodes

Example

<Fly lookaheadDistance="25.0" pathRadius="10.0"
 decelerateDistance="20.0" pathEndDistance="1" desiredSpeed="15"
 maxStartDistanceAlongNonLoopingPath="30" loopAlongPath="0" goToRefPoint="1"
 startPathFromClosestLocation="1" />

Outputs

When Lua variable Overridden XML tag

Node activation Helicopter_Loop loopAlongPath

Node activation Helicopter_StartFromClosestLocationstartPathFromClosestLocation

Each node tick Helicopter_Speed desiredSpeed

FlyForceAttentionTarget node

Used to keep forcing an attention target onto a flying vehicle. The attention target that should be
enforced is acquired during each tick of the node from the Helicopter_ForcedTargetId Lua script
variable.

Parameters

None.

Behavior

This node never finishes by itself and keeps forcing the attention target onto the agent. When the node
is deactivated again, the ForceAttentionTargetFinished event is emitted.

Example

<FlyForceAttentionTarget />

FlyAimAtCombatTarget node

Used to aim a flying agent at its target, taking into account special aiming adjustments for weapons.

Parameters

None.

Behavior

This node never finishes by itself and keeps forcing agent to rotate its body towards its attention target.

Example

<FlyAimAtCombatTarget />

WaitAlignedWithAttentionTarget node

Used to wait until the agent is facing its attention target.

Version 1.6
112

Lumberyard User Guide
Helicopter AI MBT Nodes

Parameters

• toleranceDegrees: The maximum allowed angle between the attention target and the forward
direction of the agent, in the range of 0.0 to 180.0 degrees.

Default value: 20.0

Behavior

• Success: If the angle between the agent's forward direction and its attention target is small enough.

• Failure: If the agent has no attention target.

Example

<WaitAlignedWithAttentionTarget toleranceDegrees="40" />

HeavyShootMortar node

Used to control the shooting of a heavy mortar. The precondition and initialization of the weapon as
well the reselection of the primary weapon is simplified and centralized.

Parameters

• to: (Optional) Defines the target of the shooting. Possible values: Target or RefPoint.

Default value: Target

• firemode: (Optional) The Heavy X-Pak (or Mortar) has two different firing modes. Possible values
are Charge and BurstMortar.

Default value: Charge

• timeout: (Optional) Defines the maximum time in seconds that the node can try to perform the
shooting.

Default value: 5.0

• aimingTimeBeforeShooting: (Optional) Defines the time in seconds in which the heavy mortar will
aim before starting the shooting. This amount of time must be bigger than the global timeout.

Default value: 1.0

• minAllowedDistanceFromTarget: (Optional) Defines the minimum distance in meters from the
Target to allow the shooting.

Default value: 10.0

Behavior

• Success: If the shooting succeeds.

• Failure: If if the heavy mortar is closer to the Target than the minimum distance, if there are
obstructions 2 meters in front of the heavy mortar, or if the timeout is reached.

Example

<HeavyShootMortar to="RefPoint" fireMode="Charge"
 aimingTimeBeforeShooting="2" timeout="7" />

Version 1.6
113

Lumberyard User Guide
Helicopter AI MBT Nodes

SquadScope node

Used to enter a squad scope, which is limited by the specified number of concurrent users. If the node
succeeds to do that, then the child node is executed.

Parameters

• name: The name of the squad scope to enter.

• allowedConcurrentUsers: (Optional) Number of allowed concurrent users in the specified scope.

Default value: 1

Behavior

• Success: If the child succeeds

• Failure: If it can't enter the specified scope or if the child fails.

Example

<SquadScope name="ANameForTheScope" allowedConcurrentUsers="5">
 <SomeChildNode />
</SquadScope>

SendSquadEvent node

Used to send an event only to the squad members.

Parameters

• name: Name of the event to be sent.

Behavior

• Success: If the event is sent.

• Failure: Never fails

Example

<SendSquadEvent name="ANameForTheEvent"/>

IfSquadCount node

Used to check if a squad contains a specific number of members and if so executes its child.

Parameters

• isGreaterThan: (Optional) To succeed the node will check if the number of members is greater than
the specified amount.

• isLesserThan: (Optional) To succeed the node will check if the number of members is lesser than
the specified amount.

• equals: (Optional) To succeed the node will check if the number of members is equal to the
specified amount.

Version 1.6
114

Lumberyard User Guide
AI Agent Debugging

Behavior

• Success: If the number of members in the squad satisfies the specified comparison.

• Failure: the number of members in the squad does not satisfy the specified comparison.

Example

<IfSquadCount isGreaterThan="1">
 <SomeChildNode />
</IfSquadCount>

AI Agent Debugging
There are several tools available for debugging AI agent behaviors at the game level.

Topics

• Using the AI Debug Recorder (p. 115)

• Using the AI Debug Viewer (p. 116)

• Using AI Debug Console Variables (p. 118)

• Using AI Bubbles for Error Messaging (p. 121)

• Using AILog and AISignals Files (p. 122)

Using the AI Debug Recorder
The AI Debug Recorder is a recording tool that logs all inputs, decisions, computations and other
useful data for an AI agent in real-time while the game is being played. At the end of the game session,
the recorder serializes all the data for future processing.

There are several ways to start or stop an AI debug recording session, as follows:

• Automatically using the Console – Use the ai_Recorder_Auto console variable to automatically
begin recording whenever a new game session starts. Similarly, the recording stops and saves when
the game session ends, by whatever means (except the game crashing).

• Manually using the Console – Use the ai_Recorder_Start and ai_Recorder_Stop console
variables to start or stop a recording as needed.

• Manually in Code – Use the IAIRecorder interface to start or stop a recording as needed.

Recorder Output File

Regardless of which method is used to perform a recording, all recordings are saved within the
\Recordings folder in the Lumberyard root directory (\lumberyard\dev). The file name of the
recording is formatted as follows:

MapName_Build(A) Date(B) Time(C).rcd

• MapName – The name of the map in which the recording took place. The exception is if the
recording took place in Lumberyard Editor, in which case the map name is EDITORAUTO as a
suffix.

• Build(A) – Version of the build with which the recording was made. We recommended using the
same build version to view the recording.

Version 1.6
115

Lumberyard User Guide
Using the AI Debug Viewer

• Date(B) – Date the recording was made.

• Time(C) – The time the recording was saved.

Note
If you create a manual recording, you enter your own file name to use. If none is specified, the
above format is used.

Recorder Data Streams

An AI Debug recording is comprised of many data streams that chronologically log a specific type of
input, as follows. It is also possible to add a new stream to the recording if needed.

• E_RESET – When the agent is reset.

• E_SIGNALRECIEVED – When the agent receives a signal.

• E_SIGNALRECIEVEDAUX – When the agent receives an auxiliary signal.

• E_SIGNALEXECUTING – When the agent is executing a received signal (processing it).

• E_GOALPIPESELECTED – When the agent selects a new goal pipe.

• E_GOALPIPEINSERTED – When the agent inserts a new goal pipe.

• E_GOALPIPERESETED – When the goal pipe on the agent is reset.

• E_BEHAVIORSELECTED – When the agent selects a new behavior.

• E_BEHAVIORDESTRUCTOR – When the agent's current behavior has its destructor called.

• E_BEHAVIORCONSTRUCTOR – When the agent's current behavior has its constructor called.

• E_ATTENTIONTARGET – When the agent's attention target changes.

• E_ATTENTIONTARGETPOS – When the position of the agent's attention target changes.

• E_REGISTERSTIMULUS – When the agent receives a perception stimulus.

• E_HANDLERNEVENT – When the agent's mind handles an event.

• E_REFPOINTPOS – When the agent's reference point position changes.

• E_AGENTPOS – When the agent's position changes.

• E_AGENTDIR – When the agent's look direction changes.

• E_LUACOMMENT – When a Lua comment is made on the agent.

• E_HEALTH – When the agent's health changes.

• E_HIT_DAMAGE – When the agent receives hit damage.

• E_DEATH – When the agent is killed.

• E_SIGNALEXECUTEDWARNING – When the agent is taking too long to process a signal.

• E_BOOKMARK – When a bookmark is placed on the agent.

To record information for any of these events, use the IAIRecordable interface (which all AI Objects
inherit from, and is used to link to the AI Debug Recorder itself).

All of the data streams listed are handled by the AI System with the exception of the Bookmark stream.
This is a special stream that is used to mark areas of interest for easy debugging later.

For example, a game project may connect a keyboard input to log event data on the Bookmark stream
whenever a button is pressed, which informs the QA team to push the button whenever odd behavior
from the AI is observed.

Using the AI Debug Viewer
AI Debug Viewer is the viewing utility that loads, parses, and displays the AI Debug Recorder file. This
utility is accessed from Lumberyard Editor.

Version 1.6
116

Lumberyard User Guide
Using the AI Debug Viewer

To view a AI Debug Recorder session

1. In Lumberyard Editor, click View, Open View Pane, AI Debugger.

2. In AI Debugger, click File, Load to view the last recorded session, or click Load As to view a prior
pre-recorded session.

The timeline window can be broken down as shown below:

1. Stream Window. Displays the contents of all active streams for all of the AI agents who were
recorded, along the timeline. By right-clicking in this window, a context menu is displayed, as follows:

Context Menu Items

Menu Item Description

Copy Label Copies the current label of the stream to the clipboard. See the
Info Window for more details.

Find... Finds the next occurrence of the label you specify along the
timeline and sets the cursor to that point.

Goto Start Sets the cursor to the starting time of the recording.

Goto End Sets the cursor to the ending time of the recording.

Goto Agent Location Sets the position of the camera in the Editor to the location of the
agent who owns the stream.

Copy Agent Location Copies the location of the agent who owns the stream to the
clipboard.

Following Content Contains all of the available streams for viewing. The check box
next to the name of the stream means it is enabled. Enabling a
stream causes its contents to be displayed in the Stream window.

Version 1.6
117

Lumberyard User Guide
Using AI Debug Console Variables

2. Agent Window. Displays the name of the agent who owns the contents of the stream. Right-clicking
this window displays the context menu, as follows:

• Enable Debug Drawing - Select to active debugging for this agent.

• Set Editor View - Select to focus the Editor’s camera as centered on both the position and facing
direction of the AI agent based on where the cursor is currently set. This allows you to see what
that AI agent was seeing at any moment in time. By moving the cursor, you can replay the agent's
movements and see what it was seeing.

• Set Color - Change the debug color used for representing this agent's information.

3. Info Window. Displays the last value of the stream based on the cursor position for the stream to
the left. The references to label in various places throughout the debug viewer refer to the text you see
in this pane.

4. Ruler Window. Displays the current time and can be used to select time ranges or manipulate the
cursor.

The cursor is represented by a solid red line. Any information that occurred at the moment of time
depicted by the cursor.

The time range is represented by a blue box. Click and hold anywhere in the ruler window to drag
the time range box. Releasing the mouse button sets the time range box. All information that occurred
during the highlighted time is drawn.

5. Menu Window. Contains configuration and command settings for the view pane.

Using AI Debug Console Variables
There are a number of console variables available for AI agent debugging. One of the most useful is
the ai_DebugDraw console variable. Setting this variable to 1 results in debug information displayed
above any active AI agent.

Note
Use the ai_AgentStatsDist variable listed below to set the distance above the AI agent that
debug information displays.

To enable ai_DebugDraw

1. Open Lumberyard Editor and select View, Show Console.

2. At the bottom of the console window, type ai_DebugDraw 1 or one of the other values, as
needed:

ai_DebugDraw Values

Value Description

-1 Only warnings and errors; no other information displays

0 Disables AI debug draw

1 Standard AI debug draw information displays

71 Draws all forbidden areas (including auto-generated ones)

72 Draws graph errors (problematic areas are highlighted with circles)

74 Draws the whole navigation graph

Version 1.6
118

Lumberyard User Guide
Using AI Debug Console Variables

Value Description

79 Draws the navigation graph close to the player (within 15m from
the camera; faster than 74)

80 Draws tagged nodes (during A*)

81 Calculates (if necessary) and then draws 3D (volume) hidespots

82 Draws 3D (volume) hidespots

85 Draws steep slopes (determined by ai_steep_slope_up_value and
ai_steep_slope_across_value)

90 Draws flight navigation within a 200m range of the player

179 Similar to 79, but also shows triangulation edges centers

279 Similar to 179, but also shows water depth information

1017 Visualizes navigation links of node that encloses entity "test"

Setting AI_DebugDraw to 1

Setting ai_DebugDraw to 1 enables the following console variables for debugging:

ai_AllTime
Displays the update times of all agents in milliseconds. Green indicates <1ms and white indicates
1ms-5ms.

Values: 0 = Disabled | 1 = Enabled

ai_DebugDrawNavigation 1
Displays the navigation mesh for the MNM system. Blue areas are navigable for AI agents to move
around in. Red areas are cut off from the main mesh and are not reachable by AI agents.

Values: 0 = Disabled | 1 = Triangles and contour | 2 = Triangles, mesh, and contours | 3 =
Triangles, mesh contours, and external links

ai_DrawBadAnchors
Toggles drawing out-of-bounds AI objects of a particular type for debugging AI. Valid only for 3D
navigation. Draws red spheres at positions of anchors that are located out of navigation volumes.
Those anchors must be moved.

Values: 0 = Disabled | 1 = Enabled

ai_DrawFormations
Draws all the currently active formations of the AI agents.

Values: 0 = Disabled | 1 = Enabled

ai_DrawModifiers
Toggles the AI debugging view of navigation modifiers.

ai_DrawNode
Toggles the visibility of named agent's position on AI triangulation. See also:
ai_DrawNodeLinkType and ai_DrawNodeLinkCutoff.

Values: none = Disabled | all = Displays all agent nodes | player = Displays the player node |
agent name = Displays the agent node

ai_DrawNodeLinkType
Sets the link parameter to draw with ai_DrawNode.

Version 1.6
119

Lumberyard User Guide
Using AI Debug Console Variables

Values: 0 = Pass radius | 1 = Exposure | 2 = Maximum water depth | 3 = Minimum water depth

ai_DrawNodeLinkCutoff
Sets the link cutoff value in ai_DrawNodeLinkType. If the link value is more than
ai_DrawNodeLinkCutoff, the number diplays in green. If the link value is less than
ai_DrawNodeLinkCutoff, the number displays in red.

ai_DrawOffset
Vertical offset during debug drawing.

ai_DrawPath
Draws the generated paths of the AI agents. ai_drawoffset is used.

Values: none = Disabled | squad = Squad members | enemy = Enemies | groupID = Group
members

ai_DrawRadar
Draws a radar overlay at the center of the view.

Values: 0 = Disabled | value = size of radar (m)

ai_DrawRadarDist
AI radar draw distance in meters.

Default value: 20m

ai_DrawRefPoints
Toggles reference points and beacon view for debugging AI. Draws balls at AI reference points.

Usage: "all", agent name, group id

ai_DrawStats
Toggles drawing stats (in a table on top left of screen) for AI objects within a specified range.
Displays attention target, goal pipe, and current goal.

ai_StatsDisplayMode 1
Displays information on the number of active AI agents, full AI updates per frame, and the number
of TPS queries processed each frame.

ai_DrawTargets
Distance to display the perception events of all enabled puppets. Displays target type and priority.

ai_DrawType
Displays all AI object of a specified type. If object is enabled, it displays with a blue ball. If object is
disabled, it displays with a red ball. A yellow line represents forward direction of the object.

Values: <0 = Disabled | 0 = Displays dummy objects | >0 = Object type to display

ai_DrawTrajectory
Records and draws the actual path taken by the agent specified in ai_StatsTarget. The path
displays in the color aqua, and only a certain length displays. The old path gradually disappears as
a new path is drawn.

Values: 0 = Disable | 1 = Enabled

ai_DebugTacticalPoints
Displays debugging information on tactical point selection system (TPS).

ai_Locate
Indicates the position and some base states of specified objects. Pinpoints the position of the
agents; its name; its attention target; draw red cone if the agent is allowed to fire; draw purple cone
if agent is pressing trigger.

Values: none = Disabled | squad = Squad members | enemy = Enemies | groupID = Group
members

ai_ProfileGoals
Records the time used for each AI goal (approach, run, pathfind) to execute. The longest
execution time displays onscreen.

Version 1.6
120

Lumberyard User Guide
Using AI Bubbles for Error Messaging

Default value: 0 = Disabled

ai_StatsDisplayMode
Gives information on the number of active AIs, full updates, and TPS queries for every frame.

Values: 0 = Hide | 1 = Display

ai_StatsTarget
Displays the current goal pipe, current goal, subpipes, and agent stats information for the selected
AI agent. A long, green line represents the AI forward direction. A long, red or blue line represents
the AI view direction if the AI is firing or not firing.

Values: AI name

ai_SteepSlopeAcrossValue
Indicates the maximum slope value that is borderline walkable across the slope. Zero (0.0) value
indicates flat (no slope). Must be set to a value greater than ai_SteepSlopeUpValue.

Default value: 0.6

ai_SteepSlopeUpValue
Indicates the maximum slope value that is borderline walkable up the slope. Zero (0.0) value
indicates flat (no slope). Must be set to a value smaller than ai_SteepSlopeAcrossValue.

Default value: 1.0

Other AI_Debug Variables

There are a number of other ai_DebugDraw console variables that can be accessed. Click the ...
button at the bottom right corner of the console, and then enter ai_debug in Search.

Using AI Bubbles for Error Messaging
The AI Bubbles System is used to collect and display AI agent error messages for level designers.
Debugging wrong behavior for an AI agent can take lots of time as it is difficult to track down which
system is connected with the problem and which console variables need to be enabled to retrieve
important information.

Game developers are encouraged to enter important error messages into the AI Bubbles system.

Error messages can be displayed as speech bubbles above an AI agent, displayed in a pop-up
window, or displayed in the Console window.

The following console variables are used to control if and how alert messages are displayed:

ai_BubblesSystem
Enables or disables the AI Bubbles system.

Values: 0 =disable | 1 =enable

ai_BubblesSystemDecayTime
Specifies the number of seconds a speech bubble remains onscreen before the next bubble is
displayed.

Units: seconds

ai_BubblesSystemAlertnessFilter
Specifies the type and level of messages displayed.

Values: 0 =none | 1 =logs | 2 =bubbles | 3 =logs and bubbles | 4 =blocking popups | 5 =blocking
popups and logs | 6 =blocking popups and bubbles | 7 =all notifications

ai_BubblesSystemUseDepthTest
Specifies if the message will be occluded by game objects.

Version 1.6
121

Lumberyard User Guide
Using AILog and AISignals Files

ai_BubblesSystemFontSize
Defines the font size of the message displayed.

Using AILog and AISignals Files
The AILog.log file can be used to log various AI agent events and the AISignals.csv file can be used to
store AI signals for debugging purposes.

Note
These are only available if CryAISystem (and CryAction in the case for AISignals.csv) were
built in Debug Mode.

The following AI events can be logged to the AILog.log file:

• AI Action started

• AI Action ended

• AI Action suspended

• AI Action resumed

• Signal received

• Auxiliary Signal received

• Goalpipe selected

• Goalpipe inserted

• Goalpipe reset

• RefPoint position set

• Stimulus registered

• AI System reset

• OnEnemyHeard

• OnEnemyMemory

• OnEnemySeen

• OnInterestingSoundHeard

• OnLostSightOfTarget

• OnMemoryMoved

• OnNoTarget

• OnObjectSeen

• OnSomethingSeen

• OnSuspectedSeen

• OnSuspectedSoundHeard

• OnThreateningSeen

• OnThreateningSoundHeard

• AI Signal executing

• Behavior constructor called

• Behavior destructor called

• Behavior selected

Version 1.6
122

Lumberyard User Guide

Asset Pipeline

The Asset Pipeline converts source art and other assets into platform-specific, game ready data. To
prepare your game to ship, build all your game assets with the Asset Pipeline and package them with
your game for your supported platforms.

The Asset Processor (AP) is a service that runs in the background and monitors a configurable set of
input folders for changes in files. When changes are detected, it uses configurable rules to determine
what needs to be done. The objective is to end up with game-ready versions of all assets for each
platform and each game directory in a location called the asset cache. The asset cache is kept
separate from your input directory and can be automatically rebuilt entirely from your source assets by
the Asset Processor.

Note
The asset cache should not be added to your source control.

Folders that contain input assets are monitored for changes, with the game directory being the highest
priority. This allows you to put assets in the game directory and have them override assets with the
same path in Lumberyard or other folders with lower priority.

Each output directory in the asset cache represents a full image of all files (except for executables
and related files) needed to run the game. The Asset Processor curates the directory to keep it up to
date, ensuring that new files are ready to use in the game and Lumberyard Editor as soon as possible.
Game runtimes load assets only from the asset cache and never directly from your input source
folders.

Topics

• Asset Processor (p. 124)

• Live Reloading and VFS (p. 125)

• Shader Compiler Proxy (p. 126)

Version 1.6
123

Lumberyard User Guide
Asset Processor

• Game Startup Sequence (p. 126)

• Missing Asset Resolver Tool (p. 127)

• Technical Information: Asset IDs and File Paths (p. 127)

Asset Processor
The Asset Processor is a utility that automatically detects new or modified asset files, launches the
Resource Compiler (Rc.exe), and then automatically processes the assets and places them in the
cache. Afterward, the Asset Processor communicates with all running game or tool instances to inform
them that the asset has been updated. The game can then reload the asset.

The Asset Processor can also allow games to run on other game platforms without deploying assets
to that platform. Instead, the assets are accessed from the asset cache on a connected PC. With this
feature, you can also run PC-based games using someone else's assets.

By proxying requests through itself, the Asset Processor can also communicate with an iOS or Android
shader compiler server through a USB cable on iOS and Android.

The Asset Processor starts automatically if you run Lumberyard Editor with automatically maintained
connections. It also restarts automatically if you modify any of the data files it needs to operate or get
a new version of it. You do not have to close the Asset Processor when getting latest from source
control. Nor do you have to wait for it to finish processing your assets before you start Lumberyard
Editor. However, if you aren't using the game or Lumberyard Editor, you can quit the Asset Processor
by right-clicking its icon in the Start bar notification icon area.

The Asset Processor can also serve files directly to running console games so that the assets don't
have to be present on the game device. This is called virtual file system (VFS) and is required for live
reloading to work on those platforms.

Version 1.6
124

Lumberyard User Guide
Configuration

Configuration
The AssetProcessorPlatformConfig.ini configuration for the Asset Processor is stored in the
root Lumberyard installation directory. If you need to perform any of the following tasks, see this file.

• Add new file types for the Asset Processor to feed to the Resource Compiler, to copy into the cache,
or to alter existing file type rules.

• Alter the ignore list.

• Alter which platforms are currently enabled; the default is PC only.

• Add additional folders for the Asset Processor to watch. For example, if you want to share particle
libraries and associated textures between projects.

• Alter what files trigger related files to be rebuilt. This is called metafile fingerprinting.

If you want to add game-specific overrides, add a file called
AssetProcessorGamePlatformConfig.ini to your game assets directory. This file is read after
the root configuration file. It can have additional game-specific settings for the folders to watch, the
ignore list, platforms, and file types.

Batch Processing
AssetProcessorBatch.exe is a command line driven batch file version of the Asset Processor.
When you run AssetProcessorBatch.exe, it compiles all assets for the current project and enabled
platforms. It then exits with a code of 0 if it succeeded without errors. It can be used as part of your
build system for automation.

AssetProcessorBatch.exe currently accepts the following command line parameters for overriding
the default behavior.

• /platforms=comma separated list

• /gamefolder=name of game folder

Example usage:

AssetProcessorBatch.exe /platforms=pc,ios /gamefolder=SamplesProject

Debugging
Use the following techniques to debug Asset Processor issues:

• Quit Asset Processor and then restart it from the project or branch you're currently working in. You
may need to close it in the system notification area to actually quit the Asset Processor. Pressing the
close button merely hides it.

• Clear the asset cache by deleting the Cache folder located in the Lumberyard root directory when
the Asset Processor is not running. Then restart it to rebuild all assets.

Live Reloading and VFS
On the PC platform, live reloading does not require virtual file system (VFS), since the PC that is
running the game is presumably also running the Asset Processor.

On non-PC platforms, VFS is required for live reloading to work, because otherwise assets would
need to be deployed onto the game device as part of live reloading, incurring platform-specific costs
and different asset pipelines. VFS enables the same behavior across all platforms using the same

Version 1.6
125

Lumberyard User Guide
Shader Compiler Proxy

workflow. For debugging purposes, you can also enable VFS on a PC and point it at a remote Asset
Processor to serve assets.

To enable VFS, you use the bootstrap.cfg configuration file.

The game runtimes and all tools can communicate with the Asset Processor through simple interfaces.
Communication involves the following:

• Notification when assets are built and change, so as to reload them if possible.

• Request an immediate compilation of an asset, blocking until processing has completed.

• Request asset status, blocking until the status is known.

• Query the location of an asset source file, given an asset ID.

• Query the destination asset ID, given an asset source file name and path.

Not all asset types can live reload. If you are developing new asset types, keep the following guidelines
in mind:

• When an asset loads, be prepared to substitute it for a temporary asset while it is compiling.

• If an asset is missing, query the status of the asset from the Asset Processor. This can determine
whether the asset really is missing or whether it is in the queue for processing. Querying also moves
the asset to the front of the queue for processing.

• If your asset is essential and it cannot live reload, use the blocking synchronous asset build request
to make it build immediately. This moves the asset to the front of the queue and prevents the call
from returning until the asset is compiled.

• Do not discard the original requested name when an asset is missing.

• Connect to the notification bus to learn when assets change and reload them when that happens.

Shader Compiler Proxy
Some mobile devices may be connected via a USB TCP/IP tunnel and may not have direct network
access to a shader compiler server. The shader compiler proxy component in Lumberyard allows such
devices to forward shader compiler requests through the Asset Processor connection.

This proxy connection only works for connecting to the shader compiler server on that protocol.
It is not a general purpose network bridge or tunnel. To use the shader compiler proxy, open the
system_assetsplatform.cfg file and modify the following values:

• r_ShaderCompilerServer = IP address of shader compiler server – Sets the location
of the shader compiler server as seen from the computer running AssetProcessor.exe. For
example, localhost could be used if both the Asset Processor and the shader compiler server are
running on the same computer.

• r_ShadersRemoteCompiler = 1 – Compiles shaders remotely.

• r_AssetProcessorShaderCompiler = 1 – Routes shader compiler through the Asset
Processor. If not set to 1, the device attempts to directly connect to the shader compiler server
through the IP set.

Game Startup Sequence
Compiled Lumberyard games start up in the following sequence:

1. The game reads the bootstrap.cfg file, which must contain the following information at a
minimum:

Version 1.6
126

Lumberyard User Guide
Missing Asset Resolver Tool

• Name of the game, and optionally, the name of the game DLL, if it differs from the game name.

• Whether or not to connect to the Asset Processor on startup or listen for an incoming connection
instead.

• Whether or not to wait for an established connection before proceeding.

• Whether or not to enable the virtual file system (VFS), which allows you to read assets remotely
from a connected computer instead of having to deploy them to the game device. This also is
required for live reloading to function on non-PC platforms.

• Which kind of assets to load. For example, you could configure the Android runtime to load es3
assets, or pc assets, or metal assets. This determines which directory the game looks in for the
assets so that the appropriate directory is also used for VFS.

2. The lyconfig_default.xml file is read.

3. VFS is started and enabled. All file access then goes through the VFS system. Besides the
bootstrap.cfg file, executable files, DLL files, and associated platform files, nothing else needs to
be deployed to the device. Instead, they can all be accessed remotely.

4. The system_game platform_assets.cfg file is read, where assets are the assets
specified in the bootstrap.cfg file.

Missing Asset Resolver Tool
The Missing Asset Resolver helps you find asset files in a level that have been moved, and will display
where the missing file used to be located and where it is now located.

To use the Missing Asset Resolver

1. In Lumberyard Editor, choose View, Show Console to open the Console window.

2. In the Console window text box, type ed_MissingAssetResolver 1.

3. In Lumberyard Editor, choose View, Open View Pane, Missing Asset Resolver.

4. Click File, Open, select the level that contains the missing asset, and click Open.

5. In the Missing Asset Resolver window, right-click the applicable asset, and then click Accept all
resolved files.

The asset file is now referenced from its correct location.

Technical Information: Asset IDs and File Paths
Consult this section if you are a developer who needs to port older game code or develop new code or
tools.

Asset IDs and File Paths
All files accessed for the game runtime go through an interface that supports aliasing of file paths
by name. For example, the alias %ROOT% refers to the root directory where the bootstrap.cfg file
is located. If you need to open a file in the root directory, do not go to the root directory or use the
current working directory. Instead, use the file name, such as %root%/filename.cfg. The various
Lumberyard subsystems correctly resolve the alias.

Other aliases available include the following:

• %log% – For storing forensic data, such as crashes, logs, traces, performance drops, and unit test
output.

Version 1.6
127

Lumberyard User Guide
Converting Asset IDs to Full Paths

• %cache% – For storing data that can be cleaned out at any time and does not need to persist.

• %user% – For storing data that needs to persist between users. Note that some platforms may back
up this data to the cloud, such as for user preferences.

• %assets% – The location of the asset cache. If no alias is specified, this is assumed, so it is almost
never necessary to specify this.

• %devroot% – The root of your development tree where the editable engineroot.txt file is
located. This file is shared by many game projects and used by the editor and other tools.

• %devassets% – The root of your source asset directory for your game, which is used by the editor
and tools.

The following are examples of asset IDs:

textures/mytexture.dds
objects/rain/droplet.cgf
gamedata.xml
levels/mainlevel/mainlevel.xml

The following examples are file paths and not assets IDs:

%assets%/textures/mytexture.dds
%root%/system.cfg
C:\dev\mystuff.txt
\\networkdrive\somefile.dat

The following example is invalid as it mistakenly assumes that the asset cache has the same name as
the game and that it is a child folder of the root directory. This isn't true on all platforms:

%root%/GameName/textures/mytexture.dds

When referring to assets during runtime, always use the asset ID. Do not prefix asset IDs with
%assets% or the game name, and do not concatenate them with custom strings. Treat asset IDs
as immutable data that is not a string and refers to a specific asset. For example, you would store
textures/mytexture.dds and not gems/rain/mytexture.tif.

You can use the FileIO interface, which is accessible through gEnv->pFileIO, to resolve aliased
names to full paths, if you want to point to an external disk loading tool such as Qt QFile(). This
should almost never be necessary during runtime. If you do use this, however, your system cannot use
remote asset access nor support live reloading.

Converting Asset IDs to Full Paths
If you are writing a new editor tool or porting an existing one from a legacy system, keep in mind
the separation between game code and editor code. Game code cannot manipulate asset IDs, and
therefore it is invalid to retrieve the game path or concatenate game names with path names. The
game code and game modules also have no access to source control, so relying on the game to find
out where to save files will not work.

Instead, develop your editor code in such a way that the editor decides where files are saved, and
optionally loaded from, and correctly interfaces with source control and the asset processing system.
(Source control and asset processing are overhead that is governed by the editor tool, not the game.)

The following utilities and guidelines are provided to make this easier:

Version 1.6
128

Lumberyard User Guide
Live Update Messages

• Store only asset IDs for all source assets. For example, if you are writing a file that refers to other
files, do not store C:\lumberyard\dev\MyGame\myasset.txt in the file's data, for example.
Instead, just store myasset.txt, its asset ID.

• If you are in an editor tool, link to EditorCore, and then do the following:

• #include <PathUtil.h>

• Call Path::FullPathToGamePath(string) to convert any full path into a game asset ID
automatically.

• Call Path::GamePathToFullPath(string) to convert any asset ID into a full source asset
name.

• Call Path::GetEditingGameDataFolder to see where to save files that do not exist yet, such
as for a File Save dialog.

• If you are working in a new system that does rely on legacy systems, you can use an EBus, which
has the same functionality as described above. For more information about the EBus, see Event Bus
(EBus) in the Amazon Lumberyard Developer Guide.

• #include <AzToolsFramework/API/EditorAssetSystemAPI.h>

• Call EBus messages ConvertFullPathToRelativeAssetPath and
ConvertRelativeAssetPathToFullPath to convert back and forth.

• Call EBus messages GetAbsoluteDevGameFolderPath to get the game directory for File Save
dialogs. Use this only when you do not have an asset ID already, such as in the case of new files.

As an example, the following steps code a tool that provides a list of all available assets of type
sprite:

To make a list of available sprite assets

1. Use the gEnv->pCryPak file-finding functions to search for all asset IDs. Usually, since %assets
% is assumed, just the directory name or extensions are all that is required, but aliases are
accepted.

2. Once you have the asset ID list, call GamePathToFullPath or
ConvertRelativeAssetPathToFullPath to convert the list to full source names.

3. Display the appropriate name in the UI, either the real source name or the output name.

4. When a user wants to edit the file, use the source name to check it out from source control.

5. When a user saves the file, make sure to write it to the source name, not the target name.

6. When the asset compiler recompiles the asset, it notifies you using the asset ID. Make sure you
compare the incoming name to this asset ID.

Live Update Messages
If you are on a PC or you are connected to VFS, you can listen for live update messages from the
Asset Pipeline and reload your assets when you get them.

To do this, do the following:

• #include <IAssetSystem.h>

• Subscribe a listener to the AssetSystemBus. Subscribers connect via the crc of the file extensions
they are interested in. Search for "AssetChanged" to see examples in various systems.

Here is an example: BusConnect(AZ_CRC("dds")); // be notified of all DDS file
changes.

Once you get your live reload notification, it contains an asset ID. Consider queueing the request for
later if you are in a thread-sensitive module.

Version 1.6
129

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/

Lumberyard User Guide

Audio System

Lumberyard uses an audio translation layer (ATL) to interface between Lumberyard and third party
audio middleware, so you can change your audio implementation without affecting the game logic. ATL
events trigger in-game sounds, which then trigger audio implementation events that notify the audio
middleware to play the specified sounds.

Lumberyard supports Audiokinetic Wave Works Interactive Sound Engine (Wwise), an audio pipeline
solution with which you can create compelling soundscapes for your game.

Lumberyard also supports a free “compact” version called Wwise LTX. The runtime SDK for it comes
pre-configured with Lumberyard.

The audio system consists of the following elements:

• Sound banks – Compiled sound files and metadata

• Project files – All files related to your project for the middleware authoring tool

• Game audio libraries – XML files that define the mappings (both global and level-specific) between
game-side ATL audio controls and middleware data

For information on audio entities, see Audio Entities (p. 451).

Topics

• Audio System Architecture (p. 131)

• Installing Audiokinetic Wwise LTX (p. 131)

• Using the Audio Controls Editor (p. 132)

• ATL Default Controls (p. 135)

• Audio PlayTriggers and StopTriggers (p. 136)

• Obstructing and Occluding Sounds (p. 137)

• Audio Flow Graph Nodes (p. 139)

• Adding Ambient Sounds to Levels (p. 139)

• Adding Reverb Effects to Levels (p. 142)

• Adding Collision Sounds to Levels (p. 144)

Version 1.6
130

Lumberyard User Guide
Audio System Architecture

• Adding Sound to Trackview Sequences (p. 145)

• Adding Sound to Animations (p. 145)

• Audio Console Variables Commands (p. 147)

Audio System Architecture

The Lumberyard Audio system consists of three largely independent layers:

CAudioSystem: Represents the Audio system interface to the outside world. It holds methods for
looking up or reserving IDs for various objects and the PushRequest method, which is the only way to
request an action from the Audio system. This class contains the message queues and handles the
scheduling and dispatch of the incoming requests. It also manages the Main Audio thread.

CAudioTranslationLayer: Keeps track of the Audio system's current state, including registered
AudioObjects, AudioListeners, and active AudioEvents, and processes the requests submitted through
the PushRequest method.

IAudioSystemImplementation: Represents an interface to an audio middleware system. While
processing incoming requests, CAudioTranslationLayer calls the appropriate method of
IAudioSystemImplementation and, if the call succeeds, records all of the resulting changes in the
AudioSystem state.

Installing Audiokinetic Wwise LTX
Lumberyard includes an exclusive, free version of the Audiokinetic Wwise audio system for PC games:
Wwise LTX. Sound designers and composers can use Wwise LTX to work independently from the
engineering team and author rich soundscapes for your games.

If your game requires the feature set of the full version of Wwise, Lumberyard provides a simple
migration path. By replacing the Wwise LTX SDK with the full version of the Wwise SDK and rebuilding

Version 1.6
131

Lumberyard User Guide
Installing Wwise LTX

your game, you can take advantage of the advanced features offered by Audiokinetic's full product
range.

To access the Wwise LTX documentation once Wwise LTX is installed, press the F1 key. Alternatively,
click Help, Wwise Help in the application menu.

Installing Wwise LTX
To author sounds with Wwise LTX for your game, you must do the following:

To install Audiokinetic Wwise LTX

1. Run Lumberyard Setup Assistant, located at engine_root_folder\SetupAssistant.bat.

2. Click Install software.

3. Look for the Audiokinetic Wwise LTX Authoring Tool entry, and click the Install it link. This will
install the Wwise Launcher and run it.

4. If prompted to sign in to your Audiokinetic account, enter your details and click Sign In, or else
click Skip sign in.

5. On the next page, you can select the desired installation components and settings for Wwise LTX,
or else accept the default. Once done, click the Install button.

6. If prompted with License Terms, you can review the End-User License Agreement. Once done,
click the Accept button. Installation will commence.

7. Once the installation has successfully completed, click the Launch Wwise (64-bit) button under
the Wwise LTX entry to run the Authoring Tool. If desired, click the wrench icon to create a
desktop shortcut for later use.

8. Close the Wwise Launcher and return to Lumberyard Setup Assistant. It should now show that
Wwise LTX is installed.

Running the Wwise LTX Authoring Tool
To run the Wwise LTX Authoring Tool, you must first open or create a project. The SamplesProject
includes a Wwise LTX project you can use.

To run the Wwise LTX Authoring Tool

1. Run Wwise Launcher from the Programs menu.

2. Click the Wwise tab, then in the Wwise LTX installation, click Launch Wwise (64-bit).
Alternatively, if you created a desktop shortcut earlier, you may use that.

3. If this is your first time running Wwise LTX, you will be prompted again to review and accept the
End-User License Agreement (EULA). After accepting the EULA, click Open Other.

4. Browse to the .wproj file located in engine_root_folder\SamplesProject\Sounds
\wwise_project\ and click Open.

5. Alternatively, if you are not using SamplesProject, you may create a new Wwise LTX project
by clicking New. The following page titled Using the Audio Controls Editor will contain more
information about setting up Wwise for your game project.

Using the Audio Controls Editor
All actions, events, and parameters from your game are communicated to the Audio system using
Audio Translation Layer (ATL) controls that are mapped to one or more controls inside your selected

Version 1.6
132

Lumberyard User Guide
Using the Audio Controls Editor

middleware. The connection between the ATL controls and the middleware controls, as well as the
creation of the controls themselves, are done using the Audio Controls Editor.

Select View, Open View Pane, Audio Controls Editor. The editor consists of three panels: the ATL
controls panel, Inspector panel, and middleware-specific Controls panel.

The following tables list various controls and properties available in the different panes of the Audio
Controls Editor. The controls available in the middleware Controls panel are by definition middleware-
specific.

Audio Controls Table

Audio Control Description

Trigger Containers that execute all audio controls that are connected
to them. You can preview a trigger by right-clicking it and then
selecting Execute Trigger, or by pressing the keyboard spacebar.

RTPC Real-Time Parameter Control (RTPC) is typically a floating-
point variable that is updated continuously over time to alter a
parameter's value, which the audio middleware can use to drive
corresponding effects.

Switch A variable that can be in one of several states that can be set
using Flow Graph or by code. For example, a SurfaceType switch
might have values of Rock, Sand, or Grass.

Environment Environments can be set on areas such as AreaBoxes,
AreaShapes, and AreaSpheres, which allow for driving
environmental effects such as reverb and echo.

Preload A preloaded sound bank, which is an audio file that includes
packaged audio data that contains both a signal and metadata.

The Inspector panel allows you to edit all the properties of the control currently selected in the ATL
controls panel, including making connections to any matching middleware-specific controls.

Version 1.6
133

Lumberyard User Guide
Using Audiokinetic Wwise LTX

Inspector panel table

Property Description

Name The name of the control. This can also be edited in the ATL
controls panel.

Scope Controls can exist for a global or on a per-level scope. A control
with a global scope exists as long as the game is running and
regardless of whether the control is used in the current level. When
a specific level is defined as the scope, they exist only when that
level is loaded. This setting is very useful in low-memory systems
because controls are only loaded in levels where they are needed.

Auto Load If Auto Load is set, the elements preloaded with this control will be
reference counted—that is, only one copy of them is created that is
shared between all users. (Only available for preloads)

Preloaded Soundbanks The soundbanks connected with a preload can be different for
different platforms. Different soundbanks can be added to different
groups and then in the Platforms field you can choose which
group to load for each platform you are targeting. (Only available
for preloads.)

Platforms Allows you to set which group of soundbanks to load for each
platform. You can share a group between several platforms. (Only
available for preloads.)

Connected Controls Contains all the middleware controls connected to your control.

To create new connections between ATL controls and middleware-specific controls, just drag the
control from the middleware controls panel to the Connected Controls area of the Inspector panel.
A middleware control can also be dragged directly to the ATL controls panel; doing so creates a new
control with the name of the middleware control and automatically connect both of them.

Note
After creating a new control, in the Audio Controls Editor, click File, Save All, and then click
Audio, Refresh Audio to be able to preview the control.

Using Audiokinetic Wwise LTX
If you use Audiokinetic Wwise LTX, the project must be in a location where the Audio Controls Editor
can detect it. The .wproj project is located at \[game folder]\Sounds\wwise_project\. You
will need to configure Wwise LTX to build soundbanks to the following location: ..\wwise\.

With the Audio Controls Editor tool, you can edit the following audio-related data files:

• \SamplesProject\Libs\gameaudio\wwise\config.xml

• \SamplesProject\Libs\gameaudio\wwise\global_preloads.xml

• \SamplesProject\Libs\gameaudio\wwise\default_controls.xml

Soundbanks for Audiokinetic Wwise LTX are located in the \Sounds directory:

• \SamplesProject\Sounds\wwise\Content.bnk

• \SamplesProject\Sounds\wwise\Init.bnk

Version 1.6
134

Lumberyard User Guide
ATL Default Controls

ATL Default Controls
The Lumberyard audio system uses an Audio Translation Layer (ATL) to control when and how
sounds play in your level. Wwise LTX controls are then connected to the ATL controls. The following
ATL default controls are automatically created by the Audio Controls Editor and are located in the
default_controls folder:

• do_nothing

• get_focus

• lose_focus

• mute_all

• object_speed

• object_velocity_tracking

• ObstructionOcclusionCalculationType

• unmute_all

do_nothing control
You can define both a PlayTrigger and a StopTrigger. The do_nothing control is used as a blank
event in cases where StopTrigger functionality should not be used. This trigger should not be
connected to any event in your audio middleware.

get_focus control
This trigger is called when the application window in Lumberyard Editor gains focus.

lose_focus control
This trigger is called when the application window in Lumberyard Editor loses focus.

Note
If you don't want to pause or resume audio when gaining or losing focus, use the console
command s_ignorewindowfocus = 1. This bypasses the get_focus and lose_focus
events from being called when gaining or losing focus.

mute_all control
This trigger is called when the Mute Audio button is selected, located on the lower menu bar of
Lumberyard Editor.

object_speed control
This is an RTPC control that is updated according to the speed of the associated entity in the level. The
calculation of the speed can be enabled on a per-entity basis with the object_velocity_tracking
control.

object_velocity_tracking control
This is a switch used to enable or disable the calculation of the object_speed value on a per-entity
basis. This switch does not need to be connected to the audio middleware as it is communicating
Lumberyard-specific data.

Version 1.6
135

Lumberyard User Guide
ObstructionOcclusionCalculationType control

ObstructionOcclusionCalculationType control
This is a switch used to set the obstruction and occlusion calculation method of an entity. The switch
state values are Ignore, SingleRay, and MultiRay. This switch does not need to be connected to
the audio middleware as it is communicating Lumberyard-specific data.

unmute_all control
This trigger is called when the Mute Audio button is deselected, located on the lower menu bar of
Lumberyard Editor.

Audio PlayTriggers and StopTriggers
You can define both PlayTriggers and StopTriggers for entities in your level. These are accessed from
the Rollup Bar in the Properties panel for the entity.

Placing Triggers in Game
In order to hear a sound in the game, first place the audio entity that executes the audio trigger during
gameplay in the level. For each level, we recommended creating a dedicated audio layer that contains
all your audio data. In the Rollup Bar, click the Layer tab, click the New layer icon, and then name the
layer. Select the audio layer to ensure that all entities that you are placing in the level are included in
this layer.

On the Objects tab in the Rollup Bar, click Audio, AudioTriggerSpot, then drag and click to place the
entity in the level.

PlayTrigger Set
On activation, this executes the PlayTrigger and, on deactivation, stops the PlayTrigger. The audio
system automatically stops the PlayTrigger when the corresponding StopTrigger is activated.

This can be useful, as it automatically stops sounds without the need to create any additional stop
functionality inside of your audio middleware. This also assures that any looping sounds are stopped
when the associated entity is disabled.

You can also bypass the automatic stopping of a StartTrigger by using the default do_nothing ATL
control. When it is set on the StopTrigger, the audio system behaves as explained under the Both
Triggers Set section. As this control is not connected to any functionality within your middleware, it will
not affect the audio, but bypasses the automatic stop functionality of the audio system.

For example, when setting an audio trigger on a shooting animation of a gun, you would want to hear
the end of the gunfire even after the animation has finished. However, if no trigger has been set in the
StopTrigger field, the PlayTrigger would be terminated and therefore the sound of the gunfire ending
would be cut off. To prevent this, place the do_nothing control in the StopTrigger field. This bypasses
the automatic stopping functionality and lets the PlayTrigger execute completely.

Note
Remember that, with the above setup, any looping sounds that you have set as a PlayTrigger
will not be stopped.

StopTrigger Set
On deactivation, the StopTrigger is executed and, on activation, nothing happens. As no trigger is
defined under the PlayTrigger, nothing happens when the PlayTrigger is executed. However, if a
trigger is set for the StopTrigger, it plays when the StopTrigger executes.

Version 1.6
136

Lumberyard User Guide
Both Triggers Set

An audio trigger can also execute the playback of audio in your middleware when it is placed as a
StopTrigger.

Both Triggers Set
With this configuration, the StartTrigger is executed on activation. The StopTrigger is activated upon
deactivation and without stopping the StartTrigger. This is because the audio trigger has been defined
as a StopTrigger.

If you need to stop the PlayTrigger with another audio trigger that is set as a StopTrigger, then you
need to set up stop functionality inside of your audio middleware.

As a general rule, it is always useful to use the automatic stop behavior contained in the audio system
when you just want to simply stop a sound on entity deactivation or on the ending of an animation.
When creating more complex events, such as fade outs or triggering additional audio samples while
stopping the StartTrigger, create the stop functionality inside your audio middleware and set the
connected ATLControl as the StopTrigger.

Obstructing and Occluding Sounds
Sound obstruction means that the direct path to the audio is blocked but the sound might still be
audible due to the sound reflecting off the obstruction and other objects. Sound occlusion, on the
other hand, refers to the degree to which sound is lost or affected by intervening objects. You can
enable different obstruction and occlusion settings for the AudioTriggerSpot, AudioAreaEntity, and
AudioAreaAmbience object types. Using these settings correctly helps you to create a game world
where sound is realistically filtered and attenuated according to the surrounding environments.

You can set the SoundObstructionType property for the AudioTriggerSpot, AudioAreaEntity, and
AudioAreaAmbience in their respective properties panels in the Rollup Bar. All audio object types
default to Ignore as their SoundObstructionType setting.

Obstructing Sounds
Lumberyard uses raycasting, or ray-to-surface intersection testing, to get information about the objects
with which the line intersects. If the occlusion value of a raycast's center ray differs from the average
of the occlusion values of the outer rays from the same raycast, Lumberyard applies obstruction
to the sound source. Therefore, obstuction is calculated only when the SoundObstructionType is
set to MultipleRays on the object type, since a single ray does not provide enough information to
differentiate between obstruction and occlusion.

Obstruction is applied to the sound after occlusion and in addition to it. If the center ray of a raycast has
reached the listener without being blocked, and the outer rays are fully or partially blocked by game
objects, then the obstruction value is set to zero and only the occlusion value is positive. In addition,
obstruction is only applied to the dry signal; it has no effect on the signal sent to the environment
auxiliary buses.

Obstruction is also affected by the distance of the raycasting entity to the listener. As the distance
increases, the obstruction value decreases and the difference is transferred to the occlusion value.
This reflects the fact that, with increasing distance, the contribution of the direct line-of-sight sound path
in the overall sound perception becomes progressively smaller.

The console variable s_FullObstructionMaxDistance sets the maximum distance after which the
obstruction value starts to decrease with distance. For example, s_FullObstructionMaxDistance
= 5 means that, for the sources that are farther than 5 meters away from the listener, the obstruction
value is lower than the actual value calculated from the raycast. In this case, an object 10 meters away
has half the obstruction value of the similarly obstructed source located 5 meters away.

Version 1.6
137

Lumberyard User Guide
Sound Obstruction for Surface Types

Sound Obstruction for Surface Types
You can define how much each different material type affects the sound passing through it. The
sound_obstruction physics property is a value between 0 and 1. For each raycast from a sound
source, the ray's occlusion value increases by the sound_obstruction value of each surface it
intersects.

Values for each surface type can be set in the \Libs\MaterialEffects\SurfaceTypes.xml file.
The exact effect that this value has on the audio content of your game is defined in your specific audio
middleware.

For a material with sound_obstruction = 0.5, the maximum obstruction and occlusion value
that is reached in the game is 0.5. Therefore, if the sound is fully occluded by one object with this
surface type, the occlusion value passed to the middleware is 0.5. If the sound is also obstructed,
the combined values of obstruction and occlusion would be summed to 0.5. However, their sum
would never exceed this value, as it is defined as the maximum obstruction or occlusion value in the
material's sound_obstruction property.

Occluding Sounds
Occlusion is applied to a sound source that is completely or partially hidden from the listener by the
other game object(s).

A nonzero occlusion value is set for a sound source whenever at least one ray that is cast from that
source encounters a surface with non-zero sound_obstruction value. The sound_obstruction
values from the surfaces struck by the ray are accumulated, and the total values are averaged
over time for each ray to produce this ray's occlusion value, as shown in the ray label enabled with
s_DrawAudioDebug h flag. With the SingleRay selected for SoundObstructionType, the audio
object occlusion value is equal to its only ray's occlusion value. With MultipleRays selected for
SoundObstructionType, the audio object occlusion value is the average of the occlusion values for all
the rays.

You can use the console variable command s_OcclusionMaxDistance to set a maximum distance
beyond which the sound obstruction and occlusion calculations are disabled. For example, for
s_OcclusionMaxDistance = 150, Lumberyard calculates the obstruction and occlusion values for
every active audio object with SoundObstructionType set to SingleRay or MultipleRays, providing
they are located within 150 meters of the sound's listener.

Raycasts
When Lumberyard performs a raycast, it can calculates the occlusion and obstruction values either
synchronously or asynchronously. In synchronous calculations, all occlusions of an individual ray
are available immediately in the same frame as the one that requested the raycast. In asynchronous
calculations, the individual ray data is received over the next few frames and processed once all sof
the rays have reported back. Synchronous raycasts are much more responsive, but they also require
more processing resources and can hurt performance if a large number of raycasts are performed in
a single frame. In order to save resources and avoid performance hits, Lumberyard switches between
synchronous and asynchronous raycasts based on the distance between the sound source and the
listener. For the sources close to the listener, Lumberyard uses synchronous raycasts to provide a
maximum responsive environment. For sources further away, asynchronous raycasts are used.

Debugging Raycasts
The s_DrawAudioDebug console variable has three flags that show you the values calculated by the
raycasts:

Version 1.6
138

Lumberyard User Guide
Audio Flow Graph Nodes

• b – Shows text labels for active audio objects, including obstruction (Obst) and occlusion (Occl)
value.

• g – Draws occlusion rays.

• h – Shows occlusion ray labels.

Audio Flow Graph Nodes
There are a number of Flow Graph nodes you can use to control different aspects of the Audio system.
For more information, see Audio Nodes (p. 541).

Adding Ambient Sounds to Levels
Lumberyard has two audio entities that you can use to add ambient sounds to levels as well as Adding
Reverb Effects to Levels (p. 142) —AudioAreaAmbience and AudioAreaEntity. Both entities are
linked to a specified shape in a level that defines the area in which ambient sounds are triggered from.

You use these two entities to set multiple attributes with whichs you can define a PlayTrigger and
StopTrigger, an environment, and a radius around the shape where your ambient sound starts to fade
in and out.

To make use of the AudioAreaAmbience or AudioAreaEntity entity in a level, you must first create a
new shape.

Note
The distance that is output by the AudioAreaAmbience and AudioAreaEntity entities
is always scaled from 0 to 1 from the maximum range set in the RtpcDistance property.
Therefore, the range of the RTPC (real time parameter control) value used by your
middleware needs to be only 0 to 1.

To define an area shape for an audio entity

1. In the Rollup Bar, on the Objects tab, click Area.

2. Under Object Type, select either AreaBox, AreaSphere, or Shape. Then do the following:

• In the case of AreaBox, click in your level to place it, and then under AreaBox Params, specify
values for Width, Length, and Height.

• In the case of AreaSphere, click in your level to place the shae, and then under AreaSphere
Params, Radius.

• In the case of Shape, click in your level to create points that define the boundaries of the shape.
When finished, double-click the last point to complete the shape.

Note
The event listener, which is attached to the player character by default, needs to be inside an
area shape for a sound to play. Set the shape's Height value to at least 15 to ensure there is
room for the ambient sound to play even if the character jumps.

You can change an area shape by adding. removing, and moving points.

To edit a shape

1. Select the shape in your level.

2. In the Rollup Bar, under Shape Parameters, click Edit Shape.

3. ect the applicable point on the shape and do the following:

Version 1.6
139

Lumberyard User Guide
Setting Up the AudioAreaAmbience entity

• Drag the point to move it to another location.

• Press the Delete key to remove the point.

• Press Ctrl+click to add a point to the shape

4. When done, under Shape Parameters, click Reset Height to flatten the shape. This is useful
when creating shapes over hilly terrain.

Note
If the Follow Terrain option was not selected, the area shape that you created may be
located under the terrain. If so, select the Move tool and drag the shape up by clicking on the
yellow Z-axis arrow and dragging it up.

Setting Up the AudioAreaAmbience entity
The AudioAreaAmbience entity is the main audio entity for defining which ambient sound should play
and how without the need to use the Flow Graph editor for advanced sound effects or behaviors.

To set up and link the AudioAreaAmbience entity

1. In Rollup Bar, on the Objects tab, click Audio.

2. Under Object Type, click AudioAreaAmbience. Then click in your level to place the object type.

3. Under AudioAreaAmbience Properties, select the applicable property, and then click the folder
icon that appears on the right. Do this for the PlayTrigger, StopTrigger, and Rtpc properties.

4. In the Choose window, expand default_controls, select an ATL control to use for the property,
and then click OK.

5. For RtpcDistance, enter a value that represents the distance in meters at which sounds starts
fading in volume for the player.

6. Under Entity Links, select AudioAreaAmbience and click the Pick Target button. The object
type is now linked to the shape that you created earlier.

7. Press Ctrl+G to test the ambient sound.

The selected PlayTrigger control is called whenever the character is the distance away from the shape
specified by the RtpcDistance value.

As the character moves closer towards or further away from the shape, the volume of the ambient
sound increases or decreases in volume in accordance to the setup in your audio middleware. As long
as your character is within the area shape, the sound plays without volume attenuation.

Version 1.6
140

Lumberyard User Guide
Setting Up the AudioAreaEntity entity

Setting Up the AudioAreaEntity entity
The AudioAreaEntity entity functions like the AudioAreaAmbience entity but requires manual setup
in the Flow Graph editor to trigger the ATL controls. This extra step gives you access to multiple
parameters and more advanced setup possibilities than the AudioAreaAmbience entity.

The AudioAreaEntity entity includes a FadeDistance parameter, which behaves like the
RtpcDistance parameter except that it can be connected to any object in the Flow Graph editor and
not simply to a default RTPC audio control.

Notice that the Properties panel does not include PlayTrigger or StopTrigger, as they are manually
set up in the Flow Graph editor.

The AudioAreaEntity flow graph node does not have any playback functionality itself; Instead it
triggers output when the character enters or leaves either the area shape or its outer values as defined
by the fade distance. It also sends out a value that can be used to control any RTPC audio control with
the Audio:Rtpc node. To use the AudioAreaEntity to enable playback of an ambient sound for your
area, you need to add the Audio:Trigger and Audio:RTPC nodes to the flow graph.

After adding both nodes to the flow graph, right-click on each and select Assign Selected Entity. Now
both the Audio:Trigger and the Audio:RTPC are set for the AudioAreaEntity entity.

Version 1.6
141

Lumberyard User Guide
Using Shape Priorities

A StopTrigger is not needed as the audio system automatically stops the PlayTrigger control if no
StopTrigger is assigned. Ambient sounds that are set up using the AudioAreaEntity entity do not play
by default as they are triggering the controls in the flow graph. To preview the AudioAreaEntity when
not in game mode, click AI/Physics at the bottom of Lumberyard Editor.

Using Shape Priorities
When using multiple shapes in a level, you can set shape priorities to define how audio behaves when
a character moves from one shape to another. You can set the priority per shape under Area, Object
Type, Shape in the Rollup Bar.

When transitioning from one shape to another, the shape with the higher priority overrides
the RtpcDistance and FadeDistance properties for lower priority AudioAreaAmbience and
AudioAreaEntity entities respectively.

Note
With helpers enabled, pressing the spacebar on your keyboard displays pivots for all entities
in a level. You can also do this to simplfy the selection of areas that are nested together.

Select the DisplaySoundInfo check box to indicate any sound obstructions for the sides of an
AreaBox or a Shape. Sound-obstructed sides appear in red and do not calculate ambient sound
updates for that segment. Non-obstructed sides are displayed in green and do calculate ambient sound
updates.

Adding Reverb Effects to Levels
Lumberyard has two audio entities that you can use to add reverberation effects (as well as ambient
sounds) to a level —AudioAreaAmbience and AudioAreaEntity. Both entities are linked to a
specified shape in a level that defines the area in which reverb effects are triggered from.

To setup Wwise LTX for reverb effects

1. In Audiokinetic Wwise LTX, click the Audio tab in Project Explorer.

2. Under Master-Mixer Hierarchy, create an auxiliary bus.

3. In the Auxiliary Bus Property Editor, on the General Settings tab, assign a Wwise RoomVerb
effect to the bus.

4. Click Edit to edit the settings of the effect.

Version 1.6
142

http://docs.aws.amazon.com/lumberyard/latest/userguide/ly-glos-chap.html#entity

Lumberyard User Guide
Setting Distance Values

5. Under Actor-Mixer Hierarchy, for any sounds or sound containers that you want to run through
the effects bus, do the following:

a. On the Property Editor pane, click the General Settings tab and select Game-Defined
Auxiliary Sends.

b. Select the Use game-defined auxiliary sends check box.

c. Save the project and select Generate soundbank.

6. Open Lumberyard Editor, and then click View, Open View Pane, Audio Controls Editor.

7. In Audio Controls Editor, click Add, Environment.

8. Link the Wwise auxiliary bus to the audio translation layer (ATL) environment.

To setup Wwise for reverb effects

1. In AudioKinetic Wwise, click the Audio tab in Project Explorer.

2. Under Master-Mixer Hierarchy, create an auxiliary bus.

3. In the Auxiliary Bus Property Editor, on the Effects tab, assign a Wwise RoomVerb effect to
the bus.

4. Click Edit to edit the settings of the effect.

5. Under Actor-Mixer Hierarchy, for any sounds or sound containers that you want to run through
the effects bus, do the following:

a. On the Property Editor pane, click the General Settings tab and select Game-Defined
Auxiliary Sends.

b. Select the Use game-defined auxiliary sends check box.

c. In SoundBank Manager Layout (F7), select Generate soundbank.

6. Open Lumberyard Editor, and then click View, Open View Pane, Audio Controls Editor.

7. In Audio Controls Editor, click Add, Environment.

8. Link the Wwise auxiliary bus to the ATL environment.

After you have setup reverb effects, you next create and define an area shape, set the
AudioAreaAmbience or AudioAreaEntity entity properties, and then link the entity to the area
shape. The process for doing this is very similiar to that for adding ambient sounds to a level. For more
information, see Adding Ambient Sounds to Levels (p. 139).

Setting Distance Values
The FadeDistance property for the AudioAreaEntity entity and the RtpcDistance property for the
AudioAreaAmbience entity specify the maximum distance over which these values and the reverb
level value are updated.

In order for the reverb level values to be updated correctly for players approaching and leaving an area
shape, in most cases the EnvironmentDistance value is set lower or equal to the FadeDistance and
RtpcDistance values in order to create realistic reverb (and ambient sound) effects. If it is necessary
to have a greater EnvironmentDistance value, use two separate audio entities to control the reverb
effect and then play the sound in the linked area shape.

After you set the AudioAreaEntity or AudioAreaAmbience entity properties, the audio is sent to the
connected auxillary bus in Wwise LTX when player approaches the area shape.

You can also assign sound volume values to a GameParameter, which you can control using an
Audio:RTPC Flow Graph node.

Version 1.6
143

Lumberyard User Guide
Adding Collision Sounds to Levels

Adding Collision Sounds to Levels
You can add physics-based collision sounds to your level using the materialeffects.xml
spreadsheet file located in the \dev\SamplesProject\libs\materialeffects\ folder. This
file requires Microsoft Excel for editing, but you can preview it using any software that opens this file
format.

The following figure shows a portion of a sample materialeffects.xml spreadsheet file for
collisions with a rubber material. As you can see, most of the effects for rubber material use the
collisions_rubber_default sound effect when rubber collides with various other surface types.

To change the collision sound effect for a spreadsheet entry (such as for rubber_default for
example) in the materialeffects.xml file, you edit the collisions.xml file.

To change a collision sound effect

1. Open the collisions.xml file in the \dev\SamplesProject\libs\MaterialEffects
\FXLibs\ folder for editing.

2. Specify which audio trigger plays when an effect is triggered by adding the approriate code
between the START and END markers for a material.

The following code example specifies that when the rubber_default effect is triggered, the
Play_cannonball_wall_impact audio trigger is executed.

<Effect name="rubber_default">
<Audio trigger="Play_cannonball_wall_impact" />
</Effect>

The following shows a sample collisions.xml file.

<FXlib type="collision">
<!-- START mat_rubber START -->

Version 1.6
144

Lumberyard User Guide
Adding Sound to Trackview Sequences

 <Effect name="rubber_impact">
 <Audio trigger="Play_cannonball_wall_impact" />
 </Effect>
<!-- END mat_rubber END -->
.
.
.
</FXLIB>

Note
Sounds that end when an object impacts something, such as for bullet projectiles, use the
bulletimpacts.xml file to define their effect instead.

Adding Sound to Trackview Sequences
This topic describes how to play sounds in Trackview sequences using the Audio Controls Editor.

Note
Sound tracks for Director nodes can play only 2D sounds because there is no associated
entity for this node. Entity nodes can play both 2D and 3D sounds.

To add audio to a TrackView sequence

1. In Lumberyard Editor, click View, Open View Pane, Track View to open the Track View Editor.

2. In Track View Editor, click Sequence and select the sequence to which you want to add audio.

3. In the tree pane, select the entity that should play the sound. If that node does not already contain
a Sound track, right-click it, then click Add Track, Sound.

4. In the center pane timeline, double-click on a time location on the sound track to add a key. The
key can be dragged to another time or the time can be entered manually under Key Properties in
the right pane.

5. Right-click the sound key in the center pane, click Edit on Spot, and adjust key properties as
follows:

• StartTrigger – The trigger name that triggers on the key.

• StopTrigger – The trigger name that triggers after the time set in Duration.

• Duration – The time after the key position when the StopTrigger is triggered. If the Duration
value is 0, this will not get triggered.

• CustomColor – Changes the color of the duration in the sound track.

Adding Sound to Animations
Sound effects contribute to a game by adding a sensory experience to characters, objects,
weather, and more. You can add sound effects to animations by using Geppetto. This requires that
an .animevents file has been created for the character and its animations before you can proceed.

You can also add sound by editing the XML file to reference an ATL (Audio Transition Layer) event.

To add sound effects by using Geppetto

1. Open Lumberyard Editor and click View, Open View Pane, Geppetto.

2. In Geppetto, under the Assets panel, double-click the character to which you want to add sound.

3. In the Assets pane, under Animations, choose an animation to which you want to add sound.
The animation's properties load in the Properties panel.

Version 1.6
145

Lumberyard User Guide
Adding Sound to Mannequin

4. In the Properties panel, for Animation Events, click the drop-down list and click Add.

5. For the new animation event, select sound from the drop-down list.

6. Enter a value for the time that the sound should play during the animation, or click on the
animation event in the Playback timeline and drag it to where you want it on the animation.

7. Alternatively, you can double-click anywhere on the Playback timeline of the animation to add a
new animation event, which is then displayed under Animation Events in the Properties panel
for the animation.

8. Click on the field next to the drop-down list for sound, select the sound you want to assign to the
event, and click OK.

9. You can achieve more precise timing of the sound by attaching the sound to a particular bone on
the character. Under Animation Events,, double-click the animation event, then for Joint Name,
click the bone icon. In the Choose Joint window, choose a bone and click OK.

10. When done adding audio, click on the Save icon in the Properties panel to save the changes to
the animation. The information is saved to the *.animevents file for the character.

To add sound effects by editing the XML file

1. Navigate to \SamplesProject\Objects\Characters\character and use a text or XML
editor to open the *.animevents file.

2. Add or edit the following event:

<event name="audio_trigger" time="0" endTime="0" parameter=""/>

3. Add or edit the parameter attribute with the ATL event.

Example: parameter="Play_KatanaSwing"

Adding Sound to Mannequin
You can control audio in Mannequin by adding procedural clips to fragments and setting their type to
Audio in the procedural clip properties.

In turn, fragments are played on scopes. It is common to set up a Mannequin character in such a way
that specific audio scopes are reserved exclusively for the placement of audio triggers on them. Using
the Mannequin FragmentID Editor, you can enable a scope for a fragmentID to edit its default scope
mask. When editing a fragmentID, you can select which scopes it should use by default.

The Mannequin system determines which fragments it triggers via tag states. This allows flexibility in
supporting a variety of animations with sound.

By adding tags to a fragment, you can also specify what needs to occur in the game or with the
character for that specific fragment to be selected.

Adding a ProcLayer Track

Once you have determined on which scope you want to place the audio triggers, a ProcLayer track
is first added to the scope. You can add any number of ProcLayers to a scope, which can help better
organize the fragment.

Version 1.6
146

Lumberyard User Guide
Audio Console Variables Commands

To add a trigger to a ProcLayer track

• In Mannequin Editor, right-click on the applicable scope and click Add Track, ProcLayer.

You can also addp rocedural clips to any ProcLayer on any scope. These might, however, be saved to
a different Animation Database (ADB) file, depending on your setup.

Adding a Trigger to a ProcLayer Track

To add a trigger to a ProcLayer track

1. In Mannequin Editor, double-click in the new ProcLayer timeline to add a procedural clip. To
move the clip, you can drag its starting point.

2. Under Procedural Clip Properties, click Type and select Audio.

3. Under Params, select a Start Trigger and Stop Trigger as needed to define the sound behavior.
To keep the sound playing, select do_nothing for Stop Trigger.

Audio Console Variables Commands
The following console variable commands can be used with the Lumberyard Audio system.

s_ATLPoolSize
Specifies in KB the size of the memory pool to be used by the audio translation layer (ATL).

Default values: PC = 8192, Xbox One = 8192, PS4 = 8192, Mac = 8192, Linux = 8192, iOS =
8192, Android = 4096

s_AudioEventPoolSize
Sets the number of preallocated audio events.

Default values: PC = 512, XboxOne = 512, PS4 = 512, Mac = 512, iOS = 128, Android = 128

Version 1.6
147

Lumberyard User Guide
Audio Console Variables Commands

s_AudioLoggingOptions
Toggles the logging of audio-related messages.

Default values: 0 (disabled), a = Errors, b = Warnings, c = Comments

s_AudioObjectsDebugFilter
Allows for filtered display of audio objects by a search string.

Default value: "" (all)

s_AudioObjectPoolSize
Sets the number of preallocated audio objects and corresponding audio proxies.

Default values: PC = 2048, XboxOne = 2048, PS4 = 2048, Mac = 2048, iOS = 256, Android = 256

s_AudioProxiesInitType
Can override on a global scale. If set, it determines whether AudioProxies initialize synchronously
or asynchronously. This is a performance variable, as asynchronously initializing AudioProxies
has a greatly reduced impact on the calling thread. When set to initialize asynchronously, audio
playback is delayed.

Values: 0 = AudioProxy-specific initialization; 1 = Initialize synchronously; 2 = Initialize
asynchronously.

Default value: 0 (all platforms)

s_AudioSystemImplementationName
Name of the AudioSystemImplementation library to be used without extension.

Default value: CryAudioImplWwise

s_AudioTriggersDebugFilter
Allows for filtered display of audio triggers by a search string.

Default value: "" (all)

s_DrawAudioDebug
Draws AudioTranslationLayer related debug data to the screen.

Values:

• 0: No audio debug info on the screen

• a: Draw spheres around active audio objects

• b: Show text labels for active audio objects

• c: Show trigger names for active audio objects

• d: Show current states for active audio objects

• e: Show RTPC values for active audio objects

• f: Show Environment amounts for active audio objects

• g: Draw occlusion rays

• h: Show occlusion ray labels

• i: Draw sphere around active audio listener

• v: List active Events

• w: List active Audio Objects

• x: Show FileCache Manager debug info

s_ExecuteTrigger
Executes an Audio Trigger. The first argument is the name of the audio trigger to be executed,
the second argument is an optional audio object ID. If the second argument is provided, the audio
trigger is executed on the audio object with the given ID; otherwise, the audio trigger is executed
on the global audio object.

Version 1.6
148

Lumberyard User Guide
Audio Console Variables Commands

s_FileCacheManagerDebugFilter
Allows for filtered display of the different AFCM entries such as Globals, Level Specifics, and
Volatiles.

Values: Default = 0 (all); a = Globals; b = Level Specifics; c =: Volatiles

s_FileCacheManagerSize
Sets the size in KB that the AFCM allocates on the heap.

Default values: PC = 393216, Xbox One = 393216, PS4 = 393216, Mac = 393216, Linux =
393216, iOS = 2048, Android = 73728

s_FullObstructionMaxDistance
For sounds whose distance to the listener is greater than this value, the obstruction value is
attenuated with distance.

Default value: 5 m

s_IgnoreWindowFocus
If set to 1, the sound system continues to play when the Editor or Game window loses focus.

Default value: 0 (off)

s_OcclusionMaxDistance
Obstruction/Occlusion is not calculated for the sounds whose distance to the listener is greater
than this value. Set this value to 0 to disable obstruction/occlusion calculations.

Default value: 500 m

s_OcclusionMaxSyncDistance
Physics rays are processed synchronously for the sounds that are closer to the listener than this
value, and asynchronously for the rest (possible performance optimization).

Default value: 10 m

s_PositionUpdateThreshold
An audio object has to move by at least this amount to issue a position update request to the audio
system.

Default: 0.1 (10 cm)

s_SetRtpc
Sets an Audio Rtpc value. The first argument is the name of the audio RTPC, the second
argument is the float value to be set, the third argument is an optional audio object ID. If the third
argument is provided, the RTPC is set on the audio object with the given ID. Otherwise, the RTPC
is set on the global audio object.

s_SetSwitchState
Sets an audio switch to a provided state. The first argument is the name of the audio switch, the
second argument is the name of the switch state to be set, the third argument is an optional audio
object ID. If the third argument is provided, the audio switch is set on the audio object with the
given ID; otherwise, the audio switch is set on the global audio object.

s_ShowActiveAudioObjectsOnly
When drawing audio object names on the screen, this variable is used to choose between all
registered audio objects or only those that reference active audio triggers.

Default value: 1 (active only)

s_StopTrigger
Stops an audio trigger. The first argument is the name of the audio trigger to be stopped, the
second argument is an optional audio object ID. If the second argument is provided, the audio
trigger is stopped on the audio object with the given ID; otherwise, the audio trigger is stopped on
the global audio object.

s_VelocityTrackingThreshold
An audio object has to change its velocity by at least this amount to issue an object_speed
RTPC update request to the audio system.

Version 1.6
149

Lumberyard User Guide
Audio Console Variables Commands

Default value: 0.1 (10 cm/s)

Version 1.6
150

Lumberyard User Guide
Working With Character Assets

Characters and Animation

Most game projects require an animated character to move around in the environment. This may be a
character that the player controls, or an AI-driven entity that interacts with the level.

The character animation system combines skeletal-based deformation of meshes with morph-based
vertex deformation to allow for complex animation. Character movements appear much more realistic
by playing and blending animation sequences, controlling facial expressions, and applying damage
effects. Characters can play scripted movements, employ AI navigation, or use the Mannequin system
to play complex, fully interactive animation sequences, either alone or in concert with other characters.

The recommended animation frame rate is 30 fps. If you are creating animations in Maya, there are
additional supported frame rates of 15 fps, 60 fps, 120 fps, and 240 fps.

Topics

• Working With Character Assets (p. 151)

• Maya Export Tools (p. 177)

• 3ds Max Export Tools (p. 189)

• Working with the FBX Importer (p. 195)

• Using Geppetto (p. 204)

• Mannequin System (p. 247)

Working With Character Assets
To work with character assets, first create your art assets, skeletal meshes, and animations using a
third-party digital content creation (DCC) package such as Autodesk 3ds Max or Autodesk Maya. Then
export your skeletal meshes and animations into Lumberyard.

Topics

• Modeling Characters (p. 152)

• Rigging Characters (p. 154)

Version 1.6
151

Lumberyard User Guide
Modeling Characters

• Physicalizing Characters (Ragdoll) (p. 157)

• Using Inverse Kinematics (IK) (p. 168)

Modeling Characters
The workflow for modeling characters is to model the characters in a digital content creation (DCC)
tool, such as Autodesk Maya and Autodesk 3ds Max. You then export the characters to Lumberyard,
where you apply material and shader settings.

As part of this process, you set up and create the following character modeling elements in a DCC tool:

• Asset structure

• 3D rendering mesh

• Pivot positions

• Scaling information

• Vertex colors

• Hierarchical structures

• Helper nodes

• Physics settings

• Breakability setup

• Skeletons and weighting

For best results, learn the best practices, asset file types, and export steps to ensure that your
characters are imported into Lumberyard correctly and efficiently, as described in the topics following.

Topics

• Character Modeling Best Practices (p. 152)

• Character Asset Files (p. 153)

• Using Character-Specific Shaders (p. 153)

• Debugging Character Skeleton Issues (p. 153)

Character Modeling Best Practices

Consider the following best practices when modeling a character for later export to Lumberyard:

• Make sure all character geometry corresponds to the proportion and alignment of the skeleton.

• Select a pose that suits the widest range of motion that the character needs to perform.

• To improve the deformation of the character, make sure that all arm, shoulder, and leg joints are
slightly angled for the selected pose.

• Add enough polygons to the joints to ensure a smooth deformation.

• If the character is used as an AI, make sure that the physics settings and inverse kinematics (IK) limit
settings are correctly set.

• Make sure the character geometry is facing the positive Y-axis for Autodesk 3ds Max, or the Z-axis
for Autodesk Maya.

• Make sure the base mesh and all morphs share the same vertex count and vertex IDs and have
pivots in the same relative space.

• For character skinning best practices, see Character Rigging Best Practices (p. 154).

Version 1.6
152

Lumberyard User Guide
Modeling Characters

Character Asset Files

You can export the following character file types for use in Lumberyard.

Character File (*.chr)

You create the .chr file in a DCC tool. This file contains the base character.

Character Definition File (*.cdf)

You create the .cdf file in Geppetto. This file contains the base character, plus all attachments.

Character Skinned Render Mesh (*.skin)

You create the .skin file in a DCC tool. This file contains skinned character data. This data can be
any asset that is animated with bone-weighted vertices, such as humans, aliens, ropes, lamps, heads,
and parachutes. The .skin file includes the mesh, vertex weighting, vertex colors, and morph targets.

Using Character-Specific Shaders

Lumberyard provides the following shaders for use with characters:

• Eye Shader (p. 1006) – Renders realistic eyes that take sclera, cornea, iris, and eye moisture
properties into account.

• Hair Shader (p. 1011) – Renders all character hair, giving the hair different color, stranding, and
animation effects.

• HumanSkin Shader (p. 1013) – Renders character skin and its various physical properties,
including color, oiliness, pores, stubble, and wrinkles.

Debugging Character Skeleton Issues

You can use the console variable p_draw_helpers to determine whether a character's physical
skeleton is set up and working correctly.

You can display the following entity and helper types in the view port of Lumberyard Editor. To indicate
the entity and helper types to display, enter options after the console variable p_draw_helpers. A list
of possible options is shown following.

For example, if you enter p_draw_helpers larRis_g in the Console window, the window displays
geometry for living, static, sleeping, active, independent entities, and areas in the view port.

Entity Types to Display

t - show terrain
s - show static entities
r - show sleeping rigid bodies
R - show active rigid bodies
l - show living entities
i - show independent entities
g - show triggers
a - show areas
y - show rays in RayWorldIntersection
e - show explosion occlusion maps

Version 1.6
153

Lumberyard User Guide
Rigging Characters

Helper Types to Display

g - show geometry
c - show contact points
b - show bounding boxes
l - show tetrahedra lattices for breakable objects
j - show structural joints (will force translucency on the main geometry)
t(#) - show bounding volume trees up to the level #
f(#) - only show geometries with this bit flag set (multiple f's stack)

Note
If the skeleton is in the default pose, you might need to choose AI/Physics in the bottom
toolbar of the view port in Lumberyard Editor.

Rigging Characters
Before you can export a character to and animate it in Lumberyard, it must first be bound to a skeleton
of bones and joints for bending and posing in your DCC tool. A character rig consists of this skeleton
bound to the 3D character mesh.

For a character rig to work properly, the bones and joints must follow a logical hierarchy, starting with
the root joint. Each subsequent joint is connected to the root joint either directly or indirectly through
another joint. To help prevent unrealistic movements, we recommend that you set up joint constraints
in your DCC tool.

Lumberyard Editor's scene axis is oriented with the Z-axis up and the Y-axis forward, which matches
the orientation in Autodesk 3ds Max. However, Autodesk Maya's axis is oriented with the Y-axis up and
the Z-axis forward by default. One option for using Autodesk Maya is to change the world coordinate
setting from from Y Up axis to Z Up axis. To do this in Maya, choose Windows, Preferences, and
then choose Settings, World Coordinate System, Up axis. Another option for Maya, if you want to
keep the default axis orientation, is to use a SceneRoot node when exporting assets.

The general workflow for rigging a character model character rig using Autodesk 3ds Max or Maya is
as follows:

• Set to zero all transform values for controllers.

• Orient all joints appropriately.

• Align a biped skeleton to the character model.

• Set up the Locator_Locomotion node as needed for animations.

• Skin your character. For 3ds Max, use Skin modifier. For Maya, use Quaternion skinning.

• Paint weight intensity values on the character's skin as needed.

Topics

• Character Rigging Best Practices (p. 154)

• Character Skinning (p. 155)

• Painting Skin Vertex Weights (p. 156)

Character Rigging Best Practices

Consider the following guidelines and best practices when you rig your characters in your DCC tool.

Version 1.6
154

Lumberyard User Guide
Rigging Characters

• Make sure the root node, SceneRoot node, and Locator_Locomotion node all share the same
orientation, with the Z-axis up and Y-axis forward (in the direction the character is facing). For more
information, see Locomotion Locator Animation Best Practices (p. 246).

• Make sure no position, rotation, or scale transformations are applied to control objects in rigs. If so,
set them all to 0,0,0.

• If the model was sculpted to match an existing skeleton, make sure that it lines up and that all joints
match.

• Characters must be in their bind pose, or the pose that is the reference pose for skin weights.

• Dual quaternion skinning must be used in all skin-binding procedures. Any other method used results
in abnormalities when you import the character into Lumberyard.

• If you use Lumberyard's integrated IK system, you must set up joint orientations the same way. In
addition, the naming of the joints must match those defined in the .chrparams file.

• Use the Cryskin and Skin modifiers in 3ds Max for skin weights. Do not use Physique.

• For Autodesk Maya, change the world coordinate setting from Y Up axis to Z Up axis. To access this
in Maya, choose Windows, Preferences, and then choose Settings, World Coordinate System,
Up axis.

• To check proportions, increase the transparency of the material to better see the bones inside the
character.

• Collapse all list controllers if possible.

• Use the level of detail settings LOD1, LOD2, and LOD3 for characters.

• Use rig elements inside the hierarchy sparingly, because they are exported as null bones.

Character Skinning

Set character skinning parameters in Maya and 3ds Max as follows.

Character Skinning in Maya

After all the bones and joints for your character rig have been added in Maya, set the correct skinning
parameters as follows.

To set character skinning parameters in Maya

1. In Maya, choose Skin, Smooth Bind.

2. In Smooth Bind Options, for Skinning Method, choose Dual quaternion.

3. For Max Influences, we recommend that you choose 4.

Note
If you need more skin weights, Lumberyard supports up to eight. To use eight skin
weights, select the 8 Weights (skin only) check box when exporting your skin.

Character Skinning in 3ds Max

After all the bones and joints for your character rig have been added in 3ds Max, set the correct
skinning parameters as follows.

To set character skinning parameters in 3ds Max (version 2015 Extension 2, Service
Pack 3 and later)

1. In 3ds Max, choose the Modify tab.

2. For Modifier List, for OBJECT-SPACE-MODIFIERS, choose Skin.

Version 1.6
155

Lumberyard User Guide
Rigging Characters

3. In the Parameter panel, for Dual Quaternion, choose DQ Skinning Toggle.

To set character skinning parameters in 3ds Max (versions 2014 and 2015)

1. In 3ds Max, choose the Modify tab.

2. For Modifier List, for OBJECT-SPACE-MODIFIERS, choose CrySkin. Choosing this option
causes the proper deformations to display in 3ds Max and Lumberyard.

3. In the Parameter panel, for Dual Quaternion, choose DQ Skinning Toggle.

Painting Skin Vertex Weights

You can use DCC tools such as Autodesk Maya and 3ds Max to paint skin vertex weights on your
character model. Although the controls differ from one application to another, the concepts are similar.
You can copy, mirror, scale, blend, and assign numeric values to selected vertex weights.

Copying smooth skin weight information between characters can save a lot of time if your project
involves setting up several similar characters. Just focus your painting efforts on one character, then
copy those weights to the other characters.

If you plan on copying skin weights between characters, ensure that the skeletons on each character
have the same structure and pose. If the orientation of the joints is not similar, the copying can lack
precision, forcing you to touch up the results.

When mirroring weights from one side of the character to the other, make sure the character and rig
are aligned and symmetrical along the X-, Y-, and Z-axes as applicable. Rotate and scale joints as
needed to make the skeletons better match.

For information on how to perform specific tasks, see the documentation for your DCC tool.

Painting Weights in Maya

To paint weight intensity values on the current smooth skin, use the Paint Skin Weights tool in Maya.
To set individual skin point weights to specific values, use the Component Editor.

Reflection is disabled by default for the Paint Skin Weights tool. To reflect skin weights, use the Mirror
Skin Weights tool. To use this tool, choose Skin, Edit Smooth Skin, Mirror Skin Weights in Maya.

To paint character vertex weights in Maya

1. In Maya, choose Skin, Paint Skin Weights Tool.

2. Assign vertex weights as needed for your character rig.

Painting Weights in 3ds Max

Autodesk 3ds Max includes various tools for skin vertex painting, as follows:

• Skin envelopes

• Weight table

• VertexPaint

To paint character vertex weights in 3ds Max

1. In 3ds Max, choose Modifiers, Mesh Editing, Vertex Paint.

Version 1.6
156

Lumberyard User Guide
Physicalizing Characters (Ragdoll)

2. For VertexPaint, assign vertex weights as needed for your character rig.

Physicalizing Characters (Ragdoll)
Characters can have two skeletons: the main (alive) skeleton and the ragdoll (injured or dead)
skeleton. Use Lumberyard to physicalize the ragdoll skeletons that you created in your DCC tools.

The ragdoll skeleton is what the main skeleton swaps to when it is inflicted with enough damage. It
can be a more simplified version and often utilizes the use of capsules on limb joints for more accurate
simulation. It features a similar physics mesh for joint limits and spring attributes as the main skeleton.
For the most part, the ragdoll skeleton will be quite similar to the main skeleton and any differences are
used to fine-tune the ragdoll simulation.

Topics

• Ragdoll Best Practices (p. 157)

• Ragdoll Skeleton DCC Setup (p. 157)

• Creating Joint Mesh Proxies (p. 158)

• Using physParentFrames (p. 161)

• Applying Simulation Settings to Ragdoll Joints (p. 162)

• Lumberyard Proxy Tool (Experimental) (p. 165)

• Adding Mesh Proxy Materials (p. 166)

• Ragdoll Physics (p. 166)

Ragdoll Best Practices

There are a few guidelines and best practices to follow when creating physicalized ragdol characters:

• Use simplified geometry for your phys mesh proxies such boxes and capsules whenever possible to
help with performance.

• In Maya, the physics skeleton does not use the SceneRoot node for determining the Up-axis of the
scene.

• The root joint and first or highest hierarchical ragdoll joint, such as the pelvis/hip, needs to be
oriented to match Z-up. In Maya, you can alternatively use a group node with the same orientation
for Z-up as the parent of the first joint with a ragdoll phys mesh proxy, which may be the better
choice for skeletons with existing animations that are not oriented as Z-up.

• For self-collision to work correctly, there is a current restriction with naming conventions for the
following skeleton joints (these are case sensitive currently):

• Pelvis

• Spine

• Head

• UpperArm

• Forearm

• Thigh

• Calf

Ragdoll Skeleton DCC Setup

This topic discusses how to setup your ragdoll skeleton in a DCC tool such as Maya or 3ds Max.
Version 1.6

157

Lumberyard User Guide
Physicalizing Characters (Ragdoll)

To setup a ragdoll skeleton

1. Create phys mesh proxies for the main joints that need to ragdoll. They should match the
orientation of their respective joint. The first or highest hierarchical ragdoll joint and proxy (such as
the pelvis and hip) should have the Z-up orientation.

2. Name the phys mesh proxies based on the joint they represent and with the appropriate suffix. For
example:

For Maya, a joint named def_l_thigh would have a physParentFrame named
def_l_thigh_phys.

For 3ds Max, a joint named Bone C SpineA would have a physParentFrame named Bone C
SpineA Phys.

3. Create any necessary PhysParentFrame groups or nodes for joints that need to rotate more than
the Y-axis limit range of -90 to 90 degrees and name them based on the joint they represent with
the appropriate suffix. For example:

For Maya, a joint named def_l_thigh would have a physParentFrame named
def_l_thigh_physParentFrame.

For 3ds Max, a joint named Bone C SpineA would have a physParentFrame named Bone C
SpineA Phys ParentFrame.

4. Parent each phys mesh proxy and PhysParentFrame. If using a PhysParentFrame, parent the
phys mesh proxy under the PhysParentFrame, and the PhysParentFrame under the joint it
belongs to. If there is only the phys mesh proxy, parent the proxy under the joint it belongs to.

5. Create and assign phys mesh materials to the appropriate phys mesh as needed. For example, a
material for the left arm assigned to phys mesh proxies that are part of the left arm.

6. Add rotation limit values to your skeleton joints that will be used in the ragdoll. You will still need
to add some rotation limit information to joints that do not have a phys mesh proxy but are in the
hierarchy of the ragdoll joints. For example, a clavicle needs some rotation limits even though it
typically will not have a phys proxy mesh.

7. Export the skeleton's .chr file and the material group or multi-material that contains the phys
mesh materials.

Creating Joint Mesh Proxies

To help define body masses for character physics and collisions, you need to use a joint mesh proxy.
To create a joint proxy mesh, observe the following guidelines:

• Model meshes around the geometry that needs to be detectable. Meshes with lower polygon counts
will perform better.

• Create meshes that use a generalized area instead of getting too granular with a phys mesh per joint
to help with performance. For example, you could simplify a biped chest phys mesh proxy to cover
the area of multiple spine joints instead of a proxy for each spine joint.

• Parent a proxy mesh to its corresponding joints. The proxies will then be exported with the .chr
(skeleton) files.

• Proxy mesh naming needs to match the name of the joint it gets parented under with the addition of
the following suffix:

• For Maya, add the _Phys suffix (not case sensitive)

• For 3ds Max, add the Phys suffix (not case sensitive)

• Meshes are designated as proxies by assigning a material to them and changing the material type to
Proxy No Draw. It is recommended to keep your ragdoll phys mesh materials in a separate Material
Group.

Version 1.6
158

Lumberyard User Guide
Physicalizing Characters (Ragdoll)

In the following figure, two different proxy materials are applied to the proxy mesh. Lumberyard uses
the different materials to detect different parts of the body. In this case, the separate head material
allows the engine to distinguish if the head is interacting with an object, as opposed to the rest of the
body interacting with an object. For example, if a character gets hit in the head, you might want a
special animation reaction to play, as opposed to the character getting hit in the body.

Version 1.6
159

Lumberyard User Guide
Physicalizing Characters (Ragdoll)

Ragdoll characters can have more proxy materials to define specific areas of the body. For example,
you can have a proxy material for the head, spine, hip, left arm, right arm, left leg, right leg, left foot,
and right foot.

Version 1.6
160

Lumberyard User Guide
Physicalizing Characters (Ragdoll)

Using physParentFrames

If a character joint needs to rotate beyond the -90 to 90 degree Y-axis limit range, a
physParentFrame node can be created. For example, if you need a joint that needs to rotate in the
-120 to 120 degree Y-axis limit range, you would create a physParentFrame node or group for the
joint. The physParentFrame node could have a -50 to 50 degree Y-axis limit range and the phys
mesh could have a -70 to 70 degree Y-axis limit range to have the joint combine to a -120 to 120
degree Y-axis limit range.

Version 1.6
161

Lumberyard User Guide
Physicalizing Characters (Ragdoll)

You do not need to use another mesh for the physParentFrame. You can use a group node (for
Maya) or dummy (for 3ds Max) as the physParentFrame.

In Maya, the naming convention for a physParentFrame is joint name + _physParentFrame suffix
(not case sensitive).

In 3ds Max, the naming convention for a physParentFrame is joint name + physParentFrame
suffix (not case sensitive).

The physParentFrame would be parented under the joint, and the phys mesh proxy would be
parented under the physParentFrame.

Applying Simulation Settings to Ragdoll Joints

You will want to apply rotation limit values to your joints used for ragdoll depending on what ranges you
want the joint to have. The default values are set to 0 degrees, but the range is -90 to 90 degrees, with
the lowest range value being set in the rotation minimum and the highest range value being set in the
rotation maximum. If you need more than the -90 to 90 degree Y-axis range, you will need to create a
physParentFrame node. For more information, see Using physParentFrames (p. 161).

Any joint that has 0 degrees set for all the rotation limit ranges and is not in the Active and Limited
states will be treated as non-physicalized. For this reason, it is a good idea to set some random limit
ranges on joints that do not have a phys mesh proxy, but have child joints that do have a phys mesh
proxy so the rest of the chain will still be physicalized. You will not need to enable the Active and
Limited states for these joints either. For example, if you have a clavicle joint with no phys mesh proxy
that is the parent of your shoulder joint that had a phys mesh proxy, you will want to add some values
to the clavicle joint so the shoulder will still exhibit ragdoll behavior, but do not set any of the rotations
in the Active/Limited states.

To apply simulation settings using Maya

1. Open Maya and select the root joint for your skeleton.

2. Select Lumberyard Tools from the Lumberyard Shelf.

3. Select Tools, Add Attributes.

4. In the Attribute Editor, scroll down to the Extra Attributes panel for the root joint.

Version 1.6
162

Lumberyard User Guide
Physicalizing Characters (Ragdoll)

You will see the ragdoll simulation settings that have been applied. This will be the case for every
joint in the hierarchy.

5. Apply the desired simulation values for your ragdoll skeleton joints.

Select the Rot Limited check boxes for your coordinates to limit rotation to the specified values.
Clear the check boxes for unlimited rotation.

6. Place the lowest range value in the Rot Limit Min field and place the highest range value in the
Rot Limit Max field for the X, Y, and Z axes. For example, a joint in the -70 to 0 degree range for
the Y-axis would have -70 in the Rot Limit Min (second-column) field and 0 in the Rot Limit Max
(second-column) field.

Note
For Maya users, there is one exception to the Rot Limited checkboxes in the case of the
pelvis/hip joint. You will want to apply some values for the Rot Limit Min and Rot Limit
Max fields for the pelvis/hip joint, but keep the Rot Limited checkboxes unchecked.

7. After simulation settings have all been applied, export the character skeleton .chr file and the
material group or multi-material that contains the phys mesh materials.

8. In Lumberyard, use the character skeleton .chr file as part of a .cdf as normal for character
assembly.

9. Open Geppetto and preview your phys mesh proxies by enabling Display Options, Physics,
Physical Proxies, and view Ragdoll Joint Limits.

To test your ragdoll, use either the Ragdoll component entity or the legacy DeadBody entity. For more
information, see Ragdoll Physics (p. 166)

To apply simulation settings using 3ds Max

1. Open 3ds Max and select any skeleton joint.

2. Click the Hierarchy tab.

3. Click the IK button under the name of your joint.

4. Scroll down to the Rotational Joints panel.

Version 1.6
163

Lumberyard User Guide
Physicalizing Characters (Ragdoll)

5. Apply the desired simulation values for your ragdoll skeleton joints.

When using the X, Y, Z rotations for ragdoll, enable the Active and Limited checkboxes for the
axes you are using and disable the Active checkbox for the axes you are not using.

Place the lowest range value in the From field and place the highest range value in the To field.

6. Set Damping to 1 for an active axis.

7. After simulation settings have all been applied, export the character skeleton .chr file and the
material group or multi-material that contains the phys mesh materials.

8. In Lumberyard, use the character skeleton .chr file as part of a .cdf as normal for character
assembly.

9. Open Geppetto and preview your phys mesh proxies by enabling Display Options, Physics,
Physical Proxies, and view Ragdoll Joint Limits.

To test your ragdoll, use either the Ragdoll component entity or the legacy DeadBody entity. For more
information, see Ragdoll Physics (p. 166)

Other Parameters

The Spring Tension parameter controls the stiffness of an angled spring at a joint. The default value
of 1 means the acceleration of 1 radian/second2 (1 radian = 57 degrees).

The Damping parameter controls how loose the joint will be in the ragdoll simulation. The default value
of 1 is recommended because it corresponds to fully-damped oscillations for the joint.

Version 1.6
164

Lumberyard User Guide
Physicalizing Characters (Ragdoll)

Lumberyard Proxy Tool (Experimental)

Creating individual meshes for each character body part can be time-consuming. The Lumberyard
Proxy Tool automates the process of building simple joint proxy meshes and adding materials.

Note
This tool is in the experimental phase of development.

To create a joint proxy

1. In the Maya scene, select a joint you want to add a proxy to, and then choose Add Joints. Joint
and proxy settings are displayed in the list window.

2. Choose the drop-down lists and adjust the following parameters as needed:

• Width – Adjusts the width and depth of the proxy

• Shape – Adjusts the shape of the proxy. Options are box, capsule, and sphere.

• Orient – Adjust to match the orientation axis of the joint as it points to its child.

• Material name – Name of the proxy material.

3. Choose one of the following:

• Create Proxies (Additive) – Creates the joint proxies

• Create Proxies (Replace) – Deletes all current proxies before creating the new joint proxies.

Version 1.6
165

Lumberyard User Guide
Physicalizing Characters (Ragdoll)

Adding Mesh Proxy Materials
For the materials to be used for the ragdoll phys mesh proxies, you assign a surface type to each
sub-material. The shader type should already be set to Nodraw if the materials were exported from
your DCC with the Proxy No Draw material physics type, but note that the Surface Type field in the
Lumberyard Material Editor will be empty.

You can choose to set Surface Type to a few options depending on if you need to detect specific
phys mesh proxies or if you do not need any additional special behavior. The nodraw type is a good
default if you only want to use phys mesh proxies for your ragdoll skeleton. Otherwise, you can use the
following settings:

• arm_left

• arm_right

• foot_left

• foot_right

• hand_left

• hand_right

• head

• leg_left

• leg_right

• torso

Ragdoll Physics
You can add physics to your ragdoll skeleton using either the Ragdoll component entity or by using the
legacy DeadBody entity.

Using the Ragdoll Component Entity

Using the Ragdoll component entity is an easy way to test out your ragdoll asset. This requires that
you have created a .cdf file using the character's skeleton .chr file that was exported with ragdoll
simulation attributes on the joints and with phys mesh proxies.

Version 1.6
166

Lumberyard User Guide
Physicalizing Characters (Ragdoll)

To set up a Ragdoll component entity

1. In the Lumberyard Editor, right-click in your level and select Create Component Entity.

2. Select View, Open View Pane, Entity Inspector (PREVIEW) to view your component entity's
settings, if the window is not open already.

3. In the Entity Inspector (PREVIEW) window, click the Add Component button.

4. Select Physics, Ragdoll.

You will see a new Skinned Mesh component and a Ragdoll component on your entity.
The skinned mesh component was automatically added because it is required for the ragdoll
component.

5. Under the Skinned Mesh component, expand Rendering.

6. For the Skinned asset parameter, click the ... button and locate your character's .cdf file for the
ragdoll and assign it to the entity.

You can also use the bidped.cdf file located for the SamplesProject at Objects/Tutorials/
Biped/ to test if you do not have a ragdoll character.

7. Under the Ragdoll, select the Enabled initially checkbox.

8. Click the AI/Physics button at the bottom of the Lumberyard Editor window to view the ragdoll
physics for your character. Click the button again to reset the character.

9. To make additional adjustments to your Ragdoll component settings, see Rag Doll
Component (p. 387) for more information.

Note
To change the character joint rotations, you will need to change the simulation values on the
skeleton in your DCC tool and then re-export the skeleton.

Using the (Legacy) DeadBody Entity

You may wish to use the legacy DeadBody entity for your ragdoll skeleton instead of using the Ragdoll
component. The DeadBody entity is located on the Rollup Bar under Entity, Physics.

When using the DeadBody entity, ragdoll skeletons may collapse in unpredictable ways. To counter
this, adjust the values of the following parameters in the PhysParams and Properties panels in Rollup
Bar to the following:

• ExtraStiff = 1 (enabled)

• Mass = 80

• Stiffness = 100

When using the DeadBody entity, the ragdoll skeleton will have the following characteristics:

• The ragdoll skeleton bones act as switches, activating physicalization of the corresponding bone in
the main skeleton.

• The IK limits and dampening used in the physics mesh are read and used in ragdoll physics to limit
and dampen the movement of any given joint.

• Each node in the ragdoll skeleton stores physical properties for its corresponding bone in the
deforming hierarchy, as stored in the phys bone IK properties.

• The ExtraStiff parameter turns off constraints and attempts to maintain shape by pulling the
bones toward an animation pose.

Version 1.6
167

Lumberyard User Guide
Using Inverse Kinematics (IK)

Fall-and-Play Movement

Fall-and-Play movement is activated when a character is a ragdoll (RelinquishCharacterPhysics) with
a greater than zero stiffness. This activates angular springs in the physical ragdoll that attempt to bring
the joints to the angles specified in the current animation frame. When a character is still a ragdoll it's
also possible to turn the stiffness off with a GoLimp method.

The character tries to select an animation internally based on the current Fall-and-Play state. If there
are no or very few physical contacts, it will be a falling animation. Otherwise, the first frame of a
standup animation will correspond to the current body orientation.

Whenever there is an animation with a name that starts with Standup_, it's registered as a standup
animation. Standup is initiated from outside the animation system through the appropriately named
function. During the standup, the character physics is switched back into an alive mode, with the
final physical pose blended into a corresponding standup animation. This is selected from a standup
animation list that best matches this pose.

You can control which type to use by _CSkeletonPose::SetFnPAnimGroup()_methods. On run-time,
Lumberyard checks the most similar standup animation registered to the current lying pose and starts
blending.

Using Inverse Kinematics (IK)
Inverse kinematics (IK) involves calculating the rotations of the joints in a character skeleton so that
a specific part of the skeleton (the end effector) reaches a defined target point. Use IK when an
animation calls for a terminating joint to be placed very precisely. All IK systems must be defined in the
character's .chrparams file.

The following lists the order in which Lumberyard's animation system processes forward kinematics
(FK) and IK tasks:

1. Aim IK and look IK

2. Animation-driven IK

3. Foot IK and ground alignment

4. Limb IK

5. Individual joint overrides

Topics

• Aim IK (Aim Poses) (p. 168)

• Look IK (Look Poses) (p. 172)

• Animation-Driven IK (p. 175)

• Foot IK and Ground Alignment (p. 176)

• Limb IK (p. 176)

Aim IK (Aim Poses)

Having a character aim a weapon at a target location is a somewhat complex but common movement
required in a game. For example, aiming a weapon requires the weapon pointing at some specific
location, the hands of the character firmly holding the weapon, and the character looking through the
scope at all times. In many cases, other nuances are added to the character while aiming.

Lumberyard provides a parametric directional blending system that allows you to create a set of poses
for characters aiming in different directions. At run-time, these poses are layered on top of the currently

Version 1.6
168

Lumberyard User Guide
Using Inverse Kinematics (IK)

playing animation so that the character aims towards a point in space requested by the game code,
while retaining the style present in the original authored poses as much as possible. In this way,
characters exhibit a realistic range of motion. Continuous 360 degree aiming around a pivot point is not
supported however.

A number of poses of your character aiming in several directions is required so that they can blended
together to achieve poses in any intermediate direction. Create a set of 15 aiming poses for best
results. When creating aimposes, it is common to use an underlying pose as a starting point, such as
standing idle. The aimposes created from such a starting animation is applied on top of this animation.
If the underlying animation currently playing for a character is different enough, it might be necessary to
create aimposes for that specific case to achieve better quality.

Aim IK can be called using Flow Graph, Track View, the AI system, or from code.

Skeleton Setup

The system requires certain joints, listed following, to figure out where a character is aiming at.
Sometimes you can use joints already present in the skeleton, but you might need to add some extra
joints to make your setup work well. The aim IK bone should be a child of the head bone. Make sure
your eye bones are also children of the head bone.

• ParameterJoint – A value that indicates the direction aimed in, with the Y-axis forward.

• StartJoint – A value that indicates the positional center of the aiming. Because only position
information is used from this joint, its orientation is not important. For more stable results, consider
using a joint that is not heavily animated, and that is not overly influenced by animation from other
joints, such as a joint that is parented to the root joint.

• ReferenceJoint (optional) – A value that indicates the forward direction of the character, with the
Y-axis forward. When no value is specified, the joint at index 1 (usually the pelvis) is used. This joint
is used mainly for characters in cinematics, because they might have an offset on top of the root
joint.

• AnimToken – A substring that needs to be matched to some part of the name of an animation to be
processed as a aim pose with the current configuration for parameter, start, and reference joints.

Note
The joint names referenced for the attributes should match the names of the joints in your
skeleton, but these names don't have any specific naming requirements.

.Chrparams File Setup

Aim IK parameters are stored in the .chrparams file, whose format is shown in the following example.
You can have at most one <AimIK_Definition> tag block within an <IK_Definition> tag block.
Within a <AimIK_Definition> tag block, you can have at most one of each of the following blocks:
PositionList, RotationList.

<Params>
 <IK_Definition>
 <AimIK_Definition>
 <DirectionalBlends>
 <Joint AnimToken="AimPoses" ParameterJoint="Bip01 CustomAim"
 StartJoint="Bip01 CustomAimStart" ReferenceJoint="Bip01 Pelvis"/>
 </DirectionalBlends>
 <RotationList>
 <Rotation Additive="1" Primary="1" JointName="Bip01 Pelvis"/>
 <Rotation Additive="1" Primary="1" JointName="Bip01 Spine"/>
 <Rotation Additive="1" Primary="1" JointName="Bip01 Spine1"/>
 <Rotation Additive="1" Primary="1" JointName="Bip01 Spine2" /
>

Version 1.6
169

Lumberyard User Guide
Using Inverse Kinematics (IK)

 <Rotation Additive="0" Primary="1" JointName="Bip01
 CustomAim" />
 <Rotation Additive="0" Primary="1" JointName="Bip01
 CustomAimStart" />
 <Rotation Additive="0" Primary="0" JointName="Bip01
 LHand2Aim_IKTarget" />
 <Rotation Additive="0" Primary="0" JointName="Bip01
 LHand2Aim_IKBlend" />
 ...
 <Rotation Additive="0" Primary="0" JointName="Bip01
 RHand2Weapon_IKBlend" />
 </RotationList>
 <PositionList>
 <Position Additive="1" JointName="Bip01 Pelvis"/>
 <Position Additive="0" JointName="Bip01 CustomAim" />
 ...
 <Position Additive="0" JointName="Bip01
 RHand2Weapon_IKBlend"/>
 </PositionList>
 </AimIK_Definition>
 </IK_Definition>
 ...
<Params>

DirectionalBlends section

The DirectionalBlends section specifies a combination of parameter, start, and reference joints to
use for aim poses. An animation is processed as a aim pose with this specific configuration when the
AnimToken is found somewhere in its name. For example, any animation processed for a skeleton that
contains the substring AimPoses anywhere in its path is considered a aim pose with Bip01 Aim as a
parameter joint, Bip01 Aim as a start joint, and Bip01 Pelvis as a reference joint.

You can specify more than one DirectionalBlends section.

RotationList section

The list in the RotationList section is used by the run-time code to identify the joints that contribute
their orientation to aim poses. Any joint not in this list will be ignored for the purposes of calculating and
blending the aim pose.

Primary joints should be specified at the start of the rotation list. All primary joints must appear in the
list before any of their children that are also marked as primary.

AimPoses can only have one rotation list, so all joints used by all aim poses should appear in this list,
and the list should be valid for all of them.

• JointName – The name of the joint.

• Additive – The blend mode, where 1 is additive blending and 0 (zero) is override blending.

• Primary - – A value that specifies if the joint is part of the hierarchical chain that goes from the root
joint up to the parameter joint.

PositionList section

The list in the PositionList section is used by the run-time code to identify the joints that contribute
their position to aim poses. Any joint not in this list is ignored for the purposes of calculating and
blending the aim pose.

Aim poses can only have one position list, so all joints used by all aim poses should appear in this list.

Version 1.6
170

Lumberyard User Guide
Using Inverse Kinematics (IK)

Animation File Setup

The system requires a number of poses for a character aiming in several directions so that it can
blend between the poses to aim in any intermediate direction. The system works with 9 or 15 poses.
Although 9 poses might be enough for many cases, we recommend that you use 15 poses for better
visual results. When you provide 9 poses, the system extrapolates from the provided ones to create 15
poses.

The poses are exported as an animation file, with one pose for each frame. Naming for this file is
important. Some part of its name should match the AnimToken provided in the definition.

The order of the poses in the animation is also important.

When creating aim poses, commonly you use an underlying animation pose as a starting point (such
as standing idle). The aim poses created from such a starting animation must be applied on top of
similar animations. If the underlying animation currently playing for a character is different enough
(such as crouching), you might need to create aim poses for that specific case to achieve better quality.

Try to make the poses as extreme as possible, even though they might aim unnatural. Limits can then
be set using the game code. The middle pose (frame 4 of 9) needs to point forward. The other poses
are centered around the middle pose. The angle between the middle pose and the remaining aim
poses should be approximately 70 degrees.

Debugging Aim IK

The easiest way to verify that aim poses are working properly is to look at them in Geppetto with
animation layers.

To view animation layers in Geppetto

1. Load your character in Geppetto.

2. Start an animation, and assign it to the base animation layer.

3. In the Scene Parameters panel, choose Animation Layers, and then choose Add. A new
animation layer is added that has no animation assigned to it yet. This layer will become your
active layer.

4. Select the aim pose animation to assign it to the new animation layer.

5. The aim pose animation is now layered on top of the base animation. Move the camera around in
the Geppetto viewport, and observe the character aiming towards the camera.

6. Under the aim pose animation layer, adjust the direction of aiming, offset, and time-smoothing as
needed.

Set the ca_DrawAimIKVEGrid console variable to 1 to display the grid for your aim poses. The green
rectangle shows your individual aim pose frame extremes. As you move the camera around in the
Geppetto viewport, you will see a red cube move around the grid to indicate which blend of the aim
poses is being used. If you don't see a green rectangle or are running into other issues, recheck the
setup for the aim poses in the .chrparams file and the orientation of the joints in the skeleton.

You can use the ca_UseAimIK console variable to enable or disable aim poses on a global level for
debugging.

To see the current state of a character in the animation system during gameplay debugging, you can
use the es_debugAnim EntityName console variable. Because this variable contains information on
all animations that are being played, you can get information on which aim poses and aim poses play
with which base animations. The combination of the aim pose with the base animation might explain
why certain aim poses aim broken, for example if the combination doesn't match.

The base layer also displays information on the blend weights and final influences of the aim IK and
look IK, and whether it is being requested by the game or not.

Version 1.6
171

Lumberyard User Guide
Using Inverse Kinematics (IK)

Look IK (Look Poses)

Lumberyard supports parametric blending for automated look IK that you can use to make characters
look at specific targets, even in different locomotion cycles. A character with look IK tries to look at the
target as long as possible and then turns its head away. The spine, head, eyelids, and eyeballs are
all animated to make the character look in the target direction. This functionality is useful in cutscene
animations to make sure characters makes eye contact with the player.

Look IK can be called using Flow Graph, Track View, the AI system, or from code.

Topics

• Skeleton Setup (p. 172)

• .Chrparams File Setup (p. 172)

• Animation File Setup (p. 174)

• Debugging Look IK (p. 174)

Skeleton Setup

The system requires certain joints, listed following, to figure out where a character is looking toward.
Sometimes you can use joints already present in the skeleton, but you might need to add some extra
joints to make your setup work well. The look IK bone should be a child of the head bone. Make sure
your eye bones are also children of the head bone.

• ParameterJoint – A value that indicates the direction looked in, with the Y-axis forward.

• StartJoint – A value that indicates the positional center of the looking. Because only position
information is used from this joint, its orientation is not important. For more stable results, consider
using a joint that is not heavily animated, and that is not overly influenced by animation from other
joints, such as a joint that is parented to the root joint.

• ReferenceJoint (optional) – A value that indicates the forward direction of the character, with the
Y-axis forward. When no value is specified, the joint at index 1 (usually the pelvis) is used. This joint
is used mainly for characters in cinematics, because they might have an offset on top of the root
joint.

• AnimToken – A substring that needs to be matched to some part of the name of an animation to be
processed as a look pose with the current configuration for parameter, start, and reference joints.

Note
The joint names referenced for the attributes should match the names of the joints in your
skeleton, but these names don't have any specific naming requirements.

.Chrparams File Setup

Look IK parameters are stored in the .chrparams file, whose format is shown in the following example.
You can have at most one <LookIK_Definition> tag block within an <IK_Definition> tag block.
Within a <LookIK_Definition> tag block, you can have at most one of each of the following blocks:
LEyeAttachment, REyeAttachment, PositionList, RotationList.

<Params>
 <IK_Definition>
<LookIK_Definition>
 <LEyeAttachment Name="eye_left"/>
 <REyeAttachment Name="eye_right"/>

 <DirectionalBlends>

Version 1.6
172

Lumberyard User Guide
Using Inverse Kinematics (IK)

 <Joint AnimToken="LookPoses" ParameterJoint="Bip01 Look"
 StartJoint="Bip01 Look" ReferenceJoint="Bip01 Pelvis"/>
 </DirectionalBlends>

 <RotationList>
 <Rotation Additive="1" Primary="1" JointName="Bip01 Pelvis"/>
 <Rotation Additive="1" Primary="1" JointName="Bip01 Spine"/>
 <Rotation Additive="1" Primary="1" JointName="Bip01 Spine1"/>
 <Rotation Additive="1" Primary="1" JointName="Bip01 Spine2" />
 <Rotation Additive="1" Primary="1" JointName="Bip01 Spine3" />
 <Rotation Additive="0" Primary="1" JointName="Bip01 Neck" />
 <Rotation Additive="0" Primary="1" JointName="Bip01 Head" />
 <Rotation Additive="0" Primary="1" JointName="Bip01 Look" />
 </RotationList>

 <PositionList>
 <Position Additive="1" JointName="Bip01 Pelvis"/>
 </PositionList>
</LookIK_Definition>
 </IK_Definition>
 ...
<Params>

DirectionalBlends section

The DirectionalBlends section specifies a combination of parameter, start, and reference joints to
use for look poses. An animation is processed as a look pose with this specific configuration when the
AnimToken is found somewhere in its name. For example, any animation processed for a skeleton that
contains the substring LookPoses anywhere in its path is considered a look pose with Bip01 Look as
a parameter joint, Bip01 Look as a start joint, and Bip01 Pelvis as a reference joint.

You can specify more than one DirectionalBlends section.

RotationList section

The list in the RotationList section is used by the run-time code to identify the joints that contribute
their orientation to look poses. Any joint not in this list will be ignored for the purposes of calculating
and blending the look pose.

Primary joints should be specified at the start of the rotation list. All primary joints must appear in the
list before any of their children that are also marked as primary.

LookPoses can only have one rotation list, so all joints used by all look poses should appear in this list,
and the list should be valid for all of them.

• JointName – The name of the joint.

• Additive – The blend mode, where 1 is additive blending and 0 (zero) is override blending.

• Primary - – A value that specifies if the joint is part of the hierarchical chain that goes from the root
joint up to the parameter joint.

PositionList section

The list in the PositionList section is used by the run-time code to identify the joints that contribute
their position to look poses. Any joint not in this list is ignored for the purposes of calculating and
blending the look pose.

Look poses can only have one position list, so all joints used by all look poses should appear in this list.

Version 1.6
173

Lumberyard User Guide
Using Inverse Kinematics (IK)

LEyeAttachment and REyeAttachment

These optional parameters specify the names of the left and right eyeball attachments. These
parameters are used during skeleton post-processing to orient those attachments toward the target
location. These parameters are relevant only if you use attachments for the eyes.

Animation File Setup

The system requires a number of poses for a character looking in several directions so that it can
blend between the poses to look in any intermediate direction. The system works with 9 or 15 poses.
Although 9 poses might be enough for many cases, we recommend that you use 15 poses for better
visual results. When you provide 9 poses, the system extrapolates from the provided ones to create 15
poses.

The poses are exported as an animation file, with one pose for each frame. Naming for this file is
important. Some part of its name should match the AnimToken provided in the definition.

The order of the poses in the animation is also important.

When creating look poses, commonly you use an underlying animation pose as a starting point (such
as standing idle). The look poses created from such a starting animation must be applied on top of
similar animations. If the underlying animation currently playing for a character is different enough
(such as crouching), you might need to create look poses for that specific case to achieve better
quality.

Try to make the poses as extreme as possible, even though they might look unnatural. Limits can then
be set using the game code. The middle pose (frame 4 of 9) needs to point forward. The other poses
are centered around the middle pose. The angle between the middle pose and the remaining look
poses should be approximately 70 degrees.

Debugging Look IK

The easiest way to verify that look poses are working properly is to look at them in Geppetto with
animation layers.

To view animation layers in Geppetto

1. Load your character in Geppetto.

2. Start an animation, and assign it to the base animation layer.

3. In the Scene Parameters panel, choose Animation Layers, and then choose Add. A new
animation layer is added that has no animation assigned to it yet. This layer will become your
active layer.

4. Select the look pose animation to assign it to the new animation layer.

5. The look pose animation is now layered on top of the base animation. Move the camera around in
the Geppetto viewport, and observe the character looking towards the camera.

6. Under the look pose animation layer, adjust the direction of aiming, offset, and time-smoothing as
needed.

Set the ca_DrawAimIKVEGrid console variable to 1 to display the grid for your look poses. The green
rectangle shows your individual look pose frame extremes. As you move the camera around in the
Geppetto viewport, you will see a red cube move around the grid to indicate which blend of the look
poses is being used. If you don't see a green rectangle or are running into other issues, recheck the
setup for the look poses in the .chrparams file and the orientation of the joints in the skeleton.

You can use the ca_UseLookIK console variable to enable or disable look poses on a global level for
debugging.

Version 1.6
174

Lumberyard User Guide
Using Inverse Kinematics (IK)

To see the current state of a character in the animation system during gameplay debugging, you can
use the es_debugAnim EntityName console variable. Because this variable contains information on
all animations that are being played, you can get information on which aim poses and look poses play
with which base animations. The combination of the look pose with the base animation might explain
why certain look poses look broken, for example if the combination doesn't match.

The base layer also displays information on the blend weights and final influences of the look IK and
aim IK, and whether it is being requested by the game or not.

Animation-Driven IK
Lumberyard supports animation-driven IK that can retarget limbs on the fly and that is controlled by the
animation. You begin by controlling and animating the blend weight of this IK in your DCC tool.

An additional _IKTarget bone and _IKBlend weight bone inside a character's skeleton defines
the IK target and the blend weight. These weights ensure that a limb reaches a specific destination
regardless of animations in higher layers that modify the skeleton. For example, you might create a
weapon reload animation that always brings the character's hand to the pocket at the belt, regardless
of upper body animations rotating the torso and arms. You can also blend from one IK target to
another, such as blending the left hand from a weapon to the magazine and back again.

Animation-driven IK can save memory and asset creation. For example, you can use the same aim
pose for different guns by simply moving the IK target to the correct location on the new weapon.

You define the IK solver for a character inside the .chrparams file. Each entry in the file specifies
which solver (2-bone, 3-bone, or CCD IK) to use with a chain of bones, the _IKTarget bone, and the
_IKBlend weight bone.

You can animate both the _IKTarget bone and the _IKBlend weight bone. If the _IKBlend weight
bone indicates that the IK should be blended in, Lumberyard uses the _IKTarget bone to apply the IK
solver listed in the .chrparams file to the bone chain.

The end effector of the bone chain is aligned with the target bone and matching its rotation. In this way,
you can also control hand orientation.

Blend weight is determined by the distance (in centimeters) of the _IKBlend weight bone from its
parent along the X-axis. The distance is limited to values from 0 to 100 to avoid potential problems
from blending multiple animations that might affect the same blend bones.

For best visual results, animate the character to get the end effector close and use the IK only to fix the
deviation instead of doing all movement with the IK bones alone.

To make Lumberyard aware of the new IK bones and link them to a solver, open the .chrparams file
and add a new line for each to the <Animation_Driven_IK_Targets> section, which lists every
bone-controlled IK setup the character uses, as shown in the following example:

<Animation_Driven_IK_Targets>

 <ADIKTarget Handle="LftArm01" Target="Bip01 Chin_IKTarget" Weight="Bip01
 Chin_IKBlend"/>

</Animation_Driven_IK_Targets>

Each entry to the <Animation_Driven_IK_Targets> section specifies which bones to use for the
target and the blend weight and includes a handle that points to an IK solver. These handles are listed
in the <LimbIK_Definition> section of the .chrparams file, which links a solver and a bone chain.

Note
You cannot retarget animations between different skeletons.
Bones without rotation controllers are ignored for optimization purposes.

Version 1.6
175

Lumberyard User Guide
Using Inverse Kinematics (IK)

Foot IK and Ground Alignment

Lumberyard can automatically adjust a character's legs and feet to match the surface of the terrain
the character is walking on. This adjustment includes foot alignment to the direction of the slope, in
addition to adjusting the legs to different ground heights.

Leg and foot IK setup is defined in the character .chrparams file. Both legs must be added to the file
as follows:

<LimbIK_Definition>
 <IK EndEffector="Right_Foot" Handle="RgtLeg01" Root="Right_Thigh"
 Solver="2BIK"/>
 <IK EndEffector="Left_Foot" Handle="LftLeg01" Root="Left_Thigh"
 Solver="2BIK"/>
</LimbIK_Definition>

The Handle name for the right and left legs must be "RgtLeg01" and "LftLeg01" respectively, You
can use any naming for the calf, foot, and thigh as long as they are defined in the .chrparams file. For
more information, see Chrparams File Elements (p. 231).

The bones listed following must be named as shown in the list and are required for ground alignment.
The last four bones listed are all children of the foot bone.

• Bip01 pelvis – The character's hip joint.

• Bip01 planeWeightLeft – For 3ds Max, this bone shares the same X and Y position but is
approximately 100 cm. above the foot on the Z-axis. For Maya, this bone shares the same X and Z
position but is approximately 100 cm. above the foot on the Y-axis.

• Bip01 planeTargetLeft – For 3ds Max, this bone shares the same X and Y position and is
aligned to 0 on the Z-axis. For Maya, this bone shares the same X and Z position and is aligned to 0
on the Y-axis.

• Bip01 planeWeightRight – For 3ds Max, this bone shares the same X and Y position but is
approximately 100 cm. above the foot on the Z axis. For Maya, this bone s hares the same X and Z
position but is approximately 100 cm. above the foot on the Y axis.

• Bip01 planeTargetRight – For 3ds Max, this bone shares the same X and Y position and is
aligned to 0 on the Z axis. For Maya, this bone shares the same X and Z position and is aligned to 0
on the Y axis.

The PlaneTarget and PlaneWeight bones are set up to give an absolute offset limit. The aligned
pose drives the PlaneTarget node to align to the PlaneWeight node and no further.

Debugging Ground Alignment Poses

You can use the following console variables for debugging:

• a_poseAlignerEnable 1 – Enables alignment.

• a_poseAlignerDebugDraw 1 – Enables debug drawing of plane weight, target, and root offsets.

• a_poseAlignerForceWeightOne 1 – Forces the weight to 1, which causes the limb to always
experience automatic adjustments.

Limb IK

You can set up limb IK chains for characters. When a limb IK chain is active, Lumberyard calculates
values for the joints that are part of the chain so that the end effector reaches the specified target
position.

Version 1.6
176

Lumberyard User Guide
Maya Export Tools

The behavior for each chain and the number of joints supported depends on the IK solver used: 2BIK
for two-bone IK, 3BIK for three-bone IK, and CCDX for cyclic coordinate descent with x joints.

Systems that use limb IK chains include animation-driven IK, foot and leg ground alignment, and game
code.

The following summarizes the attributes that you must define for each IK element:

• EndEffector – The joint that reaches the target location.

• Handle – The limb IK definition. No more than 8 characters are allowed, and the handle must be
unique.

• Root – The starting joint for the IK chain.

• Solver – Code that calculates the joint values.

Note
The joint names referenced for the attributes should match the names of the joints in your
skeleton, but these names don't have any specific naming requirements.

The limb IK parameters are stored in the .chrparams file with the following format:

<Params>
 <IK_Definition>
 <LimbIK_Definition>
 <IK EndEffector="Bip01 L Hand" Handle="LftArm01" Root="Bip01 L
 UpperArm" Solver="2BIK"/>
 <IK EndEffector="Bip01 R Hand" Handle="RgtArm01" Root="Bip01 R
 UpperArm" Solver="2BIK"/>
 <IK EndEffector="Bip01 L Foot" Handle="LftLeg01" Root="Bip01 L
 Thigh" Solver="2BIK"/>
 <IK EndEffector="Bip01 R Foot" Handle="RgtLeg01" Root="Bip01 R
 Thigh" Solver="2BIK"/>
 </LimbIK_Definition>
 </IK_Definition>
</Params>

Maya Export Tools
Lumberyard Tools is a plugin for Autodesk Maya 2014, 2015, and 2016 that exports geometry,
animated geometry, skinned geometry, and skeletons (joint hierarchies) from Maya into Lumberyard.

To install the Lumberyard Tools plugin

1. Navigate to the Lumberyard root directory (\lumberyard\dev) and run Lumberyard Setup
Assistant.

2. On the Install plugins page, install Autodesk Maya.

Topics

• Accessing Maya Export Tools (p. 178)

• Setting Time Working Units for Maya (p. 179)

• Geometry Validation (p. 179)

• Exporting Static Meshes (p. 179)

• Exporting Characters (p. 181)

• Exporting Materials (p. 183)

Version 1.6
177

Lumberyard User Guide
Accessing Maya Export Tools

• Exporting Animations (p. 184)

• Exporting Blendshapes (p. 185)

• Exporting Level of Details (LODs) (p. 185)

• Exporting an Alembic Cache (p. 187)

• Setting Export Options (p. 188)

Accessing Maya Export Tools
To install this plugin, run SetupAssistant.bat. On the Install Plugins page, install Autodesk
Maya. After it is installed, the Lumberyard tab is available in the user interface of Maya. This tab
presents a series of options, including the Lumberyard Tools beaver icon.

After the Lumberyard Tools dialog box opens, the following is shown:

Version 1.6
178

Lumberyard User Guide
Setting Time Working Units for Maya

Setting Time Working Units for Maya
We recommend that you use the NTSC (30 fps) setting for animations, but there are additional
supported frame rates of 15 fps, 60 fps, 120 fps, and 240 fps.

To change time working units to NTSC

1. In Maya, choose Window, Settings/Preferences, Preferences.

2. In the Preferences dialog box, choose Settings.

3. Under Working Units, we recommend that you choose NTSC (30fps), but NTSC Field (60fps)
and Film (240fps) are also valid options.

4. Choose Save.

Geometry Validation
Before export, the plugin validates your character geometry. Be sure to resolve any errors that are
displayed in the Lumberyard Validation window. For each error listed, choose Focus for more
information about the error, as displayed in the Transform Attributes panel of the Attribute Editor for
Maya. Errors are displayed on red backgrounds and warnings are on yellow backgrounds.

Exporting Static Meshes
To export static geometry, do the following steps. Make sure you save your scene before you export
geometry.

Version 1.6
179

Lumberyard User Guide
Exporting Static Meshes

To export static geometry

1. In Maya, choose the Lumberyard tab, and then choose the Lumberyard Tools beaver icon.

2. Select a geometry or group node in Maya, then choose Add Selected to add the node or group
to the Geometry Export list window. You can only add one node or group (can be a group with
children groups also) to the export list at a time. Select the check box to add the node or group for
export. Choose the X to remove the node from the Geometry Export list. Choose the node name
to edit the text as needed.

Note
Choose Select to see the node in Maya that corresponds to the export node in the
Geometry Export list.

3. In the drop-down list, select Geometry (.CGF).

4. For Export Path, choose the folder icon and select a directory path. By default, this path is the
same as the directory of the current Maya file and all nodes are exported to this directory. Choose
Explorer View to view the directory.

5. Expand Advanced Options and choose the following options as needed for the export node you
selected:

• Merge Nodes – Compiles geometry from multiple nodes into a single flattened mesh. Only
supported for non-skinned geometry.

• 8 Weights (skin only) – Exports up to eight weights per skinned vertex. Generally used for
faces or blend shapes.

Version 1.6
180

Lumberyard User Guide
Exporting Characters

• Vertex Colors – Exports vertex colors.

• 32 Bit Vertex – Enabling this will add 32-bits of precision to position each vertex accurately
when the mesh is located far from its pivot. Note however that Playstation platforms only support
16-bit precision.

When working in centimeter units, 32-bit vertex precision is useful when the geometry is more
than 10 meters from the pivot. When working in meter units, 32-bit vertex precision is useful
when geometry is more than 100 meters from the pivot.

• For Custom Path, choose the folder icon and select a specific file path for your geometry. You
can save each geometry to an individual location. This path overwrites the Export Path from the
previous step.

6. Repeat as needed for each node you want to export. Make sure the check box is selected for each
node you wish to export; otherwise that node will not be exported.

7. With the desired node or group selected in the Maya scene, in the Material Export section,
choose Add Group. This creates a material group and adds all of the materials that were applied
to the mesh.

8. When finished, choose Export Geometry.

Exporting Characters
Before you can use the Lumberyard Tools plugin for exporting character geometry from Maya,
you must check the Up Axis setting under World Coordinate System for your scene. By default,
this setting is Y for Maya. To check this setting, click Windows, Settings, Preferences. In the
Preferences window, under Categories, click Settings.

If the Up Axis is set to Y, you must ensure the following is true:

• The root joint of the character is positioned at the origin of the scene at 0,0,0.

• The root joint of the character is oriented to Z up and Y forward.

• The Joint Orient attribute for the root joint is set to -90, 180, 0.

• A SceneRoot node exists for your scene. If this node does not exist, create it by choosing Tools,
Add Scene Root.

Version 1.6
181

Lumberyard User Guide
Exporting Characters

If the Up Axis is set to Z, you must ensure the following is true:

• The root joint of the character is positioned at the origin of the scene at 0,0,0.

• The root joint of the character is oriented to Z up and Y forward.

• The Joint Orient attribute for the root joint is set to 0, 0, 0.

• A SceneRoot node does not exist for your scene.

The following procedure is very similar to the procedure on exporting static geometry, with many of the
same options and advanced options. Refer to the previous procedure for explanation.

Version 1.6
182

Lumberyard User Guide
Exporting Materials

To export character geometry

1. In Maya, select the root joint node of the character.

2. In Lumberyard Tools, select the root joint node, then choose Add Selected. Be sure that it is set
to Skeleton (.CHR) in the drop down list.

3. Select the geometry that is skinned to the joints and choose Add Selected. Be sure that it is set to
Skin (.SKIN) in the drop down list.

4. Add the skinned geometry's materials to the Material Export list.

5. Choose Export Geometry.

Exporting Materials
There a couple of ways to export material (.mtl) files. All exported materials must be contained in a
material group as shown in the following. Be sure to save your scene before you export your materials.

Lumberyard also uses material information to drive physics properties.

To export character materials (Method 1)

1. In your Maya scene, choose the geometry that has the desired materials applied.

2. In Lumberyard Tools in the Material Export section, choose Add Group. This creates a new
material group and automatically adds all applied materials to it.

3. In the No Physics, choose from the following options:

• No Physics - Material contains no physics attributes (default setting).

• Default - Render geometry is used as a physics proxy. This is expensive for complex objects,
so use this only for simple objects like cubes or if you need to fully physicalize an object.

• ProxyNoDraw - Mesh is used exclusively for collision detection and is not rendered.

• No Collide - Proxy is used to detect player interaction, such as for vegetation touch bending.

• Obstruct - Used for "Soft Cover" to block AI agent views, such as for dense foliage.

4. For Export Path, choose the folder icon and select a directory path. By default, this path is the
same as the directory of the current Maya file, and all nodes will be exported to this directory.
To export to a custom directory, choose Advanced Options, Custom Path, choose the folder
icon, and select a specific file path for your materials. You can save each material to an individual
location. This path overwrites the Export Path from the previous step.

5. Make sure the check box for each material you wish to export is selected, then choose Export
Materials.

Version 1.6
183

Lumberyard User Guide
Exporting Animations

To export character materials (Method 2)

1. With nothing selected in the Maya scene, in Lumberyard Tools, choose Add Group to create an
empty material group.

2. Select the newly created material group. Only material groups that are selected are exported.
Choose the X to remove a material group as needed.

3. In Maya, select the materials in the Hypershade window you wish to add to this material group.
Alternatively, you can select meshes that have the desired materials applied.

Note
Use the Hypershade button in Lumberyard Tools to display the material or group in the
Maya Hypershade window for a selected material in the Lumberyard Tools Material
Export window.

4. Choose Add Material.

5. In No Physics, choose from the following options:

• No Physics - Material contains no physics attributes (default setting).

• Default - Render geometry is used as a physics proxy. This is expensive for complex objects,
so use this only for simple objects like cubes or if you need to fully physicalize an object.

• ProxyNoDraw - Mesh is used exclusively for collision detection and is not rendered.

• No Collide - Proxy is used to detect player interaction, such as for vegetation touch bending.

• Obstruct - Used for "Soft Cover" to block AI agent views, such as for dense foliage.

6. For Export Path, choose the folder icon and select a directory path. By default, this path is the
same as the directory of the current Maya file, and all nodes will be exported to this directory. If
you want to export to a custom directory, choose Advanced Options, Custom Path, choose the
folder icon, and select a specific file path for your materials. You can save each material to an
individual location. This path overwrites the Export Path from the previous step.

7. Make sure the check box for each material you wish to export is selected, then choose Export
Materials.

Tip
The order of materials listed can be changed by clicking on a material with the middle mouse
button and dragging the material to the desired placement within the material group. This does
not allow you to move a material to a different material group, however.

Exporting Animations
Lumberyard Tools uses the the Lumberyard Tools Animation Manager to specify various settings for
each animation you want to export. New fields added to Lumberyard Tools Animation Manager also
update the Animation Export window.

Be sure to save your Maya scene before you export animations.

Animation layers can be used to toggle animation key frames on a node. By default all animations
are on a BaseAnimation layer. If new animation layers are added to a Maya file, they are reflected in
the Lumberyard Layers drop-down list in Lumberyard Animation Manager. If an animation layer is
selected, key frames on the animation layer will be exported. If an animation layer is not selected, the
key frames on those layers will not be exported.

To export character animations

1. In Lumberyard Tools, choose Animation Manager.

Version 1.6
184

Lumberyard User Guide
Exporting Blendshapes

2. In the Animation Manager dialog box, choose the + button and then specify the following
properties:

a. For Start and End, enter values for the starting and ending frames for the animation, as
defined in the Maya Range Slider settings. Choose the < > button to populate the start and
end fields with the Maya time range slider start and end values.

b. For Name, type a name for the animation.

c. For Root Node select the root joint for animation and choose the + button.

d. Under Animation Layers, select Selected1 from the drop down list and then select a layer.
Select or deselect BaseAnimation as applicable if the animation is primary or secondary
(additive).

e. For Export Path, choose the folder icon and select a directory path.

f. To delete an animation from the list, choose the x button next to it.

3. Repeat Step 2 (p. 185) as needed for each animation you want to export.

4. Make sure the check box is selected for each animation you want to export, then choose Export
Animations.

Note
To export all static geometry, materials, and animated geometry that are listed and selected in
each of the three lists at once, choose Export All.

Exporting Blendshapes
The following requirements must be observed when exporting a blend shape to Lumberyard.

• Select the skinned mesh with the blend shape nodes and add it to the Geometry Export list in the
Lumberyard Tools. Be sure that it has been assigned the .SKIN extension type.

• Assign the appropriate materials to your skinned blend shape meshes. It should be identical to the
materials used on your main skinned mesh.

• Add a material group for the .SKIN in Materials Export if you haven’t already.

• Export the .skin file.

Exporting Level of Details (LODs)
Level of detail (LOD) techniques are used to increase performance and reduce draw calls by displaying
progressively lower detailed objects the further they are from the camera. Generally, each LOD should
have its vertices reduced 50% from the previous level and a reduction in the number of materials used.
Lower LODs should also have multiple textures combined into one texture to further reduce draw calls.

Lumberyard supports up to six LODs to be used per group node in Maya. LOD number is from 0
(highest level of detail) to 5 (lowest level of detail).

LOD Naming

The following naming conventions for LODs must be used.

lod0 through _lod5_ (prefix)

_group (suffix)

_helper (suffix)

Any LOD that is not 0 must have the _group suffix or the LOD will not work in Lumberyard.

Version 1.6
185

Lumberyard User Guide
Exporting Level of Details (LODs)

LOD Setup

Basic LOD Setup: All LOD meshes need to be under a group node in Maya. You will need to add the
_group suffix at the end of the name for your group node. The following example shows assets that
have no animated parts and small assets that do not need to be split up for culling.

Advanced LOD Setup: Each set of LOD meshes needs to be under a group node in Maya. You will
need to add the _lod#_ prefix at the beginning and _group suffix at the end of the name for your
group nodes that contain these sets. The following figure shows an asset that has multiple meshes
and a collision mesh that must be split into LODs that can be culled. The lowest LOD does not contain
a Decals_mesh because by this LOD it will not be noticeable and the removal of it will save on
performance.

Version 1.6
186

Lumberyard User Guide
Exporting an Alembic Cache

Note
When exporting, under the Advanced Options panel, ensure that the Merge Nodes
checkbox is not selected.

Debugging LODs
The following console variables can be used for debugging LODs:

• e_DebugDraw = 1 - Name of the used cgf, polycount, and the used LOD.

• e_LodCompMaxSize = 6 - (default value) Lower values force the LODs to load sooner.

• e_LodRatio = 40 - (default value) LOD distance ratio for objects. Lower values force LODs to load
sooner.

• r_Stats = 6 - Displays the drawcall count for each object instance in the scene. The numbers
above each object are broken into total DP, zpass, general, transparent, shadows, and misc.

Exporting an Alembic Cache
Alembic distills complex, animated scenes into a non-procedural, application-independent set of baked
geometric results. Specifically, it handles baked meshes and their materials, but not rigs or other
procedural networks of computations.

Version 1.6
187

Lumberyard User Guide
Setting Export Options

Lumberyard allows you to export Alembic (.abc) cache files from Maya. Lumberyard then compiles
them into compressed game asset (.cax) files using the Resource Compiler and imports them into the
game using the GeomCache entity. In-game, the .cax files are then streamed off disk.

Note
Deforming meshes can be exported along with their UVs and material assignments. However,
multiple UV sets are not exported; only the default UV set is exported.

To export an Alembic cache from Maya

1. In Maya, rename each material using a unique integer ID. Material names are scanned from left
to right and the first integer found is used. For example: mat01_sphere, mat02_sphere,
mat03_cube.

2. In Lumberyard Tools, choose Tools, Prepare Alembic Materials.

3. In Lumberyard Tools, under Material Export, choose Add Group and then enter a name. The
name of this material group (.mtl) file must match the name of the exported Alembic (.abc)
cache file.

4. Set the export path to any folder within your game directory, and then choose Export Materials.

5. In Maya, select the geometry objects you want to export, and then in Lumberyard Tools, choose
Tools, Export Select to Alembic.

6. In Export Alembic for Geomcache, navigate to the same directory used to export the materials
to, enter the same name used for the material group, and then choose Save.

Lumberyard imports Alembic caches using the GeomCache entity found in the Rollup Bar.

To import an Alembic cache to Lumberyard

1. In Lumberyard Editor, choose New and then enter a name for the new level.

2. In the Rollup Bar, on the Objects tab, choose Entity.

3. Under Browser, expand Render. Select GeomCache, drag it into the level, then click to position
the entity.

4. Under Entity Properties, choose the folder icon for File, select the Alembic (.abc) cache file
previously exported, and then choose Open.

5. In Compile Alembic, change preset, compilation, and compression settings as needed, and then
choose OK.

6. In Running Resource Compiler, review and resolve any errors, and then choose Close.

Note
Lumberyard automatically changes the File property to point to the compiled .cax file. If you
modify the Alembic (.abc) cache file later, you'll need to recompile it into a .cax file. To do
this from Lumberyard Editor, change the File property to point to the .abc file instead of the
.cax file. You will then be prompted to repeat the steps in this section.

Setting Export Options
Lumberyard has a number of options to customize the export process. To apply them, select a
geometry node from the list, choose Tools, and select from the following as needed.

Add Scene Root
Creates a scene node that re-orients exported nodes relative to the displayed orientation.

Move Origin to Pivot
Sets a selected object's transform as an offset from the origin. If the Center Pivots check box is
enabled, it will also center the pivot of the selected object.

Version 1.6
188

Lumberyard User Guide
3ds Max Export Tools

Zero Joint Rotations
Removes any rotations on the selected joint and sets the value to zero.

Add Attributes
Exposes Lumberyard variables to joints and materials.

User Defined Properties
Opens a dialog box to add custom properties that is most commonly used for assigning a defined
collision shape (sphere, box, or capsule) to override the existing collision mesh shape.

Polygon Check
Checks for degenerate faces.

Prepare Alembic Materials
Slightly modifies a scene to work around limitations in the Maya Alembic Exporter by changing the
scene's shading engines and shading groups to enable the export of faceset information, which is
used for the transport of the material assignments.

Export Selected to Alembic
Exports geometry caches that allow storing and playing arbitrarily animated geometry.

Joint Proxy Editor (Experimental)
Opens the Lumberyard Proxy Tool, which is used to create physics proxies for characters to be
physicalized.

Validator
Runs the validation process.

3ds Max Export Tools
Lumberyard has a plugin for Autodesk 3ds Max 2014–2016 to simplify exporting static geometry,
character geometry, and materials to Lumberyard. To install this plugin, go to the Lumberyard root
directory (\lumberyard\dev) and start Lumberyard Setup Assistant, choose Integrated tools,
and then choose Autodesk Max.

Topics

• Exporting Static Meshes and Characters (p. 189)

• Exporting Materials (p. 191)

• Exporting Bones and Animations (p. 191)

• Exporting Levels of Detail (LODs) (p. 193)

• Configuring Log Options (p. 194)

Exporting Static Meshes and Characters
Use the following procedure to export geometry and character geometry. You can specify which nodes
in the scene to export, and other options regarding how they are exported. If nodes have any children,
the child nodes are also exported.

Note
If you are exporting multiple Proxy No Draw meshes, they will need to be children of a single
object, such as a dummy object. This will ensure that the exported meshes have collision
functionality in Lumberyard.

Version 1.6
189

Lumberyard User Guide
Exporting Static Meshes and Characters

To set geometry export options for 3ds Max

1. In 3ds Max, click the Utilities tab (hammer icon), and then choose More.

2. In Utilities, double-click Lumberyard Exporter.

3. In Geometry Export, choose the node in the viewport, and then choose Add Selected. Repeat as
needed.

4. Choose the desired options as listed in the following table and then choose Export Nodes.

Geometry Export Options

Option Description

Export Format Specifies the file format for the exported file. Geometry export
file formats include geometry (*.cgf), character (*.chr), character
skeleton (*.skel), and character skin (*.skin).

Export file per node Exports each node in the export list as a separate file. The
filename is generated from the node name.

Custom filename Overrides the default export filename if Export File per Node is
not selected.

Merge All Nodes Compiles non-skinned geometry from multiple nodes into a single
node.

Vertex Colors Exports vertex colors.

Use 32-bit precision Enabling this will add 32-bits of precision to position each vertex
accurately when the mesh is located far from its pivot. Note
however that Playstation platforms only supports 16-bit precision.

Version 1.6
190

Lumberyard User Guide
Exporting Materials

Option Description

Morph target pos. threshold Vertices that don't move at least the specified distance (in meters)
are ignored when the morph target is exported.

Vertex animation Not supported at this time.

Exporting Materials
Use the following procedure to export materials.

To export materials

1. In 3ds Max, choose the Utilities tab (hammer icon), and then choose More.

2. In Utilities, double-click Lumberyard Exporter.

3. In Materials, do one of the following:

• To update 3ds Max material settings to match those used in the Lumberyard material .mtl file
for the object, choose Sync Material.

• To create a material .mtl file with settings that match those used for the 3ds Max material,
choose Create Material.

Exporting Bones and Animations
Animation Export contains the settings for the export of the skeleton and animations for skinned
character models. When a node is added to the Geometry Export list, its skeleton root bone is also
added to the Animation Export list. As a result, you typically don't need to configure the Animation
Export settings. However, sometimes it is helpful to be able to directly edit this list (for example, when
a user wants to export animations for only the upper body).

Note
You must export your animations using the 30 FPS frame rate setting, otherwise the Asset
Processor will fail. This is set in the Time Configuration dialog under Frame Rate.

Use the following procedure to export character skeleton bones. If bones have any children, the child
bones are also exported.

Version 1.6
191

Lumberyard User Guide
Exporting Bones and Animations

To set bone export options for 3ds Max

1. In 3ds Max, choose Utilities tab (hammer icon), and then choose More.

2. In Utilities, double-click Lumberyard Exporter.

3. In Geometry Export, choose the node in the viewport, and then choose Add Selected. Repeat as
needed.

4. In Animation Export, choose the desired options as listed in the following table, and then choose
Export Bones.

Bone Export Options

Option Description

use object bones (Lock) Uses the bone of the geometry target listed in Geometry
Export.

Ignore Dummy bones Prevents any dummy bones that are in the bone hierarchy from
being exported.

5. (Optional) In Animation range, you can also specify the animation range for a character's
skeleton using the various parameter options listed in the following table.

Animation Range parameters

Parameter Description

Entire timeline Uses the full timeline length.

Custom Uses the customized length by specifying the start and end
frames.

Multiple custom ranges Uses specified multiple animation ranges (for details, see the
following procedure).

To edit multiple custom animation ranges

1. In Animation Export, choose Edit custom ranges.

2. In Animation Sub-Ranges, double-click <New Range> and then type a name.

3. Use the arrows to specify the start and end frames.

Version 1.6
192

Lumberyard User Guide
Exporting Levels of Detail (LODs)

4. Choose the ... button and then choose an export file path for the animation range.

Exporting Levels of Detail (LODs)
Level of details (LODs) is a technique that increases performance and reduces draw calls by displaying
progressively lower detailed objects the further they are from the camera. Generally, each LOD should
have its vertices reduced 50% from the previous level and a reduction in the number of materials used.
Lower LODs should also have multiple textures combined into one texture to further reduce draw calls.

Lumberyard supports up to six LODs to be used per group node in 3ds Max. LOD number is from 0
(highest level of detail) to 5 (lowest level of detail).

LOD Naming

LOD naming conventions are very important with respect to prefixes and suffixes. You must use the
following naming conventions:

The highest LOD mesh (LOD 0) does not need a prefix.

$lod1_ through $lod5_ (prefix)

LOD Setup

Basic LOD Setup: All LOD meshes with the appropriate prefix need to be parented under the main
render mesh (LOD0). Refer to the example below for assets that have no animated parts or for small
assets that do not need to be split up for culling.

Version 1.6
193

Lumberyard User Guide
Configuring Log Options

Advanced LOD Setup: When you have LOD subobject meshes, the same rule applies as the basic
setup where the all LOD meshes with the appropriate prefix need to be parented under their respective
main render mesh (LOD0). The LOD0 mesh for the subobjects should be parented under the main
object LOD0 mesh. Refer to the example below for assets that have animated parts or that are large
and need to be split into multiple objects that can be culled.

Debugging LODs

The following console variables can be used for debugging LODs:

• e_DebugDraw = 1 – Name of the used cgf, polycount, and the used LOD.

• e_LodCompMaxSize = 6 – (default value) Lower values force the LODs to load sooner.

• e_LodRatio = 40 – (default value) LOD distance ratio for objects. Lower values force LODs to
load sooner.

• r_Stats = 6 – Displays the drawcall count for each object instance in the scene. The numbers
above each object are broken down into total DP, zpass, general, transparent, shadows, misc.

Configuring Log Options
There are several options for configuring what is logged during export.

To set exporter log options for 3ds Max

1. In 3ds Max, choose the Utilities tab (hammer icon), and then choose More.

2. In Utilities, double-click Lumberyard Exporter.

3. In Geometry Export, choose the node in the viewport, and then choose Add Selected. Repeat as
needed.

Version 1.6
194

Lumberyard User Guide
Working with the FBX Importer

4. In Options, choose the desired options as listed in the following table, and then choose Show
Log.

Other Options

Option Description

Degenerate UVW Checks for degenerate texture coordinates and issues a warning
if they exist, otherwise, silently exports them. Degenerate
coordinates arise when two vertices on a triangle have the same
(or very nearly the same) UVs.

Off-axis scaling Checks whether the node is scaled along a non-primary axis. The
node can still be exported, but the scale won't match the object in
3ds Max.

Working with the FBX Importer
FBX Importer is in preview release and is subject to change.

You can use the FBX Importer to import static FBX meshes and materials into Lumberyard.

Note
FBX files are required to be located in your game project directory. The FBX Importer will not
import an .fbx file from a location outside of the game project directory.

When you import an .fbx file, Lumberyard creates a .assetinfo file with the .fbx file. The
.assetinfo file stores the configuration and rules settings that are applied when processing. When
you load an .fbx file that already has an .assetinfo file, the data automatically appears in the FBX
Importer.

Note
The .assetinfo file is an updated version of the .scenesettings file. If you are using
earlier versions of the FBX Importer, you may need to remove the .scenesettings file and
reimport your FBX meshes and materials.

To see a sample .fbx file, go to \dev\SamplesProject\Objects\Tutorials\Fbx.

The following figure shows an example of the FBX Importer window when you first open it.

To use FBX Importer

1. In Lumberyard Editor, select View, Open View Pane, FBX Importer.

Version 1.6
195

Lumberyard User Guide
Working with the FBX Importer

2. Click the folder icon at the upper right of the tool window and select the desired FBX asset. The
.fbx file and associated texture must exist in your Lumberyard project.

3. Choose which mesh(es) you want to have imported from your FBX. These should be mesh(es)
that you want to have rendered. For example, if you have a physics proxy mesh that is different
from your render mesh, you would not want to include it under the general meshes to be imported.

4. By default, materials that are assigned to the mesh(es) set for import will be imported
automatically with the mesh. If you add the Materials Rule, you can select a checkbox that allows
you to turn Enable Materials on or off.

5. Click Add Rules to add the Material Rule. Then deselect the Enable Materials option to import
the meshes without their associated materials. For more information, see Importing Materials with
the FBX Importer (p. 197).

6. Click Import to open the mesh (.cgf) and material group files and save asset metadata into a
new .scenesettings file. The mesh is processed into the cache and is available in the File
Browser. If a material file (.mtl) does not exist for the associated mesh, Lumberyard creates one
and places it in the same location as the mesh (.cgf) file.

Version 1.6
196

Lumberyard User Guide
Importing Materials with the FBX Importer

To access the File Browser

• In Lumberyard Editor, click View, Open View Pane, File Browser.

Importing Materials with the FBX Importer
By default, the first time you import an .fbx file, by default the FBX Importer automatically imports the
materials associated with the file's meshes. Any materials that are assigned to the meshes get listed as
submaterials within a single material (.mtl) file. The .mtl file inherits the same name as the imported
mesh from the .fbx file.

Version 1.6
197

Lumberyard User Guide
Importing Physics Mesh for a Static Object

You can use a Material Rule to control how materials in the .fbx is imported. You can reset
the existing material (.mtl) file with the Reset File check box, and use the Enable Materials
check box to import materials from the .fbx file. The steps are described in Working with the FBX
Importer (p. 195).

When re-importing an FBX asset, the default behavior is to not overwrite an existing material .mtl
file. The reason is that after importing a material (.mtl) file for the first time, users may have used the
Material Editor to add texture maps or change lighting settings. You can use the Reset File check box
if you need to reimport the materials when you reimport the .fbx file.

Importing Physics Mesh for a Static Object
You need a physics mesh for static objects that require collision detection or avoidance. Any mesh
within an FBX can be used as a physics mesh. You also need to add the physics proxy material to the
material (.mtl) file.

To see a sample .fbx file, go to \dev\SamplesProject\Objects\Tutorials\Fbx.

To import a physics mesh for a static object

1. In Lumberyard Editor, click View, Open View Pane, FBX Importer.

2. Click the folder icon at the upper right of the tool window and select the desired FBX asset. The
.fbx file and associated texture must exist in your Lumberyard project.

3. Click the drop-down menu for Add Rule and select Physics Proxy.

4. Click the Add Rule button to add the Physics Rule.

5. There is a Physics Meshes property under the Physics Rule named all meshes selected. Click
on the icon button on the far right of this property.

6. In the node selection window, select the meshes that you want to use for your physics proxy.

Version 1.6
198

Lumberyard User Guide
Importing Physics Mesh for a Static Object

7. When you have selected the meshes you want, click Accept at the bottom. The property shows
the number of meshes being used as physics meshes.

8. Click Import. The progress bar will appear with a report on the status, and if there are issues with
the import, they will display in the window.

Version 1.6
199

Lumberyard User Guide
Additional FBX Importer Features and Settings

Additional FBX Importer Features and Settings
The FBX Importer includes the following features:

Add Group Configuration
You can use a single .fbx file to create multiple mesh files (.cgf). Click Add Group
Configuration to define additional .cgf assets from a single .fbx file.

Selecting a Mesh to Import
By default the FBX Importer imports all meshes in an FBX scene. To include or exclude a mesh,
click the all meshes selected icon to the far right of the file name to see the available meshes in
selection mode.

Version 1.6
200

Lumberyard User Guide
Using Rules

Meshes that are selected (checked) are included in the processed mesh file. Meshes that are not
selected are ignored. When you have selected or deselected the desired import meshes, click
Select.

Using Rules
Rules provide useful, extensible, and flexible ways to affect the game data produced by processing a
group.

To add a rule

1. In Lumberyard Editor, click View, Open View Pane, FBX Importer.

2. In the FBX Importer, browse to the .fbx file that you want to import.

3. Click Add Rule and select the type of rule: Comment, Materials, Advanced, or Origin.

4. Click Add Rule.

Origin Rule
You can use the Origin Rule to change the position (Translation), orientation (Rotation), and
Scale of a mesh relative to how it was authored.

By default the mesh origin is placed at the scene origin of the .fbx file. By selecting World in the
Relative Origin Node menu, you can select the transform of any node in the scene. Lumberyard
imports the mesh relative to the selected transform.

Version 1.6
201

Lumberyard User Guide
Using Rules

Mesh (Advanced) Rule
You can use the Mesh (Advanced) Rule to process mesh data in the asset pipeline.

Use the Use 32-bit Vertex Precision option for higher precision vertex data.

When you merge meshes, this action combines all sub-meshes into a single mesh for optimization.

Lumberyard supports the ability to import vertex coloring. If available, the vertex color stream
is accessible in the Vertex Color Stream menu. If the .fbx file contains multiple vertex color
streams, you can choose one to apply to your mesh and material settings.

Material Rule
.fbx files can include materials used for the mesh. When an .fbx file is imported, an .mtl file is
generated to represent the materials inside the engine. Also reflected within the .mtl file are the
Physics Rule and option for using the vertex color streams from the Advanced Mesh Rule.

The following restrictions apply for the Material Rule:

• .fbx files control only texture maps in the .mtl file.

• Materials in the .fbx file are matched to the materials in the .mtl file by the Name field.
Duplicate name fields are not supported.

The Material Rule controls the following:

• The use of materials for the meshes that are imported by the FBX Importer.

• The ability to update materials.

• The ability to merge behavior.

If you do not explicitly add a rule, the FBX Importer functions as if Enable Materials is selected
and both Update Materials and Remove Unused Materials are deselected.

You can customize the Material Rule using the following options:

• Enable Materials – When selected, an .mtl file is generated and linked with the .cgf file that
the FBX Importer produces. If an existing .mtl file is found, new materials in the .fbx file will
be added but no existing materials will be updated or modified.

• Update Materials – When selected, an existing .mtl file is updated to use the relevant settings
from the .fbx file. This feature is limited to the texture map file names.

• Remove Unused Materials – When selected, any material that is present in an existing .mtl
file but not present in the .fbx file is removed from the .mtl file.

• Disable Materials – If the Material Rule is deleted, materials are not processed. Use the Add
Rule button to add material rules to groups that support materials.

• Physics Rules – If present, an .mtl file is generated and a physics material is added.
Removing a Physics Rule removes the physics material from the .mtl file.

• Mesh (Advanced) – When added, a vertex color stream can interact with existing .mtl files.

Version 1.6
202

Lumberyard User Guide
Using Multiple UV Streams

Physics Rule
Use the Physics Rule to import physics mesh(es) for your object. You can select which mesh(es)
from the .fbx file to use for physics.

When you use this rule, you must also add a physics proxy material to the material (.mtl) file. If a
material already exists before you re-import your object with physics mesh(es), a window will pop
up after clicking Import to confirm if you want to overwrite your existing material. You will want to
confirm this action by clicking Overwrite so your material has the appropriate physics proxy no
draw material added so your physics mesh gets treated as a non-rendered collision mesh.

If you choose Save New, FBX Importer generates a new .mtl file with an incremented numerical
suffix in the file name. You must manually merge the new file with the previous .mtl file if there is
a significant amount of editing on the previous file and you don’t want to lose this information.

Comment Rule
Use the Comment Rule to leave notes and edits for your team members.

Using Multiple UV Streams
The FBX Importer allows you to import multiple UV streams and then select one UV stream to apply to
the selected mesh or multiple meshes. If you import multiple meshes, they must all use the same UV
stream. The .fbx file uses the first UV stream detected by default. You can choose to apply another
UV stream to a mesh.

To apply a UV stream to a mesh

1. In Lumberyard Editor, click View, Open View Pane, FBX Importer.

2. In the FBX Importer, browse to the .fbx file that you want to import.

3. To select a different UV stream, click Add Rule, Mesh (Advanced).

4. Under Mesh (Advanced), select an option from the UV stream drop-down list.

Note
Select Disabled to set all UV coordinates to 0,0.

5. Click Import to create the .cgf mesh with the selected UV mapping.

Version 1.6
203

Lumberyard User Guide
Using Geppetto

Using Geppetto
Geppetto is used to set up fully animated characters in Lumberyard, in preparation for use with
either custom game code to select, play, and blend animations, or with the Mannequin animation
controller system. In Geppetto you build a character by associating one or more skinned models with
an animation skeleton (built in a DCC like 3DS Max or Maya), and specifying a list of animations (built
in a DCC like 3DS Max or Maya) to use with that character.

Animations can also be combined together into blend spaces, which are collections of similar
animations that can smoothly blend together to vary travel speed, turning speed, travel angle, slope,
turn angle, and travel distance. Blend spaces allow you to easily author natural, complex locomotion
for characters. You can use Geppetto to add attachments to the character, such as weapons or other
props, including physically simulated attachments that are connected by springs, pendulums, and
strings of joints, allowing you to model clothing attachments, capes, and large scale movement of hair.
Geppetto also allows you to preview animations and blends between animations on the characters
you define, set compression settings for game ready animation data, and compare compressed and
uncompressed animations.

Version 1.6
204

Lumberyard User Guide
Using Geppetto

To access Geppetto from Lumberyard Editor, choose View, Open View Pane, Geppetto. Geppetto
has the following UI:

Version 1.6
205

Lumberyard User Guide
Using Geppetto

A. Viewport window

Displays the loaded character. Use the WASD keyboard for movement and the right mouse button for
camera rotation.

B. Assets pane

Lists all character assets, skeletons, animations, and compression settings. Each asset item has a
context menu with available options. When an asset is selected, its properties are displayed in the
Properties panel.

There are multiple ways to filter the tree in the Assets panel:

• By name. It is possible to specify multiple strings separated by a space to look for substrings. For
example, walk relaxed looks for any name that contains both "walk" and "relaxed".

• By type

• Using advanced filtering options, like presence of events or location of file.

You can have multiple instances of the Assets window open. To create a new instance, choose Split
Pane Assets navigation bar.

C. Scene Parameters panel

This panel is used for previewing purposes and consists of the following:

Version 1.6
206

Lumberyard User Guide
Geppetto Display Options

• Character name – Used to select and load a new character by clicking the folder icon. When a
character is loaded, you can use the button to select a CDF so you don't have to locate it in the
Assets tree every time.

• Animation Layers – Location where the played animations are set up. Whenever you select an
animation in the Assets panel, one is assigned to the active animation layer, which is highlighted
with bold text. Add new animation layers using the button next to it. Remove animation layers
through the context menu. Blend spaces, aimposes, and lookposes expose additional settings.

• Blend shape – Shows blend shape sliders when the character contains blend shapes.

• Audio Setup – Used to preview sound foleys and footsteps.

• Run Feature Test – Used to add and run project-specific tests.

D. Properties panel

Lists character definitions, skeleton, and animation properties.

E. Playback panel

Displays the animation timeline and playback options, such as looping and speed.

All panels can be moved and are dockable.

Note
Because hot reloading of character-related assets is not supported in Lumberyard Editor, you
need to close and restart Lumberyard Editor if you modify any characters that pre-exist in a
level. This is not necessary for characters that later spawn into a level. This does not apply if
you are previewing changes in Geppetto.

Topics

• Geppetto Display Options (p. 207)

• Creating a Character Definition (p. 210)

• Character Attachments (p. 211)

• Animating Characters (p. 224)

Geppetto Display Options
The following is a list of the various display option settings in Geppetto. In the upper-right corner of the
Geppetto viewport, choose Display Options to access the various settings.

Animation

Movement
Choose between In Place (Only grid moves), Repeated, and Continuous (Animation Driven)
in response to when the character's root joint moves in world space during an animation.

Compression
Choose between Preview Compressed Only and Side by Side (Original and Compressed) for
what to preview for animations.

Animation Event Gizmos
Enables and disables the visibility of animation event gizmos that are tied to a skeleton joint.

Locomotion Locator
Enables and disables the visibility of the locomotion locator for the character, to indicate which
direction the root motion or locomotion locator are pointing during an animation.

DCC Tool Origin
Enables and disables the transform display on the DCC origin for the skeleton and also displays
the rotation and position information near the top of the viewport.

Version 1.6
207

Lumberyard User Guide
Geppetto Display Options

Reset Character
Allows you to reset the character by forcing it back to bind pose, setting it to viewport origin, and
removing any current animations on the character, including the removal of animation layers.

Rendering

Edges
Enables and disables the display of all edges for polygons on meshes. It also displays information
regarding the mesh data at the top of the viewport.

Wireframe
Enables and disables the wireframe mode for meshes. If used in combination with Edges, it uses
a flat colored wireframe instead of the material wireframe.

Framerate
Enables and disables the display of the frame rate for the viewport.

Skeleton

Joint Filter
Allows you to enter text to help filter what joints are displayed so joints are only displayed that have
the text somewhere in the joint name. Should be used with Joints enabled.

Joints
Enables and disables the display of skeleton joints.

Joint Names
Enables and disables the display of skeleton joint names.

Bounding Box
Enables and disables the display of the bounding box for the character created by the skeleton
joints.

Camera

Show Viewport Orientation
Enables and disables the display of the viewport orientation.

FOV
Slider to adjust the camera's FOV.

Near Clip
Slider to adjust the camera's near clip plane.

Move Speed
Slider to adjust the movement speed of the camera, currently capped at 3. The default is 0, not
restraining the camera at all. If this parameter is set to an odd number, it does not allow the use of
rotation for the camera.

Rotation Speed
Slider to adjust the rotation speed of the camera.

Movement Smoothing section

Position
- Slider for adjusting smoothing for the camera translation.

Version 1.6
208

Lumberyard User Guide
Geppetto Display Options

Rotation
Slider for adjusting smoothing for the camera rotation.

Follow Joint

Joint
Joint that the camera will follow. The default is null so that you can manipulate the camera.

Align
Enables and disables the alignment of the camera to the specified joint based on Position and
Orientation.

Position
Enables and disables the position of the joint to influence the camera.

Orientation
Enables and disables the orientation of the joint to influence the camera.

Secondary Animation

Dynamic Proxies
Enables and disables the display of dynamic proxies.

Auxiliary Proxies
Enables and disables the display of auxiliary proxies.

Physics

Physical Proxies
Enables and disables the display of physics proxies.

Ragdoll Joint Limits
Enables and disables the display of the ragdoll joint limits on the skeleton.

Grid

Show Grid
Enables and disables the display of the grid. There are additional settings for setting the grid main
line and middle line color and transparency.

Spacing
Sets the scale of the grid based on meters. The default is 1.

Main Lines
Sets the display of the number of grid main sections.

Middle Lines
Sets the display of the number of middle sections within the grid main sections.

Origin
Enables and disables the display of the viewport origin. When enabled, this parameter gives
additional options for adjusting the color and transparency of the origin.

Lighting

Version 1.6
209

Lumberyard User Guide
Creating a Character Definition

Brightness
Sets the brightness of the light. You also have control over the color and transparency of the light.

Rotate Light
Enables and disables the rotation of the light in world space.

Light Multiplier
Sets the multiplier for the light.

Light Spec Multiplier
Sets the multiplier for the specular for the light. You also have control over the color and
transparency of the specular for the light.

Background

Use Gradient
Enables and disables the use of gradient with the colors assigned below. If disabled, only one
color is available to adjust.

Creating a Character Definition
Using Geppetto, you can create a character definition. The character definition .cdf file consists of a
skeleton .chr file, an animation list that is referenced in a .chrparams file, and attachments.

Character Definition File

The XML-based character definition file (.cdf) combines different character parts such as skeletons,
meshes, materials, and attachments.

Before proceeding, make sure you have the following assets exported from your DCC tool:

• Character skeleton .chr file

• Skinned geometry .skin file

• One or more character animations

To create a character definition file

1. In Geppetto, choose File, New Character, type a file name and path, then choose Save. An
empty file is created, but without a skeleton or attachment yet.

2. In the Properties panel, choose the folder icon next to Skeleton, select the skeleton .chr file,
and choose Open to load the skeleton. This assigns the skeleton to the .cdf file.

3. Choose Display Options to reveal the Skeleton section in the UI.

4. Expand Skeleton and choose Joints. The skeleton is displayed in the viewport.

Character Skeleton List

Make sure the skeleton is added to the SkeletonList.xml file using the following procedure.

To add the skeleton to the list

1. In the Assets panel under Compression (Animations), choose Skeleton List.

2. In the Properties panel under Aliases, make sure the skeleton .chr file is in the list. If not, do the
following:

Version 1.6
210

Lumberyard User Guide
Character Attachments

a. Choose the number button next to Aliases and Add.

b. Choose the folder icon next to the new entry, then select a suitable skeleton.

c. Name the added skeleton alias. This name is used to refer to the skeleton.

Character Animation List
The character animation list is specified in the .chrparams file.

To specify the animation list

1. In the Asset panel, expand Skeletons, Characters and select the skeleton .chr file.

2. In the Properties panel, choose the number button next to Animation Set Filter and Add.

3. Select the folder icon for the new row, open the context (double-click) menu for Animations, and
then choose Select Folder.

Character Attachments
In order to attach something to a character, a socket is needed. Sockets provide the connection
between the character and the attachment. For more information, see Attachment Sockets (p. 211).

After a socket has been created and defined, an attachment can be created and connected to the
socket. For more information, see Character Attachments (p. 211).

Character Attachments
Attachments are separate objects that are attached to characters, respond to real-world physics, and
can be attached, detached, or replaced at runtime in the game.

Lumberyard allows for various skinned, animated, or physicalized attachments to the skeleton or
polygonal faces of a character. Attachments are hierarchical, and each attachment can have its own
morph targets and animations. You can use skin attachments for entire body parts such as heads,
hands, or upper and lower body.

To add or change a character attachment, the character must first be loaded into Geppetto.

Topics

• Attachment Sockets (p. 211)

• Joint Attachments (p. 212)

• Face Attachments (p. 213)

• Pendula Row (PRow) Attachments (p. 214)

• Proxy (Collision) Attachments (p. 216)

• Skin Attachments (p. 217)

• Collision Detection and Response (p. 218)

• Secondary Animations (Simulations) (p. 221)

Attachment Sockets
To attach something to a character, you must first create an attachment socket. A socket is an empty
attachment without assigned geometry. Sockets have a name, position/orientation (for joint and face
attachments), and attachment type. Attachment sockets can be used by game code to attach objects
to characters at runtime, such as replacing weapons attached to a hand. After a socket is created, you
can plug a .cgf attachment into it.

Version 1.6
211

Lumberyard User Guide
Character Attachments

Tip
To display all empty sockets for a character, use the ca_DrawEmptyAttachments=1 console
variable.

You can also use sockets to achieve simulated motion of joint and face attachments. This type of
animation is always a reaction to a primary character motion, and are called secondary animations.
Such animations can simulate the movement of attached objects. For more information, see Secondary
Animations (Simulations) (p. 221).

Joint Attachments
Joint attachments require an attachment socket that provides a connection point between the
attachment and the character. Use the move and rotate tool to position and orient the socket relative to
a bone joint.

The socket is attached to a joint and moves with the joint when the skeleton is animated. Secondary
animations can be enabled on a socket and provide additional motions based on a real-world physical
simulation and generated in response to the movements of the character. This has the effect of making
loosely-attached objects behave more realistically when the character is undertaking fast movements.

These secondary animations can also be redirected to the skeleton of the character to apply the
simulated motion to all vertices that are part of the skinned mesh and weighted to the joint. This is
very useful when animating hair and cloth. By enabling collision detection, such attachments can also
interact with the character.

You can simulate the motion of hair braids and dangling straps using joint attachments. A chain or
rope of pendula can be created by attaching a pendulum at each link. When the motion simulation
is activated, each parent joint transfers motion to the children. In this case, the primary motion is not
coming from an animation, but from a previous motion simulation. Collision detection and response is
used to limit the motion of the attachment from moving through the body of the character.

To create a joint attachment

1. In Geppetto, in the Properties panel, choose the number next to Attachments and Add or Insert.

2. For Name, enter a name for the attachment.

3. For Type, choose Joint Attachment.

4. For Joint, choose the bone icon, then open the applicable joint to place the socket on.

5. For Geometry, choose the folder icon and select the desired *.cgf file for the attachment.

6. For Material, choose the folder icon and select the desired *.mtl file for the attachment.

7. Adjust the values of attachment parameters for the desired result, as listed in the following table.

Version 1.6
212

Lumberyard User Guide
Character Attachments

Joint Attachment Parameters

Parameter Description

View Distance Multiplier Multiplier to the computed fade-out camera distance to apply on
the attachment.

Store Position Stores position data relative to either the character or to a joint.

Store Rotation Stores rotation data relative to either the character or to a joint.

Transform Transform-Translation (T) and Rotation (R) vectors for the X, Y,
and Z axes in relation to Store Position and Rotation.

Simulation Type of simulated motion. Disabled is on by default, but types
consist of: Pendulum Cone, Pendulum Hinge, Pendulum Half
Cone, Spring Ellipsoid, and Translational Projection. For more
information, see Secondary Animations (Simulations) (p. 221).

Hidden Hides the attachment.

Physicalized Rays Enables hit ray detection if a physics proxy is available.

Physicalized Collisions Enables collision detection if a physics proxy is available.

Face Attachments

Face attachments require an attachment socket that provides a connection point between the
attachment and the character. The socket is attached to a specific triangle on the mesh surface
and moves along with the triangle when the skeleton is animated and the mesh gets deformed.
The location of the face attachment can be relative to the triangle and it is possible to assign face
attachments to all skinned meshes of a character.

It is recommended that the character be first put into its bind pose. To do so, in Geppetto, in the Scene
Parameters panel, choose Bind Pose next to Animation Layers.

When you move the socket using the using the gizmo tool in the viewport, it automatically connects to
the closest triangle in the mesh.

To create a face attachment

1. In Geppetto, in the Properties panel, choose the number next to Attachments and Add or Insert.

2. For Name, enter a name for the attachment.

3. For Type, choose Face Attachment.

4. For Geometry, choose the folder icon and select the desired *.cgf file for the attachment.

Version 1.6
213

Lumberyard User Guide
Character Attachments

5. For Material, choose the folder icon and select the desired *.mtl file for the attachment.

6. Adjust the values of attachment parameters for the desired result, as listed in the following table.

Face Attachment Parameters

Parameter Description

View Distance Multiplier Multiplier to the computed fade-out camera distance to apply on
the attachment.

Transform Transform-Translation (T) and Rotation (R) vectors for the X, Y,
and Z axes in relation to Store Position and Rotation.

Simulation Type of simulated motion. Disabled is on by default, but types
consist of: Pendulum Cone, Pendulum Hinge, Pendulum Half
Cone, Spring Ellipsoid, and Translational Projection. For more
information, see Secondary Animations (Simulations) (p. 221).

Hidden Hides the attachment.

Physicalized Rays Enables hit ray detection if a physics proxy is available.

Physicalized Collisions Enables collision detection if a physics proxy is available.

Pendula Row (PRow) Attachments

To create a pendula row attachment

1. In Geppetto, in the Properties panel, choose the number next to Attachments and Add or Insert.

2. For Name, enter a name for the attachment.

3. For Type, choose PRow Attachment.

4. For Joint Row Name, choose the bone icon, then open the applicable joint to place the socket on.

5. Adjust the values of attachment parameters for the desired result, as listed in the following table.

Pendula Row Parameters

Parameter Description

Clamp Mode Used to select the movement bounding volume of the pendula row:
Cone, Half Cone, Hing, or Translational Projection.

Debug Setup When enabled, displays a green bisected spherical shape that
represents the bounding volume for the simulated object's pivot.

Debug Text Enable to display debugging text in the viewport.

Activate Simulation Enable to activate the physics simulation for springs and pendula.

Simulation FPS Used to specify the frame rate of the physics simulation updates.
A value of 30 indicates 30 updates per second. The valid value
range is 10-255 fps, with a recommended range of 30-60 fps.
This value should ideally be the same as the game frame rate.

Mass Used to specify the mass of pendula bobs. If the value of the Joint
Spring parameter is zero, the Mass value has no impact on the
oscillation period.

Version 1.6
214

Lumberyard User Guide
Character Attachments

Parameter Description

Gravity Used specify the force of gravity on pendula. While the mass of
a bob has no effect on the oscillation of a pendulum, the force
of gravity does. The default value of 9.81 represents Earth's
gravitational force.

Damping Used to specify a velocity-dependent force such as air resistance.
The faster that pendula move, the more force that is encountered,
decelerating the pendula at a rate proportional to the velocity.
Greater damping values result in pendula coming to rest more
quickly.

Joint Spring Used to simulate position dependent forces, and is a value
between 0-999 applied to the spherical joint. The further the
pendulum swings away from the axis of the spring target, then
the harder it tries to return.

Cone Angle Used to specify the pendula starting movement angle for cone,
half-cone, and hinge-planes bounding volumes. Valid range is from
0-179 degrees, where values greater than 90 degrees form an
inverse cone.

Cone Rotation Used to specify the amount of rotation relative to joints along the
X, Y, and Z axes for cone, half-cone, and hinge-planes.

Rod Length Used to specify the length of pendula row rods, which impacts
swinging frequency. The longer the rods, the longer the pendula
oscillations.

Spring Target Used to specify two planes of rotation around the X-axis of the
joints.

Turbulence Used to control frequency and amplitude of noise added to PRow
joints to simulate wind and similar effects on cloth.

Max Velocity Used to clamp the velocity of the PRow pendula bobs in order to
control large impulse spikes from character movements.

Cycle Select to attach the last joint in the pendula row to the first joint to
form a horizontal circle. Used for cloth skirts.

Stretch Used to define the horizontal distance between pendula row joints,
which defines how much cloth can stretch or shrink horizontally. A
value of 0.2 indicates a stretching or shrinking of 20%.

Relax Loops Used to iteratively keep pendula row joints together horizontally.
Each iteration brings the joints closer together for each frame. A
value between 2-4 is recommended.

Capsule Defines the length and radius values for the capsules used for
the dynamic (blue) proxies connected to each joint in the entire
pendula row. Used for collision detection.

Projection Type Choose Shortarc Rotation to activate collision detection.

Version 1.6
215

Lumberyard User Guide
Character Attachments

Proxy (Collision) Attachments

Collision detection and response involves the realistic animation of attachments that collide with the
body of a living character to simulate real-world physics. To handle this, a special attachment called a
collision proxy is used. Collision proxies are normal attachments that are linked to joints and move with
the skeleton. Using a collision proxy is more efficient than undertaking all the necessary computation
required for collision detection and response with a polygonal mesh.

Two different types of collision proxies are used:

• Auxiliary proxies (lozenges) – Called lozenges, these are represented in gray by simple geometric
objects linked to joints that move with the skeleton, and represent an approximation of a body shape.
Gray proxies handle collision detection and response with the character and are normal attachments.

• Dynamic proxies – These are represented in blue by capsules and spheres and are a property of a
socket. Blue proxies handle collision detection and response between gray proxies. Blue proxies are
dynamic collision proxies, which means that gray proxies always push blue proxies away.

Collision detection is detecting when an overlap occurs between an auxiliary proxy and a dynamic
proxy. For both proxy types, you can tweak the size, shape, and other physical parameters interactively
while a character animation is running and see the effect immediately.

Auxiliary Proxies (Lozenges)

An auxiliary proxy lozenge is defined by a radius and scaling values for the X, Y, and Z axes. Using
these four numbers, points, line-segments, rectangles, boxes, spheres, 1D lozenges (capsules), 2D
lozenges, and 3D lozenges can be created. These eight shapes are used to approximate the shape of
arms, legs, and torso of a living character.

The following figure shows a capsule shape defined for the thigh joint on the right leg of a character.

To set up an auxiliary proxy (lozenge)

1. In Geppetto, choose Display Options to reveal the Secondary Animations section, then select
the Auxiliary Proxies check box.

2. In the Properties panel, choose the number next to Attachments and then choose Add or Insert.

• For Type, choose Proxy Attachment.

Version 1.6
216

Lumberyard User Guide
Character Attachments

• For Joint, choose the bone icon; in the Choose Joint window, select the joint to attach the
lozenge to and choose OK.

• For Purpose, choose Auxiliary.

• For Radius, enter a value in meters.

• For X-axis, enter a value in meters.

• For Y-axis, enter a value in meters.

• For Z-axis, enter a value in meters.

The axes scale in both directions, so entering values of 0,1,1,1 creates a box of 2x2x2 meters.

Dynamic Proxies

Dynamic (blue) proxies handle collision detection and response between gray proxies. Blue proxies
are dynamic collision proxies, which means that gray proxies always push blue proxies away. For more
information, see Collision Detection and Response (p. 218).

Skin Attachments
Skin attachments have a skeleton of their own, making it possible to replace body parts such as heads,
hands, or upper and lower body parts. Furthermore, these parts are automatically animated and
deformed by the base skeleton. The use of skinned attachments that have more joints and different
joints then the base skeleton is also supported using Skeleton-Extensions. It is also possible to
merge different types of skeletons together, even skeletons from totally different characters.

To create a skin attachment

1. In Geppetto, in the Properties panel, choose the number next to Attachments and then choose
Add or Insert.

2. For Name, enter a name for the attachment.

3. For Type, choose Skin Attachment.

4. For Geometry, choose the folder icon and select the desired *.skin file for the attachment.

5. For Material, choose the folder icon and select the desired *.mtl file for the attachment.

6. Adjust the values of attachment parameters for the desired result, as listed in the following table.

Skin Attachment Parameters

Parameter Description

View Distance Multiplier Multiplier to the computed fade-out camera distance to apply on
the attachment.

Hidden Hides the attachment

Software Skinning If enabled, the mesh gets skinned on the CPU instead of the GPU.
Software skinning is required for blendshapes and to have tangent
frames recalculated every frame.

Version 1.6
217

Lumberyard User Guide
Character Attachments

Collision Detection and Response

Collision detection and response involves the realistic depiction of attachments that collide with the
body of a living character that simulate real-world physics. To do this, a collision proxy is used to
approximate parts of a character body such as the legs and torso with a simple geometry shape. Using
a collision proxy is more efficient than undertaking all the necessary computation required for collision
detection and response with a polygonal mesh.

For information about how to set up a collision proxy attachment, see Proxy (Collision)
Attachments (p. 216).

Collision Detection

Collision detection involves checking to see if a blue proxy capsule/sphere overlaps (collides) with a
gray proxy lozenge. For pendulums, a blue proxy is always connected to an attachment socket (pivot)
at one end.

Collision Response

Collision response is handled by projections. If a dynamic (blue) proxy capsule/sphere collides with an
auxiliary (gray) proxy lozenge, the blue proxy is projected or moved away until it no longer overlaps
(collides with) the gray proxy lozenge. This means projecting (moving) the blue proxy capsule/sphere
perpendicularly from the lozenge surface or rotating it out of the lozenge.

Lumberyard performs two consecutive constraint checks for collision detection. First, the blue proxy
capsule/sphere is moved out of the gray proxy lozenge, and second the spring particle or pendulum
rod movement is clamped to the shape of the bounding volume: spring ellipsoid, pendulum cone or
half-cone, pendulum hinge, or translation projection.

After these two checks, the blue proxy capsule/sphere should be outside of the gray proxy lozenge but
inside of the bounding volume. However, if the bounding volume is too small, the collision response
may happen successfully only to have the bounding volume push the capsule/sphere back inside the
lozenge.

There are four different projection methods used to move proxies to a non-colliding state, depending on
the bounding volume, in addition to No Projection:

Topics

• Spring Ellipsoid Response (p. 219)

• Pendulum Cone and Half-Cone Response (p. 219)

• Pendulum Hinge Response (p. 219)

• Translational Projection Response (p. 219)

Version 1.6
218

Lumberyard User Guide
Character Attachments

If No Projection is selected, collisions are ignored and no response is initiated.

Spring Ellipsoid Response

Selecting Shortvec Translation moves a gray proxy sphere away from a blue proxy lozenge using the
shortest distance possible. For springs, only gray proxy spheres (and not capsules) are supported with
spring motions.

Pendulum Cone and Half-Cone Response

Selecting Shortarc Rotation rotates a gray proxy capsule out of a blue proxy lozenge using the
smallest angle possible.

Pendulum Hinge Response

Selecting Shortarc Rotation rotates a gray proxy capsule out of a blue proxy lozenge using the
shortest direction possible. For hinges, there are only two ways for a capsule to rotate out of a lozenge.

Selecting Directed Rotation rotates a gray proxy capsule out of a blue proxy lozenge along the
(green) direction of the hinge-plane.

Translational Projection Response

In the case of rotations (Shortarc Rotation and Directed Rotation), the pivot for a blue proxy capsule
must lie outside of a gray proxy lozenge. The pivot is the spherical portion of the capsule that is
connected to the attachment socket.

If the capsule pivot lies inside of a lozenge, collisions cannot be resolved and the proxies remain in
an overlapping (collided) state. This can occur for secondary animations on characters where the
simulation update is triggered after the animation update and it happens that the animation itself moves
proxies into each other or creates invalid proxy configurations that break the simulation. To handle
these cases, Translational Projection type is used, which defines the direction of movement. There
are two types of translational projections:

• Shortvec Translation

• Directed Translation

Note
It is important that the new socket is on the same joint where you want to perform the
translation and appears in the list of attachments ahead of the pendulum attachment that you
want to move out. You can change the order of attachments in Geppetto. This order defines
the order of execution, so the translation operation moves the joint out of the proxies before
the pendulum attachment is executed.

Selecting Shortvec Translation moves a blue proxy capsule out of a gray proxy lozenge along the
shortest vector from the surface of a sphere enclosing the joint, where the radius of the sphere is
specified. This type should be used in cases where there are only a few lozenges, due to potential
unpredictable and undesirable movements.

If an overlap is detected, the sphere is translated out of the lozenge along the shortest vector to the
surface. This method of translation is only recommended for setups with just a few lozenges where
the results are predictable. Otherwise, issues may arise where the first shortvec translation moves a
capsule out of the first lozenge and directly into a second lozenge. These issues are very likely with
complex setups where many lozenges are close together or overlap. It can also happen that it projects
out in the wrong direction and produces undesired "tunneling" effects.

Version 1.6
219

Lumberyard User Guide
Character Attachments

Choosing Directed Translation moves a blue proxy capsule out of a gray proxy lozenge along either a
Translation Axis (defined relative to a joint and socket orientation) in its negative direction, or moves it
out relative to a selected Directional Translation Joint, which defines the translation axis between the
joint and socket. Optionally, you can select a joint, which forms a translation axis between the location
of the joint and the socket.

Both options allow you to specify a capsule in the direction of the translation axis; however, the capsule
is always projected out in the predefined direction even if the capsule is behind the lozenge, which
makes "tunneling" unlikely.

Version 1.6
220

Lumberyard User Guide
Character Attachments

Secondary Animations (Simulations)

You can also use sockets to produce realistic movements of joint and face attachments. This type of
animation is always a reaction to a primary (character) animation, and are called secondary animations
or motion simulations. Such animations can simulate the movement of attached static objects such as
weapons and holsters, muscles, and fat.

In addition, it is also possible to create complex setups to simulate the motions of swinging hair braids,
tentacles, chains, ropes, necklaces, clothing, and other loose or dangling objects on a character.
Chains can have branching strings and different physical properties for each link.

However, such motions are just approximations of real-word physical movements. In Lumberyard, the
physical properties of springs and pendula are used to approximate (simulate) the physical movement
of dangling or swinging objects attached to characters.

• Pendulum: A bob connected to a rigid rod that experiences simple harmonic motion as it swings
back and forth. The equilibrium position of an unconstrained pendulum is hanging directly downward.
The swing is specified by physical parameters such as stiffness and stiffness target, and movement
is constrained by cone, half cone, or hinge plane bounding volumes.

• Spring Ellipsoid: A bob connected to an elastic rod. Unlike a helical spring, a spring ellipsoid can
stretch in any direction. The movement of the spring is constrained to by sphere, ellipsoid, half
sphere, flat plane, or line bounding volumes.

Moving springs and pendula have different motion bounding volumes that constrain the movement of
objects attached to characters.

While the type, size, and shape of the attachment has no impact on its actual motions, it does
determine which type of simulation is selected as the movements of a corresponding real-world
physical object must be simulated. In this way, the socket and attached object realistically react to the
movements of the character.

In addition, because moving attachments may collide with the character, this must be accounted
for. For more information, see Proxy (Collision) Attachments (p. 216) and Collision Detection and
Response (p. 218).

Topics

• Pendulum Cone Simulation (p. 222)

• Pendulum Half-Cone Simulation (p. 222)

• Pendulum Hinge Simulation (p. 223)

Version 1.6
221

Lumberyard User Guide
Character Attachments

• Spring Ellipsoid Simulation (p. 224)

Pendulum Cone Simulation

Pendulum Half-Cone Simulation

Version 1.6
222

Lumberyard User Guide
Character Attachments

Pendulum Hinge Simulation

Pivot Offset

This feature is identical for both spring and pendula simulations. Pivot Offset allows you to offset
the location of the attached render object. Note that this is purely a visual feature with no impact on
the simulation itself and only adds an offset to the attached object at the rendering stage. Adding
or changing an offset value doesn’t change the position of the socket; it only renders the attached
geometry at another location that can be outside of the bounding volume.

By default, it is the pivot of the model (offset = 0,0,0) and those three values are an x,y,z axes offset
that translates the rendered geometry in the direction of the socket axes.

If Redirect to Joint is also enabled, then the pivot offset changes the location of the joint and all its
children, as discussed next.

Redirect to Joint

If enabled, the relative motion of the simulated object is transferred to the joint that it is attached to,
which means that the relative motion of the pendulum is added to the joint. So as long as the pivot
offset is (0,0,0) then we only modify the orientation of the joint and this moves all vertices that are part
of the mesh and weighted to this joint.

Version 1.6
223

Lumberyard User Guide
Animating Characters

Spring Ellipsoid Simulation

Pivot Offset

This feature is identical for both spring and pendula simulations. Pivot Offset allows you to offset
the location of the attached render object. Note that this is purely a visual feature with no impact on
the simulation itself and only adds an offset to the attached object at the rendering stage. Adding
or changing an offset value doesn’t change the position of the socket, it only renders the attached
geometry at another location that can be outside of the bounding volume.

By default, it is the pivot of the model (offset = 0,0,0) and those three values are an x,y,z axes offset
that translates the rendered geometry in the direction of the socket axes.

If Redirect to Joint is also enabled, then the pivot offset changes the location of the joint and all its
children, as discussed next.

Redirect to Joint

If enabled, the relative motion of the simulated object is transferred to the joint that it is attached to,
which means that the distance between the spring particle and the joint is added together. For spring
simulations, only the translation of the joint is changed, which moves all vertices that are part of the
mesh and weighted to the joint.

Animating Characters
Skeleton-based animation is the most flexible animation technique used today, and includes playback
and blending of animation data as well as IK-based poses. Procedural algorithms like CCD-IK, analytic
IK, example-based IK, or physical simulations are all used to augment pre-authored animations. To
provide realism when combining artificial and captured animations, a warping technique preserves the
style and content of the base motion.

Version 1.6
224

Lumberyard User Guide
Animating Characters

However, skeleton-based animation is not the ideal solution for animating muscles and tendons of the
human body or face. Although it is possible to use skeleton-based animation for this, the number of
joints involved is high and animation setup is difficult.

Generally, the combination of morph-based animation along with skeletal-based animation provides
the greatest flexibility. The number of vertices that change in each morph target is very limited and the
targets can be clearly defined. Morph targets are ideal for creating facial animations. Morph-based
animation can even be used to generate entire animation sequences.

At the highest level, you can use Flow Graph, Lua scripts, or C++ code to request character
animations. These methods invoke the Mannequin system, which in turn invokes the core Lumberyard
animation system for animation clips, animation events, and procedural clips. Procedural clips can
include IK, ragdoll, sounds, particle effects, and game logic.

Geppetto is a tool used to add character attachments, preview animations, and test blending features.
It provides a visual interface to the underlying animation system.

You can add character .cdf and geometry .cgf assets in the Track View cinematic cutscene
animations.

Topics

• Types of Character Animations (p. 225)

• Character Animation Files (p. 226)

• Chrparams File Setup Using Geppetto (p. 228)

• Chrparams File Elements (p. 231)

• Character Skeletons (p. 235)

• Importing Character Animations (p. 235)

• Compressing Character Animations (p. 236)

• Working with Additive Animations (p. 239)

• Character Animation Layers (p. 240)

• Working with Blend Shapes (Morphs) (p. 241)

• Working with Blend Spaces (Bspaces) (p. 242)

• Animation Events (p. 244)

• Locomotion Locator Animation Best Practices (p. 246)

• Streaming Character Animations (p. 246)

Types of Character Animations

You can produce three major types of animation in Lumberyard:

Cutscene Animations

Cutscenes are cinematic sequences in a game that involve no gameplay. Also known as linear or
cinematic animation, cutscene animations are the easiest animation to create, as the animator controls
every aspect. Camera angle, lighting, keyframes, and character pose are all fixed. You create cutscene
animations with Track View Editor.

Scripted Flow Graph Animations

More complex than cutscene animations are scripted animations in which characters follow a
predefined path. The quality is such that it appears to be interactive, but it is not. Characters cannot
engage with, or respond to, the player.

Version 1.6
225

Lumberyard User Guide
Animating Characters

You can create scripted animations using animation Flow Graph nodes and can also include AI nodes
for more complicated animations. An example would be a character who changes his walking gait over
uneven or hilly terrain, or to avoid a vehicle that is in the line of the walking path.

You can use Flow Graph to start and stop animations, trigger animations based on time, synchronize
two animations, and coordinate multiple animations based on various parameters.

Interactive Animations

The most complex character animation to create are fully interactive, nonlinear animations where
characters respond automatically to their environment, other characters, player inputs, AI behaviors,
and other in-game variables. It is common to have a character perform multiple movements and tasks
simultaneously, displaying different emotions, and respond differently to different events.

In such an environment, character movements and actions are unpredictable. A crucial feature of
interactive animation involves the automatic synthesis of high quality character motions and good AI
rules for behavior based on a variety of different game events, all while keeping performance high and
asset count as low as possible.

Interactive animations fall into two categories: player controlled and AI controlled.

In player-controlled animations, the player determines the movement and all other actions of the
character; the animation system takes the player input and translates it on the fly to skeleton
movements using procedural and data-driven methods. For player control, high responsiveness is a
key feature.

In AI-controlled animations, the AI system controls the movement and actions of the character. All
motion and behaviors are dictated based on a series of rules and parameters that defines a character's
actions in response to in-game events. These actions are not fully predictable as there are an almost
unlimited number of different game permutation possibilities.

To help you achieve high quality interactive character animations, Lumberyard provides the following
tools:

• Geppetto – Lower level system that manages short animation clips, poses, procedural
and parameterized movements, transitions, and layers. For more information, see Using
Geppetto (p. 204).

• Mannequin Editor – High-level system that manages animation variations, transitions, sequences,
blends, layers, and procedural logic. For more information, see Using Mannequin Editor (p. 250).

Character Animation Files

To create character animation files, you start by animating character skeletons and hierarchies in a
DCC tool. You then use your DCC tool to export these elements to the intermediate .i_caf file format.
They are then compressed and optimized to the .caf before Lumberyard can use them.

Lumberyard's animation system uses the following files to create animations for your characters.

Character Asset File (*.chr)
The character used for animations is defined in a .chr file. For animation, the two important
aspects of a character are the morph targets and the skeleton.

Character Definition File (*.cdf)
Characters are usually combinations of a primary model and several attachments. In particular,
the head is often considered a skin attachment that is a separate model attached to the body.
This composite model is defined in the .cdf file and contains a reference to the .chr file and its
attachments.

Version 1.6
226

Lumberyard User Guide
Animating Characters

Intermediate Character Animation File (.i_caf)
The intermediate character animation file contains the animated bone data for a specific character.
This file can be used with multiple characters with similar bone structures. The file is created by
a DCC tool and stores animation data in uncompressed format. It is usually used with a skinned
mesh.

Animation Settings File (.animsettings)
The animation settings file contains per-animation compression settings. This is a sidecar file that
is stored next to the .i_caf file and describes how it should be compiled by the Asset Pipeline.
This file is created using Geppetto for importing animations.

Skeleton Alias File (SkeletonList.xml)
This file provides a table that maps skeleton aliases used in the .animsettings file to skeleton
file names. This file contains skeleton structure information that is needed during animation
compression.

Character Animation File (*.caf)
Assets, such as bones, are stored in .caf files. Because they are considered on demand
assets, these files are streamed in and out as needed. This file is the compressed version of the
intermediate .i_caf file and uses lossy compression. Character animation files are created by
Lumberyard Editor during the asset build, and are loaded by the game at runtime.

Character Parameters File (*.chrparams)
Skeletal character parameters are defined in the XML .chrparams file. This file has the same
name as the .chr character file to which it refers.

Animation Database (.dba)
A .dba file consists of multiple animations (character, player, AI, weapons) that are streamed
in and out together. These files are typically smaller and take up less memory than individual
animations (.caf files). Single .caf files are no longer needed unless they are on-demand
assets.

If an animation is in a .dba file, it will not be available anymore as an individual .caf file. If the
game tries to play one of these animations, the database containing that animation loads instead.
As this can take a while, make sure the .dba is preloaded.

When two animations in the same .dba file have exactly the same animation for a joint, the data
for that animation is stored once. This can provide significant memory savings.

The .dba files are created by the Resource Compiler after compressing the individual animations
(.cafs), according to the DbaTable.xml file. The .dba file must be defined in the .chrparams
file.

Typical animations that get stored in the .dba include:

• Animations that need to be individually loaded and unloaded.

• Animations that need to be accessed once on demand, such as track view (cinematic)
animations. These animations are preloaded a couple of seconds before starting.

Note
Aimposes, Lookspace, .bspace, and .comb files cannot be stored in a .dba database.

Animation Database Table (DbaTable.xml)
The animation database table contains a list of .dba files, which the resource compiler uses to
determine which .caf animations to put in which .dba files. Here is an example:

<DBAs>
 <DBA Path="Animations\human\male\hits_1p.dba">
 <Animation Path="Animations\human\male\hits\1p
\stand_tac_hit_generic_add_1p_01.caf"/>
 <Animation Path="Animations\human\male\hits\1p
\stand_tac_hit_knockDown_1p_01.caf"/>

Version 1.6
227

Lumberyard User Guide
Animating Characters

 <Animation Path="Animations\human\male\hits\1p
\stand_tac_idle_reactExplosion_3p_01.caf"/>
 </DBA>
 <DBA Path="Animations\human\male\locomotion.dba">
 <Animation Path="Animations\human\male\locomotion\kneel
\kneel_tac_AimPoses_idle_01.caf"/>
 <Animation Path="Animations\human\male\locomotion\kneel
\kneel_tac_death_01.caf"/>
 <Animation Path="Animations\human\male\locomotion\kneel
\kneel_tac_idle_01.caf"/>
 <Animation Path="Animations\human\male\locomotion\kneel
\kneel_tac_stepRotate_90_lft_01.caf"/>
 </DBA>
</DBAs>

Animation Events Database (.animevents)
This database stores a list of assets with timed event markups. For example, it might store
footstep sounds. You use the Geppetto to create this database, which gets mapped to the
.chrparams file.

Blend Space (.bspace)
Blend spaces (Bspaces) define how multiple animation assets are blended together. Blend spaces
are parameterized at runtime with movement parameters such as movement speed, movement
direction, turning angle, or slope.

BlendSpace Combination (.comb)
This file combines multiple blend spaces into one, usually of a higher order, and represents a
multidimensional blend space.

Group Files (*.grp)
Group files are exported animation sequences in XML format that are used for track view
animation sequences. Data stored in a sequence includes everything from audio positions to
skeletal animations and camera paths used. .

Chrparams File Setup Using Geppetto

The .chrparams file is used to map animations to a specific character skeleton. With it, you can setup
the mapping of Animations, Animation Events, and Database Animations using Geppetto. The sections
below explain how to map these to the .chrparams file.

Note
Currently, if you want to do anything else such as IK definitions, you will have to manually edit
those items using a text editor.

To add an Animation path to a .chrparams file

1. In Geppetto, in the Assets panel, expand Skeletons, navigate to the character's skeleton
(*.chrparams), and select it.

2. In the Properties panel, find the Animation Set Filter with a # (will display a 0 if this is a new
setup) next to it.

Version 1.6
228

Lumberyard User Guide
Animating Characters

3. Click the # drop-down list and select Add.

4. Click the folder icon next to the empty property field and assign a directory where the animations
for this character’s skeleton will be located.

5. After assigning an animation directory, click Save in the Properties panel to save your changes to
the .chrparams file.

6. Add additional animation directories as needed and modify the sub-fields if you need specific filters
set for your animations.

7. When loading a .cdf file in Geppetto using the skeleton, look for the animations from the assigned
directory listed under the Animations section of the Assets panel.

To add an AnimEvents path to a .chrparams file

1. In Geppetto, in the Assets panel, expand Skeletons, navigate to the character's skeleton
(*.chrparams), and select it.

2. In the Properties panel, find the Events field.

Version 1.6
229

Lumberyard User Guide
Animating Characters

3. Click the folder icon next to the empty property field and assign a directory where the
.animevents file will be located for this character's skeleton.

Note
Only one .animevents file can be assigned per .chrparams file.

4. After assigning the .animevents file, click Save to save your changes to the .chrparams file.

To add a DBA path to a .chrparams file

1. In Geppetto, in the Assets panel, expand Skeletons, navigate to a character's skeleton
(*.chrparams), and select it.

2. In the Properties panel, find the DBA Path field.

3. Click the folder icon next to the empty property field and assign a directory where the .dba files
will be located.

4. After assigning the .dba, click Save in the Properties panel to save your changes to the
.chrparams file.

Version 1.6
230

Lumberyard User Guide
Animating Characters

Chrparams File Elements

All parameters for a character in Lumberyard is stored in various element sections of the
.chrparams.xml file. You can use any text editor to edit this XML file.

Animations

The .chrparams file contains a single <AnimationList> element. This element lists all animation
asset files that the character uses. See the following example.

<AnimationList>
 <Animation name="$AnimEventDatabase" path="animations\human\male
\events.animevents"/>
 <Animation name="$Include" path="animations\human\male\male.chrparams"/>
 <Animation name="$TracksDatabase" path="animations\human\male\hits.dba"/>
 <Animation name="$TracksDatabase" path="animations\human\male
\locomotion.dba" flags="persistent"/>
 <Animation name="#Filepath" path="animations\human\male"/>
 <Animation name="*" path="**.caf"/> <!-- includes all cafs in #Filepath
 and subfolders -->
 <Animation name="_*" path="**.bspace"/> <!-- includes all bspace in
 #Filepath and subfolders and prepend with _ -->
 <Animation name="_*" path="**.comb"/> <!-- includes all comb in
 #Filepath and subfolders and prepend with _ -->
</AnimationList>

Bone LODs

The .chrparams file contains a single <Lod> element section, which lists all joints that the character
uses. See the following example:

<Lod>
 <JointList level="0">
 <Joint name="Bip01 Pelvis"/>
 <Joint name="Bip01 Spine"/>
 </JointList>
 <JointList level="1">
 <Joint name="weapon_bone"/>
 <Joint name="joint_12"/>
 </JointList>
</Lod>

IK Definition

The .chrparams file contains a single <IK_Definition> element section, which defines the joint
that are used for the different IK methods, such as AimIK, LookIK, LimbIK and Animation-Driven IK.

Limb

The .chrparams file contains a single <LimbIK_Definition> element section within
<IK_Definition>. This section lists all the joints that are used for Limb IK, along with the root bone,
end effector, and solver . See the following example section:

<IK_Definition>
 <LimbIK_Definition>

Version 1.6
231

Lumberyard User Guide
Animating Characters

 <IK EndEffector="Bip01 R Hand" Handle="RgtArm01" Root="Bip01 R
 UpperArm" Solver="2BIK"/>
 <IK EndEffector="Bip01 L Hand" Handle="LftArm01" Root="Bip01 L
 UpperArm" Solver="2BIK"/>
 <IK EndEffector="Bip01 R Foot" Handle="RgtLeg01" Root="Bip01 R Thigh"
 Solver="2BIK"/>
 <IK EndEffector="Bip01 L Foot" Handle="LftLeg01" Root="Bip01 L Thigh"
 Solver="2BIK"/>
 </LimbIK_Definition>
<IK_Definition>

Anim Driven

The .chrparams file contains a single <Animation_Driven_IK_Targets> element section within
<IK_Definition>. This section lists all joints used for Animation-driven IK, along with target bones,
blend bones, and weights. See the following example section:

<IK_Definition>
 <Animation_Driven_IK_Targets>
 <ADIKTarget Handle="LftArm01" Target="Bip01 Chin_IKTarget" Weight="Bip01
 Chin_IKBlend"/>
 </Animation_Driven_IK_Targets>
<IK_Definition>

Foot Lock

The .chrparams file contains a single <FeetLock_Definition> element section within
<IK_Definition>. This block lists all joints used for foot step alignment and lock effects. See the
following example section:

<IK_Definition>
 <FeetLock_Definition>
 <RIKHandle Handle="RgtLeg01"/>
 <LIKHandle Handle="LftLeg01"/>
 </FeetLock_Definition>
<IK_Definition>

Recoil

The .chrparams file contains a single <Recoil_Definition> element section within
<IK_Definition>. This block lists all weapon joints and impact joints used for recoil effects, along
with weights and delay times. See the following example section:

<IK_Definition>
 <Recoil_Definition>
 <RIKHandle Handle="RgtArm01"/>
 <LIKHandle Handle="LftArm01"/>
 <RWeaponJoint JointName="weapon_bone"/>
 <ImpactJoints>
 <ImpactJoint Arm="3" Delay="0.3" Weight="0.2" JointName="Bip01
 Pelvis" />
 <ImpactJoint Arm="3" Delay="0.2" Weight="0.3" JointName="Bip01 Spine"
 />
 <ImpactJoint Arm="3" Delay="0.1" Weight="0.5" JointName="Bip01
 Spine1" />
 <ImpactJoint Arm="3" Delay="0.0" Weight="1.0" JointName="Bip01
 Spine2" />

Version 1.6
232

Lumberyard User Guide
Animating Characters

 <ImpactJoint Arm="3" Delay="0.0" Weight="1.0" JointName="Bip01
 Spine3" />
 <ImpactJoint Arm="3" Delay="0.0" Weight="1.0" JointName="Bip01
 Neck" />

 <ImpactJoint Arm="3" Delay="0.10" Weight="0.10" JointName="Bip01 R
 Thigh" />
 <ImpactJoint Arm="3" Delay="0.05" Weight="0.05" JointName="Bip01 R
 Calf" />
 <ImpactJoint Arm="3" Delay="0.10" Weight="0.10" JointName="Bip01 L
 Thigh" />
 <ImpactJoint Arm="3" Delay="0.05" Weight="0.05" JointName="Bip01 L
 Calf" />

 <ImpactJoint Arm="2" Delay="0.0" Weight="1.0" JointName="Bip01 R
 Clavicle" />
 <ImpactJoint Arm="2" Delay="0.00" Weight="0.50" JointName="Bip01 R
 UpperArm" />

 <ImpactJoint Arm="1" Delay="0.01" Weight="0.7" JointName="Bip01 L
 Clavicle" />
 <ImpactJoint Arm="1" Delay="0.00" Weight="0.50" JointName="Bip01 L
 UpperArm" />
 </ImpactJoints>
 </Recoil_Definition>
<IK_Definition>

Look

The .chrparams file contains a single <LookIK_Definition> element section within
<IK_Definition>. This block lists all joints used for Look IK, along with eye attachments, limits, and
rotations. See the following example section:

<IK_Definition>
 <LookIK_Definition>
 <LEyeAttachment Name="eye_left"/>
 <REyeAttachment Name="eye_right"/>

 <DirectionalBlends>
 <Joint AnimToken="LookPoses" ParameterJoint="Bip01 Look"
 StartJoint="Bip01 Look" ReferenceJoint="Bip01 Pelvis"/>
 </DirectionalBlends>

 <RotationList>
 <Rotation Additive="1" Primary="1" JointName="Bip01 Pelvis"/>
 <Rotation Additive="1" Primary="1" JointName="Bip01 Spine"/>
 <Rotation Additive="1" Primary="1" JointName="Bip01 Spine1"/>
 <Rotation Additive="1" Primary="1" JointName="Bip01 Spine2" />
 <Rotation Additive="1" Primary="1" JointName="Bip01 Spine3" />
 <Rotation Additive="0" Primary="1" JointName="Bip01 Neck" />
 <Rotation Additive="0" Primary="1" JointName="Bip01 Head" />
 <Rotation Additive="0" Primary="1" JointName="Bip01 Look" />

 <Rotation Additive="0" Primary="0" JointName="def_r_brow_A" />

 <Rotation Additive="0" Primary="0" JointName="def_r_brow_B" />
 <Rotation Additive="0" Primary="0" JointName="def_r_brow_C" />
 <Rotation Additive="0" Primary="0" JointName="def_r_upperEyeLid" />

Version 1.6
233

Lumberyard User Guide
Animating Characters

 <Rotation Additive="0" Primary="0" JointName="def_r_lowerEyeLid" />

 <Rotation Additive="0" Primary="0" JointName="def_l_brow_A" />

 <Rotation Additive="0" Primary="0" JointName="def_l_brow_B" />
 <Rotation Additive="0" Primary="0" JointName="def_l_brow_C" />
 <Rotation Additive="0" Primary="0" JointName="def_l_upperEyeLid" />
 <Rotation Additive="0" Primary="0" JointName="def_l_lowerEyeLid" />
 </RotationList>

 <PositionList>
 <Position Additive="1" JointName="Bip01 Pelvis"/>

 <Position Additive="0" Primary="0" JointName="def_r_brow_A" />

 <Position Additive="0" Primary="0" JointName="def_r_brow_B" />
 <Position Additive="0" Primary="0" JointName="def_r_brow_C" />
 <Position Additive="0" Primary="0" JointName="def_r_upperEyeLid" />
 <Position Additive="0" Primary="0" JointName="def_r_lowerEyeLid" />

 <Position Additive="0" Primary="0" JointName="def_l_brow_A" />

 <Position Additive="0" Primary="0" JointName="def_l_brow_B" />
 <Position Additive="0" Primary="0" JointName="def_l_brow_C" />
 <Position Additive="0" Primary="0" JointName="def_l_upperEyeLid" />
 <Position Additive="0" Primary="0" JointName="def_l_lowerEyeLid" />
 </PositionList>
 </LookIK_Definition>
<IK_Definition>

Aim

The .chrparams file contains a single <AimIK_Definition> element section within
<IK_Definition>. This block lists all joints required for Aim IK, along with positions, rotations, and
procedural adjustment joints. See the following example section:

<IK_Definition>
 <AimIK_Definition>
 <DirectionalBlends>
 <Joint AnimToken="AimPoses" ParameterJoint="weapon_bone"
 StartJoint="Bip01 R UpperArm" ReferenceJoint="Bip01"/>
 </DirectionalBlends>

 <RotationList>
 <Rotation JointName="Bip01 Spine" Primary="1" Additive="0" />
 <Rotation JointName="Bip01 Spine1" Primary="1" Additive="0" />
 <Rotation JointName="Bip01 Spine2" Primary="1" Additive="0" />
 <Rotation JointName="Bip01 Spine3" Primary="1" Additive="0" />
 <Rotation JointName="Bip01 Neck" Primary="1" Additive="0" />
 <Rotation JointName="Bip01 Head" Primary="0" Additive="0" />

 <Rotation JointName="Bip01 R Clavicle" Primary="1" Additive="0" />
 <Rotation JointName="Bip01 R UpperArm" Primary="1" Additive="0" />
 <Rotation JointName="Bip01 R ForeArm" Primary="1" Additive="0" />
 <Rotation JointName="Bip01 R Hand" Primary="1" Additive="0" />
 <Rotation JointName="weapon_bone" Primary="1" Additive="0" />

 <Rotation JointName="Bip01 L Clavicle" Primary="0" Additive="0" />

Version 1.6
234

Lumberyard User Guide
Animating Characters

 <Rotation JointName="Bip01 L UpperArm" Primary="0" Additive="0" />
 <Rotation JointName="Bip01 L ForeArm" Primary="0" Additive="0" />
 <Rotation JointName="Bip01 L Hand" Primary="0" Additive="0" />
 </RotationList>

 <PositionList>
 <Position JointName="Bip01 R Clavicle"/>
 <Position JointName="weapon_bone"/>
 <Position JointName="Bip01 L Clavicle"/>
 </PositionList>

 <ProcAdjustments>
 <Spine JointName="Bip01 Pelvis"/>
 <Spine JointName="Bip01 Spine"/>
 <Spine JointName="Bip01 Spine1"/>
 <Spine JointName="Bip01 Spine2"/>
 <Spine JointName="Bip01 Spine3"/>
 </ProcAdjustments>
 </AimIK_Definition>
<IK_Definition>

Character Skeletons

Use the following procedure to add a character skeleton to the SkeletonList.xml file.

To add a character skeleton to the skeleton list

1. In the Assets panel under Compression (Animations), click Skeleton List.

2. In the Properties panel under Aliases, make sure the skeleton .chr file is in the list. If not, do the
following:

a. Click the number button next to Aliases and click Add.

b. Click the folder icon next to the new entry, then select a suitable skeleton.

c. Name the added skeleton alias - this name is used to refer to the skeleton.

Skeleton Aliases

This file provides a table that maps skeleton aliases used in the .animsettings file to skeleton file
names. This file contains skeleton structure information that is needed during animation compression.

Importing Character Animations

You can easily import character animations using Geppetto. The character's skeleton needs to be part
of the skeleton list before you can start importing animations. Have your character loaded in Geppetto
before following the steps below.

To import character animations

1. In Geppetto, in the Assets panel, under Animations, select the animation to import. All
unimported animations become unavailable.

2. In the Properties panel, click Import.

Note
You may need to select Skeleton Alias in the menu in the event that the loaded
character could not be matched to the skeleton alias.

Version 1.6
235

Lumberyard User Guide
Animating Characters

Compressing Character Animations

For best results, try to employ character assets that use the least amount of memory but are animated
at the highest possible quality. An uncompressed animation contains a key for every frame in the
animation and for each joint that has been exported. The goal is to reduce the amount of joints and
keys to minimize the size. There are separate channels for rotation keys and position keys per joint.

For maximum compression, remove from the animation any joints that don't contribute much to the
animation. To know whether a joint contributes to an animation, use the Resource Compiler, which
determines how much the joint moves during the animation and compares it to the provided epsilon
values. If the joint moves less than what the epsilon specifies, the keys will be removed for the joint.
Use higher epsilon values to remove more joints. Use Position Epsilon for the position channel and
Rotation Epsilon for the rotation channel.

Removing Joints Automatically

The two epsilon values are global values for the entire animation. Additive animations have smaller
movements, so small values are used for the epsilon values.

Either all the keys are retained for a channel (position and rotation), or they are deleted.

To remove joints automatically

1. In Geppetto, in the Properties panel, expand Compression, Controller Removal Threshold.

2. Change the values for Position Epsilon and Rotation Epsilon as needed.

Removing Joints Manually

By default, each joint uses two epsilon values to determine whether the joint is removed.

To remove individual joints manually

1. In Geppetto, in the Properties panel, expand Compression, Per-Joint Settings and then select
the check box next to the joint to delete it. Both the Position and Rotation channels are removed
for the selected joint.

Version 1.6
236

Lumberyard User Guide
Animating Characters

2. Enter a value in the box next to the joint to change the multiplier that is applied to the compression
value. By default this value is 1.

Animation Tags

Each animation can have a list of tags associated with it. You can use tags to accomplish the following:

• Select animations that have to go into a specific DBA table by means of an animation filter.

• Apply compression to a group of animation files by means of compression presets

Tags are located in the Properties panel when you select an animation in the Assets panel.

To add a new tag, click the number besides Tags and click Add.

Animation Filters

Use an animation filter to choose a set of animation files for specific DBA or compression preset. An
animation filter is defined as a tree of condition nodes.

DBA files are bundles of animations that can be streamed in and out as one. They are typically smaller
and take up less memory than individual animations. DBAs are created using the same filters as
compression presets. You can define a combination of criteria such as location, name, or tags to select
animations for a specific DBA.

DBA descriptions are saved to Animations/DBATable.json. The resource compiler uses
this .json file at build time to create the actual DBA files. The DBA Table can be found under
Compression (Animations/) in the Assets panel.

Version 1.6
237

Lumberyard User Guide
Animating Characters

DBA Table Options

Conditions Description

Empty filter No conditions applied

And Succeeds when all of the child conditions succeed.

Or Succeeds when at least one of the child conditions succeeds.

In folder Checks whether animation is located within a specific directory.

Has tags Checks whether animation has all of the listed tags. Tags are
stored in ANIMSETTINGS and can be set in Animation Properties.

Contains in name Checks for a substring within an animation name.

Contains in path Checks whether animation is located within a specific file path.

Skeleton alias Checks whether animation uses a specific skeleton alias. Skeleton
aliases are defined in the skeleton table.

Compression Presets

You can use compression presets to apply the same set of compression rules to multiple animations at
once. Presets are listed under Compression (Animations/) in the Assets panel.

Each compression preset entry defines a filter that can match animations according to a certain filter.
Filter criteria can include a folder, file name, or tags. You can use logical operations to combine these
criteria into a complex condition like "in folder and doesn't contain specific tag but has substring in
name." When multiple presets match the same animation, only the first one is used. You can preview
which compression setting entry was applied to animation in the Properties panel by selecting a
specific animation in the Assets panel.

Version 1.6
238

Lumberyard User Guide
Animating Characters

Working with Additive Animations

Additive animations are animations that can be added as layers on top of a base animation. The
additive animation is usually a partial-body animation, so it can be applied to a base full-body animation
without interfering with joint controllers and other important parts of the base animation. With additive
animations, you can reuse the same full body-animations and add lots of variation to it.

An additive animation preserve the underlying animation and style and as such is great for adding
poses and animations to the upper body. Since the underlying animations are not overwritten, this
can reduce the overall asset count greatly, add a lot of variation to the animations, and reduce the
monotonous look.

For example, you can use additive animations for breathing, looking around, flinching, and posture
changes. To prevent foot sliding, additive animations cannot modify bones below the character's hips.

You start an additive animation like a regular animation. Lumberyard automatically recognizes it after it
has been processed by the resource compiler.

Creating Additive Animations

To create an additive animation, you start with a typical base pose and then animate only those bones
and other parts that you want to include in the additive animation. The first frame (frame 0) is the base
pose and the rest of the animation becomes the delta. Bones that do not differ from the base pose
are not used. The resource compiler subtracts the first frame during export; it is not part of the final
animation.

Importing Additive Animations

To import an additive animation, select Additive check box for the .i_caf animation in the
Propertiespanel in Geppetto.

Testing Additive Animations

You can test an additive animation in just a few steps

To test an additive animation

1. In Lumberyard Editor, click View, Open View Pane, Geppetto.

2. Click File, Open and load the applicable character .cdf file.

3. Make sure a full body animation is playing on the first animation layer under Animation Layers in
the Scene Parameters panel.

Version 1.6
239

Lumberyard User Guide
Animating Characters

4. Add a new animation layer in the Scene Parameters panel by clicking on the number next to
Animation Layers, and then click Add.

5. Select an additive animation from the Animation list in the Assets panel to add it to the new
animation layer. Adjust the weights of the additive animation as needed by changing the value (0
to 1) next to the new animation layer.

Character Animation Layers

By layering animations, you can apply an animation to only a few select bones, rather than to the whole
skeleton. Lumberyard has a maximum of 16 virtual layers available for use. Layer 0 is the primary
base layer and contains the base full-body animations, joints, and blend spaces. Higher levels contain
additive partial-body animations and overwrite animations, meaning that animations in higher layers
overwrite animations in lower layers. As long as they don't share the same joints, these animations
won't interfere. You can combine all layers into a single layer, which applies them to a character
simultaneously.

If an animation played in layer 0 has no controller for a specific bone, the default transformation
from the character rig is used instead. Layer 0 is the only layer that supports the root bone and the
locomotion locator.

Each layer can play and blend animations and has its own transition queue that handles the blending in
and out of animations in the layer. The default behavior for animations in a layer is as follows:

1. Play animation once; then blend it out (weights decrease to 0).

2. Remove animation from the queue when the weight reaches 0.

3. Blend in the next animation (weight increases from 0 to 1).

In Geppetto, only one animation layer is active by default for previewing animations. Any time you
select an animation, it plays on the default base layer. You can find the Animation Layers listed in the
Scene Parameters panel of Geppetto.

To add animation layers using Geppetto

1.

2. Click on the drop down menu next to Animation Layers and click on Add. The newly added layer
becomes the active layer for you to select a new animation from the Animations list in the Asset
panel to assign to the new layer.

3. Repeat this step for as many animation layers as you need. At any point, you can click on a
specific animation layer to make it active in order to change the animation playing on that layer.

4. Adjust the blend weight (0 to 1) for each layer.

5. Enable and disable layers using the checkboxes next to each layer.

You can enable on-screen debug information to see which animations are queued and playing, as well
as information about the applied pose modifiers and IK.

Accessing Animation Layers using Code

To access animation layers via code, use the ISkeletonAnim object. In the example below, a looping
animation starts on layer 2 and is fully blended in 0.5 seconds.

ISkeletonAnim& skeletonAnim = ...;
CryCharAnimationParams params;
params.m_nLayerID = 2;

Version 1.6
240

Lumberyard User Guide
Animating Characters

params.m_nFlags |= CA_LOOP_ANIMATION;
params.m_fTransTime = 0.5f;

// Starting the animation by id. Alternatively use StartAnimation to start an
 animation by name.
skeletonAnim.StartAnimationById(animationId, params);

To smoothly blend out animations in a layer, use the StopAnimationInLayer function:

ISkeletonAnim& skeletonAnim = ...; // Blend out all animations in layer 2
 in
 0.5 seconds: skeletonAnim.StopAnimationInLayer(2, 0.5f);

To force the transition queue in a specific layer to immediately clear all animations:

ISkeletonAnim& skeletonAnim = ...;
 skeletonAnim.ClearFIFOLayer(layerId);

To force transition queues in all layers to clear immediately, use StopAnimationsAllLayers, as
follows:

ISkeletonAnim& skeletonAnim = ...;
 skeletonAnim.StopAnimationsAllLayers();

Working with Blend Shapes (Morphs)

Animated blend shapes, also known as morph target animation, is a method that stores a deformed
version of a mesh as a series of vertex positions. In each keyframe of an animation, the vertices are
then interpolated between these stored positions.

Blendshape animations are created by adding bones to the base skeleton. This involves explicit name
matching between bone names and the blend shape controls.

For blend shape export requirements, see Exporting Blendshapes (p. 185).

Blend Shape Authoring Requirements in Maya

As blend shapes only work for .skin attachments, use Maya to create a base .chr like a cube or
triangle that is skinned to the export skeleton.

See the following requirements and guidelines when creating a blend shape scene in Maya:

• All blend shape meshes must exist be in the same world space location as the skinned base mesh.
Move your blend shape meshes on top of the skinned base mesh.

• Smooth bind at least one joint to the blend shape base mesh.

• Make sure the root joint of the skeleton hierarchy has no (zero) rotations.

• Create an empty SceneRoot group node and a root joint as the top-level node of the deforming
skeleton. Do not skin the root joint into your character mesh.

• Set the SceneRoot group node and the root joint both looking forward with their Z-axes aligned to
the world Y-axis and their Y-axes aligned to the world Z-axis.

• For each blend shape mesh, create a joint in the origin and name it
blend_shape_mesh_name_blendWeightVertex

• The _blendWeightVertex joints should be parented under the root joint for the skeleton hierarchy.

Version 1.6
241

Lumberyard User Guide
Animating Characters

• Manually create the blendWeightVertex joints and connections. Connect and map the weight
output range (0 to 1) of the blend shape node to (0 to 100) to the translateX attribute of these
helper joints.

• Nonrigid deformations require real-time tangent updates to get correct shading. Because such
tangent updates are expensive, in order to minimize CPU cost, use vertex colors to transfer a blue
(0, 0, 255) painted mask in your DCC tool to mark the most important facial parts.

• Tangent updates only work with 8-weight CPU skinning. To implement that, open the .cdf file and
add flags=8 on the line that lists the applicable skin attachment. This skinning makes the morphs
expensive to use, so use it sparingly.

Blend Shape Setup in Lumberyard

Use the following procedure when setting up a blend shape in Lumberyard using Geppetto:

To set up a blend shape in Geppetto

1. Create a SkeletonList.xml file and place it in the \Animations directory and add the
following skeleton element block to the file:

<SkeletonList>
 <Skeleton name="base_skel" file="exported_character_path_filename.chr"/>
</SkeletonList>

2. Add a .skin attachment to the skeleton .chr file.

3. By default, Geppetto will add a Joint Attachment. Change this to a Skin Attachment and browse
for the .chr file you exported earlier.

4. Enable Software Skinning for the blend shape to work.

5. Create a .chrparams file.

6. Add an Animation Set Filter and point it at the directory of the exported animation file.

7. Browse the directory containing the exported animation file and select the default animation.

8. Add a new .animsettings file and save it.

9. Browse for the saved .cdf file. Select and double-click the default animation.

Working with Blend Spaces (Bspaces)

Lumberyard supports blend spaces, also known as locomotion groups or LMGs, which are related
motion parameters that you use to create motion clips. Specifically, an asset's kinematic, physical, and
other high-level motion-related parameters are mapped onto corresponding features that are stored
in the animation clips. By storing such motion as parameters, you can create controllable interactive
animations.

With blend spaces, animation blending is treated as geometry. The structure of a blend space is similar
to a character mesh with a vertex buffer and index buffer. Each animation clip represents a point on
a coordinate system. Specifically, each animation is associated with a 1D, 2D, or 3D location in a
blend space. You can play blend spaces on any layer, and they can contain additive or partial body
animation.

Blend spaces (.bspace file format) in Lumberyard are XML-based file maps of animation blends
that the Mannequin system uses. A .comb file represents a multidimensional blend space. Geppetto
supports hot-loading of these XML files. This means you can change the XML file with a text editor,
and Lumberyard updates it automatically and renders the result. This makes it ideal for prototyping and
experimentation. Almost all parameters are identical for 1D, 2D, and 3D blend spaces.

Lumberyard supports blend space control of the following parameters:

Version 1.6
242

Lumberyard User Guide
Animating Characters

• Move Speed

• Turn Speed

• Travel Angle

• Slope

• Turn Angle

• Travel Distance

• Blend Weight

Displaying Blend Spaces

The best way to get a feeling how blend spaces work internally, is to start a simple 2D-BSpaces,
visualize it in Geppetto and a play around with the different debug options.

To display blend spaces

1. Open Geppetto and load a character that has a blend space file.

2. Click View, Enable Blend Space Preview. This displays the Blend Space Preview window on
the right side of the Geppetto window between the Scene Parameters and Properties panels.

3. Detach the Blend Space Preview window from the Geppetto window by clicking the Toggle
Floating button. Once detached, adjust the size of the Blend Space Preview window by grabbing
it's corners.

4. Under the Assets Panel, under Animations, select the blend space file. The character displays in
the preview window at each point on the grid that represents the blend space. The character in the
Geppetto window is also animated based on the blend space controls.

5. Use the same viewport controls to navigate within the Blend Space Preview window as you
would in the Geppetto window.

6. To adjust what part of the blend space is being displayed in Geppetto window, go to the Scene
Parameters panel and expand the blend space animation layer to use the sliders to change the
blend space's dimensions, such as travel speed and angle.

7. Adjust the blend space dimensions, examples, and annotations listed under the Properties panel
as needed.

1D Blend Spaces

For 1D blend spaces, you can control a single character parameter X, such as movement speed.

In 1D blend spaces all points are on line segments. It is important that p0 points to the lower parameter
and p1 points to the higher parameter. If the order is reversed or both parameters are identical, an
error results.

Make sure that the line has no uncovered gaps and no overlapping line segments. At runtime,
Lumberyard checks whether the input parameter is inside a line segment and then interpolates the
value between the two animations.

2D Blend Spaces

2D blend spaces involve changing two parameters, X and Y, independently. This means when one
parameter is changed, the other parameter stays constant and vice versa. An example of a 2D blend
space is a character that moves at different speeds while also turning while moving. When the speed is
changed, the turn radius (body angle) stays the same; and when the turn radius is changed, the speed
is not affected.

In 2D blend spaces all points are on planar triangles and quads. Looking down onto the blend space,
annotations occur counterclockwise for triangles and quads.

Version 1.6
243

Lumberyard User Guide
Animating Characters

Make sure that the plane has no overlapping triangles and quads and no gaps or holes that are not
covered with a face. At runtime, Lumberyard checks whether the input parameters fall inside a plane,
and then interpolates the values between the three animations (for triangles) or four animations (for
quads).

3D Blend Spaces

For 3D blend spaces, three separate parameters X, Y, and Z are changed independently. For example,
character speed, turn radius, and travel angle can be changed.

In 3D blend spaces all points are inside of volume tetrahedrons, pyramids, and prisms. All have a
ground plane (3 or 4 points) and a tip (1 or 2 points). If the tip points up, the vertices on the ground
plane must be annotated counterclockwise. If the tip points down, the vertices are annotated clockwise.

Make sure that the space has no overlapping volumes and no holes that are not covered with a
volume. At runtime, Lumberyard checks whether the input parameters are inside of one those volumes
and then interpolates the values between those animations.

3D blend spaces are more difficult to debug, even with a very structured design. Fortunately, many
higher dimensional blend spaces are a combination of simple lower dimensional blend spaces. This
relationship makes it possible to combine two 2D blend spaces into a 3D space and two 3D blend
spaces into a 4D blend space.

Number of Assets for Movement

Four assets are the minimum, but eight are the recommended minimum for realistic 360-degree
movement. Diagonal blends usually don't look as good as forward and sideways motions. Specifically,
diagonal blends can create foot-sliding, foot-crossing, and foot dipping through the ground if you only
use four.

Another issue is hip rotation. Usually the hips point to the right when sidling right and to the left when
sidling left. However, doing quick left to right side steps looks like Samba dancing. For best results,
keep hip orientation static in each blend space, create a new blend space for each hip rotation, and
play an explicit transition to adjust the gait. In this situation, 16 assets may be needed.

Debug Information

The following information is provided in the Blend Space Preview window:

• All animation files available the blend space, as a mini version of the character model. The size of
the model can be controlled by the slider near the top right of the preview window.

• Each model has either a white or red spinning cube at its root joint.

• Each cube has an index. This is the order of the animation clips how they appear in .bpsace XML
file, including all the pseudo examples.

• There is also a green wireframe quat. This shows which assets are currently considered in the blend.
In a 2D blend space there are either triangles (blends between 3 assets) or quats (blends between 4
assets)

• Inside of a triangle or quat there is always a red flashing cursor. You can control it with the blend-
space sliders and see at any time which assets contribute to the final blend.

• The current dimension values are displayed in the window, which corresponds with the current slider
values set by the Scene Parameters animation layer.

Animation Events

Using Geppetto, you can add character animation events by double-clicking in the Playback timeline
window. If you can right-click in the timeline, you can jump to previous and next events. Each animation
can have multiple events specified.

Version 1.6
244

Lumberyard User Guide
Animating Characters

If you need to create a large number of animation events, click View and select Animation Event
Presets. This creates a new Animation Event Presets panel above the Properties panel.

This provided you a set of quickly-accessible animation events, which you can add to the playback
timeline with a double-click. Keys with events corresponding to the presets are colored the same in the
timeline.

Animation events are also accessible from the Properties pane for an animation. These are stored in
an .animevents file, which is referenced from the .chrparams file, which contains lists of animation
events per animation.

You will need to create an .animevents file per character skeleton unless the character shares
skeletons and animations.

Creating the .animevents file

1. Create a new .xml file using a text editor.

2. In the new file, add the following tags: <anim_event_list></anim_event_list>.

3. Name the file using the .animevents extension and save it to the same directory as the
animations it will apply to.

Updating the .chrparams file

1. In Geppetto, in the Assets panel, expand Skeletons, navigate to the character's skeleton
(*.chrparams), and select it.

2. In the Properties panel, find the Events field.

3. Click the folder icon next to the empty property field and assign a directory where the
.animevents file will be located for this character's skeleton.

Note
Only one .animevents file can be assigned per .chrparams file.

4. After assigning the .animevents file, click Save to save your changes to the .chrparams file.

Version 1.6
245

Lumberyard User Guide
Animating Characters

Locomotion Locator Animation Best Practices

The locomotion locator, or Locator_Locomotion bone, is a node that is required for nonlinear
or nonuniform character motions, such as a start or stop transition that has peaks and troughs in
acceleration. For best results, consider doing the following:

• This bone must have the same orientation as the root joint and the SceneRoot node, which is
the positive Y-axis in the local coordinate system. Otherwise animations are rotated to match the
orientation of the locomotion locator bone. This only affects the animation and not the skeletal
orientation.

• Just as the first and last keyframe of your animation cycle should match, the locomotion locator
position relative to the character on the first keyframe should match the position relative to the
character on the last keyframe. For complicated character animations like turns, you must animate
this locator needs.

• The orientation of the locator in an idle-to-move transition should remain looking forward until
keyframe 10.

• Make sure that orientation changes (left, right, left reverse, or right reverse) occur in the following 6
frames so the new orientation is complete at keyframe 16.

• When changing the orientation 180 degrees for reverse transitions, make sure you rotate the locator
0.1 degrees back to its original orientation to avoid flipping the character.

• For swimming transitions or vehicle transitions, the locator can be a straight blend between the
ground position of 0,0,z and end at the Bip01 location and forward-looking direction (positive Y-axis)
of the character.

• For animation loops, set keys for the start and end of the animation only if you need to add a locator
to them. They are technically not needed but can be useful for batch processing.

Streaming Character Animations

Animation can be a very memory-intensive resource. Limited memory budgets, a high number of
animated joints and high animation quality requirements makes it undesirable to have all animations
loaded in memory all the time. Lumberyard alleviates this issue by streaming asset files in and out as
needed.

Animation data is divided into header data and controller data. Given the extreme size difference
between controller and header data, only controller data is streamed in and out. The header data for all
animations is kept in memory at all times.

Animation Header Data

The header contains generic information for an animation such as filename, duration, and flags.
Header data is stored in .CAF files and in the animations.img file.

CAF files contain header information for a single animation, while the Animations.img file contains
header information for all animations in the build. The Animations.img file is obtained as a result of
processing all the animations using the Resource Compiler.

Animation Controller Data

The controller contains animation curves for each joint's position and orientation values needed to play
the animation. Even when compressed, controller data can easily take up more than 95% of the total
memory required for an animation.

The controller data for animations is stored in CAF files, which contains controller information for a
single animation, and a DBA file, which contains controller information for a group of animations.

Version 1.6
246

Lumberyard User Guide
Mannequin System

Mannequin System
Mannequin is in preview release and is subject to change.

Mannequin builds on top of the Geppetto tool to make it easier to construct complex, interactive
character animations. Mannequin provides animation layering, blending, additive animations, and
partial body animations.

The core of Mannequin is the ability to define families of movements that are variations on a theme
(e.g. running injured, running exhausted, running slow, etc.), and to author smooth transitions between
those families. Each variation in a family is called a fragment. Fragments are grouped together into
families by sharing a fragment ID. Each fragment can carry one or more tags (e.g. tired, injured, gun-
in-hand) that selects fragments from within a family during playback, allowing easy authoring of highly
varied and situation-specific animation sequences.

With Mannequin you can simplify complex animation code and avoid manually constructing this degree
of realism. You can also author preview sequences using your fragments and transitions, reducing
iteration time and allowing you to retest scenarios as your animation setup evolves. The Mannequin
runtime allows you to play sequences of fragments that smoothly transition from one to the other under
the control of C++ code or the flow graph visual scripting system.

Topics

• Mannequin System Files (p. 247)

• Creating a Mannequin Entity (p. 250)

• Using Mannequin Editor (p. 250)

• Synchronizing Multiple Characters (p. 276)

• Using Flow Graph with Mannequin (p. 277)

• Debugging Mannequin System Issues (p. 277)

Mannequin System Files

Mannequin is in preview release and is subject to change.

The Mannequin system uses a variety of file types.

Version 1.6
247

Lumberyard User Guide
Mannequin System Files

With the exception of the *.Sequence.xml file, all other .xml files must be created manually using
a text editor. Example files are shown as follows. These files must be saved in the Animations
\Mannequin directory. You can also create subfolders by character if desired.

Controller Definition File (*ControllerDefs.xml)
Used by the game and by Mannequin Editor to define a mannequin setup. This file is typically
referred to from the character Lua file and Mannequin Preview file.

<ControllerDef>
 <Tags filename="Animations/Mannequin/Sample/Character_Tags.xml"/>
 <Fragments filename="Animations/Mannequin/Sample/
Character_FragmentIDs.xml"/>
 <FragmentDefs>
 </FragmentDefs>
 <ScopeContextDefs>
 <Char3P />
 </ScopeContextDefs>
 <ScopeDefs>
 <FullBody3P layer="0" numLayers="3" context="Char3P"/>
 <Additive layer="9" numLayers="3" context="Char3P"/>
 </ScopeDefs>
</ControllerDef>

Animation Database File (*.adb)
Used by the game and by Mannequin Editor to store fragments and transitions. This is typically
referred to from the character Lua file and other systems such the hit death reaction system.

Tag Definition File (*Tags.xml)
Used by the game and by Mannequin Editor to store tag definitions. The controller definition and
animation database files refer to this file.

Version 1.6
248

Lumberyard User Guide
Mannequin System Files

<TagDefinition version="2">
</TagDefinition>

FragmentID Definition File (*FragmentIDs.xml)
Used by the game and by Mannequin Editor to store FragmentID definitions. The controller
definition and animation database files refer to this file.

<TagDefinition version="2">
</TagDefinition>

Character Definition File (*.cdf)
Used by the game and by Mannequin Editor to store the main character (.chr) as well as any
attachment definitions.

Preview Setup File (*Preview.xml)
Used by Mannequin Editor to determine which controller definition file, animation database file,
and character to load.

<MannequinPreview>
 <controllerDef filename="Animations/Mannequin/Sample/
Character_ControllerDefs.xml"/>
 <contexts>
 <contextData name="MainCharacter" enabled="1" database=""
 context="Char3P" model=""/>
 </contexts>
 <History StartTime="0" EndTime="0">
 </History>
</MannequinPreview>

Sequence File (*Sequence.xml)
Used by Mannequin Editor to store animation sequences.

Setting up Mannequin files

Some Mannequin files must be manually setup and edited by hand. Once these files have been set
up, you can go into Mannequin Editor and verify the character is displayed in the viewport by selecting
File, Load Preview Setup, then selecting the *Preview.xml file.

Note
Be sure and select File, Save Changes whenever a change is made.

Setting up the *ControllerDefs.xml file

This file name should match the name of the character so it's easier to recognize. This name should
also be referenced appropriately in the *Preview.xml file.

To setup the *ControllerDefs.xml file

1. Set the Tags filename path to point to the Tags.xml file.

2. Set the Fragments filename path to point to the FragmentIDs.xml file.

3. Save the file.

Setting up the *Preview.xml file

This file name should match the name of the character so it's easier to recognize.

Version 1.6
249

Lumberyard User Guide
Creating a Mannequin Entity

To setup the *Preview.xml file

1. Open the Character_Preview.xml file in a text editor.

2. Set the controllerDef filename path to point to the appropriate Controller Definition file.

3. Set the contextData model path to point to the character model .cdf file you want to use in
Mannequin.

4. Save the file.

Setting up the .adb file

You will also need to set up the Animation Database (.adb) file and assign it to your *Preview.xml
file. Once the .adb file is assigned to the *Preview.xml file, Mannequin fragments can be added.

To setup the .adb file

1. In Mannequin Editor, choose File, Context Editor.

2. Select the MainCharacter entry.

3. Click the Edit button.

4. For the Database field <no animation database (adb)> entry, click the + (Add) button.

5. In the Edit Context window, enter the name of the .adb file. Click OK when done.

6. Verify the Database field in the Edit Context window points to the .adbfile.

7. Click OK in the Edit Context window.

8. Click OK in the Context Editor window.

Creating a Mannequin Entity

Mannequin is in preview release and is subject to change.

You can use the Mannequin system to control complex characters, which are often created by code,
and you can use the Mannequin object entity type to create a character that can host a Mannequin
setup and support any feature of that system.

To create a Mannequin entity

1. In Lumberyard Editor, in the Rollup Bar, click Entity and then select Anim\MannequinObject.

2. Drag the Mannequin object to the viewport.

3. In the Entity Properties, click each of the following to assign the specific files:

• ActionController – Select a *ControllersDef.xml file.

• AnimDatabase3P – Select an *.adb database file.

• Model – Select a character *.cdf file.

Using Mannequin Editor

Mannequin is in preview release and is subject to change.

Mannequin Editor is the primary tool for creating and managing complex character animations.

Version 1.6
250

Lumberyard User Guide
Using Mannequin Editor

To open Mannequin Editor

• In Lumberyard Editor, click View, View Open Pane, Mannequin Editor. You can also open
Mannequin Editor from its icon on the main toolbar for Lumberyard Editor.

Fragments Browser

The Fragments browser occupies the left pane of Mannequin Editor by default, and contains the
FragmentID Editor tab. The Fragments Browser lists all fragments stored in the animation .adb
database file. You use the Fragments browser tab in conjunction with the Fragment Editor tab to create
fragments, change fragment tags, and create FragmentIDs.

To access the Fragments Browser, click the Fragments tab at the bottom left of Mannequin Editor.

You use the FragmentID Editor to edit FragmentID names and fragment definition properties that are
stored in the controller definition ControllerDefs.xml file.

Fragment Editor

The Fragment Editor occupies the central pane of Mannequin Editor. You use the Fragment Editor to
edit mannequin fragments and animation clip properties.

To access the Fragment Editor, click the Fragment Editor tab at the bottom of Mannequin Editor. You
can also start the editor by double-clicking a fragment in the Fragments browser.

Tag Definition Editor

You use the Tag Definition Editor to create and edit tag definition files (*.Tags.xml), which are used
for labeling fragments and transitions. To open the Tag Definition Editor, choose File, Tag Definition
Editor. You can also access it by clicking on the Tag Definition Editor button in the FragmentID
Editor.

Transitions Browser

The Transitions browser occupies the left pane of Mannequin Editor. The Transitions browser lists all
transitions stored in the animation .adb database file. You use the Transitions browser in conjunction
with the Transition Editor to create transitions.

To access the Transition Editor, click the Transitions tab at the bottom left of Mannequin Editor.

Transition Editor

The Transition Editor occupies the central pane of Mannequin Editor. You use it to edit and display
mannequin transitions.

To access the Transition Editor, click the Transition Editor tab at the bottom of Mannequin Editor. You
can also start it access it by double-clicking a transition in the Transitions browser.

Sequences Browser

The Sequences browser occupies the left pane of Mannequin Editor. The Sequences browser lists all
the XML sequence files that are stored in the default sequences directory. You use the Sequences
browser to select the sequences that you want to open in the Sequence Previewer.

To open the Sequences browser, click the Sequences tab at the bottom left of Mannequin Editor.

Version 1.6
251

Lumberyard User Guide
Using Mannequin Editor

Sequence Previewer

The Sequence Previewer occupies the central pane of Mannequin Editor. You use the Sequence
Previewer to edit and view mannequin sequences from an XML sequence file or to test a new
sequence of fragments before saving it to a file.

To access the Sequence Previewer, click the Previewer tab at the bottom of Mannequin Editor.

Animation Database Editor

You use the Animation Database Editor to create .adb files and to edit the rules that determine which
fragments are stored in a specified .adb file.

To open the Animation Database Editor, choose File, Animation Database Editor.

Context Editor

You use the Context Editor to edit the preview setup (*Preview.xml) file. Mannequin Editor needs
the preview setup file to determine which controller definition (*ControllerDefs.xml) file to load,
which animation database (.adb) file to use, and which characters to use in specific scope contexts.

To open the Context Editor, choose File, Context Editor.

Mannequin Error Report

The Mannequin Error Report displays the validation results for any files opened in Mannequin.
Validation is performed every time you open a new Mannequin-related file, with errors and warnings
listed for each fragment. You can copy validation results to the clipboard, emailed, or open thems in
Microsoft Excel.

To see the Mannequin Error Report, click the Mannequin Error Report tab at the bottom of
Mannequin Editor.

Mannequin Fragments (Clips)

Mannequin Editor is in preview release and is subject to change.

The fragment is the basic building block within the Mannequin system. A fragment is a layered
collection of time-sequenced animation clips and procedural clips such as poses, attachments, and
sounds. You can transition from one clip to another, speed up clips, loop them, or cut them up. This is
similar to other nonlinear animation tools. Instead of starting a specific animation directly, the fragment
containing the animation is called first. Fragments are defined by their FragmentIDs and tags.

FragmentIDs represent an animation state, such as crouching, idling, or aiming. You use the
FragmentID to request rragments. Note that multiple fragments often share the same FragmentID.

You use tags to label fragments with easy-to-remember names, such as blink, yawn, or step. If multiple
fragments share the same FragmentID and tag, the fragments are designated as options.

Animators create the animation clips and fragments, while game developers define the FragmentIDs
and tags used in Mannequin.

Topics

• Managing Mannequin Fragments (p. 253)

• Fragment Selection Process (p. 253)

• Using Animation Clips in Fragments (p. 253)

Version 1.6
252

Lumberyard User Guide
Using Mannequin Editor

• Using Procedural Clips in Fragments (p. 254)

• Adding Layers to a Fragment (p. 265)

• Managing Fragment Preview Sequences (p. 265)

Managing Mannequin Fragments

Mannequin Editor is in preview release and is subject to change.

Use the Mannequin EditorEditor to create, copy, and delete fragments.

To create, copy, or delete a fragment

Open Mannequin Editor (p. 250), choose the Fragments tab at the bottom, and do the following. The
Fragments browser (panel) is displayed on the left.

• To create a fragment, select the applicable FragmentID, and then click New.

Tip
Alternatively, you can also drag the corresponding animation from within Geppetto and drop
it onto the FragmentID.

• To copy a fragment, drag it to the desired location.

• To delete a fragment, select it and then choose Delete.

Fragment Selection Process

Mannequin Editor is in preview release and is subject to change.

The following process determines which fragment gets selected for use when a game request is made.

• Determine FragmentID for fragment

• Determine scope mask for FragmentID

• Determine scopes assigned to FragmentID

• Determine scope context assigned for each scope

• Determine scope tags assigned for each scope

• Find best matching fragments in the animation database .ADB file assigned to the scope context for
each scope. A matching fragment must contain all the scope tags for a scope.

• Ranking matching fragments using tag priorities. Fragments are displayed in the Fragments panel
according to rank.

• If there are multiple options with the same tags, the option index is used to select the fragment.

First, the Mannequin system determines which scopes are assigned to the requested fragmentID by
looking up the scope mask for the fragmentID. Typically the fragmentID determines the scope mask
by itself, but it is possible to specify 'overrides' and select different scope masks based on the global
tagstate and requested fragtags. See the file format section in the article on the controller definition
file for more on how this is set up. Also, if the calling action requests a specific SubContext, the scope
mask and global tags coming from this SubContext's definition extends the ones from the original
request. Finally, the scope mask can optionally be extended by the action's 'forced scope mask'.

Using Animation Clips in Fragments

Mannequin Editor is in preview release and is subject to change.

Version 1.6
253

Lumberyard User Guide
Using Mannequin Editor

You can easily add animation clips to a fragment and move them around the fragment timeline as
desired.

To add an animation clip to a fragment

1. In Mannequin Editor, from the Fragment Editor pane, select the applicable fragment or create a
new fragment.

2. Add an animation layer to the fragment by right-clicking on the scope for the fragment in the
Fragment Editor, going under Add Layer, and clicking AnimLayer. It is not possible to add
animation clips until there is an animation layer available.

3. Open Geppetto, select the animation from the Animation list, and then dragging the animation to
the desired location in the timeline window for the fragment.

4. Add an empty animation clip by double-clicking on the timeline. With the empty clip selected, you
can assign an animation by clicking on the folder icon for the Animation property under Anim Clip
Properties.

Understanding Fragment Clip Zones

The timeline window contains various locations and zones. Understanding them and their effect on
fragments can help you add animation clips to a fragment.

The timeline shows various aspects of a clip:

• Blend-in period of the first clip.

• The period where the first clip is playing.

• After the first clip has finished, and last key is repeated by default.

• Blend-in period of the second clip.

• The period where the second clip is playing.

Normally, the second clip is positioned toward the end of the first clip so there aren't any repeating
frames. You can also increase or decrease the blend-in time by dragging the vertical bars.

Moving and Snapping Animation Clips

You can drag a clip to move it along the fragment timeline. The default dragging behavior is to snap to
the beginning, end, or blend time of a clip.

To snap the clip to the timeline, begin dragging the clip and then press Shift as you continue to drag.
This snaps the clip to the timeline markers and ignores the other animation clips.

To disable snapping, begin draging and then press Ctrl as you continue to drag. You can now drag the
clip to any point on the timeline without snapping to the other clips or to the timeline.

Using Procedural Clips in Fragments

Mannequin is in preview release and is subject to change.

Procedural clips are code snippets that you insert into fragments and run alongside animation clips in
that fragment. Like animation clips, procedural clips can be started, stopped, and blended. They are
grouped into Lumberyard (CryAction) and game (GameDLL) types.

Procedural clips can range from playing sounds, controlling joints on a character, or aligning an entity
to a location. Procedural clips communicate with game code by means of parameters or procedural
contexts.

Version 1.6
254

Lumberyard User Guide
Using Mannequin Editor

To edit procedural animation clips, you use the Fragment Editor within Mannequin Editor.

To add a procedural clip to a fragment

1. In Mannequin Editor, from the Fragments Browser, select the applicable fragment or create a
new fragment.

2. Add a procedural layer to the fragment by right-clicking on the scope for the fragment in the
Fragment Editor, going under Add Layer, and clicking ProcLayer. It is not possible to add
procedural clips until there is a procedural layer available.

3. Double-click in the timeline on the ProcLayer to add a new empty procedural clip.

4. Set the procedural clip Type property in the Procedural Clip Properties pane.

CryAction Procedural Clips

The following are classified as CryAction procedural clips.

ActionEvent clip

Sends a CryMannequin event to the action controlling this fragment. Specifically, calls
IAction::OnActionEvent.

Event Name
The name of the event to send.

AimPose clip

Low-level clip to start an AimPose asset. Uses the AimTarget parameter as the target, if it exists. If
not specified, the target is 10m in front of the entity.

Animation
The Aimpose asset.

Blend
The fade-in duration.

Blend Time
The smoothing time for the spherical coordinates. Higher numbers mean the longitude and latitude
have faster smooth aiming at the target.

Animation Layer
The layer (0–16) to play the Aimpose on.

Note
This works differently than the layer parameter inside the LookPose procedural clip,
which is a layer index relative to the scope's first animation layer. For more information on
scopes, see Mannequin Scopes (p. 266).

AISignal clip

Sends an AI signal directly to the AI actor interface of the entity on which the clip is playing.

EnterAndExitSignalNames
Signal names sent on the start and finish of the clip, separated by a | character.

AttachEntity clip

Attaches an entity to a specific attachment point, and then detaches it on exit.

Version 1.6
255

Lumberyard User Guide
Using Mannequin Editor

Attachment Name
The name of the attachment point.

Param Name with EntityId
The name of the parameter that stores the EntityID of the entity to attach.

AttachProp clip

Attaches a .chr, .skel, or .cga to a specific attachment point (and detaches on exit).

Object Filename
Name of the .chr, .skel, or .cga to attach.

Attachment Name
The name of the attachment point.

Audio clip

Runs the audio translation layer (ATL) triggers.

Start Trigger
(Optional) ATL trigger to execute at the start.

Stop Trigger
(Optional) ATL trigger to execute at the end.

Attachment Joint
(Optional) name of a joint on which to execute the trigger.

Play Facial
Requests facial animation to match the sound.

Sound Flags
(Reserved)

FlowGraphEvent clip

Sends events to the flow node Actor ProcClipEventListener.

Enter Event Name
Name of the event to send at start.

Exit Event Name
Name of the event to send at end.

HideAttachment clip

Hides an attachment for the duration of the clip.

Attachment Name
Name of the character attachment to hide.

IKLayerWeight clip

Controls the weight of an animation layer by a joint's X value.

Joint Name
The joint whose X value controls the layer weight.

Scope Layer
The index of the layer within this scope that this clip should control.

Version 1.6
256

Lumberyard User Guide
Using Mannequin Editor

Invert
Use (1.0 - value) as the weight.

LayerAnimSpeed clip

Controls the speed of an animation that is playing in the same scope as this procedural clip through
code. The Blend value is not used.

LayerAnimSpeedParam
The name of the floating point parameter that stores the speed value (0 by default).

ScopeLayer
The layer index within the scope of the animation that you want to control.

Invert
Uses (1.0 – value) as the speed.

LayerManualUpdate clip

Controls the (normalized) time of an animation that is playing in the same scope as this procedural clip
through code.

Param Name
The name of the floating point parameter that stores the normalized time value (0 by default).

Scope Layer
The layer index within the scope of the animation that you want to control.

Invert
Uses (1.0 – value) as the normalized time.

LayerWeight clip

Controls the weight of an animation layer through code.

Layer Weight Param
The name of the floating point parameter that stores the weight to apply to the layer

Scope Layer
The layer index within the scope of the layer that you want to control.

Invert
Uses (1.0 – value) as the normalized time.

LookPose clip

Low-level clip to start an LookPose asset. Uses the LookTarget parameter as the target, if it exists. If
not specified, the target is 10m in front of the entity.

Animation
The Lookpose asset.

Blend
The fade-in duration.

Blend Time
The smoothing time for the spherical coordinates. Higher numbers mean the longitude and latitude
have faster smooth movement toward the target.

Scope Layer
The layer to play the Lookpose on, relative to the scope's first animation layer.

Version 1.6
257

Lumberyard User Guide
Using Mannequin Editor

Note
This works differently than the layer parameter inside the AimPose procedural clip, which
is the actual layer number (0–16).

ManualUpdateList clip

Controls the normalized time of animations playing in multiple layers through code.

Param Name
The name of the parameter of type SWeightData (four floating-point weights), where the
parameter stores the segment normalized time values for the layers.

Scope Layer
The layer index within the scope of the first layer that contains animation that you want to control.
All layers after that within this scope are also controlled (up to four layers).

Invert
Use (1.0 – value) as the weight.

ParticleEffect clip

Plays a particle effect.

Effect Name
Name of the particle effect to spawn.

Joint Name
Optional joint to attach the emitter to.

Attachment Name
Optional attachment interface name to attach the emitter to

Position Offset, Rotation Offset
Local-space offset of the emitter. If Joint Name or Attachment Name is given, the offset is
relative to the host entity.

Clone Attachment
If Attachment Name is given, create a copy of the given interface instead of using it directly. This
allows for more than one effect to play on the same attachment. Disabled by default.

Kill on Exit
Explicitly remove all spawned particles instead of letting them die out on their own. Disabled by
default.

Keep Emitter Active
Keep emitter alive after the procedural clip has ended. Disabled by default.

Note
Use with care - if the particle effect goes away on its own, there is no other way to get rid
of the effect after it started.

PositionAdjust clip

Procedurally moves the entity towards a target position over time. The target position is taken from the
TargetPos parameter, which must be set for the clip to play. Used to align characters to ledges.

Blend
Duration of the adjustment.

Offset, Yaw
Additional offset on top of the target position.

Ignore Rotation
Checks to ignore rotation.

Version 1.6
258

Lumberyard User Guide
Using Mannequin Editor

Ignore Position
Checks to ignore position.

PositionAdjustAnimPos clip

Moves the entity from the source position (its origin in the DCC tool) of the animation to
the target position. If the animation contains movement, this clip might not behave as
expected as the delta is only calculated at the start of the animation. In this case, use the
PositionAdjustAnimPosContinuously clip instead. The target position is taken from the Param
Name parameter.

Blend
Duration of the adjustment.

Param Name
(Optional) Name of the parameter to use. If not specified, uses the TargetPos parameter.

Ignore Rotation
Check to ignore rotation.

Ignore Position
Check to ignore position.

PositionAdjustAnimPosContinuously clip

Moves the entity from the source position (its origin in the DCC tool) of the animation to the target
position. The target position is taken from the TargetPos parameter, which must be set for the clip to
play.

Blend
Duration of the adjustment.

PositionAdjustTargetLocator clip

Takes the character assigned to the specified scope, typically a dependent scope, and moves the
entity towards the location of a specific joint of this character.

Blend
Duration of the adjustment.

Target Joint Name
Name of the joint to align to.

Target Scope Name
The scope that has the dependent character attached that you want to align to.

Target State Name
Not used.

SetParam clip

Sets a float parameter to a certain value.

Param Name
The name of the parameter.

Blend
The time it takes to reach the target value.

Target
The target value.

Version 1.6
259

Lumberyard User Guide
Using Mannequin Editor

Exit Target
The value to go to after the clip ends.

WeightedList clip

Controls the weight of consecutive layers through code.

Param Name
The name of the parameter of type SWeightData (four floating-point weights), which stores the
weights for the layers.

Scope Layer
The layer index within the scope of the first layer that you want to control. All layers after that within
this scope are also controlled (up to four layers).

Invert
Uses (1.0 – value) as the speed.

Game Procedural Clips

The following are classified as GameDLL procedural clips.

Aiming clip

Requests that the Aimpose be enabled.

Blend
Fade-in duration for the Aimpose.

AimSmoothing clip

Relies on Aimpose or Aiming scope setup. Controls smoothing parameters for the polar coordinates
while moving toward or following a target.

Smooth Time Seconds
The "smoothing time" for the spherical coordinates. Higher numbers mean the longitude or latitude
have faster smooth movement towards the target.

Max Yaw Degrees Per Second
Maximum degrees per second in the yaw direction.

Max Pitch Degrees Per Second
Maximum degrees per second in the pitch direction.

AttachPnt clip

Attaches the pick-and-throw weapon.

Attachment Point
Name of the attachment interface to use.

ColliderMode clip

Overrides the ColliderMode for the character.

Valid values:

• Undefined (give up control)

• Disabled (no collisions)

• GroundedOnly

Version 1.6
260

Lumberyard User Guide
Using Mannequin Editor

• Pushable

• NonPushable

• PushesPlayersOnly

• Spectator

CompromiseCover clip

Tells the AI system that cover has been compromised.

CopyNormalizedTime clip

Synchronizes animation within two layers by automatically copying over the segment normalized time
from an animation in one layer to an animation in another layer.

Source Scope
The scope from which to copy.

Source Layer
The layer within the source scope to look for the source animation.

Layer
The layer within the current scope that contains the animation that you want to synchronize

FacialSequence clip

Plays a facial sequence.

Filename
The facial animation sequence .fsq file to play

Continue After Exit
Whether to continue playing the sequence after the clip ends. Ignored when looping the sequence,
in which case the default behavior is used, so the sequence stops playing when the clip ends.

Looping
Whether to loop the sequence.

Looking clip

Relies on Lookpose or Looking scope setup. Requests the Lookpose to be enabled. Blend-in time is
used as fade-in time for the Lookpose.

Blend
Fade-in duration for the Lookpose.

MovementControlMethod clip

Override the movement control method of the character.

Horizontal
Horizontal movement control method. Valid values:

• 0: Undefined (no override)

• 1: Entity driven

• 2: Animation-driven

• 3: Animation-driven with collision in the horizontal plane

Vertical
Vertical movement control method. Valid values:

Version 1.6
261

Lumberyard User Guide
Using Mannequin Editor

• 0: Undefined (no override)

• 1: Entity-driven

• 2: Animation-driven

Ragdoll clip

Makes a character turn into a ragdoll and optionally blend back to animation.

Blend
Defines the time range during which the character starts randomizing.

Sleep
When set to 0, the AI exhibits ragdoll behavior. When set to 1, the AI stays alive during the ragdoll
phase and blends back to animation.

Stiffness
Determines how much the ragdoll behavior follows the animation.

Note
The Sleep parameter is only used by the blend-from-ragdoll game code, which is triggered by
calling CActor::Fall().
This triggers the CAnimActionBlendFromRagdollSleep, which makes the character
exhibit ragdoll behavior: It plays the fragment with fragmentID BlendRagdoll and tags
containing standup+blendin+ragdoll. This fragment has to contain a Ragdoll clip with
the sleep value set to 1.
For standing up, a CAnimActionBlendFromRagdoll is started after the ragdoll phase has
ended. This action relies on all possible standup animations to be an option for the fragmentID
BlendRagdoll and tags containing standup+blendout. The best matching animation is
chosen based upon the first frame of these.

SetStance clip

Tells an AI character it is in a certain stance. It does not trigger stance-change animation. This is
useful to annotate an animation that ends up in a stance other than it started in, such as in a scripted
sequence that can be interrupted. When the sequence is interrupted, the game knows the AI is in
another stance.

Stance
Stance name. Valid values:

• Null

• Stand

• Crouch

• Prone

• Relaxed

• Stealth

• Alerted

• LowCover

• HighCover

• Swim

• Zero-G

SwapHand clip

Temporarily move an attachment from the right hand to the left. This is hardcoded to use the
attachment names weapon and left_weapon.

Version 1.6
262

Lumberyard User Guide
Using Mannequin Editor

TurretAimPose clip

Controls aiming and aimpose of the turret entity.

Blend
The fade in time of the Aimpose.

Animation
The Aimpose asset to use.

Blend Time
Unused.

HorizontalAimSmoothTime
The smoothing time for the yaw direction.

VerticalAimSmoothtime
The smoothing time for the pitch direction.

Max Yaw Degrees Per Second
Maximum degrees per second that the turret rotates in the yaw direction.

Max Pitch Degrees Per Second
Maximum degrees per second that the turret rotates in the pitch direction.

WeaponBump clip

First-person weapon bump animation that occurs when the player lands.

Time
The amount of time that the bump animation plays.

Shift
How much the weapon moves on screen after the player lands.

Rotation
How much the weapon rotates.

WeaponPose clip

Places the weapon on a specific location on the screen. It has three modes: right hand, left hand,
and zoom. Only one of these modes can be active at a time; however, more than one clip can run in
parallel.

Pose Type
The default is 0, which means right hand. This changes the weapon's position on screen starting
from the idle pose position. A value of 1 means zoom, which places the weapon on the screen
when the player decides to zoom in. A value of 2 means left hand, which can be used to modify
the original base pose to accommodate underbarrel attachments.

Zoom Transition Angle
The default is 0, which defines the angle that the weapon rotates during a zoom transition. Zoom
Transition Angle is only read if Pose Type is set to 1 (zoom). Otherwise this parameter is
totally ignored.

Position, Rotation
Defines the pose itself as an offset to the base pose. Rotation is defined in angles.

WeaponRecoil clip

Activates the recoil behavior on the weapon. It triggers a recoil animation every time the weapon fires.

Damp Strength
How quickly the weapon comes back to rest pose after a kick.

Version 1.6
263

Lumberyard User Guide
Using Mannequin Editor

Fire Recoil Time
Attack time of the recoil kick. A value of 0 applies the kick in a single frame, which is not
recommended, since it can make the animation look jerky.

Fire Recoil Strength First, Fire Recoil Strength
The kick strength. Fire Recoil Strength First has the same behavior as Fire Recoil Strength but is
applied to the first shot only. For best results in rapid fire modes, make Fire Recoil Strength First
much higher than Fire Recoil Strength.

Angle Recoil Strength
The degree of deviation the weapon experiences after each shot.

Randomness
The overall organic feeling of the recoil animation.

WeaponSway clip

This clip activates the laziness effect on the player's moving hands. Careful setup of the clip simulates
different weight feelings for different weapons. After the clip is activated, it starts reading the player
movement and computes weapon offsets in real time.

Ease Factor Inc, Ease Factor Dec
How much it takes for the look poses to blend in (Inc) or out (Dec) when player looks around

Velocity Interpolation Multiplier
Fine tune control for strafing.

Velocity Low Pass Filter
The filter applied to the player movement to make the sway more reactive or intensive.

Acceleration Smoothing
Helps make strafe poses less linear and more realistic.

Acceleration Front Augmentation
The degree to which it makes more sense for the strafe poses to move back and forth as opposed
to left and right.

Vertical Velocity Scale
Changes the look poses behavior when player is going up or down a ramp.

Sprint Camera Animation
Do not use.

Look Offset
The degree to which the weapon moves around the screen while player looks around.

Horiz Look Rot
The rotation applied to the weapon when the player looks left and right.

Vert Look Rot
The rotation applied to the weapon when player looks up and down.

Strafe Offset
The degree to which the weapon moves when player moves around.

Side Strafe Offset
The rotation of the weapon when the player starts strafing either to the left or to the right.

Front Strafe Rot
The rotation of the weapon when the player starts moving forward or backward.

WeaponWiggle clip

Activates weapon wiggling and shaking.

frequency
Shake frequency.

Version 1.6
264

Lumberyard User Guide
Using Mannequin Editor

intensity
Shake intensity.

Adding Layers to a Fragment

Mannequin is in preview release and is subject to change.

You can add multiple layers of animation clips to one fragment. In these layers, you can place additive
or override animations to add variation to the base layer's animation. In some instances, the number of
layers you can add may be limited by the scope. For information about scope, see Creating and Editing
Scopes (p. 266).

To add a layer to a fragment

1. In Mannequin Editor, from the Fragment Editor pane, right-click the fragment scope, and then
click Add Track, AnimLayer.

2. If you’re adding a procedural clip layer instead of an animation layer, when you right-click on the
fragment scope, go to Add Track and click on ProcLayer. Currently, when you add a new layer,
it is added directly below the lowest layer. You cannot change the order of layers at this time,
instead, just reorganize the clips as necessary.

Managing Fragment Preview Sequences

Mannequin is in preview release and is subject to change.

You can save, load, and view fragment preview sequences in Mannequin Editor.

To save a fragment preview sequence

1. In Mannequin Editor, in the Sequences browser, under Sequences, select the sequence.

2. Click Previewer, Save Sequence. Name the sequence and click Save.

To load a fragment preview sequence

1. In Mannequin Editor, in the Sequences browser, under Sequences, select the sequence.

2. Click Previewer, Load Sequence.

You can preview how fragment sequences look without actually running the game. This is useful
for debugging sequences and previewing what-if scenarios, such as how the game would look if
requesting the Move after Idle while Kneeling fragment sequence, for example.

To view a fragment preview sequence

1. In Mannequin Editor, click the Previewer tab at the bottom.

2. Select the sequence and click the start button. You can also rewind and fast forward through the
sequence.

Mannequin Fragment IDs (Animation States)

Mannequin is in preview release and is subject to change.

Version 1.6
265

Lumberyard User Guide
Using Mannequin Editor

A FragmentID is the main label under which a fragment is stored.

FragmentIDs are character animation states, such as moving, idling or firing. Game code uses a
FragmentID to access a fragment. Typically, a number of different fragments may be assigned to the
same FragmentID. For example, the animation could include several different moving fragments, such
as moving while standing, moving while crouching, or moving plus some random variation.

Typically, a game developer creates a different FragmentID for every basic character animation state,
while animators create animation clips and the associated fragments for those FragmentIDs.

You can create and edit FragmentIDs in Fragment Editor within Mannequin Editor. You store the
FragmentIDs in a FragmentID definition file (*Actions.xml), which is referred to from the controller
definition file (*ControllerDefs.xml).

If animations are required between FragmentIDs, you can use a transition.

Mannequin Scopes

Mannequin is in preview release and is subject to change.

Typically, individuals portions of a character's body will be in different animation states. Scopes are
animation channels assigned to the parts of a character's body on which fragments are triggered and
played. For example, one animation fragment can be played for the entire body, another fragment
for the lower body, another fragment for the torso, and another fragment for the head. These scoped
animations can be played independently or synchronized together.

To create and edit scopes, you modify the following parts of the controller definition file
(*ControllerDefs.xml).

• Primary entity (character)

• Attached entities (head, weapon)

• Animation layers

• Animation database for fragments (.adb)

Topics

• Creating and Editing Scopes (p. 266)

• Creating and Editing Scope Contexts (p. 267)

• Using Scope Masks (p. 268)

• Playing Fragments on Scopes (Actions) (p. 268)

Creating and Editing Scopes

Mannequin is in preview release and is subject to change.

Mannequin scopes are stored in the controller definition *ControllerDefs.xml file, which contains
the setup of a mannequin character.

The following shows an example *ControllerDefs.xml file. You use FragmentID Editor in
Mannequin Editor to edit the scope masks and related flags. To edit the remaining sections, you need
a text editor. The FragmentID Editor appears when you create a new FragmentID in the Fragments
pane.

Version 1.6
266

Lumberyard User Guide
Using Mannequin Editor

<ControllerDef>
 <Tags filename="Animations/Mannequin/ADB/sampleTags.xml"/>
 <Fragments filename="Animations/Mannequin/ADB/sampleFragmentIds.xml"/>
 <SubContexts/>
 <FragmentDefs>
 <move scopes="FullBody+Torso" flags="Persistent"/>
 <burst_fire scopes="Torso+Weapon">
 <Override tags="heavyMortar" fragTags="boosted" scopes="Torso"/>
 </burst_fire>
 </FragmentDefs>
 <ScopeDefs>
 <FullBody layer="0" numLayers="3" context="MainContext"/>
 <Torso layer="3" numLayers="3" context="MainContext"/>
 <Face layer="6" numLayers="0" context="MainContext" Tags="scope_face"/>`
 <Weapon layer="0" numLayers="2" context="WeaponContext"/>
 </ScopeDefs>
</ControllerDef>

The controller definitions file can include a number of different tags:

• Tags – References the scope's tag definition (*Tags.xml) file.

• Fragments – References the scope's FragmentID definition (*Actions.xml) file.

• FragmentDefs – Contains one entry for each FragmentID specified in the FragmentID definition
file. For each FragmentID, a scopes attribute defines the scopemask, optional flags attributes that
control fragment play, and the override attribute that overrides the scopemask when certain tags and
fragtags are matched.

• Subcontexts – Llists all subcontexts available.

• ScopeDefs – Defines the scopes and scope contexts used. Each element defines a scope.

Creating and Editing Scope Contexts

Mannequin is in preview release and is subject to change.

A scope context defines which entity, character, and animation database to use. You can use the same
scope context for multiple scopes. Because every scope is attached to a scope context, at least one
scope context is needed for each character.

Scope context properties may change during runtime, so it is possible to swap the entity, character
instance, or animation database at any time. You can use this technique to change weapons or attach
other characters to the player during a synchronized animation, for example.

Scope contexts are defined in the controller definition file (*ControllerDefs.xml).

Version 1.6
267

Lumberyard User Guide
Using Mannequin Editor

The implementation of the animated character game object extension is hardcoded to support the
scope contexts Char1P, Char3P, and Audio.

The controller definitions file must use the Char3P scope context when using Mannequin object or the
actions and layers will not play, as shown below:

<ScopeContextDefs>
 <Char3P />
 </ScopeContextDefs>
 <ScopeDefs>
 <FullBody layer="0" numLayers="3" context="Char3P"/>
 </ScopeDefs>

Using Scope Masks

Mannequin is in preview release and is subject to change.

A scope mask is the set of scopes that a fragmentID runs on. Each fragmentID has a scope mask
associated with it, as defined in the Controller Definition File using the FragmentID Editor. When an
action requests a fragmentID, the action owns the scopes in the FragmentID scope mask and starts
playing fragments on these scopes.

For example, a Fire Weapon fragmentID could have a scope mask containing the weapon scope for
animating the weapon as well as the torso scope. It doesn't need to contain the other scopes of the
character because it can control the torso independently of the rest of the body using additive and
partial-body animations.

Playing Fragments on Scopes (Actions)

Mannequin is in preview release and is subject to change.

Scopes are defined portions of a character's body where fragments are triggered and played. By
playing different sequences of animations (fragments) on specific parts of a character's body (scopes),
realistic movements and motions can be achieved. This process is called a mannequin action.

Version 1.6
268

Lumberyard User Guide
Using Mannequin Editor

One fragment can play on the full-body scope (walking), while another fragment plays on the
torso scope (rotating), and yet another fragment plays on the head scope (looking at target), all
simultaneously.

Fragments use Flow Graph nodes or game code to play on scopes.

Mannequin Tags (Animation Contexts)

Mannequin is in preview release and is subject to change.

When multiple fragments are assigned to a single FragmentID, such fragments are simply variations
of ideas expressed in that FragmentID. With Tags, you can label fragments for more specific character
contexts like crouched, shooting, or scared.

The game looks for tags based upon the state of the game character. For example, when a character
is crouching, the game starts looking for fragments tagged as crouched. And when the character is
using a machine gun, the game looks for fragments tagged as machineGun. If the game is looking for
both of these tags at the same time, it first looks for a fragment with both tags. Next, the game looks for
fragments labeled either machineGun or crouched. Finally, it looks for a fragment with an empty set
of tags that acts as a fallback. Fragments with other tags such as swimming are not selected.

Multiple fragments can have the same set of tags and FragmentID. In this case, the game
automatically assigns each fragment an option index. By default a random option index is chosen, but
you can have the game can select a specific one if needed, such a particular fragment for animation
streaming. For example, if you have 20 variations (options) but want to stream in only one of them, you
can override the random selection process and make sure that the specific variation you streamed in is
selected.

When working with tags, it's useful to know the following terms:

• Tag Definition – A collection of tags.

• Tag Group – A mutually-exclusive set of tags.

• Tag State – A combination of tags, such as crouching+pistol.

Topics

• Using Tag Definitions (p. 269)

• Using Tag State Keys (p. 270)

• Using FragmentID Tags (FragTags) (p. 270)

• Assigning Fragment Tags (p. 271)

Using Tag Definitions

Mannequin is in preview release and is subject to change.

Tag definitions define a collection of fragment tags. You use Tag Definition Editor within Mannequin
Editor to create tag definitions and store them in a tag definition (*Tags.xml) file, or you can create
the tag definitions file manually in a text editor.

Each tag must have a unique name within a tag definition file. Tag definition files can include
(nest) other tag definition files. To edit a nested tag definition, you manually edit the tag Definition
(*Tags.xml) file. For all other tag definitions, you can use the Tag Definition Editor, which you access
from the Fragments pane.

Version 1.6
269

Lumberyard User Guide
Using Mannequin Editor

Note that Lumberyard ignores the casing of tags.

Using Tag State Keys

Mannequin is in preview release and is subject to change.

A tag state is a combination of tags from a tag definition. Tag states are represented by a list of tags
separated by + characters. For example crouching+pistol defines a tag state combining the tags
crouching and pistol.

A game can set global tags describing the current state of the character, or the global tag state. This
typically contains global state information like character type, stance, and weapon attachment for
example.

The global tag state is the tags member of the ActionController SAnimationContext, which is found
with IActionController::GetContext().

Study the following numbered fragment timeline screen shots to understand the use of tag state keys:

• Select the {kneeling+tired} tag state key.

• Disable the tired tag in the key.

• Note the tag state key changes to {kneeling]

The FragmentID (below the tag state key) selected is the default Idle{<default> - 0}. This
fragment represents the best match for the game's request.

For the {kneeling+tired} tag state key, select the tired tag check box again.

Now drag the {kneeling+tired} tag state key to the right in the timeline.

This simulates a situation where the game requests {kneeling+tired} after requesting the
Idle{<default> - o} fragmentID. This means that at the moment Idle is requested, the tags are
not set, and the default FragmentID is selected.

The order in which game requests arrive in the Mannequin system has an influence on which
fragments get selected eventually. For example, if you want to move a certain fragment around, you
need to select both the FragmentID and the tag state key above it.

Using FragmentID Tags (FragTags)

Mannequin is in preview release and is subject to change.

FragmentID-specific tags, also known as fragtags, are tags that are assigned only to fragments with a
specific fragmentID.

Many fragment tags don't have to be available to all fragments. For example, there might be a hit
fragmentID that groups fragments containing hit reaction animations. The actual type of hit, such as
headshot or explosion would then be encoded in tags. But such tags are only useful in the context
of the hit fragmentID, so such tags are considered fragmentID-specific.

Fragtags are created by creating a new tag definition using the Tag Definition Editor in Mannequin
Editor. This new tag definition is then assigned to a FragmentID using the FragmentID Editor.

Each fragmentID can have only one tag definition containing fragtags, but for more complicated cases
you can import other tag definition files hierarchically from the main tag definition.

Version 1.6
270

Lumberyard User Guide
Using Mannequin Editor

Fragtags are stored in separate tag definition files that are linked to from the fragmentID definition file
as sub-tag definitions.

Assigning Fragment Tags

Mannequin is in preview release and is subject to change.

Tags are added to fragments to limit which fragments can get selected. For example, a "tired" tag can
be assigned to a fragment so it only gets selected when the character is tired. Or for example, other
fragments can be assigned "kneeling" or "standing" tags to create different "stance" variations for the
same animation.

For this example, "stance" is considered a tag group. Some tags are inside tag groups, some other
tags, like "tired", are not. Putting tags in a group ensures sure you can only select one of the tags in
the group at the same time. So a character cannot be both "standing" and "kneeling" at the same time
for example, but can be both "kneeling" and "tired". The various tags within a tag group are called tag
options.

The order in which the fragments are listed in the Fragments browser reflects the order in which
they are selected. If there are multiple equivalent matches, the first match in the list is selected. For
example, you might have a tag called "tired" and a tag called "scared." You have one fragment tagged
"tired" and another fragment tagged "scared." The game looks for a fragment for a character that is
both "tired" and "scared." If "tired" and "scared" have the same priority, it is undefined which fragment
is chosen, but the Mannequin Editor shows you the fragments in the selection order.

Mannequin Animation Transitions

Mannequin is in preview release and is subject to change.

Animation transitions blend together multiple fragments in a specified sequence. Specifically, game
code requests multiple FragmentIDs sequentially, and those associated fragments need to be blended
together. With Mannequin, you can specify complex transitions between the fragments, such as
specifying exactly how individual layers within fragments are combined, or the ability to add new
procedural clips in between existing animation clips.

Transitions are stored with their associated fragments in the XML-based animation database .adb file.
The FragmentBlendList element contains the transitions, as the following shows.

<FragmentBlendList>
 <Blend from="" to="idlePose">
 <Variant from="" to="">
 <Fragment selectTime="0" enterTime="0">
 <AnimLayer>
 <Blend ExitTime="0" StartTime="0" Duration="0"/>
 </AnimLayer>
 </Fragment>
 </Variant>
 </Blend>
</FragmentBlendList>

Topics

• Creating and Editing Transitions (p. 272)

Version 1.6
271

Lumberyard User Guide
Using Mannequin Editor

• Setting Transition Parameters (p. 272)

• Cyclic Transitions (p. 273)

Creating and Editing Transitions

Mannequin is in preview release and is subject to change.

Without transitions, a character's motion snaps between two fragment clips using the default blend time
specified for the beginning of the second fragment. Add custom transitions for more realistic motion.

To add a new transition between two fragments

1. In Mannequin Editor, click the Transitions tab and then click the New button near the bottom left.

2. Select the first fragment in Fragment ID From and select any associated tags.

3. Select the second fragment in Fragment ID To and select any associated tags.

4. View the new transition in the Transitions list and the Transitions Preview timeline window. The
transition is colored orange.

By default, the transition duration is the default blend time. You can easily change the transition
duration time.

To change transition duration time

• In the Transitions Preview timeline window, drag the vertical divider line to the right or the left for
the transition to increase or decrease the duration.

To add an animation to a transition

1. In the Transitions Preview timeline window, double-click after the start of the orange transition
block.

2. Select an animation clip in Animation.

3. Drag the new clip in the Transitions Preview timeline window until the blend time of the second
clip overlaps with the end of the new transition clip.

4. Right-click the first fragment and click Insert Transition.

The default transition behavior for a nonlooping fragment is to wait until the end of the fragment to
begin. You can adjust a transition so that a second fragment does not start playing until the first
fragment is finished playing (and not immediately when requested).

To delay transition start time

1. Select any key on the transition.

2. Under Transition Properties, adjust the value of the Earliest Start Time property. This value is
relative to the end of the previous fragment.

Setting Transition Parameters

Mannequin is in preview release and is subject to change.

There are two broad types of parameters that can be edited using Mannequin Editor – action
parameters and motion parameters.

Version 1.6
272

Lumberyard User Guide
Using Mannequin Editor

Action Parameters

These are parameters the game uses when playing actions and procedural clips. Some examples
include providing a target position when aligning an entity, providing a weight value when fading an
animation in or out, or providing a sound parameter.

All action parameters have a name and a value.

Motion Parameters

These are parameters that get passed to the blend spaces (bspaces) parametric animation system.
You can preview how these parameters influence animation by adding keys for them on the Params
track in Mannequin Editor.

Cyclic Transitions

Mannequin is in preview release and is subject to change.

To set up a transition from a looping or parametric animation, set the transition Select Time value
relative to one cycle (or segment) of the animation clip. If the fragment changes duration, the time
would automatically adjust in the proper proportion. You do this by selecting Cyclic Transition under
Transition Properties. This turns the select time into a value between 0 and 1 instead of a value in
seconds.

The following fragment shows:

• The first fragment is looping.

• Cyclic Transition is selected

• The select time is 0.5, and this translates into 50% along the cycle. Also displayed is the range of
the select time, in this case it runs all the way to the end of the cycle. After that the second transition
with select time of 0 is selected.

Unless marked as being locked, cyclic transitions always trump the previous fragment, regardless of
action priority. The Earliest Start Time value is thus effectively ignored.

It is possible to delay transitions in an animation using the Earliest Start Time value. By default,
this value is relative to the end of the previous fragment. For fragments with no clear ending, such
as fragments with looping end clips, this is handled by "locking" the cycling so that transitions are
triggered when preceding animations are a certain portion of their run cycle.

In this case, select both Cyclic Transition and Cyclic Locked. This enables the Earliest Start Time
value to be stored cyclically in that the time restarts at zero after each cycle.

Mannequin Animation Actions

Mannequin is in preview release and is subject to change.

An action is a programmatic construct that used to control animations and synchronize them with the
game, combining game code with simple high-level animation control.

When an action is installed, it "owns" one or more scopes and can request FragmentIDs to play on
those scopes. Each scope can be controlled by only a single action. Many actions can be running in
parallel as long as they all control different scopes.

Although each action can only request one FragmentID at a time, it can nonetheless sequence multiple
such requests in a row. If you want to implement an animation state machine, either you queue multiple
actions that each push a single FragmentID and you handle the state machine externally, or you queue

Version 1.6
273

Lumberyard User Guide
Using Mannequin Editor

a single action that has an internal state machine that requests the appropriate FragmentIDs. The latter
is typically how Lumberyard handles basic locomotion state machines.

The Mannequin ActionController (IActionController) is the root object that controls a character
mannequin. You configure it in a controller definition (*ControllerDefs.xml) file, which defines the
FragmentIDs, scopes, and scope contexts. It also installs actions onto scopes and holds the global tag
state.

Topics

• Creating Mannequin Actions (p. 274)

• Mannequin Action Queuing (p. 274)

• Using Action Subcontexts (p. 275)

Creating Mannequin Actions

Mannequin is in preview release and is subject to change.

You may want to create a new action class or simply use a generic one for simple cases.

With this constructor, you can do the following:

• Set the relevant FragmentID, which is the first FragmentID that gets requested.

• Set any FragmentID-specific tags (frag tags).

• Set the action priority, which is used to manage overlapping actions and actions that want to own the
same scope. Higher numbers indicate higher priority.

The following shows a sample code snippet that creates an action that plays the Idle FragmentID.

const FragmentID idleFragmentId = m_pAnimationContext-
>controllerDef.m_fragmentIDs.Find("Idle");
const int actionPriority = 0;

IActionPtr pAction = new TAction< SAnimationContext >(actionPriority,
 idleFragmentId);

Mannequin Action Queuing

Mannequin is in preview release and is subject to change.

Actions are queued onto the target Mannequin ActionController(IActionController), which is the root
object that controls the character mannequin.

For actors, the ActionController is accessible via the AnimatedCharacter extension
(IAnimatedCharacter::GetActionController()).

A queueing statement looks like the following: pActionController->Queue(pAction);

This is a priority queue where higher priority actions are selected first. For each frame, the Mannequin
system checks whether queued actions can be installed on the applicable scopes. Specifically, the
FragmentID is retrieved and associated scope mask is determined.

If an action has higher priority than all the actions currently owning those scopes, it is installed
immediately and skips any waiting times in transitions. This is called trumping. Otherwise the candidate
action waits for those actions to finish or for a suitable transition to gracefully stop the current action.

Version 1.6
274

Lumberyard User Guide
Using Mannequin Editor

When an action gets selected from the queue, it gets installed on its scopes, and its fragmentID is
pushed on and updated before the next batch of animations are sent off for processing.

Actions that get pushed away are stopped unless the interruptible flag is set, in which case they
get pushed back to the queue and return when they can. The interruptible flag is typically used for
actions controlling Movement or Idling actions. These are low-priority interruptible actions that run by
default on certain scopes but get pushed back by more specific actions.

Using Action Subcontexts

Mannequin is in preview release and is subject to change.

Subcontexts are a way for programmers to explicitly refer to a single logical role (out of multiple such
roles) when requesting an action. Subcontexts are a convenience when dealing with FragmentIDs
whose scope mask encompasses multiple scope contexts, where each context refers to a different
role. For example, a car could have multiple seats, each one with its own scope and unique associated
tag. Subcontexts do not affect fragments but rather provide additional contextual information when
dealing with actions that involve multiple independent scope contexts.

Subcontexts are defined in the controller definition (*ControllerDefs.xml) file. Each subcontext
has a unique name and exposes a scope mask and global tag state. Using the car example, the
following code shows how the car's controller definition file could define different subcontexts for
different seats, each seat having its own set of scopes.

<SubContexts>
 <Driver scopeMasks="Driver+DoorDriver" tags="Driver"/>
 <Passenger scopeMasks="Passenger+DoorPassenger" tags="Passenger"/>
</SubContexts>

Upon entering the car, a character typically gets enslaved to either the Driver or Passenger scope
context. When requesting a FragmentID that is local to one of the seats (for entering or leaving the
vehicle), the game needs to state the correct subcontexts. This is done by requesting the subcontext in
a mannequin action. The following snippet shows an action installed on a subcontext:

// Driver just entered the vehicle, already enslaved to it
IActionController* pVehicleActionController;
IAction* pEnterVehicleAction;

// ...

// Queue the "EnterVehicle" FragmentID with the suitable SubContext
pEnterVehicleAction->SetFragment(EnterVehicle);
pEnterVehicleAction->SetTagContext(isDriver ? Driver : Passenger); // Change
 SubContext based on which role the enslaved character is supposed to have
pVehicleActionController->Queue(pEnterVehicleDriverAction);

This results in automatically adding the matching scope mask and global tags to the default state
during the fragment selection process for this action. In this example, with the proper setup, Mannequin
would then know which character and which door to animate when processing this action. As such, the
FragmentID can be queried and resolved to different scope masks and ultimately fragments based on
the given subcontext.

Adding Mannequin Audio

Mannequin is in preview release and is subject to change.

Version 1.6
275

Lumberyard User Guide
Synchronizing Multiple Characters

Sound is added in the Mannequin system by inserting audio procedural clips to fragments. Sound
effects can be very granular, with different sounds used for different weapons in different states of firing
for example. The general process is as follows:

• Reserve a scope just for audio, and place an ATL-Trigger on it.

• Edit the scope mask to include the audio scope.

• Add a ProcLayer track for the audio scope.

• Add a procedural clip, and set the type to Audio.

• Set the appropriate start and stop triggers as well as other parameters to affect the sound's
properties.

Synchronizing Multiple Characters

Mannequin is in preview release and is subject to change.

Synchronizing multiple animated characters is a common task. Practical examples include animating
a weapon in sync with a character's body when reloading or firing, or synchronized actions across
multiple characters, such as for stealth kills.

This can be achieved with Mannequin through the use of scope contexts and the concept of coupling
or enslavement.

The first step required to synchronize a secondary character with a primary one is to add an extra
scope and scope context in the host character's Controller Definition *ControllerDefs.xml file. The
secondary character is then attached to the newly-created scope context. The following is an example
ControllerDefs.xml file:

<ControllerDef>
 ...
 <ScopeDefs>
 <FullBody1P layer="0" numLayers="3" context="Char1P"/>
 ...
 <FullBody3P layer="0" numLayers="3" context="Char3P"/>
 ...
 <Weapon layer="0" numLayers="3" context="Weapon"/>
 ...
 <AttachmentTop layer="0" numLayers="3" context="attachment_top"/>
 <AttachmentBottom layer="0" numLayers="3" context="attachment_bottom"/>
 <SlaveChar layer="0" numLayers="3" context="SlaveChar" Tags="slave"/>
 <SlaveObject layer="0" numLayers="3" context="SlaveObject" Tags="slave"/>
 </ScopeDefs>
</ControllerDef>

This example shows seven scopes using seven different contexts, which means that fragments can be
synchronized for up to seven different characters.

Parameters

Scope Scope Context Layers

FullBody1P Char1P 0, 1, 2

FullBody3P Char3P 0, 1, 2

Weapon Weapon 0, 1, 2

Version 1.6
276

Lumberyard User Guide
Using Flow Graph with Mannequin

Scope Scope Context Layers

AttachmentTop attachment_top 0, 1, 2

AttachmentBottom attachment_bottom 0, 1, 2

SlaveChar SlaveChar 0, 1, 2

SlaveObject SlaveObject 0, 1, 2

The Actor:EnslaveCharacter Flow Graph node can be used to couple characters together in order
to play synchronized animations.

When coupling a character, you can optionally use a different Animation Database .ADB file if needed,
depending on setup in the Mannequin Editor. If left empty, fragments will be queried from the host
character's .ADB file.

Using Flow Graph with Mannequin

Mannequin is in preview release and is subject to change.

Some Mannequin system functionality is available using the Actor:PlayMannequinFragment and
Actor:PlayMannequinFragment Flow Graph nodes.

The Actor:PlayMannequinFragment node looks for a fragment to play using the provided
FragmentID and TagState. This fragment is in a Mannequin Action and queued with the given
priority. The Actor:PlayMannequinFragment node can also stop this action using the
ForceFinishLastQueued input, or pause/resume the entire Mannequin ActionController.

Some guidelines and best practices for using this node include the following:

• Make sure that querying fragments do not conflict with AI, player, or game logic if the entity being
targeted is also driven by other game code

• Select priority based on what you want to interrupt. Movement fragments run at priority 4, hit
reactions at priority 5, and death reactions at priority 6.

• You cannot start an action on one node and stop it with another node. Actions are not shared across
nodes.

Debugging Mannequin System Issues

Mannequin is in preview release and is subject to change.

Lumberyard offers a number of methods for debugging Mannequin system issues. In addition to the
ones listed below, you can also analyze an error report.

Topics

• Using Console Variables (p. 277)

Using Console Variables

Mannequin is in preview release and is subject to change.

Version 1.6
277

Lumberyard User Guide
Debugging Mannequin System Issues

Use the following console variables for debugging the Mannequin system.

• mn_allowEditableDatabasesInPureGame mn_DebugAI – Do not store editable databases.

• mn_listAssets – Lists all the currently referenced animation assets.

• mn_reload – Reloads animation databases.

• mn_sequence_path – Default path for sequence files.

Version 1.6
278

Lumberyard User Guide
Cinematics Best Practices

Cinematics System

Cinematics, also known as sequences or cutscenes, are interactive movie animations with time-
dependent control over objects and events. You can use Lumberyard to add cutscenes to your game.

You can also add scripted events so that a sequence of objects, animations, and sounds are triggered
in the game. The player can view these sequences from their own (first person) or another's (third
person) perspective.

Sequences consist of the following elements (listed in hierarchical order), which are created and
managed from Track View editor:

• Node – Each sequence comprises a top-level director (scene) node, one or more camera nodes,
image effects nodes, and entity nodes.

• Track – Depending on the type, each node consists of multiple tracks, such as position, animation,
sound, lighting, text, and events. Tracks are displayed in the track timeline pane.

• Key – A key is a setting for a property at a specific time. As the sequence plays, keys are
interpolated based on their in and out tangent values set in Track View Graph Editor.

Topics

• Cinematics Best Practices (p. 279)

• Using Track View Editor (p. 280)

• Track View Nodes (p. 281)

• Creating Scenes (p. 291)

• Managing Track Events (p. 295)

• Cinematics Cameras (p. 296)

• Cinematics Lighting (p. 304)

• Animating Characters in Scenes (p. 306)

• Adding Player Interactivity (p. 313)

• Using Layers for Scenes (p. 318)

• Capturing Image Frames (p. 318)

• Debugging Cinematic Scenes (p. 319)

Cinematics Best Practices
Consider adopting the following recommended guidelines and best practices when working with
cinematics:

Version 1.6
279

Lumberyard User Guide
Using Track View Editor

• Use AnimObjects for characters, vehicles, and other entities that are animated. In Rollup Bar, click
Entity, Physics\AnimObject.

• Use BasicEntity for brushes and static entities that are simply updated with position or rotation
movement, or are hidden and unhidden.

• To help with performance, whenever possible, disable the Pushable by Player and Rigid Body
entity settings.

• Hide entities on game start. Do not use Flow Graph to hide or unhide entities.

• Disable sounds and particle effects on game start.

• Use camera depth of field (focus) whenever possible as it can hide background scene imperfections.
Use lower levels of detail for better performance.

• Minimize the use of simultaneous multiple effects, full-screen image, or HUD effects. Make sure to
disable them afterwards.

• Use animation precaching to avoid having characters appear in a T-pose when starting a scene in a
game.

• Enable Snapping whenever possible.

Using Track View Editor
Track View Editor is the primary tool for creating and managing cinematic sequences. It is accessed
from Lumberyard Editor by clicking View, Open View Pane, Track View. Track View Editor consists of
the following components:

Track View Toolbars
• Node browser – Tree pane of all nodes and associated tracks.

• Curve Editor – Pane for controlling keys and their interpolation for all sequence entities.

• Track Editor – Track timeline of all sequence tracks. Each row in the timeline corresponds to a track
listed in the accompanying node browser.

• All of the buttons in the Track View editor have descriptions of their use that are visible when you
hover the mouse over them.

Version 1.6
280

Lumberyard User Guide
Using Cutscene Animation Curves (Curve Editor)

Using Cutscene Animation Curves (Curve Editor)
Select a key frame to see the associated tangent handles and then drag the boxes at the key frames or
the ends of the tangent handles (including unify tangents and automatic tangents) to manipulate them.
When moving key frames, hold down Shift to constrain the movement to time only, and Alt to scale
the selected key frames around the play head location.

Track View Nodes
Track View Editor offers a variety of nodes for specific purposes. The top-level node in the tree view is
the sequence - all other nodes are listed below the sequence.

Topics

• Comment Node (p. 281)

• Console Variable Node (p. 282)

• Director (Scene) Node (p. 282)

• Entity Nodes (p. 284)

• Environment Node (p. 286)

• Event Node (p. 286)

• Material Node (p. 287)

• Script Variable Node (p. 288)

• Shadows Setup Node (p. 288)

• Full Screen Effect Nodes (p. 289)

Comment Node
Use the Comment node to add comments to your track view sequence. This is mostly used for
production purposes and is not rendered in the game.

To add a Comment node in Track View

1. In the Track View editor, right-click either the sequence (top node) or the Director node in the tree
as applicable, and then click Add Comment Node.

2. For each of the keys listed below, click the applicable key listed under the Comment node.

3. To position a key, double-click the preferred location on its highlighted row in the timeline. Double-
click the green marker, and then under Key Properties type a value for Value.

Comment Node Key Properties

Property Description

Unit Pos X position of the text horizontally

Unit Pos Y position of the text vertically

Text • Comment – Text string

• Duration – Length of time the node is active

• Size – Font size

• Color – Font color

Version 1.6
281

Lumberyard User Guide
Console Variable Node

Property Description

• Align – Text alignment (Center, Left, Right)

• Font – Font type (default, console, hud)

Console Variable Node
Use the Console Variable node to use and animate console variables in a track view sequence.

To add a Console Variable node in Track View

1. In the Track View editor, right-click either the sequence (top node) or the Director node in the tree
as applicable, and then click Add Console Variable. Type a name for it and click OK.

2. At the bottom of Lumberyard Editor, right-click the text box in the Console window, which opens
up the Console Variables window that displays a list of all available console variables.

3. Pause on the desired console variable to get a tool tip that gives a description and valid values to
use.

4. In the Track View editor select the value key listed under the console variable node.

5. To position a key, double-click the preferred location on its highlighted row in the timeline. Double-
click the green marker, and then under Key Properties type a value for Value.

To animate a console variable

1. In the Track View editor click View, Curve Editor.

2. Click Set In Tangent To Step button (located third button from the left above the timeline window)
to set the keyframes for the console variable.

Director (Scene) Node

To add a Director node in Track View

• In the Track View editor, right-click the sequence (top node), and then click Add Director (Scene)
Node.

The Director (Scene) node contains a camera track that specifies which camera is active during a
sequence. Additionally, sequence-specific nodes, such as a Depth of Field node or Comment node,
can be added under Director nodes to optionally override any of the same nodes set at the sequence
level.

Version 1.6
282

Lumberyard User Guide
Director (Scene) Node

You can add multiple Director nodes in a scene, but only one can be active at a time. To set a Director
node to be active, right-click on the node and click Set as Active Director.

When a Director node is inactive, all child node animations are deactivated. This is useful for enabling
and disabling animation for specific objects for the same shot for offline rendering.

The Capture track can be used to record frames to disk; however, often a more straightforward
approach is to use the Render Output option under Tools in Track View.

You can add the following tracks to the Director (Scene) node:

Director Node Tracks and Key Properties

Track Key Property Description

Create Folder Folders can be optionally used to organize
Director tracks.

Camera Camera Specifies the sequence camera.

 Blend time Number of seconds to use to blend between
sequential cameras in the track

Capture Duration Image capture duration in seconds.

 Time Step Used to set a fixed time step. Units are in 1
fps (frames per second), so a time step value
of .0333 results in a game frame rate of 30 fps.

 Output Format Specifies the image output file format.

 Output Prefix Inserts a prefix in the image file name. For best
results, use the same prefix as the sequence for
clarity.

 Output Folder Specifies the directory where the image output is
stored.

 Buffer(s) to capture Specifies the image capture format. The following
are valid values:

• Frames&misc – Outputs .tga and .hdr
image files.

• Just frame – Outputs normal images in the
format specified.

• Stereo – Captures stereo 3D images (one
frame per eye).

Console Command Console command to execute

Event Triggers events in the Director node LUA script.

FixedTimeStep Sets a fixed time step in order to modify
the game speed. Units are in 1 fps, so a
fixed_time_step value of .0333 results in a
game frame rate of 30 fps.

GoTo Jumps forward or backward in time in a
sequence. Used primarily for key framing time
shifts and to turn parts of a sequence into a
loop. This key automatically applies animation

Version 1.6
283

Lumberyard User Guide
Entity Nodes

Track Key Property Description

blending on all currently playing animations in the
sequence.

Music Mood(T) or Volume(F) The first Boolean specifies whether the key
should change mood or volume according to the
corresponding mood or time property of that key.

 Mood (if Mood) Changes mood.

 Time (if Volume) Changes time.

Sequence Sequence Sequence to play at the specified keyframe.

 Override Start/End
Times

Check to override the sequence start and end
times.

 Start Time Specifies the start time to override.

 End Time Specifies the end time to override.

Sound Adds sound effects to a sequence.

Timewarp Creates a slow-motion effect using a curve. This
applies only to visuals; sounds are not slowed
down.

Entity Nodes
Entity nodes are used to communicate between Track View and Lumberyard Editor. They are created
by selecting the entity in Lumberyard Editor and using the Sequence or Director node .

To add an Entity node in Track View

1. In the Track View editor, right-click either the sequence (top node) or the Director node in the tree
as applicable, and then click click Add Selected Entity(s).

2. For each of the tracks listed below, click on the applicable track listed under the Entity node, then
double-click to position it on it's highlighted row in the timeline, click the green marker, then under
Key Properties, enter a value for Value.

Entity Node Tracks and Key Properties

Track Key Property Description

Animation Animation Opens the Animation Browser to select an
animation to apply at this key.

 Loop Sets whether to loop (repeat) the animation until
the next key

 Blend Gap When there is a gap in time between animation
clips, this blends the end frame of the first clip to
the beginning frame of the second clip. To use it,
enable ‘Blend Gap’ for the first animation.

 Unload Unloads the animation after the sequence is
finished

Version 1.6
284

Lumberyard User Guide
Entity Nodes

Track Key Property Description

 In Place If set, do not change the entity’s base position
and orientation

 Start Time Sets the time, in seconds, within the clip for when
to start playing the animation. 0 indicates the
start of the saved clip. Start Time can never be
greater than End Time.

 End Time Sets the time, in seconds, within the clip for when
to stop playing the animation. 0 indicates the end
of the saved clip. Start Time can never be greater
than End Time.

 Time Scale Factor with which to scale time. Values larger
than 1 will result in a sped up appearance,
values smaller than 1 will result in a slow motion
appearance.

Event Event A pull-down of all possible events supported by
the Entity script

 Value Sets the value to send with the Event

 No trigger in scrubbing Disables sending of event triggers when
scrubbing in Track View

LookAt Entity Entity to look at

 Target Smooth Time Transition time, in seconds, over which to smooth
the look rotational change

Mannequin mannequin fragment The mannequin fragment to play at the key frame

 fragment tags Fragment tags to use with the fragment

 priority TBD

Noise Adds noise to the position and rotation of the
entity if and only if Position and Rotation tracks
respectively have keys in them

Physicalize Track to enable and disable Physics simulation
on an entity

PhysicsDriven Sets the position and rotation to be driven by
physics for non-static physics entities

Position The X,Y,Z position of the entity

Procedural Eyes This track is deprecated and will be removed in
an upcoming release.

Rotation The X, Y, Z Euler rotation angles of the entity

Scale The X, Y, Z scale factors

Sound StartTrigger Audio Control for starting the sound. Refer to
Audio System/Using the Audio Controls Editor for
more information on Audio Controls.

Version 1.6
285

Lumberyard User Guide
Environment Node

Track Key Property Description

 StopTrigger Audio Control for stopping the sound. Refer to
Audio System/Using the Audio Controls Editor for
more information on Audio Controls.

 Duration Length of time to play the sound, in seconds

Visibility Toggles visibility of the entity

Environment Node
You can use the Environment node to set the sun's longitude and latitude in a scene.

To add an Environment node in Track View

1. In the Track View editor, right-click either the sequence (top node) or the Director node in the tree
as applicable, and then click Add Environment Node.

2. For each of the keys listed below, click the applicable key listed under the Environment node.

3. To position a key, double-click the preferred location on its highlighted row in the timeline. Double-
click the green marker, and then under Key Properties, type a value for Value.

Environment Node Key Properties

Property Description

Sun Longitude Sets the sun's longitude.

Sun Latitude Sets the sun's latitude.

Event Node
An Event node is used to trigger and send values to Flow Graph. It is used in tandem with a
TrackEvent Flow Graph node. Track Events are created using the Edit Events window located in the
context menu for a Sequence node or Director node. To trigger a Track Event, use an Event node and
create a key frame. When this key is played, the event is triggered.

These Track View events will appear as Flow Graph node outputs on TrackEvent Flow Graph nodes
that points to the corresponding sequence.

To add an Event node in Track View

1. In the Track View editor, right-click either the sequence (top node) or the Director node in the tree
as applicable, and then click Add Event.

2. Click the Track Event track under the Event node, then double-click to position it on it's
highlighted row in the timeline, click the green marker, then under Key Properties, enter a value
for Value. To add Track View events, choose Edit Events in the Sequence or Director context
menus to add, remove, or edit Track View events.

Version 1.6
286

Lumberyard User Guide
Material Node

Material Node
Material nodes help you animate a number of commonly used material properties that you would
normally set in the Material Editor. You can add Material nodes through a sequence or from the
director node context menu.

The name of the Material node must be the full path of the material that you want to animate, as
shown in the Material Editor. A recommended workflow is to use the Mtl button located in the Entity
pane of Rollup Bar with the entity whose material you want to animate selected. This opens the
Material Editor with the material selected.

To add a Material node in Track View

1. In Lumberyard Editor, select the the entity whose material you want to animate.

2. In the Rollup Bar, select the Mtl button in the Entity pane.

3. In the Material Editor. right-click the selected material and click Copy Name to Clipboard. If the
material is in a material group, select the group and copy the group name to the clipboard for this
step.

4. Click View, Open View Pane, Track View. In the Track View editor, use the sequence selector
on the toolbar to choose the sequence or director that you to contain the animation. (Or click the
Add Sequence icon to create a new one.)

5. Right-click in the node tree, and choose Add Material Node. When the dialog box opens, press
Ctrl+V to paste the full path to the material that you copied in step 3.

If the material is in a material group, right-click the created material node in the Track View editor.
At the bottom of the context menu you select the material that you want to animate.

The material node should appear up in non-colored text. If it shows up red it means that the Track
View editor wasn’t able to find a match for the material node name.

6. Right-click the node you added in the previous step and select Add Track/Diffuse, for example.
Add two key frames with different colors, then scrub. Your material's diffuse color should be
animated.

Version 1.6
287

Lumberyard User Guide
Script Variable Node

Material Node Tracks

Track Key Property Description

Diffuse Type RGB values to specify the base color of a
material.

Emission Type RGB values to enables objects to emit light
and be visible in the dark.

Glossiness The acuity or sharpness of the specular
reflection. Values of 10 or less create a scattered
reflection, while values greater than 10 yield a
sharp reflection.

Opacity The degree of transparency. Values below 50 fall
more to the white end of the alpha channel map.
Values above 50 fall more to the black end of the
alpha channel map.

SSSIndex Controls subsurface scattering profile and
amount. Valid value ranges are 0.01 to 0.99 for
marble; 1.00 to 1.99 for skin.

Specular The reflective brightness and color of a material
when light shines on the object. The greater
the value, the shinier the material. To apply
reflections in degrees of black and white, make
the R, G, and B values the same. For colored
reflections, use varied RGB values.

Script Variable Node
Script Variable nodes create LUA variables using the name of the script variable, which can include '.'
to specify variables within tables. Only floating-point variable values can be set.

Shadows Setup Node
You can use the Shadows Setup node to add or remove sun shadow maps over several frames in a
sequence.

To add a Shadows Setup node in Track View

1. In the Track View editor, right-click either the sequence (top node) or the Director node in the tree
as applicable, and then click Add Shadows Setup Node.

2. Click the GSMCache key under the ShadowsSetup node.

3. To position a key, double-click the preferred location on its highlighted row in the timeline. Double-
click the green marker, and then under Key Properties type a value for Value.

Version 1.6
288

Lumberyard User Guide
Full Screen Effect Nodes

Full Screen Effect Nodes
Full Screen Effect nodes create post-processing effects for a sequence. They are added by using the
context menu for a Sequence or Director node.

Topics

• Radial Blur Node (p. 289)

• Color Correction Node (p. 289)

• Adding a Depth of Field Node (p. 290)

• Screen Fader Node (p. 290)

Radial Blur Node

You use the Radial Blur node to blur the animation radially outward from a center point.

To add a Radial Blur node in Track View

1. In the Track View editor, right-click either the sequence (top node) or the Director node in the tree
as applicable, and then click Add Radial Blur Node.

2. For each of the keys in the following list, click the applicable key listed under the RadialBlur node.
Then double-click the preferred location its highlighted row in the timeline. Double-click the green
marker and then under Key Properties enter a value for Value.

Radial Blur Node Key Properties

Property Description

Amount Intensity of the blur effect. Range is 0 to 1.

ScreenPosX X-axis position of the effect's center. Range is -1 to 1, with 0.5
being the center of the screen.

ScreenPosY Y-axis position of the effect's center. Range is -1 to 1, with 0.5
being the center of the screen.

Blurring Radius Size of the blur effect. Range is 0 (not visible) to 1 (covers the
entire screen).

To make the blur intensity dynamically change based on a variable (such as the player's health for
example), you can use the Image:FilterRadialBlur flow graph node.

Color Correction Node

You use the Color Correction node to change the CMYK, brightness, contrast, saturation, and hue
in a scene. Most color correction properties don't update smoothly. For this reason, you should hide
stronger color correction changes should by cuts or fading between scenes.

To add a Color Correction node in Track View

1. In the Track View editor, right-click either the sequence (top node) or the Director node in the tree
as applicable, and then click Add Color Correction Node.

2. Click the applicable key listed under the ColorCorrection node.

3. To position a key, double-click the preferred location on its highlighted row in the timeline. Double-
click the green marker, and then under Key Properties type an applicable value for Value.

Version 1.6
289

Lumberyard User Guide
Full Screen Effect Nodes

To have change correction dynamically based on a variable, you can use the Image:ColorCorrection
flow graph node.

Adding a Depth of Field Node

You can use the Depth of Field (DOF) node to add realism to scenes by simulating the way a real-
world camera works. You can use a broad depth of field to focus on the entire scene, or use a shallow
depth of field to have sharp focus only on objects that are a specific distance from the camera.

To add a Depth of Field node in Track View

1. In the Track View editor, right-click either the sequence (top node) or the Director node in the tree
as applicable, and then click Add Depth of Field Node.

2. For each of the keys listed below, click the applicable key listed under the DepthOfField node.

3. To position a key, double-click the preferred location on its highlighted row in the timeline. Double-
click the green marker, and then under Key Propertiess type a value for Value.

Depth Of Field Node Key Properties

Property Description

Enable Enables or disables depth of field effect

FocusDistance Distance the focus is from the camera. Positive values are in front
of the camera while negative values are behind the camera.

FocusRange Distance toward and away from the camera until maximum
blurriness is reached. By default, this value is twice the FocusDist
value.

BlurAmount Maximum blurriness value.

If you have a scene with full player control, setting depth of field using the Image:EffectDepthOfField
flow graph node can be a good option. In addition, you can use the Interpol:Float node to smoothly
fade the focus in and out. Use this sparingly as it can be difficult to track where and what the player is
looking at.

Screen Fader Node

Use the Screen Fader node to fade the screen in and out in a scene.

To add a Screen Fader node in Track View

1. In the Track View editor, right-click either the sequence (top node) or the Director node in the tree
as applicable, and then click Add Screen Fader.

2. Click the Fader key under the ScreenFader node

3. To position a key, double-click the preferred location on its highlighted row in the timeline. Double-
click the green marker, and then under Key Properties, enter a value for the following properties:

Screen Fader Node Key Properties

Property Description

Type Select either FadeIn or FadeOut values.

Version 1.6
290

Lumberyard User Guide
Creating Scenes

Property Description

ChangeType For this transition type select from Cubic Square, Linear, Sinus
Curve, Square, or Square Root.

Color Specify the RGB value used for fading.

Duration Specify how long it takes to fade in or out the screen.

Texture Specify a texture file to use as a screen overlay. An alpha texture
is commonly used for effects like dirt or blood.

Use Current Color Select to ignore the Color property and use the color of the
previous key instead.

You can also create a screen fader effect by using the Image:ScreenFader flow graph node.

Creating Scenes
Cinematic scenes, also known as sequences, consist of multiple nodes, tracks, and track events.

You create a sequence in Track View Editor by clicking Sequence, New Sequence, and naming it. A
sequence is always the top (parent) node in the tree view.

Topics

• Setting Sequence Properties (p. 291)

• Playing a Sequence (p. 294)

• Changing Playback Speed (p. 295)

Setting Sequence Properties
You can set various sequence properties in the Track View editor as follows:

To set sequence properties

1. In the Track View editor, select the applicable sequence and click the Edit Sequence button,
which is the third button in the Sequence/Node toolbar row.

2. In the Sequence Properties dialog box, set properties as shown and listed in the following image:

Version 1.6
291

Lumberyard User Guide
Setting Sequence Properties

Scene Properties

Property Description When to use

Autostart Plays the scene on game start. Use for testing purposes only. For
scenes that must always play on game
start, use triggers instead.

NoSeek Disables random seeks in a scene,
such as jumping to a certain time.

CutScene Used to enable various scene toggles.
When selected, the following options
are available:

• Disable Player – disables the player
(required for all camera-controlled
scenes)

• Non-Skippable – prevents the
player from skipping the scene for
important events

Required for all scenes that are
camera-controlled.

Version 1.6
292

Lumberyard User Guide
Setting Sequence Properties

Property Description When to use

• Disable Sound – disables all
sounds not in the scene

Update Movie
System First

Typically, the movie system updates
before the entity system updates. This
reverses that order.

Used to fix bone-attached entities that
lag behind the parent movement. This
problem typically occurs if the parent
locator position is animated in Track
View.

Timewarp in fixed
time step

Modifies the fixed time step value
instead of the time scale value.

Used for capturing scenes in fixed time
step that use at least one Timewarp
so that Timewarp is correctly captured
(fixed time step overrules the time
scale value).

Disable HUD Disables the HUD Only if the HUD isn't supposed to be
shown at all.

Timing Sets the start and end times of the
sequence

Display Start/End
Time As:

Displays the start and end times in this
dialog in frames or seconds. This is
a display-only option; the times are
always stored in seconds

Move/Scale Keys When set on, animation curves are
scaled over the time line when the
Start or End times are changed.

When you want to lengthen or shorten
a sequence and have the animations
slow-down or speed-up to fill the same
relative percentage of the sequence
time line

Out of Range Changes the movie time behavior
when it passes the end of the
sequence:

Once - movie time continues past the
end of the sequence

Constant - move time is held at the
end of the end of the sequence

Loop - movie time loops back to the
beginning time of the sequence when
it reaches the end

Changing Scene Toggles Mid-Sequence

The Cut-Scene Toggles properties listed above can be changed mid-sequence by starting another
sequence that runs in parallel. This is primarily used to briefly turn on camera control in a sequence
that allows free player movement.

For example, the main sequence allows free player movement and enters a loop at second 1. A Flow
Graph Entity:Switch node (shown in the following image) makes the sequence jump to second 2,
which starts a short camera-controlled second sequence.

Version 1.6
293

Lumberyard User Guide
Playing a Sequence

In this example, all the main sequence properties would be disabled (unselected), while the second
sequence would have the Cut Scene , Disable Player, and the Non-Skippable properties enabled
(selected).

Playing a Sequence
The easiest way to play Track View sequence is to attach it to a Flow Graph proximity trigger that can
be positioned in the level. To access Flow Graph from Track View, trigger entities are used to send
events to Flow Graph where various nodes are then triggered. When a track event is triggered from the
scene, its corresponding output in a Flow Graph node is activated.

Note
To use the default game camera in a sequence, add a keyframe under the Director node on
the Camera track, leaving the camera Key property blank. Using this as the last keyframe on
the Director node Camera track in your sequence transitions the last used sequence camera
to the default game camera when the keyframe is played.

Specifically, the entity:ProximityTrigger node output is connected to the StartTrigger input of the
Animations:PlaySequence node. When a player enters the trigger in the game, the sequence starts.

Version 1.6
294

Lumberyard User Guide
Changing Playback Speed

Changing Playback Speed
Using the Animations:PlaySequence Flow Graph node, you can control the playback speed of the
sequence by simply changing the value of the PlaySpeed input.

If you want a fixed slow-motion or fast-forward effect instead, use the TimeWarp track of the Director
(Scene) Node.

Managing Track Events
A track event is a trigger that allows you to integrate Flow Graph logic with a Track View scene. When
a track event is triggered from the scene, its corresponding output in a Flow Graph node is activated.
A scene can contain a number of track events that are grouped under a Track Event Node. Each track
event can have multiple keys assigned to it.

Track events can also be used to change the time of day in terrain level.

To add a track event

1. In the Track View editor, right-click the applicable scene. Click Edit Events.

2. Click Add, and then enter a name. Close the dialog.

3. Under the track event node, click the Track Event track, then double-click to place a key in the
timeline row adjacent to it.

4. In Key Properties/Value, enter a value.

Version 1.6
295

Lumberyard User Guide
Linking Track View Events with Flow Graph

Linking Track View Events with Flow Graph
The Track Events you create in Track View can be used in Flow Graph by adding a Track Event node
in Flow Graph and setting its Sequence property to the Track View sequence triggering the event. The
Track Event Flow Graph node has outputs for each event in that sequence.

Certain features required for creating cinematic effects are available only in Flow Graph. To access
these features, you need a link between Track View and Flow Graph. Specifically, Track View trigger
entities are used to send events to Flow Graph where various nodes are then triggered.

Specifically, the entity:ProximityTrigger node output is connected to the StartTrigger input of the
Animations:PlaySequence node. When a player enters the trigger in the game, the sequence starts.

Cinematics Cameras
Cameras present scenes from particular points of view. Cameras are added using the Rollup Bar (on
the Objects tab under Misc, Camera) in Lumberyard Editor.

Topics

Version 1.6
296

Lumberyard User Guide
Moving a Camera

• Moving a Camera (p. 297)

• Setting Camera Focus (p. 297)

• Creating Camera Shake (p. 298)

• Blending a Camera (p. 299)

• Pointing a Camera (p. 301)

• Following with a Camera (p. 301)

• Setting a First Person View Camera (p. 302)

• Importing a Camera from Autodesk (p. 302)

• Exporting a Camera to Autodesk (p. 303)

Moving a Camera
To move, rotate, or animate a camera in Track View, use the Viewport Camera controls.

To move a camera view

1. Select the applicable camera in the viewport. In Track View editor, right-click the applicable
sequence and click Add Selected Entity(s).

2. Click the red Record button.

3. In the viewport, right-click the camera and uncheck Lock Camera Movement.

4. In the viewport, right-click the camera and select your camera under Camera.

5. In Track View, with the Camera Node selected, press the Record button.

6. Navigate the viewport using the mouse and keyboard. Notice the values being recording as key
frames in Track View.

Setting Camera Focus
Camera focus, or depth of field (DoF), is used to add realism to scenes by simulating the way a real-
world camera works. You can use a broad depth of field to focus on the entire scene, or use a shallow
depth of field to have sharp focus only on objects that are a specific distance from the camera.

Here are some guidelines and best practices when setting up camera focus:

• Always keep characters in focus.

• Shift focus slowly and deliberately.

• Don't overdo it.

• Do not use depth of field for scenes that are far away. Rather, it works best for differentiating
between closeups and the background.

• Use your eyes to focus at different distances and see what is sharp and what is blurred (use your
thumb as a helper). This should give you a sense of how it should look in a scene.

DoF is rendered only for a single view pane layout (the default) in the viewport in Lumberyard Editor.
If you are using a multiple view pane layout and the sequence camera is not in the active pane, DoF
does not render. If you need to set this, complete the following procedure.

To set the view port for a single view pane layout

1. In Lumberyard Editor, right-click the Perspective title bar in the viewport, then click Configure
Layout...

Version 1.6
297

Lumberyard User Guide
Creating Camera Shake

2. In the Layout Configuration dialog box, click the single view pane (the left-most option), then
click OK.

3. Right-click the Perspective title bar again, then click Sequence Camera.

To add a Depth of Field node

• In the Track View editor, right-click the Director node or any camera node, and then click Add
Depth of Field Node.

Camera nodes take precedence over the Director node. Use the Director DoF node if you want the
same DoF setup for multiple cameras. Most of the time, however, you want separate, specific DoF
setups for each camera for more control.

You can add as many keys as you want, and use the curve editor to further tweak DoF settings to
change over time.

Creating Camera Shake
Most moving cameras in the real-world have some degree of shake. You can add shake to your
cameras for more realism.

Unlike the amplitude parameter in the ViewShakeEx Flow Graph node, camera shake involves
separate overlapping and accumulating values and multipliers of amplitude and frequency parameters
in both the Rollup Bar and the Track View editor to achieve the final effect.

The following guidelines can be followed to achieve realistic camera shake effects:

• Keep shaking restrained, don't overdo it.

• Vary the amplitude and frequency values.

• Edit curve and key values appropriately.

• Try to mimic the corresponding effect in the real-world for what is happening in the scene.

You can adjust the following static parameters in Rollup Bar (under Camera Params) for a camera
entity for the desired effect. These parameters are the primary, non-animating parameters which you
can further tweak in the Track View editor.

Camera Shake Parameters

Parameter Description

Amplitude A Intensity of the camera shake

Amplitude A Mult. Multiplier for Amplitude A value

Frequency A How rapidly the camera changes orientation

Version 1.6
298

Lumberyard User Guide
Blending a Camera

Parameter Description

Frequency A Mult. Multiplier for Frequency A value

Noise A Amp. Mult. Multiplier for Noise A Amp value

Noise A Freq. Mult. Multiplier for Noise A Freq value

Time Offset A Delay time for camera shake

Amplitude B Intensity of the camera shake

Amplitude B Mult. Multiplier for Amplitude B value

Frequency B How rapidly the camera changes orientation

Frequency B Mult. Multiplier for Frequency B value

Noise B Amp. Mult. Multiplier for Noise B Amp value

Noise B Freq. Mult. Multiplier for Noise B Freq value

Time Offset B Delay time for camera shake

To achieve realistic camera shake, it is important to edit the fCurves using the Curves editor in Track
View. When you add a shake keyframe, the default fCurve values have wide tangents which cause
extreme easing in and out time values. However, most of the time, the goal is to have an immediate
shake effect, such as for punches or explosions. In this case, the curve must be edited to have very
rapid build up time, as shown below.

Blending a Camera
You can blend a camera in and out of a camera-controlled sequence.

Note
To use the default game camera in a sequence, add a keyframe under the Director node on
the Camera track, leaving the camera Key property blank. Using this as the last keyframe on
the Director node Camera track in your sequence transitions the last used sequence camera
to the default game camera when the keyframe is played.

Blending within a sequence

To create a series of jump cuts from one camera to another in a sequence, place key frames on the
Director node Camera track. The Camera key property for each key frame is what the Director node
uses to determine which camera to switch to at that time.

Blended camera key frames will blend the position, rotation, field of view, and near-Z properties of the
current camera into the next camera on a Director node Camera track, which will make the cut appear
as a continuous single camera motion rather than an abrupt jump cut.

To create a blended camera key, select the key frame on the first camera of the blend and set the
Blend time key property to a value greater than zero. This is the time in seconds over which the blend
will occur.

The following figure shows an example for Camera1.

Version 1.6
299

Lumberyard User Guide
Blending a Camera

Note
If you have added the first camera as a Track View node in this example for Camera1, you
must set at least one key frame for Position and Rotation when using blended sequence
cameras.

Blending into a sequence

When blending into a sequence using Flow Graph, place the camera inside of a large trigger that
encloses the entire sequence, otherwise snapping occurs when starting the sequence. For best results,
in the Flow Graph Animation:Play Sequence node used to start the sequence, use values between
0.5 and 2.0 for BlendPosSpeed and BlenRotSpeed.

Using the Animations:Play Sequence Flow Graph node, slow player motions down so that jumps,
sprints, and slides transition more smoothly.

Blending out of a sequence (for first-person games)

When blending a camera out of a sequence, use the Entity:BeamEntity Flow Graph node to set the
player to the end of the sequence. Position the Entity:Entity Pos TagPoint right below or slightly
behind the last camera position for a good transition. Be sure to connect either the Done or Finished
outputs for the Animations:PlaySequence Flow Graph node directly to the Beam input of the
Entity:BeamEntity.

Do not use game tokens or other logic in between transitions, otherwise a previous player position may
be visible for a few frames before beaming to the final position.

Version 1.6
300

Lumberyard User Guide
Pointing a Camera

Sometimes, the player's last movement input is stored and remains active after the sequence, causing
the player to continue to walk though no key is pressed. To prevent this, use the Actor:ActionFilter
Flow Graph node and enable the Filter=cutscene_player_moving input at the start of the sequence
and disable it at the end of the sequence.

Transitioning to the Active Game Camera in Track View

In the Track View Editor, the sequence camera is set by adding a Director node and adding keys to
the Camera track. If a Camera track is left blank, the sequence camera uses the active game camera.

Pointing a Camera
You can have a camera always point at a selected target in the viewport in Lumberyard Editor. The
camera target can be created (designated) only when placing a new camera in the viewport.

1. In Lumberyard Editor, in the Rollup Bar, click Misc, Camera.

2. Click in the viewport where you want the camera located, continuing pressing the left mouse
button, and then release the mouse button where you want the camera target located.

The camera now always points at the camera target, which can be animated in the Track View editor.
As such, the camera's rotation can no longer be modified independently.

Following with a Camera
You can have a camera follow an object and also rotate around (orbit) the object by first linking the
camera to a TagPoint entity and then linking the TagPoint to the object. The TagPoint acts as a pivot
and, by animating its rotation in Track View, the camera now rotates around the object.

However, if the object itself is rotating, it can cause unwanted effects on the camera. You can minimize
this issue by adjusting the TagPoint pivot rotation. For example, if the object has an X-axis rotation of
-15°, set the pivot's X-axis rotation to +15° to cancel out the values.

Another way to minimize this issue is to make the TagPoint's rotation independent of the object you
want to follow. To do this, use one "root" TagPoint for animating the position, then link your followed
object to it and animate only its rotation. Next, link the pivot TagPoint and the attached camera to

Version 1.6
301

Lumberyard User Guide
Setting a First Person View Camera

the root TagPoint as well. Using this method, you can rotate your target and the camera orbit pivot
independently of each other.

Setting a First Person View Camera
There are several ways of setting up a first-person view (FPV) camera:

• Link the camera to the character

• Link the camera to the character's camera bone

• Link the camera to a TagPoint

Linking a camera to a character
Linking a camera to a character works well for rough blocking, where the character has no animation
applied in Track View. By attaching the camera to the character and positioning it close to the camera
bone (at eye level), you can test it from the character's point of view and the pace of the scene.

Linking a camera to a character's camera bone
You can attach a camera to the character's camera bone so that the camera follows the camera bone
of the character. This method is good for referencing, but not for the final process, as the information
from the camera bone can be very rigid and often clips through the character's body, especially if
animation is derived from motion capture. It is also impossible to manipulate the camera this way.

Linking a camera to a character and a tagpoint
The best way to set up an FPV camera is to attach it to both the character and a tagpoint. This method
allows the camera and the character to be animated independently. The tagpoint acts as an anchor
that connects the character and camera together, which makes it easy to move the character around
after you have finished adjusting the scene.

By using a second camera that links to the character's camera bone, you can easily adjust and match
your main camera to the second (referencing) camera to get the right movement. This camera tracks
the character's head movement.

To set up an FPV camera

1. Link the main camera to a tagpoint.

2. Link the second camera to the character's camera bone.

3. Position the second camera to 0,0,0.

4. Assign the main camera in the track view.

Importing a Camera from Autodesk
Cinematic camera transformations can be imported to Lumberyard from Autodesk Maya or 3ds Max.

Topics

• Importing a Camera from Maya (p. 302)

• Importing a Camera from 3ds Max (p. 303)

Importing a Camera from Maya
Use the following process when importing a camera from Autodesk Maya to Lumberyard.

Version 1.6
302

Lumberyard User Guide
Exporting a Camera to Autodesk

To import a camera from Maya

1. In Maya, click Window, Settings/Preferences, Preferences. In the Settings dialog box, click
Settings. For Time, select NTSC (30 fps).

2. In Maya, in Film Back settings, change Camera Aperture to 0.581 0.327 and Film Aspect
Ratio to 1.78.

3. Select the camera you wish to export. It must have the same name as the Lumberyard camera to
which you want to import the camera’s animation.

4. Click File, Export Selection.

5. In Select File to Export, select the FBX format.

6. In FBX Export, Advanced Options, for Up Axis, select Z.

7. Set Scale Factor to 1,0.

8. Save the .fbx file to a suitable location.

9. In Track View editor, right-click a camera node in the applicable sequence and then click Import
FBX File.

10. Browse to the .fbx file and click Open.

11. In the FBX Import – Select Nodes to Import dialog box, select the name of the camera you
exported in Step 3, which should match the name of the Lumberyard camera in step 9.

Importing a Camera from 3ds Max

Use the following process when importing camera transformations and Field Of View (FOV) from
Autodesk 3ds Max to Lumberyard.

To import a camera from 3ds Max

1. In 3ds Max, click Customize, Units Setup. In the dialog box, under Display Unit Scale, select
Metric, Meters.

2. Select the camera you wish to export. It must have the same name as the Lumberyard camera to
which you want to import the camera’s animation.

3. Click the MAX toolbar icon at the upper left, then click Export, Export Selected.

4. In Select File to Export, select Autodesk (*.FBX) in Save as type, then enter a file name.

5. In FBX Export, Advanced Options, for Axis Conversion, Up Axis, select Z-up and select Units,
Automatic.

6. In Track View editor, right-click a camera node in the applicable sequence and then click Import
FBX File.

7. Browse to the .fbx file and click Open.

8. In the FBX Import – Select Nodes to Import dialog box, select the name of the camera you
exported in Step 3, which should match the name of the Lumberyard camera in step 9.

Exporting a Camera to Autodesk
Cinematic camera transformations can be exported to Autodesk Maya or 3ds Max from Lumberyard.

Topics

• Exporting a Camera to Maya (p. 304)

• Exporting a Camera to 3ds Max (p. 304)

Version 1.6
303

Lumberyard User Guide
Cinematics Lighting

Exporting a Camera to Maya
Use the following process when exporting a camera from Lumberyard to Autodesk Maya.
Transformation tracks and animated FOV data are supported for export.

Upon export, cameras are re-oriented to fit the Maya standard of pointing down in the Z-axis as
opposed to the Lumberyard standard of cameras pointing in the Y-axis.

To export a camera to Maya

1. In the Track View editor, right-click a camera node and then click Export FBX File.

2. Select a file path, and then set Save as type to FBX (*.fbx).

3. In FBX Export Settings, ensure Convert Cameras/Axes for Max/Maya is selected. The
remaining parameters are all optional.

4. In Maya, click File, Import toolbar icon, click Import, Import, then select the file you exported in
step 3 for import.

Exporting a Camera to 3ds Max
Use the following process when exporting a camera from Lumberyard to Autodesk 3ds Max.
Transformation tracks and animated FOV data are supported for export.

Upon export, cameras are re-oriented to fit the 3ds Max standard of pointing down in the Z-axis as
opposed to the Lumberyard standard of cameras pointing in the Y-axis.

To export a camera to 3ds Max

1. In the Track View editor, right-click a camera node, then click Export FBX File.

2. Select a file path, and then set Save as type to FBX (*.fbx).

3. In FBX Export Settings, ensure Convert Cameras/Axes for Max/Maya is selected. The
remaining parameters are all optional.

4. In 3ds Max, click the MAX toolbar icon, click Import, Import, then select the file you exported in
step 3 for import.

Cinematics Lighting
Creating lighting for cinematic scenes involves a different process than that used for creating
environment lighting for a level.

Animating a Light
Light entities are animated in the Track View Editor by creating a light animation set, which is a
sequence containing Light Animation nodes. A Light entity then references these nodes with the
Light Animation property in the Rollup Bar.\

To create a new light animation set

1. In Track View Editor, click the Create Light Animation Set button as shown below. This only
needs to be done once per level.

Version 1.6
304

Lumberyard User Guide
Cinematic Lighting Best Practices

2. In the left pane, select _LightAnimationSet, click the Add Light Animation Node button, then
name the node Pulse.

3. Under DiffuseColor, add two key frames as the animation.

4. In Rollup Bar, create a light entity by clicking Entity, Lights, then double-click Light.

5. In the Entity Properties panel, under Style, select LightAnimation, then click the ... button to
access the Select Light Animation dialog.

6. Select the Pulse node and select OK.

Your light entity will play the animation in the LightAnimationSet\pulse node in a loop.

Cinematic Lighting Best Practices
The following represents recommended guidelines and best practices for cinematics lighting.

• Cinematics lighting should be on its own layer.

• Enable lights for a shot, then disable them when the camera cuts.

• Disable gameplay and cubemap lights as needed for shots to avoid interference.

• For pre-rendered cinematic scenes, use the console variable e_timeofday to trigger the correct
time of day.

• For real-time cinematics, use a Track Event node to trigger the correct time of day.

• For pre-rendered cinematic scenes, use ShadowsSetup to enable High Quality shadows mode.

• For pre-rendered cinematic scenes, because performance isn't an issue, you should always enable
shadow casting and use as many spotlights as needed. Projector textures should be used as much
as possible for spotlights. The SpecularMultiplier value should always be 1.

• Shadowmap quality from point lights is greatly improved when the ProjectorFOV value is as low
as possible. To soften shadows, you can increase the ProjectorFOV value slightly, but this also
decreases the accuracy of the shadowmap.

• Don't use ambient lights as they can weaken contrast and illuminate unwanted areas. Instead, use
cubemaps to make the deepest shadow as dark as possible, and then add lights to increase the
overall illumination.

• Lights should be turned on and off while in the Track View editor. If lights are off by default, they
won't accidentally render in-game or interfere with a scene shot. When editing a light, keep the
Active track flag enabled. Once done, disable the flag. Add keyframes on the Active track to ensure
that the light is shown only when needed.

Version 1.6
305

Lumberyard User Guide
Animating Characters in Scenes

Animating Characters in Scenes
Character .CGF and geometry .CDF assets can be added to Track View sequences for animation and
interactions by using the AnimObject entity.

In the case of a static asset, the BasicEntity entity is used instead.

Topics

• Importing and Exporting Transform Animations (p. 306)

• Adding Geometry to a Sequence (p. 307)

• Animated Character Tracks in Cutscenes (p. 308)

• Moving an Entity in a Scene (p. 308)

• Adding Scene Character Attachments (p. 309)

• Using Look IK in Scenes (p. 309)

• Blending Cinematic Animations (p. 311)

• Using Track View Animation Curves (p. 311)

• Pre-caching Cinematic Animations (p. 312)

Importing and Exporting Transform Animations
Lumberyard supports the import and export of translation and rotation transform animations between
Track View and DCC tools that support FBX file export and import, such as 3ds Max and Maya for
example.

Importing Transform Animations to Track View
FBX translation and rotation transform animations can be imported from any DCC tool that supports
the export of FBX animations. Such animations can then be imported and applied to entities in
Lumberyard.

To import transform animations to Track View

1. In your DCC tool, ensure the nodes containing the animation you wish to export are top-level
nodes, and are named exactly the same as the Track View nodes to which you would like to
import and apply the animation to.

Version 1.6
306

Lumberyard User Guide
Adding Geometry to a Sequence

2. In your DCC tool, export the node animations to an FBX file format. Ensure that the Animation
option is enabled in the export settings. Also ensure that the FBX option for the Up Axis setting
matches that of your DCC scene. For example, in Maya, if your scene’s World Coordinate
System value is set to Y, then the Up Axis setting value should also be set to Y.

To check this setting, click Windows, Settings, Preferences. In the Preferences window, under
Categories, click Settings. Under World Coordinate System, check the Up Axis setting to
ensure it is set to Y.

3. In Track View, right-click the node that will receive the animation import and choose Import FBX
File.

4. Browse to the FBX file saved in step 2 and click Open.

5. Under FBX Import, Select Nodes to Import, select the node that you exported in step 2, which
should match the name of the node selected in step 3, then click OK.

Exporting Track View Transform Animations

Track View translation and rotation transform animations can be exported from Lumberyard to any
DCC tool that supports the import of FBX animations.

To export transform animations from Track View

1. In Track View, right-click the node with the transform animation you wish to export and choose
Export FBX File.

2. Choose and file name and click Save in the Export Selected Nodes To FBX File.

3. In your DCC tool, create a top-level node and name it exactly the same as the node selected in
step 1.

4. In your DCC tool, import the FBX file, ensuring that the Animation option is enabled in the import
settings.

Adding Geometry to a Sequence
In order to import an asset into a cinematic sequence, first add an AnimObject into the sequence.

To add geometry to a sequence

1. In Lumberyard Editor, in the Rollup Bar, on the Objects tab, click Entity, Physics, and then
double-click AnimObject.

2. Under Entity Properties, click Model and then click the folder icon.

3. In the Preview dialog box, select the applicable asset, and then click to place it in the viewport
where desired.

4. In the Rollup Bar, under Entity Properties, do the following:

• Select AlwaysUpdate under Animation

• Unselect (disable) RigidBody under Physics

• Unselect (disable) PushableByPlayers under Physics

5. In Track View Editor, create a new sequence by clicking the Add Sequence button, or by clicking
Sequence, New Sequence. With the AnimObject selected in the main editor, add the entity to
Track View Editor using the Add Selected Node button.

Version 1.6
307

Lumberyard User Guide
Animated Character Tracks in Cutscenes

6. With the AnimObject selected in Rollup Bar, add the entity to Track View Editor by clicking the
Add Selected Node button.

Animated Character Tracks in Cutscenes
The AnimObject entity is used to animate characters and other objects in cinematic scenes. The Track
View Editor has a number of tracks that can be set to customize and fine-tune character animation.

To add AnimObject tracks

1. In the Track View editor, right-click the applicable AnimObject node, click Add Track, then click a
track.

2. Select the track in the tree pane, then double-click in the timeline window to place a key.

3. Click the green marker, then under Key Properties, adjust the values of the track key properties.

Animated Character Properties in Cutscenes

The Track View Editor also has a number of properties that can be set to customize and fine-tune
character animation.

To set AnimObject properties

1. In the Track View editor, right-click the applicable AnimObject node, click Add Track, Properties,
then click a property.

2. Select the property in the tree pane, then double-click in the timeline window to place.

3. Click the green marker, then under Key Properties, adjust the values of the key properties.

Moving an Entity in a Scene
You can use the Track View editor to move or rotate any entity in a scene.

To move a character in a scene

1. In the Track View editor, add the character to the desired sequence, then click the Red record
button.

2. In the Lumberyard viewport, click the character, then move or rotate as desired. This automatically
updates keys at the current position of the slider in the Track View sequence timeline slider.

3. Double-click the key to access Key Properties, then adjust values as needed.

4. Click the Curve Editor button, then select the tracks where the curve needs to be adjusted.

Version 1.6
308

Lumberyard User Guide
Adding Scene Character Attachments

5. Drag a selection box around all the keys you want to change.

6. Click the Set In/Out Tangents to Auto button.

Adding Scene Character Attachments
You can add attachments to characters by creating a bone attachment link. This is useful when your
character is picking or moving objects and then placing them back in the scene.

The bone attachment link is controlled using the Link Object and Unlink Selection buttons in
Lumberyard Editor. Keep the following in mind when adding character attachments for cutscenes:

• Ensure the characters are properly named to prevent any errors when linking attachments.

• The @ prefix for the Link Name is essential, and is used to identity the link as a bone attachment link.

• Attachments do not need to be precisely placed as they can be adjusted after the link is created.

• If the character has a skeletal mesh, pressing the Shift key displays the list of bones.

• Once a link has been created, turn the Link Object button off.

Using Look IK in Scenes
Lumberyard supports parametric-blending for automated LookIK that can be used to make characters
look at targets at specific locations, even in different locomotion cycles. LookIK can be called using
Flow Graph, Track View, the AI system, or from code. Track View is mostly used for camera-controlled
scenes, while Flow Graph is used in most player-controlled scenes.

The character with LookIK tries to look at the target as long as possible, then turns its head away. The
spine, head, eyelids, and eyeballs are all animated to make the character look in the target direction.

To use LookIK in a scene

1. In the Track View editor, right-click the applicable AnimObject character node, then click Add
Track, LookAt.

Version 1.6
309

Lumberyard User Guide
Using Look IK in Scenes

2. Double-click the timeline row for LookAt, then click the green marker.

3. In Key Properties, do the following:

• In Entity, select a target from the list.

• In Target Smooth Time, enter a value. Good values for eyes are 0.1-0.2, for head 0.3-0.5, and
for full body 0.7-0.9.

• In Look Pose, select which part of the body aligns with the target.

To use LookIK in Track View, the LookAt track is added to AnimObject node for the applicable
character.

You can add multiple LookAt track keys. As soon as the timeline hits one key, the character aligns to
the next key. If you want to reset LookIK, place an empty key in the timeline.

Using Flow Graph for Look IK in Scenes

You can also use the Animations:LookAt Flow Graph node to make a character look at a specific
target or the player. Assign the character to the node and a target entity or set the Animations:LookAt
node LookAtPlayer input to 1 and trigger the Start input to force LookIK on a character.

Version 1.6
310

Lumberyard User Guide
Blending Cinematic Animations

Blending Cinematic Animations
There are two different types of blending that can be used between two animation sequences in Track
View: cross-fade blending and gap blending.

Cross-Fade Animation Blending

Cross-fade blending automatically starts if Lumberyard detects that two cinematic animation
sequences overlap. The blending affects the whole section where the two animations intersect, with
the weight of the second animation steadily increasing towards the end of the intersection. Specifically,
at the start of the second animation, the weights for the first/second animation is 100%/0% and shifts
linearly until the end of the first animation to 0%/100%.

Gap Animation Blending

Gap blending is used to blend from the end frame of the first animation to the starting frame of the
second animation if a time gap exists between the two. This only works if the End Time property of the
first animation is less than the full animation clip time.

To enable gap animation blending

1. In the Track View editor, in the sequence timeline, click the first animation.

2. In Key Properties, select the Blend Gap True check box.

Using Track View Animation Curves
The Curve Editor enables precise animation control for entities within the Track View editor. Position,
rotation, and scale can be independently controlled.

To use the Curve Editor for a scene

1. In the Track View editor, select the desired sequence.

2. Click View, Both.

3. In the Graph pane, click a top row button to change the shape of the graph as follows. Repeat as
needed for each of the three graphs.

• Sets the in/out tangents to auto

• Sets the in tangent to zero

• Sets the in tangent to step

• Sets the in tangent to linear

Version 1.6
311

Lumberyard User Guide
Pre-caching Cinematic Animations

• Sets the out tangent to zero

• Sets the out tangent to step

• Sets the out tangent to linear

• Fits the splines to the visible width

• Fits the splines to the visible height

4. To fine-tune the shape of the curve, double-click a point on the graph and drag it to the desired
new value. Repeat for other points as needed for each of the three graphs.

Pre-caching Cinematic Animations
Pre-caching is used to avoid animation streaming problems at the start of a sequence. The pre-cached
animations remain in memory until a scene is played. Once playing, a sequence automatically pre-
caches the next two seconds of needed animation data.

Optimally, pre-caching is triggered about 4-5 seconds before the sequence starts playing. However, in
some cases, shorter pre-caching times work just as well. The slowest platform is the deciding factor for
determining the time that is needed.

A simple pre-caching setup using two entity:ProximityTrigger Flow Graph nodes is shown below. The
PrecacheTrigger input on the Animations:PlaySequence Flow Graph node pre-caches all animation
data that is needed to play the first two seconds of a sequence.

Version 1.6
312

Lumberyard User Guide
Adding Player Interactivity

If the Start Time value of a sequence has been changed to be larger than 0, pre-caching takes this
into account and does not load any animation data that is not needed.

Adding Player Interactivity
There are multiple ways to create player interactivity in your cinematic scenes.

Topics

• Looping and Jumping in a Scene (p. 313)

• Pausing a Scene (p. 314)

• Adding a Dead-Man Switch to a Scene (p. 315)

• Setting Player Look Around (p. 316)

• Adding Force Feedback (p. 317)

Looping and Jumping in a Scene
You can jump ahead or back in time, as well as use looping, in a sequence using Track View GoTo
track keys or using Flow Graph.

Scene Jumping using GoTo Track Keys

The GoTo track allows you to jump ahead or back in time while the sequence is running. It is primarily
used to turn parts of a sequence into a loop.

Using a GoTo track key to jump to a different point in time automatically applies animation blending on
all currently playing animations in the sequence. If animation blending is not desired for a scene, use
the Loop property instead.

GoTo track keys placed at the end of a sequence never trigger. Instead, the sequence simply stops
playing. To resolve this issue, slightly extend the end time of the sequence.

To jump in a scene using a GoTo track key

1. If applicable, in the Track View editor, right-click the top node and click Add Director(Scene)
Node.

2. Right-click the applicable node and then click Add Track, GoTo.

3. Add a key in the GoTo track where you want the jump to occur.

4. In the timeline, right-click the key, and in Key Properties, adjust the value of the GoTo Time
parameter.

If the duration of a sound overlaps into a GoTo track loop, the last portion is played repeatedly. In most
cases, this behavior is not desired and the sound key must get moved further away in time from the
target of the GoTo jump so as not to overlap it.

Using the Loop property instead of a GoTo track key is useful for moving mechanical parts (such as
helicopter rotor blades) or when the animations are pose-matched and do not require blending. GoTo
tracks could be used, but the effect does not look good.

Scene Jumping using Flow Graph

Using the Animations:PlaySequence Flow Graph node, you can activate the Trigger Jump To Time
to make the sequence jump to the specified time while the sequence is playing.

Version 1.6
313

Lumberyard User Guide
Pausing a Scene

You can also set up multiple triggers that jump to different times using Math:SetNumber nodes and a
Logic:Any node, as shown in the following image.

Pausing a Scene
Using Flow Graph, you can pause a sequence and keep it in a loop until the player presses a button.
This can be useful when the player picks something up, moves forward, or jumps, for example.

A simple implementation would be to add a track event to a sequence when the pause should happen.
Then set the PlaySpeed input value to 0 in the Animations:PlaySequence Flow Graph node, and
then to 1 when the player presses the required button, as shown below.

Version 1.6
314

Lumberyard User Guide
Adding a Dead-Man Switch to a Scene

With this method, however, the sequence stops and continues suddenly and is completely static; there
is no movement at all during the pause. A better method would be to add several Interpol:Float nodes
to slow down the play speed, and a small loop to keep some movement in the scene.

However, this would create an infinite pause of the sequence. To make it continue automatically after
a certain amount of time, add a Time:Delay node as an optional path to the Input:Action node. Note
the use of the Logic:Gate node that is used in the following example to prevent the sequence from
continuing twice.

Adding a Dead-Man Switch to a Scene
Using Flow Graph, a dead-man switch can be implemented. When a player fails to perform a specified
action by a certain time, such as a button push, the sequence stops and the player dies. An example is
shown below.

Version 1.6
315

Lumberyard User Guide
Setting Player Look Around

A less strict implementation can be set up where, for example, instead of the player dying, the
sequence continues and the player may just stumble. The following image shows an example of how to
use a separate sequence that runs in parallel to the main sequence.

Setting Player Look Around
If the Cutscene flag is enabled, the player can look around by rotating the cutscene camera within a
certain range.

To set up player look around

1. In the Track View editor, right-click the main sequence node and click Add Script Variable. Name
it something like Cinematic_CameraLookUp.

2. Repeat Step 1 three times, naming each script variable for a direction, such
as Cinematic_CameraLookDown, Cinematic_CameraLookLeft, and
Cinematic_CameraLookRight, for example.

3. For each script variable, click Value, then under Key Properties, enter a value, which represents
the number of degrees the camera can be moved beyond its default position for the respective
frame.

If desired, it is possible to slowly decrease these values to zero to make it less obvious that it gets
disabled at a certain point.

Version 1.6
316

Lumberyard User Guide
Adding Force Feedback

Adding Force Feedback
Force feedback (also known as haptics) refers to the activation of gyros and actuators in game
controllers and rumble chairs. This can be used for anything ranging from subtle heartbeats, to
earthquake rumbling, to weapon recoil, to explosions.

Using Track View for Force Feedback

You can add force feedback rumble tracks to your cutscene using the Track View editor. Two variables
are needed—one for the low-frequency motor, and one for the high-frequency motor of the game
device.

To add force feedback using Track View

1. In the Track View Editor, right-click in the tree pane, click Add Script Variable, and name it
something like Cinematic_Rumble_Low.

2. Repeat Step 1, giving the second script variable a different name, such as
Cinematic_Rumble_High.

3. Select the applicable sequence, then click the Edit Sequence button.

4. In the Sequence Properties box, select the Cut Scene check box.

5. For each variable, adjust the values by moving the sliders in the graph from 0 (off) to 1
(maximum).

Note
Lumberyard clamps the value to 1, even though the slider goes higher.

You can also use the Curve Editor to fine tune the rise and fall of the rumble effect. Keep in mind that
external device gyros and actuators need a bit of time to get going and to fully stop.

Using Flow Graph for Force Feedback

You can also use Flow Graph to add rumble effects using the following nodes:

• Game:ForceFeedback

• Game:ForceFeedbackTweaker

• Game:ForceFeedbackTriggerTweaker

To add force feedback using Flow Graph

1. In the Flow Graph editor, expand the Game node.

2. Right-click in the graph, then click Add Node, Game, ForceFeedbackTweaker.

3. Adjust the values of the LowPass and HighPass inputs. Valid values range from 0 (off) to 1
(maximum).

Note
Lumberyard clamps the value to 1, even though the slider goes higher.

You can also use the Curve Editor to fine tune the rise and fall of the rumble effect. Keep in mind that
external device gyros and actuators need a bit of time to get going and to fully stop.

Version 1.6
317

Lumberyard User Guide
Using Layers for Scenes

Using Layers for Scenes
You should create a new layer for each cinematic scene. Use the following procedure to create a layer
for a scene.

To create a layer for a scene

1. In Lumberyard Editor Rollup Bar, click the Layers tab.

2. Click the New Layer button and enter a name. Ensure the Visible and Use In Game check boxes
are selected.

Capturing Image Frames
There are two methods you can use to capture image frames.

Capturing Image Frames using Render Output
The easiest way to capture image frames is to simply click Tools, Render Output from the Track View
editor, change the dialog properties to the settings you wish, click Add to add the capture as an item in
the Batch list, then select Start to start the capture.

The aspect ratio for captured image frames is set by the Perspective View Aspect Ratio value, which
is 1.3333 by default. You can change this value in Lumberyard Editor as follows:

To change the aspect ratio of image frame captures

1. In Lumberyard Editor, choose File, Global Preferences, Editor Settings.

2. In the Preferences window under Viewports, click General.

3. Under General Viewport Settings, change the value for Perspective View Aspect Ratio.

Capturing Image Frames using a Capture Track
This method captures images when a sequence is played in game-mode only.

To capture images using a capture track

1. Using the context menu on the Director Node you wish to capture, add a Capture Node.

2. Double-click the created track to add a Capture Key Frame. Refer to the table below to set the
Key Properties.

3. Set up a flow graph to play the sequence on game start. For specific instructions, see Playing a
Sequence (p. 294).

Key Properties

Property Description

Duration Sets the capture duration in seconds.

Time Step Forces a fixed frame rate in seconds by using a specified time
step, where time step = 1/number of frames.

Output Format Selects output to various file formats.

Version 1.6
318

Lumberyard User Guide
Capturing Image Frames using Console Variables

Property Description

Output Prefix Selects a prefix to apply to the image file names.

Output Folder Specifies the directory where the image files are stored under
\directory Cache\project_name\pc\project_name\.

Buffer Frames#misc outputs .tga files and .hdr information.

Just frame outputs normal image data in the format you set.
Stereo captures stereo 3D so 1 frame per eye is captured. This
needs a proper stereo 3D setup before it can be used.

Just 1 Frame Chooses between single or multi-frame image capture.

Capturing Image Frames using Console Variables
You can also use the following console variables for image frame capture:

fixed_time_step
Lowers the game speed to achieve a constant frame rate throughout the sequence. The default
time step is 0.0, while a time step value of 0.04 specifies a 25 fps gameplay speed, for example.

capture_frames
A value of 1 enables frame capture.

capture_file_format
Sets the output format for the images. Valid values are .jpg, .tga, and .tif.

capture_file_prefix
Sets a file name prefix to use for captured frames. ‘Frame is used if this is not set.

capture_buffer
Sets the type of buffer to capture. 0 = Color (rgb pixels), 1 = Color with Alpha (rgba pixels where
the alpha channel is set to 255 where geometry exists, 0 otherwise).

Debugging Cinematic Scenes
Use the following console variables when profiling a scene:

• r_displayinfo 3 – Gives you basic performance information. It also gives you a warning when
you exceed texture streaming memory.

• p_profile_entities 1 – Runs your scene and looks for fluctuations. Any entity causing large
peaks should be investigated.

• r_stats 6 – Finds assets with large draw calls or excessive materials, where shadows can be
disabled, etc.

• r_stats 15 – Prints detailed frame timings for specific render passes like static geometry or
lighting. Blue = Within budget. Red = Over budget.

• e_debugdraw 2 | 3 – Value of 2 shows Polycount and value of 3 shows current LOD of selected
entity.

• e_CameraFreeze 1 – Locks your current view and allows you to look around without redrawing any
elements. This allows you to see where the problems are and fix them.

• mov_debugEvents 1 – Shows the names of all actively playing sequences in-game.

Version 1.6
319

Lumberyard User Guide
Component Palette

Component Entity System

component entity system is in preview release and is subject to change.

The component entity system provides a modular and intuitive construction of game elements. The
component entity system works at both the system level and the entity level, and employs reflection,
serialization, messaging using the event bus (EBus), fully cascading prefabs (slices), and the ability to
drag-and-drop and edit component objects in Lumberyard Editor.

This section describes how to add and customize the components available in Lumberyard Editor. For
information on creating your own custom components programatically, see Component Entity System
in the Amazon Lumberyard Developer Guide.

The following Lumberyard Editor tools are used to improve workflow for the component entity system.

• Component Palette

• Entity Outliner

• Entity Inspector

• File Browser

Note
The component entity system replaces the existing Object and Entity System (p. 416) in
Lumberyard at a future date.

Topics

• Component Palette (p. 320)

• Entity Outliner (p. 323)

• Entity Inspector (p. 323)

• File Browser (p. 324)

• Component Reference (p. 327)

• Working with Entities (p. 410)

• Working with Slices (p. 413)

Component Palette
component entity system is in preview release and is subject to change.

Version 1.6
320

http://docs.aws.amazon.com/lumberyard/latest/developerguide/component-entity-system-intro.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/

Lumberyard User Guide
Component Palette

Component Palette is used to find available components to create or add to existing entities.
Component Palette provides drag-and-drop support to the Lumberyard Editor viewport and to the Entity
Inspector.

To open Component Palette

• In Lumberyard Editor, choose View, Open View Pane, Component Palette.

Version 1.6
321

Lumberyard User Guide
Component Palette Attributes

The Component Palette features three panels:

• Favorites – Customizable list of components that you frequently use. Drag components from the
Components panel to add a favorite component. To remove a component from favorites, right-click
and click Remove.

• Categories – Component categories. Click a category to display only the components in that
category.

• Components – List of components. In addition to limiting components by category in the Categories
panel, you can also use the search filter at the top of this panel.

You can create entities using several different methods, as listed below:

To create entities

1. Drag one or more components from Component Palette or your Favorites panel into the
Lumberyard Editor viewport.

2. Drag one or more components onto an entity in the Entity Outliner.

3. Drag one or more components onto an entity in the Entity Inspector.

Component Palette Attributes
The Component Palette is configured using the reflected data of the Editor Component.

For example:

AZ::EditContext* editContext = serializeContext->GetEditContext();
if (editContext)
{
 editContext->Class<EditorParticleComponent>("Particle", "")->
 ClassElement(AZ::Edit::ClassElements::EditorData, "")->
 Attribute(AZ::Edit::Attributes::Category, "Rendering")->
 Attribute(AZ::Edit::Attributes::Icon, "Editor/Icons/Components/
Particle")->
 Attribute(AZ::Edit::Attributes::ViewportIcon, "Editor/Icons/
Components/Viewport/Particle.png")
 // ...
 ;
}

You can modify the following attributes.

• AZ::Edit::Attributes::Category – Name of category for the component; organizes
components. To specify a subcategory, use the forward slash '/' character. For example,
Attribute("Category", "Physics/Colliders").

• AZ::Edit::Attributes::Icon – Path to the icon that will be displayed in the Component
Palette's list of components.

• AZ::Edit::Attributes::ViewportIcon – Although not part of the Component Palette,
ViewportIcon refers to the icon that will be displayed on the entity in the viewport.

If a category is not provided, the component is displayed as Uncategorized.

If an Icon or ViewportIcon attribute is not provided, a default icon is used.

Version 1.6
322

Lumberyard User Guide
Entity Outliner

Entity Outliner
component entity system is in preview release and is subject to change.

The Entity Outliner shows all entities in the world, including key data about each entity, including its
components and the slice to which it belongs. Entity Outliner is useful for scene searching, hierarchical
viewing, and at-a-glance preview of slice and component information.

To open Entity Outliner

• In Lumberyard Editor, choose View, Open View Pane, Entity Outliner.

Parenting
Entities with a transform parent appear nested in the Entity Outliner.

To make one entity the transform parent of another, drag and drop the entity's name onto its desired
parent.

Filtering
Enter text in the filter field to find specific entities. Any entity whose name does not match is hidden in
the Entity Outliner.

Delete all text to resume showing all entities.

Slices
The Entity Outliner displays the slice from which the entity was instantiated.

The color next to the slice designates the instance of the slice to which the entity belongs. Multiple
entities that belong to the same instance of a slice share the same color. Entities that come from
different instances of a common slice have different colors.

Entity Inspector
component entity system is in preview release and is subject to change.

The Entity Inspector is used to add component entities and modify their settings and properties.

For a list of component entities available, see Component Reference (p. 327).

Version 1.6
323

Lumberyard User Guide
File Browser

To use Entity Inspector

1. In Lumberyard Editor, choose View, Open View Pane, Entity Inspector.

2. In the Lumberyard Editor viewport, select an entity.

3. In Entity Inspector, click Add Component.

File Browser
component entity system is in preview release and is subject to change.

File Browser is used to create and populate entities. It can be used with the Entity Inspector and
Entity Outliner to improve your workflow. File Browser displays your assets in a tree view that mirrors
your assets directory. When File Browser detects an asset that is associated with a single component
type, it displays the associated icon if possible.

File Browser provides drag-and-drop support to the Lumberyard Editor viewport, the Entity Inspector,
and to component Asset fields.

To open File Browser

• In Lumberyard Editor, click View, Open View Pane, File Browser.

Version 1.6
324

Lumberyard User Guide
Asset Drag and Drop

Asset Drag and Drop
File Browser supports dragging and dropping assets into multiple windows. In many cases, it behaves
like the Component Palette, except that it uses information about a specific asset to skip some steps
in component entity creation. If an asset is associated with a single component entity type, which is
denoted by its associated icon, then do the following:

• Drag an asset into the Lumberyard Editor viewport to create a new component entity at the cursor's
location, add the associated component, and assign that asset into that component. For example,
dragging a mesh asset (*.cgf in the figure below) creates a new component entity, adds a mesh
component, and assigns the dragged asset into the Asset field.

• Drag an asset directly into the Entity Inspector to add the associated component to the selected
entity(s) and assign the asset.

• Drag over the name of an entity in Entity Outliner to add the associated component and assign the
asset to that entity.

Entity Inspector also supports typed fields. These fields (such as the highlighted Asset field in the
figure above) contains a dialog that allows you to search for assets of the correct type. Since dragged
assets contain their type information, that information can also be used by asset fields to check for
a valid asset. So for example, materials can be dropped on material fields but cannot be dropped in
mesh fields.

Finally, dragged assets also contain basic file name information, and that can be used by any untyped
fields that support text drops.

Version 1.6
325

Lumberyard User Guide
Filtering

Filtering
You can filter assets in the File Browser by typing search criteria at the top of the window.

Every search you enter creates a search criteria widget. These widgets can be individually removed
from your search, or you can remove them all by clicking the X to the left of the search box. While
search criteria also finds folders, any directory that contains a matching asset also remains visible.
Adding multiple search criteria causes your window to look similar to the following picture. This search
shows all assets that contain either cgf or combo.

Clicking the X on a criteria removes it from the window and re-filters the results. As long as you have
one criteria, the filter type button on the left is visible. Toggling that button switches your filtering criteria
from match any (or) to match all (and). Toggling the above search to all changes the results to the
following:

File Operations
Right-click on any entry to display a context menu that allows you to open the file, search for it on disk
or copy its name to the clipboard. If source control is enabled, there are additional options to do source
control operations, such as checking files in or out, or showing the history on a file.

Version 1.6
326

Lumberyard User Guide
Component Reference

Component Reference
component entity system is in preview release and is subject to change.

The following sections describe the various components that are available in the component entity
system.

Topics

• Attachment Component (p. 328)

• Audio Environment Component (p. 329)

• Audio Rtpc Component (p. 330)

• Audio Switch Component (p. 331)

• Audio Trigger Component (p. 332)

• Behavior Tree Component (p. 334)

• Camera Component (p. 336)

• Camera Rig Component (p. 336)

• Camera Target Component (p. 340)

• Constraint Component (p. 341)

• Decal Component (p. 349)

• Event Action Binding Component (p. 350)

• Flow Graph Component (p. 353)

• Input Configuration Component (p. 354)

• Lens Flare Component (p. 358)

• Light Component (p. 361)

• Lua Script Component (p. 365)

• Mannequin Component (p. 367)

• Mannequin Scope Context Component (p. 373)

• Navigation Component (p. 374)

• Particle Component (p. 377)

• Character Physics Component (p. 379)

• Physics Component (p. 384)

• Mesh Collider Component (p. 386)

• Primitive Collider Component (p. 387)

• Rag Doll Component (p. 387)

• Shapes Components (p. 390)

• Simple Animation Component (p. 392)

Version 1.6
327

Lumberyard User Guide
Attachment Component

• Simple State Component (p. 397)

• Skinned Mesh Component (p. 399)

• Spawner Component (p. 400)

• Static Mesh Component (p. 402)

• Tag Component (p. 404)

• Trigger Area Component (p. 406)

Attachment Component

component entity system is in preview release and is subject to change.

The attachment component lets an entity attach to a bone on the skeleton of another entity.
Specifically, the transform of the target bone is checked each frame and if the target bone is not found,
then the target entity transform origin is followed.

Attachment Component Properties

The Attachment component has the following properties:

Target Entity
Entity to attach to.

Joint Name
Attach to this joint on the target entity. If none is chosen then attach to the target's world transform.

Position Offset
Local position offset from the target in meters.

Rotation Offset
Local rotation offset from the target in degrees.

Attached Initially
Whether to attach to the target upon activation.

EBus Request Bus Interface

Use the following request functions with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

Attach

Causes entity to change its attachment target. Entity detaches from its previous target.

Parameters
targetEntityId – ID of entity to attach to.

Version 1.6
328

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Audio Environment Component

targetBoneName – Name of bone on entity to attach to. If bone is not found, then attach to target
entity's transform origin.

offsetTransform – Attachment's offset from target.

Detach

Causes entity to detaches from its target.

Parameters
None

SetAttachmentOffset

Update entity's offset from target.

Parameters
None

EBus Notification Bus Interface

Use the following notification functions with the EBus interface to communicate with other components
of your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

OnAttached

Indicates that the entity has attached to the target.

Parameters
targetEntityId – ID of the target being attached to.

OnDetached

Indicates that the entity is detaching from its target.

Parameters
targetEntityId – ID of the target being detached from.

Audio Environment Component
The Audio Environment component provides access to features of the Audio Translation Layer
(ATL) (p. 135) environments. Environments are used to apply environmental effects such as reverb or
echo.

Audio Environment Properties
The Audio Environment component has the following property:

Default Environment
Type the name of the audio environment to use by default when setting amounts.

Version 1.6
329

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Audio Rtpc Component

EBus Request Bus Interface
Use the following request functions with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

SetAmount

Sets the amount of environmental 'send' to apply to the default environment, if set.

Parameters
amount – Float value of the amount to set

Return
None

Scriptable
Yes

SetEnvironmentAmount

Sets the amount of environmental 'send' to apply to the specified environment.

Parameters
environmentName – Name of ATL Environment to set an amount on

amount – Float value of the amount to set

Return
None

Scriptable
Yes

Audio Rtpc Component
The Audio RTPC component provides basic Real-Time Parameter Control (RTPC) (p. 135)
functionality. An RTPC is a named variable that the audio system can interpret in many different ways.
It allows game developers to set the value from the game at run time to produce real-time tweaking of
sounds.

Audio RTPC Component Properties
The Audio RTPC component has the following property:

Default Rtpc
Type the name of the audio RTPC to use by default. You can associate any RTPC name with the
entity, typically one that is meant to affect a particular trigger.

EBus Request Bus Interface
Use the following request functions with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

Version 1.6
330

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Audio Switch Component

SetValue

Sets the value of the default RTPC.

Parameters
value – Float value of the RTPC

Return
None

Scriptable
Yes

SetRtpcValue

Sets the value of the specified RTPC.

Parameters
rtpcName – Name of the RTPC to set

value – Float value to set

Return
None

Scriptable
Yes

Audio Switch Component
The Audio Switch component provides basic Audio Translation Layer (ATL) (p. 135) switch
functionality. With switches (and switch states), you can specify the state of an entity. The audio
middleware interprets states, modifies the behavior of sounds, and plays the appropriate sounds.

Audio Switch Properties
The Audio Switch component has the following properties:

Default Switch
Type the name of the audio switch to use by default. You can associate any audio switch with the
entity.

Default State
Type the name of the audio switch state to use by default. Use the Audio Controls Editor (p. 132)
to assign the state to the switch. When this component is activated, the default switch is set to the
default state.

Play immediately
Select this option to run upon component activation the audio 'play' trigger.

EBus Request Bus Interface
Use the following request functions with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

Version 1.6
331

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Audio Trigger Component

SetState

Sets the specified state of the default switch.

Parameters
stateName – Name of the state to set

Return
None

Scriptable
Yes

SetSwitchState

Sets a specified switch to a specified state.

Parameters
switchName – Name of the switch to set

stateName – Name of the state to set

Return
None

Scriptable
Yes

Audio Trigger Component
The Audio Trigger component provides basic play and stop features so that you can set up Audio
Translation Layer (ATL) (p. 135) play and stop triggers that can be executed on demand. With an audio
trigger, you can also enable the player to run or stop audio triggers by name on entities.

Audio Trigger Properties
The Audio Trigger component has the following properties.

Default 'play' Trigger
Type the name of the audio trigger that this component runs when 'play' is called. You can change
this property to specify a different default audio trigger.

Default 'stop' Trigger
Type the name of the audio trigger that this component runs when 'stop' is called. You can specify
any trigger here; you do not need to specify a 'stop' trigger in order to stop audio, but it is a best
practice to pair the two triggers. If you leave this setting blank, the 'stop' trigger simply stops the
audio trigger specified for 'play'.

Play immediately
Select this option to run upon component activation the audio 'play' trigger.

EBus Request Bus Interface
Use the following request functions with the EBus interface to communicate with other components of
your game.

Version 1.6
332

Lumberyard User Guide
Audio Trigger Component

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

Play

Runs the default 'play' trigger, if set.

Parameters
None

Return
None

Scriptable
Yes

Stop

Runs the default 'stop' trigger, if set. If no 'stop' trigger is set, kills the default 'play' trigger.

Parameters
None

Return
None

Scriptable
Yes

ExecuteTrigger

Runs the specified audio trigger.

Parameters
triggerName – Name of the audio trigger to run

Return
None

Scriptable
Yes

KillTrigger

Cancels the specified audio trigger.

Parameters
triggerName – Name of the audio trigger to cancel

Return
None

Scriptable
Yes

KillTrigger

Cancels all audio triggers that are active on an entity.

Parameters
None

Return
None

Version 1.6
333

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Behavior Tree Component

Scriptable
Yes

SetMovesWithEntity

Specifies whether triggers should update position as the entity moves.

Parameters
shouldTrackEntity – Boolean indicating whether triggers should track entity's position.

Return
None

Scriptable
Yes

EBus Response Bus Interface
Use the following response functions with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

OnTriggerFinished

Informs all listeners about an audio trigger that has finished playing (the sound has ended).

Parameters
triggerId – Id of trigger that was successfully executed

Return
None

Scriptable
Yes

Behavior Tree Component
Use the Behavior Tree component to load and run a behavior tree for the attached entity.

Behavior Tree Component Properties
The Behavior Tree component has the following properties:

Behavior tree asset
Select an XML file that contains a behavior tree definition.

Enabled initially
When selected, the behavior tree is loaded and activated with the entity.

EBus Request Bus Interface
Use the following request functions with the event bus (EBus) interface,
BehaviorTreeComponentRequestBus, to communicate with other components of your game.

For more information about using the EBus interface, see Event Bus (EBus).

Version 1.6
334

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/ai-scripting-mbt-nodes.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Behavior Tree Component

StartBehaviorTree

Starts an inactive behavior tree associated with this entity.

Parameters
None

Return
None

Scriptable
Yes

StopBehaviorTree

Stops an active behavior tree associated with this entity.

Parameters
None

Return
None

Scriptable
Yes

GetVariableNameCrcs

Gets a list of all crc32s of the variable names.

Parameters
None

Return
AZStd::vector<AZ::Crc32>

Scriptable
Yes

GetVariableValue

Gets the value associated with a variable.

Parameters
AZ::Crc32 variableNameCrc

Return
bool

Scriptable
Yes

SetVariableValue

Sets the value associated with a variable.

Parameters
AZ::Crc32 variableNameCrc

bool newValue

Return
None

Version 1.6
335

Lumberyard User Guide
Camera Component

Scriptable
Yes

The following is an example of script using the Request Bus Interface.

behaviortreescript =
{
 Properties =
 {
 Target = {default=EntityId()},
 },
}

function behaviortreescript:OnActivate()
 self.behavior = BehaviorTreeComponentRequestBusSender(self.entityId)
 self.behavior:StartBehaviorTree()
 self.behavior:SetVariableValue(Crc32("HasTarget"),
 self.Properties.Target:IsValid())
end

Camera Component

component entity system is in preview release and is subject to change.

The camera component allows an entity to be used as a camera.

Camera Component Properties

The Camera component has the following properties:

Field of View
Vertical field of view in degrees.

Near Clip Plane Distance
Distance to the near clip plane of the view frustum.

Far Clip Plane Distance
Distance to the near far plane of the view frustum.

Camera Rig Component

component entity system is in preview release and is subject to change.

Use the Camera Rig component to add and remove behaviors to drive your camera entity.

Version 1.6
336

Lumberyard User Guide
Camera Rig Component

Camera Rig Component Properties

The Camera Rig component has the following properties:

Target acquirers (p. 337)
Array of behaviors that define how a camera selects a target.

Look-at behaviors (p. 337)
Array of behaviors that modify the look-at target transform.

Transform behaviors (p. 339)
Array of behaviors that modify the camera transform based on the look-at target transform.

Target Acquirers

Target Acquirers identify valid targets and acquire their transforms for use in other rig behaviors.

CameraTargetComponentAcquirer

The CameraTargetComponentAcquirer has the following properties:

Tag of Specific Target
Filters available camera targets that have a tag.

Use Target Rotation
If selected, uses the target's rotation when determining camera behavior.

Use Target Position
If selected, uses the target's position when determining camera behavior.

Look-at Behaviors

Look-at Behaviors changes the target transform to modify camera behavior.

OffsetPosition

Use OffsetPosition to change the position of the target's transform. Positions are often determined
from the base of a model. But suppose, for example, that you want to determine its position 1.8 meters
up from its base. You can use this property to achieve that positional offset.

Look-at Behaviors has the following properties:

Positional Offset
Vector displacement of the target transform's position.

Offset Is Relative
If selected, uses local coordinates. If deselected, uses world-basis vectors for the offset.

Version 1.6
337

Lumberyard User Guide
Camera Rig Component

Rotate Camera Target

Use Rotate Camera Target to rotate the target separately from its source target. For example, you
may want your character to look up and down without pitching.

Rotate Camera Target has the following properties:

Axis of Rotation
The target cardinal's axis around which the camera rotates. Select the X, Y, or Z axis.

Event Name
Name of event that provides the values for the rotation.

Player Index
Index of the player (input device).

Invert Axis
If selected, inverts the axis of rotation.

Rotation Speed Scale
Multiplier for new input values to scale the speed of rotation.

SlideAlongAxisBasedOnAngle

Use SlideAlongAxisBasedOnAngle to modify the position of the look-at target based on an angle.
For example, say that you set the target to slide along the forward and backward axis based on pitch.
As the target pitched down, then the position would move ahead of the target. If the target is attached
to the character, then every time the target looked down, it would be ahead of the character. Every time
it looked up, it would be behind the character.

SlideAlongAxisBasedOnAngle has the following properties:

Axis to slide along
Select an axis along which the target slides:

• Forwards and Backwards

• Right and Left

• Up and Down

Angle Type
Select an angle type on which to base the slide:

• Pitch

• Yaw

• Roll

Version 1.6
338

Lumberyard User Guide
Camera Rig Component

Vector Component to Ignore
Select a vector component to ignore: None, X, Y, or Z.

Max Positive Slide Distance
The maximum slide along the axis when the angle reaches 90 degrees.

Max Negative Slide Distance
The maximum slide along the axis when the angle reaches -90 degrees.

Transform Behaviors

Transform Behaviors are a critical component of how the camera responds to the target. For
example, you can set the camera to face the target, follow from a distance, or follow the target at a
specific angle.

FaceTarget

FaceTarget causes the camera to change the rotation of its transform to look at the target. To use this
feature, simply add it. There are no additional properties to configure.

FollowTargetFromAngle

FollowTargetFromAngle causes the camera to follow the target from a specified angle. This feature
works well for top-down, isometric, and side scrolling cameras.

Follow Target from Angle has the following properties:

Angle
Angle at which to follow the target.

Rotation Type
Rotation type of the angle for following the target: yaw, pitch, or roll.

Distance from Target
The distance in meters from which the camera follows the target.

FollowTargetFromDistance

FollowTargetFromDistance causes the camera to follow the target from a specified distance. You can
also set named events to trigger the camera to zoom in on or out from a target.

Version 1.6
339

Lumberyard User Guide
Camera Target Component

FollowTargetFromDistance has the following properties:

Follow Distance
The distance in meters from which the camera follows the target.

Minimum Follow Distance
Minimum distance from which the camera follows the target.

Maximum Follow Distance
Maximum distance from which the camera follows the target.

Zoom In Event Name
Event name that reduces the current follow distance, in effect zooming in.

Zoom Out Event Name
Event name that increases the current follow distance, in effect zooming out.

Zoom Speed Scale
Scale amount for the incoming zoom value.

Player Index
The index of the player (device index) that this feature supports.

Offset Camera Position

Offset Camera Position sets the camera's position to the target's position with an offset.

Offset Camera Position has the following properties:

Offset
The vector offset in meters from the target.

Is Offset Relative
If selected, local basis vectors are used. If deselected, worldbasis vectors are used.

Rotate

Use Rotate to rotate a camera about one of its axes (X, Y, or Z).

Rotate has the following properties:

Angle
Angle in degrees to rotate the camera.

Axis
Axis about which to rotate the camera.

Camera Target Component

component entity system is in preview release and is subject to change.

The Camera Target component registers itself with listeners as a potential camera target.

Version 1.6
340

Lumberyard User Guide
Constraint Component

Note
Orthographic cameras are not supported for primary 3D scene rendering passes, but they are
supported for special case rendering passes, including UI and full screen effects.

Camera Target Component Properties

The Camera Target component has the following property:

Tag
Filters camera targets with the specified tag.

Constraint Component
The Constraint component creates a physical limitation or restriction between an entity and its target.
The target is either another entity or a point in world space. When a constraint is set, the physics
system applies an impulse to the entity or entities until they reach the constraint pivot. The entity
owning the constraint (Owning entity) then moves about its pivot point according to the specified
Constraint type (behavior).

The Owning entity—the entity that has the constraint component applied—must have a physics
component (p. 384) with Rigid Body behavior (movable body). If its target entity is another entity,
that entity must also have a physics component with either rigid body (movable) or static body
(unmovable) behavior. Both entities must also have either a primitive collider (p. 387) or mesh
collider (p. 386) component.

There are many ways to use a constraint component. Here are some examples:

• Create two entities, and then place the constraint component on the movable entity.

• Create two entities, and then place the constraint component on a new entity between the two
entities.

• Create one movable entity, and then place the constraint component on it. Set the Target type as
World space.

• Create one movable entity, and then place the constraint component on a new entity near the
movable entity. Set the Target type as World space.

Version 1.6
341

Lumberyard User Guide
Constraint Component

An example procedure for using a constraint component between two entities is described below.

To place two entities and then place the constraint component entity between them

1. To place the first (movable) entity, and then add necessary mesh and physics components to it,
follow these steps:

a. Create an entity. (p. 410)

b. Open the Entity Inspector (p. 323), and then click Add Component, Rendering, Static
Mesh (p. 402) or Skinned Mesh (p. 399). Next to Static asset or Skinned asset, click
the ellipsis button to select an asset.

c. Click Add Component, Physics, Physics (p. 384).

d. To the right of Behavior, click the + to add a Rigid Body (p. 384) behavior element. Set
rigid body properties as appropriate.

e. Click Add Component, Physics, Colliders, Primitive Collider (p. 387) or Mesh
Collider (p. 386).

2. To place the second entity, repeat the previous set of steps for a new entity. If you want this entity
to be stationary (unmovable), however, set its physics behavior element as Static Body (p. 386)
(instead of rigid body).

3. To place the constraint component on a new entity, which acts as the pivot point, do the following:

a. Create an entity. (p. 410)

b. Open the Entity Inspector (p. 323), and then click Add Component, Physics, Constraint.

c. For Owning entity, select Other entity.

d. For Target type, select Entity.

e. Next to Constrained entity, click the object picker (hand icon), and then in the viewport, click
the first entity you created.

f. Next to Constraint target, click the object picker (hand icon), and then in the viewport, click
the second entity you created.

4. Set Constraint Component Properties (p. 343) as appropriate.

The following picture shows an example of a constraint entity (1) between the constraint owner (2) and
the constraint target (3). Here, the constraint target (3) is a static body (unmovable), and the constraint
owner (2) is a rigid body (p. 384) (movable).

Version 1.6
342

Lumberyard User Guide
Constraint Component

The following picture shows an example of a constraint entity (1) set with a constraint target (2) of
World Space. The constraint owner (3) is a rigid body (p. 384) (movable).

Constraint Component Properties

The primary Constraint component property is the Constraint type. This property defines how the
constraint owner moves in relation to the constraint target and constraint entity (the entity with the
constraint component on it).

Constraint Type

When setting constraint properties, select one of the following Constraint types.

Hinge
The constraint owner moves around the selected Axis. The entity with the constraint component
on it (constraint entity) acts as the pivot point. This constraint type provides one degree of freedom
(X, Y, or Z) between the constraint owner and the constraint target.

An example of a hinge is a door, which rotates about the Z axis.

Ball
The constraint owner moves around the Z axis as if attached at the pivot (constraint entity) by
a ball socket or ball joint. This constraint type provides two degrees of freedom between the
constraint owner and the constraint target.

Version 1.6
343

Lumberyard User Guide
Constraint Component

An example of a ball constraint is a bell's clapper (the swinging part inside the bell housing).

This constraint type always moves about the Z axis. If you want to use this constraint type, but
need it to move in a different direction (for example, attaching at the bottom and moving at the
top), you must change the orientation of the Z axis. To do this, rotate the constraint owner entity.

Slider
The constraint owner slides along one axis. If rotation is also enabled, then the constraint owner
acts like a movable hinge about the sliding axis.

An example of a slider constraint is a sliding door.

Plane
The constraint owner moves along one plane (XY, YZ, or XZ). Select the X axis to move along the
YZ plane, the Y axis to move along the XZ plane, and the Z axis to move along the XY plane.

An example of a plane constraint is a hockey puck sliding along a smooth surface.

Magnet
The constraint owner moves towards the constraint entity, which serves as the pivot point for the
magnet constraint.

Fixed
The fixed constraint must be applied to two rigid body (movable) entities. This constraint type
constrains the two entities with no rotation relative to one another (they can rotate together). The
distance and orientation between the constraint owner and its target are preserved.

An example of a fixed constraint is the two sides of a dumbell—with an invisible and intangible bar
fixing the two sides together.

Free
The constraint owner can move around its target anywhere in space and any distance from its
target, but the orientation of the owner and its target are locked to each other.

Constraint Properties

The following properties are common to all of the constraint types, except where noted.

Version 1.6
344

Lumberyard User Guide
Constraint Component

Constraint type
Select from hinge, ball, slider, plane, magnet, fixed, or free.

Owning entity
Select either self or Other entity.

Only select self if the constraint entity is on the entity that has a static or skinned mesh, and is
movable (has a physics rigid body component). Otherwise, if the constraint component is on its
own entity between the intended constraint owner and its target, select Other entity.

Target type
Select either Entity or World space.

Select Entity if you want the constraint owner to move in relation to another entity, whether
movable (rigid body) or unmovable (static body). Select World space if the constraint owner
should move in relation to its starting position.

Constrained entity
Visible when Owning entity is set to Other entity. Click the picker (hand icon) and, in the
viewport, select the entity that is to be the constraint owner.

Constraint target
Visible when Target type is Entity. Click the picker (hand icon) and, in the viewport, select the
entity that is to be the constraint target.

Axis
Visible when Constraint type is set to hinge, slider, or plane.

For the hinge constraint, the constraint owner rotates about the defined axis. For example, a
typical door rotates on the Z axis. A typical pet door would rotate about the X or Y axis.

For the slider constraint, the axis specifies the direction that the constraint owner slides. For
example, choose the Z axis if you want an up-and-down slider (like an elevator).

For the plane constraint, the axis you choose is perpendicular to the plane upon which the
constraint owner moves. For example, choose X to move along the YZ plane, Y to move along the
XZ plane, and Z to move along the XY plane.

Enable on activate
If selected, the constraint is enabled upon activation.

Part ids
If selected, you can specify the Owner part id and the Target part id.

Force limits
If selected, you can specify the Max pull force in Newtons (N) and the Max bend torque in
Newtons per meter (NM). If the constraint is set to Breakable, and a force exceeding those values
is exerted upon the constraint, then the constraint is removed (broken). If the Breakable setting is
not selected, Force limits control how much force the constraint applies to keep the constrained
entities together.

Rotation limits
Visible when constraint is set to hinge, ball, or slider.

When selected and set to hinge constraint, the Min setting defines the limit of the clockwise
rotation. Use a negative value to set a limit clockwise. For example, -90 degrees would be at the 3
o'clock marker. -180 degrees would be at 6 o'clock. The Max setting defines the rotation counter-
clockwise. Use a positive value. For example, 90 degrees would be at the 9 o'clock marker.
180 degrees would be at the 6 o'clock marker. You can reverse these settings by selecting the
negative axis (for example, Negative Y).

When selected and set to ball constraint, you can set the Half angle. Visualize the rotation area as
a cone; the half angle represents the distance between the middle of the cone and the edge. When
you set the half angle, a blue cone appears in the viewport to represent the rotation area.

Version 1.6
345

Lumberyard User Guide
Constraint Component

When selected and set to slider constraint, use a positive number for the Max setting to define
how far in the positive direction the object can move from its starting point. Use a negative number
for the Min setting to define how far the object can move from its starting point in the opposite
direction. A blue arrow appears in the viewport when a constraint entity is selected.

Damping
If selected, you can specify the damping (p. 1373) of a constraint movement.

Use this setting to prevent perpetual motion, or for constraints that don't properly come to rest.
Start with small values, such as 0.2 to 0.3. Values above 0.5 may make objects seem unnatural
andoverly- dampened.

Enable collision
If selected, enables collision between constrained entities.

Breakable
If selected, the constraint is removed (broken) if force limits are exceeded.

EBus Request Bus Interface

Use the following request functions with the EBus interface to communicate with other components of
your game. For more information about using the event bus (EBus) interface, see Event Bus (EBus).

SetConstraintEntities

Sets which entities are affected by this constraint.

Parameters
AZ::EntityId owningEntity – The entity that owns the constraint (constrained entity).

Return
None

Scriptable
Yes

SetConstraintEntitiesWithPartIds

Sets which entities are affected by this constraint and which of their bones are constrained.

Parameters
AZ::EntityId owningEntity – The entity that owns the constraint (constrained entity).

int ownerPartID – Constraint owner's part ID of the bone to constrain to.

AZ::EntityId targetEntity – The target entity. If the target type is world space, this can be
Invalid EntityId.

int targetPartId – The constraint target's part ID of the bone to constrain to.

Return
None

Scriptable
Yes

EnableConstraint

Enables all constraints on this entity.

Parameters
None

Version 1.6
346

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Constraint Component

Return
None

Scriptable
Yes

DisableConstraint

Disables all constraints on this entity.

Parameters
None

Return
None

Scriptable
Yes

EBus Notification Bus Interface

Use the following notification functions with the constraint component notification bus EBus interface to
communicate with other components of your game.

For more information about using the event bus (EBus) interface, see Event Bus (EBus).

OnConstraintEntitiesChanged

Notifies that one or both of the constrained entities has changed.

Parameters
AZ::EntityId oldOwner – The prior owner of the constraint.

AZ::EntityId oldTarget – The prior target of the constraint.

AZ::EntityId newOwner – The new owner of the constraint.

AZ::EntityId newTarget – The new target of the constraint (can be Invalid EntityId if
constraint target is world space.

Return
None

Scriptable
Yes

OnConstraintEnabled

Notifies that the constraint has been enabled.

Parameters
None

Return
None

Scriptable
Yes

OnConstraintDisabled

Notifies that the constraint has been disabled.

Version 1.6
347

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Constraint Component

Parameters
None

Return
None

Scriptable
Yes

Example Script

The following is a script sample that is intended to be placed on an entity with a constraint component
of Magnet type, with its owner set as Other entity. This script alternates between three different
entities to be constrained for Transition Interval seconds.

constraintexample =
{
 Properties =
 {
 ConstrainedEntity1 = EntityId(),
 ConstrainedEntity2 = EntityId(),
 ConstrainedEntity3 = EntityId(),
 TransitionInterval = 3,
 },
}

function constraintexample:OnActivate()
 self.TransitionCountDown = self.Properties.TransitionInterval
 self.ConstrainedIdx = 1
 self.ConstrainedEntities = { self.Properties.ConstrainedEntity1,
 self.Properties.ConstrainedEntity2, self.Properties.ConstrainedEntity3 }
 self.busSender = ConstraintComponentRequestBusSender(self.entityId)
 self.tickBusHandler = TickBusHandler(self, 0)
 self.constraintHandler = ConstraintComponentNotificationBusHandler(self,
 self.entityId)
 Debug.Log("ConstraintComponent activated for entity: " ..
 self.entityId.id)
end

function constraintexample:OnTick(deltaTime, timePoint)
 self.TransitionCountDown = self.TransitionCountDown - deltaTime
 if (self.TransitionCountDown < 0.0) then

 self.busSender:SetConstraintEntities(self.ConstrainedEntities[self.ConstrainedIdx],
 self.entityId)
 self.ConstrainedIdx = (self.ConstrainedIdx + 1) %
 table.getn(self.ConstrainedEntities) + 1
 self.TransitionCountDown = self.Properties.TransitionInterval
 end
end

function constraintexample:OnDeactivate()
 self.tickBusHandler:Disconnect()
 self.constraintHandler:Disconnect()
end

function constraintexample:OnConstraintEntitiesChanged(oldOwner, oldTarget,
 newOwner, newTarget)

Version 1.6
348

Lumberyard User Guide
Decal Component

 Debug.Log("Constraint Changed - old owner:" .. tostring(oldOwner) .. "
 old target:" .. tostring(oldTarget))
 Debug.Log(" new owner:" .. tostring(newOwner) .. " new
 target:" .. tostring(newTarget))
end

function constraintexample:OnConstraintEnabled()
 Debug.Log("Constraint Enabled: " .. tostring(self.entityId))
end

function constraintexample:OnConstraintDisabled()
 Debug.Log("Constraint Disabled: " .. tostring(self.entityId))
end

Decal Component
component entity system is in preview release and is subject to change.

Use the Decal component to place a component on an entity.

Decal Component Properties
The Decal component has the following properties:

Visible
If selected, shows the decal.

Projection Type
Specifies the type of decal projection: Planar, On Terrain, or On Terrain and Static
Objects.

Material
The decal's material file.

Sort Priority
Sort priority relative to other decals in the system.

Depth
Projection depth for deferred decals.

Offset
Allows offsetting the decal relative to the entity's position.

Deferred
If true, enables deferred decals.

Max view distance
The furthest distance at which this decal can be viewed.

Version 1.6
349

Lumberyard User Guide
Event Action Binding Component

View distance multiplier
Multiplier to the automatically computed fade-out camera distance.

Minimum spec
Minimum spec for the decal to be active.

EBus Request Bus Interface

Use the following request function with the EBus interface to communicate with other components of
your game.

For more information about using the event bus (EBus) interface, see Event Bus (EBus).

SetVisibility

Sets an explicit value (true/false) on the decal's visibility.

Parameters
true or false

Show

Shows the decal.

Parameters
None

Hide

Hides the decal.

Parameters
None

The following is an example of script using the Request Bus Interface.

function example:OnActivate()
 self.decalBusSender = DecalComponentRequestBusSender(self.entityId);
 self.decalBusSender:Hide();
 self.decalBusSender:Show();
 self.decalBusSender:SetVisibility(false);
end

Event Action Binding Component

component entity system is in preview release and is subject to change.

The Event Action Binding component converts events to actions. For example, a jump event can be
converted to an Add Physics Impulse action.

The following actions are available:

• Rotate Entity Action – Rotates an entity

Version 1.6
350

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Event Action Binding Component

• Add Physics Impulse Action – Applies an impulse to a character

• Move Entity Action – Moves an entity

When you first add the Event Action Binding component, it looks like this:

To add an action

1. Click the plus sign (+) next to Event to action bindings.

2. Select an action from the list.

3. Click the hand icon next to Entity Event Channel and then select an entity in the viewport.

Rotate Entity Action

Use the Rotate Entity Action to rotate an entity.

Rotate Entity Action has the following properties:

Axis of Rotation
Select from the list to specify the axis around which the entity rotates.

Event Name
Name (string) of the expected event.

Player Index
If selected, entity rotates along a negative axis.

Invert Axis
Scale the incoming direction's Z component.

Rotation Speed Scale
Use a value greater than 1 to speed up the entity. Use a value between 0 and 1 to slow it down.

Should Ignore Physics
If selected, applies action only to the entity's transform component.

Is Relative
If selected, the entity's transform component forms the basis for the movement.

Add Physics Impulse Action

Use the Add Physics Impulse Action to apply an impulse to a character. For example, you can use
this action on spacecraft and watercraft and to create jumping actions.

Version 1.6
351

Lumberyard User Guide
Event Action Binding Component

Add Physics Impulse Action has the following properties:

X Scale
Scale the incoming direction's X component.

Y Scale
Scale the incoming direction's Y component.

Z Scale
Scale the incoming direction's Z component.

Event Name
Name (string) of the expected event.

Player Index
The index (u8) of the player attached to this event.

Should Apply Instantly
If selected, applies impulse instantly. Leave deselected to send continuous impulses.

Is Relative
If selected, the entity's transform position forms the basis for the movement.

Move Entity Action

Use the Move Entity Action to move an entity.

Move Entity Action has the following properties:

X Scale
Scale the incoming direction's X component.

Y Scale
Scale the incoming direction's Y component.

Z Scale
Scale the incoming direction's Z component.

Event Name
Name (string) of the expected event.

Player Index
The index (u8) of the player attached to this event.

Version 1.6
352

Lumberyard User Guide
Flow Graph Component

Should Ignore Physics
If selected, applies action only to the entity's transform component.

Is Relative
If selected, the entity's transform position forms the basis for the movement.

Flow Graph Component

component entity system is in preview release and is subject to change.

Component entities support some flow graphs using the context menu on selected component entities.

The following flow graph nodes are supported for component entities:

• Movement:RotateEntity – Applies a rotation velocity to an entity.

• Movement:MoveEntityTo – Moves the entity to the specified location.

• ComponentEntity:TransformComponent:GetEntityPosition – Returns the entity's position.

• ComponentEntity:TransformComponent:GetEntityRotation – Returns the entitiy's orientation.

• ComponentEntity:TransformComponent:SetEntityPosition – Specifies the entity's position.

• ComponentEntity:TransformComponent:SetEntityRotation – Specifies the entity's rotation.

• ComponentEntity:TriggerComponent:EnterTrigger – Triggers event notification on entry or exit.

To add a flow graph to a component entity

1. In the viewport select an existing entity.

2. Right-click the entity, and click FlowGraph, Add.

3. Type a name for the flow graph.

After you add a flow graph to the entity, you can access the flow graph from the Flow Graph editor in
the Graphs pane under FlowGraph Components.

Component entities support multiple flow graphs. You can add, remove, or open a flow graph from the
viewport using the context menu.

Version 1.6
353

Lumberyard User Guide
Input Configuration Component

Flow graph context menus also work on multiple selected entities.

Input Configuration Component

component entity system is in preview release and is subject to change.

The Input Configuration component references an .inputbindings file. This file binds a set of
inputs (such as from a mouse, game controller, and so on) to an event.

You can create or edit these reflected content files by right-clicking on the file in the File
Browser (p. 324). Select an option from the context menu.

From the File Browser, you can also create a new asset.

Creating an Input to Event Binding Asset

Follow these steps to create a new input to event binding asset.

Version 1.6
354

Lumberyard User Guide
Input Configuration Component

To create a new input to event binding asset

1. Open File Browser by clicking View, Open View Pane, File Browser.

2. Right-click on an asset, and then click Open Asset Editor.

3. Click File, Create New Asset, Input to Event Binding Asset.

Input Configuration Properties

The Input Configuration component has the following properties:

Input to event bindings
An asset reference to an .inputbindings file that defines bindings of raw input to events. Click
the ellipsis (…) to select an .inputbindings file.

Source EntityId
Name of entity for input. Click the hand icon, and then select an entity in the viewport.

Creating a New Input Bindings File

Follow these steps to create a new .inputbindings file. After you create a new .inputbindings
file, you can add Input Event Groups (p. 355) and Event Generators (p. 355).

To create a new .inputbindings file

1. Open the File Browser by clicking View, Open View Pane, File Browser.

2. Right-click anywhere and then click Open Asset Editor.

3. Click File, Create New Asset, Input to Event Bindings Asset.

4. Type a file name. Click Save.

Input Event Groups

An Input Event Bindings file can have zero (0) or more Input Event Groups.

To add an input event group

1. Click the plus sign (+) next to Input Event Groups.

2. In the Event Name box, type a name for your event.

Event Generators

An Event Generator is a handler that generates the named event. For example, a pressed key, a held
mouse button, or a series of actions on a controller results in the named event.

To add an event generator

1. Click the plus sign (+) next to Event Generators.

Version 1.6
355

Lumberyard User Guide
Input Configuration Component

2. Select an event from the list.

These event generators (InputSubComponents) are categorized in the following manner:

Single Event to Action
Maps a single event to a single action. The following event generators are Single Event to
Action:

• Analog – Analog input events such as a mouse or keyboard.

• Held – Event that completes when the Input Device Type is held for a specified duration.

• Pressed – Event that completes when the Input Device Type is pressed.

• Released – Event that completes when the Input Device Type is released.

GameplayNotificationBus handlers
These handlers aggregate one more GameplayActionEvents into a single output
GameplayActionEvent. They do not listen for raw input like the InputNotificationBus
handlers. The following events are ActionNotificationBus handlers:

• Ordered Event Combination – Combination input event handler that listens for a series of
events and then treats them all as one. As long as the events occur in the specified order, the
outgoing event will occur. For example, Down then Right then Heavy Punch results in the
event Heavy Special Attack. When you add this event generator, it appears in the UI as the
first incoming event name followed by an ellipsis (…).

• Unordered Event Combination – Combination input event handler that listens for a
combination of events in no particular order as long as they all happen within a specified amount
of time. When you add this event generator, it appears in the UI as Unordered combo in n,
where n is the value from the property Max delay for all events.

• Vectorized Event Combination – This class binds three incoming action values to an
AZ::Vector3 and sends out a new gameplay event containing that AZ::Vector3.

Bind to this action by inheriting AZ::ActionNotificationBus<AZ::Vector3>::Handler
and connecting to the bus.

Event Generator Properties

Each event generator has a set of properties that you can use to customize the specifics of the event
generator.

Single Event to Action Properties

The Single Event To Action event generators (Held, Pressed, Analog, Released) all have the
following common properties:

• Input Device Type – The type of device that generates the input. Select from a list of available
devices.

Version 1.6
356

Lumberyard User Guide
Input Configuration Component

• Input Name – List of input options that depend on the selected input device type. For example, if you
select keyboard for the Input Device Type, a list of possible keystrokes appear in this list.

• Event value multiplier – Multiplier by which to scale the input value.

The event generators Held and Analog also have the following unique properties:

Held

• Duration to hold – The number of seconds that the input must be held.

• Invoke once per release – If selected, event occurs only once for each held instance. If
deselected, an event is generated for each duration continuously until released.

Analog

• Send continuous updates – If selected, updates are sent continuously. If deselected, sends a
message only when the analog value has changed.

• Dead zone – A magnitude or absolute value. Values below this number are considered inactive,
and no events are generated. Only magnitudes, or absolute values, above this number causes
events to be generated.

Action Notification Bus Handlers Properties

The ActionNotificationBus handlers (Ordered Event Combination, Unordered
Event Combination, and Vectorized Event Combination) aggregate one or more
GameplayActionEvents into a single output GameplayActionEvent. They do not listen for raw
input the way the InputNotificationBus handlers do.

The ActionNotificationBus handlers feature the following properties:

Ordered Event Combination and Unordered Event Combination

• Incoming event names – A resizable array of incoming event names, such as jump and run.

• Max delay between events – Delay in seconds between successful events which, if exceeded,
causes a failure.

Vectorized Event Combination

• Dead zone length – A threshhold for vector length below which an event is not generated.

• Incoming event names – An array of three incoming event names, such as X, Y, and Z,
mapped to a vector output.

• Should normalize – If selected, output event value is normalized.

Editing the Input Bindings File

Follow these steps to edit the .inputbindings file.

To edit the .inputbindings file

1. Open the File Browser by clicking View, Open View Pane, File Browser.

2. Right-click the .inputbindings file you want to edit. From the context menu, click Edit.

Version 1.6
357

Lumberyard User Guide
Lens Flare Component

Lens Flare Component

component entity system is in preview release and is subject to change.

The Lens Flare component allows the placement of a lens flare on an entity.

Version 1.6
358

Lumberyard User Guide
Lens Flare Component

Lens Flare Component Properties

The Lens Flare component has the following properties:

Visible
If selected, shows the lens flare.

Source

Library
Select a lens flare library that has been authored by the Lens Flare editor.

Lens flare
A lens flare selected from the available flares in the lens flare library.

Flare Settings

Minimum spec
The minimum spec at which this lens flare is enabled.

FOV
The field of view (FOV) for this lens flare in degrees.

Size
The size of the lens flare.

Attach to sun
If selected, attaches the lens flare to the sun.

Ignore vis areas
If selected, lens flare ignores vis areas.

Indoor only
If selected, lens flare is only rendered indoors.

On initially
If selected, the lens flare is on when created.

View distance multiplier
Adjust the maximum view distance. For example, 1.0 would use the default and 1.1 would be
10% further than the default.

Version 1.6
359

Lumberyard User Guide
Lens Flare Component

Color Settings

Tint
Color of the lens flare.

Brightness
Brightness of the lens flare.

Animation

Sync with light
When selected, uses the animation settings of the provided light.

Speed
Multiple of the base animation rate.

Style
Light animation curve ID (style) as it corresponds to values in Light.cfx.

Phase
Animation start offset from 0 to 1. 0.1 would be 10% into the animation.

EBus Request Bus Interface

Use the following request function with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

• SetLensFlareState (On or Off) – Turns the lens flare on or off.

• TurnOnLensFlare – Turns the lens flare on.

• TurnOffLensFlare – Turns the lens flare off.

• ToggleLensFlare – Toggles the lens flare state (on to off, or off to on).

EBus Notification Bus Interface

Use the following notification functions with the EBus interface to communicate with other components
of your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

• LensFlareTurnedOn – Sends a signal when the lens flare is turned on.

• LensFlareTurnedOff – Sends a signal when the lens flare is turned off.

The following is an example of script using the Request Bus Interface.

function example:OnActivate()
 self.lensFlareBusSender =
 LensFlareComponentRequestBusSender(self.entityId);
 self.lensFlareBusSender:SetLensFlareState("Off");
 self.lensFlareBusSender:TurnLensFlareOn();
 self.lensFlareBusSender:TurnLensFlareOff();
 self.lensFlareBusSender:ToggleLensFlare();
end

Version 1.6
360

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Light Component

Light Component

component entity system is in preview release and is subject to change.

The Light component allows for the placement of a light on an entity.

There are four light types that share a set of common settings and then each have their own specific
settings:

• Point

• Area

• Projector

• Environment Probe

Light Component Properties

The Light component has the following common properties:

Type
Selects the light type: Point, Area, Projector, or Environment Probe.

Visible
If selected, shows the light.

On initially
If selected, the light is on when created.

General Settings

Color
The color of this light.

Version 1.6
361

Lumberyard User Guide
Light Component

Diffuse multiplier
Controls the strength of the diffuse color.

Specular multiplier
Controls the strength of the specular brightness.

Ambient
If selected, light acts as a multiplier for cubemap values.

Options

View distance multiplier
Adjust the maximum view distance. For example, 1.0 would use the default and 1.1 would be
10% further than the default.

Minimum spec
The minimum spec at which this light is enabled.

Cast shadow spec
The minimum spec at which shadows are cast.

Ignore vis areas
If selected, light ignores vis areas.

Indoor only
If selected, light is only rendered indoors.

Affects this area only
If selected, light affects only the immediate area.

Volumetric fog only
If selected, affects only volumetric fog.

Volumetric fog
If selected, affects volumetric fog.

Animation

Style
Light animation curve ID (style) as it corresponds to values in Light.cfx.

Speed
Multiple of the base animation rate.

Phase
Animation start offset from 0 to 1. 0.1 would be 10% into the animation.

Each of the light types—Point, Area, Projector, and Environment probe—have their own set of
properties.

Point Light Settings

Max Distance
Maximum distance at which this light can be seen.

Attenuation bulb size
Radius in meters before light falloff begins.

Area Settings

Area Width
Width of the area light in meters.

Area Height
Height of the area light in meters.

Version 1.6
362

Lumberyard User Guide
Light Component

Max Distance
Maximum distance in meters that the area light extends.

Projector Light Settings

Max Distance
Maximum distance in meters that the projector light extends.

Attenuation bulb size
Radius in meters before light falloff begins.

FOV
Projector light's field of view (FOV) in degrees.

Near Plane
Distance of the near project plane to the entity position in meters.

Texture
Projector light's texture file.

Environment Probe Settings

Area X,Y,Z
The XYZ dimensions of the environment probe's area of effect.

Sort priority
Priority number for probe rendering. The lower priority numbers (for example, 0 or 1) are rendered
on top of the higher priority numbers (for example, 100).

Resolution
Cubemap resolution in pixel

Cubemap asset
File path for the cubemap asset.

EBus Request Bus Interface

Use the following request function with the EBus interface to communicate with other components of
your game.

For more information about using the event bus (EBus) interface, see Event Bus (EBus).

SetLightState

Turns the light on or off.

Parameters
On or Off

Return
None

Scriptable
Yes

TurnOnLight

Turns the light on.

Parameters
None

Version 1.6
363

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Light Component

Return
None

Scriptable
Yes

TurnOffLight

Turns the light off.

Parameters
None

Return
None

Scriptable
Yes

ToggleLight

Toggles the light state from on to off, or off to on.

Parameters
None

Return
None

Scriptable
Yes

EBus Notification Bus Interface

Use the following notification functions with the EBus interface to communicate with other components
of your game.

For more information about using the event bus (EBus) interface, see Event Bus (EBus).

LightTurnedOn

Sends a signal when the light is turned on.

Parameters
None

Return
None

Scriptable
Yes

LightTurnedOff

Sends a signal when the light is turned off.

Parameters
None

Return
None

Version 1.6
364

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Lua Script Component

Scriptable
Yes

The following is an example of script using the Request Bus Interface.

function example:OnActivate()
 self.lightBusSender = LightComponentRequestBusSender(self.entityId);
 self.lightBusSender:SetLightState("Off");
 self.lightBusSender:TurnLightOn();
 self.lightBusSender:TurnLightOff();
 self.lightBusSender:ToggleLight();
end

Lua Script Component
component entity system is in preview release and is subject to change.

The Lua Script component attaches arbitrary Lua logic to an entity in the form of a Lua-based
component.

• Properties - a

• Script - a .lua script file.

Lua Script Component Properties
The Lua Script component has the following properties:

Properties
Lua table of user-defined properties that will be reflected and available in the Entity Inspector.

Script
A .lua script file. To edit the script file, click {} (brackets button).

Properties

Scripts support user-defined properties. These properties are reflected on the component. The
following script sample shows properties defined in a .lua file.

MyScriptComponent = {
 Properties = {
 Speed = {
 default = 0, -- Supports numbers, string or boolean
 min = 0,
 max = 100,
 step = 1,
 description = "Speed in m/s for the ...",
 }
 ExampleArray = {1,2,3,4,5}, -- default array type no attributes
 }
 }

Version 1.6
365

Lumberyard User Guide
Lua Script Component

The user-defined properties are available to edit in the entity inspector.

Network Binding

You can accomplish networking binding for properties by adding the following table to the description of
the variable inside of the Properties table.

MyScriptComponent = {
 Properties = {
 Speed = {
 default = 0, -- Supports numbers, string or boolean
 min = 0,
 max = 100,
 step = 1,
 description = "Speed in m/s for the ...",

 -- If this table is missing, it is assumed the value is not
 networked.
 netSynched =
 {
 -- Optional fields
 OnNewValue = <function> -- OnNewValue will be called
 whenever the property has a new value.

 -- The following flags are mainly here for debugging/
profiling niceness.
 Enabled = true -- Will control whether or not
 the field is network enabled, if missing, will assume true.
 ForceIndex = [1..32] -- Profiling helper tool to force
 a property to use a specific DataSet to make understanding what data is
 being used where easier.
 }
 }
 }
 }

After you enter the table, you can use the the property as you normally would, but any changes made
to it will be reflected across the network.

Exposing RPCs to scripts involves creating a new table inside of the component table, but outside of
the properties table, as shown in the following.

MyScriptComponent = {
 Properties = {
 Speed = {
 default = 0, -- Supports numbers, string or boolean
 min = 0,
 max = 100,
 step = 1,

Version 1.6
366

Lumberyard User Guide
Mannequin Component

 description = "Speed in m/s for the ...",
 netSynched =
 {
 OnNewValue = <function>
 ForceIndex = 1
 }
 }
 }

 -- Table of RPCs the script wants to implement
 NetRPCs =
 {
 RPCNoParam = {
 OnMaster = <function> -- The function that will be called on
 the Master Script. This should return a bool value indicating whether or not
 Proxy components can execute the RPC on themselves. This must exist.
 OnProxy = <function> -- The function taht will be called on
 the Proxy Script. This is optional and can be excluded if the master never
 allows Proxy's to execute the function call.
 }
 }
 }

You can invoke the RPC just like any other function inside of the NetRPCs table. There is no need to
specify the OnMaster/OnProxy from the calling script.

self.NetRPCs.RPCNoParam();
self.NetRPCs.RPCParam(1.0);

Mannequin Component
The Mannequin component animates a component entity using the Mannequin System (p. 247).
This component works in conjunction with the Mannequin Scope Context (p. 373) component,
which sets scope context. Using the mannequin scope context component is optional; as long as the
appropriate scope context is set, the mannequin component functions as designed. The mannequin
component simply acts as the programmer- and designer-facing interface for component entities with
respect to mannequin.

Mannequin Component Properties
The Mannequin component has the following property:

Controller Definition
Path to the controller definition file (p. 247) to be used for animation.

EBus Request Bus Interface (Per Fragment)
Use the following request functions with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

The following methods modify how a specific fragment on this component is played. Specific fragments
are identified using a fragment ID (RequestId) that the QueueFragment method returns.

Version 1.6
367

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Mannequin Component

QueueFragment

Queues the indicated mannequin fragment.

Parameters
priority – Higher numbers indicate higher priority.

fragmentName – Name of the fragment to be played.

fragTags – Fragment tags to be applied (for multiple FragTags, use a + delimited list).

Return
RequestId – ID used to uniquely identify and make modifications to this request.

Scriptable
Yes

QueueFragmentById

Queues the indicated mannequin fragment.

Parameters
priority – Higher numbers indicate higher priority.

fragmentId – ID of the fragment to be played.

fragTags – Fragment tags to be applied (For multiple FragTags, use a + delimited list).

Return
RequestId – ID used to uniquely identify and make modifications to this request.

Scriptable
No

GetActionForRequestId

Allows users to retrieve the action associated with any given request ID.

Parameters
requestID – The request ID.

Return
Action – ID associated with a fragment request.

Scriptable
No

StopRequest

Stops the actions associated with an indicated request.

Parameters
requestID – The request ID.

Return
Action – ID associated with a fragment request.

Scriptable
Yes

GetRequestStatus

Indicates the status of a request.

Version 1.6
368

Lumberyard User Guide
Mannequin Component

Parameters
requestID – The request ID.

Return
Status (type IAction::EStatus) of the request.

Scriptable
Yes

ForceFinishRequest

Forces the actions associated with an indicated request to finish.

Parameters
requestID – The request ID.

Return
None

Scriptable
Yes

SetRequestSpeedBias

Sets speed bias for the actions associated with an indicated request.

Parameters
requestID – The request ID.

speedBias – The speed bias for this animation.

Return
None

Scriptable
Yes

GetRequestSpeedBias

Gets the speed bias for the actions associated with an indicated request.

Parameters
requestID – The request ID.

Return
Speed bias for the indicated request.

Scriptable
Yes

SetRequestAnimWeight

Sets the anim weight for the actions associated with an indicated request.

Parameters
requestID – The request ID.

animWeight – The weight for this animation.

Return
None

Scriptable
Yes

Version 1.6
369

Lumberyard User Guide
Mannequin Component

GetRequestAnimWeight

Gets the anim weight for the actions associated with an indicated request.

Parameters
requestID – The request ID.

Return
Anim weight for the indicated request.

Scriptable
Yes

EBus Request Bus Interface (Per Component)

The following methods modify modify how all fragments on this component are played.

PauseAll

Pauses all actions being managed by this mannequin component.

Parameters
None

Return
None

Scriptable
Yes

ResumeAll

Resumes all actions being managed by this mannequin component.

Parameters
A flag of type IActionController::EResumeFlags that indicates how the animations are to be
resumed.

Return
None

Scriptable
Yes

SetTag

Sets indicated tag for this mannequin component.

Parameters
tagName – Name of the tag to be set.

Return
None

Scriptable
Yes

SetTagById

Sets indicated tag for this mannequin component.

Version 1.6
370

Lumberyard User Guide
Mannequin Component

Parameters
tagId – ID of the tag to be set.

Return
None

Scriptable
Yes

ClearTag

Clears indicated tag for this mannequin component.

Parameters
tagName – Name of the tag to be cleared.

Return
None

Scriptable
Yes

ClearTagById

Clears indicated tag for this mannequin component.

Parameters
tagId – ID of the tag to be cleared.

Return
None

Scriptable
Yes

SetGroupTag

Sets a tag in the indicated group.

Parameters
groupName – Name of the group.

tagName – Name of the tag to be set.

Return
None

Scriptable
Yes

SetGroupTagById

Sets a tag in the indicated group.

Parameters
groupId – Id of the group.

tagId – ID of the tag to be set.

Return
None

Scriptable
No

Version 1.6
371

Lumberyard User Guide
Mannequin Component

ClearGroup

Clears tags for the indicated group.

Parameters
groupName – Name of the group.

Return
None

Scriptable
Yes

ClearGroupById

Clears tags for the indicated group.

Parameters
groupId – Id of the group.

Return
None

Scriptable
No

SetScopeContext

Sets the scope context for this animation controller.

Parameters
scopeContextName – Name of the scope context that the .adb file is to be attached to.

entityId – Id of an entity whose character instance will be bound to this scope context.

animationDatabase – Path to the animation database file.

Return
None

Scriptable
Yes

SetScopeContextById

Sets the scope context for this animation controller.

Parameters
scopeContextID – ID of the scope context that the .adb file is to be attached to.

entityId – Id of an entity whose character instance will be bound to this scope context.

animationDatabase – Path to the animation database file.

Return
None

Scriptable
No

ClearScopeContext

Clears the indicated scope context.

Version 1.6
372

Lumberyard User Guide
Mannequin Scope Context Component

Parameters
scopeContextName – Name of the scope context that is to be cleared.

Return
None

Scriptable
Yes

ClearScopeContextById

Clears the indicated scope context.

Parameters
scopeContextId – Id of the scope context that is to be cleared.

Return
None

Scriptable
No

GetActionController

Allows users to retrieve the action controller attached to this instance of the mannequin component.

Parameters
None

Return
The action controller being used by this mannequin component.

Scriptable
No

Mannequin Scope Context Component
The Mannequin Scope Context component associates a runtime character instance with a given
scope context and an .adb file. This component is used in conjunction with, and cannot function
without the Mannequin (p. 367) component. The Mannequin component can, however, use other
means to set scope contexts and is therefore able to function without the mannequin scope context
component.

Mannequin Scope Context Component Properties

The Mannequin Scope Context component has the following properties:

Animation Database
Asset reference to an .adb file. Animation database files tie together most of the mannequin
configuration.

Context Name
Name of the scope context that the .adb file is to be attached to.

Version 1.6
373

Lumberyard User Guide
Navigation Component

Target Entity
Reference to an entity whose character instance will be bound to this scope context.

Navigation Component
component entity system is in preview release and is subject to change.

The Navigation component provides basic pathfinding and pathfollowing services to an entity. It
supports AI and other game logic by accepting navigation commands and dispatching per-frame
movement requests to the physics component in order to follow the calculated path.

This works by scheduling asynchronous pathfinding requests to the navigation system for finding paths
to target entities or positions. Once a valid path has been found, it informs all interested parties. It is up
to the requester (or other interested parties) to then tell it to commit to that path and move its entity.

This component is not responsible for assessing the tactical viability of any pathfinding or pathfollowing
request that it is given. Instead, it assumes that the requester has already made the requisite tactical
decisions before issuing the movement request. The requester (or other interested parties) receives
a notification when a path is found and includes is the potential for some additional validation before
the path is actually traversed. This should be looked at as more of a screening opportunity than true
tactical decision-making point. It mainly serves to ensure that the path is still fresh when the entity
starts to move along it.

Navigation Component Properties
The Navigation component has the following properties:

AgentType
Type of the entity for navigation purposes. This type is used to select which navigation
mesh (p. 1375) this entity follows in a scenario where there are different navmeshes for larger
vehicles and smaller humanoid bots.

AgentRadius
Radius of this entity for navigation purposes. Independent of physics or any other collision
concerns, this value is used by the pathfinder for moving around in an area with obstacles while
cutting corners..

LookAheadDistance
Defines the distance between the points that an entity walks over while following a given path.

Arrival Distance Threshold
Entity's minimum distance from the end point before its movement is to be stopped and considered
complete.

Repath Threshold
Entity's minimum distance from its previously known location before a new path is calculated.

EBus Request Bus Interface
Use the following request functions with the event bus (EBus) interface to communicate with other
components of your game.

Version 1.6
374

Lumberyard User Guide
Navigation Component

For more information about using the EBus interface, see Event Bus (EBus).

FindPath

Finds a requested path configuration.

Parameters
request – Allows the issuer of the request to override one, all, or none of the pathfinding
configuration defaults for this entity.

Return
A unique identifier to this pathfinding request.

Scriptable
No

FindPathToEntity

Creates a path finding request to navigate towards the specified entity.

Parameters
EntityId of the entity toward which you want to navigate.

Return
A unique identifier to this pathfinding request.

Scriptable
Yes

Stop

Stops all pathfinding operations for the provided requestId. The ID is used to ensure that the request
being canceled is the request that is currently being processed. If the requestId provided is different
from the ID of the current request, then the stop command is ignored.

Parameters
requestId – ID of the request to be canceled.

Return
None

Scriptable
Yes

EBus Notification Bus Interface

Use the following notification functions with the event bus (EBus) interface to communicate with other
components of your game.

For more information about using the EBus interface, see Event Bus (EBus).

OnSearchingForPath

Indicates that the pathfinding request has been submitted to the navigation system.

Parameters
requestId – ID of the path search request.

Return
None

Version 1.6
375

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Navigation Component

Scriptable
Yes

OnPathFound

Indicates that a path has been found for the indicated request.

Parameters
requestID – ID of the found request for the path search

currentPath – The path that was calculated by the pathfinder.

Return
Flag indicating whether this path is to be traversed or not.

Scriptable
No

OnTraversalStarted

Indicates that traversal for the indicated request has started.

Parameters
requestId – ID of the request for which traversal has started.

Return
None

Scriptable
Yes

OnTraversalInProgress

Indicates that traversal for the indicated request is in progress.

Parameters
requestId – ID of the request for which traversal is in progress.

Return
None

Scriptable
Yes

OnTraversalComplete

Indicates that traversal for the indicated request has completed successfully.

Parameters
requestId – ID of the request for which traversal has finished.

Return
None

Scriptable
Yes

OnTraversalCancelled

Indicates that traversal for the indicated request was canceled before successful completion.

Version 1.6
376

Lumberyard User Guide
Particle Component

Parameters
requestId – ID of the request for which traversal was canceled.

Return
None

Scriptable
Yes

Particle Component
component entity system is in preview release and is subject to change.

The Particle component allows the placement of a single particle emitter on an entity. However, an
entity can contain multiple particle components.

Particles can come from either a file library or the level library. If the Library source is set to Level,
the Particle effect library field is removed, and any emitters in the level library will be available in the
Emitters list. If no emitters are listed, you can open the Particle Editor (p. 929) to create some.

Version 1.6
377

Lumberyard User Guide
Particle Component

Particle Component Properties

The Particle component has the following properties:

Source

Visible
If selected, renders the emitter.

Particle effect library
Select the particle effect library.

Emitters
After specifying a particle effect library, select an emitter from the list.

Library source
File or Level.

General

Attach type
Select the type of object from which the particles are emitted (None, Bounding box, Physics,
Render).

Attach form
Select the shape aspect from which particles are emitted (Surface, Edges, Vertices, Volume).

Spawn Properties

Count per unit
If selected, multiplies particle count also by geometry extent (length, area, volume).

Prime
If selected, sets emitter to behave as though it has been running indefinitely.

Count scale
Multiple for particle count (on top of Count per unit, if set).

Time scale
Multiple for emitter time evolution.

Pulse period
How often to restart emitter.

Size scale
Multiple for all effect sizes.

Speed scale
Multiple for particle emission speed.

Strength
Parameter strength curves.

Ignore rotation
If select, entity's rotation is ignored.

Not attached
If selected, the entity's position is ignored. Emitter does not follow its entity.

Register by bounding box
If selected, uses the bounding box instead of position to register in vis area.

Audio

Enable audio
If selected, enables audio.

Version 1.6
378

Lumberyard User Guide
Character Physics Component

Audio RTPC
Indicates what audio RTPC this particle effect instance drives.

EBus Request Bus Interface

Use the following request function with the EBus interface to communicate with other components of
your game.

For more information about using the event bus (EBus) interface, see Event Bus (EBus).

• SetVisibility (true or false) – Sets an explicit value for emitter visibility.

• Show – Shows the emitter.

• Hide – Hides the emitter.

The following is an example of script using the Request Bus Interface.

function example:OnActivate()
 self.particleBusSender =
 ParticleComponentRequestBusSender(self.entityId);
 self.particleBusSender:Hide();
 self.particleBusSender:Show();
 self.particleBusSender:SetVisibility(false);
end

Character Physics Component
The Character Physics component adds physical behavior to and configures simulation
characteristics for character entities, such as players and enemies.

Version 1.6
379

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Character Physics Component

Character Physics Component Properties

Player Dimensions

Use capsule
When selected, uses capsule collider geometry. When not selected, uses cylinder collider
geometry.

Collider radius
Radius of collision for the cylinder or capsule geometry.

Version 1.6
380

Lumberyard User Guide
Character Physics Component

Collider half-height
Half-height of straight section of collision for the cylinder or capsule geometry.

Height collider
Vertical offset of collision geometry center.

Height pivot
Offset from the central ground position that is considered entity center.

Height eye
Vertical offset of the camera.

Height head
Center of the head geometry.

Head radius
Radius of the head geometry that is used for the camera offset.

Unprojection direction
Unprojection direction to test in case the new position overlaps with the environment. For Auto,
enter 0.

Max unprojection
Maximum allowed unprojection.

Ground contact epsilon
The amount that the living entity needs to move upwards before ground contact is lost.

Player Dynamics

Mass
Mass in kg.

Inertia
Inertia coefficient. For no inertia, enter 0.

Inertia acceleration
Inertia felt on acceleration.

Time impulse recover
Duration after which inertia is forcefully turned on after receiving an impulse.

Air control
Air control coefficient. Values from 0.00 to 1.00.

Air resistance
Standard air resistance.

Use custom gravity
When selected, uses custom gravity. When not selected, uses world gravity.

Nod speed
Vertical camera shake speed after landings.

Is active
If not selected, disables all simulation for the character, except moving along the requested
velocity.

Release ground collider
If selected, and the living entity is not active, the ground collider (if present) is explicitly released
during the simulation step.

Is swimming
If selected, the entity can swim and is not bound to the ground plane.

Surface index
Surface identifier for collisions.

Limits

Version 1.6
381

Lumberyard User Guide
Character Physics Component

Min fall angle
Minimum angle of slope at which the entity starts falling.

Min slide angle
Minimum angle of slope at which entity starts sliding.

Max climb angle
Maximum angle of slope that the entity can climb.

Max jump angle
Maximum ground slope angle that entity can jump towards.

Max ground velocity
Maximum surface velocity on which entity can stand.

Collides with type

Terrain
If selected, entity can collide with the terrain.

Static
If selected, entity can collide with static entities.

Rigid body (active)
If selected, entity can collide with active rigid bodies.

Rigid body (sleeping)
If selected, entity can collide with sleeping rigid entities.

Living
If selected, entity can collide with other living entities.

Independent
If selected, entity can collide with independent entities.

EBus Request Bus Interface – PhysicsComponentRequestBus

Use the following request functions with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

EnablePhysics

Makes the entity a participant in the physics simulation.

Parameters
None

Return
None

Scriptable
Yes

EBus Request Bus Interface –
CryPhysicsComponentRequestBus

Use the following request functions with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

Version 1.6
382

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Character Physics Component

GetPhysicsParameters

Passes in any class that inherits from pe_params to retrieve them. For example, pe_params_pos.

Parameters
(output) pe_params&

Return
None

Scriptable
No

SetPhysicsParameters

Passes in any class that inherits from pe_params to set them. For example, pe_params_pos.

Parameters
const pe_params&

Return
None

Scriptable
No

GetPhysicsStatus

Passes in any class that inherits from pe_status to retrieve them. For example, pe_status_pos.

Parameters
(output) pe_status&

Return
None

Scriptable
No

ApplyPhysicsAction

Passes in any class that inherits from pe_action to set them. For example, pe_action_impulse.

Parameters
const pe_action&, bool threadSafe

Return
None

Scriptable
No

EBus Request Bus Interface –
CryCharacterPhysicsRequestBus

Use the following request functions with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

Version 1.6
383

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Physics Component

Move

Requests movement from living entity.

param velocity – Requests velocity (direction and magnitude).

param jump – Controls how velocity is applied within living entity. See physinterface.h, \ref
pe_action_move::iJump for more details.

Parameters
const AZ::Vector3& velocity, int jump

Return
None

Scriptable
No

The following is an example of script using the Request Bus Interface.

self.physicsSender = CryCharacterPhysicsRequestBusSender(self.entityId);
self.transformBusSender = TransformBusSender(self.entityId);

local notJumping = 0;
local transform = self.transformBusSender:GetWorldTM();
local velocity = (transform :GetColumn(1) * deltaTime*
 self.Properties.MoveSpeed);
self.physicsSender:Move(velocity, notJumping);

Physics Component
The physics component provides a way to add physical behavior to an entity and configure simulation
characteristics.

After adding the physics component to an entity, you will need to select a behavior for the physics
component and then add a physics collider. Support behaviors include the following:

• Rigid Body - Rigid bodies are collidable objects that behave dynamically according to their
simulation settings. An example of a rigid body is a ball.

• Static Body - Static bodies are collidable objects that do not move around in the world. An example
of a static body is a wall.

Rigid Body

Rigid bodies can be moved as a result of physical interactions or through other means such as Flow
Graph, Track View, or Lua script, for example.

A rigid body can behave like a static body if it has a mass of zero.

Version 1.6
384

Lumberyard User Guide
Physics Component

The Physics Rigid Body component has the following properties:

Proximity Triggerable
If selected, this entity can interact with proximity triggers.

Behavior

Enabled Initially
If selected, this entity is enabled when the physics simulation starts.

Specify Mass or Density
If Mass is selected, specify the total mass.

• Total Mass (kg) – Mass of the entity

If Density is selected, the density is calculated at spawn based on the density and volume of the
entity.

• Density (kg/cubic meter> – Mass (kg) per cubic meter of the mesh's volume. Total mass of the
entity is calculated at spawn. For example, water's density is 1000 kg/cubic meter.

At Rest Initially
If selected, the entity remains at rest after spawn until agitated. If unselected, the entity falls after
spawn.

Simulation

Damping
Uniform damping value applied to the object's movement.

Minimum energy
The energy threshold under which the object goes to sleep.

Buoyancy

Water damping
Uniform damping value applied while in water.

Water density
Multiplier for water density.

Water resistance
Multiplier for water resistance.

Version 1.6
385

Lumberyard User Guide
Mesh Collider Component

Child Colliders
Entity uses colliders form itself as well as the listed entities.

Static Body

Static bodies represent unmovable objects that other physical entities can collide with.

The Physics Static Body component has the following properties:

Proximity Triggerable
If selected, this entity can interact with proximity triggers.

Enabled Initially
If selected, this entity is enabled when the physics simulation starts.

Child Colliders
Entity uses colliders form itself as well as the listed entities.

EBus Request Bus Interface

Use the following request functions with the EBus interface to communicate with other components of
your game.

For more information about using the event bus (EBus) interface, see Event Bus (EBus).

• EnablePhysics – Enables the physics simulation for this component.

• DisablePhysics – Disables the physics simulation for this component.

EBus Notification Bus Interface

Use the following notification functions with the EBus interface to communicate with other components
of your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

• OnPhysicsEnabled – Event sent after the physics for this component have been enabled..

• OnPhysicsDisabled – Event sent after the physics for this component have been disabled.

Mesh Collider Component

component entity system is in preview release and is subject to change.

Physics colliders are used to define the shape around entities that collision detection and response
takes place. The Mesh Collider component specifies that the collider geometry is provided by a
mesh component. When you add a mesh collider, the Static Mesh (p. 402) component is also
automatically added; specify the properties of the collider in the static mesh component. The mesh
collider has no properties of its own.

Version 1.6
386

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Primitive Collider Component

Primitive Collider Component

component entity system is in preview release and is subject to change.

Physics colliders are used to define the shape around entities that collision detection and response
takes place. The Primitive Collider component specifies that the collider geometry is provided by
a Cylinder Shape component. When you add a primitive collider, the cylinder shape component is
also automatically added; specify the properties of the collider in the cylinder shape component. The
primitive collider has no properties of its own.

Rag Doll Component
The Rag Doll component uses physics to drive characters. This component is the ideal alternative
to animation for simulating environmental effects upon unconscious characters. To use the rag doll
component, you need assets that were authored in external 3D modeling programs.

Version 1.6
387

Lumberyard User Guide
Rag Doll Component

Rag Doll Component Properties

The Rag Doll component has the following properties:

Enabled initially
When selected, the entity starts as a rag doll.

Use physics component mass
When selected, the entity attempts first to use mass set by a physics component. If not selected,
or no component is found, defaults to Mass.

Mass
Simulated mass for the entity. Its use is determined by the Use physics component mass
setting.

Collides with characters
When selected, the entity collides with characters.

The following properties affect the damping of the entity. Damping is defined as a reduction in the
amplitude of an oscillation or vibration.

Damping
Amount of physical force applied against the energy in the system to drive the entity to rest.

Damping during free fall
Amount of damping applied while in the air.

Time until at rest
Time without applied forces before physics is deactivated for this entity.

Grounded time until at rest
Amount of time the entity is on the ground before physics is deactivated for this entity.

Grounded required points of contact
The required number of contact points before the entity is considered grounded.

Grounded damping
Damping applied while grounded.

Version 1.6
388

Lumberyard User Guide
Rag Doll Component

The following are Advanced properties for the rag doll component.

Max time step
Maximum time between steps for the physics simulation for this entity.

Stiffness scale
The amount of stiffness to apply to the joints.

Skeletal level of detail
Level of detail to apply to the entity. Default is 1, the lowest level of detail you can achieve.

Retain joint velocity
When selected, joint velocities are conserved at the instant of ragdolling.

The following properties control entity's Buoyancy—how it behaves in water or other liquids or fluids.

Fluid density
The density (kg per cubic meter) of the rag doll for fluid displacement.

The default is 1,000, which is the approximate density of water at 1 atmosphere. By contrast,
platinum is approximately 22,000 kg per cubic meter.

Fluid damping
The amount of damping applied while the entity is in fluid.

Fluid resistance
The amount of resistance applied while the entity is in fluid.

EBus Request Bus Interface

Use the following request functions with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

EnterRagdoll

Disables current physics and enables rag doll physics on an entity with a skinned mesh component.

Parameters
None

Return
None

Scriptable
Yes

ExitRagdoll

Disables rag doll physics and reenables the entity's physics component.

Parameters
None

Return
None

Scriptable
Yes

Version 1.6
389

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Shapes Components

The following is an example of script using the Request Bus Interface.

self.ragdollSender = RagdollPhysicsRequestBusSender(self.entityId);

self.ragdollSender:EnterRagdoll();
self.ragdollSender:ExitRagdoll();

Shapes Components
The Shape components provide generic shape facilities for components that use shapes. The shape
component helps to define the following:

• Trigger (p. 406) Volumes

Use shapes as volumes to specify triggering bounds.

• Collision (p. 386) Volumes

Use shapes as volumes to specify collider bounds.

• Audio Area Ambiances (p. 329)

Uses shapes as volumes in which a reverb is applied.

• Audio Areas (p. 332)

Uses shapes as volumes in which a sound plays.

Only one shape component can be attached to any particular entity. If you need more than one shape
on a single entity, you can create child entities, then add shape and components to them.

Each shape component provides a generic 'ShapeService' that exposes functionality common to
all shapes. Each shape also provides a more specific service, such as 'BoxShapeService' and
'SphereShapeService'.

The Shapes component includes the following shapes and its properties:

• Cylinder Shape – Define Height and Radius in meters.

• Capsule Shape – Define Height and Radius in meters.

• Box Shape – Define dimensions X, Y, and Z in meters.

• Sphere Shape – Define Radius in meters.

EBus Request Bus Interface

Use the following request functions with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

GetShapeType

Allows users to fetch the type of shape that this component is using.

Parameters
None

Return
AZ::Crc32(shape_name)

Version 1.6
390

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Shapes Components

For example: AZ::Crc32("Box") | AZ::Crc32("Sphere") | AZ::Crc32("Capsule") |
AZ::Crc32("Cylinder")

Scriptable
Yes

GetEncompassingAabb

Returns an AABB that encompasses this entire shape.

Parameters
None

Return
AZ::Aabb that encompasses the shape

Scriptable
No

IsPointInside

Checks if a given point is inside a shape or outside it.

Parameters
point Vector3 – The point to be checked

Return
bool indicating whether the point is inside or outside

Scriptable
Yes

ComponentRequestsBus

Each shape component has its own specific Ebus that can be used to access and use the services
of that particular shape. All these buses are similar to each other and differ only in the types being
serviced.

BoxShapeComponentRequestsBus

Fetches the configuration of the BoxShape.

Name
GetBoxConfiguration

Parameters
None

Return
BoxShapeConfiguration object which provides access to the box configuration

Scriptable
Yes

SphereShapeComponentRequestsBus

Fetches the configuration of the SphereShape.

Name
GetSphereConfiguration

Version 1.6
391

Lumberyard User Guide
Simple Animation Component

Parameters
None

Return
SphereShapeConfiguration object which provides access to the sphere configuration

Scriptable
Yes

CapsuleShapeComponentRequestsBus

Fetches the configuration of the CapsuleShape.

Name
GetCapsuleConfiguration

Parameters
None

Return
CapsuleShapeConfiguration object which provides access to the capsule configuration

Scriptable
Yes

CylinderShapeComponentRequestsBus

Fetches the configuration of the CylinderShape.

Name
GetCylinderConfiguration

Parameters
None

Return
CylinderShapeConfiguration object which provides access to the cylinder configuration

Scriptable
Yes

Simple Animation Component
The Simple Animation component provides basic animation functionality for the entity. If the entity
has a mesh component with a skinned mesh attached (.chr or .cdf file), the Simple Animation
component provides a list of all valid animations as specified in the associated .chrparams file. The
Simple Animation component does not provide interaction with the Mannequin system and should be
used only for light-weight environment or background animation.

Ensure that the layer ID is set up correctly when assigning multiple animations to one component.
Animations on higher layers override animations on lower layers.

Version 1.6
392

Lumberyard User Guide
Simple Animation Component

Simple Animation Component Properties

The Simple Animation component has the following properties:

Animation Name
Name of the animation played by this component on this layer in the absence of an overriding
animation.

Layer ID
Layer ID that this animation is to be played on. Animations can override each other if they are not
properly authored.

Looping
If selected, animation continues to play in a loop until stopped.

Playback speed
Speed of the animation playback.

Layer weight
Weight of animations played on this layer.

EBus Request Bus Interface

Use the following request functions with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

StartDefaultAnimations

Plays the default animations with default looping and speed parameters that were set up as a part of
this component. The component allows for multiple layers to be set up with defaults; this method allows
the playback of configured playback layers simultaneously.

Parameters
None

Return
Result indicating whether animations started successfully.

scriptable
Yes

StartAnimationByName

Plays the animation with the specified name on the specified layer.

Parameters
name – The name of the animation to play

layerId – The layer in which to play the animation

Return
Result indicating whether animations started successfully.

scriptable
Yes

StartAnimation

Plays the animation as configured by the animatedLayer.

Version 1.6
393

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Simple Animation Component

Parameters
animatedLayer – A layer configured with the animation that is to be played on it.

Return
Result indicating whether animations started successfully.

scriptable
Yes

StartAnimationSet

Plays a set of animations as configured by each AnimatedLayer in the animationSet.

Parameters
animationSet – An AnimatedLayer::AnimatedLayerSet containing animations to be kicked
off simultaneously.

Return
Result indicating whether animation set started successfully.

scriptable
No

StopAllAnimations

Stops all animations that are being played on all layers.

Parameters
None

Return
Result indicating whether animations stopped successfully.

scriptable
Yes

StopAnimationsOnLayer

Stops the animations currently playing on the indicated layer.

Parameters
layerId – ID for the layer that is to stop its animation
(0,AnimatedLayer::s_maxActiveAnimatedLayers-1).

Return
Result indicating whether animations stopped successfully.

scriptable
Yes

StopAnimationsOnLayers

Stops the animations currently playing on the indicated layers.

Parameters
layerIds – A bitset indicating layers to stop animating.

Return
Result indicating whether animations stopped successfully.

scriptable
No

Version 1.6
394

Lumberyard User Guide
Simple Animation Component

EBus Response Bus Interface
Use the following response functions with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

OnAnimationStarted

Informs all listeners about an animation being started on the indicated layer.

Parameters
animatedLayer – Animated layer indicating the animation and the parameters used to start the
animation.

Return
None

scriptable
Yes

OnAnimationStopped

Informs all listeners about an animation being stopped on the indicated layer.

Parameters
animatedLayer – Animated layer indicating the animation and the parameters used on the
animation that was stopped.

Return
None

scriptable
Yes

Script Examples
The following is an example of the StartAnimation function.

function chickenanimcontroller:OnActivate()

 -\\- For sending events on the SimpleAnimationComponent request bus.

 self.animBusSender =
 SimpleAnimationComponentRequestBusSenders(self.entityId);

 -\\- Start by playing the idle animation.

 -\\- Layer=0, looping = True, speed=1.0, blendtime= 0.0

 local animInfo = AnimatedLayer("anim_chicken_idle", 0, true, 1.0, 0.0);

 self.animBusSender:StartAnimation(animInfo);

end

The following is an example of script using the Request Bus Interface.

chickenanimcontroller =

Version 1.6
395

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Simple Animation Component

{
 Properties =
 {
 FlapInterval = { default = 0.5, description = "How often the chicken
 flaps.", suffix = " sec" },
 MoveSpeed = { default = 3.0, description = "How fast the chicken
 moves.", suffix = " m/s" },
 IdlePlaybackSpeed = { default = 1.0, description = "Playback speed
 for the idle animation." },
 FlapPlaybackSpeed = { default = 1.0, description = "Playback speed
 for the flap/jump animation." },
 FlapBlendTime = { default = 0.2, description = "Blend time for the
 flap animation." },
 },
}

function chickenanimcontroller:OnActivate()

 self.FlapCountdown = 0.0;

 -\- For handling tick events.
 self.tickBusHandler = TickBusHandler(self, 0);

 -\- For sending events on the SimpleAnimationComponent request bus.
 self.animBusSender =
 SimpleAnimationComponentRequestBusSender(self.entityId);

 -\- Start by playing the idle animation.
 -\- Layer 0, looping, speed=1, no transition time.
 local animInfo = AnimatedLayer("anim_chicken_idle", 0, true,
 self.Properties.IdlePlaybackSpeed, 0.0);
 self.animBusSender:StartAnimation(animInfo);
end

function chickenanimcontroller:OnTick(deltaTime, timePoint)

 -\- Play the Flap animation FlapInterval seconds.
 self.FlapCountdown = self.FlapCountdown - deltaTime;
 if (self.FlapCountdown < 0.0) then
 -\- Layer 0, non-looping, speed=1, 0.2 transition time.
 -\- If the flap were partial body, we could use Layer 1.
 local animInfo = AnimatedLayer("anim_chicken_flapping", 0, false,
 self.Properties.FlapPlaybackSpeed, self.Properties.FlapBlendTime, true);
 self.animBusSender:StartAnimation(animInfo);
 self.FlapCountdown = self.Properties.FlapInterval;
 end

 -\- Get current transform
 local tm = self.transformBusHandler:GetWorldTM();

 -\- Adjust translation forward at the configured movement speed.
 local forward = tm:GetColumn(1);
 local tx = tm:GetTranslation();
 tx = tx + forward * deltaTime * self.Properties.MoveSpeed;
 tm:SetTranslation(tx);

 -\- Set our new transform.
 self.transformBusHandler:SetWorldTM(tm);
end

Version 1.6
396

Lumberyard User Guide
Simple State Component

function chickenanimcontroller:OnDeactivate()
 self.tickBusHandler:Disconnect();

end

Simple State Component
The Simple State component provides a simple state machine. Each state is represented by a name
and zero or more entities. The entities are activated upon entering the state and deactivated upon
exiting it. A simple state component may be in NullState, which means no state is active.

Simple State Component Properties

The Simple State component has the following properties:

Initial state
The active state when the simple state component is first activated.

Reset on activate
If selected, simple state returns to the configured initial state when activated, and not the state held
before deactivating.

States
The list of states on this simple state component.

State ([0], [1], [2], etc)
Includes a name for the state and a set of entities that are activated when the state is entered and
deactivated when the state is exited.

Name
The name of this state. Indicates the state to which to transition on the SetState API.

Enitities
List of the entities referenced by this state.

Version 1.6
397

Lumberyard User Guide
Simple State Component

EBus Request Bus Interface

Use the following request functions with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

SetState

Sets the active state to the named state.

Parameters
stateName

EBus Notification Bus Interface

Use the following notification functions with the EBus interface to communicate with other components
of your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

OnStateChanged

Notifies that the state has changed from state oldName to state newName.

Parameters
oldName

newName

The following is an example of script using the Request Bus Interface.

simplestateexample =
{
 Properties =
 {
 TransitionInterval = 1.0,
 States = {"Houses", "Lamps", "Tree", "HouseAndTree"},
 },
}
function simplestateexample:OnActivate()
 self.TransitionCountDown = self.Properties.TransitionInterval;
 self.StateIdx = 0;
 self.busSender = SimpleStateComponentRequestBusSender(self.entityId);
 self.tickBusHandler = TickBusHandler(self, 0);
 self.stateChangedHandler =
 SimpleStateComponentNotificationBusHandler(self, self.entityId);
 Debug.Log("SimpleStateComponent activated for entity: " ..
 tostring(self.entityId));
end
function simplestateexample:OnTick(deltaTime, timePoint)
 self.TransitionCountDown = self.TransitionCountDown - deltaTime;
 if (self.TransitionCountDown < 0.0) then
 self.busSender:SetState(self.Properties.States[self.StateIdx]);
 self.StateIdx = (self.StateIdx + 1) %
 table.getn(self.Properties.States);
 self.TransitionCountDown = self.Properties.TransitionInterval;

Version 1.6
398

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Skinned Mesh Component

 end
end
function simplestateexample:OnDeactivate()
 self.tickBusHandler:Disconnect();
 self.stateChangedHandler:Disconnect();
end

function simplestateexample:OnStateChanged(oldState, newState)
 Debug.Log("Old State: " .. oldState);
 Debug.Log("New State: " .. newState);
end

Skinned Mesh Component
The Skinned Mesh component is the primary way to add animated visual geometry to entities. This
component also features key controls and options to use the engine's basic rendering features.
Supported geometry types include skinned meshes (.chr) and character descriptors (.cdf).

Skinned Mesh Component Properties

The Skinned Mesh component has the following properties:

Visible
When selected, the entity is visible.

Skinned Asset
Asset file for the skinned mesh entity.

Material Override
Specifies an override material.

Version 1.6
399

Lumberyard User Guide
Spawner Component

Options

Opacity
Scale of how opaque an entity is.

Max view distance
Maximum distance from which this entity can be viewed.

View distance multiplier
Adjusts the maximum view distance. If set to 1.0, then the default maximum view distance is used.
1.1, for example, extends the default by 10%.

LOD distance ratio
Sets the Level of Detail (LOD) ratio over distance.

Cast dynamic shadows
When selected, casts dynamic shadow maps.

Cast static shadows
When selected, casts static shadow maps.

Indoor only
When selected, renders the object only in indoor areas.

Advanced

Enable bloom
When selected, entity enables bloom post effect.

Enable motion blur
When selected, entity enables motion blur post effect.

Rain occluder
When selected, entity blocks or stops dynamic raindrops.

Affect dynamic water
When selected, entity generates ripples in dynamic water.

Receive wind
When selected, entity is affected by wind.

Accept decals
When selected, entity can receive decals.

Affect navmesh
When selected, entity affects navmesh generation.

Visibility occluder
When selected, entity can block visibility of other objects.

Depth test
When selected, entity requires depth testing.

Spawner Component

component entity system is in preview release and is subject to change.

Use the Spawner component to spawn a design-time or run-time dynamic slice (*.dynamicslice) at
an entity's location with an optional offset.

Version 1.6
400

Lumberyard User Guide
Spawner Component

Spawner Component Properties
The Spawner component has the following properties:

Slice
The slice to spawn.

Spawn on Activate
If selected, spawns the selected slice upon activation.

EBus Request Bus Interface
Use the following request functions with the Spawner Component Request Bus EBus interface to
communicate with other components of your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

Spawn

Spawns the selected slice at the entity's location.

Parameters
None

Scriptable
Yes

SpawnRelative

Spawn the selected slice at the entity's location with the provided relative offset.

Parameters
relative

Scriptable
Yes

SpawnSlice

Spawns the slice at the entity's location.

Parameters
slice

Scriptable
No

SpawnSliceRelative

Spawns the slice at the entity's location with the relative offset.

Parameters
slice

Version 1.6
401

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Static Mesh Component

relative

Scriptable
No

EBus Notification Bus Interface

Use the following notification functions with the Spawner Component Notification Bus EBus interface to
communicate with other components of your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

OnSpawned

Notifies that a spawn has occurred.

Parameters
spawnedEntities

Scriptable
Yes

Static Mesh Component
The Static Mesh component is the primary method of adding static visual geometry to entities. This
component also features key controls and options to use the engine's basic rendering features. The
supported geometry type is static meshes (.cgf).

Version 1.6
402

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Static Mesh Component

Static Mesh Component Properties

The Static Mesh component has the following properties:

Visible
When selected, the entity is visible.

Static Asset
Asset file for the static mesh entity.

Material Override
Specifies an override material.

Options

Opacity
Scale of how opaque an entity is.

Max view distance
Maximum distance from which this entity can be viewed.

View distance multiplier
Adjusts the maximum view distance. If set to 1.0, then the default maximum view distance is used.
1.1, for example, extends the default by 10%.

LOD distance ratio
Sets the Level of Detail (LOD) ratio over distance.

Cast dynamic shadows
When selected, casts dynamic shadow maps.

Cast static shadows
When selected, casts static shadow maps.

Indoor only
When selected, renders the object only in indoor areas.

Advanced

Enable bloom
When selected, entity enables bloom post effect.

Enable motion blur
When selected, entity enables motion blur post effect.

Rain occluder
When selected, entity blocks or stops dynamic raindrops.

Affect dynamic water
When selected, entity generates ripples in dynamic water.

Receive wind
When selected, entity is affected by wind.

Accept decals
When selected, entity can receive decals.

Affect navmesh
When selected, entity affects navmesh generation.

Visibility occluder
When selected, entity can block visibility of other objects.

Version 1.6
403

Lumberyard User Guide
Tag Component

Depth test
When selected, entity requires depth testing.

Tag Component
Use the Tag component to apply one or more labels, or tags, to an entity. You can use these tags to
find or filter entities with particular traits. For example, you can set a weapon to inflict double damage to
entities tagged as burning.

EBuses – Request Bus Interface: TagGlobalRequestBus

Use the following request function with the TagGlobalRequestBus EBus interface to communicate
with other components of your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

RequestTaggedEntities

Handlers respond if they have the tag (listening on the tag's channel). Use AZ::EbusAggregateResults
to handle more than the first responder.

Parameters
None

Return
const AZ::EntityId

Scriptable
Yes

EBuses – Request Bus Interface: TagRequestBus

Use the following request functions with the TagRequestBus EBus interface to communicate with
other components of your game.

For more information about using the event bus (EBus) interface, see Event Bus (EBus).

HasTag

Returns true if the entity has the tag.

Parameters
const Tag&

Return
bool

Version 1.6
404

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Tag Component

Scriptable
Yes

AddTag

Adds the tag to the entity if it didn't already have it.

Parameters
const Tag&

Return
None

Scriptable
Yes

AddTags

Add a list of tags to the entity if it didn't already have them.

Parameters
const Tags&

Return
None

Scriptable
No

RemoveTag

Removes a tag from the entity if it had it.

Parameters
const Tag&

Return
None

Scriptable
Yes

RemoveTags

Removes a list of tags from the entity if it had them.

Parameters
const Tags&

Return
None

Scriptable
No

GetTags

Gets the list of tags on the entity.

Parameters
None

Version 1.6
405

Lumberyard User Guide
Trigger Area Component

Return
const Tags&

Scriptable
No

The following is an example of script using the Request Bus Interface.

self.enemyFinder = TagGlobalRequestBusSender(Crc32("Enemy"));
local enemies = self.enemyFinder:RequestTaggedEntities();

local burning =
 TagComponentRequestBusSender(self.entityId):HasTag(Crc32("Burning"));

EBus – Notification Bus Interface:
TagComponentNotificationsBus
Use the following request functions with the TagComponentNotificationsBus notification bus
interface to communicate with other components of your game.

For more information about using the event bus (EBus) interface, see Event Bus (EBus).

OnTagAdded

Notifies listeners about tags being added.

Parameters
const Tag& – Indicates the tag was added

Return
None

Scriptable
Yes

OnTagRemoved

Notifies listeners about tags being removed.

Parameters
const Tag& – Indicates the tag was removed

Return
None

Scriptable
Yes

Trigger Area Component
component entity system is in preview release and is subject to change.

The Trigger Area component provides generic triggering services by using Shape (p. 390)
components as its bounds. To use a trigger component, add one of the shape components to an entity
and then add a trigger component to it. The shape then acts as the bounds for this trigger. You can
set filters on the type of entities that can trigger an area and set the trigger to synchronize across the
network.

Version 1.6
406

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Trigger Area Component

Trigger Area Component Properties

The Trigger Area component has the following properties:

NetBindable

NetBindable components are synchronized over the network.

Bind To Network
When selected, synchronizes component across the network.

Activation

Trigger once
If selected, the trigger deactivates after the first trigger event.

Activated by
Select whether trigger is activated by All entities, which allows any entity to trigger the area, or by
Specific Entities, which allows you to select specific entities.

Tag filters

RequiredTags
A list of tags that are required for an entity to trigger this area.

ExcludedTags
A list of tags that exclude an entity from triggering this area.

EBus Request Bus Interface

Use the following request functions with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

AddRequiredTag

Adds a required tag to the activation filtering criteria of this component. Results in a reevaluation of the
trigger. Entities inside that no longer satisfy tag criteria are ejected.

Parameters
const Tag&

requiredTag – Tag to be added

Return
None

Version 1.6
407

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Trigger Area Component

Scriptable
Yes

RemoveRequiredTag

Removes a required tag from the activation filtering criteria of this component. Results in a reevaluation
of the trigger. Entities inside that no longer satisfy tag criteria are ejected.

Parameters
const Tag&

requiredTag – Tag to be removed

Return
None

Scriptable
Yes

AddExcludedTag

Adds an excluded tag to the activation filtering criteria of this component. Results in a reevaluation of
the trigger. Entities inside that no longer satisfy tag criteria are ejected.

Parameters
const Tag&

excludedTag – Tag to be added

Return
None

Scriptable
Yes

RemoveExcludedTag

Removes an excluded tag from the activation filtering criteria of this component. Results in a
reevaluation of the trigger. Entities inside that no longer satisfy tag criteria are ejected.

Parameters
const Tag& excludedTag – Tag to be removed

Return
None

Scriptable
Yes

EBus Notification Bus Interface

Use the following request functions with the EBus interface to communicate with other components of
your game.

For more information about using the Event Bus (EBus) interface, see Event Bus (EBus).

The Trigger component sends notifications to:

• Entities listening on the TriggerAreaNotificationBus for the entity with the trigger on it.

Version 1.6
408

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Trigger Area Component

• Entities listening on the TriggerAreaEntityNotificationBus for the entity that enters or exits the trigger.

TriggerAreaNotificationBus

This bus allows the game to listen for events associated with a particular trigger. Notifies of all the
entities that enter and exit this trigger.

OnTriggerAreaEntered

Notifies listeners when enteringEntityId enters this trigger.

Parameters
enteringEntityId – ID of entity that has entered this trigger

Return
None

Scriptable
Yes

OnTriggerAreaExited

Notifies listeners when enteringEntityId exits this trigger.

Parameters
enteringEntityId – ID of entity that has exited this trigger

Return
None

Scriptable
Yes

TriggerAreaEntityNotificationBus

This bus allows the game to listen for trigger-related events associated with a particular entity. Notifies
of every time the player enters or exits any trigger.

OnEntityEnteredTriggerArea

Sent when the entity enters triggerID.

Parameters
triggerId – ID of entity that the trigger is on.

Return
None

Scriptable
Yes

OnEntityExitedTriggerArea

Sent when the entity exits triggerID.

Parameters
triggerId – ID of entity that the trigger is on.

Return
None

Scriptable
Yes

Version 1.6
409

Lumberyard User Guide
Working with Entities

Working with Entities
component entity system is in preview release and is subject to change.

This section discusses how to create and manage entities and components.

The following topics are presented:

• Creating Entities

• Adding and Removing Components

• Finding an Entity

• Editing Component Properties

Creating an Entity
To create a new entity, the simplest method is to right-click in the Lumberyard Editor viewport and
select Create New Entity. This will create a new entity at the cursor location with a basic transform
component, which gives it a location in the 3D level.

Component Palette may also be used to create new entities pre-populated with a set of desired
components. Using Component Palette, select one or more components and drag them into the
Lumberyard Editor viewport. A single new entity will be created containing the selected components.

File Browser can be also used to create new entities by inferring the desired configuration given a
particular asset. For example, dragging a .cgf mesh asset from File Browser into the Lumberyard
Editor viewport creates a new entity, adds a mesh component, and assigns the asset to the mesh
component. The same is possible for particles, slices, and Lua scripts.

Adding and Removing Components
You can add new components to existing entities several different ways. While viewing an entity in
Entity Inspector, you can add components in the following ways:

• Clicking the Add Component button in Entity Inspector and selecting the desired component from
the categorized lists.

Version 1.6
410

Lumberyard User Guide
Finding an Entity

• Opening Component Palette and dragging any desired component from there to a blank area in
Entity Inspector.

To delete a component, right-click the component name in Entity Inspector and choose Remove
Component.

Finding an Entity
Entity Outliner provides a view of the entities in your level and any transform hierarchies you have in
place, which will render as a tree. You may also use the search filter box at the top of Entity Outliner to
find specific entities. Only entities whose name matching the filter's sub-string will be shown, along with
any transform ancestors.

Clicking one or more entities in Entity Outliner will select the associated viewport objects, and vice
versa.

Version 1.6
411

Lumberyard User Guide
Editing Component Properties

Editing Component Properties
To edit component properties, first select the entity you wish to edit. Then use Entity Inspector to edit
component properties. In Lumberyard Editor choose View, Open View Pane, Entity Inspector.

Entity Inspector, you should see all visible properties for any components on your entity.

If your entity is part of a slice instance, any fields modified from the source slice asset will render in
orange. Right-click the field name to reset to the original value, or to push your change to the slice
asset, affecting all other instances of the target slice asset.

Any change to a property can be undone by pressing Ctrl-Z, and subsequently redone by pressing
Ctrl-Shift-Z.

Multiple entities may be edited simultaneously. When multiple entities are selected, Entity Inspector
first object's version of each component, but any changes will be propagated to all selected entities.

Version 1.6
412

Lumberyard User Guide
Working with Slices

Working with Slices
component entity system is in preview release and is subject to change.

Slices are a cascaded data management system for entities. They are a superset to what are also
known as prefabs, and represent the structure in which nearly all entity data is managed. For example,
a level, a house, a car, and an entire world are all slices that simply depend on (cascade) from a
number of other slices. A level is simply a root-level slice cascading from any slices instanced in the
level, as well as any loosely-placed entities.

Slice changes can be pushed or pulled through any level of the hierarchy.

Note
Assets, including slices, cannot be moved from their original location without breaking
references.

Creating a Slice
A slice can contain any number of entities, with no restriction on relationships between those entities.
As such, there is no requirement to have a root entity for a slice.

1. In Lumberyard Editor, select one or more entities to include in the slice.

2. Right-click in the viewport and choose Slices, Make slice from selection.

3. Save a slice to the desired location.

Instantiating a Slice
To create an instance of a slice in your level, there are a couple of options:

• In Lumberyard Editor, right-click in the viewport and choose Slices, Instantiate slice here.

Modifying a Slice and Pushing Changes
If an entity comes from a hierarchy of cascaded slices, you have the option to push your property
change to any level of the hierarachy.

Version 1.6
413

Lumberyard User Guide
Cloning a Slice

If all selected entities are from the same slice instance, they can be pushed together in a single
operation. Otherwise you have the option for single-entity pushes.

To modify a slice

1. In Entity Inspector, modify any number of properties for components belonging to an entity that is
part of a slice instance. The field should render in orange if it differs from the source slice asset.

2. Right-click on the property name, and choose Push value.

3. Right-click the entity in the Lumberyard Editor viewport and choose Slices, Push entity

Cloning a Slice
When cloning slices, the entire instance is cloned while maintaining the relationship to the source slice.
Cloning a subset of the entities within a slice instance will clone them as loose entities.

To clone a slice, open Entity Outliner. Under the Name column, select all the entities within the slice
using either Ctrl+click, Shift+click, or right-click Select all in slice and then select Clone.

A clone operation can be undo or redone by pressing Ctrl-Z and Ctrl-Shift-Z respectively.

Entities may also be cloned by selecting one or more entities and pressing Ctrl+C. Cloned entities
are automatically selected to aid in initial placement.

Inheriting a Slice (Data Cascading)
Slices have the ability to cascade (or inherit) slices from other slices.

All entities in a slice that originate from the inherited slice will retain their relationship to the hierarchy.
Any changes made to the inherited prefabs will propagate down the hierarchy, unless the data has
been overridden lower in the hierarchy.

Slices can reference any number of other slices, and can contain any number of slice instances.

To inherit a slice

1. Instantiate one or more slices.

2. Make desired additions or modifications to the instantiated entities. Create new entities, remove
entities, add/remove components, or modify component fields.

3. Highlight the desired set of entities you'd like to be contained in your new inherited slice.

4. Right-click in the viewport and choose Slices, Inherit slice.

Version 1.6
414

Lumberyard User Guide
Slice Reloading

5. Save the slice to the desired location.

Slice Reloading
Slices support run-time reloading. If a slice has changed on disk for any reason, whether due to a data
push operation, grabbing from source control, or through a hand-edit, Lumberyard Editor will reload the
slice asset and re-calculate any slice instances affected by the change, such as instances of any slices
that are dependent on the modified slice, through any number of chained dependencies.

Version 1.6
415

Lumberyard User Guide
Using the Designer Tool

Object and Entity System

Using the Object and Entity system, you can create and place objects, brushes, and entities in your
level. Entities are objects with which the player interacts. Similar to brushes, they can be placed in a
level, and are accessed from the Objects tab of Rollup bar.

Note
The Component Entity System (p. 320) replaces the existing Entity system in Lumberyard at a
future date.

Topics

• Using the Designer Tool (p. 416)

• Using the Measurement System Tool (p. 425)

• Using the Object Selector (p. 426)

• Brushes (p. 429)

• Prefabs (p. 430)

• Common Parameters and Properties (p. 432)

• Entity Reference (p. 438)

Using the Designer Tool
The Designer Tool is an advanced object creation tool. You can easily create complex object meshes
with powerful built-in functionality, without the need to use external DCC tools.

Version 1.6
416

Lumberyard User Guide
Designer Tool Settings

Topics

• Designer Tool Settings (p. 417)

• Selection Tools (p. 419)

• Shape Tools (p. 420)

• Edit Tools (p. 422)

• Modify Tools (p. 422)

• Texture Tools (p. 423)

• Miscellaneous Tools (p. 425)

Designer Tool Settings
The following parameter groups are available on the Settings panel.

CD Settings

The following parameters are available on the CD tab located on the Settings panel.

Version 1.6
417

Lumberyard User Guide
Designer Tool Settings

CD Parameters

Property Description

Exclusive Mode Use to make the view look like that of a DCC tool. In this mode,
all objects except for the selected objects are hidden and the time
of day and light settings are set only. When a level has a lot of
objects and is complex, this mode makes the view's complexity
decrease.

Display Back Faces (Editor
Only)

Used to enable showing the backfaces of designer objects, such
as when the camera is within an object.

Seamless Edit Enables editing objects as the mouse cursor hovers over them.

Keep Pivot Center Ensures that the pivot remains unaffected during editing.

Highlight Elements Toggles visualization of the object's selected elements such as
vertices, edges, and faces.

Highlight Box Size When Highlight Elements is enabled, this controls the scale of
the helpers used to highlight elements.

Display Dimension Helper Enables visualization of the object’s dimensions, width, height, and
depth.

Display Triangulation Overlays the object's triangulation.

Display Subdivided Result Overlays the object's subdivisions.

Object Settings

The following parameters are available on the Object tab located on the Settings panel.

Version 1.6
418

Lumberyard User Guide
Selection Tools

Object Parameters

Property Description

Cast Shadows Allows objects to cast shadows

Support Second Visarea Normally, objects are considered to be in only one visarea.
This option allows them to be added to multiple visareas if their
bounding box overlaps them, at the cost of some performance.
Without this option, some large objects may not be displayed when
viewed through portals in certain situations.

Outdoor When set, the object will not be rendered when inside a visarea.

Rain Occluder Occludes dynamic raindrops

View Distance Ratio Sets the distance from the current view at which the object
renders.

AI Exclude From Triangulation Deprecated

AI Hideable When this option is set, AI will use this object as a hiding spot,
using the specified hide point type.

No Static Decal When this option is set, decals will not project onto the object.

Exclude Collision Enable to exclude collisions.

Occluder Used for the construction of a level occlusion mesh.

Selection Tools
The following function buttons are available from the Selection tab on the Designer Menu panel.

Version 1.6
419

Lumberyard User Guide
Shape Tools

AllNone
Use to select or deselect all objects at once.

Connected
Use to select all faces connecting one another from the selected face.

Grow
Use to expand a selection based on the selected faces. Each time you press Grow, the selection
range is enlarged based on the previous selected faces.

Invert
Use to invert the selection states of the faces. Selected faces will be unselected and unselected
faces will be selected.

Loop
Use to select serial-linked edges or faces that form a loop from selected edges or faces.

Object
Use to select another object.

Pivot
Use to change the pivot position.

Ring
Use to select sequence edges that are not connected but on the opposite side to each other. You
can also select serial-connected quad faces in a direction that is perpendicular to the direction that
the selected two faces set.

Vertex, Edge, Face
Use to select and move vertices, edges, and faces. You can select muliple buttons using the Ctrl
key.

Shape Tools
The following buttons are available from the SH tab on the Designer Menu panel.

Version 1.6
420

Lumberyard User Guide
Shape Tools

Box
Used to draw one or more boxes. You can adjust the Width, Height, and Depth values.

Cone
Used to draw a cone. You can adjust the Subdivision Count, Height, and Radius values.

Cube Editor
Used to create one or more cubes. You can add, remove, and paint cubes. The following functions
are provided:

• Add - Add a cube on the brush with the specified Sub Material ID.

• Remove - Remove a cube under the brush.

• Paint - Paint selected cubes with the specified Sub Material ID.

• Brush Size - Select the cube brush size.

• Sub Material ID - Specifies the sub material ID. This ID will be recorded to faces affected.

• Merge Sides - When enabled, the added faces or remained faces after removing a cube will be
merged with the adjoining faces.

Curve
Used to draw either a standard curve or a Bezier curve. You can adjust the Subdivision Count
value.

Cylinder
Used to draw a cylinder. You can adjust the Subdivision Count, Height, and Radius values.

Disc
Used to draw a disc. You can adjust the Subdivision Count and Radius values.

Polyline
Used to draw a line or multiple line segments on a surface.

Rectangle
Used to draw a rectangle. You can adjust the Width and Depth values.

Stair
used to create a staircase. You can create stairs having uniform a step size even though the sizes
of stairs are different by adjusting a tread size automatically so that a character can rise. The
following values can be adjusted:

• Step Rise - The size of each step rise.

• Mirror - Mirrors a stair against an invisible plane centered.

• Rotation by 90 Degrees - Rotates a stair by 90 degrees maintaining the width, height and
depth of a box.

• Width - The width of the stair.

• Height - The height of the stair.

• Depth - The depth of the stair.

Version 1.6
421

Lumberyard User Guide
Edit Tools

Stair Profile
Used to draw a stair profile on a surface, which can be pulled using the Extrude function to be a
stair. You can adjust the Step Rise value.

Sphere
You can adjust the Subdivision Count and Radius values.

Edit Tools
The following buttons are available from the ED tab on the Designer Menu panel.

Collapse
use to collapse all connected edges to the center position.

Copy
Use to copy an object face.

Extrude
Use to push or pull the selected face so you can expand a 2D surface to a 3D shape.

Fill
Use to fill a space based on selected edges or vertices.

Flip
use to flip an object face.

Merge
Used for merging multiple objects or connected faces to an object or a face.

Offset
Used to take a face and create an inset of the selected face.

Remove
Used to remove selected edges and faces.

Remove Doubles
Used to merge the selected vertices within the specified distance.

Separate
Used to separate two or more objects.

Weld
Used to merge the selected two vertices by moving the first vertex to the second vertex.

Modify Tools
The following buttons are available from the MO tab on the Designer Menu panel.

Version 1.6
422

Lumberyard User Guide
Texture Tools

Bevel
Used to smooth edges of a shape. Most shapes have blunt edges, so applying the bevel to edges
of a shape can add more realism.

Boolean
Select at least two objects, and chose either Union, Difference, or Intersection.

Array Clone
Places cloned objects evenly in a line.

Circle Clone
Places cloned objects in a circle

Lathe
Used to create a mesh by extruding each edge of a profile polygon along a path. You can make a
complicated model using this method.

LoopCut
Used for cutting quad-shaped polygons by several loop edges. Set the direction and number of
loops. The direction of the loops are set by the edge closest to the cursor and the number of loops
are changed by moving the mouse wheel while pressing the CTRL key.

Magnet
Deprecated (merged with the Lathe function).

Mirror
Used to mirror a mesh along an arbitrary plane as well as its local X, Y, or Z axis plane. This tool
has the following functions:

• Apply - Splits a mesh by a mirror plane and copies the half part to the other part and then starts
the mirror editing.

• Invert - Invert a direction of the mirror plane.

• Center Pivot - Moves the pivot position to the center of the bounding box.

• Align X, Align Y, and Align Z - Aligns the mirror plane by X axis, Y axis, or Z axis.

• Freeze - Freezes the current geometry.

Subdivision
Used to create a smooth appearance of a mesh without complicated manipulations. A control
mesh made this way doesn't need many vertices or faces to model complex smooth surfaces. You
can also give each edge a semi-sharp crease, which defines how sharp each edge is.

Texture Tools
The following buttons are available from the SU tab on the Designer Menu panel.

Version 1.6
423

Lumberyard User Guide
Texture Tools

Smoothing Group

Used for assigning numbers to faces. Faces with the same numbers and connected by an edge are
rendered smoothly. A seam will be displayed between two faces with different smoothing group IDs.
The following functions are available:

Parameters

Property Description

Smoothing Groups Used to assign a number to the selected faces.

Add Faces To SG Used to select faces based on the selected number buttons.

Select Faces By SG Used to select faces based on the selected number buttons.

Clear Empty SGs Used to remove the assigned smoothing groups of the selected
faces.

Auto Smooth with Threshold
Angle

Sets the smoothing groups based on the angle between faces.
Any two faces will be put in the same smoothing group if the angle
between their normals is lees than the threshold angle.

Threshold Angle Used to set the angle in degrees

UV Mapping

Materials can be assigned to each face differently and you can manipulate the UV coordinates using
this tool.

Parameters

Property Description

Mapping

UV offset The parameters are set to solid directly.

Scale offset The values are added to the existing parameters

Alignment

Fit Texture Fits the texture to the selected surfaces.

Version 1.6
424

Lumberyard User Guide
Miscellaneous Tools

Property Description

Reset Resets the texture settings on selected surfaces.

Tiling Changes texture tiling on selected surfaces in the X and Y
directions.

Select Selects all surfaces with the Material ID.

Assign Assigns the Material ID to selected surfaces.

Miscellaneous Tools
The following buttons are available from the MI tab on the Designer Menu panel.

Export
Exports .obj, .cgf, or .grp files when these buttons are pressed.

Hide Face
Used to hide or unhide the selected faces.

ResetXForm
Resets the Position, Rotation, or Scale values when these checkboxes are selected.

Shortcuts
Used to bind each function/subtool in the Designer tool to specific key combinations. The second
column comprises CTRL, SHIFT and CTRL+SHIFT. The last column lists the available virtual
keys.

Using the Measurement System Tool
The Measurement System Tool allows to measure the length of segmented objects like roads, rivers,
and paths. Measuring of segments is done by following the shape of each segment. The measured
path is shown in yellow color.

To read the length of some parts of a segmented object, a start point and an end point must be
selected.

Version 1.6
425

Lumberyard User Guide
Using the Object Selector

To measure a segmented object

1. Click to select the object in the viewport.

2. Click the Edit button. The object should turn yellow and be sunken.

3. Click View, Open View Pane, Measurement System Tool.

4. Click on the start of your desired first segment and the last segment of your choice to read
its length. Double-clicking on any of the segment starting points selects the whole object for
measuring or clears the start and end points.

5. Close the tool when done.

Using the Object Selector
Use the Object Selector to select and locate objects such as brushes, entities, tagpoints, volumes,
and more. You can also hide and unhide objects, freeze and unfreeze objects, and delete objects. You
can perform these actions on objects in layers (p. 872) that are selectable, visible, and not frozen.

To open Object Selector

Do one of the following:

• On the main menu, click View, Open View Pane, Object Selector.

• Press Ctrl+T.

• On the top toolbar, click the Object Selector icon.

Finding an Object
You may sometimes find it difficult to select an object in your level, particularly when you have a large
number of objects, or when other objects are surrounding or overlapping the object you want to select.
The Object Selector provides several tools to help you find specific objects.

The Object Selector displays objects on layers (p. 872) that are selectable (1), visible (2), and not
frozen (3).

Version 1.6
426

Lumberyard User Guide
Finding an Object

To automatically select objects (in your Perspective viewport) when you click them in the list, enable
the Auto Select option (bottom right).

To display objects with parent/child relationships, enable the Display as Tree option. When this option
is enabled, each type of object is displayed with its icon, and grouped objects are shown as a tree in
the list. If you have no grouped objects, you see only individual objects listed.

You can also use Fast Select to extend your search to include objects within prefabs and groups. To
do this, enable Search also inside Prefabs and Groups (below Fast Select).

To find and select an object

1. Open (p. 426) the Object Selector.

2. Do one or both of the following:

• If you know the object's name, type it into the Fast Select box at the bottom.

• Select one or more of the List Types (on the right):

• Entities

• Brushes

• Prefabs

• Tag Points

• AI Points

• Groups

• Volumes

• Shapes

• Solids

• Other

3. Click the object(s) you want to select.

4. Click Select (on the right) to place an X for each selected object in the Selected column.

You can also use:

• Select All to select all currently listed objects

• Select None to deselect all objects.

Version 1.6
427

Lumberyard User Guide
Object Selector Table

• Invert Selection to deselect currently selected objects and select all the other listed objects.

5. Close the Object Selector to return to your Perspective viewport.

6. Press Z on your keyboard to focus on the object(s) you selected.

Managing Objects

The Object Selector can also hide (and unhide), freeze (and unfreeze), and delete listed objects. You
can perform these actions on objects that are contained in layers that are currently selectable, visible,
and not frozen.

To hide or freeze objects

1. Find the object(s) you want to hide or freeze.

2. Click the object(s). To select multiple objects, use Ctrl or Shift.

Note
For this procedure, you need only click to select. There is no need to click the Select
button on the right side of the Object Selector.

3. Click Hide or Freeze.

Clicking Hide hides your object(s) in the Object Selector list and in your Perspective viewport.

Clicking Freeze hides your object(s) in the Object Selector list and makes it unable to be
interacted with in the Perspective viewport.

Other Actions

Task Steps

To unhide
hidden
objects

Select the objects, and then click Unhide.

To view
frozen objects

Click the Frozen option under Display List.

To unfreeze
frozen objects

Select the objects, and then click Unfreeze.

To delete
objects

Find the objects, click to select them, and then click Delete Selected. This deletes
the objects from the Object Selector and from your level.

Object Selector Table
The objects in your level are listed in a table in the Object Selector window. To sort your displayed
objects, click a column header. The results appear in alphabetic order.

Column
Name

Description

Name Name of the object.

Selected X is displayed when object is selected in Perspective viewport.

Version 1.6
428

Lumberyard User Guide
Brushes

Column
Name

Description

Type Scene element type of the object (entity, brush, prefab, tag point, AI point, group,
volume, shape, solid, other).

Layer Layer to which the object is assigned (objects on invisible or frozen layers are not
displayed).

Default
Material

Path to object's default material.

Custom
Material

Path to object's customer material, if assigned.

Breakability Type of breakability the object supports.

Track View Traview that the object is used in.

FlowGraph Flow graph that the object is used in.

Geometry Path to the object's geometry, if applicable.

Instances In
Level

Number of times the object is used in the level.

Number of
LODs

Number of LODs (p. 1374) the object has.

Spec The minimum specification that the object is set to display on.

AI GroupID Group ID number associated with an AI character.

Brushes
Brushes are solid objects that cannot be modified or moved dynamically during gameplay, except if
they have a break-point specified in the asset file, for example a breakable wooden shack.

Typically brushes are static objects placed in a level. They are one of the cheapest rendered objects as
they don't have any of the entity or physics overhead of other objects. A large percentage of the visual
objects in your levels will consist of brushes.

Brush Parameter Table

Parameter Description

Geometry This option specifies the geometry that needs to be used for the
object.

CollisionFiltering

Type • Ship

• Shield

• Asteroid

Ignore • Ship

• Shield

• Asteroid

Version 1.6
429

Lumberyard User Guide
DrawLast

Parameter Description

OutdoorOnly When set, the object will not be rendered when inside a visarea.

CastShadowMaps When this option is set, the object will cast shadows onto other
geometry/terrain/etc.

RainOccluder Set the brush to occlude rain, this works in conjunction with Rain
Entity. If your level does contain rain, you should set this wisely, as
there is a limit of 512 objects that can occlude at any given time.

SupportSecondVisarea Normally, objects are considered to be in only one visarea.
This option allows them to be added to multiple visareas if their
bounding box overlaps them, at the cost of some performance.
Without this option, some large objects may not be displayed when
viewed through portals in certain situations.

Hideable When this option is set, AI will use this object as a hiding spot,
using the specified hide point type.

LodRatio Defines how far from the current camera position, the different
Level Of Detail models for the object are used.

ViewDistanceMultiplier Sets the distance from the current view at which the object
renders.

NotTriangulate Deprecated

AIRadius Deprecated

NoStaticDecals When this option is set, decals will not project onto the object.

NoAmnbShadowCaster When this option is set, no ambient shadows will be cast.

RecvWind When this option is set, the object will be affected by the level
wind.

Occluder Used for the construction of a level occlusion mesh.

DrawLast This function is exposed to give per-object control over alpha-
sorting issues. An example can be seen below.

DrawLast
The DrawLast effects in front of glass objects. By enablng DrawLast, Lumberyard knows that any
alpha based objects rendered between the player and itself should take ordering priority.

Prefabs
Prefabs are groups of objects that can be placed in the level as instances. An instance is an object
that is an exact copy of every other object of the same type. Altering one prefab universally applies the
changes to each instance of the prefab object. Any alterations need to be saved to the Prefab Library
to ensure they are correctly propagated across the entire game.

The Prefabs Library is a tab in the Database View editor, and lists all the prefab objects that are
available for a specific level.

Version 1.6
430

Lumberyard User Guide
Prefabs

Prefab Parameter Table

Parameter Description

Global

Open All Open all instances of this prefab inside the level.

Close All Close all instances of this prefab inside the level.

Local

Pick and Attach Allows you to add a new object to the selected prefab, by clicking
on it.

Delete Object(s) Allows you to delete one or more objects from the selected prefab.

Clone Object(s) Allows you to clone one or more objects from the selected prefab.

Clone All Clones all instances of this prefab inside the level.

Extract Object(s) Extracts a clone of a single object from the prefab, without altering
or removing anything from the prefab object itself.

Extract All Extracts all the objects from the prefab, without altering the Prefab
Library.

Open Opens the prefab group, allowing you to edit and manipulate
objects within it.

Version 1.6
431

Lumberyard User Guide
Common Parameters and Properties

Parameter Description

Close Closes the prefab so that internal objects cannot be individually
edited.

Common Parameters and Properties
Many entities share common parameters and properties, as follows.

Entity Properties
The Entity pane is where you basic entity properties like the name of your object or the currently
selected layer. The text box at the top of the pane allows you to enter a new name for your object.

Some entities have color schemes applied by default, depending on their type. The colored box next to
the text box opens the color editor window.

Clicking the layers button opens the layer window, allowing you to place your object in the appropriate
layer. The text to the right of the layer button tells you which layer is currently selected.

Standard Parameters

Property Description

Area Changing the value of Area increases or decreases the radius of
the on screen object placement helper.

Mtl button When you select an object that uses a material, clicking the Mtl
(material) button opens the material window and allows you to
pick your desired material. When you have assigned a custom
material to be applied to the object, its path will be displayed in the
Mtl button.

MinSpec When set, the selected object only appears in game detail settings
of the desired value and above.

Entity Parameters
The Entity Params panel lists all common entity parameters. Modifying these parameters enables
effects such as wind and shadow to be added to an object and also toggles options such as hiding the
object in-game.

Version 1.6
432

Lumberyard User Guide
Scripting and Flow Graph Entity Parameters

Entity Parameters

Property Description

Outdoor Only When set, the object will not be render when inside a VisArea.

Cast Shadow MinSpec When set, this object will cast a shadow on the selected quality
setting and above.

LodRatio Defines how far from the current camera position that different
Level Of Detail models for the object are used.

ViewDistRatio Defines how far from the current camera position that the object
will be rendered.

HiddenInGame When set, this object will not be shown in pure game mode. Useful
for debugging or prototyping.

Receive Wind When set, this object will be influenced by any wind setup in your
level.

RenderNearest Used to eliminate z-buffer artifacts when rendering in first person
view.

NoStaticDecals If this is set to true, decals will not be rendered on this object.

Created Through Pool This is mostly used on AI entities for memory optimization.

Scripting and Flow Graph Entity Parameters
This pane contains parameters related to entity scripting and Flow Graph.

Version 1.6
433

Lumberyard User Guide
Entity Links

Scripting and Flow Graph Parameters

Property Description

Edit Script Opens the script file in your associated program and allows you
to modify the script for the selected entity. The script file location
is shown above this and the Reload Script button. Clicking the '>'
button will give you more options related to this file.

Reload Script Used to implement any changes made to the script. This is
particularly useful for reviewing particle effects as reloading it
activates it again.

Entity Archetype If the entity is an Archetype entity, the name of entity will appear
on the button and clicking will open the archetype in the Database
View tool.

Create Creates a new flow graph.

List Lists the flow graphs that the selected entity is associated with.

Remove If a flow graph was created for this entity, you can remove.

Sequence If the entity is being used in a Track View sequence, the name of
the sequence will be displayed here. Also open up the sequence in
the Track View Window.

Save State Saves the physical state of a selected entity (when AI/Physics
in turned on). This can be useful for placing physical props
realistically around your level without having to manually rotate
and align their positions.

Clear State Clears any saved physical state.

Entity Links
This pane displays entities linked to the main entity. Each entity can link to multiple entities. Creating
an entity link is essentially making a dynamic link that can be referenced in LUA script.

Version 1.6
434

Lumberyard User Guide
Entity Events

To pick a target, click the Pick Target button and then select the desired entity to create a link. You
can select multiple entities one at a time while the button is still active.

Double-click a linked entity in the list to select it. Right-click opens a menu with additional commands.

Entity Links Parameters

Property Description

Change Target Entity This will change the Entity associated with a link.

Rename Link Renames the selected link.

Delete Link Deletes the selected link.

Pick New Target Same functionality as the Pick Target button.

Entity Events
This pane visually represents the script behind objects and allows you to edit and run the script. When
AI/Physics is enabled you can test the effect of any changes you have made to the entity script.

AI/Physics should be enabled to test events.

Version 1.6
435

Lumberyard User Guide
Attached Entities

Entity Event Parameters

Property Description

Input/Output Displays a list of executable script commands.

Pick New Deprecated

Mission Handler Deprecated

Remove Deprecated

Send Once you have chosen an Input/Output event click Send to test
and see the effect. For example, an Input event called OnKill might
kill an entity and OnSpawn might spawn them back to life.

Methods Displays a list of executable methods.

Run Displays a list of executable methods.

Goto Deprecated

Add Deprecated

Attached Entities
This pane enables you to create links to other objects in the perspective viewport.

This pane is only visible for certain entities.

Version 1.6
436

Lumberyard User Guide
Shape Parameters

Attached Entity Parameters

Property Description

Pick Links two selected objects. You will visually see the link in the
viewport and see the object name in the target window.

Remove Removes a link between two objects.

Select Selects an object from the target window. Double-clicking the
object name in the target window will also select the object.

Shape Parameters
This pane allows you to edit the area of effect for a shape and create links to other objects in the
viewport.

This pane is only visible for certain entities.

Version 1.6
437

Lumberyard User Guide
Entity Reference

Shape Parameters

Property Description

Num Points Relates to the number of points the shape contains in the
perspective viewpoint.

Edit Shape Allows you to edit the selected shape.

Use Transform Gizmo Enables the Transform Gizmo helper.

Reverse Path Used with objects like AIPath and when clicked will reverse the
AI path. The arrow on screen will point in the opposite direction to
show the new path direction.

Split Click two parts of your shape to split your shape and create a new
independent shape.

Reset Height Use to flatten the shape and all other points to the height of the
selected point.

Pick Links a shape to an object. You will visually see the link in the
viewport and see the object name in the target window.

Remove Removes a link between the selected shape and an object.

Select Selects an object from the target window. Double-clicking the
object name in the target Window will also select the object.

Entity Reference
The following is a complete list of the various entities that comprise the Entity system.

Topics

• Actor Entity (p. 439)

• AI Control Objects (p. 439)

• Anim Entities (p. 444)

• Archetype Entity (p. 444)

• Area Entities (p. 445)

• Audio Entities (p. 451)

• Boid Entity (p. 457)

• Camera Entities (p. 460)

• Geom Entities (p. 460)

• Light Entities (p. 461)

• Lightning Arc Entity (p. 465)

• Miscellaneous Entities (p. 467)

• Particle Entities (p. 469)

• Physics Entities (p. 470)

• Rain Entity (p. 478)

• Render Entities (p. 479)

• River Entity (p. 480)

• Road Entity (p. 481)

• Rope Entity (p. 482)

Version 1.6
438

Lumberyard User Guide
Actor Entity

• Snow Entity (p. 484)

• Tornado Entity (p. 484)

• Trigger Entities (p. 485)

Actor Entity
This is a specialized entity that is the basis for characters in a game.

AI Control Objects
The following AI entities are provided:

• AIAnchor

• AI Horizontal Occlusion Plane

• AI Path

• AI Perception Modifier

• AI Point

• AI Reinforcement Spot

• AI Shape

• Cover Surface

• Navigation Area

• Navigation Seed Point

• Smart Object

• Tag Point

AIAnchor
An AIAnchor is a positional point object that can be used to define specific behaviors for an AI with
reference to the location and/or direction of the anchor.

AIHorizontalOcclusion Plane
AI agents above and below an AI Horizontal Occlusion Plane will not be able to see through it. It can
be used, for example, to restrict an AI on a high ledge from being able to see below the ledge.

Version 1.6
439

Lumberyard User Guide
AI Control Objects

Parameters

Parameter Description

Width Specifies how wide the entity is.

Height Specifies how high the shape area should be (0 means infinite
height).

AreaId Sets up the ID of the area, so areas with another ID can overlap.

GroupId Sets up the Group ID of the area, so areas with another group ID
can overlap.

Priority Defines the Priority so areas with a higher priority will be
processed first.

Closed Sets if the area should be closed or if it should be just a line.

DisplayFilled Just for visibility in the editor this option defines if the area should
be rendered as filled or not.

DisplaySoundInfo Enable to expand Sound Obstruction options.

Agent_height When Render_voxel_grid is enabled this determines the height -
along the y axis - of the grid cells rendered.

Agent_width When Render_voxel_grid is enabled this determines the height -
along the x axis - of the grid cells rendered.

Render_voxel_grid If true, voxel grid will be rendered when helpers are enabled.

voxel_offset_x Offset voxel grid on the X axis.

voxel_offset_y Offset voxel grid on the Y axis.

AI Path

An AI path is an object which can be used to guide your AI agent along a specific route from point to
point in your level.

Parameters

Parameter Description

Road Defines if the path is to be used by vehicles as a preferred path.

PathNavType Sets the AI navigation type of the path. Types of paths available:

• Flight

• Free 2D

• Road

• Smart Object

• Triangular

• Unset

• Volume

• Waypoint 3D Surface

• Waypoint Human

Version 1.6
440

Lumberyard User Guide
AI Control Objects

Parameter Description

AnchorType Sets an AI behavior for any AI using the path.

ValidatePath Used for 3D Volume paths only, checks and displays path validity
in the editor.

Width Specifies how wide the entity is.

Height Specifies how high the shape area should be (0 means infinite
height).

AreaId Sets up the ID of the area, so areas with another ID can overlap.

GroupId Sets up the Group ID of the area, so areas with another group ID
can overlap.

Priority Defines the Priority so areas with a higher priority will be
processed first.

Closed Sets if the area should be closed or if it should be just a line.

DisplayFilled Just for visibility in the editor this option defines if the area should
be rendered as filled or not.

DisplaySoundInfo Enable to expand Sound Obstruction options.

Agent_height When Render_voxel_grid is enabled this determines the height -
along the y axis - of the grid cells rendered.

Agent_width When Render_voxel_grid is enabled this determines the height -
along the x axis - of the grid cells rendered.

Render_voxel_grid If true, voxel grid will be rendered when helpers are enabled.

voxel_offset_x Offset voxel grid on the X axis.

voxel_offset_y Offset voxel grid on the Y axis.

AI Perception Modifier

Parameters

Parameter Description

Height Specifies how high the shape area should be (0 means infinite
height).

Closed Sets if the area should be closed or if it should be just a line.

DisplayFilled Just for visibility in the editor this option defines if the area should
be rendered as filled or not.

AI Point

An AI Point is an object that represents a named AI waypoint in your level.

Version 1.6
441

Lumberyard User Guide
AI Control Objects

Parameters

Parameter Description

Type • Waypoint

• Hide

• Sec Hide

• Entry/Exit

• Exit-only

Nav Type • Human

• 3D Surface

Removable Allows AI points to be removed, may be useful for adding
entrances for easier traversing.

Regen Links Prompts a regeneration of all links in the same navigation region
as this one.

Linked Waypoints Displays the list of waypoints that are connected to this point.

Pick Allows the user to pick a second waypoint to create a permanent
AI link.

Pick impass Allows the user to pick a second waypoint to create a perminant
non-passable link.

Select Selects the currently highlighted link in the linked waypoints box.

Remove Removes the currently highlighted waypoint links.

Remove all Removes all waypoint links from the AI Point.

Remove all in area Removes all waypoint links in the nav area.

AI Reinforcement Spot

Defines a point which any relevant AI can use to trigger their reinforcement behavior.

AI Shape

An AI shape is an object which can be used to define an area which AI will use for combat and will
search for anchors within.

Parameters

Parameter Description

AnchorType Affects AI behaviors in the same way as the anchors do. The
main usage is to check if a point (AI position, target position, etc)
is inside a shape of a given AnchorType, in the same way as
checking the proximity to an anchor of a given type.

LightLevel Affects AI's ability to see (including sight range and speed of
detection).

Width Specifies how wide the entity is.

Version 1.6
442

Lumberyard User Guide
AI Control Objects

Parameter Description

Height Specifies how high the shape area should be (0 means infinite
height).

AreaId Sets up the ID of the area, so areas with another ID can overlap.

GroupId Sets up the Group ID of the area, so areas with another group ID
can overlap.

Priority Defines the Priority so areas with a higher priority will be
processed first.

Closed Sets if the area should be closed or if it should be just a line.

DisplayFilled Just for visibility in the editor this option defines if the area should
be rendered as filled or not.

DisplaySoundInfo Enable to expand Sound Obstruction options.

Agent_height When Render_voxel_grid is enabled this determines the height -
along the y axis - of the grid cells rendered.

Agent_width When Render_voxel_grid is enabled this determines the height -
along the x axis - of the grid cells rendered.

Render_voxel_grid If true, voxel grid will be rendered when helpers are enabled.

voxel_offset_x Offset voxel grid on the X axis.

voxel_offset_y Offset voxel grid on the Y axis.

Cover Surface

Cover surfaces can be used to allow the AI agent to take cover in combat situations.

Parameters

Parameter Description

Limit Left The generated cover path to the left side of the cover surface
object will be limited to this length.

Limit Right The generated cover path to the right side of the cover surface
object will be limited to this length.

Limit Height The resulting height of all cover surfaces will be limited to this
value.

Navigation Area

For more information, see Creating Navigation Areas (p. 71).

Parameters

Parameter Description

Height The height of the navigation area.

Version 1.6
443

Lumberyard User Guide
Anim Entities

Parameter Description

DisplayFilled Just for visibility in the editor this option defines if the area should
be rendered as filled or not.

Navigation Seed Point

For more information, see Adding Navigation Seed Points (p. 73).

Smart Object

An AI Anchor is a point or collection of points which can be used by AI to perform a specific action or
event, such as an animation or behavior. Certain smart objects can have special geometry assigned to
them, to assist with object placement.

Tag Point

An AI Tagpoint is an object used to define a location.

Anim Entities

MannequinObject Entity

Entity Properties

Property Description

ActionController The root object controlling mannequin for a character. It is
configured using a controller definition (defining the fragmentIDs,
scopes, and scope contexts). It schedules actions onto scopes and
holds the global tagstate.

Archetype Entity
An Archetype entity is based on a regular entity and specifies individual parameter values for that
entity. If the value of an Archetype parameter is changed, all instances of that Archetype in the level
are updated automatically.

As such, you can predefine variations of entity classes as Archetype Entities that can be used
throughout the game. For global changes affecting all instances, the Archetype Entity just needs to be
changed once.

EntityArchetype Parameters

Parameter Description

Outdoor Only When set, the object will not be rendered when inside a visarea.

Cast Shadow MinSpec When set, the object will cast a shadow.

LodRatio Defines how far from the current camera position, the different
Level Of Detail models for the object are used.

Version 1.6
444

Lumberyard User Guide
Area Entities

Parameter Description

ViewDistanceMultiplier Defines how far from the current camera position, the the object
can be seen.

HiddenInGame When set, this object is not shown in the pure game mode.

Receive Wind When set, this object will be influenced by any wind setup in the
level.

Area Entities
Area entities are used to create three dimensional zones in the level that can be used to trigger events.

The following area entities can be accessed from the Area button on the Objects tab of the Rollup Bar.

• AreaBox

• AreaSolid

• AreaSphere

• ClipVolume

• OccluderArea

• OccluderPlane

• Portal

• Shape

• VisArea

• WaterVolume

AreaBox

This entity lets you create a box to which you can link triggers and other entities that should be enabled
when the player enters or leaves the box.

Parameter Table

Parameter Description

AreaId Sets up the ID of the area, so areas with another ID can overlap.

FadeInZone Specifies in meters how big the zone around the box is that is used
to fade in the effect attached to the box. Only when the player is
inside the box the effect is rendered at 100%, at the beginning of
the FadeInZone its rendered at 0%.

Width Specifies how wide the box is.

Length Defines how long the box is.

Height Specifies how high the shape area should be (0 means infinite
height).

GroupId Sets up the Group ID of the area, so areas with another group ID
can overlap.

Priority Defines the Priority so areas with a higher priority will be
processed first.

Version 1.6
445

Lumberyard User Guide
Area Entities

Parameter Description

DisplayFilled Just for visibility in the editor this option defines if the area should
be rendered as filled or not.

DisplaySoundInfo Enable to expand Sound Obstruction options.

AreaSolid

The AreaSolid is for defining complex range of sound obstructions with the Designer tool that is used
for geometry editing.

AreaSphere

The AreaSphere object is used to link triggers and other entities that should be enabled when the
player enters or leaves the sphere.

Parameter Table

Parameter Description

AreaId Sets up the ID of the area, so areas with another ID can overlap.

FadeInZone Specifies in meters how big the zone around the box is that is used
to fade in the effect attached to the box. Only when the player is
inside the box the effect is rendered at 100%, at the beginning of
the fadeinzone its rendered at 0%.

Radius Specifies how big the sphere should be.

GroupId Sets up the Group ID of the area, so areas with another group ID
can overlap.

Priority Defines the Priority so areas with a higher priority will be
processed first.

Filled Just for visibility in the editor this option defines if the area should
be rendered as filled or not.

Clip Volume

ClipVolumes define geometric shapes that can restrict the influence of lights and cubemaps in a level.

Lights can be associated with ClipVolumes by either placing the light directly inside the object or by
creating an entity link from the light to the ClipVolume. Once an association has been established, the
AffectsThisAreaOnly property on the light source will clip the light's influence to the geometry inside
the ClipVolume.

Here are some restrictions on the use of ClipVolume objects:

• The Clip Volume mesh needs to be watertight.

• Clip Volume mesh complexity has an impact on performance.

• ClipVolumes must not overlap.

• Due to performance reasons, forward rendered objects perform the inside test based on their pivot
only.

• Each light can be linked to a maximum of two ClipVolumes.

Version 1.6
446

Lumberyard User Guide
Area Entities

OccluderArea

The OccluderArea object prevents Lumberyard from rendering everything that is behind it. It is used for
performance optimization in areas where automatic occlusion from brushes and terrain don't work very
well. This object allows you to create an occlusion plane out of a custom shape with multiple edges,
unlike an OccluderPlane object which can only be a square shape.

Parameter Table

Parameter Description

DisplayFilled Just for visibility in the editor this option defines if the area should
be rendered as filled or not.

CullDistRatio Specifies at what distance the culling effect should stop occurring.

UseIndoors Specifies if the occluder area should be working inside an indoor
visarea.

OccluderPlane

The OccluderPlane object is used to occlude objects behind the plane. Like with the OccluderArea
object, this typically isn't required because occlusion is done automatically. This object can be used as
a fallback method.

Parameter Table

Parameter Description

Height Specifies how high the occluder plane is.

DisplayFilled Just for visibility in the editor this option defines if the plane should
be rendered as filled or not.

CullDistRatio Specifies at what distance the culling effect should stop occurring.

UseIndoors Specifies if the occluder plane should work inside a visarea.

DoubleSide Specifies if the occluder plane should work from both sides.

Portal

With Portals you can cut holes inside a VisArea to create an entrance into a VisArea. Portals have
to be smaller than the VisArea Shape but thick enough to protrude both the inside and outside of the
VisArea, like a door.

You can enable and disable Portals using Flow Graph and you can have multiple Portals in one
VisArea.

Parameter Table

Parameter Description

Height Specifies how high the portal is.

DisplayFilled Just for visibility in the editor this option defines if the area should
be rendered as filled or not.

Version 1.6
447

Lumberyard User Guide
Area Entities

Parameter Description

AffectedBySun Specifies if shadows from the world outside the visarea can travel
inside.

IgnoreSkyColor If this option is turned off the ambient color (sky color in time of day
window) is not used indoors.

IgnoreGI If true, Global Illumination won't be used inside this object.

ViewDistRatio Specifies how far the visarea is rendered.

SkyOnly Lets you choose to see only the skybox when you look outside
the visarea. If you don't render terrain and outside brushes
the performance can be faster so use this option when it is
appropriate.

OceanIsVisible Specifies if the ocean rendering should be visible inside the
visarea.

UseDeepness Specifies if the portal should be working from both sides.

DoubleSide Specifies if the portal should be working from both sides.

Shape

The Shape object lets you create a shape to which you can link triggers and other entities that should
be enabled when the player enters or leaves the area shape.

Parameter Table

Parameter Description

Width Specifies how wide the entity is.

Height Specifies how high the shape area should be (0 means infinite
height).

AreaId Sets up the ID of the area, so areas with another ID can overlap.

GroupId Sets up the Group ID of the area, so areas with another group ID
can overlap.

Priority Defines the Priority so areas with a higher priority will be
processed first.

Closed Sets if the area should be closed or if it should be just a line.

DisplayFilled Just for visibility in the editor this option defines if the area should
be rendered as filled or not.

DisplaySoundInfo Enable to expand Sound Obstruction options.

Agent_height When Render_voxel_grid is enabled this determines the height -
along the y axis - of the grid cells rendered.

Agent_width When Render_voxel_grid is enabled this determines the height -
along the x axis - of the grid cells rendered.

Render_voxel_grid If true, voxel grid will be rendered when helpers are enabled.

Version 1.6
448

Lumberyard User Guide
Area Entities

Parameter Description

voxel_offset_x Offset voxel grid on the X axis.

voxel_offset_y Offset voxel grid on the Y axis.

VisArea

The VisArea object is used to define indoor areas for culling and optimization purposes, as well as
lighting. Objects inside a VisArea won't be rendered from outside and vice versa, this can help with
performance immensely.

VisAreas also can be setup to occlude certain lighting elements such as the sun, which gives flexibility
in setting up lighting for your indoor areas.

1. In Rollup Bar, on the Objects tab, select Area, VisArea.

2. Place the Visarea object around the desired area in your level and set the Height parameter
value. Keep the shape of the VisArea as simple as possible.

3. Ensure everything related is inside the VisArea.

4. Enable Snap To Grid.

Parameter Table

Parameter Description

Height Specifies how high the visarea is.

DisplayFilled Just for visibility in the editor this option defines if the area should
be rendered as filled or not.

AffectedBySun Specifies if shadows from the world outside the visarea can travel
inside.

IgnoreSkyColor If this option is turned off the ambient color (sky color in time of day
window) is not used indoors.

IgnoreGI If true, Global Illumination won't be used inside this object.

ViewDistRatio Specifies how far the visarea is rendered.

SkyOnly Lets you choose to see only the skybox when you look outside
the visarea. If you don't render terrain and outside brushes
the performance can be faster so use this option when it is
appropriate.

OceanIsVisible Specifies if the ocean rendering should be visible inside the
visarea.

WaterVolume

The WaterVolumes object is used for rivers, lakes, pools, puddles, and oceans. For more information
about WaterVolumes, see WaterVolume Shader (p. 1032).

Version 1.6
449

Lumberyard User Guide
Area Entities

Parameter Table

Parameter Description

Width Specifies how wide the entity is.

Height Specifies how high the shape area should be (0 means infinite
height).

AreaId Sets up the ID of the area, so areas with another ID can overlap.

GroupId Sets up the Group ID of the area, so areas with another group ID
can overlap.

Priority Defines the Priority so areas with a higher priority will be
processed first.

Closed Sets if the area should be closed or if it should be just a line.

DisplayFilled Just for visibility in the editor this option defines if the area should
be rendered as filled or not.

DisplaySoundInfo Enable to expand Sound Obstruction options.

Agent_height When Render_voxel_grid is enabled this determines the height -
along the y axis - of the grid cells rendered.

Agent_width When Render_voxel_grid is enabled this determines the height -
along the x axis - of the grid cells rendered.

Render_voxel_grid If true, voxel grid will be rendered when helpers are enabled.

voxel_offset_x Offset voxel grid on the X axis.

voxel_offset_y Offset voxel grid on the Y axis.

Depth Sets the depth of the river.

Speed Defines how fast physicalized objects move along the river. Use
negative values to move in the opposite direction.

UScale Sets the texture tiling on the U axis.

VScale Sets the texture tiling on the V axis.

View Distance Multiplier Sets the distance from the current view at which the object
renders.

Caustics Enables optical caustics effects.

CausticIntensity Scales the intensity of the caustics for the water surface normals.

CausticTiling Scales the caustic tiling applied to the water surface normals.
It allows the scaling of caustics independently from the surface
material.

CausticHeight Sets the height above the water surface at which caustics
become visible. Use this to make caustics appear on overhanging
landforms or vegetation and other nearby objects.

Version 1.6
450

Lumberyard User Guide
Audio Entities

Parameter Description

FixedVolume Traces a ray down to find a 'vessel' entity and 'spill' the requested
amount of water into it. For static entities, it attempts to boolean-
merge any surrounding static that intersects with the first vessel
(use the No Dynamic Water flag on brushes that do not need
that).

VolumeAccuracy Water level is calculated until the resulting volume is within this
(relative) difference from the target volume (if set to 0 it runs up to
a hardcoded iteration limit).

ExtrudeBorder Extrudes the border by this distance. This is particularly useful if
wave simulation is enabled as waves can raise the surface and
reveal open edges if they lie exactly on the vessel geometry.

ConvexBorder Takes convex hull of the border. This is useful if the border would
otherwise have multiple contours, which areas do not support.

ObjectSizeLimit Only objects with a volume larger than this number takes part in
water displacement (set in fractions of FixedVolume).

WaveSimCell Size of cell for wave simulation (0 means no waves). Can be
enabled regardless of whether FixedVolume is used.

WaveSpeed Sets how "fast" the water appears.

WaveDamping Standard damping.

WaveTimestep This setting may need to be decreased to maintain stability if more
aggressive values for speed are used.

MinWaveVel Sleep threshold for the simulation.

DepthCells Sets the depth of the moving layer of water (in WaveSimCell
units). Larger values make waves more dramatic.

HeightLimit Sets a hard limit on wave height (in WaveSimCell units).

Resistance Sets how strongly moving objects transfer velocity to the water.

SimAreaGrowth If changing water level is expected to make the area expand,
the wave simulation grid should take it into account from the
beginning. This sets the projected growth in fractions of the original
size. If wave simulation is not used, this setting has no effect.

Audio Entities
There are four Audio entities, as follows:

• Audio Trigger Spot Entity

• Audio Area Entity

• Audio Area Ambience Entity

• Audio Area Random Entity

Version 1.6
451

Lumberyard User Guide
Audio Entities

Audio Trigger Spot
The AudioTriggerSpot triggers an event on a specific position. This position can be automatically
randomized on each axis or with time delays.

Audio Trigger Spot Properties

Properties Description

Enabled Defines whether the Entity is enabled (playing) or disabled (not
playing).

MaxDelay The maximum delay in seconds that it takes to trigger the sound
when PlayRandom is enabled.

MinDelay The minimum delay in seconds that it takes to trigger the sound
when PlayRandom is enabled.

PlayOnX Defines whether the sound gets positioned randomly on the X-axis
when PlayRandom is enabled.

PlayOnY Defines whether the sound gets positioned randomly on the Y-axis
when PlayRandom is enabled.

PlayOnZ Defines whether the sound gets positioned randomly on the Z-axis
when PlayRandom is enabled.

PlayRandom When the check box is enabled: The sound is triggered at random
intervals between the MinDelay and MaxDelay settings used
and on the PlayOnX, PlayOnY, or PlayOnZ axis that has been
selected. When the check box is not enabled, the sound is played
immediately on the entity.

PlayTriggerName Name of the play event.

Version 1.6
452

Lumberyard User Guide
Audio Entities

Properties Description

RadiusRandom The radius in meters in which the sound gets positioned randomly
when PlayRandom is enabled.

SerializePlayState Defines whether the play state of the entity gets saved and loaded
at checkpoints.

SoundObstructionType Sets the number of ray casts that are used to calculate the
obstruction. More ray casts used equals a greater performance
requirement, but creates a more accurate result.

• Ignore – No raycasts are applied and the sound is unaffected by
other objects in the game.

• Single Ray – Used to calculate the treatment the sound
receives depending on the position and physical properties of
the objects found between the source and the listener.

• Multiple Rays – Used to calculate the treatment the sound
receives depending on the position and physical properties of
the objects found between the source and the listener.

StopTriggerName Name of the stop event.

Audio Area Entity

Audio Area Entities are used to play ambient sounds in an area, and are linked to Area Shapes, Area
Boxes, and Area Spheres.

These entities are an advanced method of setting up ambient sounds in levels and require Flow Graph
logic to play and control the sounds. This opens up many possibilities and gives advanced control over
the ambience. When setting up a basic ambient sound, use the Audio Area Ambience entity instead,
which does not require any Flow Graph logic.

Version 1.6
453

Lumberyard User Guide
Audio Entities

Audio Area Entity Properties

Properties Description

Enabled Defines whether the Entity is enabled (playing) or disabled (not
playing).

Environment Defines the name of the ATL environment used inside the
connected shape.

EnvironmentDistance The distance in meters from the edge of the assigned shape where
the fading of the Environment begins.

FadeDistance The distance in meters from the edge of the assigned shape where
the Flowgraph Node is starting to output values.

SoundObstructionType Sets the number of ray casts that are used to calculate the
obstruction. More ray casts used equals a greater performance
requirement, but creates a more accurate result.

• Ignore – No raycasts are applied and the sound is unaffected by
other objects in the game.

• Single Ray – Used to calculate the treatment the sound
receives depending on the position and physical properties of
the objects found between the source and the listener.

• Multiple Rays – Used to calculate the treatment the sound
receives depending on the position and physical properties of
the objects found between the source and the listener.

Audio Area Ambience

Audio Area Ambience entities are used to set up ambiences without having to define their functionality
in Flow Graph. They are used when setting up basic ambient shapes in levels that do not require a
more complex functionality.

Version 1.6
454

Lumberyard User Guide
Audio Entities

Audio Area Ambience Properties

Properties Description

Enabled Defines whether the Entity is enabled (playing) or disabled (not
playing).

Environment Defines the name of the ATL environment used inside the
connected shape.

EnvironmentDistance The distance in meters from the edge of the assigned shape where
the fading of the environment begins.

PlayTrigger Name of the play event.

Rtpc Sets the RTPC that is controlling the playing of the sound object.

RtpcDistance The distance in meters from the edge of the assigned shape where
the connected RTPC is starting to receive values. The values sent
to the RTPC are always from 0 to 1.

SoundObstructionType Sets the number of ray casts that are used to calculate the
obstruction. More ray casts used equals a greater performance
requirement, but creates a more accurate result.

• Ignore – No raycasts are applied and the sound is unaffected by
other objects in the game.

• Single Ray – Used to calculate the treatment the sound
receives depending on the position and physical properties of
the objects found between the source and the listener.

• Multiple Rays – Used to calculate the treatment the sound
receives depending on the position and physical properties of
the objects found between the source and the listener.

StopTrigger Name of the stop event.

Audio Area Random

Audio Area Random entities trigger randomized shots in a confined area. The Entity needs to be linked
to Area Shapes, Area Boxes, or Area Spheres. The sound is randomly triggered and positioned in a
radius around the listener, providing they are inside the connected area.

Version 1.6
455

Lumberyard User Guide
Audio Entities

Audio Area Random Properties

Properties Description

Enabled Defines whether the entity is enabled (playing) or disabled (not
playing).

MaxDelay The maximum delay in seconds it takes to trigger the sound.

MinDelay The minimum delay in seconds it takes to trigger the sound.

MoveWithEntity When enabled, the sound moves in relation to the listener after it
has spawned; otherwise, it stays at its initial position.

PlayTrigger Name of the play event.

RadiusRandom Defines the size of the radius in which sounds spawn around the
listener.

Rtpc Sets the RTPC that is controlling the playing of the sound.

RtpcDistance The distance in meters from the edge of the assigned shape where
the connected RTPC is starting to receive values. The values sent
to the RTPC range from 0 to 1.

SoundObstructionType Sets the number of ray casts that are used to calculate the
obstruction. More ray casts used equals a greater performance
requirement, but creates a more accurate result.

• Ignore – No raycasts are applied and the sound is unaffected by
other objects in the game.

• Single Ray – Used to calculate the treatment the sound
receives depending on the position and physical properties of
the objects found between the source and the listener.

Version 1.6
456

Lumberyard User Guide
Boid Entity

Properties Description

• Multiple Rays – Used to calculate the treatment the sound
receives depending on the position and physical properties of
the objects found between the source and the listener.

StopTrigger Name of the stop event.

Note
For each audio object, it is a good practice to see which SoundObstructionType works
best and to select Ignore when there is no advantage gained from having obstruction and
occlusion values calculated. Select MultipleRays only if the accuracy of the single raycast
is not sufficient, or if you want the entity to be able to calculate both the occlusion and
obstruction values separately.
Raycasts are skipped for entities that do not have an active playing trigger, even when the
SoundObstructionType is set to SingleRay or MultipleRays.

Boid Entity
Boid entities simulate animals exhibiting group behavior, obstacle avoidance, animations, and sound.
Their complex behavior arises from the interaction of an individual agent boid with other boids and the
environment in which they move.

Not all parameters are available for all boid classes. For example, Behavior classes are needed only
for the Bugs boid class and do not appear in other Boid properties.

Boid Properties

Properties Description

Model1-5 Additional geometry for the boid; this can be a character (.CHR) or
static geometry (.CGF). If you specify more than one option, the
geometry is selected at random.

Model Geometry for the boid; this can be a character (.CHR) or static
geometry (.CGF).

Mass Mass of each individual boid.

Invulnerable Specifies whether the boid can be killed or not.

gravity_at_death Gravity acceleration that affects the body of the killed boid.

Count Specifies how many individual objects are spawned.

Behavior Movement behavior for the boid entity:

• 0 = Generic ground bugs, such as beetles

• 1 = Flying insects, such as dragonflies

• 2 = Leaping insects, such as grasshoppers

Flocking Properties

Properties Description

AttractDistMax Maximum distance at which one boid can see another boid. Boids
that are too far away are not interacted with.

Version 1.6
457

Lumberyard User Guide
Boid Entity

Properties Description

AttractDistMin Minimum distance that boids are comfortable with to stay close to
each other before the separation force starts to affect them.

EnableFlocking When enabled, the rules of the emergent flocking behavior is
calculated on the whole flock of boids.

FactorAlign Steer towards the average heading of local flock-mates.

FactorCohesion Steer to move toward the average position of local flock-mates.

FactorSeparation Steer to avoid crowding local flock-mates, only when closer then
AttractDistMin.

FieldOfViewAngle Field of vision of the boid to consider other boids as flock-mates.

Note
The following Ground properties apply only when boids are walking on the ground. Boids are
able to land only in game mode and not while editing.

Ground Properties

Properties Description

WalkToIdleDuration Time it takes for boids to transition from walking to idle state.

WalkSpeed Walk speed when boids land.

OnGroundWalkDurationMin Minimum time that boids can spend in walk state.

OnGroundWalkDurationMax Maximum time that boids can spend in walk state.

OnGroundIdleDurationMin Minimum time that boids can spend in idle state.

OnGroundIdleDurationMax Maximum time that boids can spend in idle state.

HeightOffset Vertical offset of boids from the ground.

FactorSeparation Tries to ensure that boids avoid one another.

FactorOrigin Controls how much boids are attracted to their point of origin.

FactorCohesion Tries to ensure that boids group together.

FactorAlign Tries to ensure that all boids move in roughly the same direction.

Movement Properties

Properties Description

FactorAvoidLand Force coefficient to divert boid from the land or water.

FactorHeight Controls the force that is applied to keep boids at the original
height for the flock.

FactorOrigin Controls the force that attract boids to the origin point of the flock.

FactorTakeOff Vertical movement speed scale during take-off.

Version 1.6
458

Lumberyard User Guide
Boid Entity

Properties Description

FlightTime Approximate flight time before attempting to land.

HeightMax Maximal height boids can fly to (height above land).

HeightMin Minimal height boid can fly at (height above land).

LandDecelerationHeight Height at which boids start to decelerate when landing.

MaxAnimSpeed If the boid had animations, then use this variable to control the
speed of the animation.

SpeedMax Maximum speed for boid movement.

SpeedMin Minimum speed for boid movement.

Options Properties

Properties Description

Activate When checked, active boids are visible and move from the start of
the level; alternatively, boids can be activated at a later stage with
the activate event.

AnimationDist Maximum distance from camera at which animations update.

FollowPlayer When checked, boids wrap around only current player position,
and the flock origin point becomes the player position. If the boid
flies too far away from the player, it reappears on the opposite
side.

NoLanding Turns landing for birds flocks on and off.

ObstacleAvoidance Boids sense the physical environment and can be diverted from
the physical obstacles. This option adds heavier physical checks
on the boids and should be used carefully (only when really
needed).

Radius Maximum radius that the boid can move from the flock origin point.

SpawnFromPoint If true, all the boids spawn at the boid entity position.

StartOnGround If true, boids spawn on the ground; otherwise, they spawn in the
air.

VisibilityDist Maximum distance from which the whole flock can be visible.
If player camera is further away from the flock origin point than
VisibilityDist, boids are not simulated and rendered.

ParticleEffect Properties

Properties Description

EffectScale Scale of the particle effect to be played.

waterJumpSplash Particle effect to be played when the boid splashes into the water.

Version 1.6
459

Lumberyard User Guide
Camera Entities

Camera Entities
There are two camera entities.

Camera

Parameters

Parameter Description

FOV The field of view of the camera.

NearZ The cut off point closest to the camera.

FarZ The max cut off point of the camera.

Shake Parameters

Amplitude A Vec3, the strength of the effect on each axis.

Amplitude A Multiplier Multiplier for the Amplitude.

Frequency A Vec3, how off the effect will play in each axis.

Frequency A Multiplier Multiplier for the Frequency.

Noise A Amplitude Multiplier Add some noise to the amplitude value.

Noise A Frequency Multiplier Add some noise to the frequency value.

Time Offset A A some time offset.

Amplitude B Vec3, the strength of the effect on each axis.

Amplitude B Multiplier Multiplier for the Amplitude.

Frequency B Vec3, how off the effect will play in each axis.

Frequency B Multiplier Multiplier for the Frequency.

Noise B Amplitude Multiplier Add some noise to the amplitude value.

Noise B Frequency Multiplier Add some noise to the frequency value.

Time Offset B A some time offset.

Random Seed Apply some random variation to the noise.

CameraSource Entity

A Camera Source entity is the reference position for a scripted camera view to look from. The point at
which the camera points is defined in the Entity Links panel. Click Pick Target, then on the object you
wish to target to create a link.

Geom Entities
A Geom Entity is a very simple entity that takes its physical parameters from its assigned geometry.
They are interactive entities with physical values, so they behave like real life objects. It is similar to a

Version 1.6
460

Lumberyard User Guide
Light Entities

Basic Entity, but simpler, more efficient, and has fewer configurable parameters. Geom Entities that
have physical properties set in the asset will get pushed away or break up in explosions, for example.

Navigate through the object library browser and drag the desired object to your level.

Light Entities

Light Entity

Entity Properties

Property Description

Active Turns the light on/off.

AttenuationBulbSize See Attentuation and Falloff for more information. When using
AmbientLights, setting this value to '0' reverts to the older, non-
physical attenuation model.

Color

Diffuse Specify the RGB diffuse color of the light.

DiffuseMultiplier Control the strength of the diffuse color.

SpecularMultiplier Control the strength of the specular brightness.

Options

AffectThisAreaOnly Set this parameter to false to make light cast in multiple visareas.

AffectVolumetricFogOnly Enables the light to only affect volumetric fog and not meshes.

AmbientLight Makes the light behave like an ambient light source, with no point
of origin.

Version 1.6
461

Lumberyard User Guide
Light Entities

Property Description

FakeLight Disables light projection, useful for lights which you only want to
have Flare effects from.

FogRadialLobe Adjusts the blend ratio of the main radial lobe (parallel to the
eye ray) and side radial lobe (perpendicular to the eye ray). The
direction of the main radial lobe depends on the Anisotropic
parameter value used in the Time of Day Editor.

ForceDisableCheapLight Forces the engine to de-classify the light as a "CheapLight",
which is a memory optimization done on export for Pure Game
mode. Lights are automatically de-classified as needed, based on
whether they're used in a FG, trackview, etc, so this option should
never need to be used, but provided as a fail-safe.

IgnoresVisAreas Controls whether the light should respond to visareas.

VolumetricFog Enables the light to affect volumetric fog.

Projector

ProjectorFov Specifies the Angle on which the light texture is projected.

ProjectorNearPlane Set the near plane for the projector, any surfaces closer to the light
source than this value will not be projected on.

Texture Here a texture can be specified that will be projected in the
direction of the Y axis of the light entity. A light projector texture
must use the LightProjector CryTif preset, be 512*512px
resolution, and contain no alpha channel.

Shadows

CastShadows Makes the light cast a shadow based on the minimum selected
config spec. "High" won't work on Low/Medium, for example. To
ensure shadows are always cast, set the this to 'Low Spec'. This
setting is often confused as a 'Quality' setting for the shadows, it
is not a quality setting. It's a method to control what system spec
the shadows should be cast on. With tiled shading, the amount of
shadow-casting lights on screen is limited by default to '12'. This is
because each 4 lights requires an additional 8MB of video memory
for shadow texture mapping. The limit can be controlled with the
r_ShadowCastingLightsMaxCount CVar.

ShadowBias Moves the shadow cascade toward or away from the shadow-
casting object.

ShadowMinResPercent Specify, per-light, the percentage of the shadow pool the light
should use for its shadows. Unless otherwise needed, "default"
should be used for best performance vs quality.

ShadowSlopeBias Allows you to adjust the gradient (slope-based) bias used to
compute the shadow bias.

Version 1.6
462

Lumberyard User Guide
Light Entities

Property Description

ShadowUpdateMinRadius Define the minimum radius from the light source to the player
camera that the ShadowUpdateRatio setting will be ignored. i.e;
If set to 10 and the camera is less than 10m from the light source,
the shadow will update normally. If further than 10m, the shadow
will update as per ShadowUpdateRatio setting. This will not work
in Very High spec as Shadow Caching is disabled.

ShadowUpdateRatio Define the update ratio for shadow maps cast from this light. The
lower the value (example 0.01), the less frequent the updates will
be and the more "stuttering" the shadow will appear. This setting is
enabled or disabled, depending on the ShadowUpdateMinRadius
value and how far the player camera is from the light source. This
will not work in Very High spec as Shadow Caching is disabled.

Shape

PlanarLight Used to turn the selected light entity into an Area Light. Was
previously called "AreaLight". To use Area/Planar Lights, ensure
r_DeferredShadingAreaLights is set to '1'.

Style

AnimationPhase This will start the light animation, specified with the light style
property, at a different point along the sequence. This is typically
used when you have multiply lights using the same animation in
the same scene, using this property will make the animations play
asynchronously.

AnimationSpeed Specifies the speed at which the light animation should play.

AttachToSun When enabled, sets the Sun to use the Flare properties for this
light.

Flare Specify the path to the Flare Library item.

FlareEnable Used by the Flare Editor system.

FlareFOV Control the FOV for the flare. This control needs to be enabled in
the properties for the flare itself.

LightAnimation Trackview sequence used to animate the light.

LightStyle Specifies the a preset animation for the light to play. Styles are
defined through Light.cfx shader. Valid values are 0-48. 40-48 are
Testing/Debug styles.

Environment Probe Entity

With environment probes, also called light probes, you have the ability to place cubemaps throughout
a level just as you would a light. It is very useful especially with reflective materials because it will
automatically assign the cubemap to anything within its radius.

Properties

Property Description

Active Enables and disables the probe.

Version 1.6
463

Lumberyard User Guide
Light Entities

Property Description

BoxSizeX, BoxSizeY, BoxSizeZ Specifies the XYZ dimensions of the probe's area of effect. Probes
are projected as cubes in the level. For a global probe, set values
large enough to span the entire level.

Diffuse Sets the diffuse color of the light. Set to 255,255,255.

DiffuseMultiplier Makes the light brighter. Set to 1.

SpecularMultiplier Multiplies the specular color brightness. Set to 1.

AffectsThisAreaOnly Set parameter to False to make lights cover other VisAreas.

AttenuationFalloffMax Controls the falloff amount (0–1) to create smoother transitions or
hard edges. A value of 0.8 means that falloff begins at 80% at the
boundaries of the box. Set value to 0 for a global probe (no falloff).

IgnoresVisAreas Controls whether the light should respond to VisAreas. Set value
to True for a global probe.

SortPriority Gives control over which probe has more visual interest and
therefore a higher priority. Set the value to 0 for a global probe,
then increase the value for local probes, where higher values
indicate more localized probes.

deferred_cubemap Specifies the file location of the cubemap texture.

BoxHeight Adjusts the height of cubemap box.

BoxLength Adjusts the length of cubemap box.

BoxProject When enabled, Lumberyard factors in the size of the cubemap
box.

BoxWidth Adjusts the width of cubemap box.

Parameters

Parameter Description

cubemap_resolution The size of the cubemap.

preview_cubemap Set to see the cubemap in your level.

Outdoor Only When set, object will not be rendered when inside a VisArea.

Cast Shadow MinSpec When set, object casts a shadow on the selected quality setting
and above.

LodRatio Defines how far from the current camera position that different
Level Of Detail (LOD) models for the object are used.

ViewDistanceMultiplier Defines how far from the current camera position that the object is
rendered.

HiddenInGame When set, object is not shown in game mode.

Receive Wind When set, object is influenced by wind parameters in the level.

Version 1.6
464

Lumberyard User Guide
Lightning Arc Entity

Parameter Description

RenderNearest Used to eliminate Z-buffer artifacts when rendering in first-person
view.

NoStaticDecals If set to true, decals are not rendered for the selected object.

Created Through Pool Used primarily for AI entities for memory optimization.

Lightning Arc Entity
You can use the Lightning Arc entity to creates realistic electric arcing and sparking effects in your
Track View cinematics and levels.

Material Setup

It is recommended to use a diffuse texture, transparency = 99, additive mode, with a slight glow, and
using the Illum shader. The arc warps around the U coordinate and uses the V coordinate as a multi-
frame animation.

Lightning Arc Parameters

Property Description

Active If set to true, it automatically starts sparking after jumping into the
game.

ArcPreset A valid preset must be given. This defines how the lightning arc
looks.

Delay Delay in seconds between sparks.

Delay Variation Time randomization in seconds.

To set up the ArcPreset visual effect, open the Libs\LightningArc\LightningArcEffects.xml
file and make desired changes. When finished, reload the g_reloadGameFx console variable.

ArcPreset Parameters

Property Description

lightningDeviation The smooth snaky effect given to the lightning in meters.

lightningFuzzyness The noisy effect given to the lighting in meters.

lightningVelocity After a spark is triggered, it starts to shift from its original position
upwards.

branchMaxLevel Should be kept at either 0 or 1, but either value can be used.
However, it also allows child branches to strike out of the main
beam and child sparks to branch out of other child beams if this
value is 2 or higher.

branchProbability Probability that a child sparks from another beam segment. If set
to 0, no branch is generated, 0.5 is a 50% probability of sparking a
branch, 2.0 is a probability of sparking 2 per beam, and so on.

maxNumStrikes Hard limit on the number of beam segments that can be generated
regardless of previous parameters.

Version 1.6
465

Lumberyard User Guide
Lightning Arc Entity

Property Description

strikeTimeMin Minimum time a spark is kept alive.

strikeTimeMax Maximum time a spark is kept alive.

strikeFadeOut When the spark dies, it takes this time to fade out into oblivion.
It decreases beamSize to 0 instead of actually fading via
transparency.

strikeNumSegments Number of snaky segments generated.

strikeNumPoints The number of actual segments generated is defined by
strikeNumSegments* strikeNumPoint. When the code generates
the geometry, it creates a camera/beam-aligned quad with
exactly 2 triangles. This means that the number of triangles per
strike is going to be strikeNumSegments*strikeNumPoint*2.
Because maxNumStrikes is the hard limit of potential
number of sparks active at any time, the potential number
poly count of a given lightning effect is going to be
strikeNumSegments*strikeNumPoint*2*maxNumStrike. However,
remember that every time the LightningArc entity strikes, a new
lightning effect is going to be triggered and therefore the total poly
count of a given effect can go higher. The game has a internal
hard limit for the total amount of lightning effects, lightning strikes,
and poly count that cannot be surpassed; otherwise, geometry
starts to disappear.

beamSize Width of the beam being generated. Child beams have half the
width.

beamTexTiling exture tiling depends on the world size of the actual beam being
mapped. A value of 2.0 means the texture wraps around twice
every meter. A value of 0.25 means the texture warps around
every 4 meters. Only the U coordinate of the texture map is
affected by this parameter.

beamTexShift The U coordinate moves in a given direction at this value's
rate. While beamTexTiling only affects the U coordinate, the V
coordinate is automatically calculated to select one of the texture's
frames.

beamTexFrames Number of frames in the animation.

beamTexFPS Frames per second of the multi-frame animation.

Using Flow Graph

The entity:LightningArc node is used for creating special arcing effects.

entity:LightningArc node I/O ports

Port Description

Enable/Disable Allows to dynamically enable or disable the internal timer.

Strike Allows to manually trigger a spark even when the entity is
disabled. This allows synchronization of the spark effect with other
level events.

Version 1.6
466

Lumberyard User Guide
Miscellaneous Entities

Port Description

EntityId The entity that was last struck.

StrikeTime The time the last spark takes to fade out.

Parameter Reload

Since the lightning effect is implemented using the Game Effects gem, it is possible to reload all
parameters during runtime using the g_reloadGameFx console command.

Miscellaneous Entities
Miscellaneous entities are commonly used in level design.

The following area objects and entities can be accessed from the Misc button on the Objects tab of the
Rollup Bar.

• CharAttachHelper

• Comment

• GravityVolume

• ReferencePicture

• SplineDistributor

CharAttachHelper
The CharAttachHelper object can be used to attach any arbitrary object to any bone of a character.
The CharAttachHelper object must be linked to the target character, as well as the object to the
CharAttachHelper. Use the Link Object button located in the toolbar to link objects.

Comment
The comment object allows the adding of comments anywhere inside a level. Comments can be used
as a communication device if multiple people work on the same level.

To show comments in game, go to the Console window and type cl_comment 1.

Parameters

Parameter Description

CharsPerLine Maximum number of characters per line of text

Diffuse Set the color of the text

Fixed When using comments to indicate problems/bugs/issues in the
level, this field can be used to mark them as "fixed". The text and
icon color changes to green

Hidden Hides the text.

MaxDist Maximum distance where the comment is shown. If camera is
further than this, the comment is hidden

Size Size of the text

Text Text to display

Version 1.6
467

Lumberyard User Guide
Miscellaneous Entities

GravityVolume

The GravityVolume entity can be used to create tunnels through which the player is getting pushed
by an invisible force. It does so by modifying the global gravity variable so that the player stays afloat
while maintaining momentum.

Place a GravityVolume entity in the level and in a similar way to placing out a road or river, draw the
gravity volume out. Once you have your shape finished double-click the left mouse to finalize the
shape.

Parameters

Parameter Description

Radius Defines the radius how wide the tube is.

Gravity Defines how fast objects are getting pushed through the tube.

Falloff Sets up how the gravity should be decreased at the edge of the
tube.

Damping Specifies the damping amount.

StepSize Defines how fine the subdivision of the tube geometry segments
should be.

DontDisableInvisible Active this property so that invisible ones don't get disabled.

Enabled Turns the gravity effect on/off.

ReferencePicture

The ReferencePicture object is used with the ReferenceImage shader and does not receive light or
other shader information from within the level. It keeps the image at its pure source.

Parameters

Parameter Description

File The image file used as the reference picture.

SplineDistributor

Parameters

Parameter Description

Geometry This option specifies the geometry that needs to be used for the
object.

Step Size Sets the distance between each point along the spline. Smaller
values increase the polygon count of the surface but also smooths
out corners.

OutdoorOnly When set, the object will not be rendered when inside a visarea.

Version 1.6
468

Lumberyard User Guide
Particle Entities

Parameter Description

RainOccluder Set the brush to occlude rain, this works in conjunction with Rain
Entity. If your level does contain rain, you should set this wisely, as
there is a limit of 512 objects that can occlude at any given time.

SupportSecondVisArea Normally, objects are considered to be in only one visarea.
This option allows them to be added to multiple visareas if their
bounding box overlaps them, at the cost of some performance.
Without this option, some large objects may not be displayed when
viewed through portals in certain situations.

Hideable When this option is set, AI will use this object as a hiding spot,
using the specified hide point type.

LodRatio Defines how far from the current camera position, the different
Level Of Detail models for the object are used.

ViewDistanceMultiplier Sets the distance from the current view at which the object
renders.

NotTriangulate Deprecated

NoStaticDecals When this option is set, decals will not project onto the object.

RecvWind When this option is set, the object will be affected by the level
wind.

Occluder Used for the construction of a level occlusion mesh.

Particle Entities
Particle effect entities act as a container for particle effects and ican be attached to any object using
the link feature. Particle entity properties become available after dragging a particle effect into a level or
by selecting it.

Entity Properties

Property Description

Active Sets the initially active or inactive. Can be toggled in the editor for
testing.

AttachForm If AttachType is not empty, this property determines where
particles emit from the attached geometry. Set to Vertices, Edges,
Surface, or Volume.

AttachType If this entity is attached to a parent entity, this field can be used
to cause particles to emit from the entity's geometry. Set to
BoundingBox, Physics, or Render to emit from the applicable
geometry.

CountPerUnit If AttachType is not empty, this multiples the particle count by the
"extent" of the attached geometry. Depending on AttachForm, the
extent is either total vertex count, edge length, surface area, or
volume.

CountScale Multiplies the particle counts of the entire emitter.

Version 1.6
469

Lumberyard User Guide
Physics Entities

Property Description

ParticleEffect Use to generate the following effects:

Prime If true, and the assigned ParticleEffect is immortal, causes the
emitter to start "primed" to its equilibrium state, rather than starting
up from scratch. Very useful for placed effects such as fires or
waterfalls, which are supposed to be already running when the
level starts. Applies only to immortal, not mortal effects.

PulsePeriod If not 0, restarts the emitter repeatedly at this time interval. Should
be used to create emitters that pulse on and off at somewhat large
intervals, a second or so. Do not set a low value such as 0.1 to
try to make an instant effect into a continuous one. Make sure
the actual library effect is set Continuous and has an appropriate
Count.

RegisterByBBox Uses the emitter's (automatically computed) bounding box
to determine which VisAreas it is visible in. If this is disabled
(the default), the emitter's origin alone determines VisArea
membership, as the bounding box is hard to exactly control by the
designer.

Scale Multiplies the overall size and velocity of the entire emitter.

SpeedScale Multiplies the particle emission speed of the entire emitter.

Strength Used by effect parameters to modify their value. If a parameter
has an Emitter Strength curve, and the emitter entity's Strength
property is not negative, then Strength will be used as input to this
curve.

TimeScale Multiplies the elapsed time used to simulate the emitter. Less than
1 achieves a show-motion effect.

EnableAudio Toggles sound emission on any sub-effects with an Audio
parameter set.

Physics Entities
Physics entities are used to simulate physical events such as explosions, gravity fields, or wind, or to
physicalize objects such as cloth, breakable entities, or ropes. Physical entities that are related to a
body instead of an event are connected to an object.

The following entities can be accessed by clicking Entity, then expanding Physics on the Objects tab
of Rollup Bar Entity.

• AnimObject

• BasicEntity

• Constraint

• DeadBody

• GravityBox

• GravitySphere

• GravityValve

• LivingEntity

• ParticlePhysics

Version 1.6
470

Lumberyard User Guide
Physics Entities

• RigidBodyEx

• Wind

• WindArea

AnimObject
An AnimObject extends the functionality of a BasicEntity by the ability of playing pre-baked animations
and physicalizing parts of the object afterwards.

AnimObject Properties

Property Description

ActivatePhysicsDist Used for objects with pre-baked physical animations (requires
Articulated to be on and ActivatePhysicsThreshold to be greater
than 0). Specifies the distance from the pivot after which parts
automatically detach themselves from the animation and become
fully physicalized. 0 disables distance-based detachment.

ActivatePhysicsThreshold Greater than 0 values are used for objects with pre-baked physical
animations (requires Articulated to be on). Specifies the amount of
force (in fractions of gravity) that needs to be exerted on a part for
it to become detached and fully controlled by the physics.

CanTriggerAreas Triggers when this entity enters/exits. Only applicable to
AreaTriggers; ProximityTriggers triggers regardless.

DmgFactorWhenCollidingAI Multiplier applied when dealing damage to AI.

Faction Entity faction.

InteractLargeObject Players can trigger large object interactions (such as grab and
kick) with the entity.

MissionCritical Entity is not be hidden by explosions.

Model Defines the CGA model to be used.

Pickable Defines whether or not the object can be picked up.

SmartObjectClass Specifies the smart object type of the object.

Usable Defines whether or not the object can be used.

UseMessage The message displayed when the object is in the crosshairs for
use.

Animation

Animation Defines the animation to be played.

Loop Defines whether the animation is looped.

PhysicalizeAfterAnimation Defines whether the object is physicalized after the animation has
reached its end.

playerAnimationState If set, the animation plays immediately.

Playing If set, the animation plays immediately.

Speed Playback speed of the animation sequence.

Version 1.6
471

Lumberyard User Guide
Physics Entities

Property Description

Health

Invulnerable Object does not receive damage, but registers "Hit" output when
applicable.

MaxHealth Health of the entity, how much damage can it take before being
considered "Dead" and triggering the output.

OnlyEnemyFire Takes damage from enemy (Faction-based) fire, only if a faction is
set.

MultiplayerOptions

Networked Physics is simulated on the server and serialized over the network;
otherwise, simulated on the client.

Physics

Articulated Physicalizes the character as an articulated physical entity (i.e.,
with bendable joints).

Density Can be used instead of Mass (if mass is -1) to set the density of
each node.

Mass The overall mass for the entire model.

Physicalize Selects whether or not the model can become physicalized.

PushableByPlayers Allows the object to be pushed by players.

RigidBody If deselected, the object is static. Pre-baked physics objects must
have it selected.

BasicEntity

A BasicEntity provides the simplest way of controlling objects physically. Once a model has been set,
several properties can be set, defining its physical behavior. It is possible to specify either density or
mass of the object. If one is specified, the other one must be set to a negative value (-1, or -0.01).
Mass and density affect the way objects interact with other objects and float in the water (they sink if
their density is more than that of the water). A zero-mass rigid body (with both mass and density 0) is a
special case which means an "animated" rigid body (moved from outside the physics system).

The difference from a static entity is that the physics is aware that this object is actually dynamic,
although it cannot simulate it directly. Note that both values describe the same physical property. When
you specify mass, density is computed automatically, and vice versa. The relationship mass = density
x volume is used. These computations imply that the object is solid. If a box is used to model an empty
crate, one can assume that its density is a weighted average between wood density and inside air
density.

BasicEntity Properties

Property Description

CanTriggerAreas Areas trigger when this entity enters/exits them. Only applicable to
AreaTriggers; ProximityTriggers trigger regardless.

DmgFactorWhenCollidingAI Multiplier applied when dealing damage to AI.

Version 1.6
472

Lumberyard User Guide
Physics Entities

Property Description

Faction Entity faction.

InteractLargeObject Players can trigger large object interactions (such as grab and
kick) with the entity.

MissionCritical Entity is not be hidden by explosions. The threshold for hiding/
removal is defined via the CVar g_ec_removeThreshold which
is set to 20 by default. If an explosion occurs and more than
20 entities are hit by it, it keeps 20 and hides the rest for better
performance. See GameRulesClientServer.cpp for more
information.

Model Defines the model to be used.

Pickable Players can grab or pick up the object.

SmartObjectClass Can be used to define AI interaction capabilities on code-side.

Usable Entity is usable by players.

UseMessage If useable is true, this message is displayed when players are in
range. Can be a localized string such as @use_object.

Health

Invulnerable Object does not receive damage, but registers "Hit" output when
applicable.

MaxHealth Health of the entity, how much damage can it take before being
considered "Dead" and triggering the output.

OnlyEnemyFire Takes damage from enemy (faction-based) fire, only if a faction is
set.

MultiplayerOptions

Networked Physics is simulated on the server and serialized over the network;
otherwise, simulates on the client.

Physics

Density (= Mass / Volume) Density affects the way objects interact with
other objects and float in the water (they sink if their density is
more than that of the water). Note that both density and mass can
be overridden in the asset file.

Mass (= Density * Volume) Mass is the weight of the object (the density
of the object multiplied by its volume).

Physicalize If false, the object is not taken into account by physics.

PushableByPlayers It true, the player pushes the object by walking/running into it.

Version 1.6
473

Lumberyard User Guide
Physics Entities

Property Description

RigidBody False means a static entity, true - a simulated rigid body. Note
that a rigid body can still behave like a static entity if it has mass
0 (set either explicitly or by unchecking RigidBodyActive). The
main difference between these rigid bodies and pure statics is that
the physics system knows that they can be moved by some other
means (such as the trackview) and expects them to do so. This
means that objects that are supposed to be externally animated
should be mass-0 rigid bodies in order to interact properly with
pure physicalized entities.

Constraint

A constraint entity can create a physical constraint between two objects. The objects are selected
automatically during the first update, by sampling the environment in a sphere around the constraint
object's world position with a specified radius. The "first" object (the one that will own the constraint
information internally) is the lightest among the found objects, and the second is the second lightest
(static objects are assumed to have infinite mass, so a static object is always heavier than a rigid
body).

Constraints operate in a special "constraint frame." It can be set to be either the frame of the first
constraint object (if UseEntityFrame is checked), or the frame of the constraint entity itself. In that
frame, the constraint can operate either as a hinge around the x axis, or as a ball-in-a-socket around y
and z axes (that is, with the x axis as the socket's normal). If x limits are set to a valid range (max>min)
and the yz limits are identical (such as both ends are 0), it is the former and, if the yz limits are set and
not x limits, it's the latter. If all limits are identical (remain 0, for instance), the constraint operates in a
3 degrees of freedom mode (does not constrain any rotational axes). If all limits are set, no axes are
locked initially, but there are rotational limits for them.

Constraint Properties

Property Description

damping Sets the strength of the damping on an object's movement. Most
objects can work with 0 damping; if an object has trouble coming
to rest, try values like 0.2-0.3. Values of 0.5 and higher appear
visually as overdamping. Note that when several objects are in
contact, the highest damping is used for the entire group.

max_bend_torque The maximum bending torque (Currently it's only checked against
for hinge constraints that have reached one of the x limits).

max_pull_force Specifies the maximum stretching force the constraint can
withstand.

NoSelfCollisions Disables collision checks between the constrained objects (To be
used if the constraint is enough to prevent inter-penetrations).

radius Defines spherical area to search for attachable objects.

UseEntityFrame Defines whether to use the first found object or the constraint itself
as a constraint frame.

Limits

x_max If set greater than x_min, the constraint only rotates the object
along its x-axis within the defined angle.

Version 1.6
474

Lumberyard User Guide
Physics Entities

Property Description

x_min See x_max.

yz_max If set greater than yz_min, the constraint only rotates the object
along its yz-axis within the defined angle.

yz_min See yz_max.

DeadBody

A DeadBody entity can ragdollize characters assigned to it. As soon as a character is intended not to
act any more, but to only react passively on external impacts, as if it were dead, this physical entity
provides the necessary model.

A typical usage is to create the entity as non-resting, simulate it in the editor, and then save the settled
physics state. Note that the entity does not react to collisions with the player, bullets, or explosions.

DeadBody Properties

Property Description

CollidesWithPlayers Defines whether the ragdoll of the entity may collide with the player
(does not override the non-interactive ragdoll legal restriction)

ExtraStiff Uses the main solver to apply stiffness instead of joint springs. It
can handle a lot higher stiffness values, but the downside is that
the same stiffness is applied to all joint axes, including locked and
limited ones.

lying_damping (0..1..10) Defines damping in the "lying" mode (which is when the
ragdoll has enough contacts with the ground). Note that this is
an overall damping, and there also exist per-joint dampings, set
based on the asset.

mass The mass of the object.

MaxTimeStep As with other entities, decreasing it makes the simulation more
stable, but makes this entity and all all entities it contacts with
more expensive to simulate. Can be especially useful when higher
stiffness is needed.

Model Character model to be physicalized.

NoFriendlyFire If set, the entity does not react on bullet impacts from friendly units.

PoseAnim Allows to use the first frame of the specified animation as an initial
pose

PushableByPlayers If set, the entity does not react on bullet impacts from friendly units.

PushableByPlayers See BasicEntity (does not override the non-interactive ragdoll legal
restriction)

Resting If set, object do not spawn in a physically 'awake' state. Instead it
waits until physically interacted with first.

SmartObjectClass Specifies the smart object type of the object.

Version 1.6
475

Lumberyard User Guide
Physics Entities

Property Description

Stiffness Stiffness with which the ragdoll tries to maintain the original pose
(set either in the model or from PoseAnim). For SDK character
values around 2000 are practical. Higher values can lead to
stability issues, which can be overcome by either decreasing
MaxTimeStep (which makes it more expensive to simulate), or
using ExtraStiff mode.

Bouyancy

water_damping A cheaper alternative/addition to water resistance (applies uniform
damping when in water).

Sets the strength of the damping on an object's movement as soon
as it is situated underwater. Most objects can work with 0 damping;
if an object has trouble coming to rest, try values like 0.2-0.3.

Values of 0.5 and higher appear visually as overdamping. Note
that when several objects are in contact, the highest damping is
used for the entire group.

water_density Can be used to override the default water density (1000). Lower
values assume that the body is floating in the water that's less
dense than it actually is, and thus it sinks easier.

(100..1000) This parameter could be used to specify that the
object's physical geometry can leak. For instance, ground vehicles
usually have quite large geometry volumes, but they are not
waterproof, thus Archimedean force acting on them is less than
submerged_volume 1000 (with 1000 being the actual water
density).

Decreasing per-object effective water density allows such objects
to sink while still having large-volume physical geometry.

Important note: If you are changing the default value (1000), it is
highly recommended that you also change water_resistance in the
same way (a rule of thumb might be to always keep them equal).

water_resistance Can be used to override the default water resistance (1000). Sets
how strongly the water affects the body (this applies to both water
flow and neutral state).

(0..2000) Water resistance coefficient. If non-0, precise water
resistance is calculated. Otherwise only water_damping
(proportional to the submerged volume) is used to uniformly
damp the movement. The former is somewhat slower, but not
prohibitively, so it is advised to always set the water resistance.

Although water resistance is not too visible on a general
object, setting it to a suitable value prevents very light objects
from jumping in the water, and water flow affects things more
realistically.

Note that water damping is used regardless of whether water
resistance is 0, so it is better to set damping to 0 when resistance
is turned on.

Version 1.6
476

Lumberyard User Guide
Physics Entities

GravitySphere

A GravitySphere is a spherical area, which replaces the gravitational parameters of the environment.
Objects reaching this area moved along the entities' Gravity vector and their own physical impact can
be damped by a certain factor.

GravitySphere Properties

Property Description

Active Defines whether the entity affects its environment.

Damping Damps physical impact of entities inside the sphere.

Radius Size of the sphere.

Gravity x,y, z vector of the gravity applied to objects within the sphere.

GravityValve

A GravityValve entity performs an additional gravity into an upwards showing direction, relative to the
entity.

GravityValve Properties

Property Description

Active Defines whether the entity affects its environment.

Radius Size of the affected area.

Strength Gravitational force.

Wind

A wind entity is used to simulate wind in a local position. This should not be used to create the global
wind in your level.

Wind Properties

Property Description

FadeTime The time the wind entity uses to fade between disabled and
enabled states.

vVelocity x,y,z vector sets the direction and strength of the wind.

WindArea

A WindArea simulates air moving with an arbitrary speed in a specific direction. It affects the flow
direction of all objects and aero-form substances within the defined area, as well as vegetation bending
depending on density and resistance values. If no direction is set, the wind-source moves omni-
directionally from the center of the WindArea.

Version 1.6
477

Lumberyard User Guide
Rain Entity

WindArea Properties

Property Description

Active Defines whether wind is blowing or not.

AirDensity Causes physicalized objects moving through the air to slow down,
if > 0.

AirResistance Causes very light physicalized objects to experience a buoyancy
force, if > 0.

Ellipsoidal Forces an ellipsoidal falloff.

FalloffInner Distance after which the distance-based falloff begins.

Speed Wind-speed in units per second.

Dir XYZ x,y,z vector of normalized wind direction.

Size XYZ x,y,z vector of affected area.

Useful Console Variables
The following console variables are useful for debugging physics entity issues:

p_draw_helpers

Same as p_draw_helpers_num, but encoded in letters
Usage [Entity_Types]_[Helper_Types] - [t|s|r|R|l|i|g|a|y|e]_[g|c|b|l|t(#)]
Entity Types:
t - show terrain
s - show static entities
r - show sleeping rigid bodies
R - show active rigid bodies
l - show living entities
i - show independent entities
g - show triggers
a - show areas
y - show rays in RayWorldIntersection
e - show explosion occlusion maps
Helper Types
g - show geometry
c - show contact points
b - show bounding boxes
l - show tetrahedra lattices for breakable objects
j - show structural joints (forces translucency on the main geometry)
t(#) - show bounding volume trees up to the level #
f(#) - only show geometries with this bit flag set (multiple f's stack)
Example: p_draw_helpers larRis_g - show geometry for static, sleeping,
 active, independent entities and areas

p_debug_joints

If set, breakable objects log tensions at the weakest spots.

Rain Entity
You can use the Rain entity to add realistic rain effects to your level.

Version 1.6
478

Lumberyard User Guide
Render Entities

Entity Properties

Property Description

Amount Sets the amount of rain and rain effects in a level. AttenAmount is
multiplied by the amount, and is used to set the current amount.

DiffuseDarkening Modifies the albedo of the rain effect, such as for horizontal water
puddles.

DisableOcclusion Blocks rain for selected objects in your level. Don't select for
objects that are protected (under cover) from rain.

Enabled Enables or disables the rain effects.

FakeGlossiness Sets the amount of glossiness for wet surfaces.

FakeReflectionsAmount Sets the amount of reflection from wet surfaces.

IgnoreVisAreas Renders rain even when player is inside a VisArea.

PuddlesAmount Sets the depth and brightness of water puddles generated by the
rain.

PuddlesMaskAmount Sets the strength of the water puddle mask to balance different
puddle results.

PuddlesRipplesAmount Sets the strength and frequency of ripples in water puddles.

Radius Sets the coverage area of rain around the entity.

RainDropsAmount Sets the amount of rain drops that can be seen in the air.

RainDropsLighting Sets the brightness or backlighting of the rain drops.

RainDropsSpeed Sets the speed at which rain drops travel.

SplashesAmount Modifies the strength of the splash effect.

Render Entities
You can use the following Render entities in your level.

FogVolume Entity

Entity Properties

Property Description

Active If true, fog volume will be enabled.

Color Specifies the RGB diffuse color of the fog volume

DensityOffset Used in conjunction with the GlobalDensity parameter to offset
the density.

FallOffDirLati Controls the latitude falloff direction of the fog. A value of 90°
means the falloff direction is upwards.

Version 1.6
479

Lumberyard User Guide
River Entity

Property Description

FallOffDirLong Controls the longitude falloff direction of the fog, where 0°
represents east. Rotation is counterclockwise.

FallOffScale Scales the density distribution along the falloff direction. Higher
values make the fog fall off more rapidly and generate thicker fog
layers along the negative falloff direction.

FallOffShift Controls how much to shift the fog density distribution along the
falloff direction in world units (m). Positive values move thicker fog
layers along the falloff direction into the fog volume.

GlobalDensity Controls the density of the fog. The higher the value the more
dense the fog.

HDRDynamic Specifies how much brighter than the default white (RGB
255,255,255) the fog is.

NearCutoff Stops rendering the object depending on camera distance to
object.

SoftEdges Factor used to soften the edges of the fog volume when viewed
from outside. A value of 0.0 produces hard edges. Increasing
this value up to 1.0 gradually softens the edges. This property
currently has no effect on box type fog volumes as specified in the
VolumeType parameter.

UseGlobalFogColor If selected, ignores the Color parameter and uses the global (Time
Of Day) fog color instead.

VolumeType Produces a box volume for values above 1.0 or a spherical volume
for lower values.

Size x, y, z Specifies the height, width, and depth of the fog volume in meters.

River Entity
You can customize your rivers with a number of different parameters. Many of the settings are the
same as those of the WaterVolume Shader (p. 1032).

Note
The Speed parameter listed below specifies the speed at which objects float down the river.
The speed of the river itself is specified using the Flow speed parameter for the WaterVolume
Shader (p. 1032).

Parameters

Parameter Description

Width Sets the width of the river. This is set much wider than the actual
river (water) width, as the complete river is defined by the river bed
and surrounding terrain.

BorderWidth Used in conjunction with Align Height Map, creates a smooth
edge for the river bed geometry if this value is greater than the
Width value.

Version 1.6
480

Lumberyard User Guide
Road Entity

Parameter Description

StepSize Sets the distance between each point along the river spline.
Smaller values increase the polygon count of the river surface but
also smooths out corners.

ViewDistanceMultiplier Sets the distance from the current view at which the river renders.

TileLength Length of the river texture. Use in conjunction with StepSize to
avoid stretching textures.

Depth Sets the depth of the river.

Speed Defines how fast physicalized objects move along the river. Use
negative values to move in the opposite direction.

UScale Sets the texture tiling on the U axis.

VScale Sets the texture tiling on the V axis.

Caustics Enables optical caustics effects.

CausticIntensity Scales the intensity of the caustics for the water surface normals.

CausticTiling Scales the caustic tiling applied to the water surface normals.
It allows the scaling of caustics independently from the surface
material.

CausticHeight Sets the height above the water surface at which caustics
become visible. Use this to make caustics appear on overhanging
landforms or vegetation and other nearby objects.

Road Entity
You can modify any of several road parameters to customize your road.

Parameters

Parameter Description

Width Width of the road.

BorderWidth Used in conjunction with Align Height Map, creates a smooth
edge for the road if this value is greater than the Width value.

StepSize Sets the distance between each point along the road spline.
Smaller values increase the polygon count for the road surface but
also smooths out corners.

ViewDistanceMultiplier Specifies the distance at which the road renders.

TileLength Length of the road texture. Used in conjunction with StepSize to
avoid stretching textures.

SortPriority Determines the rendering order. Higher values are rendered above
lower values.

IgnoreTerrainHoles If enabled, renders the road texture over holes created with the
terrain Holes brush.

Version 1.6
481

Lumberyard User Guide
Rope Entity

Rope Entity
The Rope entity is used to create realistic ropes in your level.

Parameters

Parameter Description

Radius The radius, or thickness, of the rope.

Smooth Defines if the rope will be smoothed out or not.

Num Segments The number of segments of geometry used in the rope along its
length.

Num Sides The number of sides around the circumference of the rope. 4 sides
would make it a diamond shaped tube, 8 sides would make it
much smoother, etc.

Texture U Tiling Texture tiling in the U direction.

Texture V Tiling Texture tiling in the V direction.

CastShadows Enable shadow casting from the rope.

Bind Ends Radius Specifies whether the ends will be automatically attached.

Bind Radius The environment around the ends of the rope will be tested using
a box of this radius to find places for the rope to attached to. Note
that if bind radius is greater than 0.05 the ends are snapped to the
colliding surface.

Physics Params

Subdivide Maximum number of subdivided vertices per segment.

Max Subdiv Verts Maximum number of subdivided vertices per segment.

Physical Segments Number of rope segments in physics (can be different from the
number of segments used for rendering). For colliding ropes, make
sure that there are enough physical segments so that segment
length is at least two times smaller than the dimensions of the
objects the rope collides with.

Tension Specifies tension in the original state. A positive value will cause
the rope ends to pull together, negative will add slack to the rope
(-0.02 is a good starting point for experiments).

Friction The friction effective in a non-strained mode. In a strained mode
with dynamic tessellation, this that prevents the rope from slipping
until it tilts too much.

Wind

Wind Variation How much the wind varies. Basically a randomization multiplier on
top of the base Wind XYZ values.

Air Resistance Must be set in order for global environment wind to take effect. Not
necessary for simulated Wind XYZ values.

Version 1.6
482

Lumberyard User Guide
Rope Entity

Parameter Description

Water Resistance How the rope interacts with water effectively damping when under
water.

Check Collisions Ignore collisions from other objects.

Ignore Attachment Collisions Ignore collisions with the object it is attached to.

Ignore Player Collisions Ignore collisions with players.

Non-shootable Rope cannot be broken by shooting. Rope will still react to physical
impulses from bullets.

Disabled Simulation is completely disabled.

StaticAttachStart Attach start point to the level.

StaticAttachEnd Attach end point to the level.

Advanced

Mass This affects how strongly the rope will react to bullet hits. When
interacting with solid physicalized objects, it is always treated as
weightless.

Friction Pull The friction effective in a non-strained mode. In a strained mode
with dynamic tessellation, this that prevents the rope from slipping
until it tilts too much.

Max Force The rope will detach itself when this strain limit is breached.

Solver Iterations Ropes with very large segment counts (40+) might need this
increased (values up to 10k are still viable).

Max Timestamp Sets the maximum time step the entity is allowed to make (defaults
to 0.01). Smaller time steps increase stability (can be required for
long and thin objects, for instance), but are more expensive. Each
time the physical world is requested to make a step, the objects
that have their maxsteps smaller than the requested one slice
the big step into smaller chunks and perform several substeps. If
several objects are in contact, the smallest max_time_step is used.

Stiffness Rope's stiffness against stretching. Might need tweaking for longer
ropes.

Note the in most cases ropes will use exact length enforcement
(meaning 'infinite' stiffness), but internally stiffness will still be used
to compute the dynamics.

ContactHardness Hardness of contacts and length enforcement in subdivision mode,
when strained and potentially touching other objects in the middle.
Higher values make it potentially less stable.

Damping Sets the strength of the damping on an object's movement. Most
objects can work with 0 damping; if an object has trouble coming
to rest, try values like 0.2 - 0.3.

Values of 0.5 and higher appear visually as overdamping. Note
that when several objects are in contact, the highest damping is
used for all associated contacts.

Version 1.6
483

Lumberyard User Guide
Snow Entity

Parameter Description

Sleep Speed If the object's kinetic energy falls below some limit over several
frames, the object is considered "sleeping". This limit is
proportional to the square of the sleep speed value. A sleep speed
of 0.01 loosely corresponds to the object's center moving at a
velocity of the order of 1 cm/s.

Sound Data

Name Name of the sound to be attached.

Segment Number of rope segments in physics (can be different from the
number of segments used for rendering). For colliding ropes, make
sure that there are enough physical segments so that segment
length is at least two times smaller than the dimensions of the
objects the rope collides with.

PosOffset The position offset indicates how far a sound is moved away from
its original attachment point. The number (.0-1) moves the sound
along the length of the segment to which the sound is attached.

Snow Entity
You can use the Snow entity to add realistic snow effects to your level.

Entity Properties

Property Description

Enabled Select to enable snow.

Radius Sets the coverage area of snow on the ground. Has no effect on
the distance that snow in the air spawns at.

Brightness The brightness of snowflakes in the air.

GravityScale Controls how fast snow falls.

SnowFlakeCount Sets the number of snowflakes in the air.

SnowFlakeSize Sets the size of snowflakes in the air.

TurbulenceFreq Frequency of air turbulence on falling snowflakes.

TurbulenceStrength Strength of air turbulence on falling snowflakes.

WindScale How strongly wind in a level effects falling snowflakes.

FrostAmount Amount of frost that appears on a surface.

SnowAmount Amount of snow that appears on a surface.

SurfaceFreezing Strength of the visual freezing effect on a surface.

Tornado Entity
You can create realistic-looking tornadoes in your level.

Version 1.6
484

Lumberyard User Guide
Trigger Entities

Entity Properties

Property Description

AttractorImpulse The gravitational pull of the tornado on nearby objects.

CloudHeight The height of the cloud above the tornado.

FunnelEffect Specifies the particular particle effect.

Radius Radius of the tornado's influence.

SpinImpulse The rotational speed of the tornado.

UpImpulse The upward speed of the tornado.

WanderSpeed The speed that the tornado is moving along the ground.

Trigger Entities
There are two Trigger entities you can use in your level.

AreaTrigger Entity

Entity Properties

Property Description

trigger-proximity Turns the entity on or off.

InVehicleOnly Sets up that the trigger can only be activated when player is inside
vehicle.

OnlyLocalPlayer Sets the trigger to be only triggerable by the local player entity.

OnlyPlayers Sets the trigger to be only triggerable by players entities.

PlaySequence Plays the Trackview sequence with the name specified in here.

ScriptCommand Executes a script command when the trigger has been activated.

TriggerOnce Disables the trigger after it has been triggered once.

MultiplayerOptions

Networked If true physics will be simulated on the server and serialized over
the network, otherwise they will be simulated on the client.

ProximityTrigger Entity

Entity Properties

Property Description

ActivateWithUseButton Specifies if the trigger is activated by pressing use.

DimX Specifies how big the trigger is (x-axis).

Version 1.6
485

Lumberyard User Guide
Trigger Entities

Property Description

DimY Specifies how big the trigger is (y-axis).

DimZ Specifies how big the trigger is (z-axis).

Enabled Specifies if the trigger can be activated or not.

EnterDelay Sets up a delay (in seconds) before the enter node of the trigger is
activated.

ExitDelay Sets up a delay (in seconds) before the exit node of the trigger is
activated.

InVehicleOnly Sets up that the trigger can only be activated when player is inside
vehicle.

OnlyAI Sets the trigger to be only triggerable by AI entities.

OnlyMyPlayer Sets the trigger to be only triggerable by the local player.

OnlyOneEntity Sets the trigger to be only triggerable by one entity. First one who
triggers it has to leave it in order to be triggerable again.

OnlyPlayer Sets the trigger to be only triggerable by player entities.

OnlySelectedEntity Sets the trigger to be only triggerable by the entity with the name
specified in this field. Wildcard matches can be used such as
RigidbodyEx*, will allow all entities with that name, regardless of
number suffix, etc.

OnlySpecialAI Sets the trigger to be only triggerable by the special AI entities.

PlaySequence Plays the Trackview sequence with the name specified in here.

RemoveOnTrigger Similar to the deprecated "KillOnTrigger" param, if true, any
entities (except player) which trigger this will be removed.

ScriptCommand Executes a script command when the trigger has been activated

TriggerOnce Disables the trigger after it has been triggered once.

MultiplayerOptions

Networked If true physics will be simulated on the server and serialized over
the network, otherwise they will be simulated on the client.

Version 1.6
486

Lumberyard User Guide
Using Flow Graph Editor

Flow Graph System

Flow Graph is a visual scripting system that allows you to implement complex game logic without
having to touch any code. Complex logic can be created with only a few clicks and an extensive library
of nodes provides everything needed to fully control entities and AI agents in a level.

Flow Graph can also be used to prototype gameplay, effects, and sound design, with a level containing
multiple flow graphs performing different tasks at the same time.

Flow graphs consist of nodes and links. Nodes can represent level entities (entity node) or actions
(component node) that may perform a specific action on a target entity. Links are used to connect
nodes, and are represented as lines that connect the inputs and outputs between nodes.

Flow Graph logic is stored in XML files and can be exported for use in other levels. As a flow graph
is associated with a specific entity, the graph is always exported along with the entity. Layers are
supported.

Topics

• Using Flow Graph Editor (p. 487)

• Flow Graph Scripts (p. 488)

• Managing Flow Graphs (p. 489)

• Using Flow Graph Nodes (p. 491)

• Creating Flow Graph Nodes (p. 494)

• Flow Graph Node Reference (p. 500)

• Using Flow Graph Links (p. 772)

• Using Flow Graph Tokens (p. 773)

• Managing Flow Graph Modules (p. 773)

• Debugging Flow Graph (p. 775)

• Placing Cached Shadows (p. 776)

Using Flow Graph Editor
Flow Graph editor uses drag-and-drop modules and connection links to various inputs and outputs to
perform visual scripting. The following shows the components of the Flow Graph editor:

• Node graph - main window grid for displaying flow graph nodes and connections

• Components - browser tree pane for nodes

Version 1.6
487

Lumberyard User Guide
Flow Graph Scripts

• Graphs - browser tree pane for graphs and entities

• Properties - pane for showing node input and output properties

• Search - pane for searching graphs and nodes

• SearchResults - pane for displaying search results

• Breakpoints - pane for displaying breakpoints

Flow Graph Scripts
Flow Graph scripts are organized into four different categories, and contained in the Graphs folder tree
in the Flow Graph Editor.

Version 1.6
488

Lumberyard User Guide
Level Flowgraphs

Level Flowgraphs
This directory contains script files that are specific to the level that is currently open, and is organized
as follows:

• Entities – Entity files are the flow graphs created and associated with an entity that has been placed
in the level.

• Components – Component files are the flow graphs created and associated with a component that
has been placed in the level.

• Modules – Modules that are specific to the level that is currently open.

Global Flowgraphs
• UI Actions - Used to encapsulate UI logic for easy debugging and maintenance.

Flow Graph Prefabs
Using Flow Graph, you can communicate directly to and from a prefab instance just like an entity by
using prefab events. Simply create an event inside a prefab, give it a name, and then reference the
prefab instance as you normally do for an entity.

External Files
These are Flow Graph scripts that have been imported.

Managing Flow Graphs
Each flow graph is associated with a specific entity and is stored as a property of the entity. The
name of the flow graph is the name of the entity for which it has been created. When the entity name
is changed, the name in the flow graph is also automatically changed. When the entity is saved or
exported, the flow graph belonging to it is also automatically saved.

There are two types of flow graphs: global flow graphs, which are used in multiple levels, and level flow
graphs, which are associated with a single level.

Version 1.6
489

Lumberyard User Guide
Saving Flow Graphs

To create a flow graph for an entity

1. In Rollup Bar, on the Objects tab, for an entity previously created, under Flow Graph, click
Create.

2. Alternatively, right-click the entity in the viewport, then click Create Flow Graph. If this is the
first flow graph in a level, you need to select a group to place the flow graph with, or click New
to create a new group name for the flow graph. The Flow Graphs window displays the new flow
graph in the tree.

To manage flow graphs

• In Flow Graph Editor, right-click the applicable flow graph in the Flow Graphs tree, then do the
following as needed:

• To delete a flow graph, click Delete Graph.

Note
When an entity is deleted from a level, the associated flow graph is also deleted.

• To enable or disable a flow graph, toggle Enable or Disable.

• To enable or disable all flow graphs in a group, right-click the parent folder, then click Enable All
or Disable All as needed. A disabled flow graph is displayed as crossed out, which means that
all nodes in the flow graph are ignored when the game is running.

• To move a flow graph to another group, right-click the parent folder, click RenameFolder/
MoveGraphs, then select a group from the list or click New to move it to it's own new group and
name it.

When a level is exported with some flow graphs disabled, their disabled state is also exported to the
game.

Saving Flow Graphs
The method of saving flow graphs differ depending on whether it is a global flow graph or a level flow
graph.

Global flow graphs, which are listed under Graphs, Global, are saved by selecting the flow graph and
then clicking File, Save.

Version 1.6
490

Lumberyard User Guide
Grouping Flow Graphs

Level flow graphs, which are listed under Graphs, Level, are saved automatically when either the
level they are in is saved or the layer that they are on is saved. A layer gets saved whenever the
corresponding level is saved.

Grouping Flow Graphs

To create a flow graph group

1. In the graph pane, select two or more flow graph nodes by CTRL+ click on each one.

2. Right-click the graph pane, and click Group. A box appears around the nodes.

3. Type a name for the group.

You can rename, move, add to, and remove a group.

To manage flow graph groups

1. To rename a group, double-click the group's name and type a new name.

2. To collapse a group to save space, click the down-arrow icon for the group. To expand the group
back, click on the icon again.

3. To move a node within a group, click on the node's title bar and drag it to the desired location.

4. To move a group, click on an empty space in the group and drag it to the desired location.

5. To add a node to a group, click to select the group, Ctrl+click on the applicable node, right-click
the graph pane, then click Add group.The group's box now encloses the new node.

6. To remove a node from a group, click to select it, right-click on an empty space in the group,
then click Ungroup. The nodes selected are removed from the group. If the group as a whole is
selected, the group is removed entirely.

7. To remove a group entirely, right-click the group's name and click in the Ungroup.

Importing and Exporting Flow Graphs
Flow graphs are saved as XML files and can be exported and imported.

To export a flow graph

• Select the nodes for export by Ctrl+Click each node, then right-click the final node, click
Selection, Export Selected Nodes, then enter a file name for it.

You can import a previously exported flow graph's nodes into another flow graph as follows:

To import a flow graph

• Open the target flow graph you want to import to add the exported flow graph nodes to, right-click
anywhere in the graph pane, click Import, then enter the name of file you want to import..

The imported flow graph is positioned relative to the old flow graph.

Using Flow Graph Nodes
Nodes can represent level entities (entity node) or actions (component node) that may perform a
specific action on a target entity. A node is represented in Flow Graph as a box with inputs and
outputs.

Version 1.6
491

Lumberyard User Guide
Node Input/Output Ports

Node Input/Output Ports
A node consists of input ports on the left side for receiving information and output ports on the right
side for transmitting information. Output ports are activated depending on the function of the node.
Ports can have the following different data types.

Node Port Data Types

Data Type Color Description

Any n/a Unspecified, any data type can be received

Boolean Blue True or false value

EntityID Green/Red Value that uniquely identifies any entity in a level

Float White Floating-point 32-bit value

Integer Red Positive or negative 32-bit number

Uint64 n/a Positive or negative 64-bit number

String Turquoise Array of characters used for storing text

Vec3 Yellow 3D vector consisting of three floating-point
values. Used for storing positions, angles, or
color values

Void Green Used for ports that do not accept any value but
are instead triggered to pass the flow of control
through a flow graph.

Differing colors for node backgrounds and links indicate the following:

• Nodes with a red background and a yellow title bar are debugging nodes and are not functional in
release builds.

• Links that connect debugging nodes are yellow.

• Dotted links indicate they are disabled (by right-clicking them)

Version 1.6
492

Lumberyard User Guide
Adding Entity Nodes

Values whose data type don't match the input port data type are automatically converted to match the
type of the port connected to, if possible. Any output port can be connected to any input port, no matter
what data type. An integer with the value 1 can be fed in a Boolean input port and converted to a True
value to match the data type of the port. For some component nodes, there is an input port at the top of
the entity that is used for setting the target entity of the node.

Note
Mixing node port types or data types can result in unexpected behavior. For example while a
Math:SetColor node input port is a Vec3 data type, it treats input from a Vec3:SetVec3 node
differently than from a Math:SetColor node, both of which output a Vec3 data type. While the
port types for both nodes are vector, the Vec3:SetVec3 are a group of three floating-point
values whereas the Math:SetColor data type are a group of colors that range from 0-255.

Adding Entity Nodes
Entity nodes require that a level entity first be selected. To add an entity node, select an entity and
open the graph where you want to add the entity. Next, open the graph context menu by right-clicking
the main editing pane.

To add an Entity node

1. In the left-side Flow Graphs tree, expand Entities\fg and select the applicable entity.

2. Right-click anywhere in the graph pane and click Add Selected Entity.

3. Or, right-click anywhere in the graph pane and click Add Graph Default Entity, which always
adds the entity to the flow graph to which it is attached.

Adding Component Nodes
Component nodes can be added from within the graph and don't require any selected entity. There
are three ways to add these nodes, the context menu, the component node list window and the
QuickSearchNode (Shortcut: Q).

To add a new component node, open the context menu by right-clicking the main editing pane, and
then select Add Node. A long list of sub-folders are displayed, and a node can be selected from any
directory. Select Entity to open the folder with the entity-related component nodes. Select EntityPos to
complete the procedure.

To add a Component node

• Right-click anywhere in the graph pane, click Add Node, and select a node from the list.

Managing Nodes
You can easily move, copy, edit, and delete Flow Graph nodes as follows. All links between selected
nodes are also moved when the nodes are moved and automatically rearrange themselves.

To move a node

1. Click and drag the node on the graph pane. Multiple nodes can be moved by holding down the
Ctrl key and clicking the applicable nodes.

2. Or, use the mouse to draw a box around all the applicable nodes that need to be moved.

Version 1.6
493

Lumberyard User Guide
Creating Flow Graph Nodes

To copy a node

1. Right-click the node, click Copy, then click Paste at the desired location in the graph pane. Click
Paste With Links to also copy all connected links.

2. Or, click the node, press Ctrl+C, then press Ctrl+V at the desired location.

To edit a node

There are two ways to edit a node's properties.

1. Double-click the applicable node input and change the property.

2. Or, change the property as listed under Inputs in the right-side panel of Flow Graph Editor.

To delete a node

There are two ways to delete a node. Once a node has been deleted, all the connected links are also
automatically removed.

1. Right-click the node and click Delete.

2. Or, click the node and press the keyboard Delete key.

Creating Flow Graph Nodes
You can use a .cpp file to create new flow graph nodes. For multiple flow graph nodes that will
belong to the same group, use a single .cpp file. Headers aren't needed except for some specialized
nodes.

Use the following code template for your .cpp file and save the file to the dev\Code\CryEngine
\CryAction\FlowSystem\Nodes directory.

In the template you can choose between an eNCT_Instanced node and a eNCT_Singleton. A
singleton node creates one instance with a small memory footprint, although you can still use multiple
nodes in your flow graph. Use singleton whenever you are not saving state data such as member
variables.

#include "StdAfx.h"
#include "FlowBaseNode.h"

class CFlowNode_your_flow_node_name : public CFlowBaseNode<eNCT_Instanced>
{
public:
 CFlowNode_your_flow_node_name(SActivationInfo* pActInfo)
 {
 };

 virtual IFlowNodePtr Clone(SActivationInfo *pActInfo)
 {
 return new CFlowNode_your_flow_node_name(pActInfo);
 };

 virtual void GetMemoryUsage(ICrySizer* s) const
 {
 s->Add(*this);
 }

Version 1.6
494

Lumberyard User Guide
Output Ports

 virtual void GetConfiguration(SFlowNodeConfig& config)
 {
 static const SInputPortConfig in_config[] = {
 {0}
 };
 static const SOutputPortConfig out_config[] = {
 {0}
 };
 config.sDescription = _HELP("your_flow_node_tooltip_description");
 config.pInputPorts = in_config;
 config.pOutputPorts = out_config;
 config.SetCategory(EFLN_APPROVED);
 }

 virtual void ProcessEvent(EFlowEvent event, SActivationInfo* pActInfo)
 {
 switch (event)
 {
 };
 }
};

REGISTER_FLOW_NODE("your_flow_node_group:your_flow_node_name",
 CFlowNode_your_flow_node_name);

For your flow node group, create a corresponding subfolder in the Flow Graph editor node selector
where this node will be placed in the hierarchy.

Output Ports
You can add an output port by modifying the GetConfiguration function as shown in the following
example:

class CFlowNode_your_flow_node_name : public CFlowBaseNode<eNCT_Instanced>
{
public:
 // ...

 virtual void GetConfiguration(SFlowNodeConfig& config)
 {
 static const SInputPortConfig in_config[] = {
 {0}
 };
 static const SOutputPortConfig out_config[] = {
 OutputPortConfig<int>("your_output", _HELP("your_help_text")),
 {0}
 };
 config.sDescription = _HELP("your_flow_node_tooltip_description");
 config.pInputPorts = in_config;
 config.pOutputPorts = out_config;
 config.nFlags = 0;
 }

 // ...
};

OutputPortConfig is a helper function that is useful for filling a small structure with appropriate data.

Version 1.6
495

Lumberyard User Guide
Input Ports

Available data types for this function include SFlowSystemVoid, Int, Float, EntityId, Vec3, String, and
Bool. SFlowSystemVoid is a special data type that represents "no value".

OutputPortConfig takes the following parameters:

• Port name that is used internally and for saving the flow graph. Do not change this parameter later
as doing so will break script comptability for all flow graphs that use this node.

Note
Do not use the underscore "_" character as this was used in previous versions to specify a
specialized editor for the port.

• Description used to display tooltip help text on mouse hover in the Flow Graph editor.

• Human-readable name used to display the name of the port in the Flow Graph editor. This is used to
visually override a port name without breaking script compatibility.

To emit a value from the output port, use the function
CFlowBaseNode::ActivateOutput(pActInfo, nPort, value). This function takes a
pActInfo, which is typically passed to ProcessEvent(), the nPort port identifier (count starts at
zero from the top of out_config), and a value of the same type as the port.

Input Ports
You can add an input port by modifying the GetConfiguration function as shown in the following
example:

class CFlowNode_your_flow_node_name : public CFlowBaseNode<eNCT_Instanced>
{
public:
 // ...

 virtual void GetConfiguration(SFlowNodeConfig& config)
 {
 static const SInputPortConfig in_config[] = {
 InputPortConfig<int>("your_input", _HELP("your_help_text")),
 {0}
 };
 static const SOutputPortConfig out_config[] = {
 {0}
 };
 config.sDescription = _HELP("your_flow_node_tooltip_description");
 config.pInputPorts = in_config;
 config.pOutputPorts = out_config;
 config.nFlags = 0;
 }

 // ...
};

InputPortConfig is a helper function that is useful for filling a small structure with appropriate data.

Available data types for this function include SFlowSystemVoid, Int, Float, EntityId, Vec3, String, and
Bool. SFlowSystemVoid is a special data type that represents "no value".

InputPortConfig takes the following parameters:

• Port name used internally and for saving the flow graph. Do not change this parameter later as doing
so will break script comptability for all flow graphs that use this node.

Version 1.6
496

Lumberyard User Guide
Input Ports

Note
Do not use the underscore "_" character as this was used in previous versions to specify a
specialized editor for the port.

• Default value of the port when a new node is created.

• Description used to display tooltip help text on mouse hover in the Flow Graph editor.

• Human-readable name used to display the name of the port in the Flow Graph editor. Use to visually
override a port name without breaking script compatibility.

• Formatted string that specifies how the UI should function when setting the port value. You can
choose a specialized widget or modify the allowed value range of the input.

Input Port UI Configuration

You can define the interface for setting the input port value by passing a series of options in the form of
a string with key–value pairs in InputPortConfig.

Setting the input value range

This will limit the widget's arrows and ramp and clamp manually-inserted values as shown in the figure:

_UICONFIG("v_min=0, v_max=10")

Setting the Dropdown List

There are several types of enums that you can use to display a dropdown list of readable strings. Each
string maps to a value that is used by the node and that persists when the flow graph is saved. Enums
can be of type int or float as shown in the following figure and code example.

_UICONFIG("enum_int:Relaxed=0,Alert=1,Combat=2,Crouch=3")

An enum can also be of type string with or without mapping to another value:

_UICONFIG("enum_string:a,b,c")
_UICONFIG("enum_string:DisplayA=a,DisplayB=b,DisplayC=c")

Enums can also refer to the global and dynamic UI enums defined in InitUIEnums.

Optionally, the enum can depend on another port to affect the available selection:

_UICONFIG("enum_global:ENUM_NAME")
_UICONFIG("enum_global:vehicleLightTypes")
_UICONFIG("enum_global_def:ENUM_NAME")
_UICONFIG("enum_global_ref:ENUM_NAME_FORMAT_STRING:REF_PORT")

Setting a Specialized Property Editor

Version 1.6
497

Lumberyard User Guide
Input Ports

You can indicate a dedicated property editor with the dt keyword followed by parameters optionally
needed by the editor as shown in the following code example:

_UICONFIG("dt=editorName")_UICONFIG("dt=entityProperties,
 ref_entity=entityId") _UICONFIG("dt=matparamslot,
 slot_ref=Slot, sub_ref=SubMtlId, param=float")

There is a set of available editors that can be referenced in the following table:

Editor Name Editor Type

snd IVariable::DT_SOUND

sound IVariable::DT_SOUND

clr IVariable::DT_COLOR

color IVariable::DT_COLOR

tex IVariable::DT_TEXTURE

texture IVariable::DT_TEXTURE

obj IVariable::DT_OBJECT

object IVariable::DT_OBJECT

file IVariable::DT_FILE

text IVariable::DT_LOCAL_STRING

equip IVariable::DT_EQUIP

reverbpreset IVariable::DT_REVERBPRESET

aianchor IVariable::DT_AI_ANCHOR

aibehavior IVariable::DT_AI_BEHAVIOR

aicharacter IVariable::DT_AI_CHARACTER

aipfpropertieslist IVariable::DT_AI_PFPROPERTIESLIST

aientityclasses IVariable::DT_AIENTITYCLASSES

soclass IVariable::DT_SOCLASS

soclasses IVariable::DT_SOCLASSES

sostate IVariable::DT_SOSTATE

sostates IVariable::DT_SOSTATES

sopattern IVariable::DT_SOSTATEPATTERN

soaction IVariable::DT_SOACTION

sohelper IVariable::DT_SOHELPER

sonavhelper IVariable::DT_SONAVHELPER

soanimhelper IVariable::DT_SOANIMHELPER

Version 1.6
498

Lumberyard User Guide
Input Ports

Editor Name Editor Type

soevent IVariable::DT_SOEVENT

customaction IVariable::DT_CUSTOMACTION

gametoken IVariable::DT_GAMETOKEN

mat IVariable::DT_MATERIAL

seq IVariable::DT_SEQUENCE

mission IVariable::DT_MISSIONOBJ

anim IVariable::DT_USERITEMCB

animstate IVariable::DT_USERITEMCB

animstateEx IVariable::DT_USERITEMCB

bone IVariable::DT_USERITEMCB

attachment IVariable::DT_USERITEMCB

dialog IVariable::DT_USERITEMCB

matparamslot IVariable::DT_USERITEMCB

matparamname IVariable::DT_USERITEMCB

matparamcharatt IVariable::DT_USERITEMCB

seqid IVariable::DT_SEQUENCE_ID

lightanimation IVariable::DT_LIGHT_ANIMATION

formation IVariable::DT_USERITEMCB

communicationVariable IVariable::DT_USERITEMCB

uiElements IVariable::DT_USERITEMCB

uiActions IVariable::DT_USERITEMCB

uiVariables IVariable::DT_USERITEMCB

uiArrays IVariable::DT_USERITEMCB

uiMovieclips IVariable::DT_USERITEMCB

uiVariablesTmpl IVariable::DT_USERITEMCB

uiArraysTmpl IVariable::DT_USERITEMCB

uiMovieclipsTmpl IVariable::DT_USERITEMCB

uiTemplates IVariable::DT_USERITEMCB

vehicleParts IVariable::DT_USERITEMCB

vehicleSeatViews IVariable::DT_USERITEMCB

entityProperties IVariable::DT_USERITEMCB

Version 1.6
499

Lumberyard User Guide
Trigger Ports

Editor Name Editor Type

actionFilter IVariable::DT_USERITEMCB

actionMaps IVariable::DT_USERITEMCB

actionMapActions IVariable::DT_USERITEMCB

geomcache IVariable::DT_GEOM_CACHE

audioTrigger IVariable::DT_AUDIO_TRIGGER

audioSwitch IVariable::DT_AUDIO_SWITCH

audioSwitchState IVariable::DT_AUDIO_SWITCH_STATE

audioRTPC IVariable::DT_AUDIO_RTPC

audioEnvironment IVariable::DT_AUDIO_ENVIRONMENT

audioPreloadRequest IVariable::DT_AUDIO_PRELOAD_REQUEST

dynamicResponseSignal IVariable::DT_DYNAMIC_RESPONSE_SIGNAL

Trigger Ports
It can be useful to have a trigger signal as an input or output port. You can implement these ports using
the Input/OutputPortConfig_Void or Input/OutputPortConfig_AnyType data types. Do not
use the Boolean data type.

Update Event
If you want an update loop for your node instead of having it react on ports, you can use the following
code to add your node to the list of regularly updated nodes. You can also choose to enable the update
event temporarily.

The following code adds your node to the list of regularly updated nodes:

pActInfo->pGraph->SetRegularlyUpdated(pActInfo->myID, true);

You will get a single ProcessEvent(eFE_Updated) call per game update call.

To remove it from this list, call the same function with false as the second parameter.

Flow Graph Node Reference
This section provides a listing of the flow graph nodes, including the various types of nodes, input
and output ports, and their uses. The most commonly-used and important nodes include Entity (and
ComponentEntity), Interpolate, Logic, Math, Mission, Time, Vec3, and Debug nodes.

For a list of UI, VR and Cloud Canvas flow graph nodes, see UI Flow Graph Nodes (p. 1185), Setting
Up Virtual Reality with Flow Graph (p. 1307), and Cloud Canvas Flow Graph Node Reference.

Note
Node input/output port descriptions are also available as tool tip text when you mouseover a
port in the node graph or in the Properties pane in the Flow Graph editor.

Version 1.6
500

http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-fg-node-intro.html

Lumberyard User Guide
Flow Graph Node Reference

Topics

• Actor Nodes (p. 502)

• AI Nodes (p. 506)

• AISequence Nodes (p. 525)

• Animations Nodes (p. 532)

• Audio Nodes (p. 541)

• Camera Nodes (p. 545)

• ComponentEntity Nodes (p. 547)

• CustomAction Nodes (p. 557)

• Debug Nodes (p. 560)

• Dialog Nodes (p. 572)

• Dynamic Response Nodes (p. 574)

• Engine Nodes (p. 577)

• Entity Nodes (p. 579)

• Environment Nodes (p. 593)

• FeatureTest Nodes (p. 598)

• Game Nodes (p. 600)

• Helicopter Nodes (p. 606)

• Image Nodes (p. 608)

• Input Nodes (p. 619)

• Interpolate Nodes (p. 638)

• Intersection Tests Nodes (p. 644)

• Iterator Nodes (p. 645)

• JSON Nodes (p. 648)

• Kinect Nodes (p. 650)

• Logic Nodes (p. 652)

• Material Nodes (p. 662)

• MaterialFX Nodes (p. 665)

• Math Nodes (p. 666)

• Mission Nodes (p. 685)

• Module Nodes (p. 689)

• Movement Nodes (p. 693)

• Physics Nodes (p. 696)

• Prefab Nodes (p. 702)

• ProceduralMaterial Nodes (p. 703)

• Stereo Nodes (p. 714)

• String Nodes (p. 715)

• System Nodes (p. 719)

• Time Nodes (p. 720)

• Twitch Nodes (p. 730)

• Vec3 Nodes (p. 738)

• Vehicle Nodes (p. 745)

• Video Nodes (p. 756)

Version 1.6
501

Lumberyard User Guide
Actor Nodes

• Weapon Nodes (p. 757)

• XML Nodes (p. 760)

Actor Nodes
You can use the following flow graph nodes to configure various actor behaviors and settings.

Note
These nodes will only work with the Legacy Game Sample (CryEngine GameSDK), which is
available at Lumberyard Downloads.

Topics

• Damage node (p. 502)

• EnslaveCharacter node (p. 502)

• GrabObject node (p. 503)

• HealthCheck node (p. 503)

• HealthGet node (p. 504)

• HealthSet node (p. 504)

• LocalPlayer node (p. 505)

• PlayMannequinFragment node (p. 505)

• ProcClipEventListener node (p. 506)

Damage node

Used to damage the chosen entity using the Damage input value when the Trigger input is activated.

Inputs

Port Type Description

Trigger Any Activates the node

Damage Integer Type of damage to inflict

DamageRelative Integer Level of relative damage

Position Vec3 Location the damage will occur

EnslaveCharacter node

Used to enslave one character to another character.

Version 1.6
502

https://aws.amazon.com/lumberyard/downloads/

Lumberyard User Guide
Actor Nodes

Inputs

Port Type Description

Enslave Any Enslaves the character

Unenslave Any Unenslaves the character

Slave Any Character to enslave

ScopeContext String Context of the scope

DB String Optional database name

Outputs

Port Type Description

Success Any Tiggers if enslaving succeeded

Failed Any Triggers if enslaving failed

GrabObject node
Used by the chosen entity to grab an object, then to drop or throw the object.

Inputs

Port Type Description

objectId Any ID of the object to grab

grab Any Grabs the object

drop Any Drops the object

throw Boolean Throws the object

Outputs

Port Type Description

success Boolean True if the object was successfully dropped or
thrown

grabbedObjId Any ID of the grabbed object

HealthCheck node
Used to check the health of the chosen actor entity. When the node is triggered the health of the entity
is checked and if it is within the defined MinHealth and MaxHealth values, a True will be output on the
InRange port.

Version 1.6
503

Lumberyard User Guide
Actor Nodes

Inputs

Port Type Description

Trigger Any Activates the port

MinHealth Float Lower limit of health range

MaxHealth Float Upper limit of health range

Outputs

Port Type Description

InRange Boolean True if health is between the MinHealth and
MaxHealth values

HealthGet node
Used to get the health of an actor entity.

Inputs

Port Type Description

Trigger Any Activate this port to get the current health of the
chosen entity

Outputs

Port Type Description

Health Integer Current health of the chosen entity

HealthSet node
Used to set the health of the actor entity.

Inputs

Port Type Description

Trigger Any Activate this port to set the current health of the
chosen entity

Version 1.6
504

Lumberyard User Guide
Actor Nodes

Port Type Description

Value Float Health value to the set for the chosen entity

Outputs

Port Type Description

Health Integer Current health of the chosen entity

LocalPlayer node

Used to update and output the ID of the local player entity.

Inputs

Port Type Description

update Any Updates the ID of the local player entity.
Required for multiplayer games

Outputs

Port Type Description

entityId Any Outputs the ID of the local player entity

PlayMannequinFragment node

Used to play a Mannequin fragment for the chosen entity with the specified Mannequin tags.

Inputs

Port Type Description

Play Any Plays the fragment

Fragment String Name of the fragment

Tags String List of "+"-separated Mannequin tags

Priority Integer Priority number

Pause Any Pauses the entity actionController

Resume Any Resumes the entity actionController

Version 1.6
505

Lumberyard User Guide
AI Nodes

Port Type Description

ForceFinishLastQueued Any Finishes the last queued action

Outputs

Port Type Description

Success Any Triggers if the fragment command succeeded

Failed Any Triggers if the fragment command failed

ProcClipEventListener node
Used to listen for a procedural clip event.

Inputs

Port Type Description

Start Any Start listening for the procedural clip event

Stop Any Stop listening for the procedural clip event

Filter String Name of the filter used

Outputs

Port Type Description

Event String Outputs the procedural clip event

AI Nodes
You can use these flow graph nodes to configure AI agent behaviors and settings.

Note
These nodes will only work with the Legacy Game Sample (CryEngine GameSDK), which is
available at Lumberyard Downloads.

Topics

• ActionAbort node (p. 507)

• ActiveCount node (p. 508)

• ActionEnd node (p. 508)

• ActionStart node (p. 508)

• ActiveCountInFaction node (p. 509)

• ActiveCountMonitor node (p. 509)

• AIGlobalPerceptionScaling node (p. 510)

• AlertMe node (p. 510)

Version 1.6
506

https://aws.amazon.com/lumberyard/downloads/

Lumberyard User Guide
AI Nodes

• AttentionTarget node (p. 511)

• AutoDisable node (p. 511)

• Communication node (p. 511)

• EventListener node (p. 512)

• Execute node (p. 513)

• Faction node (p. 514)

• FactionReaction node (p. 514)

• GroupAlertness node (p. 515)

• GroupCount node (p. 515)

• GroupIDGet node (p. 515)

• GroupIDSet node (p. 516)

• IgnoreState node (p. 516)

• IsAliveCheck node (p. 517)

• LookAt node (p. 517)

• NavCostFactor node (p. 518)

• ObjectDrop node (p. 518)

• ObjectGrab node (p. 519)

• ObjectUse node (p. 520)

• PerceptionScale node (p. 520)

• RegenerateMNM node (p. 521)

• RequestReinforcementReadability node (p. 521)

• SetCommunicationVariable node (p. 521)

• SetFaction node (p. 522)

• SetState node (p. 522)

• ShapeState node (p. 523)

• Signal node (p. 523)

• SmartObjectEvent node (p. 524)

• SmartObjectHelper node (p. 524)

• Stance node (p. 525)

ActionAbort node

Used to define a "clean-up" procedure that is run when an AI action is aborted.

Inputs

Port Type Description

Abort Any Aborts execution of AI action

Outputs

Port Type Description

UserId Any ID of agent that is performing the action

Version 1.6
507

Lumberyard User Guide
AI Nodes

Port Type Description

ObjectId Any ID of the object on which the agent is executing
on

ActiveCount node

Used to count how many AI agents are active.

Outputs

Port Type Description

Total Integer How many total agents are active

Enemy Integer How many enemies there are

ActionEnd node

Used to end an AI action.

Inputs

Port Type Description

End Any Ends the AI action

Cancel Any Cancels the action

ActionStart node

Used to start an AI action.

Outputs

Port Type Description

UserId Any ID of agent that is performing the action

ObjectId Any ID of the object on which the agent is executing
on

Position Vec3 Position of the object

Version 1.6
508

Lumberyard User Guide
AI Nodes

ActiveCountInFaction node
Used to count how many AI factions are active.

Inputs

Port Type Description

Faction String Faction to be counted

IncludedHumanPlayers Boolean Include human players when counting active AI
agents in the faction

Outputs

Port Type Description

Count Integer Number of active agents in the faction

Changed Any Triggers when the number of active agents in the
faction changes

ActiveCountMonitor node
Used to monitor the active AI count against a limit and then periodically output the current state.
When the condition is met, the monitor loop will stop automatically. This will then need to be restarted
manually.

Inputs

Port Type Description

Start Any Starts monitoring

Stops Any Stops monitoring

MaxActiveAIs Integer Maximum number of active AIs limit

Loop Boolean Enables loop monitoring

LoopPeriod Float Period of time between checks if Loop is enabled

Outputs

Port Type Description

SlotsFree Any Triggers when the number of active agents drops
below MaxActiveAIs

Version 1.6
509

Lumberyard User Guide
AI Nodes

Port Type Description

SlotsFull Any Triggers when the number of active agents is
equal to or above MaxActiveAIs

CurrentActiveAIs Integer Current number of active AI agents

AIGlobalPerceptionScaling node

Used to specify a global scale for AI perception.

Inputs

Port Type Description

Enable Any Enables perception scaling

Disable Any Disables perception scaling

AudioScale Float Auditory perception scaling factor

VisualScale Float Visual perception scaling factor

FilterAI Integer Filter which AI agents are used

Faction String Faction

Outputs

Port Type Description

Enabled Any Triggers when node is enabled

Disabled Any Triggers when node is disabled

AlertMe node

A generic AI signal.

Inputs

Port Type Description

Sync Any Generic AI signal

Version 1.6
510

Lumberyard User Guide
AI Nodes

AttentionTarget node

Used to output an AI agent's attention target.

Inputs

Port Type Description

Active Boolean Actrivates the node

Outputs

Port Type Description

Pos Vec3 Position of the attention target

EntityId Any Entity ID of attention target

None Any Triggers when there is no attention target

AutoDisable node

Used to control auto-disabling.

Inputs

Port Type Description

On Any Enables auto-disabling

Off Any Disables auto-disabling

Communication node

Used to specify the communication that an AI agent plays.

Version 1.6
511

Lumberyard User Guide
AI Nodes

Inputs

Port Type Description

Start Any Starts communication

Stop Any Stops communication

Communication String Name of communication to play

Channel String Name of channel to play the communications in

ContextExpirity Float How much time must elapse before
communiction can be played again

SkipSound Boolean Skips sound component

SkipAnim Boolean Skips animation component

TargetId Any (Optional) Target ID to play communication at

TargetPos Vec3 (Optional) Target position to play communication
at

Outputs

Port Type Description

Done Any Triggered when communication has finished
playing

Started Any Triggers if communication is started

Stopped Any Triggers if communication is stopped

Finished Any Triggers if communication has finished playing

Fail Any Triggers if communication has failed

EventListener node
Used to listen for an event.

Inputs

Port Type Description

Pos Vec3 Position of the listener

Radius Float Listening radius of the listener

ThresholdSound Float Sensitivity of the sound output

ThresholdCollision Float Sensitivity of the collision output

Version 1.6
512

Lumberyard User Guide
AI Nodes

Port Type Description

ThresholdBullet Float Sensitivity of the bullet output

ThresholdExplosion Float Sensitivity of the explosion output

Outputs

Port Type Description

Sound Any Triggers for a sound event

Collision Any Triggers for a collision event

Bullet Any Triggers for a bullet event

Explosion Any Triggers for an explosion event

Execute node

Used to execute an AI action.

Inputs

Port Type Description

Sync Any Activates the node

Cancel Any Cancels the operation

ObjectId Any ID of the entity that receives the action that is
executed

Action String Action to be executed

MaxAlertness Integer Maximum alertness that allows execution

HighPriority Boolean Action priority level

Force Integer Force execution method

Outputs

Port Type Description

Done Any Triggers when the action has been executed

Succeed Any Triggers if the action is executed

Fail Any Triggers if the action is not executed

Version 1.6
513

Lumberyard User Guide
AI Nodes

Faction node
Used to trigger an AI faction.

Inputs

Port Type Description

Trigger Any Tiggers the output

Faction String Name of faction to trigger

Outputs

Port Type Description

Faction String Outputs the faction that was triggered

FactionReaction node
Used to set or get AI faction reaction information.

Inputs

Port Type Description

Source String Source faction

Target String Target faction

Reaction Integer Source faction reaction to target faction

Get Any Gets the faction reaction and triggers output

Set Any Sets the faction reaction and triggers output

Outputs

Port Type Description

Neutral Boolean Triggers if source faction reaction to target
faction is neutral

Friendly Boolean Triggers if source faction reaction to target
faction is friendly

Hostile Boolean Triggers if source faction reaction to target
faction is hostile

Version 1.6
514

Lumberyard User Guide
AI Nodes

GroupAlertness node

Used to output the alertness level of any AI agent in a group.

Inputs

Port Type Description

GroupId Integer ID of group to set alertness level for

Outputs

Port Type Description

Alertness Integer Alertness level of the group

Green Any Triggers if alertness level is green

Orange Any Triggers if alertness level is orange

Red Any Triggers if alertness level is red

PlayerSighted Any Triggers if the player has been sighted

GroupCount node

Used to output the AI agent count in a group.

Inputs

Port Type Description

GroupId Integer Agent group ID

Outputs

Port Type Description

Count Integer Number of agents in the group

Empty Any Triggers if no agents are in the group

GroupIDGet node

Used to output the group ID for an AI agent.

Version 1.6
515

Lumberyard User Guide
AI Nodes

Inputs

Port Type Description

Sync Any Triggers the output

GroupId Integer Group ID

Outputs

Port Type Description

GroupId Integer Outputs agent group ID

GroupIDSet node
Used to set the group ID for an AI agent.

Inputs

Port Type Description

Sync Any Triggers the output

FromId Integer The group to be merged

ToId Integer The group to merge to

EnabledFromGroup Boolean Enables members of the FromID group

IgnoreState node
Used to make an AI agent ignore enemies or to be ignored.

Inputs

Port Type Description

Hostile Any Activates the node

Ignore Any Agent will ignore enemies

ResetPerception Any Resets Ignore state

Version 1.6
516

Lumberyard User Guide
AI Nodes

IsAliveCheck node

Used to check which AI actors of a group are active.

Inputs

Port Type Description

Trigger Any Triggers the node

Actor 0 - 7 Any Specific actors to check

Outputs

Port Type Description

AliveCount Integer Number of actors that are alive

AliveId0 - 7 Any Triggers if specific actor is alive

LookAt node

Used to make an AI agent look at a specific location, an entity, or a direction.

Version 1.6
517

Lumberyard User Guide
AI Nodes

Inputs

Port Type Description

Sync Any Activates the node

Cancel Any Cancels the operation

Point Vec3 Point for agent to look at

Direction Vec3 Direction for agent to look along

ObjectId Any ID of object for agent to look at

Duration Float Time in seconds for agent to look

Force Integer Force execution method

Outputs

Port Type Description

Done Any Triggers when agent is done looking

Succeed Any Triggers if agent is looking

Fail Any Triggers if agent is not looking

NavCostFactor node

Used to set the AI navigation cost factor for traveling through a region.

Inputs

Port Type Description

Sync Any Activates the node

Factor Float Navigation cost factor

NavModifierName String Name of the cost factor navigation modifier

Outputs

Port Type Description

Done Integer Triggers when cost factor for travelling through a
region has been set

ObjectDrop node

Used to have an AI agent drop a grabbed object.

Version 1.6
518

Lumberyard User Guide
AI Nodes

Inputs

Port Type Description

Sync Any Activates the node

Cancel Any Cancels the operation

Impulse Vec3 Impulse strength for dropping object

Force Integer Force execution method

Outputs

Port Type Description

Done Any Triggers when object has been dropped

Succeed Any Triggers if object is dropped

Fail Any Triggers if object is not dropped

ObjectGrab node

Used to make an AI agent grab an object.

Inputs

Port Type Description

Sync Any Activates the node

Cancel Any Cancels the operation

ObjectId Any Object to be grabbed

Force Integer Force execution method

Version 1.6
519

Lumberyard User Guide
AI Nodes

Outputs

Port Type Description

Done Any Triggers when object has been grabbed

Succeed Any Triggers if object is grabbed

Fail Any Triggers if object is not grabbed

ObjectUse node

Used to make an AI agent use an object.

Inputs

Port Type Description

Sync Any Activates the node

Cancel Any Cancels the operation

ObjectId Any Object to be used

Force Integer Force execution method

Outputs

Port Type Description

Done Any Triggers when object has been used

Succeed Any Triggers if object is used

Fail Any Triggers if object is not used

PerceptionScale node

Used to scale the perception for an AI agent.

Inputs

Port Type Description

Trigger Any Triggers the node

Version 1.6
520

Lumberyard User Guide
AI Nodes

Port Type Description

Visual Float Visual perception scale factor

Audio Float Auditory perception scale factor

RegenerateMNM node

Used to regenerate the AI multi-navation mesh.

Inputs

Port Type Description

Start Any Triggers recalculation of MNM data for the
bounding box

Min Vec3 Minimum limit of bounding box

Max Vec3 Maximum limit of bounding box

RequestReinforcementReadability node

Used to make an AI agent request reinforcements. There is no guarantee that the action will be
performed however.

Inputs

Port Type Description

Trigger Any Triggers the node

GroupId Integer ID of the group that is notified

Outputs

Port Type Description

Done Any Triggers when group has been notified

SetCommunicationVariable node

Used to set the communication variable that an AI agent uses to communicate their intentions.

Version 1.6
521

Lumberyard User Guide
AI Nodes

Inputs

Port Type Description

Set Any Sets the variable

VariableName String Variable to be set

VariableValue Boolean Value of variable

SetFaction node

Used to set the faction that an AI agent belongs to.

Inputs

Port Type Description

Faction String Faction to be set

SetToDefault Boolean Set to default faction

Set Any Sets the faction for the agent

SetState node

Used to set the Smart Object state for an AI agent.

Inputs

Port Type Description

Sync Any Activates the node

State String Smart object state to be set

Outputs

Port Type Description

Done Any Triggers when state has been set

Succeed Any Triggers if state has been set

Fail Any Triggers if state has not been set

Version 1.6
522

Lumberyard User Guide
AI Nodes

ShapeState node

Use to enable or disable an AI shape.

Inputs

Port Type Description

Enable Any Enables the AI shape

Disable Any Disables the AI shape

ShapeName String Name of the AI shape

Signal node

Sends an AI agent a signal.

Inputs

Port Type Description

Sync Any Activates the node

Signal String Name of the signal to be sent

PosValue Vec3 Posirion value 1 of fhe signal

PosValue2 Vec3 Position value 2 of the signal

IValue Integer Integer value of the signal

FValiue Float Floating point value of the signal

SValue String String value of the signal

Id Any ID of the signal

Force Boolean Force execution method

Outputs

Port Type Description

Done Any Triggers when the signal has been sent

Version 1.6
523

Lumberyard User Guide
AI Nodes

Port Type Description

Succeed Any Triggers if the signal is sent

Fail Any Triggers if the signal is not sent

SmartObjectEvent node

Used to trigger a smart object event.

Inputs

Port Type Description

Event String Smart object event to be triggered

Trigger Any Triggers the event

UserId Any Limits event to specific user ID

ObjectId Any Limits event to specific object

Outputs

Port Type Description

UserId Any ID of the user that receives the event

ObjectId Any ID of the object that receives the event

Start Any Triggers if matching rule is found

NoRule Any Triggers if no matching rule is found

SmartObjectHelper node

Used to output an AI agent's attention target parameter.

Inputs

Port Type Description

Class String Class of smart object helper

Helper String Name of smart object helper

Version 1.6
524

Lumberyard User Guide
AISequence Nodes

Outputs

Port Type Description

Pos Vec3 Position of smart object helper

Fwd Vec3 Forward direction of smart object helper

Up Vec3 Up direction of smart object helper

Stance node

Used to control an AI agent's body stance.

Inputs

Port Type Description

Sync Any Activates the node

Stance Integer Body stance of the agent

Outputs

Port Type Description

Done Any Triggers when body stance has been completed

Succeed Any Triggers if stance has changed

Fail Any Triggers if stance has not changed

AISequence Nodes
You can use these flow graph nodes to configure AI sequence behaviors and settings. All AI sequence
nodes must be executed with the AISequence:Start node.

Note
These nodes will only work with the Legacy Game Sample (CryEngine GameSDK), which is
available at Lumberyard Downloads.

Topics

• Animation node (p. 526)

Version 1.6
525

https://aws.amazon.com/lumberyard/downloads/

Lumberyard User Guide
AISequence Nodes

• ApproachAndEnterVehicle node (p. 527)

• Bookmark node (p. 527)

• End node (p. 528)

• HoldFormation node (p. 528)

• JoinFormation node (p. 528)

• Move node (p. 529)

• MoveAlongPath node (p. 529)

• Shoot node (p. 530)

• Stance node (p. 530)

• Start node (p. 531)

• VehicleRotateTurret node (p. 531)

• Wait node (p. 532)

Animation node
Used to make an AI agent move to a specific location and play an animation.

Inputs

Port Type Description

Start Any Starts the animation

Stop Any Stops the animation

Animation String Name of the animation

DestinationEntity Any Destination to move to

Position Vec3 Position to move to

Direction Vec3 Direction to move along

Speed Integer Speed of movement

Stance Integer Stance while moving

OneShot Boolean True for a one-shot animation, false for a looping
animation

StartRadius Float Start radius

DirectionTolerance Float Direction tolerance

LoopDuration Float Duration of the looping animation; ignored for a
one-shot animation

Version 1.6
526

Lumberyard User Guide
AISequence Nodes

Outputs

Port Type Description

Done Any Outputs when the animation has completed

ApproachAndEnterVehicle node

Used to make an AI agent approach and then enter a vehicle.

Inputs

Port Type Description

Start Any Allows the AI agent to move to, and enter the
specified vehicle

VehicleID Any Vehicle to be entered

Seat Integer Seat to be entered

Speed Integer Speed the AI agent approaches the vehicle at

Stance Integer Stance while approaching the vehicle

Fast Boolean Skip the approaching animation

Outputs

Port Type Description

Done Any Outputs when the AI agent has completed
entering the vehicle

Bookmark node

Used to define a bookmark in a sequence of AI actions from which the sequence will resume after
being interrupted.

Input

Port Type Description

Set Any Sets a bookmark for the AI sequence from which
to resume from

Version 1.6
527

Lumberyard User Guide
AISequence Nodes

Outputs

Port Type Description

Link Any Link to other nodes

End node

Used to define the end of a sequence of AI actions. This frees the AI agent to resume typical
behaviors.

Inputs

Port Type Description

End Any Triggers to end the AI sequence

Outputs

Port Type Description

Done Any Outputs when the AI sequence has ended

HoldFormation node

Use to create a formation to have an AI agent hold to.

Inputs

Port Type Description

Start Any Start formation hold

FormationName String Name of the formation

Outputs

Port Type Description

Done Any Triggered when the formation is complete

JoinFormation node

Use to have an AI agent join a formation.

Version 1.6
528

Lumberyard User Guide
AISequence Nodes

Inputs

Port Type Description

Start Any Start formation join

LeaderId Any ID of the leader

Outputs

Port Type Description

Done Any Triggered when formation join is complete

Move node
Use to command an AI agent to move to a location.

Inputs

Port Type Description

Start Any Start movement

Speed Integer Movement speed

Stance Integer Stance while moving

DestinationEntity Any Destination entity to move to

Position Vec3 Position to move to

Direction Vec3 Direction to move along

EndDistance Float End distance to move to

Outputs

Port Type Description

Done Any Triggered when movement is complete

MoveAlongPath node
Use to have an AI agent move along a path.

Version 1.6
529

Lumberyard User Guide
AISequence Nodes

Inputs

Port Type Description

Start Any Begins AI agent movement

Speed Integer Speed of the agent

Stance Integer Stance of the agent used while following the path

PathName String Name of the path the agent will follow

Outputs

Port Type Description

Done Any Triggered when the agent has completed the
path

Shoot node

Use to make an AI agent shoot at an entity or a location for a specified length of time.

Inputs

Port Type Description

Start Any Starts the AI agent shooting

TargetEntity Any Entity the agent will shoot at

TargetPosition Vec3 Position the agent will shoot at

Duration Float Length of time to shoot for

Outputs

Port Type Description

Done Any Triggers when shooting is finished

Stance node

Use to control the stance of an AI agent.

Version 1.6
530

Lumberyard User Guide
AISequence Nodes

Inputs

Port Type Description

Start Any Starts the stance

Stance Integer Name of the stance the AI agent will use

Outputs

Port Type Description

Done Any Triggers when the stance is complete

Start node
Use to define the start of an AI sequence of actions. All AI sequence nodes must be executed using
this node.

Inputs

Port Type Description

Start Any Starts the AI sequence

Interruptible Boolean The agent will automatically stop when not in the
Idle state.

ResumeAfterInterruption Boolean AI sequence will automatically resume from the
start or from the bookmark ID the agent returns
to from the Idle state

Outputs

Port Typed Description

Link Any Link to other nodes

VehicleRotateTurret node
Use to rotate a vehicle turret to an aiming position.

Version 1.6
531

Lumberyard User Guide
Animations Nodes

Inputs

Port Type Description

Start Any Starts turret rotation

AimPos Vec3 Position to aim at with the turret

ThresholdPitch Float Threshold of the pitch angle before triggering the
output port. Must be used with the ThresholdYaw
port

ThresholdYaw Float Threshold of the yaw angle before triggering
the output port. Must be used with the
ThresholdPitch port

Outputs

Port Type Description

Done Any Starts turret rotation

Wait node
Used to make the AI agent wait for a specified length of time.

Inputs

Port Type Description

Start Any Start waiting

Time Float Duration to wait for

Outputs

Port Type Description

Done Any Triggered when wait has completed

Animations Nodes
You can use these flow graph nodes to configure animation-related settings.

Topics

• AnimationEventListener node (p. 533)

• AttachmentControl node (p. 533)

• BoneInfo node (p. 534)

• CheckAnimPlaying node (p. 534)

• CooperativeAnimation node (p. 535)

Version 1.6
532

Lumberyard User Guide
Animations Nodes

• LookAt node (p. 536)

• NoAiming node (p. 537)

• PlayAnimation node (p. 537)

• PlayCGA node (p. 538)

• PlaySequence node (p. 538)

• StopAnimation node (p. 540)

• SynchronizeTwoAnimations node (p. 540)

• TriggerOnKeyTime node (p. 541)

AnimationEventListener node
Use to listen for a specific animation event and trigger the output.

Inputs

Port Type Description

Enable Any Start listening for animation events

Disable Any Stop listening for animation events

EventName String Name of the animation event to listen for

Once Boolean If set to True, the node will be disabled after the
event has been received.

Outputs

Port Type Description

Enabled Any Triggered when listening has started

Disabled Any Triggered when listening has stopped

EventTriggered Any Triggered when the animation event is received

AttachmentControl node
Use to add and control an attachment for a character.

Inputs

Port Type Description

Attachment String Name of the attachment

Show Any Show the attachment

Version 1.6
533

Lumberyard User Guide
Animations Nodes

Port Type Description

Hide Any Hide the attachment

Outputs

Port Type Description

Shown Any Triggered when the attachment is shown

Hidden Any Triggered when the attachment is hidden

BoneInfo node

Use to specify and output character bones to create attachments or link objects.

Inputs

Port Type Description

BoneName String Name of the bone to get information for

Enabled Boolean Enables and disables the node

Outputs

Port Type Description

LocalPos Vec3 Position of the bone in local space

LocalRot Vec3 Rotation of the bone in local space

WorldPos Vec3 Position of the bone in world space

WorldRot Vec3 Rotation of the bone in world space

CheckAnimPlaying node

Use to check whether a defined animation is playing or not.

Inputs

Port Type Description

Check Any Checks once whether the animation is playing

Version 1.6
534

Lumberyard User Guide
Animations Nodes

Port Type Description

CheckAlways Boolean Checks each frame whether the animation is
playing

Animation String Name of the animation

Layer Integer Which layer the animation should be playing on

Outputs

Port Type Description

Playing Any Triggers when the animation is playing on the
layer

NotPlaying Any Triggers when the animation is not playing on the
layer

TopOfStack Any Triggers when the animation is at the top of the
stack, meaning it is not currently blended out

CooperativeAnimation node

Use to allow the playing of a positioned and aligned animation for one or more characters.

Inputs

Port Type Description

Start Any Starts the animation

Stop Any Stops the animation

ForceStart Force the animation to start

AdjustToTerrain Makes sure the character is at terrain level

Version 1.6
535

Lumberyard User Guide
Animations Nodes

Port Type Description

IgnoreCharactersDeath If false and any of the actors die, stops the
animation for all the actors

NoCollisionBetween If true, the first actor won't collide with the other
actors

Location Starts the animation at a specific location

Rotation Starts the animation at a specific rotation

Alignment Alignment type:

• WildMatch: Move both characters the least
amount

• FirstActor: First actor can be rotated but not
moved

• FirstActorNoRot: First actor can neither be
moved or rotated

• FirstActorPosition: Slides the actor so that
the first one is at the specified Location

• Location: Moves both characters until the
reference point of the animation is at the
specified location

Entity_01 - Entity_04 Name of the specific entity

AnimationName_01 -
AnimationName_4

 Name of the specific animation

SlideDuration_01 -
SlideDuraction_04

 Time in seconds to slide the entity into position

HPhysics1 - HPhysics4 Prohibits the character from being pushed
through solid objects

Outputs

Port Type Description

Finished_01 -
Finished_04

Any Activates when the specific actor is done

Done Any Activates when all actors are done

LookAt node

Use to make a character look at a position.

Version 1.6
536

Lumberyard User Guide
Animations Nodes

Inputs

Port Type Description

Start Any Character begins looking at a target

Stop Any Character stops looking at a target

FieldOfView Float Field of view for the character

Blending Float

Target Any The target for the character to look at

TargetPos Vec3 The target look position

LookAtPlayer Boolean Character looks at player

NoAiming node

Use to suppress aiming for a character.

Inputs

Port Type Description

Dont Aim! Any Suppresses aiming for a character

Outputs

Port Type Description

Done Any Triggered when aiming has ceased

PlayAnimation node

Use to play an animation on the character's skeleton, bypassing the AnimationGraph. The animation
name can be specified directly as mapped in the .cal file.

Inputs

Port Type Description

Start Any Starts the animation

Version 1.6
537

Lumberyard User Guide
Animations Nodes

Port Type Description

Stop Any Stops the animation

Animation String Name of the animation to play

BlendInTime Float Blend-in time in seconds

Layer Integer Layer on which to play the animation

Loop Boolean Used to loop the animation indefinitely

ForceUpdate Boolean Animation plays even if not visible

PauseAnimGraph Boolean Deprecated

ControlMovement Boolean Controls movement of the entities

Outputs

Port Type Description

Done Any Triggers when the animation is done

AlmostDone Any Triggers when the animation is almost done

PlayCGA node

Use to play .cga files and their animation, as well as .anm files belonging to the .cga file. The Trigger
input starts the animation.

Inputs

Port Type Description

CGA_File String File name of the animation

CGA_Animation String Name of the animation

Trigger Boolean Starts the animation

Outputs

Port Type Description

Done Boolean Triggers when the animation has finished

PlaySequence node

Use to play a Track View sequence. Use the PerformBlendOut input to make sure that the camera has
a seamless blend into the game camera when the sequence is over. Make sure to beam the player to
the right place when the sequence starts.

Version 1.6
538

Lumberyard User Guide
Animations Nodes

Inputs

Port Type Description

Sequence String Name of the sequence

StartTrigger Any Starts the sequence

PauseTrigger Any Pauses the sequence

StopTrigger Any Stops the sequence

PrecacheTrigger Any Precache keys that start in the first few seconds
of the animation

BreakOnStop Boolean If set to true, stopping the sequence doesn't jump
it to the end

BlendPosSpeed Float Speed at which the position gets blended into the
animation

BlendRotSpeed Float Speed at which the rotation gets blended into the
animation

PerformBlendOut Boolean If True, the cutscende will blend out after it has
finished to the new view

StartTime Float Time at which the sequence will start playing

PlaySpeed Float Speed at which the sequence plays at

JumpToTime Float Jump to a specific time in the sequence

TriggerJumpToTime Any Trigger the animation to jump the animation to
the sequence time specifed

TriggerJumpToEnd Any Trigger the animation to jump the animation to
the end of the sequence.

Outputs

Port Type Description

Started Any Triggered when the animation starts

Done Any Triggered when the animation has stopped or is
aborted

Version 1.6
539

Lumberyard User Guide
Animations Nodes

Port Type Description

Finished Any Triggered when the animation has stopped

Aborted Any Triggered when the animation is aborted

SequenceTime Float Current time of the sequence

CurrentSpeed Float Speed at which the sequence is being played

StopAnimation node

Use to stop the animation.

Inputs

Port Type Description

Stop! Any Stops the animation

Outputs

Port Type Description

Done Any Triggers when the the animation has stopped

SynchronizeTwoAnimations node

Use to synchronize two animations for two entities.

Inputs

Port Type Description

Entity1 Any First entity to synchronize

Entity2 Any Second entity to synchronize

Animation1 Srring First animation to synchronize

Animation2 String Second animation to synchronize

ResyncTime Float Resync time

MaxPercentSpeedChangeFloat Maximum percentage speed change

Version 1.6
540

Lumberyard User Guide
Audio Nodes

TriggerOnKeyTime node

Use to play and output an animation at a specified time.

Inputs

Port Type Description

Animation String Animation to play

TriggerTime Float When to play the animation

Outputs

Port Type Description

Trigger Any Plays the animation

Audio Nodes
The following flow graph nodes are used to control various audio system functionality and settings. All
references to Audiokinetic Wwise also applies to the LTX version.

Topics

• entity:AudioTriggerSpot node (p. 541)

• entity:AudioAreaEntity node (p. 542)

• entity:AudioAreaAmbience node (p. 542)

• entity:AudioAreaRandom node (p. 543)

• PreloadData node (p. 543)

• Rtpc node (p. 544)

• Switch node (p. 544)

• Trigger node (p. 544)

entity:AudioTriggerSpot node

Used to enable and disable the associated entity.

Inputs

Port Type Description

Disable Boolean Stops the sound. If available, triggers the event
set in the StopTriggerName property.

Version 1.6
541

Lumberyard User Guide
Audio Nodes

Port Type Description

Enable Boolean Starts the sound. Triggers the event set in the
PlayTriggerName property.

Outputs

Port Type Description

Done Boolean Outputs when the event started by the play
trigger has completed playing.

entity:AudioAreaEntity node
Used to enable and disable the associated entity, as well as control what happens when the player
enters and leaves the shape.

Inputs

Port Type Description

Disable Boolean Stops the sound. If available, triggers the event
set in the StopTriggerName property.

Enable Boolean Starts the sound. Triggers the event set in the
PlayTriggerName property.

Outputs

Port Type Description

FadeValue Float Normalized value from 0 to 1 of the
FadeDistance when the player approaches the
shape.

OnFarToNear Boolean Player enters the fade distance

OnInsideToNear Boolean Player leaves the shape

OnNearToFar Boolean Player leaves the fade distance

OnNearToInside Boolean Player enters the shape

entity:AudioAreaAmbience node
Used to enable and disable the associated entity.

Version 1.6
542

Lumberyard User Guide
Audio Nodes

Inputs

Port Type Description

Disable Boolean Disables the audio entity

Enable Boolean Enables the audio entity

Outputs

Port Type Description

Done Boolean Outputs when the audio entity is enabled.

entity:AudioAreaRandom node

Used to enable and disable the associated entity.

Inputs

Port Type Description

Disable Boolean Disables the entity

Enable Boolean Enables the entity

PreloadData node

Used to load and unload preload requests to optimize memory consumption. This node lists only
preloads that are not set to Autoload in the Audio Controls Editor.

Inputs

Port Type Description

Preload Request String Defines the preload requests that should be
loaded or unloaded

Load Any Loads the preload requests

Unload Any Loads the preload requests

Version 1.6
543

Lumberyard User Guide
Audio Nodes

Rtpc node

Use to change RTPC values. If you have an entity assigned to this node, the RTPC assigned to the
Name input controls parameters only on the assigned entity. If no entity is assigned, the parameter
change is applied to all entities.

For Wwise, any RTPC that is not assigned to an entity sets connected game parameters on all game
objects. An RTPC that is assigned to an entity sets the connected game parameters only on the game
object corresponding to the assigned entity in Wwise. You can monitor the RTPC changes for an entity
in the game object profiler layout.

Inputs

Port Type Description

Name String Name of the RTPC

Value Float Sets the RTPC value

Switch node

Used to set the state of a switch. Multiple states can be selected in the node to reduce the complexity
of Flow Graph logic when more than one state change should happen.

For Wwise, a connected switch state sets the Wwise switch only on a game object corresponding to
the assigned entity. A switch state connected to a Wwise switch without an assigned entity is set on
the Dummy Game object in Wwise. A switch state connected to a Wwise state always sets the state
globally, regardless of the assigned entity.

Inputs

Port Type Description

Switch String Switch name

State1 - State4 String Name of the state

SetState1 - SetState4 Any Sets the state

Trigger node

Used to trigger events.

Version 1.6
544

Lumberyard User Guide
Camera Nodes

For Wwise, a trigger without an entity assigned is executed on the dummy game object in Wwise. A
trigger with an entity assigned is executed on the game object corresponding to the assigned entity.

Inputs

Port Type Description

PlayTrigger String The name of the event. Any event can be
triggered with this node.

StopTrigger String The name of the event. Any event can be
triggered with this node. If no event is defined
and a sound is started on the corresponding
PlayTrigger, it stops at once when the stop input
is triggered.

Play Any Triggers the event defined in the PlayTrigger
input.

Stop Any Triggers the event defined in the StopTrigger
input.

Outputs

Port Type Description

Done Any Event has completed

Camera Nodes
You can use the following flow graph nodes to configure player camera settings.

Topics

• GetTransform node (p. 545)

• View node (p. 546)

• ViewShakeEx node (p. 546)

GetTransform node
Used to get and output the position and direction of the player camera.

Inputs

Port Type Description

Get Any Triggers the retrieval of the currently active
camera position and direction

Version 1.6
545

Lumberyard User Guide
Camera Nodes

Outputs

Port Type Description

Pos Vec3 Output camera position

Dir Vec3 Output camera direction

View node

Used to create a custom view linked to the chosen entity.

Inputs

Port Type Description

Enable Boolean Activates the node

Disable Boolean Deactivates the node

FOV Float Camera field of view

Blend Boolean Whether to blend the camera or not

BlendFOVSpeed Float Blended field of view speed

BlendFOVOffset Float Blended field of view offset

BlendPosSpeed Float Blended position speed

BlendPosOffset Vec3 Blended position offset

BlendRotSpeed Float Blended rotation speed

BlendRotOffset Vec3 Blended rotation offset

ViewShakeEx node

Used to enable camera shake on the player's view. You can specify the fade in and out durations and
stop the effect.

Version 1.6
546

Lumberyard User Guide
ComponentEntity Nodes

Inputs

Port Type Description

Trigger Any Triggers the node

Restrict Integer Restricts the view

View Integer Which camera view to use

GroundOnly Boolean Apply shake only when the player is standing on
the ground

Smooth Boolean AAnys sudden direction changes

Angle Vec3 Shake angle

Shift Vec3 Shake shift

Frequency Float Shake frequency

Randomness Float Randomness of shake

Distance Float Distance to effect source

RangeMin Float Minimum strength effect range

RangeMax Float Maximum strength effect range

SustainDuration Float Duration of the non-fading part of the shake

FadeInDuration Float Fade in time

FadeOutDuration Float Fade out time

Stop Any Stops the shake

Preset Integer Preset input values

ComponentEntity Nodes
You can use the following flow graph nodes to get and set various component entity system settings.
These nodes only work with the component entity system.

In addition, with the following exceptions, any flow graph node that has an Entity ID input port will not
work with the component entity system nodes by default:

Version 1.6
547

Lumberyard User Guide
ComponentEntity Nodes

• Physics:ActionImpulse node

• Physics:Dynamics node

• Movement:RotateEntity node

• Entity:EntityID node

Topics

• Audio:ExecuteOneShot node (p. 548)

• Audio:StopOneShot node (p. 548)

• EventActionHandler:AZVector3 node (p. 549)

• EventActionHandler:EntityID node (p. 549)

• EventActionHandler:Float node (p. 550)

• EventActionSender:AZVector3 node (p. 550)

• EventActionSender:EntityID node (p. 551)

• EventActionSender:Float node (p. 551)

• GameplayEventHandler:AZVector3 node (p. 551)

• GameplayEventHandler:EntityID node (p. 552)

• GameplayEventHandler:Float node (p. 552)

• GameplayEventSender:AZVector3 node (p. 553)

• GameplayEventSender:EntityID node (p. 553)

• GameplayEventSender:Float node (p. 554)

• Light:Switch node (p. 554)

• Particles:Switch node (p. 554)

• TransformComponent:GetEntityPosition node (p. 555)

• TransformComponent:GetEntityRotation node (p. 555)

• TransformComponent:SetEntityPosition node (p. 556)

• TransformComponent:SetEntityRotation node (p. 556)

• TriggerComponent:EnterTrigger node (p. 557)

Audio:ExecuteOneShot node

Used to execute the audio trigger as a one-shot on the entity.

Inputs

Port Description

Activate Any Activates the node

Trigger String Audio trigger

Audio:StopOneShot node

Used to stop the specified audio one shot trigger.

Version 1.6
548

Lumberyard User Guide
ComponentEntity Nodes

Inputs

Port Description

Activate Any Activates the node

Trigger String Audio trigger

EventActionHandler:AZVector3 node
Used for the entity event action handler.

Inputs

Port Description

ChannelId Any Entity channel ID

EventName String Name of the event action handler

Enable Any Enables the event action handler

Disable Any Disables the event action handler

Outputs

Port Description

Success Vec3 Vector value on event action handler success

Failure Vec3 Vector value on event action handler failure

EventActionHandler:EntityID node
Used for the entity event action handler.

Inputs

Port Description

ChannelId Any Entity channel ID

EventName String Name of the event action handler

Version 1.6
549

Lumberyard User Guide
ComponentEntity Nodes

Port Description

Enable Any Enables the event action handler

Disable Any Disables the event action handler

Outputs

Port Description

Success Any Value on event action handler success

Failure Any Value on event action handler failure

EventActionHandler:Float node
Used for the entity event action handler.

Inputs

Port Description

ChannelId Any Entity channel ID

EventName String Name of the event action handler

Enable Any Enables the event action handler

Disable Any Disables the event action handler

Outputs

Port Description

Success Float Float value on event action handler success

Failure Float Float value on event action handler failure

EventActionSender:AZVector3 node
Used for the entity event action sender.

Inputs

Port Description

Activate Any Activates the node

Version 1.6
550

Lumberyard User Guide
ComponentEntity Nodes

Port Description

ChannelID Any ID of the channel for the event action sender

SendEventValue Vec3 Vector value for the event action sender

Eventname String Name of the event action sender

EventActionSender:EntityID node
Used for the entity event action sender.

Inputs

Port Description

Activate Any Activates the node

ChannelID Any ID of the channel for the event action sender

SendEventValue Any Value for the event action sender

Eventname String Name of the event action sender

EventActionSender:Float node
Used for the entity event action sender.

Inputs

Port Description

Activate Any Activates the node

ChannelID Any ID of the channel for the event action sender

SendEventValue Float Float value for the event action sender

Eventname String Name of the event action sender

GameplayEventHandler:AZVector3 node
Used for the gameplay event handler.

Version 1.6
551

Lumberyard User Guide
ComponentEntity Nodes

Inputs

Port Description

ChannelId Any Entity channel ID

EventName String Name of the gameplay event handler

Enable Any Enables the gameplay event handler

Disable Any Disables the gameplay event handler

Outputs

Port Description

Success Vec3 Vector value on event gameplay event handler
success

Failure Vec3 Vector value on gameplay event handler failure

GameplayEventHandler:EntityID node
Used for the gameplay event handler.

Inputs

Port Description

ChannelId Any Entity channel ID

EventName String Name of the gameplay event handler

Enable Any Enables the gameplay event handler

Disable Any Disables the gameplay event handler

Outputs

Port Description

Success Any Value on gameplay event handler success

Failure Any Value on event gameplay event handler failure

GameplayEventHandler:Float node
Used for the gameplay event handler.

Version 1.6
552

Lumberyard User Guide
ComponentEntity Nodes

Inputs

Port Description

ChannelId Any Entity channel ID

EventName String Name of the gameplay event handler

Enable Any Enables the gameplay event handler

Disable Any Disables the gameplay event handler

Outputs

Port Description

Success Float Float value on event action handler success

Failure Float Float value on event action handler failure

GameplayEventSender:AZVector3 node

Used for the gameplay event sender.

Inputs

Port Description

Activate Any Activates the node

ChannelID Any ID of the channel for the gameplay event sender

SendEventValue Vec3 Vector value for the gameplay event sender

Eventname String Name of the gameplay event sender

GameplayEventSender:EntityID node

Used for the gameplay event sender.

Inputs

Port Description

Activate Any Activates the node

Version 1.6
553

Lumberyard User Guide
ComponentEntity Nodes

Port Description

ChannelID Any ID of the channel for the gameplay event sender

SendEventValue Any Value for the gameplay event sender

Eventname String Name of the gameplay event sender

GameplayEventSender:Float node

Used for the gameplay event sender.

Inputs

Port Description

Activate Any Activates the node

ChannelID Any ID of the channel for the gameplay event sender

SendEventValue Float Float value for the gameplay event sender

Eventname String Name of the gameplay event sender

Light:Switch node

Used to turn the light entity on or off.

Inputs

Port Description

On Any Turns the light on

Off Any Turns the light off

Particles:Switch node

Used to show or hide the particle entity.

Version 1.6
554

Lumberyard User Guide
ComponentEntity Nodes

Inputs

Port Description

Show Any Displays the particle

Hide Any Hides the particle

TransformComponent:GetEntityPosition node

Used to get the entity position.

Inputs

Port Description

Activate Any Activates the node

Coordinate System Integer Coordinate system used

Outputs

Port Description

CurrentPosition Vec3 Outputs the current entity position

TransformComponent:GetEntityRotation node

Used to get the entity rotation.

Inputs

Port Description

Activate Any Activates the node

Version 1.6
555

Lumberyard User Guide
ComponentEntity Nodes

Port Description

Coordinate System Integer Coordinate system used

Outputs

Port Description

CurrentRotation Vec3 Current entity rotation

Forward Vec3 Entity forward position

Up Vec3 Entity up position

Right Vec3 Entity right position

TransformComponent:SetEntityPosition node
Used to

Inputs

Port Description

Activate Any Activates the node

NewPosition Vec3 Position to be set

Coordinate System Integer Coordinate system used

TransformComponent:SetEntityRotation node
Used to set entity rotation.

Inputs

Port Description

Activate Any Activates the node

Version 1.6
556

Lumberyard User Guide
CustomAction Nodes

Port Description

Rotation Vec3 Rotation to be set

Coordinate System Integer Coordinate system used

TriggerComponent:EnterTrigger node

Used to trigger when the entity enters or leaves the trigger area.

Outputs

Port Description

Entered Any Triggers when entity enters the trigger area

Exited Any Triggers when entity leaves the trigger area

CustomAction Nodes
You can use the following flow graph nodes to control custom actions that entities take.

Topics

• Abort node (p. 557)

• Control node (p. 558)

• End node (p. 559)

• Start node (p. 559)

• Succeed node (p. 559)

• SucceedWait node (p. 560)

• SucceedWaitComplete node (p. 560)

Abort node

Used to start the abort path of a custom action.

Outputs

Port Type Description

ObjectId Any Entity ID of the object on which
the custom action is executing
on

Version 1.6
557

Lumberyard User Guide
CustomAction Nodes

Control node

Used to control a custom action instance.

Inputs

Port Type Description

Start String Entity is entering the start path

Succeed String Entity is entering the succeed
path

SucceedWait String Entity is entering the succeed
wait path

SucceedWaitComplete String Entity is entering the succeed
wait complete path

Abort Any Entity is entering the abort path

EndSuccess Any Entity is entering the end
succeed path

EndFailure Any Entity is entering the end failure
path

Outputs

Port Type Description

Started Any Entity has entered the start path

Succeeded Any Entity has entered the succeed
path

SucceedWait Any Entity has entered the succeed
wait path

SucceedWaitComplete Any Entity has entered the succeed
wait completed

Aborted Any Entity has entered the abort path

EndedSuccess Any Entity has entered the end
success path

EndedFailure Any Entity has entered the end
failure path

Version 1.6
558

Lumberyard User Guide
CustomAction Nodes

End node

Used to end a custom action.

Inputs

Port Type Description

Succeed Any Entity has entered the succeed
path

SucceedWait Any Entity has entered the succeed
wait path

SucceedWaitComplete Any Entity has entered the succeed
wait complete path

Abort Any Entity has entered the abort path

EndSuccess Any Entity has entered the end
succeed path

EndFailure Any Entity has entered the end
failure path

Start node

Used to start a custom action.

Outputs

Port Type Description

ObjectId Any Entity ID of the object on which
the custom action is executing
on

Succeed node

Used to indicate a custom action succeeded.

Version 1.6
559

Lumberyard User Guide
Debug Nodes

Outputs

Port Type Description

ObjectId Any Entity ID of the object on which
the custom action is executing
on

SucceedWait node

Used ro indicate that a custom action wait succeeded.

Outputs

Port Type Description

ObjectId Any Entity ID of the object on which
the custom action is executing
on

SucceedWaitComplete node

Used to indicate that a custom action wait succeeded and completed.

Outputs

Port Type Description

ObjectId Any Entity ID of the object on which
the custom action is executing
on

Debug Nodes
You can use the following flow graph nodes to configure various settings used for debugging purposes.

Topics

• CSVDumper node (p. 561)

• ConsoleVariable node (p. 561)

• DisplayMessage node (p. 562)

• Draw2d nodes (p. 562)

• Draw nodes (p. 565)

• ExecuteString node (p. 569)

• FloatToString node (p. 570)

Version 1.6
560

Lumberyard User Guide
Debug Nodes

• Frame node (p. 570)

• FrameExtended node (p. 571)

• InputKey node (p. 571)

• Log node (p. 572)

• Memory node (p. 572)

CSVDumper node

Used to store the cell values of the specified .csv file.

Inputs

Port Type Description

filename String CSV file to use

name String column/row name

value0 - value9 Any cell values

ConsoleVariable node

Used to set and get the value of a console variable.

Inputs

Port Type Description

Set Any Set console variable value

Get Any Get console variable value

CVar String Name of console variable

Version 1.6
561

Lumberyard User Guide
Debug Nodes

Port Type Description

Value String Value of console variable to set

Outputs

Port Type Description

CurValue Current value of the console variable

DisplayMessage node

If an entity is not provided, the local player will be used instead.

Inputs

Port Type Description

Show Any Show messasge

Hide Any Hide messasge

message String Message to display on the HUD

DisplayTime FloatFloat Duration that the message will be visible for

posx Float Input x text position

posy Float Input y text posirion

fontSize Float Input font size

color Vec3 Color of the message text

centered Boolean Centers the text around the coordinates

Outputs

Port Type Description

Show Any Displays the message

Hide Any Hides the message

Draw2d nodes

Draw2d:Circle node

Version 1.6
562

Lumberyard User Guide
Debug Nodes

Used to draw a circle.

Inputs

Port Type Description

Draw Any Draws a 2D circle

ScreenX Float X-axis position of the center of
the circle

ScreenY Float Y-axis position of the center of
the circle

Radius Float Radius of the circle

Color Vec3 Color of the circle

Opacity Float Transparency of the circle

Time Float Number of seconds the circle
will be visible for

Draw2d:Line node

Used to draw a line.

Inputs

Port Type Description

Draw Any Draws a line

StartX Float X-axis starting point of the line

StartY Float Y-axis starting point of the line

EndX Float X-axis ending point of the line

EndY Float Y-axis ending point of the line

Color Vec3 Color of the line

Opacity Float Transparency of the line

Version 1.6
563

Lumberyard User Guide
Debug Nodes

Port Type Description

Time Float Number of seconds the line will be visible for

Draw2d:Rectangle node

Used to draw a rectangle.

Inputs

Port Type Description

Draw Any Draws a rectangle

ScreenX Float X-axis position of the center of the rectangle

ScreenY Float X-axis position of the center of the rectangle

Width Float Width of the rectangle

Height Float Height of the rectangle

Centered Boolean Rectangle centered at ScreenX and ScreenY

Color Vec3 Color of the rectangle

Opacity Float Transparency of the rectangle

Time Float Number of seconds the rectangle will be visible
for

Draw2d:Text node

Used to output a text message.

Inputs

Port Type Description

Draw Any Displays text

Text String Text to display

Version 1.6
564

Lumberyard User Guide
Debug Nodes

Port Type Description

ScreenX Float X-axis position of the text

ScreenY Float Y-axis position of the text

FontSize Float Text message font size

Color Vec3 Color of the text

Opacity Float Transparency of the text

Time Float Number of seconds the text will be visible for

Draw nodes

Draw:AABB node

Used to draw an AABB bounding box.

Inputs

Port Type Description

Draw Any Draws an AABB bounding box

MinPos Vec3 Minimum position of the bounding box

MaxPos Vec3 Maximum position of the bounding box

Color Vec3 Color of the bounding box

Time Float Number of seconds the bounding box will be
visible for

Draw:Cone node

Used a draw a cone.

Inputs

Port Type Description

Draw Any Draws a cone

Version 1.6
565

Lumberyard User Guide
Debug Nodes

Port Type Description

Pos Vec3 Position of the cone

Dir Vec3 Direction of the cone axis

Radius Float Radius of the cone base

Height Float Height of the cone

Color Vec3 Color of the cone

Time Float Number of seconds the cone will be visible for

Draw:Cylinder node

Used to draw a cylinder.

Inputs

Port Type Description

Draw Any Draws a cylinder

Pos Vec3 Position of the cylinder

Dir Vec3 Direction of the cylinder axis

Radius Float Radius of the cylinder

Height Float Height of the cylinder

Color Vec3 Color of the cylinder

Time Float Number of seconds the cylinder will be visible for

Draw:Direction node

Used to draw an arrow.

Inputs

Port Type Description

Draw Any Draws an arrow

Version 1.6
566

Lumberyard User Guide
Debug Nodes

Port Type Description

Pos Vec3 Position of the arrow

Dir Vec3 Direction the arrow is pointing

Radius Float Radius of the arrow head

Color Vec3 Color of the arrow

Time Float Number of seconds the arrow will be visible for

Draw:EntityTag node

Used to draw a text message above an entity.

Inputs

Port Type Description

Draw Any Displays a text message above an entity

Message String Text message

FontSize Float Text message font size

Color Vec3 Text message color

Time Float Number of seconds the message will be visible
for

Outputs

Port Type Description

Done Triggers when the text message is no longer
visible

Draw:EntityTagAdvanced node

Used to draw a text message above an entity.

Version 1.6
567

Lumberyard User Guide
Debug Nodes

Inputs

Port Type Description

Draw Any Displays a text message above an entity

Message String Message to be displayed

FadeTime Float Number of seconds for text message to fade outr

FontSize Float Font size of the text message

ViewDistance Float Distance from camera the entity must be within
for message to be displayed

StaticID String Static tag ID

ColumnNum Integer Which column above an entity the message will
be displayed in

Color Vec3 Color of the text message

Time Float Number of seconds the text message will be
visible for

Outputs

Port Type Description

Done Any Triggers when the text message is no longer
visible

Draw:Line node

Used to draw a line.

Inputs

Port Type Description

Draw Any Draws a line in 3D space

Pos1 Vec3 Starting point of the line

Pos2 Vec3 Ending point of the line

Dir Vec3 Direction of the line

Length Float Length of the line

Color Vec3 Color of the line

Version 1.6
568

Lumberyard User Guide
Debug Nodes

Port Type Description

Time Float Number of seconds the circle will be visible for

Draw:PlanarDisc node

Used to draw a disc.

Inputs

Port Type Description

Draw Any Draws a disc

Pos Vec3 Position of the disc center

InnerRadius Float Inner radius of the disc

OuterRadius Float Outer radius of the disc

Color Vec3 Color of the disc

Time Float Number of seconds the circle will be visible for

Draw:Sphere node

Used to draw a sphere.

Inputs

Port Type Description

Draw Any Draws a sphere

Pos Vec3 Position of the sphere center

Radius Float Radius of the sphere

Color Vec3 Color of the sphere

Time Float Number of seconds the circle will be visible for

ExecuteString node

Used to execute a string when using the console.

Version 1.6
569

Lumberyard User Guide
Debug Nodes

Inputs

Port Type Description

Set Any Executes the string

String String String to be executed

NextFrame Boolean String will be executed next frame

FloatToString node

Used to output a float value in string format with a limited number of decimals.

Inputs

Port Type Description

Activate Any Activates the node

Number Float Floating point number to convert

AmountOfDecimals Integer Nimber of decimal places for the floating point

Outputs

Port Type Description

Out String Outputs a string representation of the floating
point input

Frame node

Used to output the current frame rate data.

Outputs

Port Type Description

frametime Float Current frame time

framerate Float Current frame rate

frameid Integer Frame ID

Version 1.6
570

Lumberyard User Guide
Debug Nodes

FrameExtended node

Used to output extended current frame rate data.

Inputs

Port Type Description

Start Any Start collecting frame rate data

Stop Any Stop collecting frame rate data

Reset Any Resets the data

Outputs

Port Type Description

FrameTime Float Current frame time

FrameRate Float Current frame rate

FrameId Integer Frame ID

MinFrameRate Float Minimum frame rate

MaxFrameRate Float Maximum frame rate

AverageFrameRate Float Average frame rate

InputKey node

Used to catch key inputs. The Entity input is required for multiplayer games.

Inputs

Port Type Description

Enable Any Activates the node

Disable Any Deactivates the node

Key String Key name

NonDevMode String Can be used in non-dev mode if set to true

Version 1.6
571

Lumberyard User Guide
Dialog Nodes

Port Type Description

Keyboard only Boolean Ignores non-keyword data if set to true

Outputs

Port Type Description

Pressed String Triggers when a key is pressed

Released String Triggers when a key is released

Log node

Used to log string input messages to the console.

Inputs

Port Type Description

input Any Activates the node

message String Message to be logged

Memory node

Used to display video memory data.

Inputs

Port Type Description

sysmem Integer Outputs system video memory data

videomem_thisframe Integer Outputs video memory used for current frame

videomem_recently Integer Outputs video memory recently used

meshmem Integer Outputs memory used for the mesh object

Dialog Nodes
You can use the following flow graph nodes to configure and control actor dialogs.

Note
These nodes will only work with the Legacy Game Sample (CryEngine GameSDK), which is
available at Lumberyard Downloads.

Version 1.6
572

https://aws.amazon.com/lumberyard/downloads/

Lumberyard User Guide
Dialog Nodes

Topics

• PlayDialog node (p. 573)

PlayDialog node

Used to play a dialog.

Inputs

Port Type Description

Play Any Plays the dialog

Stop Any Stops the dialog

Dialog String Name of the dialog to play

StartLine Integer Line to start the dialog from

AIInterrupt Integer AI interrupt behavior; values are
Never, Alert, and Combat

AwareDistance Float Distance that player is
considered as listening at

AwareAngle Float View angle that player is
considered as listening at

AwareTimeout Float Time out until non-aware player
aborts dialog

Flags Integer Dialog playback flags

Buffer String Stores the dialog. Only one
dialog can be played at any time
in each buffer

BufferDisplay Float How many more seconds the
dialog will wait until the previous
dialog in its dialog has finished

Actor 1-8 Any Actor entity IDs

Version 1.6
573

Lumberyard User Guide
Dynamic Response Nodes

Outputs

Port Type Description

Started Any Triggered when the dialog has
started

Done Any Triggered when the dialog has
finished or aborted

Finished Any Triggered when the dialog has
finished

Aborted Any Triggered when the dialog has
aborted

PlayerAbort Integer Triggered when the dialog has
aborted because the player is
out of range or out of view

AIAbort Any Triggered when the dialog has
aborted because the AI got
alerted

ActorDied Any Triggered when the dialog has
aborted because the Actor died

LastLine Integer Last line played when the dialog
was aborted

CurLine Integer Current line; triggered whenever
a line starts

Dynamic Response Nodes
You can use the following flow graph nodes to configure settings for the Dynamic Response system.

Note
These nodes will only work with the Legacy Game Sample (CryEngine GameSDK), which is
available at Lumberyard Downloads.

Topics

• SendSignal node (p. 574)

• SetFloatVariable node (p. 575)

• SetIntegerVariable node (p. 576)

• SetStringVariable node (p. 577)

SendSignal node

Used to send a signal to the Dynamic Response system.

Version 1.6
574

https://aws.amazon.com/lumberyard/downloads/

Lumberyard User Guide
Dynamic Response Nodes

Inputs

Port Type Description

Send Any Sends the dynamic response
signal

Cancel Any Cancels the dynamic response
signal

Name String Name of the dynamic response
signal

Delay Float Delays the sending of the
dynamic response signal

ContextCollection String Name of the variable collection
sent along with the signal as a
context

AutoReleaseContextCollection Boolean Controls whether the variable
collection is released after
processing the signal.

Outputs

Port Type Description

Done String Triggered when the signal is
sent or is cancelled.

SetFloatVariable node

Used to set a float variable in the Dynamic Response system.

Inputs

Port Type Description

Set Any Set the given value to the
specified variable

EntityID Any The ID of the entity to fetch the
collection from

CollectionName String The name of the collection

VariableName String The name of the variable to set

FloatValue Float The value of the variable

Version 1.6
575

Lumberyard User Guide
Dynamic Response Nodes

Port Type Description

ResetTime Float The time after which the variable
is reset to its previous value

GenerateNew Boolean Determines whether a new
variable collection should be
generated

Outputs

Port Type Description

UsedCollectionName String Outputs the name of the variable
collection created or used

SetIntegerVariable node

Used to set a float variable in the Dynamic Response system.

Inputs

Port Type Description

Set Any Set the given value to the
specified variable

EntityID Voif The ID of the entity to fetch the
collection from

CollectionName String The name of the collection

VariableName String The name of the variable to set

FloatValue Float The value of the variable

ResetTime Float The time after which the variable
is reset to its previous value

GenerateNew Boolean Determines whether a new
variable collection should be
generated

Outputs

Port Type Description

UsedCollectionName String Outputs the name of the variable
collection created or used

Version 1.6
576

Lumberyard User Guide
Engine Nodes

SetStringVariable node

Used to set a string variable in the Dynamic Response system

Inputs

Port Type Description

Set Any Set the given value to the
specified variable

EntityID Any The ID of the entity to fetch the
collection from

CollectionName String The name of the collection

VariableName String The name of the variable to set

FloatValue String The value of the variable

ResetTime Float The time after which the variable
is reset to its previous value

GenerateNew Boolean Determines whether a new
variable collection should be
generated

Outputs

Port Type Description

UsedCollectionName String Outputs the name of the variable
collection created or used

Engine Nodes
You can use the followint flow graph nodes to configure various Lumberyard engine settings.

Topics

• LayerSwitch node (p. 577)

• PortalSwitch node (p. 578)

• PrecacheArea node (p. 578)

• Viewport node (p. 579)

LayerSwitch node

Used to activate and deactivate objects in a layer, as well as streaming in data to a layer.

Version 1.6
577

Lumberyard User Guide
Engine Nodes

Inputs

Port Type Description

Layer String Name of the layer

Hide Any Hides objects in the layer

Unhide Any Shows objects in the layer

EnableSerialization Any Enables objects in the layer

DisableSerialization Any Disables objects in the layer

Outputs

Port Type Description

Hidden Any Triggered if hidden

Unhidden Any Triggered if visible

PortalSwitch node

Used to switch the portal on or off.

Inputs

Port Type Description

Activate Any Activates the portal switch

Deactivate Any Deactivates the portal switch

PrecacheArea node

Used to precache an area at a specified location

Inputs

Port Type Description

Position Vec3 Location of the area to be
precached

Version 1.6
578

Lumberyard User Guide
Entity Nodes

Port Type Description

Timeout Float Timeout interval in seconds

Activate Any Activates the node

Viewport node

Used to get current viewport information.

Inputs

Port Type Description

Get Any Gets the current viewport
information

Outputs

Port Type Description

x Integer Outputs the top left X position of
the viewport

y Integer Outputs the top left Y position of
the viewport

width Integer Outputs the width of the viewport

height Integer Outputs the height of the
viewport

Entity Nodes
You can use the following flow graph nodes to control entity behavior and configure related settings.

Topics

• Attachment node (p. 580)

• BeamEntity node (p. 581)

• BroadcastEvent node (p. 581)

• CallScriptFunction node (p. 582)

• CharAttachmentMaterialParam node (p. 582)

• CheckDistance node (p. 583)

• ChildAttach node (p. 584)

• ChildDetach node (p. 584)

• Damage node (p. 585)

• EntitiesInRange node (p. 585)

• EntityId node (p. 586)

Version 1.6
579

Lumberyard User Guide
Entity Nodes

• EntityInfo node (p. 586)

• EntityPool node (p. 587)

• EntityPos node (p. 587)

• FindEntityByName node (p. 588)

• GetBounds node (p. 588)

• GetEntityExistence node (p. 589)

• GetPos node (p. 589)

• ParentId node (p. 590)

• PropertyGet node (p. 590)

• PropertySet node (p. 591)

• RemoveEntity node (p. 591)

• RenderParams node (p. 592)

• Spawn node (p. 592)

• SpawnArchetype node (p. 593)

Attachment node
Used to attach and detach attachments to an entity.

Inputs

Port Type Description

Item Any Entity to be linked

BoneName String Attachment bone

CharacterSlot Integer Host character slot

Attach Any Attach entity attached to the bone

Detach Any Detach entity attached to bone

Hide Any Hide attachment

Unhide Any Show attachment

RotationOffset Vec3 Rotation offset

TranslationOffset Vec3 Translation offset

Outputs

Port Type Description

Attached Any Triggers when entity is attached

Version 1.6
580

Lumberyard User Guide
Entity Nodes

Port Type Description

Detached Any Triggers when entity is detached

BeamEntity node

Used to beam or teleport objects instantly to any position in the level. When the Beam port is triggered
the target entity is moved to the position input on the Position port.

Inputs

Port Type Description

Beam Any Trigger to beam the entity

Position Vec3 Destination location to beam to

Rotation Vec3 Rotation to apply to entity

UseZeroRot Boolean Applies rotation even if it is 0

Scale Vec3 Vector scale value

Memo String Memo to log when position is 0

Outputs

Port Type Description

Done Any Triggers when entity has beamed to another
location

BroadcastEvent node

Used to send an event to one or more entities. The entities that will receive this event are specified by
inputting a string to the name port. Each entity that has the string that is input there as a part of their
name will receive the event set in the event port.

Inputs

Port Type Description

send Any Trigger to send an event

Version 1.6
581

Lumberyard User Guide
Entity Nodes

Port Type Description

event String Event to be sent

name String Entity to receive the event

CallScriptFunction node

Used to call a script function for the entity.

Inputs

Port Type Description

call Any Calls the function

FunctionName String Script function name

Argument1 -
Argument5

Any Function arguments

Outputs

Port Type Description

Success Any Script function was found and called

Failed Any Script function was not found or called

CharAttachmentMaterialParam node

Used to change a material on an attachment in a .cdf file. For example, you can change the material
of a character's trousers.

Set Material is the trigger, ForcedMaterial is the full file path to the material (for example:
materials/references/basecolors/grey.mtl) and SubMtId is the number of the sub-material.

Version 1.6
582

Lumberyard User Guide
Entity Nodes

Inputs

Port Type Description

CharSlot Integer Character slot within the entity

Attachment String Attachment

SetMaterial Any Sets the material

ForcedMaterial String Forcefully set the material

SubMtlId Integer Submaterial ID

Get Any Trigger to get current value

ParamFloat String Float parameter to get or be set

ValueFloat Float Trigger to set value

ParamColor String Color parameter to get or be set

ValueColor Vec3 Sets value color

Outputs

Port Type Description

ValueFloat Float Current floating point value

ValueColor Vec3 Current color value

CheckDistance node

Used to check the distance between the node entity and the entities defined in the input ports.

Inputs

Port Type Description

Check Any Trigger to check distance

Version 1.6
583

Lumberyard User Guide
Entity Nodes

Port Type Description

MinDistance Float An entity that is nearer this distance will be
ignored

MaxDistance Float An entity that is further than this distance will be
ignored

Entity1 - Entity16 Any Entity ID values

Outputs

Port Type Description

NearEntity Any Nearest entity

NearEntityDist Float Distance of nearest entity

FarEntity Any Furthest entity

FarEntityDist Float Distance of furthest entity

NoEntInRange Any Triggers when no entities are between
MinDistance and MaxDistance

ChildAttach node

Used to attach another entity to its target entity. The child entity will be linked to the target entity until
the link is removed. The entity defined in the Child input port is attached to the target entity.

Inputs

Port Type Description

Attach Any Triggers entity attachment

Child Any Child entity to be attached

KeepTransform Boolean Child entity will be kept at the same
transformation in world space

DisablePhysics Boolean Disable physics for child entity when attached

ChildDetach node

Used to detach entities from its parent entity. Usually the ChildAttach node has been used before to
link the target entity to another entity.

When KeepTransform is set, the entity will keep its transformation in world space when detached.
When EnablePhysics is set, physics will be re-enabled again when the entity is detached.

Version 1.6
584

Lumberyard User Guide
Entity Nodes

Inputs

Port Type Description

Detach Any Triggers entity detachment

KeepTransform Boolean Child entity will be kept at the same
transformation in world space

EnablePhysics Boolean Enable physics for child entity when detached

Damage node

Used to damage the specified entity when the trigger is activated.

Inputs

Port Type Description

Trigger Any Triggers the node

Damage Integer Amount of damage to inflict

DamageRelative Integer Damage inflicted is relative to the health of the
entity

Position Vec3 Location damage occurs at

EntitiesInRange node

Used to take the positions of two entities and check if they are in a certain range to each other.
Depending on the result of the check the output ports are triggered.

Inputs

Port Type Description

Trigger Any Triggers the node

Entity1 Any Entity 1

Version 1.6
585

Lumberyard User Guide
Entity Nodes

Port Type Description

Entity2 Any Entity 2

Range Float Distance range to check

Outputs

Port Type Description

InRange Boolean True if entities are in range of each other

False Any Triggers if entites are not in range

True Any Triggers if entities are in range

Distance Float Floating point distance between the two entities

DistVec Vec3 Vector distance between the two entities

EntityId node

Used to output the entity ID number of the specified entity. The node does not need to be triggered as
the entity ID never changes.

Inputs

Port Type Description

Activate Any Entity ID

Outputs

Port Type Description

Id Any Outputs the entity ID

EntityInfo node

Used to output the ID, name, class, and archetype of the target entity.

Inputs

Port Type Description

Get Any Gets entity information

Version 1.6
586

Lumberyard User Guide
Entity Nodes

Outputs

Port Type Description

Id Any Entity ID

Name String Entity name

Class String Entity class

Archetype String Entity archetype

EntityPool node

Used to prepare an entity from the pool or free it back to the pool.

Inputs

Port Type Description

Prepare Any Brings entity into existence from the pool

Free Any Frees the entity back to the pool

Outputs

Port Type Description

Ready Any Triggers when the entity is prepared and ready

Freed Any Triggers when the entity is freed and returns to
the pool

Error Any Triggers when an error occurs

EntityPos node

Handles all position related manipulations of the owner entity. All position information of the specified
entity can be read from the output ports.

Unlike the GetPos node, the output ports of this node are triggered whenever one of the target entity
properties changes.

Version 1.6
587

Lumberyard User Guide
Entity Nodes

Inputs

Port Type Description

Pos Vec3 Entity position

Rotate Vec3 Entity rotation angle in degrees

Scale Vec3 Entity scale

CoordSys Integer Coordinate system used

Outputs

Port Type Description

Pos Vec3 Current entity position

Rotate Vec3 Current entity rotation angle in degrees

Scale Vec3 Current entity scale

FwdDir Vec3 Current entity Y-axis position

RightDir Vec3 Current entity X-axis position

UpDir Vec3 Current entity Z-axis position

FindEntityByName node

Used to find an entity by name and output the entity ID.

Inputs

Port Type Description

Set Any Start searching for entity

Name String Name of entity to look for

Outputs

Port Type Description

EntityId Any Outputs the entity ID if found

GetBounds node

Used to get and output the bounds.

Version 1.6
588

Lumberyard User Guide
Entity Nodes

Inputs

Port Type Description

Get Any Gets the AABB bounding box

CoordSys Integer Coordinate system used

Outputs

Port Type Description

Min Vec3 Minimum position of the AABB

Max Vec3 Maximum position of the AABB

GetEntityExistence node

Used to get an entity's existence.

Inputs

Port Type Description

Get Any Gets entity existence status

EntityId Any Entity ID

Outputs

Port Type Description

Exists Boolean True if the entity exists

True Any Triggers if the entity exists

False Any Triggers if the entity exists

GetPos node

Used to output position information only when the trigger is activated. Similar to the EntityPos node,
which triggers the output ports continuously whenever any position information changes.

Version 1.6
589

Lumberyard User Guide
Entity Nodes

Inputs

Port Type Description

Get Any Gets entity position

CoordSys Integer Coordinate system used

Outputs

Port Type Description

Pos Vec3 Entity position

Rotate Vec3 Entity rotation

Scale Vec3 Entity scale

FwdDir Vec3 Entity Y-axis position

RightDir Vec3 Entity X-axis position

UpDir Vec3 Entity Z-axis position

ParentId node

Used to obtain the parentID number of the specified entity.

Outputs

Port Type Description

Parent Id Any Parent entity ID

PropertyGet node

Used to retrieve an entity property value.

Inputs

Port Type Description

Get Any Trigger to get entity property value

Property String Name of property to get

Version 1.6
590

Lumberyard User Guide
Entity Nodes

Port Type Description

PerArchetype Boolean True if a per archetype property; false if a per
instance property

Outputs

Port Type Description

Value Any Outputs property value

Error Any Retrieves property value

PropertySet node

Used to change the entity property value. Will not work with SaveLoad however.

Inputs

Port Type Description

Set Any Sets property value

Property String Name of property to set

Value String Property value to be set

PerArchetype Boolean True if a per archetype property; false if a per
instance property

Outputs

Port Type Description

Error Any Any

RemoveEntity node

Used to remove an entity.

Inputs

Port Type Description

Activate Any Triggers the node

Version 1.6
591

Lumberyard User Guide
Entity Nodes

Port Type Description

Entity Integer Entity to remove

Outputs

Port Type Description

Done Any Triggers when entity has been removed

RenderParams node

Used to set rendering parameters.

Inputs

Port Type Description

Opacity Float Sets entity transparency value

Spawn node

Used to spawn an entity with the specified properties.

Inputs

Port Type Description

Spawn Any Spawns an entity

Class String Entity class

Name String Entity class

Pos Vec3 Entity position

Rot Vec3 Entity rotation

Scale Vec3 Entity scale

Outputs

Port Type Description

Done Any Triggers when entity has completed spawning

Version 1.6
592

Lumberyard User Guide
Environment Nodes

Port Type Description

Succeeded Any Triggers when entity is spawned

Failed Any Triggers if entity was not spawned

SpawnArchetype node

Used to spawn an archetype entity with the specified properties.

Inputs

Port Type Description

Spawn Any Spawns an entity

Archetype String Archetype entity name

Name String Entity name

Pos Vec3 Entity position

Rot Vec3 Entity rotation angle

Scale Vec3 Entity scale

Outputs

Port Type Description

Done Any Triggers when entity has completed spawning

Succeeded Any Triggers when entity is spawned

Failed Any Triggers if entity was not spawned

Environment Nodes
You can use the following flow graph nodes to configure environment settings.

Topics

• MoonDirection node (p. 594)

• OceanSwitch node (p. 594)

• PerEntityShadows node (p. 594)

• RainProperties node (p. 595)

• RecomputeStaticShadows node (p. 595)

• SetOceanMaterial node (p. 596)

Version 1.6
593

Lumberyard User Guide
Environment Nodes

• SkyMaterialSwitch node (p. 596)

• SkyboxSwitch node (p. 597)

• Sun node (p. 597)

• TornadoWander (p. 598)

• Wind node (p. 598)

MoonDirection node

Used to set the moon's position in the sky.

Inputs

Port Type Description

Get Any Get current latitude and longitude

Set Any Set latitude and longitude

Latitude Float Latitude to be set

Longitude Float Longitude to be set

ForceUpdate Boolean Force immediate update of the sky

Outputs

Port Type Description

Latitude Float Output current latitude

Longitude Float Output current longitude

OceanSwitch node

Used to enable ocean rendering.

Inputs

Port Type Description

Enable Boolean Enable ocean rendering

PerEntityShadows node

Used to enable and specify per entity shadows.

Version 1.6
594

Lumberyard User Guide
Environment Nodes

Inputs

Port Type Description

Enabled Boolean Activates the node

Trigger Any Triggers the parameters

ConstBias Float Reduces aAny self-shadowing artifacts

SlopeBias Float Reduces aAny self-shadowing artifacts

Jittering Float Filters kernel size, which directly affects shadow
softness

BBoxScale Vec3 Scale factor for the bounding box of the selected
entity. Can be useful in case the bounding box is
too small or too large

ShadowMapSize Integer Size of the custom shadow map, which is
automatically rounded to the next power of two

RainProperties node
Used to get and output rain properties.

Inputs

Port Type Description

Trigger Any Activates the node

Amount Float Amount of rain

PuddlesAmount Float Amount of puddles

PuddlesRippleAmount Float Amount of puddle ripples

RainDropsAmount Float Amount of raindrops

RecomputeStaticShadows node
Cached shadow cascades are centered around the rendering camera by default, and automatically
recenter and update once the camera gets close to the cascade border. Use this node to override this
automated placement.

Version 1.6
595

Lumberyard User Guide
Environment Nodes

Input

Port Type Description

Trigger Any Activates the node

Min Vec3 Minimum bounding box position

Max Vec3 Maximum bounding box position

NextCascadesScale Float Input multiplier value

SetOceanMaterial node

Used to set the ocean material.

Inputs

Port Type Description

Set Any Set material on for the ocean

Material String Material to be set for the ocean

Outputs

Port Type Description

Success Any Triggered when material set

Failed Any Triggered if an error occurred

SkyMaterialSwitch node

Used to enable sky material switching.

Inputs

Port Type Description

Material String Material to use for the sky

Start Boolean Start material switch

Version 1.6
596

Lumberyard User Guide
Environment Nodes

Port Type Description

Angle Float Starting angle

Stretching Float If stretching is performed or not

SkyboxSwitch node

Used to enable asynchronous sky box switching.

Inputs

Port Type Description

Skybox texture name String Name of texture file to use

Start Boolean Start asynchronous switching

Angle Float Starting angle

Stretching Float If stretching is performed or not

Sun node

Used to get and set the sun's position in the sky.

Inputs

Port Type Description

Get Any Get the current latitude and longitude

Set Any Set the latitude and longitude for the sun

Latitude Float Latitude to be set

Longitude Float Longitude to be set

ForceUpdate Boolean Forces an immediate update of the sky

Outputs

Port Type Description

Latitude Float Outputs current latitude

Version 1.6
597

Lumberyard User Guide
FeatureTest Nodes

Port Type Description

Longitude Float Outputs current longitude

TornadoWander

Used to move a tornado entity in the direction of the target.

Inputs

Port Type Description

Activate Any Activates the node

Target Any Location the tornado moves towards

Outputs

Port Type Description

Done Any Triggered when the tornado reaches the target

Wind node

Used to get and output the wind direction vector.

Inputs

Port Type Description

Get Any Get the current environment wind vector

Outputs

Port Type Description

WindVector Vec3 Outputs current environment wind vector

FeatureTest Nodes
You can use the following flow graph nodes to configure feature test settings.

Topics

Version 1.6
598

Lumberyard User Guide
FeatureTest Nodes

• FeatureTest node (p. 599)

• Screenshot node (p. 599)

• ScreenshotCompare node (p. 600)

FeatureTest node

Used to control automated feature tests.

Inputs

Port Type Description

Name String Name of the feature test

Description String Description of the feature test

MaxTime Float How long in game time the test is allowed to run
before it fails

Camera Any (Optional) Camera entity used for the test

Ready Boolean Indicates whether all dependencies have been
met and the test is ready to run

Succeeded Any Trigger to indicate the feature test has passed

Failed Any Trigger to indicate the feature test has failed

Outputs

Port Type Description

Start Any Trigger to start running the feature test

Screenshot node

Used to take a screenshot.

Inputs

Port Type Description

Trigger Any Trigger to capture a screenshot

Version 1.6
599

Lumberyard User Guide
Game Nodes

Port Type Description

Name String Name of the screenshot

Outputs

Port Type Description

Succeeded Any Triggers when the image is captured

Failed Any Triggers if the image is not captured

ScreenshotCompare node

Used to take a screenshot and compare it with a reference image.

Inputs

Port Type Description

Trigger Any Trigger to capture a screenshot

Reset Any Resets the current screenshot number back to 0

PSNR Float Picture signal to noise ratio used during
comparison with the reference image to
determine success of failure

Outputs

Port Type Description

Succeeded Any Triggers when the captured image matches the
reference image

Failed Any Triggers when the captured image does not
match the reference image

Game Nodes
You can use the following flow graph nodes to check and to configure various game settings.

Topics

• CheckPlatform node (p. 601)

• ForceFeedback node (p. 601)

• ForceFeedbackSetDeviceIndex node (p. 602)

• ForceFeedbackTriggerTweaker node (p. 602)

• ForceFeedbackTweaker node (p. 603)

• GetClientActorId node (p. 603)

Version 1.6
600

Lumberyard User Guide
Game Nodes

• GetEntityState node (p. 603)

• GetGameRulesEntityId node (p. 604)

• GetSupportedGameRulesForMap node (p. 604)

• GetUsername node (p. 604)

• IsLevelOfType node (p. 605)

• ObjectEvent node (p. 605)

• Start node (p. 606)

CheckPlatform node

Used to change game events depending on what platform you are running on.

Inputs

Port Type Description

Check Any Triggers a check of the current platform

Outputs

Port Type Description

PC Any Triggers if the platform is PC

PS4 Any Triggers if the platform is PS4

XboxOne Any Triggers if the platform is XboxOne

Android Any Triggers if the platform is Android

iOS Any Triggers if the platform is iOS

ForceFeedback node

Used to start and stop force feedback effects.

Inputs

Port Type Description

Effect Name String Name of the force feedback effect

Version 1.6
601

Lumberyard User Guide
Game Nodes

Port Type Description

Play Any Plays the effect

Intensity Float Intensity level of effect

Delay Float Delays effect start by specified seconds

Stop Any Stops the effect

StopAll Any Stops all effects

ForceFeedbackSetDeviceIndex node

Used to set the receiving device ID for force feedback effects.

Inputs

Port Type Description

DeviceIndex Integer Sets the receiving device ID for force feedback
effects

ForceFeedbackTriggerTweaker node

Used to control individual left and right trigger force feedback effects.

Inputs

Port Type Description

LeftTouchActivate Boolean Activates the left touch trigger

LeftGain Float Left trigger gain

LeftEnvelope Integer Left trigger envelope

RightTouchToActivate Boolean Activates the right touch trigger

RightGain Float Right trigger gain

RightEnvelope Integer Right trigger envelope

Activate Any Activates both triggers

Deactivate Any Deactivates both triggers

Version 1.6
602

Lumberyard User Guide
Game Nodes

ForceFeedbackTweaker node

Used to control individual low and high frequency force feedback effects.

Inputs

Port Type Description

LowPass Float Low-frequency force feedback signal

HighPass Float High-frequency force feedback signal

Activate Any Activates force feedback effect

Deactivate Any Deactivates force feedback effect

GetClientActorId node

Used to output the client actor ID.

Inputs

Port Type Description

In Any Gets client actor ID

Outputs

Port Type Description

id Any Outputs client actor ID

GetEntityState node

Used to output the current state of an entity.

Inputs

Port Type Description

Get Any Gets the entity state

Version 1.6
603

Lumberyard User Guide
Game Nodes

Outputs

Port Type Description

State String Outputs the entity state

GetGameRulesEntityId node

Used to get the game rules entity ID.

Inputs

Port Type Description

Get Any Gets the entity ID of the rules script

Outputs

Port Type Description

EntityId Any The entity ID of the rules script

GetSupportedGameRulesForMap node

Used to get and output the supported game rules for a map.

Inputs

Port Type Description

Get Any Gets the game rules

Mapname String Map name

Outputs

Port Type Description

GameRules String Outputs the game rules

GetUsername node

Used to get the user name.

Version 1.6
604

Lumberyard User Guide
Game Nodes

Inputs

Port Type Description

GetUsername Any Gets the user name

Outputs

Port Type Description

Username String Outputs the user name

Error String Triggers if an error occurs

IsLevelOfType node

Used to check if a level is of a given type.

Inputs

Port Type Description

Check Any Checks if a level is of a given type

Type String Level type to check against

Outputs

Port Type Description

Result Boolean The result of the check

ObjectEvent node

Used to broadcast a game object event or send it to a specific entity.

Inputs

Port Type Description

Trigger Any Triggers the node

EventName String Game object event name

Version 1.6
605

Lumberyard User Guide
Helicopter Nodes

Port Type Description

EventParam String Game object event parameter

Start node
Fires on the start of a game and used to trigger flow graphs upon level start.

Inputs

Port Type Description

InGame Boolean Triggers game mode to start

InEditor Boolean Triggers editor game mode to start

Outputs

Port Type Description

output Boolean Outputs the game mode

Helicopter Nodes
You can use the follosing flow graph nodes to configure flying vehicle and flight AI-related settings.

Note
These nodes will only work with the Legacy Game Sample (CryEngine GameSDK), which is
available at Lumberyard Downloads.

Topics

• EnableCombatMode node (p. 606)

• EnableFiring node (p. 607)

• FollowPath node (p. 607)

• ForceFire node (p. 608)

EnableCombatMode node
Used to alter the path the flight AI should follow so as to find the best position from which to engage the
target.

Inputs

Port Type Description

Enable Any Enables combat mode

Version 1.6
606

https://aws.amazon.com/lumberyard/downloads/

Lumberyard User Guide
Helicopter Nodes

Port Type Description

Disable Any Disables combat mode

EnableFiring node

Used to enable the flight AI to fire at a target when used in combination with the EnableCombatMode
node.

Inputs

Port Type Description

Enable Any Enables firing mode

Disable Any Disables firing mode

FollowPath node

Used to set the path that the flight AI should follow.

Inputs

Port Type Description

Start Any Start following the path

Stop Any Stop following the path

PathName String Name of the path to follow

LoopPath Boolean How many times to loop around the path

Speed Float Speed of the flight AI

Outputs

Port Type Description

ArrivedAtEnd Any Triggers when flight AI is at the end of the path

ArrivedNearToEnd Any Triggers when flight AI is near the end of the path

Stopped Any Triggers when flight AI has stopped

Version 1.6
607

Lumberyard User Guide
Image Nodes

ForceFire node

Used to force the attention target of the flight AI to a specific entity.

Inputs

Port Type Description

Enable Any Enables force firing

Disable Any Disables force firing

Target Any Attention target

Outputs

Port Type Description

Finished Any Triggers when finished

Image Nodes
You can use the following flow graph nodes to configure various visual effects and image settings.

Topics

• 3DHudInterference node (p. 609)

• ColorCorrection node (p. 610)

• EffectAlienInterference node (p. 610)

• EffectBloodSplats node (p. 611)

• EffectDepthOfField node (p. 611)

• EffectFrost node (p. 612)

• EffectGhosting node (p. 612)

• EffectGroup node (p. 612)

• EffectRainDrops node (p. 613)

• EffectVolumetricScattering node (p. 614)

• EffectWaterDroplets node (p. 614)

• EffectWaterFlow node (p. 614)

• FilterBlur node (p. 615)

• FilterChromaShift node (p. 615)

• FilterDirectionalBlur node (p. 615)

• FilterGrain node (p. 616)

• FilterRadialBlur node (p. 616)

• FilterSharpen node (p. 617)

• FilterVisualArtifacts node (p. 617)

Version 1.6
608

Lumberyard User Guide
Image Nodes

• ScreenCapture node (p. 618)

• ScreenFader node (p. 618)

• SetShadowMode node (p. 619)

3DHudInterference node

Used to add distortion effects to the HUD.

Inputs

Port Type Description

Enable Boolean Enables the effect

Disable Boolean Disables the effect

Amount Float Interference amount

Disrupt scale Float Disruption scale

Disrupt movement
scale

Float Disruption movement scale

Random grain strength
scale

Float Random grain strength scale

Random fade strength
scale

Float Random fade strength scale

Noise strength Float Noise strength

Chroma shift dist Float Chroma shift distance

Chroma shift strength Float Chroma shift strength

Rand frequency Float Random number generation frequency

Item filter strength Float Item filter strength. Uses the vertex color red
channel to control item interference strength.

Depth of field strength Float Stength of the depth of field

Bar scale Float Bar scale

Bar color multiplier Float Bar color multiplier

Version 1.6
609

Lumberyard User Guide
Image Nodes

Port Type Description

Bar color Vec3 Bar color

ColorCorrection node
Used to control basic image settings such as saturation, contrast, brightness, and color.

Inputs

Port Type Description

Enable Boolean Enables color correction

Disable Boolean Disables color correction

Cyan Any Cyan increase or decrease

Magenta Any Magneta increase or decrease

Yellow Any Yellow increase or decrease

Luminance Any Luminance increase or decrease

Brightness Any Brightness increase or decrease

Contrast Any Contrast increase or decrease

Saturation Any Saturation increase or decrease

Hue Any Hue increase or decrease

EffectAlienInterference node
Used to add distortion effects to the players view, but doesn't affect the HUD.

Inputs

Port Type Description

Enable Boolean Enables the effect

Disable Boolean Disables the effect

Version 1.6
610

Lumberyard User Guide
Image Nodes

Port Type Description

Amount Float Intensity level of the effect

Color Vec3 Color of the effect

EffectBloodSplats node

Used to place blood splats on the screen when used. Type=0 is human and Type =1 is alien. The
Spawn input generates new blood splats.

Inputs

Port Type Description

Enable Boolean Enables the effect

Disable Boolean Disables the effect

Type Integer Type of effect

Amount Float Intensity level of the effect

Spawn Boolean Where the effect spawns at

EffectDepthOfField node

Used to add a depth of field effect, giving control over distance, range, and amount.

Inputs

Port Type Description

Enable Boolean Enables the node

Disable Boolean Disables the node

EnableDof Boolean Enables the depth of field effect

FocusDistance Float Sets the focus distance

FocusRange Float Sets the focus range

Version 1.6
611

Lumberyard User Guide
Image Nodes

Port Type Description

BlurAmount Float Sets the amount of blurring

ScaleCoC Float Sets the circle of confusion scale, which is the
optical spot caused by a light rays cone from a
lens not coming to a perfect focus when imaging
a point source. Also known as the blur circle of
blur spot.

CenterWeight Float Sets the central samples weight

EffectFrost node

Used to simulate a frozen HUD.

Inputs

Port Type Description

Enable Boolean Enables the effect

Disable Boolean Disables the effect

Amount Any Intensity level of the effect

CenterAmount Any Center of the effect

EffectGhosting node

Used to add a ghosting effect to the screen that overlaps and blurs previous frames together.

Inputs

Port Type Description

Enable Boolean Enables the effect

Disable Boolean Disables the effect

GhostingAmount Float Intensity level of effect

EffectGroup node

Used to enable the specified effect group.

Version 1.6
612

Lumberyard User Guide
Image Nodes

Inputs

Port Type Description

Enabled Any Enables the effect group

Disabled Any Disables the effect group

GroupName String Name of effect group

EffectRainDrops node

Used to add on-screen rain drops that travel down the player's HUD.

Inputs

Port Type Description

Enable Boolean Enables the node

Disable Boolean Disables the node

Amount Float Sets raindrop visibility

Spawn Time Distance Float Sets raindrop spawn time distance

Size Float Size of rain drops

Size Variation Float Amount of variation in size of rain drops

Moisture Amount Float Sets moisture visibility area size

Moisture Hardness Float Sets noise texture blending factor

Moisture Droplet
Amount

Float Sets droplet texture blending factor

Moisture Variation Float Sets moisture variation

Moisture Speed Float Sets moisture animation speed

Moisture Fog Amount Float Sets amount of fog in moisture

Version 1.6
613

Lumberyard User Guide
Image Nodes

EffectVolumetricScattering node
Used to add a volumetric effect useful for simulating snowy environments. With the ability to control
color, speed ,and amount, you can simulate various environments, such as lava.

Inputs

Port Type Description

Enable Boolean Enables the node

Disable Boolean Disables the node

Amount Float Sets the amount of volumetric scattering

Tiling Float Sets the volumetric scattering tiling

Speed Float Sets the volumetric scattering animation speed

Color Vec3 Sets the volumetric scattering color

Type Integer Defines the type of volumetric scattering

EffectWaterDroplets node
Used to add a water effect that appears from various sources on the screen. Unlike the RainDroplets
node, this simulates more of a splash-type effect of water being thrown on the screen in various places.

Inputs

Port Type Description

Enable Boolean Enables the effect

Disable Boolean Disables the effect

Amount Float Intensity level of effect

EffectWaterFlow node
Used to simulate dense water running down the screen, such as standing under a waterfall.

Version 1.6
614

Lumberyard User Guide
Image Nodes

Inputs

Port Type Description

Enable Boolean Enables the effect

Disable Boolean Disables the effect

Amount Float Intensity level of filter

FilterBlur node

Used to Gaussian blur the entire screen, useful for simulating dense smoke affecting the player's eyes.

Inputs

Port Type Description

Enable Boolean Enables the filter

Disable Boolean Disables the filter

Type Integer Type of effect

Amount Float Intensity level of effect

FilterChromaShift node

Used to shift the chrominance information of the image. Best used in small amounts to create subtle
film effects.

Inputs

Port Type Description

Enable Boolean Enables the filter

Disable Boolean Disables the filter

Amount Float Intensity level of filter

FilterDirectionalBlur node

Used to apply a blur in a specified direction based on movement.

Version 1.6
615

Lumberyard User Guide
Image Nodes

Inputs

Port Type Description

Enable Boolean Enables the filter

Disable Boolean Disables the filter

Direction Vec3 Direction of blurring effect

FilterGrain node

Used to set a grain filter.

Inputs

Port Type Description

Enable Boolean Enables the filter

Disable Boolean Disables the filter

Amount Float Intensity level of filter

FilterRadialBlur node

Used to blur the screen around a defined 2D position on the screen.

Inputs

Port Type Description

Enable Boolean Enables the filter

Disable Boolean Disables the filter

Amount Float Intensity level of filter

ScreenPosX Float X-axis center of blurring effect

ScreenPosY Float Y-axis center of blurring effect

Version 1.6
616

Lumberyard User Guide
Image Nodes

Port Type Description

BlurringRadius Float Radius of blurring effect

FilterSharpen node
Used to add sharpening to the image. You can use negative values to blur the screen also.

Inputs

Port Type Description

Enable Boolean Enables the filter

Disable Boolean Disables the filter

Type Integer Type of filter

Amount Float Intensity level of filter

FilterVisualArtifacts node
Used to apply numerous effects typically associate with old television sets, such as grain, vsync,
interlacing, and pixelation. You can mask the effect using a texture, or apply it to the whole screen.

Inputs

Port Type Description

Enable Boolean Enables the node

Disable Boolean Disables the node

VSync Float Amount of visible vsync

VSync frequency Float Vsync frequency

Interlacing Float Amount of visible interlacing

Interlacing tiling Float Interlacing tiling

Version 1.6
617

Lumberyard User Guide
Image Nodes

Port Type Description

Interlacing rotation Float Interlacing rotation

Sync wave phase Float Sync wave phase

Sync wave frequence Float Sync wave frequency

Sync wave amplitude Float Sync wave amplitude

Chroma shift Float Chromatic shift

Grain Float Amount of image grain

Color tinting Vec3 Amount of color tinting

VisualArtifacts String Name of texture used

ScreenCapture node
Used to capture a screenshot.

Inputs

Port Type Description

Capture Any Trigger to capture the screenshot

FileName Any File to write the screenshot capture to

ImageType Any File type to use

Outputs

Port Type Description

Success Any Screenshot capture successful

Error String Screenshot capture failed

ScreenFader node
Used to perform customizable fade-in and fade-out effects, including the ability to fade from textures.
The UseCurColor input uses the previously set color as the fading color if set to True, else it uses the
FadeColor value.

Version 1.6
618

Lumberyard User Guide
Input Nodes

Inputs

Port Type Description

FadeGroup Any Fade group

FadeIn Any Fade back from the specified color to a normal
screen

FadeOut Any Fades the screen to the specified color

UseCurColor Boolean Uses the current color as the source color

FadeInTime Float Duration of fade in

FadeOutTime Float Duration of fade out

FadeColor Vec3 Target color to fade to

TextureName String Name of the texture

UpdateAlways Boolean Use to always update the fader

Outputs

Port Type Description

FadedIn Any Triggered when the screen completed faded in

FadedOut Any Triggered when the screen completed faded out

CurColor Any Current faded color

SetShadowMode node

Used to set the shadow mode to Normal or HighQuality mode. Intended to be used for very specific
lighting setups and will likely result in self-shadowing artifacts under typical use.

Inputs

Port Type Description

Activate Any Activates the node

ShadowMode Integer Shadow mode type to use

Input Nodes
You can use the following flow graph nodes to capture input events and configure input settings.

Topics

• ActionFilter node (p. 620)

• ActionHandler node (p. 620)

Version 1.6
619

Lumberyard User Guide
Input Nodes

• ActionListener node (p. 621)

• ActionMapManager node (p. 622)

• Gestures nodes (p. 622)

• MotionSensor nodes (p. 628)

• MouseButtonInfo node (p. 632)

• MouseCoords node (p. 633)

• MouseCursor node (p. 634)

• MouseEntitiesInBox node (p. 634)

• MouseRayCast node (p. 634)

• MouseSetPos node (p. 635)

• Touch:MultiTouchEvent node (p. 636)

• Touch:TouchEvent node (p. 636)

• Touch:MultiTouchCoords node (p. 637)

• Touch:TouchRaycast node (p. 637)

• Touch:VirtualThumbstick node (p. 638)

ActionFilter node

Used to catch key inputs. Should only be used for debugging purposes however.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

Filter String Name of the action filter

Outputs

Port Type Description

Enabled Any Triggers when enabled

Disabled Any Triggers when disabled

ActionHandler node

Used to respond to actions listed in the Action Map input.

Version 1.6
620

Lumberyard User Guide
Input Nodes

Inputs

Port Type Description

Enable Any Enables listening to the action map

Disable Any Disables listening to the action map

Action Map String Name of the action map

ActionName String Name of the action to listen for

Outputs

Port Type Description

ActionInvoked Any Triggers when the action is invoked

ActionPressed Any Triggers when the action is pressed

ActionHeld Any Triggers when the action is sustained

ActionReleased Any Triggers when the action is released

ActionListener node

Used to listen for action events listed in the Action Map.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

Action String Action to trigger

Action Map String Action map to use

NonDevMode Boolean When set to true, can be used in non dev mode
as well

Outputs

Port Type Description

Pressed String Triggers when the action is pressed

Released String Triggers when the action is released

Version 1.6
621

Lumberyard User Guide
Input Nodes

ActionMapManager node

Used to enable or disable the Action Map input.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

Action Map String Name of the action map to use

Gestures nodes

This group of nodes is used to handle finger taps, swipes, and other gestures as input.

Gestures:ClickOrTap node

Used to recognize one or more mouse clicks or finger taps.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

PointerIndex Integer Pointer (button or finger) index to track

MinClicksOrTaps Integer Minimum number of clicks or taps required for
the gesture to be recognized

MaxSecondsHeld Float Maximum number of seconds allowed while held
before the gesture stops being recognized

MaxPixelsMoved Float Maximum distance in pixels allowed to move
while held before the gesture stops being
recognized

MaxSecondsBetweenClicksOrTapsFloat Maximum number of seconds allowed between
clicks or taps

Version 1.6
622

Lumberyard User Guide
Input Nodes

Port Type Description

MaxPixelsBetweenClicksOrTapsFloat Maximum distance in pixels allowed between
clicks or taps

Outputs

Port Type Description

Recognized Any Triggers when a discrete number of clicks or taps
is recognized

StartX Float X-axis screen position of the click or tap start

StartY Float Y-axis screen position of the click or tap start

EndX Float X-axis screen position of the click or tap end

EndY Float Y-axis screen position of the click or tap end

Gestures:Drag node

Used to recognize finger drag gestures.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

PointerIndex Integer Pointer (button or finger) index to track

MinSecondsHeld Float Mimimum number of seconds after the initial
press before a drag is recognized

MinPixelsMoved Float Mimimum distance in pixels before a drag is
recognized

Outputs

Port Type Description

Initiated Any Activated when a continuous drag gesture is
initiated

Updated Any Activated when a continuous drag gesture is
updated

Version 1.6
623

Lumberyard User Guide
Input Nodes

Port Type Description

Ended Any Activated when a continuous drag gesture has
ended

StartX Float X-axis screen position of the drag start

StartY Float X-axis screen position of the drag start

CurrentX Float Current X-axis screen position of the drag

CurrentY Float Current Y-axis screen position of the drag

DeltaX Float Number of pixels dragged on the X-axis screen

DeltaY Float Number of pixels dragged on the Y-axis screen

Distance Float Number of pixels dragged on screen

Gestures:Hold node

Used to recognize finger hold gestures.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

PointerIndex Integer The button or finger index to track

MinSecondsHeld Float Mimimum number of seconds before a hold is
recognized

MaxPixelsMoved Float Mimimum distance in pixels before a hold is
recognized

Outputs

Port Type Description

Initiated Any Activated when a continuous hold gesture is
initiated

Updated Any Activated when a continuous hold gesture is
updated

Ended Any Activated when a continuous hold gesture has
ended

Version 1.6
624

Lumberyard User Guide
Input Nodes

Port Type Description

StartX Float X-axis screen position of the hold start

StartY Float Y-axis screen position of the hold start

CurrentX Float Current X-axis screen position of the hold

CurrentY Float Current Y-axis screen position of the hold

Duration Float Duration of the hold in seconds

Gestures:Pinch node

Used to recognize finger pinch (away from or toward) gestures.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

MinPixelsMoved Float Mimimum distance in pixels before a pinch is
recognized

MaxAngleDegrees Float Maximum angle in degrees that pinch can
deviate before it is recognized

Outputs

Port Type Description

Initiated Any Activated when a continuous pinch gesture is
initiated

Updated Any Activated when a continuous pinch gesture is
updated

StartMidpointX Any Midpoint X-axis position of the pinch

StartMidpointY Float Midpoint Y-axis position of the pinch

StartDistance Float Pixel distance between the two touch positions
when the pinch is started

CurrentMidpointX Float Current X-axis position of the pinch

Version 1.6
625

Lumberyard User Guide
Input Nodes

Port Type Description

CurrentMidpointY Float Current Y-axis position of the pinch

CurrentDistance Float Current distance in pixels between the two touch
positions

Ratio Float Ratio of the pinch (CurrentDistance/
StartDistance)

Gestures:Rotate node

Used to recognize finger rotation (movement in a circle around each other) gestures.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

MaxPixelsMoved Float Maximum distance in pixels before a rotation is
recognized

MinAngleDegrees Float Minimum angle in degrees before a rotation is
recognized

Outputs

Port Type Description

Initiated Any Activated when a continuous rotation gesture is
initiated

Updated Any Activated when a continuous rotation gesture is
updated

Ended Any Activated when a continuous rotation gesture has
ended

StartMidpointX Float X-axis screen position where the rotation started

StartMidpointY Float Y-axis screen position where the rotation started

StartDistance Float Pixel distance between the two touch positions
when the rotation started

CurrentMidpointX Float Current X-axis screen position of the rotation

Version 1.6
626

Lumberyard User Guide
Input Nodes

Port Type Description

CurrentMidpointY Float Current Y-axis screen position of the rotation

CurrentDistance Float Current pixel distance between the two touch
positions

RotationDegrees Float Current rotation in degrees

Gestures:Swipe node

Used to recognize finger swipe gestures.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

PointerIndex Integer The button or finger index to track

MaxSecondsHeld Float Maximum number of seconds for a swipe to be
recognized

MinPixelsMoved Float Mimimum distance in pixels before a swipe is
recognized

Outputs

Port Type Description

Recognized Any Activated when a continuous swipe gesture is
recognized

StartX Float X-axis screen position where the swipe started

StartY Float Y-axis screen position where the swipe started

EndX Float X-axis screen position where the swipe ended

EndY Float Y-axis screen position where the swipe ended

DeltaX Float X-axis pixels swiped

DeltaY Float Y-axis pixels swiped

Version 1.6
627

Lumberyard User Guide
Input Nodes

Port Type Description

DirectionX Float X-axis direction of the swipe

DirectionY Float Y-axis direction of the swipe

Distance Float Distance of the swipe in pixels

Duration Float Duration of the swipe in seconds

Velocity Float Velocity of the swipe in pixels per second

MotionSensor nodes

This group of nodes are used with a motion sensor or accelerometer input.

MotionSensor:AccelerationGravity node

Used to output gravity-generated acceleration.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

Outputs

Port Type Description

SensorData Vec3 Outputs raw gravity acceleration in g-forces

IsSensorDataAvailable Boolean Outputs true or false when the node is activated

MotionSensor:AccelerationRaw node

Used to output raw acceleration.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

Version 1.6
628

Lumberyard User Guide
Input Nodes

Outputs

Port Type Description

SensorData Vec3 Outputs raw sensor acceleration in g-forces

IsSensorDataAvailable Boolean Outputs true or false when the node is activated

MotionSensor:AccelerationUser node

Used to output user-generated acceleration.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

Outputs

Port Type Description

SensorData Vec3 Outputs user-generated acceleration in g-forces

IsSensorDataAvailable Boolean Outputs true or false when the node is activated

MotionSensor:MagneticFieldRaw node

Used to output raw magnetic field data as measured by a magnetometer. Includes device bias.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

Outputs

Port Type Description

SensorData Vec3 Outputs raw magnetic field in microteslas

IsSensorDataAvailable Boolean Outputs true or false when the node is activated

Version 1.6
629

Lumberyard User Guide
Input Nodes

MotionSensor:MagneticFieldUnbiased node

Used to output magnetic field data as measured by a magnetometer. Processed to remove device
bias.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

Outputs

Port Type Description

SensorData Vec3 Outputs unbiased magnetic field data in
microteslas

IsSensorDataAvailable Boolean Outputs true or false when the node is activated

MotionSensor:MagneticNorth node

Used to output a vector pointing to magnetic north.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

Outputs

Port Type Description

SensorData Vec3 Outputs a vector pointing to magnetic north

IsSensorDataAvailable Boolean Outputs true or false when the node is activated

MotionSensor:Orientation node

Used to measure the orientation or attitude of the device from an arbitrary but constant frame of
reference.

Version 1.6
630

Lumberyard User Guide
Input Nodes

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

Outputs

Port Type Description

SensorData Vec3 Outputs an orientation or attitude angle in
degrees

IsSensorDataAvailable Boolean Outputs true or false when the node is activated

MotionSensor:OrientationDelta node

Used to measure the change in orientation or attitude of the device since the last measurement.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

Outputs

Port Type Description

SensorData Vec3 Outputs an orientation or attitude angle in
degrees

IsSensorDataAvailable Boolean Outputs true or false when the node is activated

MotionSensor:RotationRateRaw node

Used to output the raw rotation rate as measured by the gyroscope.

Inputs

Port Type Description

Enable Any Enables the node

Version 1.6
631

Lumberyard User Guide
Input Nodes

Port Type Description

Disable Any Disbles the node

Outputs

Port Type Description

SensorData Vec3 Outputs the raw gyroscope rotation rate in
degrees per second

IsSensorDataAvailable Boolean Outputs true or false when the node is activated

MotionSensor:RotationRateUnbiased node

Used to output the rotation rate as measured by the gyroscope and processed to remove device bias.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

Outputs

Port Type Description

SensorData Vec3 Outputs an unbiased rotation rate in degrees per
second

IsSensorDataAvailable Boolean Outputs true or false when the node is activated

MouseButtonInfo node

Used to output mouse button state information.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

Version 1.6
632

Lumberyard User Guide
Input Nodes

Port Type Description

MouseButton Boolean Mouse button state information

MouseWheel Boolean Mouse wheel state information

Outputs

Port Type Description

MousePressed Integer Outputs the mouse button that was pressed

MouseReleased Integer Outputs the mouse button that was released

MouseWheel Float Outputs a positive value when the mouse wheel
is moved up and a negative value when moved
down

MouseCoords node

Used to output mouse coordinates.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

World Boolean World coordinates used

Screen Boolean Screen coordinates of the mouse cursor

Delta Boolean Shows the number of screen pixels the mouse
cursor has moved

Outputs

Port Type Description

World Vec3 World coordinates of the mouse cursor

ScreenX Integer X-axis coordinate of mouse cursor

ScreenY Integer Y-axis coordinate of mouse cursor

DeltaScreenX Integer X-axis delta coordinate of mouse cursor

DeltaScreenY Integer Y-axis delta coordinate of mouse cursor

Version 1.6
633

Lumberyard User Guide
Input Nodes

MouseCursor node
Used to show or hide the mouse cursor.

Inputs

Port Type Description

Show Any Shows the mouse cursor

Hide Any Hides the mouse cursor

Outputs

Port Type Description

Done Any Triggers when the action is complete

MouseEntitiesInBox node
Used to show or hide the mouse coordinates.

Inputs

Port Type Description

Get Any Get the mouse cursor

ContainerId Integer ID of the container that stores the entities

ScreenX Integer X-axis screen position of the mouse cursor

ScreenY Integer Y-axis screen position of the mouse cursor

ScreenX2 Integer X-axis screen position 2 of the mouse cursor

ScreenY2 Integer Y-axis screen position 2 of the mouse cursor

Outputs

Port Type Description

Done Any Triggers when completed

MouseRayCast node
Used to output the mouse raycast information.

Version 1.6
634

Lumberyard User Guide
Input Nodes

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

All Integer Raycast filter type

EntitiesToIgnore Integer Entities to ignore during raycast

IgnoreBackFaces Boolean Ignore backfaces of geometry during raycast

Outputs

Port Type Description

HitPos Vec3 Coordinates of the first position that was hit with
the raycast

HitNormal Vec3 Normal of the first position that was hit with the
raycast

EntityId Any ID of the entity that was hit by the raycast

NoHit Any Activated each frame when enabled and no item
was hit by the raycast

MouseSetPos node

Used to position the mouse at the specified location when activated.

Inputs

Port Type Description

In Any Activates the node

Coords Vec3 Coordinates to set the mouse at

Outputs

Port Type Description

Out Any Triggers when the new mouse position is set

Version 1.6
635

Lumberyard User Guide
Input Nodes

Touch:MultiTouchEvent node

Used to output finger touch location.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

Outputs

Port Type Description

TouchDown Integer Finger (touch) ID that was pressed

TouchUp Integer Finger (touch) ID that was released

Touch:TouchEvent node

Used to output finger touch location.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

TouchId Integer Touch (finger) ID for which events will be sent
from

ScreenCoords Boolean Output screen coordinates

WorldCoords Boolean Output world coordinates

Outputs

Port Type Description

TouchDown Any Finger (touch) ID that was pressed

TouchUp Any Finger (touch) ID that was released

Version 1.6
636

Lumberyard User Guide
Input Nodes

Port Type Description

ScreenCoordX Integer Screen X-axis coordinate of the touch

ScreenCoordY Integer Screen Y-axis coordinate of the touch

WorldCoords Vec3 Touch position in world coordinates

Touch:MultiTouchCoords node

Used to output the finger touch location from the specified ID.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

TouchId Integer Finger (touch) ID for which the coordinates will
obtained

Outputs

Port Type Description

ScreenCoordX Integer X-axis location of the finger touch

ScreenCoordY Integer Y-axis location of the finger touch

Touch:TouchRaycast node

Used to generate a raycast for each finger frame ID.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

All Integer Raycast filter type

EntitiesToIgnore Integer Entities to ignore during raycast

Version 1.6
637

Lumberyard User Guide
Interpolate Nodes

Port Type Description

IgnoreBackFaces Boolean Ignore backfaces of geometry during raycast

Outputs

Port Type Description

HitPos Vec3 Coordinates of the first position that was hit with
the raycast

HitNormal Vec3 Normal of the first position that was hit with the
raycast

EntityId Any ID of the entity that was hit by the raycast

NoHit Any Activated each frame when enabled and no item
was hit by the raycast

Touch:VirtualThumbstick node

Used to implement a virtual thumbstick.

Inputs

Port Type Description

Enable Any Enables the node

Disable Any Disables the node

Radius Float Radius of thumbstick pad as a percentage of
screen width

ScreenInputArea Integer What side of the screen the thumbstick should
accept input from

Outputs

Port Type Description

OutX Float X-axis value of the thumbstick

OutY Float Y-axis value of the thumbstick

Interpolate Nodes
You can use these flow graph nodes to configure interpolate-related settings.

Topics

Version 1.6
638

Lumberyard User Guide
Interpolate Nodes

• Color node (p. 639)

• Float node (p. 639)

• Int node (p. 640)

• SmoothAngleVec3 (p. 641)

• SmoothColor node (p. 641)

• SmoothFloat node (p. 642)

• SmoothInt node (p. 642)

• SmoothVec3 node (p. 643)

• Vec3 node (p. 643)

Color node

Used to linearly calculate from an initial color value to an end color value within a given time frame.

Inputs

Port Type Description

Start Any Starts interpolation

Stop Any Stops interpolation

StartValue Vec3 Starting value for color

EndValue Vec3 Ending value for color

Time Float Interpolation duration in seconds

UpdateFrequency Float Interpolation update frequency in seconds. 0 =
every frame

Outputs

Port Type Description

Value Vec3 Current value

Done Any Triggered when finished

Float node

Used to linearly calculate from an initial floating point value to an end floating point value within a given
time frame.

Version 1.6
639

Lumberyard User Guide
Interpolate Nodes

Inputs

Port Type Description

Start Any Starts interpolation

Stop Any Stops interpolation

StartValue Float Starting value for floating point

EndValue Float Ending value for floating point

Time Float Interpolation duration in seconds

UpdateFrequency Float Interpolation update frequency in seconds. 0 =
every frame

Outputs

Port Type Description

Value Float Current value

Done Any Triggered when finished

Int node
Used to linearly calculate from an initial integer value to an end integer value within a given time frame.

Input

Port Type Description

Start Any Starts interpolation

Stop Any Stops interpolation

StartValue Integer Starting value for integer

EndValue Integer Ending value for integer

Time Float Interpolation duration in seconds

UpdateFrequency Float Interpolation update frequency in seconds. 0 =
every frame

Outputs

Port Type Description

Value Integer Current value

Done Any Triggered when finished

Version 1.6
640

Lumberyard User Guide
Interpolate Nodes

SmoothAngleVec3
Used to non-linearly (damped spring system) calculate from an initial vector angle to an end vector
angle within a given time frame. Calculation will slow down as it reaches the end value.

Inputs

Port Type Description

Activate Any Triggers the node

InitialValue Vec3 Initial interpolation value for vector angle

TargetValue Vec3 Target interpolation value for vector angle

Time Float Interpolation duration in seconds

Outputs

Port Type Description

Value Vec3 Current value

Done Any Triggered when finished

SmoothColor node
Used to non-linearly (damped spring system) calculate from an initial color value to an end color value
within a given time frame. Calculation will slow down as it reaches the end value.

Inputs

Port Type Description

Activate Any Triggers the node

InitialValue Vec3 Initial interpolation value for color

TargetValue Vec3 Target interpolation value for color

Time Float Interpolation duration in seconds

Outputs

Port Type Description

Value Vec3 Current value

Done Any Triggered when finished

Version 1.6
641

Lumberyard User Guide
Interpolate Nodes

SmoothFloat node

Used to non-linearly (damped spring system) calculate from an initial floating point value to an end
floating point value within a given time frame. Calculation will slow down as it reaches the end value.

Inputs

Port Type Description

Activate Any Triggers the node

InitialValue Float Initial interpolation value for floating point

TargetValue Float Target interpolation value for floating point

Time Float Interpolation duration in seconds

Outputs

Port Type Description

Value Float Current value

Done Any Triggered when finished

SmoothInt node

Used to non-linearly (damped spring system) calculate from an initial integer value to an end integer
value within a given time frame. Calculation will slow down as it reaches the end value.

Inputs

Port Type Description

Activate Any Triggers the node

InitialValue Integer Initial interpolation value for integer

TargetValue Integer Target interpolation value for integer

Time Float Interpolation duration in seconds

Outputs

Port Type Description

Value Integer Current value

Version 1.6
642

Lumberyard User Guide
Interpolate Nodes

Port Type Description

Done Any Triggered when finished

SmoothVec3 node

Used to non-linearly (damped spring system) calculate from an initial Vec3 value to an end Vec3 value
within a given time frame. Calculation will slow down as it reaches the end value.

Inputs

Port Type Description

Activate Any Triggers the node

InitialValue Vec3 Initial interpolation value for Vec3

TargetValue Vec3 Target interpolation value for Vec3

Time Float Interpolation duration in seconds

Outputs

Port Type Description

Value Vec3 Current value

Done Any Triggered when finished

Vec3 node

Used to linearly calculate from an initial Vec3 value to an end Vec3 value within a given time frame.

Inputs

Port Type Description

Start Any Starts interpolation

Stop Any Stops interpolation

StartValue Vec3 Starting value for Vec3

EndValue Vec3 Ending value for Vec3

Time Float Interpolation duration in seconds

Version 1.6
643

Lumberyard User Guide
Intersection Tests Nodes

Port Type Description

UpdateFrequency Float Interpolation update frequency in seconds. 0 =
every frame

Outputs

Port Type Description

Value Vec3 Current value

Done Any Triggered when finished

Intersection Tests Nodes
You can use the following flow graph nodes to configure intersection tests.

Topics

• BoundingBoxVsBoundingBox node (p. 644)

• BoundingBoxVsSphere node (p. 645)

BoundingBoxVsBoundingBox node

Used to test two bounding boxes to see if they intersect.

Inputs

Port Type Description

Activate Any Triggers the node

Min1 Vec3 Minimum point for the first bounding box

Max1 Vec3 Maximum point for the first bounding box

Min2 Vec3 Minimum point for the second bounding box

Max2 Vec3 Maximum point for the second bounding box

Outputs

Port Type Description

Result Boolean Outputs true if an intersection occurred

True Any Triggers if an intersection occurred

False Any Triggers if an intersection did not occur

Version 1.6
644

Lumberyard User Guide
Iterator Nodes

BoundingBoxVsSphere node

Used to test a bounding box and a sphere to see if they intersect.

Inputs

Port Type Description

Activate Any Triggers the node

BoundsMin Vec3 Minimum point of the bounding box

BoundsMax Vec3 Maximum point of the bounding box

SphereCenter Vec3 Center of the sphere

SphereRadius Float Radius of the sphere

Outputs

Port Type Description

Result Boolean Outputs true if an intersection occurred

True Any Triggers if an intersection occurred

False Any Triggers if an intersection did not occur

Iterator Nodes
You can use the following flow graph nodes to configure iterator-related settings.

Topics

• GetEntities node (p. 645)

• GetEntitiesInArea node (p. 646)

• GetEntitiesInBox node (p. 647)

• GetEntitiesInSphere node (p. 647)

GetEntities node

Used to find and return all entities in the world.

Version 1.6
645

Lumberyard User Guide
Iterator Nodes

Inputs

Port Type Description

Activate Any Triggers the node

Next Any Gets the next entity found

Limit Integer Limits how many entities are returned

Immediate Boolean Iterates immediately through the results

Type Integer Type of entity to iterate

ArchetypeFilter Any Returns archetype entities

Outputs

Port Type Description

OutEntityId Any Outputs the entity and entity ID

Count Integer Outputs the current of entities

Done Integer Triggered when all entities have been found, with
the total count returned

GetEntitiesInArea node

Used to find and return all entities within the specified area shape.

Inputs

Port Type Description

Activate Any Triggers the node

Next Any Gets the next entity found

Limit Integer Limits how many entities are returned

Immediate Boolean Iterates immediately through the results

Type Integer Type of entity to iterate

ArchetypeFilter String Returns archetype entities

Area String Name of area shape to test against

Version 1.6
646

Lumberyard User Guide
Iterator Nodes

Outputs

Port Type Description

OutEntityId Any Outputs the entity and entity ID

Count Integer Outputs the current of entities

Done Integer Triggered when all entities have been found, with
the total count returned

GetEntitiesInBox node
Used to find and return all entities within the defined AABB box.

Inputs

Port Type Description

Activate Any Triggers the node

Next Any Gets the next entity found

Limit Integer Limits how many entities are returned

Immediate Any Iterates immediately through the results

Type Integer Type of entity to iterate

ArchetypeFilter String Returns archetype entities

Min Vec3 Minimum vector extents of the AABB bounding
box to check for entities

Max Vec3 Maximum vector extents of the AABB bounding
box to check for entities

Outputs

Port Type Description

OutEntityId Any Outputs the entity and entity ID

Count Integer Outputs the current of entities

Done Integer Triggered when all entities have been found, with
the total count returned

GetEntitiesInSphere node
Used to find and return all entities within the defined sphere volume.

Version 1.6
647

Lumberyard User Guide
JSON Nodes

Inputs

Port Type Description

Activate Any Triggers the node

Next Any Gets the next entity found

Limit Integer Limits how many entities are returned

Immediate Boolean Iterates immediately through the results

Type Integer Type of entity to iterate

ArchetypeFilter String Returns archetype entities

Center Vec3 Center of the sphere

Radius Float Distance from the center of the sphere to check
for entities

Outputs

Port Type Description

OutEntityId Any Outputs the entity and entity ID

Count Integer Outputs the current of entities

Done Integer Triggered when all entities have been found, with
the total count returned

JSON Nodes
You can use these flow graph nodes to configure JSON settings.

Topics

• GetJsonProperty node (p. 648)

• IsValueInJsonArray node (p. 649)

• IterateJsonArrayProperty node (p. 649)

• SetJsonProperty node (p. 650)

GetJsonProperty node
Used to get the JSON attribute value.

Version 1.6
648

Lumberyard User Guide
JSON Nodes

Inputs

Port Type Description

Activate Any Triggers the node

JSON String The JSON code to parse

Attribute String The attribute to get the value of

Outputs

Port Type Description

Error String Triggers if the JSON could not be parsed or the
attribute could not be found

OutValue String Outputs the attribute value

IsValueInJsonArray node

Used to look through a JSON array for the specified value.

Inputs

Port Type Description

Activate Any Triggers the node

JsonArray String The JSON array to search on

Value String The JSON value to search for

Outputs

Port Type Description

Result Integer Outputs the number of occurrences found

True Boolean Triggers if the value was found

False Boolean Triggers if the value was not found

IterateJsonArrayProperty node

Used to iterate through a JSON array, returning one element at a time.

Version 1.6
649

Lumberyard User Guide
Kinect Nodes

Inputs

Port Type Description

Begin Any Starts iterating over the supplied JSON array

Continue Any Continues iterating over the supplied JSON array

JsonArray String The JSON array to iterated over

Outputs

Port Type Description

Value Float Value of the current array element

Index Integer Index of the current array element

Done Any Triggers when there are no more elements in the
array

IsEmpty Boolean Triggers if the array is empty

Error String Triggers if an error occurs

SetJsonProperty node
Used to set a property on a JSON object.

Inputs

Port Type Description

In Any Activates the node

JsonObject String The JSON object to set the property on

Name String Name of the JSON property

Value String Value of the JSON property

Outputs

Port Type Description

Out String Outputs the JSON object

Kinect Nodes
You can use these flow graph nodes to configure Kinect settings.

Topics

Version 1.6
650

Lumberyard User Guide
Kinect Nodes

• Alignment node (p. 651)

• Skeleton node (p. 651)

Alignment node
Used to get the default Kinect skeleton joint lengths when a new closest tracked skeleton is detected.

Inputs

Port Type Description

Enable Any Enables the skeleton alignment watcher

Disable Any Disables the skeleton alignment watcher

ForceAlign Any Forces the beginning of the new skeleton
alignment phase

AlignTime Float The time spent each time the skeleton alignment
is started

Outputs

Port Type Description

Started Boolean Triggers when a new skeleton alignment has
started

Completed Boolean Triggers when a skeleton alignment completes

Skeleton node
Used to get the status of the joints for a Kinect skeleton.

Inputs

Port Type Description

Sync Any Activates the node

Auto Boolean Forces an auto update

Freq Float Auto update frequency. Use 0 to update every
frame.

Joint Integer The skeleton joint

RefJoint Integer The skeleton reference joint

Version 1.6
651

Lumberyard User Guide
Logic Nodes

Outputs

Port Type Description

Pos Vec3 Outputs the skeleton vector position

X Float Outputs the skeleton X-axis position

Y Float Outputs the skeleton Y-axis position

Z Float Outputs the skeleton Z-axis position

Logic Nodes
You can use the following flow graph nodes to define logic operations.

Topics

• AND node (p. 652)

• All node (p. 653)

• Any node (p. 653)

• Blocker node (p. 654)

• CountBlocker node (p. 654)

• DeMultiplexer node (p. 655)

• Gate node (p. 655)

• IfCondition node (p. 656)

• Indexer node (p. 656)

• Multiplexer node (p. 657)

• NOT node (p. 657)

• OR node (p. 658)

• OnChange node (p. 658)

• Once node (p. 659)

• OnceNoSerialize node (p. 659)

• RandomSelect node (p. 659)

• RandomTrigger node (p. 660)

• SelectCondition node (p. 661)

• Sequencer node (p. 661)

• XOR node (p. 662)

AND node

Used to perform a logical AND operation on the input ports. Output is true if both inputs are true.

Inputs

Port Type Description

Activate Any Triggers the node

Version 1.6
652

Lumberyard User Guide
Logic Nodes

Port Type Description

A Boolean First input

B Boolean Second input

Outputs

Port Type Description

Out Boolean Output value

OnTrue Boolean Triggers if Out is true

OnFalse Boolean Triggers if Out is false

All node

Used to trigger the output when all connected inputs are triggered.

Inputs

Port Type Description

In0 - In7 Any Input values

Reset Any Resets the input values to 0

Outputs

Port Type Description

Out Any Triggered when all inputs are triggered

Any node

Used to trigger the output when any of the connected inputs are triggered.

Version 1.6
653

Lumberyard User Guide
Logic Nodes

Inputs

Port Type Description

In0 - In9 Any Input values

Outputs

Port Type Description

Out Any Triggered when any inputs are triggered

Blocker node

Used to block or pass signals depending on the the state of the Block input.

Inputs

Port Type Description

Block Boolean If true, blocks In signal

In Any Input signal

Outputs

Port Type Description

Out Any If Block is false, outputs In signal. If Block is true,
In signal is blocked.

CountBlocker node

Used to output a signal a number of times as defined by the Limit input.

Inputs

Port Type Description

In Any Input value

Reset Any Resets In to 0

Limit Integer Number of times In is sent to Out

Version 1.6
654

Lumberyard User Guide
Logic Nodes

Outputs

Port Type Description

Out Any Passes In a limited number of times as defined
by Limit

DeMultiplexer node

Used to send the In input to the selected Out output, based on the value of the Mode input:

• Always: Both the In and Index inputs activate the output.

• IndexOnly: Only the Index input activates the output.

• InputOnly: Only the In port activates the output.

Inputs

Port Type Description

Index Integer Determines which output receives the input (In)

Mode Integer Determines when the outputs are activated

In Any Input value

Outputs

Port Type Description

Out0 - Out7 Any Outputs that can be triggered

Gate node

Used to block or pass a signal depending on the state of the Closed input.

Inputs

Port Type Description

In Any Input value

Closed Boolean If true, blocks the input from passing to the output

Version 1.6
655

Lumberyard User Guide
Logic Nodes

Port Type Description

Open Any Sets Closed to false

Close Any Sets Closed to true

Outputs

Port Type Description

Out Any Output value

OutClosed Any Output if Closed is true

IfCondition node
Used to output signals based on whether the Condition input is enabled.

Inputs

Port Type Description

Activate Any Triggers the node

Condition Boolean Condition value

In Any Input value

Outputs

Port Type Description

OnFalse Any Triggers if Condition is false

OnTrue Any Triggers if Condition is true

Indexer node
Used to return the index of an active input. Does not account for multiple activations on different inputs.

Inputs

Port Type Description

In0 - In7 Any Input values

Version 1.6
656

Lumberyard User Guide
Logic Nodes

Outputs

Port Type Description

OutIndex Integer Outputs the index (number) of the active input

Multiplexer node

Used to select an input and send it to the output, based on the value of the Mode input:

• Always: Both the In and Index inputs activate the output.

• IndexOnly: Only the Index input activates the output.

• InputOnly: Only the In port activates the output.

Inputs

Port Type Description

Index Integer Determines which input is passed to the output

Mode Integer Determineswhich inputs activate the output

In0 - In7 Any Input values

Outputs

Port Type Description

Output Any Output value

NOT node

Used to perform a logical NOT operation on the input ports. If the input is true, the output will be false
and vice versa.

Inputs

Port Type Description

In Boolean Input value

Version 1.6
657

Lumberyard User Guide
Logic Nodes

Outputs

Port Type Description

Out Boolean If the input is true, the output will be false and
vice versa

OR node

Used to perform a logical OR operation on the input ports. The output is true if either of the two inputs
is true.

Inputs

Port Type Description

Activate Any Triggers the node

A Boolean First input

B Boolean Second input

Outputs

Port Type Description

Out Boolean Output is true if either of the two inputs is true

OnTrue Boolean Triggers if Out is true

OnFalse Boolean Triggers if Out is false

OnChange node

Used to send the input value to the output when it is different from the previous value.

Inputs

Port Type Description

In Boolean Input value

Outputs

Port Type Description

Out Boolean Receives the input value when the input has
changed from it's previous value

Version 1.6
658

Lumberyard User Guide
Logic Nodes

Once node
Used to pass the activated input to the output only once.

Inputs

Port Type Description

In0 - In7 Any Input values

Reset Any Resets the inputs and allows new activation to
occur

Outputs

Port Type Description

Out Any Receives the active input only once

OnceNoSerialize node
Use to pass the activated input value to the output only once. The triggered flag is not serialized
on a saved game. This means that even if a previous savegame is loaded after the node has been
triggered, the node won't be triggered again.

Inputs

Port Type Description

In Any Input value

Reset Any Resets the input and allows new activation to
occur

Outputs

Port Type Description

Out Any Receives the active input only once

RandomSelect node
Used to pass the activated input value to a random number of outputs.

Version 1.6
659

Lumberyard User Guide
Logic Nodes

Inputs

Port Type Description

In Any Input value

MinOut Integer Minimum number of outputs to trigger

MaxOut Integer Maximum number of outputs to trigger

Outputs

Port Type Description

Out0 - Out9 Any Receives active input values

RandomTrigger node

Used to trigger one of the outputs in random order.

Inputs

Port Type Description

In Any Input value

Reset Any Resets the activations to 0

Outputs

Port Type Description

Out0 - Out9 Any Output value

Done Any Triggered when all outputs have been triggered

Version 1.6
660

Lumberyard User Guide
Logic Nodes

SelectCondition node

Used to trigger the output based on the state of the Condition node.

Inputs

Port Type Description

Activate Any Triggers the node

Condition Boolean Condition value

InTrue Any Value sent to Out when Condition is true

InFalse Any Value sent to Out when Condition is false

Outputs

Port Type Description

Out Any Output value

Sequencer node

Used to trigger one of the outputs in sequential order for each input activation.

Inputs

Port Type Description

In Any Input value

Closed Boolean If true, blocks all inputs

Open Any Sets Closed to false

Close Any Sets Closed to true

Reset Any Forces active output to Out0

Reverse Boolean If true, the order of ouput activation is reversed

Version 1.6
661

Lumberyard User Guide
Material Nodes

Outputs

Port Type Description

Out0 - Out9 Any Outputs are triggered in sequential order for each
input activation

XOR node

Used to perform a logical XOR operation on the input ports. If one of the inputs is true, the output is
true. If both inputs are true or are false, the output is false.

Inputs

Port Type Description

Activate Any Triggers the node

A Boolean First input

B Boolean Second input

Outputs

Port Type Description

Out Boolean If one of the inputs is true, the output is true. If
both inputs are true or are false, the output is
false

OnTrue Boolean Triggers if Out is true

OnFalse Boolean Triggers if Out is false

Material Nodes
You can use the following flow graph nodes to define material settings.

Topics

• EntityMaterialChange node (p. 662)

• EntityMaterialParams node (p. 663)

• MaterialClone node (p. 664)

• MaterialParams node (p. 664)

• SetObjectMaterial node (p. 665)

EntityMaterialChange node

Used to apply the specified material to an entity.

Version 1.6
662

Lumberyard User Guide
Material Nodes

Inputs

Port Type Description

Activate Any Activates the node

MaterialName String Name of material to apply

Reset Any Reset to the original material

SerializeChanges Boolean Serialize the change

Outputs

Port Type Description

Name String Outputs the name of the material

EntityMaterialParams node
Used to get the entity's material parameters.

Inputs

Port Type Description

Activate Any Activates the node

Slot Integer Material slot

SubMtlId Integer Submaterial ID

ParamFloat String Float parameter to be set

ValueFloat Float Sets float parameter value

ParamColor String Color parameter to be set

ValueColor Vec3 Color value to be set

Outputs

Port Type Description

FloatValue Float Current float value

Version 1.6
663

Lumberyard User Guide
Material Nodes

Port Type Description

ColorValue Vec3 Current color value

MaterialClone node

Used to clone an entity's material or reset it back to the original.

Inputs

Port Type Description

Activate Any Activates the node

Reset Any Resets to the original material

Slot Integer Material slot

Outputs

Port Type Description

onCloned Any Activated when material is cloned

OnReset Any Activated when material is reset

MaterialParams node

Used to get the specified material's parameters.

Inputs

Port Type Description

Activate Any Activates the node

MaterialName String Material name

SubMtlId Integer Submaterial name

ParamFloat String Float parameter to be set

Version 1.6
664

Lumberyard User Guide
MaterialFX Nodes

Port Type Description

ValueFloat Float Value of the float parameter

ParamColor String Color parametetr to be set

ValueColor Vec3 Value of the color parameter

SerializeChanges Boolean Serialize the change

Outputs

Port Type Description

FloatValue Float Current float value

ColorValue Vec3 Current color value

SetObjectMaterial node

Used to set an object's (render node) material to the specified position.

Inputs

Port Type Description

Material String Set object material

ObjectType Integer Object type

Position Vec3 Position to set material at

Activate Any Activates the node

MaterialFX Nodes
You can use the following flow graph nodes to define material FX settings.

Note
These nodes will only work with the Legacy Game Sample (CryEngine GameSDK), which is
available at Lumberyard Downloads.

Topics

• HUDEndFX node (p. 665)

• HUDStartFX node (p. 666)

HUDEndFX node

The MaterialFX end node for an HUD.

Version 1.6
665

https://aws.amazon.com/lumberyard/downloads/

Lumberyard User Guide
Math Nodes

Inputs

Port Type Description

Trigger Any MaterialFX end node

HUDStartFX node

The MaterialFX start node for an HUD.

Inputs

Port Type Description

Start Any Triggered automatically by the material effect

Outputs

Port Type Description

Started Any Triggered when the material effect has started

Distance Float Outputs the distance to the player

Param1 Float Custom parameter 1

Param2 Float Custom parameter 2

Intensity Float Dynamic value set by game code

BlendOutTime Float Outputs the material effect blend out time in
seconds

Math Nodes
You can use these flow graph nodes to define math operations.

Topics

• Abs node (p. 667)

• Add node (p. 668)

• AnglesToDir node (p. 668)

• ArcCos node (p. 669)

• ArcSin node (p. 669)

• ArcTan node (p. 669)

• ArcTan2 node (p. 670)

Version 1.6
666

Lumberyard User Guide
Math Nodes

• BooleanFrom node (p. 670)

• BooleanTo node (p. 671)

• Calculate node (p. 671)

• Ceil node (p. 672)

• Clamp node (p. 672)

• Cosine node (p. 672)

• Counter node (p. 673)

• DirToAngles node (p. 673)

• Div node (p. 674)

• Equal node (p. 674)

• EvenOrOdd node (p. 674)

• Floor node (p. 675)

• InRange node (p. 675)

• Less node (p. 676)

• Mod node (p. 676)

• Mul node (p. 677)

• Noise1D node (p. 677)

• Noise3D node (p. 678)

• PortCounter node (p. 678)

• Power node (p. 679)

• Random node (p. 679)

• Reciprocal node (p. 680)

• Remainder node (p. 680)

• Round node (p. 681)

• SetColor node (p. 681)

• SetNumber node (p. 681)

• SinCos node (p. 682)

• Sine node (p. 682)

• Sqrt node (p. 683)

• Sub node (p. 683)

• Tangent node (p. 684)

• UpDownCounter node (p. 684)

Abs node

Used to calculate the absolute value of the input.

Inputs

Port Type Description

Activate Any Triggers the node

Version 1.6
667

Lumberyard User Guide
Math Nodes

Port Type Description

A Float Input

Outputs

Port Type Description

Out Float Absolute value of the input

Add node

Used to add the two input values.

Inputs

Port Type Description

Activate Any Triggers the node

A Float First operand

B Float Second operand

Outputs

Port Type Description

Out Float Absolute value of the input

AnglesToDir node

Used to convert the input angle to a unit vector direction.

Inputs

Port Type Description

Angles Vec3 Input angle

Outputs

Port Type Description

Dir Vec3 Direction unit vector

Version 1.6
668

Lumberyard User Guide
Math Nodes

Port Type Description

Roll Float Roll output

ArcCos node

Used to calculate the inverse cosine of the input.

Inputs

Port Type Description

Activate Any Triggers the node

In Float Input angle

Outputs

Port Type Description

Activate Any Triggers the node

In Float Input angle

ArcSin node

Used to calculate the inverse sine of the input.

Inputs

Port Type Description

Activate Any Triggers the node

In Float Input angle

Outputs

Port Type Description

Out Float Inverse sine (Arcsin) of the input

ArcTan node

Used to calculate the inverse tangent of the input.

Version 1.6
669

Lumberyard User Guide
Math Nodes

Inputs

Port Type Description

Activate Any Triggers the node

In Float Input angle

Outputs

Port Type Description

Out Float Inverse tangent (Arctan) of the input

ArcTan2 node

Used to calculate the inverse tangent of the two inputs.

Inputs

Port Type Description

Activate Any Triggers the node

X Float X input value

Y Float Y input value

Outputs

Port Type Description

Out Float Inverse tangent (Arctan) of the Y and X inputs

BooleanFrom node

Used to convert the Boolean input value (0 or 1) to true or false.

Inputs

Port Type Description

Value Boolean Boolean input (0 or 1)

Version 1.6
670

Lumberyard User Guide
Math Nodes

Outputs

Port Type Description

False Float Triggers if input is false (0)

True Float Triggers if input is true (1)

BooleanTo node
Used to convert the inputs to a Boolean 0 or 1 value.

Inputs

Port Type Description

True Float Will output true if event is received on this input

False Float Will output false if event is received on this input

Outputs

Port Type Description

Out Boolean Outputs true (1) or false (0) depending on input
state

Calculate node
Used to calculate the output value based on the operation performed on the two inputs.

Inputs

Port Type Description

Activate Any Activates the node

Operation Ingteger The mathematical operation to be performed

A Float First operand

B Float Second operand

Outputs

Port Type Description

Out Float Result of operation on A and B

Version 1.6
671

Lumberyard User Guide
Math Nodes

Ceil node
Used to output the ceiling value of the input.

Inputs

Port Type Description

In Float Input

Outputs

Port Type Description

Out Float Ceiling input value

Clamp node
Used to clamp the output value to the Min and Max range.

Inputs

Port Type Description

In Float Input value

Min Float Minimum clamp value

Max Float Maximum clamp value

Outputs

Port Type Description

Out Float Triggered if the input is clamped within the range

Cosine node
Used to output the cosine of the input.

Inputs

Port Type Description

Activate Any Triggers the node

Version 1.6
672

Lumberyard User Guide
Math Nodes

Port Type Description

In Float Input in degrees

Outputs

Port Type Description

Out Float Cosine of the input

Counter node
Used to output the number of times the input has been activated.

Inputs

Port Type Description

In Any Input

Reset Any Resets the counter

Max Integer Maximum value of the counter before it is reset

Outputs

Port Type Description

Count Integer Number of times that the input was activated

DirToAngles node
Used to convert the input vector direction to an angle.

Inputs

Port Type Description

Dir Vec3 Vector direction

Roll Float Roll input

Outputs

Port Type Description

Angles Vec3 Converts the direction to an angle in degrees

Version 1.6
673

Lumberyard User Guide
Math Nodes

Div node

Used to divide input A by input B.

Inputs

Port Type Description

Activate Any Triggers the node

A Float Dividend input

B Float Divisor input

Outputs

Port Type Description

Out Float Division of A by B

Equal node

Used to check if the two inputs are equal in value.

Inputs

Port Type Description

Activate Any Triggers the node

A Float First operand

B Float Second operand

Outputs

Port Type Description

Out Boolean True if the two inputs are equal in value

OnTrue Any Triggered if the inputs are equal in value

OnFalse Any Triggered if the inputs are not equal in value

EvenOrOdd node

Used to check if the input is an even or odd value.

Version 1.6
674

Lumberyard User Guide
Math Nodes

Inputs

Port Type Description

In Integer Input

Outputs

Port Type Description

Odd Any Triggered if the input is an odd value

Even Any Triggered if the input is an even value

Floor node

Used to output the floor of the input.

Inputs

Port Type Description

In Float Input

Outputs

Port Type Description

Out Float Floored input

InRange node

Used to check if the input is within the Min and Max value range.

Inputs

Port Type Description

Activate Any Triggers the node

In Float Input

Min Float Minimum value of the range

Version 1.6
675

Lumberyard User Guide
Math Nodes

Port Type Description

Max Float maximum value of the range

Outputs

Port Type Description

Out Boolean True if the input is within the range

OnTrue Any Triggered if the input is within the range

OnFalse Any Triggered if the input is outside of the range

Less node

Used to check whether the A input is less than the B input.

Inputs

Port Type Description

Out Boolean True if A is less than B

OnTrue Any Triggered is A is less then B

OnFalse Any Triggered if A is greater than B

Outputs

Port Type Description

Out Boolean True if A is less than B

OnTrue Any Triggered is A is less then B

OnFalse Any Triggered if A is greater than B

Mod node

Used to calculate the modulus of the two inputs.

Inputs

Port Type Description

Activate Any Triggers the node

Version 1.6
676

Lumberyard User Guide
Math Nodes

Port Type Description

A Float First operand

B Float Second operand

Outputs

Port Type Description

Result Float Modulus of the two inputs

Mul node

Used to multiply the two inputs.

Inputs

Port Type Description

Activate Any Triggers the node

A Float First operand

B Float Second operand

Outputs

Port Type Description

Out Float Multiplication of the two inputs

Noise1D node

Used to multiply the scalar input by the frequency and amplitude.

Inputs

Port Type Description

X Float Scalar Input value to sample noise at

Frequency Float Frequency

Amplitude Float Amplitude

Version 1.6
677

Lumberyard User Guide
Math Nodes

Outputs

Port Type Description

Out Float Multiplication of X by Frequency and Amplitude
values

Noise3D node
Used to multiple the vector input by the frequency and amplitude.

Inputs

Port Type Description

V Vec3 Vector input value to sample noise at

Frequency Float Frequency

Amplitude Float Amplitude

Outputs

Port Type Description

Out Float Multiplication of V by Frequency and Amplitude
values

PortCounter node
Used to count the number of activated inputs.

Inputs

Port Type Description

Reset Any Resets PortCount and TotalCount

Version 1.6
678

Lumberyard User Guide
Math Nodes

Port Type Description

PortThreshold Integer PortCount threshold value

TotalThreshold Integer TotalCount threshold value

In00 - In15 Any Inputs

Outputs

Port Type Description

PortCount Integer Number of ports that have been set

TotalCount Integer Sum of all times any of the input ports have been
set

PortTrigger Boolean Triggered when PortCount reaches
PortThreshold

TotalTrigger Boolean Triggered when TotalCount reaches
TotalThreshold

Power node

Used to calculate the Base input raised to the Power exponent.

Inputs

Port Type Description

Activate Any Triggers the node

Base Float Base input

Power Float Exponent input

Outputs

Port Type Description

Out Float Base input value raised to the Power exponent

Random node

Used to generate a random number between the Min and Max values, both as an integer and as a
floating point number.

Version 1.6
679

Lumberyard User Guide
Math Nodes

Inputs

Port Type Description

Generate Any Generates a random number

Min Float Minimum value of the random number

Max Float Maximum value of the random number

Outputs

Port Type Description

Out Float Output as floating-point number

OutRounded Integer Output rounded to next integer value

Reciprocal node
Used to output the reciprocal value of the input.

Inputs

Port Type Description

Activate Any Triggers the node

A Float Input

Outputs

Port Type Description

Out Float Reciprocal of the input

Remainder node
Used to output the remainder value of A divided by B.

Inputs

Port Type Description

Activate Any Triggers the node

A Float Dividend input

B Float Divisor input

Version 1.6
680

Lumberyard User Guide
Math Nodes

Outputs

Port Type Description

Out Float Remainder of the inputs

Round node
Used to round the input floating point value to an integer output.

Inputs

Port Type Description

Activate Any Triggers the node

In Float Floating-point Input

Outputs

Port Type Description

OutRounded Integer Rounded integer value of the input

SetColor node
Used to output the input vector color when the Set input is activated.

Inputs

Port Type Description

Set Any Triggers input to output

In Vec3 Vector input value

Outputs

Port Type Description

Out Vec3 Input value when Set is triggered

SetNumber node
Used to output the input scalar number when the Set input is activated.

Version 1.6
681

Lumberyard User Guide
Math Nodes

Inputs

Port Type Description

Activate Any Triggers the node

In Float Input

Outputs

Port Type Description

Out Float Outputs the input

SinCos node

Used to calculate the sine and cosine of the input.

Inputs

Port Type Description

Activate Any Triggers the node

In Float Input angle in degrees

Outputs

Port Type Description

Sin Float Sine of the input

Cos Float Cosine of the input

Sine node

Used to calculate the sine of the input.

Inputs

Port Type Description

Activate Any Triggers the node

Version 1.6
682

Lumberyard User Guide
Math Nodes

Port Type Description

In Float Input angle in degrees

Outputs

Port Type Description

Out Float Sine of the input

Sqrt node

Used to calculate the square root of the input.

Inputs

Port Type Description

Activate Any Triggers the node

A Float Input

Outputs

Port Type Description

Out Float Square root of the input

Sub node

Used to subtract the two inputs.

Inputs

Port Type Description

Activate Any Triggers the node

A Float First operand

Version 1.6
683

Lumberyard User Guide
Math Nodes

Port Type Description

B Float Second operand

Outputs

Port Type Description

Out Float Subtraction of the two inputs

Tangent node
Used to calculate the tangent of the input.

Inputs

Port Type Description

Activate Any Triggers the node

In Float Input angle in degrees

Outputs

Port Type Description

Out Float Tangent of the inpt

UpDownCounter node
Used to output an up or down counter.

Inputs

Port Type Description

Preset Integer Preset input value

Max Integer Maximum counter limit

Min Integer Minimum counter limit

Decrement Boolean Decrements the count

Increment Boolean Increments the count

Wrap Boolean If true, the counter will wrap

Version 1.6
684

Lumberyard User Guide
Mission Nodes

Outputs

Port Type Description

Out Float Current count

Mission Nodes
You can use these flow graph nodes to configure mission-related settings. Game tokens are useful as
variables used for passing data between flow graphs or within a flow graph, or for storing data between
levels.

Topics

• GameToken node (p. 685)

• GameTokenCheck node (p. 686)

• GameTokenCheckMulti node (p. 686)

• GameTokenGet node (p. 687)

• GameTokenModify node (p. 687)

• GameTokenSet node (p. 688)

• GameTokensLevelToLevelRestore node (p. 688)

• GameTokensLevelToLevelStore node (p. 688)

• LoadNextLevel node (p. 689)

GameToken node

Used to get or set a game token. This is the most important and useful of all the mission nodes as it
acts like a listener for any changes on the input.

Inputs

Port Type Description

Token String Game token to compare. Any change in this
value will trigger the TokenValue output.

CompareValue String Value to compare the token value against

Outputs

Port Type Description

TokenValue Any Value of the game token. Triggers whenever the
Token input changes value.

OnTrue Boolean Triggered if the token value is equal to
CompareValue

Version 1.6
685

Lumberyard User Guide
Mission Nodes

Port Type Description

OnFalse Boolean Triggered if the token value is not equal to
CompareValue

GameTokenCheck node

Used to check if the value of a game token equals a value.

Inputs

Port Type Description

Activate Any Activates the node

Token String Game token to check

CompareValue String Value to compare the token value against

Outputs

Port Type Description

TokenValue Any Value of the token

Result Boolean True if the token value is equal to CompareValue

OnTrue Any Triggered if the token value is equal to
CompareValue

OnFalse Any Triggered if the token value is not equal to
CompareValue

GameTokenCheckMulti node

Used to check if a game token is equal to any value in a list.

Inputs

Port Type Description

Activate Any Activates the node

Version 1.6
686

Lumberyard User Guide
Mission Nodes

Port Type Description

Token String Game token to check

Value0 - Value7 String Values to compare the token value with

Outputs

Port Type Description

TokenValue Any Value of the token

OneTrue Any Triggered if the token value is equal to at least
one of the input port values

AllFalse Any Triggered if the token value is not equal to any of
the input port values

GameTokenGet node
Used to get the value of the game token.

Inputs

Port Type Description

Activate Any Activates the node

Token String Game token to get

Inputs

Port Type Description

OutValue Any Displays value of the game token

GameTokenModify node
Used to modify the value of a game token.

Inputs

Port Type Description

Activate Any Activates the node

Token String Game token to set

Version 1.6
687

Lumberyard User Guide
Mission Nodes

Port Type Description

Operation Integer Operation to perform on the token

TokenType Integer Token type

OtherValue String Value to perform operation with

Outputs

Port Type Description

Result Any Result of the operation

GameTokenSet node
Used to set the value of a game token.

Inputs

Port Type Description

Activate Any Activates the node

Token String Game token to set

TokenValue String Value of token

Outputs

Port Type Description

OutValue Any Outputs token value

GameTokensLevelToLevelRestore node
Used to restore the values of all game tokens in a level that were stored in the previous level using the
GameTokensLevelToLevelStore node.

Inputs

Port Type Description

Activate Any Activates the node

GameTokensLevelToLevelStore node
Used to store the values of all game tokens in a level.

Version 1.6
688

Lumberyard User Guide
Module Nodes

Inputs

Port Type Description

Activate Any Activates the node

Token0 - Token7 String Stores token values

LoadNextLevel node

Used to load the next level.

Inputs

Port Type Description

Activate Any Activates the node

NextLevel String Ends the current level and loads the next level

ClearToBlack Boolean

Module Nodes
Module nodes are project-specific, user-created nodes. The nodes listed here are used in the Samples
projects, which are located at lumberyard_root_folder\dev\SamplesProject\Levels
\Samples .

Topics

• Call_Character_Controller_Robot node (p. 689)

• Call_Character_Controller_Robot_Completed node (p. 690)

• Call_Free_Cam_Controller node (p. 691)

• Call_VR_Character_Controller_Robot node (p. 692)

• Utils:UserIDToModuleID node (p. 693)

Call_Character_Controller_Robot node

Used to call a character's controller robot.

Version 1.6
689

Lumberyard User Guide
Module Nodes

Inputs

Port Type Description

Call Any Calls the module

Instanced Boolean Whether the module is instanced or not.

Cancel Any Cancels the module

InstanceID Integer Instance ID

Controller_Ref_Box_PitchInteger Integer

Controller_Ref_Box_MoveInteger Integer

Awesome_Sphere Integer Integer

Robot_Head Integer Integer

Camera_Rig Integer Integer

Robot_Body Integer Integer

Head_Tilt_Parent Integer Integer

Outputs

Port Type Description

OnCalled Integer Triggers when module is started

Done Any Successful status

Cancelled Any Failed status

Call_Character_Controller_Robot_Completed node

Used to call a character's controller robot.

Version 1.6
690

Lumberyard User Guide
Module Nodes

Inputs

Port Type Description

Call Any Calls the module

Instanced Boolean Whether the module is instanced or not.

Cancel Any Cancels the module

InstanceID Integer Instance ID

Controller_Ref_Box_PitchInteger Integer

Controller_Ref_Box_MoveInteger Integer

Awesome_Sphere Integer Integer

Robot_Head Integer Integer

Camera_Rig Integer Integer

Robot_Body Integer Integer

Head_Tilt_Parent Integer Integer

Outputs

Port Type Description

OnCalled Integer Triggers when module is started

Done Any Successful status

Cancelled Any Failed status

Call_Free_Cam_Controller node

Used to call a camera controller.

Inputs

Port Type Description

Call Any Calls the module

Instanced Boolean Whether the module is instanced or not.

Cancel Any Cancels the module

InstanceID Integer Instance ID

Entity_ID_Camera Integer Integer

Version 1.6
691

Lumberyard User Guide
Module Nodes

Outputs

Port Type Description

OnCalled Integer Triggers when module is started

Done Any Successful status

Cancelled Any Failed status

Call_VR_Character_Controller_Robot node

Used to call a VR character's controller robot.

Inputs

Port Type Description

Call Any Calls the module

Instanced Boolean Whether the module is instanced or not.

Cancel Any Cancels the module

InstanceID Integer Instance ID

Sphere Integer Integer

Ref_Move Integer Integer

Camera Integer Integer

Ref_Camera_Yaw Integer Integer

Camera_Fulcrum Integer Integer

HMD_Fulcrum Integer Integer

Head_Tilt_Parent Integer Integer

Robot_Body Integer Integer

Outputs

Port Type Description

OnCalled Integer Triggers when module is started

Done Any Successful status

Version 1.6
692

Lumberyard User Guide
Movement Nodes

Port Type Description

Cancelled Any Failed status

Utils:UserIDToModuleID node

Used to map a user ID to a module instance ID.

Inputs

Port Type Description

Get Any Gets the module instance ID for the user ID

Set Any Gets the module instance ID for the user ID

UserID Integer User ID

ModuleID Integer Module instance ID

Outputs

Port Type Description

ModuleID Integer Module instance ID for the user ID

Movement Nodes
You can use the following flow graph nodes to specify entity movements.

Topics

• MoveEntityTo node (p. 693)

• RotateEntity node (p. 694)

• RotateEntityTo node (p. 695)

MoveEntityTo node

Used to move an entity to a destination position at a defined speed or in a defined interval of time.

Version 1.6
693

Lumberyard User Guide
Movement Nodes

Inputs

Port Type Description

Destination Vec3 Position of the destination.

DynamicUpdate Boolean Indicates if destination position is to be followed if
it changes.

ValueType Integer Type of input: Speed, Time,

Value Float Speed (m/sec) or Time (sec) value

EaseInDistance Float Distance from destination at which the entity
starts slowing down

EaseOutDistance Float Distance from destination at which the entity
starts speeding up

CoordSys Integer Coordinate system of the destination: Parent,
World, or Local.

Start Any Starts movement

Stop Any Stops movement

Outputs

Port Type Description

Current Vec3 Current position

OnStart Any Activated when Start is triggered

OnStop Any Activated when Stop is triggered

Finish Any Activated when destination is reached

Done Any Activated when destination is reached or Stop is
triggered.

RotateEntity node

Used to rotate an entity at a defined speed.

Inputs

Port Type Description

Enable Any Enables updates

Disable Any Disables updates

Version 1.6
694

Lumberyard User Guide
Movement Nodes

Port Type Description

Velocity Vec3 Angular velocity (degrees/sec)

CoordSys Integer Coordinate system for rotation: World, Local

Outputs

Port Type Description

CurrentDegrees Vec3 Current rotation in degrees

CurrentRadians Vec3 Current rotation in radians

RotateEntityTo node

Used to rotate an entity at a defined speed or in a defined interval of time.

Inputs

Port Type Description

Destination Vec3 Destination position (in degrees)

DynamicUpdate Boolean If dynamic updates are enabled or not

ValueType Integer Type of input value: Speed (m/sec) or Time (sec)

Value Float Value of Speed or Time

CoordSys Integer Coordinate system of the destination: Parent,
World, Local

Start Any Starts movement

Stop Any Stops movement

Outputs

Port Type Description

CurrentDeg Vec3 Current rotation in degrees

CurrentRad Vec3 Current rotation in radians

OnStart Any Activated when Start input is triggered

OnStop Any Activated when Stop input is triggered

Finish Any Activated when destination rotation is reached

Version 1.6
695

Lumberyard User Guide
Physics Nodes

Port Type Description

Done Any Activated when destination rotation is reached or
Stop is triggered

Physics Nodes
You can use the following flow graph nodes to configure physics.

Topics

• ActionImpulse node (p. 696)

• CameraProxy node (p. 696)

• CollisionListener node (p. 697)

• Constraint node (p. 698)

• Dynamics node (p. 699)

• PhysicsEnable node (p. 699)

• PhysicsSleepQuery node (p. 700)

• RayCast node (p. 700)

• RaycastCamera node (p. 701)

ActionImpulse node
Used to apply an impulse to an entity.

Inputs

Port Type Description

Activate Any Actives the node

Impulse Vec3 Impulse vector

AngularImpulse Vec3 Angular impulse vector

Point Vec3 Location impulse is applied at

PartIndex Integer Part index

CoordSystem Integer Coordinate system used

CameraProxy node
Used to create a entity camera proxy.

Version 1.6
696

Lumberyard User Guide
Physics Nodes

Inputs

Port Type Description

Create Any Creates a physicalized camera proxy if one does
not exist

EntityHost Any Syncs proxy rotation with the current view
camera

Outputs

Port Type Description

EntityCamera Integer Retrieves the camera proxy

CollisionListener node

Used to setup physics collision listeners.

Inputs

Port Type Description

AddListener Any Adds collision listener

IgnoreSameNode Boolean Suppresses events if both colliders are registered
via the same node

RemoveListener Any Removes collision listener

Outputs

Port Type Description

IdA Any ID of the first colliding entity

PartIdA Integer Part ID inside the first colliding entity

IdB Any ID of the second colliding entity

PartIdB Integer Part ID inside the second colliding entity

Point Vec3 Location of colision point

Normal Vec3 Collision normal

SurfacetypeA String Surface type of the first colliding entity

Version 1.6
697

Lumberyard User Guide
Physics Nodes

Port Type Description

SurfacetypeB String Surface type of the second colliding entity

HitImpulse Float Collision impulse along the normal

Constraint node

Used to create a physics constraint.

Inputs

Port Type Description

Create Any Creates the constraint

Break Any Breaks the constraint

Id Integer Constraint ID

EntityA Any Constraint owner entity

PartIdA Integer Part ID to attach to

EntityB Any Constraint buddy entity

PartIdB Integer Part ID to attach to

Point Vec3 Connection point in worldspace

IgnoreCollisions Boolean Disables collisions between constrained entities

Breakable Boolean Break if force limit is reached

ForceAwake Boolean Make entity B always awake; restores previous
sleep parameters

MaxForce Float Force limit

MaxTorque Float Rotational force (torque) force limit

MaxForceRelative Any Make limits relative to entity B's mass

TwistAxis Boolean Main rotation axis in worldspace

Version 1.6
698

Lumberyard User Guide
Physics Nodes

Port Type Description

MinTwist Float Lower rotation limit around TwistAxis

MaxTwist Float Upper rotation limit around TwistAxis

MaxBend Float Maximum bend of the TwistAxis

Outputs

Port Type Description

Id Integer Constraint ID

Broken Boolean Triggered when the constraint breaks

Dynamics node
Used to output the dynamic state of an entity.

Inputs

Port Type Description

Enable Any Enables updates

Disable Any Disables updates

Outputs

Port Type Description

Velocity Vec3 Velocity of entity

Acceleration Vec3 Acceleration of entity

AngularVelocity Vec3 Angular velocity of entity

AngularAcceleration Vec3 Angular acceleration of entity

Mass Float Mass of entity

PhysicsEnable node
Used to enable and disable physics.

Version 1.6
699

Lumberyard User Guide
Physics Nodes

Inputs

Port Type Description

EnablePhysics Any Enables physics for entity

DisablePhysics Any Disables physics for entity

EnableAI Any Enables AI for entity

DisableAI Any Disables AI for entity

PhysicsSleepQuery node
Used to return the sleeping state of the physics of a given entity.

Inputs

Port Type Description

Condition Boolean Sleeping state of the entity

Reset Boolean Resets the node

Outputs

Port Type Description

Sleeping Boolean Sleeping state of the entity

OnSleep Any Triggered when the entity physics switches to
sleep

OneAwake Any Triggered when the entity physics switches to
awake

RayCast node
Used to perform a raycast relative to an entity.

Inputs

Port Type Description

Activate Any Activates the node

Version 1.6
700

Lumberyard User Guide
Physics Nodes

Port Type Description

Direction Vec3 Direction of the raycast

MaxLength Float Maximum length of the raycast

Position Vec3 Ray start position relative to the entity

TransformDirection Boolean Transforms direction by entity orientation

Outputs

Port Type Description

NoHit Any Triggered if no object was hit by the raycast

Hit Any Triggered if an object was hit by the raycast

RayDirection Vec3 Direction of the cast ray

HitDistance Float Distance to the hit object

HitPoint Vec3 Position of the hit

HitNormal Vec3 Normal of the suirface at the HitPoint

HitSurfaceType Integer Surface type index of the surface hit

HitEntity Any ID of the entity that was hit

RaycastCamera node
Used to perform a raycast relative to a camera.

Inputs

Port Type Description

Activate Any Activates the node

PositionOffset Vec3 Ray start position relative to the camera

MaxLength Float Maximum length of the raycast

Outputs

Port Type Description

NoHit Any Triggered if no object was hit by the raycast

Version 1.6
701

Lumberyard User Guide
Prefab Nodes

Port Type Description

Hit Any Triggered if an object was hit by the raycast

RayDirection Vec3 Direction of the cast ray

HitDistance Float Distance to the hit object

HitPoint Vec3 Position of the hit

HitNormal Any Normal of the suirface at the HitPoint

HitSurfaceType Integer Surface type index of the surface hit

partid Integer Hit part ID

HitEntity Any ID of the entity that was hit

entityPhysId Any ID of the physical entity that was hit

Prefab Nodes
You can use the following flow graph nodes to configure prefab settings.

Topics

• EventSource node (p. 702)

EventSource node
Used to add an event source inside of a prefab for it to be handled like an instance.

Inputs

Port Type Description

PrefabName String Name of the prefab

InstanceName String Name of the prefab instance

EventName String Name of the event associated with the prefab

FireEvent Any Fires the associated event

EventId Integer ID of the event

EventIndex Integer Position of the event in the index

Outputs

Port Type Description

EventFired Any Triggered when the event has fired

Version 1.6
702

Lumberyard User Guide
ProceduralMaterial Nodes

ProceduralMaterial Nodes
You can use the following flow graph nodes to configure procedural material settings.

Topics

• GetGraphInstanceID node (p. 703)

• GetInputFloat node (p. 704)

• GetInputFloat2 node (p. 704)

• GetInputFloat3 node (p. 704)

• GetInputFloat4 node (p. 705)

• GetInput node (p. 706)

• GetInput2 node (p. 706)

• GetInput3 node (p. 707)

• GetInput4 node (p. 707)

• QueueGraphInstance node (p. 708)

• RenderASync node (p. 708)

• RenderSync node (p. 709)

• SetInputFloat node (p. 709)

• SetInputFloat2 node (p. 709)

• SetInputFloat3 node (p. 710)

• SetInputFloat4 node (p. 711)

• SetInputImage node (p. 711)

• SetInputInt node (p. 712)

• SetInputInt2 node (p. 712)

• SetInputInt3 node (p. 713)

• SetInputInt4 node (p. 713)

GetGraphInstanceID node

Used to get the graph instance ID.

Inputs

Port Type Description

ProceduralMaterial String Name of the procedural material

GraphicIndex Integer Graph index

Get Any Get the graph index

Outputs

Port Type Description

Result Integer Outputs the graph index

Version 1.6
703

Lumberyard User Guide
ProceduralMaterial Nodes

GetInputFloat node
Used to get the Substance input floating point value.

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

ParameterName String Parameter name

Get Any Get parameter value

Outputs

Port Type Description

Value1 Float Outputs parameter value

Done Any Triggered when input completes

GetInputFloat2 node
Used to get the Substance input floating point values.

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

ParameterName String Parameter name

Get Any Get parameter value

Outputs

Port Type Description

Value1 Integer Outputs parameter value 1

Value2 Integer Outputs parameter value 2

Done Any Triggered when input completes

GetInputFloat3 node
Used to get the Substance input floating point values.

Version 1.6
704

Lumberyard User Guide
ProceduralMaterial Nodes

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

ParameterName String Parameter name

Get Any Get parameter value

Outputs

Port Type Description

Value1 Float Outputs parameter value 1

Value2 Float Outputs parameter value 2

Value3 Float Outputs parameter value 3

Done Any Triggered when input completes

GetInputFloat4 node

Used to get the Substance input floating point values.

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

ParameterName String Parameter name

Get Any Get parameter value

Outputs

Port Type Description

Value1 Float Outputs parameter value 1

Value2 Float Outputs parameter value 2

Value3 Float Outputs parameter value 3

Value4 Float Outputs parameter value 4

Version 1.6
705

Lumberyard User Guide
ProceduralMaterial Nodes

Port Type Description

Done Any Triggered when input completes

GetInput node

Used to get the Substance input value.

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

ParameterName String Parameter name

Get Any Get parameter value

Outputs

Port Type Description

Value1 Float Outputs parameter value

Done Any Triggered when input completes

GetInput2 node

Used to get the Substance input value.

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

ParameterName String Parameter name

Get Any Get parameter value

Outputs

Port Type Description

Value1 Float Outputs parameter value 1

Version 1.6
706

Lumberyard User Guide
ProceduralMaterial Nodes

Port Type Description

Value2 Float Outputs parameter value 2

Done Any Triggered when input completes

GetInput3 node

Used to get the Substance input value.

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

ParameterName String Parameter name

Get Any Get parameter value

Outputs

Port Type Description

Value1 Float Outputs parameter value 1

Value2 Float Outputs parameter value 2

Value3 Float Outputs parameter value 3

Done Any Triggered when input completes

GetInput4 node

Used to get the Substance input value.

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

ParameterName String Parameter name

Get Any Get parameter value

Version 1.6
707

Lumberyard User Guide
ProceduralMaterial Nodes

Outputs

Port Type Description

Value1 Float Outputs parameter value 1

Value2 Float Outputs parameter value 2

Value3 Float Outputs parameter value 3

Value4 Float Outputs parameter value 4

Done Any Triggered when input completes

QueueGraphInstance node

Used to queue to graph instance.

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

Add Any Add graph instance ID to the queue

Outputs

Port Type Description

Done Any Triggered when input completes

RenderASync node

Used to render queued graphs asynchronously.

Inputs

Port Type Description

Render Any Begin rendering graph instance asyncronously

Outputs

Port Type Description

RenderBegin Any Triggered when rendering has started

Version 1.6
708

Lumberyard User Guide
ProceduralMaterial Nodes

Port Type Description

RenderComplete Any Triggered when rendering has completed

RenderSync node

Used to render queued graphs synchronously.

Inputs

Port Type Description

Render Any Begin rendering graph instance syncronously

Outputs

Port Type Description

RenderComplete Any Triggered when rendering has completed

SetInputFloat node

Used to set the Substance input floating point value.

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

ParameterName String Parameter name

Value1 Float Floating point parameter value to set

Apply Any Set parameter value

Outputs

Port Type Description

Done Any Triggered when input completes

SetInputFloat2 node

Used to set the Substance input floating point values.

Version 1.6
709

Lumberyard User Guide
ProceduralMaterial Nodes

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

ParameterName String Parameter name

Value1 Float Floating point parameter value 1 to set

Value2 Float Floating point parameter value 2 to set

Apply Any Set parameter value

Outputs

Port Type Description

Done Any Triggered when input completes

SetInputFloat3 node

Used to set the Substance input floating point values.

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

ParameterName String Parameter name

Value1 Float Floating point parameter value 1 to set

Value2 Float Floating point parameter value 2 to set

Value3 Float Floating point parameter value 3 to set

Apply Any Set parameter value

Outputs

Port Type Description

Done Any Triggered when input completes

Version 1.6
710

Lumberyard User Guide
ProceduralMaterial Nodes

SetInputFloat4 node

Used to set the Substance input floating point values.

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

ParameterName String Parameter name

Value1 Float Floating point parameter value 1 to set

Value2 Float Floating point parameter value 2 to set

Value3 Float Floating point parameter value 3 to set

Value4 Float Floating point parameter value 4 to set

Apply Any Set parameter value

Outputs

Port Type Description

Done Any Triggered when input completes

SetInputImage node

Used to set the Substance input image.

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

ParameterName String Parameter name

Texture String Image to be set

Apply Any Set input image

Version 1.6
711

Lumberyard User Guide
ProceduralMaterial Nodes

Outputs

Port Type Description

Done Any Triggered when input completes

SetInputInt node

Used to set the Substance input value.

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

ParameterName String Parameter name

Value1 Float Parameter value to set

Apply Any Set parameter value

Outputs

Port Type Description

Done Any Triggered when input completes

SetInputInt2 node

Used to set the Substance input values.

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

ParameterName String Parameter name

Value1 Float Parameter value 1 to set

Value2 Float Parameter value 2 to set

Apply Any Set parameter value

Version 1.6
712

Lumberyard User Guide
ProceduralMaterial Nodes

Outputs

Port Type Description

Done Any Triggered when input completes

SetInputInt3 node

Used to set the Substance input values.

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

ParameterName String Parameter name

Value1 Float Parameter value 1 to set

Value2 Float Parameter value 2 to set

Value3 Float Parameter value 3 to set

Apply Any Set parameter value

Outputs

Port Type Description

Done Any Triggered when input completes

SetInputInt4 node

Used to set the Substance input values.

Inputs

Port Type Description

GraphInstanceID Integer Graph instance ID

Version 1.6
713

Lumberyard User Guide
Stereo Nodes

Port Type Description

ParameterName String Parameter name

Value1 Float Parameter value 1 to set

Value2 Float Parameter value 2 to set

Value3 Float Parameter value 3 to set

Value4 Float Parameter value 4 to set

Apply Any Set parameter value

Outputs

Port Type Description

Done Any Triggered when input completes

Stereo Nodes
You can use the following flow graph nodes to configure stereographic settings.

Topics

• ReadStereoParameters node (p. 714)

• StereoParameters node (p. 715)

ReadStereoParameters node

Usd to read the HUD stereo display parameters.

Inputs

Port Type Description

Read Any Start reading stereo values

Stop Any Stop reading stereo values

Outputs

Port Type Description

EyeDistance Float Outputs eye distance

ScreenDistance Float Outputs screen distance

HUDDistance Float Outputs HUD distance

Flipped Boolean Output if stereo is flipped

Version 1.6
714

Lumberyard User Guide
String Nodes

StereoParameters node

Used to output the HUD stereo display parameters.

Inputs

Port Type Description

EyeDistance Float Sets the stereo eye distance

ScreenDistance Float Sets the stereo screen distance

HUDDistance Float Sets the stereo HUD distance

Duration Float Duration of the interpolation in seconds

Start Any Starts the interpolation

Outputs

Port Type Description

CurrentEyeDistance Float Outputs the current eye distance

CurrentScreenDistance Float Outputs the current screen distance

CurrentHUDDistance Float Outputs the current HUD distance

TimeLeft Float Time left to the end of the interpolation

Done Any Outputs when interpolation has completed

String Nodes
You can use the following flow graph nodes to configure strings.

Topics

• Collect node (p. 715)

• Compare node (p. 716)

• Concat node (p. 716)

• ReplaceString node (p. 717)

• SetString node (p. 717)

• Split node (p. 718)

• URLDecode node (p. 718)

Collect node

Used to collect a string.

Version 1.6
715

Lumberyard User Guide
String Nodes

Inputs

Port Type Description

Activate Any Collects the strings and triggers the output

Input String Each string that will be joined

JoinString String String to use between all collected strings

Outputs

Port Type Description

CollectedString String Outputs the collected string set

Compare node

Used to compare two strings.

Inputs

Port Type Description

Compare Any Triggers string comparison

A String First string to compare

B String Second string to compare

IgnoreCase Boolean Ignores casing

Outputs

Port Type Description

Result Integer Outputs -1 if string A less than string B, 0 if String
A equals string B, 1 if string A is greater than
string B

False Any Triggers if string A does not equal string B

True Any Triggers if string A equals string B

Concat node

Used to concatenate two strings.

Version 1.6
716

Lumberyard User Guide
String Nodes

Inputs

Port Type Description

Set Any Triggers string concatenation

String1 String First string to concatenate

String2 String Second string to concatenate

Outputs

Port Type Description

Out String Outputs the concatenated string

ReplaceString node
Used to replace a string.

Inputs

Port Type Description

Input String Triggers string replacement

Replace String The string to replace

ReplaceWith String The new string to replace with

Outputs

Port Type Description

OutString String Outputs the replaced string

SetString node
Used to set a string value.

Inputs

Port Type Description

Set Any Sends the string to the output

Version 1.6
717

Lumberyard User Guide
String Nodes

Port Type Description

In String String to set on

Outputs

Port Type Description

Out String Outputs the string value

Split node

Used to split a string.

Inputs

Port Type Description

Activate Any Triggers the string split

Input String The string to split

Separator String Character to separate the string on. If you pass a
string, only the first character will be used

Outputs

Port Type Description

Split0 - Split4 String Outputs the specific string split

URLDecode node

Used to decode the URL of a string.

Input

Port Type Description

Input String String to URL decode

Outputs

Port Type Description

DecodedString String Outputs the URL-decoded string

Version 1.6
718

Lumberyard User Guide
System Nodes

System Nodes
You can use the following flow graph nodes to configure system settings.

Topics

• Container:Create node (p. 719)

• Container:Edit node (p. 719)

• Container:Iterate node (p. 720)

Container:Create node
Used to create a container.

Inputs

Port Type Description

Id Integer Container ID

Create Any Creates a container

Outputs

Port Type Description

Error Integer Triggers when an error occurs

Success Any Tiggers when a container is created

Id Integer Outputs the container ID

Container:Edit node
Used to edit a container.

Inputs

Port Type Description

Id Integer Container ID

Add Any Adds the passed item to the container

AddUnique Any Adds the passed item if it didn't exist

Remove Any Removes all occurrences of the current item

Version 1.6
719

Lumberyard User Guide
Time Nodes

Port Type Description

Clear Any Empties the container

GetCount Any Gets the number of items in the container

Delete Any Deletes the container

Outputs

Port Type Description

Error Integer Triggers when an error occurs

Success Any Triggers when the operation successfully
completed

Container:Iterate node

Used to iterate over a container.

Inputs

Port Type Description

Id Integer Container ID

Start Any Starts iterating the container

Outputs

Port Type Description

Error Integer Triggers when an error occurs

Done Any Triggers when the operation successfully
completed

Out Any Outputs the container ID

Time Nodes
You can use these flow graph nodes to define time settings.

Topics

• Delay (p. 721)

• FrameDelay (p. 721)

• MeasureTime (p. 722)

• RandomDelay (p. 722)

• RealTime (p. 723)

Version 1.6
720

Lumberyard User Guide
Time Nodes

• ServerTime (p. 724)

• Time (p. 724)

• TimeOfDay (p. 725)

• TimeOfDayLoadDefinitionFile (p. 726)

• TimeOfDayTransitionTrigger (p. 726)

• TimeOfDayTrigger (p. 728)

• TimedCounter (p. 728)

• Timer (p. 729)

Delay

Delays passing the signal from [In] to [Out] for the specified length of time (seconds).

Inputs

Port Type Description

In Any Value to pass after the specified delay time

Delay Float Delay time in seconds

Default value: 1

Valid values: 0 – 100

resetOnInput Boolean When set to true, resets the node with each
input, setting the delay counter to 0 and erasing
previous inputs

Default value: 0

Valid values: 0=false | 1=true

Outputs

Port Type Description

out Any Value that is passed after the specified frame
delay

FrameDelay

Delays passing the signal from [In] to [Out] for the specified number of frames.

Version 1.6
721

Lumberyard User Guide
Time Nodes

Inputs

Port Type Description

In Any Value to pass after the specified delay time

NFrames Integer Number of frames to delay passing the signal
from [In] to [Out]

Default value: 1

Valid values: 0 – 100

Outputs

Port Type Description

out Any Value that is passed after the specified frame
delay

MeasureTime

Measures the elapsed time.

Inputs

Port Type Description

Start Any Trigger to begin measuring time as it passes

Stop Any Trigger to stop measuring the elapsed time

Outputs

Port Type Description

Started Any Triggered on start

Stopped Any Triggered on stop

Elapsed Any Elapsed time in seconds

RandomDelay

Delays passing the signal from [In] to [Out] for a random amount of time (seconds) within the
[MinDelay, MaxDelay] interval.

Version 1.6
722

Lumberyard User Guide
Time Nodes

Inputs

Port Type Description

In Any Value to pass after the specified delay time

MinDelay Float Minimum random delay time in seconds

Default value: 1

Valid values: 0 – 100

MaxDelay Float Maximum random delay time in seconds

Default value: 2

Valid values: 0 – 100

Outputs

Port Type Description

Out Any Value that is passed after the specified delay
time

RealTime
Reads your system time. RealTime can be used to display time on screen (such as a player's watch) or
synchronize the time of day with real world time.

Inputs

Port Type Description

force_update Any Forces an update of the system time

Outputs

Port Type Description

Hours Integer Current hour as reported by your system time

Minutes Integer Current minutes as reported by your system time

Version 1.6
723

Lumberyard User Guide
Time Nodes

Port Type Description

Seconds Integer Current seconds as reported by your system time

Datetime String Outputs your system date and time

Epoch Integer Current epoch as reported by your system time

ServerTime

Reads the server time and reports the current time (seconds or milliseconds) for the specified period.

Inputs

Port Type Description

Basetime Float Base time in seconds. The server time output is
relative to the base time

Default value: 0

Valid values: 0 – 100

Period Float Number of seconds that should pass before the
timer resets to 0

Default value: 0

Valid values: 0 – 100

Outputs

Port Type Description

Secs Integer Current time in seconds, relative to the base time

Msecs Integer Current time in milliseconds, relative to the base
time

Period Boolean Triggers the Period output once for each period
of time, as specified by the Period input

Valid values: 0=false | 1=true

Time

Outputs the total number of seconds from the start of the game, ticking once per frame.

Version 1.6
724

Lumberyard User Guide
Time Nodes

Inputs

Port Type Description

Paused Boolean Pauses the time output when set to true.

Default value: 0

Valid values: 0=false | 1=true

Outputs

Port Type Description

seconds Float Current time in seconds

tick Any Triggers a tick once per frame

TimeOfDay

Changes the speed at which the time of day progresses and reads the current TimeOfDay setting.

Inputs

Port Type Description

Time Float Time of day in hours

Default value: 0

Valid values: 0 – 24

SetTime Any Trigger to change the time of day to the value
specified for the Time parameter

ForceUpdate Boolean Immediately updates the sky when set to true.

Default value: 0

Valid values: 0=false | 1=true

GetTime Any Retriggers the CurTime output without updating
the value of the output

Speed Float Sets the speed at which the time of day changes.

Default value: 1

Valid values: 0 – 100

Version 1.6
725

Lumberyard User Guide
Time Nodes

Port Type Description

SetSpeed Any Trigger to change the time of day speed to the
value specified for the Speed parameter

GetSpeed Any Retriggers the CurTime output without updating
the value of the output

Outputs

Port Type Description

CurTime float Current time of day based on when the Set input
was last triggered. Use the Get input to retrigger
this output and keep the current value for the
output

CurSpeed float Speed for the current time of day based on when
the SetSpeed input was last triggered. Use the
GetSpeed input to retrigger this output and keep
the current value for the output

TimeOfDayLoadDefinitionFile

Loads a Time of Day (TOD) definition file.

Inputs

Port Type Description

Load Any Trigger to load and read the Time of Day
definition file

Filename String Name of the XML file to load and read. The file
must be in the level directory

Outputs

Port Type Description

Success Any Triggered when the Time of Day definition file
has successfully loaded

Fail Any Triggered if the Time of Day definition file was
not successfully loaded

TimeOfDayTransitionTrigger

Triggers sun position transitions when a specific time of day is reached.

Version 1.6
726

Lumberyard User Guide
Time Nodes

Inputs

Port Type Description

Time Float Total length of time to blend the level's current
time to the specified time. Set this value to -1 to
disable time of day blending

Default value: 1

Valid values: 0 – 24

Duration Float Blend duration in seconds.

Default value: 0

Valid values: 0 – 100

SunLatitude Float Blends the level's current sun latitude value to
the specified latitude in degrees. Set this value to
-1 to disable latitude blending.

Default value: -1

Valid values: 0 – 100

SunLongitude Float Blends the level's current sun latitude value to
the specified latitude in degrees. Set this value to
-1 to disable latitude blending

Default value: -1

Valid values: 0 – 100

SunPositionUpdateIntervalFloat Amount of time in seconds between updates to
reposition the sun. Set this value to 0 seconds
to constantly update the sun position during the
transition

Default value: 1

Valid values: 0 – 100

ForceUpdateInterval Float Amount of time in seconds between updates
to the time of day. Set this value to 0 seconds
to constantly update the time of day during the
transition

Default value: 1

Valid values: 0 – 100

Version 1.6
727

Lumberyard User Guide
Time Nodes

Port Type Description

Start Any Starts the transition.

Pause Any Pauses or resumes the transition

Outputs

Port Type Description

Done Any Triggered when the transition is finished

TimeOfDayTrigger

Triggers an action when a specific time of day is reached.

Inputs

Port Type Description

Active Boolean Set this value to true to enable the trigger

Default value: 1

Valid values: 0=false | 1=true

Time Float Triggers the action at the specified time of day

Default value: 0

Valid values: 0 – 100

Outputs

Port Type Description

Trigger Float Displays the current value for TimeOfDay.
Triggered when the specified time of day has
been reached

TimedCounter

Counts the number of ticks. Starting from 0, the counter increments by 1 every time the amount of time
specified for the Period input has passed. When the counter reaches the value specified for the Limit
input, the Finished output is triggered.

Version 1.6
728

Lumberyard User Guide
Time Nodes

Inputs

Port Type Description

Start Any Trigger to start the counter. If it is already
running, this resets the counter.

Stop Any Stops the counter

Continue Any Resumes the counter

Period Float Tick period in seconds

Default value: 1

Valid values: 0 – 100

Limit Integer Default value: 0

Valid values: 0 – 100

Outputs

Port Type Description

Finished Any Trigger indicating the counter is finished. The
value that was provided as the Start input is the
same as the Finished value.

Count Integer Value for the tick counter

Timer

Outputs the count from minimum to maximum, ticking for the specified period.

Inputs

Port Type Description

period Float Tick period in seconds

Default value: 0

Valid values: 0 – 100

Version 1.6
729

Lumberyard User Guide
Twitch Nodes

Port Type Description

min Integer Minimum value for the timer

Default value: 0

Valid values: 0 – 100

max Integer Maximum value for the timer

Default value: 0

Valid values: 0 – 100

paused Boolean Pauses the timer when set to true.

Default value: 0

Valid values: 0=false | 1=true

Outputs

Port Type Description

Out Integer Total count for the specified period

Twitch Nodes
You can use these flow graph nodes to configure Twitch-related settings.

The Choose Entity input port that is included for a number of flow graph nodes is used to change the
attached entity dynamically.

Topics

• Twitch ChatPlay General Nodes (p. 730)

• Twitch ChatPlay Voting Nodes (p. 734)

• Twitch JoinIn Nodes (p. 737)

• TwitchAPI Nodes (p. 737)

Twitch ChatPlay General Nodes

The following flow graph nodes are used to configure general Twitch ChatPlay-related settings.

Twitch:Chatplay:Available node

Inputs

Port Type Description

Activate Void Used to check the availability of Twitch ChatPlay.

Version 1.6
730

Lumberyard User Guide
Twitch Nodes

Outputs

Port Type Description

Available Void Used to indicate that Twitch ChatPlay is available

Unavailable Void Used to indicate that Twitch ChatPlay is not
available

Twitch:Chatplay:Channel node

Inputs

Port Type Description

Channel String Twitch channel name

Connect Void Initiates connection. Idempotent if called while
already connected or connecting. Resets the
Error output state.

Disconnect Void Initiates disconnection. Idempotent if called while
already disconnected or disconnecting.

Outputs

Port Type Description

Connected Boolean Current state of the connection to the channel

Connecting Boolean Indicates whether the node is currently
attempting to connect

Error Boolean Indicates an error has occurred

Twitch:Chatplay:DisconnectAll node

Inputs

Port Type Description

DisconnectAll Void Disconnects all Twitch ChatPlay channels

Twitch:Chatplay:Keyword node

Version 1.6
731

Lumberyard User Guide
Twitch Nodes

Inputs

Port Type Description

Channel String Twitch channel name

Keyword String Keyword to match

Start Void Starts scanning for keywords. Idempotent if
called while already started.

Stop Void Stops scanning for a keywords. Idempotent if
called while already stopped.

Reset Integer Controls the initial signal count. Changes to
Reset are applied immediately to the current
signal count.

Outputs

Port Type Description

Signal Integer Event that fires when the keyword is received on
the specified channel. The value is incremented
by +1 each time a keyword is received.

Active Boolean Indicates whether the node is currently active.
True if signals can occur (set as soon as Start
is triggered); otherwise, false (set as soon as
Stop is triggered).

Error Boolean Used to indicate that an error has occurred

Twitch:Chatplay:RegisterCredentials node

Inputs

Port Type Description

Activate Void Registers the username and OAuth token
credential pair

Username String Twitch username

OAuth_Token String OAuth tokens are generated with the Twitch Chat
OAuth Password Generator.

Outputs

Port Type Description

Out Void Signalled when done registering credentials

Version 1.6
732

http://www.twitchapps.com/tmi/
http://www.twitchapps.com/tmi/

Lumberyard User Guide
Twitch Nodes

Port Type Description

Error Boolean Used to indicate that an error has occurred

Twitch:Chatplay:UnregisterCredentials node

Inputs

Port Type Description

Activate Void Unregisters the username and associated OAuth
token

Username String Twitch username

Outputs

Port Type Description

Out Void Used to indicate when the unregistering of the
credential has completed

Error Boolean Used to indicate that an error has occurred

Twitch:Chatplay:UnregisterAllCredentials node

Inputs

Port Type Description

Activate Void Used to unregister all credentials at once

Outputs

Port Type Description

Out Void Used to indicate when the unregistering of all
credential has completed

Error Boolean Used to indicate when an error occurs

Twitch:Chatplay:Whisper node

Version 1.6
733

Lumberyard User Guide
Twitch Nodes

Inputs

Port Type Description

Activate Void Sends the message as a whisper on behalf of the
sender to the recipient.

Sender String Twitch username of sender. Must
have credentials registered to
successfully send a whisper (see
Twitch:ChatPlay:RegisterCredentials node).

Recipient String Twitch username of recipient.

Message String Message to whisper to recipient.

Outputs

Port Type Description

Success Boolean True when message is sent successfully;
otherwise, false.

Error Boolean Signalled as true when an error occurred, false
otherwise.

Twitch ChatPlay Voting Nodes

Twitch ChatPlay voting functionality make it easier to set up polls, surveys, and votes. The following
figure shows an example of how various Flow Graph voting nodes work together.

Version 1.6
734

Lumberyard User Guide
Twitch Nodes

Twitch:Chatplay:Voting:HighScores node

Inputs

Port Type Description

Activate Void Used to query the high scores.

VoteName String The name of the vote.

Reset Void Used to reset all counts to zero.

Outputs

Port Type Description

Done Void Used to indicate when the operation is complete

Error Void Used to indicate that an error occurred.

Count1 - Count4 Integer Used to indicate the vote count for option 1, 2, 3,
and 4.

Name1 - Name4 String The names for options 1, 2, 3, and 4.

Twitch:Chatplay:Voting:Option node

Inputs

Port Type Description

VoteName String The name of the vote.

OptionName String The name of the voting option.

Enable Void Used to enable the option and that it can be
voted on.

Disable Void Used to disable the ability to vote on the option.

Remove Void Used to delete the option.

Version 1.6
735

Lumberyard User Guide
Twitch Nodes

Outputs

Port Type Description

Done Void Used to indicate when the operation is complete.

Error Void Used to indicate that an error occurred.

Twitch:Chatplay:Voting:Score node

Inputs

Port Type Description

Activate Void Used to query the score for an option.

VoteName String The name of the vote.

OptionName String The name of the voting option.

Reset Void Used to reset the count to zero.

Outputs

Port Type Description

Done Void Used to indicate when the operation is complete.

Error Void Used to indicate that an error occurred.

Count Integer Used to indicate the current vote count

Enabled Boolean Used to indicate the current option state.

Twitch:Chatplay:Voting:Vote node

Inputs

Port Type Description

VoteName String The name of the vote.

Channel String The Twitch ChatPlay channel used to connect
the vote to.

Enable Void Used to enable the vote and that it can be voted
on.

Version 1.6
736

Lumberyard User Guide
Twitch Nodes

Port Type Description

Disable Void Used to disable the ability to vote on the vote.

Outputs

Port Type Description

Done Void Used to indicate when the operation is complete.

Error Void Used to indicate that an error occurred.

Twitch JoinIn Nodes

Twitch JoinIn nodes are used to create a link that includes all the multiplayer session information
necessary for other players to connect to the same session using the generated link.

Twitch:Joinin:CreateLink node

Inputs

Port Type Description

Activate Void Generates a game: protocol link that allows
players to join the current game.

Command String The commands to pass when a game launches.

Outputs

Port Type Description

Out String Signalled with the generated link.

Error Boolean Used to indicate that an error occurred.

TwitchAPI Nodes

TwitchAPI nodes are used to make calls to Twitch's REST API from within Lumberyard.

Twitch:API:GET node

Inputs

Port Type Description

Channel String Twitch channel name

Version 1.6
737

Lumberyard User Guide
Vec3 Nodes

Port Type Description

API_Key String enum API call type and key. Call types based on
channel ID: channel, chat, follows, streams,
subscriptions, and user.

Get Any Caching has not been implemented, triggering
the Get port will always start a new API call.

Outputs

Port Type Description

Output Any Returned value for the given API call type and
key. Triggered whenever an API call completes.

Error Integer Indicates whether an error has occurred. It may
be triggered with one of the following values:

1: the value for the requested API key was null

2: the value for the requested API key was of an
unexpected type

3: the HTTP request failed

Vec3 Nodes
You can use the following flow graph nodes to define vector (Vec3) operations.

Topics

• AddVec3 node (p. 738)

• Calculate node (p. 739)

• ClampVec3 node (p. 739)

• CrossVec3 node (p. 740)

• DotVec3 node (p. 740)

• EqualVec3 node (p. 741)

• FromVec3 node (p. 741)

• MagnitudeVec3 node (p. 742)

• MulVec3 node (p. 742)

• NormalizeVec3 node (p. 742)

• ReciprocalVec3 node (p. 743)

• RotateVec3onAxis node (p. 743)

• ScaleVec3 node (p. 744)

• SetVec3 node (p. 744)

• SubVec3 node (p. 744)

• ToVec3 node (p. 745)

AddVec3 node

Used to output the sum of two vectors.

Version 1.6
738

Lumberyard User Guide
Vec3 Nodes

Inputs

Port Type Description

Activate Any Triggers the node

A Vec3 First operand

B Vec3 Second operand

Outputs

Port Type Description

Out Vec3 Addition of A and B

Calculate node

Used to output the specified calculation between two vectors.

Inputs

Port Type Description

Activate Any Triggers the node

Operator Integer Math operation to perform

A Vec3 First operand

B Vec3 Second operand

Outputs

Port Type Description

Out Vec3 Calculated operation of A and B

ClampVec3 node

Used to clamp the output range of a vector between a minimum and a maximum.

Version 1.6
739

Lumberyard User Guide
Vec3 Nodes

Inputs

Port Type Description

In Vec3 Input value

Min Vec3 Minimum clamping value

Max Vec3 Maximum clamping value

Outputs

Port Type Description

Out Vec3 Triggers when the input value is between the
minimum and maximum values

CrossVec3 node

Used to output the cross product of two vectors.

Inputs

Port Type Description

Activate Any Triggers the node

A Vec3 First operand

B Vec3 Second operand

Outputs

Port Type Description

Out Vec3 Outputs the cross product of the inputs

DotVec3 node

Used to output the dot product of the inputs.

Inputs

Port Type Description

Activate Any Triggers the node

Version 1.6
740

Lumberyard User Guide
Vec3 Nodes

Port Type Description

A Vec3 First operand

B Vec3 Second operand

Outputs

Port Type Description

Out Float Outputs the dot product of the inputs

EqualVec3 node

Used to trigger an output when both vectors are equal in value.

Inputs

Port Type Description

A Vec3 First operand

B Vec3 Second operand

Outputs

Port Type Description

Out Boolean Triggers when A and B are equal in value

FromVec3 node

Used to output the x, y, and z values of the vector.

Inputs

Port Type Description

Vec3 Vec3 Input vector

Outputs

Port Type Description

X Float X-axis value of vector

Version 1.6
741

Lumberyard User Guide
Vec3 Nodes

Port Type Description

Y Float Y-axis value of vector

Z Float Z-axis value of vector

MagnitudeVec3 node

Used to output the magnitude (length) of the vector.

Inputs

Port Type Description

Vector Vec3 Input vector

Outputs

Port Type Description

Length Any Magnitude (length) of the input vector

MulVec3 node

Used to output the multiplication of two vectors.

Inputs

Port Type Description

Activate Any Triggers the node

A Vec3 First operand

B Vec3 Second operand

Outputs

Port Type Description

Out Vec3 Multiplication of A and B

NormalizeVec3 node

Used to output the normalized value of the vector.

Version 1.6
742

Lumberyard User Guide
Vec3 Nodes

Inputs

Port Type Description

Vector Vec3 Vector input

Outputs

Port Type Description

Out Vec3 Normalized vector input

Length Float Magnitude

ReciprocalVec3 node
Used to output the reciprocal of the vector.

Inputs

Port Type Description

Vector Vec3 Input vector

Outputs

Port Type Description

Length Float Reciprocal value of input

RotateVec3onAxis node
Used to output an axis-rotated value of the vector.

Inputs

Port Type Description

Activate Any Triggers the node

Vector Vec3 Input vector to rotate

Axis Vec3 Axis to rotate input around

Angle Float Angle in degrees to rotate

Version 1.6
743

Lumberyard User Guide
Vec3 Nodes

Outputs

Port Type Description

Rotated Vector Vec3 Result of the rotation

ScaleVec3 node

Used to output a scaled value of the vector.

Inputs

Port Type Description

Vector Vec3 Input vector

Scale Float Scale factor to apply to the input

Outputs

Port Type Description

Out Vec3 Result of the scaling

SetVec3 node

Used to output the input value when the Set input is activated.

Inputs

Port Type Description

Set Any Triggers the vector to the output

In Vec3 Input value

Outputs

Port Type Description

Out Vec3 Outputs the input value

SubVec3 node

Used to output the subtracted value of two vectors.

Version 1.6
744

Lumberyard User Guide
Vehicle Nodes

Inputs

Port Type Description

Activate Any Triggers the node

A Vec3 First operand

B Vec3 Second operand

Outputs

Port Type Description

Out Vec3 Subtraction of B from A

ToVec3 node
Used to output three floating point values to a vector.

Inputs

Port Type Description

X Float X-axis value

Y Float Y-axis value

Z Float Z-axis value

Outputs

Port Type Description

Result Vec3 Vector output

Vehicle Nodes
You can use the following flow graph nodes to configure vehicle behavior and related settings.

Note
These nodes will only work with the Legacy Game Sample (CryEngine GameSDK), which is
available at Lumberyard Downloads.

Topics

• Attachment node (p. 746)

• ChangeSeat node (p. 746)

Version 1.6
745

https://aws.amazon.com/lumberyard/downloads/

Lumberyard User Guide
Vehicle Nodes

• ChaseTarget node (p. 747)

• Damage node (p. 747)

• Destroy node (p. 748)

• Enter node (p. 748)

• FollowPath node (p. 749)

• GetSeatHelper node (p. 750)

• Handbrake node (p. 750)

• Honk node (p. 751)

• Lights node (p. 751)

• Lock node (p. 751)

• MoveActionMult node (p. 752)

• Movement node (p. 752)

• MovementParams node (p. 753)

• Passenger node (p. 753)

• Seat node (p. 753)

• StickPath node (p. 754)

• Turret node (p. 755)

• Unload node (p. 755)

Attachment node
Used to control vehicle entity attachments.

Inputs

Port Type Description

Attachment String Attachment to add

EntityId Any ID of the entity to use

Attach Any Attaches the item

Detach Any Detaches the item

ChangeSeat node
Used to move a character from one seat to another one. Only works if the character is already inside a
vehicle.

Inputs

Port Type Description

Sync Any Triggers the seat change

Version 1.6
746

Lumberyard User Guide
Vehicle Nodes

Port Type Description

Seat Integer Seat to change to

Outputs

Port Type Description

Succeed Any Seat change succeeded

Fail Any Seat change failed

ChaseTarget node

Used to follow or navigate along the specified path while attempting to establish line of sight or fire with
the specified target.

Inputs

Port Type Description

Sync Any Triggers the chase

Cancel Any Cancels the chase

Path Name String Name of the path to follow

Max speed of the
vehicle

Float Maximum speed of the vehicle

Min Distance Float Minimum chase distance to the target

Max Distance Float Minimum chase distance to the target

Target Any ID of the target to chase

Force Integer Force execution method

Outputs

Port Type Description

Fail Any Chase failed

Damage node

Used to handle vehicle damage.

Version 1.6
747

Lumberyard User Guide
Vehicle Nodes

Inputs

Port Type Description

HitTrigger Any Triggers that causes the vehicle to sustain
damage

HitValue Float Amount of damage the vehicle will sustain

HitPosition Vec3 Position at which the vehicle will sustain the hit

HitRadius Float Radius of the hit

Indestructible Boolean Value of true sets the vehicle to be indestructible

HitType String Type of damage

HitComponent String Vehicle component that will receive the hit

Outputs

Port Type Description

Damaged Float Amount of damage sustained by the vehicle

Destroyed Boolean True if vehicle was destroyed

Hit Float Hit value sustained by the vehicle

Destroy node

Used to destroy the vehicle.

Inputs

Port Type Description

Destroy Any Trigger to destroy the vehicle

Enter node

Used to make an AI agent sit in a specified seat of a specified vehicle.

Version 1.6
748

Lumberyard User Guide
Vehicle Nodes

Inputs

Port Type Description

Sync Any Activates the node

Cancel Any Cancels the operation

VehicleId Any ID of the vehicle

Seat Integer Seat to sit on

Fast Boolean Skip approach and enter vehicle

Force Integer Force execution method

Outputs

Port Type Description

Done Any Action completed

Succeed Any Action was successful

Fail Any Action failed

FollowPath node
Used to follow the path speed stance action.

Inputs

Port Type Description

Sync Any Activates the node

Cancel Any Cancels execution

PathFindToStart Boolean Whether to find the start of the path

Reverse Boolean Reverses the path direction

StartNearest Boolean Starts the path at the nearest point on path

Version 1.6
749

Lumberyard User Guide
Vehicle Nodes

Port Type Description

Loops Integer Number of times to loop around the path

Path Name String Name of the path

Speed (m/s) Float Speed in meters/second

Force Integer Force execution method

Outputs

Port Type Description

Done Any Action completed

Succeed Any Action was successful

Fail Any Action failed

GetSeatHelper node

Used to gets the helper position of a seat for entering the vehicle.

Inputs

Port Type Description

Sync Any Get helper position

Seat Integer Seat to be entered

Outputs

Port Type Description

Pos Vec3 Position of seat helper

Dir Vec3 Direction of seat helper

Handbrake node

Used to toggle the vehicle handbrake. Currently only supported for the ArcadeWheeled movement
type.

Version 1.6
750

Lumberyard User Guide
Vehicle Nodes

Inputs

Port Type Description

Activate Any Activates the vehicle handbrake

Deactivate Any Deactivates the vehicle handbrake

ResetTimer Float Resets the timer

Honk node

Use to control a vehicle's horn.

Inputs

Port Type Description

Trigger Any Activates the vehicle horn

Duration Float Duration in seconds of the horn

Lights node

Used to control a vehicle's lights.

Inputs

Port Type Description

LightType String Type of vehicle light

Activate Any Activates vehicle lights

Deactivate Any Deactivates vehicle lights

Lock node

Used to lock or unlock all seats of a vehicle.

Version 1.6
751

Lumberyard User Guide
Vehicle Nodes

Inputs

Port Type Description

Lock Any Locks the vehicle

Unlock Any Unlocks the vehicle

LockType Integer Type of vehicle lock

MoveActionMult node

Used to add multipliers to a vehicle's movement actions.

Inputs

Port Type Description

EnableTrigger Any Activates the node

DisableTrigger Any Deactivates the node

PowerMult Float Vehicle engine power multiplier

RotatePitch Float Vehicle pitch rotation multiplier

RotateYaw Float Vehicle yaw rotation multiplier

PowerMustBePositive Boolean True if power multiplication is positive (increase)

Movement node

Used to control vehicle movement.

Inputs

Port Type Description

WarmUpEngineTrigger Boolean Warms up vehicle engine

ZeroMass Any Vehicle has zero mass

RestoreMass Any Restores vehicle mass

Version 1.6
752

Lumberyard User Guide
Vehicle Nodes

MovementParams node

Used to modify vehicle movement parameters.

Inputs

Port Type Description

Trigger Any Activates the node

MaxSpeedFactor Float Maximum vehicle speed factor

AccelerationFactor Float Maximum vehicle acceleration factor

Passenger node

Used to manage vehicle passengers.

Inputs

Port Type Description

ActorInTrigger Any Forces actor to get into vehicle if a seat is
available

ActorOutTrigger Any Forces actor to get out of the vehicle

ActorId Any ID of the action

SeatId Integer ID of the seat

Outputs

Port Type Description

ActorIn Any Triggered if any actor got into vehicle

ActorOut Any Triggered if any actor got out of vehicle

Seat node

Used to manage vehicle seats.

Version 1.6
753

Lumberyard User Guide
Vehicle Nodes

Inputs

Port Type Description

Seat Integer ID of seat

SeatName String Name of seat

IsDriverSeat Boolean True is driver seat

Lock Any Locks the vehicle

Unlock Any Unlocks the vehicle

LockType Integer Type of vehicle lock

Outputs

Port Type Description

SeatId Integer ID of seat

PassengerId Integer ID of passenger

StickPath node

Used to follow the specified path to the end and sticking to the optional target, either continuously or as
a one-off event.

Inputs

Port Type Description

Sync Any Activates the node

Cancel Any Cancels execution

Path Name String Name of path

Continuous Boolean Whether vehicle can continue to follow the path
or stops once it reaches the targer

Version 1.6
754

Lumberyard User Guide
Vehicle Nodes

Port Type Description

CanReverse Boolean Whether vehicle is allowed to drive in reverse to
follow target or path

Max speed of the
vehicle

Float Maximum speed of the vehicle

Min Distance Float Minimum stick distance to the target

Max Distance Float Maximum stick distance to the target

Target Any ID of target to stick to when following the path

Force Integer Force execution method

Outputs

Port Type Description

Done Any Action completed

Succeed Any Action was successful

Fail Any Action failed

Close Any Close to destination

Turret node

Use to control the vehicle turret.

Inputs

Port Type Description

Trigger Any Activates vehicle turret

SeatId Integer ID of seat

AimAngles Vec3 Turret aiming angle

AimPos Vec3 Turret target location

Unload node

Use to unloads vehicle, ejecting specified passengers.

Version 1.6
755

Lumberyard User Guide
Video Nodes

Inputs

Port Type Description

Sync Any Triggers the action

Cancel Any Cancels execution

Seat Integer Seat to eject passenger from

Outputs

Port Type Description

Done Any Action completed

Succeed Any Action succeeded

Fail Any Action failed

Video Nodes
You can use the following flow graph nodes to configure video settings.

Topics

• ClipCapture node (p. 756)

ClipCapture node

Used to capture video clips while a game is running and (for Xbox One) save them locally or to the
cloud.

Inputs

Port Type Description

Capture Any Begin capturing a video clip

DurationBefore Float Record the specified number seconds before the
Capture input is triggered

DurationAfter Float Record the specified number seconds after the
Capture input is triggered

ClipName String For Xbox One, the MagicMoment ID used to look
up the description string entered through the
Xbox Developer Portal.

LocalizedClipName String For Xbox One, the ClipName shown during the
Toast popup

Version 1.6
756

Lumberyard User Guide
Weapon Nodes

Port Type Description

Metadata String (Optional). Used to tag video clips

Outputs

Port Type Description

BeganCapture Any Triggered when video clip capture has begun

Error Any Triggered when a clip capture error has occurred

Weapon Nodes
You can use the following flow graph nodes to configure weapon settings.

Note
These nodes will only work with the Legacy Game Sample (CryEngine GameSDK), which is
available at Lumberyard Downloads.

Topics

• AmmoChange node (p. 757)

• AutoSightWeapon node (p. 758)

• ChangeFireMode node (p. 758)

• FireWeapon node (p. 758)

• Listener node (p. 759)

AmmoChange node

Used to give or take ammunition to for from the player. Weapon and ammo type must match.

Inputs

Port Type Description

Set Any Activates the node

Get Any Retrieves the amount of ammunition left

AmmoType String Type of ammunition to add

AmountCount Integer Gets the amount of ammunition left

Add Boolean Adds the specified amount of ammunition

Version 1.6
757

https://aws.amazon.com/lumberyard/downloads/

Lumberyard User Guide
Weapon Nodes

Outputs

Port Type Description

MagazineAmmo Integer Ammunition left in the weapon magazine

InventoryAmmo Integer Ammunition left in inventory

TotalAmmo Integer Total ammunition available

AutoSightWeapon node

This node

Inputs

Port Type Description

Enemy Vec3 Aims the weapon at the enemy's position

ChangeFireMode node

Used to change the weapon fire mode.

Inputs

Port Type Description

Switch Any Switches the weapon fire mode

FireWeapon node

Use to fire a weapon and set a target entity or a target position.

Inputs

Port Type Description

TargetId Any Target ID

TargetPos Vec3 Target position

Version 1.6
758

Lumberyard User Guide
Weapon Nodes

Port Type Description

AlignToTarget Boolean Aims the weapon at the target

StartFire Any Starts firing weapon

StopFire Any Stops firing weapon

NumberOfShots Integer Fires the specified number of shots

Accuracy Float Specifies firing accuracy from 0% to 100%

Outputs

Port Type Description

FireStarted Boolean Triggers when firing starts

FireStopped Boolean Triggers when firing stops

Listener node

Use to listen on WeaponId or player's WeaponClass, or as a fallback on the current player's weapon
and to trigger OnShoot when shot.

Inputs

Port Type Description

Enable Any Enable listener

Disable Any Disables listener

WeaponId Any Weapon ID

WeaponClass String Weapon name

ShootCount Integer Number of times the listener can be triggered. 0
= infinite

Outputs

Port Type Description

OnShoot Any Triggered when shooting

ShootsLeft Integer Triggered when shooting left

OnMelee Any Triggered on melee attack

OnDropped String Triggered when weapon is dropped

Version 1.6
759

Lumberyard User Guide
XML Nodes

XML Nodes
You can use the following flow graph nodes to specify XML elements.

Topics

• ClearValue node (p. 760)

• DeleteAllAttributes node (p. 761)

• DeleteAllChildren node (p. 761)

• DeleteAttribute node (p. 762)

• DeleteChild node (p. 762)

• DeleteChildAt node (p. 762)

• GetAttribute node (p. 763)

• GetAttributeCount node (p. 763)

• GetChild node (p. 764)

• GetChildAt node (p. 764)

• GetChildCount node (p. 765)

• GetParent node (p. 765)

• GetRoot node (p. 766)

• GetValue node (p. 766)

• HasAttribute node (p. 767)

• IncAttribute node (p. 767)

• IncValue node (p. 768)

• NewChild node (p. 768)

• NewDocument node (p. 769)

• OpenDocument node (p. 769)

• SaveDocument node (p. 770)

• SetAttribute node (p. 771)

• SetValue node (p. 771)

ClearValue node

Used to clear the value of the active element.

Inputs

Port Type Description

Execute Any Executes the instruction

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Version 1.6
760

Lumberyard User Guide
XML Nodes

Port Type Description

Done Boolean Called when the instruction has completed
carrying out

DeleteAllAttributes node
Used to delete all attributes from the active element.

Inputs

Port Type Description

Execute Any Executes the instruction

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

DeleteAllChildren node
Used to delete all children of the active element.

Inputs

Port Type Description

Execute Any Executes the instruction

Name String Optional child name

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

Version 1.6
761

Lumberyard User Guide
XML Nodes

DeleteAttribute node
Used to delete an attribute from the active element.

Inputs

Port Type Description

Execute Any Executes the instruction

Name String Optional child name

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

DeleteChild node
Used to delete the first child node with the given name.

Inputs

Port Type Description

Execute Any Executes the instruction

Name String Optional child name

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

DeleteChildAt node
Used to delete the nth child node with the given name.

Version 1.6
762

Lumberyard User Guide
XML Nodes

Inputs

Port Type Description

Execute Any Executes the instruction

Name String Name of the attribute

Index Integer Location of the child node in the list

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

GetAttribute node

Used to get the value of an attribute for the active element.

Inputs

Port Type Description

Execute Any Executes the instruction

Name String Name of the attribute

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

GetAttributeCount node

Used to get the number of attributes for the active element.

Version 1.6
763

Lumberyard User Guide
XML Nodes

Inputs

Port Type Description

Execute Any Executes the instruction

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

Count Integer Outputs the count

GetChild node

Used to navigate to the first child node with the given name.

Inputs

Port Type Description

Execute Any Executes the instruction

Name String Name of the attribute

Create Boolean Creates a child node if one does not exist

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

GetChildAt node

Used to navigate to the nth child node with the given name.

Version 1.6
764

Lumberyard User Guide
XML Nodes

Inputs

Port Type Description

Execute Any Executes the instruction

Name String Name of the child node

Index Integer Location of the child node in the list

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

GetChildCount node

Used to return the number of children of the active element.

Inputs

Port Type Description

Execute Any Executes the instruction

Inputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

GetParent node

Used to sets the active element to the current active element's parent (move one up).

Version 1.6
765

Lumberyard User Guide
XML Nodes

Inputs

Port Type Description

Execute Any Executes the instruction

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

GetRoot node

Used to set the active element to the root node (move to top).

Inputs

Port Type Description

Execute Any Executes the instruction

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

GetValue node

Used to get the value of the active element.

Version 1.6
766

Lumberyard User Guide
XML Nodes

Inputs

Port Type Description

Execute Any Executes the instruction

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

Value Any Outputs the value of the element

HasAttribute node
Used to check if an attribute exists for the active element.

Inputs

Port Type Description

Execute Any Executes the instruction

Name String Name of the attribute

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

Yes Any Has the attribute

No Any Does not have the attribute

Result Boolean Boolean result

IncAttribute node
Used to increment an attribute by the given amount for the active element.

Version 1.6
767

Lumberyard User Guide
XML Nodes

Inputs

Port Type Description

Execute Any Executes the instruction

Name String Name of the attribute

Amount Float Amount to increment by

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

IncValue node

Used to increment the value of the active element.

Inputs

Port Type Description

Execute Any Executes the instruction

Amount Float Amount to increment by

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

NewChild node

Used to create a new child node at end of parent's sibling list.

Version 1.6
768

Lumberyard User Guide
XML Nodes

Inputs

Port Type Description

Execute Any Executes the instruction

Name String Name of the child node

Active Boolean Makes the child node the active element

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

NewDocument node

Used to create a blank document for writing new data into.

Inputs

Port Type Description

Execute Any Executes the instruction

Root String Name of the XML root element

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

OpenDocument node

Used to open an XML document from disk.

Version 1.6
769

Lumberyard User Guide
XML Nodes

Inputs

Port Type Description

Execute Any Executes the instruction

File String File name of the XML document

Location Integer File path of the XML document

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

SaveDocument node

Used to save active XML data to disk.

Inputs

Port Type Description

Execute Any Executes the instruction

File String File name of the saved XML document

Location Integer File path of the XML document

Overwrite Boolean Determines where document should overwrite
existing XML document

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

Version 1.6
770

Lumberyard User Guide
XML Nodes

SetAttribute node

Used to set an attribute for the active element.

Inputs

Port Type Description

Execute Any Executes the instruction

Name String Name of the attribute to set

Value Any Sets the value of the element

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

SetValue node

Used to set the value of the active element.

Inputs

Port Type Description

Execute Any Executes the instruction

Value Any Sets the value of the attribute

Outputs

Port Type Description

Success Boolean Called if the instruction executed successfully

Fail Boolean Called if the instruction failed

Done Boolean Called when the instruction has completed
carrying out

Version 1.6
771

Lumberyard User Guide
Using Flow Graph Links

Using Flow Graph Links
Links are used to connect Flow Graph node inputs and outputs for transferring information between
them. Information is transferred immediately, regardless of link length or shape. When a connected
node is moved, the link automatically adjusts itself. Links are created by simply clicking and dragging
your mouse from the output of one node to the input of another node.

An input port can have only one link connected to it. If you want to connect multiple links to one input
port, helper nodes such the Logic:Any node can be used. Output ports can have an unlimited number
of links.

Node links can be deleted or disabled. If you merely want to disable a link but still have it show on the
flow graph, click Disable instead.

To delete a node link

1. Click the link to select it, right-click the dot in the middle of the link, then click Remove.

2. Alternatively, click the input port the link is connected to and drag it away from the port. When the
mouse is released, the link disappears.

By default, all information between nodes is relayed instantly. However, you can delay signal
propagation between nodes.

To delay link propagation

1. Click the link to select it, right-click the dot in the middle of the link, then click Delay.

2. In the new Time:Delay node, double-click Delay and enter a value in seconds. The default value
is 1 second if no value is entered.

Connecting multiple links to an input port is possible using the Logic:Any node. This node can take
multiple inputs and route the signals to a single output port.

To add multiple links to an input port

1. Right-click anywhere in the graph pane and then click Add node, Logic, Any.

2. Drag from the various output port links to the in1...in10 input ports of the Logic:Any node as
needed.

3. Create links by dragging from the out outport port to the input ports of the desired nodes.

You can also highlight links to make debugging complex flow graphs easier.

Version 1.6
772

Lumberyard User Guide
Using Flow Graph Tokens

• To highlight incoming links red, select an input node and press F.

• To highlight outgoing links blue, select an output node and press G.

Using Flow Graph Tokens
A flow graph token is a variable used for storing values for reuse in the same flow graph. Flow graph
tokens can be used for performing simple logic and checks within a flow graph script. They are typically
used to send different variables across a very large flow graph and to alleviate the need for extra node
links.

Flow graph tokens share many similarities with game tokens. They can have the same types of
variables set and even appear under the command gt_show=1 along with the rest of the game tokens.

To create a Flow Graph token

1. In Flow Graph Editor, click Tools, Edit Graph Tokens.

2. In the Graph Tokens window, click New Token, then name the token.

3. Right-click anywhere in the flow graph, then click Add Node, Mission, GameTokenSet.

4. In the Mission:GameTokenSet node, double-click Value and enter a value.

Managing Flow Graph Modules
A module is simply an exported flow graph that can be loaded and called from another flow graph
during gameplay.

Any flow graph can be converted to a module by first creating a new module using Flow Graph Editor
and then copying the flow graph contents to the new module.

Modules used in multiple levels are called global modules, while modules used only in a specific level
are called level modules.

The advantages of using modules include:

• Flow graphs can be used in multiple levels, but exist in a single location

Version 1.6
773

Lumberyard User Guide
Module Node Ports

• Modules can receive unique input values from their callers, allowing them to be robust

• Modules can return unique output values to their callers, allowing them to be used in different
situations

• Modules can be instanced, so multiple copies of the same module can be active simultaneously, but
running with different inputs

To create or delete a module

In Flow Graph Editor, under Flow Graphs do the following:

1. To create a module, right click FG Modules, then click New Global FG Module or New Level FG
Module as applicable. The new module appears under the Global or Local folders respectively.

2. To delete a module, right-click the module and click Delete Module.

Module Node Ports
Flow Graph Module nodes have a variety of different of input and output node ports.

All inputs passed to the Call node activates the corresponding outputs on the Start node, and similarly
inputs to the End node passes back to the Call node when Success or Cancel are activated.

Module Inputs

• Call - Call to load and start the module. If the module is already started it triggers the
update port of the Start node with updated parameters if not instanced. It is named
Module:Call_YourModuleName.

• Instanced - If set to 1 (default), creates a new independent instance of the module whenever you
trigger the Call input port.

• Cancel - Cancels the module. This requires the correct InstanceID if instanced.

• InstanceID - Identifies a module instance. A value of -1 (default) creates a new instance; otherwise,
it updates the given instance if instanced.

Module Outputs

• OnCalled - Called when module is started. Returns a value of -1 if the module is not instanced.

• Done - Called when the module returns with a success status.

• Canceled - Called when the module returns with a failed status.

You can also customize the inputs and outputs for each module to pass extra data back and forth.

To customize module ports

1. In Flow Graph Editor, select the module, then click Tools, Edit Module.

2. In the Module Ports dialog box, click Edit Input or Edit Output as needed, then make a Type
selection as follows:

• Bool

• EntityId

• Int

• Float

• String

• Vec3

Version 1.6
774

Lumberyard User Guide
Debugging Flow Graph

3. Click OK to update module nodes with the changes.

Debugging Flow Graph
Topics

• Using Flow Graph Debugger (p. 775)

• Using Console Variables (p. 775)

Using Flow Graph Debugger
Using the Flow Graph Debugger, you can add breakpoints to any input or output port of a node. Once
a node port is triggered, the game is paused and the Flow Graph Editor displays the applicable node in
the center of the graph pane.

To enable Flow Graph Debugger, click the bug (toggle visual flowgraph debugging) toolbar icon in Flow
Graph Editor.

To resume the game once a breakpoint is triggered, click the play (Start Flowgraph Update) toolbar
icon, or press F5.

To manage Flow Graph breakpoints

• In Flow Graph Editor, right-click the applicable input or output node port, then do the following as
needed:

• To create a breakpoint, click Add Breakpoint. A red dot is displayed next to the node port.

• To remove a breakpoint, click Remove Breakpoint.

• To enable or disable a breakpoint, toggle the Enabled check box.

• To remove all breakpoints on a node, or for all nodes on the entire flow graph, click Remove
Breakpoints for Node or Remove Breakpoints for Graph respectively.

Every breakpoint can be converted to a tracepoint, which instead of pausing the game outputs the
information about a triggered breakpoint to the console and to a log file. Simply right-click on the
applicable breakpoint-enabled node port, then click Tracepoint.. The red dot changes to a red
diamond to indicate that the port has a tracepoint enabled on it.

Tracepoint data sent to the Console looks like this, as an example:

[TRACEPOINT HIT - FrameID: 71054] GRAPH: AnimObject1 (ID: 96) - NODE:
 Entity:MaterialParam (ID: 5) - PORT: ValueColor - VALUE:
 0.867136,0.005522,0.005522

Using Console Variables
The following Console variables can be used to troubleshoot Flow Graph issues.

• fg_abortOnLoadError — Aborts on a loading error of a flow graph, where 0=dialog, 1=log ,
2=abort

• fg_debugmodules — 0=disabled, 1=show all modules, 2=show all modules and active modules

• fg_debugmodules_filter filterstring — Used to only show modules that match the
filterstring

Version 1.6
775

Lumberyard User Guide
Placing Cached Shadows

• fg_iDebugNextStep — - Step-by-step debugging

• fg_iEnableFlowgraphNodeDebugging — toggles flow graph debugging of nodes

• fg_inspectorLog — log inspector on Console

• fg_noDebugText — Don't display flow graph debugging text

• fg_profile — toggles flow graph profiling

• fg_SystemEnable — toggles Flow Graph system updates

• gt_showFilter — Filter string for flow graph tokens and game tokens

• gt_showLines — Specifies how many lines to display

• gt_showPosX 0 — Shows the X-axis position

• gt_showPosY — Shows the Y-axis position

• gt_show Value — Shows game token and graph token state, where 1=screen and log , 2=screen
only , 3=log only.

Placing Cached Shadows
Cached shadows display shadow properties for an entire scene. It replaces the shadow cascades that
appear farthest from the viewer and reduces the number of shadow draw calls per frame.

Note
To eliminate visible artifacts when time of day is updated or in scenes that have huge objects
casting shadows in the distance, we recommend turning off cached shadows.

To specify placement of cached shadows, use the Flow Graph Editor. Before you trigger an update,
compile all of your shaders to ensure that all objects are rendered into the cached shadows.

Use Environment:RecomputeStaticShadows for cached shadows. This node takes the minimum
and maximum positions of the world space bounding area, and triggers the re-rendering of the cached
shadows.

Recommended Settings
r_ShadowsCache

Default value: 4

Bounding area: 1000 x 1000 meters (recommended maximum, X/Y direction) and as small a range as
possible (Z direction)

Related Console Variables
r_ShadowsCache

Replaces all sun cascades above the specified console variable (cvar) value with cached
shadows.

Valid values: 0=no cached shadows | 1=replace first cascade and up | 2=replace second cascade
and up | etc.

Version 1.6
776

Lumberyard User Guide
Related Console Variables

r_ShadowsStaticMapResolution
The resolution of the cached shadows. The cached shadows for mobile platforms has 16 bit
precision and consumes 8 MB of video memory. The cached shadows for other platforms has 16
bit precision and consumes 128 MB of video memory.

Default value: 2048 (mobile platforms), 8192 (other platforms)

e_ShadowsStaticMapUpdate
Triggers update of the cached shadows.

Valid values: 0=no update | 1=one update | 2=continuous updates

e_ShadowsStaticObjectLod
The level of detail (LOD) used for rendering objects into the cached shadows.

Version 1.6
777

Lumberyard User Guide

Gems

Gems are packages that contain code and/or assets to augment your game projects. You can create
and select gems to include in your project through the Lumberyard Project Configurator (p. 985). With
the Modular Gems System (p. 779) you can choose the features and assets that you need for your
game without including unnecessary components. The gems that you use are automatically detected
and built through the integrated Waf Build System (p. 1318).

All Lumberyard gems are located in the lumberyard_root_folder\dev\Gems folder.

To enable gems, you use the Project Configurator, which you can launch from the Lumberyard
Setup Assistant (p. 15).

To enable one or more gems

1. In the Project Configurator, select your active project and click Set as default.

2. Click Enable Gems.

3. Select the gems that you want to enable.

4. Click Save.

After enabling one or more gems, you must rebuild your project to make the gems function in the
Lumberyard Editor.

To rebuild your project after enabling gems

1. Open a command line window and navigate to the [Lumberyard root directory]\dev
directory.

2. Type lmbr_waf configure. A success message at the end indicates a successful completion.

3. If the previous step was successful, at the same command line, type lmbr_waf
build_win_x64_profile -p all.

To view other build commands or variables to use for this step, see Build Configuration (p. 1335).

This step may take some time to complete. A success message at the end indicates a successful
completion.

4. Start Lumberyard Editor. You are now ready to use your gems.

Version 1.6
778

Lumberyard User Guide
Modular Gems System

To create a new gem

1. Go to lumberyard_root_folder\dev\Bin64\, then open ProjectConfigurator.

2. Select the project and click Enable Gems, Create a new Gem.

3. Click in the Name box and type a name. Click OK. Only alphanumeric characters are allowed; no
special characters or whitespaces are allowed in the name.

4. Close the Project Configurator.

5. Open the lumberyard_root_folder\dev\Gems\gem_name\gem.json file and specify the
following gem metadata fields:

• Version

• DisplayName

• Tags

• IconPath

Topics

• Modular Gems System (p. 779)

• Lumberyard Gems (p. 782)

Modular Gems System
The Modular Gems system is a management infrastructure for sharing code and art assets between
Lumberyard game projects. Modular Gems system consists of gems packages that are accessed and
managed using the Project Configurator (p. 985). A gems package contains assets, code, gem.json
file, and an icon file. For a list of available gems, see Gems (p. 778).

All Lumberyard gems are located in the lumberyard_root_folder\dev\Gems folder.

Gems can also be accessed through code, as in the following example:

#include <GemName/GemNameBus.h>
//...
EBUS_EVENT(GemName::GemNameRequestBus, MyFunction, withArgs);

Gem Assets
Assets function similarly to the way that they do in a normal game project. Each gem has an Assets
folder containing models, textures, scripts, and animations that are accessed just as if they were in a
game project. This is the root folder that Lumberyard uses to resolve the asset file path. For example,
when Lumberyard is looking for textures\rain\rainfall_ddn.tif, it looks in gem_root\Assets
\textures\rain\rainfall_ddn.tif.

Gem Code
Gems are loaded dynamically at runtime, are able to receive system events (init and shutdown,
primarily), and communicate with other gems. The following items make up a gem's code component,
located in the <GemFolder>\Code folder:

• wscript: This is the Waf build script. It is auto-generated by the template, and does not need to be
changed by most authors. It contains all build configuration options, including target name, include
paths, required libs, defines, and so on.

Version 1.6
779

Lumberyard User Guide
Gem JSON File

• gemname.waf_files: This is a JSON list of all files included in the project. The root object contains
properties for each Uber File, and a special NoUberFile object. Each child object contains a named
array of files, where the name is the filter that is used in generated projects. The gem template
provides a default .waf_files list. All new files should be added to this.

• gemname_tests.waf_files: This is a JSON list of all test files for a gem, in the same format as
gemname.waf_files.

• Include/GemName folder: This is where the gem's interface is. This folder can be included by other
gems, and should contain no implementations or non-pure-virtual function definitions. The gem
template provides a default GemNameBus.h that contains a GemNameRequestBus interface, which
defines public functionality. For more information, see Event Bus (EBus).

• Source folder: This folder contains the following automatically generated files:

• StdAfx.h: Includes frequently required files.

• StdAfx.cpp: Includes StdAfx.h.

• GemNameGem.h: Contains the definition of the actual IGem implementation class.

• GemNameSystemComponent.h: Contains the definition of a System Component that handles calls
to GemNameRequestBus.

• GemNameSystemComponent.cpp: Contains the implementation of the
GemNameSystemComponent class.

• GemNameModule.cpp: Contains the AZ::Module class definition, which is used to register
components and do additional component reflection.

Note
This class can be made to extend CryHooksModule (in IGem.h) instead of having gEnv
attached automatically.

• Tests folder: This provides an example of how to build unit tests into your gems. All files in this
folder should be added to gemname_tests.waf_files.

The Tests folder contains the GemNameTest.cpp file, which is ready for you to write gtests for your
gem.

For more information about waf files and wscript files, see Waf Build System (p. 1318).

Gem JSON File
This file contains metadata for the gem. The following gem.json file is for the LightningArc Gem:

{
 "Dependencies": [// Optional,
 defaults to []
 {
 "Uuid": "d378b5a7b47747d0a7aa741945df58f3", // Required
 "VersionConstraints": [// Required
 "~>1.0"
],
 "_comment": "GameEffectSystem" // Useful comment
 }
],
 "GemFormatVersion": 3, // Required
 "LinkType": "Dynamic", // Required
 "Name": "LightningArc", // Required
 "Summary": "Provides an entity that can be used to produce electricity
 effects.", // Optional, defaults to ""
 "Tags": ["Weather", "Weather Effects","Sky"], // Optional,
 defaults to []

Version 1.6
780

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard User Guide
Gem List File

 "DisplayName": "Lightning Arc", // Optional,
 defaults to [Name]
 "Uuid": "4c28210b23544635aa15be668dbff15d", // Required
 "Version": "1.0.0", // Required
 "IconPath": "preview.png" // Optional,
 defaults to ""
}

A <GemFolder>\gem.json file defines the following gem properties:

• Dependencies: The uuids and versions of other gems that this gem depends on. Acceptable version
specifiers are made of an operator and a version number. Some examples:

• ==1.2.3: Minimum: 1.2.3 Maximum: 1.2.3

• >=1.2.3: Minimum: 1.2.3 Maximum: None

• <=1.2.3: Minimum: None Maximum: 1.2.3

• >2.0.0: Minimum: 1.0.0 (exclusive) Maximum: None

• <2.0.0: Minimum: None Maximum: 2.0.0 (exclusive)

• ~>1.2.3: Minimum: 1.2.3 Maximum: 1.3.0 (exclusive)

• ~>1.2: Minimum: 1.2.0 Maximum: 2.0.0 (exclusive)

• * : Allow any version (not recommended, overwrites all other constraints)

• GemFormatVersion: The GemFormatVersion value is versioning for how a gem is built. Gems
from Lumberyard 1.4 and earlier (legacy gems) all have a GemFormatVersion value of 2.
Starting in Lumberyard 1.5, all the gems included with Lumberyard are AZ modules and have a
GemFormatVersion value of 3. This tells Lumberyard that the gem is an AZ module and that it
should be loaded accordingly.

• LinkType: How other gems and game projects should link against this gem:

• Dynamic: Produces a .dll file and does no linking.

• DynamicStatic: Produces a .dll file and links all dependent projects against the .dll file using an
import library.

• NoCode: Produces no .dll or .lib file. The gem has assets but no code.

• Name: The name of the gem.

• Summary: A short description of the gem.

• Tags: A list of tags describing the gem.

• DisplayName: The friendly name of the gem, used in the UI.

• Uuid: The unique ID of the gem. Used to identify the gem to the engine.

• Version: The API version of the gem. The version should follow the Semantic Versioning
specification.

• IconPath: The path from the gem folder to the icon to display. It may be a .jpg, .png, or .gif, and
should be 160x90px.

Gem List File
The gems.json list file, found at the root of each project directory, lists all of the gems used in the
project. An example gem list follows.

{
 "GemListFormatVersion": 2,
 "Gems": [
 {
 "Path": "Gems/Rain", // Required

Version 1.6
781

http://semver.org/

Lumberyard User Guide
Lumberyard Gems

 "Uuid": "e5f049ad7f534847a89c27b7339cf6a6", // Required
 "Version": "0.1.0", // Required
 "_comment": "Rain" // Useful comment
 }
]
}

Lumberyard Gems
Lumberyard ships with the following gems that are ready to be enabled:

Topics

• Boids Gem (p. 782)

• Camera Framework Gem (p. 789)

• Cloud Gem (p. 789)

• Cloud Canvas Gem (p. 795)

• GameEffect Gem (p. 796)

• GameLift Gem (p. 796)

• Gestures Gem (p. 797)

• Input Management Framework Gem (p. 807)

• Lightning Arc Gem (p. 807)

• Metastream Gem (p. 814)

• Multiplayer Gem (p. 818)

• Physics Entities Gem (p. 822)

• Process Life Management Gem (p. 822)

• Rain Gem (p. 823)

• Snow Gem (p. 827)

• Substance Gem (p. 831)

• Tornadoes Gem (p. 831)

• UiBasics Gem (p. 836)

• UiDemo Gem (p. 836)

• User Login Default Gem (p. 836)

• Woodland Asset Collection Gem (p. 836)

Boids Gem
The Boids Gem provides entities that simulate animated animals that produce sound, exhibit group
behavior, and avoid obstacles. Their complex behavior arises from the interaction of an individual
agent boid with other boids and their environment.

A boids entity is a group of animals. You can control such aspects as the total number of boids, their
mass, flocking behavior, speed, interaction with the player, and more. All boids entities exhibit by
default a combination of basic motion, player avoidance, and flocking behavior.

The boids entity can also be affected by other entities; for example, a rain entity placed in the same
scene with a turtles entity results in wet turtles.

Version 1.6
782

Lumberyard User Guide
Boids Gem

Topics

Version 1.6
783

Lumberyard User Guide
Boids Gem

• Configuring the Boids Gem (p. 784)

• Boids Entity Flow Graph Nodes (p. 787)

To place Boids entities

1. In the Rollup Bar, on the Objects tab, click Entity.

2. Expand Boids.

3. Drag one of the boids entities into your level in the Perspective viewport.

Configuring the Boids Gem
You can configure the Entity Properties and Entity Params (p. 432) for the boids entity to specify
such features as the number of boids to spawn per group, flocking behavior, the character model to
use, and more.

The following table lists boids entity properties and their descriptions. As noted, certain properties
appear for only specific boids.

Note
Boids spawn on terrain, not on objects placed on the terrain.

Boids Entity Properties

Property Name Description

Boids

Behavior Sets movement behavior.

• 0 – Crawling bugs (for example, beetles)

• 1 – Flying insects (for example, dragonflies)

• 2 – Jumping bugs (for example, grasshoppers)

Count Number of individuals to spawn per boid group.

Invulnerable Sets invulnerability, where boids entities cannot by killed by anything.

Version 1.6
784

Lumberyard User Guide
Boids Gem

Property Name Description

When invulnerability is not set, the following can kill boids:

• Collisions with other entities at speeds greater than 1.

• Being thrown at speeds greater than 5 (applies to chickens, turtles,
and frogs only).

• Collision with a particle moving at a speed greater than 5 (applies to
chickens, turtles, and frogs only).

• Collision when OnBoidHit function is used.

Mass (kg) Mass of each individual in the group. Used when physicalizing (p. 157)
the boid entity.

Model 3D model file used for the boid representation. You can use geometry
files (*.cgf, *.chr, *.skin, *.cdf) for this property. To change the
model, click in the property, and then click the folder icon. Navigate to
and open the file you want to use. The bugs boid entity has 5 Model
entries for specifying 5 different models.

Flocking

AttractDistMax Maximum separation distance in meters at which boids can interact with
each other. Boids do not interact with each other at distances beyond
this range.

AttractDistMin Minimum separation distance in meters between boids before
FactorSeparation force affects them.

EnableFlocking When selected, enables flocking behavior within a group. This means
that the boids congregate or mass together.

FactorAlign Multiplier that determines how closely boids in a group maneuver in the
same direction.

FactorCohesion Multiplier that determines how closely boids in a group congregate.

FactorSeparation Multiplier that determines how strongly boids in a group repel one
another. Avoids crowding flock mates when closer than AttractDistMin.

FieldOfViewAngle Viewing angle within which each boid can consider other boids flock
mates.

Ground The Ground group of properties appears only for boids entities with
flight and applies only when boids are walking on the ground, which
occurs only in game mode, and not in edit mode.

FactorAlign Multiplier that determines how closely boids in a group maneuver in the
same direction.

FactorCohesion Multiplier that determines how closely boids in a group congregate.

FactorOrigin Multiplier that determines how strongly boids in a group are attracted to
their point of origin.

FactorSeparation Multiplier that determines how strongly boids in a group repel one
another.

HeightOffset Boids vertical offset from the ground.

OnGroundIdleDurationMax Maximum amount of time that boids idle on the ground.

Version 1.6
785

Lumberyard User Guide
Boids Gem

Property Name Description

OnGroundIdleDurationMin Minimum amount of time that boids idle on the ground.

OnGroundWalkDurationMax Maximum amount of time that boids walk on the ground.

OnGroundWalkDurationMin Minimum amount of time that boids walk on the ground.

WalkSpeed Speed at which boids walk on the ground when they land.

WalkToIdleDuration Time it takes for boids to transition from walk to idle.

Movement

FactorAvoidLand Multiplier that determines how strongly boids in a group avoid land or
water.

FactorHeight Multiplier that determines how strongly boids in a group are kept at their
original height.

FactorOrigin Multiplier that determines how strongly boids in a group are attracted to
their point of origin.

FactorTakeOff Speed of vertical movement during takeoff. Appears only for boids
entities with flight.

FlightTime Duration of flight before attempting to land. Appears only for boids
entities with flight.

FactorRandomAcceleration Multiplier that determines that randomness of acceleration. Appears
only for fish boids.

HeightMax Maximum height above land to which boids can fly.

HeightMin Minimum height above land at which boids can fly.

LandDecelerationHeight Height at which boids begin to decelerate when landing. Appears only
for boids entities with flight.

MaxAnimSpeed Multiplier for maximum deviation allowed from original animation speed,
for those boids with animations.

SpeedMax Maximum speed (meters/second) at which boids can move.

SpeedMin Minimum speed (meters/second) at which boids can move.

Options

Activate Activates the selected boid entity from the start of the level. Boids can
also be activated at a later stage with the activate event.

AnimationDist Maximum distance from the camera at which animations are updated.
Appears only for boids entities with flight.

AvoidWater Value that determines how strongly boids avoid bodies of water.
Appears only for boids that move on land.

FollowPlayer When selected, boids flock toward current player position, which is their
point of origin. Boids stay within value set by Radius. If boids move too
far from the player, they reappear on the other side of the radius area.

NoLanding When selected, boids with flight do not land.

Version 1.6
786

Lumberyard User Guide
Boids Gem

Property Name Description

ObstacleAvoidance When selected, boids are diverted from physical obstacles. This feature
is resource-intensive, so use it cautiously.

PickableMessage Message that appears if a boid is able to be picked up. Appears for all
boids except fish.

PickableWhenAlive When selected, boid can be picked up when alive. Appears for all boids
except fish.

PickableWhenDead When selected, boid can be picked up when dead. Appears for all boids
except fish.

Radius Maximum radius in meters that boids can move from their flock point of
origin.

SpawnFromPoint When selected, boids spawn at the boid entity position.

StartOnGround When selected, boids spawn on the ground. When unselected, boids
spawn in the air.

VisibilityDist Maximum camera distance in meters from which the entire flock is
visible. If the player camera's distance from the flock exceeds this value,
boids are not rendered.

ParticleEffects

EffectsScale Scale of the particle effect to be displayed. Appears only for frogs.

waterJumpSplash Name of the splash particle effect to be displayed when a boid jumps
into the water. Appears only for frogs.

Boids Entity Flow Graph Nodes

To place a boids entity flow graph node into a flow graph (p. 487), select the entity in your Perspective
viewport. Then right-click and select Create Flow Graph. If working with a level flowgraph, select the
entity in your Perspective viewport. Then in your flow graph, right-click and click Add Selected Entity.
A flow graph node appears with the title entity:Entity name.

Version 1.6
787

Lumberyard User Guide
Boids Gem

entity:Boid Entity Type

Inputs

Entity Name
Selected entity's name or label. Displays <Graph Entity> if the flow graph is an entity file (p. 488).

Activate
Activates the entity.

Deactivate
Deactivates the entity.

AttractTo
Attracts the entity to a specific XYZ coordinate in the level.

Applies only to the birds and bald eagles entities.

Outputs

Activate
Triggers output when the entity is activated.

Deactivate
Triggers output when the entity is deactivated.

AttractEnd
Triggers output when the entity's distance is less than 5 meters from the attraction point
(AttractTo input).

Applies only to the birds and bald eagles entities.

Lua Bindings for Boids

Individual boids have Lua-specific behavior. These scripts are available in dev\Gems\Boids\Assets
\Scripts\Entities\Boids.

The following boids functions are bound from C++ to Lua:

Version 1.6
788

Lumberyard User Guide
Camera Framework Gem

• CreateFlock

• SetFlockParams

• EnableFlock

• SetFlockPercentEnabled

• OnBoidHit

• SetAttractionPoint

• CanPickup

• GetUsableMessage

• OnPickup

Console Variable for Boids

The console variable boids_enable is defined in dev\Gems\Boids\Code\source
\ScriptBind_Boids.cpp.

The count value for boids can be modified by the CVar e_ObjQuality.

Camera Framework Gem
The Camera Framework Gem is a base upon which you can build more complex camera systems. This
Gem contains the CameraComponent and the CameraRigComponent, which work together to define a
basic camera and its control rig. You can customize the CameraRigComponent through three different
behaviors:

• Target acquiring behavior

• Target transform modifying behaviors

• Final camera transform modifying behaviors

Cloud Gem
The Clouds Gem creates realistic and detailed cloud and weather effects in your game levels. You can
create clouds with either simple, sprite-based shading, or more complex, voxelized 3D volume shading.
To enable the Clouds Gem in your project, see Gems (p. 778).

For more information about working with clouds, including setting cloud shading parameters, adding 3D
cloud shadows, and creating 3D cloud templates, see Adding Clouds (p. 870).

Version 1.6
789

Lumberyard User Guide
Cloud Gem

Topics

• Placing Simple Clouds (p. 790)

• Placing Complex Clouds (p. 792)

Placing Simple Clouds
You can place simple clouds with sprite-based shading and customize it for your level by choosing your
cloud texture and modifying such properties as movement speed, size, movement from wind, and so
on.

Version 1.6
790

Lumberyard User Guide
Cloud Gem

To add simple clouds to your level

1. In the Rollup Bar's Objects tab, click Entity.

2. Under Browser, expand Render.

3. Drag the Cloud entity into your scene.

Files Associated with Simple Clouds

The following are files associated with simple clouds.

Filename Location

CloudFile Lib\Clouds\default.xml

Script Scripts\Entities\Render\cloud.lua

Entity Entities\cloud.ent

Configuring Simple Clouds

You can configure the properties for your simple clouds under Entity Params and Entity Properties.

Version 1.6
791

Lumberyard User Guide
Cloud Gem

Properties Description

CloudFile The .xml file containing the description of the cloud

Scale Deprecated

Movement

AutoMove Enables cloud movement

FadeDistance The distance in meters at which the cloud fades in when moving from one side of
the space loop box to the other.

SpaceLoopBox The size of the box in which the volume object moves from one end to the other

Speed The rate of movement in the x, y, and z dimensions

Placing Complex Clouds

You can place more complex clouds, also called volume objects, which feature complex voxelized
three-dimensional volume shading.

Version 1.6
792

Lumberyard User Guide
Cloud Gem

To add complex clouds to your level

1. In the Rollup Bar's Object's tab, click Entity.

2. Under Browser, expand Render.

3. Drag the VolumeObject entity into your scene.

Version 1.6
793

Lumberyard User Guide
Cloud Gem

Files Associated with Complex Clouds

The following are files associated with volume objects, or complex clouds.

Filename Location

CloudFile Lib\Clouds\default.xml

Script Scripts\Entities\Render\volumeobject.lua

Entity Entities\volumeobject.ent

Configuring Complex Clouds

You can configure the properties for your complex clouds under Entity Params and Entity Properties.

Version 1.6
794

Lumberyard User Guide
Cloud Canvas Gem

Properties Description

VolumeObjectFile The .xml file containing the description of the cloud

Movement

AutoMove Enables volume object movement

FadeDistance The distance in meters at which the cloud fades in when moving from one side of
the space loop box to the other

SpaceLoopBox The size of the box in which the volume object moves from one end to the other

Speed The rate of movement in the x, y, and z dimensions

Cloud Canvas Gem
The Cloud Canvas Gem enables you to use Cloud Canvas visual scripting to AWS services. With
Cloud Canvas you can build connected game features that use Amazon DynamoDB (DynamoDB),
Amazon Lambda, Amazon Simple Storage Service (Amazon S3), Amazon Cognito, Amazon Simple
Notification Service (Amazon SNS), and Amazon Simple Queue Service (Amazon SQS). You can
also create cloud-hosted features such as daily gifts, in-game messages, leaderboards, notifications,

Version 1.6
795

Lumberyard User Guide
GameEffect Gem

server-side combat resolution, and asynchronous multiplayer gameplay (e.g. card games, word games,
ghost racers, etc.). Cloud Canvas eliminates the need for you to acquire, configure, or operate host
servers yourself, and reduces or eliminates the need to write server code for your connected gameplay
features.

AWS services accessed via Cloud Canvas may be subject to separate charges and additional terms.
For more information, see Cloud Canvas in the Lumberyard Developer Guide.

GameEffect Gem
The Game Effect System Gem provides fundamentals for creating and managing the visual effects of
the Lightning Arc Gem. If you install the Lightning Arc Gem (p. 807), you must also install the Game
Effect System Gem. The Lightning Arc Gem is the only Lumberyard gem that is dependent on the
Game Effect System Gem.

GameLift Gem
The GameLift Gem provides two flow graph nodes to support Amazon GameLift, which is an AWS
service for deploying, operating, and scaling session-based multiplayer games. With Amazon
GameLift, Amazon Lumberyard developers can quickly scale high-performance game servers up and
down to meet player demand, without any additional engineering effort or upfront costs.

Topics

• GameLift:Start node (p. 796)

• GameLift:CreateGameSession node (p. 796)

GameLift:Start node

Used to start the GameLift session service.

Node Inputs

Activate

AWSAccessKey

AWSSecretKey

AWSRegion

Endpoint

FleetID

AliasID

PlayerID

Node Outputs

Success

Failed

GameLift:CreateGameSession node

Used to create a GameLift game session.

Version 1.6
796

http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-intro.html

Lumberyard User Guide
Gestures Gem

Node Inputs

Activate

ServerName

Map

MaxPlayers

Node Outputs

Success

Failed

Gestures Gem
The Gestures Gem processes raw input to detect some of the most common gesture-based input
actions, including the following:

• Tap or click – Single-touch, discrete gesture

• Drag or pan – Single-touch, continuous gesture

• Hold or press – Single-touch, continuous gesture

• Swipe – Single-touch, discrete gesture

• Pinch – Multiple-touch, continuous gesture

• Rotate – Multiple-touch, continuous gesture

You can configure and register gesture listeners using either C++ or flow graph nodes that are exposed
through the Gestures Gem.

Version 1.6
797

Lumberyard User Guide
Gestures Gem

Multiple-touch gestures (such as pinch and rotate) can be recognized only through multiple
simultaneous touches on a supported touch screen (currently, mobile devices running iOS or Android).
On the other hand, single-touch gestures (such as tap, drag, hold, and swipe) function identally with
both supported touch screens and mouse input on a PC. The underlying C++ gesture recognition
framework can be easily extended to write your own custom gestures and expose them through the
Flow Graph editor.

Gestures Flow Graph Nodes
The Gestures Gem's flow graph nodes are contained in the Input, Gestures filter in the Flow Graph
editor. Each node contains a number of input ports that you can use to configure how the gesture
is recognized. Data is sent through output nodes each time the gesture is recognized (for discrete
gestures such as tap or swipe), or for each frame while the gesture is being recognized (for continuous
gestures such as drag, hold, pinch, and rotate).

You can use these flow graph nodes to configure gestures-related settings.

For more information on the Gestures Gem, see Gestures Gem (p. 797).

Topics

Version 1.6
798

Lumberyard User Guide
Gestures Gem

• ClickorTap (p. 799)

• Drag (p. 800)

• Hold (p. 801)

• Pinch (p. 803)

• Rotate (p. 804)

• Swipe (p. 805)

ClickorTap

Recognizes a discrete (or series of discrete) click (or tap) gestures.

Inputs

Enable
Enables gesture recognizer.

Disable
Disables gesture recognizer.

PointerIndex
The pointer (button or finger) index to track.

Default value: 0

Type: Integer

MinClicksOrTaps
The minimum number of clicks or taps required for the gesture to be recognized.

Default value: 1

Type: Integer

MaxSecondsHeld
The maximum time in seconds a gesture can be held before the gesture stops being recognized.

Default value: .5

Type: Float

MaxPixelsMoved
The maximum distance in pixels allowed to move while being held before the gesture stops being
recognized.

Default value: 20

Type: Float

MaxSecondsBetweenClicksOrTaps
The maximum time in seconds allowed between clicks or taps (only used when
MinClicksOrTaps > 1).

Version 1.6
799

Lumberyard User Guide
Gestures Gem

Default value: .5

Type: Float

MaxPixelsBetweenClicksOrTaps
The maximum distance in pixels allowed between clicks or taps (only used when
MinClicksOrTaps > 1).

Default value: 20

Type: Float

Outputs

Recognized
Activated when a discrete (or series of discrete) click (or tap) gestures is recognized.

StartX
Starting X screen position of the click or tap in pixels.

Type: Float

StartY
Starting Y screen position of the click or tap in pixels.

Type: Float

EndX
Final X screen position of the click or tap in pixels.

Type: Float

EndY
Final Y screen position of the click or tap in pixels.

Type: Float

Drag

Recognizes continuous drag gestures.

Inputs

Enable
Enables gesture recognizer.

Disable
Disables gesture recognizer.

PointerIndex
The pointer (button or finger) index to track.

Version 1.6
800

Lumberyard User Guide
Gestures Gem

Default value: 0

Type: Integer

MinSecondsHeld
The minimum time in seconds after the initial press before a drag is recognized.

Default value: 0

Type: Float

MinPixelsMoved
The minimum distance in pixels that must be dragged before a drag is recognized.

Default value: 20

Type: Float

Outputs

Recognized
Activated when a continuous drag gesture is initiated.

Updated
Activated when a continuous drag gesture is updated.

Ended
Activated when a continuous drag gesture is ended.

StartX
X pixel position where the drag started.

Type: Float

StartY
Y pixel position where the drag started.

Type: Float

CurrentX
Current X pixel position (or where the drag ended).

Type: Float

CurrentY
Current Y pixel position (or where the drag ended).

Type: Float

DeltaX
X pixels dragged (CurrentX – StartX).

Type: Float

DeltaY
Y pixels dragged (CurrentY – StartY).

Type: Float

Distance
Pixel distance from the drag's start position to its current (or end) position.

Type: Float

Hold

Recognizes continuous hold gestures.

Version 1.6
801

Lumberyard User Guide
Gestures Gem

Inputs

Enable
Enables gesture recognizer.

Disable
Disables gesture recognizer.

PointerIndex
The pointer (button or finger) index to track.

Default value: 0

Type: Integer

MinSecondsHeld
The minimum time in seconds after the initial press before a hold is recognized.

Default value: 2

Type: Float

MaxPixelsMoved
The maximum distance in pixels that can be moved before a hold stops being recognized.

Default value: 20

Type: Float

Outputs

Initiated
Activated when a continuous hold gesture is initiated.

Updated
Activated when a continuous hold gesture is updated.

Ended
Activated when a continuous hold gesture is ended.

StartX
X pixel position where the hold started.

Type: Float

StartY
Y pixel position where the hold started.

Type: Float

CurrentX
X pixel position where the hold is currently (or where it ended).

Type: Float

CurrentY
Y pixel position where the hold is currently (or where it ended).

Version 1.6
802

Lumberyard User Guide
Gestures Gem

Type: Float

Duration
Duration of the hold in seconds.

Type: Float

Pinch

Recognizes continuous pinch gestures (the primary and secondary touches moving towards or away
from each other).

Inputs

Enable
Enables gesture recognizer.

Disable
Disables gesture recognizer.

MinPixelsMoved
The minimum distance in pixels that must be pinched before a pinch is recognized.

Default value: 50

Type: Float

MaxAngleDegrees
The maximum angle in degrees that a pinch can deviate before it is recognized.

Default value: 15

Type: Float

Outputs

Initiated
Activated when a continuous pinch gesture is initiated.

Updated
Activated when a continuous pinch gesture is updated.

Ended
Activated when a continuous pinch gesture is ended.

StartMidpointX
X pixel position (midpoint) where the pinch started.

Type: Float

StartMidpointY
Y pixel position (midpoint) where the pinch started.

Version 1.6
803

Lumberyard User Guide
Gestures Gem

Type: Float

StartDistance
Pixel distance between the two touch positions when the pinch started.

Type: Float

CurrentMidpointX
Current X pixel position (midpoint) of the pinch (or where it ended).

Type: Float

CurrentMidpointY
Current Y pixel position (midpoint) of the pinch (or where it ended).

Type: Float

CurrentDistance
Current pixel distance between the two touch positions (or when the pinch ended).

Type: Float

Ratio
The ratio of the pinch (CurrentDistance / StartDistance).

Type: Float

Rotate

Recognizes continuous rotate gestures (the primary and/or secondary touches moving in a circular
motion around the other).

Inputs

Enable
Enables gesture recognizer.

Disable
Disables gesture recognizer.

MaxPixelsMoved
The maximum distance in pixels that the touches can move toward or away from each other before
a rotate is recognized.

Default value: 50

Type: Float

MinAngleDegrees
The minimum angle in degrees that must be rotated before the gesture is recognized.

Default value: 15

Version 1.6
804

Lumberyard User Guide
Gestures Gem

Type: Float

Outputs

Initiated
Activated when a continuous rotate gesture is initiated.

Updated
Activated when a continuous rotate gesture is updated.

Ended
Activated when a continuous rotate gesture is ended.

StartMidpointX
X pixel position (midpoint) where the rotate started.

Type: Float

StartMidpointY
Y pixel position (midpoint) where the rotate started.

Type: Float

StartDistance
Pixel distance between the two touch positions when the rotate started.

Type: Float

CurrentMidpointX
Current X pixel position (midpoint) of the rotate (or where it ended).

Type: Float

CurrentMidpointY
Current Y pixel position (midpoint) of the rotate (or where it ended).

Type: Float

CurrentDistance
Pixel distance between the two touch positions currently (or when the rotate ended).

Type: Float

RotationDegrees
The current rotation in degress in the range [-180, 180].

Type: Float

Swipe

Recognizes discrete swipe gestures.

Version 1.6
805

Lumberyard User Guide
Gestures Gem

Inputs

Enable
Enables gesture recognizer.

Disable
Disables gesture recognizer.

PointerIndex
The pointer (button or finger) index to track.

Default value: 0

Type: Integer

MaxSecondsHeld
The maximum time in seconds after the initial press for a swipe to be recognized.

Default value: .5

Type: Float

MinPixelsMoved
The minimum distance in pixels that must be moved before a swipe is recognized.

Default value: 100

Type: Float

Outputs

Recognized
Activated when a discrete swipe gesture is recognized.

StartX
X pixel position where the swipe started.

Type: Float

StartY
Y pixel position where the swipe started.

Type: Float

EndX
X pixel position where the swipe ended.

Type: Float

EndY
Y pixel position where the swipe ended.

Type: Float

DeltaX
X pixels swiped (EndX – StartX)

Type: Float

DeltaY
Y pixels swiped (EndY – StartY).

Type: Float

DirectionX
X direction of the swipe (normalized DeltaX, DeltaY).

Version 1.6
806

Lumberyard User Guide
Input Management Framework Gem

Type: Float

DirectionY
Y direction of the swipe (normalized DeltaX, DeltaY).

Type: Float

Distance
Distance of the swipe in pixels.

Type: Float

Duration
Duration of the swipe in seconds.

Type: Float

Velocity
Velocity of the swipe in pixels per second.

Type: Float

C++

From C++, you can access the Gestures Gem interface using a convenience function such as the
following:

#include <Gestures/IGesturesGem.h>
 IGesturesGem* GetIGesturesGem()
 {
 ISystem* system = GetISystem();
 IGemManager* gemManager = system ? system->GetGemManager() :
 nullptr;
 return gemManager ? gemManager->GetGem<Gestures::IGesturesGem>() :
 nullptr;
 }

For examples of how to create and register your own gesture recognizers from C++, refer to the
various GestureRecognizer*FlowNode.cpp files, which contain the code that drives the respective
flow graph nodes.

Input Management Framework Gem

The Input Management Framework Gem is in preview release and is subject to change.

This Gem provides a framework for managing cross-platform game input such as keyboard, controller,
and touch in Lumberyard using the component entity system.

Lightning Arc Gem
The Lightning Arc Gem creates realistic electric arcing and sparking effects between points in a level.

While active, the entity sparks a new electrical arc to the assigned target entities randomly. The entity
is able to trigger new sparks in either game mode or in AI/Physics mode.

Version 1.6
807

Lumberyard User Guide
Lightning Arc Gem

Using the LightingArc Sample

The LightningArc Sample uses the LightningArc gem to demonstrate the various prescripted arc types.

Topics

• Enabling the Lightning Arc Gem (p. 808)

• Placing Lightning Arc (p. 808)

• Configuring the Lightning Arc (p. 810)

• Customizing a Lightning Arc Preset (p. 811)

Enabling the Lightning Arc Gem

You enable the Lightning Arc Gem from Project Configurator. You must also enable the Game Effect
Gem, as the Lightning Arc Gem is dependent on it. This and other dependencies are listed in Project
Configurator. For more information, see Project Configurator (p. 985).

To enable the lightning arc Gem

1. Start Project Configurator and click Enable Packages.

2. Select Lightning Arc and Game Effect System.

3. Click Save.

4. Use the procedure in Gems (p. 778) to rebuild your project.

Placing Lightning Arc

When you place a lightning arc entity, you must specify at least one target. The lightning arcs between
the lightning arc entity and each target that is linked. The lightning arc appears in the Lumberyard
Editor when you turn on AI/Physics or enter game mode (Ctrl + G).

Version 1.6
808

Lumberyard User Guide
Lightning Arc Gem

To place a lightning arc

1. In the Rollup Bar's Object tab, click Entity. Under Browser, expand Environment, and then
select LightningArc. Drag LightningArc into your scene.

2. Beneath Entity Properties, ensure that Active is selected.

3. Click AI/Physics in the bottom toolbar. This makes the lightning arc visible in Lumberyard Editor
after you place and link the targets.

4. To place one or more targets, in the Rollup Bar's Objects tab, click AI. Under Object Type, click
Tagpoint.

5. Move your mouse into the scene, and click to place the tag point where your lightning will arc.

6. To link your tag point, select your lightning arc entity in the scene.

Note
If your entities are currently hidden, click the H icon at the top of the Perspective viewport
to reveal them.
Alternatively, you can use the object selector to select an object by name.

7. If necessary, scroll down or collapse other headings in the Rollup Bar to find Entity Links. Click
Pick Target. Select the tag point you placed. Once it appears in the Link Name list, double-click
the link name and change it to Target.

Version 1.6
809

Lumberyard User Guide
Lightning Arc Gem

8. Assign a lightning material: Beneath Entity, click in the Mtl text box. The Material Editor appears.

9. Expand materials\effects. Right-click the desired lightning effect. Then click Assign to
Selected Objects. Close the Material Editor.

Configuring the Lightning Arc

You can configure the properties for the lightning arc entity to make the lightning arc show outside
only, toggle wind effects, add delays and variations between arcs, and more. You can also carefully
customize your lightning arcs by selecting different presets for the type of arc generated.

To configure lightning arc entity parameters and properties

1. In the Perspective viewport, select the lightning arc entity you want to configure.

2. Beneath Entity Params (p. 432) and Entity Properties, select or clear check boxes for the
preferred effects.

Version 1.6
810

Lumberyard User Guide
Lightning Arc Gem

Lightning Arc Entity Properties

Properties Description

Active Activates the effect

Render

ArcPreset Sets the specified arc preset defined in the lightningarceffects.xml file as
explained in Customizing a Lightning Arc Preset (p. 811).

Timing

Delay Sets the delay time between arcs

DelayVariationSets the variation of the delay based on the delay time

Customizing a Lightning Arc Preset

You can customize your lightning arc entity using the presets in the lightningarceffects.xml file.
You can also copy and modify existing presets to create your own customized lightning arc presets.

To use a lightning arc preset

1. In Lumberyard Editor, use the Select tool to select the lightning arc entity you want to customize.

2. In a text editor, open \dev\Gems\LightningArc\Assets\libs\lightningarc
\lightningarceffects.xml in the Lumberyard root directory (\lumberyard\dev).

3. Choose one of the existing presets from the lightningarceffects.xml file (follows Arc name
in the example) and, in Lumberyard Editor, under Entity Properties, type your chosen Arc name
into the ArcPreset field .

For example, type ExtendedArc or KickSparks, which are existing names of presets as shown
in the following lightningarceffects.xml file. This sample shows only the partial contents;
open the file on your computer to view the full contents of the file.

 <LightningArc>

 <Arc name="Default">
 <param name="lightningDeviation" value="0.2" />
 <param name="lightningFuzzyness" value="0.1" />
 <param name="branchMaxLevel" value="1" />
 <param name="branchProbability" value="2.0" />
 <param name="lightningVelocity" value="0.6" />
 <param name="strikeTimeMin" value="0.35" />
 <param name="strikeTimeMax" value="0.35" />
 <param name="strikeFadeOut" value="0.6" />
 <param name="strikeNumSegments" value="6" /> <!-- int max is 7 -->
 <param name="strikeNumPoints" value="5" />
 <param name="maxNumStrikes" value="6" />
 <param name="beamSize" value="0.2" />
 <param name="beamTexTiling" value="0.25" />
 <param name="beamTexShift" value="0.05" />
 <param name="beamTexFrames" value="4.0" />
 <param name="beamTexFPS" value="15.0" />
 </Arc>

Version 1.6
811

Lumberyard User Guide
Lightning Arc Gem

 <Arc name="ExtendedArc">
 <param name="lightningDeviation" value="0.1" />
 <param name="lightningFuzzyness" value="0.05" />
 <param name="branchMaxLevel" value="1" />
 <param name="branchProbability" value="10.0" />
 <param name="lightningVelocity" value="0.25" />
 <param name="strikeTimeMin" value="2.0" />
 <param name="strikeTimeMax" value="2.0" />
 <param name="strikeFadeOut" value="1.0" />
 <param name="strikeNumSegments" value="6" /> <!-- int max is 7 -->
 <param name="strikeNumPoints" value="6" />
 <param name="maxNumStrikes" value="5" />
 <param name="beamSize" value="0.18" />
 <param name="beamTexTiling" value="0.25" />
 <param name="beamTexShift" value="0.05" />
 <param name="beamTexFrames" value="4.0" />
 <param name="beamTexFPS" value="18.0" />
 </Arc>

 <Arc name="KickSparks">
 <param name="lightningDeviation" value="0.2" />
 <param name="lightningFuzzyness" value="0.1" />
 <param name="branchMaxLevel" value="1" />
 <param name="branchProbability" value="3.0" />
 <param name="lightningVelocity" value="16.0" />
 <param name="strikeTimeMin" value="0.0" />
 <param name="strikeTimeMax" value="0.05" />
 <param name="strikeFadeOut" value="0.05" />
 <param name="strikeNumSegments" value="6" /> <!-- int max is 7 -->
 <param name="strikeNumPoints" value="5" />
 <param name="maxNumStrikes" value="6" />
 <param name="beamSize" value="0.1" />
 <param name="beamTexTiling" value="0.75" />
 <param name="beamTexShift" value="0.15" />
 <param name="beamTexFrames" value="4.0" />
 <param name="beamTexFPS" value="15.0" />
 </Arc>

To create a new lightning arc preset

1. Open the lightningarceffects.xml file.

2. Copy the text (between and including <Arc name="Name"> through </Arc>) for an existing
preset.

3. Paste it at the end of the file before the </LightningArc> closing bracket.

4. Replace the Arc name with your own custom preset name, then modify the following parameters
to fit your needs.

The following table lists definitions for the parameters in the lightningarceffects.xml file.

Lightning Arc Entity Properties

Parameter Description

lightningDeviationThe smoothness of the effect in meters.

lightningFuzzynessThe noisiness of the effect in meters.

Version 1.6
812

Lumberyard User Guide
Lightning Arc Gem

Parameter Description

branchMaxLevel Allows child branches to strike out of the main beam and child branches to
strike out from other child beams if this value is 2 or higher. A setting of 0 or 1 is
recommended.

branchProbability Probability that child branch will strike out from another beam segment. Consider
these examples:

• 0 – No branch is generated

• 0.5 – Creates one branch per beam half the time

• 1.0 – Creates one branch per beam

• 2.0 – Creates 2 branches per beam

lightningVelocity Rate at which a branch shifts upward from its original position after being
triggered.

strikeTimeMin Minimum time a branch remains visible.

strikeTimeMax Maximum time a branch remains visible.

strikeFadeOut Time to fade out after a branch disappears. This setting decreases the branch
beamSize to 0 instead of actually fading with transparency.

strikeNumSegmentsNumber of snaking segments generated.

strikeNumPoints Number of points per segment generated to create the noisy effect.

The number of actual segments generated is defined by strikeNumSegments
* strikeNumPoints.

When the code generates the geometry, it creates a camera-aligned
beam with exactly two triangles. This means the number of triangles
per strike is strikeNumSegments*strikeNumPoint*2. Since
maxNumStrikes is the hard limit of potential number of sparks active
at any time, the potential number polygons of a given lightning effect is
strikeNumSegments*strikeNumPoint*2*maxNumStrike.

Note that with the LightningArc entity, each lightning strike triggers a new
lightning strike. Therefore the total poly count of a given effect can be much
higher. The game has internal limits for the total amount of lightning effects,
lightning strikes, and polygons that cannot be surpassed.

maxNumStrikes Hard limit on the number of beam segments that can be generated.

beamSize Width of the beam generated. Child beams have half the width.

beamTexTiling Texture tiling depends on the world size. A value of 2.0 means the texture wraps
around twice every meter. A value of 0.25 means the texture will wrap around
every 4 meters.

beamTexShift Rate at which the U coordinate moves in a given direction. While
beamTexTiling affects only the U coordinate, the V coordinate is automatically
calculated to select one of the texture's frames.

beamTexFrames Number of frames in the animation.

beamTexFPS Frames per second of the multiframe animation.

Version 1.6
813

Lumberyard User Guide
Metastream Gem

Metastream Gem
Twitch Metastream is a feature that allows broadcasters to customize game streams with overlays of
statistics and events from a game session. Using any web authoring tool, broadcasters can create
custom HTML5 pages to control the information, graphics, layout, and behavior of the overlays.

Examples of information displayed in an overlay include:

• Character art

• Character strengths and weaknesses

• Player standings

• Stats for two leaders in a match

• Gold collected

• Kills, deaths, and assists

• Damage dealt

Broadcasters can switch between different graphic overlays that are timed to game events. They can
also use a picture-in-picture style to display complementary information such as a minimap and live
team stats.

To enable broadcasters to use Twitch Metastream, you must do the following:

1. Add the Metastream Gem to your project.

2. Set the metastream_enabled console variable to enable the feature.

3. Add a single line of code for each event you want broadcasters to access.

Note
Twitch Metastream is supported on Windows only.

Adding the Metastream Gem

Add the Metastream Gem to your project to turn on the local HTTP Metastream server that is included
with Lumberyard.

To add the Metastream Gem

1. Open the Project Configurator (located in the \dev\Bin64 directory at the root of your
Lumberyard installation).

2. In the Project Configurator, select your project and click Set as default.

3. Under your project name, click Enable Gems.

4. On the Gems (extensions) page, select the Metastream Gem.

5. Click Save.

6. Rebuild your project.

For information, see Gems (p. 778).

Setting the Metastream Console Variable

After you add the Metastream Gem to your project, you can enable the Twitch Metastream feature by
setting the metastream console variable. This allows you to create in-game options to enable or disable
the feature.

Version 1.6
814

Lumberyard User Guide
Metastream Gem

To set the Metastream console variable

1. Edit your project's game.cfg file (located in the \dev\project name\ directory) using a text
editor.

2. Set metastream_enabled to 1.

3. Save the game.cfg file.

4. Close and reopen your project for the change to take effect.

Setting Options for the HTTP Server
After you enable Metastream, an HTTP server is embedded into the game client and serves as the
access point for exposed data. Use a text editor to edit your project's game.cfg file (located in the \dev
\project name\ directory) to set the following options for the HTTP server.

metastream_enabled
Enables or disables the Metastream feature if the gem is enabled for the project.

Input type: Integer

Default: 1

metastream_serverPort
Sets the TCP port for the embedded HTTP server.

Input type: Integer

Default: 8082

metastream_docroot
Sets the document root for the embedded HTTP server.

Input type: String

Default: "Gems/Metastream/Files"

Exposing Data through Metastream
Metastream exposes data through the C++ API or the Metastream:CacheData flow graph node.

Exposing Data through the C++ API

The Metastream Gem uses a simple API to expose in-game data using the EBus system:

void MetastreamRequests::AddToCache(const char* table, const char* key, const
 char* value)

The following example shows how to use the Metastream C++ API in a project:

EBUS_EVENT(Metastream::MetastreamRequestBus, AddToCache, table, key, value);

Note
Any value that is added to the cache should be JSON compliant. For information, see the
JSON RFC.

Exposing Data through Flow Graph

The Metastream:CacheData node exposes in-game data using the flow graph.

Version 1.6
815

https://tools.ietf.org/html/rfc7159

Lumberyard User Guide
Metastream Gem

Node Inputs

Activate
Writes or updates the key-value pair in the specified table and exposes it through Metastream.

Type: Any

Table
Writes the key-value pair to the specified table.

Type: String

Key
Identifies the value.

Type: String

Value
Writes the value to Metastream and automatically converts the value to meet JSON compliance.

Type: Any

Node Outputs

Out
Signals when the data was successfully written to Metastream.

Type: Any

Error
Signals with true if an error occurred.

Type: Bool

Accessing Data through the HTTP API

You can access game data that has been exposed through Metastream by using the HTTP API Get
requests. You can then use JavaScript to work with the data.

http://localhost:port/pathToFile
Serves a file from the document root. File types include HTML, JS, CSS, images, sounds,
resources, or assets.

Note
The data path is reserved for Metastream data. Files that are saved to the
document_root/data/ directory will not be accessible.

http://localhost:port/data
Returns a list of available Metastream tables that contain key-value pairs.

http://localhost:port/data?table=table_name
Returns a list of all Metastream keys in the specified table.

Note
You can retrieve multiple key-value pairs in a single request by listing the keys
in a comma-separated list. For example, http://localhost:8082/data?
table=sample&key=key1,key2,key3

Data requests are returned in the following format:

Version 1.6
816

Lumberyard User Guide
Metastream Gem

Request Return

/data { "tables": ["table1",
"table2", ...] }

/data?table=table_name { "keys": ["key1", "key2", ...] }

/data?table=table_name&key=key_name { "key_name": value }

/data?table=table_name&key=keys_list
{
 "key1": value1,
 "key2": value2,
 ...
}

Using the Metastream Sample

Located in the \dev\SamplesProject\Levels\Samples\Metastream_Sample directory, the
Metastream sample level demonstrates how to expose data through the flow graph.

In conjunction with the sample level, the Metastream sample HTML file (located in the \dev\Gems
\Metastream\Files directory) shows how to use the data to create a simple, dynamic overlay.
These overlays can provide a more engaging experience for viewers without creating visual clutter on a
broadcaster's game screen.

The following example from Amazon Game Studios' game Breakaway shows an overlay with stats
from the two leaders in a match.

Version 1.6
817

Lumberyard User Guide
Multiplayer Gem

Multiplayer Gem
The Multiplayer Gem provides flow graph nodes to support multiplayer games using GridMate.

Topics

• Multiplayer:IsClient node (p. 818)

• Multiplayer:IsServer node (p. 818)

• Multiplayer:Connect node (p. 819)

• Multiplayer:Disconnect node (p. 819)

• Multiplayer:Host node (p. 819)

• Multiplayer:ListServers node (p. 820)

• Multiplayer:ListServersResult node (p. 820)

• Multiplayer:SetOwner node (p. 820)

• Multiplayer:OnConnected node (p. 820)

• Multiplayer:OnDisconnected node (p. 821)

• Multiplayer:OnPlayerConnected node (p. 821)

• Multiplayer:OnPlayerDisconnected node (p. 821)

• Multiplayer:OnLocalPlayerReady node (p. 821)

• Multiplayer:OnPlayerReady node (p. 821)

Multiplayer:IsClient node

Checks whether the current session is a client.

Node Inputs

Activate

Node Outputs

True

False

Multiplayer:IsServer node

Checks whether the current session is hosting.

Node Inputs

Activate

Version 1.6
818

Lumberyard User Guide
Multiplayer Gem

Node Outputs

True

False

Multiplayer:Connect node

Connect to a server.

Node Inputs

Activate

ServerAddress

Result

Node Outputs

Success

Failed

Multiplayer:Disconnect node

Disconnect from a server.

Node Inputs

Activate

Node Outputs

Success

Failed

Multiplayer:Host node

Host a server.

Node Inputs

Activate

ServerName

Map

MaxPlayers

Node Outputs

Success

Failed

Version 1.6
819

Lumberyard User Guide
Multiplayer Gem

Multiplayer:ListServers node
List the available servers.

Node Inputs

Activate

MaxResults

Node Outputs

Success

Failed

NumResults

Results

Multiplayer:ListServersResult node
Convert the ListServers list into fields.

Node Inputs

Results

Node Outputs

SessionId

ServerName

MapName

MaxPlayers

NumPlayers

Multiplayer:SetOwner node
Set the owner (network authority) for an entity.

Node Inputs

Activate

EntityId

MemberId

Node Outputs

Success

Failed

Multiplayer:OnConnected node
Indicate whether the multiplayer session is connected.

Version 1.6
820

Lumberyard User Guide
Multiplayer Gem

Node Outputs

True

False

Multiplayer:OnDisconnected node

Indicate whether the multiplayer session is disconnected.

Node Outputs

True

False

Multiplayer:OnPlayerConnected node

Activate when a new player connects.

Node Outputs

Name

MemberId

Multiplayer:OnPlayerDisconnected node

Activate when a player disconnects.

Node Outputs

MemberId

Multiplayer:OnLocalPlayerReady node

Activate when the local player has a valid actor entity.

Node Outputs

EntityId

MemberId

Multiplayer:OnPlayerReady node

Activate when a player has a valid actor entity.

Node Outputs

EntityId

MemberId

Version 1.6
821

Lumberyard User Guide
Physics Entities Gem

Physics Entities Gem
The PhysicsEntities Gem is a collection of physics entities used to simulate physical events such as
explosions, gravity fields, or wind, or to physicalize objects such as cloth, breakable entities, or ropes.
Physical entities that are related to a body instead of an event are connected to an object.

To access the Physics entities

1. On the Objects tab in the Rollup Bar, choose Entity.

2. Expand Physics.

3. Drag the entity into your level in the viewport.

Process Life Management Gem
The ProcessLifeManagement Gem demonstrates how you can respond to various application
lifecycle events dispatched by the Lumberyard engine, in order to pause your game, display a modal
splash screen, or anything else you may need to do when your application loses/regains focus.

Topics

• Process Life Management Gem C++ (p. 822)

Process Life Management Gem C++

You can access all system-specific events from C++ (even without enabling the Process Life
Management Gem) by connecting to the appropriate EBus. Lumberyard also generates platform-
agnostic events so that you can handle these events for all supported platforms.

Lumberyard Application Lifecycle Events

Lumberyard Application
Lifecycle Events

iOS Android

OnApplicationConstrained applicationWillResignActive onPause()

OnApplicationUnconstrained applicationDidBecomeActive onResume()

OnApplicationSuspended applicationDidEnterBackground onPause()

OnApplicationResumed applicationWillEnterForeground onResume()

Version 1.6
822

https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/TheAppLifeCycle/TheAppLifeCycle.html
http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html#//apple_ref/occ/intfm/UIApplicationDelegate/applicationWillResignActive:
http://developer.android.com/reference/android/app/Activity.html#onPause()
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html#//apple_ref/occ/intfm/UIApplicationDelegate/applicationDidBecomeActive:
http://developer.android.com/reference/android/app/Activity.html#onStart()
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html#//apple_ref/occ/intfm/UIApplicationDelegate/applicationDidEnterBackground:
http://developer.android.com/reference/android/app/Activity.html#onPause()
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html#//apple_ref/occ/intfm/UIApplicationDelegate/applicationWillEnterForeground:
http://developer.android.com/reference/android/app/Activity.html#onStart()

Lumberyard User Guide
Rain Gem

Lumberyard Application
Lifecycle Events

iOS Android

OnMobileApplicationWillTerminateapplicationWillTerminate onDestroy()

OnMobileApplicationLowMemoryWarningapplicationDidReceiveMemoryWarningonLowMemory()

As demonstrated in ProcessLifeManagementGem.h\ProcessLifeManagementGem.cpp, use the
following basic steps to receive process lifecycle events in your game.

To receive process lifecycle events in your game

1. Derive your class from AzFramework::ApplicationLifecycleEvents::Bus::Handler (or
AzFramework::[Ios|Android|Windows]LifecycleEvents::Bus::Handler for platform
specific events).

2. Override the functions corresponding to the events that you want to override:

void OnApplicationConstrained(Event /lastEvent/) override;
 void OnApplicationUnconstrained(Event /lastEvent/) override;

 void OnApplicationSuspended(Event /lastEvent/) override;
 void OnApplicationResumed(Event /lastEvent/) override

3. Connect to the event bus when you want to start listening for events. In addition, be sure to
disconnect when you no longer want to receive them. Use the following syntax:

ApplicationLifecycleEvents::Bus::Handler::BusConnect();
 …
 ApplicationLifecycleEvents::Bus::Handler::BusDisconnect();

Rain Gem
The Rain Gem creates realistic rain effects in your levels, including rain drops, puddles, mist, wet
surfaces, and splashes. To enable the Rain Gem in your project, see Gems (p. 778).

This gem is a game object extension. On initialization, it preloads all textures listed in the
raintextures.xml file.

Version 1.6
823

https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/TheAppLifeCycle/TheAppLifeCycle.html
http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html#//apple_ref/occ/intfm/UIApplicationDelegate/applicationWillTerminate:
http://developer.android.com/reference/android/app/Activity.html#onDestroy()
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html#//apple_ref/occ/intfm/UIApplicationDelegate/applicationDidReceiveMemoryWarning:
http://developer.android.com/reference/android/content/ComponentCallbacks.html#onLowMemory()

Lumberyard User Guide
Rain Gem

Note
Place only a single Rain entity in your scene.

Placing Rain

You can place rain and customize it for your level by modifying properties for amount of puddles,
strength and frequence of puddle ripples, quantity of rain, size and speed of the rain drops, and more.

To add rain to your level

1. In the Rollup Bar, click Entity.

2. Under Browser, expand Environment.

3. Drag the Rain entity into your scene.

Version 1.6
824

Lumberyard User Guide
Rain Gem

Configuring Rain

You can configure the rain's properties under Entity Params (p. 432) and Entity Properties.

Version 1.6
825

Lumberyard User Guide
Rain Gem

Rain Entity Properties

Properties Description

Amount Sets overall amount of the rain entity's various effects

DiffuseDarkening Sets the degree to which the rain darkens the surface diffuse

DisableOcclusion Turns off checking whether an object is under cover and should be occluded from
rain

Enabled Toggles the rain effect

IgnoreVisareas Continue to render rain when player is inside a visarea

PuddlesAmount Sets the size and number of puddles that the rain creates

PuddlesMaskAmountSets the strength of the puddle mask to balance different puddle results

PuddlesRippleAmountSets the height and frequency of ripples in rain puddles

Radius Sets the area on which rain falls

RainDropsAmount Sets the number of rain drops

Version 1.6
826

Lumberyard User Guide
Snow Gem

Properties Description

RainDropsLighting Sets the brightness of the rain drops

RainDropsSpeed Sets the rate at which rain falls

SplashesAmount Sets the degree of splashing on a surface

Using Console Variables for Rain

You can use the following console variables for the rain entity.

Rain Entity Console Variables

Variable Description

r_Rain Enables rain rendering

r_RainAmount Sets rain amount

r_RainDistMultiplier Multiplier for the rain layer's distance from the camera

r_RainDropsEffect Enables rain drops effect

r_RainIgnoreNearestDisables the layer showing the reflection of objects in rainy or wet areas nearest
objects

r_RainMaxViewDist Sets the maximum distance at which rain is visible

r_RainMaxViewDist_DeferredSets maximum distance (in meters) at which the deferred rain reflection layer is
visible

r_RainOccluderSizeThresholdBlocks rain for objects bigger than this value

Using the Rain Sample

The Rain Sample uses the Rain, Clouds, and LightningArc gems to demonstrate how to use rain as
an environment special effects (FX) in a level. The Lightning entity (from the LightningArc gem) shows
how the lightning FX can enhance a rain storm with flashes of light and random strikes of lightning on
the ground. The clouds are enabled to show how they can fill a scene.

Snow Gem
The Snow Gem creates realistic snow effects in your levels, including snowflake and surface effects,
such as snow buildup. To enable the Snow Gem in your project, see Gems (p. 778).

Note
Place only a single Snow entity in your scene.

Version 1.6
827

Lumberyard User Guide
Snow Gem

Placing Snow

You can place your snow and customize it to your level by modifying properties for brightness, gravity,
size and quantity of snow flakes, how much snow and frost builds on a surface, and more.

To add snow to your level

1. In the Rollup Bar, click Entity.

2. Under Browser, expand Environment.

3. Drag the Snow entity into your scene.

Version 1.6
828

Lumberyard User Guide
Snow Gem

Configuring Snow

You can configure the snow's properties under Entity Params (p. 432) and Entity Properties.

Version 1.6
829

Lumberyard User Guide
Snow Gem

Snow Entity Properties

Properties Description

Enabled Enables snow effect

Radius Sets the area on which snow falls

SnowFall

Brightness Sets the brightness of the snow effect

GravityScale Sets the gravity strength, which determines the rate at which snow falls

SnowFlakeCount Sets the quantity of snowflakes

SnowFlakeSize Sets size of individual snowflakes

TurbulenceFreq Sets the frequency of the turbulence affecting the snow

TurbulenceStrength Sets the strength of the turbulence affecting the snow

WindScale Determines the impact of wind on the falling snow

Surface

Version 1.6
830

Lumberyard User Guide
Substance Gem

Properties Description

FrostAmount Sets the amount of frost on a surface

SnowAmount Sets the amount of snow on a surface

SurfaceFreezing Sets the degree to which surfaces appear frozen

Using Console Variables for Snow

You can use the following console variables (p. 56) for the snow entity.

Snow Entity Console Variables

Variable Description

r_Snow Enables snow rendering

r_SnowDisplacement Enables displacement for snow accumulation

r_SnowFlakeClustersNumber of snow flake clusters

r_SnowHalfRes When enabled, renders snow at half resolution to conserve fill rate

Using the Snow Sample

The Snow Sample uses the Snow and Clouds gems to demonstrate how to use the Snow entity
as an environment special effects in a level. The Snow entity shows how snow falls and provides
properties that you can set to randomly change the snow fall over time, creating a more dynamic
weather experience.

Substance Gem
The Substance Gem is used in conjunction with the Substance Editor to manage substances.

Tornadoes Gem
The Tornadoes Gem creates realistic tornado effects in your levels.

You can place your tornado and customize it to your level by modifying such properties as its height,
funnel effect, radius, spin impuse, and so on. To enable the Tornadoes Gem in your project, see
Gems (p. 778).

Version 1.6
831

Lumberyard User Guide
Tornadoes Gem

To add a tornado to your level

1. In the Rollup Bar, click Entity.

2. Under Browser, expand Environment.

3. Drag the Tornado entity into your scene.

Version 1.6
832

Lumberyard User Guide
Tornadoes Gem

Configuring Tornadoes

You can configure the properties for the tornado entity to set properties for attraction impulse, spin
speed affecting close objects, wander speed, and more. You can also set what type of material is
inside the tornado.

To configure the tornado parameters and properties

1. Select the tornado entity you want to configure..

2. Under Entity Params (p. 432) and Entity Properties, select or clear check boxes for the
preferred effects.

Version 1.6
833

Lumberyard User Guide
Tornadoes Gem

Tornado Entity Properties

Properties Description

AttractionImpulseSpecifies how strongly the tornado attracts objects.

CloudHeight Sets the height of the clouds above the tornado

FunnelEffect Sets the specified particle effect defined in one of the tornado.xml files as explained
in Customizing a Tornado Preset (p. 834).

Radius Sets the area that the tornando influences

SpinImpulse Sets the spin speed that affects objects close to the tornado

UpImpulse Sets the speed of upward pull that affects objects close to the tornado

WanderSpeed Sets the speed at which the tornado moves

Customizing a Tornado Preset

You can customize your tornado entity using the presets in the tornado.xml file.

To use or customize a tornado preset

1. In a text editor, open \dev\Gems\Tornadoes\Assets\libs\Particles\tornado.xml in the
Lumberyard root directory (\lumberyard\dev).

2. Choose one of the existing presets from the tornado.xml file (follows Arc name in the example)
and, in Lumberyard Editor, under Entity Properties, type your chosen Arc name into the
ArcPreset field .

Version 1.6
834

Lumberyard User Guide
Tornadoes Gem

For example, type ExtendedArc or KickSparks, which are existing names of presets as shown
in the following lightningarceffects.xml file. This sample shows only the partial contents;
open the file on your computer to view the full contents of the file.

Do one of the following:

• Copy one of the existing presets.

• Create your own new preset in the file and copy it.

3. In the Rollup Bar's Objects tab, click Entity. Under Entity Properties, click FunnelEffect and
paste the copied text.

The following is a sample of a preset contained in the \dev\Gems\Tornadoes\Assets\libs
\MaterialEffects\FXLibs\tornado.xml file in the Lumberyard root directory (\lumberyard
\dev).

 <Particles Name="tornado.leaves">
 <Params Count="35" Continuous="true" ParticleLifeTime="4,Random=0.248"
 FocusGravityDir="true" EmitAngle="Random=1" OrientToVelocity="true"
 Texture="textures/sprites/smoke/smoke_b.tif" SoftParticle="true"
 Alpha="0.267,ParticleAge=(;t=0.055,v=1;t=0.518;t=1)"
 Color="(x=0.608,y=0.467,z=0.34)" DiffuseLighting="0.554"
 DiffuseBacklighting="0.494"
 Size="20,Random=0.812,ParticleAge=(v=1;t=0.51,v=0.25;t=1)"
 Stretch="0.2" Speed="5" GravityScale="-2" TurbulenceSize="1.699147"
 TurbulenceSpeed="335.1465" RandomAngles="y=359"/>
 <Childs>
 <Particles Name="base_dirt1">
 <Params Count="44" Continuous="true" ParticleLifeTime="0.35"
 FocusGravityDir="true" EmitAngle="70" OrientToVelocity="true"
 Texture="textures/sprites/dirt/dirt_c.tif" SoftParticle="true"
 Alpha="0.3,ParticleAge=(;t=0.5,v=1;t=1)" Color="(x=0.733,y=0.725,z=0.616)"
 DiffuseBacklighting="1" Size="120,Random=0.2307692" Speed="180"
 Turbulence3DSpeed="50" TurbulenceSize="10" TurbulenceSpeed="-35.8"
 Bounciness="-1" SortOffset="-0.02" VisibleUnderwater="If_False"
 ConfigMin="Medium"/>
 </Particles>
 <Particles Name="base_smoke1">
 <Params Count="25" Continuous="true" ParticleLifeTime="0.9,Random=0.168"
 RandomOffset="x=15,y=15" FocusGravityDir="true" EmitAngle="90"
 OrientToVelocity="true" Texture="textures/sprites/smoke/smoke_tiled_c.tif"
 TextureTiling="TilesX=2,TilesY=2,VariantCount=4" SoftParticle="true"
 Alpha="ParticleAge=(;t=0.49,v=1;t=1)" Color="(x=0.73,y=0.62,z=0.52)"
 DiffuseBacklighting="1" Size="40,Random=0.119,ParticleAge=(v=0.34;t=1,v=1)"
 Speed="60,Random=0.238" RandomAngles="y=359" RandomRotationRate="y=180"
 Bounciness="-1" SortOffset="-0.01" ConfigMin="Medium"/>
 </Particles>
 <Particles Name="debris">
 <Params Count="50" Continuous="true" ParticleLifeTime="30,Random=0.3"
 RandomOffset="x=20,y=20" FocusGravityDir="true" EmitAngle="Random=1"
 Facing="Free" Texture="textures/sprites/wood/wood_chip_tiled.tif"
 TextureTiling="TilesX=2,TilesY=2,VariantCount=4" DiffuseBacklighting="1"
 Size="5,Random=0.317,ParticleAge=(v=0.114;t=1,v=1,flags=4)"
 Speed="10,Random=0.3,EmitterStrength=(v=0.5;t=1,v=1,flags=4)"
 GravityScale="ParticleAge=(;t=1,v=1)"
 TurbulenceSize="60,Random=0.2,ParticleAge=(v=0.09;t=0.663,v=0.23;t=1,v=1,flags=4)"

Version 1.6
835

Lumberyard User Guide
UiBasics Gem

 TurbulenceSpeed="-100,Random=0.5" RandomAngles="z=180"
 RandomRotationRate="x=600,y=600,z=600" FillRateCost="0.2"/>
 </Particles>
 <Particles Name="leaves1">
 <Params Count="50" Continuous="true" ParticleLifeTime="30,Random=0.3"
 FocusGravityDir="true" EmitAngle="Random=1" Facing="Free"
 Texture="textures/sprites/leaves/leaf_tiled_a.tif"
 TextureTiling="TilesX=2,TilesY=2,VariantCount=4" DiffuseBacklighting="1"
 Size="2,Random=0.317,ParticleAge=(v=0.114;t=1,v=1,flags=4)"
 Speed="10,Random=0.3,EmitterStrength=(v=0.5;t=1,v=1,flags=4)"
 GravityScale="ParticleAge=(;t=1,v=1)"
 TurbulenceSize="60,Random=0.2,ParticleAge=(v=0.09;t=0.663,v=0.23;t=1,v=1,flags=4)"
 TurbulenceSpeed="-100,Random=0.5" RandomAngles="z=180"
 RandomRotationRate="x=600,y=600,z=600" FillRateCost="0.2"/>
 </Particles>
 <Particles Name="base_smoke2">
 <Params Count="40" Continuous="true" ParticleLifeTime="6"
 EmitAngle="3,Random=1" OrientToVelocity="true"
 Texture="textures/sprites/smoke/smoke_tiled_d.tif"
 TextureTiling="TilesX=2,TilesY=2,VariantCount=4" SoftParticle="true"
 Alpha="0.5,Random=0.248,ParticleAge=(;t=0.055,v=1;t=0.996)"
 Color="(x=0.353,y=0.318,z=0.28),ParticleAge=(v=(x=0.42,y=0.34,z=0.17);t=0.925,v=(x=0.867,y=0.925,z=1))"
 DiffuseBacklighting="0.3"
 Size="130,Random=0.188,ParticleAge=(v=0.57,flags=32;t=0.255,v=0.5;t=0.996,v=1,flags=4)"
 Stretch="0.2,ParticleAge=(t=0.514,v=0.5;t=1,v=1)" Speed="3"
 GravityScale="-1.6" TurbulenceSize="1.7" TurbulenceSpeed="-120"
 InitAngles="y=90" RandomAngles="y=180" RotationRate="y=100"
 RandomRotationRate="y=20" SortOffset="-0.31" FillRateCost="0.7"/>
 </Particles>
 </Childs>
 </Particles>

UiBasics Gem
The UiBasics Gem is a collection of assets to be used as defaults with the Lumberyard UI Editor,
including basic UI prefabs (image, text, button, and text input) and the textures that those prefabs
require. For more information, see UI System (p. 1137).

UiDemo Gem
The UiDemo Gem is a collection of assets that you can use to complete the UI Creation tutorial. For
more information see, Amazon Lumberyard Tutorials.

User Login Default Gem
The UserLoginDefault Gem provides a default user login implementation for all platforms, which is
useful for testing and debugging.

Woodland Asset Collection Gem
The Woodland Asset Collection Gem is a collection of animations, materials, objects, and effects to
create realistic and detailed forest levels. You can download the Woodland Assets separately from the
Amazon Lumberyard Downloads page and install it as a gem using the Project Configurator. .

Version 1.6
836

http://gamedev.amazon.com/forums/tutorials
http://aws.amazon.com/lumberyard/downloads

Lumberyard User Guide
Woodland Asset Collection Gem

To access the Woodland Asset Collection Gem assets

1. On the Objects tab in the Rollup Bar, choose Brush.

2. Expand the appropriate folder as listed and drag the assets into your level in the viewport.

3. For certain woodland materials, use the following:

• For clouds use the Common.Cloud Shader (p. 1003) and DistanceClouds Shader (p. 1004).

• For skies use the Sky Shader (p. 1023) and SkyHDR Shader (p. 1023) shaders

• For terrain use the Terrain.Layer Shader (p. 1025).

• For water use the Water Shader (p. 1029), Waterfall Shader (p. 1030), and WaterVolume
Shader (p. 1032).

Version 1.6
837

Lumberyard User Guide
Creating a New Level

Levels and Environment

A level, also known as world or map, represents the space or area available to the player during the
course of completing a discrete game objective. Most games consist of multiple levels through which a
player can advance to or move through, although usually only a single level is loaded at a time. Each
level can be grouped into multiple layers, which you use to logically group types of objects.

The environment includes lighting, terrain, bodies of water, vegetation, sky, and weather effects.

Topics

• Creating a New Level (p. 838)

• Creating Terrain (p. 839)

• Adding Sky Effects (p. 860)

• Adding Weather Effects (p. 868)

• Working with Layers (p. 872)

• Adding Vegetation (p. 875)

Creating a New Level
The first step in creating a game world is to create a level.

To create a new level

1. In Lumberyard Editor, click File, New.

2. In the New Level window, type a file name and select a directory location for the file.

3. Select the desired Heightmap Resolution and Meters per Texel values. Click OK.

4. In the Generate Terrain Texture window, for Texture Dimensions, select texture dimensions to
match your terrain heightmap dimensions.

5. For Terrain Color Multiplier, specify a value. Here are some guidelines:

• If colors are distorted or have artifacts, increase the value of the Terrain Color Multiplier to
compensate for the compression.

• If only darker colors are used in the level, use this setting to make colors use more of the
dynamic range.

• For colors in the 0–63 range, enter a value of 4 for Terrain Color Multiplier to make them fill
the entire 0–255 range. When rendering, the decompressed color values are divided by the
multiplier in the shader to restore original brightness.

Version 1.6
838

Lumberyard User Guide
Creating Terrain

Note
If the console variable e_TerrainAo is nonzero, it may darken the terrain and objects
depending on nearby terrain and vegetation. Additionally, terrain normals (and hence
lighting) will be more detailed at a distance.

6. For Texture Generation Option, selecting the High Quality setting takes two to three times
longer but results in fewer compression artifacts and does not affect memory or CPU usage in
game mode.

Creating Terrain
You can add realistic elements such as mountains, valleys, lakes, rivers, and roads to your terrain for
your environment levels.

One of the primary tools used to first create a terrain is the Terrain Editor, as the following shows:

Topics

• Using the Terrain Heightmap (p. 840)

• Using Terrain Texture Layers (p. 843)

• Creating Landforms and Topography (p. 848)

• Creating Bodies of water (p. 851)

• Copying and Moving Terrain Areas (p. 857)

• Importing and Exporting Terrain Blocks (p. 858)

• Importing Splat Maps (p. 858)

Version 1.6
839

Lumberyard User Guide
Using the Terrain Heightmap

Using the Terrain Heightmap
The heightmap is the base of the terrain in your level. You have three options for obtaining a terrain
heightmap:

• Create a new heightmap using the Terrain Editor

• Create a new heightmap using a third-party terrain-building tool

• Importing an existing heightmap

Topics

• Creating a Terrain Heightmap (p. 840)

• Setting Heightmap Properties (p. 841)

• Importing a Terrain Heightmap (p. 842)

• Exporting a Terrain Heightmap (p. 842)

• Resizing a Terrain Heightmap (p. 843)

• Rotating a Terrain Heightmap (p. 843)

Creating a Terrain Heightmap

The first step in creating the heightmap using Lumberyard Editor is to specify the resolution and grid
spacing, both of which define the terrain size. Terrain size is determined by multiplying heightmap
resolution by meters per texel. This value should not exceed 4096 x 4096 kilometers.

Meters per texel is the distance in meters between two vertices on the grid. So a value of two means
there is a grid point every two meters. You can use larger values to create a larger terrain, but it is less
detailed for the same heightmap resolution.

The following images show a terrain heightmap and the corresponding generated terrain.

Version 1.6
840

Lumberyard User Guide
Using the Terrain Heightmap

To create a new heightmap using Terrain Editor

1. In Lumberyard Editor, click File, New.

2. In New Level, enter a file name and directory location for the heightmap file.

3. Select the desired Heightmap Resolution and Meters per Texel values.

4. Click Terrain, Edit Terrain.

5. In Terrain Editor, click Tools, Generate Terrain.

6. In Generation, adjust the following parameter values as needed.

Feature Size
Determines the amount of land created.

Bumpiness/Noise (Fade)
Determines the degree of bumpiness or deformation of the surface.

Slope Detail (Passes)
Determines the number of times that effect is applied.

Seed (Random Base)
Determines the degree of random variation for the heightmap.

Slope Smoothing (Blur Passes)
Sets the number of times that smoothing is applied to the noise filter.

Sharpness (Exp. Base)
Determines the sharpness of the surface.

Sharpness (Freq. Step)
Determines the number of times that the sharpness filter is applied to the surface.

Setting Heightmap Properties

You can use the Terrain Editor to set various heightmap properties and parameters that affect the
shape of the terrain profile.

To set heightmap properties

1. In Lumberyard Editor, click Terrain, Edit Terrain.

2. In Terrain Editor, click Modify, and then click and adjust the various following properties and
parameters:

Make Isle
Sinks the heightmap so that it is surrounded by ocean.

Version 1.6
841

Lumberyard User Guide
Using the Terrain Heightmap

Remove Ocean
Sets the ocean level to –100000 meters.

Set Ocean Height
Sets the ocean level in meters.

Set Terrain Max Height
Sets the maximum height for the tallest mountain. (Default is 1024 meters).

Set Unit Size
Sets the meters per texel size of the heightmap.

Flatten
Flattens terrain to either a higher or lower point.

Smooth
Removes all hard edges from the heightmap.

Smooth Slope
Removes hard edges from steep areas of the heightmap.

Smooth Beaches/Coast
Removes hard edges from flat areas of the heightmap.

Normalize
Ensures the entire greyscale spectrum is used between the Max Height value and zero.

Reduce Range (Light)
Makes heightmap mountains smaller.

Reduce Range (Heavy)
Makes heightmap mountains small.

Erase Terrain
Deletes all heightmap data.

Resize Terrain
Resizes the terrain heightmap.

Invert Terrain
Inverts all grayscale data, changing black to white and vice versa.

Importing a Terrain Heightmap
The following file formats are supported for importing a heightmap file:

• .tif

• .png

• .jpg

• .tga

• .bmp

• .pgm

• .raw

• .r16

To import a heightmap

1. In Lumberyard Editor, click Terrain, Edit Terrain.

2. In Terrain Editor, click File, Import Heightmap.

Exporting a Terrain Heightmap
You can export a heightmap file created using the Terrain Editor to the following file formats:

Version 1.6
842

Lumberyard User Guide
Using Terrain Texture Layers

• .tif

• .png

• .jpg

• .tga

• .bmp

• .pgm

• .raw

• .r16

To export a heightmap

1. In Lumberyard Editor, click Terrain, Edit Terrain.

2. In Terrain Editor, click File, Export Heightmap and enter a file name and directory location.

Resizing a Terrain Heightmap

Resizing the terrain heightmap involves changing the resolution of your heightmap. Terrain size is
determined by multiplying heightmap by meters per texel. When resizing, this value should not exceed
4096x4096 kilometers.

Meters per texel is the distance in meters between two vertices on the grid. So a value of two means
there is a grid point every two meters. You can use larger values to create a larger terrain, but it is less
detailed for the same heightmap resolution.

To resize a heightmap

1. In Lumberyard Editor, click Terrain, Resize Terrain.

2. For Heightmap Resolution, select the desired value.

3. For Meters Per Texel, select the desired value.

Rotating a Terrain Heightmap

Rotating a terrain heightmap involves just a few simple steps.

To rotate the heightmap

1. In Rollup Bar, on the Terrain tab, click Move Area.

2. Click Select Source.

3. At the bottom of Lumberyard Editor, type the X and Y coordinates for the heightmap center, then
click Lock Selection.

4. Click Select Target and repeat Step 3.

5. In Target Rotation, select a value in degrees.

Using Terrain Texture Layers
You can create terrain texture layers and paint them to enhance your environment level.

The primary tool for creating and managing terrain texture layers in your level is the Terrain Texture
Layers editor, as shown below:

Version 1.6
843

Lumberyard User Guide
Using Terrain Texture Layers

Topics

• Adding a Terrain Texture Layer (p. 844)

• Applying a Texture Layer Material (p. 844)

• Importing Terrain Texture Layers (p. 845)

• Exporting Terrain Texture Layers (p. 845)

• Painting Terrain Texture Layers (p. 845)

• Changing Terrain Tile Resolution (p. 846)

• Generating the Terrain Texture (p. 847)

Adding a Terrain Texture Layer

Create a new texture layer and change the terrain texture and material as desired.

To add a terrain texture layer

1. In Lumberyard Editor, click Terrain, Terrain Texture Layers.

2. In Terrain Texture Layers, under Layer Tasks, click Add Layer.

3. Double-click the NewLayer text and assign a unique name to it.

4. Click Materials/material_terrain_default to open Material Editor.

5. In the tree, click Materials\material_terrain_default and adjust material and other settings as
needed.

Applying a Texture Layer Material

All terrain texture layer materials use the Terrain.Layer Shader (p. 1025). All terrain materials should
be "high-passed" in your DCC tool in order for them to work correctly with this shader.

To apply or edit a material for a texture layer

1. In Terrain Texture Layers, double-click the layer you want to apply or edit a material for.

Version 1.6
844

Lumberyard User Guide
Using Terrain Texture Layers

2. In Material Editor, expand the tree and select your asset.

3. Change settings and shader parameters as needed.

4. In Terrain Texture Layers, click Assign Material.

5. Close Material Editor.

Importing Terrain Texture Layers

By importing a saved layer, all materials, textures, and shader settings can be quickly applied to your
level.

To import a terrain texture layer

1. In Lumberyard Editor, click Terrain, Terrain Texture Layers.

2. Click File, Import Layers.

3. Select the layer (.lay) file for import, then click Open.

Exporting Terrain Texture Layers

By exporting your terrain texture layer, you can reused it in multiple levels.

To export a terrain texture layer

1. In Lumberyard Editor, click Terrain, Terrain Texture Layers.

2. Click File, Export Layers.

3. Type a file name and select a directory path for the exported file, then click Save.

Painting Terrain Texture Layers

Lumberyard uses two components for painting terrain texture layers:

• The first is a low-resolution texture with color information. This texture is visible from a distance and
provides underlying color information for the base terrain texture. This texture should be less than
512 x 512 pixels in size.

• The second is a high-resolution material. This material is visible at close distances and can have
several texture maps like diffuse, bump, and specular. The diffuse map should be set to white (255).

The distance at which low-resolution textures are replaced with those of a higher resolution is defined
by the DetailLayersViewDistRatio parameter. To access this parameter, open Rollup Bar, click
Terrain, Environment and adjust the value as needed.

To paint a terrain texture layer

1. In Rollup Bar, on the Terrain tab, click Terrain, Layer Painter.

2. Adjust the following terrain brush settings as needed.

Radius
Specifies the size of the brush. Use the slider to adjust the size, or use the following shortcut
keys: [to increase the brush radius size or] to decrease the brush radius size.

Hardness
Specifies the strength of the brush when applying the material. Provide a lower value for a
softer translucent effect. Provide a value of 1 for a painted material that appears opaque.

Version 1.6
845

Lumberyard User Guide
Using Terrain Texture Layers

Use the slider to adjust the size, or use the following shortcut keys: Shift+[to decrease the
hardness shape of the fall-off curve between the inner and outer radius of the brush or Shift+]
to increase the hardness shape.

Paint LayerID (DetailLayer)
When enabled, the painter only paints the detail texture layer of the terrain material.

Mask by Layer Altitude and Slope
Sets the material to only paint between the layer Altitude and Slope parameters defined
below.

Mask by
Select a layer to prevent it from being painted over.

3. Adjust the following layer brush settings as needed.

Brightness
Modifies the brightness of the material base color. Click the Color box to open up the color
selector and alter the base color of your material. Click Save Layer when done.

Altitude
Sets a minimum and maximum altitude mask for painting—the brush applies only within these
boundaries.

Slope (degrees)
Sets a minimum and maximum slope mask for painting—the brush applies only within these
boundaries.

Changing Terrain Tile Resolution

A terrain layer can be divided into multiple tiles, each of which can be painted with a resolution
between 64x64 and 2048x2048 kilometers. The higher the resolution, the softer the transition between
terrain texture layers.

If you know a player spends a lot of time in specific areas of the level and thus have more opportunity
to view the terrain, you can save resources by increasing the resolution in just those areas. Follow this
two-step process:

You first subdivide the texture layer, then change the individual tile resolution, as follows:

To subdivide the terrain texture layer

1. In Lumberyard Editor, click Terrain, Terrain Texture Layers.

2. Click File, Refine Terrain Texture Tiles. The layer is now split into 2x2 (4) tiles.

3. Repeat step 2. The layer is now divided into 4x4 (16) tiles.

4. Repeat only as needed as there is no way to go back and reduce the number of tiles.

To change terrain tile resolution

1. In Lumberyard Editor, click Terrain, Export/Import Megaterrain Texture.

2. In Terrain Texture, click a tile whose resolution you want to change. Then click Change tile
resolution.

Version 1.6
846

Lumberyard User Guide
Using Terrain Texture Layers

3. Select a new resolution, click OK. Then click Close.

Generating the Terrain Texture

When you are done creating and painting all terrain texture layers and assigning materials, the terrain
texture is ready to be generated. When the generated terrain texture is compressed, which uses the
DXT algorithm, colors can appear distorted. To improve color rendering, use the full dynamic range
(RGB values 0–255).

To generate the terrain texture

1. In Lumberyard Editor, click Terrain, Generate Terrain Texture.

2. In Generate Terrain Texture, for Texture Dimensions, select texture dimensions to match your
terrain heightmap dimensions.

3. Select a value for Terrain Color Multiplier, as follows:

• If colors are distorted or have artifacts, increase the value of the Terrain Color Multiplier to
compensate for the compression.

• If only darker colors are used in the level, use this setting to allow colors to use more of the
dynamic range.

• For colors in the 0–63 range, enter a value of 4 for Terrain Color Multiplier to make them fill
the entire 0–255 range. When rendering, the decompressed color values are divided by the
multiplier in the shader to restore original brightness.

Note
If the console variable e_TerrainAo is nonzero, it may darken the terrain and objects
depending on nearby terrain and vegetation. Additionally, terrain normals (and hence
lighting) are more detailed at a distance.

4. Under Texture Generation Option, select the High Qualitycheck box; This setting takes takes
longer but results in fewer compression artifacts and does not affect memory or CPU usage in
game mode.

Version 1.6
847

Lumberyard User Guide
Creating Landforms and Topography

Creating Landforms and Topography
You can add realistic mountains, hills, valleys, and other landforms to your terrain in your environment
level. The primary method for creating interesting terrain features and landforms involves the following
brushes:

• Rise/Lower brush – Increases and decreases the local terrain height to quickly create hills, valleys,
and river beds, for example.

• Flatten brush – Flattens the terrain at a specified height and diameter. Use the Pick Height feature
to select a height from which to begin flattening.

• Smooth brush – Smooths over sharp gradients in the terrain.

• Holes brush – Used to make holes in the terrain for creating areas beneath or inside the terrain
such as caves.

You can also use the Terrain Editor to modify the terrain heightmap, although this method is not as
accurate and does not give you the control you get from working directly in the viewport in Lumberyard
Editor. For more information, see Setting Heightmap Properties (p. 841).

Topics

• Using the Rise/Lower Brush (p. 848)

• Using the Smooth Brush (p. 849)

• Using the Flatten Brush (p. 849)

• Using the Holes Brush (p. 849)

• Terrain Brush Parameters (p. 849)

• Creating Roads (p. 850)

Using the Rise/Lower Brush

The Rise/Lower brush is perhaps the most versatile of all the terrain brushes and is often the first
used. With it you can create many macroterrain landforms and features such as mountains, hills, cliffs,
valleys, and riverbeds, for example. After using this brush, see Using the Flatten Brush (p. 849) and
Using the Smooth Brush (p. 849) to learn how to control the shape and overall visual look.

To use the Rise/Lower brush

1. In Rollup Bar, on the Terrain tab, click Modify, Rise/Lower.

2. Adjust the Height slider to the desired height:

• Use positive values for landforms that rise above the base level.

• Use negative values for valleys and other landforms that sink below the base level.

3. Adjust the Outside Radius and Inner Radius sliders (and the difference between the values) to
control the steepness of the terrain.

4. In the level, drag the mouse around to achieve the desired effect.

5. Under Modify Terrain, adjust Brush Settings and Noise Settings parameters as needed. See
Terrain Brush Parameters (p. 849) for more information.

6. When done, click Terrain, Modify or press Esc.

Version 1.6
848

Lumberyard User Guide
Creating Landforms and Topography

Using the Smooth Brush

The Smooth brush softens sharp gradients in the terrain, such as the sides of mountains, cliffs and lake
beds for example. This brush averages out the height of the terrain based on nearby terrain areas to
provide a smoother surface.

To use the smooth brush

1. In Rollup Bar, on the Terrain tab, click Modify, Smooth.

2. In the level, drag the mouse to create the smoothing effect.

3. Under Modify Terrain, adjust Brush Settings and Noise Settings parameters as needed. See
Terrain Brush Parameters (p. 849) for more information.

4. When done, click Terrain, Modify or press Esc.

Using the Flatten Brush

The Flatten brush makes any piece of terrain completely flat at a height that you define. This is useful
for creating a variety of features such as plateaus, mesas, and buttes as well as creating flat spots
wherever needed.

To use the Flatten brush

1. In Rollup Bar, on the Terrain tab, click Modify, Flatten.

2. In the level, drag the mouse to create a flat spot. The terrain is flattened at the selected Height
and Diameter brush settings.

3. Under Modify Terrain, adjust Brush Settings and Noise Settings parameters as needed. See
Terrain Brush Parameters (p. 849) for more information.

Using the Holes Brush

The Holes brush makes a geometrical hole in both the terrain layer as well as the visual mesh. It
is useful for creating craters, sinkholes, caves, and other areas beneath or inside the terrain. The
resulting holes can be filled with various objects such as rocks or vegetation.

To use the Holes brush

1. In Rollup Bar, on the Terrain tab, click Holes.

2. Adjust the Brush Radius slider to adjust the size of the hole.

3. Click Make Hole to create a hole.

4. In the level, click to place the hole. By default you can see the ocean showing through.

5. To remove a hole, click Remove Hole. You are limited to removing one terrain unit adjacent to the
existing terrain.

Terrain Brush Parameters

A number of settings apply to multiple terrain brushes. Use the following parameters to adjust the rise/
lower, smooth, and flatten brushes.

Outside Radius
The outer edge of the area of the terrain brush effect.

Version 1.6
849

Lumberyard User Guide
Creating Landforms and Topography

Sync Radius for All Types
Select to set the same outer radius value across the flatten, smooth, and rise/lower brushes.

Inside Radius
The inner edge of the area of the terrain brush effect. Within this radius the effect of the brush is at
its maximum.

Hardness
Controls the shape of the fall-off curve between the inner and outer radius of the brush.

Height
For the rise/lower and flatten brushes, the incremental amount the terrain is be raised/lowered or
flattened with each click in the terrain level.

Enable Noise
Select to add random terrain variances to the brush.

Scale
Controls the strength of the noise effect.

Frequency
How often the noise effect is applied.

Reposition Objects
Select to realign objects with the modified terrain. Objects remain on top.

Reposition Vegetation
Select to realign vegetation with the modified terrain. Vegetation remains on top.

Creating Roads

You can add realistic roads to your terrain in your environment level.

For information on the road entity, see Road Entity (p. 481).

Topics

• Creating the Road Entity (p. 850)

• Applying a Road Material (p. 851)

• Adjusting Road Spline Geometry (p. 851)

• Splitting and Merging Roads (p. 851)

Creating the Road Entity

You can create and place roads using the Road entity as follows.

When performing this procedure, you may notice that parts of the road disappear into the terrain. The
Align Height Map step resolves this by stretching the terrain height to match the path of the road
based on its shape and on BorderWidth parameter. For information on BorderWidth and related
settings, see Road Entity (p. 481).

To create and place the Road entity

1. In Rollup Bar, on the Objects tab, click Misc, Road.

2. In your level, start at the beginning of the road and click to place a series of points that define the
road’s path.

3. When complete, double-click where you want the road to end.

4. In Rollup Bar, under Road Parameters, click Align Height Map to adjust the terrain height to
match the path of the road.

Version 1.6
850

Lumberyard User Guide
Creating Bodies of water

Applying a Road Material

After the Road entity has been placed, you can apply a material to the road.

To apply a material to a road

1. In Rollup Bar, on the Objects tab, click Misc, Road.

2. Click <No Custom Material> to open Material Editor.

3. In Material Editor, expand the tree and select your asset.

4. Modify material settings and shader parameters as needed.

5. When finished, click Assign Item to Selected Objects, and close Material Editor.

Adjusting Road Spline Geometry

You can make precise changes to the geometry of a road by adjusting the spline points and
parameters.

To adjust road spline parameters

1. In Rollup Bar, on the Objects tab, click Misc, Road.

2. Under Spline Parameters, click Edit, and do any of the following for the road in your level:

• To move a point, drag it.

• To add a new point, hold down Ctrl while you click on the spline at the desired location.

• To delete a point, double-click it.

• To change the angle at a point, select it and adjust the Angle value.

• To change the width at a point, select it, clear the Default width check box, and adjust the
Width value.

Splitting and Merging Roads

You can split a road apart or merge two roads together.

To split or merge roads

1. In Rollup Bar, on the Objects tab, click Misc, Road.

2. Under Spline Parameters, click Edit, and do the following for the road in your level:

• To split a road apart, select the desired point and click Split.

• To merge two roads together, select the end point of one road and the start point of another
road. Then click Merge.

Creating Bodies of water
You can create realistic-looking ocean, lakes, rivers, waterfalls, and pools with waves and ripples.
Players and objects interacting with water surfaces also generate waves and ripples. Water gets
its appearance from reflections on the surface and the interaction of light with particles suspended
underneath the surface. You need both to achieve an authentic look.

Lumberyard offers three different shaders for rendering bodies of water:

• Water Shader (p. 1029) – For oceans only

• WaterVolume Shader (p. 1032) – For lakes, rivers, ponds and all other water volumes

Version 1.6
851

Lumberyard User Guide
Creating Bodies of water

• Waterfall Shader (p. 1030) – For waterfalls only

Lumberyard also supports caustics. Caustics are optical properties caused by light refracting through
a volume of water, creating light and dark patterns at the bottom. Realistic caustic effects also include
water ripples generated from players and other objects interacting with the water surface.

Note
To make caustics visible, you must place water volumes at a height of 1 or greater in your
level.

Topics

• Preparing the Terrain (p. 852)

• Setting Ocean Parameters (p. 852)

• Creating Rivers (p. 853)

• Adding Waterfalls (p. 855)

• Adding Water Puddles (p. 855)

• Adding Fog Above Water (p. 856)

• Advanced Water Volume Parameters (p. 856)

Preparing the Terrain

For all water volumes such as lakes, ponds, and reservoirs, the terrain must first be lowered and
sculpted to contain the body of water. To create the bottom and walls of your body of water, you need
to consider the depth, shape, and edges of your landform geography.

For rivers, see Preparing the River Terrain (p. 853).

To prepare the terrain for bodies of water

1. In Rollup Bar, on the Terrain tab, click Modify, Rise/Lower.

2. Adjust the Outside Radius value as needed for the widest point of the water volume.

3. Adjust the Height value to a negative value for the depth of the water volume.

4. Adjust the other terrain brush settings as needed to fine-tune the look of the walls. See Terrain
Brush Parameters (p. 849) for more information.

5. In your level, drag to define the shape. Release the mouse button and repeat as needed.

Setting Ocean Parameters

When you create a new level, Lumberyard creates an ocean by default, complete with waves and
reflections. The ocean uses the Water Shader (p. 1029). You can change the ocean's various
properties and effects.

To set ocean parameters

1. in Rollup Bar, on the Terrain tab, click Environment.

2. Under Ocean, adjust the following parameter values:

• Material – Click the ... button to access Material Editor and select your asset.

• Caustic depth – Set the depth to which caustic effects are visible.

• Caustic intensity – Scale the intensity of the caustics for the water surface normals.

• Caustic tiling – Scale the caustic tiling applied to the water surface normals. You can scale
caustics independently of the surface material in cases of strong tiled normals or vice-versa.

Version 1.6
852

Lumberyard User Guide
Creating Bodies of water

Creating Rivers

You can add realistic rivers, complete with waterfalls, to your terrain in your environment level.

The following are best practices and guidelines to keep in mind when creating rivers.

• Rivers are 2D objects, which means rivers cannot be made to flow down steep inclines. However,
to make a river flow down gentle inclines, you can rotate the river along the Z axis slightly (Z=0.5 to
1.0).

• To create rivers that appear to flow down steep inclines, create multiple rivers and connect them with
waterfalls.

• The more points you place for the river geometry, the more control you have for direction and
curvature.

• The wider the river, the further apart the points should be to avoid clipping at sharp corners.

• For more realism, paint the bottom of the river a different texture and add vegetation.

• For more realism, add particle effects.

For information on the river entity see River Entity (p. 480).

Topics

• Preparing the River Terrain (p. 853)

• Creating the River Entity (p. 853)

• Applying a River Material (p. 854)

• Adjusting River Spline Geometry (p. 854)

• Splitting and Merging Rivers (p. 855)

Preparing the River Terrain

Rivers need a riverbed and walls, which you implement as a deformation in the terrain. Use the rise/
lower terrain brush for this effect.

To create a realistic-looking riverbed and walls, make sure that the walls of the river are above the
starting (first) point of the river for the entire length of the river.

To create the riverbed and walls

1. In Rollup Bar, on the Terrain tab, click Modify, Rise/Lower.

2. Adjust the Outside Radius slider as needed for the width of the riverbed.

3. Adjust the Height slider to a negative value for the depth of the riverbed.

4. Adjust the other terrain brush settings as needed to fine-tune the look of the riverbed. See Terrain
Brush Parameters (p. 849) for more information.

5. In your level, position the mouse at the start of river, and then drag to define the direction and
course of the river. Release the mouse at the end of the river.

Creating the River Entity

After you have prepared the riverbed, you next create and place the River entity.

When performing this procedure, you may notice that parts of the river disappear into the terrain. The
Align Height Map step resolves this by stretching the terrain height to match the path of the river
based on its shape and on BorderWidth parameter. For information on BorderWidth and related
settings, see River Entity (p. 480).

Version 1.6
853

Lumberyard User Guide
Creating Bodies of water

To create and place the River entity

1. In Rollup Bar, on the Objects tab, click Misc, River.

2. In your level, starting at the beginning of the river bed, click to place a series of points that define
the river’s path.

3. When complete, double-click at the end of the river bed.

4. In Rollup Bar, under River Parameters, click Align Height Map to adjust the terrain height to
match the path of the river.

Applying a River Material

After you place the river entity, you can apply a material to the river. Rivers use the WaterVolume
Shader (p. 1032).

To apply a material to a river

1. In Rollup Bar, on the Objects tab, click Misc, River.

2. Click <No Custom Material> to open Material Editor.

3. In Material Editor, expand the tree and select your asset.

4. Modify material settings and WaterVolume Shader (p. 1032) parameters as needed.

5. When finished, click Assign Item to Selected Objects, and close Material Editor.

Adjusting River Spline Geometry

You can make precise changes to the geometry of a river. You simply adjust the spline points and
parameters.

To adjust river spline parameters

1. In Rollup Bar, on the Objects tab, click Misc, River.

2. Under Spline Parameters, click Edit, and do any of the following for the river in your level:

• To move a point, drag it.

• To add a new point, hold down Ctrl while clicking the spline at the desired location.

• To delete a point, double-click it.

Version 1.6
854

Lumberyard User Guide
Creating Bodies of water

• To change the angle at a point, select it and adjust the Angle value.

• To change the width at a point, select it, clear the Default width check box, and adjust the
Width value.

Tip
You can also change the positions of any spline point. Just select a point and use the X, Y, Z,
and XY axis-lock buttons located at the top of Lumberyard Editor.

Splitting and Merging Rivers

You can split a river apart and merge two rivers together.

To split or merge rivers

1. In Rollup Bar, on the Objects tab, click Misc, River.

2. Under Spline Parameters, click Edit, and do either of the following in your level:

• To split a river apart, select the desired point and click Split.

• To merge two rivers together, select the end point of one river and the start point of another
river. Then click Merge.

Adding Waterfalls

A waterfall is a natural feature to add to cliffs or when a river changes elevation or course. Waterfalls
are placed as 2D decals in the terrain.

To add a waterfall

1. In Lumberyard Editor, click View, Open View Pane, Material Editor.

2. In Material Editor, select a suitable texture asset.

3. Under Material Settings, select the Waterfall shader.

4. Under Texture Maps, place the texture in the alpha channel of the Diffuse texture map.

5. Expand Diffuse\Oscillator and adjust parameter values to produce a realistic animation effect for
the texture.

6. Under Shader Params, adjust Foam parameters as needed.

7. Adjust other material settings and shader parameters as needed.

8. Place the waterfall in your level, clicking to create a simple geometry that follows the terrain.

9. Apply water (rain) particle effects if desired.

Adding Water Puddles

To create realistic water puddles and water rifts, use non-tiling textures that can be placed as
decals. While water puddles could be created as a water volume, using decals is less demanding on
resources. For more information on decals, see Working with Decals (p. 1049).

For proper blending between the water puddle and the terrain, use an alpha channel with a smooth
gradient so it fades into the terrain and the transition won't be noticeable.

To add a water puddle

1. In Lumberyard Editor, click View, Open View Pane, Material Editor.

2. In Material Editor, select a suitable material asset.

Version 1.6
855

Lumberyard User Guide
Creating Bodies of water

3. Under Lighting Settings\Specular, type 85,85,85

4. In your level, click to place the puddle.

5. In Rollup Bar, on the Objects tab, click Custom, GameVolume.

6. Under GameVolume Params, click VolumeClass and select WaterVolume.

7. In your level, click boundary points around the puddle. Double-click the last point to complete the
enclosure.

Adding Fog Above Water

You can add realistic-looking fog above water surfaces. For more information about Lumberyard's fog
system, see Fog Systems (p. 1072).

To add fog above water

1. In your level, click to select the water volume entity above which you want to add fog.

2. In Rollup Bar, on the Objects tab, click Area, WaterVolume, WaterVolume Params, and modify
the following parameters as needed.

FogDensity
Specifies how dense the fog appears.

FogColor
Sets the fog color.

FogColorMultiplier
Defines how bright the fog color is.

FogColorAffectedBySun
Enables the Setting Sun Parameters (p. 862) Sun color parameter value to affect fog color.

FogShadowing
Enables the surface of water to receive shadows. You can control the shadow darkness. Valid
values are 0–1.

For this parameter to function, the console variable r_FogShadowsWater must be set to 1.
FogShadowing is only available when the Config Spec setting in Lumberyard Editor is set to
Very High.

In addition, if the VolFogShadows property is enabled in the Terrain\Environment panel in
Rollup Bar, shadow darkness is automatically set to full. However, the fog above the water
will have volumetric shadowing.

CapFogAtVolumeDepth
If false, continues to render fog below the specified river depth.

Advanced Water Volume Parameters

The following advanced parameters apply to water volumes.

To set advanced Water Volume parameters

1. In Rollup Bar, on the Objects tab, click Area.

2. Under Object Type click WaterVolume.

3. Under WaterVolume Params\Advanced, adjust the following parameter values as needed:

FixedVolume
Traces a ray down to find a 'vessel' entity and 'spill' the requested amount of water into it. For
static entities, it attempts to boolean-merge any surrounding static that intersects with the first
vessel (use the No Dynamic Water flag on brushes that do not need that).

Version 1.6
856

Lumberyard User Guide
Copying and Moving Terrain Areas

VolumeAccuracy
Water level is calculated until the resulting volume is within this (relative) difference from the
target volume (if set to 0 it runs up to a hardcoded iteration limit).

ExtrudeBorder
Extrudes the border by this distance. This is particularly useful if wave simulation is enabled
as waves can raise the surface and reveal open edges if they lie exactly on the vessel
geometry.

ConvexBorder
Takes convex hull of the border. This is useful if the border would otherwise have multiple
contours, which areas do not support.

ObjectSizeLimit
Only objects with a volume larger than this number takes part in water displacement (set in
fractions of FixedVolume).

WaveSimCell
Size of cell for wave simulation (0 means no waves). Can be enabled regardless of whether
FixedVolume is used.

WaveSpeed
Sets how "fast" the water appears.

WaveDamping
Standard damping.

WaveTimestep
This setting may need to be decreased to maintain stability if more aggressive values for
speed are used.

MinWaveVel
Sleep threshold for the simulation.

DepthCells
Sets the depth of the moving layer of water (in WaveSimCell units). Larger values make
waves more dramatic.

HeightLimit
Sets a hard limit on wave height (in WaveSimCell units).

Resistance
Sets how strongly moving objects transfer velocity to the water.

SimAreaGrowth
If changing water level is expected to make the area expand, the wave simulation grid should
take it into account from the beginning. This sets the projected growth in fractions of the
original size. If wave simulation is not used, this setting has no effect.

Copying and Moving Terrain Areas
You can copy and move areas or sections of terrain, including vegetation, water, and other objects in
your level. You can also rotate sections of terrain.

To copy or move a section of terrain

1. In Rollup Bar, on the Terrain tab, click Move Area.

2. Click Select Source and then click in the level to define the volume that is copied or moved.

3. Click Select Target and click in the level to define the target volume location.

4. Adjust the values of the following parameters as needed.

Sync Height
Sets the Z position of the source and target volumes to the same value.

Version 1.6
857

Lumberyard User Guide
Importing and Exporting Terrain Blocks

Target Rotation
Rotates the source volume counterclockwise by the selected amount when moved to the
target location.

DymX, Y, Z
Changes the dimension of the source volume.

Only Vegetation
Moves or copies only vegetation and other objects and not the terrain itself.

Only Terrain
Moves or copies just the terrain and not vegetation or other objects.

5. Click Copy or Move.

Importing and Exporting Terrain Blocks
You can import and export terrain areas or blocks. When importing or exporting, you should also import
or export the associated terrain texture layers.

To import a terrain block and texture layers

1. In Lumberyard Editor, click Terrain, Import Terrain Block and select a .trb file to import.

2. Click Terrain, Terrain Texture Layers.

3. Click File, Import Layers and select terrain texture files to import.

To export a terrain block and texture layers

1. In Lumberyard Editor, click Terrain, Export Terrain Block, and select a .trb file to export.

2. Click Terrain, Terrain Texture Layers.

3. Click File, Export Layers, and select terrain texture files to export.

Importing Splat Maps
Splat maps are 8-bit monochrome bitmap .bmp files that contain weight information for each vertex in a
terrain map. Splat maps are generated using a DCC tool such as World Machine's Splat Converter.

Version 1.6
858

Lumberyard User Guide
Importing Splat Maps

All splat map operations in Lumberyard are done using the Terrain Texture Layers editor.

To import splat maps

1. In Lumberyard Editor, choose Terrain, Terrain Texture Layers.

2. In the Terrain Texture Layers editor, under Layer Tasks, assign each splat map to a texture
layer by clicking a layer and then clicking Assign Splat Map.

3. When prompted, select a .bmp file to assign. You don't need to assign a splat map path to a layer,
but you can't assign more than one path either.

4. Under Layer Tasks, click Import Splat Map. This clears the current weight map for the terrain
and then rebuilds it using the selected splat maps.

5. In Lumberyard Editor, select Terrain, Generate Terrain Texture.

Note
Once a splat map has been imported, it does not not apply any masking functionality during
editing.

Version 1.6
859

Lumberyard User Guide
Adding Sky Effects

Adding Sky Effects
You can create realistic-looking skies by setting sun, moon, atmospheric, and time-of-day effects. You
can create two types of skies: dynamic and static.

Dynamic skies use the SkyHDR Shader (p. 1023) to render realistic effects.

The primary tools used to create different sky effects for your level are the Time of Day Editor and the
Sun Trajectory Tool, as shown below:

The Sun Trajectory Tool:

Topics

• Creating a Dynamic Daytime Sky (p. 861)

• Creating a Dynamic Night Sky (p. 863)

• Creating Time of Day Sky Effects (p. 864)

• Creating a Static Sky (SkyBox) (p. 867)

Version 1.6
860

Lumberyard User Guide
Creating a Dynamic Daytime Sky

Creating a Dynamic Daytime Sky
To add a dynamic daytime sky, you adjust various sun parameters, atmospheric properties, sun ray
effect, and sun shadows. Dynamic skies use the SkyHDR Shader (p. 1023).

All properties and parameters in the following topics are ignored when you use a static sky (SkyBox),
which uses the Sky Shader (p. 1023).

Topics

• Setting Daytime Atmospheric Effects (p. 861)

• Setting Sun Parameters (p. 862)

• Adding Sun Rays (p. 862)

• Setting Sun Shadow Settings (p. 862)

• Adding Cascaded Sun Shadows (p. 863)

Setting Daytime Atmospheric Effects

To create dynamic daytime sky atmospheric effects, you modify sun and light-scattering setting that
affect the appearance of distant objects, which shift in color due to atmospheric interference. These
settings do not directly affect the rendering of objects or environment lighting colors and intensities.

To set daytime atmospheric effects

1. In Lumberyard Editor, choose Terrain, Time Of Day.

2. Under Tasks, Time of Day Tasks, choose Toggle Advanced Properties to view all settings.

3. Under Parameters, Sky Light, adjust the values of the following parameters:

Sun intensity
Uses an RGB sun color value to compute the atmosphere color. Used in conjunction with Sun
color to provide desired scene luminance.

Sun intensity multiplier
Sets the brightness of the sun. Brightness is multiplied by sun intensity to yield the overall
color. Used in conjunction with Sun color multiplier to provide desired scene luminance.
Higher values result in brighter skies while low values can simulate an eclipse.

Mie scattering
Mie scattering is caused by pollen, dust, smoke, water droplets, and other particles in the
lower portion of the atmosphere. It occurs when the particles causing the scattering are larger
than the wavelengths of radiation in contact with them. Mie scattering is responsible for the
white appearance of clouds.

Lower values result in a clear sky while larger values make the sky appear hazy. A good value
is 4.8.

Rayleigh scattering
Rayleigh scattering consists of scattering from atmospheric gases. This occurs when the
particles causing the scattering are smaller in size than the wavelengths of radiation in contact
with them. As the wavelength decreases, the amount of scattering increases. Because of
Rayleigh scattering, the sky appears blue.

The default value of around 2.0 produces blue sky during the day and red-yellow colors at
sunset. Larger values create a red-yellow sky while lower values create a blue sky.

Sun anisotropy factor
Controls the sun's apparent size. As this value approaches -1.0, the sun's disk becomes
sharper and smaller. Larger values produce a fuzzier and larger disk. A good value is -0.995.

Version 1.6
861

Lumberyard User Guide
Creating a Dynamic Daytime Sky

Wavelength R, G, B
Sets the wavelengths (in nm) of the RGB values of sky colors. Adjusting the values shifts the
colors of the resulting gradients and produces different kinds of atmospheres. Useful when
used with Rayleigh scattering if you choose a sun intensity of pure, bright white.

Setting Sun Parameters

You can define how the sun appears in the daytime sky.

To set sun parameters

1. In Lumberyard Editor, choose Terrain, Time Of Day.

2. Under Tasks, Time of Day Tasks, choose Toggle Advanced Properties to view all parameters.

3. Under Parameters, Sky, adjust the values of the following parameters:

• Sun color – Sets the RGB values of the sun disk color. Used in conjunction with Sun intensity
to provide desired scene luminance.

• Sun color multiplier – Sets the brightness of the sun. This value is multiplied by the sun color
to yield the overall color. Used in conjunction with Sun intensity multiplier to provide desired
scene luminance.

• Sun specular multiplier – Controls the brightness and intensity of the sun on specular
materials in your scene.

Adding Sun Rays

You can create a sun rays effect, which simulates the shafts of light that the sun produces under
certain atmospheric conditions.

To add sun rays

1. In Lumberyard Editor, choose Terrain, Time Of Day.

2. Under Time of Day Tasks, Time of Day Tasks, choose Toggle Advanced Properties to view all
parameters.

3. Under Sun Rays Effect, Sun Rays Effect, adjust the values of the following parameters:

• Sun shafts visibility – (Deprecated) - This value controls the visibility of sun shafts. Higher
values accentuate the shadow streaks that are caused by the sun light penetrating objects.

• Sun rays visibility – Sets the brightness level of the sun rays.

• Sun rays attenuation – Sets the length of the sun rays. Higher values produce shorter rays
around the sun.

• Sun rays suncolor influence – Sets the degree to which the color of the sun contributes to the
color of the sun rays.

• Sun rays custom color – Specifies a custom color the for the sun rays.

Setting Sun Shadow Settings

You can define how sun shadows appear in your level.

To set sun shadow settings

1. In Rollup Bar, under Terrain, choose Environment.

2. Under EnvState, adjust the values of the following:

Version 1.6
862

Lumberyard User Guide
Creating a Dynamic Night Sky

• Sun shadows min spec – Specifies the minimum system specification for casting sun
shadows.

• Sun shadows additional cascade min spec – Specifies the minimum system specification for
rendering an additional sun shadow cascade at a larger viewing distance.

Adding Cascaded Sun Shadows

You can create multiple cascaded shadow maps for your level, which controls how sun shadows look
at varying distances. The higher the cascade, the further it is away from the camera (cascade 0 is
closest to the camera) and the lower the resolution of the shadows.

To create cascaded sun shadows

1. In Lumberyard Editor, choose Terrain, Time Of Day.

2. Under Time of Day Tasks, Tasks, click Toggle Advanced Properties to view all parameters.

3. Under Parameters, Cascade Shadows, adjust the parameter values for each shadow cascade as
follows:

• Cascade number Bias – Distance of the shadow connection from the shadow-casting object.
Values between 0.01 and 0.05 produce the most realistic effect.

• Cascade number Slope Bias – The slope gradient for the shadows. Higher values reduce
shadows that are cast from an object with a high light angle. Values between 32 and 64 produce
the most realistic effect. Slope bias has little to no impact on performance.

• Shadow Jittering – The softness of all the cascaded sun shadows. Larger softness values
impact performance.

Creating a Dynamic Night Sky
To add a dynamic nighttime sky, you adjust various horizon, moon, and stars settings. Dynamic skies
use the SkyHDR Shader (p. 1023).

All properties and settings in the following topics are ignored when using a static sky (SkyBox).

Topics

• Setting Nighttime Atmospheric Effects (p. 863)

• Setting Moon Parameters (p. 864)

Setting Nighttime Atmospheric Effects

To add dynamic nighttime atmospheric effects, you set various horizon, moon, and star field
parameters.

To set nighttime atmospheric parameters

1. In Lumberyard Editor, choose Terrain, Time Of Day.

2. Under Tasks, Time of Day Tasks, choose Toggle Advanced Properties to view all parameters.

3. Under Parameters, Night Sky and Parameters, Night Sky Multiplier, adjust the values of the
following parameters:

Horizon color (and multiplier)
RGB value that is scaled by the multiplier and specifies the horizon color of the night sky
gradient.

Version 1.6
863

Lumberyard User Guide
Creating Time of Day Sky Effects

Zenith color (and multiplier)
RGB value that is scaled by the multiplier and specifies the zenith color of the night sky
gradient.

Zenith shift
Shifts the night sky gradient. Small values shift it towards the bottom while larger values shift it
towards the top.

Star intensity
Overall brightness of the stars. Star flickering is by design and cannot be controlled.

Moon color (and multiplier)
RGB value that is scaled by the multiplier specifies the moon's emissive color.

Moon inner corona color (and multiplier)
RGB value that is scaled by the multiplier specifies the color of the moon's inner corona.

Moon inner corona scale
Size and blurriness of the moon's inner corona. Smaller values produce a bigger, blurry
corona while larger values produce a smaller, more focused corona.

Moon outer corona color (and multiplier)
RGB value that is scaled by the multiplier specifies the color of the moon's outer corona.

Moon outer corona scale
Size and blurriness of the moon's outer corona. Smaller values produce a bigger, blurry
corona while larger values produce a smaller, more focused corona.

Setting Moon Parameters

You can define how the moon appears in the nighttime sky.

To set moon parameters

1. In Rollup Bar, on the Terrain tab, choose Environment.

2. Under Moon, adjust the values for the following parameters:

• Latitude – Sets the latitude of the moon.

• Longitude – Sets the longitude of the moon.

• Size – Adjusts the size of the moon image.

• Texture – Sets the asset for creating the texture. Choose the folder icon to access Preview and
select a suitable asset.

Creating Time of Day Sky Effects
You can use time of day effects to create dynamic skies to simulate the changing lighting effects that
are caused by the sun moving across the sky. You can also configure and store a complete day–night
cycle of changing environment parameters to add realism to your level.

The Time of Day editor and Sun Trajectory Tool are used to achieve these effects.

Note
All properties and parameters in the following topics are ignored when using a static sky
(SkyBox).

Topics

• Setting Dawn and Dusk Effects (p. 865)

• Setting a Day-Night Cycle (p. 865)

Version 1.6
864

Lumberyard User Guide
Creating Time of Day Sky Effects

Setting Dawn and Dusk Effects

You can simulate the changing lighting effects that are caused by the sun moving across a dynamic
sky. You can set sunrise time, duration of dawn, sunset time, duration of dusk, current time, and the
path of the sun.

To set dawn and dusk effects

1. In Layer Editor, click Terrain, Lighting.

2. In Sun Trajectory Tool, set the following properties and parameter values

Time of Day
Sets the current time.

Sun Direction
Direction where the sun rises.

Dawn Time
Time of sunrise.

Dawn Duration
Duration of moon-to-sun lighting transition.

Dusk Time
Time of sunset.

Dusk Duration
Duration of sun-to-moon lighting transition.

Force sky update
If selected, updates the sky light calculations for each frame. If deselected, calculations are
distributed over several frames.

Import
Imports settings from a saved lighting (.lgt) file.

Export
Exports current settings to a lighting (.lgt) file

Terrain Occlusion
Creates the effect of indirect lighting.

Super Sampling
Interpolates the pixels of indirect sampling data to eliminate hard transitions.

Setting a Day-Night Cycle

You can use the Time of Day Editor to configure changes to environment parameters over time to
mimic a day-night lighting cycle. The Time of Day Editor uses a 24-hour timeline graph and a recording
function to store changing environment parameter values in an XML file. To record, ensure the red
button is selected.

Environment parameter values that you change in the Parameters panel of the Time of Day Editor
are set for the currently selected time. The TOD graph shows the change of the selected parameter
made over time. Each time a parameter value is changed, the graph curve is updated for the currently
selected time. You can also directly change the curve by dragging it up or down between the key frame
points. Key frame points are displayed as yellow dots. You can insert new key frame points by double-
clicking the curve. To remove existing key frame points, double-click the key frames (yellow dots)
themselves. Lumberyard interpolates parameter values for times that lie between key frame points.

Version 1.6
865

Lumberyard User Guide
Creating Time of Day Sky Effects

To configure a day-night cycle

1. In Lumberyard Editor, click Terrain, Time Of Day.

2. Under Time of Day Tasks, click Toggle Advanced Properties to view all parameters.

3. Under Parameters, adjust the value of each parameter that you want to create a cycle for. Then
do the following:

a. Click the red button to start recording.

b. Under Tasks, Current Time, set the time to apply the parameter value. The graph reflects the
new value at the specified time.

c. Set a new parameter value and current time value pair. Repeat as many times as needed to
get a realistic change over time for the parameter.

d. Click the red button to stop recording.

4. Under Tasks, complete the following tasks as needed to export, import, and play a time-of-day
(day–night) cycle.

Import From File
Imports cycle settings from an .xml file.

Export To File
Exports cycle settings to an .xml file.

Reset Values
Resets all parameters to their default values.

Current Time
The current time in the Time of Day Editor.

Start Time
Time used when the game is started; not the same as the current time.

Version 1.6
866

Lumberyard User Guide
Creating a Static Sky (SkyBox)

End Time
Time used when the game is ended. If the end time is set to 23.59, the time loops, starting the
next cycle once the day is over.

Play Speed
Speed at which time advances in the cycle.

Play
Starts or resumes the playback of the cycle in the editor. If the current time value is not within
the start and end times, playback begins at the specified start time.

Stop
Stops the playback of the cycle in the Time of Day Editor.

Force Sky Update
Updates the sky lighting calculations in each frame. If deselected, calculations are distributed
over several frames. The effect may not be visible for some time.

Creating a Static Sky (SkyBox)
Static skies use the Sky Shader (p. 1023) and a SkyBox, which is a cube that uses textures on five
of the sides (all except the bottom) to render a hemispheric dome to simulate the sky in your level. As
such, static skies cannot take advantage of dynamic or animated Time of Day effects, HDR settings,
and sun and moon parameters.

Topics

• Setting SkyBox Parameters (p. 867)

• Asynchronous SkyBox Switching (p. 868)

Setting SkyBox Parameters

Setting up a static sky involves using the Sky Shader (p. 1023), setting SkyBox parameters and
placing the skybox in your level.

To set Skybox parameters

1. In Layer Editor, click Terrain, Time of Day.

2. Under Tasks, Time of Day Tasks, click Toggle Advanced Properties to view all parameters.

3. Under Parameters, under Advanced, set Skybox multiplier to 1.

4. In Rollup Bar, under Terrain, click Environment.

5. Under Skybox, click Material, and then select your asset.

6. In Material Editor, select a suitable asset from the browser tree pane, and then select a suitable
material that uses the Sky Shader (p. 1023).

7. Under Material Settings, for Shader, make sure Sky is selected.

8. Adjust shader parameters as needed.

9. Click Assign Item to Selected Objects (left-most icon on toolbar). Close Material Editor.

10. Drag to place the previously-selected asset in your level.

11. In Rollup Bar, on the Terrain tab under Environment, SkyBox, adjust values for the following
parameters:

• Material low spec

• Angle

• Stretching

Version 1.6
867

Lumberyard User Guide
Adding Weather Effects

Asynchronous SkyBox Switching
Using Flow Graph, you can perform asynchronous SkyBox switching.

To perform asynchronous skybox switching

1. In Rollup Bar, select your asset.

2. Under Flow Graph, click Create and then type a name for the flow graph.

3. In Flow Graph, under Flow Graphs, select the entity.

4. Right-click in the flow graph grid and click Add Node, Environment, Skybox Switch.

Adding Weather Effects
Lumberyard offers a variety of realistic weather effects for your level environment.

Topics

• Adding Wind Effects (p. 868)

• Adding Clouds (p. 870)

Adding Wind Effects
You can create realistic wind effects in your level environment.

Topics

• Adding Global Wind (p. 868)

• Adding Ocean Wind (p. 869)

• Creating Wind Areas (p. 869)

• Adding Localized Wind (p. 869)

Adding Global Wind
Global wind and breezes affect everything in your level, such as all vegetation. Here's how to set them
up:

To set global wind parameters

1. In Rollup Bar, under Terrain, click Environment.

2. Under the EnvState section, adjust values of the following parameters:

• Wind vector – Speed and wind direction vector. Positive x values are east; positive y values are
north.

• Breeze generation – Enables breezes.

• Breeze strength – Controls the intensity of the breeze.

• Breeze movement speed – Controls the velocity of the breeze. Use it to produce short, rapid
gusts of wind.

• Breeze variation – Varies breeze speed, strength, and size.

• Breeze life time – Sets the duration of each breeze, in seconds.

• Breeze count – Sets the number of breezes generated per instance.

• Breeze spawn radius – Radius of breeze travel.

• Breeze spread – Determines the degree of variation in breeze direction.

Version 1.6
868

Lumberyard User Guide
Adding Wind Effects

• Breeze radius – Sets the radius of breeze influence.

Adding Ocean Wind

You can simulate realistic wind and wave effects for the ocean in your level.

To set ocean wind parameters

1. In Rollup Bar, on the Terrain tab, under Terrain, click Environment.

2. Under the OceanAnimation section, adjust the following parameters:

• Wind direction – Sets the wind direction from 1 to 4 in 90 degree increments.

• Wind speed – Sets the wind speed for surface waves.

• Wave frequency – Sets the frequency of waves. Smaller values mean fewer, longer waves
(deep ocean depth). Larger values mean more, shorter waves (shallow ocean depth).

• Wave height – Sets wave height in meters by means of vertex displacement.

Creating Wind Areas

Wind areas define a location within which objects experience wind. If no direction is set, wind moves
omnidirectionally from the center of the wind area.

To create a wind area

1. In Rollup Bar, under Objects, click Entity.

2. Under Browser, expand Physics and double-click WindArea.

3. Drag to place the entity in your level. A bounding box with direction areas appears.

4. Under Entity Properties, adjust values of the following parameters:

• Active – Enables or disables wind inside the area.

• AirDensity – If greater than 0, causes objects moving through the air to slow down.

• AirResistance – If greater than 0, causes lightweight objects to experience buoyancy.

• Ellipsoidal – Specifies an ellipsoidal drop off in air speed.

• FalloffInner – Sets the distance at which distance-based air speed begins to drop off.

• Speed – Sets the wind speed.

• Dir – Sets the wind direction.

• Size – Sets the size of the wind area.

Adding Localized Wind

Localized wind is used to simulate wind from a specific object, such as a fan or jet exhaust. You set up
localized wind with the wind entity.

To set localized wind parameters

1. In Rollup Bar, under Objects, click Entity.

2. Under Browser, expand Physics and double-click Wind.

3. Drag to place the entity in your level at the desired location.

4. Under Entity Properties, adjust the following parameters:

• FadeTime – Enables or disables fade time.

Version 1.6
869

Lumberyard User Guide
Adding Clouds

• vVelocity – Sets the wind strength and direction.

Adding Clouds
You can create realistic-looking clouds in your level that move, cast shadows, and that objects can fly
through.

Topics

• Setting Cloud Shading Parameters (p. 870)

• Adding 3D Cloud Shadows (p. 870)

• Creating 3D Cloud Templates (p. 871)

Setting Cloud Shading Parameters

Cloud shading, unlike cloud shadows, effects the brightness and color of clouds in your level. The
environment sky and sun color affect how clouds look.

To set cloud shading parameters

1. In Lumberyard Editor, click Terrain, Time Of Day.

2. In Time of Day Editor, under Tasks, click Toggle Advanced Properties.

3. Under Parameters\Cloud Shading, adjust the following parameters:

• Sun contribution – Specifies how much the sun affects the cloud brightness.

• Sky contribution – Specifies how much the sky light affects the cloud brightness.

• Sun custom color – Sets the RGB sun color.

• Sun custom color multiplier – Sets the brightness of the sun, which is multiplied by the sun
custom color.

• Sun custom color influence – Sets the degree to which the color of the sun contributes to the
color of the clouds.

Adding 3D Cloud Shadows

3D clouds don't actually cast real-time shadows. Instead a moveable texture is imposed on the entire
level, creating the illusion that the clouds cast shadows.

To add 3D cloud shadows

1. In Rollup Bar, under Terrain, click Environment.

2. Under CloudShadows, click Cloud shadow texture and the folder icon.

3. In Preview, select a suitable asset.

4. Drag the shadow to the desired location in your level.

5. Under CloudShadows, adjust the following parameters:

• Cloud shadow speed – Sets the speed that shadows move across the terrain.

• Cloud shadow tiling – Sets the tiling multiplier of the shadow texture.

• Cloud shadow brightness – Sets the brightness level of the shadow.

• Cloud shadow invert – Enables inverting of the cloud shadow texture.

6. In the Console window, click the ... button.

7. In Console Variables, set the variable e_GsmCastFromTerrain to 1.

Version 1.6
870

Lumberyard User Guide
Adding Clouds

Creating 3D Cloud Templates

You can use the Clouds tool in Lumberyard Editor to create new cloud template XML files. You can
use those template files later to add and place clouds as described in previous procedures. For more
information, see the topics listed in Adding Clouds (p. 870).

The basic process for creating a cloud template is to create an area box that defines the size of the
cloud, assign a material, select the Common.Cloud Shader (p. 1003), and then export and save the
template. See the following procedure for details.

All clouds use a texture map, which is made up of multiple sprites that are organized into columns and
rows, as the following image shows. You create cloud texture maps using your DCC tool.

To create a new 3D cloud template

1. In Rollup Bar, under Objects, click Area, AreaBox.

2. Under AreaBox, click <No Custom Material>.

3. In Material Editor, select the cloud texture map you created in your DCC.

4. Under Material Settings, for Shader, select Common.Cloud.

5. Under Shader Params, adjust the parameters for the desired effect.

6. Click Assign item to Selected Objects. Close the Material Editor.

7. Click to place the area box in your level.

8. In Lumberyard Editor, click Clouds, Create, and type a name for the cloud template.

9. Under Cloud Params, adjust the following cloud texture map parameters for desired effect.

Number of Rows
Sets the number of sprite rows in the cloud texture. Leave at 4 when using the default
cumulus_01.dds texture.

Number of Columns
Sets the number of sprite columns in the cloud texture. Leave at 4 when using default
cumulus_01.dds texture.

Sprite Row
Designates a row in the cloud texture for rendering.

Number of Sprites
Sets the number of sprites to be generated in the cloud.

Size of Sprites
Sets the scale of the sprites in the cloud.

Size Variation
Defines the randomization in size of the sprites within the cloud.

Angle Variations
Defines limits of randomization in the rotation of the sprites within the cloud.

Minimal Distance between Sprites
Defines the minimum distance between the generated sprites within the cloud.

Every Box has Sprites

Density

Version 1.6
871

Lumberyard User Guide
Working with Layers

Show Particles like Spheres
Turns on additional sphere rendering for each sprite generated.

Preview Cloud
Renders the generated cloud.

Auto Update
Updates the cloud rendering automatically with each parameter change.

10. Click Generate Clouds. The cloud should be visible inside the AreaBox in your level.

11. Click Export, then save the cloud template in a suitable directory.

Working with Layers
You use level layers to organize objects and content, as well as for streaming. Any object placed on
a layer can be hidden or unhidden using layers or Flow Graph. Doing so keeps performance high and
memory consumption low.

You can also divide layers into sub-layers and into action bubbles, which represent the logical steps
the player progresses through on the level.

Layers are stored as .LYR files on disk.

Topics

• Managing Level Layers (p. 872)

• Assigning Objects to Layers (p. 873)

• Streaming and Switching Layers (p. 874)

Managing Level Layers
Layers are used in a level to group similar objects like brushes and entities together.

To create a new layer

1. In Rollup Bar, on the Layers tab, click the New Layer icon (left-most option).

2. Type a name for the layer, and then enable or disable the various layer settings as needed.

3. After you create a layer, you can manage it by right-clicking the layer name in Rollup Bar and
doing the following:

• To delete the layer, click Delete.

• To export the layer, click Export.

Version 1.6
872

Lumberyard User Guide
Assigning Objects to Layers

• To reload the layer, click Reload.

• To import a layer that has been previously exported, click Import Layers and then select the
applicable layer(s).

• To group or nest a layer under another layer, press Ctrl and the left mouse button while you
drag the layer onto the layer that you want to group it under, then release.

• To ungroup a layer, press Ctrl and the left mouse button while you drag the layer to an empty
space at the bottom of the layer list, then release.

Level Layer Settings
You can modify a layer's settings in the Layer dialog box.

To change a layer's settings

1. In Rollup Bar, click the Layers tab.

2. Right-click the layer and click Settings.

3. Modify the following settings as desired and then click OK:

Visible
When enabled, the layer is visible.

Frozen
When enabled, object interaction on a layer is disabled (frozen)

Export Layer Pak
TBD

Load By Default
When enabled, loads the layer when the level is loaded. Enable this when layer streaming
is enabled and layer objects are visible in the level. When disabled, the layer is not loaded
initially when the level is loaded. To enable layer streaming, see Streaming and Switching
Layers (p. 874).

Export to *.lyr
When enabled, layer is saved in the .lyr file format on disk when you save the level. When
disabled, the layer is stored as an external layer and is underlined to indicate such.

Use In Game
When enabled, the layer is exported to the game when the level is exported to Lumberyard
(click File, Export to Engine).

Enable Physics
When enabled, objects on the layer respond to physics.

Export to All Platforms
Exports layer to all supported game platforms.

Export to Specific Platform(s)
Exports layer to selected game platform(s) only.

Assigning Objects to Layers
You can assign objects to a specific layer for a given level so you can control them as a group. By
default, all objects are placed in the Main layer unless you assign it to another layer.

If a different layer has been selected, any objects you add to the level are automatically assigned to
that layer.

To assign an object to a layer

1. In Lumberyard Editor, select an object in the viewport.

Version 1.6
873

Lumberyard User Guide
Streaming and Switching Layers

2. In Rollup Bar, on the Objects tab, under Entity, click the layer icon, and then select the desired
layer.

To control objects on a layer

1. In Rollup Bar, click the Layers tab.

2. Select a layer and do any of the following:

• To control object visibility, toggle the eye icon to display or hide all objects on the layer.

• To control object interaction, toggle the arrow icon to enable or disable (freeze) interaction with
all visible objects on the layer.

• To toggle visibility or interaction for all objects on all layers, toggle the eye or arrow icons above
the layer list.

Streaming and Switching Layers
Layer streaming and layer switching control the visibility of all entities and geometry on a level in
real time. Without the efficient use of layer switching, game performance can quickly degrade. It is
important to find suitable locations within a level where layer switching should take place, such as
between rooms, or between indoors and outdoors for example.

The following guidelines and limitations apply to layer streaming and switching:

• Make sure that the starting area in your level layer is visible (not hidden) at game start. When a level
is loaded, many entity types are automatically hidden for memory optimization.

• Triggers inside a hidden layer do not function so do not switch layers that contain triggers.

• Physics proxies are not affected by layer switching.

• Use the es_LayerDebugInfo 1 console variable to display all active layers for debugging
purposes.

Layer Streaming

Layer streaming is disabled by default. To use it, you must first enabled it.

To enable layer streaming

1. In Rollup Bar, on the Terrain tab, click Environment.

2. Under EnvState, select Use layers activation.

Version 1.6
874

Lumberyard User Guide
Adding Vegetation

Layer Switching

You use Flow Graph to set up the switching of layer visibility. The logic is simple:

1. Start the game.

2. Hide layer B and show layer A when the player is in proximity.

3. Switch visibility when the player is going from location A to B.

The following figure shows the flow graph node used to switch layers.

To switch layer visibility

1. In Rollup Bar, on the Objects tab, click Entity.

2. Under Browser, expand Default and double-click FlowgraphEntity.

3. Scroll down to the Flow Graph section if needed and click Create.

4. Type a group name for the Flow Graph and click OK.

5. In the Flow Graph window, under Flow Graphs, select FlowgraphEntity1.

6. Right-click anywhere in the graph, and then click Add Node, Engine, LayerSwitch.

7. In the Engine:LayerSwitch node, double-click Layer= and choose a layer from the list to be
switched. Then connect the following inputs and outputs as needed.

• Hide – Input that hides the layer.

• Unhide – Input that makes the layer visible.

• EnableSerialization – Input that enables layer serialization.

• DisableSerialization – Input that disables layer serialization.

• Hidden – Output that signals that the layer is now hidden.

• Unhidden – Output that signals that the layer is now visible.

For more information about flow graphs and how to connect inputs and output, see the Flow Graph
System (p. 487)

Adding Vegetation
You can add realistic trees, bushes, grasses, and other vegetation to your Lumberyard terrain.

Topics

• Vegetation Best Practices (p. 876)

• Vegetation Recommendations (p. 876)

• Vegetation Texture Mapping (p. 876)

• Adding Trees and Bushes (p. 877)

• Adding Grass (p. 877)

• Adding Vegetation Bending Effects (p. 878)

Version 1.6
875

Lumberyard User Guide
Vegetation Best Practices

• Vegetation Parameters (p. 880)

• Vegetation Debugging (p. 881)

Vegetation Best Practices
Keep in mind the following best practices, recommendations, and guidelines when you add vegetation
to your terrain level.

• Manually place vegetation to get the most control and best results.

• To save memory, place grass manually.

• Keep the polygon count for grass blades as low as possible.

• Do not exceed a diameter of 8 meters for grass patches. This size provides a balance between
performance and coverage.

• Grasses and small plants do not require specular or opacity texture maps. For more information, see
Working with Textures (p. 1044).

• Set the Opacity texture at a much lower resolution than the other maps.

• Use a Glossiness value of 8 or above for realistic results.

• Use the automerged method to apply wind bending effects to grass.

• Use a maximum of 72 bones per tree for touch bending.

Vegetation Recommendations
The following settings are recommended when creating vegetation in your DCC tool.

VegetationPolygon
Range

Texture
Size

Proxies Material IDs

Grass 0-300 512x512 Bending Grass, grass proxy

Bushes 300-600 1024x1024Bending, collision Leaf, leaf proxy

Small
Trees

600-1000 (2)
1024x1024

Bending, collision ** Trunk, leaf, leaf proxy

Large
Trees

 (2)
1024x1024

Bending, collision *** Trunk, leaf, leaf proxy, trunk
proxy

** Smaller breakable tree trunks are physicalized.

*** Larger non-breakable tree trunks are not physicalized.

Vegetation Texture Mapping
Vegetation gets its appearance from texture mapping. Trees use two different sets of textures maps,
one for leaves and branches and one for the trunk. Normal and specular maps can have a gloss map
in the alpha channel.

The texture map you use depends on the type of vegetation:

Grass – Diffuse map only

Leaves and branches (trees or bushes) – Diffuse, specular, normal, and opacity maps

Version 1.6
876

Lumberyard User Guide
Adding Trees and Bushes

Tree trunks – Diffuse, specular and normal maps

Vegetation placement on a terrain texture layer is based on the pivot point of the vegetation object.
Bigger vegetation objects might overlap with other terrain texture layers. This is most obvious if you
have two different materials touching, like grass and mud.

Adding Trees and Bushes
You can add realistic trees and bushes to your terrain in your environment level. You must add trees
and bushes manually.

To add trees or bushes

1. In Rollup Bar, on the Objects tab, click Geom Entity.

2. Under Browser, select the desired vegetation.

3. Drag to place the tree or bush in your level.

Adding Grass
You can add realistic grass to your terrain in your environment level. You can drag to place and quickly
paint the entire terrain, or manually click clump-by-clump to provide the most control and best results.

Topics

• Adding Grass Manually (p. 877)

• Painting to Add Grass (p. 877)

Adding Grass Manually

Although you can paint in your terrain to add grass quickly, the manual approach saves memory and
results in better control and a more realistic effect.

To manually add grass

1. In Lumberyard Editor, click View, Open View Pane, Material Editor.

2. Expand the left tree and select a suitable asset.

3. Under Material Settings, select the Vegetation shader.

4. Under Shader Generation Params select Grass.

5. Modify other settings and parameter values for the desired effect.

6. Click Assign Object to Item. Close Material Editor.

7. If necessary, depending on your terrain, in Rollup Bar, on the Terrain tab, select the
AlignToTerrain check box.

8. Click to place grass in your level and repeat as needed.

Note
When you add or move grass, it may sporadically jump around. This happens if you move
vegetation to a location that is too dense to accommodate it. When this occurs, the vegetation
moves to its last position and is outlined in red. You can then move it elsewhere or delete it.

Painting to Add Grass

You can drag the mouse to quickly paint all terrain in your level with grass. This method of placing
vegetation is controlled by the texture layer that the vegetation object is associated with. Painted

Version 1.6
877

Lumberyard User Guide
Adding Vegetation Bending Effects

vegetation is visible wherever the texture layer appears. This is a quick way to automatically cover a
huge area with grass.

Note
Painting a level with grass consumes 8 MB of memory cache.

To add grass by painting

1. In Rollup Bar, on the Terrain tab, click Vegetation.

2. Under Vegetation, click Add Vegetation Object.

3. In Preview, select a suitable asset.

4. Click to place the grass in your terrain.

5. Under the Use on Terrain Layers parameter, select the check box for your asset. The terrain
should now be covered with the grass object.

Adding Vegetation Bending Effects
Lumberyard provides three methods for adding realistic bending motions to vegetation:

• Touch (Collision) Bending – bending effects for larger vegetation caused by players brushing
against or colliding with branches

• Detail (Wind) Bending – physically accurate wind effects for larger vegetation defined by using
vertex colors and environment wind parameters

• Automerged (Wind) Bending – physically accurate wind effects for grass defined by vegetation and
environment wind parameters

You can use touch and detail bending effects together. For example, a player can brush against a
branch that is also swaying in the breeze. Use automerged bending by itself for objects like grass.

From a performance standpoint, detail bending is the least expensive, touch bending is more
expensive, and automerged bending is the most expensive.

Topics

• Adding Touch (Collision) Bending Effects (p. 878)

• Adding Detail (Wind) Bending Effects (p. 879)

• Using AutoMerged Wind Bending Effects (p. 879)

Adding Touch (Collision) Bending Effects

The touch bending technique simulates a player touching, brushing against, and interacting with
vegetation. Use it for bushes, branches, and bigger leaves with stems. To implement touch bending,
you use UV layout instancing.

All touch-bendable vegetation uses a collision proxy to define the volume of bending effect. By using
a collision volume proxy, touch is detected inside the volume. This volume should be large enough to
enclose all branches that are affected by touch bending. The proxy is physicalized using the noCollide
Physics setting.

Using UV Layout Instancing

UV instancing for touch bending is a type of bone-and-rope technique. By sharing the same UV space,
objects can inherit the joint setup from a "master leaf."

Version 1.6
878

Lumberyard User Guide
Adding Vegetation Bending Effects

To create UV instances, you duplicate the master leaf of an element or cluster within the same object.
You can rotate, translate, scale, and even change an instance's shape simply by moving individual
vertices without changing vertex count.

To control where branches and leaves should bend, you place joints (also called helpers or locators) at
various positions on a master leaf, including the tip. You must follow a specific naming convention for
the joints, such as branch1_1 (first branch, first joint at the base)—Branch1_1 is the base and does not
move.

Make sure the joints snap to the same location as the vertex nodes. Lumberyard interpolates between
these joints using a rope setup, and weights all other joints automatically.

Adding Detail (Wind) Bending Effects

Detail bending refers to the procedural movement of larger foliage caused by wind or other similar
effects. You control the motion by the use of vertex colors in your DCC tool.

When you use detail bending, make sure the distribution of polygons on foliage geometry is regular
and properly tessellated. Otherwise you may see visual artifacts. Also make sure that leaves do not
belong to a single node.

Defining Vegetation Vertex Colors

Vertex colors are used to specify detail wind bending effects for vegetation objects. All three RGB
channels are used to control the movement of the geometry. Using your DCC tool, each channel
should be edited and viewed separately.

Color RGB Values Bending Influence

Red 100/0/0 Irregular bending at the outsides – movement of smaller shapes

Green 0/100/0 Delays the start of the movement – used to create variations.

Blue 0/0/100 Bends the leaves up and down – movement of the big shapes.

Setting the Detail Bending Parameter

Once vertex colors are defined, set the Bending parameter for detail bending. This value controls the
procedural bending deformation of vegetation. It ranges from 0 to 100 in value, 0 meaning no bending
effect and 100 meaning the maximum effect, when receiving environment wind and breezes. For more
information, see, Adding Global Wind (p. 868).

To set the vegetation detail bending parameter

1. In Rollup Bar, on the Terrain tab, click Vegetation.

2. Under Objects, select your asset.

3. Click Bending, and adjust the value from 0 - 100 as needed.

Using AutoMerged Wind Bending Effects

Automerged vegetation has physically accurate wind motions that are defined by wind environment
properties and various vegetation properties. It is recommended for use with grass only.

Automerged vegetation reduces the number of draw calls while still allowing you to add any amount or
size of grass patches to the terrain. It merges multiple meshes within several sectors as long as they

Version 1.6
879

Lumberyard User Guide
Vegetation Parameters

are using the same material and texture. You can paint single grass blade objects on the terrain as well
as on brushes in different heights independently while they get merged into larger chunks in real time.

When AutoMerged is enabled, touch bending, vertex colors, and detail bending settings are all
ignored, and vegetation movement is defined solely by the AutoMerged parameters. For more
information, see Adding Touch (Collision) Bending Effects (p. 878) and Adding Detail (Wind) Bending
Effects (p. 879).

To enable AutoMerged vegetation and set parameters

1. In Rollup Bar, on the Terrain tab, click Vegetation, Add Vegetation Object.

2. Expand Objects tree and select the grass object you want to modify.

3. Select the AutoMerged check box, and adjust the following parameter values:

• Stiffness – Defines the stiffness of the vegetation

• Damping – Specifies the amount of damping on the bending motion

• AirResistance–- Specifies the amount of bending similar to the Bending parameter used for
Setting the Detail Bending Parameter (p. 879).

The four AutoMerged parameters together define the amount and type of bending motions the
vegetation object displays in reaction to wind and breezes. For more information, see, Adding Global
Wind (p. 868).

Vegetation Parameters
The following vegetation parameters can be accessed in the Terrain, Vegetation panel in Rollup
Bar for a previously selected vegetation object. You can adjust parameters for one or more selected
objects.

Unless otherwise noted, parameters apply to newly added and placed vegetation assets only.

Size
Changes the size of newly placed vegetation objects. Use this to uniformly scale the vegetation,
where 1 represents 100%.

SizeVar
Changes the limit of size changes for a set of newly placed vegetation objects of a single kind.
Keep Size at 1 and set SizeVar to 0.2 to get a nice variation in sizes.

RandomRotation
Randomly rotates objects while you paint new vegetation objects. To create a more natural look
and distribution, you can set up a RandomRotation in the vegetation objects when you paint them.
This feature works only with the Paint Object tool.

AlignToTerrainCoefficient
Points the vegetation object away from the ground. When this effect is applied, vegetation on cliffs
points away from the surface instead of growing straight up.

UseTerrainColor
Makes the individual object receive the color of the underlying terrain for a better match. Use this
option to blend the grass with the underlying terrain color. You can also use this setting on other
objects, but it works best with grass. This effect is especially useful for making grass appear to
fade in the distance.

AllowIndoor
Enables the vegetation to be rendered within vis areas.

Bending
This value controls the bending deformation of the vegetation objects. It ranges from 0 to 100, with
0 representing no bending effect and 100 the maximum effect. This effect is based on the amount
of environment wind (WindVector) in the level.

Version 1.6
880

Lumberyard User Guide
Vegetation Debugging

GrowOnBrushes
Controls the placement of objects on brushes.

GrowOnTerrain
Controls the placement of objects on terrain. Useful if you want them placed only on brushes.

AutoMerged
Enables AutoMerged system on this object. For more information, see Using AutoMerged Wind
Bending Effects (p. 879).

Stiffness
Controls the stiffness of selected vegetation and how much it reacts to physics for AutoMerged
vegetation.

Damping
Determines how responsive the vegetation is to physics damping for AutoMerged vegetation.

AirResistance
Degree that vegetation resists air movement (wind). Similar to the Bending setting but specifically
designed for AutoMerged vegetation.

Pickable
Allows the player to pick up the object.

Density
Adjusts the distance between individual objects that you create while painting new vegetation. The
density setting ranges from 0 to 100. If your density setting is bigger than your brush radius, the
vegetation will not be created, so always make sure you have a suitable brush radius.

ElevationMin
Limits the minimum height at which you can paint vegetation objects. For painting underwater
vegetation, set this value to lower than the ocean; 0 is a safe option.

ElevationMax
Limits the maximum height at which you can paint vegetation objects.

SlopeMin
Limits the minimum angle of the terrain on which you can paint vegetation objects. 255 equals 90
degrees. When you specify a SlopeMin value higher than 0, you can no longer place objects on
flat grounds.

SlopeMax
Limits the maximum angle of the terrain on which you can paint vegetation objects. 255 equals 90
degrees. When you specify a SlopeMax lower than 255, you can no longer place objects on very
steep areas.

CastShadow
Makes the object cast a shadow based on the minimum selected Config Spec setting. For
example, High won't work on Low or Medium specs.

Vegetation Debugging
Branches and tree trunks can be broken upon collision.

e_vegetation 1 | 0
Enables and disables rendering of the vegetation. 1 = on, 0 = off.

e_MergedMeshesDebug 1
Displays statistics on global memory consumption of vegetation objects placed in the level.

e_MergedMeshesDebug 2
Displays vegetation in the cells that form the merged meshes. They are color coded over distance.
Red boxes should be displayed only around the player (the cell the player is standing in and the
surrounding eight cells). Beyond this, all cells should be green.

Displayed above each cell is information about the current LOD step and memory consumption for
the cell—this updates as you move closer and further away.

Version 1.6
881

Lumberyard User Guide
Android Support

Mobile Support

Mobile support is in preview release and is subject to change.

You can use Lumberyard to build your games for Android devices such as the Nvidia Shield, Samsung
Galaxy Note 5, and Motorola Nexus 6, and iOS devices that use the A8 GPUs, including iPhone 6s,
iPhone 6s Plus, iPad Air 2, and iPad Pro. Lumberyard includes two Android-supported sample projects
and four iOS-supported sample projects that you can use to learn how to build assets, build shaders
using the remote shader compiler, and build the Lumberyard runtime (Android) or iOS applications
using the Lumberyard build tools.

Topics

• Android Support (p. 882)

• iOS Support (p. 905)

• Design Considerations for Creating Mobile Games Using Lumberyard (p. 916)

• Adding IP Addresses to Allow Access to the Asset Processor and Remote Console (p. 919)

Android Support
Mobile support is in preview release and is subject to change.

You can use Lumberyard to build your games for Android devices such as the Nvidia Shield, Samsung
Galaxy Note 5, and Motorola Nexus 6. Lumberyard includes two Android-supported sample projects
that you can use to learn how to build assets for Android, build shaders using the remote shader
compiler, and build the Lumberyard runtime using the build tools.

Prerequisites
To build games for Android, Lumberyard requires the following:

• Visual Studio 2015 with Update 1 or later for debugging (PC only)

• SDK-19 (Android 4.4.2) to SDK-23 (Android 6.0)

• Your device set up for development and connected to your computer using a USB cable

Version 1.6
882

http://developer.android.com/tools/device.html

Lumberyard User Guide
Setting Up Your PC

Note
You can build games for Android on a Mac; however, the Asset Processor and shader
compiler require a PC.

Setting Up Your PC
After you download and extract Lumberyard on your PC, you must extract and run Lumberyard Setup
Assistant to install the third-party software that is required to run the game and compile the game code,
engine and asset pipeline, and for Android devices.

To install third-party software using Lumberyard Setup Assistant

1. Run Lumberyard Setup Assistant by double-clicking SetupAssistant.bat, which is located in
the Lumberyard root directory (\lumberyard\dev).

2. In Lumberyard Setup Assistant, on the Get started page, select Compile for Android devices
and click Next.

3. Follow the instructions on the screen to complete the installations for any third-party software or
SDKs that you need. For more information about using Lumberyard Setup Assistant, see Using
Lumberyard Setup Assistant to Set Up Your Development Environment (p. 14).

4. Modify your environment variables by doing the following:

a. In the Windows Control Panel, click System, Advanced system settings.

b. In the System Properties dialog box, click Environment Variables.

c. Under User variables, edit the PATH variable to add the directory where you installed the
Android SDK and the platform-tools and tools subdirectories. For example: C:\Android
\android-sdk, C:\Android\android-sdk\platform-tools, C:\Android
\android-sdk\tools

d. Add the Java SDK and JRE to the PATH variable. For example: C:\Program Files\Java
\jdk1.7.0_79\bin and C:\Program Files\Java\jre7\bin

5. Locate the directory where you installed the Android SDK. Run the SDK Manager and select the
version of the SDK that you want to install. You must also install a version of the build tools. Note
the version you installed.

6. Modify configuration files to tell Lumberyard which version of the SDK to use when building your
game:

a. In the File Explorer, locate _WAF_\android in the directory where you installed
Lumberyard.

b. Edit the android_settings.json file to set BUILD_TOOLS_VER with the version of the
build tools that you just installed and to set SDK_VERSION with the version of the SDK that
you want to use.

c. Save the file.

7. In a command line window, change to the \lumberyard\dev directory.

8. To initialize the build system, run the following command:

lmbr_waf.bat configure

Setting Up Your Mac
After you download and extract Lumberyard on your Mac, you must extract and run Lumberyard Setup
Assistant to install the third-party software that is required to run the game and compile the game code,
engine and asset pipeline, and that is required for Android devices.

Version 1.6
883

Lumberyard User Guide
Setting Up Your Mac

To install third-party software from Lumberyard Setup Assistant

1. Unzip the SetupAssistant.zip file (located in the \lumberyard\dev\Bin64 directory) and
move the .APP into Bin64. Run Lumberyard Setup Assistant.

2. In Lumberyard Setup Assistant, on the Get started page, select Run your game project,
Compile the game code, and Compile for Android devices. Click Next.

3. Follow the instructions on the screen to complete the installations for any third-party software
or SDKs that you need. Be sure to install the Wwise audio library and JDK v7u79. For more
information about using Lumberyard Setup Assistant, see Using Lumberyard Setup Assistant to
Set Up Your Development Environment (p. 14).

4. In a command line window, change to the \lumberyard\dev directory.

5. To initialize the build system, run the following command:

sh lmbr_waf.sh configure

6. In the Finder, open the user_settings.options file (located in the \lumberyard\dev_WAF_
\ directory).

7. Edit the bootstrap_tool_param as follows:

bootstrap_tool_param = --none --enablecapability compilegame --
enablecapability compileandroid --no-modify-environment

8. Modify your environment variables by doing the following:

a. If you are using Bash, edit the .bash_profile file to add the paths for android-sdk/
platform-tools and android-sdk/tools.

b. In a command line window, change to the SDK directory and run the following command:
tools/android update sdk --no-ui

9. Locate the directory where you installed the Android SDK. Run the android executable file
(located in the tools directory) and select the version of the SDK that you want to install. You
must also install a version of the build tools. Note the version you installed.

10. Modify configuration files to tell Lumberyard which version of the SDK to use when building your
game:

a. In the File Explorer, locate _WAF_\android in the directory where you installed
Lumberyard.

b. Edit the android_settings.json file to set BUILD_TOOLS_VER with the version of the
build tools that you just installed and to set SDK_VERSION with the version of the SDK that
you want to use.

c. Save the file.

Important
You must save these files with the correct line endings. If you are not using the Vim
text editor, please research the correct method to save your files. If you are using
Vim, save the file by running the following command: w ++ff=mac

11. In a command line window, change to the \lumberyard\dev directory.

12. To initialize the build system, run the following command:

sh lmbr_waf.sh configure

Topics

• Configuring Your Game Project for Android (p. 885)

• Building Game Assets for Android Games (p. 888)

Version 1.6
884

Lumberyard User Guide
Configuring Your Game Project for Android

• Building Shaders for Android Games (p. 890)

• Building Android Games (p. 892)

• Android Debugging (p. 893)

• Deploying Android Games (p. 894)

• Running Android Games (p. 896)

• Using Virtual File System with Android (p. 898)

• Using a Samsung Device with Lumberyard (p. 900)

• Using Lumberyard with Android Studio (p. 900)

Configuring Your Game Project for Android

Mobile support is in preview release and is subject to change.

Before you use Lumberyard to build your Android games, you must configure your game project to be
built for Android. You can also customize the Android settings in your game project to allow for store
deployment.

Prerequisites

To configure your game project for Android, you must have the following:

• Lumberyard and the Lumberyard SDK installed

• Your development environment set up

• Basic knowledge of the Lumberyard Waf build system and the JSON data format

• Lumberyard configured to build Android games

For information, see Android Support (p. 882).

• A game project

Setting Your Game Project to Build for Android

You can enable your game project to be built for Android by modifying certain settings in your game
project's project.json file.

To modify your game project's project.json file

1. In a file browser, navigate to your game project's asset directory. For example, \dev
\SamplesProject in the directory where you installed Lumberyard.

2. Use a text editor to open the project.json file.

3. Verify the following entry appears or add the entry if it does not exist: "android_settings": {}

4. Save the project.json file.

5. In a command line window, navigate to the root of the directory where you installed Lumberyard
(\lumberyard\dev).

6. Run the lmbr_waf configure command:

• On a PC, type: lmbr_waf.bat configure

• On a Mac, type: ./lmbr_waf.sh configure

7. Build and test your game project on Android. For information, see Building Android
Games (p. 892).

Version 1.6
885

Lumberyard User Guide
Configuring Your Game Project for Android

Customizing Android Settings for Your Game Project

After you add the Android configuration entry for your game project, you can customize various settings
to generate your project and prepare your Android game for store deployment.

You can customize the following Android settings:

Android package name
Tag name: "package_name"

Type: String in dot-separated format

Example: "com.mycompany.mygame"

Manifest code version number
Tag name: "version_number"

Type: Whole number value

Manifest version name
Tag name: "version_name"

Type: String

Example: "1.0.0"

Orientation
Tag name: "orientation"

Type: String

Valid values: See the Android Developers page for valid values.

Application icon overrides
Tag name: "icons"

Type: Mapping of strings for each resolution option. All entries require a path relative to \Code
\project\Resources or an absolute resource path. Include the name of a .png image in the
string.

Valid values: "mdpi", "hdpi", "xhdpi", "xxhdpi", "xxxhdpi", "default" (the image set for
"default" is used if a specific DPI override is not specified)

Application splash screen overrides
Tag name: "splash_screen"

Type: Mapping of two maps

• Landscape tag name: "land"

• Portrait tag name: "port"

Both orientation maps allow the same options. All entries require a path relative to \Code
\project\Resources or an absolute resource path. Include the name of a .png image in the
string.

Valid values: "mdpi", "hdpi", "xhdpi", "xxhdpi", "default" (the image set for "default"
is used if a specific DPI override is not specified)

Allow assets to pack into the APK
Tag name: "place_assets_in_apk"

Type: Whole number value

Version 1.6
886

https://developer.android.com/guide/topics/manifest/activity-element.html#screen

Lumberyard User Guide
Configuring Your Game Project for Android

Valid values: 0 (No) or 1 (Yes)

To add an Android setting override

1. In a file browser, navigate to your game project's asset directory.

2. Use a text editor to open the project.json file.

3. Add any of the customizable settings above to the "android_settings" entry in the
project.json file.

The following example includes all of the customizable Android settings:

"android_settings" :
{
 "package_name" : "com.lumberyard.samples",
 "version_number" : 1,
 "version_name" : "1.0.0.0",
 "orientation" : "landscape",
 "icons" :
 {
 "default" : "AndroidLauncher/icon-xhdpi.png",

 "mdpi" : "AndroidLauncher/icon-mdpi.png",
 "hdpi" : "AndroidLauncher/icon-hdpi.png",
 "xhdpi" : "AndroidLauncher/icon-xhdpi.png",
 "xxhdpi" : "AndroidLauncher/icon-xxhdpi.png",
 "xxxhdpi" : "AndroidLauncher/icon-xxxhdpi.png"
 },
 "splash_screen" :
 {
 "land" :
 {
 "default" : "AndroidLauncher/splash-xhdpi.png",

 "mdpi" : "AndroidLauncher/icon-mdpi.png",
 "hdpi" : "AndroidLauncher/icon-hdpi.png",
 "xhdpi" : "AndroidLauncher/icon-xhdpi.png",
 "xxhdpi" : "AndroidLauncher/icon-xxhdpi.png"
 },
 "port":
 {
 "default" : "AndroidLauncher/icon-xhdpi.png",

 "mdpi" : "AndroidLauncher/icon-mdpi.png",
 "hdpi" : "AndroidLauncher/icon-hdpi.png",
 "xhdpi" : "AndroidLauncher/icon-xhdpi.png",
 "xxhdpi" : "AndroidLauncher/icon-xxhdpi.png"
 }
 }
 "place_assets_in_apk" : 0
},

4. Save the file.

5. In a command line window, navigate to the root of the directory where you installed Lumberyard
(\lumberyard\dev).

6. Run the lmbr_waf configure command:

• On a PC, type: lmbr_waf.bat configure

Version 1.6
887

Lumberyard User Guide
Building Game Assets for Android Games

• On a Mac, type: ./lmbr_waf.sh configure

Building Game Assets for Android Games

Mobile support is in preview release and is subject to change.

When you build an Android game using Lumberyard, you must first build the assets that are included
with the game. All built assets are located in the cache directory of your Lumberyard installation. For
example, when you build the Samples Project, the assets are saved to the \lumberyard\dev\cache
\SamplesProject\es3 directory. The initial build of the Samples Project assets may take up to an
hour to process, but incremental changes should process almost instantly.

To build Android game assets on your PC

1. Close all instances of Lumberyard Editor and the Asset Processor.

2. Edit the bootstrap.cfg file (located in the \lumberyard\dev directory) to set
sys_game_folder to SamplesProject (or the project you want to build). Save the file.

3. Edit the AssetProcessorPlatformConfig.ini file (located in the \lumberyard\dev
directory) to uncomment es3=enabled. Save the file.

Note
If the Asset Processor was running when you edited the
AssetProcessorPlatformConfig.ini file, you must restart the Asset Processor.

4. Open Lumberyard Editor, which automatically launches the Asset Processor to process and build
your game assets as you make changes to your game levels in Lumberyard Editor.

Note
You can also launch the Asset Processor (GUI or batch version) from the \lumberyard
\dev\Bin64 directory.

Using Assets in Your Game

You can use assets in your game by copying them to your device manually or by packing them into
an .apk file. We recommend copying the assets to your device manually for a faster build time during
development.

Manually Copying Assets

As part of the build process, Lumberyard can automatically copy assets built by the Asset Processor
to your device, or you can manually copy assets from a command line window using Android Debug
Bridge (ADB). Game assets should be copied to the /storage/sdcard0/<Your Game Name>
directory.

For example, to manually copy the Samples Project assets, type the following in a command line
window:

adb push cache/SamplesProject/es3 /storage/sdcard0/SamplesProject

Building Assets into an .Apk File

To build an .apk file that includes all of your assets, edit the project.json file for your game project
and set place_assets_in_apk to 1. This method requires a longer build time than manually copying
your assets.

Version 1.6
888

Lumberyard User Guide
Building Game Assets for Android Games

For example, to build an .apk file for the Samples Project assets, edit the project.json file (located
in the \lumberyard\dev\SamplesProject directory) to set place_assets_in_apk to 1:

 "android_settings": {
 "package_name" : "com.lumberyard.samples",
 "version_number": 1,
 "version_name" : "1.0.0.0",
 "orientation" : "landscape",
 "place_assets_in_apk" : 1
 },

When you generate a build, your computer creates an .apk file that includes an executable and game
data. Be sure to run the shader compiler when you run your game for the first time.

Note
If you receive an error indicating the \dev\Solutions\android\SamplesProject
\assets directory does not exist, you can try running the command from a command line
window with Administrator privileges.

Sharing Game Assets Between PCs and Macs

After you build the assets to include with your Android game, you can share the cache folder between
your PC and Mac. This ensures that changes you make in Lumberyard Editor on your PC are
automatically retrieved by OS X.

To set up asset sharing on your PC

1. Navigate to the \dev folder in the directory where you installed Lumberyard.

2. Right-click the cache folder and click Properties.

3. In the cache Properties dialog box, on the Sharing tab, click Advanced Sharing. You must have
administrator privileges.

4. In the Advanced Sharing dialog box, select Share this folder. Click OK.

5. (Optional) Click Permissions to set permissions for specific users. This step is required if you
want to modify the shared assets on your Mac.

To view shared assets on your Mac

1. In the Finder, click Go, Connect to Server.

2. For the Server Address, type smb://IP address or DNS name of PC/Cache

3. Click Connect.

4. (Optional) Configure your system preferences to automatically connect to the shared folder when
OS X starts:

a. Open System Preferences, Users & Groups, Login Items.

b. In the Login Items dialog box, click + to add a new login.

c. In the Shared pane, locate and select your PC. In the right pane, select your shared cache
folder and click Add.

5. In a Terminal window, navigate to the \dev folder in the directory where you installed Lumberyard.

6. To create a symbolic link to the shared cache folder, type: sudo ln –s /Volumes/Cache
Cache

If prompted, type the password for your OS X login.

Version 1.6
889

Lumberyard User Guide
Building Shaders for Android Games

Building Shaders for Android Games

Mobile support is in preview release and is subject to change.

Lumberyard uses a versatile shader system to achieve high quality, realistic graphics. Because the
shader compilation pipeline depends on the Windows-specific HLSL optimizer, you must connect to
a shader compiler on your PC when running a game on an Android device during the development
stage. This compiles the subset of shaders required by your game on demand.

Note
You must connect your PC and Android device to the same network and configure any
firewalls to allow traffic through port 61453.

When a new shader is compiled, the game waits for the binary shader permutation to compile on your
PC and be sent back to your device. Once this occurs, the shader is cached on your device until you
delete the game. When you are ready to release your game, you must pack up and include all cached
binary shaders.

Building the Shader Compiler

Building Lumberyard Editor will also build the shader compiler. Otherwise, you can build the shader
compiler by changing to the \lumberyard\dev directory in a command line window and typing the
following:

lmbr_waf.bat build_win_x64_profile -p all --targets=CrySCompileServer

The shader compiler executable is created in the \lumberyard\dev\Tools\CrySCompileServer
\x64\profile directory.

You must also set up the mobile device system CFG file (system_android_es3.cfg) to connect to
the remote shader compiler on the PC.

Running the Shader Compiler

You can run the shader compiler on your PC.

To run the shader compiler on your PC

1. Edit the system_android_es3.cfg file (located in the \lumberyard\dev directory) to set the
localhost for r_ShaderCompilerServer to the IP address of the PC on which you will run the
shader compiler.

2. Run CrySCompileServer.exe (located in the \lumberyard\dev\Tools
\CrySCompileServer\x64\profile directory).

Generating and Retrieving Shaders

You can generate and retrieve shaders for your Android game.

To generate and retrieve shaders

1. Build, deploy, and run your game on an Android device. For information, see Building Android
Games (p. 892)

2. In your game, explore every area in every level to ensure that all shader permutations required for
the game are generated. Exit the game when you are finished.

Version 1.6
890

Lumberyard User Guide
Building Shaders for Android Games

3. Manually copy the shaders off your Android device onto your PC. Shaders should be saved to the
/storage/sdcard0/<Your Game Name>/user/cache/shaders directory.

For example, to manually copy the Samples Project shaders, type the following in a command
line window: adb pull /storage/sdcard0/SamplesProject/user <Lumberyard root
directory>\cache\SamplesProject\es3\user

Note
If you do not see shaders located in the Cache\game project name\es3\user
\cache\shaders directory, check the Cache\game project name\es3\user
\shaders\cache directory. Move the shaders in this directory to the Cache\game
project name\es3\user\cache\shaders directory.

Building Shader .Pak Files

You can use a command line prompt and batch file to build a .pak file that includes your shaders.

To build a shader .pak file

1. In a command line window, navigate to the dev directory of your build and locate the
BuildShaderPak_ES3.bat file.

2. To use the BuildShaderPak_ES3.bat file, provide command line arguments for the following:

• Shader version (for example, GLES3 or GLES3_1)

• Shaderlist_shader version.txt file (located in the Cache folder of the remote shader
compiler executable, for example dev\Tools\CrySCompileServer\x64\profile\Cache
\game project name\ShaderList_GLES3_1.txt in the Lumberyard root directory)

• Game project name for which to build the shaders

For example, to build the shader PAK file for the Samples Project, type the following in a
command line window: BuildShaderPak_ES3.bat GLES3 Tools\CrySCompileServer
\x64\profile\Cache\SamplesProject\ShaderList_GLES3.txt SamplesProject

You can derive the shader version from the name of the folder for the files retrieved from the
device. For example, GLES3_1 is the shader version for the following directory: \lumberyard
\dev\Cache\game project\es3\user\cache\shaders\cache\GLES3_1.

Deploying Shader .Pak Files

When the batch file finishes building the shader PAK file for your game project, you will find the
following in the \Build\Platform\Game Project Name\Platform directory at the root of your
Lumberyard installation (\lumberyard\dev):

• ShaderCache.pak – Contains all compiled shaders that are used only when the shader cannot be
found in the current level's shader cache.

• ShaderCacheStartup.pak – Contains a subset of compiled shaders that are required for
accelerating the startup time of the engine.

To enable your game to run the shaders from the PAK files

1. Do one of the following:

a. Rename the ShaderCache.pak file to shaders.pak. Copy the PAK files to the cache
\game project name\es3\game project name directory at the root of your Lumberyard

Version 1.6
891

Lumberyard User Guide
Building Android Games

installation (\lumberyard\dev). When you run your game, it will attempt to load the shaders
from the Shaders.pak file.

b. Copy the shaders*.pak files to the cache\game project name\es3\game project
name directory at the root of your Lumberyard installation (\lumberyard\dev). Update the
android.cfg file to set r_ShadersPreactivate to 3. This preloads the game with the
shaders from the ShaderCache.pak file, and the shaders remain in memory until you exit the
game.

2. When the shader PAK files are in the correct cache location, you can deploy the assets to the
device. The game will use the shaders and will only connect to the remote shader compiler if it
cannot find a shader.

Building Android Games

Mobile support is in preview release and is subject to change.

Before you can deploy your game to Android devices, you must ensure the following:

• The shader compiler (located in the \lumberyard\dev\Tools\CrySCompileServer
\x64\profile\CrySCompileServer.exe directory) is running on your PC. For information, see
Building Shaders for Android Games (p. 890).

• You are using Android NDK r11 or above. For information, see Android Support (p. 882).

Building Android Games Using Clang

You can build your game for Android using Clang. Building for the Android (ARM) platform in Visual
Studio will build using Clang.

To build your game for Android using Clang (recommended)

1. Ensure you are using Android SDK 21 or later and Android NDK r11 or later. For information, see
Android Support (p. 882).

2. In a command line window, navigate to \dev in the directory where you installed Lumberyard.

3. Build various targets of your game:

• To build debug

• On a PC, type: lmbr_waf.bat build_android_armv7_clang_debug -p all

• On a Mac, type: sh lmbr_waf.sh build_android_armv7_clang_debug -p all

• To build profile

• On a PC, type: lmbr_waf.bat build_android_armv7_clang_profile -p all

• On a Mac, type: sh lmbr_waf.sh build_android_armv7_clang_profile -p all

• To build release

• On a PC, type: lmbr_waf.bat build_android_armv7_clang_release -p all

• On a Mac, type: sh lmbr_waf.sh build_android_armv7_clang_release -p all

4. Debug your application. For information, see Android Debugging (p. 893).

Building Android Games Using GCC

You can build your game for Android using the GNU Compiler Collection (GCC). GCC may no longer
be supported in a future release.

Version 1.6
892

Lumberyard User Guide
Android Debugging

To build your game for Android using the GCC (legacy)

1. In a command line window, navigate to \dev in the directory where you installed Lumberyard.

2. Build various targets of your game:

• To build debug

• On a PC, type: lmbr_waf.bat build_android_armv7_gcc_debug -p all

• On a Mac, type: sh lmbr_waf.sh build_android_armv7_gcc_debug -p all

• To build profile

• On a PC, type: lmbr_waf.bat build_android_armv7_gcc_profile -p all

• On a Mac, type: sh lmbr_waf.sh build_android_armv7_gcc_profile -p all

• To build release

• On a PC, type: lmbr_waf.bat build_android_armv7_gcc_release -p all

• On a Mac, type: sh lmbr_waf.sh build_android_armv7_gcc_release -p all

3. Debug your application. For information, see Android Debugging (p. 893).

Android Debugging

Mobile support is in preview release and is subject to change.

You can debug your Android game using Visual Studio 2015.

To debug your Android game

1. In the Visual Studio 2015 installer, select Cross platform tools for C++ development. Follow the
on-screen instructions to complete the installation.

2. In Visual Studio 2015, click Tools, Options.

3. In the left pane of the Options dialog box, expand Cross Platform, C++, and click Android.

4. Edit the paths to use the correct directories on your computer:

5. Click OK and close Visual Studio 2015.

6. Build a debug version of an .apk file and then relaunch Visual Studio 2015.

Version 1.6
893

Lumberyard User Guide
Deploying Android Games

Note
Before you can use Visual Studio 2015 to run and debug the .apk, you must build your
game assets for Android and then deploy them to the device or bundle them with the
.apk. For information, see Building Game Assets for Android Games (p. 888).

7. In Visual Studio 2015, click File, Open Project/Solution. Locate and select your .apk file
(BinAndroid.Debug\).

8. In the project window, right-click the project and click Properties.

9. Do one of the following:

• If you are using Visual Studio 2015 without any updates, type .CryEngineActivity for
Launch Activity.

• If you are using Visual Studio 2015 with Update 1 or later, verify that the correct activity is
already set for Launch Activity. For the Samples Project, you should see LAUNCHER activity
(com.lumberyard.samples.SamplesProjectActivity).

10. For Additional Symbol Search Paths, type dev/Code and dev/BinAndroid.Debug.

11. Open your code files by pressing Ctrl+O or clicking File, Open.

12. Set breakpoints, if necessary, and then press F5 to run your game.

Deploying Android Games

Mobile support is in preview release and is subject to change.

Before you can deploy your game to Android devices, you must ensure the shader compiler (located in
the \lumberyard\dev\Tools\CrySCompileServer\x64\profile\CrySCompileServer.exe
directory) is running on your PC. For more information, see Building Shaders for Android
Games (p. 890).

You can deploy your game to Android devices using the Resource Compiler.

Once you have deployed your game, see Running Android Games (p. 896).

Version 1.6
894

Lumberyard User Guide
Deploying Android Games

Using the Remote Console to Deploy Your Android Game

You can operate and configure the Lumberyard runtime application using a series of console
commands on your PC. You must connect your PC and Android device to the same network and
configure any firewalls to allow traffic through port 4600.

To deploy your game using the Remote Console

1. Launch the Remote Console application (located in the \lumberyard\dev\Tools
\RemoteConsole\ directory).

2. On the Full Log tab, view the output from the runtime engine's logging system.

3. Start running a Lumberyard application on your Android device.

4. In the Remote Console, click Targets and then type the IP address of the Android device for
Custom IP.

5. (Optional) If your network allows you to assign IP addresses per device so that the IP address is
always fixed to a MAC address, you can edit the params.xml file (located in the same directory
as the application) to add your device to the list of targets:

<Targets>
 <Target name="PC" ip="localhost" port="4600"/>
 <Target name="Android" ip="192.168.5.247" port ="4600"/>
</Targets>

Adding your device to the targets allows you to select from a list of devices instead of entering the
IP address each time.

6. Verify that you see a green connected status in the Remote Console, which indicates the Remote
Console can successfully connect to your Lumberyard application.

Version 1.6
895

Lumberyard User Guide
Running Android Games

7. Issue commands to your application by typing in the text window. The text window supports
autocomplete, and commands like map will detect the available options. Useful commands include:

• cl_DisableHUDText – Disables the heads-up display text.

• g_debug_stats – Enables debugging for gameplay events.

• r_DisplayInfo – Displays rendering information.

• r_ProfileShaders – Displays profiling information for the shaders.

Running Android Games

Mobile support is in preview release and is subject to change.

Before you can run your game on Android devices, you must deploy your game using the Remote
Console. For information, see Deploying Android Games (p. 894).

To run your game on an Android device

1. Launch your game by tapping the icon on your device's home screen. You can also launch your
game from the Visual Studio 2015 debugger.

Note
You can check the Asset Processor to verify a connection from PC-GAME with the es3
platform. Serving files from your PC may impact load time, so it may take time for the
game world to appear.

Version 1.6
896

Lumberyard User Guide
Running Android Games

2. (Optional) Load different levels by editing the SamplesProject\autoexec.cfg file and running
the game again. Android supports the following levels:

• Animation_Basic_Sample

• Camera_Sample (default)

3. Use the following controls to navigate around your game:

• Switch between cameras by selecting the buttons in the lower right corner of the screen.

• Move the robot in the Character Controller view by touching the left side of the screen.

• Look around the Character Controller view by touching the right side of the screen.

• Jump in the Character Controller view by double-tapping anywhere on the screen.

Version 1.6
897

Lumberyard User Guide
Using Virtual File System with Android

4. (Optional) In a command line window, type adb logcat to view logging information for your
game.

Using Virtual File System with Android

Mobile support is in preview release and is subject to change.

The Asset Processor can use the virtual file system (VFS) to serve files to your Android devices over
a USB connection. This method offers the following benefits:

• You can edit game content and data on a PC and view changes on the Android devices.

• You needn't rebuild the Android application package (.apk) file when editing nonvisual data.

• You can iterate much faster.

This topic demonstrates how to set up your PC and Android device to run the Samples Project using
VFS.

Version 1.6
898

Lumberyard User Guide
Using Virtual File System with Android

Before you begin setting up VFS, identify the IP address of the PC running the Asset Processor. You
must provide the IP address during setup.

To set up VFS

1. On your PC, edit the bootstrap.cfg file (located in the \lumberyard\dev directory) to set
remote_filesystem to 1. This notifies the runtime to turn on VFS.

2. Tell the runtime to create a connection over USB by setting the following:

remote_ip=127.0.0.1
android_connect_to_remote=1
connect_to_remote=1
wait_for_connect=0

3. Save your changes and then copy the file to your device using the Android Debug Bridge
command line window: adb push bootstrap.cfg /storage/sdcard0/SamplesProject/
bootstrap.cfg

4. (Optional) To send traffic to the shader compiler through VFS, edit the
system_android_es3.cfg file (located in the \lumberyard\dev directory) to add
r_AssetProcessorShaderCompiler=1.

To enable USB I/O connections to your device

1. Ensure you have built an .apk file so that you can run your game with VFS. For instructions, see
Building Game Assets for Android Games (p. 888).

2. On your PC, edit the AssetProcessorPlatformConfig.ini file (located in the \lumberyard
\dev directory) to add es3=enabled to the [Platforms] section. This enables the Asset
Processor to create data for Android devices.

3. Start the Asset Processor (located in the \lumberyard\dev\Bin64 directory).

4. Install the game on your device by typing the following in an ADB command line window: adb
install -r BinAndroid.Debug\SamplesProject.apk

5. Tell your Android device to send traffic to the Asset Processor by typing the following in an ADB
command line window: adb reverse tcp:45643 tcp:45643

To run the game

• Launch your game by tapping the icon on your device's home screen. You can also launch your
game from the Visual Studio 2015 debugger.

Note
You can check the Asset Processor to verify a connection from PC-GAME with the es3
platform. Serving files from your PC can affect load time, so it may take time for the game
world to appear.

Version 1.6
899

Lumberyard User Guide
Using a Samsung Device with Lumberyard

Using a Samsung Device with Lumberyard
Mobile support is in preview release and is subject to change.

Before you can use a Samsung device to test a Lumberyard game, you must perform additional setup
steps for building and debugging:

• Install Visual Studio 2015 Update 1.

• Navigate to the Property Pages for your .apk file, and clear the Deploy check box in the
Configuration Manager window.

• If you encounter an error that prevents Visual Studio from executing run-as, search the Internet for
ways to address the error, specific to your device.

Using Lumberyard with Android Studio
Mobile support is in preview release and is subject to change.

Android Studio is the integrated development environment (IDE) provided by Google so you can build
applications. The IDE includes editing, debugging, and performance tools, as well as a build and
deploy system.

Prerequisites
To use Lumberyard with Android Studio, you must have the following:

• Lumberyard and the Lumberyard SDK installed

• Your development environment set up

• Basic knowledge of the Lumberyard Waf build system

Version 1.6
900

Lumberyard User Guide
Using Lumberyard with Android Studio

• Lumberyard configured to build Android games

For information, see Android Support (p. 882).

• Android Studio 2.1.x installed

For information, see Android Studio.

Note
We highly recommend using the Canary version of Android Studio 2.2 Preview 1+ to
support the latest version of the Google Experimental Gradle plugin. For information, see
Android Studio Canary Channel.

Topics

• Creating a Lumberyard Project for Android Studio (p. 901)

• Importing Your Lumberyard Project into Android Studio (p. 901)

• Building and Debugging Your Lumberyard Android Application in Android Studio (p. 904)

Creating a Lumberyard Project for Android Studio

Mobile support is in preview release and is subject to change.

You can use a PC or Mac to create your Lumberyard Android Studio project.

To create an Android Studio project

1. In a command line window, navigate to the root of the directory where you installed Lumberyard
(\lumberyard\dev on PC or ~/lumberyard/dev on Mac).

2. Run the following command: lmbr_waf configure

Note
The configure command automatically generates the Android Studio project. To
disable this functionality and manually generate an Android Studio project, edit the
user_settings.options file (located in the \lumberyard\dev_WAF_ directory)
to change the generate_android_studio_projects_automatically option from
True to False. Then run lmbr_waf android_studio or lmbr_waf configure
android_studio (if base projects were not created from a previous configure
command).

3. Verify the Android Studio project was created successfully:

[WAF] Executing 'android_studio' in 'C:\Lumberyard\dev\BinTemp'
[INFO] Created at C:\Lumberyard\dev\Solutions\LumberyardAndroidSDK
[WAF] 'android_studio' finished successfully (1.261s)

Importing Your Lumberyard Project into Android Studio

Mobile support is in preview release and is subject to change.

After you create a Lumberyard project, you can import it into Android Studio.

To import your Lumberyard project into Android Studio

1. Open Android Studio.

Version 1.6
901

https://developer.android.com/studio/index.html
http://tools.android.com/download/studio/canary

Lumberyard User Guide
Using Lumberyard with Android Studio

2. On the Welcome to Android Studio screen, click Import project (Eclipse ADT, Gradle, etc.).

3. Locate the Android Studio project that was created when you ran the lmbr_waf configure
command. The default location is \lumberyard\dev\Solutions\LumberyardAndroidSDK.

4. In the Gradle Sync dialog box indicating that Gradle settings are not configured for this project,
click OK.

5. When the project has been imported and opens, do the following:

• Click Project to view the project source view pane.

Version 1.6
902

Lumberyard User Guide
Using Lumberyard with Android Studio

• Click Build Variants to view the build targets and change the build configuration for your
target project. This impacts the FeatureTestsLauncher, MultiplayerProjectLauncher, and
SamplesProjectLauncher only. The build configuration for all other targets during the build
process is ignored.

• Click Android Monitor to view the logcat and system monitors as well as CPU/GPU, memory,
and network usage.

Version 1.6
903

Lumberyard User Guide
Using Lumberyard with Android Studio

• Click Gradle Console to view the build output.

Building and Debugging Your Lumberyard Android Application
in Android Studio

Mobile support is in preview release and is subject to change.

After your Lumberyard project is imported, you can build and debug it using Android Studio.

To run and debug your application in Android Studio

1. In Android Studio, select a game project to debug from the target list in the menu bar.

The prepopulated list of targets vary depending on the Android Studio version.

The Stable version might display the following:

• SamplesProjectLauncher

• FeatureTestsLauncher

• MultiplayerProjectLauncher

• FeatureTestsLauncher-native

• MultiplayerProjectLauncher-native

• SamplesProjectLauncher-native
Version 1.6

904

Lumberyard User Guide
iOS Support

The Canary version might display the following:

• SamplesProjectLauncher

• FeatureTestsLauncher

• MultiplayerProjectLauncher

For Stable versions of Android Studio 2.1.x, select the target with the -native suffix in order to
debug native code.

2. Set your native break points.

3. Connect your Android device to your computer.

4. In Android Studio, click Debug target.

5. In the Select Deployment Target dialog box, select your device and click OK.

Note
Lumberyard does not support Android emulators. If you do not see your physical device,
click Cancel and run adb kill-server in the terminal pane in Android Studio. Then
attempt another run/debug build.

6. Android Studio will build the project, launch the application, and connect to the debugger.

7. You can also do the following from the menu bar:

• Click Make project to build all targets in the project, minus the APK packaging step.

• Click Select target to run the selected game project (if multiple game projects are enabled).

• Click Run target to run the selected game project with application-specific monitoring on the
Android Monitor tab.

• Click Debug target to run the selected game project with the Android Studio debugger attached.

iOS Support
Mobile support is in preview release and is subject to change.

You can use Lumberyard to build your games for iOS devices that use the A8 GPUs, including iPhone
6s, iPhone 6s Plus, iPad Air 2, and iPad Pro. In addition, GMEM and Metal support enables you to use

Version 1.6
905

Lumberyard User Guide
Prerequisites

Lumberyard to create high fidelity visuals by talking directly to the hardware, using the latest rendering
techniques, and pushing more data to the GPU.

Lumberyard includes four iOS-supported sample projects that you can use to learn how to build assets
for iOS games using the Asset Processor, build shaders using the remote shader compiler, and build
and deploy iOS applications using the Lumberyard build tools.

Prerequisites
To build games for iOS, Lumberyard requires the following on your Mac:

• Xcode 7.1 or later

• iOS v9.0 SDK or later

• Lumberyard Mac Support Files

Note
Lumberyard Editor requires Windows 7 or later to edit levels and build game assets. You must
have access to a PC with Lumberyard installed and be able to navigate and run commands
from Terminal on your Mac.

Setting Up Your Mac
Download and extract Lumberyard on your Mac using the Lumberyard OS X Support Files download.
This contains all the source code and tools you need to build your iOS game. Then run the Lumberyard
Setup Assistant to install the third-party software that is required to run the game and compile the
game and engine code for iOS devices.

To run Lumberyard Setup Assistant

1. In a terminal window, navigate to the Bin64 folder in the directory where you installed
Lumberyard.

2. Run Lumberyard Setup Assistant by double-clicking the app in the Finder or by running the
SetupAssistant.app from the command line.

3. In Lumberyard Setup Assistant, on the Get started page, select Compile for iOS devices,
Compile the Game Code, and Compile the Engine and Asset Pipeline. Click Next.

4. Follow the instructions onscreen to complete the installations for any third-party software or
SDKs that you need. For more information about using Lumberyard Setup Assistant, see Using
Lumberyard Setup Assistant to Set Up Your Development Environment (p. 14).

5. Open a command line window and navigate to your Lumberyard dev directory.

6. To initialize the build system, run the following command: sh lmbr_waf.sh configure

Topics

• Building Game Assets for iOS Games (p. 907)

• Building Shaders for iOS Games (p. 908)

• Building and Deploying iOS Games (p. 909)

• iOS Debugging and Troubleshooting (p. 912)

• Creating iOS Games (p. 913)

• Preparing Lumberyard iOS Games for Distribution (p. 914)

• Using Virtual File System with iOS (p. 914)

Version 1.6
906

https://developer.apple.com/xcode/download/
https://aws.amazon.com/lumberyard/downloads/
https://aws.amazon.com/lumberyard/downloads/

Lumberyard User Guide
Building Game Assets for iOS Games

Building Game Assets for iOS Games
Mobile support is in preview release and is subject to change.

When you build an iOS game using Lumberyard, you must first build the assets that are included with
the application. All built assets are located in the cache folder of your Lumberyard installation. For
example, when you build the Samples Project, the assets are saved to the \lumberyard\dev\cache
\SamplesProject\ios directory. The initial build of the Samples Project assets may take up to an
hour to process, but incremental changes should process almost instantly.

Lumberyard Editor requires Windows 7 or later to edit levels and build game assets. You must have
access to a PC with Lumberyard installed.

To build iOS game assets on your PC

1. On your PC, close all instances of Lumberyard Editor and the Asset Processor.

2. Edit the bootstrap.cfg file (located in the \lumberyard\dev directory) to set
sys_game_folder to SamplesProject (or the project you want to build). Save the file.

3. Edit the AssetProcessorPlatformConfig.ini file (located in the \lumberyard\dev
directory) to uncomment ios=enabled. Save the file.

4. Open Lumberyard Editor, which automatically launches the Asset Processor to process and build
your game assets as you make changes to your game levels in Lumberyard Editor.

Note
You can also launch the Asset Processor (GUI or batch version) from the \lumberyard
\dev\Bin64 directory.

Sharing Game Assets Between PCs and Macs
After you build the assets to include with your iOS application, you can share the cache folder
between your PC and Mac. This ensures that changes you make in Lumberyard Editor on your PC are
automatically retrieved by OS X.

To set up asset sharing on your PC

1. Navigate to the \dev folder in the directory where you installed Lumberyard.

2. Right-click the cache folder and click Properties.

3. In the cache Properties dialog box, on the Sharing tab, click Advanced Sharing. You must have
administrator privileges.

4. In the Advanced Sharing dialog box, select Share this folder. Click OK.

5. (Optional) Click Permissions to set permissions for specific users. This step is required if you
want to modify the shared assets on your Mac.

To view shared assets on your Mac

1. In the Finder, click Go, Connect to Server.

2. For the Server Address, type smb://IP address or DNS name of PC/Cache

3. Click Connect.

4. (Optional) Configure your system preferences to automatically connect to the shared folder when
OS X starts:

a. Open System Preferences, Users & Groups, Login Items.

b. In the Login Items dialog box, click + to add a new login.

Version 1.6
907

Lumberyard User Guide
Building Shaders for iOS Games

c. In the Shared pane, locate and select your PC. In the right pane, select your shared cache
folder and click Add.

5. In a Terminal window, navigate to the \dev folder in the directory where you installed Lumberyard.

6. To create a symbolic link to the shared cache folder, type: sudo ln –s /Volumes/Cache
Cache

If prompted, type the password for your OS X login.

Building Shaders for iOS Games

Mobile support is in preview release and is subject to change.

Lumberyard uses a versatile shader system to achieve high quality, realistic graphics. Because the
shader compilation pipeline depends on the Windows-specific HLSL optimizer, you must connect to
a shader compiler on your PC when running a game on iOS during development. This compiles the
subset of shaders required by your game, on demand.

Note
You must connect your PC and iOS device to the same network and configure any firewalls to
allow traffic through port 61453.

When a new shader is compiled, the game waits for the binary shader permutation to compile on your
PC and be sent back to your device. Once this occurs, the shader is cached on your device until you
delete the app. When you are ready to release your game, you must pack up and include all cached
binary shaders.

To build the shader compiler (if not already done)

In a command line window, change to the \lumberyard\dev directory and type: lmbr_waf.bat
build_win_x64_profile -p all --targets=CrySCompileServer

You must also set up the mobile device system CFG file (system_ios_ios.cfg) to connect to the
remote shader compiler on the PC.

To run the shader compiler on your PC

1. Edit the system_ios_ios.cfg file (located in the \lumberyard\dev directory) to set the
localhost for r_ShaderCompilerServer to the IP address of the PC on which you will run the
shader compiler.

2. Launch the Asset Processor if it is not still running.

3. Verify that you are sharing the cache folder between your PC and Mac by checking the
corresponding cache file (located in the \lumberyard\dev\cache\SamplesProject\ios
\system_ios_ios.cfg directory).

To generate and retrieve shaders for your iOS game

1. Build, deploy, and run your game on an iOS device. For information, see Building and Deploying
iOS Games (p. 909)

2. In your game, explore every area in every level to ensure that all shader permutations required for
the game are generated. Exit the game when you are finished.

3. In Xcode, click Window, Devices.

4. In the Devices window, click the settings wheel and select Download Container.

5. In the Finder, locate and right-click the container package for your project (.xcappdata file).
Select Show Package Contents.

Version 1.6
908

Lumberyard User Guide
Building and Deploying iOS Games

6. Copy the shaders folder from the \AppData\Documents directory on your Mac to the Cache
\game project name\ios\user directory at the root of your Lumberyard installation
(\lumberyard\dev) on your PC.

Building Shader .Pak Files

You can use a command line prompt and batch file to build a .pak file that includes your shaders.

To build a shader .pak file

1. In a command line window, navigate to the dev directory of your build and locate the
BuildShaderPak_Metal.bat file.

2. To use the BuildShaderPak_Metal.bat file, provide a command line argument for the shader
type (for example, gmem128 or gmem256) and the game project name for which to build the
shaders: BuildShaderPak_Metal.bat Shader Type Game Project Name

For example, to build the shaders for the Samples Project, type the following in a command line
window: BuildShaderPak_METAL.bat gmem256 SamplesProject

You can derive the shader type from the name of the folder for the files retrieved from the device.
For example, gmem256 is the shader type for the following directory: \lumberyard\dev\Cache
\game project\ios\user\cache\shaders\cache\metal\gmem256.

Deploying Shader .Pak Files

When the batch file finishes building the shader PAK file for your game project, you will find the
following in the \Build\Platform\Game Project Name\Platform directory at the root of your
Lumberyard installation (\lumberyard\dev):

• ShaderCache.pak – Contains all compiled shaders that are used only when the shader cannot be
found in the current level's shader cache.

• ShaderCacheStartup.pak – Contains a subset of compiled shaders that are required for
accelerating the startup time of the engine.

To enable your game to run the shaders from the PAK files

1. Do one of the following:

a. Rename the ShaderCache.pak file to shaders.pak. Copy the PAK files to the cache
\game project name\ios\game project name directory at the root of your Lumberyard
installation (\lumberyard\dev). When you run your game, it will attempt to load the shaders
from the Shaders.pak file.

b. Copy the shaders*.pak files to the cache\game project name\ios\game project
name directory at the root of your Lumberyard installation (\lumberyard\dev). Update the
ios.cfg file to set r_ShadersPreactivate to 3. This preloads the game with the shaders
from the ShaderCache.pak file, and the shaders remain in memory until you exit the game.

2. When the shader PAK files are in the correct cache location, you can deploy the assets to the
device. The game will use the shaders and will only connect to the remote shader compiler if it
cannot find a shader.

Building and Deploying iOS Games

Mobile support is in preview release and is subject to change.

Version 1.6
909

Lumberyard User Guide
Building and Deploying iOS Games

Before you can deploy your games to iOS devices, you must ensure the shader compiler (located in
the \lumberyard\dev\Tools\CrySCompileServer\x64\profile\CrySCompileServer.exe
directory) is running on your PC. For more information, see Building Shaders for iOS Games (p. 908).

To build your game for iOS

1. In a Terminal window, navigate to the \dev folder in the directory where you installed Lumberyard.

2. To generate an Xcode project and prepare the Lumberyard build system to build your iOS app,
type: sh lmbr_waf.sh configure

3. Build various targets of your game:

• To build debug, type: sh lmbr_waf.sh build_ios_debug -p all

• To build profile, type: sh lmbr_waf.sh build_ios_profile -p all

• To build release, type: sh lmbr_waf.sh build_ios_release -p all

4. Alternatively, build your game with Xcode by using the generated solution located in the
Solutions folder in the directory where you installed Lumberyard.

To deploy your game to an iOS device

1. Open the Xcode solution that you generated (located in the Solutions folder in the directory
where you installed Lumberyard).

2. (Recommended) Disable Metal API validation in the Lumberyard Xcode solution by doing the
following:

a. Navigate to Product, Scheme, Edit Scheme.

b. On the Options tab, select Disabled from the drop-down list for Metal API Validation.

Unless specifically needed, we recommend disabling Metal API validation.

3. Build, run, and debug your application on an iOS device as you would any Xcode project. For
information, see Launching Your App on Devices.

Version 1.6
910

https://developer.apple.com/library/mac/documentation/IDEs/Conceptual/AppDistributionGuide/LaunchingYourApponDevices/LaunchingYourApponDevices.html

Lumberyard User Guide
Building and Deploying iOS Games

Note
The simulator is not supported. In order to deploy, run, or debug your application, you
must use a physical device running iOS 9 or later that is connected through USB to your
Mac. You can build without a physical device connected.

4. (Optional) Load different levels by editing the SamplesProject\autoexec.cfg file and running
the game from Xcode again. iOS supports the following levels:

• Animation_Basic_Sample

• Camera_Sample (default)

• Movers_Sample

• Trigger_Sample

5. Use the following controls to navigate around your game:

• Switch between cameras by selecting the buttons in the lower right corner of the screen.

• Move the robot in the Character Controller view by touching the left side of the screen.

• Look around the Character Controller view by touching the right side of the screen.

• Jump in the Character Controller view by double-tapping anywhere on the screen.

Version 1.6
911

Lumberyard User Guide
iOS Debugging and Troubleshooting

iOS Debugging and Troubleshooting

Mobile support is in preview release and is subject to change.

Lumberyard provides full access to the source code, which allows you to debug your iOS application
using Xcode without additional Lumberyard-specific steps to follow. For information about debugging
and profiling your iOS application, see Debugging in the official Apple developer documentation.

Unable to see activity in the shader compiler window

You must connect to the shader compiler on your PC in order to compile the subset of shaders
required by your game, on demand. To verify that your app has connected correctly and obtained all
shaders, you can view the output in the shader compiler window. If you still do not see any activity
in the window, please check your setup by following the instructions on the Building Shaders for iOS
Games (p. 908) page.

Assets appear out of date on iOS devices

Version 1.6
912

https://developer.apple.com/support/debugging/

Lumberyard User Guide
Creating iOS Games

When you make and save changes to your project in Lumberyard Editor, these changes are
automatically reflected on your iOS device the next time you deploy. Ensure you have set up your
cache folder to share between your PC and Mac. If you encounter Xcode errors when deploying
to your iOS devices or your assets appear out of date on the iOS devices, you can try cleaning
your product from Xcode (click Product, Clean), which clears the .app package built to BinIos or
BinIos.Debug (debug builds) in the directory where you installed Lumberyard.

Switching projects and enabling iOS assets results in errors

If Lumberyard Editor and/or the Asset Processor are running, you may encounter errors when
switching projects by modifying sys_game_folder in the bootstrap.cfg file or when enabling
iOS assets to build by modifying the AssetProcessorPlatformConfig.ini file. We recommend
that you close all running instances of Lumberyard Editor and the Asset Processor before switching
projects or enabling iOS assets using these methods. The Asset Processor continues to run in the
background, even after closing, so you can right-click AssetProcessor_tmp.exe in Windows Task
Manager and click End Process Tree.

Cleaning the project does not create a full rebuild of the iOS application

Lumberyard uses a custom build step to generate the final executable and temporary C++ object files,
which output to the \BinTemp\ios_debug or \BinTemp\ios_profile directory where you installed
Lumberyard. Unlike a regular Xcode project, in order to create a full rebuild of the iOS application, you
must manually delete the contents of the output folder or run one of the following Waf commands from
a Terminal window:

• To build debug, type: lmbr_waf.sh clean_ios_debug

• To build profile, type: lmbr_waf.sh clean_ios_profile

• To build release, type: lmbr_waf.sh clean_ios_release

Observed frame rate varies greatly

While running your iOS application, the observable frame rate can vary depending on the build
(debug or profile) you are running, whether you are connected to the Xcode debugger, and whether
Metal API validation is enabled. To display the frame rate in the upper right corner of the screen, set
the r_DisplayInfo configuration variable to 1 or higher. When your Xcode project is generated,
the default build scheme is set up for debugging. If you want to test or profile your application's
speed, we recommend that you edit your active scheme to run a profile build. Deselect Debug
executable and disable Metal API Validation. Additionally, set the target resolution using the
r_WidthAndHeightAsFractionOfScreenSize console variable or the r_width and r_height
console variables in the system_ios_ios.cfg file. The default value is 1; however, you can lower
the target render resolution to help improve performance. If the target render resolution is lower than
the default (native device resolution), Lumberyard uses an anti-aliasing algorithm to help maintain the
same level of visual quality as the native resolution.

Creating iOS Games

Mobile support is in preview release and is subject to change.

The topics in iOS Support (p. 905) demonstrate how to use the Samples Project that is included with
Lumberyard to build game assets, shaders, and iOS applications. You can follow the same instructions
to create your own game for iOS devices.

Note
Ensure you have the prerequisites (see iOS Support (p. 905) and your Mac is properly set
up to compile for iOS devices.

Version 1.6
913

https://developer.apple.com/library/mac/recipes/xcode_help-scheme_editor/Articles/SchemeDialog.html

Lumberyard User Guide
Preparing Lumberyard iOS Games for Distribution

To create your iOS game

1. On your PC, use the Project Configurator to create a new project. For information, see Project
Configurator (p. 985).

2. Submit the new project into your revision control system and then check out the project onto your
Mac.

3. Edit the user_settings.options file (located in the \lumberyard\dev_WAF_ directory) to
set enabled_game_projects to the name of the project you created:

[Game Projects]
enabled_game_projects = MyProject

You can simultaneously build multiple projects by separating each project name with a comma:

[Game Projects]
enabled_game_projects = SamplesProject,MyProject,OtherProject

4. In a command line window, configure and build your project using the instructions on the Building
and Deploying iOS Games (p. 909) page.

Note
If you enabled multiple projects, you can switch between multiple targets in your Xcode
project.

Preparing Lumberyard iOS Games for Distribution

Mobile support is in preview release and is subject to change.

Once you have finished your Lumberyard iOS game, you can prepare it for store deployment
by including the cached binary shaders (for information, see Building Shaders for iOS
Games (p. 908)) and editing the Info.plist file (located in the \lumberyard\dev\Code
\project name\Resources\IOSLauncher directory) to use your project's settings:

• Display name

• App icon

• Splash screen

• Screen orientation

• Other related settings

Note
Ensure the Info.plist file is writeable before you make changes to your project settings.

Lumberyard provides default values in the Info.plist file as well as default app icons and splash
screens in the Images.xcassets folder. For more information, see the Lumberyard Logos and
Branding Guidelines.

For information about setting these values in the Xcode solution, see Configuring Your Xcode Project
for Distribution.

Using Virtual File System with iOS

Mobile support is in preview release and is subject to change.

Version 1.6
914

https://aws.amazon.com/lumberyard/support/
https://aws.amazon.com/lumberyard/support/
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html

Lumberyard User Guide
Using Virtual File System with iOS

The Asset Processor can use the virtual file system (VFS) to serve files to your iOS devices over a
USB connection. This method offers the following benefits:

• You can edit game content and data on a PC and view changes on the iOS devices.

• You needn't rebuild the game when editing nonvisual data.

• You can iterate much faster.

This topic demonstrates how to set up your PC and iOS device to run the Samples Project using VFS.

Prerequisites

Before you can use the VFS with iOS, you must do the following:

• Download the usbmuxconnect package and save to a location on your Mac.

• Familiarize yourself with command line instructions so you can build the Asset Processor
application on your Mac.

• Share the cache folder for your game assets between your Mac and PC. For instructions, see
Sharing Game Assets Between PCs and Macs (p. 907).

To build the Asset Processor on your Mac

• In a command line window, navigate to the \lumberyard\dev directory and type: lmbr_waf.sh
-p all build_darwin_x64_profile -targets=AssetProcessor

To set up VFS and connect your game to the Asset Processor

1. On your PC, do the following:

a. Edit the AssetProcessorPlatformConfig.ini file (located in the \lumberyard\dev
directory) to enable asset processing for iOS:

[Platforms]
pc=enabled
;es3=enabled
ios=enabled

b. Start the Asset Processor (located in the \lumberyard\dev\Bin64 directory) and
the shader compiler (located in the \lumberyard\dev\Tools\CrySShaderCompiler
\x64\profile directory).

c. Edit the bootstrap.cfg file (located in the \lumberyard\dev directory) to set the
following:

remote_filesystem=1
ios_connect_to_remote=0
ios_wait_for_connect=1

d. Edit the system_ios_ios.cfg file (located in the \lumberyard\dev directory) to set
r_AssetProcessorShaderCompiler to 1.

2. On your Mac, do the following:

a. Start the Asset Processor and type the IP address and port of the PC that is running the
Asset Processor. Use the format IP address:Port. For example, if your IP address is
10.11.12.13 and you are using the default port, you would type 10.11.12.13:45643.

b. On the Connection tab, click Add Connection and then select the Auto Connect check box.

Version 1.6
915

https://sourceforge.net/projects/appletools/

Lumberyard User Guide
Design Considerations for Creating
Mobile Games Using Lumberyard

To run the game

1. On your Mac, build and launch your game for iOS with Xcode. For instructions, see Building and
Deploying iOS Games (p. 909). Allow the game to run for a few minutes.

2. In a command line window, navigate to the location where you saved the usbmuxconnect
package and type: itnl --iport 22229 --lport 22229

Note
If the device cannot be reached, stop the game, disconnect and then reconnect the
device, and start again from step 1.

3. Verify that you see a connection for the iOS platform in the Asset Processor on your PC.

Design Considerations for Creating Mobile Games
Using Lumberyard

Mobile support is in preview release and is subject to change.

Lumberyard is a cross-platform game engine, which allows you to develop your game with less
concern about the release platform(s). However, some mobile development considerations are
discussed below, including game logic, input, and application lifecycle.

Input
You may need to consider the various physical input devices when you design your game. Lumberyard
provides support for the following input devices for iOS and Android:

• Touch screens

• Motion sensors

Touch

You can use the TouchEvent node (located under Input, Touch) in the Flow Graph Editor to script
touch-specific input.

You can also script touch input using more advanced flow nodes:

• MultiTouchCoords – Outputs touch events from the specified ID (finger)

• MultiTouchEvent – Returns touch location information.

• TouchRayCast – Generates a ray cast for every frame.

• VirtualThumbstick – Implements a virtual thumbstick.

For more information about using flow graph nodes, see Flow Graph System (p. 487).

Version 1.6
916

Lumberyard User Guide
Game Logic

If you have created your game logic to use mouse-based input, Lumberyard provides a way to
emulate mouse events using the primary touch on mobile devices. To enable the ability to emulate
mouse events, set s_SimulateMouseEventsWithPrimaryTouch to 1. To support multi-touch
input logic and prevent emulated mouse events from being generated alongside touch events, set
s_SimulateMouseEventsWithPrimaryTouch to 0.

Gestures

Lumberyard provides a Gestures Gem (in the Project Configurator) that allows you to script input in
the Flow Graph Editor using flow nodes (located under Input, Gestures) that detect common gesture-
based input actions, including:

• Tap (or click, single-touch)

• Drag (or pan, single-touch)

• Hold (or press, single-touch)

• Swipe (single-touch)

• Pinch (multi-touch)

• Rotate (multi-touch)

Gestures that require only a single touch to be recognized (Tap, Drag, Hold, and Swipe) function the
same when using mouse input on PC. Multi-touch gestures (Pinch and Rotate) can only be recognized
through multiple, simultaneous touches.

Motion Sensors

You can use a range of MotionSensor nodes in the Flow Graph Editor to return motion sensor data
generated by mobile devices from the accelerometer, gyroscope, and magnetometer. Each flow node
returns a vector (or quaternion for orientation) for the device's:

• Acceleration – Raw, user-generated, or gravity

• Rotation – Raw or unbiased

• Magnetic Field – Raw, unbiased, or magnetic north

• Orientation – Absolute or difference from the previous reading

Game Logic
You can use the CheckPlatform node in the Flow Graph Editor to modify your game logic by
branching your logic based on the current platform.

Version 1.6
917

Lumberyard User Guide
Application Lifecycle

You can also use the AZ_PLATFORM_* #defines in C++ to explicitly include or exclude code for
compilation based on specific platforms. Or you can include entire files for compilation for a specific
platform by listing the files in a separate .waf_files file.

For example, Code\Framework\AzFramework\AzFramework\API\ApplicationAPI_ios.h is
only listed in Code\Framework\AzFramework\AzFramework\azframework_ios.waf_files,
which is referenced exclusively for iOS in:

Code\Framework\AzFramework\AzFramework\wscript
ios_file_list = ['azframework_ios.waf_files'],

Application Lifecycle
Lumberyard provides a Process Life Management Gem (in the Project Configurator) that shows how
you can respond to various application lifecycle events in order to pause your game, display a modal
splash screen, and any other actions that need to occur if your application loses focus. You can access
system-specific events in C++ by connecting to the appropriate EBus; however, Lumberyard also
generates platform-agnostic events that you can use for all supported platforms.

Lumberyard Application
Lifecycle Events

iOS Android

OnApplicationConstrained applicationWillResignActive onPause()

OnApplicationUnconstrained applicationDidBecomeActive onResume()

OnApplicationSuspended applicationDidEnterBackground onPause()

OnApplicationResumed applicationWillEnterForeground onResume()

OnMobileApplicationWillTerminateapplicationWillTerminate onDestroy()

OnMobileApplicationLowMemoryWarningapplicationDidReceiveMemoryWarningonLowMemory()

To receive process lifecycle events in your game

1. Derive your class from AzFramework::ApplicationLifecycleEvents::Bus::Handler (or
AzFramework::[Ios|Android|Windows]LifecycleEvents::Bus::Handler for platform-
specific events).

2. Override the functions corresponding to the events you wish to override:

void OnApplicationConstrained(Event /*lastEvent*/) override;
void OnApplicationUnconstrained(Event /*lastEvent*/) override;

void OnApplicationSuspended(Event /*lastEvent*/) override;
void OnApplicationResumed(Event /*lastEvent*/) override

3. Connect to the event bus when you want to start listening for events (be sure to also disconnect
when you no longer wish to receive them):

Version 1.6
918

https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/TheAppLifeCycle/TheAppLifeCycle.html
http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html#//apple_ref/occ/intfm/UIApplicationDelegate/applicationWillResignActive:
http://developer.android.com/reference/android/app/Activity.html#onPause()
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html#//apple_ref/occ/intfm/UIApplicationDelegate/applicationDidBecomeActive:
http://developer.android.com/reference/android/app/Activity.html#onStart()
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html#//apple_ref/occ/intfm/UIApplicationDelegate/applicationDidEnterBackground:
http://developer.android.com/reference/android/app/Activity.html#onPause()
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html#//apple_ref/occ/intfm/UIApplicationDelegate/applicationWillEnterForeground:
http://developer.android.com/reference/android/app/Activity.html#onStart()
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html#//apple_ref/occ/intfm/UIApplicationDelegate/applicationWillTerminate:
http://developer.android.com/reference/android/app/Activity.html#onDestroy()
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html#//apple_ref/occ/intfm/UIApplicationDelegate/applicationDidReceiveMemoryWarning:
http://developer.android.com/reference/android/content/ComponentCallbacks.html#onLowMemory()

Lumberyard User Guide
Adding IP Addresses to Allow Access to

the Asset Processor and Remote Console

ApplicationLifecycleEvents::Bus::Handler::BusConnect();
…
ApplicationLifecycleEvents::Bus::Handler::BusDisconnect();

For a complete example of how to subscribe and respond to application events, see the Gems
\ProcessLifeManagement\Code\Source\ProcessLifeManagementGem.h\.cpp directory.

Adding IP Addresses to Allow Access to the Asset
Processor and Remote Console

Mobile support is in preview release and is subject to change.

The Asset Processor is a networked application that Lumberyard uses to build source assets into game
engine ready assets. To ensure your external device can connect to the Asset Processor, you must
add the IP address of the external device (Android or iOS) to the white_list in the bootstrap.cfg file
(located in the \lumberyard\dev directory).

The Universal Remote Console is a networked application that Lumberyard uses to send commands
and view output from the running game engine. To ensure remote console access to a running game
instance on your external device, you must add the IP address of the computer that will run the remote
console to the log_RemoteConsoleAllowedAddresses list in the appropriate configuration file
(located in the \lumberyard\dev directory):

• Android – system_android_es3.cfg

• iOS – system_ios_ios.cfg

You must update the configuration file to include the allowed IP addresses before you deploy your
game to the external device.

Version 1.6
919

Lumberyard User Guide
Prerequisites

OS X Support

OS X support is in preview release and is subject to change.

You can use Lumberyard to build OS X applications. Lumberyard includes four OS X-supported
sample projects that you can use to learn how to build assets for OS X games using the Asset
Processor, build shaders using the remote shader compiler, and build and deploy OS X applications
using the Lumberyard build tools.

Prerequisites
To build games for iOS, Lumberyard requires the following on your Mac:

• Xcode 7.1 or later

• OS X Yosemite or OS X El Capitan

Note
Lumberyard Editor requires Windows 7 or later to edit levels and build game assets. You must
have access to a PC with Lumberyard installed and be able to navigate and run commands
from Terminal on your Mac.

Setting Up Your Mac
After you download and extract Lumberyard on your Mac, you must run Lumberyard Setup Assistant to
install the third-party software that is required to run the game and compile the game code, engine, and
asset pipeline.

To run Lumberyard Setup Assistant

1. Open the directory where you extracted Lumberyard and navigate to the Bin64 directory. Run
SetupAssistant.app.

2. Verify that the engine root path is correct.

3. On the Get started page, select the following and then click Next:

• Run your game project

Version 1.6
920

https://developer.apple.com/xcode/download/

Lumberyard User Guide
Building Game Assets for OS X Games

• Compile the engine and asset pipeline

Note
The resource compiler and other asset pipeline tools will not compile because they are
not currently supported on OS X.

• Compile the game code

4. Follow the instructions onscreen to complete the installations for any third-party software or
SDKs that you need. For more information about using Lumberyard Setup Assistant, see Using
Lumberyard Setup Assistant to Set Up Your Development Environment (p. 14).

5. Open a command line window and navigate to your Lumberyard dev directory.

6. To initialize the build system, run the following command: sh lmbr_waf.sh configure

7. In the Finder, open the user_settings.options file (located in the \lumberyard\dev_WAF_
\ directory).

8. Verify that enabled_game_projects is set to your game project. For example, you can set this
option to SamplesProject. If enabled_game_projects is not set correctly, edit and save the
user_settings.options file and then run the configure command (sh lmbr_waf.sh
configure) again.

Topics

• Building Game Assets for OS X Games (p. 921)

• Building Shaders for OS X Games (p. 922)

• Building and Deploying OS X Games (p. 923)

• OS X Debugging and Troubleshooting (p. 925)

• Creating OS X Games (p. 926)

Building Game Assets for OS X Games
OS X support is in preview release and is subject to change.

When you build an OS X game using Lumberyard, you must first build the assets that are included
with the application. All built assets are located in the cache folder of your Lumberyard installation. For
example, when you build the Samples Project, the assets are saved to the \lumberyard\dev\cache
\SamplesProject\osx_gl directory. The initial build of the Samples Project assets may take up to
an hour to process, but incremental changes should process almost instantly.

Lumberyard Editor requires Windows 7 or later to edit levels and build game assets. You must have
access to a PC with Lumberyard installed.

To build OS X game assets on your PC

1. On your PC, close all instances of Lumberyard Editor and the Asset Processor.

2. Edit the bootstrap.cfg file (located in the \lumberyard\dev directory) to set
sys_game_folder to SamplesProject (or the project you want to build). Save the file.

3. Edit the AssetProcessorPlatformConfig.ini file (located in the \lumberyard\dev
directory) to uncomment osx_gl=enabled. Save the file.

4. Open Lumberyard Editor, which automatically launches the Asset Processor to process and build
your game assets as you make changes to your game levels in Lumberyard Editor.

Note
You can also launch the Asset Processor (GUI or batch version) from the \lumberyard
\dev\Bin64 directory.

Version 1.6
921

Lumberyard User Guide
Sharing Game Assets Between PCs and Macs

Sharing Game Assets Between PCs and Macs
After you build the assets to include with your OS X application, you can share the cache folder
between your PC and Mac. This ensures that changes you make in Lumberyard Editor on your PC are
automatically retrieved by OS X.

To set up asset sharing on your PC

1. Navigate to the \dev folder in the directory where you installed Lumberyard.

2. Right-click the cache folder and click Properties.

3. In the Cache Properties dialog box, on the Sharing tab, click Advanced Sharing. You must have
administrator privileges.

4. In the Advanced Sharing dialog box, select Share this folder. Click OK.

5. (Optional) Click Permissions to set permissions for specific users. This step is required if you
want to modify the shared assets on your Mac.

To view shared assets on your Mac

1. In the Finder, click Go, Connect to Server.

2. For the Server Address, type smb://IP address or DNS name of PC/Cache

3. Click Connect.

4. (Optional) Configure your system preferences to automatically connect to the shared folder when
OS X starts:

a. Open System Preferences, Users & Groups, Login Items.

b. In the Login Items dialog box, click + to add a new login.

c. In the Shared pane, locate and select your PC. In the right pane, select your shared cache
folder and click Add.

5. In a Terminal window, navigate to the \dev folder in the directory where you installed Lumberyard.

6. To create a symbolic link to the shared cache folder, type: ln –s /Volumes/Cache Cache

If prompted, type the password for your OS X login.

Building Shaders for OS X Games
OS X support is in preview release and is subject to change.

Lumberyard uses a versatile shader system to achieve high quality, realistic graphics. Because the
shader compilation pipeline depends on the Windows-specific HLSL optimizer, you must connect to
a shader compiler on your PC when running a game on OS X during development. This compiles the
subset of shaders required by your game, on demand.

Note
You must connect your PC and OS X computer to the same network and configure any
firewalls to allow traffic through port 61453.

When a new shader is compiled, the game waits for the binary shader permutation to compile on your
PC and be sent back to your OS X computer. Once this occurs, the shader is cached locally. When you
are ready to release your game, you must pack up and include all cached binary shaders.

To build the shader compiler (if not already done)

Version 1.6
922

Lumberyard User Guide
Building and Deploying OS X Games

On your PC, in a command line window, change to the \lumberyard\dev directory and type:
lmbr_waf.bat build_win_x64_profile -p all --targets=CrySCompileServer

To run the shader compiler on your PC

1. Edit the system_osx_pc.cfg file (located in the root directory of your Lumberyard installation,
\lumberyard\dev) to set the localhost for r_ShaderCompilerServer to the IP address of the
PC on which you will run the shader compiler.

2. Launch the Asset Processor if it is not still running.

3. Verify that you are sharing the cache folder between your PC and Mac by checking the
corresponding cache file (located in the \lumberyard\dev\cache\SamplesProject\ios
\system_osx_pc.cfg directory).

Building and Deploying OS X Games
OS X support is in preview release and is subject to change.

Before you can deploy your games to OS X computers, you must ensure the shader compiler (located
in the \lumberyard\dev\Tools\CrySCompileServer\x64\profile\CrySCompileServer.exe
directory) is running on your PC. For more information, see Building Shaders for OS X
Games (p. 922).

To build your game for OS X

1. On your Mac, in a Terminal window, navigate to the root directory of your Lumberyard installation
(\lumberyard\dev).

2. To generate an Xcode project and prepare the Lumberyard build system to build your app, type:
sh lmbr_waf.sh configure xcode_mac

3. Build various targets of your game:

• To build debug, type: sh lmbr_waf.sh build_darwin_x64_debug -p all

• To build profile, type: sh lmbr_waf.sh build_darwin_x64_profile -p all

• To build release, type: sh lmbr_waf.sh build_darwin_x64_release -p all

4. Alternatively, build your game with Xcode by using the generated solution located in the
Solutions folder in the directory where you installed Lumberyard.

To deploy your game to an OS X computer

1. Open the Xcode solution that you generated (located in the Solutions folder in the directory
where you installed Lumberyard).

2. Build, run, and debug your application as you would any Xcode project. For information, see
Launching Your App on Devices.

Version 1.6
923

https://developer.apple.com/library/mac/documentation/IDEs/Conceptual/AppDistributionGuide/LaunchingYourApponDevices/LaunchingYourApponDevices.html

Lumberyard User Guide
Building and Deploying OS X Games

3. (Optional) Load different levels by editing the SamplesProject\autoexec.cfg file and running
the game from Xcode again. OS X supports the following levels:

• Animation_Basic_Sample

• Camera_Sample (default)

• Movers_Sample

• Trigger_Sample

4. Use the following controls to navigate around your game:

• Switch between cameras by selecting the buttons in the lower right corner of the screen.

• Move the robot in the Character Controller view by using the mouse or keyboard (WASD).

• Jump in the Character Controller view by pressing the Space key.

Version 1.6
924

Lumberyard User Guide
OS X Debugging and Troubleshooting

OS X Debugging and Troubleshooting
OS X support is in preview release and is subject to change.

Lumberyard provides full access to the source code, which allows you to debug your OS X application
using Xcode without additional Lumberyard-specific steps to follow. For information about debugging
and profiling your OS X application, see Debugging in the official Apple developer documentation.

Unable to see activity in the shader compiler window

You must connect to the shader compiler on your PC in order to compile the subset of shaders
required by your game, on demand. To verify that your app has connected correctly and obtained all
shaders, you can view the output in the shader compiler window. If you still do not see any activity in
the window, please check your setup by following the instructions on the Building Shaders for OS X
Games (p. 922) page.

Switching projects and enabling OS X assets results in errors

Version 1.6
925

https://developer.apple.com/support/debugging/

Lumberyard User Guide
Creating OS X Games

If Lumberyard Editor and/or the Asset Processor are running, you may encounter errors when
switching projects by modifying sys_game_folder in the bootstrap.cfg file or when enabling OS
X assets to build by modifying the AssetProcessorPlatformConfig.ini file. We recommend
that you close all running instances of Lumberyard Editor and the Asset Processor before switching
projects or enabling OS X assets using these methods. The Asset Processor continues to run in the
background, even after closing, so you can right-click AssetProcessor_tmp.exe in Windows Task
Manager and click End Process Tree.

Cleaning the project does not create a full rebuild of the OS X application

Lumberyard uses a custom build step to generate the final executable and temporary C++ object files,
which output to the \BinTemp\darwin_x64_debug or \BinTemp\darwin_x64_profile directory
where you installed Lumberyard. Unlike a regular Xcode project, in order to create a full rebuild of the
OS X application, you must manually delete the contents of the output folder or run one of the following
Waf commands from a Terminal window:

• To build debug, type: lmbr_waf.sh clean_darwin_x64_debug

• To build profile, type: lmbr_waf.sh clean_darwin_x64_profile

• To build release, type: lmbr_waf.sh clean_darwin_x64_release

Observed frame rate varies greatly

While running your application, the observable frame rate can vary depending on the build (debug or
profile) you are running and whether you are connected to the Xcode debugger. To display the frame
rate in the upper right corner of the screen, set the r_DisplayInfo configuration variable to 1 or
higher. When your Xcode project is generated, the default build scheme is set up for debugging. If you
want to test or profile your application's speed, we recommend that you edit your active scheme to run
a profile build. Deselect Debug executable.

Creating OS X Games
OS X support is in preview release and is subject to change.

The topics in OS X Support (p. 920) demonstrate how to use the Samples Project that is included
with Lumberyard to build game assets, shaders, and OS X applications. You can follow the same
instructions to create your own game for OS X computers.

Note
Ensure you have the prerequisites (see OS X Support (p. 920) and your Mac is properly set
up to compile for OS X computers.

To create your OS X game

1. On your PC, use the Project Configurator to create a new project. For information, see Project
Configurator (p. 985).

2. Submit the new project into your revision control system and then check out the project onto your
Mac.

3. Edit the user_settings.options file (located in the \lumberyard\dev_WAF_ directory) to
set enabled_game_projects to the name of the project you created:

[Game Projects]
enabled_game_projects = MyProject

You can simultaneously build multiple projects by separating each project name with a comma:

Version 1.6
926

https://developer.apple.com/library/mac/recipes/xcode_help-scheme_editor/Articles/SchemeDialog.html

Lumberyard User Guide
Creating OS X Games

[Game Projects]
enabled_game_projects = SamplesProject,MyProject,OtherProject

4. In a command line window, configure and build your project using the instructions on the Building
and Deploying OS X Games (p. 923) page.

Note
If you enabled multiple projects, you can switch between multiple targets in your Xcode
project.

Version 1.6
927

Lumberyard User Guide

Particle Effects System

Particle Editor is in preview release and is subject to change.

Lumberyard includes an advanced particle effects system that you can use to simulate explosions, fire,
smoke, sparks, water spray, fog, snow, rain and other effects. The Particle Editor is the main tool that
you use to create and manage particles in your game.

You can place emitters in your level, link them to an object, setup a material to define a custom effect,
and control effects using Flow Graph and Track View Editor.

Lumberyard uses two shaders for rendering particles:

• Particles Shader (p. 1019) - Use to render particle effects that are affected by light. These effects
can cast shadows and cause reflections.

• ParticleImposter Shader (p. 1019) - Use to create particle effects that are not affected by light.
These effects do not cast shadows or cause reflections.

You place particle effects emitters in a scene and then you link to an asset or control them using Flow
Graph or Track View Editor.

Topics

• Particles Best Practices (p. 929)

• Using the Particle Editor (p. 929)

• Using the Gradient Editor (p. 932)

• Using Particle Editor Shortcut Keys (p. 933)

• Managing Particle Libraries (p. 934)

• Creating Custom Attribute Panels (p. 937)

• Particle Trails (p. 938)

• GPU Particles (p. 940)

• Particle Level Of Detail (LOD) (p. 947)

• Managing Emitters (p. 950)

• Advanced Particle Techniques (p. 952)

• Particle Entity Parameters and Properties (p. 954)

Version 1.6
928

Lumberyard User Guide
Particles Best Practices

• Particle Attributes and Parameters Reference (p. 956)

• Particle Debugging (p. 980)

Particles Best Practices
Particle Editor is in preview release and is subject to change.

The total number of particles in a scene is actually not a critical factor when considering best practices
for working with particles. Total fill-rate, physics, and to some extent spawn rate are more important.
Following are some best practices for working with particles:

• Use soft particles only on sub-emitters that are near the ground, and have only small particles.
Create similar sub-emitters higher up that emit particles that never intersect the ground, and don't
need soft particles.

• Use low-resolution textures (if sharp details are not required) and use texture compression.

• Use an alpha texture with high average opacity rather than additive blending.

• Each second-generation effect causes an emitter to be created for each particle in the parent effect.
This can be somewhat expensive, so use sparingly.

• Use physicalized particles sparingly because they are expensive. You can split an effect into
subeffects, so that only a few large particles have physics enabled for appearance, and the rest just
go through the ground or fade out quickly.

• Instead of multiple overlaid sprites for chaotic glow effects, use just two particles at a time. Carefully
tune the lifetime, rotation rate, and set curves for Alpha, Color, Size, so that they combine in chaotic
ways. Or, just increase the emissive lighting parameter.

• For large full-screen particles, use a Fill Rate Cost value of 1 or above.

• For small particles, such as sparks, set a maximum distance value to ensure they aren't rendered
as very small, single pixel particles. Turn off small particles used in collisions for the lowest Config
spec setting.

Using the Particle Editor
Particle Editor is in preview release and is subject to change.

You can use Particle Editor to create, edit, preview, manage, and save particle entities. The particle
entity determines the position, angle, scale, and link information with other entities inside the level.

To add a particle entity to your level, simply drag a particle emitter from the Library and drop it into the
viewport in Lumberyard Editor.

To access the Particle Editor from Lumberyard Editor, choose View, Open View Pane, Particle
Editor. Or, choose the particle editor icon from the Lumberyard Editor toolbar. Particle Editor contains
the following:

• Library panel – Lists particle art assets.

• Preview window – Displays the active selected particle effects. The camera is automatically
positioned to capture the particle in its entirety. Click to pan the camera and use the mouse wheel to
control the zoom level.

• Attributes panel – Lists the selected particle and its properties.

Version 1.6
929

Lumberyard User Guide
Using the Particle Editor

The following toolbar menu items and buttons are available in the Particle Editor main window and
Libraries panel:

• Import – Opens the file browser to import the selected particle libraries.

• Save – Saves all modified particle libraries to disk.

• Add library – Adds a new particle library.

• Remove – Right-click the library to remove it from the window. Removes the currently selected
library from memory (it is still available on disk).

• Add Particle – Adds a new particle effect, by default it is a child of the selected particle, folder, or
library. The New Particle Name window opens, where you can set the particle name.

• Add Folder – Adds a folder within the library to organize your effects.

• Duplicate – Duplicates the currently selected particle effect.

• Rename – Renames the currently selected item.

• Reload – Right-click the library to reload saved particles.

• Undo – Undoes the last change.

• Redo – Removes the last undo.

• Copy – Copies all of the settings for the currently selected item to the clipboard.

• Paste – Writes data from the clip board to the currently selected item.

Version 1.6
930

Lumberyard User Guide
Using the Preview Window

• Reset to default – Resets all properties and parameters for the currently selected item to the default
values and states.

• Edit Hotkeys – Opens the Hotkey dialog for editing.

Using the Preview Window
The Preview pane has the following attributes:

• A – Viewport

• B – Main menu

• C – Camera list (choose what you want to see in the viewport)

• D – Toggles the wireframe view of the emitter

• E – Shows the playback timelime

• F – Play, pause, and step forward controls

• G – Resets emitter playback

• H – Loops playback

Customizing the UI
You can dock and float Particle Editor windows, or rearrange the panels to set up your workspace in
different layouts.

All panels are moveable, which are indicated by the drag handle or page tear icon that appears in the
left side of any panel or header bar. This indicates that the panel or window is customizable.

The Particle Editor is customizable in the following manner:

• Floating panels – You can click on the panel header bar and drag the editor to float it separately
from the other panels in the editor. To add it back, drag the panel into the Particle Editor main
window, and when the panel appears highlighted in blue, drop it into the Particle Editor main window.

• Docking panels – You can dock any of the panels along the inside edge of the editor window.
Panels can also be docked along the top or any side of the other panels in the editor.

Version 1.6
931

Lumberyard User Guide
Using the Gradient Editor

• Tabbing panels – To minimize the amount of panels that are seen at one time in the UI, you can
dock a panel inside another one. This causes the two panels to display as tabs. You can toggle the
tabs to display the panel and hide another.

• Resetting Layout – You can reset the layout back to default by choosing View and then choosing
Reset to default. This resets the layout of the Particle Editor with the Library panel on the top left,
the Preview window below, and the Attributes panel to the right.

• Import Layout – You can export and share layouts so that teams only have to customize the setup
once. After you export a layout, you can choose View choose Import layout, and then choose
Browse to find the layout file you want to use.

• Export Layout – After you create a layout, you can export a layout to share with your team by
choosing View, choosing Export layout, and then choose Browse to find the location where you
want to export the layout file.

• Show/Hide Panels – You can customize visible panels by showing or hiding them. To do this,
choose View and then select a panel to show or hide it.

Using the Gradient Editor
Particle Editor is in preview release and is subject to change.

You can use the Gradient Editor to apply color ranges to an emitter. With an emitter selected, in the
Particles attribute, expand the color section to display the additional subparameters.

To access the Gradient editor

1. In the Library, choose an emitter.

2. In the Attributes panel, select Particles, and then expand Color.

3. Choose the Emitter Strength or Particle Age gradient box to open Gradient Editor.

Emitter strength of color provides the variance of the gradient and alpha applied.

The gradient Editor UI includes the following:

Version 1.6
932

Lumberyard User Guide
Working with Color Gradients

• Location – Set location value ranges from 0%-100%

• Color – Select the color thumbnail to open the Color Picker window

• Gradient box – The gradient and alpha combined that is applied

• Gradient viewport:

• X-axis is the gradient generator of the color change over the full gradient

• Y-axis is 0 - 100% alpha of the gradient color

• Default alpha curve library – Provides users with sets of alpha curves to start with

• Default gradient library – Provides users with sets of gradients to start with

Working with Color Gradients
When you select a gradient from Default Library, it displays in the Gradient Editor viewport along with
the alpha curve. You can perform the following actions when selecting a gradient:

• To change a color, click the triangle key frames to engage the color picker to select a new color.

• To add a color to the gradient, double-click the x axis to generate another color key frame. This adds
the selected color in the color thumbnail on top of the UI. Any adjustment to the gradient is displayed
in the gradient output at the top of the UI.

• To display the RGBA values, hover over the color key frame.

• To delete a color key frame, select it, which highlights it orange, then press the Delete key.

• To adjust the alpha curve in the gradient viewport, click on the circle in the viewport, which is the
alpha key frame and drag it up and down to adjust the percent of alpha (up is towards 100% and
down is towards 0%). Dragging left and right adjusts the curve based on the curve endpoints.

• Alpha curve context menu – right-click the alpha curve key frame to display the following actions:

• Delete selected keys

• Create flat or linear curves

• Adjust the in-and-out tangent of the curve to be linear or flat

• Add a created curve to the library or preset list

• Reset the curve to defaults

• To add an alpha key, double-click on the curve.

• To delete an alpha key, select the circle key and press Delete.

• To add the generated alpha curve to the preset list, click the + button.

• To add the generated gradient to the gradient presets list, click the + button.

• To delete a curve or gradient preset, right-click on the gradient or curve and select Remove.

Using Particle Editor Shortcut Keys
Particle Editor is in preview release and is subject to change.

Shortcut keys are available for most of the commands in Particle Editor menus. You can edit them by
choosing Edit, choosing Edit Hotkeys, and then modifying them in the Hotkey Configuration dialog.

Hotkey Configuration Editor

Function Description

Actions • Export: Exports the hotkey list to a file

Version 1.6
933

Lumberyard User Guide
Managing Particle Libraries

Function Description

• Import: Imports a hotkey list from a file

Click to assign Left-click on a shortcut to record a new shortcut; right-click to clear
it. Click OK to save your changes.

Particle Editor supports the following keyboard shortcut keys.

Managing Particle Libraries
Particle Editor is in preview release and is subject to change.

Version 1.6
934

Lumberyard User Guide
Adding Particle Libraries

This section discusses how to add and manage particle libraries using Particle Editor. The following
functionality is supported:

• Multi-library: You can view multiple libraries and interact with them at the same time.

• Multi-selection: Pressing the Ctrl or Shift key allows you to select multiple emitters. The emitters
do not need to be from the same library. The following functionality is supported:

• Copy: Copies the selected items. When pasted, the copied items will become children of the item
they are pasted on if there are multiple items.

• Delete: Deletes all selected emitters.

• Group: If all selected items share the same parent, you can group them together.

In addition, hot keys used with multiple items selected will apply to all selected items.

• Drag and drop: You can add emitters from any number of libraries into a specific library by dragging
and dropping them onto the library's name. You can also drag emitters from within the same library
to a new parent in the library.

• Search: You can type queries into the search field to view live results. Using the drop-down arrows
will display previous search results.

Adding Particle Libraries
All particle effect data is stored in an XML-based library file. To create a new library, do the following:

To add a new particle library

1. In the Particle Editor, choose File and then choose Add Library. Alternatively, you can click the
drop-down arrow to access the same menu or simply click the library icon button.

2. In the highlighted name field, type a name for the library.

3. Choose either Add Particle or Add Folder as applicable, then type a name and click OK.

Importing Particle Libraries
All particle effect data is stored in an XML-based library file. To import a new particle library, do the
following:

To import a particle library

1. In the Particle Editor, choose File, choose Import. In the dialog that appears, select a preexisting
library to load, then click OK. Alternatively, you can click the drop-down arrow to access the menu.

2. In the dialog box that appears, choose the library and then click OK.

Version 1.6
935

Lumberyard User Guide
Exporting Particle Libraries

Exporting Particle Libraries
To export a new particle library, do the following:

To export a particle library

1. In the Particle Editor, right-click on the library name and choose Export.

2. In the dialog box that appears, select a location to save the library at and then click Save.

Using Particle Libraries
The following functionality is supported for managing particle libraries. To access this menu, right-click
on the library name.

Function Description

Add New Add particle: Adds a new emitter to the library. Default hot key is
Ctrl+N

Add folder: Adds a new folder to the library. Default hot key is
Ctrl+Alt+N

Export Saves the library as the selected XML file.

Rename Use to rename the library.

Disable/Enable All Disables or enables all items in the library.

Expand/Collapse All Expands or collapses all branches in the library.

Remove Removes the library.

Reload Reloads the library.

You can also left-click on a library name to collapse or expand the entire library. In doing so, the
contents will not lose their collapse or expand state.

To save changes to a library, choose File, Save.

Version 1.6
936

Lumberyard User Guide
Creating Custom Attribute Panels

Creating Custom Attribute Panels
Particle Editor is in preview release and is subject to change.

You can create your own custom particle attribute panel to allow you to quickly access those
parameters you care about. Custom attribute panels can be created, imported, or selected by right-
clicking the Attributes title bar an selecting Custom attributes.

Custom attribute submenu

Menu item Description

New attribute Adds a new empty custom panel to the Attribute view.

Import attribute Use to load a pre-existing custom attribute panel. This also adds
the panel to the panel preset list.

Panel preset list List of custom panel presets

Reset List Resets the preset list

Once created, custom attribute panels can be renamed, emptied, and exported by right-clicking the
custom panel's title bar.

Menu item Description

Rename Use to rename the custom panel.

Remove all Use to remove all attributes in the panel.

Export Exports the custom panel as the selected .custom_attribute
file. This also will add the panel to the panel preset list.

Close Use to close the custom panel.

Version 1.6
937

Lumberyard User Guide
Particle Trails

You can fill the custom attribute panel by dragging parameters into the panel. Dragging from
an existing standard panel will copy the parameter onto the custom panel. In contrast, dragging
a parameter from a custom panel will move the parameter to the new location. Select multiple
parameters to quickly populate a custom panel by holding down the control key and clicking the
desired parameters.

Preview the drop location with the drop indicator that appears when dragging to a valid location. If there
is no drop indicator, the parameter will be inserted at the end of the panel. The following shows an
example custom panel with drop indicators:

Particle Trails
The particle Trail is an emitter type that connects different particles together. When selected, all
particles in the particle emitter are automatically linked together forming a trail.

Version 1.6
938

Lumberyard User Guide
Particle Trail Parameters

Particle Trail Parameters
The particle Trail is an emitter type that connects different particles together. When selected, all
particles in the particle emitter are automatically linked together forming a trail.

The following table lists the various parameters associated with particle Trails:

Parameter Function Description

Connect To Origin Connects the newest particle to the emitter origin, with the
parameters of a particle age = 0.

Texture Mapping Specifies how the texture is repeated over the trail stream.

PerParticle sets a default frequency of one texture per particle.

PerStream sets a default frequency of one texture stretched over
the whole stream.

Texture Mirror Option which causes adjacent texture tiles to alternate direction. If
false, they wrap at each repetition.

Default value: true.

Texture Frequency Multiplies the texture repeating frequency specified above. Can be
less than 0 or greater than 0, which determines texture direction.

Default value: false

Lock Anchor Points Locks the UVs of the vertices of the trail. This will cause the
texture to stay on the PerStream texture-mapped trail. It will not
"catch up" as the UVs would do normally.

Particle Trail Visibility
You can make short trail segments not be visible. For a trail segment to be drawn, the distance
between the start and the end of the segment needs to exceed the Min visible distance setting in
the following table. The purpose for this feature is to automatically turn off drawing trails that are not
moving, or are moving too slow. This is useful for particle trail effects that only need to be drawn when
the emitter is moving.

Version 1.6
939

Lumberyard User Guide
GPU Particles

Parameter Function Description

Min visible segment length Enables and disables the feature.

Min visible distance The minimal distance between the start and end of a trail segment.
Segments smaller then this value will be become transparent.

GPU Particles
Unlike CPU particles, GPU particles are processed and rendered entirely by the graphics card GPU.
Since the GPU is handling the calculations, many more particles can be processed at once, allowing
for much denser and more detailed particle behavior.

GPU particles have Particle Type of GPU as displayed in the Emitter panel of Particle Editor.

The following attributes and parameters are supported for GPU particles:

Attribute Comment
You can use the Comment area to save any comments about an attribute. Comments are editable.

GPU Emitter Attribute
Parameters in this attribute control the particle amount and spawning location of the particles.

Version 1.6
940

Lumberyard User Guide
GPU Particles Attribute

Attribute Parameters

Parameter Function Description

Enabled Enables or disables the particle emitter.

Particle Type Select either CPU or GPU particles.

Count The total number of particles at any one time that are active.
Determines the emission rate (Count/Particle Lifetime).

Value range: 0 - millions (performance based on hardware specs)

Continuous If disabled, all particles are emitted at once, and the emitter then
dies. If enabled, particles are emitted gradually over the emitter
lifetime. If enabled, and Emitter Lifetime = 0, particles are emitted
gradually, at a rate of Count/Particle Lifetime per second,
indefinitely.

Emitter Lifetime If Continuous is enabled, specifies the lifetime of the emitter.
Emitter Lifetime does not apply to non-continuous effects, which
always disappear as soon as they have emitted all of their
particles.

Pulse Period If greater than 0 and Continuous is disabled, the emitter spawns
another burst of particles repeatedly at this interval.

Position Offset X, Y, and Z values define the spawning position away from the
emitter itself, in emitter space.

Random Offset X, Y, and Z values define the range of a random spawning box in
both directions away from the position offset.

Offset Roundness Fraction of spawning shape volume corners to round.

Value range: 0 (box shape) to 1 (ellipsoid shape). Values in-
between correspond to a rounded box.

Offset Inner Fraction Ratio of inner to outer spawning shape volume.

Value range: 0 (spawn uniformly within the entire volume) to 1
(spawn only at the outer edge of the volume). Values in-between
vary the thickness of the inner cutout volume.

Orient to Velocity Rotate particles so that they are oriented towards the velocity of
each individual particle.

GPU Particles Attribute
Parameters in this attribute control the basic appearance of the particle. This attribute should be set up
first as it includes the Texture slot, which is used for most particles.

Version 1.6
941

Lumberyard User Guide
GPU Particles Attribute

Attribute Parameters

Parameter Function Description

Particle Life Time The lifetime of individual particles in seconds. Even after the
emitter's lifetime has expired, spawned particles still will live out
their own lifetime.

Facing Applies only to 2D particles. Determines how the sprite is oriented
in space. Texture orientation is further modified by rotational
parameters:

• Camera (default): Particle faces the camera, texture X and
Y aligned with screen X and Y. In this mode, particles are
assumed to represent spherical objects, and are lit accordingly.
Rotations become local to the camera.

• Free: Rotates freely in 3D.

Blend Type Applies only to 2D particles. Determines how the sprite blends with
the background.

• AlphaBased: Uses alpha channel for transparency. Linearly
interpolates existing color with particle color, based on particle
alpha. Final Color = Particle Color * Particle Alpha + Background
Color * (1 - Particle Alpha).

• Additive: Adds color values of particle to existing color. Final
Color = Particle Color + Background Color.

• Multiplicative: Multiplies the existing color with the particle
color. Final Color = Particle Color * 2 * Background Color.

• Opaque: No blending. Existing colors are replaced with particle
color. Fully opaque particles with an alpha threshold discarding
fully transparent pixels.

Sorting Method Configure method of sorting used. This only applies when Blend
Type is set to AlphaBlend, otherwise this function will have no
effect.

• Bitonic: Used when a full sort is required, but does not support
partial convergence.

• Odd-Even: Converges over time, allowing for tweaking
performance utilization of the sort versus quality. Especially
useful in conjunction with particle LODs as distant particles

Version 1.6
942

Lumberyard User Guide
GPU Lighting Attribute

Parameter Function Description

don’t change sort order often, making them ideal for a low
convergence odd-even sort.

Sorting Convergence Odd-even sort convergence for each frame on a scale from zero
to one. For example, a value of 0.5 would cause the sort to always
fully converge in two frames, while a value of one would cause the
sort to fully converge every frame.

Texture Use to open the Asset Browser and assign a texture used for 2D
sprite images. Displays a preview of the texture when the mouse
cursor is over the input box.

Normal Map 2D normal map image used for individual particles.

Glow Map 2D glow map image used for individual particles. Lighting attribute
values will affect the glow map visibility.

Texture Tiling Controls 2D image tiling and animation parameters.

Color Used to select the color to apply to the particle:

• Random: How much a particle's initial color varies downward
from the default. 0 = no variation, 1 = random black to default.

Value range: 0-1

• Random Hue: Causes the Random color variation to occur
separately in the 3 color channels. If false, variation is in
luminance only.

Default value: false

• Emitter Strength: Define the color of the particle over the
emitter's lifetime. Double-clicking opens the Gradient Editor.

• Particle Age: Defines the color of the particle over the particle's
lifetime. Double-clicking opens the Gradient Editor.

Particle color can also be randomly interpolated between two
gradients by right-clicking the Emitter Strength or Particle Age
fields and selecting Randomly between two gradients.

Soft Particle Enables particle soft-shadowing. This will cause the particle to
softly fade with depth proximity, causing a reduction in hard edges
when interacting with other geometry. A value of one indicates
maximum fading, a value of zero will nullify the effect.

Note
This option must be enabled before this variable will take
effect. Also, instead of setting the value to 0, disabling this
option is preferred.

GPU Lighting Attribute
Parameters in this attribute control the lighting of the GPU particle.

Version 1.6
943

Lumberyard User Guide
GPU Size Attribute

Attribute Parameters

Parameter Function Description

Diffuse Lighting The amount of diffuse lighting the particles receive. A value of one
means that the particles should receive normal lighting comparable
to any other geometry in the world.

Diffuse Backlighting The amount of diffuse lighting for back-facing particles. Can be
used to convey translucency.

Emissive Lighting The quantity of self-emission. A value of one indicates that the
particle is identical to the texture input.

Receive Shadows Allows the particles to receive shadows from lights in the scene.

Cast Shadows Allows the particles to cast shadows from the perspective of the
lights in the scene.

GPU Size Attribute
Parameters in this attribute control the size and shape of the sprite.

Attribute Parameters

Parameter Function Description

Lock Aspect Ratio Maintain particle aspect ratio.

Default value: false

Size X, Y For 2D particles, the width and height of the particle in world-space
units.

Pivot X, Y Moves the horizontal and vertical offset of the pivot point of the
particle. Positive values point to the right and down.

Value range: -1 to +1

Default value: 0 (texture center)

Version 1.6
944

Lumberyard User Guide
GPU Rotation Attribute

Parameter Function Description

Stretch The amount of stretch applied to the particle in the direction of
travel, in seconds (based on current velocity). Stretches in both
directions by default.

GPU Rotation Attribute
Parameters in this attribute control the rotation of the particle.

Attribute Parameters

Parameter Function Description

Init Angles X, Y, and Z values define the initial angle applied to the particles
upon spawning, in degrees.

Random Angles X, Y, and Z values define the random variation (bidirectional) to
Init Angles, in degrees.

Rotation Rate X, Y, Z Constant particle rotation, in degrees/second. The axes are the
same as for Init Angles.

GPU Movement Attribute
Parameters in this attribute control the movement of the sprite.

Attribute Parameters

Parameter Function Description

Speed The initial speed of particles.

Version 1.6
945

Lumberyard User Guide
GPU Particle Parameter Modifiers

Parameter Function Description

Value range: any

Default values: 5

Acceleration X, Y, and Z values define the constant acceleration applied to
particles in world space.

Value range: any

Default values: 0,0,0

Inherit Velocity What fraction of initial velocity is inherited from the particle's
parent. For indirect particles, the parent particle's velocity is
inherited. For direct particles, the emitter's velocity is inherited.

Value range: any

Default value: 0

Air Resistance Drag constant. Behaves as exponential decay of velocity,
simulating air friction.

Gravity Scale Multiple of world gravity to apply to particles. A value of 0.0 means
no gravity. Most physicalized particles should be set to 1, which
corresponds to -9.8 m/s Earth gravity. (use Air Resistance to
provide drag). Set to a negative value for buoyant particles such as
smoke.

Value range: any

Default values: 0,0,0

Turbulence3DSpeed Adds a 3D random turbulent movement to the particle, with the
specified average speed, in meters/second-squared.

Value range: 0+

Default value: 0

Turbulence Size Adds a spiral movement to the particles, with the specified radius.
The axis of the spiral is set from the particle's velocity.

Value range: 0+

Turbulence Speed When Turbulence Size is greater than 0, the angular speed, in
degrees/second, of the spiral motion.

Value range: any

Default value: 0

GPU Particle Parameter Modifiers
Modifiers allow parameter values to mutate over particle or emitter lifetime.

Version 1.6
946

Lumberyard User Guide
Particle Level Of Detail (LOD)

Attribute Parameters

Parameter Function Description

Random Value can be randomized.

Value range: 0.0 (no randomness) to 1.0 (complete randomness)

Emitter Strength Value can be influenced by emitter strength. Serves as a user
specified modifier per-emitter.

Default value: -1

Particle Age Value can be influenced by particle age. Allows to vary parameter
during the lifetime of the particle.

Particle Level Of Detail (LOD)
The Level Of Detail (LOD) system blends multiple particle emitters depending on their distance to the
camera. This allows for computationally-heavy particle emitters to be swapped out for emitters that
require less computation and rendering time.

You can add an LOD for a particle emitter by right-clicking on the emitter in the Libraries panel and
selecting Add LOD.

The LOD will be a copy of the base particle emitter and will have the same settings. The LOD will also
be applied to any parent or child particle emitters the selected emitter has all the way up and down the
hierarchy.

Level Of Detail Panel
The level of detail panel is displayed when an LOD has been added and show which level of detail is
selected in the View options of the Particle Editor.

Version 1.6
947

Lumberyard User Guide
Level Of Detail Panel

Parameter Function Description

Blend In Amount of time it takes for a LOD to blend in in seconds.

Blend Out Amount of time it takes for a LOD to blend out in seconds

Overlap Amount of time both LODs are shown before the old LOD blends
out and the new LOD blends in in seconds.

+ Add Level of Detail Adds another LOD. New LOD distance will be set to 10 additional
units from the furthest LOD. Under + Add Level of Detail is the list
of added LOD levels.

You can hide or display the Level of Detail panel by clicking the View tab and and accessing the
dropdown menu.

Parameter Function Description

Hide Level of Detail Hides the LOD panel when panel is visible.

Show Level of Detail Displays the LOD panel when panel is hidden.

You can manage your LOD levels in the list by right-clicking the top-right menu button in the Level of
detail panel.

Version 1.6
948

Lumberyard User Guide
LOD Level Panel

Menu Option Description

Add level Adds a new LOD level at the bottom of the list.

Arrange Shows the Arrange submenu.

• Move Up: Moves the selected LOD level up one position in the
list. This also changes the Level LOD Distance to be 1.0 lower
than the previous level.

• Move Down: Moves the selected LOD level down one position.
This also changes the Level LOD Distance to be 1.0 higher than
the previous level.

• Move to top: Moves the selected LOD level to the top of the list.
This also changes the Level LOD Distance to be 1.0 lower than
the previous top level.

• Move to bottom: Moves the selected LOD Level to the end of
the list. This also changes the Level LOD Distance to be 1.0
higher than the previous bottom level.

Jump to first Selects the first LOD level in the list. This also selects the top
particle emitter in that list and loads it in the Attribute view.

Jump to last Selects the last LOD level in the list. This also selects the top
particle emitter in that list and loads it in the Attribute view.

Remove Removes the currently selected LOD level.

Remove All Removes all LOD levels for all related particle emitters.

Close Closes the Level of Detail panel.

LOD Level Panel
Each LOD level has its own panel in the LOD level list. These panels show all relevant information for
each individual level.

Note
If the camera distance is lower than the top LOD level, the base particle emitter is shown. This
makes the base particle; the starting LOD level.

Version 1.6
949

Lumberyard User Guide
Managing Emitters

UI Element Description

Top-left checkbox Turns the entire level on or off.

LOD distance value The camera distance at which the LOD level will become active. At
this level, the particle emitter will blend towards this LOD level and
blend out the previous LOD level.

Top-right button Deletes the corresponding LOD level.

Particle checkbox Turns off the particle emitter at this level. When turned off nothing
will be drawn. This allows users to turn off particle emitters based
on LOD level.

Particle name When a particle name is left-clicked, the LOD level particle emitter
for the selected particle emitter is loaded in the Attribute view,
allowing for change to the LOD level particle emitter.

When a particle name is right-clicked, the Remove option removes
the particle from the LOD level. Any child particle emitters are also
removed from the LOD level.

Managing Emitters
Particle Editor is in preview release and is subject to change.

In this section, you learn how to create, edit, and manage emitters for particle effects. For more
information about emitter attributes and parameters displayed in the Attributes panel, see Particle
Attributes and Parameters Reference (p. 956).

Before you can create or edit emitters, you must first set up a particle library. For more information, see
Adding Particle Libraries (p. 935).

Creating Emitters
To create an emitter, do the following:

To create new emitters

1. In the Attributes panel, click the down arrow and choose Create new emitter. Alternatively, right-
click the library name, click Add New, then click Add Particle.

2. In the dialog box that appears, type a name for the emitter and then choose OK. Do not use
special characters in the name.

3. In the Attributes panel, edit the attributes and parameters as needed.

Duplicating Emitters
To duplicate an emitter, do the following (this also duplicates any associated child emitters):

To duplicate emitters

1. In the Library panel, right-click the emitter that you want to duplicate and then choose Duplicate.

2. In the dialog box that appears, type a name for the emitter and then choose OK.

Version 1.6
950

Lumberyard User Guide
Creating Child Emitters

Creating Child Emitters
To create a child emitter, you must first set the parent effect. Then, you attach the child emitter to the
parent particles. Multiple child emitters can be attached to the parent particle. A particle effect can have
any number of child effects, also known as subeffects, which you can nest in a library by dragging-and-
dropping them where needed.

To create child emitters

1. In the Library panel, right-click the emitter you want to create a child emitter for, choose Add
New, and then choose Add Particle..

2. In the dialog box that appears, type a name for the child emitter and then choose OK.

You can also assign an existing emitter to be a child by choosing the emitter and then dragging it on
top of another emitter. The selected emitter now lives underneath as a child.

To remove a child emitter from a parent, select the child emitter and drag the emitter outside of the
directory structure to the library name in the Library pane. This emitter is now a peer emitter and is no
longer a child emitter.

There are two kinds of child effects:

• Regular child effects – These effects behave like separate effects, except that they are spawned
with and attached to their parent effect. Each child effect has its own independent parameters and
lifetime, allowing for an overall effect that consists of several parts.

• Second-generation child effects – These are effects are attached to the individual particles of the
parent effect. A separate emitter is spawned for each particle of the parent effect, and those emitters
move with their parent particles. This allows you to create much more complex effects. Second-
generation effects can be nested multiple times, creating third-generation (and greater) effects.

An example of a child effect is attaching an emitter to a parent particle and leaving trailing particles
behind.

Editing Emitters
To edit emitter attributes and parameters, do the following:

To edit emitter attributes and parameters

1. In the Library panel, choose the emitter.

2. In the Attributes panel, adjust attribute and parameter settings and values in the different sections
to achieve the desired effect.

Organizing Emitters in a Library
All particle emitters are listed in the Library. When you organize your emitters, you create relationships
between them. You can have single emitters, emitters with child emitters, and emitters that have parent
and child emitters of their own. You can also create folders within each library to help organize your
particle effects. This relationship is displayed in a tree hierarchy in the Library.

There is a visual indicator that shows you where the emitter is being placed based on the position
of the cursor. If an emitter is being placed on another emitter or a folder for grouping, the folder row
appears highlighted with a blue stroke.

Version 1.6
951

Lumberyard User Guide
Reverting Changes to Emitter Attributes

Reverting Changes to Emitter Attributes
Emitter attributes are a list of attributes or property types an emitter can have. Emitters have default
parameters set to the attribute as a common starting place for that attribute.

The default attributes are indicated with a white text label. When you change the attribute parameter,
the text label changes color to orange, which indicates that the attributes parameter has been changed
from the default state.

To revert the last change to the emitter attribute by undoing the last action, right-click the attribute
name and then choose Undo. To revert any changes made to the attributes parameter back to the
default parameter, right-click the attribute name and then choose reset to default.

Attributes are categorized so that you can identify them easily. By default, categories are stacked, but
you can reorder and rearrange them, including arranging joining categories as tabs.

• To reorder attribute categories, drag the category to the desired position, and then drop the category
in the position you want when the blue highlight appears.

• To combine categories into tabs, drag a category onto another category header bar. These
categories now are combined and tabbed. If the category is not expanded, the tabs collapse until you
choose the attribute category header to expand them.

• To revert the changes made to the Attributes panel layout, click the hamburger icon at the
upper=right side, and then choose Reset layout to revert the layout back to the default.

Advanced Particle Techniques
Particle Editor is in preview release and is subject to change.

Attaching Particle Effects to Basic Geometry Entities
To attach a particle effect to a geometric entity, choose the chain link (Link Object) toolbar icon in
Lumberyard Editor and link the particle entity to the source object entity. Then set the AttachType and
AttachForm parameters, which are located in under ParticleEntity Properties in Rollup Bar for the
entity.

For second-generation particle effects, you can attach emitters to the parent particles as part of the
parent particle effect. If the parent particle effect contains geometry, the second generation effect can
optionally emit particles from that geometry, based on the AttachType and AttachForm parameters.

Attaching Particles to Breakable Objects
There are several ways to create breakable geometry objects, but all are based on a multi-part .cgf
file, and all optionally allow secondary particle effects to be spawned on the broken pieces. Here are
the different ways to create breakable objects that spawn particle effects:

• Pure particle effect – To create a particle effect that instantly creates an exploding object, use the
following method:

• Set the effect Geometry to a multi-part .cgf file.

• Set Geometry in Pieces = True and Count = 1 (for one exploding object).

• Set appropriate values for Speed, Focus, Rotation Rate to create a nice exploding effect.

• Optionally set Rigid Body for physicalized pieces.

Version 1.6
952

Lumberyard User Guide
Attaching Particles to Character Animations

• DestroyableObjects – This is a special entity that can be "exploded" via an event, with all pieces
breaking off at once. Particle emitters are optionally attached to each piece based on its material
surface properties.

• Physically breakable object – This is a basic Entity set to use a multi-part .cgf file with physics
parameters specifying how pieces break off. The physics system breaks pieces of this geometry off
individually based on external forces. Particle emitters are optionally attached to each piece based
on its surface properties.

Attaching Particles to Character Animations
If a particle effect is already playing on a character skeleton, you cannot trigger it again. In other words,
it will not play if it's already playing.

To attach a particle to an animation

1. In Geppetto, in the Assets panel, expand Characters, Characters and select a suitable .cdf
asset.

2. Expand Animations and select the applicable animation to which you want to attach a particle.
The animation plays in the viewport.

3. In the Playback window, click Pause if the animation is playing, then double-click in the timeline at
the precise point in time you want the particle event to start playing.

4. Right-click, then select New Event to create an event at this animation point. Name the event
effect.

5. In Particle Editor, in the Properties panel, select the desired particle effect.

6. In Geppetto, click Use Selected Effect.

7. In the Playback window, click Play to view the particle effect in the animation.

8. Click Save. This creates an .animevent file that is stored with the .cdf file.

Precise positioning can be achieved by attaching the particle to a particular joint for the character.

Generating Particles from Surface Properties
An object's material surface properties define which event-driven effects can occur when something
happens to the object. These events can be specified on a render material, and also on individual
pieces or surfaces of a .cgf asset.

Many of these properties specify those particle effects that are spawned based on events such as
"bullet" hit or "walk." The specific effect spawned when a geometry piece breaks off of an object is
specified in a section of the LUA script that contains the following parameters:

Parameters

Parameter Description

Name Particle effect name.

Scale Used to multiply particle sizes.

Count_scale Used to multiply particle counts.

Count_per_unit Used to cause particles to be emitted at the same density,
regardless of the size of the attached object.

Version 1.6
953

Lumberyard User Guide
Particle Entity Parameters and Properties

Particle Entity Parameters and Properties
Particle Editor is in preview release and is subject to change.

The following particle entity parameters and properties are accessed using Rollup Bar.

To change particle entity parameters and properties

1. In Rollup Bar, on the Objects tab, click Particle Entity.

2. Under Browser, select a suitable particle and then drag it onto the viewport. The particle is
displayed.

3. Under ParticleEntity Params, change the following parameter's values as needed for the desired
effect.

Particle Entity Parameters

Parameter Description

Outdoor Only When set, object will not be rendered when inside a VisArea.

Cast Shadow MinSpec When set, object casts a shadow on the selected quality setting
and above.

LodRatio Defines how far from the current camera position that different
Level Of Detail (LOD) models for the object are used.

ViewDistanceMultiplier Defines how far from the current camera position that the object
is rendered.

HiddenInGame When set, object is not shown in game mode.

Receive Wind When set, object is influenced by wind parameters in the level.

RenderNearest Used to eliminate Z-buffer artifacts when rendering in first-
person view.

NoStaticDecals If set to true, decals are not rendered for the selected object.

Created Through Pool Used primarily for AI entities for memory optimization.

4. Under ParticleEntity Properties, change the following property's values as needed for the
desired effect.

Version 1.6
954

Lumberyard User Guide
Particle Entity Parameters and Properties

ParticleEntity Properties

Parameter Description

Active Sets the initially active or inactive. Can be toggled in the editor
for testing.

AttachForm If AttachType is not empty, this property determines where
particles emit from the attached geometry. Set to Vertices,
Edges, Surface, or Volume.

AttachType If this entity is attached to a parent entity, this field can be used
to cause particles to emit from the entity's geometry. Set to
BoundingBox, Physics, or Render to emit from the applicable
geometry.

CountPerUnit If AttachType is not empty, this multiples the particle count
by the "extent" of the attached geometry. Depending on
AttachForm, the extent is either total vertex count, edge length,
surface area, or volume.

CountScale Multiplies the particle counts of the entire emitter.

ParticleEffect Use to generate the following effects:

Prime If true, and the assigned ParticleEffect is immortal, causes the
emitter to start "primed" to its equilibrium state, rather than
starting up from scratch. Very useful for placed effects such as
fires or waterfalls, which are supposed to be already running
when the level starts. Applies only to immortal, not mortal
effects.

PulsePeriod If not 0, restarts the emitter repeatedly at this time interval.
Should be used to create emitters that pulse on and off
at somewhat large intervals, a second or so. Do not set a
low value such as 0.1 to try to make an instant effect into
a continuous one. Make sure the actual library effect is set
Continuous and has an appropriate Count.

RegisterByBBox Uses the emitter's (automatically computed) bounding box
to determine which VisAreas it is visible in. If this is disabled
(the default), the emitter's origin alone determines VisArea
membership, as the bounding box is hard to exactly control by
the designer.

Version 1.6
955

Lumberyard User Guide
Particle Attributes and Parameters Reference

Parameter Description

Scale Multiplies the overall size and velocity of the entire emitter.

SpeedScale Multiplies the particle emission speed of the entire emitter.

Strength Used by effect parameters to modify their value. If a parameter
has an Emitter Strength curve, and the emitter entity's Strength
property is not negative, then Strength will be used as input to
this curve.

TimeScale Multiplies the elapsed time used to simulate the emitter. Less
than 1 achieves a show-motion effect.

EnableAudio Toggles sound emission on any sub-effects with an Audio
parameter set.

Particle Attributes and Parameters Reference
Particle Editor is in preview release and is subject to change.

Particle parameters are stored in various attributes that you can reposition and resize. These attributes
describe how an emitter and its particles look and behave. Aside from a parameter's base value,
most numeric parameters also allow random variation over particle or emitter lifetime. The following
reference lists particle attributes and associated parameters that can be adjusted for the desired effect.
These are available from the Attributes panel of the Particle Editor.

A number of parameters also feature several sub-parameters, as follows:

• Random – Specifies how much a particle's parameter value deviates from the default value of 0 (no
variation).

• Emitter Strength - Controls the alpha strength over the lifetime of the particle. Only works with finite
particles. If continuous is set, this has no effect.

• Particle Age - Controls the alpha over the individual particles lifetime. For example, use this to fade
a smoke particle away to nothing once its lifetime has finished. Depending on where you reduce the
value to zero, the particle fades out earlier or later.

For information on GPU particle attributes and parameters, see GPU Particles (p. 940).

Using the Curve Editor
You can use the curve editor to edit the shape of the emitter strength curve as well as the particle age
over time. Emitter strength is only active if certain parameters are set.

Version 1.6
956

Lumberyard User Guide
Attribute Comment

To edit emitter strength using the curve editor

1. Double-click to set a new key along the curve timeline.

2. Using your mouse, drag the curve to the desired value and shape.

Attribute Comment

Particle Editor is in preview release and is subject to change.

You can use the Comment area to save any comments about an attribute. Comments are editable.

Emitter Attribute

Particle Editor is in preview release and is subject to change.

Parameters in this attribute control the particle amount and spawning location of the particles.

Version 1.6
957

Lumberyard User Guide
Emitter Attribute

Emitter Attribute Parameters

Parameter Function Description

Relative Particle Movement Particle motion in the emitter's space. For an example of particles
emitted upwards from an emitter:

No: The emitted particles drift upwards and fall behind as the
emitter moves away, like smoke from the chimney of a train for
example.

Yes: The emitted particles drift upwards but won't fall behind,
resulting in a smoke column going straight up from the chimney,
for example.

Default: No

Parameter Inheritance Specifies the source for default (starting) effect parameters:

• System (default): Reads the System.Default effect to use as
defaults. If no such effect exists, uses Standard defaults.

• Standard: Uses the hard-coded parameter defaults. These are
0 or off for most parameters, except for the multipliers, for which
1 is the preferred default value.

• Parent: Uses the parent particle effect for defaults. One
possible use for this is to create a parent effect with one set of
parameters, then a variety of sub-effects which alter some of the
parameters for variation. Sub-effects can be spawned on their
own. Editing the parent effect updates the default values of all
sub-effects.

The source that is selected has the following consequences:

• When you create a new effect, it takes its default parameters
from the Inheritance source, which by default is System.

• The labels of all non-default parameters are highlighted in the
Particle Editor. This allows you to quickly see which values you
have actually changed.

• If you change the Inheritance source, it does not change any
other parameters. However, different parameters may be
highlighted, as their defaults have changed.

• To actually set parameters to their default values, right-click
the parameter and then click Reset to default.. This can
be done just after creating a new effect and changing its
Parameter Inheritance value or at any time during editing,
to reset parameters to the selected Inheritance default. The
Parameter Inheritance parameter itself is not changed by
resetting.

• When effects are saved to XML libraries, only non-default values
are saved. When they are loaded from XML, the current defaults
for the effect's Inheritance are used as a base.

• When you edit any parameters of a parent effect, the non-edited
parameters of all children (and descendents) which have Parent
selected are instantly updated.

• To customize the default effects for your game, create a System
library, and a Default effect.

Version 1.6
958

Lumberyard User Guide
Emitter Attribute

Parameter Function Description

• If you edit the System.Default effect, and then Save the System
library, the non-edited parameters of all effects and emitters are
updated.

• To customize the default effects for a specific Configuration,
create a child of the System.Default effect, give it any name
you want, set its Inheritance = Parent (not required, but helpful),
set its Configuration parameters to a subset of possible
configurations (e.g. VeryHigh only), and then edit its effects.
When the engine looks for the default parameters to use, it
looks for the deepest effect in the System.Default family which
matches the current engine configuration.

Spawn Indirection This parameter has the following values:

• Direct: Spawns without relying on the parent’s input for timing.

• ParentStart: Spawn once the parent has spawned.

• ParentCollide: Once the parent particle has collided with an
object, this is the trigger to spawn a particle with this setting.

• ParentDeath: When the parent particle has lived out its lifetime,
this is the trigger to spawn a particle with this setting.

Attach Type Specify the location of emission when the emitter is attached to
geometry, or when the parent particle has geometry.

• None: Particles ignore geometry and emit from emitter center as
normal.

• Physics: Particles emit from the geometry of the attached
physics object (can be a mesh or simple primitive).

• Render: Particles emit from the full mesh of the render object
(usually static or animated mesh). Generally more CPU-
intensive than emitting from physics.

Default value: None

Attach Form When Attach Type is not set to None, specifies the elements of
the geometry (box or mesh) that particles emit from.

• Vertices: Emit randomly from the vertices of the geometry. Most
efficient form of mesh emission.

• Edges: Emit randomly from the edges of the geometry. Useful
for effects on breaking element pieces.

• Surface: Emit randomly from the surfaces (faces) of the
geometry.

• Volume: Emit randomly inside the volume of the geometry.

Default value: Vertices

Count: The total number of particles at any one time that are active.
Determines the emission rate (Count / Particle Lifetime). Can set a
Random value and the Emitter Strength curve.

Value range: 0+

Default value: 5

Version 1.6
959

Lumberyard User Guide
Emitter Attribute

Parameter Function Description

Maintain Density: Increase emission rate (and particle count) when emitter moves
to maintain the same spatial density as when motionless. The
increase can be scaled from 0 to 1.

• Reduce Alpha: When Maintain Density is active, this reduces
particle alpha correspondingly, to maintain the same overall
emitter alpha.

Value range: 0+

Continuous: If false, all particles are emitted at once, and the emitter then dies.
If true, particles are emitted gradually over the Emitter Lifetime. If
true, and Emitter Lifetime = 0, particles are emitted gradually, at a
rate of Count / Particle Lifetime per second, indefinitely.

Default value: False

Spawn Delay: Delays the start of the emitter for the specified time. Useful to
delay sub-effects relative to the overall emitter creation time. Can
set a Random value.

Value range: 0+

Default value: 0

Emitter Lifetime: If Continuous = true, specifies the lifetime of the emitter. Emitter
Lifetime does not apply to non-continuous effects, which always
disappear as soon as they have emitted all of their particles. Can
set a Random value.

Value range: 0+

Default value: 0 (infinite lifetime)

Pulse Period: If greater than 0, the emitter restarts repeatedly at this interval.
Can set a Random value.

Value range: any

Default value: 0

Position Offset: X, Y, and Z values define the spawning position away from the
emitter itself, in emitter space.

Value range: any

Default values: 0,0,0

Random Offset: X, Y, and Z values define the range of a random spawning box, in
both directions away from the position offset.

Value range: any

Default values: 0,0,0

Version 1.6
960

Lumberyard User Guide
Emitter Attribute

Parameter Function Description

Offset Roundness: Fraction of spawning volume corners to round.

Value range: 0 (box shape) to 1 (ellipsoid shape)

Default value: 0

Offset Inner Fraction: Ratio of inner to outer spawning volume.

Value range: 0 (spawn within entire volume) to 1 (spawn only at
surface)

Default value: 0

Focus Angle: The number of degrees to rotate from the Y axis.

Value range: 0 (straight up) to 180 (straight down).

Default value: 0

Focus Azimuth: The number of degrees to rotate the new axis about the Y axis.

Value range: any (0, 360 = North, 90 = West, 180 = South, 270 =
East).

Default value: 0

Focus Camera Direction: Set focus direction to face camera. Can set a Random value and
the Emitter Strength curve.

Value range: 0-1

Default value: 0

Focus Rotates Emitter: Default value: false

Emit Offset Direction: If true, change each particles emission direction to be aligned with
its offset from the origin.

Default value: false

Emit Angle: The angle deviation of an emitted particle from the default focus
(+Y) axis. (0 = straight up, 90 = horizontal, 180 = straight down).
This is the maximum angle from the focus. Can set a Random
value (determines minimum angle) and the Emitter Strength
curve.

• To emit in all directions, set Emit Angle = 180, Random = 1.

• To emit in the top hemisphere, set Emit Angle = 90, Random =
1.

• To emit in a horizontal circle, set Emit Angle = 90, Random = 0.

Value range: 0-180

Default value: 0

Orient to Velocity: Forces the particle X-axis aligned to the velocity direction. Use
Rotation parameters to rotate it further.

Default value: false

Version 1.6
961

Lumberyard User Guide
Particles Attribute

Parameter Function Description

Curvature: Sets how far the vertex normals for Facing=Camera particles are
bent into a spherical shape, which affects lighting.

Value range: 0 (flat) to 1 (hemispherical shape)

Default value: 1

Particles Attribute

Particle Editor is in preview release and is subject to change.

Parameters in this attribute control the basic appearance of the particle. This attribute should be set up
first as it includes the Texture slot, which is used for most particles.

Particles Attribute Parameters

Parameter Function Description

Particle Life Time The lifetime of individual particles. Even after the emitter's lifetime
has expired, spawned particles live out their own lifetime.

Value range: 0+

Default value: 0

Remain While Visible Particles do not die until the entire emitter is out of view.

Default value: false

Facing Applies only to 2D particles. Determines how the sprite is oriented
in space. Texture orientation is further modified by rotational
parameters:

• Camera (default): Faces the viewer, texture X and Y aligned
with screen X and Y. In this mode only, particles are assumed
to represent spherical objects, and are lit accordingly (see
Curvature below). In all other modes, particles are lit as flat
polygons.

Version 1.6
962

Lumberyard User Guide
Particles Attribute

Parameter Function Description

• CameraX: Rotates about local Y axis only, to face camera as
much as possible.

• Free: Rotates freely in 3D. (Remember to give it some rotation;
the default orientation is equal to the emitter's.)

• Velocity: Faces direction of movement.

• Water: Faces upward, moved and aligned to nearest water
plane.

• Terrain: Faces upward, moved and aligned to nearest terrain
location.

• Decal: Renders the particle as an actual deferred decal,
projected onto the nearest surface. (The Thickness parameter
controls the projection depth.) (Only works with Materials, does
not work with textures.)

Default value: camera

Material Use to open the Asset Browser and assign a material used for 2D
sprite particles.

Default value: empty

Blend Type Applies only to 2D particles. Determines how the sprite blends with
the background.

• Alpha Based: Final Color = Particle Color * Particle Alpha +
Background Color * (1 - Particle Alpha).

• Additive: Final Color = Particle Color + Background Color.

• Multiplicative: Final Color = Particle Color * 2 * Background
Color.

Texture Use to open the Asset Browser and assign a texture used for 2D
sprite particles. Displays a preview of the texture when the mouse
cursor is over the input box.

Default value: empty

Version 1.6
963

Lumberyard User Guide
Particles Attribute

Parameter Function Description

Texture Tiling Splits the texture into tiles, for variation and animation:

• Tiles X, Y: Number of tiles the texture is split into.

Value range: 1-256

Default value: 1

• First Tile: The first of the range of tiles used by the particle.

Value range: 0-255

Default value: 0

• Variant Count: Number if consecutive tiles in the texture the
particle randomly selects from.

Value range: 1-256

Default value: 1

• Anims Frame Count: How many tiles make up an animation
sequence. Variant Count and Anim Frames Count can be
used together. For example, if Variant Count = 2 and Anim
Frames Count = 8, then the particle randomly chooses between
using tiles 0 through 7, or 8 through 15, as an animated
sequence.

Value range: 1-256

Default value: 1

• Anim Framerate: Frames per second for the animation. If 0,
then the animation runs through one sequence in the particle
lifetime.

Value range: 0+

Default value: 1

• Anim Cycle: This parameter has three values:

• Once: Animation plays once, and holds on the last frame

• Loop: Animation loops indefinitely

• Mirror: Animation alternates cycling forward and backward
indefinitely

Default value: Once

• Anim Blend: Renders the particle blended between the two
adjacent anim frames. This has a performance impact.

Default value: false

• Flip Chance: Specifies the fraction of particles that are rendered
and mirrored in texture X.

Value range: 0-1

Default value: 0

• Anim Curve: Used to set the curve.

Version 1.6
964

Lumberyard User Guide
Particles Attribute

Parameter Function Description

Color Used to select the color to apply to the particle:

• Random: How much a particle's initial color varies downward
from the default. 0 = no variation, 1 = random black to default.

Value range: 0-1

• Random Hue: Causes the Random color variation to occur
separately in the 3 color channels. If false, variation is in
luminance only.

Default value: false

• Emitter Strength: Define the color of the particle over the
emitter's lifetime. Double-clicking opens the Gradient Editor.

• Particle Age: Defines the color of the particle over the particle's
lifetime. Double-clicking opens the Gradient Editor.

Version 1.6
965

Lumberyard User Guide
Particles Attribute

Parameter Function Description

Alpha clip A set of parameters to customize how the particle Alpha value
controls opacity or alpha test values. Each parameter below
has 2 values, corresponding to their values when particle
Alpha = 0 and 1. They are interpolated for each particle with
its Alpha value, and then used in the shader with the following
equation: FinalOpacity = saturate((TextureAlpha -
SourceMin) / min(SourceWidth, 1 - SourceMin)) *
Scale

• Scale: A multiplier for the final alpha value. Defaults to (0, 1), so
that particle Alpha directly scales final opacity.

Value range: 0+

• Source Min: Specifies the minimum source (texture) alpha to
be rendered (alpha test); values below become transparent.
Defaults to (0, 0), corresponding to no alpha test.

Value range: 0+

• Source Width: Specifies the feathering range of alpha clipping;
0 specifies hard-clipping, 1 soft-clipping. Defaults to (1, 1),
corresponding to full utilization of texture alpha.

Value range: 0+

• Default: Alpha controls opacity, no alpha clipping: Scale = (0, 1),
Source Min = (0, 0), Source Width = (1, 1).

• Hard clipping at texture alpha = C, no feathering: Scale = (1, 1),
Source Min = (C, C), Source Width = (0, 0).

• Hard clipping, controlled by particle alpha: Scale = (1, 1), Source
Min = (0, 1), Source Width = (0, 0).

• Feathered clipping, with width F, controlled by particle alpha:
Scale = (1, 1), Source Min = (0, 1), Source Width = (F, F).

• Soft clipping, test value controlled by particle alpha: Scale = (1,
1), Source Min = (0, 1), Source Width = (1, 1)

• Clipping and opacity scale, controlled by particle alpha: Scale =
(0, 1), Source Min = (0, 1), Source Width = (1, 1)

Default value: 0 for all

Tessellation If supported by hardware (DirectX 11 minimum), enables
tessellation, rendering more vertices within the sprite. This is
useful when Receive Shadows is set, increasing the resolution
of shadows; or when Tail Length or Connection are set, creating
smoother curves in connected particles. This also helps for
receiving light from point lights, as the lighting is more accurate.

Default value: false

Version 1.6
966

Lumberyard User Guide
Lighting Attribute

Parameter Function Description

Soft Particles Applies rendering that softens the intersection between sprites
and nearby objects to prevent unnatural seams. Slightly more
expensive, so use sparingly on particles that need it, such as
smoke. Use the Softness sub-parameter to define the amount of
rendering applied.

Default value: false

Geometry Opens the Preview window to select a 3D object to use for the
particles.

Default value: empty

Geometry in Pieces If Whole is not selected, and the Geometry asset contains
multiple sub-objects, the geometry is emitted in split-up pieces,
one set per particle Count, originating at each piece's location in
the asset.

Default value: Whole

Geometry No Offset For geometry particles, uses the geometry pivot for centering.

Default value: false

Octagonal Shape Renders sprites as octagons instead of quads, reducing pixel cost.
Only use with textures that fit within an octagon, otherwise clipping
occurs.

Default value: false

Lighting Attribute
Particle Editor is in preview release and is subject to change.

Parameters in this attribute control the lighting of the particle.

Lighting Attribute Parameters

Parameter Function Description

Light Source Causes each particle to create a deferred light, where color is
equal to the Color value.

• Affects This Area Only – For use with Clip Volumes. When
enabled, the particle lights do not exceed the volume boundary.

Version 1.6
967

Lumberyard User Guide
Size Attribute

Parameter Function Description

• Radius – Radius of the light. Can set a Random value and
Emitter Strength and Particle Age curves.

Value range: 0+

• Intensity – Intensity of the light. Can set a Random value and
Emitter Strength and Particle Age curves.

Value range: 0+

Default values: false, 0, 0

Diffuse Lighting Multiplier to the particle color for dynamic (diffuse) lighting.

Value range: 0+

Default value: 1

Diffuse Backlighting Fraction of diffuse lighting that is applied to unlit particle directions.

Value range: 0 (standard diffuse, normals facing the light are lit
the most) to 1 (omnidirectional diffuse, light affects all normals
equally).

Default value: 0

Emissive Lighting Multiplier to the particle color for constant emissive lighting. When
you add a value, this can make a particle appear as if it's glowing.

Value range: 0+

Default value: 0

Receive Shadows Allows shadows to be cast on the particles.

Default value: false

Cast Shadows Allows particles to cast shadows (Currently only for geometric
particles).

Default value: false

Not Affected By Fog Causes particles to ignores scene fog.

Default value: false

Global Illumination Allows the particle to receive global illumination from the
environment.

Default value: false

Size Attribute

Particle Editor is in preview release and is subject to change.

Parameters in this attribute control the size and shape of the sprite.

Version 1.6
968

Lumberyard User Guide
Size Attribute

For the Size, Pivot, and Stretch parameters, you can set a Random value and Emitter Strength and
Particle Age curves.

Size Attribute Parameters

Parameter Function Description

Lock Aspect Ratio Maintain particle aspect ratio.

Default value: false

Size X, Y For 2D particles, the world sprite radius.

Value range: 0+

Default value: 1

Pivot X, Y Moves the pivot point of the sprite.

Value range: -1 to +1

Default value: 0 (texture center)

Stretch The amount of stretch applied to the particle in the direction of
travel, in seconds (based on current velocity). Stretches in both
directions by default.

Offset Ratio: Adjusts the center of stretching. 0 = stretch both
directions, 1 = stretch backward only, -1 = stretch forward only.

Value range: 0+

Default value: 0

Tail Length Length of particle's tail in seconds. Particle texture is stretched out
through the tail.

Value range: 0+
Tail Steps: Number of segments for tail. A higher number
produces smoother tail curves for non-linear-moving particles.

Value range: 0+

Default value: 0

Min Pixels Adds this many pixels to particles true size when rendering. This
is useful for important effects that should always be visible even at
distance.

Version 1.6
969

Lumberyard User Guide
Particle Rotation Parameters

Parameter Function Description

Value range: 0+

Default value: 0

Connection Causes all particles to be rendered in a connected line, in
sequence. Emission sequences separated by a Pulse Period
produce separate polygons. Indirect child effects produce a
separate polygon for each parent particle.

• Connect To Origin – Additionally connect the newest particle to
the emitter origin, with the parameters of a particle of age 0.

• Texture Mapping – This and the next parameter specify how
textures are repeated over the stream.

• PerParticle sets a default frequency of one texture per
particle.

• PerStream sets a default frequency of one texture stretched
over the whole stream.

• Texture Mirror – Option which causes adjacent texture tiles to
alternate direction; if false, they wrap at each repetition. Default
= true.

• Texture Frequency – Multiplies the texture repeating frequency
specified above. Can be less than 0 or greater than 0, which
determines texture direction.

Default value: false

Particle Rotation Parameters

Particle Editor is in preview release and is subject to change.

Parameters in this attribute control the rotation of the particle.

Rotation Attribute Parameters

Parameter Function Description

Init Angles X, Y, and Z values define the initial angle applied to the particles
upon spawning, in degrees. For Facing = Camera particles, only
the Y axis is used, and refers to rotation in screen space. For 3D
particles, all three axes are used, and refer to emitter local space.

Value range: any

Default value: 0

Version 1.6
970

Lumberyard User Guide
Movement Attribute

Parameter Function Description

Random Angles X, Y, and Z values define the random variation (bidirectional) to
Init Angles, in degrees.

Value range: 0+

Default value: 0

Rotation Rate X, Y, Z Constant particle rotation, in degrees/second. The axes are the
same as for Init Angles. Can set a Random value and Emitter
Strength and Particle Age curves.

Value range: any

Default value: 0

Movement Attribute
Particle Editor is in preview release and is subject to change.

Parameters in this attribute control the movement of the sprite.

For the Air Resistance, Gravity Scale, Turbulence 3D Speed, Turbulence Size, and Turbulence
Speed parameters, you can set a Random value and Emitter Strength and Particle Age curves.

Movement Attribute Parameters

Parameter Function Description

Min visible segment length Enables and disables the feature.

Min visible distance The minimal distance between the start and end of a trail segment.
Segments smaller then this value will be become transparent.

Speed The initial speed of particles. You can set a Random value and
Emitter Strength curve.

Value range: any

Default values: 5

Version 1.6
971

Lumberyard User Guide
Movement Attribute

Parameter Function Description

Acceleration X, Y, and Z values define the constant acceleration applied to
particles in world space.

Value range: any

Default values: 0,0,0

Inherit Velocity What fraction of initial velocity is inherited from the particle's
parent. For indirect particles, the parent particle's velocity is
inherited. For direct particles, the emitter's velocity is inherited.

Value range: any

Default value: 0

Bind Emitter to Camera Forces the emitter to relocate to the main camera's position. Useful
(with Space Loop) for making a rain or snow effect, which the
player cannot pass by.

Default value: false

Space Loop Particles loop within a region around the camera, defined by
Camera Min/Max Distance (under the visibility tab). This is
useful to make rain or snow effect, which has an effective infinite
spawning area.

Default value: false

Air Resistance Value range:

Default value:

Gravity Scale Multiple of world gravity to apply to particles. Most physicalized
particles should be set to 1 (use Air Resistance to provide drag).
Set to a negative value for buoyant particles such as smoke.

Value range: any

Default values: 0,0,0

Turbulence3DSpeed Adds a 3D random turbulent movement to the particle, with the
specified average speed.

Value range: 0+

Default value: 0

Turbulence Size Adds a spiral movement to the particles, with the specified radius.
The axis of the spiral is set from the particle's velocity.

Value range: 0+

Turbulence Speed When Turbulence Size is greater than 0, the angular speed, in
degrees/second, of the spiral motion.

Value range: any

Default value: 0

Version 1.6
972

Lumberyard User Guide
Collision Attribute

Parameter Function Description

Target Attraction Specifies how particles behave if the emitter is attached to a
target. By default, all particles are attracted to any target the
emitter is linked to. These parameters customize that behavior.

• Target

• External = Particles attracted to a target entity, if the emitter is
linked to one (default).

• OwnEmitter = Particles are attracted to their own emitter's
origin.

• Ignore = Particles ignore any external attractor.

• Extend Speed – Particles speed up to reach the target in their
lifetime. Otherwise, they move at a real-world natural speed
toward the target, and may not reach it.

• Shrink – Particles shrink as they approach the target.

• Orbit – Particles orbit around target when reached. Otherwise,
they disappear into the target.

• Radius – Distance from the target that particles either orbit
around, or disappear. You can set a Random value and Emitter
Strength and Particle Age curves.

Value range: any

Collision Attribute

Particle Editor is in preview release and is subject to change.

Parameters in this attribute control the physical setup for the particles.

Version 1.6
973

Lumberyard User Guide
Collision Attribute

Collision Attribute Parameters

Parameter Function Description

Physics Type How the particle interacts physically.

• None – No collisions or other physics. Default.

• SimpleCollision – Particle collides with the static environment
using simple physics. This is the most simple mode.

• SimplePhysics – Particle created as an entity in the physics
system, and collides using a spherical particle model.

• RigidBody – Particle created as an entity in the physics system,
and collides using the full geometry. A geometry asset must be
set to the physicalized model in engine for this particle. This is
most expensive mode.

Collide Terrain Includes terrain in particle collisions.

Default value: false

Collide Static Objects Includes non-terrain, static objects in particle collisions. This is
expensive.

Default value: false

Collide Dynamic Objects Includes non-terrain, dynamic objects in particle collisions. This is
expensive.

Default value: false

Die on Collide Upon impact with the static environment, the particle dies.

• Die:

• Ignore:

• Stop:

Default value: Die

Max Collision Events Limits the number of collisions the particle can have in its physics
simulation. Only affects particles that have their Physics Type set
to Rigid Body.

Value range: 0-255

Default value: 0

Bounciness Controls the elasticity for collision response. Overridden by
Surface Type, if set. (Special value: if -1, particle dies on first
collision). Only affects particles that have their Physics Type set
to Simple Collision.

Value range: any

Default value: 0

Collision Fraction Fraction of emitted particles that actually perform collisions.

Value range: 0-1

Version 1.6
974

Lumberyard User Guide
Visibility Attribute

Parameter Function Description

Default value: 1

Collision Cutoff Distance Maximum distance from camera at which collisions are performed
(0 = infinite).

Value range: 0+

Default value: 0

Surface Type Select from a variety of surface material types for collision
behavior. If set, overrides Bounciness and Dynamic Friction
below.

Default value: none

Dynamic Friction The coefficient of dynamic friction. Overridden by Surface Type
if set. Only affects particles that have their Physics Type set to
Simple Collision.

Value range: 0+

Default value: 1

Thickness Control the fraction of the particle's visible radius to use for the
physical radius. Only affects particles that have their Physics
Type set to Simple Physics.

Value range: 0+

Default value: 1

Density Control the density of particle, in kg/m^3. An example of a
physically correct value is Water = 1000. Only affects particles that
have their Physics Type set to Simple Physics or Rigid Body.

Value range: 0+

Default value: 1000

Visibility Attribute

Particle Editor is in preview release and is subject to change.

Parameters in this attribute control the visibility of the particles.

Version 1.6
975

Lumberyard User Guide
Visibility Attribute

Visibility Attribute Parameters

Parameter Function Description

View Distance Adjust Multiplier to the automatically computed fade-out camera distance.
Range: 0+

Default value: 1

Camera Min/Max Distance The camera range that particles render in. Defaults are 0,
specifying unlimited range. Range: 0+

Default value: 0

Camera Distance Offset Offsets the emitter away from the camera. Range: any

Default value: 0

Sort Offset Bias the distance used for sorting. Can be used to customize the
sort order within an emitter tree: By default, sub-emitters render
in the order they are listed in the effect. A bias of 0.01 or greater
overrides that order. Larger biases can be used to adjust the
sorting order with respect to other transparent objects in the level.
Range: any

Default value: 0

Sort Bounds Scale Specify point in emitter for sorting; 1 = bounds nearest, 0 = origin,
-1 = bounds farthest. Range: any

Default value:0

Draw Near Render particles in a near 1st-person space (with weapons etc).

Default value: false

Draw On Top Render particles on top of everything (no depth test).

Default value: false

Visible Indoors For use in VisAreas:

• If_False – Hides particles when indoors.

• If_True – Hides particles when outdoors.

• Both – Show particles always.

Version 1.6
976

Lumberyard User Guide
Advanced Attribute

Parameter Function Description

Visible Underwater For use with the Ocean and with Water Volumes:

• If_False – Hides particles when under water.

• If_True – Hides particles when above water.

• Both – Show particles always.

Advanced Attribute

Particle Editor is in preview release and is subject to change.

Parameters in this attribute include advanced appearance and optimization settings.

Advanced Attribute Parameters

Parameter Function Description

Force Generation Adds an additional force generated by the emitter:

• None – Does not add any additional force.

• Wind – Creates a physical wind force, approximately following
the velocity, direction, volume, and timing of the emitter's
particles. This wind affects all particles and objects in its region,
except particles in the emitter group. Setting the emitter's Speed
to negative creates the wind force in the opposite direction,
which can be used to create a vacuum force.

• Gravity – Creates a physical gravity force, similar to the wind,
but creates a gravitational acceleration force, instead of wind
velocity.

Default value: None

Fill Rate Cost Multiplier to this emitter's contribution to total fill rate, which affects
automatic culling of large particles when the global limit is reached.
Set this > 1 if this effect is relatively expensive or unimportant.
Set this <, or 0, if the effect is an important one which should not
experience automatic culling.

Value range: 0+

Default value: 1

Heat Scale Multiplier to thermal vision. Range: 0-4

Default value: 0

Version 1.6
977

Lumberyard User Guide
Configuration Attribute

Parameter Function Description

Sort Quality Specifies more accurate sorting of new particles into emitter's
list. Particles are never re-sorted after emission, to avoid popping
resulting from changing render particle order. They are sorted only
when emitted, based on the current main camera's position, as
follows:

• 0 (default, fastest): Particle is placed at either the front or back of
the list, depending on its position relative to the emitter bounding
box center. Doesn't add any additional force.

• 1 (medium slow): Existing particles are sorted into a temporary
list, and new particles do a quick binary search to find an
approximate position.

• 2 (slow): Existing particles are sorted into a temporary list, and
new particles do a full linear search to find the position of least
sort error.

Value range: 0-2

Default value: 0

Half Res Render particles in separate a half-resolution pass, reducing
rendering cost.

Default value: False

Streamable Texture or geometry assets are allowed to stream from storage, as
normal.

Default value: True

Volume Fog Enables fog density injection.

Default value: False

Volume Thickness Controls volume thickness.

Default value: 1.0000

Configuration Attribute

Particle Editor is in preview release and is subject to change.

Version 1.6
978

Lumberyard User Guide
Audio Attribute

Configuration Attribute Parameters

Parameter Function Description

Config Min The minimum system configuration level for the effect. If the config
is lower than what is set here, the item is not displayed. Select
from Low, Medium, High, or VeryHigh.

Default value: Low

Config Max The maximum system configuration level for the effect. If the
config is higher than what is set here, the item is not displayed.
Select from Low, Medium, High, or VeryHigh.

Default value: VeryHigh

Platforms Defines what playform the effect should be used with. Default: All
true

• PCDX11

• PS4

• XBox One

• OS

Default value: all checked (true)

Audio Attribute

Particle Editor is in preview release and is subject to change.

Parameters in this attribute handle what sounds are emitted by the particle system and when.

Audio Attribute Parameters

Parameter Function Description

Start Trigger Opens a window to select the start trigger sound asset to play with
the emitter.

Stop Trigger Opens a window to select the stop trigger sound asset to play with
the emitter.

Sound FXParam Modulate value to apply to the sound. Its effect depends on how
the individual sound's particlefx parameter is defined. Depending
on the sound, this value might affect volume, pitch, or other
attributes. Can set a Random value and Emitter Strength curve.

Value range: 0+

Version 1.6
979

Lumberyard User Guide
Particle Debugging

Parameter Function Description

Default value: 1

Sound Control Time • EmitterLifeTime – Plays for the length of the emitter's lifetime.

• EmitterExtendedLifeTime -–Plays for the length of the emitter's
lifetime plus all particle's lifetimes (until all particles die).

• EmitterPulsePeriod – Plays for the length of the pulse period.

Particle Debugging
Particle Editor is in preview release and is subject to change.

You can use the following console variables to monitor and debug particle system issues. To access
Console Variables, click the x button in the Console window at the bottom of your screen.

Version 1.6
980

Lumberyard User Guide
Physics Proxies

Physics System

The physics engine of Lumberyard provide a realistic simulation of physical systems, such as
collision detection and response, and dynamics for rigid bodies, living entities, dead entities (ragdoll),
attachments, cloth, hair, particles, wind, and water.

The selection strip at the bottom of Lumberyard Editor features controls to enable Physics. The AI/
Physics button turns physics simulation on and off, and allows you to test physics behavior directly
without entering game mode.

The pause and next step buttons are used for stepping through the physics system one frame at a time
for debugging. To use these correctly, first click the pause button, then click the AI/Physics button,
then click the next step button.

Make sure to disable the pause button again to return to normal operation.

For information on physics entities, see Physics Entities (p. 470).

For information on character physics, see Physicalizing Characters (Ragdoll) (p. 157).

For information on character attachment physics (simulations), see Secondary Animations
(Simulations) (p. 221).

For information on physics flow graph nodes, see Physics Nodes (p. 696).

Topics

• Physics Proxies (p. 981)

• Sounds and Physics (p. 983)

• Debugging Physics (p. 984)

Physics Proxies
The physics proxy is the geometry that is used for collision detection. It can be part of the visible
geometry or linked to it as a separate node. Usually the physics proxy geometry is a simplified version
of the render geometry but it is also possible to use the render geometry directly for physics. However,

Version 1.6
981

Lumberyard User Guide
Geometry Guidelines and Best Practices

for performance reasons the collision geometry should be kept as simple as possible since checking
for intersections on complex geometry is very expensive, especially if it happens often.

A physics proxy is set up in your DCC tool. The only setup needed in Lumberyard is assigning the
surface type to the physics proxy and the render geometry and assigning the NoDraw shader in the
Material Editor. The surface type gives information about sound and the particle effects of your surface.
Make sure that no textures are assigned to your proxy sub material. The physics proxy does not render
in Lumberyard Editor except in debug view. Even if you assign an Illum shader it stays invisible. To
reload the physics proxy, reload your object, delete it, and then undo delete.

The physics proxy can be part of the render object (in 3ds Max as an Element) or as a separate object,
linked to the render object.

Physics proxies are only created for level of detail LOD0. Every successive LOD will automatically
take the proxy from LOD0. This also occurs if different config spec quality settings are used, such as
Lowspec for example.

Geometry Guidelines and Best Practices
The following are some guidelines and best practices that should be taken into consideration when
working with physics proxies.

The physics proxies of environment objects such as fences, crates, containers, trees, rocks, ladders,
and stairs should be as simple as possible. Crates and fences can usually be approximated with a
simple box with 6 sides (12 triangles). The top of stairs should usually be simple ramps, resulting in just
2 triangles. More organic or irregularly shaped objects like rocks and trees can still be approximated
with a fairly simple hull by allowing slight and acceptable inaccuracies between the render mesh and
the physics proxy.

The physics proxy should not have open edges. Open edges can confuse the physics engine and have
a negative effect on performance. It is helpful to assign a bold color to the proxy in order to keep track
of it.

Avoiding geometric complexity for physics proxies is not only important to reduce redundant memory
requirements and physics computations, but also for making player movement smoother. The more
complicated a proxy is, the more memory it takes and the more performance is lost when checking
collisions against its polygons. This affects both single player and multiplayer games, including the
performance of a dedicated server. Besides the performance issues, a complex proxy with a lot of
concavity increases chances that the player can get stuck or bounce undesirably against the proxy.

An ideal proxy is always a primitive, such as a box, sphere, capsule, or cylinder. Lumberyard
recognizes primitives from meshes but the default tolerance is very low. In order to force recognition,
put the corresponding keyword (such as "box" or "sphere") in the node's user-defined properties.
Meshes with several surface types cannot be turned into primitives. Primitives should be considered
as an option even for more complex objects. In most cases it is preferable to have a multi-part object
(Merge Nodes disabled) with primitive parts instead of a single-part mesh object.

The physics proxy is used for blocking character movement as well as first-pass tracing of projectiles.
If a hit is detected against the physics proxy, projectile impact and decal locations are refined using
the render mesh. The render mesh should be fully encapsulated by the physics proxy, so that the
player camera does not intersect the render geometry and first-pass projectile culling does not miss
the physical part of the object, even if it hits the visual part of the object. You can also create a
special raytrace proxy that can be used for projectiles. This would allow the main proxy to not have to
encapsulate the render mesh and thus the proxy could be even simpler.

Debugging Physics Proxy Issues
You can use the following two console variables to help debug physics proxy issues:

Version 1.6
982

Lumberyard User Guide
Sounds and Physics

p_draw_helpers

Same as p_draw_helpers_num, but encoded in letters
Usage [Entity_Types]_[Helper_Types] - [t|s|r|R|l|i|g|a|y|e]_[g|c|b|l|t(#)]
Entity Types:
t - show terrain
s - show static entities
r - show sleeping rigid bodies
R - show active rigid bodies
l - show living entities
i - show independent entities
g - show triggers
a - show areas
y - show rays in RayWorldIntersection
e - show explosion occlusion maps
Helper Types
g - show geometry
c - show contact points
b - show bounding boxes
l - show tetrahedra lattices for breakable objects
j - show structural joints (forces translucency on the main geometry)
t(#) - show bounding volume trees up to the level #
f(#) - only show geometries with this bit flag set (multiple f's stack)
Example: p_draw_helpers larRis_g - show geometry for static, sleeping,
 active, independent entities and areas

e_PhysProxyTriLimit

The e_PhysProxyTriLimit console variable shows the maximum allowed triangle count for physics
proxies. If you notice your assets wrapped in "No Collisions, Proxy Too Big!" messages, then the
physics proxy for that asset is over the triangle count specified in e_PhysProxyTriLimit.

Sounds and Physics
The game environment is very interactive, with objects moving, colliding, and breaking. When two
materials touch each other, the collision can generate a sound.

Physical events in the game can send parameter information to the sound event. Lumberyard sends
the speed and mass of the collision, which then gets passed to the sound event.

For example, an object's speed will cause the collision to change pitch, while an object's mass
determines the volume and sound definition used. A smaller mass reduces a sound's roll-off radius.
Small collisions won't be heard from as far away as larger collisions.

The interaction between two materials is specified in the MaterialEffects.xml file located in the
\Game\Libs\MaterialEffects directory.

Using this file, Lumberyard looks up actions to be taken on interaction. Each entry in the file table
contains text pointing to a description of the sound effect. These effects are described in the \FXLibs
subfolder.

The following console variables can be used for debugging physics sound events:

• mfx_Debug - Enables MaterialEffects debug messages (1=Collisions, 2=Breakage, 3=Both).

• mfx_Enable - Enables MaterialEffects.

• mfx_EnableFGEffects: - Reloads MaterialEffects flow graphs.

Version 1.6
983

Lumberyard User Guide
Debugging Physics

• mfx_ReloadFGEffects - displays profiling information for the shaders.

• mfx_ReloadFGEffects - Reloads the MaterialEffects file.

Debugging Physics
The p_draw_helpers console variable is useful for debugging physics issues. The syntax is as
follows:

p_draw_helpers entity type_helper type

Entity Types:
t - show terrain
s - show static entities
r - show sleeping rigid bodies
R - show active rigid bodies
l - show living entities
i - show independent entities
g - show triggers
a - show areas
y - show rays in RayWorldIntersection
e - show explosion occlusion maps

Helper Types
g - show geometry
c - show contact points
b - show bounding boxes
l - show tetrahedra lattices for breakable objects
j - show structural joints (forces translucency on the main geometry)
t(#) - show bounding volume trees up to the level #
f(#) - only show geometries with this bit flag set (multiple f stacks)

For the following example:

p_draw_helpers larRis_g

would show geometry for static, sleeping, active, independent entities, and areas.

In addition, the p_debug_joints console variable, if set to 1, logs tensions of breakable objects at
their weakest locations.

Version 1.6
984

Lumberyard User Guide

Project Configurator

The Project Configurator is in preview release and is subject to change.

The Project Configurator is a standalone application that allows you to specify to the Waf build system
which game projects and assets (Gems) to include in a game build. With it, you can create new
projects, save active projects, and enable, disable, or create new Gems. For information about Waf
build system, see Waf Build System (p. 1318). For information about Gems, see Modular Gems
System (p. 779).

Note
Before you can run the Project Configurator, you must first run Lumberyard Setup Assistant
and close Lumberyard Editor.

The following files should be set to editable for the Project Configurator to work:

• project_asset_folder\gems.json

• project_asset_folder\game.cfg

• engine_root_folder\bootstrap.cfg

• engine_root_folder\dev\game_project_folder\project.json

Version 1.6
985

Lumberyard User Guide
Creating and Launching Game Projects

Topics

• Creating and Launching Game Projects (p. 986)

• Enabling Gems (p. 986)

• Using Lmbr.exe (p. 987)

• Troubleshooting the Project Configurator (p. 988)

Creating and Launching Game Projects
The Project Configurator is in preview release and is subject to change.

After creating a new project, you must run lmbr_waf configure from a command line and build the
project before opening Lumberyard Editor with that project.

To create a new game project

1. Go to engine_root\dev\Bin64\, then open ProjectConfigurator.

2. Choose New project.

3. Enter a name and choose Create project. Only alphanumeric characters are allowed; no special
characters or whitespaces are allowed in the name.

4. Select the new project,and choose Set as default to make it the default that Lumberyard Editor
loads.

5. From a command line, from engine_root\dev\, type lmbr_waf configure. This configures
Lumberyard correctly.

6. Build the game project. For more information, see Game Builds (p. 1365).

To launch an existing game project

1. Go to engine_root\dev\Bin64\, then open ProjectConfigurator.

2. Select a project and choose Set as default to make it the default that Lumberyard Editor loads.

3. From a command line, from engine_root\dev\, type lmbr_waf configure. This configures
Lumberyard correctly.

4. Build the game project. For more information, see Game Builds (p. 1365).

5. Open Lumberyard Editor by opening Editor in the \Bin64 directory.

6. Wait until Asset Processor loads all the project assets. This may take a few minutes.

7. When Asset Processor is finished, close it.

At this point, your project is configured and you can launch the Lumberyard Editor, process assets, and
building the project as needed. For more information, see Game Builds (p. 1365).

Enabling Gems
The Project Configurator is in preview release and is subject to change.

You can enable or disable existing Lumberyard Gems.

Version 1.6
986

Lumberyard User Guide
Using Lmbr.exe

Note
After enabling or disabling a gem, you must run lmbr_waf configure from a command
line, in engine_root\dev\, and build the project before opening Lumberyard Editor with that
project. For more information, see Game Builds (p. 1365).

For more information about gems, see Gems (p. 778).

To enable or disable a gem

1. Go to engine_root\dev\Bin64\, then open ProjectConfigurator.

2. Select the project and choose Gems package settings (upper right).

3. Select which gems to include or exclude, then choose Save.

Using Lmbr.exe
Lmbr.exe is a command-line version of Project Configurator for managing game projects and gems.

Lmbr.exe can be run from the Lumberyard root \dev folder or from the \Bin folder it was built into,
such as \Bin64, or \Bin64.Debug. Examples include:

dev\ $.\Bin64.Debug\lmbr.exe
dev\Bin64.Debug\ $ lmbr.exe

Project Commands
The following commands are used for creating and modifying game projects.

set-active

Sets the active project for building and executing Lumberyard. This command modifies _WAF_
\user_settings.options and bootstrap.cfg to reference the project specified.

lmbr projects set-active project_name

create

Creates a new project using EmptyTemplate, which is located at dev\ProjectTemplates
\EmptyTemplate, as a template.

lmbr projects create project_name

list

Lists all projects in the current directory.

lmbr projects list

Gem Commands
The following commands are used for creating gems and modifying a project's use of gems.

enable

Version 1.6
987

Lumberyard User Guide
Troubleshooting the Project Configurator

Enables the specified gem in the specified project. If a version is specified, it's used, otherwise the
latest version installed is used.

lmbr gems enable gem_name project_name (-version version)

disable

Disables the specified gem in the specified project. If -disable-deps is specified, all dependencies of
the gem will also be disabled.

lmbr gems disable gem_name project_name (-disable-deps)

create

Creates a gem with the given name. If version is specified, those will be used. If -out-folder is not
specified, name will be used.

lmbr gems create gem_name (-version version) (-out-folder gems
\relative_folder)

list

Lists all gems installed or enabled in the specified project.

lmbr gems list (-project project_name)

Troubleshooting the Project Configurator
The Project Configurator is in preview release and is subject to change.

Review the following if you experience issues when using the Project Configurator.

Cannot create a new project

Make sure that the engine_root_folder\dev\game_project_folder\project.json file is
editable.

Ensure that the name entered is valid and does not contain special characters or whitespaces.

Cannot enable or disable a Gem

Make sure that the project_asset_folder\gems.json file is editable before trying to save
changes made to Gems being enabled or disabled.

New project or Gem does not appear in Visual Studio

Make sure that you have run lmbr_waf configure from a command line, which regenerates the
Visual Studio solution to include the new project or gem.

If the project or gem still does not show up in Visual Studio, ensure that the
enabled_game_projects field in the engine_root_folderdev_WAF_
\user_settings.options file is set to the name of your project.

Wrong project gets loaded in Lumberyard Editor

Version 1.6
988

Lumberyard User Guide
Troubleshooting the Project Configurator

Ensure that the engine_root_folder\dev\bootstrap.cfg is editable. Then, open the Project
Configurator, select the project to open, and choose Save.

Also ensure that the sys_game_folder field in the engine_root_folder\dev\bootstrap.cfg
file is set to the name of your project.

Version 1.6
989

Lumberyard User Guide
Materials and Shaders

Rendering and Graphics

Lumberyard uses physically-based rendering (PBR) shaders that use real-world physical rules and
properties to describe how global lighting interacts with objects and how materials get rendered.

Topics

• Materials and Shaders (p. 990)

• Lighting and Shadows (p. 1062)

• Voxel-based Global Illumination (SVOGI) (p. 1069)

• Render Cameras and Effects (p. 1072)

Materials and Shaders
There is a close relationship between materials, textures and shaders. For a material, you select a
shader and then specify the material's properties and attributes such as color, specularity, and texture
that are used by the shader for rendering the object. In this way, the shader entirely defines how
the object looks. Lumberyard uses physically-based rendering (PBR) shaders, which use real-world
physical rules and properties to describe how light interacts with the surface of objects. This means
that game object materials look realistic under all lighting conditions. For more information, see Shader
Rendering System (p. 991).

For computer monitors, the sRGB (instead of RGB) color space is used. Using sRGB, you have
greater precision for darker colors to which the human eye is more sensitive. sRGB also minimizes
any banding artifacts. Always ensure that your monitor is calibrated properly. In sRGB, a 50% mid-
gray is not 0.5 or 127 but rather 0.5 raised by the inverse of gamma 2.2, which equals 187 in Adobe
Photoshop. For Photoshop, make sure that color management is be set to sRGB and Gray-to-Gray
Gamma 2.2. By default, Gray is often set to Dot Gain 20%, which results in a color transformation in
the alpha channel. A value of 127 comes into Lumberyard as 104 and cause inconsistencies.

The Material Editor is the primary tool used to create materials, texture mapping, setting opacity and
lighting effects, setting shader parameters, vertex deformations, tessellation, and more, as shown
below.

Version 1.6
990

Lumberyard User Guide
Shader Rendering System

Topics

• Shader Rendering System (p. 991)

• Shader Reference (p. 1002)

• Selecting Material Surface Type (p. 1034)

• Setting Material Opacity (p. 1034)

• Setting Material Lighting and Color Settings (p. 1034)

• Material ID Mapping in Autodesk 3ds Max (p. 1035)

• Working with Textures (p. 1044)

• Working with Substances (p. 1055)

• Parallax Mapping (p. 1057)

• Using Vertex Colors (p. 1059)

• Customizing Post-Processing Effects (p. 1059)

Shader Rendering System
Lumberyard uses physically-based rendering (PBR) shaders that use real-world physical rules and
properties to describe how incoming light interacts with objects. This means that object materials look
more convincing under different lighting conditions. A basic understanding of how light interacts with
objects in the real world can be very helpful when setting up materials.

Each shader has a unique set of shader parameters (Shader Params) and generation parameters
(Shader Generation Params). Some shader parameters become available (are visible) only if an
associated shader generation parameter is first enabled. This is also true for certain texture map slots
(file paths) under Texture Maps. For a listing of all shaders, see Shader Reference (p. 1002).

Version 1.6
991

Lumberyard User Guide
Shader Rendering System

There are two categories of materials that are relevant for shader rendering: metals such as like iron,
gold, copper, and non-metals such as plastic, stone, wood, skin, glass. Each has different diffuse and
specular reflectance characteristics.

Shading Metallic Materials - Metal reflects all visible light, hence has specular reflectance. The
different types of metal have different specular colors, and should always be above sRGB 180. Metal
has no diffuse reflection and thus has a black diffuse color. Rusty metal however needs some diffuse
color.

Shading Nonmetallic Materials - In contrast, non-metals have diffuse reflection with weak,
monochromatic (gray) specular reflections. Most non-metals reflect only 2%-5% of the light as
specular. The sRGB color range for most non-metal materials is between 40 and 60 and should never
be above 80. A good clean diffuse map is required for non-metals.

As the variation is so little, it is often enough to use a constant specular color instead of a specular
texture map.

Shading Mixed Metal and Nonmetal Materials - Materials that contain both metals and non-metals
require a specular map, as metal has a much brighter specular color than non-metal. If a specular map
is used, the specular color should be set to white (255/255/255) - as it gets multiplied with the values
from the specular map and would otherwise lower the physical values from the map.

To access a shader

1. In Lumberyard Editor, click View, Open View Pane, Material Editor.

2. In the left tree pane, select a material to work with.

3. Under Material Settings, Shader, make a selection.

4. Locate shader-specific parameters under Shader Params and associated Shader Generation
Params.

Topics

• Image-Based Lighting (p. 992)

• Environment Probes and Cubemaps (p. 992)

• Height Map Ambient Occlusion (p. 993)

• Developing a Custom Shader (p. 993)

Image-Based Lighting
Image-based lighting is a rendering technique where complex lighting is stored in an environment map
that is projected onto a scene. In simple words, a light probe or environment map is just an image on a
sphere.

If the range of the image colors is within some small defined range (0-255 for monitor displays), the
image is LDR (low dynamic range). With HDR (high dynamic range) some rendering effects become
more apparent and correct (DOF, motion blur, bloom, dark materials, global illumination). Depending
on the image and compression requirements, various texture formats can be useful.

Diffuse lighting can be approximated very well by diffuse-convolving an environment map, which can
be stored as a cube map again. Because of bilinear filtering, the texture can be quite low resolution.
Mip maps are not required and the result with mip maps can actually look worse as ordinary mip
mapping on the GPU is computed for each 2x2 pixel block and 2x2 block artifacts can become
noticeable.

Environment Probes and Cubemaps
Cube mapping uses the six faces of a cube as the texture for a material. The cube map is generated by
projecting and then rendering the scene six times from a single viewpoint, one for each cube face. In

Version 1.6
992

Lumberyard User Guide
Shader Rendering System

this way, the local environment can be stored as either six square textures, or unfolded onto six regions
of a single texture. This texture is used to store the image of the environment surrounding the object.
Cube maps are useful for showing reflections, and are relatively small in size because reflections can
be blurry as long as you are not simulating a mirror.

Cube maps control shadow color, ambient diffuse, and particle diffuse as well as reflections. They
function as bounce lighting by taking the colors from the surroundings and applying them directly into
the diffuse texture of materials inside their specified radius.

For information about using environment probes and cubemaps, see Environment Lighting (p. 1062)

Cube maps use image-based lighting. For more information see Image-Based Lighting (p. 992).

Height Map Ambient Occlusion

Ambient occlusion (AO) is a technique used to calculate how exposed each point in a scene is to
ambient lighting. The lighting at each point is a function of other geometry in the scene. For example,
the interior of a building is more occluded and thus appears darker than the outside of the building that
is more exposed.

Lumberyard uses height map-based ambient occlusion (AO), which is a high-performance and efficient
method of providing ambient occlusion in outdoor environments without the need for prebaking. This
make it suitable for PC, consoles, and virtual reality headsets.

In combination with screen space directional occlusion (SSDO), height map AO provides additional
shading cues that enhance the depth perception of a scene.

To enable height map ambient occlusion

1. In the Rollup Bar, click the Terrain tab, and then choose Environment.

2. Under Terrain, select the Height map AO check box.

The influence that height map AO provides can be restricted using clip volumes and vis areas. Both
of these object types have a IgnoreHeightMap AO check box that will locally disable height map AO
inside the volume or area.

By default, evaluation is performed at quarter-display resolution. This can be changed using the
r_HeightMapAO console variable, as listed below.

Heightmap AO uses the following console variables:

• r_HeightMapAO – Sets the resolution that evaluation is performed at. Values are : 0=off, 1=quarter
resolution, 2=half resolution, 3=full resolution.

• r_HeightMapAOAmount – Sets the strength of the occlusion effect when combined with the scene.

• r_HeightMapAORange: – Area around the viewer that is affected by height map AO.

• r_HeightMapAOResolution – Texture resolution of the height map used for approximating the
scene.

Developing a Custom Shader

Most visual effects in Lumberyard are produced by shaders, which employ a number of standard
and advanced lighting models like Blinn, Cook-Torrance, Oren-Naye, Kajiya-Kay, and some custom
models.

There are two types of shaders used: lighting shaders that interact with scene illumination, and regular
shaders that don't calculate any lighting information but for used for post-processing effects. All lighting
shaders have a common structure and make use of a unified shading interface. This interface should

Version 1.6
993

Lumberyard User Guide
Shader Rendering System

always be used to ensure proper usage of the lighting pipeline, minimize code duplication and save a
lot of work.

Lumberyard uses an ubershader system with compile-time defines to handle the many different shader
permutations that are required for combining numerous shader features. The shader format used that
is very similar to High-Level Shader Language (HLSL), DirectX FX, and CgFX.

Shader development is a programming discipline onto itself and requires expert knowledge to optimize
as shader code can be performance-critical and platform-dependent.

The easiest way to create new shaders is by using a text editor. Start by copying an existing .ext
extension file and associated .cfx effect file. After restarting Material Editor, the new shader will show
up and can be assigned to a material.

Topics

• Shader Development Best Practices (p. 994)

• Shader Rendering Pipeline (p. 994)

• Hot Reloading of Shaders (p. 995)

• Remote Shader Compiler (p. 995)

• Generating Shader Combinations (p. 997)

• Shader Cache and Generation (p. 998)

Shader Development Best Practices

Shaders provide the flexibility that is required for realizing the modern rendering effects seen in games
today. Unfortunately they have the downside of creating the need to manage large numbers of shader
permutations. Each shader can potentially have thousands of permutations. Try to keep the number of
new permutations as low as possible.

The shader compiler will parse the code and generate the permutations automatically, so the
complexity is hidden, but at the expense of huge memory requirements and long compile times
required.

The following guidelines and best practices should be taken into consideration when developing a
custom shader for Lumberyard:

• Before creating a new shader, make sure that you can't reuse or parameterize one of the existing
shaders.

• Pre-compute as much as possible and place it in either textures or in the vertex shader and pass the
data to vertex interpolators.

• For performance reasons, avoid using sincos (8 ALU), normalize (3 ALU), pow (3-9 ALU), and
smoothstep. Also, divisions are done per-scalar (3 ALU).

• Pack as much data as possible per-texture instead of doing multiple texture lookups. Texture
lookups are expensive on consoles and older hardware.

• Shader code is compiled depending on three different flags: Lumberyard, material and runtime
flags. Lots of flags can lead to many shader permutations, so keep the number of flags as small as
possible. By using #ifdefs with shader flags, it is possible to define several code branches that are
compiled and used depending on the flag bitmask. The shader compiler then generates different
hardware shader programs for each branch and stores them in the shader cache.

Shader Rendering Pipeline

Lumberyard has a fixed rendering pipeline that is set up in the renderer code. Lumberyard is almost
fully deferred and only does forward for hair, eyes, glass, transparencies, and water reflections.
Lumberyard makes use of two elements: effects that define parameterized shader code, and materials
that customize the shader parameters for a specific mesh.

Version 1.6
994

Lumberyard User Guide
Shader Rendering System

First, Lumberyard fills the off-screen buffers like reflection buffers and shadow maps. After that, it
writes the scene depth to the frame buffer and additionally to a render target. Having access to scene
depth is essential for some subsequent rendering steps like screen space ambient occlusion or fog
rendering. After the depth is written, Lumberyard does the forward lighting. The shadow contributions
are written in a separate step to a texture that combines the shadowing result from several light
sources (deferred shadowing). Finally, translucent objects are drawn in a back-to-front order.

When Lumberyard tries to render an object it will first check if a compiled shader is available. If the
shader is not available, Lumberyard will try to load it from the global shader cache. If the shader cannot
be found in the cache, the rendering thread will issue a request to stream the shader in from disk and
will block until the streaming load is complete. This can cause severe stalls due to the relatively long
time needed load data from disk.

Hot Reloading of Shaders

Lumberyard supports hot reloading of shaders, so whenever you modify and save a shader file, it will
get reloaded automatically and the results can be viewed directly in a test level.

For hot reloading to work, shader files must be copied to the appropriate locations, and the following
requirements must also be met:

• Add the following code to the dev\system.cfg file:

 sys_PakPriority=0 <!--ensures the shader files get loaded from the file
 system instead of from pak files>
r_ShadersEditing=1 <!--ensures that shader code can be recompiled at
 runtime-->

• In the Console, type r_reloadshaders 1. This is only required in the game executable. In
Lumberyard Editor, it will automatically reload a shader when you modify it.

• For Lumberyard, copy the shader files to the dev\Lumberyard\Shaders directory.

Remote Shader Compiler

Unlike PCs, many game consoles cannot compile shaders locally. For this reason, Lumberyard
provides the remote shader compiler application to handle shader compilation by assigning a server on
the local network that can communicate over TCP. The server receives the shader source file from a
computer running Lumberyard, compiles it, and sends back the shader, which the game console can
then load and use.

The remote shader compiler is also used to store all the shader combinations that have been
requested by the game so far, per platform. These are used during shader cache generation, when all
the requested shaders are packed into .pak files for use by the game.

It is not required to have a central remote shader compile server. You can instead set up the shader
compiler locally on a PC.

Running the Remote Shader Compiler

You can find the remote shader compiler at \Tools\CrySCompileServer\x64\profile
\CrySCompileServer.exe. A configuration file is also available for configuring the TCP port that the
server application will listen on.

You can launch the remote shader compiler by starting CrySCompileServer.exe manually.
However, usually it makes sense to set it up as a service, so that it is always started with the operating
system.

Since requests for shaders are executed in parallel, you may notice significant delays in acquiring
shaders at runtime.

Version 1.6
995

Lumberyard User Guide
Shader Rendering System

Remote Shader Compiler Configuration

You configure the remote shader compiler by editing the config.ini file. To configure the remote
shader compiler, edit the following parameters:

• MailError - Set to an internal company e-mail address to which notifications about compilation
errors will be sent. The cache \TempDir directory in which the binary shaders are stored once they
get compiled needs to point to a valid absolute path - the default is C:\SHADER_CACHE).

• The \TempDir cache directory in which the binary shaders are stored once they got compiled must
point to a valid absolute path. The default is C:\SHADER_CACHE.

• port - TCP port, which has to match the setting in the game
system_platform_shader_version.cfg file. Some examples for this file:
system_windows_pc.cfg, system_osx_metal.cfg, or system_android_es3.cfg.

• MailServer - Your email server.

• SCMailAddress - Email address used in the From field of the email sent by the remote shader
compiler.

The completed config.ini file should look similar to this example:

MailError = shadererror@your_company.tld
MailInterval = 1
port = 61453
TempDir = C:\SHADER_CACHE
MailServer = your_email_server
SCMailAddress = RemoteShaderCompiler@your_company.tld
PrintErrors = 1

Specific Platforms

In the root directory of the remote shader compiler, each supported platform has its own subfolder with
additional subfolders for different version numbers. The paths are hard coded and can be configured in
RenderDll\Common\Shaders\ShaderCache.h if required.

All paths follow this pattern: root_folder\Tools\RemoteShaderCompiler\Compiler
\platform_folder\Vxxx

You can find information about the path used by the remote shader compiler in the file
ShaderCache.cpp, under the function mfGetShaderCompileFlags.

Lumberyard provides all appropriate shader compilers for you that match the code of that version. Just
copy the entire \RemoteShaderCompiler directory and run the provided binary.

Shader Cache Lists

The cache subfolder of the remote shader compiler contains different text files of all the combinations
requested so far by the game. These text files are named ShaderList_platform.txt
(ShaderList_DX11.txt for example) and containi all the shader combinations that have ever been
requested on a certain platform for any level. These files are important as the shader .pak files cannot
be generated without them.

The game submits the requests to the remote shader compiler either during actual gameplay or
during loading phases, even when remote shader compiling itself is disabled. This is to ensure that all
possible shader combinations are collected and that the shader caches, which are generated during
the shader cache generation phase, are as complete as possible.

Game Configuration

Having a remote shader compiler server can provide a performance benefit as it caches the results
and sends them out to team members instead of having to compile shaders each time. In addition,

Version 1.6
996

Lumberyard User Guide
Shader Rendering System

the server keeps track of all shaders used by all people, which can be valuable if you want to make a
release build that includes all shaders.

Turning the Remote Shader Compiler On and Off

You can configure whether the game uses the remote shader compiler ith the following console
variable, which is usually in the system_platform_shader_version.cfg file:

r_ShadersRemoteCompiler=1

If r_ShadersRemoteCompiler is set to 0, no remote shader compilation will be performed and
Lumberyard will do local shader compilation instead, which will fail on consoles.

Specifying the Remote Shader Compiler Location

When the remote shader compiler is enabled, the game needs the location of the remote shader
compiler. To configure the IP address of the server, use the following console variable:

r_ShaderCompilerServer=IPv4_of_PC_running_the_RemoteShaderCompiler

Using the Remote Shader Compiler Locally

You can set r_ShaderCompilerServer=localhost if you are running on a PC and want to use the
remote shader compiler locally.

Using Multiple Remote Shader Compilers

It is possible to specify more than one remote shader compiler, as shown in the following example. The
IP addresses need to be separated by semicolons as shown:

r_ShaderCompilerServer=10.0.0.10;10.0.0.11

Note
It is not possible to use the network name of the server instead of the IP address, since no
name resolving is performed.

Specifying a Port Number

If the remote shader compile server uses a user-defined port number as specified in the config.ini
file, you can configure the port number with the following console variable:

r_ShaderCompilerPort=portnumber

Disabling Request Lines

Submitting request lines to the remote shader compiler can also be disabled with the following
console variable. This is useful when experimenting with shaders and you don't want to have these
combinations added to the shader cache:

r_shaderssubmitrequestline=0

Proxying Remote Requests

You can use the Asset Processor to proxy remote requests to the shader compiler
server if a device cannot connect to the shader compiler server. In this case, set
r_AssetProcessorShaderCompiler=1. Now whenever the game would have made a request
directly to the shader compiler server, it instead submits the request to the Asset Processor(this can
also be over a USB connection), which then forwards it to the shader compiler server.

Generating Shader Combinations

Make sure that the Remote Shader Compiler (p. 995) has been setup successfully first. The remote
shader compiler should be accessible by everyone playing the game, especially QA. Try to have
everyone who is working on a certain game project share the same remote shader compiler.

Version 1.6
997

Lumberyard User Guide
Shader Rendering System

Normal game builds should contain shader cache .pak files generated by the shader cache generation
phase. At the beginning of a project this could be either completely missing (because no shaders
requests have been submitted yet) or the .pak files could still be missing a lot of shaders.

When Lumberyard tries to render an object it will check if the compiled shader is available. When the
shader is not available, it will try to load it from the global cache. This can either be loaded directly or
through the streaming engine. The direct loading will cause direct disc access from the render thread
and this could cause severe stalls due to the streaming thread trying to access the disc at the same
time.

By default, when shader compiling is disabled, Lumberyard will stream the shaders from the global
cache. The object won't be rendered when shader data is being streamed in. This default behavior can
be modified with the following console variable. Note that streaming of shaders is not allowed when
shader compiling is enabled, and Lumberyard will automatically disable the following console variable:

r_shadersAsyncActivation = 0

When the shader is missing from the global cache, a "request line" to store this missing shader is
directly sent to the remote shader compiler to be sure that this shader will be available in the next
shader cache generation. This happens even when shader compiling is disabled, but the remote
shader compiler needs to be active.

When no shader compiler is defined or if the shader compiler is disabled then the request line will be
ignored. It is recommended to test the remote shader compiler as much as possible to collect as many
shader combinations as possible. The remote shader compiling can be disabled with the following
console variable, which is disabled by default in release builds, otherwise is always enabled:

r_shadersRemoteCompiler = 0

The submission of the shader request lines can be disabled as well:

r_shadersSubmitRequestLine = 0

When shader compiling is disabled and the shader is missing in the global cache, the object won't
be rendered at all. When shader compiling is enabled, and the remote shader compiler is active, an
asynchronous request to compile the shader will be sent to the remote shader compiler. If the remote
shader compiler is disabled, then the shader will be compiled locally on the PC platform. Other game
platforms do not support local compilation.

To keep track of the current shader cache state in game, extra debug information can be enabled using
the following console variable:

r_displayinfo = 2

A shader cache information line can be found on the top right of the screen, which reports the amount
of Global Cache Misses (GCM) that have been found so far. It also reports if shader compiling is
currently enabled or not.

All the shader cache misses also get written to a text file at the following location: \Shaders
\ShaderCacheMisses.txt. This information is only used for debugging the current state of the
shader cache, and should ideally be empty.

Shader Cache and Generation

This section discusses both the shader cache and how to generate shader cache .pak files.

Shader Cache

The shader cache stores a collection of parsed and precompiled shaders. Since the shader code is
written with multiple defines, Lumberyard can generate an enormous number of different shaders.
Compiling shaders on demand at runtime is only possible on the PC platform. On-demand shader
compiling causes freezes during the gameplay and uses extra memory. In order to reduce this

Version 1.6
998

Lumberyard User Guide
Shader Rendering System

overhead, all required shader combinations for a game are parsed, compiled, and stored in the shader
cache.

The shader cache generally refers to the following files:

• Shaders.pak - Contains the shader source files, which is everything inside the \Engine\Shaders
\ folders excluding EngineAssets.

Note
The actual shader source code (*.cfi and *.cfx) can be removed from this file for the
final released version, and is not needed anymore when the binary shaders are valid and
available.

• ShadersBin.pak - Contains the binary-parsed shader information of the shader source code.

• ShaderCache.pak - Contains compiled shaders for all possible combinations that have been
submitted to the remote shader compiler.

• ShaderCacheStartup.pak - Small subset of the shader cache containing only the shaders that
are used during game start. This file is loaded into memory for quicker start up times, but is not
required. This cache is often used by developers to contain the minimum set of shaders required to
show a loading screen so that the rest of the loading can occur.

ShaderCache.pak File Generation

Creating a ShaderCache.pak file consists of running the BuilderShaderPak_DX11.bat batch
script, which in turn runs ShaderCacheGen.exe to ensure the local cache directory contains all the
shaders that are listed in the ShaderList.txt file. BuilderShaderPak_DX11.bat then packs
the contents of the cache directory, creates a ShaderCache.zip file, and then renames the file to
ShaderCache.pak.

You can obtain the ShaderList_platform.txt file either from the remote shader compiler server
or from the Lumberyard Editor folder. This file contains the list of all shaders your game uses, which
ShaderCacheGen.exe uses to produce all the shader combinations your game uses.

When running Lumberyard Editor, individual shaders are created as you view them. As such, you
do not strictly need a remote shader compiler server to test game release mode or test shader pack
generation, you just need access to the ShaderList_platform.txt file that is created in the dev/
cache/game_name/platform/user/cache/shaders directory when running Lumberyard Editor.
However, only the shaders you have viewed on your local computer while running Lumberyard Editor
will be listed in the ShaderList_platform.txt file. For this reason, it is recommended that you use
a remote shader compiler server if possible.

Note
During development time when you run the game or run Lumberyard Editor, and before
the shaders are packed into shader cache .pak files, loose shader files are created in the
following directory: Dev\Cache\your_game\platform\user\cache.

The following sections detail the steps used to generate ShaderCache.pak files:

ShaderCacheGen.exe

Lumberyard ships with ShaderCacheGen.exe, which is located in the \Bin64 directory.
ShaderCacheGen.exe is essentially a stripped-down version of the Lumberyard game launcher
without the render viewport, and is used to populate the local shader cache directory with all the
shaders contained in the ShaderList.txt file.

When running ShaderCacheGen.exe, it first loads the ShaderCacheGen.cfg file, which you can
customize to suit your needs.

If you have customized Lumberyard in any way, it is required that you have build Lumberyard and your
game using the all profile, which will build both ShaderCacheGen.exe (and ensure that it is up to
date) and the game .dll files that it needs. Use the following command to do this:

Version 1.6
999

Lumberyard User Guide
Shader Rendering System

lmbr_waf build_win_x64_profile -p all

If you don’t want to (or cannot) build using the all profile, you can alternatively just build the
game_and_engine spec and the shadercachegen spec using the following commands:

lmbr_waf build_win_x64_profile -p game_and_engine
lmbr_waf build_win_x64_profile -p shadercachegen

Packing the Shader Cache Using a Batch File

The BuilderShaderPak_DX11.bat file is used to generate the ShaderCache.pak files, which
are saved to the dev\build\patform\your_game directory. The batch file works by first calling
ShaderCacheGen.exe and then calling Tools\pakShaders.bat.

Run BuilderShaderPak_DX11.bat in a command prompt window from the Lumberyard \dev
directory, specifying the location to the ShaderList_platform.txt file.

For example:

F:\Lumberyard_folder\dev\BuildShaderPak_DX11.bat C:
\shader_compiler_server\ShaderList_DX11.txt

Once the shader .pak files are created, you can move them as needed. For example, if you've already
built a release version of your game, you can place them with the rest of the .pak files.

When compiling shaders for you own project, you can customize the BuildShaderPak_DX11.bat file
as needed. The following is an excerpt from a sample .bat file:

set SOURCESHADERLIST=%1
set GAMENAME=your_game_project
set DESTSHADERFOLDER=Cache\%GAMENAME%\PC\user\Cache\Shaders

set SHADERPLATFORM=PC
rem other available platforms are GL4 GLES3 ORBIS DURANGO METAL
rem if changing the above platform, also change the below directory name
 (D3D11, ORBIS, DURANGO, METAL, GL4, GLES3)
set SHADERFLAVOR=D3D11

Packing the Shader Cache Manually

If you want to use more complex build pipelines, you will find it beneficial to pack the shader cache
manually. To do so, first run ShaderCacheGen.exe to generate the shader cache so you can pack it
later.

Next, zip all the shaders up into ShaderCache.zip, then rename the file to ShaderCache.pak.

Each platform has different .pak files. The directory mapping for the different platforms is as follows:

The PC platform should copy data from the following folders:

lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache\D3D9\

lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache\D3D10\

lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache\D3D11\

lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache\GL4\

Version 1.6
1000

Lumberyard User Guide
Shader Rendering System

into the following destination folders:

shaders\cache\D3D9\

shaders\cache\D3D10\

shaders\cache\D3D11\

shaders\cache\GL4\

The Xbox One platform should copy the data from lumberyard_root_folder\dev\cache
\your_game\platform\user\shaders\cache\Durango\.

The Playstation 4 platform should copy the data from lumberyard_root_folder\dev\cache
\your_game\platform\user\shaders\cache\Orbis\.

ShaderCache.pak should contain everything from the previously listed subfolders.

ShadersBin.pak should contain only the *.cfxb and *.cfib files.

ShaderCacheStartup.pak should contain the following files:

lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache
\<platform>\lookupdata.bin -> Shadercache\<platform>\lookupdata.bin
lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache
\<platform>\CGPShader\FixedPipelineEmu* -> Shadercache\<platform>\CGPShader
\FixedPipelineEmu*
lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache
\<platform>\CGPShader\Scaleform* -> Shadercache\<platform>\CGPShader
\Scaleform*
lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache
\<platform>\CGPShader\Stereo* -> Shadercache\<platform>\CGPShader\Stereo*
lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache
\<platform>\CGVShader\FixedPipelineEmu* -> Shadercache\<platform>\CGVShader
\FixedPipelineEmu*
lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache
\<platform>\CGVShader\Scaleform* -> Shadercache\<platform>\CGVShader
\Scaleform*
lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache
\<platform>\CGVShader\Stereo* -> Shadercache\<platform>\CGVShader\Stereo*
lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache
\<platform>\lookupdata.bin -> Shaders\Cache\<platform>\lookupdata.bin
lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache
\<platform>\Common.cfib -> Shaders\Cache\<platform>\Common.cfib
lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache
\<platform>\fallback.cfxb -> Shaders\Cache\<platform>\fallback.cfxb
lumberyard_root_folder\dev\cache\your_game\platform\user\shaders
\cache\<platform>\fixedpipelineemu.cfxb -> Shaders\Cache\<platform>
\fixedpipelineemu.cfxb
lumberyard_root_folder\dev\cache\your_game\platform\user\shaders
\cache\<platform>\FXConstantDefs.cfib -> Shaders\Cache\<platform>
\FXConstantDefs.cfib
lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache
\<platform>\FXSamplerDefs.cfib -> Shaders\Cache\<platform>\FXSamplerDefs.cfib
lumberyard_root_folder\dev\cache\your_game\platform\user\shaders
\cache\<platform>\FXSetupEnvVars.cfib -> Shaders\Cache\<platform>
\FXSetupEnvVars.cfib
lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache
\<platform>\FXStreamDefs.cfib -> Shaders\Cache\<platform>\FXStreamDefs.cfib

Version 1.6
1001

Lumberyard User Guide
Shader Reference

lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache
\<platform>\scaleform.cfxb -> Shaders\Cache\<platform>\scaleform.cfxb
lumberyard_root_folder\dev\cache\your_game\platform\user\shaders\cache
\<platform>\stereo.cfxb -> Shaders\Cache\<platform>\stereo.cfxb

Build Platforms

The build platform subfolders listed in the following table are located at \dev\Cache
\your_game\platform\user\cache\shaders\.

Build Platform Build Platform Subfolder

PC, DirectX 11 \D3D11

XBox One \DURANGO

Playstation 4 \ORBIS

PC, OpenGL 4 \GL4

Shader Reference
Lumberyard includes the following physically-based rendering (PBR) shaders, which use real-world
physical rules and properties to describe how light interacts with the surface of objects. This means
that game object materials look realistic under all lighting conditions.

To access a shader

1. In Lumberyard Editor, click View, Open View Pane, Material Editor.

2. In the left tree pane, select a material to work with.

3. Under Material Settings, Shader, make a selection.

4. Locate shader-specific parameters under Shader Params and associated Shader Generation
Params.

Note
Some shader parameters become available (are visible) only if an associated shader
generation parameter is first enabled. This is also true for certain texture map slots (file paths)
under Texture Maps.

Shader Name Description

Common.Cloud
Shader (p. 1003)

Use to render 3D clouds that use per-vertex gradient lighting and takes
sun color, sky color, and viewer position into account.

DistanceClouds
Shader (p. 1004)

Use to render cheap 2D clouds that are distantly placed in a sky scene.

Eye Shader (p. 1006) Use to render realistic eyes that take sclera, cornea, iris, and eye
moisture properties into account. Eyelash rendering is done using the
Hair Shader (p. 1011).

GeometryBeam
Shader (p. 1007)

Use to create volumetric light beams that feature dust and turbulence
effects.

Glass Shader (p. 1009) Use to render glass surfaces with various refractive, reflective, ripple, tint,
and cracking effects.

Version 1.6
1002

Lumberyard User Guide
Shader Reference

Shader Name Description

Hair Shader (p. 1011) Use to render all hair and fur, imparting different color, stranding, and
animation effects. Use to render eyelashes and eyebrows along with the
Eye Shader (p. 1006) for realistic eyes.

HumanSkin
Shader (p. 1013)

Use to render skin and it's various physical properties including color,
oiliness, pores, stubble, and wrinkles.

Illum Shader (p. 1015) The most common shader - use to create an extremely wide variety of
render effects.

Lightbeam.LightBeam
Shader (p. 1018)

Use to create volumetric light beams that feature fog and other
atmospheric effects.

Monitor Shader Use to create retro television screen effects such as grain, noise, chroma
shift, and interlacing. Useful for in-game displays.

NoDraw Shader Use mainly for physics proxies, this shader does not render selected
geometry.

ParticleImposter
Shader (p. 1019)

Use to create particle effects that are not affected by light and hence do
not cast shadows or cause reflections.

Particles
Shader (p. 1019)

Use to render particle effects for fire, smoke, lightning, sparks, and
fog that are affected by light and as such cast shadows and cause
reflections.

Sky Shader (p. 1023) Use to render cheap static sky (SkyBox) effects.

SkyHDR
Shader (p. 1023)

Use to render realistic dynamic sky effects that change based on time of
day in the level.

TemplBeamProc
Shader (p. 1023)

Use to create cheap fog-like effects for light beams.

Terrain.Layer
Shader (p. 1025)

Use for painting and blending terrain texture layers in a level.

Vegetation
Shader (p. 1026)

Use to render trees, bushes, grass, and other vegetation, as well as
imparting various bending motion effects.

VolumeObject
Shader (p. 1028)

Use to render various volumetric objects such as clouds, fog, and smoke,
and to impart realistic shading and self-shadowing effects.

Water Shader (p. 1029) Use to render the ocean exclusively, and to impart various reflection,
ripple, and foam effects.

Waterfall
Shader (p. 1030)

Use to render waterfalls exclusively, and provides layering and tiling, as
well as motion effects.

WaterVolume
Shader (p. 1032)

Use to render volumetric bodies of water including lakes, pools, and
rivers, and to impart various reflection, ripple, and foam effects.

Common.Cloud Shader

The Common.Cloud shader is used exclusively for 3D clouds. It uses per-vertex gradient lighting
and takes the sun, cloud and viewer positions into account. Gradient lighting interpolates between
the bright color, which is calculated from the HDR Sun color multiplier, and the dark color, which is
calculated from the HDR Sky color multiplier. In addition, rim lighting is also applied on a per-pixel

Version 1.6
1003

Lumberyard User Guide
Shader Reference

basis to capture the effects of light scattering seen when looking at clouds being lit by the sun from
behind.

3D clouds use soft clipping to gradually fade in and out at the near and far clipping plane. This prevents
rendering artifacts in the far distance and flickering due to cloud particles entering and leaving the
view cone near the camera during a flythrough. Additionally, clouds blend softly against opaque scene
geometry.

Shader Parameters

CloudAngularAtten
Defines the angular attenuation factor for rim lighting. The smaller the value the more widespread
the rim lighting effect for clouds (partially) covering the sun becomes from the viewer's point of
view.

Default value: 30

CloudBacklightingScale
Defines how much to scale rim lighting. Higher values increase the glow of cloud edges.

Default value: 1

CloudOutlineSlope
Defines the slope of the ramp function used to blend in rim lighting. Higher values create harder
transitions.

Default value: 1

CloudOutlineThreshold
Defines the cloud's opacity threshold value below which the rim lighting effect is applied. Higher
thresholds cause the rim lighting to grow inward.

Default value: 0.4

HDRBrightnessAdjust
Controls brightness of clouds in high dynamic range image format (HDR) (relative to low dynamic
range image format (LDR)).

Default value: 1

DistanceClouds Shader

The DistanceClouds shader is a dedicated shader used for 2D clouds that are placed at a far distance.

Shader Parameters

Alpha Multiplier
Alpha multiplier for cloud texture.

This parameter requires that the Advance distance clouds shader generation parameter is
enabled.

Default value: 1

AlphaSaturation
Controls the alpha saturation of clouds when blending them with the sky. High values make less
opaque parts of the cloud texture fade out more.

You can reuse the same texture for slightly different looking clouds by defining several materials
with custom AlphaSaturation values.

This parameter does not apply if the Simple distance clouds shader generation parameter is
enabled.

Version 1.6
1004

Lumberyard User Guide
Shader Reference

Default value: 2

Attenuation
Controls how strongly sun light is attenuated when traveling through the distance cloud. Light
attenuation is computed per pixel.

Use Attenuation to blend between current sun color and sky color. Use higher attenuation values
to accentuate cloud self-shadowing (for example, strong cloud layers).

This parameter applies if no Shader Generation parameter is enabled.

Default value: 0.6

Cloud Height
Sets the height of the cloud layer.

This parameter requires that the Advanced distance clouds shader generation parameter is
enabled.

Default value: 0.3

Density Sky
Sets the cloud density that is used for sky light scattering.

This parameter requires that the Advanced distance clouds shader generation parameter is
enabled.

Default value: 4.5

Density Sun
Sets the cloud density that is used for sunlight scattering.

This parameter requires that the Advanced distance clouds shader generation parameter is
enabled.

Default value: 1.5

Exposure
Sets exposure amount to enable HDR on LDR cloud texture.

This parameter requires that the Simple distance clouds shader generation parameter is
enabled.

Default value: 1

Opacity
Sets opacity modifier for the cloud.

This parameter requires that the Simple distance clouds shader generation parameter is
enabled.

Default value: 1

SkyColorMultiplier
A value multiplied to the sky color defined for the current time of day.

The result is used in the pixel shader to blend between sun and sky color using the computed light
attenuation value.

This parameter applies if no shader generation parameter is enabled.

Default value: 1.5

StepSize
Controls how fast to step through the cloud texture (density) to compute per-pixel light attenuation.

This effect determines the appearance of the gradient. Higher values create smoother and less
abrupt gradients, but can also produce unnatural gradient changes over time of day.

Version 1.6
1005

Lumberyard User Guide
Shader Reference

This parameter applies if no shader generation parameter is enabled.

Default value: 0.004

SunColorMultiplier
A value multiplied by the sun color that is defined for the current time of day. The result is used in
the pixel shader to blend between sun and sky color using the computed light attenuation value.

This parameter applies if no shader generation parameter is enabled.

Default value: 4

Shader Generation Parameters

Simple distance clouds
Enables the use of distance clouds with no volumetric shading computations.

Advanced distance clouds
Enables the use of distance clouds with more accurate shading computations.

Eye Shader

The Eye shader is used to render realistic eyes that take sclera, cornea, iris, and eye moisture
properties into account.

Shader Parameters

Cornea Refraction
Controls and optionally animates pupil size.

Default value: 0.01

Cornea Smoothness
Controls the glossiness of corneas reflections.

The default creates smaller and sharper highlights that are more lifelike.

Default value: 1

Indirect bounce color
Sets the amount of indirectly bounced color. Has no effect when the Physically Based Shading
(PBR) model is used.

Default value: 136,136,136

Iris Color
Tweaks the iris color without affecting the eye white.

Iris Color can be used for eye variation between characters that use the same texture.

Default value: 187,187,187

Iris Depth
Simulates the actual form of the iris, since the in-game mesh has the shape of a sphere.

Default value: 0.005

Iris Shadowing
Controls iris self-shadowing, which further simulates the actual form of the iris.

Note
This effect is only affected by sunlight and not by other light sources.

Default value: 5

Version 1.6
1006

Lumberyard User Guide
Shader Reference

Iris SSS
Controls the subsurface scattering (SSS) amount of the iris, which blurs the shadows. Higher
values blur the shading more.

Default value: 0.6

Sclera SSS
Controls the subsurface scattering (SSS) amount of the eye whites, which blurs the shadows.
Higher values blur the shading more.

Default value: 0.4

Depth bias scale
Sets the depth bias of the overlay mesh to avoid clipping with the eyes.

This parameter requires that the Specular overlay shader generation parameter is enabled.

Default value:

Diffuse occlusion strength
Controls the strength of the occlusion effect on the eyes.

This parameter requires that the Ambient occlusion overlay shader generation parameter is
enabled.

Default value: 1

Specular occlusion strength
Controls the strength of the occlusion effect on the eyes' specular highlights.

This parameter requires that the Ambient occlusion overlay shader generation parameter is
enabled.

Default value: 1

Shader Generation Parameters

Environment map
Enables environment map as a separate texture.

If the blending cube map feature isn’t used, Environment map must be enabled and
nearest_cubemap must be assigned for the texture's environment.

Ambient occlusion overlay
Enables ambient occlusion overlay rendering.

Must be enabled to use the occlusion mesh that overlays the eye. This mesh gives the eyes a
more natural shadowing and integrates them with the head.

Specular overlay
Enables the eye water mesh.

GeometryBeam Shader

Use the GeometryBeam shader to create volumetric light beams that feature dust and turbulence
effects.

Shader Parameters

Ambience strength
Controls the general strength of the beam effect.

Version 1.6
1007

Lumberyard User Guide
Shader Reference

Default value: 0.12

Base UV scale
Controls the scale or tiling of the object's base UV mapping.

Default value: 1

Brightness
Controls the overall brightness of the beam effect.

Default value: 1

Dust anim speed
Controls the animation speed for the dust turbulence effect, as defined by the Specular texture
map.

This parameter requires that the Dust Turbulence shader generation parameter is enabled.

Default value: 1

Dust UV rotation
Changes the rotation of the dust turbulence effect, as defined by the Specular texture map.

This parameter requires that the Dust Turbulence shader generation parameter is enabled.

Default value: 0

Dust UV scale
Sets the scale or tiling of the UV mapping for the dust turbulence effect, as defined by the Specular
texture map.

This parameter requires that the Dust Turbulence shader generation parameter is enabled.

Default value: 0.6

End color
Sets the end color for gradient along the U axis.

Default value: 255,255,255

Soft intersection factor
Controls softness of surface interaction with other opaque scene geometry.

Default value: 1

Start color
Sets the start color for gradient along the U axis.

Default value: 255,255,255

Turbulence tiling
Multiplies turbulence, as defined by the Bumpmap texture map.

This parameter requires that the Dust Turbulence shader generation parameter is enabled.

Default value: 1

Turbulence visibility
Controls the visibility level of turbulence, as defined by the Bumpmap texture map.

This parameter requires that the Dust Turbulence shader generation parameter is enabled.

Default value: 0.55

UV vignetting
Applies a vignetting effect to the edges of the UV map.

This parameter requires that the UV Vignetting shader generation parameter is enabled.

Version 1.6
1008

Lumberyard User Guide
Shader Reference

Default value: 4

Vertex alpha fading
If you use vertex alpha to fade out the edges, use this slider to control the interpolation curve.

Default value: 0.55

View dependency factor
Determines how beams blend in and out depending on the camera-facing angle.

The higher the value, the longer the beam is visible even when at a nearly 90° angle to camera.
Smaller values cause the beam to begin to vanish.

Default value: 2

Volumetric scale
Controls the volumetric features when shadow receiving is enabled. This also has the effect of
changing the soft shadow radius.

This parameter requires that the Receive Shadows shader generation parameter is enabled.

Default value: 0.7

Shader Generation Parameters

Dust Turbulence
Enables dust and turbulence overlay. Specular and Bumpmap texture map slots also become
available under Texture Maps to fine-tune appearance.

Receive Shadows
Enables sun shadows to be cast on the light beams, creating volumetric shafts.

You can use this parameter for an interesting effect, but it might affect your game’s performance.

UV Vignetting
Enables vignettes in UV space.

Glass Shader

The Glass shader renders windows and other glass objects, imparting refractive, tint, fog, and cracking
effects for both breakable and non-breakable glass objects. Use the Illum Shader (p. 1015) instead if
you require non-refractive effects for non-breakable glass objects.

Here are a few things to keep in mind when using the Glass shader:

• Ambient diffuse lighting from cube maps isn't taken into account.

• The shader uses the sky color exclusively for all ambient lighting.

• Except for the sun, all deferred lights don't affect transparent glass objects.

• The shader can't receive sun shadows.

Shader Parameters

Back light scale
Controls the amount of light that gets through the glass.

Default value: 0.5

Blur Amount
Controls the amount of blur.

Version 1.6
1009

Lumberyard User Guide
Shader Reference

This parameter requires that the Blur refraction – PC Only shader generation parameter is
enabled.

Default value: 0.5

Bump Map Tiling
Adjusts tiling of the bump map independently from diffuse.

Default value: 1

Bump Scale
Sets the reflection and refraction bump scale.

Default value: 0.005

Cloudiness Masks Blur
Applies blur to just cloudy areas.

This parameter requires that the Tint map – Tint/Gloss/Spec shader generation parameter is
enabled.

Default value: 0

Cloudiness Masks Gloss
Makes cloudy areas less glossy.

This parameter requires that the Tint map – Tint/Gloss/Spec shader generation parameter is
enabled.

Default value: 0.5

DiffAlpha to Spec Bias
Adjusts intensity of specular in opaque and semi-opaque areas.

This parameter requires that the Use Diffuse map shader generation parameter is enabled.

Default value: 0

DiffAlpha to Spec Mult
Adjusts intensity of specular in opaque and semi-opaque areas.

This parameter requires that the Use Diffuse map shader generation parameter is enabled.

Default value: 1

Fog color
Sets fog color.

This parameter requires that the Depth Fog shader generation parameter is enabled.

Default value: 255,255,255

Fog cutoff end depth
Sets the distance, in meters, after which fog doesn’t get any stronger.

This parameter requires that the Depth Fog shader generation parameter is enabled.

Default value: 20

Fog density
Sets fog density.

This parameter requires that the Depth Fog shader generation parameter is enabled.

Default value: 1

Version 1.6
1010

Lumberyard User Guide
Shader Reference

Fresnel bias
Sets how reflective the material is.

Default value: 1

Fresnel Scale
Sets the fresnel term scale.

Default value: 1

Indirect bounce color
Sets the amount of indirectly bounced color.

Not used if the Depth Fog shader generation parameter is enabled.

Default value: 136,136,136

Tint Cloudiness
Adjusts the cloudiness of tinted areas.

Default value: 0

Tint Color
Applies a tint color to the glass.

Default value: 255,255,255

Shader Generation Parameters

Use Diffuse map
Enables diffuse map for dirt, and so on. Requires alpha channel.

Environment map
Enables environment map as a separate texture.

Tint map – Tint/Gloss/Spec
Enables the RGB spec map to control tinting in red channel, cloudiness in green channel, and
specular in blue channel.

Use Tint Color Map
Enables the Tint Color map. Used for multicolored glass, which goes in the custom Tint Color map
slot.

Blur refraction – PC Only
Enables the blurring of objects seen through the glass.

Depth Fog
Enables depth fog behind the glass surface.

Disable Lights
Disables the reflection of lights.

Hair Shader

The Hair shader is a dedicated shader for rendering hair and fur, imparting different color, stranding,
and animation effects. Hair rendering is a relatively difficult task to achieve in real-time with high-quality
results due to the very fine geometry and specific lighting behavior. Depending on the hairstyle, either
a simple scalp plane or a more complex shape that defines the volume of the hairstyle is needed. In
some cases, breaking up a hairstyle into multiple large patches makes more sense.

Shader Parameters

Alpha Blend Multiplier
Multiplies the alpha map with the result that grayscale values are increased. Useful for the Thin
Hair shader generation parameter.

Version 1.6
1011

Lumberyard User Guide
Shader Reference

Default value: 1

Diffuse Wrap
Allows light to pass through the hair, thus illuminating a wider area.

A tightly woven braid would have a lower Diffuse Wrap value (the hair being very dense), whereas
sparse, loose hair would have a high Diffuse Wrap value.

Default value: 0.5

Indirect bounce color
Sets the amount of indirectly bounced color.

Default value: 136,136,136

Secondary Color
Sets color and intensity of the secondary specular highlight.

Primary highlight color depends on the diffuse color, whereas the secondary highlight usually has
a more neutral color.

Default value: 217,217,217

Secondary Shift
Allows the secondary highlight to be shifted over the surface of the hair mesh. Make sure it works
with the primary highlight, the position of which can’t be shifted.

Default value: 0.1

Secondary Width
Sets the width of the secondary specular highlight.

Default value: 1.5

Shift Variation
Adds variation to the shift of the secondary highlight.

Default value: 0

Soft Intersection
Controls the alpha blending of the hair against skin or scalp.

Default value: 0

Strand Width
Controls the width of the view aligned hair strands. The mesh you exported utilizing this feature
from DCC tools is rather thin. The value functions as a multiplier relative to the meshes V
coordinate (width) in UV space, which can be used to control strand thickness. For example, you
might want thinner strands around the border areas.

This parameter requires that the View aligned strands shader generation parameter is enabled.

Default value: 0.01

Thin Hair Threshold
Determines how alpha blending works for screen space effects such as DOF and motion blur.
Lower values make the blending harder but can cause artifacts. Higher values soften the blending,
but in some cases the hair turns into a blurry mess.

For most gameplay situations, the rather low default value works fine, but in cinematics, manual
tweaking might be needed. The value must then be animated throughout the scene.

This parameter requires that the Thin Hair shader generation parameter is enabled.

Default value: 0.05

Version 1.6
1012

Lumberyard User Guide
Shader Reference

Wind frequency
Sets the speed at which the vertices are deformed.

This parameter requires that the Wind bending shader generation parameter is enabled.

Default value: 0

Wind phase
Sets hair animation phase and randomizes the deformation.

This parameter requires that the Wind bending shader generation parameter is enabled.

Default value: 1

Wind wave0 amp
Sets the amount or amplitude at which the vertices are deformed.

This parameter requires that the Wind bending shader generation parameter is enabled.

Default value: 0

Wind wave2 amp
Sets the amount or amplitude at which the vertices are deformed on a different curve.

This parameter requires that the Wind bending shader generation parameter is enabled.

Default value: 0

Shader Generation Parameters

Vertex Colors
Enables vertex colors.

View Aligned Strands
Enables the hair strands to self-align to the camera.

Because this is a global setting for the material, using view-aligned strands requires an extra draw
call. For more information, see the Strand Width shader parameter.

Thin Hair
For information, see the Thin Hair Threshold shader parameter.

Ambient Cubemap
Enables the use of the nearest cube map specified in environment map slot for ambient lighting.
Leave this enabled.

Enforce Tiled Shading
Forces hair to be fully affected by tile shading. This effect works as an override for the global tiled
shading settings.

With tiled shading off, improper lighting of a scene can cause hair to turn very dark.

Use this effect carefully, as tiled shading for hair is generally quite expensive.

Wind bending
Simulates wind effects. If enabled, various frequency, phase, and amplitude wind options appear
under Shader Parameters.

HumanSkin Shader

The HumanSkin shader is used to render skin and it's various physical properties including color,
oiliness, pores, stubble, and wrinkles.

Version 1.6
1013

Lumberyard User Guide
Shader Reference

Shader Parameters

Detail bump scale
Controls the strength of the detail normal map.

This parameter requires that the Detail normal map shader generation parameter is enabled.

Default value: 0

Displacement bias
For information, see Tessellation and Displacement.

This parameter requires that the Displacement mapping shader generation parameter is
enabled.

Default value: 0.5

Displacement height scale
For information, see Tessellation and Displacement.

This parameter requires that the Displacement mapping shader generation parameter is
enabled.

Default value: 1

Indirect bounce color
Sets the amount of indirectly bounced color.

Default value: 136,136,136

Melanin
Controls the amount of pigmentation in the skin.

Default value: 0

SSS Index
Changes the index of subsurface scattering (SSS).

Default value: 1.2

Tessellation face cull
This parameter requires that the Displacement mapping shader generation parameter is
enabled.

Default value: 0.75

Tessellation factor
This parameter requires that the Displacement mapping shader generation parameter is
enabled.

Default value: 1

Tessellation factor max
This parameter requires that the Displacement mapping shader generation parameter is
enabled.

Default value: 32

Tessellation factor min
This parameter requires that the Displacement mapping shader generation parameter is
enabled.

Default value: 1

Translucency Multiplier
Controls strength of the SSS feature.

Version 1.6
1014

Lumberyard User Guide
Shader Reference

Default value: 0

Wrinkles blend
Controls strength of the wrinkle map.

This parameter requires that the Wrinkle blending shader generation parameter is enabled.

Default value: 1.0

Shader Generation Parameters

Decal map
Enables the use of a decal map, which is blended on top of the diffuse map.

Detail normal map
Enables the use of a tiled detailed map for pores and tiny details (_ddn).

Displacement mapping
Enables the use of displacement mapping, which requires a height map (_displ).

Phong tessellation
Enables the use of rough approximation of smooth surface subdivision.

PN triangles tessellation
Enables the use of rough approximation of smooth surface subdivision.

Subsurface Scattering Mask
Enables the use of diffuse map alpha as an SSS amount multiplier.

Wrinkle blending
Enables the use of subsurface map alpha for wrinkle blending.

Illum Shader

The Illum shader is the most commonly used shader and can be used to create an extremely wide
variety of effects.

Shader Parameters

Blend Factor
Controls the visibility of the blended layer.

This parameter requires that the Blendlayer shader generation parameter is enabled.

Default value: 8

Blend Falloff
Controls falloff of blending.

This parameter requires that the Blendlayer shader generation parameter is enabled.

Default value: 32

Blend Layer 2 Spec
Controls specular intensity of the second blend layer.

This parameter requires that the Blendlayer shader generation parameter is enabled.

Default value: 0.04

Blend Layer 2 Tiling
Controls tiling of the second blend layer.

This parameter requires that the Blendlayer shader generation parameter is enabled.

Version 1.6
1015

Lumberyard User Guide
Shader Reference

Default value: 1

Blend Mask Tiling
Controls tiling of the blend mask.

This parameter requires that the Blendlayer shader generation parameter is enabled.

Default value: 1

Detail bump scale
Sets detail bump scale.

This parameter requires that the Detail mapping shader generation parameter is enabled.

Default value: 0.5

Detail diffuse scale
Sets diffuse detail blend scale.

This parameter requires that the Detail mapping shader generation parameter is enabled.

Default value: 0.5

Detail gloss scale
Sets gloss detail blend scale.

This parameter requires that the Detail mapping shader generation parameter is enabled.

Default value: 0.5

Dirt Gloss
Controls the fade-out of the gloss map.

This parameter requires that the Dirtlayer shader generation parameter is enabled.

Default value: 1

Dirt Map Alpha
Interpolates dirt map opacity between the alpha value and fully opaque.

This parameter requires that the Dirtlayer shader generation parameter is enabled.

Default value: 1

Dirt Strength
Controls the fade-out strength of the dirt layer.

This parameter requires that the Dirtlayer shader generation parameter is enabled.

Default value: 1

Dirt Tiling
Controls tiling of the dirt layer.

This parameter requires that the Dirtlayer shader generation parameter is enabled.

Default value: 1

Dirt Tint
Controls the color tint of the dirt layer.

This parameter requires that the Dirtlayer shader generation parameter is enabled.

Default value: 255,255,255

Height bias
Controls the height bias.

Version 1.6
1016

Lumberyard User Guide
Shader Reference

This parameter requires that the Parallax occlusion mapping shader generation parameter is
enabled.

Default value: 0.5

Indirect bounce color
Adds an extra color tint to the reflection.

Default value: 136,136,136

OBM Displacement
Controls the amount of displacement for OBM.

This parameter requires that the Offset bump mapping shader generation parameter is enabled.

Default value: 0.01

POM Displacement
Controls the amount of displacement for POM.

This parameter requires that the Parallax occlusion mapping shader generation parameter is
enabled.

Default value: 0.01

Self shadow strength

This parameter requires that the Parallax occlusion mapping shader generation parameter is
enabled.

Default value: 3

SSS Index
Controls subsurface scattering profile and amount.

Valid value ranges: 0.01 - 0.99 for marble; 1.00 - 1.99 for skin.

Default value: 1.2

Shader Generation Parameters

Detail mapping
Enables detail mapping.

Offset bump mapping
Enables offset bump mapping. This option requires a height map (_displ format).

Vertex Colors
Allows the use of fake ambient occlusion by using vertex colors, or adds more depth and contrast
to the model.

Vertex colors must be added to the geometry in the DCC tool.

Decal
Enable if you use a Decal texture map. Decal planes are normally placed very close to other
geometry.

Use to avoid flickering and z-fighting when faces are close to each other.

Parallax occlusion mapping
Enables parallax occlusion mapping. This option requires a height map (_displ format).

Displacement mapping
Enables displacement mapping. This option requires a height map (_displ format).

Version 1.6
1017

Lumberyard User Guide
Shader Reference

Phong tessellation
Enables the rough approximation of smooth surface subdivision.

PN triangles tessellation
Enables the rough approximation of smooth surface subdivision.

Dirtlayer
Enables the blending of the dirt layer on top of the base map. This requires an RGBA dirt map
placed in the Custom slot under Texture Maps.

Blendlayer
Enables the blending of the normal-mapped diffuse layer on top of the base material.

DetailMap mask in Diffuse alpha
Enables diffuse map alpha for masking detail maps. This option allows the artist to use the alpha
channel in RGBA texture map to mask the decal.

Parallax occlusion mapping with silhouette
For information, see Silhouette POM.

Lightbeam.LightBeam Shader

The LightBeam.LightBeam shader creates various fog-like volumetric and atmospheric effects for light
beams.

Shader Parameters

Fade Distance
Defines the distance at which the effect should fade in/out.

This parameter requires that the Use Falloff shader generation parameter is enabled.

Default value: 200

Fade Scale
Scales how much the fading effect occurs at defined distance.

This parameter requires that the Use Falloff shader generation parameter is enabled.

Default value: 100

Global Density
Controls how dense or thick the fog effect is.

Default value: 1

Jitter Scale
Controls shadow jitter amount. Use to soften shadow artifacts at the cost of shadow accuracy.

Default value: 10

Noise Contrast
Defines the contrast level of the noise effect.

This parameter requires that the Noise map shader generation parameter be enabled.

Default value: 1

Noise Coord Scale
Scales noise. Applies to shadow and projector UVs.

This parameter requires that the Noise map shader generation parameter be enabled.

Default value: 0.005

Version 1.6
1018

Lumberyard User Guide
Shader Reference

Noise Dir X
Defines noise travel along the X-axis.

This parameter requires that the Noise map shader generation parameter be enabled.

Default value: 1

Noise Dir Y
Defines noise travel along the Y-axis.

This parameter requires that the Noise map shader generation parameter be enabled.

Default value: 0

Noise Dir Z
Defines noise travel along the Z-axis.

This parameter requires that the Noise map shader generation parameter be enabled.

Default value: 0

Noise Speed
Controls the speed at which noise travels.

This parameter requires that the Noise map shader generation parameter be enabled.

Default value: 5

Shader Generation Parameters

Noise map
Enables the use of a 3D, procedurally-generated noise map.

Use Falloff
Activates the Fade-type shader parameters to tweak visual fall-off settings.

Extra Sampling
Reduces aliasing for slightly more expensive rendering.

ParticleImposter Shader

The ParticleImposter shader is used to create particle effects that are not affected by light and hence
do not cast shadows or cause reflections.

Particles Shader

The Particles shader is used to render particle effects for fire, smoke, lightning, sparks, and fog that are
affected by light, and as such cast shadows and cause reflections.

Shader Parameters

Color lookup amplitude
Sets the color lookup brightness and multiplier.

This parameter requires that the Color lookup shader generation parameter is enabled.

Default value: 1

Color lookup color phase
Sets the per-color phase to be used.

Version 1.6
1019

Lumberyard User Guide
Shader Reference

This parameter requires that the Color lookup shader generation parameter is enabled.

Default value: 1

Global Illumination Amount
Sets the amount of global illumination.

Default value: 1

Perturbation amount
Controls the amount of deformation that is used.

This parameter requires that the Screen space deformation shader generation parameter is
enabled.

Default value: 0.01

Perturbation anim speed
Controls animation translation speed and frequency that is applied to the deformation map.

This parameter requires that the Screen space deformation shader generation parameter is
enabled.

Default value: 0.05

Perturbation tiling
Controls the tiling amount of deformation.

This parameter requires that the Screen space deformation shader generation parameter is
enabled.

Default value: 0.5

Deform amount
Controls deformation multiplier.

This parameter requires that the Deformation shader generation parameter is enabled.

Default value: 0

Deform anim speed
Controls deformation animation translation speed and frequency.

This parameter requires that the Deformation shader generation parameter is enabled.

Default value: 0

Deform tiling
Controls deformation tiling.

This parameter requires that the Deformation shader generation parameter is enabled.

Default value: 0.1

Refraction Bump Scale
Sets the refraction bump scale.

This parameter requires that the Refraction shader generation parameter is enabled.

Valid value range: 0 - 2.0

Default value: 0.1

Soft particles scale
Controls soft particle intersection softness for sharper or softer intersections.

Version 1.6
1020

Lumberyard User Guide
Shader Reference

Default value: 1

Threshold for writing depth
Sets the threshold for writing depth.

This parameter requires that the Depth Fixup shader generation parameter is enabled.

Default value: 0.05

Shader Generation Parameters

Refraction
Enables the use of a bump-map texture as the displacement for refraction.

Refraction Tinting
Enables the use of a color texture to tint refraction.

Screen space deformation
When enabled, the Refraction Normal texture map slot also becomes available under Texture
Maps.

Deformation
When enabled, the Deformation Normal texture map slot also becomes available under Texture
Maps.

Color lookup
Enables the use of the color lookup map for applying color lookup. When enabled, the Color
Lookup Map texture map slot also becomes available under Texture Maps.

Specular Lighting
Enables the calculation of specular lighting in addition to diffuse lighting.

Depth Fixup
Enables writing depth for depth of field and post processing.

Scopes Shader

The Scopes shader is used to render various optical effects for binoculars, telescopes, and weapon
sight scopes.

Shader Parameters

Fake glow amount
Sets the amount of fake glow.

This parameter requires that the Reflex sight new shader generation parameter is enabled.

Default value: 0.25

Fresnel Bias
Sets the amount of fresnel bias.

This parameter requires that the Scope zoomed refraction shader generation parameter is
enabled.

Default value: 1

Fresnel Scale
Sets the fresnel scaling amount.

This parameter requires that the Scope zoomed refraction shader generation parameter is
enabled.

Version 1.6
1021

Lumberyard User Guide
Shader Reference

Default value: 1

Hologram depth
Sets the depth of the hologram.

This parameter requires that the Use halo sight depth shader generation parameter is enabled.

Default value: 2

Holographic noise scale
Sets the holographic noise scale.

This parameter requires that the Reflex sight new shader generation parameter is enabled.

Default value: 0

Noise bias
Sets noise bias.

This parameter requires that the Reflex sight new shader generation parameter is enabled.

Default value: 1

Noise scale
Sets noise scale.

Default value: 0.75

Object space UV usage
Sets the amount of usage of object space.

Default value: 0

Refraction Bump Scale
Sets the amount of scaling for refraction bumpiness.

Default value: 0

Scope color multiplier
Sets the scope color multiplier.

Default value: 160

Scope scale
Sets scope scale.

Default value: 4

Shader Generation Parameters

Reflex sight
Use for reflex-style weapon sights. When enabled, the Diffuse texture map slot under Texture
Maps also becomes available.

Reflex sight new
Use for the newer version reflex-style weapon sights. When enabled, the Diffuse texture map slot
under Texture Maps also becomes available.

Scope zoomed refraction
Use to produce light refraction effects for zoomed-in scopes.

Use halo sight depth
Used for holographic-style weapon sights with a depth-field modifier.

Thermal vision scope
Use to produce thermal color effects for night-use scopes.

Version 1.6
1022

Lumberyard User Guide
Shader Reference

Sky Shader

The Sky shader is used to render performance-optimized static sky (SkyBox) effects.

Shader Parameters

Indirect bounce color
Adds an extra color tint to the reflection.

Default value: 136,136,136

SSS Index
Subsurface Scattering Index

Default value: 0

SkyHDR Shader

The SkyHDR shader is used to render realistic dynamic sky effects that change based on the time of
day in a level.

Shader Parameters

Indirect bounce color
Adds an extra color tint to the reflection.

Default value: 136,136,136

SSS Index
The Subsurface Scattering Index.

Default value: 0

Shader Generation Parameters

No moon
Removes the moon for the dynamic sky.

No night sky gradient
Removes the entire day night effect gradient for the dynamic sky.

No day sky gradient
Removes the entire day sky effect gradient for the dynamic sky.

TemplBeamProc Shader

The TemplBeamProc shader is used to create inexpensive fog-like light beam effects, enabling control
over beam size and blending.

Best Practices

The following are some best practices for using this shader:

• Select the No Shadow property under Advanced.

• Set Opacity to 100%.

• Use a simple grayscale texture with no alpha in the Diffuse texture map slot.

Version 1.6
1023

Lumberyard User Guide
Shader Reference

• The shader fades out rendering faces that are at a certain angle to the camera. As such, use
different sub-materials for the top plane and the intersecting planes to allow control of the angle of
visibility.

Shader Parameters

ColorMultiplier
Increases or decreases brightness and blending.

Default value: 1

EndColor
Sets the end color for the gradient.

Default value: 255,255,255

EndRadius
Sets the radius (in meters) of the effect at the end of the object.

Default value: 2

Length
Adjusts the scaling of the rendered effect.

Default value: 10

OriginalLength
Sets the length scaling factor. If the values of Length and OriginalLength are identical, the object
has scale of 100%.

Default value: 10

OriginalWidth
Sets the width scaling factor. If the values of Width and OriginalWidth are identical, the object
has scale of 100%.

Default value: 1

Soft intersection factor
Controls softness of surface interaction with other opaque scene geometry.

Default value: 1

StartColor
Sets the start color for the gradient.

Default value: 255,255,255

StartRadius
Sets the radius (in meters) of the effect at the start of the object.

Default value: 1

View dependency factor
Controls the blending in and out depending on the facing angle to the camera.

The higher the value, the longer the effect is visible even when nearly 90° to camera, the smaller
the value the earlier the effect starts to vanish.

Default value: 2

Shader Generation Parameters

Noise map
Enables the use of a 3D animated noise map, which enables a nice motion to the beams.
However, this motion cannot be controlled by any parameters.

Version 1.6
1024

Lumberyard User Guide
Shader Reference

Muzzleflash
Enables use as a muzzle flash effect.

Terrain.Layer Shader

The Terrain.Layer shader is used for painting and blending terrain texture layers in a level. Besides
needing a bump map and high-passed diffuse map, the Terrain.Layer shader also requires a height
map with either offset bump mapping (OBM) or parallax occlusion mapping (POM) enabled. Blending
uses the height map to determine how the materials blend together. For example, if you have pebbles
on one material and dirt as another, you may want the pebbles to accurately stand out from the dirt.

Here are a few notes regarding usage of this shader:

• The Detail normals texture is not an external texture, but rather a texture generated by Lumberyard
through code.

• The Decal parameters don't appear under Shader Params unless you put a texture into the Decal
slot first. The Decal Bumpmap slot also appears after this task.

• Flow map textures go in the Detail slot.

Shader Parameters

Blend Factor
Changes the visibility of the blended layer. A height map is required. OBM or OBM shader
generation parameter must be enabled first.

Default value: 0

Blend Falloff
Changes the falloff of blending. A height map is required. OBM or OBM shader generation
parameter must be enabled first.

Default value: 1

Detail bump scale
Detail mapping shader generation parameter must be enabled first.

Default value:

Detail gloss scale
Detail mapping shader generation parameter must be enabled first.

Default value:

DetailTextureStrength
Sets the strength of the diffuse map, which dictates how much detail texture is visible over the
layer texture. The higher the value, the more you see only your Diffuse map.

Default value: 1

Height bias
POM shader generation parameter must be enabled first.

Default value: 0.5

Indirect bounce color
Sets the amount of indirectly bounced color

Default value: 136,136,136

Default value:

Version 1.6
1025

Lumberyard User Guide
Shader Reference

OBM Displacement
OBM shader generation parameter must be enabled first.

Default value: 0.01

POM Displacement
POM shader generation parameter must be enabled first.

Default value: 0.01

Self shadow strength
POM shader generation parameter must be enabled first.

Default value: 3

Shader Generation Parameters

Offset bump mapping (OBM)
Uses offset bump mapping. Requires a height map (_displ format).

Detail mapping
Uses detail mapping.

Parallax occlusion mapping (POM)
Uses parallax occlusion mapping. Requires a height map (_displ format).

Vegetation Shader

The Vegetation shader is used to render trees, bushes, grass and other vegetation, as well as
imparting various bending motion effects.

Here are a couple of guidelines for best results and performance using this shader:

• Use an AlphaTest value of 50 for opacity.

• Use a Diffuse color value of 128,128,128 for lighting.

Shader Parameters

Back diffuse color scale
Controls the color strength of the backside color of leaves. Leaves or Grass shader generation
parameter must be enabled first.

Default value: 0.85

Back View Dependency
Changes the view dependency of the back diffuse color. Where it starts depends on the point of
view earlier or later. Leaves or Grass shader generation parameter must be enabled first.

Default value: 0.5

Bending branch amplitude
Defines the movement of blue color in the in the complex bending setup.

Default value: -0.5

Bending edges amplitude
Defines the movement of red color in the in the complex bending setup.

Default value: 0.2

Blend Factor
Changes visibility of blending layer. Blendlayer generation parameter must be enabled first.

Version 1.6
1026

Lumberyard User Guide
Shader Reference

Default value: 0

Blend Falloff
Changes the falloff of blending.

Default value: 1

Blend Layer 2 Spec
Changes specular intensity of second blend layer. Blendlayer generation parameter must be
enabled first.

Default value:

Blend Layer 2 Tiling
Changes tiling of second blend layer. Blendlayer generation parameter must be enabled first.

Default value:

Blend Mask Tiling
Changes tiling of blend mask.

Default value: 1

Cap opacity fall off
Controls the fading of alpha test textures when seen at a steep angle (so they look less like a
plane). A value of 1 means it's turned off; 0 means it’s fully activated.

Default value: 1

Detail bending frequency
Defines the bending speed for complex (wind) bending. Make sure that this value is in the correct
proportion to the wind in your level.

Default value: 1

Indirect bounce color
Sets the amount of indirectly bounced color.

Default value: 136,136,136

Terrain Color Blend
Controls how much of the terrain color is blended into the diffuse color when up close. Use
Terrain Color for the selected vegetation object must be enabled first, except when AutoMerge is
enabled.

Default value: 0

Terrain Color Blend Dist
Controls how much of the terrain color is blended into the diffuse color at a distance. Use Terrain
Color for the selected vegetation object must be enabled first, except when AutoMerge is
enabled.

Default value: 0.5

Transmittance Color
Applies color tint for translucency. Leaves or Grass shader generation parameter must be
enabled first.

Default value: 255,255,203

Shader Generation Parameters

Leaves
Enables leaf shading and leaves animation. This parameter causes the gaming Lumberyard to use
a much more complex (expensive) shading, so activate only for leaves rendering.

Version 1.6
1027

Lumberyard User Guide
Shader Reference

Grass
Enables simple and cheap grass rendering. Specular and normal map setting are essentially
disabled, so the shading is only diffuse.

Detail bending
Enables detail bending, which simulates wind on vegetation objects. Activate for leaves and grass
only. Also, make sure to paint required vertex colors.

Detail mapping
Enables detail mapping.

Blendlayer
Enables normal-mapped diffuse layer blended on top of base material.

Displacement mapping
Enables displacement mapping. Requires a height map (_displ format).

Phong tessellation
Enables rough approximation of smooth surface subdivision.

PN triangles tessellation
Enables rough approximation of smooth surface subdivision.

VolumeObject Shader

The VolumeObject shader is used to render various volumetric objects such as clouds, fog, and
smoke, and to impart realistic shading and self-shadowing effects. In addition to the shader parameters
listed further on, the following Time-of-Day parameters also affect VolumeObject rendering:

• Alpha Saturation

• Attenuation

• SkyColorMultiplier

• StepSize

• SunColorMultiplier

Shader Parameters

Global Density
The global density.

Default value: 1

Shader Generation Parameters

Soft Intersections
Enhances transparency with opaque scene geometry. Use sparingly due to increased pixel
shading cost.

Back Lighting
Enables back lighting of volume objects. The silhouette slightly glows when viewed against the
sun.

Jittering
Enables jittering on volume objects.

Soft Jittering
Softens the jittering effect on volume objects.

Use TOD Settings
Enables Time-of-Day (TOD) settings.

Version 1.6
1028

Lumberyard User Guide
Shader Reference

Water Shader

The Water shader is a dedicated shader used to render the ocean exclusively, and imparts various
reflection, ripple, and foam effects. For lakes, rivers, and other bodies of water, use the VolumeObject
Shader (p. 1028) instead.

Shader Parameters

Crest Foam Amount
Sets amount of foam that appears at the crest of a wave. Use for FFT-displaced ocean only on the
Very High Spec setting. Foam shader generation parameter must be enabled first.

Default value: 1

Detail Normals scale
Sets normal scale.

Default value: 0.5

Detail Tiling
Sets waves detail bump tiling.

Default value: 2.5

Fake camera speed
Causes the surface of the water to scroll in world-space. This parameter gives the impression that
a stationary object in the ocean is actually moving through the ocean. Fake camera movement
shader generation parameter must be enabled first.

Default value: 0

Foam Amount
Multiplier for foam. Foam shader generation parameter must be enabled first.

Default value: 1

Foam soft intersection
Very similar to soft intersection, but blends foam on intersection regions. Foam shader generation
parameter must be enabled first.

Default value: 0.75

Foam tiling
Sets tiling amount for foam. Foam shader generation parameter must be enabled first.

Default value: 12

Fresnel gloss
The gloss of the Fresnel effect.

Default value: 0.9

Gradient scale
Applies a more choppy look to waves.

Default value: 0.1

Height scale
Sets scale for height map, which is used for parallax mapping approximation.

Default value: 0.2

Normals scale
Sets overall scale for normals.

Default value: 1.25

Version 1.6
1029

Lumberyard User Guide
Shader Reference

Rain ripples tiling
Sets tiling for rain ripples.

Default value: 1

Reflection bump scale
Reflection map bump scale.

Default value: 0.1

Reflection scale
Sets real-time reflection map multiplier or cube map multiplier for water volumes.

Default value: 1

Ripples normals scale
Sets dynamic ripples normals scale.

Default value: 1

Soft intersection factor
Sets water soft intersection with geometry.

Default value: 1

SSS scale
Sets SSS scale.

Default value: 2

Tiling
Sets waves bump tiling.

Default value: 10

Watervol flow speed

Default value:

Sets the flow speed for the water volume flow map. Water Volume flow shader generation
parameter must be enabled first.

Default value: 10

Shader Generation Parameters

Water Volume flow
Enables water flow along UVs.

Water Volume
Disable this parameter to use the Water shader.

Sunshine
Enables sunshine effects on the ocean surface.

Fake camera movement
Enables fake camera movement for scenes in the ocean.

No refraction bump
Disables refraction bump.

Foam
Enables foam on the ocean surface.

Waterfall Shader

The Waterfall shader is used for waterfalls exclusively, and provides layering, tiling, and motion effects.

Version 1.6
1030

Lumberyard User Guide
Shader Reference

Shader Parameters

Alpha blend multiplier
Applies a multiplier amount for alpha blending.

Default value: 1

Foam deform
Deforms the foam texture with a multiplier, based on the bumpmap texture. Foam shader
generation parameter must be enabled first.

Default value: 0.025

Foam multiplier
Applies a multiplier amount for foam texture. Foam shader generation parameter must be enabled
first.

Default value: 1

Fresnel bias
The Fresnel bias.

Default value: 0.25

Layer0 bump scale
Scales the bump map texture for the first layer.

Default value: 2

Layer0 speed
Controls the texture rolling speed for the first layer.

Default value: 1

Layer0 tiling
Sets the texture tiling amount for the first layer.

Default value: 1

Layer1 bump scale
Scales the bump map texture for the second layer.

Default value: 1

Layer1 speed
Controls the texture rolling speed for the second layer.

Default value: 2

Layer1 tiling
Sets the texture tiling amount for the second layer.

Default value: 2

Reflect amount
Controls the reflection amount, which comes from the environment map. Environment map
shader generation parameter must be enabled first.

Default value:

Refraction bump scale
Scale the refraction effect inherited by the bump map texture.

Default value: 0.01

Sun multiplier
Applies a multiplier amount for sun shading. Sun shading shader generation parameter must be
enabled first.

Version 1.6
1031

Lumberyard User Guide
Shader Reference

Default value: 1

Shader Generation Parameters

Environment map
Enables the use of an environment map as a separate texture.

Sun shading
Enables sunlight shading effects.

Foam
Enables foam rendering. Uses diffuse texture.

WaterVolume Shader

The Watervolume shader is used for rendering volumetric bodies of water including lakes, pools,
and rivers and imparts various reflection, ripple, and foam effects. For the ocean, use the Water
Shader (p. 1029) instead. Here are a few notes regarding usage of this shader:

• The Detail normals texture is not an external texture, but rather a texture generated by Lumberyard
through code.

• The Decal parameters don't appear under Shader Params unless you put a texture into the Decal
slot first. The Decal Bumpmap slot also appears after this task.

• Flow map textures go in the Detail slot.

Shader Parameters

Detail normals scale
Scales the detail bump normals intensity.

Default value: 0.5

Detail tiling
Sets detail bump tilling.

Default value: 2.5

Env projection scale
Controls the projection scale, or the tiling, of the specified environment map.

Default value: 20

Env reflection amount
Controls the reflection amount of the environment map. Can be offset with Specular Color.

Default value: 1

Flow map scale
Controls the scale, or tiling, of the flow map texture.

Default value: 0

Flow speed
Specifies the speed of the flow effect. Water flow shader generation parameter must be enabled
first.

Default value: 0

Foam amount
Controls the amount of foam placed on the water surface. Foam shader generation parameter
must be enabled first.

Version 1.6
1032

Lumberyard User Guide
Shader Reference

Default value: 1

Foam soft intersection
Controls how the foam behaves from contact areas. Foam forms around intersecting objects and
the terrain after it gets close to the surface. Foam shader generation parameter must be enabled
first.

Default value: 0.75

Foam tiling
Sets the tiling amount of the foam texture. Foam shader generation parameter must be enabled
first.

Default value: 12

Normals scale
Controls the scale of the normals. Don't confuse this parameter with Detail normals.

Default value: 1.25

Rain ripples tiling
Sets the tiling amount for the rain ripples texture.

Default value: 1

Realtime reflection amount
Controls the reflection amount for the Realtime Reflection.

Default value: 1

Soft intersection factor
Similar to the Foam soft intersection but for the base water surface.

Default value: 1

Tiling
Changes the amount of texture map tilling on the water surface.

Default value: 10

Vertex wave scale
Sets strength of vertex displaced wave animation.

Default value: 0.125

Shader Generation Parameters

Realtime Reflection
Enables approximate real-time reflections.

Water flow
Enables water to flow along geometry UVs.

Water flow map
Enables water flow along a flow map.

Water flow map strength
Enables additional water flow strength controls, which requires the blue channel for strength.

Sun specular
Enables water sunshine.

Debug flow map
Enables visualizing flow map.

Foam
Enables foam.

Version 1.6
1033

Lumberyard User Guide
Selecting Material Surface Type

Selecting Material Surface Type
The surface of a material determines the physical effects and how the material reacts to other materials
and its environment. For example, a metal surface is hard, doesn’t shatter, reacts to bullets by
generating spark particles, and has a unique sound when struck. Contrast this with a grass surface,
which is soft, responds to wind, generates grass strands and dirt particles when hit, and sounds
different than metal.

To select a material surface type

1. In Lumberyard Editor, click View, Open View Pane, Material Editor.

2. In the left pane, click to select the desired asset.

3. Under Material Settings, for Surface Type, make a selection.

Setting Material Opacity
An object's opacity refers to its transparency level. Opacity is important when using an alpha channel
for transparency.

To set opacity for a material

1. In Lumberyard Editor, click View, Open View Pane, Material Editor.

2. In the left pane, click to select the desired asset.

3. Under Opacity Settings, click and adjust the values of the following parameters:

a. Opacity: Values below 50 tends more to the white end of the alpha channel map. Values
above 50 tends more to the black end of the alpha channel map.

b. AlphaTest: Used to achieve soft, semi-transparent results. To use AlphaTest, set the Opacity
value to 100 and the AlphaTest value to 50.

c. Additive: When selected, the material color will be added to the scene background color
behind the object, with the resulting color being brighter. This is used for almost transparent
materials like glass.

Setting Material Lighting and Color Settings
Material color, specular reflection, and lighting effects such as specularity, glossiness, and glow are
specified using the Material Editor.

To set lighting and color and settings for a material

1. In Lumberyard Editor, click View, Open View Pane, Material Editor.

2. In the left pane, click to select the desired asset.

3. Under Lighting Settings, click to set the values for the following parameters:

Material Lighting and Color Settings

Parameter Description

Diffuse Color The base color of a material.

Specular Color The reflective brightness and color of a material when light shines
on the object. The greater the value, the shinier the material.

Version 1.6
1034

Lumberyard User Guide
Material ID Mapping in Autodesk 3ds Max

Parameter Description

Various gray-scale values provide different black-white reflective
brightness levels. This is achieved by using equal values for the
RGB settings. For colored reflections using non-equal RGB values,
see Anisotropic (Colored) Specular (p. 1035).

Smoothness The acuity or sharpness of a specular reflection. For values of 10
or less, there is a scattered reflection, while values greater than
10 yield a sharp reflection. You cannot have glossiness without
specular color (reflection), as glossiness determines the sharpness
of the reflection.

Emissive Color Enables objects to emit light and be visible in the dark. Can add
brightness to objects. Unlike glow, does not emit light onto other
objects. Does not work with deferred shading.

Emissive Intensity Enables objects to glow, and simulates light emitting from
extremely bright surfaces. Used in dark scenes for computer
monitors, lamps, fire, neon lights, and similar objects. Unlike
emissive color, emits light onto other objects. Glow color is
specified using a diffuse texture RGB channel, while glow mapping
comes from using a diffuse texture alpha channel. This allows you
to mask out the pixels where you want less (or no) glow. Glow can
be used only with the Cloth, HumanSkin, and Illum shaders. To
enable or disable glow, use the r_Glow console variable.

Note
Diffuse color, specular color, and emissive color values can be typed in directly in R,G,B
format, or may be selected using the Colors dialog box. To use the color picker, click the color
square next to the parameter to open the Colors dialog box. You can select either standard
colors or custom colors where you can specify hue, saturation, and luminance values in
addition to the RGB values.

Anisotropic (Colored) Specular

Non-white specular colors (using non-equal RGB values) is only supported using the Anisotropic
Specular setting. Anisotropic specular means that the reflection is not the same in all directions and
has a dependency on the orientation. This is used for materials like brushed metal, fabrics, satin, silk,
hair, and compact disks. Anisotropic specular has two parameters:

• Specular Multiplier – Defines specular strength.

• Anisotropic Shape – Defines the shape of the specular highlights.

Material ID Mapping in Autodesk 3ds Max
A mesh (.cgf file) can have different materials assigned to different faces. When you work in
Autodesk 3ds Max, make sure you have enough submaterials to cover the number of material IDs
assigned to faces on the mesh object. Otherwise the material IDs won't get exported correctly to
Lumberyard.

The following procedure presents an example that uses a multimaterial cube.

To map multi-material IDs in 3ds Max

1. Open 3ds Max. Then create and place a cube in the viewport.

Version 1.6
1035

Lumberyard User Guide
Material ID Mapping in Autodesk 3ds Max

2. Right-click the cube and click Convert To, Convert to Editable Mesh. You can now assign
different material IDs to the faces.

Version 1.6
1036

Lumberyard User Guide
Material ID Mapping in Autodesk 3ds Max

3. From the 3ds Max top menu, choose Rendering, Material Editor, Compact Material Editor.

4. From the 3ds Max top menu, choose Rendering, Material/Map Browser.

Version 1.6
1037

Lumberyard User Guide
Material ID Mapping in Autodesk 3ds Max

5. In Material/Map Browser, under Materials, expand Standard. Then double-click Multi/Sub-
Object. In the 3ds Max Material Editor, under Multi/Sub-Object Basic Parameters, look for a
material ID list to fill in. Select the first entry by clicking None in the Sub-Material column. Select
Standard under the Standard material rollout.

Version 1.6
1038

Lumberyard User Guide
Material ID Mapping in Autodesk 3ds Max

6. In the 3Ds Max Material Editor, under Shader Basic Parameters, select Crytek Shader.

7. Under Maps, next to Diffuse Color, select None.

8. In Material/Map Browser, under Maps, double-click Bitmap. Then double-click to select the
desired image file. Afterward the image file appears in the 3DS Max Material Editor for the
Diffuse Color parameter.

Version 1.6
1039

Lumberyard User Guide
Material ID Mapping in Autodesk 3ds Max

9. While still in Material Editor, choose Navigation, Go to Parent. Then repeat to get back to the
material ID list.

10. Create a second subshader by repeating steps 5 through 9 for the second entry in the list. Click
Set Number, then type 2 in the Number of Materials pop-up window. The list shows only two
submaterials.

11. In Material Editor, under Name, type in a name.

Version 1.6
1040

Lumberyard User Guide
Material ID Mapping in Autodesk 3ds Max

12. With the object selected in the viewport, go to Material Editor and choose Material, Assign to
Selection.

13. Click the hammer icon. Under Utilities, select Lumberyard Export, select the object, and then
choose Add Selected to place the object in the Geometry Export list.

14. In the 3ds Max panel on the right, under Modifier List, select Editable Mesh, Polygon.

15. In the viewport, select the top face. Then, under Surface Properties, click Set ID and set the
value to 2. This makes the top face use the second material in the final material group.

16. Select the other faces and set their Set ID values to 1. The final face coloring should match the
one shown in the following image.

Version 1.6
1041

Lumberyard User Guide
Material ID Mapping in Autodesk 3ds Max

17. Select Export Nodes to create a .cgf file.

Version 1.6
1042

Lumberyard User Guide
Material ID Mapping in Autodesk 3ds Max

18. Click Create Material to open the Lumberyard Material Editor and display a file dialog box.

19. Navigate to the directory where your .cgf files are located. Then type the same file name that you
specified in 3ds Max. This ensures that the .cgf file can automatically find the correct .mtl file
when loaded in the Lumberyard Material Editor.

Version 1.6
1043

Lumberyard User Guide
Working with Textures

20. In Lumberyard Editor, create a level and open the .cgf. The object should have the correct
materials mapped onto its faces.

Working with Textures
Textures can be used to provide color, depth, and details to a surface. For example, a repeating
brick-and-mortar texture can be used to simulate a brick wall, rather than creating geometry for each
individual brick.

A texture is an image file that consists of a number of pixels, called texels, each occupying a
coordinate determined by the width and height of the texture. These coordinates are then mapped into
values ranging from 0 to 1 along a U (width) and V (height) axis. This process produces a 2D texture
map that is stored in a .DDS file.

In turn, the process of mapping the UV coordinates of a texture map to the corresponding UV
coordinates at the vertices on a 3D object is called UV mapping. This in effect wraps the 2D texture
onto the 3D object.

Textures are dictated by, and applied by, the shader that is selected for a material. There can be
multiple textures applied by the shader for a material.

Textures used in Lumberyard are usually created with Adobe Photoshop or other DCC tool.

Topics

• Texture Map Types (p. 1045)

• Texture Best Practices (p. 1045)

• Working with Diffuse Maps (p. 1046)

• Working with Normal Maps (p. 1046)

• Working with Gloss Maps (p. 1048)

Version 1.6
1044

Lumberyard User Guide
Working with Textures

• Working with Detail Maps (p. 1048)

• Working with Decals (p. 1049)

• Displacement Maps and Tessellation (p. 1053)

Texture Map Types

Source texture files are converted and compiled in .DDS format by the Resource Compiler (RC). When
no presets for the source file are specified, the Resource Compiler will do the following:

• Files with a file suffix of _ddn or _bump will generate an uncompressed RGBA or U8V8 NormalMap
.DDS file with height information in the alpha channel.

• Files with a non-white (less than 255) alpha channel will generate a DXT3-compressed .DDS file.

• Files without an alpha channel will generate DXT1 compressed .DDS file.

Texture Map Types

Texture Map Filename Suffix Description

Diffuse map _diff Used to define the main color for an object.

Normal map _ddn A type of bump map that is used to define the
direction of normals on an object surface. A
normal direction for each pixel of the texture is
stored in the RGB normal map.

Normal with Gloss map _ddna Used to achieve physically-correct results. DDNA
textures are standard DDN textures with the
Gloss map stored inside the Alpha channel.

Environment map N/A Used to make an object reflective. The
environment map stores the image that is
reflected off the object.

Displacement map _displ Used in tessellations, parallax occlusion mapping
(POM), and offset bump mapping (OBM) to give
more depth and definition to an object.

Detail map _detail Used to add more detail to a surface. It works like
a second material layer and is not affected by the
mapping of the object it is used for.

Decal N/A Used on top of a diffuse texture for adding
cracks, mud or bullet traces to an object.

Blend (layer) N/A Blends multiple textures using an adjustable
mask texture and a vertex alpha.

Texture Best Practices

When creating textures, consider the following best practices and guidelines:

• Use the fewest number of textures that will do the job.

• For road textures, make sure the texture is horizontal.

• Use detail maps to add detail and crispness to lower-resolution textures. Detail maps can be used to
add extra grain to wood, extra cracks to a concrete wall, or small scratches to car paint.

Version 1.6
1045

Lumberyard User Guide
Working with Textures

• Reuse normal maps and specular maps when possible to save texture memory. Normal maps are
twice as expensive memory-wise compared to regular textures. For example, when using several
types of floor tiles, brick walls, concrete walls, create textures so they can use the same normal map
and specular map.

• Combine textures for small generic items such as pipes and railings to save on drawcalls. For
example, a house can consist of a wall texture, roof texture and a detail sheet with all windows,
frames, and doors. This will save on materials and drawcalls.

• Do not make textures bigger than they will appear onscreen. A roof texture on a tall building that
either the player or the camera can see at close range should be smaller, for example, than a ground
texture.

• Use decals to break up and compensate for lack of texture amount. Dirt and stain decals are an easy
way to break up tiled textures.

• Use vertex colors to create variety, depth and color variations. Vertex painting and pre-baked vertex
lighting is a relatively cheap way of adding depth to objects and make them look more interesting.

• Use grayscale textures that can be color-tinted to save on texture memory. Objects that can benefit
from this technique include cars, fences, barrels, and crates.

Working with Diffuse Maps

When light hits a surface, it splits into two directions: some is reflected immediately off the surface
while the rest enters the surface and gets refracted. The refracted light can be absorbed or scattered
underneath the surface and exit again at a different angle. This absorbed and refracted light is the
diffuse color of an object.

The diffuse color defines how bright a surface is when lit directly by a white light source with an
intensity of 100%. Physically speaking, it defines what percentage for each component of the RGB
spectrum does not get absorbed when light scatters underneath the surface.

Texture mapping the diffuse color is like applying an image to the surface of the object. For example,
if you want a wall object to be made out of brick, you can choose an image file with a photograph of
bricks. A diffuse map is always required for objects.

The diffuse map should not contain any lighting, shading or shadowing information, as all this gets
added dynamically by Lumberyard. In certain cases, pre-baked ambient occlusion (AO) is required,
which is stored in a dedicated AO map in the diffuse channel of the Detail Map. For more information,
see Working with Detail Maps (p. 1048) .

Diffuse maps can be combined with other texture maps, such as ambient occlusion maps and cavity
maps, to create more definition.

Diffuse Mapping Best Practices

• Don't use too light or too dark of a texture that will require too much color compensation.

• Metal objects should have a black diffuse color. Rusty metal however needs some diffuse color.

• Paint, or use occlusion mapping, to darken cracks and holes.

• Use crisp colors and contrast to define variations in shapes in order to break up the image.

• Create UV maps so that there is a decent compromise of space utilization and stretching.

Working with Normal Maps

The illusion of extra depth and detail to objects is achieved by using normal maps, which are a type of
bump map. Bump maps and normal maps both add detail without increasing the number of polygons.
As such, they are used to "fake" depth and details such as wrinkles, scratches and beveled edges.

Version 1.6
1046

Lumberyard User Guide
Working with Textures

Unlike displacement mapping, normal maps affect shading and not the surface itself. The surface
remains flat when seen from an angle.

Bump maps store an intensity that represents the relative height (bump) of pixels from the viewpoint
of the camera. Traditional normal maps, in addition to storing the height, also store the direction of
normals in the RGB values of the texture image. As such, they are more accurate than bump maps.

Lumberyard uses a form of normal mapping, called Tangent Space Normal Mapping, which uses
either a height map or is derived from a high-polygon model. In a normal map, a color represents a
certain normal vector (surface orientation of a point). For tangent space normal maps the information is
relative to the underlying surface.

Tangent space normal maps are independent of the underlying geometry which means the texture can
be used on other geometry as well. It will automatically align to the surface regardless of mirroring,
rotation, scale or translation. Only the latter two are supported by traditional (object or world) normal
maps.

An advantage of tangent space normal maps is that the normals are always pointing outwards, so
assuming unit length, the normal z coordinate can be reconstructed from the x and y components. After
the coordinate expansion from 0..1 to the -1..1 range, the z component can be computed in the shader
with this formula: z = sqrt(1 - x*x + y*y). This makes it possible to use two-channel textures (2 bytes per
texel) to store normal maps.

Topics

• Normal Mapping Best Practices (p. 1047)

• Using Normals with Gloss Maps (p. 1047)

Normal Mapping Best Practices

The following represent some best practices for consideration when creating normal maps:

• Not all colors represent valid normals. Do not apply bicubic filter, sharpening, or alpha blending with
normal maps. Use the CryTIF plugin to visualize such problems.

• If you have to resize a normal map, use bi-linear instead of bi-cubic interpolation.

• Use the CryTIF exporter presets when saving normal maps.

• Lay out UV maps so that there is a decent compromise between space utilization and stretching.

• Render normal maps using tangent-basis calculations with swizzle coordinates in X+Y-Z+.

• Mirroring UVs requires extra work to hide with normal. Be sure the normal directions are the same
across seams.

• Give normal maps an extruded edge of pixels. That way, there won't be any errors generated by mip-
map levels.

• Do not anti-alias normal maps against the background.

• Don't apply color filters or other manipulation such as grain or noise to a normal map itself.

Using Normals with Gloss Maps

Most materials should have a gloss map as well as a normal map as this can impart a lot of variation to
the shading. Gloss maps are closely related to normal maps, as high frequency details in a normal map
can create some roughness as well. However, gloss is more the microscale roughness of the material
while normal represents macro-scale bumpiness. Gloss maps are treated like diffuse maps.

The Gloss map always goes into the Alpha channel of the Normal map, even if you're using a specular
map for metals and metal-embedded surfaces.

If the preset NormalMapWithGlossInAlpha_highQ is selected, the Resource Compiler will
automatically adjust the gloss map stored in the alpha channel based on the normal variance and lower

Version 1.6
1047

Lumberyard User Guide
Working with Textures

the gloss where normals are very bumpy. This can greatly help to reduce shimmering and sparkling
highlights artifacts.

Lumberyard uses DDNA textures, which is a standard DDN texture with the addition of a Gloss map
in the alpha channel of the normal map. DDNA texture map must use the _ddna.dds filename suffix
(instead of _ddn.dds) for the Resource Compiler to recognize the texture correctly.

Working with Gloss Maps

Gloss defines the roughness of a surface. A low gloss value means that the surface is rough while a
high value means the surface is smooth and shiny. The roughness influences the size and the intensity
of specular highlights. The smoother and glossier a surface is, the smaller the specular highlight
will be. A smaller highlight will at the same time be brighter in order to obey to the rules of energy
conservation.

For physically-based shaders, the gloss map is highly important. Most materials should have a gloss
map as well as a normal map as this can impart a lot of variation to the shading. Gloss maps are
closely related to normal maps, as high frequency details in a normal map can create some roughness
as well. However, gloss is more the microscale roughness of the material while normal represents
macro-scale bumpiness. Gloss maps are treated like diffuse maps.

The Gloss map always goes into the Alpha channel of the Normal map, even if you're using a specular
map for metals and metal-embedded surfaces.

Gloss mapping is more powerful than the traditional specular mask, as gloss influences not only the
brightness of a highlight but also it's size and the sharpness of reflections.

When working with textures, gloss maps and normal maps are created first, then diffuse maps. Diffuse
maps should contain no lighting information.

The gloss map is always stored in the alpha channel of the normal map. If the preset
NormalMapWithGlossInAlpha_highQ is selected, the Resource Compiler will automatically adjust
the gloss map stored in the alpha channel based on the normal variance and lower the gloss where
normals are very bumpy. This can greatly help to reduce shimmering and sparkling highlights artifacts.

Gloss Map Best Practices

• Put variation into the gloss map. Not just random noise but really where the object would be less or
more rough.

• If an object has the correct physical specular color but does not show specular highlights on top of
the diffuse, the gloss is likely set too low. Increase the brightness of the gloss map.

• The Glossiness value must be set to 255, otherwise the gloss map will not work.

• Non-metals should have a specular color value between 53 and 61, based on what looks the best.

• For metals (and for metal parts embedded in non-metals), a dedicated specular texture map is used,
with the gloss map going into the alpha channel of the normal map. The gloss map defines the
smoothness, reflectivity and tightness of specular highlights. For metals, the shader doesn't control
specular color – the specular texture map does. Specular color is physically based. Because of this,
set the Specular color value to 255.

Working with Detail Maps

Detail mapping is a simple technique to add macro surface detail at relatively low cost, memory and
performance wise. The following best practices should be taken into consideration:

• Use as low a resolution as possible for best performance (512x512 or lower).

• Prevent artifacts by using a higher tiling scale.

Version 1.6
1048

Lumberyard User Guide
Working with Textures

• Decrease contrast for the detail diffuse and gloss.

Unified detail mapping (UDM) is basically a reversed detail map. Usually the detail map is used for finer
details as you get closer. UDM is the opposite. It helps to define big shapes viewed from the distance.
Since close-up detail is provided in tiled textures, larger details are needed to define shapes better
when viewed from a distance.

Setting Up Detail Map Textures

Detail map parameters are setup in the Material Editor.

To set Detail Map parameters

1. In Lumberyard Editor, click View, Open View Pane, Material Editor.

2. In the left tree, select an applicable texture.

3. In the right pane, under Shader Generation Params, click the Detail Mapping check box.

4. Under Shader Params, set values for the following parameters.

a. Detail bump scale: Defines how much the normal map is visible. The higher the value, the
more the normal map will show through.

b. Detail diffuse scale: Defines how much the diffuse map (or AO map) visible. The higher the
value, the more the normal map will show through.

c. Detail gloss scale: Defines how much the gloss map is visible. The higher the value, the
more the gloss map will show through.

Working with Decals

Decals are non-repeating images or textures that are applied to the surface of an object or terrain with
a specified projection. Common examples of decals are product labels and logos, artwork for walls,
signs, and surface cracks.

Decals can break up uninteresting textures and bring together such level elements as brushes and
terrain. Good decal placement can also create seamless transitions between many different objects.
Decals only work with the Illum Shader (p. 1015).

Note
If you apply decals to an object that can be moved by a player, the decal will not move with
the object.

Topics

• Decal Projection Types (p. 1049)

• Placing a Decal (p. 1050)

• Setting Decal Parameters (p. 1051)

• Debugging Decal Mapping Issues (p. 1052)

Decal Projection Types

Decals have several different projection types. To change projection type, select the decal and change
the ProjectionType value.

Planar Projection

Planar projection is the cheapest performance-wise. The decal is displayed in the same location as the
center of the object. Use planer projection only on flat surfaces, otherwise the decal may appear to be
floating.

Version 1.6
1049

Lumberyard User Guide
Working with Textures

Deferred Projection

Deferred projection is a simple method to get decals to follow the contours of objects and is similar to
Planar projection, but slower. As such, use Planar projection wherever possible.

Deferred projection is enabled by selecting the Decal Params, Deferred check box.

ProjectOnTerrain Projection

The decal is projected directly onto the terrain, ignoring any objects that might otherwise receive the
projection.

ProjectOnStaticObjects Projection

The decal is projected onto the geometry of an object along the opposite direction of the blue Z axis.
This method is automatically done as a deferred pass.

ProjectOnTerrainAndStaticObjects Projection

A combination of ProjectOnStaticObjects and ProjectOnTerrain, the decal is displayed on both the
terrain and on objects. This method is automatically performed as a deferred pass.

Placing a Decal

Do the following to place a decal in your level.

Note
If you apply decals to an object that can be moved by a player, the decal will not move with
the object.

To place a decal

1. In Lumberyard Editor, click the top Follow Terrain button.

2. In Rollup Bar, click Objects, Misc, Decal.

3. Drag the detail into the level and then click to place it.

4. Using the Edit menu, move, rotate, or scale the decal as needed.

5. To place a decal manually, select the Reorientate check box, and use mouse shortcuts to place
the decal as follows. This can speed up placement enormously.

a. Ctrl+Click : Move the decals to the desired position

b. Alt+Click : Scales the decal along the X, Y axes

c. Ctrl+Alt+Click : Rotates the decal around the Z axis

To place a decal on vegetation

1. Enable deferred projection so the decal follows the contours of the vegetation:

a. In Lumberyard Editor, in the Rollup Bar, under Objects, click Misc, Decal.

b. Under Decal Params, select the Deferred check box. For information about projection types,
see Decal Projection Types (p. 1049).

2. Enable the r_deferredDecalsOnDynamicObjects console variable so the decal appears on
the vegetation:

a. In Lumberyard Editor, click the X icon in the Console section.

Version 1.6
1050

Lumberyard User Guide
Working with Textures

b. In the Console Variables window, search for r_deferredDecalsOnDynamicObjects

c. Set the value to any positive number, for example 1.

d. Close the Console Variables window to save the new value.

3. Follow the instructions above for placing a decal.

Setting Decal Parameters

Complete the following procedures for setting decal mapping parameters.

To set decal parameters in the Rollup Bar

Most of the decal parameters can be found in the Rollup Bar.

To set decal parameters in the Rollup Bar

1. In the Rollup Bar, under Objects, click Misc, Decal.

2. Under Decal Params, adjust the following parameters:

• ProjectionType – Values range from 0 to 3, corresponding to Planar, ProjectOnStaticObjects,
ProjectOnTerrain, and ProjectOnTerrainAndStaticObjects.

• Deferred – Select to enable deferred decal projection.

• View Distance Multiplier – Set the distance at which the decal is visible. The default value is 1.
A higher number indicates a longer visibility distance.

• SortPriority – Specifies if the decal will appear on top of another decal.

To set shader decal parameters

A few decal parameters are set using the Shader Params panel in Material Editor.

Version 1.6
1051

Lumberyard User Guide
Working with Textures

To set decal mapping parameters

1. In Lumberyard Editor, click View, Open View Pane, Material Editor.

2. Click the top Add New Item button.

3. Select a decals folder, select a subfolder, and then click Save. The new material will automatically
be selected with the default settings.

4. Under Shader Generation Params, select the Decal check box.

5. Right-click the decal you created and click Assign to Selected Objects.

6. Under Shader Params, adjust the values of the following parameters.

a. Decal Alpha Falloff: Power applied to the decal alpha.

b. Decal Alpha Multiplier: Multiplier applied to the decal alpha.

c. Decal Diffuse Opacity: Opacity multiplier for fading out decal diffuse color.

Debugging Decal Mapping Issues

Use the following to debug decals.

Debugging Deferred Decals

The cost of a deferred decal depends on how many objects it will project, how expensive the geometry
is, and how many overdraws it will create.

Any deferred decal in the viewport in Lumberyard Editor renders in red, green and blue. These colors
show how expensive a deferred decal is for rendering. Place any deferred decals in such a way that
they are displayed mostly in blue

• Red = expensive

• Green = medium

• Blue = cheap

Debugging Decal Flicker

If a placed decal is flickering, follow these guidelines to ensure that it has been properly set up.

• Check that all sub-materials have the Decal check box selected under Shader Generation Params
in the Material Editor.

Version 1.6
1052

Lumberyard User Guide
Working with Textures

• If still flickering, check for overlapping layers that have the Decal check box selected. Use the
SortPriority parameter to specify which decal will appear on top of the other.

• Other than for decals, the mesh shouldn't have overlapping triangles. Do not offset along the surface
normal, they can still break in some situations and will introduce floating parallax effects.

Displacement Maps and Tessellation

Displacement mapping allows you to displace the actual surface geometry of an object to give you
extra depth and detail than is available using bump mapping, offset bump mapping or parallax
occlusion mapping (POM) techniques, which all "fake" surface detail. Displacement mapping results
are dependent on how far the camera is from the object.

Displacement mapping uses a texture map, called the height map, which is used to define the value
of vertex height displacement. Specifically, this is a scalar displacement that is stored in the alpha
channel of a _displ texture file.

In order for displacement mapping to work correctly, you need to also apply tessellation to your object,
otherwise there wouldn’t be enough geometry to displace. Tessellation increases the geometry count
by subdividing polygons into smaller polygons before it gets displaced.

Topics

• Displacement Mapping Best Practices (p. 1053)

• Setting Displacement Mapping Parameters (p. 1053)

• Tessellation (p. 1054)

Displacement Mapping Best Practices

Review the following guidelines and best practices for consideration when creating displacement maps
and tessellated geometry.

• Height maps must be stored using the _displ suffix (such as road_displ.tif for example).

• Do not place the height map in the alpha channel of the normal map. Rather, place the displacement
map in the alpha channel of the _displ texture. The RGB channels can thus be left empty.

• Set the diffuse and normal texture map textures as usual in the Material Editor. The _displ texture
will be loaded automatically by checking the name of the texture in the Bumpmap (normal) map slot
and that there is a corresponding _displ texture for it.

• Save the _displ texture using the Photoshop CryTIF plugin. The will write the correct metadata
to a .tif file for it to be converted to a .dds file at runtime. In some cases you may need to click
Generate Output in the dialog box of the plugin.

• When using the CryTIF plugin, use the DisplacementMap preset to store _displ textures. Height
maps will be converted to A8 textures. If you don't see any displacement, double check the format in
the Material Editor texture file dialog preview. If it isn't in A8 format, fix the preset, save and reload.

• Ensure that Config Spec is set to Very High.

• To enable tessellated shadows for tessellated geometric entities, use the
e_ShadowsTessellateCascades=1 console variable, but keep in mind this comes at a
performance cost.

Setting Displacement Mapping Parameters

To apply displacement mapping to an object

1. In Lumberyard Editor, click View, Open View Pane, Material Editor.

Version 1.6
1053

Lumberyard User Guide
Working with Textures

2. In the left tree, select the desired asset.

3. In the right pane, under Shader Generation Params, select Displacement mapping.

4. Under Shader Params, adjust the values of the following parameters for the desired effect.

a. Displacement bias: Moves the plane where the displacement is applied. This reduces gaps
in meshes, and prevents objects from displacing other objects that are placed above them.

b. Displacement height scale: Changes the overall height of the displacement.

Tessellation

In order for displacement mapping to work correctly, tessellation is also required, otherwise there
wouldn't be enough geometry to displace. Tessellation increases the geometry count by subdividing
polygons into smaller polygons before it gets displaced. Phong and PN triangles are the two available
tessellation methods.

Phong tessellation approximates smoothing based on surface normals. Surfaces with Phong
tessellation applied are not perfectly smooth across patch boundaries, causing the object to look
inflated.

PN triangle tessellation is similar to Phong tessellation and is slower, but with better approximation.

Tessellation is only supported for the Illum Shader (p. 1015) and HumanSkin Shader (p. 1013).

Topics

• Setting Tessellation Parameters (p. 1054)

• Fixing Tessellation Seams (p. 1055)

Setting Tessellation Parameters

To apply tessellation to an object and set parameter values, complete this procedure.

To apply tessellation to an object

1. In Material Editor, click View, Open View Pane, Material Editor.

2. In the left tree, click to select the desired asset.

3. In the right pane, under Shader Generation Params, select either Phong tessellation or PN
triangles tessellation.

4. Under Shader Params, adjust the values of the following parameters.

Tessellation Parameters

Parameter Description

Tessellation face cull Specifies the extent to which vertices are culled. Because
tessellation uses its own face culling, it takes the original (non-
tessellated) triangle and checks if it's facing the camera; if not it
discards it.

This can also be used for 2-sided sorting of polygons. In this case,
the 2 Sided check box must also be selected under Advanced in
the Material Editor.

An issue may arise when there is displacement that is visible from
the camera. For example, a bump on a cube that is rotating is still

Version 1.6
1054

Lumberyard User Guide
Working with Substances

Parameter Description

visible for a while, even though the cube face is no longer facing
the camera.

Setting this parameter to 0 means no face culling at all, while
setting it to 1 will cull anything not facing the camera.

Tessellation factor Specifies the density of the mesh triangles

Tessellation factor max Used for objects that are at a fixed distance or range from the
camera to get rid of geometry “popping” artifacts. This is useful for
cutscenes.

Tessellation factor min Setting this value to 1 means that it will be always tessellated at
level 1, even if the object is far away from camera.

Fixing Tessellation Seams

There are two types of seams or cracks that can become noticeable when using tessellation.

Border Seams

Border seams occur when different meshes are placed close to each other, or when a mesh
consisting of sub-meshes causes unpleasant cracks because of using different materials with different
displacement (or even same displacement maps with slightly different UV mapping).

The solution involves carefully placing meshes or fade-out displacement by modifying the displacement
map as needed.

UV Seams

UV seams occur when two adjacent triangles share an edge but use separate vertices with different
UVs. This shared edge will have a different displacement on each side due to sampling different places
in the displacement map. Even tiny differences in UV can cause visible seams. This is automatically
fixed by Lumberyard if there is no tiling. Otherwise you must change the UV mapping to hide such
artifacts where possible.

Phong tessellation and PN Triangle tessellation do not suffer from UV seams as they do not use UV
mapping.

Working with Substances
Substances are procedural materials created using Allegorithmic's Substance Designer. Lumberyard
has the ability to import Substance .sbsar files using the Substance Editor.

Creating Substances for Lumberyard

When creating Substances for Lumberyard using Allegorithmic’s Substance Designer, it is
recommended to use the PBR Specular/Glossiness Subtance as the base. This will involve less
adjustments to your default outputs for Substances. However, you will need to delete the Glossiness
output and save the Gloss map into the alpha channel for the Normal map output in Substance
Designer.

If you want to use a PBR Metallic/Roughness Substance and convert it for use in Lumberyard, follow
these steps:

• Change the BaseColor output node to Diffuse.

Version 1.6
1055

Lumberyard User Guide
Working with Substances

• Create a Specular output node in the Substance Graph.

• Create a RGB-A Merge node in the Substance Graph.

• Connect the node that was originally going into the Normal map into the RGB input.

• Note that the A (Alpha) input for this node will be connected later on.

• Connect the output of this merge node into the input for the Normal output node.

• Create a BaseColor/Metallic/Roughness converter node in the Substance Graph.

• Connect the node that was originally going into the BaseColor/Diffuse map into the BaseColor
input for this converter node.

• Connect the node that was originally going into the Roughness map into the Roughness input for
this converter node.

• Connect the node that was originally going into the Metallic map into the Metallic input for this
converter node.

• Connect the Diffuse output of this converter node into the input for the Diffuse output node.

• Connect the Specular output of this converter node into the input for the Specular output node.

• Connect the Glossiness output of this converter node into the A (Alpha) input for the RGB-A
Merge node.

• Delete the Roughness output node.

• Delete the Metallic output node.

• Save the changes to your Substance and then publish the .sbs as a .sbsar to be imported into
Lumberyard.

Working with Substance in Lumberyard

Using Substance Editor, you can edit Substance material properties and visualize substances on
objects in real-time. Substance Editor also has the ability to generate and export static textures from
Substances.

Here are some things to keep in mind when working with Substances in Substance Editor:

• The Substance Gem needs to be enabled first for the project using Project Configurator (p. 985). For
more information on Gems, see Gems (p. 778).

• When importing substance files, you must restart Lumberyard Editor before substance textures are
rendered correctly.

• A .smtl (substance material) file and a .sub (substance texture) file are generated in the same
directory location as the imported .sbsar for applying the substance material or substance textures
to objects.

Version 1.6
1056

Lumberyard User Guide
Parallax Mapping

• By default, an .smtl file will inherit the .sub files in the appropriately matching channels based on
the outputs in the published .sbsar from Substance Designer. For example, a diffuse output texture
will map into the diffuse channel for the .smtl file.

To use Substance Editor

1. Open Lumberyard Editor and select View, Open View Pane, Substance Editor. You can also
click the Substance icon in the main toolbar of Lumberyard Editor.

2. To update imported .sbsar files, click Edit, Reimport Substance. Current changes will not be
overwritten.

3. To remove a substance, click File, Delete Substance.

Note
This permanently removes the substance and all associated assets from the .sbsar
project, which cannot be recovered using the Windows Recycle Bin.

Parallax Mapping
Parallax occlusion mapping (POM) is an enhancement of the traditional parallax mapping technique
that is used to procedurally create detail in a texture adding the illusion of depth. This depth perception
changes based on perspective.

Parallax Occlusion Mapping (POM) and Offset Bump Mapping (OBM) are both similar to displacement
mapping and tessellation, but not as expensive performance-wise as the geometry is not increased.
However, due to the way in which POM works, it will not always be suitable for every situation.

Use POM for high-spec computers only, and use OBM for anything else, consoles. When using POM,
you must enable both enable both shader generation parameters. Lumberyard will automatically
default to using to OBM for setups cannot run POM.

Topics

• Parallax Mapping Best Practices (p. 1057)

• Applying Parallax Occlusion Mapping (POM) (p. 1058)

• Applying Silhouette Parallax Occlusion Mapping (SPOM) (p. 1058)

• Using Blend Layers for Parallax Mapping (p. 1058)

Parallax Mapping Best Practices

Review the following guidelines and best practices for consideration when applying POM or SPOM
parallax mapping.

• Height maps must be stored using the _displ suffix (such as road_displ.tif for example).

• Do not place the height map in the alpha channel of the normal map. Rather, place the displacement
map in the alpha channel of the _displ texture. The RGB channels can thus be left empty.

• Set the diffuse and normal texture map textures as usual in the Material Editor. The _displ texture
will be loaded automatically by checking the name of the texture in the Bumpmap (normal) texture
map slot and that there is a corresponding _displ texture for it.

• Save the _displ texture using the Photoshop CryTIF plugin. This will write the correct metadata
to a .tif file for it to be converted to a .dds file at runtime. In some cases you may need to click
Generate Output in the dialog box of the plugin.

• When using the CryTIF plugin, use the DisplacementMap preset to store _displ textures. Height
maps will be converted to A8 textures. If you don't see any displacement, double check the format in
the Editor's texture file dialog preview. If it isn't in A8 format, fix the preset, save and reload.

Version 1.6
1057

Lumberyard User Guide
Parallax Mapping

• Ensure that Config Spec is set to High or Very High.

Applying Parallax Occlusion Mapping (POM)
To apply POM, complete the following procedure.

To apply Parallax Occlusion Mapping

1. In Lumberyard Editor, click View, Open View Pane, Material Editor.

2. In the left tree, select the desired asset.

3. In the right pane, under Shader Generation Params, select Offset bump mapping and Parallax
occlusion mapping.

4. Under Shader Params, adjust the values of the following parameters.

a. Height bias: Moves the plane where the displacement is applied. This reduces gaps in
meshes, and prevents objects from displacing other objects that are placed above them.

b. POM Displacement: Sets the POM depth. A larger value adds more depth.

c. Self shadow strength: Changes the strength of self-shadowing. A larger value imparts more
shadowing

5. Under Texture Maps, enter the paths to the various textures.

Applying Silhouette Parallax Occlusion Mapping (SPOM)
To apply SPOM, complete the following procedure.

To apply Silhouette Parallax Occlusion Mapping

1. In Lumberyard Editor, click View, Open View Pane, Material Editor.

2. In the left tree, select the desired asset.

3. In the right pane, under Shader Generation Params, select Parallax occlusion mapping with
silhouette.

4. Under Shader Params, adjust the values of the following parameters.

a. Height bias: Moves the plane where the displacement is applied. This reduces gaps in
meshes, and prevents objects from displacing other objects that are placed above them.

b. Self shadow strength: Changes the strength of self-shadowing. A larger value imparts more
shadowing

c. Silhouette POM Displacement: Sets the SPOM depth. A larger value adds more depth.

5. Under Texture Maps, enter the paths to the various textures.

Using Blend Layers for Parallax Mapping
You can use blend layers for parallax mapping. For both POM and OBM, set the diffuse and normal
map as usual. The _disp texture will be loaded automatically as long as the Applying Parallax
Occlusion Mapping (POM) (p. 1058) procedure is first completed.

When using a second blend layer, the diffuse map is placed in the Custom texture map slot, the
normal map is placed in the [1] Custom slot, and the height map is placed in the SubSurface slot.

To use a blend layer for parallax mapping

1. Complete the Applying Parallax Occlusion Mapping (POM) (p. 1058) procedure.

2. Under Shader Generation Params, select Parallax occlusion mapping and Blendlayer.

Version 1.6
1058

Lumberyard User Guide
Using Vertex Colors

3. Under Texture Maps, place maps as follows:

a. Place the height map in Second Height Map.

b. Place the height map in Second Diffuse Map.

c. Place the height map in Second Bump Map.

4. Under Shader Params, adjust the values of the parameters as needed.

Using Vertex Colors
Vertex color, or vcolor, is just a color with RGB and alpha channel values stored for each vertex of a
mesh. Vertex color and alpha can be used for multi-texturing, transparency, or fake ambient occlusion.

Vertex color is typically multiplied against the Diffuse color, colorizing or darkening the color map.

When used for non-color effects, typically each color channel is treated as a separate monochrome set
of values, so for example vertex color can control three different per-vertex effects.

Vertex Colors is a Shader Generation parameter that can be enabled using the Material Editor, which
is part of Lumberyard Editor.

For a good application of vertex colors, see Defining Vegetation Vertex Colors (p. 879).

Customizing Post-Processing Effects
Lumberyard includes post-processing effects that can help improve your game's graphics, lighting, and
transitions between effects such as color correction, bloom, and depth of field.

Use XML files with Flow Graph or Lua scripts to customize effects by setting their parameters. You can
create prioritized groups of effect parameters in XML and enable or disable them using a Flow Graph
node or Lua scripting.

You can also use effect groups to specify the following:

• Blend curves to smoothly transition between effects

• Stay enabled until explicitly disabled

• Make effect strength based on distance from the camera

Note
Creating a new effect requires modifying Lumberyard, while creating a new effect group does
not.

Topics

• Post-Effect Group XML Files (p. 1059)

• Enabling and Disabling Effect Groups (p. 1060)

• Specifying a Blend Curve for Smooth Effect Transitions (p. 1061)

• Setting Effect Strength Based on Camera Distance (p. 1061)

Post-Effect Group XML Files
When you open Lumberyard Editor, the effect group located at \Engine\Libs\PostEffectGroups
\Default.xml automatically loads. The Default.xml file includes all available effects and the
default values for each parameter. You can modify the default values and copy and paste sections of
the Default.xml file into custom effect groups.

Example XML file:

Version 1.6
1059

Lumberyard User Guide
Customizing Post-Processing Effects

<PostEffectGroup priority="1" hold="1">
 <Effect name="Global">
 <Param name="User_Brightness" floatValue="0.5"/>
 </Effect>
</PostEffectGroup>

Priority
Non-negative integer used to set priorities. Larger priorities override smaller priorities. If multiple
effect groups that are enabled have the same priority value, the effect group that was enabled later
has the higher priority.

Default value: 0 (for Time of Day and Flow Graph nodes that set effects)

Valid values: 0 - 999

Hold
Indicates if the effect should stay enabled until explicitly disabled.

Default value: 0

Valid values: 0=effect is disabled after blending is complete | 1=effect remains enabled until
explicitly disabled

When creating custom effect groups, we recommend creating a directory called \PostEffectGroups
under /Engine/Libs. You can then load the post effect group XML files from any valid CryPath
location.

Enabling and Disabling Effect Groups

You can enable and disable effect groups using Flow Graph or Lua scripting.

To enable or disable effect groups using Flow Graph

1. In Lumberyard Editor, open your level.

2. In the menu bar, select View, Open View Pane, Flow Graph.

3. In the Flow Graph editor, in the menu bar, select File, New.

4. In the graph pane, right-click and select Add Node, Image, EffectGroup. The
Image:EffectGroup node should be visible.

5. In the Image:EffectGroup node, double-click GroupName=. Type the file path for CryPath
(example: Libs\PostEffectGroups\ExtraBright.xml) and press Enter.

6. Connect your ports to the Enabled or Disabled ports in the Image:EffectGroup node.

7. Optionally set a value for Choose Entity. For more information, see Fade Distance.

8. Close the Flow Graph Editor.

To enable or disable effect groups using Lua

Run the following:

System.CachePostFxGroup("Libs/PostEffectGroups/MyEffectGroup.xml")
(Optional) The XML file loads on demand if the function isn't called.

System.SetPostFxGroupEnable("Libs/PostEffectGroups/MyEffectGroup.xml", true)
Valid values (second parameter): true = enable | false = disable

System.GetPostFxGroupEnable("Libs/PostEffectGroups/MyEffectGroup.xml")
Return values: true = effect group is enabled | false = effect group is disabled | nil = effect
group cannot be found

Version 1.6
1060

Lumberyard User Guide
Customizing Post-Processing Effects

Note
You can manually enable or disable an effect group in Lumberyard Editor by running the Lua
functions in the Console window. Be sure to prepend each command with the # character to
indicate a Lua command.

Specifying a Blend Curve for Smooth Effect Transitions
You can use BlendIn and BlendOut tags to specify a blend curve that enables smooth transitions
between effects.

An example XML file with added BlendIn and BlendOut tags:

<PostEffectGroup priority="1" hold="1">
 <Effect name="SunShafts">
 <Param name="RaysAmount" floatValue="0.2"/>
 </Effect>
 <BlendIn curve="smooth">
 <Key time="0" value="0"/>
 <Key time="0.5" value="1"/>
 </BlendIn>
 <BlendOut curve="smooth">
 <Key time="0" value="1"/>
 <Key time="0.5" value="0"/>
 </BlendOut>
</PostEffectGroup>

Priority
Indicates how much the effects should override the lower priority values.

Hold
Determines when the BlendIn and BlendOut curves play and whether the effect group is
enabled or disabled.

Valid values:

0 = Plays the BlendOut curve immediately after the BlendIn curve finishes playing; when the
BlendOut curve plays, the effect group is disabled

1 = Plays the BlendIn curve; when the BlendIn curve plays, the effect group fully overrides lower
priority values until the effect group is explicitly disabled

Curve
Available curve types are smooth, linear, and step. If a curve attribute value is not specified, the
curve type defaults to smooth. You can include as many key frames in a curve as desired.

Default curve value: smooth

Valid key time values: smooth, linear, step

Key time
Valid values: 0 – 1 (seconds)

Setting Effect Strength Based on Camera Distance
You can use the fadeDistance attribute to set the effect strength based on the distance from the
camera.

Example opening XML tag using the fadeDistance attribute:

<PostEffectGroup priority="1" fadeDistance="20">

Version 1.6
1061

Lumberyard User Guide
Lighting and Shadows

fadeDistance – Indicates how the effects are actualized based on the distance of the camera from the
entity.

• When the camera is at the position of the entity, the effects are fully overridden.

• When the camera is less than fade distance from the entity, the effects are blended.

• When the camera is at least fade distance from the entity, the effects are set to the lower priority
values.

You can specify an entity in the Flow Graph node and assign it to the graph entity by right-clicking the
node and selecting Assign graph entity.

To enable an effect group using Lua, set the position at which to apply the effect by using the following
function:

System.ApplyPostFxGroupAtPosition("Libs/PostEffectGroups/MyEffectGroup.xml",
 self:GetPos())

where self is the current entity.

This function must be called once per frame while the effect group is enabled. If this function is called
multiple times in a single frame, the effect strength increases each time, as if each call applies the
effect from a different entity.

Lighting and Shadows
Lumberyard uses physically-based lighting and shading models to implement global illumination and
lighting.

For information about the Light entity and the Environment Probe entity used in environment lighting,
see Light Entities (p. 461).

For information about using the Time of Day Editor to simulate the changing lighting effects caused by
the sun moving across the sky, see Creating Time of Day Sky Effects (p. 864).

Topics

• Environment Lighting (p. 1062)

• Environment Shadows (p. 1067)

Environment Lighting
Lumberyard uses physically based lighting and shading models to implement global illuminatiin and
environment lighting.

For information about the Light entity and the Environment Probe entity used in environment lighting,
see Light Entities (p. 461).

For information about using the Time of Day Editor to simulate the changing lighting effects caused by
the sun moving across the sky, see Creating Time of Day Sky Effects (p. 864).

Topics

• Illuminance and Auto Exposure Key (p. 1063)

• HDR Settings (p. 1063)

• Global Environment Lighting (p. 1064)

• Local Environment Lighting (p. 1066)

Version 1.6
1062

Lumberyard User Guide
Environment Lighting

Illuminance and Auto Exposure Key
Also known as luminous flux density, illuminance is the total amount of visible light falling on a point on
a surface from all directions above the surface in a given time. Proper illuminance values ensures the
environment lighting in your level closely models real-world values. Besides simply having good ratios
between light and dark, accurate illuminance values ensure that tone-mapping, and eye adaptation
works optimally.

The following table lists real-world illuminance values, expressed in luminous flux (lux). Lux is the
unit of illuminance and luminous emittance, measuring lux per unit area, and equal to one lumen per
square meter.

Illuminance Values

Real-world illuminance Lux Value Uniformity
Ratio

Artistic Interpretation

Full moon 0.25 0.00005 -

Living room 50 0.01 -

Clear sunrise 400 0.08 -

Office 500 0.1 -

TV studio 1,000 0.2 -

Overcast day 15,000 3.0 ~ 1.5

Indirect sunlight (in shadow) 20,000 4.0 ~ 2.0

Direct sunlight 100,000 20.0 ~ 10.0

The Auto Exposure Key setting controls the amount of light exposure and determines whether the
tone-mapped image appears relatively bright or dark. This setting is calculated automatically from the
average scene illuminance, which is why it is important to use standard real-world illuminance levels.
For other settings that affect the tone mapping of a scene, see HDR Settings (p. 1063).

Lumberyard's auto-exposure mode works in exposure value (EV) units and can be enabled using the
r_HDREyeAdaptationMode console variable.

The following settings are used to achieve the desired illuminance in an environment level. See Setting
Daytime Atmospheric Effects (p. 861) for more information.

• Sun color

• Sun color multiplier

• Sun intensity

• Sun intensity multiplier

HDR Settings
As discussed in Illuminance and Auto Exposure Key (p. 1063), the auto exposure key setting controls
the amount of scene exposure and determines whether the tone-mapped image appears relatively
bright or dark. Several other settings also affect the tone mapping of scene. These are known
collectively as HDR (high dynamic range) in the Time of Day Editor.

Film curve parameters in the Time of Day Editor correspond to analogous parameters that exist for
camera film. A film curve has three distinct regions with different contrast transfer characteristics:

Version 1.6
1063

Lumberyard User Guide
Environment Lighting

• The lower part of a film curve that is associated with relatively low exposures is designated the toe,
and corresponds to the low-density portions of an image. When an image is exposed so that areas
fall within the toe region, little or no contrast is transferred to the image.

• The upper part of a film curve that is associated with relatively high exposures is designated the
shoulder, and corresponds to the high-density portions of an image. When an image is exposed so
that areas fall within the shoulder region, little or no contrast is transferred to the image.

• The middle part of a film curve with the highest level of contrast is produced within a range of
exposures falling between the toe and the shoulder, and is designated the midtones region. This
portion of the curve is characterized by a relatively straight and steep slope in comparison to the toe
and shoulder regions. You should adjust your image so that important areas fall within this region for
maximum contrast.

To set HDR settings parameters

1. In Lumberyard Editor, click Terrain, Time Of Day.

2. Under Time of Day Tasks, click Toggle Advanced Properties to view all settings.

3. Under HDR Settings, HDR, click and adjust the values of the following settings:

Film curve shoulder scale
Slope at the tip of the HDR curve (modifies bright values).

Film curve midtones scale
Linearity of the middle of the HDR curve (modifies gray values).

Film curve toe scale
Slope at the base of the curve (modifies dark values).

Film curve whitepoint
Value to be mapped as pure white or reference white in the tone-mapped image.

Saturation
Color saturation before tone-mapping.

Color balance
Overall color of the scene.

Auto Exposure Key
Overall brightness of the scene used for eye adaptation. Eye adaptation causes the exposure
of a scene to simulate the way human eyes adjust when going from a brightly lit environment
to a dark environment and vice versa. Use lower value for dark scenes and higher values for
bright scenes. Default value is 0.18.

Auto Exposure Min
Darkest possible exposure used for eye adaptation.

Auto Exposure Max
Brightest possible exposure used for eye adaptation.

Bloom amount
Controls the amount of bloom that comes from glowing or lit objects.

Global Environment Lighting
To implement global lighting for an entire level, you use a global environment probe (also known as a
global light probe) and associated generated cubemap.

Environment probes control many aspects of the physically based lighting in Lumberyard, including
accurate shadow colors, ambient diffuse values, and specular reflections. They also provide bounce
lighting by taking the colors from the surroundings and applying them directly to the diffuse color of
materials inside their radius.

When placing environment probes in a level, pay attention to how probes are layered and sorted going
from global to local probes.

Version 1.6
1064

Lumberyard User Guide
Environment Lighting

Every level should have a global environment probe. Global probes provide the entire level with
ambient lighting, which is calculated from the probe's location. In addition to a global probe, a level
may have one or more local probes. For more information about local probes, see Local Environment
Lighting (p. 1066).

As shown in the following table, the probe has several configurable properties, which you can adjust in
the Rollup Bar.

EnvironmentProbe Properties

Active
Enables and disables the probe.

BoxSizeX, BoxSizeY, BoxSizeZ
Specifies the XYZ dimensions of the probe's area of effect. Probes are projected as cubes in the
level. For a global probe, set values large enough to span the entire level.

Diffuse
Sets the diffuse color of the light. Set to 255,255,255.

DiffuseMultiplier
Makes the light brighter. Set to 1.

SpecularMultiplier
Multiplies the specular color brightness. Set to 1.

AffectsThisAreaOnly
Set parameter to False to make lights cover other VisAreas.

AttenuationFalloffMax
Controls the falloff amount (0–1) to create smoother transitions or hard edges. A value of 0.8
means that falloff begins at 80% at the boundaries of the box. Set value to 0 for a global probe (no
falloff).

IgnoresVisAreas
Controls whether the light should respond to VisAreas. Set value to True for a global probe.

SortPriority
Gives control over which probe has more visual interest and therefore a higher priority. Set the
value to 0 for a global probe, then increase the value for local probes, where higher values indicate
more localized probes.

deferred_cubemap
Specifies the file location of the cubemap texture.

BoxHeight
Adjusts the height of cubemap box.

BoxLength
Adjusts the length of cubemap box.

BoxProject
When enabled, Lumberyard factors in the size of the cubemap box.

BoxWidth
Adjusts the width of cubemap box.

To generate a global cubemap

1. In Rollup Bar, under Objects, click Misc, EnvironmentProbe.

2. Click to place the probe in your level.

3. Under EnvironmentProbe Params, leave cubemap_resolution at the default 256. This is the
optimal resolution for best performance.

4. Select the preview_cubemap check box to see the cubemap in your level.

Version 1.6
1065

Lumberyard User Guide
Environment Lighting

5. Under EnvironmentProbe Properties, adjust the following property values to configure the probe
to be global:

• BoxSizeX, BoxSizeY, and BoxSizeZ values: Large enough to span the entire level

• Diffuse color value: 255, 255, 255

• DiffuseMultiplier and SpecularMultiplier values: 1

• SortPriority: 0

• AttenuationFalloffMax: 0

• IgnoreVisAreas: True (check box selected)

6. Click Generate Cubemap. Lumberyard creates three textures in textures\cubemaps
\your_level— one for the diffuse map, one for the specular map, and one for the source .tif
file.

7. To check your cubemap for accuracy, create and then place a smooth, reflective sphere
entity near the probe. If its surface looks different from the environment around it, you need to
regenerate the cubemap.

8. Click Generate Cubemap again. This incorporates object reflections from the originally generated
cubemap for added realism.

9. To hide the sphere entity in your level, select its HiddenInGame check box, found under Entity
Params in the Rollup Bar.

Local Environment Lighting

Lumberyard uses local environment probes and their generated cubemaps to implement local lighting.
The purpose of local cubemaps is to light smaller areas more accurately. This ensures that all areas in
your level have accurate lighting effects that may not be covered by the global cubemap. Lumberyard
automatically gives a local probe higher priority within its defined radius and superimposes its effects
on those of the global probe. For more information about global probes, see Global Environment
Lighting (p. 1064).

When placing environment probes in a level, pay attention to how probes are layered and sorted going
from global to local probes.

To generate a local cubemap

1. In Rollup Bar, under Objects, click Misc, EnvironmentProbe.

2. Click to place in the probe in your level.

3. Under EnvironmentProbe Params , leave the cubemap_resolution at 256, the default. This is
the optimal resolution for performance.

4. Select the preview_cubemap check box to see the cubemap in your level.

5. Under EnvironmentProbe Params and under EnvironmentProbe Properties, adjust property
values for the desired effect. For more information about these properties, see the table in Global
Environment Lighting (p. 1064).

6. Click Generate Cubemap.

Lumberyard creates three textures in textures\cubemaps\your_level— one for the diffuse
map, one for the specular map, and one for the source .tif file.

7. To check your cubemap for accuracy, create and then place a smooth, reflective sphere
entity near the probe. If its surface looks different from the environment around it, you need to
regenerate the cubemap.

8. Click Generate Cubemap again. This incorporates object reflections from the originally generated
cubemap for added realism.

9. To hide the sphere entity in your level, select its HiddenInGame check box, found under Entity
Params in the Rollup Bar.

Version 1.6
1066

Lumberyard User Guide
Environment Shadows

Environment Shadows
Lumberyard supports shadow casting from all light sources and shadow receiving on all deferred and
most forward-rendered geometry. Traditional shadow mapping is used for shadow generation. Light
sources can be directional, such as from the sun and moon, or from point and area light sources.

As shadow generation is resource-intensive, Lumberyard offers the following features to mitigate this:

• You can control the degree to which Lumberyard caches shadows and stops dynamically updating
the most distant cascaded sun shadows.

• You can set point and area light sources to be updated in intervals, such as every second frame.

• You can use the r_MergeShadowDrawcalls console variable to merge submaterials during shadow
generation, resulting in fewer drawcalls.

Topics

• Cached Shadows (p. 1067)

• Object Shadows (p. 1068)

• Shadow Proxies (p. 1069)

Cached Shadows

Shadow caching is an effective optimization method to reduce the number of shadow drawcalls and to
increase the shadow casting and receiving range.

Starting from a defined cascade number, Lumberyard can render subsequent shadow cascades and
then keep them in memory. Once the cached cascade is initialized, no more draw calls are needed for
updates. This enables long-range distant shadows with almost no performance cost.

Keep in mind that cached shadows are memory intensive, with the default configuration requiring
approximately 130 MB of video memory.

In addition, ensure that all shaders are compiled before triggering an update or all objects may not be
rendered into the cached shadow maps.

Placement and Update

Cached shadow cascades are centered around the rendering camera by default, and automatically
recenter and update once the camera gets close to the cascade border.

You can override this automated placement by using the Environment:RecomputeStaticShadows
flow graph node, which takes the world space Min and Max input positions of the bounding area for
the first cached cascade. Bounding boxes for subsequent cached cascades are scaled versions of
the preceding cascades and are based on the NextCascadeScale input multiplier. The Trigger input
causes an update of all cached shadow cascades.

Note
To keep you informed, a warning message appears in the console each time a cached
shadow cascade is updated.

Dynamic Distance Shadows

Cached shadows work well with static objects, but dynamic objects don't get their shadows updated
while moving. To overcome this, you can selectively exclude dynamic objects from the cache and
render them to the standard cascades. The performance overhead of enabling this feature for a limited
number of entities is generally low.

Version 1.6
1067

Lumberyard User Guide
Environment Shadows

To enable dynamic distance shadows for an object

• Select the DynamicDistanceShadows check box for the entity.

Console Variables

When Lumberyard is set to place shadows automatically, the selected resolution combined with the
desired world space pixel density, which is derived from the approximate logarithmic split scheme,
determines the world space area covered by each shadow cascade. Lowering the resolution lowers the
shadowed range for each cascade while still maintaining shadow quality.

When you place shadows manually, the resolution is uniformly stretched across the shadow cascade.
Consequently, lower resolutions result in lower shadow quality at the same world space coverage.

Use the following console variables to control cached shadows, including setting the placement and
resolution for individually cached shadow cascades.

• r_ShadowsCache – Caches all sun shadow cascades above the value. 0 = no cached cascades, 1
= cache first cascade and up, 2 = cache second cascade and up.

• r_ShadowsCacheResolutions – The resolution of the cached cascades.

• r_ShadowsCacheFormat – Storage format for cached shadow maps: 0 = D32: 32 bit float, 1 = D16:
16 bit integer.

• e_ShadowsCacheUpdate – Triggers updates of cached shadow maps: 0 = no update, 1 = one
update, 2 = continuous updates.

• e_ShadowsCacheObjectLod – The level of detail (LOD) used for rendering objects into the cached
shadow maps.

• e_ShadowsCascadesDebug – Enables debug view mode. 0 = disable, 1 = enable.

• e_DynamicDistanceShadows – Toggles support for having selected objects cast dynamic
shadows.

Object Shadows

With object shadows, you can assign custom shadow maps to selected objects, resulting in increased
shadow quality due to higher world space shadow texel (texture element) density and reduced depth
range.

The drawbacks of using object shadows are increased memory consumption of the additional shadow
maps and increased shadow filtering cost.

Object shadows only affect sun shadows. For performance reasons they are not sampled on forward
geometry such as particles, hair, and eyes.

Using Flow Graph

You can use the Environment:PerEntityShadows flow graph node and assign the target entity to the
Entity slot. The Trigger input applies the settings to Lumberyard.

Because this node is stateless with respect to the entity, you can add multiple
Environment:PerEntityShadows nodes for the same entity. The last one to be triggered will be in
effect.

Use the following node inputs to tweak the shadow appearance:

• ConstBias/SlopeBias – Reduces avoid self-shadowing artifacts.

• Jittering – Filters kernel size, which directly affects shadow softness.

Version 1.6
1068

Lumberyard User Guide
Voxel-based Global Illumination (SVOGI)

• BBoxScale – Scale factor for the bounding box of the selected entity. Can be useful in case the
bounding box is too small or too large.

• ShadowMapSize – Size of the custom shadow map, which is automatically rounded to the next
power of two.

Using I3DEngine

The following I3DEngine interface functions can be called from anywhere in game code. The function
parameters are equivalent to the parameters for the Environment:PerEntityShadows Flow Graph
node.

• AddPerObjectShadow – Adds an object shadow.

• RemovePerObjectShadow – Removes an object shadow.

• GetPerObjectShadow – Retrieves object shadow settings for a given RenderNode.
Do not overwrite the RenderNode pointer. Instead use AddPerObjectShadow
\RemovePerObjectShadow.

• ShadowMapSize: Size of the custom shadow map, which is automatically rounded to the next
power of two.

Console Variables

You can use the e_ShadowsPerObject console variable with object shadows. With this variable, 0 =
0ff, 1 = on, and -1 = don't draw object shadows.

Shadow Proxies

Shadow proxies are a method of significantly reducing shadow performance costs by creating
dedicated low-polygon count geometry to cast an object's shadow with minimal visual differences.
You can also use shadow proxies to minimize shadow artifacts by controlling which geometry can cast
shadows.

Keep in mind that if the shadow proxy mesh aligns closely with the RenderMesh, you may notice self-
shadow artifacts.

No material setup is required in your DCC tool. Instead you use the Material Editor to set up shadow
proxies in the material using Material Editor. Place the shadow proxy on its own submaterial, setting
Opacity to 0 and ensuring that No Shadow is not selected (the default).

The shadow proxy must also be linked as a child node of the RenderMesh, and it must be on its own
material ID.

For the RenderMesh material, set as you normally would, except under the Advanced properties,
select the No Shadow option. This instructs Lumberyard to use the shadow proxy instead of the
RenderMesh to render the shadows.

Voxel-based Global Illumination (SVOGI)
SVOGI, which stands for sparse voxel octree global illumination, also known as voxel GI, is a global
illumination solution based on voxel ray tracing. It does not require prebaking or manual setup of
bounce lights or light volumes.

Voxel GI provides the following effects:

• Dynamic indirect light bounce from static objects and many dynamic objects.

Version 1.6
1069

Lumberyard User Guide
Integration Modes

• Large-scale ambient occlusion (AO) and indirect shadows from static objects such as brushes,
terrain, and vegetation.

For every frame, thousands of rays are traced through voxels and shadow maps to gather occlusion
and in-directional lighting.

Integration Modes
Voxel GI can be integrated through a number of different modes.

Mode 0
For mode 0, only opacity is voxelized. The bounced light is sampled directly from shadow maps
(extended to RSM) and compute shaders are not used.

Mode 0 has some advantages:

• GPU memory usage is small (~16 MB).

• Indirect lighting is completely dynamic; moving sun does not cause any slowdown.

• Dynamic objects can bounce indirect lighting.

Mode 0 also has some disadvantages:

• Indirect lighting can have low quality (more noise), especially for small point lights.

• Only single bounce is possible.

• Only diffuse GI is possible,

• Environment probes are needed for specular highlights.

Modes 1, 2
For modes 1 and 2, albedo, normals, and several layers of radiance are voxelized together
with opacity. Direct lighting is also injected into voxelization, where it is propagated within the
voxelization and then sampled during the ray-tracing pass.

Modes 1 and 2 have these advantages:

• They support multiple bounces. The light source can be semistatic with multibounce support or
be fully dynamic with single bounce support.

• Mode 2 supports traced speculars.

• They provide higher quality, smoother indirect lighting.

Some disadvantages of using Modes 1 and 2 include:

• They use more GPU memory (64MB+).

• Large semistatic multibounce lights cannot be moved freely, but moving sun may work fine.

• Dynamic objects can not affect GI (but can receive it).

Note
If you get a message that the display driver has stopped responding and has recovered,
try this workaround from Microsoft.

Voxel GI Parameters
All the following parameters are global for an entire level. If you need to adjust indirect light intensity
locally, use normal ambient lights to modulate or tint it.

In material properties, you use the Voxel Coverage parameter to control the transparency of voxels
per material and manually fix overoccluded areas.

Version 1.6
1070

https://support.microsoft.com/en-us/kb/2665946

Lumberyard User Guide
Debugging

To enable voxel global illumination

1. In the Rollup Bar, on the Terrain tab, choose Environment.

2. In the Environment panel, under Total Illumination v2, adjust the following settings as needed.

Parameter Description

Active Activates voxel GI for the level.

Injection multiplier Modulates light injection by controlling the
intensity of bounce light.

Sky color multiplier Controls amount of the sky light.

This value may be multiplied with the Time of
Day fog color

Saturation Controls the color saturation of propagated light.

Diffuse bias Constant ambient value added to GI to prevent
completely black areas. If negative, modulates
the ambient value with near-range ambient
occlusion by preventing constant ambient light in
completely occluded indoor areas.

Cone max length Maximum length of the tracing rays (in meters).
Shorter rays work faster.

Update geometry When enabled, forces single complete
revoxelization of the scene. This is needed if
terrain, brushes, or vegetation were modified.

Low spec mode Values greater than 0 simplify shaders and scale
down internal render targets. If set to –2 this
mode is initialized by the value specified in the
sys_spec_Shading.cfg when the level is
loaded.

Use light probes If enabled, environment probes lighting is
multiplied with GI. If disabled, diffuse contribution
of environment probes is replaced with GI. For
integration modes 1–2, this setting enables
usage of global environment probe for sky light
instead of Time Of Day fog color.

Debugging
Use the following console variabled to assist in debugging voxel GI issues.

Version 1.6
1071

Lumberyard User Guide
Current Limits

• e_svoDebug=6 – Use to visualize the voxels. Ensure all important objects in the scene are
voxelized; otherwise they will cast no occlusion and no secondary shadows. Also make sure all
unwanted and unnecessary occluders are excluded from voxelization.

• r_ShowRenderTarget svo_fin – Use to show the output of voxel GI system.

• r_profiler 1 | 2 – Use to get GPU profiling information.

Current Limits
The following limitations currently exist for the voxel GI system:

• Large-scale ambient occlusion and indirect shadows are properly cast only by static geometry.

• Voxel GI does not function on some forward-rendering components like particles or water.

• Some artifacts like ghosting, aliasing, light leaking, and noise may be noticeable.

• Procedural vegetation and merged vegetation do not cast occlusion or secondary shadows.

• If a camera is moved to a new location, it may take several seconds until occlusion is working
properly.

• Only objects and materials with enabled shadow map casting generate correct bounced light.

• For dynamic objects, indirect light bounce functions only in areas near voxelized static geometry.

• Bounce light may have a noticeable delay of 1 to 2 frames.

• Use of the r_Supersampling=2 console variable may make voxel GI look strange, but using a
lower LowSpecMode setting (two times lower) restores the look and speed. In addition, temporal AA
(using r_AntialiasingMode 2/3) works correctly as well.

Render Cameras and Effects

Topics

• Fog Systems (p. 1072)

• Rendering Cameras (p. 1084)

Fog Systems
Lumberyard supports a standard fog system as well as a voxel-based volumetric fog system. Which
one to use for your game comes down to balancing performance over visual quality. Volumetric fog
looks superior but comes at a performance cost. The standard fog system is very cheap performance-
wise to compute.

You can also add realistic-looking fog above water surfaces, as well as add volumetric fog
shadows. For more information, see Adding Fog Above Water (p. 856) and Adding Volumetric Fog
Shadows (p. 1083).

Topics

• Standard Fog (p. 1072)

• Volumetric Fog (p. 1079)

Standard Fog
Lumberyard's standard fog system handles sunlight with dynamic shadows and exponential height fog
density. However, in dense fog situations the fog's appearance may not be consistent between opaque
and transparent materials.

Version 1.6
1072

Lumberyard User Guide
Fog Systems

Topics

• Setting Global (Time of Day) Fog (p. 1073)

• Using Fog Volumes (p. 1075)

• Setting Ocean Fog Parameters (p. 1077)

• Setting Fog Environment Parameters (p. 1078)

• Using Console Variables (p. 1078)

Setting Global (Time of Day) Fog

Global fog realistically simulates particles distributed uniformly along the ground and falling off
exponentially with height above sea level. It also accurately accounts for time of day lighting and for
scattered sunlight rays to produce halos around the sun.

Additionally, the effect can cast shadows for both objects and clouds through the fog. For more
information, see Adding Volumetric Fog Shadows (p. 1083)

To set global fog parameters

1. In Lumberyard Editor, click Terrain, Time Of Day.

2. Under Time of Day Tasks, click Toggle Advanced Properties to view all parameters.

3. Under Parameters, Fog, adjust the following parameters as needed:

Parameter Description

Color (bottom) Gradient coloring of the global fog. This sets
the bottom color of the fog.

Color (bottom) multiplier A value that is multiplied by the bottom fog
color to set the brightness of the top fog color.

Height (bottom) Specifies a reference height for the vertical fog
gradient. This is the height at which the fog
color reaches the specified color at the top.
For fog density it marks the height at which the
vertical density falloff reaches the specified
density.

Density (bottom) Fog density at the bottom. Specifying a density
greater than 0 or less than 1 causes the fog to
gradually fall off.

Version 1.6
1073

Lumberyard User Guide
Fog Systems

Parameter Description

Color (top) Specifies the color of the fog component
responsible for producing halos around the sun
and scattering of sun light.

Color (top) multiplier Enables gradient coloring of the global fog.
This sets the top color of the fog.

Height (top) Sets the reference height for the vertical fog
gradient. For the fog color this marks the
height at which it reaches the specified color at
the top. For the fog density it marks the height
at which the vertical density falloff reaches the
specified density.

Density (top) Density of the fog at the top. Note that it is
possible to set the top density to a higher
value than the bottom density. This effectively
reverses the vertical falloff and produces thick
fog in the sky and clear views at the bottom.
Also note that both top and bottom density can
be equal.

It is also important to understand that the
volumetric fog computations treat a level as
a continuous unbound volume. That means
specifying a density greater than 0 at the
specified top height doesn't mean that fog
suddenly stops there. Instead it continues
to fall off gradually. The same is true for the
bottom boundary or density values less than 1.

Color height offset Shifts the color of the vertical fog gradient
towards the top or bottom.

Color (radial) and multiplier Fog color component that is responsible
for producing halos around the sun and for
scattering of sun light.

Radial size Size of the radial fog component.

Radial lobe Amount the radial fog component is affected by
distance. Small values affect the horizon only
while bigger values make it appear all over the
scene.

Final density clamp Maximum fog density that is allowed for final
blending with the scene. This enables the
sky, horizon, and other bright distant objects
to punch through the fog even if it is dense.
However, take care not to set this value too
low or it compromises depth perception and
results in implausible visuals and apparent
artifacts, especially when moving the camera.

Global density Density of the global volumetric fog. Higher
values produce denser fog.

Version 1.6
1074

Lumberyard User Guide
Fog Systems

Parameter Description

Ramp start Distance from the camera at which the fog
starts to be rendered (at 0 density).

Ramp end Distance from the camera at which the fog
starts to be rendered (at 0 density).

Ramp influence Amount the ramp values affect the rendering of
the fog.

Shadow darkening Amount the fog color (using the settings
above) is darkened per pixel based on the
volumetric shadow value computed per pixel.
The factor is applied after a darkened fog color
has been calculated using the sun and ambient
darkening factor. See the next two parameters.

Shadow darkening sun Amount that the sun influences the radial fog
color.

Shadow darkening ambient Amount that the environment is influencing the
ambient fog color height gradient.

Shadow range Distance out that the volumetric shadows
are rendered until 10% (0.1) of the level's far
clipping plane distance is reached. Smaller
values result in more accurate results but
shadows won't cast as far.

Using Fog Volumes

Fog volumes are localized 3D areas that define an area where non-volumetric fog is present. Fog
volumes do not change in dynamic, nonuniform ways like smoke does. When alpha-transparent
objects are behind fog volumes, each pixel is fogged. However, this is not the case when objects are
inside fog volumes.

Unlike global (Time of Day) fog that has an upward falloff direction, fog volumes can have an arbitrary
falloff direction. Interesting fog shapes and effects can be achieved, including fog patches that vary in
size, color, shape, density, and spacing over time, as well as being influenced by wind.

Observe these best practices when creating fog volumes

• Do not overlap fog volumes.

• Make sure indoor fog volumes don't cover more than one sector or they may be culled when the
main sector becomes invisible.

• To avoid inaccurate rendering, don't apply nonuniform scaling to fog volumes.

• When using shadow maps inside fog volumes, make sure the environment VolFogShadows
parameter is disabled.

You can control fog volume appearance using the FogVolume entity properties in Rollup Bar.

Version 1.6
1075

Lumberyard User Guide
Fog Systems

To add a fog volume to your level

1. In Rollup Bar, under Objects, click Entity.

2. Under Browser, expand Render and double-click FogVolume.

3. Click to place the volume at the desired location in your level.

4. Under Entity Properties, adjust the following parameters as needed:

Parameter Description

Active Enables fog volumes when selected.

AffectsThisAreaOnly Disable this setting to have the FogVolume
entity effect occurs in multiple VisAreas and
ClipVolumes.

Color Specifies the RGB diffuse color of the fog
volume.

DensityNoiseOffset Offsets the noise value for the fog density.

DensityNoiseScale Scales the noise value for the fog density.

DensityNoiseTimeFrequency Controls the time frequency of the noise for
the fog density. High frequencies produce fast-
changing fog.

DensityOffset Used in conjunction with the GlobalDensity
parameter to offset the density.

FallOffDirLati Controls the latitude falloff direction of the fog.
A value of 90° means the falloff direction is
upwards.

FallOffDirLong Controls the longitude falloff direction of the
fog, where 0° represents east. Rotation is
counterclockwise.

FallOffScale Scales the density distribution along the falloff
direction. Higher values make the fog fall off
more rapidly and generate thicker fog layers
along the negative falloff direction.

FallOffShift Controls how much to shift the fog density
distribution along the falloff direction in world
units (m). Positive values move thicker fog
layers along the falloff direction into the fog
volume.

Version 1.6
1076

Lumberyard User Guide
Fog Systems

Parameter Description

GlobalDensity Controls the density of the fog. The higher the
value the more dense the fog.

HDRDynamic Specifies how much brighter than the default
white (RGB 255,255,255) the fog is.

IgnoreVisAreas Controls whether the FogVolume entity should
respond to VisAreas and ClipVolumes.

NearCutoff Stops rendering the object depending on
camera distance to object.

RampEnd Specifies the end distance of fog density ramp
in world units (m).

RampInfluence Controls the influence of fog density ramp.

RampStart Specifies the start distance of fog density ramp
in world units (m).

SoftEdges Factor used to soften the edges of the fog
volume when viewed from outside. A value of
0.0 produces hard edges. Increasing this value
up to 1.0 gradually softens the edges. This
property currently has no effect on box type
fog volumes as specified in the VolumeType
parameter.

UseGlobalFogColor If selected, ignores the Color parameter
and uses the global (Time Of Day) fog color
instead.

VolumeType Produces a box volume for values above 1.0 or
a spherical volume for lower values.

WindInfluence Fog is influenced by the wind.

DensityNoiseFrequency X, Y, Z Controls the spatial frequency of the noise
for the fog density. High frequencies produce
highly detailed fog.

Setting Ocean Fog Parameters

You can use several settings to customize the look of fog over the ocean.

Version 1.6
1077

Lumberyard User Guide
Fog Systems

To set ocean fog parameters

1. In Lumberyard Editor, click Terrain, Time Of Day.

2. Under Time of Day Tasks, click Toggle Advanced Properties to access the fog parameters.

3. Under Parameters, in the Advanced panel, click to adjust ocean fog parameter values for the
desired effect, as listed below:

• Ocean fog color – Sets the RGB ocean fog color for a specific time of day.

• Ocean fog color multiplier – Sets the brightness of the ocean fog, which is multiplied by the
ocean fog color.

• Ocean fog density – Sets the density of the ocean fog.

Setting Fog Environment Parameters

You can set fog environment properties with just a few simple steps.

To set fog environment properties

1. In Rollup Bar, on the Terrain tab, click Environment.

2. Under Fog, adjust the following values as needed:

a. View distance - distance at which the fog fades away.

b. View distance low spec - distance at which the fog fades away using the low spec setting.

c. LDR global dens mult - sets the low dynamic range global fog density multiplier.

Using Console Variables

The following console variables can be used to control fog:

Parameter Description

e_Fog Toggles fog on and off.

e_FogVolumes Enables local height/distance based fog volumes.

e_FogVolumesTiledInjection Enables tiled fog volume density injection.

r_FogDepthTest Enables per-pixel culling for deferred fog
pass. Fog computations for all pixels closer
than a given depth value will be skipped. 0 =
culling disabled. > 0 = fixed linear world space
culling depth. < 0 = optimal culling depth will
be computed automatically based on camera
direction and fog settings.

r_FogShadows Enabled deferred volumetric fog shadows. 0 - no
shadows. 1 = standard resolution. 2 = reduced
resolution.

r_FogShadowsMode Ray-casting mode for shadowed fog. 0 = brute
force shadow map sampling. 1 = optimized
shadow map sampling.

Version 1.6
1078

Lumberyard User Guide
Fog Systems

Parameter Description

r_FogShadowsWater Enables volumetric fog shadows over water
volumes

Volumetric Fog

Volumetric fog uses volume textures as a view-frustum-shaped voxel buffer to store incoming light and
its properties. Volumetric fog supports regular light and sunlight with dynamic shadows, environment
probes, ambient light, as well as variations in fog density. It also supports the application of volumetric
fog with respect to opaque and transparent materials.

Version 1.6
1079

http://docs.aws.amazon.com/lumberyard/latest/userguide/ly-glos-chap.html#voxel

Lumberyard User Guide
Fog Systems

The Light entity has three parameters relating to volumetric fog. For more information, see the
AffectsVolumetricFogOnly, FogRadialLobe, and VolumetricFog parameters for the Light
Entity (p. 461) in the Object and Entity System (p. 416).

In addition, you can also use the Particle Editor to place a particle emitter in your level to add fog
density to an area. For more information, see the Volume Fog and Volume Thickness parameters for
the Advanced Attribute in the Particle Attributes and Parameters Reference (p. 956).

To add localized nonvolumetric regions of fog, see Using Fog Volumes (p. 1075).

Topics

• Guidelines and Best Practices for Volumetric Fog (p. 1080)

• Setting Global (Time of Day) Volumetric Fog (p. 1081)

• Setting Volumetric Fog Environment Parameters (p. 1083)

• Adding Volumetric Fog Shadows (p. 1083)

• Using Console Variables (p. 1084)

Guidelines and Best Practices for Volumetric Fog

Observe the following guidelines and best practices for volumetric fog.

• Make sure that the r_DeferredShadingTiled console variable is set to greater than 0. A value of
1 to 2 is recommended. This is required to use volumetric fog.

• To avoid performance problems, use the default values for the Ramp Start and Ramp End
parameters located in the Time of Day editor.

• Note that the Light entity's PlanarLight parameter with the AmbientLight parameter enabled is
supported. However the PlanarLight parameter with the AmbientLight parameter disabled is not
supported.

Version 1.6
1080

Lumberyard User Guide
Fog Systems

• Using large values for the Range parameter in the Time of Day Editor may cause fog flicker
and light leaking behind walls unless you adjust the r_VolumetricFogTexDepth console value
accordingly

• The default values are r_VolumetricFogTexDepth=32 for Range=64. If you
want to use larger ranges such as Range=256 and with same visual quality, you
need to set r_VolumetricFogTexDepth=64. When Range=1024 is used, set
r_VolumetricFogTexDepth=128.

Setting Global (Time of Day) Volumetric Fog

Global volumetric fog realistically simulates particles distributed uniformly along the ground and falling
off exponentially with height above sea level. It also accurately accounts for time of day lighting and for
scattered sunlight rays to produce halos around the sun.

You can use the Anisotropy parameters listed after the following procedure to control how much
sunlight is scattered through fog and in which direction. Setting the Anisotropy (atmosphere)
parameter close to 0 achieves a uniform look across the entire sky, while setting the Anisotropy (sun
radial) parameter close to 1 produces a bloom effect around the sun.

The Radial blend parameters blend the Anisotropy parameters to create various effects. For
example, setting Radial blend mode = 1 and Radial blend factor = 1 produces sun radial scattering
only.

You set global volumetric fog parameters in the Time of Day Editor, which you open from Lumberyard
Editor by clicking Terrain, Time Of Day.

To set global volumetric fog parameters

1. In Lumberyard Editor, click Terrain, Time Of Day.

2. Under Time of Day Tasks, click Toggle Advanced Properties to view all parameters.

3. Under Parameters, Volumetric fog, adjust the following parameters as needed:

Parameter Description

Height (bottom) Specifies a reference height for the vertical fog
gradient. This is the height at which the fog color
reaches the specified color at the top. For fog
density it marks the height at which the vertical
density falloff reaches the specified density.

Version 1.6
1081

Lumberyard User Guide
Fog Systems

Parameter Description

Density (bottom) Fog density at the bottom. Specifying a density
greater than 0 or less than 1 causes the fog to
gradually fall off.

Height (top) Sets the reference height for the vertical fog
gradient. For the fog color this marks the height
at which it reaches the specified color at the top.
For the fog density it marks the height at which the
vertical density falloff reaches the specified density.

Density (top) Density of the fog at the top. Note that it is possible
to set the top density to a higher value than the
bottom density. This effectively reverses the
vertical falloff and produces thick fog in the sky and
clear views at the bottom. Also note that both top
and bottom density can be equal.

Volumetric fog computations treat a level as
a continuous unbound volume. That means
specifying a density greater than 0 at the specified
top height doesn't mean that fog suddenly stops
there. Instead it continues to fall off gradually. The
same is true for the bottom boundary or density
values less than 1.

Global density Density of the global volumetric fog. Higher values
produce denser fog

Ramp start Distance from the camera at which the fog starts to
be rendered (at 0 density).

Ramp end Distance from the camera at which the fog starts to
be rendered (at 0 density).

Color (atmosphere) Specifies the fog albedo color for sun atmosphere
scattering.

Anisotropy (atmosphere) Adjusts the anisotropy for sun atmosphere
scattering. When 0 = isotropic, then 1 = perfect
forward, and -1 = perfect backward scattering.

Color (sun radial) Specifies the fog albedo color for sun radial
scattering.

Anisotropy (sun radial) Adjusts the anisotropy for sun radial scattering.
When 0 = isotropic, then 1 = perfect forward, and
-1 = perfect backward in-scattering.

Radial blend factor Adjusts the blend factor of blending sun
atmosphere and sun radial scattering.

Radial blend mode Adjusts the blend mode factor of blending sun
atmosphere and sun radial scattering.

Color (entities) Specifies the global fog albedo color for scatterings
of all types of light except the sun.

Version 1.6
1082

Lumberyard User Guide
Fog Systems

Parameter Description

Anisotropy (entities) Adjusts the anisotropy of entities (such as
FogVolume) except the global fog. When 0 =
isotropic, then 1 = perfect forward, and -1 = perfect
backward in-scattering.

Range Adjusts the maximum distance of volumetric fog.
The default setting is 64.

In-scattering Adjusts the factor of in-scattering of all participating
media.

Extinction Adjusts the factor of extinction of all participating
media.

Analytical fog visibility Adjusts the visibility of analytical volumetric fog.
Where 0 = no analytical volumetric fog, 1 = visible
analytical volumetric fog.

Final density clamp Maximum fog density that is allowed for final
blending with the scene. This enables the sky,
horizon, and other bright distant objects to punch
through the fog even if it is dense. However, take
care not to set this value too low or it compromises
depth perception and results in implausible visuals
and apparent artifacts, especially when moving the
camera.

Setting Volumetric Fog Environment Parameters

You can set fog environment properties with just a few simple steps.

To set volumetric fog environment properties

1. In the Rollup Bar, on the Terrain tab, click Environment.

2. Under Fog, adjust the following values as needed:

• View distance – Distance at which the fog fades away.

• View distance low spec – Distance at which the fog fades away using the low spec setting.

• LDR global dens mult – Sets the low dynamic range global fog density multiplier.

Adding Volumetric Fog Shadows

You can add volumetric shadows to fog with just a few simple steps.

To add volumetric fog shadows

1. In the Rollup Bar, on the Terrain tab, click Environment.

2. Under VolFogShadows, do the following:

Version 1.6
1083

Lumberyard User Guide
Rendering Cameras

• Click Enable to enable volumetric shadows from global fog.

• Click EnableForClouds to enable volumetric shadows from clouds.

Using Console Variables

The following console variables can be used to control volumetric fog:

Parameter Description

e_VolumetricFog Toggles volumetric fog on and off.

r_VolumetricFogDownscaledSunShadow Enables replacing sun shadow maps with
downscaled shadow maps or static shadow map
if possible. This reduces volumetric fog flicker for
sun shadows.

r_VolumetricFogDownscaledSunShadowRatio Sets the downscale ratio for sun shadow maps.

r_VolumetricFogMinimumLightBulbSize Adjusts the minimum size threshold for light
attenuation bulb size for volumetric fog. Small
bulb sizes may cause light flicker.

r_VolumetricFogReprojectionBlendFactor Adjusts the blending factor of the temporal
reprojection filter. Higher values cause less
flicker, but more ghosting.

r_VolumetricFogReprojectionMode Sets the mode of ghost reduction for the
temporal reprojection filter.

r_VolumetricFogSample Adjusts the number of sample points.

r_VolumetricFogShadow Adjusts the shadow sample count per sample
point.

r_VolumetricFogTexDepth Adjusts the internal volume texture depth.

r_VolumetricFogTexScale Adjusts the internal volume texture width and
height. Screen resolution divided by this factor is
applied to both the width and height.

Rendering Cameras
You can use rendering cameras to define custom views within your level. You can trigger them using
the Track View Editor or the Image:EffectDepthOfField flow graph node. Rendering cameras are
used frequently for animated sequences.

Version 1.6
1084

Lumberyard User Guide
Rendering Cameras

To add a render camera to your level

1. In the Rollup Bar, on the Objects tab, click Misc, Camera. Drag the camera object into your
level, and then click to position it.

2. To add a targeted camera, hold down the Shift key when clicking to position the camera. Then
drag the camera to its target. Release the mouse button to position both the camera and its target
in the level.

3. Adjust the values of the following parameters as needed.

Parameter Description

FOV The vertical field of view of the camera

NearZ The cut off point closest to the camera

FarZ The max cut off point of the camera

Shake Parameters

Amplitude A Strength of the effect on each axis

Amplitude A Multiplier Multiplier for the amplitude.

Frequency A How often the effect plays on each axis

Frequency A Multiplier Multiplier for the frequency

Noise A Amplitude Multiplier Adds some noise to the amplitude value

Noise A Frequency Multiplier Adds some noise to the frequency value

Time Offset A A time offset

Amplitude B Strength of the effect on each axis.

Amplitude B Multiplier Multiplier for the amplitude

Frequency B How often the effect plays on each axis

Frequency B Multiplier Multiplier for the frequency

Noise B Amplitude Multiplier Adds some noise to the amplitude value

Noise B Frequency Multiplier Adds some noise to the frequency value

Time Offset B A time offset

Version 1.6
1085

Lumberyard User Guide
Rendering Cameras

Parameter Description

Random Seed Apply some random variation to the noise

Depth of Field

Lumberyard uses an efficient gather-based depth of field (DOF) implementation. Depth of field is used
to to enhance the realism of a scene by simulating the way a real-world camera works. Use a broad
depth of field to focus on all or nearly all of a scene. Use a narrow depth of field to focus on objects that
are within a certain distance from the camera.

Version 1.6
1086

Lumberyard User Guide
Rendering Cameras

You can enable depth of field by using the r_depthOfFieldMode console variable. To control depth
of field use the Track View editor or the Image:EffectDepthOfField flow graph node.

Motion Blur

Lumberyard uses a sample-weighted motion blur implementation whose settings mirror real-world
camera shutter speed settings.

Version 1.6
1087

Lumberyard User Guide

Sample Projects and Levels

Lumberyard offers a variety of sample projects, levels, and assets for you, which are located in the
\dev directory at the root of the Lumberyard installation (\lumberyard\dev):

• Samples Project – Includes several gameplay levels and content that you need to follow the
Lumberyard tutorials.

• Multiplayer Project – This game enables you to evaluate Amazon GameLift and test Lumberyard's
multiplayer capabilities.

Version 1.6
1088

Lumberyard User Guide

• Legacy Project (GameSDK) – Enables you to use GameSDK functionality. GameSDK is available
as a separate download.

• Beach City Night Asset Collection – Collection of free assets that you can use to try Lumberyard
or make your own games. The Beach City Night asset collection is available as a separate
download.

Version 1.6
1089

Lumberyard User Guide

• Woodland Asset Collection – Free assets for you to use to create your levels. The Woodland asset
collection is available as a separate download.

• FeatureTests – Collection of levels designed for demonstrating the behavior of a single core feature
of Lumberyard.

Topics

• Samples Project (p. 1091)

• Multiplayer Sample Project (p. 1103)

• Legacy Sample Project (GameSDK) (p. 1105)

• Beach City Sample Project (p. 1106)

• Woodland Asset Package (p. 1107)

• FeatureTests Project (p. 1108)

Version 1.6
1090

Lumberyard User Guide
Samples Project

Samples Project
The samples project includes a collection of sample levels and code that demonstrates how to use
various Lumberyard features. The levels are located in the \dev\SamplesProject\Levels directory
at the root of the Lumberyard installation (\lumberyard\dev).

The Getting Started, Animation, Camera, Movers, and Triggers projects show you how to use the
Flow Graph editor to create a variety of scripted events. The examples in these projects show a basic
setup and then progressively add more complexity or variation for each additional example. Every
script has been annotated to explain what the script does and how each associated flow graph node is
used.

Getting Started Project
The \GettingStartedFiles directory contains a complete level that includes terrain, lighting,
cameras, objects, materials, flow graph scripting, and code used to complete each step of the
Lumberyard Basics tutorial. You can use these levels to skip over parts of the tutorial as needed
and also to see the completed experience as it should behave based on the walkthrough. For more
information, see the Lumberyard Tutorials.

Samples Projects
The \Samples subfolder includes a collection of sample projects that demonstrate various Lumberyard
features.

Animation Basic Sample

This sample demonstrates how to set up and trigger basic character animations in the Flow Graph
editor. To play the game, do the following:

• Press Ctrl+G to start the level.

Version 1.6
1091

https://gamedev.amazon.com/forums/tutorials

Lumberyard User Guide
Samples Projects

• Click the mouse to trigger an animation.

• Press Esc to exit the level.

To see the flow graph, choose View, Open View Pane, Flow Graph. In the Graphs pane, expand
Level, Entities, chicken_flow, and click AnimObject.

Camera Sample

This sample demonstrates how to use a camera entity with flow graph scripts to create different
camera events and types for a gameplay experience. Each example is fully annotated within the flow
graph scripts of the level file.

Examples for this project include the following:

• Example 1 – Shows a camera pointed directly at the capsule for a first-person point of view (POV).

• Example 2 – Shows a camera pointed directly at the capsule but offset to create a third-person
POV.

• Example 3 – Shows a look target pointed at the capsule with a camera parented to the look target,
and creating a simple rig example.

• Example 4 – Shows a top-down POV example.

• Example 5 – Shows a side scroller POV example.

• Example 6 – Shows a camera pointed at another entity that is tracking a target. The field of view
(FOV) changes based on the distance between the camera and its target.

• Example 7 – Shows a floating tracking camera. FOV changes are based on the distance between
the camera and its target.

• Example 8 – Shows a simple chase cam.

Version 1.6
1092

Lumberyard User Guide
Samples Projects

• Example 9 – Shows a top-down camera with player controls.

• Example 10 – Shows a complex example of using flowgraph to create a custom character controller
and third-person camera rig.

To play the examples, do the following:

• Press 5 to cycle through camera examples 1 through 10.

• Press 6 to cycle through the balloon camera.

• Press 7 to take control of the robot sphere controller.

• Use the following robot keyboard keys and mouse controls for examples 9 and 10:

• Press the W, A, S, and D keys to move forward, left, backward, and right, respectively.

• Move the mouse to look around.

• Press spacebar to jump.

Drive the game robot to each numbered display in this sample to see an annotated explanation.

Don't Die

This simplified version of the Don't Die sample illustrates AWS Cloud Canvas functionality and flow
graph integration. For more information, see Don't Die Sample Project.

Use the keyboard keys and mouse controls as follows:

• Press the W, A, S, and D keys to move forward, left, backward, and right, respectively.

• If shield is active, use the left mouse button to deflect and destroy incoming debris.

• Press the Y key to restart the game.

Upon death, a high-score screen displays the top 10 survival times and screenshots.

When the game starts, text at the bottom of the screen shows a message with your Windows login
name. Don't Die associates the login name with your Cognito ID and displays it next to your high score.
The Message of the Day ticker scrolls below the Don't die username message.

Version 1.6
1093

http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-sample-project-dont-die.html

Lumberyard User Guide
Samples Projects

Movers Sample

This sample demonstrates how to move objects using scripted events to define the motion within a
level. Each example is fully annotated within the flow graph scripts of the level file. It contains various
examples of moving objects in a scene using the MoveEntityTo, RotateEntity, and RotateEntityTo
flow graph nodes.

Examples for this project include the following:

• Example 1 – Moves the entity to a tag point.

• Example 2 – Moves the entity to a tag point and loops the operation.

• Example 3 – Move the entity to a tagpoint, adds additional rotation, and loops the operation.

• Example 4 – Rotates the entity indefinitely.

• Example 5 – Accelerates and rotates the entity 180 degrees.

• Example 6 – Parents the entity to another and sets the parent to rotate indefinitely.

• Example 7 – Accelerates and rotates up to a maximum speed.

• Example 8 – Accelerates a rotation and then decelerates.

• Example 9 – Accelerates a rotation, decelerates, and loops.

• Example 10 – Links four separate entities to the same parent. Both the parent and its children rotate
at different angles and rates.

• Example 11 – Uses keyboard keys I, K, J, and L to move a box around in the viewport. Shows a
second entity moving toward the first one.

Use the following robot keyboard keys and mouse controls:

• Press W, A, S, and D keys to move forward, left, backward, and right, respectively.

Version 1.6
1094

Lumberyard User Guide
Samples Projects

• Move the mouse to look around.

• Press the spacebar to jump.

Drive the game robot to each numbered display in this sample to activate the trigger and see an
annotated explanation.

Particles Sample

This sample showcases particles from the various Lumberyard systems and demonstrates how to
create high-quality effects using simple and advanced features in the Particle Editor. Currently the
sample level includes a fire effect and a laser effect. More particles will be added in the future.

Version 1.6
1095

Lumberyard User Guide
Samples Projects

Version 1.6
1096

Lumberyard User Guide
Samples Projects

You can view particle effects and interact with individual particles in Lumberyard Editor by clicking
View, Open View Pane, Particle Editor.

Version 1.6
1097

Lumberyard User Guide
Samples Projects

Once the particles sample level is open, in the Perspective viewport in Lumberyard Editor, use the
following keyboard keys and mouse controls:

• Press Ctrl+G to start the level.

• Press the W, A, S, and D keys to move forward, left, backward, and right, respectively.

• Move the mouse to look around.

• Press Esc to exit game mode.

Version 1.6
1098

Lumberyard User Guide
Samples Projects

Particles Technical Sample

This sample demonstrates how to create particle systems and effects by changing various attributes in
the Particle Editor. The sample level includes 10 particle samples that illustrate how to manipulate the
particles using two physics entities, flow graph nodes, and entity links.

The sample level is located in the \dev\SamplesProject\Levels\Samples
\Particles_Technical_Sample directory and the particle libraries are located in the \dev
\SamplesProject\libs\particles directory.

You can view particle effects and interact with individual particles in Lumberyard Editor by clicking
View, Open View Pane, Particle Editor. The particle effects are located in the Libraries pane.

Version 1.6
1099

Lumberyard User Guide
Samples Projects

Once the particles technical sample level is open, in the Perspective viewport in Lumberyard
Editor, you can use the same keyboard keys and mouse controls as the section called “Particles
Sample” (p. 1095).

Examples for this sample level include the following:

• Station 1 – Particle Collision demonstrates particles that collide with an object.

• Station 2 – Mesh Particles demonstrate geometry attached to particles.

Version 1.6
1100

Lumberyard User Guide
Samples Projects

• Station 3 – GPU Particles demonstrate the particles that are processed and rendered entirely by
the graphics card GPU.

• Station 4 – Particles with Gravity Entities demonstrate particles that are manipulated by the
physics entity called GravitySphere.

• Station 5 – Particles with Turbulence demonstrates how the turbulence attributes are used to
create a vortex effect.

• Station 6 – Particles with Scripted Wind Speed demonstrates particles that are manipulated by the
physics entity called WindArea. The WindArea entity is also manipulated by flow graph.

• Station 7 – Particles with Wind Entity demonstrates particles that are manipulated by the physics
entity called WindArea.

• Station 8 – Animated Texture demonstrates how to use a texture atlas to animate textures that are
attached to particles.

• Station 9 – Custom Particle Material demonstrates how the appearance of a particle can be
changed by using a custom material.

• Station 10 – Target Attraction demonstrates how an entity link and flow graph can be used
together to make particles target an object and follow it.

Trigger Sample

This sample demonstrates ways to use trigger volumes to activate events within a level. In this sample
the event is opening or closing a door. Each example is fully annotated within the flow graph scripts of
the level file. It demonstrates various uses for proximity and area triggers.

Examples for this project include the following:

• Example 1 – Shows a proximity trigger set to only be activated by the player. The metal sphere
above the door does not activate the trigger.

Version 1.6
1101

Lumberyard User Guide
Samples Projects

• Example 2 – Shows a proximity trigger with OnlyPlayer disabled. Any entity can successfully
activate the trigger.

• Example 3 – Shows a proximity trigger with OnlyOneEntity enabled. The first entity must leave
before the trigger can be activated again.

• Example 4 – Shows a proximity trigger with OnlySelectedEntity enabled. For the trigger properties,
the sphere's name has been added as a string to admit only entities with that specific name.

• Example 5 – Shows a proximity trigger with simple flow graph logic requiring three entities in the
trigger. Both spheres above the door and the player must be in the trigger area for it to activate.

• Example 6 – Shows an area shape and area box. Both areas are linked to a single trigger.

• Example 7 – Shows three area triggers that are overlapping. The player must stand in the middle of
all trigger areas in order to activate the trigger.

• Example 8 – Shows three area triggers that must be activated, but in no particular order.

• Example 9 – Shows three area trigger plates that must be activated in a specific order.

Use the following robot keyboard keys and mouse controls:

• Press the W, A, S, and D keys to move forward, left, backward, and right, respectively.

• Move the mouse to look around.

• Press Spacebar to jump.

Drive the game robot to each numbered door in this sample to activate the trigger and see an
annotated explanation.

UIEditor Sample

This sample demonstrates how to create a basic main menu using the UI Editor. For more information,
see UI System (p. 1137).

VR Box Garden Sample

Version 1.6
1102

Lumberyard User Guide
Twitch Chat Basics

Twitch Chat Basics

Located in the \TwitchChatBasics directory, this sample demonstrates Twitch ChatPlayfeatures by
demonstrating how to connect a Twitch chat windows text input directly to a trigger event within a game
level. In this specific example, Twitch chat users can type in a primary or secondary color and a ball of
that color spawns into the level and bounces through a set of pins.

Each section of the Flow Graph editor has been annotated to show the steps required to make specific
events occur. The essential elements to the chat experience are highlighted as well.

For more information on Twitch-related flow graph nodes, see Using Flow Graph with Twitch
ChatPlay (p. 1133).

Also included is a debug script with which you can manually push the number of users up to a set
number to verify that the count of users works when no users are available for testing.

Multiplayer Sample Project
The multiplayer sample project enables you to evaluate Amazon GameLift and test Lumberyard's
multiplayer capabilities. For more information on GameLift, see the Amazon GameLift Developer
Guide.

MultiplayerLobby
This level demonstrates a multiplayer lobby using GridMate networking and LyShine UI. Current
features include the following:

• Display list of servers on local LAN.

Version 1.6
1103

http://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-intro.html
http://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-intro.html

Lumberyard User Guide
MultiplayerGame

• Connect to a server.

• Create a new server.

To create a server

1. Enter the server name and map/level name in the Create a Server form.

2. Click Create Server.

The game automatically starts hosting and loads the selected map.

To connect to a server

1. Click Refresh if the server doesn't appear in the server browser list.

2. Click on the row that contains your server name to select it.

3. Click Connect.

MultiplayerGame
This level demonstrates a simple multiplayer game using GridMate networking. Current features
include:

• Players can connect, reconnect, and disconnect at any time.

• Players can control the movement of an in-game robot, demonstrating delegating network aspects to
a client.

• Players can see other player's robots moving, demonstrating network replication of client-delegated
physics.

• Players can play robot soccer or football by hitting a ball into a goal. This demonstrates a server Lua
script invoking a method in a client Lua script (RMI).

• Players can see the ball in the same place as other players, demonstrating network replication of
server-delegated physics.

• The number of goals scored is displayed on a screen in the game.

To play this game you need to create a dedicated server, or you can have a client host the server. After
the server is running, you can connect clients to it.

To create a dedicated server

1. Open a command prompt and navigate to the lumberyard_root_folder\dev folder.

2. Type the following at the command prompt: lmbr_waf configure
build_win_x64_release_dedicated -p game_and_engine --enabled-game-projects
MultiplayerProject --progress.

Note
For more information on what this command does, see Step 2: Build the multiplayer
project dedicated server of the Gamelift tutorial: Tutorial: Packaging your server build.

3. Run Bin64.Dedicated/MultiplayerProjectLauncher_Server.exe.

4. From a command line prompt, type mphost, then press Enter.

5. Type map multiplayergame, then press Enter.

To create a client-hosted server (listen server/peer hosted)

1. Run Bin64/MultiplayerProjectLauncher.exe.

Version 1.6
1104

https://s3.amazonaws.com/gamedev-tutorials/Tutorials/GameLift-Getting_started-%2801%29_Packaging_your_server_build.pdf

Lumberyard User Guide
GameLiftLobby

2. From a command line prompt, type map multiplayerlobby, then press Enter.

3. Click the Create Server button in the Lobby UI.

To connect clients to a server

1. Run Bin64/MultiplayerProjectLauncher.exe.

2. From a command line prompt, type map multiplayerlobby, then press Enter.

Note
When running the server locally, set sv_port 0 before calling the map.

3. Click Refresh if the server you started doesn't appear in the server browser list.

4. Click on the row that contains your server name, then click Connect.

How to play the game

• Use the WASD keys and the mouse to control the robot's movement and orientation.

• Press the spacebar to jump.

• Use the robot to hit the ball down the field and into a goal.

• When the ball enters a goal, the scoreboard updates and the ball returns to the center of the field.

GameLiftLobby
This level demonstrates a multiplayer lobby using GameLift, GridMate Networking, and LyShine UI.
Current features include the following:

• Display list of GameLift game sessions.

• Connect to a GameLift game session.

• Create a new GameLift game session.

How to play the game

• Use the WASD keys and the mouse to control the robot's movement and orientation.

• Press the spacebar to jump.

• Use the robot to hit the ball down the field and into a goal.

• When the ball enters a goal, the scoreboard updates and the ball returns to the center of the field.

Legacy Sample Project (GameSDK)
This sample project illustrates the legacy GameSDK functionality.

To download and access GameSDK

1. Download the GameSDK.zip package at Lumberyard Downloads and extract it in your
Lumberyard directory.

2. Open the Project Configurator (located in the lumberyard_root_folder\dev\Bin64\
directory).

3. In the Project Configurator, select GameSDK.

4. Click Set as default.

5. Click Launch editor.

Version 1.6
1105

http://aws.amazon.com/gamedev/lumberyard/downloads

Lumberyard User Guide
Beach City Sample Project

6. Allow the Asset Processor to load all of the project assets. This may take a few minutes. When
finished, close the Asset Processor.

Note
Audiokinetic Wave Works Interactive Sound Engine (Wwise) version 2014.1.14 or later is
required to access audio for this project.

Beach City Sample Project
The Beach City sample project includes free assets that you can use to create your own levels.
Although the Beach City sample project is intended to be a visual demo and is not a playable demo,
you can add player controls to the level if you wish to make it playable.

To install the Beach City sample project

1. Download the BeachCity.zip package at Lumberyard Downloads and extract it in your
Lumberyard directory.

2. Open the Project Configurator (located in the lumberyard\dev\Bin64\ directory).

3. In the Project Configurator, select BeachCity.

4. Click Set as default.

5. Click Launch editor.

6. Allow the Asset Processor to load all of the project assets. When finished, close the Asset
Processor.

Sample images from the Beach City sample project:

Version 1.6
1106

http://aws.amazon.com/gamedev/lumberyard/downloads

Lumberyard User Guide
Woodland Asset Package

Woodland Asset Package
The Woodland asset package includes free wilderness assets that you can use to create a forest
scene or populate your own levels with vegetation and other natural features that might be found in a
woodlands scene. The Woodland assets are static art assets; therefore, you will not need to recompile
your project after adding these assets.

To install the Woodland asset package

1. Download the Woodland Asset Package at Lumberyard Downloads and extract it in the \dev
\Gems\AssetCollection_Woodland directory at the root of your Lumberyard installation. You
may need to create this folder or rename the extracted folder.

2. Open the Project Configurator (located in the \lumberyard\dev\Bin64 directory).

3. In the Project Configurator, under your project, click Enable Gems.

4. On the Gems (extensions) page, select Woodland Asset Collection.

5. Click Save.

6. Open Lumberyard Editor and do the following:

• In the Rollup Bar, click Geom Entity and select your meshes.

• Click View, Open View Pane, Material Editor and select your materials and textures.

• Click View, Open View Pane, Geppetto and select your animations.

Sample images from the Woodland asset collection:

Version 1.6
1107

http://aws.amazon.com/gamedev/lumberyard/downloads

Lumberyard User Guide
FeatureTests Project

FeatureTests Project
The FeatureTests project includes a collection of small, self-contained levels that each demonstrate
a single core feature (or small, related subset of features) within Lumberyard across all supported
platforms, allowing them to be examined or debugged in relative isolation. The project is located in the
\dev\FeatureTests directory at the root of the Lumberyard installation (\lumberyard\dev).

To load or switch levels, do the following:.

• In Lumberyard Editor, choose File, Open.

• Modify map level_to_load in the FeatureTests/autoexec.cfg file before running the
standalone game on the Windows, iOS, Android, XBoxOne, and PS4 platforms.

• Execute the map level_to_load command from the local or remote console while running the
standalone game.

Version 1.6
1108

Lumberyard User Guide
FeatureTest Controls

FeatureTest Controls
The FeatureTests project includes a simplistic fly camera that is enabled in most of the 3D levels that
can be controlled as follows:

• PC – Use the mouse to look around and the keyboard AWSD keys to move around.

• Consoles – Use the gamepad left thumbstick to move around and the right thumbstick to look
around.

• Mobile – Use the left side of the screen to move around and the right side of the screen to look
around.

Most of the levels in the Input directory have different controls designed to test specific input
methods.

Note
All of the levels in the UI directory are 2D.

FeatureTest Levels
The following feature levels are provided in the FeatureTests\Levels directory:

Animation feature levels

• Animation

• AnimationBasic

Input feature levels

• Gestures

• GestureClickOrTap

• GestureDrag

• GestureHold

• GesturePinch

• GestureRotate

• GestureSwipe

• Keyboard

• KeyboardBasic

• MotionSensor

• MotionSensorAccelerometer

• MotionSensorGyroscope

• MotionSensorMagnetometer

• Touch

• TouchBasic

• TouchRayCast

Rendering feature levels

• AmbientOcclusion

Version 1.6
1109

Lumberyard User Guide
FeatureTest Levels

• AmbientOcclusionBasic

• Decals

• Decals

• GeometryBeam (PC only)

• GeometryBeam

• HumanFeatures (PC only)

• HumanFeatureEye

• HumanFeatureHair

• HumanFeatureSkin

• Lighting

• LightingBlend

• Reflections

• ReflectionsScreenSpace

• ReflectionsWaterVolume

• ScreenEffects

• ScreenEffectBlur

• ScreenEffectChromaShift

• ScreenEffectColorCorrection

• ScreenEffectDepthOfField

• ScreenEffectFader

• ScreenEffectFrost

• ScreenEffectGhosting

• ScreenEffectInterference

• ScreenEffectRainDrops

• ScreenEffectVisualArtifacts

• ScreenEffectVolumetricScattering

• ScreenEffectWaterDroplets

• ScreenEffectWaterFlow

• Shadows

• ShadowsPointLight

• ShadowsSkybox

• Terrain

• TerrainAndVegetation

• TerrainAndWater

• TerrainAndWaterAndVegetation

• WaterVolume Version 1.6
1110

Lumberyard User Guide
FeatureTest Levels

• VisAreas

• VisAreaBasic

• Weather

• WeatherCloudBasic

• WeatherCloudVolume

• WeatherRain

• WeatherSnow

UI feature levels

• UI

• UiAnimation

• UiComponents

• UiFontRendering

• UiLocalizationExample

Version 1.6
1111

Lumberyard User Guide
Using AZ Test Scanner

Testing, Profiling, and Debugging

Lumberyard includes a number of tools that are used for testing builds, profiling performance, and
debugging various issues that may be encountered.

Topics

• Using AZ Test Scanner (p. 1112)

• Statoscope Profiler (p. 1116)

• Debugging Issues (p. 1127)

• Troubleshooting (p. 1129)

Using AZ Test Scanner
The AZ test scanner is a tool for running unit tests that are built into Lumberyard libraries and
executables. This tool simplifies testing by automatically finding libraries and executables to test while
providing the flexibility for developers to focus on testing the parts of Lumberyard they care about.

The AZ test scanner has two components:

• An AZ test runner executable that loads libraries to test and captures the test results

• An AZ test Python module that performs the scanning and reporting functions

Creating Unit and Integration Test Builds
Unit and integration tests are not included in Lumberyard builds by default as they increase the
overall size of a game project. Test code can also have unexpected effects on performance. To build
components with tests included, you can use a special test variant that works with each configuration.

To create test builds, use the Waf build system (p. 1318) in the same way that you create regular
builds. The only difference is that you add test to the platform. You can create a test build on
Windows using one of the following examples:

// Build with tests using debug configuration. Outputs to the
 \Bin64.Debug.Test folder.
lmbr_waf.bat build_win_x64_debug_test -p all

// Build with tests using profile configuration. Outputs to the \Bin64.Test
 folder.
lmbr_waf.bat build_win_x64_profile_test -p all

Version 1.6
1112

Lumberyard User Guide
Running Unit and Integration Test Builds

Note
Only Windows debug and profile builds are supported for testing. Other platforms are not
supported; nor are release builds.

Running Unit and Integration Test Builds
A completed test build includes the file AzTestRunner.exe in the \Bin64.Test folder. Although you
can use this to run tests, we recommend that you use the test scanner that uses AzTestRunner.exe
in an automated manner.

You have two ways to use the scanner:

• Include the AZ test module in your Python path: python -m aztest.

• Use the lmbr_test.cmd script located in the Lumberyard \dev folder. This automatically includes
the AZ test module in your Python path and sends all script parameters to the module.

The following example uses the lmbr_test.cmd scripts. The scanner has several options but only
requires one parameter to operate: the build directory to scan. You can use the following command to
do a scan of your entire test build:

// Scan entire test build and run all found tests
lmbr_test.cmd scan --dir Bin64.Debug.Test

Note
The default scan only tests libraries. It does not attempt to test any executables it finds. This is
because executables that are not set up to run tests interrupt the scanner until you close the
application.

The scanner produces three types of files. All files are created in the current working directory from
which the scanner is called:

• The aztest.log file that contains a log of all test output

• Several .xml files that contain the test results of each library and executable that has tests, time
stamped by default

• An .html file that contains a summary of the test results from the entire scan, time stamped by
default

The full list of options is shown as follows:

The scanner runs only unit tests by default. This is because unit tests are designed to be fast and do
not rely on engine resources. To run integration tests instead, use the --integ flag when calling the
scanner:

// Scan test build and run integration tests on CrySystem.dll
lmbr_test.cmd scan --dir Bin64.Debug.Test --only CrySystem.dll --integ

Note
For best results run integration tests on a single library or use a whitelist as scanning the full
build may take hours to complete.

Option Required? Description

--dir, -d Yes The directory to scan for tests.

Version 1.6
1113

Lumberyard User Guide
Running Unit and Integration Test Builds

Option Required? Description

--runner-path No Path to the AZ test runner executable (the default
is to look in the directory specified by --dir).

--add-path No Adds path to system path before running
tests; used for resolving library or executable
dependencies.

--output-path No Sets the path for output folder prefix (the default
is \dev\TestResults).

--integ No If set, runs integration tests instead of unit tests.

--no-timestamp No If set, removes the timestamp from output files.

--wait-for-
debugger

No If set, tells the AZ test runner executable to wait
for a debugger to be attached before running
tests.

--bootstrap-
config

No Path to a JSON configuration file for
bootstrapping applications required by libraries.

--limit, -n No Sets a limit for the maximum number of modules
to scan.

--only, -o No Sets a filter to run tests on only the specified
library or executable name.

--whitelist No Sets the type of whitelist the scanner should use.
O, options are spec, none, or file (the default
is spec).

--whitelist-file Only if --whitelist
is set to file

Path to a spec file or new line–delimited file
used for whitelisting (the default is \dev_WAF_
\specs\all.json). The new line–delimited file
allows for regular expressions when matching.

--include-gems, -
g

No If set, the scanner will search for gems and
include them in the current whitelist.

--include-
projects, -p

No If set, the scanner will search for game projects
and include them in the current whitelist.

--blacklist-file No Path to a new line–delimited file used for
blacklisting. The blacklist takes precedence over
the whitelist. The new line–delimited file allows
for regular expressions when matching.

--exe No If set, causes the scanner to call executables for
testing. (The default is to test only libraries).

The scanner also accepts additional parameters that are passed to the testing framework. For
Lumberyard, GoogleTest, and GoogleMock for C++ are used for unit testing. You can type parameters
in the scanner command line as shown in the following example:

// Scan CrySystem.dll and shuffle the test order before running
lmbr_test.cmd scan --dir Bin64.Test --only CrySystem.dll --gtest_shuffle

Version 1.6
1114

Lumberyard User Guide
Running Unit and Integration Test Builds

The scanner can also be called as a chained command using Waf. This means that you can build tests
and run them using a single command line. The Waf command run_tests will call the scanner on the
most recent build folder. For example:

// Build a debug test build and then run tests in it
lmbr_waf.bat build_win_x64_debug_test -p all run_tests

The run_tests command will automatically point to the \Bin64.Debug.Test folder to scan as well as
use the all spec for whitelisting. The build step is not necessary to use run_tests, it will always use
whatever the last build was. You can also send all of the scanner parameters through using --test-
params:

// Run tests on the last build with additional parameters (use quotes to
 capture as string)
lmbr_waf.bat run_tests --test-params="--include-gems --include-projects --no-
timestamp"

You can also use the --target flag to build and test just one module:

lmbr_waf.bat build_win_x64_debug_test -p all --target CrySystem run_tests

Whitelisting and Blacklisting

The test scanner includes the ability to use whitelist and blacklist files to filter out libraries and
executables that you do not want to run tests on. The scanner uses Waf spec files for whitelisting as
the default method, but a user-defined file can also be used or the whitelist can be turned off entirely.
Blacklisting is off by default. In all cases, modules that are blacklisted are never tested even if they are
included in the whitelist.

The scanner uses the all spec as the default whitelist to cover the most common scenario for
developers. This sets up the scanner so that it only tests libraries and executables created by Waf, not
including gems and game projects. The following examples are equivalent:

// This...
lmbr_test.cmd scan --dir Bin64.Test --whitelist spec --whitelist-file _WAF_
\specs\all.json

// is the same as this...
lmbr_test.cmd scan --dir Bin64.Test

Gems and game projects are not automatically included because they are not listed in spec files. To
include gems and game projects in the whitelist, use the appropriate flags as in the following example:

lmbr_test.cmd scan --dir Bin64.Test --include-gems --include-projects

To turn whitelisting off, use the following command line:

lmbr_test.cmd scan --dir Bin64.Test --whitelist none

Both whitelisting and blacklisting can use a new line–delimited text file for defining modules as well.
Each line is treated as a regular expression for matching, allowing for easy filtering by modules with
similar names or in the same directory. Here is an example file:

Version 1.6
1115

Lumberyard User Guide
Statoscope Profiler

List files directly (remember to escape backslashes in regex)
CrySystem.dll
rc\\ResourceCompilerPC.dll

Match similar modules using regex (include all gem libraries)
Gem\..*\.dll

Match all in a subdirectory using regex
EditorPlugins\\.*

To run the scanner using text files, use the following example:

lmbr_test.cmd scan --dir Bin64.Test --whitelist file --whitelist-file
 my_whitelist.txt --blacklist-file my_blacklist.txt

Statoscope Profiler
Statoscope is a profiling tool that displays per-frame instrumented data. It is used for evaluating
performance metrics such as overall CPU time spent, memory usage tracking, and statistics rendering.
It records values from Lumberyard and displays how they change over the course of time.

Statoscope will connect to any platform or console that is connected directly to the PC or via an IP
address specified in the connection settings dialog.

Topics

• User Interface (p. 1116)

• Logging Data (p. 1118)

• Filtering Data (p. 1119)

• Data Groups (p. 1120)

• Creating Data Groups (p. 1125)

• Guidelines and Best Practices (p. 1126)

User Interface
Statoscope data can be displayed as lines (such as for fps, number of drawcalls, memory usage, and
threads), as bars (such as for function profiles or per-entity bandwidth statistics), as intervals (such
as the status of queued streaming tasks), or as user markers, which are vertical lines displayed when
infrequent actions occur (such as invalid file access or level load/unload).

You must select all nodes (and the parent node) down to the selected node in order to see data
displayed for that item. When using the data group selection trees, right-click toggles selection of the
entire sub-tree.

Version 1.6
1116

Lumberyard User Guide
User Interface

Here are the basic navigation methods for the Statoscope graph. The x-axis is displayed in both frame
numbers and elapsed seconds while the y-axis is displayed in millseconds.

• To pan: left-click and drag

• To zoom: right-click and drag

• To scale horizontally: right-click hold and drag left/right

• To scale vertically: right-click hold and drag up/down

• To scale along both axes: right-click and drag top right and bottom left

Note
To reset the viewport, select View, Fit To Frame Records. This is useful if the data is off-
screen from zooming in too much.

Function Profiling

As there are usually many more frames in a log than can easily be shown at once, only a subset of
bars are displayed when zoomed out. This is indicated by the bars being displayed at 50% opacity.

The bars displayed are individual frames. The ones selected are the tallest of the range that they
represent. This makes it easy to identify unusual spikes even when zoomed out.

Function profiling is enabled using the e_StatoscopeDataGroups r console variable.

Clicking on a bar selects that entry on the Function Profile tab, with focus moved to the tree view, so
you can press the spacebar to unselect and hide that bar quickly. This is useful for eliminating profiling
noise.

Hovering

When mouse hovering, a vertical red line clips to the nearest frame and a tooltip will follow your cursor
over the window, displaying the following information for a selected frame:

• Top line: frame number, game time, and y-axis value

• Second line: What item you are hovering over

• Third line: The time elapsed in ms

Version 1.6
1117

Lumberyard User Guide
Logging Data

Axes Scaling

The x-axis is linear for number of frames by default. This is useful for function profiling since all bars
have the same width. You can also select the x-axis to be linear for time instead.

The y-axis can be scaled in order to compare data that varies greatly in value, such as number of
drawcalls.

You can also specify which target lines are displayed.

Logging Data
Logging game data using Statoscope involves selecting data groups. Select only the data groups you
want to log and display to minimize the performance impact.

The following figure shows the default view with everything enabled and the entire log fit to the viewport
graph. You can unselect unneeded data groups and zoom out to make the graph more readable.

You can log data directly to Statoscope using a socket or you can log data to a file.

If you just want to record some data to see how your game is performing, socket logging is
recommended. This gives you real-time updates in Statoscope and avoids the maintenance of having
log files.

If you want to log QA sessions or compare time demo runs, file logging is recommended.

Logging Data to a Socket

The following procedure shows how to log data directly to the Statoscope application using a socket.

Version 1.6
1118

Lumberyard User Guide
Filtering Data

To log data to Statoscope (socket)

1. Run a Profile game client on your chosen platform (such as SampleProjectLauncher.exe for
example).

2. Set the relevant console variables either after the game client loads or by editing the
bootstrap.cfg file. The following example would enable logging data from all threads with frame
rate limiters disabled:

• profile_allthreads 1

• r_Vsync 0

• sys_maxFPS -1

• e_StatoscopeLogDestination 1

• e_StatoscopeEnabled 1

• e_StatoscopeDataGroups your_data_groups. Default data groups are fgmtuO.

3. Run Statoscope.exe from \Tools\Statoscope.

4. In Statoscope, select File, Connect. For Windows, accept all defaults. For consoles, enter the IP
of your developers kit.

5. Select Log to file, then select the file name to log to. Select the file name quickly or else your
session may timeout. For more information, see Guidelines and Best Practices (p. 1126).

You should see your selected data groups being logged.

Logging Data to a File
The following procedure shows how to log data to a file.

To log data to a file

1. Run a Profile game client on your chosen platform (such as SampleProjectLauncher.exe for
example).

2. Set the relevant console variables either after the game client loads or by editing the
bootstrap.cfg file. The following example would enable logging data from all threads with frame
rate limiters disabled:

• profile_allthreads 1

• r_Vsync 0

• sys_maxFPS -1

• e_StatoscopeLogDestination 0

• e_StatoscopeDataGroups your_data_groups Default data groups are fgmtuO.

3. Set the e_StatoscopeEnabled 1 console variable from the game client to enable Statoscope.

4. Run Statoscope.exe from \Tools\Statoscope.

5. In Statoscope, select File, Open the log file. Log files for Statoscope are located at \cache
\launchername\platform\user\log\statoscope\perf_config_0_0_0_0.bin.
For Windows, an example file path would be \cache\samplesproject\pc\user\log
\statoscope\perf_win64_0_0_0_0.bin .

You should see your selected data groups being logged.

The most recent capture overwrites any existing capture.

Filtering Data
There are a number of data filtering options available in Statoscope.

Version 1.6
1119

Lumberyard User Guide
Data Groups

Use the Overview and Function Profile tabs to access and then select and deselect data plots. For a
plot to be drawn, it and all its parents in the tree must be selected.

There are several shortcuts for selecting items:

• Ctrl+left-click label: select just that item

• Right-click label: selects or deselects every item under the selected item in the hierarchy.

• Shift+left-click label (Function Profile tab): collapses all children into a single bar color. This
will cause the label to have a gray background. This is useful for seeing the performance cost of a
whole thread or profile module.

Item Info tab

This tab is used to control how a data item is displayed and shows some basic data.

Line and bar data colors can be changed by clicking the color swatch button to get a color picker
dialog, or by clicking the Rnd button to select a random color.

Basic statistics shown include the number of frames the data is present for in the log, and the
corresponding minimum, maximum, and average values. In the case of hierarchical bar data, this will
represent the total of all selected children.

Line data can be filtered to make it easier to see trends.

Moving Average (MA) shows the same line averaged out using the values from a number of frames on
either side of the current frame, with five frames being the default.

Local Maximum (LM) is useful for data that varies consistently for each frame, such as time-sliced
shadows for example.

Enabling either of these will hide the base item by default. You can only display the information in one
mode at a time: Off, MA, or LM.

Screenshot tab

Screenshots are useful for seeing what happened while the log was being recorded. They are captured
at 1/8 resolution to keep the log file size small.

To enable screenshots, set the e_StatoscopeScreenshotCapturePeriod console variable and enter
the number of seconds between screenshots, with a value of -1 to disable and a value of 0 to capture
screenshot frames continuously.

To view the screenshots during a captured session, hover the mouse over the timeline horizontally to
view the screenshots updating.

Buckets tab

Available buckets are: Overall fps, RT fps, GPU fps, Triangles, Total Draw Calls, Shadow Draw Calls,
Draw Calls and Texture Pool.

The 5fps clamp referred to in some columns treats frames whose length is longer than 200ms (5fps) as
if it was 200ms. This is useful to stop very long frames from skewing the data too much.

Data Groups
Data groups represent categories or types of data that will be logged in Statoscope, with each
group represented by a single lowercase or uppercase letter. Data groups are controlled using the
e_StatoscopeDataGroups console variable.

Version 1.6
1120

Lumberyard User Guide
Data Groups

You can control which data groups are displayed by selecting groups from the tree on the Overview
tab on the righthand side.

Select only the data groups you want to display to minimize the performance impact.

The most important data group to verify is frame profilers or r, as shown below. Each vertical bar
represents one frame, and each color band represents the total time spent inside one profile event for
that frame. You can select and unselect entire threads from the Function Profile tab.

Lowercase Data Groups

CPU Times 'j'

• physTime

• particleTime

• particleSyncTime

• particleNumEmitters

• animTime

• animNumCharacters

• aiTime

• flashTime

dev buffer 'b'

• written_kb

• read_kb

• creation_time

• io_time

• cpu_flush

• gpu_flush

• cb

frame lengths 'f'

• frameLengthInMS

frame profilers 'r'

• name

• count

Version 1.6
1121

Lumberyard User Guide
Data Groups

• selfTimeInMS

GPU Times 'i'

• Scene

• SceneRSXProfWait

• Shadows

• ZPass

• DeferredDecals

• DeferredLighting

• Ambient

• Cubemaps

• SSAO+GI

• Lights

• Opaque

• Transparent

• Fog

• HDR

• PostFX

graphics 'g'

• GPUUsageInPercent

• GPUFrameLengthInMS

• numTris

• numDrawCalls

• numShadowDrawCalls

• numGeneralDrawCalls

• numTransparentDrawCalls

• numTotalDrawCalls

• numDrawCallsRejectedByConditionalRendering

• numPostEffects

• numForwardLights

• numForwardShadowCastingLights

• numSpriteDIPS

• numSpriteUpdates

• numDoubleSizedSprites

• spriteAtlasSize

• spriteAtlasRequirement

• numSpritePolys

• maxDiffPtrKb

• maxDiffPtrTangKb

• maxRendIndicesKb

memory 'm'

• mainMemUsageInMB

Version 1.6
1122

Lumberyard User Guide
Data Groups

particles 'p'

• numParticlesRendered

• numParticlesActive

• numParticlesAllocated

• numParticlesRequested

• particleScreenFractionRendered

• particleScreenFractionProcessed

• numEmittersRendered

• numEmittersActive

• numEmittersAllocated

• numParticlesReiterated

• numParticlesRejected

• numParticlesCollideTest

• numParticlesCollideHit

• numParticlesClipped

per-cgf gpu profilers 'c'

• totalDrawCallCount

• numInstances

PhysEntities 'w'

• name

• time

• nCalls

• x

• y

• z

streaming 's'

• cgfStreamingMemUsedInMB

• cgfStreamingMemRequiredInMB

• numActiveTextureNodes

streaming textures 'x' – memory numbers yes, bandwidth numbers no

• numUpdated Ups/s

• numRequested Req/s

• numRendered UpsRen/s

• poolMemUsed MB

• poolMemWanted MB

threading 't'

• MTLoadInMS

• MTWaitingForRTInMS

Version 1.6
1123

Lumberyard User Guide
Data Groups

• RTLoadInMS

• RTWaitingForMTInMS

• RTWaitingForGPUInMS

• RTFrameLengthInMS

• RTSceneDrawningLengthInMS

user markers 'u'

• path

• name

Vertex data 'v'

• StaticPolyCountZ

• SkinnedPolyCountZ

• VegetationPolyCountZ

Uppercase Data Groups

art profile 'A'

• GPU

• ShadowsMS

• ZPassMS

• DecalsMS

• LightingMS

• OpaqueMS

• TransparentMS

• totalMS

• Detail

• Lights

• AmbientMS

• CubemapsMS

• DeferredMS

• ShadowMapsMS

• ReflectionsMS

• CausticsMS

• RefractionOverheadMS

• Budgets

• GPU

• ShadowsMS

• ZPassMS

• DecalsMS

• LightingMS

• OpaqueMS

• TransparentMS

• totalMS

Version 1.6
1124

Lumberyard User Guide
Creating Data Groups

• numBatches

• numDrawcalls

• numLightingDrawcalls

• numRSXStallReleases (if ENABLE_ACCURATE_RSX_PROFILING is defined)

Texture Information 'S'

• TexStrm

• engineassets

• texturemsg

• codecoverage

• textures

• defaults

• decals

• sprites

• etc...

• objects

• props

• vehicles

• architecture

• etc...

Creating Data Groups
When adding a new data group to Statoscope, do not choose a letter that's already in use.

Statoscope doesn't need updating when new data groups are added. You
simply create an implemetation of IStatoscopeDataGroup and register it with
CStatoscope::RegisterDataGroup(). Here's an example of the simplest data group:

struct SFrameLengthDG : public IStatoscopeDataGroup
{
 virtual SDescription GetDescription() const
 {
 return SDescription('f', "frame lengths", "['/' (float
 frameLengthInMS)]");
 }
 virtual void Write(IStatoscopeFrameRecord& fr)
 {
 fr.AddValue(gEnv->pTimer->GetRealFrameTime() * 1000.0f);
 }
};
...
RegisterDataGroup(new SFrameLengthDG());
...

When this data group is enabled by adding f to e_StatoscopeDataGroups, frame lengths will
appear in the e_StatoscopeDataGroups help string and for every frame it will output a single float
value that appears as /frameLengthInMS in the Overview tree view.

Below is an example frame profilers data group, which shows how to record bar data:
Version 1.6

1125

Lumberyard User Guide
Guidelines and Best Practices

struct SFrameProfilersDG : public IStatoscopeDataGroup
{
 virtual SDescription GetDescription() const
 {
 return SDescription('r', "frame profilers", "['/Threads/$' (int count)
 (float selfTimeInMS)]");
 }
 virtual void Enable()
 {
 IStatoscopeDataGroup::Enable();
 ICVar *pCV_profile = gEnv->pConsole->GetCVar("profile");
 if (pCV_profile)
 pCV_profile->Set(-1);
 }
 virtual void Disable()
 {
 IStatoscopeDataGroup::Disable();
 ICVar *pCV_profile = gEnv->pConsole->GetCVar("profile");
 if (pCV_profile)
 pCV_profile->Set(0);
 }
 virtual void Write(IStatoscopeFrameRecord &fr)
 {
 for (uint32 i=0; i<m_frameProfilerRecords.size(); i++)
 {
 SPerfStatFrameProfilerRecord &fpr = m_frameProfilerRecords[i];
 string fpPath = GetFrameProfilerPath(fpr.m_pProfiler);
 fr.AddValue(fpPath.c_str());
 fr.AddValue(fpr.m_count);
 fr.AddValue(fpr.m_selfTime);
 }
 m_frameProfilerRecords.clear();
 }
 virtual uint32 PrepareToWrite()
 {
 return m_frameProfilerRecords.size();
 }
 std::vector<SPerfStatFrameProfilerRecord> m_frameProfilerRecords; // the
 most recent frame's profiler data - filled out externally
};

With bar data as shown, the same format is output many times per frame, in this case count
and selfTimeInMS for each named profiler. The number of items needs to be returned by
PrepareToWrite(). To specify the name of each item, place a $ in the appropriate location in the
format string of GetDescription() and the first value output will be used to replace it. For this
example, if fpPath is Main/Action/CFlowSystem::Update(), the values output will be attributed
to /Threads/Main/Action/CFlowSystem::Update() and hierarchied accordingly

Values can either be float or integer, but are stored as floats.

Guidelines and Best Practices
The following are some guidelines and best practices for consideration.

Pressing Scroll Lock pauses capturing data.

You must select a log file name quickly or you will timeout and not be able to connect to another
session.

Version 1.6
1126

Lumberyard User Guide
Debugging Issues

If the Statoscope network state is broken (you cannot connect but Statoscope is enabled and you
have selected log to socket, you can reset the Statoscope network connection by changing the log
destination away from and back to log to socket. To accomplish this, change the following console
variables in the following order:

1. e_StatoscopeEnabled 0

2. e_StatoscopeLogDestination 0 (to file logging)

3. e_StatoscopeLogDestination 1 (back to socket logging, this resets the Statoscope network
state)

4. e_StatoscopeEnable 1

Debugging Issues
Lumberyard has various built-in debugging and profiling tools that help to locate and fix various
problems as well as performance issues.

• AI debugging (p. 115) – Used for debugging AI agent behaviors

• Character skeleton debugging (p. 153) – The p_draw_helpers console variable is useful for
debugging character skeleton issues

• Cinematics debugging (p. 319) – There are several console variables used for debugging cinematics
issues

• Flow Graph debugging (p. 775) – Flow Graph Debugger and console variables are used for
debugging Flow Graph issues

• Mannequin debugging (p. 277) – There are several methods used for debugging Mannequin system
issues

• Particle debugging (p. 980) – Used for debugging particles

• Vegetation debugging (p. 881) – Used for debugging vegetation objects

Using Console Debug Views
You can use the following console variables and values to generate various viewing modes in the
viewport that are useful for debugging:

• e_camerafreeze 1 – Freezes the camera to see what is rendered from the camera's point of view
and what is occluded. Also useful to debug object culling and LOD.

• e_defaultmaterial 1 – Applies a uniform flat gray material to every surface in the level

• e_terrainbboxes – Displays terrain bboxes (bounding boxes)

• p_debug_joints 1 – Shows the mass of objects in kg and the joint linked to the object. To display
joints, enable p_draw_helpers 1p_draw_helpers 1 first.

• p_draw_helpers 1 – Shows physics proxy meshes additionally to the render geometry.

• r_displayinfo 1 | 2 | 3 – Displays memory consumption, frame rate, triangle count, visible
light sources, and drawcall count. A value of 2 displays more detailed information, while a value of 3
displays only frames per second (FPS) and frame time in milliseconds.

• r_wireframe 1 | 2 – Draws the level in 1=wireframe mode, 2=vertex mode, including objects
hidden from view.

• r_showlines 2 – Overlays the wireframe only on the front-facing geometry. Anything behind
doesn't get rendered.

• r_texbindmode 6 – Applies a uniform flat gray material with normal map information to every
surface in the level.

Version 1.6
1127

Lumberyard User Guide
Using Console Debug Views

Using DebugDraw Console Variables

You can use the following console variables and values to display various information about your level:

• e_DebugDraw 1 – Displays the name of the .cgf used, polycount, and LOD

• e_DebugDraw 2 – Displays a color-coded polygon count

• e_DebugDraw 3 – Displays a color-coded LOD count, flashing color indicates no LOD information

• e_DebugDraw 4 – Displays object texture memory usage

• e_DebugDraw 5 – Displays a color-coded number of render materials

• e_DebugDraw 6 – Displays ambient color

• e_DebugDraw 7 – Display triangle count, number of render materials, and texture memory

• e_DebugDraw 8 – Displays RenderWorld statistics (with view cones)

• e_DebugDraw 9 – Displays RenderWorld statistics (with view cones without lights)

• e_DebugDraw 10 – Displays render geometry with simple lines and triangles

• e_DebugDraw 11 – Displays render occlusion geometry

• e_DebugDraw 12 – Displays render occlusion geometry without render geometry

• e_DebugDraw 13 – Displays occlusion amount (used during AO computations). Warn

• e_DebugDraw 15 – Displays helpers

• e_DebugDraw 16 – Displays debug gun

• e_DebugDraw 17 – Displays streaming info (buffer sizes)

• e_DebugDraw 18 – Displays streaming info (required streaming speed)

• e_DebugDraw 19 – Displays physics proxy triangle count

• e_DebugDraw 20 – Displays object instant texture memory usage

• e_DebugDraw 21 – Displays animated object distance to camera

• e_DebugDraw 22 – Display object's current LOD vertex count

Using GBuffer Console Variables

You can use the following console variables and values to display various materials, colors, shadows,
albedo, and other characteristics in your level:

• r_DebugGBuffer 1 – Shows normals of all assets in the level

• r_DebugGBuffer 2 – Shows how rough or glossy that surfaces are

• r_DebugGBuffer 3 – Shows the specular color of materials

• r_DebugGBuffer 4 – Shows the albedo of all surfaces in the level

• r_DebugGBuffer 5 – Shows the lighting model in the level, where gray = standard, yellow =
transmittance, and blue = POM self-shadowing.

• r_DebugGBuffer 6 – Shows the translucency values set on assets in the level, where black =
none.

• r_DebugGBuffer 7 – Shows self-shadowing of materials that use Offset Bump mapping or
Parallax Occlusion Mapping.

• r_DebugGBuffer 8 – Shows in red and yellow any asset that uses SSS. The brighter the color, the
higher the SSS index.

• r_DebugGBuffer 9 – Shows whether specular colors are in a reasonable range as follows:

• Blue – Specular color too low

• Orange – Specular color too high for dielectric materials

• Pink – Valid only for rusted or oxidized metals

Version 1.6
1128

Lumberyard User Guide
Troubleshooting

Troubleshooting
Topics

• Viewing Error Log (p. 1129)

• Error Message Reference (p. 1129)

• Art Assets Errors (p. 1129)

Viewing Error Log

Error Message Reference

Art Assets Errors

Version 1.6
1129

Lumberyard User Guide

Twitch ChatPlay System

Twitch ChatPlay provides a flexible framework to create customized game interactions between
broadcasters and spectators on Twitch, the world’s leading social video platform and community for
gamers.

Twitch ChatPlay includes support for chat commands, polls, and surveys that can be triggered by
Twitch viewers through the Twitch chat channel. For example, you can create a chat command #cheer
that triggers celebration animations in your game.

Twitch ChatPlay is implemented by a set of flow graph nodes that establish a connection to a Twitch
channel and use incoming traffic as a game input, like any other input device.

For a tutorial on Twitch ChatPlay, see Amazon Lumberyard Tutorials.

Twitch ChatPlay includes the following components and services:

• Twitch IRC servers

• Twitch ID authentication

• Twitch account

• Twitch Nodes (p. 730)

In addition, Twitch JoinIn (p. 1135) enables broadcasting players on Twitch to invite targeted viewers
into their game sessions on demand.

The following diagram illustrates Twitch ChatPlay's server-side components.

Version 1.6
1130

http://gamedev.amazon.com/forums/tutorials

Lumberyard User Guide
Setting up a Twitch ChatPlay Channel

The following diagram illustrates Twitch ChatPlay's client-side components.

Topics

• Setting up a Twitch ChatPlay Channel (p. 1131)

• Listening for Twitch Keywords (p. 1132)

• Using Flow Graph with Twitch ChatPlay (p. 1133)

• Twitch ChatPlay Voting (p. 1133)

• Twitch ChatPlay Console Variables (p. 1133)

• Generating and Setting a Twitch Client ID (p. 1134)

• Troubleshooting Twitch ChatPlay (p. 1135)

• Twitch JoinIn (p. 1135)

• Twitch API (p. 1136)

Setting up a Twitch ChatPlay Channel
This topic discusses how to set up and connect to a Twitch channel. Go to Twitch Interactive to set up
a new Twitch channel and follow the directions there before starting this procedure.

You need Flow Graph logic to connect to your Twitch channel, listen for keywords, and then act on
those keywords.

Version 1.6
1131

https://secure.twitch.tv/signup

Lumberyard User Guide
Listening for Twitch Keywords

To create a flow graph for Twitch ChatPlay

1. Open the context (right-click) menu for the object in your level and choose Create Flow Graph.

2. In the dialog box, enter a name for the channel and choose OK.

3. In the Flow Graph Editor, under Components, NodeClass, Game, drag the Start node onto the
graph.

To connect to a Twitch channel

1. In the Flow Graph Editor, under Components, NodeClass, Game, drag the Start node onto the
graph.

2. Under Components, drag the Twitch:ChatPlay:Channel node onto the graph.

3. Connect the output of the Game:Start node to the Connect input of the
Twitch:ChatPlay:Channel node.

To disconnect from a Twitch channel

• To disconnect a single channel, use the Disconnect port on the Twitch:ChatPlay:Channel node.

• To disconnect from all channels, use the Twitch:ChatPlay:DisconnectAll node.

Note
Channels are automatically disconnected when flow nodes are uninitialized. This means that
disconnection is automatic in most situations without need for further action.

Listening for Twitch Keywords
This topic discusses how to set up the Flow Graph logic required to listen for keywords from the Twitch
chat window.

To listen for keywords

1. In the Flow Graph Editor, under Components, drag the Game:Start node onto the graph.

2. Under Components, drag two Twitch:ChatPlay:Keyword nodes onto the graph next to the
Game:Start node.

3. Connect the output of the Game:start node to the Start inputs of both
Twitch:ChatPlay:Keyword nodes.

Version 1.6
1132

Lumberyard User Guide
Using Flow Graph with Twitch ChatPlay

Using Flow Graph with Twitch ChatPlay
There are a number of flow graph nodes you can use to configure Twitch ChatPlay-related settings.
For more information, see Twitch Nodes (p. 730).

Twitch ChatPlay Voting
Twitch ChatPlay voting functionality make it easier to set up polls, surveys, and votes. The following
figure shows an example of how Flow Graph voting nodes work together.

For more information about Flow Graph voting nodes for Twitch ChatPlay, see Twitch Nodes (p. 730).

Twitch ChatPlay Console Variables
Twitch ChatPlay uses the following console variables:

• chatPlay_clientID – Client ID for your application. See Generating and Setting a Twitch Client
ID (p. 1134).

• broadcast_clientID – Client ID for your application. This value can be the same as the
chatPlay_clientID. See Generating and Setting a Twitch Client ID (p. 1134).

• chatPlay_Server – Name of the host server. The default is irc.twitch.tv.

• chatPlay_Port – Port number for the IRC service. The default is port 6667.

Twitch ChatPlay uses the following classes:

• IChatChannel – Interface that represents a Twitch ChatPlay channel. Includes keyword callbacks
and options for subscribing to the connection state.

• IChatPlay – Interface that represents the base system from which you can get handles to Twitch
ChatPlay channels.

Version 1.6
1133

Lumberyard User Guide
Generating and Setting a Twitch Client ID

The Twitch ChatPlay module is implemented as a part of CryAction and is accessible from the
GetChatPlay method. The main interface is ChatPlay.h.

Generating and Setting a Twitch Client ID
In order for Twitch ChatPlay and Twitch API features to function properly, you must set the following
console variables to use your application's client ID:

• For Twitch ChatPlay, set chatPlay_ClientID

• For Twitch API, set broadcast_ClientID

You can use the same value for both console variables.

If you have already registered your application with Twitch, you can locate your client ID on the
Connections page on the Twitch website. Under Developer Applications, click Edit under the name
of your application.

Generate a Client ID
Generate a client ID by following the instructions below.

To generate the client ID

1. Go to the Twitch website and log in to your account.

2. In the menu bar, click your user name, Settings.

3. On the Settings page, click Connections.

4. On the Connections page, under Other Connections, click Register your application.

5. Complete the form and click Register.

6. Note the generated client ID that you will use to set your console variables.

Set the Client ID
Set the client ID by following the instructions below for your version of Lumberyard.

To set the client ID (Lumberyard 1.6 or later)

1. On your computer, navigate to your project's game.cfg file (located in the \dev\project_name\
directory at the root of your Lumberyard installation).

2. Edit the game.cfg file to add the following:

chatPlay_clientID = "client ID generated from Twitch"
broadcast_clientID = "client ID generated from Twitch"

To set the client ID (Lumberyard 1.5 or earlier)

1. Modify the HttpRequestManager.cpp file (located in the \dev\Code
\CryEngine\CryAction\HttpCaller directory) to add the following line
in the HttpRequestManager::HandleRequest function: httpRequest-
>SetHeaderValue("Client-ID","client ID generated from Twitch");

It should appear as follows:

Version 1.6
1134

https://www.twitch.tv/
https://www.twitch.tv/

Lumberyard User Guide
Troubleshooting Twitch ChatPlay

auto httpRequest = Aws::Http::CreateHttpRequest(uri,
 httpRequestParameters.GetMethod(),
Aws::Utils::Stream::DefaultResponseStreamFactoryMethod);
httpRequest->SetHeaderValue("Client-ID","client ID generated from
 Twitch");
auto httpResponse = httpClient->MakeRequest(*httpRequest);

2. Rebuild the game and engine.

Troubleshooting Twitch ChatPlay
If you run into problems while connecting Twitch ChatPlay to your game, review the following
troubleshooting tips for a possible solution.

If your game fails to connect to your Twitch channel, ensure the following:

• You properly entered the name of your Twitch channel into your flow graph.

• You have an active Twitch account set up with the channel name that you're using.

• You have activated the ChatPlay node in your flow graph.

• You have an active Internet connection.

If your game fails to connect to your Twitch channel after a successful first attempt, make sure that you
have successfully disconnected from your Twitch channel using the DisconnectAll node in your flow
graph. Failing to do so may result in a successful connection the first time, and then failure to connect
afterwards because the first connection was left open.

Twitch JoinIn
Twitch JoinIn enables Twitch broadcasters to invite targeted viewers into their game sessions on
demand, using Amazon GameLift session information. Twitch JoinIn provides one flow graph node
called JoinIn:CreateLink that you can use to create a link that includes all the multiplayer session
information necessary for other players to connect to the same session using the generated link. This
information is Base64 encoded.

The game must be in a multiplayer session when you create the link. After you create your flow
graph logic, you can test the node and your flow graph by exporting the level and launching it from
a launcher. To do this in the editor, click File, Export to Engine. If you use a launcher such as
SamplesProjectLauncher or MultiplayerProjectLauncher, you must run mphost before attempting to
create the link.

Players must have an appropriate launcher that is capable of doing the following:

• Registering with Windows as a URI scheme handler. By default, the URI scheme handler is
game:uri. You can use the joinin_uriScheme console variable to update the scheme in
Lumberyard Editor.

• Decoding the Base64 encoded URI and extracting:

• Game name (if the launcher is designed to launch different games)

• Launch command (optional)

• Host address

• Host port

• Launching the game and connecting to the multiplayer session using the extracted settings.

Version 1.6
1135

Lumberyard User Guide
Twitch API

The JoinIn launcher can be a separate application or be built into the game.

The Twitch:ChatPlay:Whisper flow graph node sends information to the viewer client machine. On
the viewer client machine, choosing this link decodes the information and launches the game with the
appropriate connection settings. For more information about Twitch ChatPlay and Twitch JoinIn flow
graph nodes, see Twitch JoinIn Nodes (p. 737).

Twitch API
TwitchAPI is a Twitch-specific implementation of the BroadcastAPI interface that allows developers
and designers to make calls to Twitch's REST API from within Lumberyard. For more information, see
Twitch-API.

TwitchAPI uses one Flow Graph node. For more information, see Twitch Nodes (p. 730).

To ensure the TwitchAPI feature functions properly, you must set the broadcast_ClientID console
variable to use the application's client ID (provided by Twitch). For more information, see Generating
and Setting a Twitch Client ID (p. 1134).

Version 1.6
1136

https://github.com/justintv/Twitch-API

Lumberyard User Guide
Using the UI Editor

UI System

You can use the UI Editor to create and customize various parts of the user interface, such as images,
text, buttons, menus, scroll boxes, and heads-up displays (HUDs). For a tutorial about UI creation, see
Lumberyard Tutorials.

Topics

• Using the UI Editor (p. 1137)

• Working with UI Canvases (p. 1138)

• UI Elements (p. 1152)

• UI Components (p. 1154)

• Implementing New Fonts (p. 1172)

• Using the Animation Editor (p. 1176)

• UI Flow Graph Nodes (p. 1185)

Using the UI Editor
You can use the UI Editor to create, customize, and animate various user interface elements and
components such as menus, buttons, and heads-up displays (HUDs).

The UI Editor consists of the following:

1. Toolbar – Commonly used tools and settings

2. Hierarchy pane – List of UI elements you create

3. Viewport – Display of the UI elements on the current UI canvas

4. Properties pane – Component properties for the selected element

5. Animation Editor – Tool for animating UI elements

Note
You can tear away and redock the Hierarchy pane, Properties pane, Animation Editor, and
sections of the toolbar to customize the UI Editor.

To open the UI Editor

• In Lumberyard Editor, select View, Open View Pane, UI Editor.

Version 1.6
1137

https://gamedev.amazon.com/forums/tutorials

Lumberyard User Guide
Working with UI Canvases

Working with UI Canvases
The UI Editor uses the concept of a canvas as an invisible backdrop for your user interface elements.
Once you create a canvas, you can add elements such as images, text, and buttons.

To create a UI canvas

1. In Lumberyard Editor, click View, Open View Pane, UI Editor.

2. In the UI Editor, add elements (p. 1152), components (p. 1154), and prefabs (p. 1153).

3. Click File, Save As. Name the canvas with a .uicanvas file extension, and then click Save.

Topics

• Navigating the Viewport (p. 1139)

• Changing the Canvas Size (p. 1140)

• Previewing Canvases (p. 1140)

• Configuring Canvas Properties (p. 1143)

• Associating Canvases with UI Flow Graph Nodes (p. 1144)

• Loading Canvases in the Flow Graph Editor (p. 1145)

• Loading Canvases in Lua (p. 1147)

Version 1.6
1138

Lumberyard User Guide
Navigating the Viewport

• Placing UI Canvases in the 3D World (p. 1151)

Navigating the Viewport
The UI Editor features a rectangle with a checkerboard pattern on a dark gray background.

The checkerboard pattern represents empty space within the UI canvas, and the dark gray represents
the space outside of the canvas. Anything within the UI canvas space is visible when the canvas is
loaded.

To zoom in or out on a UI canvas

Do one of the following:

• Mouse – Scroll the mouse wheel

• Keyboard – Press Ctrl + or Ctrl -

• Menu – Click View, then click Zoom In or Zoom Out

To pan the view on a UI canvas

• With the mouse on the UI canvas, drag using the middle mouse button

• Press and hold the space bar while dragging the canvas

To toggle common zoom settings

Do one of the following:

• Fit canvas to current view (default) – Press Ctrl+0, or click View, Fit Canvas.

• View canvas at actual size – Press Ctrl+1, or click View, Actual Size.

Version 1.6
1139

Lumberyard User Guide
Changing the Canvas Size

Changing the Canvas Size
Change your canvas size to visualize how your canvas might look on other displays and devices of
varying resolutions. The size at which you save your canvas is the size that is used when you perform
the Scale to Device action.

To change the canvas size

1. On the toolbar, click the arrow beside the resolution to see a list of commonly used canvas sizes
for various platforms.

2. Select the size you want or click Other to enter a custom canvas size.

Tip
You can customize the list of canvas sizes that appear in the list by modifying a JSON file
stored locally on your machine. In Windows, the canvas size presets file is located in the
following directory:
C:\Users\<UserName>\AppData\Local\Amazon\Lumberyard\size_presets.json

Previewing Canvases
You can preview your UI canvas to visualize how it might look at different screen resolutions and to see
how the interactive elements change states.

Topics

• Setting Canvas Size in Preview (p. 1141)

• Previewing Canvas Performance (p. 1142)

The UI Editor Preview consists of the following:

1. Toolbar – Tools to view the current Viewport size, Preview canvas size (selectable), and Canvas
scale.

Version 1.6
1140

Lumberyard User Guide
Previewing Canvases

2. Viewport – Display of the UI canvas as it would appear at the selected resolution.

3. Animation List (p. 1142) – List of the animation sequences in the canvas, which you can control
using the playback toolbar. Close this pane to increase the viewport size. Use the View menu to
restore it.

4. Action Log (p. 1142) – Record of actions triggered by the canvas's interactable elements. Close
this pane to increase the viewport size. Use the View menu to restore it.

To open UI canvas Preview

Do one of the following:

• From the UI Editor toolbar, click Preview.

• From the UI Editor menu, click Preview, Preview.

• Press Ctrl+P.

To exit the canvas preview, click End Preview.

Setting Canvas Size in Preview

Change your canvas size in UI Editor Preview to visualize how your canvas might look at different
screen resolutions and to see how the interactive elements change state. Changing your canvas size in
Preview does not affect the canvas size at which you are authoring the UI canvas—that is controlled in
the UI Editor (p. 1140).

Setting your canvas size in Preview is useful when designing games that run on devices that have
multiple resolutions. You can see at different resolutions how an element's size and position changes
based on the settings of its Transform2d (p. 1155) properties, such as anchors, offsets, and the

Version 1.6
1141

Lumberyard User Guide
Previewing Canvases

Scale to Device settings. The Scale to Device flag adjusts the size of the element by computing the
ratio of the preview canvas size to the reference canvas size and applies that scale to the element. You
can see the effects of this computation in the UI Editor canvas Preview.

The Canvas scale in the toolbar shows the scale at which the canvas is displayed. If the Preview
canvas size selected is larger than the viewport size, the canvas you are previewing is drawn at a
reduced scale.

Previewing Canvas Performance

In UI Editor Preview, the UI elements in your canvas perform as they would when the game is
running.

Try these examples:

• Pause on an interactive element to show its hover state.

• Press (click) an interactive element to show its pressed state.

• Adjust sliders.

• Input and edit text.

• Use keyboard, mouse, or gamepad to interact with the UI.

Note
If the interactive component's Input enabled setting is deselected (unchecked), that element
is drawn in its disabled state and does not respond to hover or click actions.

Animation List

The Animation List pane lists all the UI animation sequences found on the canvas that you are
previewing. Select an animation to use the reset, play, pause, and set-to-end controls. Hold Ctrl or
Shift to select and control multiple animations at once. You can also control animations independently
and simultaneously so that one may be playing, for example, while you pause another.

Action Log

The Action Log pane shows the actions generated by interacting with interactive elements in the UI
canvas while in Preview. These logged actions help the canvas designer ensure that correct actions
are being triggered.

To use this feature, you must type text strings in the Actions section of the interactive element's
properties.

To enable Action Log entries

1. In the UI Editor viewport or Hierarchy pane, select the element to which the interactive
component is attached.

2. In the Properties pane, under the Actions category, type a text string for each action for which
you want to trigger an action log entry.

The text strings are fully customizable; you can type any string that helps you ensure that the
correct actions are being triggered.

For example, in the picture below, EnablerChanged is displayed whenever the Enable Input check
box changes state (from off to on, or on to off). EnablerOn is displayed when the check box is
selected, and EnablerOff is displayed when it is deselected.

Version 1.6
1142

Lumberyard User Guide
Configuring Canvas Properties

During Preview, flow graphs and Lua scripts are not active; actions taken in UI canvas Preview have
no effect on anything outside of the canvas.

Configuring Canvas Properties
The canvas properties are displayed in the UI Editor Properties pane when no elements are selected.

Rendering Properties
The Is pixel aligned property, selected by default, makes textures look sharper by rounding to
the nearest exact pixel the position of the elements' corners. For example, if, at a particular screen
resolution, the position of a corner of an element rectangle is at 123.45, 678.90, then it will be rounded
to 123.00, 679.00.

The Render to texture property, when selected, causes the UI canvas to be drawn to a texture rather
than to the screen. Selecting this property prompts you to type a Render target name for the texture.
You can type any name, but the convention is to prefix the name with the $ symbol to distinguish it
from texture assets.

Input Properties
The Handle positional property, selected by default, causes automatic response to positional input
such as mouse movement, mouse button clicks, and touch screen input, as well as keyboard input
when an interactive UI element is active (such as an element with a Text Input component on it).

You can de-select this property for canvases that don't require input. Another scenario where you may
want to de-select this property is if you configure your game to handle all inputs and then pass selected
inputs to the UI system.

The Handle navigation property, when selected, causes automatic response to navigation input. For
example, on a PC, pressing arrow keys will move focus from one interactive UI element to the next,
and pressing Enter will activate an interactive UI element. We recommend de-selecting this property
for canvases placed in the game world.

Version 1.6
1143

Lumberyard User Guide
Associating Canvases with UI Flow Graph Nodes

The First focus element property is displayed when Handle navigation is selected. First focus
element specifies which element gains focus when a canvas is first loaded and a mouse is not
detected. For more information about element navigation, see First Focus Element (p. 1163).

Editor Properties

The Snap distance property controls the distance between positions on the grid when Snap to grid is
selected in the toolbar.

The Snap rotation property specifies the number of degrees between each step of rotation when using
the rotation gizmo to rotate an element in the viewport when Snap to grid is selected in the toolbar.

Associating Canvases with UI Flow Graph Nodes
You must associate all UI flow graph nodes with a UI canvas. There are two sets of flow graph nodes
for the UI: UIe and UI. The UIe set of flow graph nodes supersedes the now-legacy UI set of flow graph
nodes.

In the UIe set of nodes, you assign a special entity to the node’s Choose Entity input using either the
new Component Entity system or the legacy Entity system. These procedures are described in this
section.

In the legacy UI set of nodes, the CanvasID comes from the UI:Canvas:Load node.

Using the Component Entity system to associate a UI canvas with a UIe flow graph node

1. In the viewport, right-click and select Create Component Entity.

2. Right-click the newly created component and click Flow Graph, Add.

Enter a name for the flow graph, or leave it as Default.

3. If the Flow Graph Editor is not yet open, click View, Open View Pane, Flow Graph.

4. In the viewport, right-click the component entity and select Flow Graph, Open, <flow graph
name>.

5. Select the newly created component entity. In the Entity Inspector, add a UI Canvas Asset Ref
component and enter a path to the canvas you want to associate.

6. In the Flow Graph Editor, in the flow graph you created, add any UIe flow graph node to the
graph.

7. Right-click the node you placed and do one of the following:

• Click Assign graph entity if the canvas you want to reference is selected in the UI Canvas Asset
Ref component.

• Select a different entity and then click Assign selected entity to reference a different canvas.

Version 1.6
1144

Lumberyard User Guide
Loading Canvases in the Flow Graph Editor

Note
This other entity can be either a component entity with the UI Canvas Asset Ref
component on it or a legacy entity that is a UiCanvasRefEntity.

Using the Legacy Entity system to associate a UI canvas with a UIe flow graph node

1. In Lumberyard Editor's Rollup Bar, on the Objects tab, click Entity. Expand the UI folder and
drag UiCanvasRefEntity into the viewport.

2. Select the newly created UiCanvasRefEntity entity. In its Entity Properties, click CanvasPath
and enter a path to the canvas you want to associate.

3. In Lumberyard Editor, click View, Open View Pane, Flow Graph.

4. In the Flow Graph Editor's Graphs pane, select a flow graph.

5. Add any UIe flow graph node to the graph.

6. Right-click the node you placed and do one of the following:

• Click Assign graph entity if the flow graph is associated with the UiCanvasRefEntity.

• If the flow graph you used is not associated with the UiCanvasRefEntity, make sure the
UiCanvasRefEntity is selected in your viewport and then click Assign selected entity.

To associate a UI canvas with a legacy UI flow graph node

1. Load a canvas in the Flow Graph Editor. See Loading Canvases in the Flow Graph
Editor (p. 1145) for more information.

2. Add any UI flow graph node to the graph.

3. Connect the CanvasID output of the UI:Canvas:Load node to the CanvasID input of the new
node.

Loading Canvases in the Flow Graph Editor
You can use the Flow Graph Editor to load and unload UI canvases. For more information about
using flow graphs, see Flow Graph System (p. 487).

For more information about the flow graph nodes you can use to make elements and components
respond to user input, see UI Flow Graph Nodes (p. 1185).

You can load canvases in the Flow Graph Editor using either the UIe node set (recommended) or the
legacy UI node set. You can also load a canvas automatically using a component entity (without using
flow graph). These procedures are described in this section.

Version 1.6
1145

Lumberyard User Guide
Loading Canvases in the Flow Graph Editor

Use the following procedure to load canvases using the UIe node set. This is the recommended
method of loading canvases in flow graph.

To load a canvas in the Flow Graph Editor using the UIe node set

1. In Lumberyard Editor, click View, Open View Pane, Flow Graph.

2. In the Flow Graph Editor, select a flow graph from the Graphs pane.

3. Right-click anywhere in the graphs pane and select Add Node, Game, Start.

4. Right-click anywhere in the graphs pane and select Add Node, UIe, Canvas, LoadIntoEntity.

5. Right-click the UIe:Canvas:LoadIntoEntity node and select Assign selected entity or Assign
graph entity to assign a UI canvas reference entity to the node.

For more information about assigning a UI canvas reference entity to the node, see Associating
Canvases with UI Flow Graph Nodes (p. 1144).

6. Connect the Game:Start node output to the Activate input on the UIe:Canvas:LoadIntoEntity
node.

To use the legacy UI node set to load canvases, use the following procedure.

To load a canvas in the Flow Graph Editor using the legacy UI node set

1. In Lumberyard Editor, click View, Open View Pane, Flow Graph.

2. In the Flow Graph Editor, select a flow graph from the Graphs pane.

3. Right-click anywhere in the graphs pane and select Add Node, Game, Start.

4. Right-click anywhere in the graphs pane and select Add Node, UI, Canvas, Load.

5. Connect the Game:Start node output to the Activate input on the UI:Canvas:Load node.

6. Double-click CanvasPathname in the UI:Canvas:Load node, and type a path in the
CanvasPathname text box or use the file browser to navigate to the path. The path is relative to
the project folder.

Note
You might need to zoom in to be able to edit CanvasPathname.

Version 1.6
1146

Lumberyard User Guide
Loading Canvases in Lua

The following method uses the component entity system to load a canvas, without using any flow
graphs.

Using the Component Entity system to load a UI canvas

1. In the level, create a component entity (p. 410)

2. In the Entity Inspector, add to this component entity (p. 410) a UI Canvas Asset Ref to specify
the UI canvas and optionally to automatically load it when the level loads.

3. Select the Load automatically check box.

The canvas is automatically loaded when the level loads. It can be referenced from any of the UIe flow
graph nodes, as long as they are in a flow graph that belongs to any component entity.

Loading Canvases in Lua
You can use the Lua scripting language to load and unload UI canvases.

Topics

• UI Lua Reference (p. 1148)

For general information about using Lua, see Lua Script Component (p. 365).

To load a canvas in Lua

1. Create a new, plain text file in your game project directory with a .lua file extension.

2. Type or paste the following sample script into your new Lua file:

Note
The following script uses a Lua file named loadcanvas.lua and loads a canvas file
named menu.uicanvas saved at the root of the game project directory. Substitute the
appropriate file names for your script.

loadcanvas =
{
 Properties =
 {
 },

Version 1.6
1147

Lumberyard User Guide
Loading Canvases in Lua

}

function loadcanvas:OnActivate()
 self.uiCanvasLuaProxy = UiCanvasLuaProxy();
 self.uiCanvasLuaProxy:LoadCanvas("menu.uicanvas");
end

3. In Lumberyard Editor, right-click in the Viewport and click Create Component Entity.

4. If the Entity Inspector does not open automatically, click View, Open View Pane, Entity
Inspector.

5. Click Add Component.

6. Select Scripting, Lua Script.

7. Under Lua Script, click ... and open the Lua script file that you created.

8. In Lumberyard Editor, click Game, Switch to Game to enter game mode. Verify that your canvas
file loads.

UI Lua Reference

You can use the following Lua scripting functions when loading and unloading canvases with Lua in
Lumberyard Editor.

LyShineLua.ShowMouseCursor

Toggles the visibility of the mouse cursor.

Parameters

visible
Displays 1 if the mouse cursor is displayed or 0 if it is hidden

Returns

None.

UiCanvasLuaProxy:LoadCanvas

Loads the canvas file that you specify and immediately starts rendering it.

Parameters

canvasFilename
The path to the *.uicanvas file to load.

Type: String

Returns

AZ::EntityId for the loaded canvas entity.

UiCanvasLuaProxy:BusConnect

Connects the given canvas entity to the UiCanvasLuaBus.

Version 1.6
1148

Lumberyard User Guide
Loading Canvases in Lua

Parameters

entityId
AZ::EntityId. A canvas entity identifier.

Returns

None.

UiCanvasLuaBusSender:FindElementById

Returns the AZ::EntityId for the given canvas element identifier.

Parameters

id
Represents the identifier of an element stored within the canvas.

Type: Unsigned integer

Returns

AZ::EntityId of the given element.

UiCanvasNotificationLuaProxy:BusConnect

Connects to the given canvas entity’s UiCanvasNotificationBus.

Parameters

id
AZ::EntityId. A canvas entity identifier.

Returns

None.

UiCanvasNotificationLuaBus:OnAction

User defined in script. Called when the canvas broadcasts an action name.

Actions are broadcasted by the canvas when they have been configured with an action name. For
example, a button can be configured to broadcast an action name when clicked.

Parameters

entityId
AZ::EntityId. The entity identifier that triggered the action.

actionName
The action name that was broadcasted.

Type: String

Version 1.6
1149

Lumberyard User Guide
Loading Canvases in Lua

Returns

None.

UiFaderComponent:HasFaderHandler

Returns true if the given entity identifier has a fader component. Otherwise, false.

Parameters

entityId
AZ::EntityId. The entity identifier to check the fader component for.

Returns

Returns true if the given entity identifier has a fader component. Otherwise, false.

UiFaderBusSender:SetFadeValue

Sets the starting alpha value from which to begin the fade.

Parameters

fade
Alpha value from which to begin the fade.

Type: Float

Returns

None.

UiFaderBusSender:Fade

Executes the fade effect.

Parameters

targetValue
The value at which the fade ends.

Type: Float

Values: 0.0 to 1.0

speed
Speed for the effect to complete. The higher the value, the faster the fade effect takes place.,
except for 0, which is a special exception that causes instant execution of the fade effect.

For example, 1 would take one second to fade from off to on, 2 takes half that time (twice as fast).

0.5, for example, is half the speed of 1.

Type: Float

Returns

None.

Version 1.6
1150

Lumberyard User Guide
Placing UI Canvases in the 3D World

Placing UI Canvases in the 3D World
You can place a UI canvas directly on an object in the 3D world, as opposed to showing it in screen
space. To do this, you render a UI canvas to a texture, and then use that texture in a material on a 3D
mesh.

You can use any material on any type of entity to display a texture rendered by a UI canvas. However,
if players are to interact with the UI canvas in the 3D world—by clicking with the mouse, for example—
you must use a component entity.

To see an example of a UI canvas on an object in a 3D world, open the UiIn3DWorld level in the
FeatureTests Project (p. 1108).

Follow all the steps in the following procedure if you need to create a canvas that players can interact
with. If the canvas is not to be interactive, then you only need steps 1 through 5.

To place a UI canvas on an object in the 3D world

1. Create your UI canvas file (p. 1138). In the canvas properties (p. 1143), select Render to texture
and type a name in the Render target text box.

2. In the level, create a component entity (p. 410).

3. In the Entity Inspector, add to this component entity (p. 410) a UI Canvas Asset Ref to specify
the UI canvas and optionally to load it automatically when the level loads. See Loading Canvases
in the Flow Graph Editor (p. 1145) for other ways to load the canvas.

4. In the Material Editor (p. 1034), create a material that uses the render target texture that is
rendered by your canvas.

5. Add a Static Mesh (p. 402) component to the component entity and choose the mesh asset onto
which you want to map your canvas. Use the Material override property to select the material
that you created.

6. Add a Physics component (p. 384) and a Mesh Collider component (p. 386). In the physics
component properties, click the + icon next to the Behavior property and add a Static Body
behavior. Physics is required on this entity because a ray cast is used to translate a mouse or
touch input into a position on the UI canvas that is at that point in the world.

7. Add a UI Canvas on Mesh component. Type a canvas name in the Render target override
property if you want to load several instances of the UI canvas on different meshes and have them
display different states. Otherwise, leave this property blank.

Version 1.6
1151

Lumberyard User Guide
UI Elements

UI Elements
UI elements are entities to which you can attach multiple components. You can start with an empty
element and add components to it, such as a button, image, slider, text, and so on. Or you can add
an existing pre-fabricated (prefab) element (p. 1153), such as a scrollbox, which is an element with
components already attached. You can also create your own prefab elements (p. 1153).

Every UI element has a required component called Transform2D. The Transform2D component
defines the positioning, spacing, and size of the element relative to its parent (whether its parent is
the canvas or another element). Each UI element can also have one visual component (p. 1158)
(image or text), one interactive component (p. 1160) (button, check box, scrollbox, slider, or text
input), and one layout component (p. 1170) (layout column, layout row, or layout grid). The remaining
components (p. 1171) are the mask and fader, of which UI elements can attach either or both.

For each of the following procedures, use the UI Editor to manage UI elements.

Managing UI Elements in the UI Editor

Task Steps

To create an element In the UI Editor toolbar, click New, Empty element. The element
appears in the Hierarchy pane and viewport.

To move, rotate, or resize an
element

Select the element, then click the Move, Rotate, or Resize tool in
the toolbar.

Version 1.6
1152

Lumberyard User Guide
Configuring UI Anchors and Offsets

Task Steps

Select Snap to grid to modify elements in increments.

To copy an element Right-click the element in the Hierarchy pane or viewport and click
Copy.

To nudge an element To nudge, or move, an element one pixel at a time, select the
element and click the Move tool. Use arrow keys to nudge
elements in the selected direction. Press and hold the Shift key
while pressing the arrow keys to nudge elements 10 pixels at a
time.

To paste a copied element Right-click anywhere in the Hierarchy pane or viewport and click
Paste. If an element is selected, the Paste as sibling and Paste
as child options appear.

To delete an element Right-click the element in the Hierarchy pane or viewport and click
Delete.

To hide an element Click the eye icon (to the right of the element name) in the
Hierarchy pane or viewport. Click again to unhide the element.

To hide all elements To hide all elements, deselect any currently selected items and
then click the eye icon in the topmost row of the Hierarchy pane.

To prevent selection of an
element in the viewport

Click the padlock icon to the right of the element name in the
Hierarchy pane. This prevents selection only of that particular
element; its children are still selectable.

To prevent selection of all
elements in the viewport

Deselect any currently selected elements (click in a blank area of
the Hierarchy pane) and then click the padlock icon in the topmost
row of the Hierarchy pane.

To rename an element Double-click the element in the Hierarchy pane, type the new
name, and press Enter.

To nest an element Select the element in the Hierarchy pane and drag it on top of the
parent element.

To change the element draw
order

Select and drag elements up or down in the Hierarchy pane.
Elements are drawn in order starting from the top of the hierarchy
list, so elements at the bottom of the list are displayed in front of
elements at the top of the list.

Configuring UI Anchors and Offsets
Each UI element's position is determined by the Transform2D component. The Transform2D
component sets a UI element's position and size relative to its parent's edges. The parent may be
another element (if the elements are nested), or the canvas.

For more information about the Transform2D component, see Transform2D – Managing UI Anchors
and Offsets (p. 1155).

Using and Creating UI Prefabs
In the UI Editor, prefabs are preconfigured UI elements and compound elements that you can add to a
canvas. You can also create custom prefabs.

Version 1.6
1153

Lumberyard User Guide
UI Components

To add a prefab element

1. In the UI Editor toolbar, click New, Element from prefab.

2. Select from:

• Button

• Checkbox

• Image

• LayoutColumn

• LayoutGrid

• LayoutRow

• ScrollBox

• ScrollBarHorizontal

• ScrollBarVertical

• Slider

• Text

• TextInput

The new element appears in the Hierarchy pane and viewport.

If you have created your own element or modified an existing prefab, you can save it as a custom
prefab.

To save a custom prefab element

1. In the UI Editor, right-click an element that you have created or modified in the Hierarchy pane or
viewport.

2. Click Save as Prefab.

3. In the Save As dialog box, do the following:

1. Navigate to any location in the project folder where you want to save your prefab.

2. Name your prefab with a .uiprefab file extension.

3. Click Save.

Your prefab now appears in the New..., Element from prefab... menu.

UI Components
UI components define the properties of a UI element. For example, every element has a Transform2D
component that defines its position, rotation, size, and scale. You can give an element additional
properties by adding components, such as adding the image component to give an element color or
texture. Each UI element can have one visual component (image or text), one interactive component
(button, check box, scrollbox, slider, or text input), and one layout component (layout column, layout
row, or layout grid). The remaining components are the mask and the fader components, of which UI
elements can attach either or both.

To view some samples of completed UI canvases that demonstrate the following components,
open the FeatureTests Project (p. 1108). In the UI Editor, click File, Open Canvas. Then select the
appropriate canvas to view the completed UI canvas as stated in the following topics.

Version 1.6
1154

Lumberyard User Guide
Adding or Deleting Components

You can also see the completed UI canvases in action by switching to game mode (press Ctrl+G or
from the main menu, Game, Switch to Game) in the FeatureTests Project (p. 1108).

Topics

• Adding or Deleting Components (p. 1155)

• Transform2D – Managing UI Anchors and Offsets (p. 1155)

• Visual Components (p. 1158)

• Interactive Components (p. 1160)

• Layout Components (p. 1170)

• Other Components (p. 1171)

Adding or Deleting Components
You can easily add or delete components in the UI Editor (p. 1137).

To add a component to an element

1. In the UI Editor, select an element in the Hierarchy pane and click Add Component at the top of
the Properties pane.

2. Select the component (image, text, button, checkbox, slider, text input, scrollbox, fader, mask,
layout column, layout row, or layout grid) that you want to add to the element.

3. Use the instructions for the specific component you are adding in the next section.

To delete a component from an element

• In the UI Editor, select an element in the Hierarchy pane. Right-click the component in the
Properties pane and click Remove.

Transform2D – Managing UI Anchors and Offsets
You can use anchors and offset settings in the Transform2D component to set a UI element's position
and size relative to its parent's edges. The Transform2D component is a required component in every
element.

Anchor values are always 0.00% to 100.00% as defined by the parent's edges. Offsets are expressed
in pixels and are relative to the anchors.

Anchors and offsets are useful in a variety of situations:

• Ensuring an element maintains a specific padding within its parent's edges, regardless of changes to
the parent's size

• Anchoring an element to a corner of its parent, regardless of changes to the parent's size or position

• Building resolution-independent UI elements

For example, you can ensure an element remains full screen regardless of the screen's resolution.

To configure an element's anchors

1. In the Hierarchy pane of the UI Editor (p. 1137), select the element whose anchors you want to
modify.

2. In the Properties pane, under Transform2D, choose from the selection of commonly used anchor
placements.

Version 1.6
1155

Lumberyard User Guide
Transform2D – Managing UI Anchors and Offsets

1. Anchor to the parent's center, corner, or midway along an edge without changing size.

2. Anchor to the left edge, middle, or right edge; vertical size adjusts to parent.

3. Anchor to the top edge, middle, or bottom edge; horizontal size adjusts to parent.

4. Anchor all of the element's edges to the parent; horizontal and vertical size adjusts to parent.
You can use this anchor preset to place an element that remains full screen, regardless of a
change in resolution (if the canvas is its parent).

To further edit (fine-tune) an element's anchors
In the Properties pane, under Transform2D, do the following for Anchors, as appropriate:

• For Left, enter a value between 0.00% and 100.00%.

• For Right, enter a value between 0.00% and 100.00%.

• For Top, enter a value between 0.00% and 100.00%.

• For Bottom, enter a value between 0.00% and 100.00%.

The anchors' positions can be visualized as points on a grid, plotted in percentages by the length of its
parent's edges from left to right and top to bottom. If you want to keep the element's size absolute (so
that it doesn't change size when the parent changes size) but want to anchor it a particular vertical or
horizontal point relative to the parent's size, make sure the top and bottom (or left and right) anchors
have the same number. In this case, the anchors are said to be together.

But if, for example, you want the element's left and right edges to each remain at a fixed percentage
relative to its parent and to change size as its parent changes size, then make the numbers different. In
this case, the anchors are called split.

Version 1.6
1156

Lumberyard User Guide
Transform2D – Managing UI Anchors and Offsets

To edit an element's position and size
In the Properties pane, under Transform2D, modify the Offsets, as appropriate:

If the element's anchors are together, do the following:

• For X Pos, enter a negative or positive value in pixels. This adjusts the horizontal offset relative
to the left-right anchor position.

• For Y Pos, enter a negative or positive value in pixels. This adjusts the vertical offset relative to
the top-bottom anchor position.

When the element's anchors are together, only its position (and not its size) adjusts with the
parent's size. Therefore, you can manually adjust its size, which remains consistent when anchors
are together:

• For Width, enter a value in pixels.

• For Height, enter a value in pixels.

If the element's anchors are split, do the following:

• For Left, enter a negative or positive value in pixels. This adjusts the size offset relative to the
element's left anchor.

• For Right, enter a negative or positive value in pixels. This adjusts the size offset relative to the
element's right anchor.

• For Top, enter a negative or positive value in pixels. This adjusts the size offset relative to the
element's top anchor.

• For Bottom, enter a negative or positive value in pixels. This adjusts the size offset relative to
the element's bottom anchor.

To edit an element's pivot, rotation, and scale
In the Properties pane, under Transform2D, do the following for Pivot, Rotation, and Scale, as
appropriate:

• For Pivot, select a pivot preset or enter values for X and Y where 0 and 1 represent the
element's edges.

• For Rotation, enter a value in degrees.

• For X Scale, enter a value to use as a multiplier for the element's width.

Version 1.6
1157

Lumberyard User Guide
Visual Components

• For Y Scale, enter a value to use as a multiplier for the element's height.

• Select Scale to Device if you want the UI element and its children to scale with the device
resolution.

Note
The element rotates around, resizes from, and calculates position from its pivot point. The
pivot point is not limited by the element's borders; you can place the pivot outside of the
element.

Visual Components
You can add one visual component to an element: Image or Text.

Image

You can use an image component to add a color tint or texture to an element. To see an example
of a completed canvas with the image component, open the UiCompImage.uicanvas file in the
FeatureTests Project (p. 1108).

To edit an image component
In the Properties pane of the UI Editor (p. 1137), expand Image and do the following, as
appropriate:

SpriteType
Select one of the following:

• Sprite/Texture asset – Image displays the asset specified in Sprite path.

• Render target – Image displays the render target specified in Render target name.

Sprite path
Click the … (folder) icon and select a suitable file.

Click the gear icon next to the Sprite path folder icon to open the sprite Border Editor. Then
define the borders for the sliced image type.

Render target name
Type a name of a render target and press Enter.

Color
Click the color swatch to select a different color.

Alpha
Use the slider to choose an alpha value between 0 and 1.

Image type
Select one of the following:

• Stretched – Stretches the texture with the element without maintaining aspect ratio

• Sliced – Treats the texture as a 9-sliced sprite

• Fixed – Makes the texture pixel perfect

• Tiled – Tiles the texture to fill the element

• Stretched to Fit – Scales to fit while maintaining aspect ratio

• Stretched to Fill – Scales to fill while maintaining aspect ratio

Blend Mode
Select one of the following:

• Normal – Uses alpha to interpolate colors between elements

• Add – Blends colors between elements by adding (lightening) color values together

Version 1.6
1158

Lumberyard User Guide
Visual Components

• Screen – Blends colors using inverse source color resulting in a lighter color

• Darken – Chooses the darker color channel when blending between elements

• Lighten – Chooses the lighter color channel value when blending between elements

Text

You can use a text component to add a text string to an element. To see an example of a completed
canvas with the text component, open the UiCompText.uicanvas file in the FeatureTests
Project (p. 1108).

To edit a text component
In the UI Editor Properties pane, expand Text and do the following, as appropriate:

Text
Type the desired text string and press Enter. Here, you can apply text styling
markup (p. 1159).

Color
Click the color swatch to select a different color.

Alpha
Use the slider to choose an alpha value between 0 and 1.

Font path
Click the button and select a font .xml file.

Font size
Type a font size and press Enter.

Font effect
Select an effect from the list. The available font effects are dictated by the font .xml file.

Horizontal text alignment
Select Left, Center, or Right to align the text with respect to the element's left and right
borders.

Vertical text alignment
Select Top, Center, or Bottom to align the text with respect to the element's top and bottom
borders.

Overflow mode
Select Overflow to allow the text to display beyond the edges of the element.

Select Clip text to hide, or clip, any text that flows beyond the element's edges.

Wrap text
Select No wrap to prevent text from wrapping to subsequent lines.

Select Wrap text to allow text to be broken into separate lines.

Text Styling Markup

You can customize the appearance of the text in your game UI by using bold and italic styling, multiple
text colors, and multiple fonts in a single text string. You enter specific tags directly into the Font box,
along with your string. The simple markup language used is loosely based on HTML.

To use the text styling markup feature, you must use a font family *.fontfamily asset file in the Font
path setting (rather than an individual .xml asset file). For more information about adding font families
to your projects, see Implementing New Fonts (p. 1172).

To use text styling markup

1. In the UI Editor, add a text component to an element on your canvas (or modify an existing
component).

Version 1.6
1159

Lumberyard User Guide
Interactive Components

2. With the element selected, in the Properties pane, set the Font path property to a
*.fontfamily file.

3. Enter a string with markup styling in the Text box. See the next section for examples.

Tags and Attributes

You can use the following tags and attributes when styling text with markup:

Bold tag:

Italic tag: <i>

Font color tag:

Font face tag:

Interactive Components
Interactive components respond to user input. For example, the user can click a button or drag a slider.
You can use Lua scripts (p. 1147) or flow graphs (p. 1185) to link the component response to an
action.

Version 1.6
1160

Lumberyard User Guide
Interactive Components

An interactive element is defined as an element that has an interactive component on it.

Topics

• Properties (p. 1161)

• Button (p. 1164)

• Check box (p. 1165)

• Slider (p. 1165)

• Text Input (p. 1166)

• ScrollBox (p. 1167)

• ScrollBar (p. 1169)

Properties

All of the interactive components share a common set of properties. These properties are grouped into
the following categories:

• Input Enabled (p. 1161) – Check box or flag that determines whether the element can be interacted
with.

• States (p. 1162) – Settings that determine the appearance of the element when in the Hover,
Pressed, or Disabled states.

• Navigation (p. 1163) – Settings that determine how the gamepad or arrow keys navigate between
interactive elements (p. 1163).

• Actions – Events that are caused by the listed action.

Input Enabled

The Input Enabled setting, selected by default, determines whether the component can be interacted
with.

Version 1.6
1161

Lumberyard User Guide
Interactive Components

To visualize how the interactive element looks in its disabled state, deselect the Input Enabled setting,
and then use Preview mode (p. 1140) to preview your canvas.

You can also manipulate the Input Enabled flag from C++ or flow graph to enable or
disable interactive components while the game is running. Use the flow graph node
UI:Interactable:SetIsHandlingEvents (p. 1256).

States

The States group of properties defines the appearance of the interactive element and its child UI
elements when the element is in the Hover, Pressed, and Disabled states.

The normal appearance of a visual element (defined as an element with a visual component on it, such
as image or text) is defined by the properties of that visual component. Some of the visual component's
properties, however, can be overridden by an interactive component that is in the Hover, Pressed, and
Disabled states.

The Hover, Pressed, and Disabled states have a list of state actions, which define the appearance of
that state, and which override the corresponding property on the visual component:

• Color – RGB color tint

• Alpha – Opacity

• Sprite – Texture

• Font – Text font and font effect (on a text component, for example)

The state actions—Color, Alpha, Sprite, and Font—each have a Target property that specifies
which visual element is to be affected. The elements from which you can choose include the current
element—listed as <This element>, its child elements, and the descendants of its child elements.
Using the Target property, you can pick exactly which visual element to override.

For example, the button prefab (p. 1153) has a top element named Button that has a visual
component to define color. It also has a child element with a text component to define the text (and
its color) on the button. The top element (Button) also has the Interactable component on it, and the
Target for the color state action can override either the Button element's color, or the Text element's
color, depending on what you pick from the list.

When you first add an interactive component to an element, there are no state actions added by
default. You must add state actions to the states that you want to use and modify.

Version 1.6
1162

Lumberyard User Guide
Interactive Components

To add a state action to a state

In the UI Editor (p. 1137), in the Properties pane, under the interactive component's name (for
example, Button), do the following:

1. Under Interactable, States, click Add new element (green +).

2. From the list, choose one of the following: Color, Font, Sprite, Alpha.

To delete a state action

• Click Remove element (red x) next to the state action that you want to delete.

To clear all state actions from a state

• Click Clear container (box icon) next to the state from which you want to clear all the state
actions.

Navigation

You can use the Navigation group of properties to specify how the arrow keys or gamepad navigates
between interactive elements.

For each interactive element, you can set navigation to one of the following:

• Automatic – Algorithm determines which interactive elements become focused when up, down, left,
or right is pressed.

• Custom – You manually specify the interactive elements that become focused when up, down, left,
or right is pressed.

• None – This option removes navigation capability; using the keyboard or gamepad, the player
cannot focus on this element.

First Focus Element

To determine which element receives first focus when a canvas is first loaded, set the First Focus
Element in the Canvas Properties (p. 1143). The First Focus Element receives focus upon canvas
load when no mouse is detected. If you do not set a First Focus Element, or if a mouse is detected,
no element is focused until the user provides direction input from a keyboard or mouse, whereupon the
element closest to the top left corner of the canvas becomes focused.

Once an element is focused, navigation to other elements is controlled by the navigation
properties (p. 1163) defined on each interactive component.

Version 1.6
1163

Lumberyard User Guide
Interactive Components

Interactive Element Controls

To interact with a focused element, press Enter on the keyboard (A on Xbox; X on PlayStation).

While an element is interactive, use the following controls:

• Button and Checkbox – Enter presses the button or selects/clears the check box, and then returns
to navigation automatically. Does not remain active after action.

• Slider and Scrollbox – Use arrow keys or joystick to move the slider or scroll box. Press Enter to
return to navigation.

• TextInput – While active, use the following (press Enter to return to navigation):

• Arrow keys move the text cursor

• Shift+arrow keys selects text

• Alphanumerical keys enter text at cursor position

• Ctrl+A selects the entire text string

• Backspace deletes the character to the left of the cursor

• Delete deletes the character to the right of the cursor

Actions

You can use the Actions properties to trigger a particular event when one of the listed actions
occur. Type a string in the action field. When the listed action occurs (for example, when a game
player starts to hover over the element), the listed string is sent as an action. You can set up the
UIe:Canvas:ActionListener (p. 1185) flow graph node to listen for this action.

You can strings for the following actions:

• Hover start

• Hover end

• Pressed

• Release

Button

You can use a button component to make an element behave like a button. To see an example of
a completed canvas with the button component, open the UiCompButton.uicanvas file in the
FeatureTests Project (p. 1108).

Note the following:

• This component is typically used on an element with an image component; if no visual or image
component is present, many of the following properties have no effect.

• If you want to add a text label to a button, add a child element with a text component.

• To define borders for a sliced image type, open the sprite Border Editor by clicking the gear icon
next to the Sprite path folder icon.

To edit a button component
In the UI Editor (p. 1137) Properties pane, expand Button and do the following, as appropriate:

Version 1.6
1164

Lumberyard User Guide
Interactive Components

Interactable
See Properties (p. 1161) to edit the common interactive component settings.

Actions, Click
Type a text string. This string is sent as an action on the UI canvas when the button is
clicked. You can listen for this action in the flow graph using the UI:Canvas:ActionListener
Node (p. 1241).

Check box

You can use this component to make an element behave like a check box. This component is typically
used on an element with two visual child elements—one to display when the check box is selected
and another to display when the check box is cleared. To see an example of a completed canvas
with the check box component, open the UiCompCheckBox.uicanvas file in the FeatureTests
Project (p. 1108).

To edit a check box component
In the Properties pane of the UI Editor (p. 1137), expand Checkbox and do the following, as
appropriate:

Interactable
See Properties (p. 1161) to edit the common interactive component settings.

Elements, On
Select an element from the list to provide the entity to be displayed when the check box state
is on (selected).

Elements, Off
Select an element from the list to provide the entity to be displayed when the check box state
is off (cleared).

Value, Checked
Click the box to change the initial state of the check box.

Actions, Change
Type a text string. This string is sent as an action on the UI canvas when the check
box has any state changes. You can listen for this action in the flow graph using
UI:Canvas:ActionListener Node (p. 1241).

Actions, On
Type a text string. This string is sent as an action on the UI canvas when the check box
state changes to on (selected). You can listen for this action in the flow graph using
UI:Canvas:ActionListener Node (p. 1241).

Actions, Off
Type a text string. This string is sent as an action on the UI canvas when the check box
state changes to off (cleared). You can listen for this action in the flow graph using
UI:Canvas:ActionListener Node (p. 1241).

Slider

You can use this component to make an element behave like a slider. This component is typically
used on an element with three visual child elements: one immediate child, called Track, and two child
elements of the track, called Fill and Handle. To see an example of a completed canvas with the slider
component, open the UiCompSlider.uicanvas file in the FeatureTests Project (p. 1108).

To edit a slider component
In the Properties pane, expand Slider and do the following, as appropriate:

Interactable
See Properties (p. 1161) to edit the common interactive component settings.

Version 1.6
1165

Lumberyard User Guide
Interactive Components

Elements, Track
Select an element from the list to provide the entity to be displayed as the background of the
slider and to limit the movement of the manipulator.

Elements, Fill
Select an element from the list to provide the entity to be displayed as the background of the
slider, from the lower limit to the center of the manipulator position.

Elements, Manipulator
Select an element from the list to provide the entity to be displayed as the movable knob of
the slider.

Value, Value
Enter the initial value of the slider.

Value, Min
Enter the lower limit of the slider.

Value, Max
Enter the upper limit of the slider.

Value, Stepping
Enter the step value. For example, use 1 to only permit whole integer values.

Actions, Change
Type a text string. This string is sent as an action on the UI canvas when the slider
is finished changing values. You can listen for this action in the flow graph using
UI:Canvas:ActionListener Node (p. 1241).

Actions, End Change
Type a text string. This string is sent as an action on the UI canvas when the
slider is changing values. You can listen for this action in the flow graph using
UI:Canvas:ActionListener Node (p. 1241).

Text Input

You can use a text input component to make an element offer player input. This component is typically
used on an element with an image component and two child elements with text components (one for
placeholder text and one for input text). To see an example of a completed canvas with the text input
component, open the UiCompTextInput.uicanvas file in the FeatureTests Project (p. 1108).

To edit a text input component
In the UI Editor Properties pane, expand TextInput and do the following, as appropriate:

Interactable
See Properties (p. 1161) to edit the common interactive component settings.

Elements, Text
Select an element from the list to provide the text component for the input text. The list shows
child elements that have text components.

Elements, Placeholder text element
Select an element from the list to provide the text component for the placeholder text. The list
shows child elements that have text components.

Text editing, Selection color
Click the color swatch to select a different color for selected text.

Text editing, Cursor color
Click the color swatch to select a different color for the cursor.

Text editing, Max char count
Enter the maximum number of characters allowed in the text input box. Enter -1 for no
character limit.

Text editing, Cursor blink time
Enter a value in seconds. Use 0 for no blink, 1 to blink once every second, 2 to blink once
every two seconds, etc.

Version 1.6
1166

Lumberyard User Guide
Interactive Components

Text editing, Is password field
Check the box and specify the replacement character.

Text editing, Clip input text
Sets the Overflow mode of the text element to Clip text at runtime.

Actions, Change
Type a text string. This string is sent as an action on the UI canvas whenever a change occurs
in the text input, such as typing or deleting a character.

Actions, End edit
Type a text string. This string is sent as an action on the UI canvas whenever the player clicks
off the text input or presses Enter.

Actions, Enter
Type a text string. This string is sent as an action on the UI canvas when the player presses
Enter.

ScrollBox

You can use a scroll box component to present content, such as images or text, within a scrollable
area. To see an example of a completed canvas with the scroll box component, open the
UiCompScrollBox.uicanvas and UICompScrollBox_More.uicanvas files in the FeatureTests
Project (p. 1108).

This component is typically used with a mask component, which hides content outside of the masked
area.

You can add a prefabricated scroll box element. When you do this, a mask, content, and image
elements are automatically created and nested in your Hierarchy pane.

To add a ScrollBox element from prefab

• Click New, Element from prefab, ScrollBox.

The element named ScrollBox (1) has the ScrollBox component (2) on it. You can add an image
to the ScrollBox element's Image component (3), which acts as the visual frame for the scroll box.
Because the mask element and its child elements are drawn in front of the scroll box element, you see
only the edges of the image on the ScrollBox component. To increase or decrease the viewable area
of this image, adjust the offsets in the mask element's Transform2D (p. 1155) component.

Version 1.6
1167

Lumberyard User Guide
Interactive Components

The element named Mask has a Mask (p. 1171) component on it, which acts as the viewport through
which you can see the content. To specify a custom mask, you can add an image to the Mask
element's Image component. The contents are drawn to the visible area of the mask; the transparent
area of the mask hides content.

To edit a scroll box component
In the Properties pane, expand ScrollBox and do the following, as appropriate:

Interactable
See Properties (p. 1161) to edit the common interactive component settings.

Content, Content element
Select an element from the list to provide the content to be displayed within the scroll box.

Content, Initial scroll offset
Enter the initial offset value of the content element's pivot point from the parent element's pivot
point.

Content, Constrain scrolling
Select the check box to prevent content from scrolling beyond its edges.

Content, Snap
Select a snapping mode:

• None – No snapping.

• To children – When a drag motion is released, the content element moves in such a way
that the closest child element's pivot point is snapped to the parent element's pivot point.
You can use this, for example, to center a child element in the scroll box when a drag is
released.

• To grid – When a drag motion is released, the content element's pivot point is snapped to a
multiple of the grid spacing from the parent element's pivot point.

Horizontal scrolling, Enabled
Select the check box to enable content to scroll horizontally. If the element, or its parent,
is rotated, then the axis of scrolling is also rotated. You can enabled horizontal scrolling
simultaneously with vertical scrolling to scroll in both directions.

Horizontal scrolling, Scrollbar element
Select an element from the list to provide the horizontal scrollbar associated with the scroll
box.

Horizontal scrolling, Scrollbar visibility
Select the visibility behavior of the horizontal scrollbar:

Version 1.6
1168

Lumberyard User Guide
Interactive Components

• Always visible – Scroll bar is always visible.

• Auto hide – Scroll bar is automatically hidden when not needed. Scroll bar is resized
according to visibility of the vertical scroll bar.

• Auto hide and resize view area – Same as auto hide, but the view area is also resized
smaller when the scroll bar is visible, and larger when the scroll bar is hidden.

Vertical scrolling, Enabled
Select the check box to enable content to scroll vertically. If the element, or its parent,
is rotated, then the axis of scrolling is also rotated. You can enable vertical scrolling
simultaneously with horizontal scrolling to scroll in both directions.

Vertical scrolling, Scrollbar element
Select an element from the list to provide the vertical scrollbar associated with the scroll box.

Vertical scrolling, Scrollbar visibility
Select the visibility behavior of the vertical scrollbar:

• Always visible – Scroll bar is always visible.

• Auto hide – Scroll bar is automatically hidden when not needed. Scroll bar is resized
according to visibility of the vertical scroll bar.

• Auto hide and resize view area – Same as auto hide, but the view area is also resized
smaller when the scroll bar is visible, and larger when the scroll bar is hidden.

Actions, Change
Set the action that is triggered during a drag each time the position changes.

Actions, End change
Set the action that is triggered when a drag motion is completed.

ScrollBar

You can use a scroll bar component to add a scrollable bar, or handle, for manipulating settings or
scrolling within a scroll box. To see an example of a completed canvas with the scroll bar component,
open the UICompScrollBar.uicanvas file in the FeatureTests Project (p. 1108).

This is a horizontal scroll bar:

This is an image within a scroll box with both a horizontal and a vertical scroll bar:

You can add a prefabricated horizontal or vertical scroll bar element. When you do this, a handle is
automatically created and nested in your Hierarchy pane.

Version 1.6
1169

Lumberyard User Guide
Layout Components

To add a ScrollBar element from prefab

• Click New, Element from prefab, ScrollBarHorizontal or ScrollBarVertical.

To edit a scroll bar component
In the Properties pane, expand ScrollBar and do the following, as appropriate:

Interactable
See Properties (p. 1161) to edit the common interactive component settings.

Elements, Handle
Select an element from the list to provide the entity to be displayed as the movable handle of
the scrollbar.

Values, Orientation
Select the scrollbar's orientation:

• Horizontal – Scrollbar's handle moves left and right.

• Vertical – Scrollbar's handle moves up and down.

Values, Value
Enter the initial value of the scrollbar (0.0 to 1.0).

Values, Handle size
Enter the size of the handle relative to the scrollbar (0.0 to 1.0).

Values, Min handle size
Enter the minimum size of the handle in pixels.

Actions, Change
Type a text string. This string is sent as an action on the UI canvas when the
scroll bar changes values. You can listen for this action in the flow graph using
UIe:Canvas:ActionListener Node (p. 1185).

Actions, End Change
Type a text string. This string is sent as an action on the UI canvas when the scroll
bar has finished changing values. You can listen for this action in the flow graph using
UIe:Canvas:ActionListener Node (p. 1185).

Layout Components
You can add one layout component to an element to organize child elements into uniform columns,
rows, or a grid.

Layout Column
You can use a layout column component to organize child elements into a uniform column.
To see an example of a completed canvas with the layout column component, open the
UiCompLayout.uicanvas file in the FeatureTests Project (p. 1108).

To edit a layout column component
In the Properties pane of the UI Editor (p. 1137), expand LayoutColumn and do the following,
as appropriate:

• For Padding, enter values in pixels, relative to the element's borders.

• For Spacing, enter values in pixels to adjust spacing between elements.

• For Order, select Top-to-Bottom or Bottom-to-Top to specify the order in which the child
elements appear in the column.

Layout Row
You can use a layout row component to organize child elements into a uniform row.

Version 1.6
1170

Lumberyard User Guide
Other Components

To edit a layout row component
In the Properties pane, expand LayoutRow and do the following, as appropriate:

• For Padding, enter values in pixels, relative to the element's borders.

• For Spacing, enter values in pixels to adjust spacing between elements.

• For Order, select Left-to-Right or Right-to-Left to determine the order in which the child
elements appear in the row.

Layout Grid

You can use a layout grid component to organize child elements into a uniform grid. To
see an example of a completed canvas with the layout column component, open the
UiCompLayout.uicanvas file in the FeatureTests Project (p. 1108).

To edit a layout grid component
In the Properties pane, expand LayoutGrid and do the following, as appropriate:

Padding
Enter values in pixels, relative to the element's borders.

Spacing
Enter values in pixels to adjust spacing among elements.

Cell size
Enter values in pixels to specify the size of the child elements.

Order
Do the following as appropriate:

• For Horizontal, select Left-to-Right or Right-to-Left to determine the order in which
elements appear horizontally.

• For Vertical, select Top-to-Bottom or Bottom-to-Top to determine the order in which
elements appear vertically.

• For Starting With, select Horizontal or Vertical to determine whether elements appear
horizontally or vertically first.

Other Components
You can add either or both of the fader and mask components to an element.

Fader

You can use a fader component to simultaneously adjust the transparency of an element and
its children. To see an example of a completed canvas with the fader component, open the
UiCompFader.uicanvas file in the FeatureTests Project (p. 1108).

To edit a fader component

1. In the Properties pane of the UI Editor (p. 1137), expand Fader.

2. For the Fade multiplier, use the slider to select a number between 0 (invisible) and 1 (opaque) and
press Enter.

Mask

You can add a mask component to an element to show a portion of content in child elements (for
example, image or text). To see an example of a completed canvas with the mask component, open
the UiCompMask.uicanvas file in the FeatureTests Project (p. 1108).

Version 1.6
1171

Lumberyard User Guide
Implementing New Fonts

When you add a mask component, the default mask (visible area) is a square. If you want to use a
nonrectangular mask, you need a texture or image that contains an alpha channel (p. 1372), which
specifies transparent and opaque areas. You can set the image component of the element as a custom
image to be used as a mask. The child elements are drawn to (shown by) the visible area of the image
and hidden by the transparent area of the image. Masks are most commonly used in conjunction with a
scrollbox prefab element (p. 1167).

To add an image to be used as a custom mask

1. In the UI Editor (p. 1137) toolbar, create a new empty element by clicking New, Empty Element.
This is the parent element.

2. In the Properties pane, add an image component by clicking Add Component, Image.

3. Add a mask component by clicking Add Component, Mask.

4. Add a child element by right-clicking the parent element and then clicking New, Empty Element.

5. Select the child element. Add an image component to the child element.

6. Select an image for the child element by clicking the folder icon next to Image, Sprite Path in the
Properties pane. Open an image file that is located within your current project directory.

7. Select the parent element. Select the texture or image to use as a mask by clicking the folder icon
next to the Image, Sprite Path in the Properties pane. Open an image file that is located within
your current project directory.

The image that you use as a mask should have opaque areas (which shows the content in child
elements) and transparent areas (which hides the content in child elements).

8. In the Properties pane, under Mask, select Use alpha test.

To edit a mask component
In the Properties pane, expand Mask and use the following settings, as appropriate:

Enable Masking
Enables masking (selected by default). When selected, only the parts of the child elements
that are revealed by the mask are visible.

Draw behind
Draws the mask visual behind the child elements. Can be useful for debugging purposes.

Draw in front
Draws the mask visual in front of the child elements. Can be useful for debugging purposes.

Use alpha test
Uses the alpha channel in the masks visual's texture to define the mask. Must be enabled for
masks that are anything other than a rectangle.

Mask interaction
Prevents input events from being sent to elements that are outside of the mask.

Implementing New Fonts
You can add fonts to your game UI in Lumberyard by saving the font asset to your game project
and creating an .xml file that contains specifics for that font, such as the path to the font file and
parameters that affect the font's appearance. You can combine multiple font assets into a single font
family, and further customize text appearance using Text Styling Markup (p. 1159).

Using the procedures in this section, you can:

• Add new fonts to your game UI (p. 1173)

• Create font families (p. 1173)

Version 1.6
1172

Lumberyard User Guide
Adding New Fonts

• Achieve custom styling

• Configure font rendering quality

Adding New Fonts
For each new font that you want to add, you need the following files:

• Font asset – True Type Font (.ttf) or Open Type Font (.otf) file.

• Font .xml file describing the asset.

To add a new font to your UI

1. Save the font asset (.ttf or .otf file) to your game project directory, such as dev
\SamplesProject\Font.

2. Copy an existing font .xml file into your game project Font directory. The following font .xml files
are included in the Lumberyard project:

• dev\Engine\Fonts\default-ui.xml

• dev\SamplesProject\Fonts\NotoSans-Regular.xml

3. Change the .xml file name (leave the .xml extension unchanged). Use any file name that is
descriptive and appropriate for your purposes.

4. Open the .xml file and edit the following line to point to your font asset file name:

Once the Asset Processor is finished processing your font assets, you can select your font by loading
the font .xml (p. 1159) in the UI Editor for any text component.

Creating Font Families
You can combine multiple font assets into a single font family group.

The following is an example of a .fontfamily file.

<fontfamily name="MyFontFamily">

 <file path="myfontfamily-regular.xml" />
 <file path="myfontfamily-bold.xml" tags="b" />
 <file path="myfontfamily-italic.xml" tags="i" />
 <file path="myfontfamily-bolditalic.xml" tags="b,i" />

</fontfamily>

The UI system uses the font family definitions to determine which font asset to apply when styling text.
You can combine the following types of assets:

• Unstyled – Font representing text with no styling applied. In the example above, this is
myfontfamily-regular.xml.

• Bold – Font representing text with bold styling.

• Italic – Font representing text with italic styling.

• Bold-Italic – Font representing text with both bold and italic styling.

Version 1.6
1173

Lumberyard User Guide
Creating Font Families

Font Family File XML

To create a new font family file, you can create a new, empty plain text file and enter the contents, or
you can modify an existing font family file.

To add a new font family file to your UI

1. To create a new font family file, do one of the following:

• Open Notepad (or similar program) and save an empty text file with a .fontfamily file
extension.

• Copy an existing .fontfamily file into your game project's Fonts directory. The following
.fontfamily files are included in the Lumberyard project:

• dev\FeatureTests\Fonts\NotoSans\NotoSans.fontfamily

• dev\FeatureTests\Fonts\NotoSerif\NotoSerif.fontfamily

2. Name your .fontfamily file appropriately (leave the .fontfamily extension)

3. Open your .fontfamily file and edit the contents to configure the font family.

For example:

<fontfamily name="MyFontFamily">

 <file path="myfontfamily-regular.xml" />
 <file path="myfontfamily-bold.xml" tags="b" />
 <file path="myfontfamily-italic.xml" tags="i" />
 <file path="myfontfamily-bolditalic.xml" tags="b,i" />

</fontfamily>

Once the Asset Processor has finished processing your font assets, you can select your font family by
selecting the *.fontfamily file in the UI Editor as the font for any text component. To apply custom
styling to text using the font family, see Text Styling Markup (p. 1159).

The .fontfamily file uses XML. The UI system supports the following tags and attributes for the
.fontfamily file:

Tag: fontfamily
Attribute: name

The unique name of the font family. Each font family name must be unique. You can, however, use
the same font assets in multiple font families.

Tag: font
Container tag for the file tag.

Tag: file
Attribute: path

Path to the font asset, a TTF or OTF file. The path is relative to the font family file.

Attribute: tags

This tag is optional. If omitted, this font file is used when no styling is applied.

Values:

• b – indicates bold tag

• i – indicates <i> italic tag

Version 1.6
1174

Lumberyard User Guide
Configuring Font Rendering Quality

• b,i – indicates when both bold and <i> italic tags are applied

Configuring Font Rendering Quality
Lumberyard's built-in UI system, LyShine, renders text using font textures. The quality of the on-
screen text is affected by the font texture size and the size of the text itself when rendered on the
screen.

Use the procedures in this section to configure font size and texture to achieve quality text rendering.

Font Texture Width and Height Attributes

The font .xml file included in the Lumberyard project has the following content:

<fontshader>

 <effect name="default">
 <pass>
 </pass>
 </effect>
 <effect name="drop_shadow">
 <pass>
 </pass>
 <pass>
 <color r="0" g="0" b="0" a="1"/>
 <pos x="1" y="1"/>
 </pass>
 </effect>
</fontshader>

The font texture resolution is controlled by the following line:

In this example, the font texture has a resolution of 512x256. This resolution size is an important
number for determining font rendering quality.

Character Slots

In Lumberyard, a font texture is logically divided up into equally sized slots. The grid size is 16x8. This
means that a font texture can hold a maximum of 128 characters.

Font Size

Because a font texture is divided into a logical grid, a simple calculation determines how much real
estate each character in the font can use:

• Font texture width / 16 = Slot width

• Font texture height / 8 = Slot height

In the example given in the previous section, the font texture size was 512x256.

• 512 / 16 = 32 (slot width)

Version 1.6
1175

Lumberyard User Guide
Using the Animation Editor

• 256 / 8 = 32 (slot height)

For a 512x256 sized font texture, you can render pixel-perfect characters at 32x32.

Knowing these calculations helps you to determine the right font texture size for the purposes of your
game UI.

To determine the right font texture size for your game UI

1. Create the font .xml file (p. 1173) for the font you want to use.

2. Choose an arbitrary font texture size to start with, such as 512x256 as used in the example above.

3. Use the UI Editor to mock up a canvas with text elements that use your font .xml file.

4. In the UI Editor's Properties pane, under Text, Font Size, experiment with the font size to find
the ideal size for your use case.

5. Once you have determined the appropriate font size for your purposes, use the following formula
to determine the font texture width and height.

• Texture width = Font size * 16

• Texture height = Font size * 8

6. Edit your font .xml to use the calculated font texture size.

Note

• Font texture sizes do not necessarily need to be a power of 2 (128, 256, 512, 1024, 2048,
and so on), but the width must be a multiple of 16, and the height must be a multiple of 8.

• You can have multiple font .xml files that reference the same font but have different font
texture sizes.

For example, you may have some caption text that needs to appear only at a small font
size, but you have other screens (perhaps a menu screen) where you want the same look
and feel—by using the same font—that needs to be larger, and therefore needs a higher
resolution font texture.

Using the Animation Editor
You can use animation sequences to animate UI elements. A UI canvas can contain many named
animation sequences.

The Animation Editor has the following features:

• Menu – Operations for creating new animation sequences and switching between the Track Editor
and Curve Editor.

• Toolbar – Tools for the editing and playback of animations. The Curve Editor displays an additional
toolbar at the top of the pane.

• Node pane – Area for showing the active sequence and all of the elements that it is animating. A
track for each animated property appears underneath the related element.

• Editor pane – Area for either the Track Editor, the Curve Editor, or both.

To show the Animation Editor editor if it is not already visible

• From the UI Editor (p. 1137) menu, choose View, Animation Editor.

Version 1.6
1176

Lumberyard User Guide
Recording Animation Data

To create an animation sequence, you first create a new sequence, assign one or more UI elements
to it, and then record changes you make to the UI element(s)—this becomes the animation sequence.
You can then edit the animation sequence(s) using the Animation Editor. These processes are
described in greater detail in the following sections.

Recording Animation Data
Recording animation typically involves three steps:

1. Create a new animation sequence.

2. Add a UI element to that sequence.

3. Turn on animation recording to capture changes in the element properties.

Adding a UI element also adds a node to the sequence. After that any time that you enter record mode,
a track is automatically added to your animation for any change you make to this UI element. You do
not need to manually add tracks. For more information, see Using the Node Pane (p. 1179).

You can create an animation sequence from the Animation Editor menu or toolbar.

To create a new animation sequence

Version 1.6
1177

Lumberyard User Guide
Playing Animation Sequences

In the Animation Editor (p. 1176), do one of the following:

• From the Sequence menu, choose New Sequence.

• Click the Add Sequence icon on the toolbar.

To add a UI element to the sequence

1. In the UI Editor (p. 1137), select the UI element that you want to animate.

2. In the Animation Editor, right-click the sequence that you created and click Add Selected UI
Element(s).

To record an animation sequence

1. In the Animation Editor toolbar, click the Record icon.

2. In the UI Editor, use either the Properties pane or viewport pane to make changes to the selected
UI element.

3. After making all changes, click the Stop icon in the Animation Editor toolbar.

Note
In the current release, not all component properties can be recorded. For example,
enumerated values, such as the image type of an image component, cannot be animated.

After you record a track, it appears beneath its UI element. The node pane lists your current animation
sequences. For more information on the Node Pane, see Using the Node Pane (p. 1179)

Playing Animation Sequences
You can play back the animation in the Animation Editor to preview what it will look like in your game.
Playing the animation sequence animates the UI elements in the UI Editor.

Tip
You can also play animations in the Flow Graph Editor. Use the UI:Sequence:Play node
to play animation sequences in the game from a flow graph. `For more information about this
flow graph node, see UI Animation Node (p. 1303).

To control playback of animation in the UI Editor

• In the Play toolbar of the Animation Editor, use the Play, Pause, Stop, Go to start of
sequence, and Go to end of sequence buttons.

Editing Animation Data
After you create your sequence(s) and record animation data to them, you can use the Node Pane,
Track Editor, and Curve Editor in the Animation Editor to modify your sequences.

• In the Node Pane, you can add or remove UI elements from an animation sequence, edit
sequences, and work with keys. For more information, see Using the Node Pane (p. 1179).

• In the Track Editor, you can limit your animation preview, manipulate keys, and change your
animation's timeline. For more information, see Using the Track Editor (p. 1181).

• In the Curve Editor, you can manipulate splines to change the behavior of the transitions between
keys. For more information, see Using the Curve Editor (p. 1183).

You can use the toolbar to select a sequence to display and edit.

Version 1.6
1178

Lumberyard User Guide
Editing Animation Data

To select an animation sequence to edit

• In Animation Editor, click the arrow next to the name of the current sequence in the toolbar to
display a list of active sequences available to edit.

Topics

• Using the Node Pane (p. 1179)

• Using the Track Editor (p. 1181)

• Using the Curve Editor (p. 1183)

Using the Node Pane

The Node Pane in the Animation Editor (p. 1176) displays all the nodes in the selected animation
sequence. Each item listed in the Node Pane is considered a node, though they represent different
parts of the sequence. You can use the Node Pane to add or delete UI element nodes. Track nodes
appear beneath its UI element when you record a track.

The animation sequence node, at the top level, contains a list of its UI elements nodes. Each UI
element node contains a list of its track nodes.

1. Animation Sequence node

2. UI Element nodes

3. Track nodes

To add a new UI element node

1. In the UI Editor (p. 1137), select one or more elements.

2. In the Animation Editor, right-click anywhere in the node pane and select Add Selected UI
Element(s).

Version 1.6
1179

Lumberyard User Guide
Editing Animation Data

To remove a UI element node

• In the Animation Editor, in the node pane, right-click an element node and click Delete.

To edit a track

1. In the Animation Editor, in the node pane, select a track node.

2. Right-click the track node and choose any of the following:

• Copy Keys

• Copy Selected Keys

• Paste Keys

• Disable the track

You can also use the Edit Sequence tool to edit the properties of the sequence directly. You can set
various properties, such as the start and end time, whether the sequence loops, and so on.

To open the Edit Sequence tool

• In the Animation Editor, click the Edit Sequence icon.

Version 1.6
1180

Lumberyard User Guide
Editing Animation Data

Using the Track Editor

The Track Editor displays all the tracks in your current animation sequence. The Track Editor
enables you to do the following:

• Move, delete, copy, and paste keys

• Change the timeline of the animation

• Control the animation preview range

To display the Track Editor

• In the Animation Editor (p. 1176), choose View, Track Editor or View, Both.

To zoom in or out

• Scroll the mouse wheel

To pan the view

• With the mouse in the Track Editor, drag using the middle mouse button

Topics

• Working with Keys in the Track Editor (p. 1181)

• Moving the Play or Record Point in the Track Editor (p. 1182)

• Previewing in the Track Editor (p. 1183)

Working with Keys in the Track Editor

When you create an animation, key values are automatically recorded. Using the Track Editor, you
can move, delete, copy, and paste keys. Keys are represented by a green circle on the timeline of each
track.

To move a key

• Click a key and drag it to a new time on the timeline.

To constrain movement to time only

• Hold Shift as you drag the key to a new time on the timeline.

To scale the selected key frames while moving a key

• Hold Alt as you drag the key to a new time on the timeline.

To delete a key

• Right-click a key and click Delete.

Version 1.6
1181

Lumberyard User Guide
Editing Animation Data

To copy a key

• Right-click a key and click Copy.

To paste a key

• Right-click in the timeline and click Paste. Move the key to the desired point on the timeline, then
click to place.

The Track Editor's toolbar features a variety of tools to improve your workflow efficiency when editing
tracks. Pause over each icon to reveal the tooltips.

Some of the toolbar functions require you to select multiple keys.

To select multiple keys

• In the Track Editor, drag to select multiple keys. The selected keys appear as white circles.

You can also use the Track Editor toolbar to select, move, and snap keys. When moving keys, you can
choose to snap them to other keys, to frames, or to second ticks.

Working with Keys in the Track Editor Toolbar

Toolbar icon Function

Go to previous key Selects the key directly before the currently selected key.

Go to next key Selects the key directly after the currently selected key.

Slide keys Moves the currently selected key and slides all the keys after it
to the new point on the timeline while maintaining the original
spacing.

Move keys Moves the currently selected key(s) to the new point on the
timeline without affecting other keys.

Scale keys Functions only with multiple keys selected to increase or decrease
the space between the selected keys proportionally.

Magnet Snapping Snaps to keys in other tracks as you get close to them; allows you
to place the key anywhere but indicates a red circle on the key you
want to snap to.

Frame Snapping Snaps to frames.

Tick Snapping Snaps to second ticks.

Moving the Play or Record Point in the Track Editor

The play or record point of the animation sequence is shown as a vertical magenta slider on the
timeline. Move the play or record point, and the properties of the UI elements in the Animation
Editor (p. 1176) change to the values specified by the animation tracks.

To move the play or record point in the Track Editor

• Click or drag the vertical magenta slider in the timeline.

Version 1.6
1182

Lumberyard User Guide
Editing Animation Data

Previewing in the Track Editor

The Track Editor features a timeline along its top edge. To preview your entire animation, simply click
the Play button to play your animation at its normal speed. You can also change the speed of preview
by clicking the arrow beside the play button and selecting 2, 1, ½, ¼, or #. You can also limit your
animation preview, as it plays, to a specific time frame.

To limit play preview in the Track Editor

1. In the timeline, at the start of your preferred preview time, right-click to mark the time with a red
triangle.

2. In the timeline, at the end of your preferred preview time, right-click again to mark the end time
with a red triangle.

3. Click the Play button to preview your animation in the time frame specified.

Note
When you preview an animation or move the playback position on the timeline, it moves the
UI elements in the UI Editor. This means that, if you then save the canvas, these UI elements
will be saved in this position.
Reposition the timeline or preview a different sequence to position the UI elements at the
positions in which you want them to load before you save the canvas.

Using the Curve Editor

The Curve Editor displays animations as function curves. Each track's curves represent an animation
of a property value (such as anchor, offfset, color, or any property of a UI element).

The elements of a curve

1. Curve or spline

2. Spline key

3. Tangent handles

Version 1.6
1183

Lumberyard User Guide
Editing Animation Data

The path of the curve represents the transition of the value between the keyframes. If the value
changes in a straight line between each keyframe (linear), transitions between keyframes will not be
smooth. The default curve causes the value to smoothly ease in and ease out. Each key has an in
tangent and an out tangent. Depending on the preferred effect, you can use the toolbar icons to switch
the tangents to auto, zero, step, or linear. You can also manually drag the tangent handles.

By default, animation tracks are recorded with a smooth transition. You can use the buttons in the
toolbar at the top of the Curve Editor to change how the curves behave on either side of the selected
key. You can also drag spline keys to a different point in the timeline.

To display the Curve Editor

• In the UI Animation editor, choose View, Curve Editor or View, Both.

To zoom in or out

• Scroll the mouse wheel

To pan the view

• With the mouse in the Curve Editor, drag using the middle mouse button

To adjust a spline key

1. In the Node Pane, select a track. The curves for that track appear in the Curve Editor.

2. In the Curve Editor, select a spline key.

3. Do one or more of the following:

Version 1.6
1184

Lumberyard User Guide
UI Flow Graph Nodes

• Drag the spline key to a different point on the timeline.

• Use the toolbar buttons to select a preset: auto, zero, step, or linear.

You can select multiple spline keys to modify at once. Once selected, you can move them all together,
set their in and out tangents, and so on.

To select multiple spline keys

• In the Curve Editor, drag a selection box over all the spline keys you want to select.

UI Flow Graph Nodes
You can use flow graph nodes to control the game's user interface. For example, you could specify an
action that loads a specific UI canvas or set parameters for when to keep a canvas loaded.

Lumberyard features two sets of UI flow graph nodes: UIe and UI. The improved UIe nodes supersede
the original (and now legacy) UI flow graph nodes. For best results when creating new flow graph
nodes, use the UIe flow graph node set.

For more information on flow graphs, see Flow Graph System (p. 487).

Topics

• UIe Flow Graph Nodes (p. 1185)

• UI Flow Graph Nodes (p. 1241)

UIe Flow Graph Nodes
The UIe flow graph node set supersedes the original UI flow graph node set (now legacy). The UIe
node set behaves the same as the original UI node set, but simplifies how the nodes associate with UI
canvases and UI elements.

You associate each UIe node with a UI canvas by setting the node’s Choose Entity input. For
information on how to associate UI canvases with UI flow graph nodes, see Associating Canvases with
UI Flow Graph Nodes (p. 1144).

Topics

• UIe Canvas Nodes (p. 1185)

• UIe Component Nodes (p. 1189)

• UIe Animation Node (p. 1241)

UIe Canvas Nodes
You can use these flow graph nodes to perform actions on a UI canvas.

UIe:Canvas:ActionListener Node

Listens for the specified action on a UI canvas.

Node Inputs

Activate
Initiates listening for the specified action.

Version 1.6
1185

Lumberyard User Guide
UIe Flow Graph Nodes

ActionName
Name of the action to listen for.

Node Outputs

OnAction
Triggers when the canvas sends the action.

ElementName
Name of the UI element that triggered the action.

UIe:Canvas:LoadIntoEntity Node

Loads the specified UI canvas.

Node Inputs

Activate
Loads the canvas.

Disabled
Sets whether canvas is disabled initially. If disabled, the canvas is not updated or rendered.

Node Outputs

OnLoad
Sends a signal when the canvas is loaded.

UIe:Canvas:UnloadFromEntity Node

Unloads the specified canvas.

Node Inputs

Activate
Unloads the canvas.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Canvas:GetKeepLoaded Node

Gets the Boolean value of whether the canvas stays loaded when a level is unloaded.

Node Inputs

Activate
Gets whether the canvas stays loaded when the level is unloaded.

Node Output

KeepLoaded
The Boolean value of whether the canvas stays loaded if the level is unloaded. True if the canvas
should stay loaded during level unload; otherwise, false.

Version 1.6
1186

Lumberyard User Guide
UIe Flow Graph Nodes

UIe:Canvas:SetKeepLoaded Node

Determines whether the canvas stays loaded when a level is unloaded.

Node Inputs

Activate
Sets whether the canvas stays loaded when the level is unloaded.

KeepLoaded
If true, causes the canvas to stay loaded when the level is unloaded.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Canvas:GetDrawOrder Node

Gets the integer draw order value for a UI canvas with respect to other UI canvases.

Node Inputs

Activate
Gets the draw order for the canvas.

Node Output

DrawOrder
Order in which the canvas draws. Higher numbers appear before lower numbers.

UIe:Canvas:SetDrawOrder Node

Sets the draw order for a UI canvas with respect to other UI canvases.

Node Inputs

Activate
Sets the draw order for the canvas.

DrawOrder
Order in which to display the canvas. Higher numbers appear before lower numbers.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Canvas:GetIsPixelAligned Node

Gets the Boolean value of whether the canvas is pixel-aligned.

Node Inputs

Activate
Gets whether visual element's vertices should snap to the nearest pixel.

Version 1.6
1187

Lumberyard User Guide
UIe Flow Graph Nodes

Node Output

IsPixelAligned
Boolean value. True if the visual element's vertices should snap to the nearest pixel; otherwise,
false.

UIe:Canvas:SetIsPixelAligned Node

Sets whether visual element's vertices should snap to the nearest pixel.

Node Inputs

Activate
Sets the pixel-aligned property for the canvas ID.

IsPixelAligned
Boolean value that represents whether a visual element's vertices should snap to the nearest
pixel.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Canvas:GetEnabled Node

Gets the Boolean enabled flag of the canvas. Enabled canvases are updated and each frame
rendered.

Node Inputs

Activate
Gets the enabled flag of the canvas.

Node Output

Enabled
The enabled flag of the canvas. True if enabled; otherwise, false.

UIe:Canvas:SetEnabled Node

Sets whether the canvas is enabled. Enabled canvases are updated and each frame rendered.

Node Inputs

Activate
Sets the enabled flag of the canvas.

Enabled
True if the canvas should be enabled; otherwise, false.

Node Output

Done
Sends a signal when the node's action is finished.

Version 1.6
1188

Lumberyard User Guide
UIe Flow Graph Nodes

UIe Component Nodes

The UIe component flow graph node set supersedes the original UI component flow graph node set
(now legacy). The UIe node set behaves the same as the original UI node set, but simplifies how the
nodes associate with UI canvases and UI elements.

You can use these flow graph nodes to perform actions on UI elements through their components.

Each UIe component node has an input called ElementName. This input represents the name of the
UI element in the UI Editor. To edit the ElementName input, click the < button (right of the text field)
to automatically enter the name of the element that is currently selected in the UI Editor. Click the ..
button to launch the UI Editor.

Topics

• UIe Button Component Nodes (p. 1189)

• UIe Checkbox Component Nodes (p. 1190)

• UIe Element Node (p. 1194)

• UIe Fader Component Nodes (p. 1194)

• UIe Image Component Nodes (p. 1195)

• UIe Interactable Component Nodes (p. 1198)

• UIe Layout Column Component Nodes (p. 1199)

• UIe Layout Grid Component Nodes (p. 1201)

• UIe Layout Row Component Nodes (p. 1205)

• UIe Mask Component Nodes (p. 1208)

• UIe ScrollBox Component Nodes (p. 1210)

• UIe ScrollBar Component Nodes (p. 1219)

• UIe Slider Component Nodes (p. 1224)

• UIe Text Component Nodes (p. 1229)

• UIe Text Input Component Nodes (p. 1233)

UIe Button Component Nodes

Use the following flow graph nodes to perform actions on the button component.

UIe:Button:GetActionName Node

Gets the action name string that is emitted when the button is released.

Node Inputs

Activate
Updates the output.

Version 1.6
1189

Lumberyard User Guide
UIe Flow Graph Nodes

ElementName
Name of the button element.

Node Output

Action
The action name associated with the button.

UIe:Button:SetActionName Node

Sets the action name string that's emitted when the button is released.

Node Inputs

Activate
Assigns the action name.

ElementName
Name of the button element.

Action
The action name string to assign to the button.

Node Output

Done
Sends a signal when the node's action is finished.

UIe Checkbox Component Nodes

Use the following flow graph nodes to perform actions on the check box component.

UIe:Checkbox:GetState Node

Gets the Boolean state of the check box.

Node Inputs

Activate
Gets the state of the check box.

ElementName
Name of the check box element.

Node Output

State
Outputs the current Boolean state of the check box.

UIe:Checkbox:SetState Node

Sets the Boolean state of the check box.

Node Inputs

Activate
Sets the state of the check box.

Version 1.6
1190

Lumberyard User Guide
UIe Flow Graph Nodes

ElementName
Name of the check box element.

State
The Boolean state of the check box.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Checkbox:GetChangedActionName Node

Gets the action triggered when the check box value changed.

Node Inputs

Activate
Gets the changed action name.

ElementName
Name of the check box element.

Node Output

ChangedAction
The action name string value emitted when the check box value changes.

UIe:Checkbox:SetChangedActionName Node

Sets the action triggered when the check box value changed.

Node Inputs

Activate
Gets the changed action name.

ElementName
Name of the check box element.

ChangedAction
The action name string value emitted when the check box value changes.

UIe:Checkbox:GetOptionalCheckedEntity Node

Gets the child element to show when the check box is in the on state.

Node Inputs

Activate
Updates the output.

ElementName
Name of the check box element.

Node Output

CheckedElement
The child element to show when the check box is selected (in the on state).

Version 1.6
1191

Lumberyard User Guide
UIe Flow Graph Nodes

UIe:Checkbox:SetOptionalCheckedEntity Node

Sets the child element to show when the check box is selected (in the on state).

Node Inputs

Activate
Updates the output.

ElementName
Name of the check box element.

CheckedElement
The child element to show when the checkbox is selected (in the on state).

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Checkbox:GetOptionalUncheckedEntity Node

Gets the child element to show when the check box is deselected (in the off state).

Node Inputs

Activate
Updates the output.

ElementName
Name of the check box element.

Node Output

UncheckedElement
The child element to show when the check box is deselected (off state).

UIe:Checkbox:SetOptionalUncheckedEntity Node

Sets the child element to show when the check box is deselected (in the off state).

Node Inputs

Activate
Updates the output.

ElementName
Name of the check box element.

UncheckedElement
The child element to show when the check box is deselected (in the off state).

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Checkbox:GetTurnOnActionName Node

Gets the action triggered when the check box is selected.

Version 1.6
1192

Lumberyard User Guide
UIe Flow Graph Nodes

Node Inputs

Activate
Updates the output.

ElementName
Name of the check box element.

Node Output

TurnOnAction
The action name emitted when the check box is selected (turned on).

UIe:Checkbox:SetTurnOnActionName Node

Sets the action triggered when the check box is selected (turned on).

Node Inputs

Activate
Assigns TurnOnAction as the action name that is emitted when the check box is selected.

ElementName
Name of the check box element.

TurnOnAction
The action name emitted when the check box is selected.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Checkbox:GetTurnOffActionName Node

Gets the action triggered when the check box is deselected (turned off).

Node Inputs

Activate
Update the output.

ElementName
Name of the check box element.

Node Output

TurnOffAction
The action name emitted when the check box is deselected.

UIe:Checkbox:SetTurnOffActionName Node

Sets the action triggered when the check box is deselected (turned off).

Node Inputs

Activate
Assigns TurnOffAction as the action name that is emitted when the check box is deselected.

Version 1.6
1193

Lumberyard User Guide
UIe Flow Graph Nodes

ElementName
Name of the check box element.

TurnOffAction
The action name emitted when the check box is deselected.

Node Output

Done
Sends a signal when the node's action is finished.

UIe Element Node

Use the following flow graph node to enable or disable an element.

UIe:Element:SetIsEnabled Node

Sets the Boolean enabled state of the element. If an element is not enabled, neither it nor any of its
children are drawn or interactive.

Node Inputs

Activate
Sets the enabled state to the value of the State input.

ElementName
Name of the element.

State
The Boolean enabled state of the element.

Node Output

Done
Sends a signal when the node's action is finished.

UIe Fader Component Nodes

Use the following flow graph nodes to perform actions on the fader component.

UIe:Fader:Animation Node

Animates the fader component on the specified element.

Node Inputs

Activate
Starts a fade animation.

ElementName
Name of the fader element.

StartValue
Value at which the fade starts.

Valid values: 0 = Invisible | 1 = Opaque | -1= Start from the current value

TargetValue
Value at which the fade ends.

Valid values: 0 = Invisible | 1 = Opaque

Version 1.6
1194

Lumberyard User Guide
UIe Flow Graph Nodes

Speed
Rate at which the element fades.

Valid values: 0 = Instant fade | 0.5 = Slow fade | 1 = One second fade | 2 = Fade twice as fast

Node Outputs

OnComplete
Sends a signal when the fade is complete.

OnInterrupted
Sends a signal when the fade is interrupted by another fade starting.

UIe:Fader:GetFadeValue Node

Gets the floating-point fade value of an element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the fader element.

Node Output

Value
The floating-point fade value of the element (ElementID).

UIe:Fader:SetFadeValue Node

Sets the fade value of an element.

Node Inputs

Activate
When triggered, assigns Value as the fade value of the fader component of the element.

ElementName
Name of the fader element.

Value
The fade value to assign to the fader component for the element.

Node Output

Done
Sends a signal when the node's action is finished.

UIe Image Component Nodes

Use the following flow graph nodes to perform actions on the image component.

UIe:Image:GetImageSource Node

Replaced by UIe:Image:GetSprite Node (p. 1196).

Version 1.6
1195

Lumberyard User Guide
UIe Flow Graph Nodes

Retrieves the texture file path currently used by the specified image element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the image element.

Node Outputs

Value
Outputs the file path of the image that is currently on the element.

UIe:Image:SetImageSource Node

Replaced by UIe:Image:SetSprite Node (p. 1196).

Changes the texture on the specified image element.

Node Inputs

Activate
Set the texture.

ElementName
Name of the image element.

ImagePath
File path of the texture to display.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Image:GetSprite Node

Gets the texture file path currently used by the specified image element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the image element.

Node Output

Value
Outputs the file path of the image that is currently on the element.

UIe:Image:SetSprite Node

Sets the texture on the specified image element.

Version 1.6
1196

Lumberyard User Guide
UIe Flow Graph Nodes

Node Inputs

Activate
Sets the texture.

ElementName
Name of the image element.

ImagePath
File path of the texture to display.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Image:GetImageType Node

Gets the type of the image. Affects how the texture or sprite is mapped to the image rectangle.

Node Inputs

Activate
Updates the output.

ElementName
Name of the image element.

Node Output

ImageType
An integer representing how the image is scaled and placed.

Valid values: 0 = Stretched | 1 = Sliced | 2 = Fixed | 3 = Tiled | 4 = Stretched to fit | 5 = Stretched
to fill

UIe:Image:SetImageType Node

Sets the type of the image. Affects how the texture or sprite is mapped to the image rectangle.

Node Inputs

Activate
Updates the output.

ElementName
Name of the image element.

ImageType
An integer representing how the image is scaled and placed.

Valid values: 0 = Stretched | 1 = Sliced | 2 = Fixed | 3 = Tiled | 4 = Stretched to fit | 5 = Stretched
to fill

Node Output

Done
Sends a signal when the node's action is finished.

Version 1.6
1197

Lumberyard User Guide
UIe Flow Graph Nodes

UIe:Image:GetColor Node

Gets the color tint for the image.

Node Inputs

Activate
Updates the output.

ElementName
Name of the image element.

Node Outputs

Color
The RGB value (0 – 255 each for R, G, and B) of the element (ElementID).

Alpha
The alpha value (0 – 255) of the element (ElementID).

UIe:Image:SetColor Node

Sets the color tint for the image.

Node Inputs

Activate
Updates the output.

ElementName
Name of the image element.

Color
The RGB value (0 – 255 each for R, G, and B).

Alpha
A floating-point alpha value (0 – 255).

Node Output

Done
Sends a signal when the node's action is finished.

UIe Interactable Component Nodes

Use the following flow graph node for the Interactable component.

UIe:Interactable:SetIsHandlingEvents Node

Sets the Boolean "is handling events" state of the element.

The Interactable flow graph nodes can be used to get or set values on any interactive UI element.

Interactive UI elements are elements that players can interacted with in game, such as button, text
input, check box, slider, and so on. The SetIsHandlingEvents flow graph node sets whether an
interactive UI element should handle input events. If set to false, then the UI element does not respond
to input events, and its visual state is also changed to disabled.

Node Inputs

Activate
Sets the "is handling events" state.

Version 1.6
1198

Lumberyard User Guide
UIe Flow Graph Nodes

ElementName
Name of the element.

State
The Boolean "is handling events" state of the element.

Node Output

Done
Sends a signal when the node's action is finished.

UIe Layout Column Component Nodes

Use the following flow graph nodes to perform actions on the layout column component.

UIe:LayoutColumn:GetOrder Node

Gets the vertical order of the LayoutColumn component for an element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

Order
An integer representing the vertical order.

Valid values: 0 = Top to bottom | 1 = Bottom to top

UIe:LayoutColumn:SetOrder Node

Sets the vertical order of the LayoutColumn component for an element.

Node Inputs

Activate
Sets the vertical order for the element.

ElementName
Name of the element.

Order
An integer representing the vertical order. 0 = Top to bottom | 1 = Bottom to top.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:LayoutColumn:GetPadding Node

Gets the padding (in pixels) inside the edges of the LayoutColumn component for an element.

Version 1.6
1199

Lumberyard User Guide
UIe Flow Graph Nodes

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Node Outputs

Left
An integer representing the padding inside the left edge of the element.

Right
An integer representing the padding inside the right edge of the element.

Top
An integer representing the padding inside the top edge of the element.

Bottom
An integer representing the padding inside the bottom edge of the element.

UIe:LayoutColumn:SetPadding Node

Sets the padding (in pixels) inside the edges of the LayoutColumn component for an element.

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Left
An integer representing the padding inside the left edge of the element.

Right
An integer representing the padding inside the right edge of the element.

Top
An integer representing the padding inside the top edge of the element.

Bottom
An integer representing the padding inside the bottom edge of the element.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:LayoutColumn:GetSpacing Node

Gets the spacing (in pixels) between child elements of the LayoutColumn component for an element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Version 1.6
1200

Lumberyard User Guide
UIe Flow Graph Nodes

Node Output

Spacing
A float value of the spacing (in pixels) between child elements of the element (ElementName).

UIe:LayoutColumn:SetSpacing Node

Sets the spacing (in pixels) between child elements of the LayoutColumn component for an element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Spacing
A float value of the spacing (in pixels) between child elements of the element (ElementName).

Node Output

Done
Sends a signal when the node's action is finished.

UIe Layout Grid Component Nodes

Use the following flow graph nodes to perform actions on the layout grid component.

UIe:LayoutGrid:GetCellSize Node

Gets the size (in pixels) of a child element in the layout.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Outputs

CellWidth
The width (in pixels) of a child element of element (ElementID).

CellHeight
The height (in pixels) of a child element of element (ElementID).

UIe:LayoutGrid:SetCellSize Node

Sets the size (in pixels) of a child element in the layout.

Node Inputs

Activate
Updates the output.

Version 1.6
1201

Lumberyard User Guide
UIe Flow Graph Nodes

ElementName
Name of the element.

CellWidth
The width (in pixels) of a child element of element (ElementID).

CellHeight
The height (in pixels) of a child element of element (ElementID).

Node Output

Done
Sends a signal when the node's action is finished.

UIe:LayoutGrid:GetHorizontalOrder Node

Gets the horizontal order for the layout.

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Node Output

Order
An integer representing the horizontal order.

Valid values: 0 = Left to right | 1 = Right to left

UIe:LayoutGrid:SetHorizontalOrder Node

Sets the horizontal order for the layout.

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Order
An integer representing the horizontal order.

Valid values: 0 = Left to right | 1 = Right to left

Node Output

Done
Sends a signal when the node's action is finished.

UIe:LayoutGrid:GetPadding Node

Gets the padding (in pixels) inside the edges of the LayoutGrid component for an element.

Version 1.6
1202

Lumberyard User Guide
UIe Flow Graph Nodes

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

Left
An integer representing the padding inside the left edge of the element.

Right
An integer representing the padding inside the right edge of the element.

Top
An integer representing the padding inside the top edge of the element.

Bottom
An integer representing the padding inside the bottom edge of the element.

UIe:LayoutGrid:SetPadding Node

Sets the padding (in pixels) inside the edges of the LayoutGrid component for an element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Left
An integer representing the padding inside the left edge of the element.

Right
An integer representing the padding inside the right edge of the element.

Top
An integer representing the padding inside the top edge of the element.

Bottom
An integer representing the padding inside the bottom edge of the element.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:LayoutGrid:GetSpacing Node

Gets the spacing (in pixels) between child elements of the LayoutGrid component for an element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Version 1.6
1203

Lumberyard User Guide
UIe Flow Graph Nodes

Node Output

Spacing
A float value of the spacing (in pixels) between child elements of the element (ElementID).

UIe:LayoutGrid:SetSpacing Node

Sets the spacing (in pixels) between child elements of the LayoutGrid component for an element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Spacing
A float value of the spacing (in pixels) between child elements of the element (ElementID).

Node Output

Done
Sends a signal when the node's action is finished.

UIe:LayoutGrid:GetStartingDirection Node

Gets the starting direction for the layout.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

Direction
An integer representing the direction.

Valid values: 0 = Horizontal order | 1 = Vertical order

UIe:LayoutGrid:SetStartingDirection Node

Sets the starting direction for the layout.

Node Inputs

Activate
Set the starting direction for the layout.

ElementName
Name of the element.

Direction
An integer representing the horizontal order.

Valid values: 0 = Horizontal order | 1 = Vertical order.

Version 1.6
1204

Lumberyard User Guide
UIe Flow Graph Nodes

Node Output

Done
Sends a signal when the node's action is finished.

UIe:LayoutGrid:GetVerticalOrder Node

Gets the vertical order for the layout.

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Node Output

Action
An integer representing the vertical order.

Valid values: 0 = Top to bottom | 1 = Bottom to top

UIe:LayoutGrid:SetVerticalOrder Node

Sets the vertical order for the layout.

Node Inputs

Activate
Sets the vertical order for the layout.

ElementName
Name of the element.

Action
An integer representing the vertical order.

Valid values: 0 = Top to bottom | 1 = Bottom to top

Node Output

Done
Sends a signal when the node's action is finished.

UIe Layout Row Component Nodes

Use the following flow graph nodes to perform actions on the layout row component.

UIe:LayoutRow:GetOrder Node

Gets the horizontal order of the LayoutRow component for an element.

Node Inputs

Activate
Updates the output.

Version 1.6
1205

Lumberyard User Guide
UIe Flow Graph Nodes

ElementName
Name of the element.

Node Output

Order
An integer representing the horizontal order.

Valid values: 0 = Left to right | 1 = Right to left

UIe:LayoutRow:SetOrder Node

Sets the horizontal order of the LayoutRow component for an element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Order
An integer representing the horizontal order.

Valid values: 0 = Left to right | 1 = Right to left

Node Output

Done
Sends a signal when the node's action is finished.

UIe:LayoutRow:GetPadding Node

Gets the padding (in pixels) inside the edges of the LayoutRow component for an element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Outputs

Left
An integer representing the padding inside the left edge of the element.

Right
An integer representing the padding inside the right edge of the element.

Top
An integer representing the padding inside the top edge of the element.

Bottom
An integer representing the padding inside the bottom edge of the element.

UIe:LayoutRow:SetPadding Node

Sets the padding (in pixels) inside the edges of the LayoutRow component for an element.

Version 1.6
1206

Lumberyard User Guide
UIe Flow Graph Nodes

Node Inputs

Activate
Sets the padding (in pixels) inside the edges of the LayoutRow.

ElementName
Name of the element.

Left
An integer representing the padding inside the left edge of the element.

Right
An integer representing the padding inside the right edge of the element.

Top
An integer representing the padding inside the top edge of the element.

Bottom
An integer representing the padding inside the bottom edge of the element.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:LayoutRow:GetSpacing Node

Gets the spacing (in pixels) between child elements of the LayoutRow component for an element.

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Node Output

Spacing
A float value of the spacing (in pixels) between child elements of the element (ElementName).

UIe:LayoutRow:SetSpacing Node

Sets the spacing (in pixels) between child elements of the LayoutRow component for an element.

Node Inputs

Activate
Sets the spacing (in pixels) between child elements.

ElementName
Name of the element.

Spacing
A float value of the spacing (in pixels) between child elements of the element (ElementName).

Node Output

Done
Sends a signal when the node's action is finished.

Version 1.6
1207

Lumberyard User Guide
UIe Flow Graph Nodes

UIe Mask Component Nodes

Use the following flow graph nodes to perform actions on the mask component.

UIe:Mask:GetDrawBehind Node

Gets whether mask is drawn behind the child elements.

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Node Output

DrawBehind
Indicates whether mask is drawn behind the child elements.

UIe:Mask:SetDrawBehind Node

Sets whether mask is drawn behind the child elements.

Node Inputs

Activate
Sets whether mask is drawn behind the child elements.

ElementName
Name of the element.

DrawBehind
Sets whether mask is drawn behind the child elements.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Mask:GetDrawInFront Node

Gets whether mask is drawn in front of child elements.

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Node Output

DrawInFront
Indicates whether mask is drawn in front of child elements.

Version 1.6
1208

Lumberyard User Guide
UIe Flow Graph Nodes

UIe:Mask:SetDrawInFront Node

Sets whether mask is drawn in front of child elements.

Node Inputs

Activate
Sets whether mask is drawn in front of child elements.

ElementName
Name of the element.

DrawInFront
Sets whether mask is drawn in front of child elements.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Mask:GetIsMaskingEnabled Node

Gets whether masking is enabled.

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Node Output

IsMaskingEnabled
Indicates whether masking is enabled.

UIe:Mask:SetIsMaskingEnabled Node

Sets whether masking is enabled.

Node Inputs

Activate
Sets whether masking is enabled.

ElementName
Name of the element.

IsMaskingEnabled
Sets whether masking is enabled.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Mask:GetUseAlphaTest Node

Gets whether to use the alpha channel in the mask visual's texture to define the mask.

Version 1.6
1209

Lumberyard User Guide
UIe Flow Graph Nodes

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Node Output

UseAlphaTest
Indicates whether to use the alpha channel in the mask visual's texture to define the mask.

UIe:Mask:SetUseAlphaTest Node

Sets whether to use the alpha channel in the mask visual's texture to define the mask.

Node Inputs

Activate
Sets whether to use the alpha channel in the mask visual's texture to define the mask.

ElementName
Name of the element.

UseAlphaTest
Sets whether to use the alpha channel in the mask visual's texture to define the mask.

Node Output

Done
Sends a signal when the node's action is finished.

UIe ScrollBox Component Nodes

Use the following flow graph nodes to perform actions on the ScrollBox component.

UIe:ScrollBox:FindClosestContentChildElement Node

Finds the child of the content element that is closest to the content anchors.

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Node Output

ClosestElement
The element currently closest to the focused element.

UIe:ScrollBox:GetContentEntity Node

Gets the content element for the ScrollBox.

Version 1.6
1210

Lumberyard User Guide
UIe Flow Graph Nodes

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Node Output

Content
The element that the ScrollBox scrolls.

UIe:ScrollBox:SetContentEntity Node

Sets the content element for the ScrollBox.

Node Inputs

Activate
Sets the content element for the ScrollBox.

ElementName
Name of the element.

Content
The element that the ScrollBox scrolls.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:ScrollBox:GetIsHorizontalScrollingEnabled Node

Gets whether the ScrollBox allows horizontal scrolling.

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Node Output

Enabled
Indicates whether horizontal scrolling is enabled.

UIe:ScrollBox:SetIsHorizontalScrollingEnabled Node

Sets whether the ScrollBox allows horizontal scrolling.

Node Inputs

Activate
Sets whether the ScrollBox allows horizontal scrolling.

Version 1.6
1211

Lumberyard User Guide
UIe Flow Graph Nodes

ElementName
Name of the element.

Enabled
Sets whether horizontal scrolling is enabled.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:ScrollBox:GetIsScrollingConstrained Node

Gets whether the ScrollBox restricts scrolling to the content area.

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Node Output

IsConstrained
Indicates whether scrolling is constrained.

UIe:ScrollBox:SetIsScrollingConstrained Node

Sets whether the ScrollBox restricts scrolling to the content area.

Node Inputs

Activate
Sets whether the ScrollBox restricts scrolling to the content area.

ElementName
Name of the element.

IsConstrained
Sets whether scrolling is constrained.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:ScrollBox:GetIsVerticalScrollingEnabled Node

Gets whether the ScrollBox allows vertical scrolling.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Version 1.6
1212

Lumberyard User Guide
UIe Flow Graph Nodes

Node Output

Enabled
Indicates whether vertical scrolling is enabled.

UIe:ScrollBox:SetIsVerticalScrollingEnabled Node

Sets whether the ScrollBox allows vertical scrolling.

Node Inputs

Activate
Sets whether the ScrollBox allows vertical scrolling.

ElementName
Name of the element.

Enabled
Sets whether vertical scrolling is enabled.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:ScrollBox:GetScrollOffset Node

Gets the scroll offset of the ScrollBox.

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Node Output

HorizOffset
The horizontal scroll offset of the element identified by ElementName.

VertOffset
The vertical scroll offset of the element identified by ElementName.

UIe:ScrollBox:SetScrollOffset Node

Sets the scroll offset of the ScrollBox.

Node Inputs

Activate
Sets the scroll offset of the ScrollBox.

ElementName
Name of the element.

HorizOffset
The horizontal scroll offset of ElementName.

VertOffset
The vertical scroll offset of ElementName.

Version 1.6
1213

Lumberyard User Guide
UIe Flow Graph Nodes

Node Output

Done
Sends a signal when the node's action is finished.

UIe:ScrollBox:GetScrollOffsetChangedActionName Node

Gets the action triggered when the ScrollBox drag is completed.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

ChangedAction
The action name.

UIe:ScrollBox:SetScrollOffsetChangedActionName Node

Sets the action triggered when the ScrollBox drag is completed.

Node Inputs

Activate
Sets the action triggered when the ScrollBox drag is completed.

ElementName
Name of the element.

ChangedAction
The action name.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:ScrollBox:GetScrollOffsetChangingActionName Node

Gets the action triggered while the ScrollBox is being dragged.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

ChangingAction
The action name.

Version 1.6
1214

Lumberyard User Guide
UIe Flow Graph Nodes

UIe:ScrollBox:SetScrollOffsetChangingActionName Node

Sets the action triggered while the ScrollBox is being dragged.

Node Inputs

Activate
Sets the action triggered while the ScrollBox is being dragged.

ElementName
Name of the element.

ChangingAction
The action name.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:ScrollBox:GetSnapGrid Node

Gets the snapping grid of the ScrollBox.

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Node Outputs

HorizSpacing
The horizontal grid spacing of the element identified by ElementName.

VertSpacing
The vertical grid spacing of the element identified by ElementName.

UIe:ScrollBox:SetSnapGrid Node

Sets the snapping grid of the ScrollBox.

Node Inputs

Activate
Sets the snapping grid of the ScrollBox.

ElementName
Name of the element.

HorizSpacing
The horizontal grid spacing of the element identified by ElementName.

VertSpacing
The vertical grid spacing of the element identified by ElementName.

Node Output

Done
Sends a signal when the node's action is finished.

Version 1.6
1215

Lumberyard User Guide
UIe Flow Graph Nodes

UIe:ScrollBox:GetSnapMode Node

Gets the snap mode for the ScrollBox.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

SnapMode
An integer representing the snap mode state.

Valid values: 0 = None | 1 = Children | 2 = Grid

UIe:ScrollBox:SetSnapMode Node

Sets the snap mode for the ScrollBox.

Node Inputs

Activate
Sets the snap mode for the ScrollBox.

ElementName
Name of the element.

SnapMode
An integer representing the snap mode state.

Valid values: 0 = None | 1 = Children | 2 = Grid

Node Output

Done
Sends a signal when the node's action is finished.

UIe:ScrollBox:GetHorizontalScrollBarVisibility Node

Gets horizontal scrollbar visibility behavior.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

ScrollBarVisibility
An integer that represents the scrollbar visibility behavior.

Version 1.6
1216

Lumberyard User Guide
UIe Flow Graph Nodes

Valid values: 0 = AlwaysVisible | 1 = AutoHide | 2 = AutoHideAndResizeViewArea

UIe:ScrollBox:SetHorizontalScrollBarVisibility Node

Sets horizontal scrollbar visibility behavior.

Node Inputs

Activate
Sets horizontal scroll bar visibility behavior.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

ScollBarVisibility
An integer representing the scrollbar visibility behavior.

0 = AlwaysVisible | 1 = AutoHide | 2 = AutoHideAndResizeViewArea.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:ScrollBox:GetVerticalScrollBarVisibility Node

Gets vertical scrollbar visibility behavior.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

ScrollBarVisibility
An integer that represents the scrollbar visibility behavior.

Valid values: 0 = AlwaysVisible | 1 = AutoHide | 2 = AutoHideAndResizeViewArea

UIe:ScrollBox:SetVerticalScrollBarVisibility Node

Sets vertical scrollbar visibility behavior.

Node Inputs

Activate
Sets vertical scroll bar visibility behavior.

CanvasID
Unique identifier of the element's canvas.

Version 1.6
1217

Lumberyard User Guide
UIe Flow Graph Nodes

ElementID
Unique identifier of the element.

ScollBarVisibility
An integer representing the scrollbar visibility behavior.

0 = AlwaysVisible | 1 = AutoHide | 2 = AutoHideAndResizeViewArea.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:ScrollBox:GetHorizontalScrollBarEntity Node

Gets the horizontal scrollbar element for the ScrollBox.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

HorizontalScrollBar
The element that scrolls the ScrollBox horizontally.

UIe:ScrollBox:SetHorizontalScrollBarEntity Node

Sets the horizontal scrollbar element for the ScrollBox.

Node Inputs

Activate
Sets the horizontal scrollbar element for the ScrollBox.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

HorizontalScrollBar
The element that scrolls the ScrollBox horizontally.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:ScrollBox:GetVerticalScrollBarEntity Node

Gets the vertical scrollbar element for the ScrollBox.

Version 1.6
1218

Lumberyard User Guide
UIe Flow Graph Nodes

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

VerticalScrollBar
The element that scrolls the ScrollBox vertically.

UIe:ScrollBox:SetVerticalScrollBarEntity Node

Sets the vertical scrollbar element for the ScrollBox.

Node Inputs

Activate
Sets the vertical scrollbar element for the ScrollBox.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

VerticalScrollBar
The element that scrolls the ScrollBox vertically.

Node Output

Done
Sends a signal when the node's action is finished.

UIe ScrollBar Component Nodes

Use the following flow graph nodes to perform actions on the Scrollbar component.

UIe:Scrollbar:GetHandleEntity Node

Gets the handle element of the scroll bar.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementName
Name of the element.

Version 1.6
1219

Lumberyard User Guide
UIe Flow Graph Nodes

Node Output

Handle
The handle element.

UIe:Scrollbar:SetHandleEntity Node

Sets the handle element of the scroll bar.

Node Inputs

Activate
Sets the handle element.

CanvasID
Unique identifier of the element's canvas.

ElementName
Name of the element.

Handle
The handle element.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Scrollbar:GetValue Node

Gets the value of the scrollbar.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementName
Name of the element.

Node Output

Value
The scrollbar value of the element identified by ElementName.

UIe:Scrollbar:SetValue Node

Sets the value of the scroll bar.

Node Inputs

Activate
Sets the value of the scrollbar.

CanvasID
Unique identifier of the element's canvas.

ElementName
Name of the element.

Version 1.6
1220

Lumberyard User Guide
UIe Flow Graph Nodes

Value
The scrollbar value of the element identified by ElementName.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Scrollbar:GetHandleSize Node

Gets the size of the handle.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementName
Name of the element.

Node Output

HandleSize
The size of the handle of the element identified by ElementName.

UIe:Scrollbar:SetHandleSize Node

Sets the size of the handle.

Node Inputs

Activate
Sets the size of the handle.

CanvasID
Unique identifier of the element's canvas.

ElementName
Name of the element.

HandleSize
The size of the handle of the element identified by ElementName.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Scrollbar:GetMinHandlePixelSize Node

Gets the minimum size in pixels of the handle.

Node Inputs

Activate
Updates the output.

Version 1.6
1221

Lumberyard User Guide
UIe Flow Graph Nodes

CanvasID
Unique identifier of the element's canvas.

ElementName
Name of the element.

Node Output

MinHandleSize
The minimum size in pixels of the handle of the element identified by ElementName.

UIe:Scrollbar:SetMinHandlePixelSize Node

Sets the minimum size in pixels of the handle.

Node Inputs

Activate
Sets the minimum size in pixels of the handle.

CanvasID
Unique identifier of the element's canvas.

ElementName
Name of the element.

MinHandleSize
The minimum size in pixels of the handle of the element identified by ElementName.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Scrollbar:GetValueChangedActionName Node

Gets the action triggered when the value is done changing.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementName
Name of the element.

Node Output

ValueChangedAction
The action name.

UIe:Scrollbar:SetValueChangedActionName Node

Sets the action triggered when the value is done changing.

Version 1.6
1222

Lumberyard User Guide
UIe Flow Graph Nodes

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementName
Name of the element.

ValueChangedAction
The action name.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Scrollbar:GetValueChangingActionName Node

Gets the action triggered while the value is changing.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementName
Name of the element.

Node Output

ValueChangingAction
The action name.

UIe:Scrollbar:SetValueChangingActionName Node

Sets the action triggered while the value is changing.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementName
Name of the element.

ValueChangingAction
The action name.

Node Output

Done
Sends a signal when the node's action is finished.

Version 1.6
1223

Lumberyard User Guide
UIe Flow Graph Nodes

UIe Slider Component Nodes

Use the following flow graph nodes to perform actions on the slider component.

UIe:Slider:GetFillEntity Node

Gets the fill element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

FillElement
The fill element.

UIe:Slider:SetFillEntity Node

Sets the fill element.

Node Inputs

Activate
Sets the fill element.

ElementName
Name of the element.

FillElement
The fill element.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Slider:GetManipulatorEntity Node

Gets the manipulator element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

ManipulatorElement
The manipulator element.

Version 1.6
1224

Lumberyard User Guide
UIe Flow Graph Nodes

UIe:Slider:SetManipulatorEntity Node

Sets the manipulator element.

Node Inputs

Activate
Sets the manipulator element.

ElementName
Name of the element.

ManipulatorElement
The manipulator element.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Slider:GetMaxValue Node

Gets the maximum value of the slider.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

MaxValue
The slider maximum value of the element identified by ElementName.

UIe:Slider:SetMaxValue Node

Sets the maximum value of the slider.

Node Inputs

Activate
Sets the maximum value of the slider.

ElementName
Name of the element.

MaxValue
The slider maximum value of the element identified by ElementName.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Slider:GetMinValue Node

Gets the minimum value of the slider.

Version 1.6
1225

Lumberyard User Guide
UIe Flow Graph Nodes

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

MinValue
The slider minimum value of the element identified by ElementName.

UIe:Slider:SetMinValue Node

Sets the minimum value of the slider.

Node Inputs

Activate
Sets the minimum value of the slider.

ElementName
Name of the element.

MinValue
The slider minimum value of the element identified by ElementName.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Slider:GetStepValue Node

Gets the smallest increment allowed between values. Zero means no restriction.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

StepValue
The smallest increment allowed between values of the element identified by ElementName. Zero
means no restriction.

UIe:Slider:SetStepValue Node

Sets the smallest increment allowed between values. Zero means no restriction.

Node Inputs

Activate
Sets the smallest increment allowed between values. Zero means no restriction.

Version 1.6
1226

Lumberyard User Guide
UIe Flow Graph Nodes

ElementName
Name of the element.

StepValue
The smallest increment allowed between values of the element identified by ElementName. Zero
means no restriction.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Slider:GetTrackEntity Node

Gets the track element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

Track
The track element.

UIe:Slider:SetTrackEntity Node

Sets the track element.

Node Inputs

Activate
Sets the track element.

ElementName
Name of the element.

Track
The track element.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Slider:GetValue Node

Gets the value of slider.

Node Inputs

Activate
Updates the output.

Version 1.6
1227

Lumberyard User Guide
UIe Flow Graph Nodes

ElementName
Name of the element.

Node Output

Value
The slider value of the element identified by ElementName.

UIe:Slider:SetValue Node

Sets the value of the slider.

Node Inputs

Activate
Sets the value of the slider.

ElementName
Name of the element.

Value
The slider value of the element identified by ElementName.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Slider:GetValueChangedActionName Node

Gets the action triggered when the value is done changing.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

ValueChangedAction
The action name.

UIe:Slider:SetValueChangedActionName Node

Sets the action triggered when the value is done changing.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

ValueChangedAction
The action name.

Version 1.6
1228

Lumberyard User Guide
UIe Flow Graph Nodes

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Slider:GetValueChangingActionName Node

Gets the action triggered while the value is changing.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

ValueChangingAction
The action name.

UIe:Slider:SetValueChangingActionName Node

Sets the action triggered while the value is changing.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

ValueChangingAction
The action name.

Node Output

Done
Sends a signal when the node's action is finished.

UIe Text Component Nodes

Use the following flow graph nodes to perform actions on the text component.

UIe:Text:GetColor Node

Gets the color to draw the text string.

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

Version 1.6
1229

Lumberyard User Guide
UIe Flow Graph Nodes

Node Outputs

Color
The RGB value (0 – 255 each for R, G, and B) of the element identified by ElementName.

Alpha
The alpha value (0 – 255) of the element identified by ElementName.

UIe:Text:SetColor Node

Sets the color to draw the text string.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Color
The RGB value (0 – 255 each for R, G, and B) of the element identified by ElementName.

Alpha
The alpha value (0 – 255) of the element identified by ElementName.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Text:GetFont Node

Gets the path to the font.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

Font
The path to the font used by the element.

UIe:Text:SetFontNode

Sets the path to the font.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Font
The path to the font used by the element identified by ElementName.

Version 1.6
1230

Lumberyard User Guide
UIe Flow Graph Nodes

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Text:GetFontSize Node

Gets the font size in points.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

FontSize
The font size of the element identified by ElementName.

UIe:Text:SetFontSize Node

Sets the font size in points.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

FontSize
The font size of the element identified by ElementName.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Text:GetOverflowMode Node

Gets the overflow behavior of the text.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

OverflowMode
An integer representing how overflow text is handled.

Version 1.6
1231

Lumberyard User Guide
UIe Flow Graph Nodes

Valid values: 0 = Overflow text | 1 = Clip text

UIe:Text:SetOverflowModeNode

Sets the overflow behavior of the text.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

OverflowMode
An integer representing how overflow text is handled.

Valid values: 0 = Overflow text | 1 = Clip text

Node Output

Done
Sends a signal when the node's action is finished.

UIe:Text:GetText Node

Gets the text string that the element displays.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

Value
The text string being displayed by the element identified by ElementName.

UIe:Text:SetText Node

Sets the text string being displayed by the element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Value
The text string being displayed by the element identified by ElementName.

Node Output

Done
Sends a signal when the node's action is finished.

Version 1.6
1232

Lumberyard User Guide
UIe Flow Graph Nodes

UIe:Text:GetWrapText Node

Gets whether text is wrapped.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

WrapTextSetting
An integer representing how long text ines are handled.

Valid values: 0 = No wrap | 1 = Wrap

UIe:Text:SetWrapText Node

Gets whether text is wrapped.

Node Inputs

Activate
Updates the outputs.

ElementName
Name of the element.

WrapTextSetting
An integer representing how long text ines are handled.

Valid values: 0 = No wrap | 1 = Wrap

Node Output

Done
Sends a signal when the node's action is finished.

UIe Text Input Component Nodes

Use the following flow graph nodes to perform actions on the text input component.

UIe:TextInput:GetChangeAction Node

Gets the action triggered when the text is changed.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Version 1.6
1233

Lumberyard User Guide
UIe Flow Graph Nodes

Node Output

ChangeAction
The action name.

UIe:TextInput:SetChangeAction Node

Sets the action triggered when the text is changed.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

ChangeAction
The action name.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:TextInput:GetCursorBlinkInterval Node

Gets the cursor blink interval of the text input.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

CursorBlinkInterval
The cursor blink in interval of the element identified by ElementName.

UIe:TextInput:SetCursorBlinkInterval Node

Gets the cursor blink interval of the text input.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

CursorBlinkInterval
The cursor blink in interval of the element identified by ElementName.

Version 1.6
1234

Lumberyard User Guide
UIe Flow Graph Nodes

Node Output

Done
Sends a signal when the node's action is finished.

UIe:TextInput:GetEndEditAction Node

Gets the action triggered when the editing of text is finished.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

EndEditAction
The action name.

UIe:TextInput:SetEndEditAction Node

Sets the action triggered when the editing of text is finished.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

EndEditAction
The action name.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:TextInput:GetEnterAction Node

Gets the action triggered when Enter is pressed.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

EnterAction
The action name.

Version 1.6
1235

Lumberyard User Guide
UIe Flow Graph Nodes

UIe:TextInput:SetEnterAction Node

Sets the action triggered when Enter is pressed.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

EnterAction
The action name.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:TextInput:GetIsPasswordField Node

Gets whether the text input is configured as a password field.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

IsPasswordField
Boolean. Whether the element identified by ElementName is configured as a password field.

UIe:TextInput:SetIsPasswordField Node

Sets whether the text input is configured as a password field.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

IsPasswordField
Boolean. Whether the element identified by ElementName is configured as a password field.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:TextInput:GetMaxStringLength Node

Gets the maximum number of characters that can be entered.

Version 1.6
1236

Lumberyard User Guide
UIe Flow Graph Nodes

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

MaxStringLength
An integer representing the maximum number of characters that can be entered.

Valid values: 0 = none allowed | -1 = unlimited

UIe:TextInput:SetMaxStringLength Node

Sets the maximum number of characters that can be entered.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

MaxStringLength
An integer representing the maximum number of characters that can be entered.

Valid values: 0 = none allowed | -1 = unlimited

Node Output

Done
Sends a signal when the node's action is finished.

UIe:TextInput:GetPlaceHolderTextEntity Node

Gets the placeholder text element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

PlaceHolderTextElement
The placeholder text element.

UIe:TextInput:SetPlaceHolderTextEntity Node

Sets the placeholder text element.

Version 1.6
1237

Lumberyard User Guide
UIe Flow Graph Nodes

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

PlaceHolderTextElement
The placeholder text element.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:TextInput:GetText Node

Gets the text string that the element is displaying or allowing to be edited.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

Value
The text string being displayed or edited by the element

UIe:TextInput:SetText Node

Sets the text string that the element is displaying or allowing to be edited.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Value
The text string being displayed or edited by the element

Node Output

Done
Sends a signal when the node's action is finished.

UIe:TextInput:GetTextCursorColor Node

Gets the color to be used for the text cursor.

Version 1.6
1238

Lumberyard User Guide
UIe Flow Graph Nodes

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Outputs

Color
The RGB value (0 – 255 each for R, G, and B) of the element identified by ElementName.

Alpha
The alpha value (0 -– 255) of the element identified by ElementName.

UIe:TextInput:SetTextCursorColor Node

Sets the color to be used for the text cursor.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Color
The RGB value (0 – 255 each for R, G, and B) of the element identified by ElementName.

Alpha
The alpha value (0 – 255) of the element identified by ElementName.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:TextInput:GetTextEntity Node

Gets the text element.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Output

TextElement
The text element.

UIe:TextInput:SetTextEntity Node

Gets the text element.

Version 1.6
1239

Lumberyard User Guide
UIe Flow Graph Nodes

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

TextElement
The text element.

Node Output

Done
Sends a signal when the node's action is finished.

UIe:TextInput:GetTextSelectionColor Node

Gets the color to be used for the text background when it is selected.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Node Outputs

Color
The RGB value (0 – 255 each for R, G, and B) of the element identified by ElementName.

Alpha
The alpha value (0 – 255) of the element identified by ElementName.

UIe:TextInput:SetTextSelectionColor Node

Gets the color to be used for the text background when it is selected.

Node Inputs

Activate
Updates the output.

ElementName
Name of the element.

Color
The RGB value (0 – 255 for R, G, and B) of the element identified by ElementName.

Alpha
The alpha value (0 – 255) of the element identified by ElementName.

Node Output

Done
Sends a signal when the node's action is finished.

Version 1.6
1240

Lumberyard User Guide
UI Flow Graph Nodes

UIe Animation Node

The UI animation node consists of the following node inputs and outputs:

UIe:Sequence:Play Node

Controls playback of a UI animation sequence.

Node Inputs

Start
Starts playing the sequence from the beginning and triggers the OnStarted output.

Stop
Jumps the animation to the end and stops playing and triggers the OnStopped output.

Abort
Jumps the animation to the end and stops playing and triggers the OnAborted output.

Pause
Pauses the animation.

Resume
Continues playing a previously paused animation.

Reset
Resets the animation to the start. This applies all the key values for the first key frame of the
animation.

SequenceName
The name of the sequence to play.

Node Outputs

OnStarted
Triggers when the sequence starts playing.

OnStopped
Triggers an output when the sequence stops playing, either because the end of the animation is
reached or because the sequence is forced to stop (for example, by using the Stop node input).

OnAborted
Triggers an output when the sequence is aborted (for example, by using the Abort node input).

UI Flow Graph Nodes
The UI flow graph node set is the original, and now legacy, version of the UI flow graph nodes.

Use the UIe (p. 1185) flow graph node set for best results when creating new flow graph nodes for
your user interface.

Topics

• UI Canvas Nodes (p. 1241)

• UI Component Nodes (p. 1246)

• UI Animation Node (p. 1303)

UI Canvas Nodes

The UI Canvas flow graph nodes have been superseded by the UIe Canvas (p. 1185) flow graph
nodes. For best results, use the UIe Canvas (p. 1185) flow graph nodes.

Version 1.6
1241

Lumberyard User Guide
UI Flow Graph Nodes

You can use these flow graph nodes to perform actions on a UI canvas.

UI:Canvas:ActionListener Node

Listens for the specified action on a UI canvas.

Node Inputs

Activate
Initiates listening for the specified action.

CanvasID
Unique ID of the canvas to listen to.

ActionName
Name of the action to listen for.

Node Outputs

OnAction
Triggers when the canvas sends the action.

ElementID
ID of the UI element that triggered the action.

UI:Canvas:Load Node

Loads the specified UI canvas.

Node Inputs

Activate
Loads the canvas.

CanvasPathname
Path of the canvas to load.

Disabled
Sets whether canvas is disabled initially. If disabled, the canvas is not updated or rendered.

Node Outputs

OnLoad
Sends a signal when the canvas is loaded.

CanvasID
Outputs the unique canvas ID when the canvas is loaded.

UI:Canvas:Unload Node

Unloads the specified canvas.

Node Inputs

Activate
Unloads the canvas.

CanvasID
Unique ID of the canvas to unload.

Version 1.6
1242

Lumberyard User Guide
UI Flow Graph Nodes

Node Output

Done
Sends a signal when the node's action is finished.

UI:Canvas:FindLoaded Node

Finds the canvas ID for the UI canvas file path.

Node Inputs

Activate
Finds the canvas using the UI canvas file path.

CanvasPathname
Path of the canvas to find.

Node Outputs

CanvasID
The ID of the canvas that was found (if it was found).

Found
True if the canvas was found; otherwise, false.

UI:Canvas:GetKeepLoaded Node

Gets the Boolean value of whether the canvas stays loaded when a level is unloaded.

Node Inputs

Activate
Gets whether the canvas stays loaded when the level is unloaded.

CanvasID
Unique ID of the canvas to keep loaded.

Node Output

KeepLoaded
The Boolean value of whether the canvas stays loaded if the level is unloaded. True if the canvas
should stay loaded during level unload; otherwise, false.

UI:Canvas:SetKeepLoaded Node

Determines whether the canvas stays loaded when a level is unloaded.

Node Inputs

Activate
Sets whether the canvas stays loaded when the level is unloaded.

CanvasID
Unique ID of the canvas to keep loaded.

KeepLoaded
If true, causes the canvas to stay loaded when the level is unloaded.

Version 1.6
1243

Lumberyard User Guide
UI Flow Graph Nodes

Node Output

Done
Sends a signal when the node's action is finished.

UI:Canvas:GetDrawOrder Node

Gets the integer draw order value for a UI canvas with respect to other UI canvases.

Node Inputs

Activate
Gets the draw order for the canvas.

CanvasID
Unique ID of the canvas to get the draw order from.

Node Output

DrawOrder
Order in which the canvas draws. Higher numbers appear before lower numbers.

UI:Canvas:SetDrawOrder Node

Sets the draw order for a UI canvas with respect to other UI canvases.

Node Inputs

Activate
Sets the draw order for the canvas.

CanvasID
Unique ID of the canvas whose draw order you are setting.

DrawOrder
Order in which to display the canvas. Higher numbers appear before lower numbers.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Canvas:GetIsPixelAligned Node

Gets the boolean value of whether the canvas is pixel-aligned.

Node Inputs

Activate
Gets whether visual element's vertices should snap to the nearest pixel.

CanvasID
Unique ID of the canvas.

Version 1.6
1244

Lumberyard User Guide
UI Flow Graph Nodes

Node Output

IsPixelAligned
Boolean value. True if the visual element's vertices should snap to the nearest pixel; otherwise,
false.

UI:Canvas:SetIsPixelAligned Node

Sets whether visual element's vertices should snap to the nearest pixel.

Node Inputs

Activate
Sets the pixel-aligned property for the canvas ID.

CanvasID
Unique ID of the canvas to receive the pixel-aligned property value.

IsPixelAligned
Boolean value that represents whether a visual element's vertices should snap to the nearest
pixel.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Canvas:GetEnabled Node

Gets the boolean enabled flag of the canvas. Enabled canvases are updated and each frame
rendered.

Node Inputs

Activate
Gets the enabled flag of the canvas.

CanvasID
Unique ID of the canvas to obtain the enabled flag from.

Node Output

Enabled
The enabled flag of the canvas. True if enabled; otherwise, false.

UI:Canvas:SetEnabled Node

Sets whether the canvas is enabled. Enabled canvases are updated and each frame rendered.

Node Inputs

Activate
Sets the enabled flag of the canvas.

CanvasID
Unique ID of the canvas to obtain the enabled flag from.

Enabled
True if the canvas should be enabled; otherwise, false.

Version 1.6
1245

Lumberyard User Guide
UI Flow Graph Nodes

Node Output

Done
Sends a signal when the node's action is finished.

UI Component Nodes
The UI component flow graph nodes have been superseded by the UIe Component (p. 1189) flow
graph nodes. For best results, use the UIe Component (p. 1189) flow graph nodes.

These flow graph nodes perform actions on UI elements through their components.

Topics

• UI Button Component Nodes (p. 1246)

• UI Checkbox Component Nodes (p. 1247)

• UI Element Node (p. 1251)

• UI Fader Component Nodes (p. 1252)

• UI Image Component Nodes (p. 1253)

• UI Interactable Component Nodes (p. 1256)

• UI Layout Column Component Nodes (p. 1257)

• UI Layout Grid Component Nodes (p. 1259)

• UI Layout Row Component Nodes (p. 1264)

• UI Mask Component Nodes (p. 1267)

• UI ScrollBox Component Nodes (p. 1270)

• UI ScrollBar Component Nodes (p. 1280)

• UI Slider Component Nodes (p. 1284)

• UI Text Component Nodes (p. 1291)

• UI Text Input Component Nodes (p. 1295)

UI Button Component Nodes

The UI Button component flow graph nodes have been superseded by the UIe Button (p. 1189) flow
graph nodes. For best results, use the UIe Button (p. 1189) component flow graph nodes.

Use the following flow graph nodes to perform actions on the button component.

UI:Button:GetActionName Node

Gets the action name string that is emitted when the button is released.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the button element.

Node Output

Action
The action name associated with the button.

Version 1.6
1246

Lumberyard User Guide
UI Flow Graph Nodes

UI:Button:SetActionName Node

Sets the action name string that's emitted when the button is released.

Node Inputs

Activate
Assigns the action name.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the button element.

Action
The action name string to assign to the button.

Node Output

Done
Sends a signal when the node's action is finished.

UI Checkbox Component Nodes

The UI component flow graph nodes have been superseded by the UIe Checkbox (p. 1190)
component flow graph nodes. For best results, use the UIe Checkbox (p. 1190) component flow graph
nodes.

Use the following flow graph nodes to perform actions on the check box component.

UI:Checkbox:GetState Node

Gets the Boolean state of the check box.

Node Inputs

Activate
Gets the state of the check box.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the check box element.

Node Output

State
Outputs the current Boolean state of the check box.

UI:Checkbox:SetState Node

Sets the Boolean state of the check box.

Node Inputs

Activate
Sets the state of the check box.

CanvasID
Unique identifier of the element's canvas.

Version 1.6
1247

Lumberyard User Guide
UI Flow Graph Nodes

ElementID
Unique identifier of the check box element.

State
The Boolean state of the check box.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Checkbox:GetChangedActionName Node

Gets the action triggered when the check box value changed.

Node Inputs

Activate
Gets the changed action name.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the check box element.

Node Output

ChangedAction
The action name string value emitted when the check box value changes.

UI:Checkbox:SetChangedActionName Node

Sets the action triggered when the check box value changed.

Node Inputs

Activate
Gets the changed action name.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the check box element.

ChangedAction
The action name string value emitted when the check box value changes.

UI:Checkbox:GetOptionalCheckedEntity Node

Gets the child element to show when the check box is in the on state.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

Version 1.6
1248

Lumberyard User Guide
UI Flow Graph Nodes

ElementID
Unique identifier of the check box element.

Node Output

CheckedElement
The child element to show when the check box is selected (in the on state).

UI:Checkbox:SetOptionalCheckedEntity Node

Sets the child element to show when the check box is selected (in the on state).

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the check box element.

CheckedElement
The child element to show when the checkbox is selected (in the on state).

Node Output

Done
Sends a signal when the node's action is finished.

UI:Checkbox:GetOptionalUncheckedEntity Node

Gets the child element to show when the check box is deselected (in the off state).

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the check box element.

Node Output

UncheckedElement
The child element to show when the check box is deselected (off state).

UI:Checkbox:SetOptionalUncheckedEntity Node

Sets the child element to show when the check box is deselected (in the off state).

Node Inputs

Activate
Updates the output.

Version 1.6
1249

Lumberyard User Guide
UI Flow Graph Nodes

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the checkbox element.

UncheckedElement
The child element to show when the check box is deselected (in the off state).

Node Output

Done
Sends a signal when the node's action is finished.

UI:Checkbox:GetTurnOnActionName Node

Gets the action triggered when the check box is selected.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the check box element.

Node Output

TurnOnAction
The action name emitted when the check box is selected (turned on).

UI:Checkbox:SetTurnOnActionName Node

Sets the action triggered when the check box is selected (turned on).

Node Inputs

Activate
Assigns TurnOnAction as the action name that is emitted when the check box is selected.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the check box element.

TurnOnAction
The action name emitted when the check box is selected.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Checkbox:GetTurnOffActionName Node

Gets the action triggered when the check box is deselected (turned off).

Version 1.6
1250

Lumberyard User Guide
UI Flow Graph Nodes

Node Inputs

Activate
Update the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the check box element.

Node Output

TurnOffAction
The action name emitted when the check box is deselected.

UI:Checkbox:SetTurnOffActionName Node

Sets the action triggered when the check box is deselected (turned off).

Node Inputs

Activate
Assigns TurnOffAction as the action name that is emitted when the check box is deselected.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the check box element.

TurnOffAction
The action name emitted when the check box is deselected.

Node Output

Done
Sends a signal when the node's action is finished.

UI Element Node

The UI Element flow graph nodes have been superseded by the UIe Element (p. 1194) flow graph
nodes. For best results, use the UIe Element (p. 1194) flow graph nodes.

Use the following flow graph node to enable or disable an element.

UI:Element:SetIsEnabled Node

Sets the Boolean enabled state of the element. If an element is not enabled, neither it nor any of its
children are drawn or interactive.

Node Inputs

Activate
Sets the enabled state to the value of the State input.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Version 1.6
1251

Lumberyard User Guide
UI Flow Graph Nodes

State
The Boolean enabled state of the element.

Node Output

Done
Sends a signal when the node's action is finished.

UI Fader Component Nodes

The UI Fader component flow graph nodes have been superseded by the UIe Fader (p. 1194)
component flow graph nodes. For best results, use the UIe Fader (p. 1194) component flow graph
nodes.

Use the following flow graph nodes to perform actions on the fader component.

UI:Fader:Animation Node

Animates the fader component on the specified element.

Node Inputs

Activate
Starts a fade animation.

CanvasID
Unique identifier of the fader element's canvas.

ElementID
Unique identifier of the fader element.

StartValue
Value at which the fade starts.

Valid values: 0 = Invisible | 1 = Opaque | -1= Start from the current value

TargetValue
Value at which the fade ends.

Valid values: 0 = Invisible | 1 = Opaque

Speed
Rate at which the element fades.

Valid values: 0 = Instant fade | 0.5 = Slow fade | 1 = One second fade | 2 = Fade twice as fast

Node Outputs

OnComplete
Sends a signal when the fade action is finished.

OnInterrupted
Sends a signal when the fade is interrupted by another fade starting.

UI:Fader:GetFadeValue Node

Gets the floating-point fade value of an element.

Node Inputs

Activate
Updates the output.

Version 1.6
1252

Lumberyard User Guide
UI Flow Graph Nodes

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Value
The floating-point fade value of the element (ElementID).

UI:Fader:SetFadeValue Node

Sets the fade value of an element.

Node Inputs

Activate
When triggered, assigns Value as the fade value of the fader component of the element.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Value
The fade value to assign to the fader component for the element.

Node Output

Done
Sends a signal when the node's action is finished.

UI Image Component Nodes

The UI Image component flow graph nodes have been superseded by the UIe Image (p. 1195)
component flow graph nodes. For best results, use the UIe Image (p. 1195) component flow graph
nodes.

Use the following flow graph nodes to perform actions on the image component.

UI:Image:GetImageSource Node

Replaced by UI:Image:GetSprite Node (p. 1254).

Retrieves the texture file path currently used by the specified image element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the image element.

Version 1.6
1253

Lumberyard User Guide
UI Flow Graph Nodes

Node Outputs

Value
Outputs the file path of the image that is currently on the element.

UI:Image:SetImageSource Node

Replaced by UI:Image:SetSprite Node (p. 1254).

Changes the texture on the specified image element.

Node Inputs

Activate
Set the texture.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the image element.

ImagePath
File path of the texture to display.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Image:GetSprite Node

Gets the texture file path currently used by the specified image element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique ID of the element's canvas.

ElementID
Unique ID of the image element.

Node Output

Value
Outputs the file path of the image that is currently on the element.

UI:Image:SetSprite Node

Sets the texture on the specified image element.

Node Inputs

Activate
Sets the texture.

CanvasID
Unique ID of the element's canvas.

Version 1.6
1254

Lumberyard User Guide
UI Flow Graph Nodes

ElementID
Unique ID of the image element.

ImagePath
File path of the texture to display.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Image:GetImageType Node

Gets the type of the image. Affects how the texture or sprite is mapped to the image rectangle.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the image element.

Node Output

ImageType
An integer representing how the image is scaled and placed.

Valid values: 0 = Stretched | 1 = Sliced | 2 = Fixed | 3 = Tiled | 4 = Stretched to fit | 5 = Stretched
to fill

UI:Image:SetImageType Node

Sets the type of the image. Affects how the texture or sprite is mapped to the image rectangle.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the image element.

ImageType
An integer representing how the image is scaled and placed.

Valid values: 0 = Stretched | 1 = Sliced | 2 = Fixed | 3 = Tiled | 4 = Stretched to fit | 5 = Stretched
to fill

Node Output

Done
Sends a signal when the node's action is finished.

Version 1.6
1255

Lumberyard User Guide
UI Flow Graph Nodes

UI:Image:GetColor Node

Gets the color tint for the image.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the image element.

Node Outputs

Color
The RGB value (0 – 255 each for R, G, and B) of the element (ElementID).

Alpha
The alpha value (0 – 255) of the element (ElementID).

UI:Image:SetColor Node

Sets the color tint for the image.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the image element.

Color
The RGB value (0 – 255 each for R, G, and B).

Alpha
A floating-point alpha value (0 – 255).

Node Output

Done
Sends a signal when the node's action is finished.

UI Interactable Component Nodes

The UI Interactable component flow graph nodes have been superseded by the UIe
Interactable (p. 1198) component flow graph nodes. For best results, use the UIe
Interactable (p. 1198) component flow graph nodes.

Use the following flow graph node for the Interactable component.

UI:Interactable:SetIsHandlingEvents Node

Sets the Boolean "is handling events" state of the element.

The Interactable flow graph nodes can be used to get or set values on any interactive UI element.

Version 1.6
1256

Lumberyard User Guide
UI Flow Graph Nodes

Interactive UI elements are elements that players can interacted with in game, such as button, text
input, check box, slider, and so on. The SetIsHandlingEvents flow graph node sets whether an
interactive UI element should handle input events. If set to false, then the UI element does not respond
to input events, and its visual state is also changed to disabled.

Node Inputs

Activate
Sets the "is handling events" state.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

State
The Boolean "is handling events" state of the element.

Node Output

Done
Sends a signal when the node's action is finished.

UI Layout Column Component Nodes

The UI Layout column component flow graph nodes have been superseded by the UIe Layout
column (p. 1199) component flow graph nodes. For best results, use the UIe Layout column (p. 1199)
component flow graph nodes.

Use the following flow graph nodes to perform actions on the layout column component.

UI:LayoutColumn:GetOrder Node

Gets the vertical order of the LayoutColumn component for an element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Order
An integer representing the vertical order.

Valid values: 0 = Top to bottom | 1 = Bottom to top

UI:LayoutColumn:SetOrder Node

Sets the vertical order of the LayoutColumn component for an element.

Node Inputs

Activate
Sets the vertical order for the element.

Version 1.6
1257

Lumberyard User Guide
UI Flow Graph Nodes

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Order
An integer representing the vertical order. 0 = Top to bottom | 1 = Bottom to top.

Node Output

Done
Sends a signal when the node's action is finished.

UI:LayoutColumn:GetPadding Node

Gets the padding (in pixels) inside the edges of the LayoutColumn component for an element.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Outputs

Left
An integer representing the padding inside the left edge of the element.

Right
An integer representing the padding inside the right edge of the element.

Top
An integer representing the padding inside the top edge of the element.

Bottom
An integer representing the padding inside the bottom edge of the element.

UI:LayoutColumn:SetPadding Node

Sets the padding (in pixels) inside the edges of the LayoutColumn component for an element.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Left
An integer representing the padding inside the left edge of the element.

Right
An integer representing the padding inside the right edge of the element.

Version 1.6
1258

Lumberyard User Guide
UI Flow Graph Nodes

Top
An integer representing the padding inside the top edge of the element.

Bottom
An integer representing the padding inside the bottom edge of the element.

Node Output

Done
Sends a signal when the node's action is finished.

UI:LayoutColumn:GetSpacing Node

Gets the spacing (in pixels) between child elements of the LayoutColumn component for an element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Spacing
A float value of the spacing (in pixels) between child elements of the element (ElementID).

UI:LayoutColumn:SetSpacing Node

Sets the spacing (in pixels) between child elements of the LayoutColumn component for an element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Spacing
A float value of the spacing (in pixels) between child elements of the element (ElementID).

Node Output

Done
Sends a signal when the node's action is finished.

UI Layout Grid Component Nodes

The UI Layout grid component flow graph nodes have been superseded by the UIe Layout
grid (p. 1201) component flow graph nodes. For best results, use the UIe Layout grid (p. 1201)
component flow graph nodes.

Version 1.6
1259

Lumberyard User Guide
UI Flow Graph Nodes

Use the following flow graph nodes to perform actions on the layout grid component.

UI:LayoutGrid:GetCellSize Node

Gets the size (in pixels) of a child element in the layout.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Outputs

CellWidth
The width (in pixels) of a child element of element (ElementID).

CellHeight
The height (in pixels) of a child element of element (ElementID).

UI:LayoutGrid:SetCellSize Node

Sets the size (in pixels) of a child element in the layout.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

CellWidth
The width (in pixels) of a child element of element (ElementID).

CellHeight
The height (in pixels) of a child element of element (ElementID).

Node Output

Done
Sends a signal when the node's action is finished.

UI:LayoutGrid:GetHorizontalOrder Node

Gets the horizontal order for the layout.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

Version 1.6
1260

Lumberyard User Guide
UI Flow Graph Nodes

ElementID
Unique identifier of the element.

Node Output

Order
An integer representing the horizontal order.

Valid values: 0 = Left to right | 1 = Right to left

UI:LayoutGrid:SetHorizontalOrder Node

Sets the horizontal order for the layout.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Order
An integer representing the horizontal order.

Valid values: 0 = Left to right | 1 = Right to left

Node Output

Done
Sends a signal when the node's action is finished.

UI:LayoutGrid:GetPadding Node

Gets the padding (in pixels) inside the edges of the LayoutGrid component for an element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Left
An integer representing the padding inside the left edge of the element.

Right
An integer representing the padding inside the right edge of the element.

Top
An integer representing the padding inside the top edge of the element.

Version 1.6
1261

Lumberyard User Guide
UI Flow Graph Nodes

Bottom
An integer representing the padding inside the bottom edge of the element.

UI:LayoutGrid:SetPadding Node

Sets the padding (in pixels) inside the edges of the LayoutGrid component for an element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Left
An integer representing the padding inside the left edge of the element.

Right
An integer representing the padding inside the right edge of the element.

Top
An integer representing the padding inside the top edge of the element.

Bottom
An integer representing the padding inside the bottom edge of the element.

Node Output

Done
Sends a signal when the node's action is finished.

UI:LayoutGrid:GetSpacing Node

Gets the spacing (in pixels) between child elements of the LayoutGrid component for an element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Spacing
A float value of the spacing (in pixels) between child elements of the element (ElementID).

UI:LayoutGrid:SetSpacing Node

Sets the spacing (in pixels) between child elements of the LayoutGrid component for an element.

Version 1.6
1262

Lumberyard User Guide
UI Flow Graph Nodes

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Spacing
A float value of the spacing (in pixels) between child elements of the element (ElementID).

Node Output

Done
Sends a signal when the node's action is finished.

UI:LayoutGrid:GetStartingDirection Node

Gets the starting direction for the layout.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Direction
An integer representing the direction.

Valid values: 0 = Horizontal order | 1 = Vertical order

UI:LayoutGrid:SetStartingDirection Node

Sets the starting direction for the layout.

Node Inputs

Activate
Set the starting direction for the layout.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Direction
An integer representing the horizontal order.

Valid values: 0 = Horizontal order | 1 = Vertical order.

Version 1.6
1263

Lumberyard User Guide
UI Flow Graph Nodes

Node Output

Done
Sends a signal when the node's action is finished.

UI:LayoutGrid:GetVerticalOrder Node

Gets the vertical order for the layout.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Action
An integer representing the vertical order.

Valid values: 0 = Top to bottom | 1 = Bottom to top

UI:LayoutGrid:SetVerticalOrder Node

Sets the vertical order for the layout.

Node Inputs

Activate
Sets the vertical order for the layout.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Action
An integer representing the vertical order.

Valid values: 0 = Top to bottom | 1 = Bottom to top

Node Output

Done
Sends a signal when the node's action is finished.

UI Layout Row Component Nodes

The UI Layout row component flow graph nodes have been superseded by the UIe Layout
row (p. 1205) component flow graph nodes. For best results, use the UIe Layout row (p. 1205)
component flow graph nodes.

Use the following flow graph nodes to perform actions on the layout row component.

Version 1.6
1264

Lumberyard User Guide
UI Flow Graph Nodes

UI:LayoutRow:GetOrder Node

Gets the horizontal order of the LayoutRow component for an element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Order
An integer representing the horizontal order.

Valid values: 0 = Left to right | 1 = Right to left

UI:LayoutRow:SetOrder Node

Sets the horizontal order of the LayoutRow component for an element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Order
An integer representing the horizontal order.

Valid values: 0 = Left to right | 1 = Right to left

Node Output

Done
Sends a signal when the node's action is finished.

UI:LayoutRow:GetPadding Node

Gets the padding (in pixels) inside the edges of the LayoutRow component for an element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Version 1.6
1265

Lumberyard User Guide
UI Flow Graph Nodes

Node Outputs

Left
An integer representing the padding inside the left edge of the element.

Right
An integer representing the padding inside the right edge of the element.

Top
An integer representing the padding inside the top edge of the element.

Bottom
An integer representing the padding inside the bottom edge of the element.

UI:LayoutRow:SetPadding Node

Sets the padding (in pixels) inside the edges of the LayoutRow component for an element.

Node Inputs

Activate
Sets the padding (in pixels) inside the edges of the LayoutRow.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Left
An integer representing the padding inside the left edge of the element.

Right
An integer representing the padding inside the right edge of the element.

Top
An integer representing the padding inside the top edge of the element.

Bottom
An integer representing the padding inside the bottom edge of the element.

Node Output

Done
Sends a signal when the node's action is finished.

UI:LayoutRow:GetSpacing Node

Gets the spacing (in pixels) between child elements of the LayoutRow component for an element.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Spacing
A float value of the spacing (in pixels) between child elements of the element (ElementID).

Version 1.6
1266

Lumberyard User Guide
UI Flow Graph Nodes

UI:LayoutRow:SetSpacing Node

Sets the spacing (in pixels) between child elements of the LayoutRow component for an element.

Node Inputs

Activate
Sets the spacing (in pixels) between child elements.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Spacing
A float value of the spacing (in pixels) between child elements of the element (ElementID).

Node Output

Done
Sends a signal when the node's action is finished.

UI Mask Component Nodes

The UI Mask component flow graph nodes have been superseded by the UIe Mask (p. 1208)
component flow graph nodes. For best results, use the UIe Mask (p. 1208) component flow graph
nodes.

Use the following flow graph nodes to perform actions on the mask component.

UI:Mask:GetDrawBehind Node

Gets whether mask is drawn behind the child elements.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

DrawBehind
Indicates whether mask is drawn behind the child elements.

UI:Mask:SetDrawBehind Node

Sets whether mask is drawn behind the child elements.

Node Inputs

Activate
Sets whether mask is drawn behind the child elements.

Version 1.6
1267

Lumberyard User Guide
UI Flow Graph Nodes

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

DrawBehind
Sets whether mask is drawn behind the child elements.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Mask:GetDrawInFront Node

Gets whether mask is drawn in front of child elements.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

DrawInFront
Indicates whether mask is drawn in front of child elements.

UI:Mask:SetDrawInFront Node

Sets whether mask is drawn in front of child elements.

Node Inputs

Activate
Sets whether mask is drawn in front of child elements.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

DrawInFront
Sets whether mask is drawn in front of child elements.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Mask:GetIsMaskingEnabled Node

Gets whether masking is enabled.

Version 1.6
1268

Lumberyard User Guide
UI Flow Graph Nodes

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

IsMaskingEnabled
Indicates whether masking is enabled.

UI:Mask:SetIsMaskingEnabled Node

Sets whether masking is enabled.

Node Inputs

Activate
Sets whether masking is enabled.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

IsMaskingEnabled
Sets whether masking is enabled.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Mask:GetUseAlphaTest Node

Gets whether to use the alpha channel in the mask visual's texture to define the mask.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

UseAlphaTest
Indicates whether to use the alpha channel in the mask visual's texture to define the mask.

Version 1.6
1269

Lumberyard User Guide
UI Flow Graph Nodes

UI:Mask:SetUseAlphaTest Node

Sets whether to use the alpha channel in the mask visual's texture to define the mask.

Node Inputs

Activate
Sets whether to use the alpha channel in the mask visual's texture to define the mask.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

UseAlphaTest
Sets whether to use the alpha channel in the mask visual's texture to define the mask.

Node Output

Done
Sends a signal when the node's action is finished.

UI ScrollBox Component Nodes

The UI Scrollbox component flow graph nodes have been superseded by the UIe Scrollbox (p. 1210)
component flow graph nodes. For best results, use the UIe Scrollbox (p. 1210) component flow graph
nodes.

Use the following flow graph nodes to perform actions on the ScrollBox component.

UI:ScrollBox:FindClosestContentChildElement Node

Finds the child of the content element that is closest to the content anchors.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

ClosestElement
The element currently closest to the focused element.

UI:ScrollBox:GetContentEntity Node

Gets the content element for the ScrollBox.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

Version 1.6
1270

Lumberyard User Guide
UI Flow Graph Nodes

ElementID
Unique identifier of the element.

Node Output

Content
The element that the ScrollBox scrolls.

UI:ScrollBox:SetContentEntity Node

Sets the content element for the ScrollBox.

Node Inputs

Activate
Sets the content element for the ScrollBox.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Content
The element that the ScrollBox scrolls.

Node Output

Done
Sends a signal when the node's action is finished.

UI:ScrollBox:GetIsHorizontalScrollingEnabled Node

Gets whether the ScrollBox allows horizontal scrolling.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Enabled
Indicates whether horizontal scrolling is enabled.

UI:ScrollBox:SetIsHorizontalScrollingEnabled Node

Sets whether the ScrollBox allows horizontal scrolling.

Node Inputs

Activate
Sets whether the ScrollBox allows horizontal scrolling.

Version 1.6
1271

Lumberyard User Guide
UI Flow Graph Nodes

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Enabled
Sets whether horizontal scrolling is enabled.

Node Output

Done
Sends a signal when the node's action is finished.

UI:ScrollBox:GetIsScrollingConstrained Node

Gets whether the ScrollBox restricts scrolling to the content area.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

IsConstrained
Indicates whether scrolling is constrained.

UI:ScrollBox:SetIsScrollingConstrained Node

Sets whether the ScrollBox restricts scrolling to the content area.

Node Inputs

Activate
Sets whether the ScrollBox restricts scrolling to the content area.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

IsConstrained
Sets whether scrolling is constrained.

Node Output

Done
Sends a signal when the node's action is finished.

UI:ScrollBox:GetIsVerticalScrollingEnabled Node

Gets whether the ScrollBox allows vertical scrolling.

Version 1.6
1272

Lumberyard User Guide
UI Flow Graph Nodes

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Enabled
Indicates whether vertical scrolling is enabled.

UI:ScrollBox:SetIsVerticalScrollingEnabled Node

Sets whether the ScrollBox allows vertical scrolling.

Node Inputs

Activate
Sets whether the ScrollBox allows vertical scrolling.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Enabled
Sets whether vertical scrolling is enabled.

Node Output

Done
Sends a signal when the node's action is finished.

UI:ScrollBox:GetScrollOffset Node

Gets the scroll offset of the ScrollBox.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

HorizOffset
The horizontal scroll offset of the element identified by ElementID.

VertOffset
The vertical scroll offset of the element identified by ElementID.

Version 1.6
1273

Lumberyard User Guide
UI Flow Graph Nodes

UI:ScrollBox:SetScrollOffset Node

Sets the scroll offset of the ScrollBox.

Node Inputs

Activate
Sets the scroll offset of the ScrollBox.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

HorizOffset
The horizontal scroll offset of ElementID.

VertOffset
The vertical scroll offset of ElementID.

Node Output

Done
Sends a signal when the node's action is finished.

UI:ScrollBox:GetScrollOffsetChangedActionName Node

Gets the action triggered when the ScrollBox drag is completed.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

ChangedAction
The action name.

UI:ScrollBox:SetScrollOffsetChangedActionName Node

Sets the action triggered when the ScrollBox drag is completed.

Node Inputs

Activate
Sets the action triggered when the ScrollBox drag is completed.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

ChangedAction
The action name.

Version 1.6
1274

Lumberyard User Guide
UI Flow Graph Nodes

Node Output

Done
Sends a signal when the node's action is finished.

UI:ScrollBox:GetScrollOffsetChangingActionName Node

Gets the action triggered while the ScrollBox is being dragged.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

ChangingAction
The action name.

UI:ScrollBox:SetScrollOffsetChangingActionName Node

Sets the action triggered while the ScrollBox is being dragged.

Node Inputs

Activate
Sets the action triggered while the ScrollBox is being dragged.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

ChangingAction
The action name.

Node Output

Done
Sends a signal when the node's action is finished.

UI:ScrollBox:GetSnapGrid Node

Gets the snapping grid of the ScrollBox.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Version 1.6
1275

Lumberyard User Guide
UI Flow Graph Nodes

Node Outputs

HorizSpacing
The horizontal grid spacing of the element identified by ElementID.

VertSpacing
The vertical grid spacing of the element identified by ElementID.

UI:ScrollBox:SetSnapGrid Node

Sets the snapping grid of the ScrollBox.

Node Inputs

Activate
Sets the snapping grid of the ScrollBox.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

HorizSpacing
The horizontal grid spacing of the element identified by ElementID.

VertSpacing
The vertical grid spacing of the element identified by ElementID.

Node Output

Done
Sends a signal when the node's action is finished.

UI:ScrollBox:GetSnapMode Node

Gets the snap mode for the ScrollBox.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

SnapMode
An integer representing the snap mode state.

Valid values: 0 = None | 1 = Children | 2 = Grid

UI:ScrollBox:SetSnapMode Node

Sets the snap mode for the ScrollBox.

Version 1.6
1276

Lumberyard User Guide
UI Flow Graph Nodes

Node Inputs

Activate
Sets the snap mode for the ScrollBox.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

SnapMode
An integer representing the snap mode state.

Valid values: 0 = None | 1 = Children | 2 = Grid

Node Output

Done
Sends a signal when the node's action is finished.

UI:ScrollBox:GetHorizontalScrollBarVisibility Node

Gets horizontal scrollbar visibility behavior.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

ScrollBarVisibility
An integer that represents the scrollbar visibility behavior.

Valid values: 0 = AlwaysVisible | 1 = AutoHide | 2 = AutoHideAndResizeViewArea

UI:ScrollBox:SetHorizontalScrollBarVisibility Node

Sets horizontal scrollbar visibility behavior.

Node Inputs

Activate
Sets horizontal scroll bar visibility behavior.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

ScollBarVisibility
An integer representing the scrollbar visibility behavior.

0 = AlwaysVisible | 1 = AutoHide | 2 = AutoHideAndResizeViewArea.

Version 1.6
1277

Lumberyard User Guide
UI Flow Graph Nodes

Node Output

Done
Sends a signal when the node's action is finished.

UI:ScrollBox:GetVerticalScrollBarVisibility Node

Gets vertical scrollbar visibility behavior.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

ScrollBarVisibility
An integer that represents the scrollbar visibility behavior.

Valid values: 0 = AlwaysVisible | 1 = AutoHide | 2 = AutoHideAndResizeViewArea

UI:ScrollBox:SetVerticalScrollBarVisibility Node

Sets vertical scrollbar visibility behavior.

Node Inputs

Activate
Sets vertical scroll bar visibility behavior.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

ScollBarVisibility
An integer representing the scrollbar visibility behavior.

0 = AlwaysVisible | 1 = AutoHide | 2 = AutoHideAndResizeViewArea.

Node Output

Done
Sends a signal when the node's action is finished.

UI:ScrollBox:GetHorizontalScrollBarEntity Node

Gets the horizontal scrollbar element for the ScrollBox.

Node Inputs

Activate
Updates the outputs.

Version 1.6
1278

Lumberyard User Guide
UI Flow Graph Nodes

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

HorizontalScrollBar
The element that scrolls the ScrollBox horizontally.

UI:ScrollBox:SetHorizontalScrollBarEntity Node

Sets the horizontal scrollbar element for the ScrollBox.

Node Inputs

Activate
Sets the horizontal scrollbar element for the ScrollBox.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

HorizontalScrollBar
The element that scrolls the ScrollBox horizontally.

Node Output

Done
Sends a signal when the node's action is finished.

UI:ScrollBox:GetVerticalScrollBarEntity Node

Gets the vertical scrollbar element for the ScrollBox.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

VerticalScrollBar
The element that scrolls the ScrollBox vertically.

UI:ScrollBox:SetVerticalScrollBarEntity Node

Sets the vertical scrollbar element for the ScrollBox.

Version 1.6
1279

Lumberyard User Guide
UI Flow Graph Nodes

Node Inputs

Activate
Sets the vertical scrollbar element for the ScrollBox.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

VerticalScrollBar
The element that scrolls the ScrollBox vertically.

Node Output

Done
Sends a signal when the node's action is finished.

UI ScrollBar Component Nodes

The UI Scrollbar component flow graph nodes have been superseded by the UIe Scrollbar (p. 1219)
component flow graph nodes. For best results, use the UIe Scrollbar (p. 1219) component flow graph
nodes.

Use the following flow graph nodes to perform actions on the Scrollbar component.

UI:Scrollbar:GetHandleEntity Node

Gets the handle element of the scroll bar.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Handle
The handle element.

UI:Scrollbar:SetHandleEntity Node

Sets the handle element of the scroll bar.

Node Inputs

Activate
Sets the handle element.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Version 1.6
1280

Lumberyard User Guide
UI Flow Graph Nodes

Handle
The handle element.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Scrollbar:GetValue Node

Gets the value of the scrollbar.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Value
The scrollbar value of the element identified by ElementID.

UI:Scrollbar:SetValue Node

Sets the value of the scroll bar.

Node Inputs

Activate
Sets the value of the scrollbar.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Value
The scrollbar value of the element identified by ElementID.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Scrollbar:GetHandleSize Node

Gets the size of the handle.

Node Inputs

Activate
Updates the output.

Version 1.6
1281

Lumberyard User Guide
UI Flow Graph Nodes

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

HandleSize
The size of the handle of the element identified by ElementID.

UI:Scrollbar:SetHandleSize Node

Sets the size of the handle.

Node Inputs

Activate
Sets the size of the handle.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

HandleSize
The size of the handle of the element identified by ElementID.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Scrollbar:GetMinHandlePixelSize Node

Gets the minimum size in pixels of the handle.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

MinHandleSize
The minimum size in pixels of the handle of the element identified by ElementID.

UI:Scrollbar:SetMinHandlePixelSize Node

Sets the minimum size in pixels of the handle.

Version 1.6
1282

Lumberyard User Guide
UI Flow Graph Nodes

Node Inputs

Activate
Sets the minimum size in pixels of the handle.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

MinHandleSize
The minimum size in pixels of the handle of the element identified by ElementID.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Scrollbar:GetValueChangedActionName Node

Gets the action triggered when the value is done changing.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

ValueChangedAction
The action name.

UI:Scrollbar:SetValueChangedActionName Node

Sets the action triggered when the value is done changing.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

ValueChangedAction
The action name.

Node Output

Done
Sends a signal when the node's action is finished.

Version 1.6
1283

Lumberyard User Guide
UI Flow Graph Nodes

UI:Scrollbar:GetValueChangingActionName Node

Gets the action triggered while the value is changing.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

ValueChangingAction
The action name.

UI:Scrollbar:SetValueChangingActionName Node

Sets the action triggered while the value is changing.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

ValueChangingAction
The action name.

Node Output

Done
Sends a signal when the node's action is finished.

UI Slider Component Nodes

The UI Slider component flow graph nodes have been superseded by the UIe Slider (p. 1224)
component flow graph nodes. For best results, use the UIe Slider (p. 1224) component flow graph
nodes.

Use the following flow graph nodes to perform actions on the slider component.

UI:Slider:GetFillEntity Node

Gets the fill element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

Version 1.6
1284

Lumberyard User Guide
UI Flow Graph Nodes

ElementID
Unique identifier of the element.

Node Output

FillElement
The fill element.

UI:Slider:SetFillEntity Node

Sets the fill element.

Node Inputs

Activate
Sets the fill element.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

FillElement
The fill element.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Slider:GetManipulatorEntity Node

Gets the manipulator element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

ManipulatorElement
The manipulator element.

UI:Slider:SetManipulatorEntity Node

Sets the manipulator element.

Node Inputs

Activate
Sets the manipulator element.

Version 1.6
1285

Lumberyard User Guide
UI Flow Graph Nodes

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

ManipulatorElement
The manipulator element.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Slider:GetMaxValue Node

Gets the maximum value of the slider.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

MaxValue
The slider maximum value of the element identified by ElementID.

UI:Slider:SetMaxValue Node

Sets the maximum value of the slider.

Node Inputs

Activate
Sets the maximum value of the slider.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

MaxValue
The slider maximum value of the element identified by ElementID.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Slider:GetMinValue Node

Gets the minimum value of the slider.

Version 1.6
1286

Lumberyard User Guide
UI Flow Graph Nodes

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

MinValue
The slider minimum value of the element identified by ElementID.

UI:Slider:SetMinValue Node

Sets the minimum value of the slider.

Node Inputs

Activate
Sets the minimum value of the slider.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

MinValue
The slider minimum value of the element identified by ElementID.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Slider:GetStepValue Node

Gets the smallest increment allowed between values. Zero means no restriction.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

StepValue
The smallest increment allowed between values of the element identified by ElementID. Zero
means no restriction.

Version 1.6
1287

Lumberyard User Guide
UI Flow Graph Nodes

UI:Slider:SetStepValue Node

Sets the smallest increment allowed between values. Zero means no restriction.

Node Inputs

Activate
Sets the smallest increment allowed between values. Zero means no restriction.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

StepValue
The smallest increment allowed between values of the element identified by ElementID. Zero
means no restriction.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Slider:GetTrackEntity Node

Gets the track element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Track
The track element.

UI:Slider:SetTrackEntity Node

Sets the track element.

Node Inputs

Activate
Sets the track element.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Track
The track element.

Version 1.6
1288

Lumberyard User Guide
UI Flow Graph Nodes

Node Output

Done
Sends a signal when the node's action is finished.

UI:Slider:GetValue Node

Gets the value of slider.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Value
The slider value of the element identified by ElementID.

UI:Slider:SetValue Node

Sets the value of the slider.

Node Inputs

Activate
Sets the value of the slider.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Value
The slider value of the element identified by ElementID.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Slider:GetValueChangedActionName Node

Gets the action triggered when the value is done changing.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

Version 1.6
1289

Lumberyard User Guide
UI Flow Graph Nodes

ElementID
Unique identifier of the element.

Node Output

ValueChangedAction
The action name.

UI:Slider:SetValueChangedActionName Node

Sets the action triggered when the value is done changing.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

ValueChangedAction
The action name.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Slider:GetValueChangingActionName Node

Gets the action triggered while the value is changing.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

ValueChangingAction
The action name.

UI:Slider:SetValueChangingActionName Node

Sets the action triggered while the value is changing.

Node Inputs

Activate
Updates the output.

Version 1.6
1290

Lumberyard User Guide
UI Flow Graph Nodes

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

ValueChangingAction
The action name.

Node Output

Done
Sends a signal when the node's action is finished.

UI Text Component Nodes

The UI Text component flow graph nodes have been superseded by the UIe Text (p. 1229) component
flow graph nodes. For best results, use the UIe Text (p. 1229) component flow graph nodes.

Use the following flow graph nodes to perform actions on the text component.

UI:Text:GetColor Node

Gets the color to draw the text string.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Outputs

Color
The RGB value (0 – 255 each for R, G, and B) of the element identified by ElementID.

Alpha
The alpha value (0 – 255) of the element identified by ElementID.

UI:Text:SetColor Node

Sets the color to draw the text string.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Color
The RGB value (0 – 255 each for R, G, and B) of the element identified by ElementID.

Alpha
The alpha value (0 – 255) of the element identified by ElementID.

Version 1.6
1291

Lumberyard User Guide
UI Flow Graph Nodes

Node Output

Done
Sends a signal when the node's action is finished.

UI:Text:GetFont Node

Gets the path to the font.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Font
The path to the font used by the element.

UI:Text:SetFontNode

Sets the path to the font.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Font
The path to the font used by the element identified by ElementID.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Text:GetFontSize Node

Gets the font size in points.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Version 1.6
1292

Lumberyard User Guide
UI Flow Graph Nodes

Node Output

FontSize
The font size of the element identified by ElementID.

UI:Text:SetFontSize Node

Sets the font size in points.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

FontSize
The font size of the element identified by ElementID.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Text:GetOverflowMode Node

Gets the overflow behavior of the text.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

OverflowMode
An integer representing how overflow text is handled.

Valid values: 0 = Overflow text | 1 = Clip text

UI:Text:SetOverflowModeNode

Sets the overflow behavior of the text.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

Version 1.6
1293

Lumberyard User Guide
UI Flow Graph Nodes

ElementID
Unique identifier of the element.

OverflowMode
An integer representing how overflow text is handled.

Valid values: 0 = Overflow text | 1 = Clip text

Node Output

Done
Sends a signal when the node's action is finished.

UI:Text:GetText Node

Gets the text string that the element displays.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

Value
The text string being displayed by the element identified by ElementID.

UI:Text:SetText Node

Sets the text string being displayed by the element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Value
The text string being displayed by the element identified by ElementID.

Node Output

Done
Sends a signal when the node's action is finished.

UI:Text:GetWrapText Node

Gets whether text is wrapped.

Version 1.6
1294

Lumberyard User Guide
UI Flow Graph Nodes

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

WrapTextSetting
An integer representing how long text ines are handled.

Valid values: 0 = No wrap | 1 = Wrap

UI:Text:SetWrapText Node

Gets whether text is wrapped.

Node Inputs

Activate
Updates the outputs.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

WrapTextSetting
An integer representing how long text ines are handled.

Valid values: 0 = No wrap | 1 = Wrap

Node Output

Done
Sends a signal when the node's action is finished.

UI Text Input Component Nodes

The UI Text Input component flow graph nodes have been superseded by the UIe Text Input (p. 1233)
component flow graph nodes. For best results, use the UIe Text Input (p. 1233) component flow graph
nodes.

Use the following flow graph nodes to perform actions on the text input component.

UI:TextInput:GetChangeAction Node

Gets the action triggered when the text is changed.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

Version 1.6
1295

Lumberyard User Guide
UI Flow Graph Nodes

ElementID
Unique identifier of the element.

Node Output

ChangeAction
The action name.

UI:TextInput:SetChangeAction Node

Sets the action triggered when the text is changed.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

ChangeAction
The action name.

Node Output

Done
Sends a signal when the node's action is finished.

UI:TextInput:GetCursorBlinkInterval Node

Gets the cursor blink interval of the text input.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

CursorBlinkInterval
The cursor blink in interval of the element identified by ElementID.

UI:TextInput:SetCursorBlinkInterval Node

Gets the cursor blink interval of the text input.

Node Inputs

Activate
Updates the output.

Version 1.6
1296

Lumberyard User Guide
UI Flow Graph Nodes

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

CursorBlinkInterval
The cursor blink in interval of the element identified by ElementID.

Node Output

Done
Sends a signal when the node's action is finished.

UI:TextInput:GetEndEditAction Node

Gets the action triggered when the editing of text is finished.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

EndEditAction
The action name.

UI:TextInput:SetEndEditAction Node

Sets the action triggered when the editing of text is finished.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

EndEditAction
The action name.

Node Output

Done
Sends a signal when the node's action is finished.

UI:TextInput:GetEnterAction Node

Gets the action triggered when Enter is pressed.

Version 1.6
1297

Lumberyard User Guide
UI Flow Graph Nodes

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

EnterAction
The action name.

UI:TextInput:SetEnterAction Node

Sets the action triggered when Enter is pressed.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

EnterAction
The action name.

Node Output

Done
Sends a signal when the node's action is finished.

UI:TextInput:GetIsPasswordField Node

Gets whether the text input is configured as a password field.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

IsPasswordField
Boolean. Whether the element identified by ElementID is configured as a password field.

Version 1.6
1298

Lumberyard User Guide
UI Flow Graph Nodes

UI:TextInput:SetIsPasswordField Node

Sets whether the text input is configured as a password field.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

IsPasswordField
Boolean. Whether the element identified by ElementID is configured as a password field.

Node Output

Done
Sends a signal when the node's action is finished.

UI:TextInput:GetMaxStringLength Node

Gets the maximum number of characters that can be entered.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

MaxStringLength
An integer representing the maximum number of characters that can be entered.

Valid values: 0 = none allowed | -1 = unlimited

UI:TextInput:SetMaxStringLength Node

Sets the maximum number of characters that can be entered.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

MaxStringLength
An integer representing the maximum number of characters that can be entered.

Valid values: 0 = none allowed | -1 = unlimited

Version 1.6
1299

Lumberyard User Guide
UI Flow Graph Nodes

Node Output

Done
Sends a signal when the node's action is finished.

UI:TextInput:GetPlaceHolderTextEntity Node

Gets the placeholder text element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

PlaceHolderTextElement
The placeholder text element.

UI:TextInput:SetPlaceHolderTextEntity Node

Sets the placeholder text element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

PlaceHolderTextElement
The placeholder text element.

Node Output

Done
Sends a signal when the node's action is finished.

UI:TextInput:GetText Node

Gets the text string that the element is displaying or allowing to be edited.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Version 1.6
1300

Lumberyard User Guide
UI Flow Graph Nodes

Node Output

Value
The text string being displayed or edited by the element

UI:TextInput:SetText Node

Sets the text string that the element is displaying or allowing to be edited.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Value
The text string being displayed or edited by the element

Node Output

Done
Sends a signal when the node's action is finished.

UI:TextInput:GetTextCursorColor Node

Gets the color to be used for the text cursor.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Outputs

Color
The RGB value (0 – 255 each for R, G, and B) of the element identified by ElementID.

Alpha
The alpha value (0 -– 255) of the element identified by ElementID.

UI:TextInput:SetTextCursorColor Node

Sets the color to be used for the text cursor.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

Version 1.6
1301

Lumberyard User Guide
UI Flow Graph Nodes

ElementID
Unique identifier of the element.

Color
The RGB value (0 – 255 each for R, G, and B) of the element identified by ElementID.

Alpha
The alpha value (0 – 255) of the element identified by ElementID.

Node Output

Done
Sends a signal when the node's action is finished.

UI:TextInput:GetTextEntity Node

Gets the text element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Output

TextElement
The text element.

UI:TextInput:SetTextEntity Node

Gets the text element.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

TextElement
The text element.

Node Output

Done
Sends a signal when the node's action is finished.

UI:TextInput:GetTextSelectionColor Node

Gets the color to be used for the text background when it is selected.

Version 1.6
1302

Lumberyard User Guide
UI Flow Graph Nodes

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Node Outputs

Color
The RGB value (0 – 255 each for R, G, and B) of the element identified by ElementID.

Alpha
The alpha value (0 – 255) of the element identified by ElementID.

UI:TextInput:SetTextSelectionColor Node

Gets the color to be used for the text background when it is selected.

Node Inputs

Activate
Updates the output.

CanvasID
Unique identifier of the element's canvas.

ElementID
Unique identifier of the element.

Color
The RGB value (0 – 255 for R, G, and B) of the element identified by ElementID.

Alpha
The alpha value (0 – 255) of the element identified by ElementID.

Node Output

Done
Sends a signal when the node's action is finished.

UI Animation Node

The UI animation flow graph node has been superseded by the UIe Animation (p. 1241) flow graph
node. For best results, use the UIe Animation (p. 1241) flow graph node.

The UI animation node consists of the following node inputs and outputs:

UI:Sequence:Play Node

Controls playback of a UI animation sequence.

Node Inputs

Start
Starts playing the sequence from the beginning and triggers the OnStarted output.

Version 1.6
1303

Lumberyard User Guide
UI Flow Graph Nodes

Stop
Jumps the animation to the end and stops playing and triggers the OnStopped output.

Abort
Jumps the animation to the end and stops playing and triggers the OnAborted output.

Pause
Pauses the animation.

Resume
Continues playing a previously paused animation.

Reset
Resets the animation to the start. This applies all the key values for the first key frame of the
animation.

CanvasID, SequenceName
Unique ID of UI canvas that contains the animation sequence.
The name of the sequence to play.

Node Outputs

OnStarted
Triggers when the sequence starts playing.

OnStopped
Triggers an output when the sequence stops playing, either because the end of the animation is
reached or because the sequence is forced to stop (for example, by using the Stop node input).

OnAborted
Triggers an output when the sequence is aborted (for example, by using the Abort node input).

Version 1.6
1304

Lumberyard User Guide
Configuring your Project for Virtual Reality

Virtual Reality

Lumberyard's virtual reality (p. 1376) system integrates the use of the OculusRift, HTC Vive, and Open
Source Virtual Reality (OSVR) head-mounted displays (HMD) on PC gaming systems. Before using
these head-mounted displays, read each manufacturer's safety guide:

• Oculus Rift Health and Safety Warning

• HTC Vive Safety and Regulatory Guide

To activate Lumberyard's virtual reality support, add the appropriate Virtual Reality Gem(s) (p. 1305)
in the Project Configurator and then rebuild your project (p. 778). By enabling the appropriate Virtual
Reality Gem(s), your project becomes capable of working with the supported virtual reality device(s),
after some additional configuration. You can also add new gems (p. 778) for other head-mounted
devices.

Use console variables (CVARs) (p. 1306) to activate and modify configurable features of the virtual
reality system, such as resolution and performance specifications.

You can use flow graph modules for the initial game setup and game play scripting, for example to
customize such features as the position of the camera, tracking of the attached virtual reality device,
current view depending on height of the player, and more.

Topics

• Configuring your Project for Virtual Reality (p. 1305)

• Configuring Required Console Variables (p. 1306)

• Setting Up Virtual Reality with Flow Graph (p. 1307)

• Previewing your Virtual Reality Project (p. 1316)

• Debugging your Virtual Reality Project (p. 1316)

Configuring your Project for Virtual Reality
Add one or more Virtual Reality Gems available in Lumberyard Editor to enable virtual reality for
supported head-mounted displays (HMDs). You can add the gem(s) to new or existing projects. If you
add more than one gem, the system automatically detects which HMD is connected, and uses the
appropriate gem code to control the specific HMD and any associated virtual reality (VR) controllers.

Supported HMDs include:

Version 1.6
1305

http://www.oculus.com/warnings
http://dl4.htc.com/web_materials/Safety_Guide/Vive/Vive_safety_and_regulatory_guide_ENG-FRC-ESM.pdf

Lumberyard User Guide
Configuring Required Console Variables

• Oculus – Oculus Rift HMD

• OpenVR – HTC Vive HMD

• OSVR – Open Source Virtual Reality (OSVR) HDK1 and HDK2

To add the Virtual Reality Gem(s)

1. Use the Lumberyard Setup Assistant to open the Project Configurator.

2. Select the project you want to add the Virtual Reality Gem to, or create a new project. Then click
Set as Default.

3. Click Enable Gems below the project name.

4. Select one or more of the Virtual Reality Gems:

• Oculus

• OpenVR

• OSVR

5. Click Save.

After you enable the gem(s), you must rebuild your project (p. 778) before the gem(s) will function
in Lumberyard Editor.

Configuring Required Console Variables
Console variables (CVARs) (p. 57) are a type of variable that you can manipulate in Lumberyard's
console interface (p. 56).

You must set the following console variable to enable your project's capability to support the head-
mounted display.

output_to_hmd = 1
Enables output to head-mounted display (HMD). Allows users to toggle stereoscopic output while
playing the game. With this variable enabled, the height and width resolution for the connected
headset is detected and set automatically.

Version 1.6
1306

Lumberyard User Guide
Optional Console Variables

Set the following console variables to 0 in order to turn them off. These features are either unnecessary
for virutal reality or too resource-intensive for a virtual reality environment.

r_DepthOfField = 0
Disables the depth of field setting. 0 = disabled; 1 = enabled; 2 = hdr time of day enabled.

r_MotionBlur = 0
Disables the motion blur setting. 0 = no motion blur; 1 = camera and object motion blur; 2 = debug
mode.

r_ResolutionScale
Float value. Scales the resolution for better performance. For example, set to 0.5 to scale the
resolution by 50% in width and height (retains the aspect ratio).

e_gi = 0
Disables the global illumination setting. 0 = disabled; 1 = enabled.

Optional Console Variables
The following console variables are optional but strongly recommended. Disabling the following
rendering features ensures better performance in a virtual reality environment. If you need certain
rendering features that are explicitly disabled by these example variables, you may turn them back on
at the cost of performance.

sys_spec = 2
Sets the system configuration specification to medium. 0 = custom; 1 = low; 2 = medium; 3 = high;
4 = very high; 5 = Xbox One; 6 = PS4; 7 = Mobile.

r_ssdoHalfRes = 3
Applies screen space directional occlusion (SSDO) (p. 1376) bandwidth optimizations to half
resolution output. 0 = full resolution; 1 = lower resolution; 2 = low res depth (except for small
camera field of views) to avoid artifacts; 3 = half resolution output.

r_Refraction = 0
Disables refraction. 0 = disabled; 1 = enabled.

r_CBufferUseNativeDepth = 0
Disables use of the depth buffer as the coverage buffer. 0 = disabled; 1 = enabled.

r_DeferredShadingTiled = 0
Disables tiled shading. 0 = disabled; 1 = tiled forward shading for transparent objects; 2 = tiled
deferred and forward shading; 3 = tiled deferred and forward shading with debug info; 4 = light
coverage visualization.

r_SSReflections = 0
Disables glossy screen space reflections. 0 = disabled; 1 = enabled.

Setting Up Virtual Reality with Flow Graph
You can use flow graph modules to set up or script your virtual reality game.

The following flow graph modules are available for any attached head-mounted display.

VR:ControllerTracking
Provides up-to-date information about any attached motion controller's transform (position and rotation)
information in game world space. If an entity is specified in the node, all positions and rotations are
specified relative to the entity.

Version 1.6
1307

Lumberyard User Guide
VR:DeviceInfo

Node Inputs

Enabled
Enables or disables the node.

Scale
Scales the controller's movements.

Node Outputs

Left pos
Position of the left controller.

Left Rot (PRY)
Rotation of the left controller in degrees (PRY – pitch, roll, yaw).

Left data ok
Valid data output from left controller. This means that the controller is connected and active.

Right pos
Position of the right controller.

Right Rot (PRY)
Rotation of the right controller in degrees (PRY – pitch, roll, yaw).

Right data ok
Valid data output from right controller. This means that the controller is connected and active.

VR:DeviceInfo
Gets information about the currently connected device.

Node Input

Activate
Updates the output.

Node Outputs

Name
The name of the active HMD.

RenderWidth
The render width for a single eye (in pixels).

RenderHeight
The render height for a single eye (in pixels).

VerticalFOV
The vertical field of view (FOV) for the HMD in degrees.

HorizontalFOV
The combined horizontal field of view (FOV) for both eyes in degrees.

VR:TransformInfo
Gives up-to-date information about the current HMD transform (position and rotation) in the game world
space.

Version 1.6
1308

Lumberyard User Guide
VR:Dynamics:Controllers

Node Outputs

Camera pos
Position of the camera after being translated by the HMD.

Camera rot
Rotation of the camera after being rotated by the HMD in degrees (pitch, yaw, roll).

HMD pos
Position of the HMD relative to the HMD's recentered pose. This is not the position of the HMD
within the game world, as no camera transform has been applied.

HMD rot
Rotation of the HMD relative to the HMD's recentered pose. This is not the rotation of the HMD
within the game world, as no camera transform has been applied.

VR:Dynamics:Controllers
Gives up-to-date information about the current HMD transform (position and rotation) in the game world
space.

Node Input

Activate
Updates the outputs.

Node Outputs

Left Controller Active
Boolean. Whether left controller is active and being tracked.

Left Linear Velocity
Vector. Linear velocity of the left controller in local space.

Left Linear Acceleration
Vector. Linear acceleration of the left controller in local space.

Left Angular Velocity
Vector. Angular velocity of the left controller in local space.

Left Angular Acceleration
Vector. Angular acceleration of the left controller in local space.

Right Contoller Active
Boolean. Whether right controller is active and being tracked.

Right Linear Velocity
Vector. Linear velocity of the right controller in local space.

Right Linear Acceleration
Vector. Linear acceleration of the right controller in local space.

Right Angular Velocity
Vector. Angular velocity of the right controller in local space.

Right Angular Acceleration
Vector. Angular acceleration of the right controller in local space.

VR:Dynamics:HMD
Provides information about the current angular and linear dynamics of the HMD.

Version 1.6
1309

Lumberyard User Guide
VR:OpenVR:Playspace

Node Input

Enabled
Enables the node.

Node Outputs

Linear Velocity
Linear velocity of the HMD in local space.

Linear Acceleration
Linear acceleration of the HMD in local space.

Angular Velocity
Angular velocity of the HMD in local space.

Angular Acceleration
Angular acceleration of the HMD in local space.

VR:OpenVR:Playspace
Provides information about the HMD's playspace.

Node Input

Activate
Updates the outputs.

Node Outputs

Corner0
The world-space position of corner 0.

Corner1
The world-space position of corner 1.

Corner2
The world-space position of corner 2.

Corner3
The world-space position of corner 3.

Center
The world-space center of the playspace. Note that the center is on the floor.

Dimensions
The width (x) and height (y) of the playspace in meters.

IsValid
If true, the playspace data is valid and configured correctly.

VR:RecenterPose
Recenters the view coordinate system for the attached HMD to the current view.

VR:VREnabled
Queries whether VR output is enabled and active in the system. A true output from this node means
that an HMD is connected, properly initialized, and being rendered to.

Version 1.6
1310

Lumberyard User Guide
VR:SetTrackingLevel

VR:SetTrackingLevel
Sets the current tracking level of the attached VR device to either Head or Floor. These options
determine how the HMD's origin is calculated for every frame.

VR:TransformInfo
Provides information about the orientation and position of the camera and the HMD.

Node Input

Enabled
Enables the node.

Node Outputs

Camera pos
The position of the current camera in world coordinates.

Camera rot (PRY)
Vector. The oritentation of the current camera in world coordinates in degrees (PRY – pitch, roll,
yaw).

HMD pos
The position of the HMD with respect to the recentered pose of the tracker.

HMD rot (PRY)
The orientation of the HMD in world coordinates in degrees (PRY – pitch, roll, yaw).

VR:VREnabled
Whether VR rendering is enabled.

Setting Up a Basic Virtual Reality Flow Graph
The following flow graph (p. 487) examples guide you through a basic setup of a virtual reality level and
its accompanying head-mounted display(s).

When you create a new level, the default point of origin is 0,0,0—the location at which the level starts
during game play. You can specify a custom starting point by placing a camera (p. 296) at a specific
location and enabling it with flow graph.

To specify a custom starting point

1. Place a game play camera (p. 296) at the desired location in your level. This is your default
camera.

2. Right-click the camera entity and click Create Flow Graph to open the Flow Graph editor.

3. Drag a Game:Start node and Camera:View node onto your flow graph canvas.

4. Connect the Game:Start node's output output to the Camera:View node's Enable input.

5. Right-click Choose Entity and click Assign graph entity.

Version 1.6
1311

Lumberyard User Guide
Setting Up a Basic Virtual Reality Flow Graph

During virtual reality game play, a player may need to recenter their game play world around
themselves, and start from a known position in space, regardless of their current position. Using flow
graph, you can add a keyboard shortcut that the player can use to accomplish this.

To add a keyboard shortcut for recentering

1. Open the Flow Graph (p. 487) editor.

2. Drag a Debug:InputKey node and VR:RecenterPose node onto the canvas.

3. Connect the Debug:InputKey node's Pressed output to the VR:RecenterPose node's Activate
input.

4. On Debug:InputKey node, click on Key= and set the key to the shortcut key you want to use.

For your virtual reality game, you may want to place a graphical, virtual controller to represent where a
physical controller is within the 3D space. You can use flow graph to add this graphical representation
of a controller (for example, hands, weapons, and so on).

For this procedure, the default camera is the game play camera that you placed in the custom starting
point (p. 1311) procedure. Assigning the default camera entity to the VR:ControllerTracking node
ensures that the motion controllers are aligned in the same space.

To add virtual controllers and assign the default camera

1. In the Perspective viewport, select the default camera.

2. In Flow Graph editor, drag the VR:ControllerTracking node onto the flow graph canvas.

3. Right-click Choose Entity and click Assign Graph Entity.

4. In the Perspective viewport, place one or more entities that you want to use as controllers into
your level. Ensure that you keep the entity selected.

5. In the Flow Graph editor, drag one or two Entity:EntityPos nodes onto your flow graph canvas.

6. On the Entity:EntityPos node, right-click Choose Input and click Assign selected entity.

If you placed another entity that you want to assign as the other controller, select the entity and
repeat this step for the other Entity:EntityPos node.

7. Connect VR:ControllerTracking node's Lef Pos output to the Entity:EntityPos node's pos input.

Version 1.6
1312

Lumberyard User Guide
Setting Up a Custom Playspace with Flow Graph

8. Connect VR:ControllerTracking node's Lef Rot (PRY) output to the Entity:EntityPos node's
rotate input.

9. Repeat the previous two steps for the Right Pos and Right Rot (PRY), if applicable.

Setting Up a Custom Playspace with Flow Graph
You can use flow graph to set up a custom playspace for OpenVR (Vive HTC head-mounted display
[HMD]).

When a user first sets up their Vive HTC HMD, they must configure their playspace, or play area,
according to their available space and room configuration. You can set up a flow graph to enable your
game to access this information in order to spawn game objects within the user's reach and to create a
visual area for the user to move within.

Lumberyard has included a sample virtual reality level. Open VR_BoxGarden_Sample in the Samples
Project (p. 1091). You may copy or modify this sample level for your own uses.

The following pictures show examples of:

• A – 2m x 2m playspace

• B – 4m x 3m playspace

Version 1.6
1313

Lumberyard User Guide
Setting Up a Custom Playspace with Flow Graph

The following pictures show examples of spawning posts around the perimeter of a playspace with an
area of:

• C – 2m x 2m

• D – 4m x 3m

Version 1.6
1314

Lumberyard User Guide
Setting Up a Custom Playspace with Flow Graph

The following flow graph from VR_BoxGarden_Sample in the Samples Project (p. 1091) shows an
example of how to scale the user playspace to create the box shown in the above pictures. This flow
graph uses the user playspace width (x) and length (y), and scales the height (z=0.1) to create an area
equivalent to the user playspace, but at the height of a floorboard.

Version 1.6
1315

Lumberyard User Guide
Previewing your Virtual Reality Project

Previewing your Virtual Reality Project
You can preview your virtual reality project for any project that has one or more of the virtual reality
head-mounted display gems enabled. As you work in Lumberyard Editor, use your head-mounted
display to preview your virtual reality game. The preview display inside of Lumberyard Editor is a
preview only; it is not a good indicator of how fast the application will perform outside of the editor.

To gauge the game performance outside of Lumberyard Editor, create a release build (p. 1366) to run
your game in standalone mode.

To preview your virtual reality project

1. In Lumberyard Editor, click VR Preview on the bottom toolbar.

2. Enter game mode by doing one of the following:

• Press Ctrl + G

• On the main menu, click Game, Switch to Game.

To exit virtual reality preview mode

1. Exit game mode by pressing Esc.

2. Click VR Preview if you want to return to the default PC game preview mode.

Debugging your Virtual Reality Project
You can debug your virtual reality project either through a running instance of the game or through
the Lumberyard Editor. The head-mounted displays that Lumberyard supports outputs debugging
information when debugging is enabled.

To enable debugging

• Set console variable (p. 1306) hmd_debug to 1 (enabled).

When in debug mode, motion controllers are rendered as white crosshairs. That is, if you assigned an
object or entity to represent the motion controller in the game play world, then you will see it rendered
with the white crosshairs. The following picture shows two controllers, one with render geometry
assigned, and the other without.

Version 1.6
1316

Lumberyard User Guide
Debugging your Virtual Reality Project

Version 1.6
1317

Lumberyard User Guide
Waf File System

Waf Build System

Lumberyard uses the Waf build system to allow you to switch between various build pipelines and to
ensure you build only what is needed. You can use extensions, such as automatic project generation,
or a simple GUI to modify the command line base system for your project requirements.

You can run Waf using the following methods:

• Command line window

• Waf-generated, Visual Studio solution file. Waf creates a Visual Studio solution file along with the
projects specified in the selected project specs. If more than one spec file includes the same project,
only one project file is created to prevent duplicates. Waf uses the project specs to determine the
projects, project filters, and possible build configurations. Waf uses the wscript files to identify
individual project definitions.

Note
Waf requires Python 2.6 or later.

Lumberyard includes the Project Configurator (p. 985), a standalone application that allows you to
specify to Waf which game templates and assets (gems) to include in the game build.

Topics

• Waf File System (p. 1318)

• Waf Commands and Options (p. 1334)

• Waf Supported Platforms and Compilers (p. 1338)

• Waf Project Settings (p. 1339)

• Waf Extensions (p. 1342)

• Using Waf (p. 1344)

• Adding User Settings to Waf (p. 1357)

• Adding Qt 5 Content to Waf (p. 1360)

• Using Uber Files (p. 1362)

• Debugging Waf (p. 1363)

Waf File System
You can find global configurations and project specs in the _WAF_ directory at the root project path.
Three subfolders represent settings specific to the following build systems: Android, iOS, and
MSBuild. Defined specs are located in the specs directory.

Version 1.6
1318

Lumberyard User Guide
Waf File List (*.waf_files)

In addition to the configurations specified in the _WAF_ directory, you can find other Waf settings in the
waf_branch_spec.py file in the root directory. You can modify this file if you need to include support
for additional platforms or configurations.

The Waf build file system can be grouped into three categories:

• Waf Module files (wscript)

• Waf file list (*.waf_files)

• Project and compilation files such as *.h, *.cpp, and so on

Topics

• Waf File List (*.waf_files) (p. 1319)

• Waf Branch Spec (waf_branch_spec.py) (p. 1320)

• Waf Projects File (project.json) (p. 1321)

• Waf Spec Files (*.json) (p. 1324)

• Waf Module Files (wscript) (p. 1326)

• Waf Default Settings (default_settings.json) (p. 1328)

• Waf User Settings (user_settings.options) (p. 1328)

Waf File List (*.waf_files)
Waf files are JSON-based and used to represent all files in the build plus their uber file and the
VisualStudioFilter. By default, the uber file option is set to false. When the uber option is false, all files
are treated as individual compilation units. NoUberFile is a fixed key that represents files that are
individually compiled regardless of the uber file flag state.

Files are organized hierarchically into three levels:

• Level 1 – Uber file target file

The first level represents the uber file designation for the source files that are defined in the group.
Uber file names must include the extension of the compilation types for the files defined. Only .cpp is
supported. You can use the reserved name NoUberFile to prevent grouping the files defined into a
single uber file, regardless of the Uber File option setting.

• Level 2 – Visual Studio filter name

The second level represents the Visual Studio project filter, which helps organize files in the group
into user-defined folders and subfolders. Folder filter names can be shared across multiple uber file
groupings because the folder groupings are not tied to uber file grouping definitions. The reserved
name root represents the base of the project in the hierarchy.

• Level 3 – List of source files

The third level below each Visual Studio filter name group includes the source file names, relative to
the current project folder.

The following is an example *.waf_files content file used by CryFont:

{
 "CryFont_Uber_0.cpp":
 {
 "Source Files":
 [
 "CryFont.cpp",

Version 1.6
1319

Lumberyard User Guide
Waf Branch Spec (waf_branch_spec.py)

 "FFont.cpp",
 "FFontXML.cpp",
 "FontRenderer.cpp",
 "FontTexture.cpp",
 "GlyphBitmap.cpp",
 "GlyphCache.cpp",
 "ICryFont.cpp",
 "NullFont.cpp"
],
 "Header Files":
 [
 "CryFont.h",
 "FFont.h",
 "FontRenderer.h",
 "FontTexture.h",
 "GlyphBitmap.h",
 "GlyphCache.h",
 "NullFont.h",
 "resource.h",
 "FBitmap.h",
 "StdAfx.h"
]
 },
 "NoUberFile":
 {
 "Root":
 [
 "StdAfx.cpp"
]
 }
}

Waf Branch Spec (waf_branch_spec.py)
The waf_branch_spec.py is the topmost configuration level of the Waf build system. It specifies
which platforms and configurations are available for all projects and specs.

The following is an example waf_branch_spec.py file:

######################
Build Layout
BINTEMP_FOLDER = 'BinTemp'

######################
Build Configuration
COMPANY_NAME = 'My Company'
COPYRIGHT = '(c) My Company'

######################
Supported branch platforms/configurations
This is a map of host -> target platforms
PLATFORMS = {
 'darwin' : ['darwin_x64', 'android_armv7_gcc', 'ios'],
 'win32' : ['win_x64', 'win_x64_vs2012', 'win_x64_vs2010', 'durango',
 'android_armv7_gcc'],
 'linux' : ['linux_x64_gcc', 'linux_x64_clang']
 }

Version 1.6
1320

Lumberyard User Guide
Waf Projects File (project.json)

And a list of build configurations to generate for each supported platform
CONFIGURATIONS = ['debug', 'profile', 'performance',
 'release',
 'debug_dedicated', 'profile_dedicated',
 'performance_dedicated', 'release_dedicated']

what conditions do you want a monolithic build ? Uses the same matching
 rules as other settings
so it can be platform_configuration, or configuration, or just platform
 for the keys, and the Value is assumed
false by default.
monolithic builds produce just a statically linked executable with no
 dlls.

MONOLITHIC_BUILDS = {
 'release' : True,
 'release_dedicated' : True,
 'performance_dedicated' : True,
 'performance' : True,
 'ios' : True
 }

The waf_branch_spec.py file manages the following global values:

Global values

Value Description

BINTEMP_FOLDER Subfolder under the base of the project where
Waf stores all intermediate and temporary files

COMPANY_NAME Company name to embed in the built
executables

CONFIGURATIONS List of possible build configurations

COPYRIGHT Copyright header to embed in the built
executables

MONOLITHIC_BUILDS Build configurations mapped to monolithic flag
values

PLATFORMS Supported host platforms mapped to
corresponding build platforms

Waf Projects File (project.json)
The project.json file (located in each game project directory) is used to store game project-specific
data. The enabled_game_projects settings (user_settings.options) and the enable-game-
projects build parameter use the project names defined in this file.

The project.json file is structured as follows:

• First level – Represents the project based on its name

• Second level – Presents attributes that you can set for each game project

The following is an example project.json file:

Version 1.6
1321

Lumberyard User Guide
Waf Projects File (project.json)

{
 "SamplesProject": {
 "product_name" : "Samples Project",
 "executable_name" : "SamplesProjectLauncher",
 "code_folder" : "Code/SamplesProject",
 "project_directory" : "SamplesProject",
 "modules" : ["SamplesProject"],

 "android_settings": {
 "package_name" : "com.cryengine.sdk",
 "orientation" : "landscape"
 }
 },
 "MultiplayerProject" : {
 "product_name" : "Multiplayer Project",
 "executable_name" : "MultiplayerProjectLauncher",
 "code_folder" : "Code/MultiplayerProject",
 "project_directory" : "MultiplayerProject",
 "modules" : ["MultiplayerProject"],

 "android_settings": {
 "package_name" : "com.cryengine.sdk",
 "orientation" : "landscape"
 }
 }

}

You can configure the following settings in the project.json file:

General settings

Value Description

android_folder (Android builds) Folder that includes the Android
launcher project

android_package (Android builds) Package name for the Android
project

code_folder Game code folder location, relative to the root of
the SDK

durango_settings (Durango) Root for the Durango-specific settings

executable_name Name of the built executable file:

• Dedicated server executables – '_Server' is
appended to the name

• Unit test executables – '_UnitTest' is
appended to the name

modules (List) Base modules for the game

orbis_settings (Orbis) Root for the Orbis-specific settings

product_name Externally-facing name of the product

project_directory Project directory for the game project

Version 1.6
1322

Lumberyard User Guide
Waf Projects File (project.json)

The following values are only valid under the durango_settings key:

Durango settings

Value Description

app_id app_id value to set in the Appxmanifest.xml
file

appxmanifest appxmanifest entry defines the name of the
Appxmanifest.xml template in the resource
folder

background_color background_color value to set in the
Appxmanifest.xml file

description description value to set in the
Appxmanifest.xml file

display_name display_name value to set in the
Appxmanifest.xml file

foreground_text foreground_text value to set in the
Appxmanifest.xml file

logo Path to the logo image to set in the
Appxmanifest.xml file; the path must match a
file in the resource folder

package_name package_name value to set in the
Appxmanifest.xml file

publisher publisher value to set in the Appxmanifest.xml
file

scid scid value to set in the Appxmanifest.xml
file; this value is also written to the
durango_title_id.h file

small_logo Path to the small_logo image to set in the
Appxmanifest.xml file; the path must match a
file in the resource folder

splash_screen Path to the splash_screen image to set in the
Appxmanifest.xml file; the path must match a
file in the resource folder

store_logo Path to the store_logo image to set in the
Appxmanifest.xml file; the path must match a
file in the resource folder

titleid titleid value to set in the Appxmanifest.xml
file; this value is also written to the
durango_title_id.h file

version version value to set in the Appxmanifest.xml
file

The following values are only valid under the orbis_settings key:

Version 1.6
1323

Lumberyard User Guide
Waf Spec Files (*.json)

Orbis settings

Value Description

data_folder Name of the data folder used for Orbis projects

nptitle_dat Location of the nptitle.dat file to copy to the
Orbis output folder

param_sfo Location of the param.sfo file to copy to the
Orbis output folder

trophy_trp Location of the tropy00.trp file to copy to the
Orbis output folder

Waf Spec Files (*.json)
You use Waf spec files to specify which modules to include in a build configuration. All settings are
mandatory if not explicitly stated otherwise.

A typical spec includes all modules that are required to build a game project. Lumberyard includes the
following with the engine SDK:

• game_and_engine.json – Specs to build the sample game and engine

• resource_compiler.json – Specs to build the Resource Compiler

• pipeline.json – Specs to build the pipeline tools

• all.json – Specs to build all projects

The following is an example *.json file that illustrates a spec file layout:

{
 "description" : "Configuration to build my game",
 "visual_studio_name" : "My Game",
 "comment" : "This is the build spec for my game",
 "disable_game_projects" : false,
 "platforms" : ["win_x64"],
 "configurations" : ["debug","profile","performance","release"],
 "modules" :
 [
 "WindowsModule1",
 "WindowsModule2",
 "CommonModule"
]
}

Note
The disable_game_projects keyword does not compile the games specified in the
project.json file. The default value is false, which means the specs compile the game
projects by default.

Platform-specific Entry Values

You can apply the entry values in the table to targeted platforms and/or configurations. For example,
a spec can build specific modules for Durango vs win_x64 or a spec can build different modules in
certain configurations.

Version 1.6
1324

Lumberyard User Guide
Waf Spec Files (*.json)

• modules – Includes in the build all modules defined by this key, regardless of platform and
configuration.

• win_x64_modules – Includes in the win_64 build all modules defined by this key, regardless of
configuration.

• durango_debug_defines – Includes in the Durango debug build all defines specified by this key.

• durango_modules – Includes in the Durango build all modules defined by this key, regardless of
configuration.

Overlapping lists are combined into a single list based on the build command. For example, for
durango builds, the above example includes in the build the unique set of modules that is defined in
both modules and durango_modules.

Spec File Format Specification

The general format of the JSON-based spec file is a dictionary of keyword values. The following table
lists the possible keywords and their description.

Keyword Value Description

comment Additional comments to add to the spec file.

configurations The list of configurations that this spec supports.
In other words, the spec only builds the modules
listed in the spec if the current configuration
exists in the list of configurations. This is an AND
condition with the platforms value.

description Description of the spec file.

disable_game_projects Flag that indicates that no game projects (as
defined in project.json) are included in the
build for this spec.

platforms The list of platforms that this spec supports. In
other words, the spec only builds the modules
listed in the spec if the current target platform
exists in this list of platforms.

platform_configuration_defines • platform and configuration are optional
values.

• Possible values for platform and
configuration can be determined from the
waf_branch_spec.py file.

• The build uses the entry that matches the
combination of these values and the build
command.

visual_studio_name Name of the generated Visual Studio solution
that is used to distinguish this build spec from a
build configuration.

Version 1.6
1325

Lumberyard User Guide
Waf Module Files (wscript)

Waf Module Files (wscript)
Wscript files are Python source files that have a fixed name and defined rules for the project folder.
Waf picks up and processes the wscript file in each folder. Files can recurse into one or more
subdirectories, define the build script for one or more modules, or both.

Wscript files are the main project script files for projects and can include the following:

• Specialized behavior for various Waf commands

• Different module types and entries

• Build rules for the folder

• Project- or target platform-specific definitions for compile, link, or other settings

Lumberyard includes a wscript file at the root folder that is used for the following:

• Loading all supported modules and tools relevant to a platform

• Importing all scripts necessary for configuring and building the engine

• Setting the available options that can be passed through the command line or in the default user
options file located at _WAF_/user_settings.options

• Recursing into the Code and Engine folders at the root level

At the root is a compiled python script called lmbr_waf.bat that executes the Waf commands
through the root wscript file.

Lumberyard Engine Build Modules

The Lumberyard Waf system includes the following predefined build modules that can help define the
build rules for system modules:

Build Module Description Consumers Project Type

CryConsoleApplication Build module for
generic console
applications

ShaderCacheGen Executable

CryDedicatedServer Build module for
dedicated (server)
game project launchers

ETDedicatedLauncher Executable

CryEditor Build module for
Lumberyard Editor
project

Editor Executable

CryEngineModule Build definition
for CryEngine
modules. Standard
CryEngine modules
autogenerate an RC
file, if applicable.

Cry3DEngine,
CryAction,
CryAISystem,
CryAnimation,
CryEntitySystem,
CryFont, CryInput,
CryLiveCreate,
CryMovie, CryNetwork,
CryLobby, CryPhysics,
CryScriptSystem,
CrySoundSystem,
CryAudioImplMiles,

Shared Library (non-
release), Static Library
(performance, release)

Version 1.6
1326

Lumberyard User Guide
Waf Module Files (wscript)

Build Module Description Consumers Project Type

CryAudioImplNoSound,
CryAudioImplSDLMixer,
CryAudioImplWwise,
CrySystem,
CryRenderD3D11,
CryRenderOpenGL,
CryRenderNULL,
CryD3DCompilerStub

CryEngineNonRCModule Version of the
CryEngineModule that
does not attempt to
create an RC file

CrySoundUnitTests,
LyShine,
AssetTaggingTools

Shared Library

CryEngineStaticModule Build module to create
static libraries

lua, md5, LZSS, Lzma,
expat, DBAPI, zlib, lz4,
PRT

Static Library

CryFileContainer Build module that acts
as a placeholder for
source files

CryCommon,
CryAudioCommon,
EditorAudioControlsBrowser

Non

CryLauncher Build module for game
project launchers

ETPCLauncher Executable

CryPipelineModule Build module for
pipeline components

CryTIFPluginCS4_11,
CryExport2014,
CryExport2015,
CryExport2016,
MayaCryExport22014,
MayaCryExport22015,
MayaCryExport22016

Custom

CryPlugin Build module for
Lumberyard Editor
plugins

AssetTagging,
CryDesigner,
EditorDesc,
EditorAnimation,
EditorFbxImport,
EditorGameDatabase,
SchematycPlugin

Shared Library

CryPluginModule Build module for
Lumberyard Editor
plugin modules

EditorCommon,
PerforcePlugin

Shared Library

CryResourceCompiler Build module for the
resource compiler
application

ResourceCompiler Executable

CryResourceCompilerModuleBuild module for
resource compiler
modules

CryPhysicsRC,
CryXML, CryPerforce,
ResourceCompilerABC,
ResourceCompilerFBX,
ResourceCompilerImage,
ResourceCompilerPC,
ResourceCompilerXML

Shared Library

Version 1.6
1327

Lumberyard User Guide
Waf Default Settings (default_settings.json)

Build Module Description Consumers Project Type

CryStandAlonePlugin Build module for
Lumberyard Editor
standalone plugins
(does not link to any
engine shared libraries)

EditorAudioControlsBrowser,EditorMiles,
EditorNoSound,EditorWwise,
FBXPlugin,
FFMPEGPlugin,
MetricsPlugin,
PrototypeEditorPlugin,
StateMachineEditorPlugin,
UiEditor

Shared Library

CryUnitTestLauncher Build module for unit
test launchers

UnitTestLauncher Executable

Waf Default Settings (default_settings.json)
The Waf default settings file includes the default values for configurable Waf options. These values are
used if custom values are not entered in the command line or user_settings.options cache file.

Waf User Settings (user_settings.options)
Global Waf build system settings are specified in the user_settings.options file located in the
WAF subfolder. This file is automatically generated from the default_settings.json file if it
does not exist. Every build that is run will refer to this file to get the option values specific to the builds.
Any of the values can be overridden at a command prompt using Override Parameter column value in
the table below. When a value is overridden, it is not updated in the user_settings.options file.

The settings listed below can be modified in the file directly, or through the Lumberyard WAF Settings
dialog. To invoke the Settings dialog, type show_option_dialog command into Waf as follows:

lmbr_waf.bat show_option_dialog

Version 1.6
1328

Lumberyard User Guide
Waf User Settings (user_settings.options)

The tabs shown represent each section in the user_settings.option file.

Attribute Override
Parameter

Description Default

Game Projects

enabled_game_projects--enabled-game-
projects

Comma-separated list of game
projects to enable for compiling

GameSDK,
SamplesProject,
MultiplayerProject,
FeatureTests

Incredibuild
Options

use_incredibuild -i --use-
incredibuild

Use Incredibuild if available. This is
a general flag; the specific platform
value needs to be specified as per
below.

False

use_incredibuild_win--use-incredibuild-
win

Use Incredibuild for Windows PC
builds. This requires at a minimum the
Make and Build tools package.

False

use_incredibuild_durango--use-incredibuild-
durango

Use Incredibuild for Durango builds.
This requires at a minimum the Make
and Build tools package and the Xbox
One package.

False

use_incredibuild_orbis--use-incredibuild-
orbis

Use Incredibuild for Orbis builds. This
requires at a minimum the Make and
Build tools package and the PS4
package.

False

Version 1.6
1329

Lumberyard User Guide
Waf User Settings (user_settings.options)

Attribute Override
Parameter

Description Default

use_incredibuild_android--use-incredibuild-
android

Use Incredibuild for Android builds.
This requires at a minimum the Make
and Build tools package.

False

incredibuild_max_cores--incredibuild-
max-cores

Control the number of processes
spawned by Incredibuild.

128

auto_update_incredibuild_settings--auto-update-
incredibuild-
settings

Option to automatically attempt to
update the registry for Incredibuild
if needed. These registry updates
are needed to configure Incredibuild
to work properly with the WAF build
system.

False

Build Options

version --force-version The version of the game project to
embed in the game launchers.

0.0.0.0

generate_debug_info--generate-debug-
info

Option to generate debug symbols
and .pdb files for the build.

True

generate_map_file --generate-map-
file

Generate a map file during linking if
the platform supports it.

False

use_precompiled_header--use-
precompiled-
header

Use a precompiled header for
compilation where applicable.

True

use_uber_files --use-uber-files Use uber files for compilation. False

uber_file_size --uber-file-size Maximum content size of auto-
generated uber files.

307200

max_parallel_link --max-parallel-link Controls the number of C++ linking
operations that happen in parallel.

2

gems_optional --gems-optional Allows building of projects without
gems.json files.

False

use_debug_code_generator--
use_debug_code_generator

Uses the version of the code generator
located in the \Bin64.Debug folder
instead of the \Bin64 folder.

False

Output Folder

out_folder_win64 --output-folder-
win64

Absolute or relative Win64 build output
path. May have configuration-based
extensions to the name based on the
additional options listed below.

Bin64

out_folder_durango --output-folder-
durango

Absolute or relative Xbox One
(Durango target) platform build output
path. May have configuration-based
extensions to the name based on the
additional options listed below.

BinDurango

Version 1.6
1330

Lumberyard User Guide
Waf User Settings (user_settings.options)

Attribute Override
Parameter

Description Default

out_folder_mac64 --output-folder-
mac64

Absolute or relative Mac (Darwin)
target platform build output path. May
have configuration-based extensions
to the name based on the additional
options listed below.

BinMac64

out_folder_orbis --output-folder-
orbis

Absolute or relative PS4 (Orbis) target
platform build output path. May have
configuration-based extensions to the
name based on the additional options
listed below.

BinOrbis

out_folder_ios --output-folder-ios Absolute or relative iOS target
platform build output path. May have
configuration-based extensions to the
name based on the additional options
listed below.

BinIos

out_folder_android_armv7--output-folder-
android-armv7

Absolute or relative Android/Armv7
build target platform output path. May
have configuration-based extensions
to the name based on the additional
options listed below.

BinAndroid

output_folder_ext_debug--output-folder-
ext-debug

The output folder name extension for
debug builds. This will be appended to
the corresponding output folder based
on the target platform builds.

Debug

output_folder_ext_profile--output-folder-
ext-profile

The output folder name extension for
profile builds. This will be appended to
the corresponding output folder based
on the target platform builds.

output_folder_ext_performance--output-folder-
ext-performance

The output folder name extension
for performance builds. This will be
appended to the corresponding output
folder based on the target platform
builds.

Performance

output_folder_ext_release--output-folder-
ext-release

The output folder name extension for
release builds. This will be appended
to the corresponding output folder
based on the target platform builds.

Release

Misc Options

max_cores --max-cores Number of parallel processes for local
builds.

8

bootstrap_tool_param--bootstrap-tool-
param

Optional parameters to pass to
SetupAssistantBatch.exe as part of the
bootstrap process.

bootstrap_third_party_override--3rdpartypath Optional parameter to pass the
location of the \3rdParty folder as part
of the bootstrap process.

Version 1.6
1331

Lumberyard User Guide
Waf User Settings (user_settings.options)

Attribute Override
Parameter

Description Default

Visual Studio
Project Generator

generate_vs_projects_automatically--generate-
vs-projects-
automatically

Automatically generate Visual Studio
solutions.

True

visual_studio_solution_name--visual-studio-
solution-name

Name of the generated Visual Studio
solution.

LumberyardSDK

visual_studio_solution_folder--visual-studio-
solution-folder

Name of the folder in which the
generated Visual Studio solution
should be stored.

Solutions

specs_to_include_in_project_generation--specs-to-
include-in-project-
generation

List of specs to include in Visual Studio
solution generation.

all, game,
game_and_engine,
resource_compiler

msvs_version --msvs-version Version of the Visual Studio Solution
to generate. For more information,
see https://en.wikipedia.org/wiki/
Microsoft_Visual_Studio). (Don't
include Without the decimal point).

12

Android Project
Generator

generate_android_projects_automatically--generate-
android-projects-
automatically

Automatically generates Android
projects.

False

android_projects_folder--android-projects-
folder

Solutions/android Name of the
folder in which
the generated
Android projects
should be stored.

Android Deploy

deploy_android --deploy-android Deploy to an Android device. True

deploy_android_clean_device--deploy-android-
clean-device

Removes any previous assets for the
game project that were copied. If the
deploy-android-executable option is
specified as well then the package
specified for deploy-android-package-
name will also be uninstalled.

True

deploy_android_executable--deploy-android-
executable

Deploys the executable .apk to the
Android device.

True

deploy_android_replace_apk--deploy-android-
replace-apk

When installing the .apk to the Android
device use the -r option to force the
replacement of the package.

True

deploy_android_root_dir--deploy-android-
root-dir

Root folder to deploy the assets to on
the Android device

/storage/
emulated/legacy

Version 1.6
1332

Lumberyard User Guide
Waf User Settings (user_settings.options)

Attribute Override
Parameter

Description Default

deploy_android_install_options--deploy-android-
install-options

Additional options to specify for the
install command.

deploy_android_paks--deploy-android-
paks

Forces .pak files to be built in non-
release builds.

False

iOS Project
Generator

generate_ios_projects_automatically--generate-
ios-projects-
automatically

Automatically generates iOS projects. True

ios_project_name --ios-project-name Name of the generated iOS project. LumberyardiOSSDK

ios_project_folder --ios-project-folder Name of the folder in which the
generated iOS projects should be
stored.

Solutions

Mac Project
Generator

generate_mac_projects_automatically--generate-
mac-projects-
automatically

Automatically generates Darwin
projects.

True

mac_project_name --mac-project-
name

Name of the generated project LumberyardSDK

mac_project_folder --mac-project-
folder

Name of the folder in which the
generated Darwin projects should be
stored.

Solutions

Durango Options

disable_durango --disable-durango Option to disable Durango. False

deploy_durango_clean_target--deploy-durango-
clean-target

Clean up the Durango target before
deploying.

True

deploy_durango --deploy-durango Deploy to Durango. True

deploy_durango_kits--deploy-durango-
kits

Deploy to a list of Durango kits. Does
not include the default kit by default.

durango_paks --durango-paks Forces .pak files to be built in non-
release builds.

False

Orbis Options

disable_orbis --disable-orbis Disables Orbis. False

deploy_orbis_clean_target--deploy-orbis-
clean-target

Clean up the Orbis target before
deploying.

True

deploy_orbis --deploy-orbis Deploy to Orbis. True

Version 1.6
1333

Lumberyard User Guide
Waf Commands and Options

Attribute Override
Parameter

Description Default

deploy_orbis_executable--deploy-orbis-
executable

Deploy the executable to the dev
kit. This is not needed for debugging
as the debugger downloads it when
running. Disabling this improves debug
iteration time, however if you want
to run from the console without a
debugger then you should leave this
enabled.

True

deploy_orbis_kits --deploy-orbis-kits Deploy to a list of Orbis kits. Does not
include the default kit by default.

orbis_paks --orbis-paks --orbis-paks False

Waf Commands and Options
Before building a project using Waf, you must run configure from the command line. The
configure command recursively processes all of the wscript configuration files starting from the root
directory and generates a Visual Studio solution file for the entire project. You can set an option to
generate a solution file during the configure command.

Note
The Waf script automatically runs Lumberyard Setup Assistant to ensure the correct third-
party libraries are available and the proper links are created to compile the game code, engine
and asset pipeline, and editor and tools.

Waf Configuration
To run the Waf executable, run the following command at engine_root\dev\ of your project:
lmbr_waf configure

This command iterates through all the Waf project configuration files and sets up the project-specific
settings in the Waf cache, which is used in subsequent build commands. It also uses the host
environment to determine which platforms are available to build.

The following example shows the output of the lmbr_waf configure command:

[WAF] Executing 'configure'
Running SetupAssistant.exe...
--- Lumberyard Setup Assistant ---
SDK location: d:/lumberyard_engine/dev
Third party location: d:/lumberyard_engine/dev/3rdParty
Capabilities Available, [x] enabled - [] disabled:
[] rungame - Run your game project
[] runeditor - Run the Lumberyard Editor and tools
[X] compilegame - Compile the game code
[X] compileengine - Compile the engine and asset pipeline
[X] compilesandbox - Compile the Lumberyard Editor and tools
[] compileandroid - Compile for Android devices
[] compileios - Compile for iOS devices
Successfully executed
[INFO] Configure "win_x64 - [debug, profile, performance, release,
 debug_dedicated, profile_dedicated, performance_dedicated,
 release_dedicated]"

Version 1.6
1334

Lumberyard User Guide
Build Configuration

[INFO] Configure "win_x64_vs2012 - [debug, profile, performance,
 release, debug_dedicated, profile_dedicated, performance_dedicated,
 release_dedicated]"
Unable to find Visual Studio 2012, removing build target
[INFO] Configure "win_x64_vs2010 - [debug, profile, performance,
 release, debug_dedicated, profile_dedicated, performance_dedicated,
 release_dedicated]"
Unable to find Visual Studio 2010, removing build target
[INFO] Configure "durango - [debug, profile, performance, release,
 debug_dedicated, profile_dedicated, performance_dedicated,
 release_dedicated]"
[INFO] Configure "android_armv7_gcc - [debug, profile, performance,
 release, debug_dedicated, profile_dedicated, performance_dedicated,
 release_dedicated]"
[WARN] android_armv7_gcc setup failed, removing target platform
[WAF] 'configure' finished successfully (10.335s)
[WAF] Executing 'generate_uber_files' in 'd:\ws\lyengine\dev\BinTemp'
[WAF] 'generate_uber_files' finished successfully (2.177s)
[WAF] Executing 'msvs' in 'd:\ws\lyengine\dev\BinTemp'

The configure command uses the settings defined in the user_settings.options file that is
located in the _WAF_ subfolder. You can edit this file in a text editor or by using the built-in settings
editor: lmbr_waf.bat show_option_dialog.

If you set the option to generate a Visual Studio solution to true, a solution file is created
in the directory specified in the user_settings.option file. If you do not modify the
user_settings.option file, the Visual Studio solution is in root_folder/Solutions/
LumberyardSDK.sln by default.

Build Configuration
After configuring Waf, you can run the build command.

Here is an example showing syntax: lmbr_waf.bat build_platform_configuration -p spec

The following commands and options are vailable:

• configure – Must be run before any clean or build command. Loads all modules, configs, and
project specs; validates and sets up the working cached build Python file.

• build_* – Builds the specified project spec for the specified platform and configuration.

• clean_* – Cleans out intermediate and target files that were generated for the particular platform
and configuration.

Here's an example of how to build release for Windows x64: lmbr_waf.bat
build_win_x64_release -p all

Here's an example of how to clean the build release for Windows x64: lmbr_waf.bat
clean_win_x64_release -p all

Note
Combining the clean_* and build_* commands is the equivalent of performing a rebuild.

Configure command options

Command Command Option Description

build_*, clean_* -p spec name --
project-spec=spec
name

The spec name to use to build or clean a project.

Version 1.6
1335

Lumberyard User Guide
Build Configuration

Command Command Option Description

 --targets =
target1,target2,...

Optional flag to filter on which targets to build.
The targets must be included in the project spec
above in order for this to work.

build_*, clean_*,
configure

--profile-execution =
(True|False)

The option to run the build process through the
Python execution profiler. As this will produce a
large output to the console, we recommend that
you redirect the output of this command to a log
file.

build_* --
execsolution=VS_solution_path

This internally-generated command line is a
Visual Studio solution that provides a way to
build Waf commands invoked from the VS IDE to
apply additional overrides that can be defined in
the .vcxproj files themselves.

build_* --internal-dont-check-
recursive-execution=
(True|False)

This internally-generated command prevents
infinitely recursing the Waf command line when
Incredibuild is enabled. Incredibuild is invoked
by passing the entire command line that was
entered into the Incredibuild BuildConsole (or
XgConsole). This flag is added so that the script
will know that the command is already being
processed by Incredibuild and does not need to
be passed in again. This option should never be
explicitly specified anywhere besides the main
Wscript.

build_* --file-
filter=source_files

An option to pass in a comma-separated list of
absolute paths to source files to filter the build
on. This option is useful to build specific files.

build_* --show-includes=(True|
False)

Option to show the #include tree that a file
uses during compilation. This option is only valid
when --file-filter is specified.

build_* --show-preprocessed-
file = (True|False)

Option to generate a preprocessor output for a
source file (but not actually build the file). The
generated file is saved in the variant folder under
\bintemp based on the location of the source
file. This option is only valid when --file-
filter is specified.

build_* --show-disassembly =
(True|False)

Option to generate an Assembler output for a
source file (but not actually build the file). The
generated file is saved in the variant folder under
\bintemp based on the location of the source
file. This option is only valid when --file-
filter is specified.

Version 1.6
1336

Lumberyard User Guide
Build Configuration

Command Command Option Description

configure --update-settings =
(True|False)

Option to update the user_settings.options
file with any values that are modified from
the command line. For instance, if you want
to modify the value of use_uber_files
in user_settings.options, set --
use-uber-files=True in the command
line for configure and add --update-
settings=True to apply the changes to
user_settings.options.

You can set the command options at build time. These options override the values set in the
user_settings.option file. For more information, see Project Configurator (p. 1328).

Only modules that support each project configuration are built from the project spec. If a module is
defined in the spec that only can be built in debug or profile, building in performance mode excludes
that project from compilation.

Project configurations parameters

ConfigurationAsserts Profiling Optimization Logging Description

debug Yes All Minimum Yes Slowest – Focuses on
debugging with asserts
enabled, all profiling
features enabled, and
logging enabled.

profile No All Medium Yes Fast – Strikes a balance
between debugging and
performance with all
profiling features and
logging enabled.

performance No Few Maximum No Very fast – Performance
similar to release but has
some profiling features
enabled; difficult to debug;
no logging.

release No None Maximum No Fastest – Highest
performance; most difficult
to debug; no profiling
features; no logging.

Build command project spec options

Spec Platform Configuration Description

all win_x64 Debug, profile,
performance,
release

Configuration to build the engine,
editor, plugins, and tools

game_and_engine win_x64 Debug, profile,
performance,
release

Configuration to build the engine and
game project

Version 1.6
1337

Lumberyard User Guide
Multiplayer Configuration

Spec Platform Configuration Description

pipeline win_x64 Debug, profile Configuration to build tools for the
asset pipeline

resource_compiler win_x64 Debug, profile Configuration to build the Resource
Compiler only

Build configuration options

Option Description

--progress Shows the build progress and updates in real time.

--project-spec Specifies the project spec to use when cleaning or building the
project.

--show-includes Shows the includes for each compiled file.

--target Specifies the target to build and its dependencies. The target must
exist in the specified project spec; otherwise, all targets in the
project spec are built.

Multiplayer Configuration
Before you can build multiplayer information, you must build the dedicated server. This creates a
directory called Bin64.Dedicated that includes the binaries directory and configuration files for
dedicated server.

To build the dedicated server, run the following command:

lmbr_waf.bat build_win_x64_profile_dedicated -p dedicated_server

Waf Supported Platforms and Compilers
This topic provides information about the platforms and compilers that Waf supports. For more
information about supported configurations, see Waf Commands and Options (p. 1334)

Supported platforms

Platform Build Environment Waf Short Name

64-bit Windows MSBuild / Visual Studio
2013

win_x64

64-bit Windows MSBuild / Visual Studio
2012

win_x64_vs2012

64-bit Windows MSBuild / Visual Studio
2010

win_x64_vs2010

The following compilers are supported based on the build platform.

Version 1.6
1338

Lumberyard User Guide
Waf Project Settings

Supported compilers

Compiler Windows 64-Bit

MSVC 10.0 (Visual Studio 2010) Yes (only for CryExport2014)

MSVC 11.0 (Visual Studio 2012) Yes (only for CryExport2015)

MSVC 12.0 (Visual Studio 2013) Yes (except for CryExport2014 and
CryExport2015)

GCC No

Clang No

Waf Project Settings
When defining a project's build settings (wscript), you can specify several different project settings for
the build modules to configure the correct parameters for the project.

The following table provides the valid attributes for the different build modules.

Build attributes

Attribute Description Target to Platform
or Configuration

additional_manifests Additional manifests to add to MSVC
applications

Y

additional_settings Container that groups compile settings
and acts upon them recursively; useful for
specifying options for particular files in a
project

For example, you can disable precompiled
headers for a specific file using the
following:

...
additional_settings = Settings
 (files = 'my_file.cpp',
 disable_pch=True)

Y

build_in_dedicated True by default; if False, the module will not
be built when building in dedicated server
mode

N

cflags Additional C flags to pass to the compiler Y

create_appdata (Durango) Creates and/or collects all
resources to create a Durango application

N

cxxflags Additional CXX flags to pass to the compiler Y

defines List of additional pre-processor defines for
the project

Y

Version 1.6
1339

Lumberyard User Guide
Waf Project Settings

Attribute Description Target to Platform
or Configuration

export_definitions List of export definitions to export using the /
DEF: compiler option

Y

features Additional custom features to apply to the
project during the build

Y

file_list List of file specs that contain the files to
include in the project

Y

files List of files to include for the module N

force_dynamic_crt Forces the use of dynamic runtime CRT for
the project

N

force_static_crt Forces the use of static runtime CRT for the
project

N

framework (Darwin) Specifies the framework to use Y

includes Additional include paths for the module Y

lib Additional input libraries to link against Y

libpath Additional library paths for the module Y

linkflags Additional linker flags to pass to the linker Y

meta_includes Additional meta includes for WinRT using
the /AI compiler option

Y

meta_includes (Durango) Specifies the include path for
Durango WinRT include files

Y

need_deploy Hint to deploy the module before debugging
in Visual Studio

N

output_sub_folder Optional subfolder under the target output
folder in which to copy the module binary

N

pch Specifies the precompiled header (PCH)
file, if in use

N

platforms List of platforms to restrict the module to
build on; if missing, a specific platform will
not be targeted at the project definition level

Example: platforms = ['durango'],

N

priority_includes Same as the includes paths, except this
include list is added prior to the ones
defined in the includes paths

N

qt_to_moc_files List of files for the QT5 moc processor
to process; these files must reside in the
file list specified by the file_list attribute
(attribute required if the qt5 feature is
applied to the module)

N

Version 1.6
1340

Lumberyard User Guide
Platform and Configuration Targeting

Attribute Description Target to Platform
or Configuration

source List of source files to add directly to the
project

N

target Project name of the target N

use List of static library modules that are part
of the Waf build to which you can add
dependencies and static links

Y

use_module List of static library modules that are part
of the Waf build to which you can add
dependencies and static links

Y

vs_filter Folder filter in the generated solution file
where this project exists

N

Platform and Configuration Targeting
If allowed (refer to the third column in the table above), you can set an attribute value to apply only
under certain target platforms and configurations. Each attribute can universal for all builds or targeted
specifically to a platform/configuration combination:

• [Attribute] – Applies to any target platform/configuration for the attribute

• [target_platform]_[attribute] – Applies to any configuration for a specific target platform for the
attribute

• [configuration]_[attribute] – Applies to a specific configuration for any target platform for the
attribute

• [target_platform]_[configuration]_[attribute] – Applies to a specific target platform and
configuration for the attribute

Features
The Lumberyard Waf system allows the use of custom features to add functionality to a project's build
pipeline.

Build features

Feature Description

qt5 Passes files through the QT5 moc processor;
if this feature is set for a project, you must also
pass the qt_to_moc_files

generate_rc_file Creates an RC file and copies the resources,
such as the icon file; win_x64 only

wwise Sets the following for building and linking against
Wwise: environment, includes, libraries, and
library paths

GoogleMock Sets the following for building and linking against
Google Mock: environment, includes, libraries,
and library paths

Version 1.6
1341

Lumberyard User Guide
Waf Extensions

Feature Description

AWSNativeSDK Sets the following for building and linking against
the AWS Native SDK library: environment,
includes, libraries, and library paths

AWSGameLift Sets the following for building and linking against
the AWS GameLift library: environment, includes,
libraries, and library paths

GridMate Sets the following for building and linking against
the GridMate library: environment, includes,
libraries, and library paths

Waf Extensions

Compiling with Incredibuild
Waf supports IncrediBuild 6.0 or later, and allows for distributed network builds for compiling larger
projects.

You must have the appropriate package for your platform:

• Windows or Android – IncrediBuild for Make and Build

• Durango (Xbox One) – IncrediBuild for Xbox One

• Orbis (PlayStation 4) – IncrediBuild for PlayStation 4

To verify which package is configured for your machine, run the following command (located in C:
\Program Files (x86)\Xoreax\IncrediBuild): xgConsole.exe /QUERYLICENSE

The following is output:

> xgConsole.exe /QUERYLICENSE

License details:

Registered to: My Game Company
Up to XX Agents allowed
Maintenance expires on XX/XX/XXXX

Packages installed:

 - IncrediBuild for Make && Build Tools

To do this Run this at a command line

Enable or disable IncrediBuild builds use_incredibuild Instructs Waf to use
incredibuild to distribute and parallelize the
build, if possible. You need to specify the type of
incredibuild package based on the platform.

For Win x64, you must add a --use-
incredibuild-win parameter and install the
Make and Build Tools package.

Version 1.6
1342

Lumberyard User Guide
Compiling with QT

To do this Run this at a command line

For Durango, you must add a --use-
incredibuild-durango parameter and install
the Xbox One Extension package.

For Orbis, you must add a --use-
incredibuild-orbis parameter and install the
Playstation Extension package.

Adjust the maximum number of parallel tasks incredibuild_max_cores

Determine which IncrediBuild package is
configured for your machine

xgConsole.exe /QUERYLICENSE

Waf requires certain packages and the Windows registry key settings below to run IncrediBuild. Run
lmbr_waf.bat in Administrator mode to edit the registry.

Modify the settings in the Windows registry under the following key:

HKEY_LOCAL_MACHINE\\Software\\Wow6432Node\\Xoreax\\Incredibuild\\Builder

Registry Settings

Name Value Description

PdbForwardingMode 0 Controls the way Incredibuild handles PDB files.
Required for Waf.

MaxConcurrentPDBs 0 Controls how many files can be processed
in parallel. This optimization is also useful for
MSBuild.

AllowDoubleTargets 0 Controls whether or not remote processes can
be restarted on the local machine when possible.
This option is required to prevent any compiler
crashes.

To enable IncrediBuild

1. Open the user_settings.options file located in /_WAF_/Settings.

2. In the user_settings.options file, under [Incredibuild Options], do the following:

• Set the use_incredibuild flag to True.

• Set the use_incredibuild_win flag to True.

3. Save your changes.

Compiling with QT
Waf supports compiling QT5 .moc Meta-Object-Compiler files. To enable or disable compiling of
particular files, add the qt5 feature to your Waf Module (wscript) file and then add the list of files to be
compiled.

The following example shows a Waf Module (wscript) file:

wscript relative path

Version 1.6
1343

Lumberyard User Guide
Compiling with Visual Studio

QT_TO_MOC_FILES = [
 'MyQTFile.h',
 'MyOtherQTFile.h',
 ...
]

def build(bld):
 bld.CryPlugin(
 target = 'MyQTPlugin',
 vs_filter = 'Plugins',
 file_list = 'file_list.waf_files',

 features = ['qt5'], # add the QT5 moc feature to this Waf
 module

)

Compiling with Visual Studio
Waf has limited support for the Visual Studio 2013 IDE. Once you run the configure command to
generate a Visual Studio solution, you can invoke Waf through the IDE and open the solution file in
Visual Studio 2013.

Waf creates a Visual Studio solution file along with the projects specified in the selected project
specs. If more than one spec file includes the same project, only one project file is created to prevent
duplicates. Waf uses the project specs to determine the projects, project filters, and possible build
configurations. Waf uses the wscript files to identify individual project definitions.

To select the active solution configuration

1. Open the solution file in Visual Studio 2013.

2. Select Build, Configuration Manager.

3. In the Configuration Manager dialog box, select [All] Debug from the Active solution
configuration drop-down list. This option builds all x64 modules in debug mode.

4. Click Close.

Once the active solution configuration is set, you can build the solution.

To build the solution in Visual Studio 2013

1. Select Build, Build Solution. This builds all modules defined in the all project spec.

2. Once the build is successful, you can choose different solution configurations based on your active
projects. For example, if you are working on the game (game_and_engine spec), you wouldn't
need to build everything. Or if you want to build a profile configuration of the build, you can use
[All] Profile.

Using Waf
This topic demonstrates how you can use Waf the following ways:

• Adding a Game Project (p. 1345)

• Adding a Spec (p. 1347)

• Adding a Build Module (p. 1349)

Version 1.6
1344

Lumberyard User Guide
Adding a Game Project

Adding a Game Project
The simplest and recommended method to add a game project to the Lumberyard Waf build system is
to use the Project Configurator. The Project Configurator is a standalone application for telling the Waf
build system which game projects and assets to include in a game build. For more information, see
Project Configurator (p. 985).

You can also add a game project with the following steps:

• Create the project definition

• Create a game module

• Update the user settings to include the game

Note
You can build your game project by creating a game project first (see steps below) and then
creating a spec for just the game (no modules, just basic spec values):

{
 "description": "Configuration to build the My Game",
 "visual_studio_name": "My Game"
}

When the project is properly defined and all source files are in the correct locations, you can
set the enabled_game_projects value in the user_settings.options file. Configuring this
value limits the Visual Studio solution to the launcher projects and your game project.

Creating the Project Definition
In the following procedure you set Code/MyGame as the project source folder and MyGame as the
project folder. The code_folder points to your game's module root and the project_directory
points to the game-specific assets. You can define any number of game projects in this file and you
can configure which ones to build.

To create the project definition

1. Navigate to the SDK root and locate the Code folder and project directory. Typically your
game code folder should reside under these locations.

2. Determine the name for your project. For this example use My Game.

3. Add the definitions for the new game project to the project.json file (located in the game
project folder under the \dev directory). For this example add My Game to the SDK:

 {
"project_name": "My Game",
"product_name": "My Game",
"executable_name": "MyGame",
"code_folder": "Code/MyGame",
"modules" : ["MyGame"]
}

Creating a Game Module
You can create a game module after setting the game project definition. Game modules include wscript
files, source files, and a waf_files configuration file. You must create separate folders for the game
source code and for the resources. Both should reside under the code_folder specified earlier.

Version 1.6
1345

Lumberyard User Guide
Adding a Game Project

For this example you create folders called GameSource and Resources under the Code/MyGame
directory.

Create a wscript file

Because Waf searches for and discovers wscript files recursively through other wscript files, you must
include a simple wscript file in the Code/MyGame folder that recurses to the GameSource folder.

Create a file with the following:

SUBFOLDERS = ['GameSource']

def build(bld):
bld.recurse(SUBFOLDERS)

Next you must create the source code in the GameSource folder. Include in this folder all of your
source files and the corresponding Waf source file configuration (for example, MyGame.waf_files) to
include your game files.

Create a wscript in the GameSource folder to define the build configuration for your game:

def build(bld):
 bld.CryEngineModule(

 target = 'MyGame',
 vs_filter = 'Game/MyGame',
 file_list = 'MyGame.waf_files',
 pch = 'StdAfx.cpp',
 includes = ['.' , '..',
 Path('Code/CryEngine/CryCommon'),
 Path('Code/CryEngine/CryAction'),
 Path('Code/CryEngine/CryNetwork')]
)

Create source files

All game projects first need a source file. If you intend to use pre-compiled headers you must create
standard StdAfx.h and StdAfx.cpp files. For this example you create a single C++ file and a
corresponding header file (MyGameMain.cpp and MyGameMain.h).

Create a waf_files configuration file

You use the waf_files configuration file to include the source files into the game module. For this
example you create a file called MyGame.waf_files and specify it for the project. This file includes
the four files you created from the previous step.

Create a waf_files configuration file called MyGame.waf_files with the following:

{
 "auto":
 {
 "Source Files":
 [
 "MyGameMain.cpp"
],
 "Header Files":
 [
 "MyGameMain.h"

Version 1.6
1346

Lumberyard User Guide
Adding a Spec

]
 },
 "none":
 {
 "Root":
 [
 "StdAfx.h",
 "StdAfx.cpp"
]
 }
 }

Updating the User Settings

The final step is to update enabled_game_projects to include or exclusively set the new game project.
You can do this one of the following ways:

• Hand edit the user_settings.options file to set the value for the enabled_game_projects.
The following example sets MyGame as the only game project generated. You can use a comma-
separated list to include multiple game projects in the final solution.

[Game Projects]
enabled_game_projects = MyGame

• Update game projects using the Lumberyard Waf GUI. Run the show_options_dialog command,
click Game Projects in the Lumberyard Waf window, and select your new project. You can select
more than one project.

• Build the project during the build step. Use --enabled-game-projects=MyGame to override every
build command. This does not include the project in the generated solution, but it sets specific game
projects to build during the build commands.

lmbr_waf.exe build_win_x64_debug -p game_and_engine --enabled-game-
projects=MyGame

Adding a Spec
The Waf spec system provides a template to create Visual Studio solutions and describes a build
filter that determines which modules to build for particular platforms and configurations. The nature of
the generic Waf build system is to be all projects that are defined through the wscript system, which
acts recursively on the root directory structure. If no spec is specified when you execute a build or
clean command, the Waf build system system attempts to build all modules that are supported by the
selected target platform and configuration. The platform and configuration support is defined in each of
the module's wscript definitions. For more information, see Adding a Build Module (p. 1349).

Project spec files are a collection of modules and definitions for a specific build pipeline. These files
are useful for including existing modules or adding new ones as part of the build dependencies for your
game project.

When you build in debug or profile configurations and their _dedicated counterparts, a spec file is
not required. This is because these two configurations build out of Lumberyard as modular shared
components. In performance and release configurations, however, all the modules that are marked as
CryEngineModules are built monolithically, which means that they are built into a single executable.
This causes problems with similar modules that support the same platform and configuration.
Currently, the spec file is required for this scenario in order to target specific modules to build into the
monolithic .exe files.

Version 1.6
1347

Lumberyard User Guide
Adding a Spec

Adding a project requires these steps:

• Creating a New Project Spec JSON File (p. 1348)

• Adding the Spec File to the Visual Studio Solution Generator (p. 1349)

• Building the Spec (p. 1349)

Creating a New Project Spec JSON File

In the following example a spec file called my_game includes the game engine modules as a base as
well as custom modules for Windows. The spec file also sets a custom #define for Windows builds.

You need to configure the values for the modules that you want to include in the spec file (and
optionally the target platform and configuration). The spec file can isolate target_platform modules
for multiplatform builds.

Create a spec file called my_game.json with the following:

{
 "description" : "Configuration to build my game",
 "visual_studio_name" : "My Game",
 "comment" : "This is the build spec for my game",
 "disable_game_projects" : false,
 "platforms" : ["win_x64"],
 "configurations" : ["debug","profile","performance","release"],
 "modules" :
 [
 "WindowsModule1",
 "WindowsModule2",
 "CommonModule"
]
}

The spec files are located in the _WAF_\specs directory and have the .json file extension. For more
information on Waf spec files, see Waf Spec Files (*.json) (p. 1324).

Spec Description

all.json Configuration for all targets.

dedicated_server.json Configuration to build dedicated servers for the enabled
projects.

external_sdks.json Configuration to build externally distributed binary-only libraries.

game_and_engine.json Configuration to build the engine and game projects.

pipeline.json Configuration to build Pipeline Only for building Resource
Compiler, and also Maya, 3ds Max, and Photoshop plugins if
Visual Studio 2010 and 2012 are installed. Build only in Profile
or Debug mode (Release mode is only for the 3ds Max plugin)

resource_compiler.json Configuration to build only the Resource Compiler.

shadercachegen.json Configuration to build only the shadercache generator.

tools.json Configuration to build nonessential tools.

Version 1.6
1348

Lumberyard User Guide
Adding a Build Module

Adding the Spec File to the Visual Studio Solution Generator

Adding the spec file to the Visual Studio solution is optional.

To add the spec file to the Visual Studio solution

1. Edit the specs_to_include_in_project_generation value in the
user_settings.options file to add your spec file to the Visual Studio solution:

[Visual Studio Project Generator]
generate_vs_projects_automatically = True
visual_studio_solution_name = LumberyardSDK
visual_studio_solution_folder = Solutions
specs_to_include_in_project_generation = MySpec1, MySpec2, MySpec3

2. Regenerate the Visual Studio solution by running the following command: lmbr_waf.bat
configure

Building the Spec

After saving the new spec, do one of the following:

• Build the spec using Visual Studio (if you followed the steps above to add the spec to Visual Studio).

• Build the spec from the command line by running the following command: lmbr_waf.bat
build_win_x64_profile -p MySpec

The build command builds the game project specified in the user_settings, even if the module is
not defined in the spec. The exception is if the option disable_game_projects is set to True.

Adding a Build Module
You can create a custom build module in the Lumberyard Waf build system. You can use predefined
build modules to add any shared library or plugin into the Lumberyard engine SDK.

The default Waf system defines modules and methods that will take various keywords into Waf
commands to build applications and shared and static libraries as well as serving as a project
container for files. There cryengine_modules.py file defines functions that wrap these modules with
additional keywords and logic to extend the behavior of standard Waf into a system that supports the
requirements of Lumberyard. In addition to providing standard Waf build functionality, the functions in
the various modules add support for precompiled headers (pch), content file support (.waf_files),
monolithic build capability, uber file support, and Microsoft Visual Studio (msvs) generation.

Creating a module requires the following steps:

1. Create the source folder and script

2. Create a basic wscript module

3. Create the .waf_files content file

4. Specify additional include paths and external library linking

5. Add a project dependency

Creating a New Module

You can create and add the following types of modules to the Lumberyard Waf build system:

Version 1.6
1349

Lumberyard User Guide
Adding a Build Module

Build Module Description Project Type

CryEngineModuleModules that are dynamically
loaded at runtime as part of
the lumberyard engine module
system. For Performance and
Release configurations, all
projects that are built using
these modules are included
monolithically to the final build
output. If the libraries are not
linked in, the source from these
modules is included in the
build.

For Debug and Profile
configurations, these modules
are built as shared libraries.
For the Windows platform,
versioning information is
injected as defined in the
waf_branch_spec.py file
located in the root folder. As
such, a Windows resource
(.rc) file as needed as part of
the waf_files content.

Shared Library (Non-Release), Static Library
Performance (Performance, Release)

CryEngineSharedLibraryUsed to define a shared library
that any other module can use
inside Waf. Provided they are
located in the same directory
path as the dependent project,
these modules are included as
a dependency to other modules
by use of the use keyword.

Shared Library

CryEngineStaticLibraryUsed to define a static library
that can be used by any other
module inside Waf. Provided
they are located in the same
folder path as the dependent
project, these modules are
included as a dependency to
other modules by use of the
use keyword.

Static Library

CryLauncher Used to define the build
definition for launchers,
which are created for each
game project defined per
supported platform. All
supported launchers that
can be generated based on
availability against the current
platform are located in the
\Code\Launcher subfolder.
If an additional platform is
included, a new launcher

Executable

Version 1.6
1350

Lumberyard User Guide
Adding a Build Module

Build Module Description Project Type

project would be added in
this subfolder and use the
CryLauncher build module.

CryDedicatedServerSimilar to the CryLauncher
module, except used for
dedicated server projects.

Executable

CryConsoleApplicationUsed to build console
applications. On the Windows
platform, it builds a console
application instead of a
Windows application.

Executable

CryBuildUtility Used to define build
utility projects, such as
AZCodeGenerator. Build
utilities are separated into a
build_utilities group that
are built before the regular build
group.

Executable

CryFileContainerUsed to set a file container for
projects.

None

CryEditor Used by Lumberyard Editor
projects.

Executable

LumberyardApp

CryEditorUiQt Used by the CryEditorUI_QT
plugin.

CryPlugin Used by Lumberyard
Editor plugin projects. It is
automatically placed in the
\EditorPlugins subfolder
and automatically loaded by
Lumberyard Editor at runtime.

Shared Library

CryStandAlonePluginUsed by Lumberyard Editor
plugin projects. The difference
between this module and
CryPlugin is that it does
not import any SANDBOX or
EDITOR_COMMON imports,
RTTI is enabled, and
nodefaultlib:/ is set to
libcmt.

Shared Library

CryPluginModuleUsed to define shared
libraries that can be used by
a Lumberyard Editor plugin.
Plugins that need to link to a
Cryengine plugin module use
the use feature of Waf.

Shared Library

Version 1.6
1351

Lumberyard User Guide
Adding a Build Module

Build Module Description Project Type

CryResourceCompilerUsed by the Resource
Compiler to implicitly set the
target name to rc and the
subfolder to \rc under the
\configure output folder.

Executable

CryResourceCompilerModuleUsed by the Resource
Compiler to implicitly set the
target name to rc and the
subfolder to rc under the
\configure output folder.

Shared Library

CryPipelineModuleUsed to define pipeline
modules such as for the 3ds
Max and Maya exporters.

Custom

CryQtApplicationUsed to define Qt 5
applications that can be
launched by Lumberyard
Editor, such as the Asset
Processor.

Executable

CryQtConsoleApplicationUsed to define Qt 5 console
applications that can be
launched by Lumberyard
Editor, such as the Asset
Processor batch file.

Executable

In this topic's example you create a CryEngineModule.

Build Module Keywords

The following describes the general keywords that are supported by the build modules. The listed
targetable keywords can be specific to a platform or a configuration. The keyword by itself is used for
all supported platforms and configurations, but if you need keywords that are specific to a platform or
configuration, you must include the name of the platform or configuration in the name..

Other things to consider:

• The general pattern for platform plusconfiguration-specific values is
<platform>_<configuration>_<keyword>.

• The general pattern for platform-specific values is <platform>_<keyword>

• The general pattern for configuration-specific values is <configuration>_<keyword>

You can use the following keyword macros to reduce the verboseness of wscript files:

autod_uselib
This macro is used in conjunction with the uselib keyword and adds a D to the suffix of all of
the uselib names in the list. This eliminates the need to duplicate the same debug versions of
the lib for every configuration. This only works for uselib modules that use a trailing D suffix to
distinguish between debug and nondebug version.

<platform>_ndebug_<keyword>
This macro eliminates the need to repeatedly specify certain nondebug flags. Lumberyard has one
debug configuration and three nondebug configurations.

Version 1.6
1352

Lumberyard User Guide
Adding a Build Module

Keyword Description Targetable?

target Name of the target project.

platforms The list of platforms to restrict
this module to. If not specified,
then defaults to all, which
assumes all supported target
platforms on the current host.

No

configurations The list of configurations to
restrict this module to. If not
specified, then default to all.

In addition to the standard
configurations (debug, profile,
and release), configurations
can be specific to a particular
platform. This is done by
appending the platform name
with a colon separator in
front of the configuration. For
example, if a module supports
only debug and profile for
the iOS platform, then the
configuration list would include
the values ios:debug and
ios:profile.

file_list The .waf_files JSON
file that contains the file list
definition for the project.

Yes

pch The name of the precompiled
header. If present, then
precompiled headers are
enabled.

use Additional projects to link as a
use dependency.

Yes

uselib Additional libraries to use. Yes

defines Additional preprocessor defines
for the project.

Yes

includes Additional include paths. Yes

cflags Additional C flags. Yes

cxxflags Additional C++ flags. Yes

lib Additional libraries to link to. Yes

libpath Additional library include path. Yes

stlib Boolean flag that indicates a
static library module.

Yes

Version 1.6
1353

Lumberyard User Guide
Adding a Build Module

Keyword Description Targetable?

stlibpath Lib path for static libs (generally
the same for any lib).

Yes

linkflags Additional link flags during the
linker phase.

Yes

export_definitionsExport definition filename
(.def file).

Yes

features Any additional features to tag
this project to.

Yes

output_file_nameAn output file name used to
override the default output file
based on the target.

Yes

framework Additional frameworks
(Darwin).

No

frameworkpath Additional framework paths
(darwin).

No

export_defines Additional preprocessor defines
that are added to any module
that uses the current module as
a project dependency.

No

export_includes Additional library include paths
that are added to any module
that uses the current module as
a project dependency.

No

additional_settingsAdditional settings added for
specific files.

Yes

meta_includes Meta includes for WinRT. yes

files Another way to pass in files for
processing a build project.

Yes

winres_includes Additional include paths for the
winres compiler.

No

winres_defines Additional defines for the
winres compiler.

No

enable_rtti Flag to enable rtti settings for a
project.

Yes

rpath Additional relative library paths
(Darwin).

No

Creating a Basic Wscript Module

The wscript file specifies the name of the module (target), .waf_files content file (file_list),
Visual Studio filter (vs_filter), and precompiled headers (pch).

Create a wscript module with the following:

Version 1.6
1354

Lumberyard User Guide
Adding a Build Module

def build(bld):

 bld.CryEngineModule(
 target = 'MyEngineModule',
 vs_filter = 'LyEngine',
 file_list = 'myenginemodule.waf_files',
 pch = 'StdAfx.cpp'
)

In order for the Lumberyard Waf build system to pick up the new folder and script, you must add
the new folder to the list of subfolders to recurse. Because you are adding this project under
root_folder/Code/CryEngine/MyEngineModule, you need to update the wscript located in the
parent root_folder/Code/CryEngine folder.

Update the wscript located in the root_folder/Code/CryEngine folder with the following:

SUBFOLDERS = [
 'CryInput',
 'Cry3DEngine',
 ...
 'MyEngineModule',
]

def build(bld):
 # Recursive into all sub projects
 bld.recurse(SUBFOLDERS)

Creating the .waf_files Content File

In the example wscript, you specified a file called myenginemodule.waf_files as the project
content file. The project content file can be one of the following:

• A single file that defines the source files for the project

• A list of files that define the source files for the project

• Platform/configuration, where certain files are included only for a particular platform (for example,
console-specific files)

The following myenginemodule.waf_files example demonstrates a simple module with six files:

{
 "NoUberFile":
 {
 "Root":
 [
 "StdAfx.cpp",
 "StdAfx.h"
]
 },
 "myenginemodule_uber_0.cpp":
 {
 "Root":
 [
 "myenginecore.cpp",
 "myenginecore.h",
 "myengineextras.cpp",

Version 1.6
1355

Lumberyard User Guide
Adding a Build Module

 "myengineextras.h"
]
 }
}

Specifying Additional Include Paths and External Library
Linking

To configure the module to link to external modules, you need to update the wscript to specify the
include path and link related project settings flags such as includes, lib, libpath, and linkflags.

In this example, you add the following to your module:

1. Google mock libraries for Win x64

2. Preprocessor DEFINE called USE_GMOCK to inject into the compile based on the platform Win x64

3. Link-time code generation flag to enable instrumentation (/LTCG:PGOPTIMIZE)

Add the following to your wscript module:

def build(bld):

 bld.CryEngineModule(
 target = 'MyEngineModule',
 vs_filter = 'LyEngine',
 file_list = 'myenginemodule.waf_files',
 pch = 'StdAfx.cpp',

 win_includes = [Path('Code/SDKs/GoogleMock/include')],
 win_lib = ['gmock'],
 win_linkflags = ['/LTCG:PGOPTIMIZE'],
 win_defines = ['USE_GMOCK'],
 win_x64_debug_libpath = [Path('Code/SDKs/GoogleMock/bin/x64/
Debug')],
 win_x64_profile_libpath = [Path('Code/SDKs/GoogleMock/bin/x64/
Release')],
 win_x64_performance_libpath = [Path('Code/SDKs/GoogleMock/bin/x64/
Release')],
 win_x64_release_libpath = [Path('Code/SDKs/GoogleMock/bin/x64/
Release')]
)
)

Note
The following are duplicated to cover all possible configurations that you specified in the
waf_branch_spec: win_x64_profile_libpath, win_x64_profile_performance, and
win_x64_release_libpath.

Adding and Linking to a Project Dependency

If you want to link to another module that is built within the system, you can use the use parameter for
the build.

Update your wscript module to link to the CryPerforce module:

def build(bld):

Version 1.6
1356

Lumberyard User Guide
Adding User Settings to Waf

 bld.CryEngineModule(
 target = 'MyEngineModule',
 vs_filter = 'LyEngine',
 file_list = 'myenginemodule.waf_files',
 pch = 'StdAfx.cpp',
 use = ['CryPerforce'],

 win_includes = [Path('Code/SDKs/GoogleMock/include')],
 win_lib = ['gmock'],
 win_defines = ['USE_GMOCK'],
 win_x64_debug_libpath = [Path('Code/SDKs/GoogleMock/bin/x64/
Debug')],
 win_x64_profile_libpath = [Path('Code/SDKs/GoogleMock/bin/x64/
Release')],
 win_x64_performance_libpath = [Path('Code/SDKs/GoogleMock/bin/x64/
Release')],
 win_x64_release_libpath = [Path('Code/SDKs/GoogleMock/bin/x64/
Release')]
)
)

Adding User Settings to Waf
You can add a new user setting to the default_settings.json file in the Waf folder located at the
root. Use the standards established in this file and customize as needed. After you have added a user
setting, you need to add a minimum of three utility functions for the GUI and console to validate your
new setting.

To define utility functions, add the following to default_settings.py:

• Getter – Retrieves the value of your new setting and performs necessary transformations

• Validator (optional) – Validates new values

• Hinter (optional) – Tells GUI the available options

See the sections below for more information about these functions.

You can also add these functions to any new .py file as long as you add the module during build and
configure. Be sure to load the file using the following command:

(opt.load('<YOUR PYTHON NAME>', tooldir='<DIRECTORY WHERE ITS STORED>')

Getter Function
Waf calls the getter function to retrieve the value of your new setting and perform any necessary
transformations.

Follow these guidelines:

• Implement the @register_attribute_callback function for your type.

• Use the same name for your function as your property name that's defined in the
default_settings file. For example, if your property name is called my_setting, the function
must be called my_setting().

• Choose attribute names that are unlikely to conflict.

Version 1.6
1357

Lumberyard User Guide
Getter Function

In the example below of a getter/setter function, the current value is the input and the return value
is the value with any validation and transformations applied. We expect a list of comma-separated
values. The first half of the function returns the value quickly and the second half is where Waf runs in
interactive or GUI mode.

@register_attribute_callback
def enabled_game_projects(ctx, section_name, option_name, value):
 """ Configure all Game Projects enabled by user"""
 if ctx.options.execsolution or not
 ctx.is_option_true('ask_for_user_input'):
 return value

 if LOADED_OPTIONS.get('enabled_game_projects', 'False') == 'False':
 return ''

 info_str = ['Specify which game projects to include when compiling and
 generating project files.']
 info_str.append('Comma separated list of Game names, from the
 project.json root (SamplesProject, MultiplayerProject) for example')
 # GUI
 if not ctx.is_option_true('console_mode'):
 return ctx.gui_get_attribute(section_name, option_name, value,
 '\n'.join(info_str))
 # Console
 info_str.append("\nQuick option(s) (separate by comma):")
 project_list = ctx.game_projects()
 project_list.sort()
 for idx , project in enumerate(project_list):
 output = ' %s: %s: ' % (idx, project)
 while len(output) < 25:
 output += ' '
 output += ctx.get_launcher_product_name(project)
 info_str.append(output)
 info_str.append("(Press ENTER to keep the current default value shown in
 [])")
 Logs.info('\n'.join(info_str))
 while True:
 projects = _get_string_value(ctx, 'Comma separated project list',
 value)
 projects_input_list = projects.replace(' ', '').split(',')
 # Replace quick options
 options_valid = True
 for proj_idx, proj_name in enumerate(projects_input_list):
 if proj_name.isdigit():
 option_idx = int(proj_name)
 try:
 projects_input_list[proj_idx] = project_list[option_idx]
 except:
 Logs.warn('[WARNING] - Invalid option: "%s"' %
 option_idx)
 options_valid = False
 if not options_valid:
 continue
 projects_enabled = ','.join(projects_input_list)
 (res, warning, error) =
 ATTRIBUTE_VERIFICATION_CALLBACKS['verify_enabled_game_projects'](ctx,
 option_name, projects_enabled)
 if error:

Version 1.6
1358

Lumberyard User Guide
Validator Function

 Logs.warn(error)
 continue
 return projects_enabled

In the example below, the function is simpler because it’s a simple string entry and there are no
enumerations like bool and no validation.

@register_attribute_callback
def out_folder_linux64(ctx, section_name, option_name, value):
 """ Configure output folder for linux x64 """
 if not _is_user_input_allowed(ctx, option_name, value):
 Logs.info('\nUser Input disabled.\nUsing default value "%s" for
 option: "%s"' % (value, option_name))
 return value

 # GUI / console mode
 if not ctx.is_option_true('console_mode'):
 return ctx.gui_get_attribute(section_name, option_name, value)

 return _get_string_value(ctx, 'Linux x64 Output Folder', value

Validator Function
Waf only requires the getter function; however, to validate input or provide the GUI with more than raw
strings, you'll need to implement other functions like the validator.

Follow these guidelines:

• Implement the @register_verify_attribute_callback function and name it
verify_(your_option_name).

• Pass into the function the value parameter, which is the current raw value.

• Return a tuple of Bool, String, ErrorString. The first bool specifies whether or not validation is okay.

In the example below of a validator function, we make sure not to trigger the duplicate check (for
example with a list like "SamplesProject,SamplesProject,SamplesProject") or provide a list that won't
be accepted (for example with a list like "ASDJASUIDIASJDA").

###
@register_verify_attribute_callback
def verify_enabled_game_projects(ctx, option_name, value):
 """ Configure all Game Projects which should be included in Visual Studio
 """
 if not value:
 return True, "", "" # its okay to have no game project
 if (len(value) == 0):
 return True, "", ""
 if (value[0] == '' and len(value) == 1):
 return True, "", ""
 project_list = ctx.game_projects()
 project_list.sort()
 project_input_list = value.strip().replace(' ', '').split(',')
 # Get number of occurrences per item in list
 num_of_occurrences = Counter(project_input_list)
 for input in project_input_list:
 # Ensure spec is valid

Version 1.6
1359

Lumberyard User Guide
Hinter Function

 if not input in project_list:
 error = ' [ERROR] Unkown game project: "%s".' % input
 return (False, "", error)
 # Ensure each spec only exists once in list
 elif not num_of_occurrences[input] == 1:
 error = ' [ERROR] Multiple occurrences of "%s" in final game
 project value: "%s"' % (input, value)
 return (False, "", error)
 return True, "",

Hinter Function
Waf uses the optional hinter function to provide the GUI with a list of available options. For example,
you might want to use the hinter function if you have a string list that can have multiple or single values
that must be specific (enums).

Follow these guidelines:

• Implement the @register_hint_attribute_callback function and name it
hint_(your_option_name).

• Ignore the value parameter passed, which is the current value.

• Return a tuple of display value list, actual value list, help text list, multi or single. All three input lists
should be the same length. The values in these lists are what’s displayed in the GUI, the values to
set if selected, and the text to display as extra information for an option, respectively.

The example below is for a hinter function.

###
@register_hint_attribute_callback
def hint_enabled_game_projects(ctx, section_name, option_name, value):
 """ Hint list of specs for projection generation """
 project_list = ctx.game_projects()
 project_list.sort()
 desc_list = []
 for gameproj in project_list:
 desc_list.append(ctx.get_launcher_product_name(gameproj))
 return (project_list, project_list, desc_list, "multi")

You can also see how Waf uses hinting by engaging Waf in GUI mode and entering the following
command: lmbr_waf.bat show_option_dialog

This displays an options dialog box that you can review to determine hinting.

Adding Qt 5 Content to Waf
You can add Qt 5 content into the Waf build system. Typically you use an IDE (integrated development
environment) tool such as Qt Designer to create and edit the Qt source file. As with all files that are
processed through the Waf build system, the Qt source file must be included in the corresponding
*.waf_files file for each project.

Intermediate files that need additional compilation such as the .rcc file from the .qrc compiler do not
need to be specified explicitly in these files or any other source file. In addition, intermediate .rcc files
are never included in any uber files (if the uber file option is enabled) since they are not compatible with
uber files in general.

Version 1.6
1360

Lumberyard User Guide
MOC (Meta-Object Compiler) Files

MOC (Meta-Object Compiler) Files
When header files need to be processed by the Meta-Object Compiler (MOC) as part of the build
process, the build system identifies them by including their MOC output file inside the source .cpp
file. For example, if foo.h is a file that is to be processed by MOC, then the source foo.cpp file also
needs to include the corresponding #include for the .moc file that is generated.

For example:

...
#include "foo.h"

..
..

#include <foo.moc>

The #include for the .moc file requires angled brackets because the generated .moc file does not
reside in the local project directory but rather is located in an intermediate directory. Also, the include
path that is added to the project is based on the mirrored project base in the intermediate directory. If
the header file exists in a relative subdirectory, that subdirectory needs to be included in the #include
for the .moc, regardless of where the .cpp file is located.

For example, if foo.h and foo.cpp are moved into the \test subdirectory, the result looks like the
following:

...
#include "foo.h" // This can still be relative to the current source file

...
..

#incude <test/foo.cpp> // This needs to be relative to the base path for the
 project in the intermediate directory.

QRC (QT Resource Collection) files
Qt resource collection (.qrc) files are processed by the Qt .qrc compiler. The output file has the
same source name but with an .rcc extension. The resulting .rcc file is stored in the projects
intermediate directory relative to any subdirectory that it exists in.

For example, if the file foo.qrc is located in the \test subdirectory, the generated .rcc file is stored
in the \test subdirectory under the project's intermediate directory structure. There is no need to
explicitly include the generated .rcc file into any source file as it is added as a build task for the
project.

UI Files
Designer UI files are processed by the Qt UIC (user interface compiler). The output file has an .h
header extension to it, and ui_ is also added to the name of the source. The resulting header file is
created in the project's intermediate directory relative to its location in the project.

For example, if the file foo.ui is located in a \test subfolder, the generated ui_test.h file will be
located in the \test subfolder under the project's intermediate folder structure.

Version 1.6
1361

Lumberyard User Guide
Qt Linguist (TS) files

When including the generated header file, using the same rule as the moc include applies as follows:

...
#include "foo.h"
...
#include <test/ui_foo.h> // Path is relative to the project root

Qt Linguist (TS) files
Qt Linguist files (.ts) are processed by Qt and output as .qm files. The .qm files are automatically
included into a single .qrc file specified by the langname attribute in the wscript file. The .qrc file is
automatically added as a build task like other .qrc files for the project.

The following example demonstrates adding the required langname attribute to a wscript file:

...
def build(bld):
 bld.CryPlugin(
 ...
 langname = 'en-us',
 ...

The .qm files are loaded using the QTranslator module, and the Qt resource directory is the same
relative to the source directory. For example, if there a foo_en-us.ts file in a \test subdirectory,
then that is the same directory that you use when loading the resource, as shown in the following
example:

...
#include <QTranslator>
...

...
void main() {

...
 QTranslator* translator = new QTranslator();
 translator->load("foo_en-us.qm",":/test");
...

}

Using Uber Files
Uber files combine multiple C and CPP files into a single compilation unit, which is intended to reduce
input/output impact on compilation time and help accelerate build time.

The code in uber files must meet the following coding standards:

• No global statics in the global namespace

• No global 'using namespace' declarations

Waf compile jobs include files from the *.waf_files lists. These files have the following format:

Version 1.6
1362

Lumberyard User Guide
Configuring Waf

{
 "<uber_file>": {
 "<source_filter_name>": [
 "file1.h",
 "file1.cpp"
]
 }
}

Valid values for uber_file are:

• none – Files in this list are banned from uber files. If you want your module to use precompiled
headers, you must include them in this list.

• auto – Files in this list are combined into modules that are optimized for compile time by Waf. Files
that are automatically combined are sorted by absolute path and then combined until the file size
path is reached. The combination must be deterministic given the same input files and file size limit.

File size limits vary depending on the compilation:

• 200K – Suggested for compiling remotely using Incredibuild (incredibuild_max_cores = 64,
max_parallel_link = 4)

• 300K – Default setting and suggested for compiling locally using an SSD

• 400-500K – Suggested for compiling using an HDD

You can specify the file size by updating the uber_file_size value in the user_settings file or by
running the following command: --uber-file-size

• somefilename.cpp – Files in this list are combined into somefilename.cpp. This action is useful
when certain files can only be combined together or when you want to combine platform-specific
code.

Most waf_files lists should include one none section with the precompiled header and an auto section
with everything else.

Configuring Waf
To help obtain the most optimal compile times, use the following:

• use_uber_files = True

• max_parallel_link = 4

• use_incredibuild = True

• use_incredibuild_win = True

• incredibuild_max_cores = 64

Debugging Waf
If you encounter issues that are not related to configuration, it is important to debug the internal Waf
library. For a Python callstack, you typically need to debug either in Code/Tools/waf-#.#.##/
waflib or Code/Tools/waf-#.#.##/crywaflib.

Using PyCharm, an IDE for Python development, you can browse to a file where you are having
problems, set a breakpoint, and click the bug icon to start debugging. Execution time may be slower
when running PyCharm.

Version 1.6
1363

Lumberyard User Guide
Debugging Waf

Opening the root directory creates file indexing. You can use PyCharm to specify folders to exclude
from the project structure, as shown in the example image.

You can also debug the way you would any native Visual Studio solution-based project. Right-click
the project you want to debug and select Set as Startup Project. Continue the debugging process as
you normally would. If you receive a warning saying the _WAF_ project is outdated but your project is
already up-to-date, click No to build.

Version 1.6
1364

Lumberyard User Guide

Game Builds

You can create a variety of different game builds, including a release build. Following are definitions for
the different build mode types:

Profile mode builds for developers, designers, and artists

• Provides an optimized build meant for development

• Contains performance instrumentation and debugging output

• Can compile shaders and textures

• Communicates with the Asset Processor and compiles as needed

• Has logging, crash reporting, metrics, and other developer features

Debug mode builds for developers

• Provides a nonoptimized version of profile mode meant for debugging

• Has additional memory checks and tests

• Contains obfuscated code that may be hard to follow

Release mode builds for customer previews, demos, and launches

• Can only load from .pak files, so assumes these have been created using the Asset Processor and
packed from a build script

• Can't compile shaders, so assumes you’ve already built them

• Can't use VFS or remote asset access

• Doesn't communicate with the Asset Processor as this developer tool doesn't ship with the game

• Strips all logging, instrumentation, profiling, and other measurement metrics

• Strips all developer features, such as console usage, cheat commands, command-line parsing, and
batch mode processing

• Combines everything into a single executable file instead of DLLs

• May enable other release features

Topics

Version 1.6
1365

Lumberyard User Guide
Compiling Game Code

• Compiling Game Code (p. 1366)

• Creating Release Builds for PC (p. 1366)

• Creating Minimal Release Builds (p. 1368)

• Compiling Shaders for Release Builds (p. 1369)

• Adding Custom Game Icons (p. 1369)

• Universal Remote Console (p. 1370)

Compiling Game Code
If you choose the Compile the game code option in Lumberyard Setup Assistant, you must create a
game spec file that includes the configuration to build your game project.

To compile game code

1. In Lumberyard Setup Assistant, select Compile the game. Follow the instructions on each page.
For more information, see Running Lumberyard Setup Assistant (p. 15).

2. On the Summary page, click Configure project to create your game project using Project
Configurator. For more information, see Project Configurator (p. 985).

3. In a command line window, run the following to generate the Visual Studio solution: lmbr_waf
configure

4. Build your project by doing one of the following:

• In Visual Studio, select one of the [Game] specs from the Build Configuration drop-down
menu. You can use [Game] Profile to start.

• In a command line window, run the following: lmbr_waf.bat build_win_x64_profile -p
game

Creating Release Builds for PC
You can create a release build of your game for multiple platforms, including PC, iOS, and Android.
This topic describes how to create a PC build; however, other platforms follow a similar process with
slight alterations to the batch files.

There are two options for creating a release build:

• Create a standalone image of your game in a directory.

This option allows you to generate a complete image of your game in a directory that can be
deployed without requiring the Asset Processor or other files. This image will not contaminate your
build or source.

• Create a formal, shippable release build.

This option requires you to use the shader compiler server and shader builder to build a list of
shaders from a file. You can then use an automated batch file to pack up the generated shaders
directory into a .pak file called shadercache.pak. Shaders must be packed because release
builds cannot load loose shader files. For more information, see Compiling Shaders for Release
Builds (p. 1369).

To create a release build for PC

1. In a command line window, navigate to \dev in the directory where you installed Lumberyard.

Version 1.6
1366

Lumberyard User Guide
Creating Release Builds for PC

2. Generate all tools in profile mode by typing: lmbr_waf build_win_x64_profile -p all

Alternatively, you can use Visual Studio to build all in profile mode.

3. Build game_and_engine in release mode by typing: lmbr_waf build_win_x64_release -p
game_and_engine

Alternatively, you can use Visual Studio to build game_and_engine in release mode. This builds
the actual release version into Bin64.Release and copies all required .dll files.

4. Run BuildSamplesProject_Paks_PC.bat (located in the \dev directory). Alter the path
as needed to reference your game if you do not want to include SamplesProject. The .bat file
generates a \samplesproject_pc_paks directory that includes all files required to run your
game, excluding shaders and executables.

5. (Optional) If you are shipping profile or debug mode executables, edit the bootstrap.cfg file
(located in the \samplesproject_pc_paks directory to change the connect_to_remote value
from 1 to 0. This prevents the Asset Processor from starting. The Asset Processor is not required
because all necessary assets have been packaged and preprocessed.

6. Build and pack the shaders by doing one of the following:

• Use a shader compiler server to obtain the shader list from the shaderlist.txt file.

• Generate the shader list by opening Lumberyard Editor and navigating through the levels
that you want to ship while in game mode until all the shaders are generated. Then close
Lumberyard Editor.

7. Run BuildShaderPak_DX11.bat (located in the \dev directory). Note the following:

• If you use Lumberyard Editor to generate the shader list, the batch file looks in Cache
\SamplesProject\PC\user\cache\shaders\shaderlist.txt.

• If you use the shaderlist.txt file from the shader compiler server, you must specify the
path as the first parameter in the batch file. For example, BuilderShaderPak_DX11 f:
\shader_compiler_server\shaderlist.txt.

• If the 7za.exe file is missing from your dev\Tools directory, you can download and install the
7-Zip Extra (standalone console version) tool from the 7-Zip website.

8. Copy the resulting .pak files (the batch file output will specify where they are located) to the
SamplesProject directory located in the samplesproject_pc_packs directory with the rest of
the .pak files.

9. Copy the Bin64.Release directory to the samplesproject_pc_paks directory such that it has
its own Bin64.Release directory. Optionally rename this directory.

Alternatively, you can create a directory junction (symlink) from samplesproject_pc_paks
folder\Bin64.Release to Lumberyard_root_folder\Bin64.Release
by typing the following in a command line window: mklink /j D:
\source_folder\samplesproject_pc_paks\Bin64.Release D:
\destination_folder\Bin64.Release

10. You have now created a samplesproject_pc_paks directory that contains a standalone
release build of your game. This standalone release build does not require the Asset Processor,
Lumberyard, or Lumberyard Editor to run.

To run the standalone release build

1. Navigate to the samplesproject_pc_paks directory (or the name of your game directory) that
contains the standalone release build of your game.

2. Run the game executable.

3. Because the console does not work properly in a release build, you must add +map (MAPNAME)
to the command line parameters for launching the executable. Add it manually or create a
Windows shortcut, batch file, or autoexec.cfg file that contains the line, if your game has no
menu or other code.

Version 1.6
1367

http://www.7-zip.org/download.html

Lumberyard User Guide
Running a Build from Visual Studio

Note
If the build does not run, please check the dev.log, user.log, log.log, or game.log
files for more information.

4. Release builds require a player login method. Write your own solution or use the provided sample
code in the User Login: Default Gem (located in the \dev\Gems\UserLoginDefault directory at
the root of your Lumberyard installation).

Running a Build from Visual Studio
Before you can run a release build from Visual Studio, you must change the following debugging
properties for the project (using SamplesProject as an example):

• Command to lumberyard_root_folder\samplesproject_pc_paks\Bin64.release
\SamplesProjectLauncher.exe

• Command Arguments to +map (MAPNAME)

• Working Directory to lumberyard_root_folder\samplesproject_pc_paks
\Bin64.release

Note
Bin64.release is generated for release builds. For profile builds, you must use Bin64.

Creating Minimal Release Builds
In the Creating Release Builds for PC (p. 1366) topic, you don't need to copy the entire \Bin64
directory when creating the release build. However, you do need a \Bin64 directory (or subfolder
containing your binaries) that includes the following:

• Your game executable file

• D3DCOMPILER_47.DLL

• AWS-CPP-SDK-*.DLL

• (Optional) DBGHELP.DLL (without which call stacks are not available if dumping crashes)

You should end up with a directory structure like this:

\samplesproject_pc_paks (contains engine bootstrap files)
 \bin64 (contains your executable DLLs)
 \gems
 \gem folders (each containing only gem.json)
 \samplesproject
 (pak files)
 \user
 \cache
 \shaders
 \shader folders

Any other folders can be removed.

If you want to package the shaders instead of keeping them loose, zip the user\cache directory,
rename it shadercache.pak, and place it with the rest of the .pak files in the \SamplesProject
directory. This .zip file, if correctly formed, would contain a \Shaders folder at the root directory.
Again, for a release build, you need to use the shader compiler server method.

Version 1.6
1368

Lumberyard User Guide
Using Visual Studio

Using Visual Studio
In order to run the release build from Visual Studio using the above method, you must change some
of the debugging properties of the launcher project. Specifically, you must change the following, using
SamplesProject as the example:

• Change command to engine_install_location/samplesproject_pc_paks/Bin64/
SamplesProjectLauncher.exe

• Change Command Arguments to +map (MAPNAME)

• Change Working Directory to engine_install_location/samplesproject_pc_paks/
Bin64/

Compiling Shaders for Release Builds
Shaders for release builds of projects that are built using Lumberyard should be compiled (packaged)
into .pak files.

Console and mobile platforms – On console and mobile platforms, runtime shader compilation is not
supported for release builds. Shaders will compile at runtime only if you are running in profile mode or
debug mode and can connect to a shader compiler server.

Windows DirectX platform – On Windows builds that use the DirectX module, runtime shader
compilation is supported for release builds. Nevertheless, it highly recommended that you compile
shaders into .pak files for performance reasons. Compiling shaders at runtime can cause unwanted
frame rate fluctuations. In addition objects that use shaders compiled at runtime may fail to appear until
the shaders have been successfully compiled.

The following shader .pak files are required for release builds:

• Shaders.pak – Only required if you want to support runtime compilation. Source shaders are
located in the dev\Engine\Shaders\ directory.

• ShaderCache.pak – Compiled shaders of all possible combinations used by Lumberyard.

• ShaderCacheStartup.pak – Compiled shaders that are used during startup.

During development, it is more convenient to use a shader compiler server or to compile shaders
locally.

Generating Shader .pak Files

To generate shader .pak files use the following tools:

• Shader Compiler – The shader compiler server generates the ShaderList.txt file that contains
the list of all shaders used by the game. This server can run locally or on a remote PC. For more
information, see Remote Shader Compiler (p. 995).

• ShaderCacheGen.exe – Used to populate the local shader cache folder with all the shaders
contained in the ShaderList.txt file. For more information, see ShaderCache.pak File Generation
 (p. 999).

• BuildShaderPak_DX11.bat – Batch file used to generate the ShaderCache.pak files. For more
information, see ShaderCache.pak File Generation (p. 999).

Adding Custom Game Icons
You can add a custom icon that appears in the top left title bar window of your game.

Version 1.6
1369

Lumberyard User Guide
Universal Remote Console

To add a custom game icon

1. Create an icon and name it default_icon. You can save it in .tif, .png, .tga, or .bmp
format.

2. Save the icon file to your game's \textures directory.

Universal Remote Console
You can use Console commands to modify and configure the Lumberyard run-time application. On a
PC, the Console is available from Lumberyard Editor or the game. But for mobile platforms you must
use a separate Windows-based application called the Universal Remote Console. With the Universal
Remote Console you can use the IP address of the machine running the Lumberyard game to connect
to a remote instance of Lumberyard.

Universal Remote Console requires the use of a PC and works with both Android and iOS. Your mobile
device and the PC will need to be on the same network and your firewall should be configured to allow
traffic through port 4600.

To start the Universal Remote Console

1. Run Lumberyard_root_folder\dev\Tools\RemoteConsole\x64\RemoteConsole.exe

2. To see output from the Lumberyard logging system, click the Full Log tab.

To connect to a Lumberyard game on a mobile device

1. Click Targets on the toolbar.

2. Type the IP address of the device under Custom IP.

Version 1.6
1370

Lumberyard User Guide
Issuing Commands

If your network allows you to assign fixed IP addresses per device, you can edit the params.xml file
and add the new target devices, as illustrated in the following example. This file is located in the same
directory as Universal Remote Console, and you can edit it with the application running.

<Targets>
<Target name="PC" ip="localhost" port="4600"/>
<Target name="Android" ip="192.168.1.247" port="4600"/>
</Targets>

This lets you select from a list of devices instead of entering the IP address each time. Once
successfully connected, the status indicator in the lower right corner will turn green.

Issuing Commands
In the Type a command box at the bottom of the window, type a command like the ones that follow.
This control features autocomplete and, for certain commands (like map), can also detect available
options.

Commands include the following:

• cl_DisableHUDText – Disables HUD text

• g_debug_stats – Enables gameplay events debugging

• r_DisplayInfo – Displays rendering information

• r_ProfileShaders – Displays profiling information for the shaders

Version 1.6
1371

Lumberyard User Guide

Glossary

actor A specialized entity (p. 1373) that is the basis for characters in a game.

additive animation An animation that can be attached to a base animation to extend its behavior.

agent An autonomous entity used in artificial intelligence (AI) that uses sensors to
observe its environment and directs its activity towards achieving one or more
goals.

aim pose Part of a collection of parametric-blended poses for making a character take
aim at specified points in the game.

alpha channel An extension of RGB color values for specifying the opacity of an object.
A value of 0.0 indicates fully transparent while a value of 1.0 indicates fully
opaque.

Amazon GameLift A fully managed AWS (p. 1372) service for deploying, operating, and scaling
session-based multiplayer game servers in the cloud.

archetype entity A special type of entity (p. 1373) with linked instances. If a parameter of the
archetype entity is changed, all other instances of that entity parameter are
automatically updated.

asset Any art, texture, 3D model, sound effect, or other digital data that is presented
to the user in the game.

attachment A hierarchical object that is attached to characters, respond to real-world
physics, and can be attached, detached, or replaced at runtime in the game.
Character attachments include clothing, weapons, tools, or entire body parts
such as heads or hands.

AWS Amazon Web Services, an infrastructure web services platform in the cloud for
companies of all sizes.
See Also http://aws.amazon.com.

baked Performs and stores all calculations for a scene element so that the element
does not need to be processed or rendered in real time in the game. Often
used for lighting or physics. Also referred to as prebaked.

bind pose The pose that a character has when you bind the mesh (skin) to the skeleton.
The skeleton determines the pose.

blend shape Method that stores a deformed version of a mesh as a series of vertex
positions. In each keyframe of an animation, the vertices are interpolated

Version 1.6
1372

Lumberyard User Guide

between these stored positions. Also known as morph target animation or per-
vertex animation.

blend space Animation blending that is treated as geometry. A character's kinematic,
physical, and other high-level motion-related parameters are mapped onto
corresponding features that are stored in animation clips. By storing such
motion as parameters, controllable interactive animations are possible.
Specifically, an animation is associated with a 1D, 2D, or 3D location in the
blend space. Also known as a bspace.

boids Entities that mimic living animals and that have simulated group behavior and
obstacle avoidance.

brush A simple 3D shape that is tied to an entity, and that provides a specific
appearance. Brushes are used for static objects.

bspace See blend space.

bump map A grayscale image that allows more realistic rendering of an object by
introducing small displacements of its surface without changing its geometry.
This is done by perturbing the surface normals of a rendered object during
lighting. The amount of perturbation is specified by the values in the bump map.

Cloud Canvas A tool for building connected gameplay by using the Lumberyard flow graph
and AWS services, such as Amazon Cognito, Amazon DynamoDB, AWS
Lambda, Amazon S3, Amazon SNS, and Amazon SQS.

collision proxy A simplified geometric shape for approximating a more complex piece of
geometry for purposes of a fast first-pass collision detection.

cubemap A set of six squares that represent reflections from the environment. The six
squares form the faces of an imaginary cube that surrounds an object.

cutscene A noninteractive cinematic game sequence that is typically used to promote
plot during gameplay.

damping The gradual reduction of movement, vibration, or intensity.

DCC Digital content creation; related to a third-party product such as Autodesk 3ds
Max or Autodesk Maya for creating digital assets.

decal A 2D texture placed on a piece of flat geometry.

detail map An image for adding up-close surface details to an object.

diffuse map An image for defining the base color and pattern of an object's surface.

displacement map A type of heightmap (p. 1374) that modifies the position of vertices of a surface
by a specified amount.

DOF Depth of field. The degree to which distant objects are in focus relative to closer
ones.

EBus A general-purpose system for dispatching messages between objects in C++
code. Also known as event bus.

emitter An entity that specifies the location from which particles are emitted.

entity A game object with one or more components that provide some behavior or
functionality. An entity consists of a unique ID and a container.

Version 1.6
1373

Lumberyard User Guide

environment probe A technique that uses cube maps to provide a game level or location with
realistic ambient lighting.

Gem A package that contains code and assets used to provide a single feature or
multiple, tightly scoped functions.

gloss map An image that represents the microscale roughness of a surface. The gloss
map is located in the alpha channel of the normal map.

heightmap A grayscale image used to modify vertex positions of a surface. Lumberyard
uses heightmaps to store terrain surface height data. White areas represent the
high areas while black areas represent the low areas of the terrain.

HDR tone mapping The process of converting the tonal values of an image from a high dynamic
range (HDR) to a lower range.

helper Visual icons attached to objects in the Lumberyard Editor that provide object-
specific functionality.

IK Inverse kinematics. The use of kinematics equations to calculate the positions
and orientations of joints of a character's skeleton so that a specific part of the
skeleton (the end effector) reaches a defined target point.

IBL Image-based lighting. A rendering technique that involves capturing lighting
information, storing it in an environment probe, and projecting it onto a scene.

imposter Procedurally created 2D sprites that are rendered to look like 3D objects. In
essence, imposters are 2.5D objects.

keyframe An animation frame that specifies exact positions and orientations of geometry
affected by the animation. Animation frames that exist between keyframes are
interpolated based on animation curves.

level A world or map that represents the space or area available to the player during
the course of completing a discrete game objective. Most games consist of
multiple levels.

locomotion locator The Y vector of the character root joint quaternion, which is typically the
direction in which the character is facing. The locomotion locator is needed for
motions that translate in nonuniform ways, such as stop or start transitions that
have changes in acceleration.

LOD Level of detail. A technique for increasing performance and reducing draw calls
by displaying progressively less-detailed objects the farther they are from the
camera.

look pose Part of a collection of parametric-blended poses for making a character look at
specified points in the game.

mesh A collection of vertices that define the surface of an object.

minimap A miniature map placed at a screen corner in the game to aid players in
orienting themselves in the world.

mipmap A precalculated, optimized sequence of textures, each of which is a
progressively lower resolution representation of the same image. Used in
conjunction with LOD (p. 1374) processing.

morph target A snapshot of vertex locations for a specific mesh that have been deformed in
some way.

Version 1.6
1374

Lumberyard User Guide

morph target animation See blend shape.

navmesh A navigation mesh, or navmesh, defines the areas of an environment in which
a character can move freely without obstructions such as trees, lavas, or other
environmental barriers.

normal The vector that is orthogonal to a surface defined by a set of vertices.

normal map An image whose pixel values are interpreted as the normal vectors for each
point on the surface to which the image is mapped.

null bone The character bone associated with a null or root object.

parallax mapping A technique that is used to create detail in a texture adding the illusion of depth.
This depth perception changes based on perspective.

PBR Physically based rendering. PBR uses real-world physical rules and
properties to define how light interacts with the surface of objects. Used by the
Lumberyard rendering system.

per-vertex animation See blend shape.

POM Parallax occlusion mapping. POM uses a displacement map to encode surface
detail information in a texture. In this way self-occlusion and self-shadowing of
an object is possible without changing the surface geometry.

prebaked See baked.

prefab A game object template that stores an asset or a group of assets and all
associated properties.

procedural vegetation A technique used to automatically cover a large area of terrain with vegetation
objects using texture layers.

project The collection of levels, assets, and code that make up a game.

ragdoll Physical rules used to simulate the realistic movement of a skeletal character.

rigging The process of building a skeleton hierarchy of bone joints for a character
mesh.

rope Used for attaching cloth, hair, or ropes to a character so that the objects can
dangle and move realistically against the character.

retargeting Applying animations that were created for one model to another.

shadow map A technique for controlling how shadows are added to a scene. You can use
multiple, cascaded shadow maps to control how sun shadows look at varying
distances.

skinning The process of binding bone joints to a model's mesh (skin).

skybox A cube without the bottom side that contains the environment around a scene.
Usually viewed from the inside of the cube.

slices Cascaded data management system for entities. They are a superset to what
are also known as prefabs, and represent the structure in which nearly all entity
data is managed.

socket A pivot point on a character where attachments are connected. Attachments
dangle or move according to the properties of the socket.

Version 1.6
1375

Lumberyard User Guide

specular map An image that determines the shininess of each area of a surface.

SPOM Silhouette parallax occlusion mapping. SPOM is similar to POM (p. 1375),
but affects the silhouette of a mesh similar to tessellation, without the object
actually being tessellated.

sprite A 2D bitmap image. Multiple sprites can be grouped into a single image known
as a sprite sheet.

SSDO Screen Space Directional Occlusion is a method for approximating real time
global illumination (GI).

SSS index Subsurface scattering index. SSS is used to simulate the diffusion and
scattering of light transmitted through translucent objects.

tessellation The deformation of a surface using one or more geometric objects with no
overlaps or gaps. Tessellation increases the geometry count of the mesh by
subdividing polygons into smaller polygons before it gets displaced.

texture mapping The application of an image to a surface.

TOD The time of day in a level. TOD is used to simulate the changing lighting
conditions as the sun crosses the sky.

UV mapping The projection of texture coordinates onto a 3D surface.

vertex color A method for adding variety, depth, and color variations to an object surface.

virtual reality Technology that replicates the gaming environment and simulates a user's
presence in it, allowing the player to feel as if they are in the game world as
they interact with the environment, characters, and objects.

voxel A volumetric point in a 3D space, similar to a pixel in a 2D space.

Waf Game build system that allows you to automatically compile a game that
targets all supported platforms.

white point The reference value used to indicate true white in an image or level.

Version 1.6
1376

Lumberyard User Guide

Lumberyard Blog, Forums, and
Feedback

As we continue to improve Lumberyard, we want to thank everyone in our developer community.
Without your participation in the forums, your messages, and your bug reports, Lumberyard wouldn't be
as strong as it is.

• Keep sending your feedback to <lumberyard-feedback@amazon.com>.

• If you haven't spoken up on the forums yet, we would love to have you.

• You can also keep up with new changes on our blog and leave comments to let us know what you
think.

Version 1.6
1377

https://gamedev.amazon.com/forums/index.html
https://aws-blogs-prod.amazon.com/gamedev/

Lumberyard User Guide
Lumberyard Redistributables

Legal

The Amazon Lumberyard engine, integrated development environment, and related assets and
tools are licensed as "Lumberyard Materials" under the terms and conditions of the AWS Customer
Agreement and the Lumberyard Service Terms. Please see these terms and conditions for details.

Topics

• Lumberyard Redistributables (p. 1378)

• Alternate Web Services (p. 1380)

Lumberyard Redistributables
For purposes of the Lumberyard Service Terms, the Lumberyard materials in the directories listed
below are designated as "Lumberyard Redistributables." Unless subdirectories of a directory are
specified, all files in the directory listed are deemed Lumberyard Redistributables.

Note
Restrictions on use and distribution of the Lumberyard materials, including in source code
form, are specified in the Service Terms.

Lumberyard

• \3rdParty\GameLift

• \dev_WAF_

• \dev\Bin64

• \dev\Code\CryEngine

• \dev\Code\Framework

• \dev\Code\Launcher

• \dev\Code\MultiplayerProject

• \dev\Code\SamplesProject

• \dev\Code\Sandbox

• \dev\Code\Tools

• \dev\Code\Tools\AssetTagging

• \dev\Code\Tools\ClangReflect

Version 1.6
1378

https://aws.amazon.com/agreement
https://aws.amazon.com/agreement
https://aws.amazon.com/service-terms
http://aws.amazon.com/service-terms/
http://aws.amazon.com/service-terms/

Lumberyard User Guide
Lumberyard Redistributables

• \dev\Code\Tools\CryCommonTools

• \dev\Code\Tools\CryD3DCompilerStub

• \dev\Code\Tools\CrySCompilerServer

• \dev\Code\Tools\CryXML

• \dev\Code\Tools\DBAPI

• \dev\Code\Tools\GemRegistry

• \dev\Code\Tools\HLSLCrossCompiler

• \dev\Code\Tools\LUARemoteDebugger

• \dev\Code\Tools\PRT

• \dev\Code\Tools\RC

• \dev\Code\Tools\ShaderCacheGen

• \dev\Code\Tools\SphericalHarmonics

• \dev\Code\Tools\AssetProcessor

• \dev\Code\Tools\waf-1.7.13

• \dev\Editor

• \dev\Engine

• \dev\FeatureTests

• \dev\Gems

• \dev\MultiplayerProject

• \dev\ProjectTemplates

• \dev\SamplesProject

• \dev\AssetProcessorPlatformConfig.ini

• \dev\bootstrap.cfg

• \dev\editor.cfg

• \dev\engineroot.txt

• \dev\lmbr_aws.cmd

• \dev\lmbr_waf.bat

• \dev\lmbr_waf.exe

• \dev\SetupAssistantConfig.json

• \dev\system_BuildShaderPak_DX11.cfg

• \dev\system_BuildShaderPak_GL4.cfg

• \dev\system_windows_pc.cfg

• \dev\waf_branch_spec.py

• \dev\wscript

Asset Collection – Woodland

• All directories

Asset Collection – Beach City

• All directories

Legacy Sample (GameSDK)

• All directories

Version 1.6
1379

Lumberyard User Guide
Alternate Web Services

Alternate Web Services
For purposes of the Lumberyard Service Terms, "Alternate Web Service" means any non-AWS
compute, database, storage, or container service that is similar to or can act as a replacement for the
following services: Amazon EC2, Amazon Lambda, Amazon DynamoDB, Amazon RDS, Amazon S3,
Amazon EBS, Amazon EC2 Container Service, or Amazon GameLift.

Version 1.6
1380

http://aws.amazon.com/service-terms/

	Lumberyard
	Table of Contents
	What is Lumberyard?
	Professional-Grade AAA Engine
	Beautiful Worlds
	Compelling Characters
	Robust Networking
	Real-time Gameplay Editing
	Modular gems
	Wwise LTX
	and more...

	Integrated with AWS
	Amazon GameLift
	Cloud Canvas
	AWS SDK for C++

	Integrated with Twitch
	Twitch ChatPlay
	Twitch JoinIn

	Free, with Source
	Lumberyard Systems
	Lumberyard Editors and Tools
	Lumberyard Asset File Types

	Setting Up Lumberyard
	System Requirements
	Downloading Lumberyard
	Using the Lumberyard Installer to Download Lumberyard

	Upgrading Lumberyard
	Upgrading Lumberyard with an Existing Version in Source Control
	Upgrading Lumberyard without an Existing Version in Source Control
	Upgrading Lumberyard without Source Control
	Upgrading Your Game Projects

	Files to Exclude When Upgrading Lumberyard
	Using Lumberyard Setup Assistant to Set Up Your Development Environment
	Running Lumberyard Setup Assistant
	Using Lumberyard Setup Assistant Batch
	Commands
	Examples

	Customizing Lumberyard Setup Assistant
	Enabling and Disabling Features
	Adding New Third-Party SDKs
	SDK Fields

	Configuring Advanced Settings
	Customizing the Maya Environment
	Updating the Code or Tools Location

	Enabling a Firewall

	Migrating Lumberyard Projects
	Lumberyard 1.6
	Migrating GridMate Service Sessions
	RegisterService
	UnregisterService
	HostSession, JoinSession, and StartGridSearch
	Host, Connect, and ListServers Nodes

	Migrating from CryUnitTest to AzTest
	A. Modify Tests to Use GoogleTest Macros
	B. Move Tests into Test Build Files
	C. Build and Run Tests

	Lumberyard 1.5
	Migrating Your Project
	Migrating Your Gems
	A. Rename Your Gem.h File
	B. Modify Your Gem Code
	C. Edit Your Gem.json File
	D. Migrate Your Config Files

	Using Lumberyard Editor
	Lumberyard Editor Interface
	Viewport
	Toolbars
	Rollup Bar
	Bottom Toolbar
	Console

	Using the Menu Bar in Lumberyard Editor
	File Menu
	File Configure Menu
	Edit Menu
	Modify Menu
	Display Menu
	AI Menu
	Audio Menu
	Clouds Menu
	Game Menu
	Physics Menu
	Prefabs Menu
	Terrain Menu
	Tools Menu
	View Menu
	AWS Menu
	Commerce Menu
	Help Menu

	Using the Top Toolbars
	EditMode Toolbar
	Object Toolbar
	Editors Toolbar

	Using the Bottom Toolbar
	Status
	Lock Selection
	Coordinates/Transforms
	Set Vector
	Speed Control
	Terrain Collision
	AI/Physics
	No Sync Player
	Goto Position
	Mute Audio
	VR Preview

	Using Shortcut Keys
	Using the Viewport
	Changing the View

	Using the Rollup Bar
	Objects Tab
	Terrain Tab
	Modeling Tab
	Render/Debug Tab
	Layers Tab

	Using the Console Window
	Configuring Console Variables

	Customizing Your Workspace
	Docking Windows and Toolbars
	Customizing Toolbars and Menus
	Customizing Toolbars
	Commands Tab
	Options Tab
	Keyboard Tab

	Changing Preferences
	General Settings
	Viewport
	Flow Graph
	Mannequin

	Restoring Default Settings for Lumberyard Editor

	AI System
	Spawning AI Agents
	Using Flow Graph to Spawn AI Agents
	Using Auto Disable for Agents
	Debugging Agent Spawning Issues

	AI Navigation
	Multi-Layer Navigation Mesh (MNM)
	AI Pathfinding

	Creating Navigation Areas
	Selecting an AI Navigation Type
	Setting Navigation Exclusion Areas
	Adding Navigation Seed Points
	Using Flow Graph for AI Navigation
	Regenerating the Navigation Mesh
	Complete Mesh Regeneration
	Partial Mesh Regeneration

	Off-Mesh AI Navigation
	Using AI Paths for Navigation
	Using Smart Objects for AI Navigation

	Tutorial: Basic AI Navigation
	Debugging AI Navigation
	Using Console Variables to Debug AI Navigation
	Debugging the Navigation Mesh

	Agent Perception
	Using Flow Graph to Set Agent Perception
	Using AI Anchors to Set Agent Perception
	Using Console Variables to Set Agent Perception
	Debugging AI Agent Perception Issues

	AI Communications
	Using Database View to Set AI Communication
	Using AI Communication Channels
	Using the CommConfig Property
	Using GoalPipes to Trigger Communication
	Using Voice Libraries for AI Speech
	Using Flow Graph for Setting AI Communications
	Using AI Signals Among Agents
	Sending AI Signals
	Receiving AI Signals

	AI Modular Behavior Tree
	Standard MBT Nodes
	Loop node
	LoopUntilSuccess node
	Parallel node
	Selector node
	Sequence node
	StateMachine node
	StateMachine:State node
	SuppressFailure node
	Timeout node
	Wait node

	Common AI MBT Nodes
	AnimateFragment node
	Bubble node
	Move node
	QueryTPS node
	IfTime node
	WaitUntilTime node
	AssertTime node
	Priority:Case node
	LuaGate node
	RandomGate node
	AdjustCoverStance node
	SetAlertness node
	Log node
	Communicate node
	Animate node
	Signal node
	SendTransitionSignal node
	Stance node
	IfCondition node
	AssertCondition node
	LuaWrapper node
	ExecuteLua node
	AssertLua node
	GroupScope node
	Look node
	Aim node
	AimAroundWhileUsingAMachineGun node
	ClearTargets node
	StopMovement node
	Teleport node
	SmartObjectStateWrapper node
	CheckTargetCanBeReached node
	MonitorCondition node
	AnimationTagWrapper node
	ShootFromCover node
	Shoot node
	ThrowGrenade node
	PullDownThreatLevel node

	Game AI MBT Nodes
	Melee node
	KeepTargetAtADistance node
	SuppressHitReactions node
	InflateAgentCollisionRadiusUsingPhysicTricksTrick node
	ScorcherDeploy:RunWhileDeploying node
	ScorcherDeploy:RunWhileDeployed node
	HeavyShootMortar node
	SquadScope node
	SendSquadEvent node
	IfSquadCount node

	Helicopter AI MBT Nodes
	Hover node
	FlyShoot node
	Fly node
	FlyForceAttentionTarget node
	FlyAimAtCombatTarget node
	WaitAlignedWithAttentionTarget node
	HeavyShootMortar node
	SquadScope node
	SendSquadEvent node
	IfSquadCount node

	AI Agent Debugging
	Using the AI Debug Recorder
	Recorder Output File
	Recorder Data Streams

	Using the AI Debug Viewer
	Using AI Debug Console Variables
	Setting AI_DebugDraw to 1
	Other AI_Debug Variables

	Using AI Bubbles for Error Messaging
	Using AILog and AISignals Files

	Asset Pipeline
	Asset Processor
	Configuration
	Batch Processing
	Debugging

	Live Reloading and VFS
	Shader Compiler Proxy
	Game Startup Sequence
	Missing Asset Resolver Tool
	Technical Information: Asset IDs and File Paths
	Asset IDs and File Paths
	Converting Asset IDs to Full Paths
	Live Update Messages

	Audio System
	Audio System Architecture
	Installing Audiokinetic Wwise LTX
	Installing Wwise LTX
	Running the Wwise LTX Authoring Tool

	Using the Audio Controls Editor
	Using Audiokinetic Wwise LTX

	ATL Default Controls
	do_nothing control
	get_focus control
	lose_focus control
	mute_all control
	object_speed control
	object_velocity_tracking control
	ObstructionOcclusionCalculationType control
	unmute_all control

	Audio PlayTriggers and StopTriggers
	Placing Triggers in Game
	PlayTrigger Set
	StopTrigger Set
	Both Triggers Set

	Obstructing and Occluding Sounds
	Obstructing Sounds
	Sound Obstruction for Surface Types
	Occluding Sounds
	Raycasts
	Debugging Raycasts

	Audio Flow Graph Nodes
	Adding Ambient Sounds to Levels
	Setting Up the AudioAreaAmbience entity
	Setting Up the AudioAreaEntity entity
	Using Shape Priorities

	Adding Reverb Effects to Levels
	Setting Distance Values

	Adding Collision Sounds to Levels
	Adding Sound to Trackview Sequences
	Adding Sound to Animations
	Adding Sound to Mannequin
	Adding a ProcLayer Track
	Adding a Trigger to a ProcLayer Track

	Audio Console Variables Commands

	Characters and Animation
	Working With Character Assets
	Modeling Characters
	Character Modeling Best Practices
	Character Asset Files
	Character File (*.chr)
	Character Definition File (*.cdf)
	Character Skinned Render Mesh (*.skin)

	Using Character-Specific Shaders
	Debugging Character Skeleton Issues

	Rigging Characters
	Character Rigging Best Practices
	Character Skinning
	Character Skinning in Maya
	Character Skinning in 3ds Max

	Painting Skin Vertex Weights
	Painting Weights in Maya
	Painting Weights in 3ds Max

	Physicalizing Characters (Ragdoll)
	Ragdoll Best Practices
	Ragdoll Skeleton DCC Setup
	Creating Joint Mesh Proxies
	Using physParentFrames
	Applying Simulation Settings to Ragdoll Joints
	Lumberyard Proxy Tool (Experimental)
	Adding Mesh Proxy Materials
	Ragdoll Physics
	Using the Ragdoll Component Entity
	Using the (Legacy) DeadBody Entity
	Fall-and-Play Movement

	Using Inverse Kinematics (IK)
	Aim IK (Aim Poses)
	Skeleton Setup
	.Chrparams File Setup
	DirectionalBlends section
	RotationList section
	PositionList section

	Animation File Setup
	Debugging Aim IK

	Look IK (Look Poses)
	Skeleton Setup
	.Chrparams File Setup
	DirectionalBlends section
	RotationList section
	PositionList section
	LEyeAttachment and REyeAttachment

	Animation File Setup
	Debugging Look IK

	Animation-Driven IK
	Foot IK and Ground Alignment
	Debugging Ground Alignment Poses

	Limb IK

	Maya Export Tools
	Accessing Maya Export Tools
	Setting Time Working Units for Maya
	Geometry Validation
	Exporting Static Meshes
	Exporting Characters
	Exporting Materials
	Exporting Animations
	Exporting Blendshapes
	Exporting Level of Details (LODs)
	LOD Naming
	LOD Setup
	Debugging LODs

	Exporting an Alembic Cache
	Setting Export Options

	3ds Max Export Tools
	Exporting Static Meshes and Characters
	Exporting Materials
	Exporting Bones and Animations
	Exporting Levels of Detail (LODs)
	LOD Naming
	LOD Setup
	Debugging LODs

	Configuring Log Options

	Working with the FBX Importer
	Importing Materials with the FBX Importer
	Importing Physics Mesh for a Static Object
	Additional FBX Importer Features and Settings
	Using Rules
	Using Multiple UV Streams

	Using Geppetto
	Geppetto Display Options
	Animation
	Rendering
	Skeleton
	Camera
	Movement Smoothing section
	Follow Joint

	Secondary Animation
	Physics
	Grid
	Lighting
	Background

	Creating a Character Definition
	Character Definition File
	Character Skeleton List
	Character Animation List
	Character Attachments

	Character Attachments
	Attachment Sockets
	Joint Attachments
	Face Attachments
	Pendula Row (PRow) Attachments
	Proxy (Collision) Attachments
	Auxiliary Proxies (Lozenges)
	Dynamic Proxies

	Skin Attachments
	Collision Detection and Response
	Collision Detection
	Collision Response
	Spring Ellipsoid Response
	Pendulum Cone and Half-Cone Response
	Pendulum Hinge Response
	Translational Projection Response

	Secondary Animations (Simulations)
	Pendulum Cone Simulation
	Pendulum Half-Cone Simulation
	Pendulum Hinge Simulation
	Spring Ellipsoid Simulation

	Animating Characters
	Types of Character Animations
	Cutscene Animations
	Scripted Flow Graph Animations
	Interactive Animations

	Character Animation Files
	Chrparams File Setup Using Geppetto
	Chrparams File Elements
	Animations
	Bone LODs
	IK Definition
	Limb
	Anim Driven
	Foot Lock
	Recoil
	Look
	Aim

	Character Skeletons
	Skeleton Aliases

	Importing Character Animations
	Compressing Character Animations
	Removing Joints Automatically
	Removing Joints Manually
	Animation Tags
	Animation Filters
	Compression Presets

	Working with Additive Animations
	Creating Additive Animations
	Importing Additive Animations
	Testing Additive Animations

	Character Animation Layers
	Working with Blend Shapes (Morphs)
	Blend Shape Authoring Requirements in Maya
	Blend Shape Setup in Lumberyard

	Working with Blend Spaces (Bspaces)
	Displaying Blend Spaces
	1D Blend Spaces
	2D Blend Spaces
	3D Blend Spaces
	Number of Assets for Movement
	Debug Information

	Animation Events
	Locomotion Locator Animation Best Practices
	Streaming Character Animations
	Animation Header Data
	Animation Controller Data

	Mannequin System
	Mannequin System Files
	Setting up Mannequin files

	Creating a Mannequin Entity
	Using Mannequin Editor
	Fragments Browser
	Fragment Editor
	Tag Definition Editor
	Transitions Browser
	Transition Editor
	Sequences Browser
	Sequence Previewer
	Animation Database Editor
	Context Editor
	Mannequin Error Report
	Mannequin Fragments (Clips)
	Managing Mannequin Fragments
	Fragment Selection Process
	Using Animation Clips in Fragments
	Understanding Fragment Clip Zones
	Moving and Snapping Animation Clips

	Using Procedural Clips in Fragments
	CryAction Procedural Clips
	ActionEvent clip
	AimPose clip
	AISignal clip
	AttachEntity clip
	AttachProp clip
	Audio clip
	FlowGraphEvent clip
	HideAttachment clip
	IKLayerWeight clip
	LayerAnimSpeed clip
	LayerManualUpdate clip
	LayerWeight clip
	LookPose clip
	ManualUpdateList clip
	ParticleEffect clip
	PositionAdjust clip
	PositionAdjustAnimPos clip
	PositionAdjustAnimPosContinuously clip
	PositionAdjustTargetLocator clip
	SetParam clip
	WeightedList clip

	Game Procedural Clips
	Aiming clip
	AimSmoothing clip
	AttachPnt clip
	ColliderMode clip
	CompromiseCover clip
	CopyNormalizedTime clip
	FacialSequence clip
	Looking clip
	MovementControlMethod clip
	Ragdoll clip
	SetStance clip
	SwapHand clip
	TurretAimPose clip
	WeaponBump clip
	WeaponPose clip
	WeaponRecoil clip
	WeaponSway clip
	WeaponWiggle clip

	Adding Layers to a Fragment
	Managing Fragment Preview Sequences

	Mannequin Fragment IDs (Animation States)
	Mannequin Scopes
	Creating and Editing Scopes
	Creating and Editing Scope Contexts
	Using Scope Masks
	Playing Fragments on Scopes (Actions)

	Mannequin Tags (Animation Contexts)
	Using Tag Definitions
	Using Tag State Keys
	Using FragmentID Tags (FragTags)
	Assigning Fragment Tags

	Mannequin Animation Transitions
	Creating and Editing Transitions
	Setting Transition Parameters
	Action Parameters
	Motion Parameters

	Cyclic Transitions

	Mannequin Animation Actions
	Creating Mannequin Actions
	Mannequin Action Queuing
	Using Action Subcontexts

	Adding Mannequin Audio

	Synchronizing Multiple Characters
	Using Flow Graph with Mannequin
	Debugging Mannequin System Issues
	Using Console Variables

	Cinematics System
	Cinematics Best Practices
	Using Track View Editor
	Track View Toolbars
	Using Cutscene Animation Curves (Curve Editor)

	Track View Nodes
	Comment Node
	Console Variable Node
	Director (Scene) Node
	Entity Nodes
	Environment Node
	Event Node
	Material Node
	Script Variable Node
	Shadows Setup Node
	Full Screen Effect Nodes
	Radial Blur Node
	Color Correction Node
	Adding a Depth of Field Node
	Screen Fader Node

	Creating Scenes
	Setting Sequence Properties
	Changing Scene Toggles Mid-Sequence

	Playing a Sequence
	Changing Playback Speed

	Managing Track Events
	Linking Track View Events with Flow Graph

	Cinematics Cameras
	Moving a Camera
	Setting Camera Focus
	Creating Camera Shake
	Blending a Camera
	Blending within a sequence
	Blending into a sequence
	Blending out of a sequence (for first-person games)
	Transitioning to the Active Game Camera in Track View

	Pointing a Camera
	Following with a Camera
	Setting a First Person View Camera
	Linking a camera to a character
	Linking a camera to a character's camera bone
	Linking a camera to a character and a tagpoint

	Importing a Camera from Autodesk
	Importing a Camera from Maya
	Importing a Camera from 3ds Max

	Exporting a Camera to Autodesk
	Exporting a Camera to Maya
	Exporting a Camera to 3ds Max

	Cinematics Lighting
	Animating a Light
	Cinematic Lighting Best Practices

	Animating Characters in Scenes
	Importing and Exporting Transform Animations
	Importing Transform Animations to Track View
	Exporting Track View Transform Animations

	Adding Geometry to a Sequence
	Animated Character Tracks in Cutscenes
	Animated Character Properties in Cutscenes

	Moving an Entity in a Scene
	Adding Scene Character Attachments
	Using Look IK in Scenes
	Using Flow Graph for Look IK in Scenes

	Blending Cinematic Animations
	Cross-Fade Animation Blending
	Gap Animation Blending

	Using Track View Animation Curves
	Pre-caching Cinematic Animations

	Adding Player Interactivity
	Looping and Jumping in a Scene
	Scene Jumping using GoTo Track Keys
	Scene Jumping using Flow Graph

	Pausing a Scene
	Adding a Dead-Man Switch to a Scene
	Setting Player Look Around
	Adding Force Feedback
	Using Track View for Force Feedback
	Using Flow Graph for Force Feedback

	Using Layers for Scenes
	Capturing Image Frames
	Capturing Image Frames using Render Output
	Capturing Image Frames using a Capture Track
	Capturing Image Frames using Console Variables

	Debugging Cinematic Scenes

	Component Entity System
	Component Palette
	Component Palette Attributes

	Entity Outliner
	Parenting
	Filtering
	Slices

	Entity Inspector
	File Browser
	Asset Drag and Drop
	Filtering
	File Operations

	Component Reference
	Attachment Component
	Attachment Component Properties
	EBus Request Bus Interface
	Attach
	Detach
	SetAttachmentOffset
	EBus Notification Bus Interface
	OnAttached
	OnDetached

	Audio Environment Component
	Audio Environment Properties
	EBus Request Bus Interface
	SetAmount
	SetEnvironmentAmount

	Audio Rtpc Component
	Audio RTPC Component Properties
	EBus Request Bus Interface
	SetValue
	SetRtpcValue

	Audio Switch Component
	Audio Switch Properties
	EBus Request Bus Interface
	SetState
	SetSwitchState

	Audio Trigger Component
	Audio Trigger Properties
	EBus Request Bus Interface
	Play
	Stop
	ExecuteTrigger
	KillTrigger
	KillTrigger
	SetMovesWithEntity

	EBus Response Bus Interface
	OnTriggerFinished

	Behavior Tree Component
	Behavior Tree Component Properties
	EBus Request Bus Interface
	StartBehaviorTree
	StopBehaviorTree
	GetVariableNameCrcs
	GetVariableValue
	SetVariableValue

	Camera Component
	Camera Component Properties

	Camera Rig Component
	Camera Rig Component Properties
	Target Acquirers
	CameraTargetComponentAcquirer

	Look-at Behaviors
	OffsetPosition
	Rotate Camera Target
	SlideAlongAxisBasedOnAngle

	Transform Behaviors
	FaceTarget
	FollowTargetFromAngle
	FollowTargetFromDistance
	Offset Camera Position
	Rotate

	Camera Target Component
	Camera Target Component Properties

	Constraint Component
	Constraint Component Properties
	Constraint Type
	Constraint Properties
	EBus Request Bus Interface
	SetConstraintEntities
	SetConstraintEntitiesWithPartIds
	EnableConstraint
	DisableConstraint

	EBus Notification Bus Interface
	OnConstraintEntitiesChanged
	OnConstraintEnabled
	OnConstraintDisabled

	Example Script

	Decal Component
	Decal Component Properties
	EBus Request Bus Interface
	SetVisibility
	Show
	Hide

	Event Action Binding Component
	Rotate Entity Action
	Add Physics Impulse Action
	Move Entity Action

	Flow Graph Component
	Input Configuration Component
	Creating an Input to Event Binding Asset
	Input Configuration Properties
	Creating a New Input Bindings File
	Input Event Groups
	Event Generators
	Event Generator Properties
	Single Event to Action Properties
	Action Notification Bus Handlers Properties

	Editing the Input Bindings File

	Lens Flare Component
	Lens Flare Component Properties
	EBus Request Bus Interface
	EBus Notification Bus Interface

	Light Component
	Light Component Properties
	EBus Request Bus Interface
	SetLightState
	TurnOnLight
	TurnOffLight
	ToggleLight

	EBus Notification Bus Interface
	LightTurnedOn
	LightTurnedOff

	Lua Script Component
	Lua Script Component Properties
	Properties
	Network Binding

	Mannequin Component
	Mannequin Component Properties
	EBus Request Bus Interface (Per Fragment)
	QueueFragment
	QueueFragmentById
	GetActionForRequestId
	StopRequest
	GetRequestStatus
	ForceFinishRequest
	SetRequestSpeedBias
	GetRequestSpeedBias
	SetRequestAnimWeight
	GetRequestAnimWeight

	EBus Request Bus Interface (Per Component)
	PauseAll
	ResumeAll
	SetTag
	SetTagById
	ClearTag
	ClearTagById
	SetGroupTag
	SetGroupTagById
	ClearGroup
	ClearGroupById
	SetScopeContext
	SetScopeContextById
	ClearScopeContext
	ClearScopeContextById
	GetActionController

	Mannequin Scope Context Component
	Mannequin Scope Context Component Properties

	Navigation Component
	Navigation Component Properties
	EBus Request Bus Interface
	FindPath
	FindPathToEntity
	Stop

	EBus Notification Bus Interface
	OnSearchingForPath
	OnPathFound
	OnTraversalStarted
	OnTraversalInProgress
	OnTraversalComplete
	OnTraversalCancelled

	Particle Component
	Particle Component Properties
	EBus Request Bus Interface

	Character Physics Component
	Character Physics Component Properties
	EBus Request Bus Interface – PhysicsComponentRequestBus
	EnablePhysics

	EBus Request Bus Interface – CryPhysicsComponentRequestBus
	GetPhysicsParameters
	SetPhysicsParameters
	GetPhysicsStatus
	ApplyPhysicsAction

	EBus Request Bus Interface – CryCharacterPhysicsRequestBus
	Move

	Physics Component
	Rigid Body
	Static Body
	EBus Request Bus Interface
	EBus Notification Bus Interface

	Mesh Collider Component
	Primitive Collider Component
	Rag Doll Component
	Rag Doll Component Properties
	EBus Request Bus Interface
	EnterRagdoll
	ExitRagdoll

	Shapes Components
	EBus Request Bus Interface
	GetShapeType
	GetEncompassingAabb
	IsPointInside

	ComponentRequestsBus
	BoxShapeComponentRequestsBus
	SphereShapeComponentRequestsBus
	CapsuleShapeComponentRequestsBus
	CylinderShapeComponentRequestsBus

	Simple Animation Component
	Simple Animation Component Properties
	EBus Request Bus Interface
	StartDefaultAnimations
	StartAnimationByName
	StartAnimation
	StartAnimationSet
	StopAllAnimations
	StopAnimationsOnLayer
	StopAnimationsOnLayers

	EBus Response Bus Interface
	OnAnimationStarted
	OnAnimationStopped

	Script Examples

	Simple State Component
	Simple State Component Properties
	EBus Request Bus Interface
	SetState

	EBus Notification Bus Interface
	OnStateChanged

	Skinned Mesh Component
	Skinned Mesh Component Properties

	Spawner Component
	Spawner Component Properties
	EBus Request Bus Interface
	Spawn
	SpawnRelative
	SpawnSlice
	SpawnSliceRelative

	EBus Notification Bus Interface
	OnSpawned

	Static Mesh Component
	Static Mesh Component Properties

	Tag Component
	EBuses – Request Bus Interface: TagGlobalRequestBus
	RequestTaggedEntities

	EBuses – Request Bus Interface: TagRequestBus
	HasTag
	AddTag
	AddTags
	RemoveTag
	RemoveTags
	GetTags

	EBus – Notification Bus Interface: TagComponentNotificationsBus
	OnTagAdded
	OnTagRemoved

	Trigger Area Component
	Trigger Area Component Properties
	EBus Request Bus Interface
	AddRequiredTag
	RemoveRequiredTag
	AddExcludedTag
	RemoveExcludedTag

	EBus Notification Bus Interface
	TriggerAreaNotificationBus
	OnTriggerAreaEntered
	OnTriggerAreaExited

	TriggerAreaEntityNotificationBus
	OnEntityEnteredTriggerArea
	OnEntityExitedTriggerArea

	Working with Entities
	Creating an Entity
	Adding and Removing Components
	Finding an Entity
	Editing Component Properties

	Working with Slices
	Creating a Slice
	Instantiating a Slice
	Modifying a Slice and Pushing Changes
	Cloning a Slice
	Inheriting a Slice (Data Cascading)
	Slice Reloading

	Object and Entity System
	Using the Designer Tool
	Designer Tool Settings
	CD Settings
	Object Settings

	Selection Tools
	Shape Tools
	Edit Tools
	Modify Tools
	Texture Tools
	Smoothing Group
	UV Mapping

	Miscellaneous Tools

	Using the Measurement System Tool
	Using the Object Selector
	Finding an Object
	Managing Objects

	Object Selector Table

	Brushes
	DrawLast

	Prefabs
	Common Parameters and Properties
	Entity Properties
	Entity Parameters
	Scripting and Flow Graph Entity Parameters
	Entity Links
	Entity Events
	Attached Entities
	Shape Parameters

	Entity Reference
	Actor Entity
	AI Control Objects
	AIAnchor
	AIHorizontalOcclusion Plane
	AI Path
	AI Perception Modifier
	AI Point
	AI Reinforcement Spot
	AI Shape
	Cover Surface
	Navigation Area
	Navigation Seed Point
	Smart Object
	Tag Point

	Anim Entities
	MannequinObject Entity

	Archetype Entity
	Area Entities
	AreaBox
	AreaSolid
	AreaSphere
	Clip Volume
	OccluderArea
	OccluderPlane
	Portal
	Shape
	VisArea
	WaterVolume

	Audio Entities
	Audio Trigger Spot
	Audio Area Entity
	Audio Area Ambience
	Audio Area Random

	Boid Entity
	Camera Entities
	Camera
	CameraSource Entity

	Geom Entities
	Light Entities
	Light Entity
	Environment Probe Entity

	Lightning Arc Entity
	Miscellaneous Entities
	CharAttachHelper
	Comment
	GravityVolume
	ReferencePicture
	SplineDistributor

	Particle Entities
	Physics Entities
	AnimObject
	BasicEntity
	Constraint
	DeadBody
	GravitySphere
	GravityValve
	Wind
	WindArea
	Useful Console Variables

	Rain Entity
	Render Entities
	FogVolume Entity

	River Entity
	Road Entity
	Rope Entity
	Snow Entity
	Tornado Entity
	Trigger Entities
	AreaTrigger Entity
	ProximityTrigger Entity

	Flow Graph System
	Using Flow Graph Editor
	Flow Graph Scripts
	Level Flowgraphs
	Global Flowgraphs
	Flow Graph Prefabs
	External Files

	Managing Flow Graphs
	Saving Flow Graphs
	Grouping Flow Graphs
	Importing and Exporting Flow Graphs

	Using Flow Graph Nodes
	Node Input/Output Ports
	Adding Entity Nodes
	Adding Component Nodes
	Managing Nodes

	Creating Flow Graph Nodes
	Output Ports
	Input Ports
	Input Port UI Configuration

	Trigger Ports
	Update Event

	Flow Graph Node Reference
	Actor Nodes
	Damage node
	EnslaveCharacter node
	GrabObject node
	HealthCheck node
	HealthGet node
	HealthSet node
	LocalPlayer node
	PlayMannequinFragment node
	ProcClipEventListener node

	AI Nodes
	ActionAbort node
	ActiveCount node
	ActionEnd node
	ActionStart node
	ActiveCountInFaction node
	ActiveCountMonitor node
	AIGlobalPerceptionScaling node
	AlertMe node
	AttentionTarget node
	AutoDisable node
	Communication node
	EventListener node
	Execute node
	Faction node
	FactionReaction node
	GroupAlertness node
	GroupCount node
	GroupIDGet node
	GroupIDSet node
	IgnoreState node
	IsAliveCheck node
	LookAt node
	NavCostFactor node
	ObjectDrop node
	ObjectGrab node
	ObjectUse node
	PerceptionScale node
	RegenerateMNM node
	RequestReinforcementReadability node
	SetCommunicationVariable node
	SetFaction node
	SetState node
	ShapeState node
	Signal node
	SmartObjectEvent node
	SmartObjectHelper node
	Stance node

	AISequence Nodes
	Animation node
	ApproachAndEnterVehicle node
	Bookmark node
	End node
	HoldFormation node
	JoinFormation node
	Move node
	MoveAlongPath node
	Shoot node
	Stance node
	Start node
	VehicleRotateTurret node
	Wait node

	Animations Nodes
	AnimationEventListener node
	AttachmentControl node
	BoneInfo node
	CheckAnimPlaying node
	CooperativeAnimation node
	LookAt node
	NoAiming node
	PlayAnimation node
	PlayCGA node
	PlaySequence node
	StopAnimation node
	SynchronizeTwoAnimations node
	TriggerOnKeyTime node

	Audio Nodes
	entity:AudioTriggerSpot node
	entity:AudioAreaEntity node
	entity:AudioAreaAmbience node
	entity:AudioAreaRandom node
	PreloadData node
	Rtpc node
	Switch node
	Trigger node

	Camera Nodes
	GetTransform node
	View node
	ViewShakeEx node

	ComponentEntity Nodes
	Audio:ExecuteOneShot node
	Audio:StopOneShot node
	EventActionHandler:AZVector3 node
	EventActionHandler:EntityID node
	EventActionHandler:Float node
	EventActionSender:AZVector3 node
	EventActionSender:EntityID node
	EventActionSender:Float node
	GameplayEventHandler:AZVector3 node
	GameplayEventHandler:EntityID node
	GameplayEventHandler:Float node
	GameplayEventSender:AZVector3 node
	GameplayEventSender:EntityID node
	GameplayEventSender:Float node
	Light:Switch node
	Particles:Switch node
	TransformComponent:GetEntityPosition node
	TransformComponent:GetEntityRotation node
	TransformComponent:SetEntityPosition node
	TransformComponent:SetEntityRotation node
	TriggerComponent:EnterTrigger node

	CustomAction Nodes
	Abort node
	Control node
	End node
	Start node
	Succeed node
	SucceedWait node
	SucceedWaitComplete node

	Debug Nodes
	CSVDumper node
	ConsoleVariable node
	DisplayMessage node
	Draw2d nodes
	Draw nodes
	ExecuteString node
	FloatToString node
	Frame node
	FrameExtended node
	InputKey node
	Log node
	Memory node

	Dialog Nodes
	PlayDialog node

	Dynamic Response Nodes
	SendSignal node
	SetFloatVariable node
	SetIntegerVariable node
	SetStringVariable node

	Engine Nodes
	LayerSwitch node
	PortalSwitch node
	PrecacheArea node
	Viewport node

	Entity Nodes
	Attachment node
	BeamEntity node
	BroadcastEvent node
	CallScriptFunction node
	CharAttachmentMaterialParam node
	CheckDistance node
	ChildAttach node
	ChildDetach node
	Damage node
	EntitiesInRange node
	EntityId node
	EntityInfo node
	EntityPool node
	EntityPos node
	FindEntityByName node
	GetBounds node
	GetEntityExistence node
	GetPos node
	ParentId node
	PropertyGet node
	PropertySet node
	RemoveEntity node
	RenderParams node
	Spawn node
	SpawnArchetype node

	Environment Nodes
	MoonDirection node
	OceanSwitch node
	PerEntityShadows node
	RainProperties node
	RecomputeStaticShadows node
	SetOceanMaterial node
	SkyMaterialSwitch node
	SkyboxSwitch node
	Sun node
	TornadoWander
	Wind node

	FeatureTest Nodes
	FeatureTest node
	Screenshot node
	ScreenshotCompare node

	Game Nodes
	CheckPlatform node
	ForceFeedback node
	ForceFeedbackSetDeviceIndex node
	ForceFeedbackTriggerTweaker node
	ForceFeedbackTweaker node
	GetClientActorId node
	GetEntityState node
	GetGameRulesEntityId node
	GetSupportedGameRulesForMap node
	GetUsername node
	IsLevelOfType node
	ObjectEvent node
	Start node

	Helicopter Nodes
	EnableCombatMode node
	EnableFiring node
	FollowPath node
	ForceFire node

	Image Nodes
	3DHudInterference node
	ColorCorrection node
	EffectAlienInterference node
	EffectBloodSplats node
	EffectDepthOfField node
	EffectFrost node
	EffectGhosting node
	EffectGroup node
	EffectRainDrops node
	EffectVolumetricScattering node
	EffectWaterDroplets node
	EffectWaterFlow node
	FilterBlur node
	FilterChromaShift node
	FilterDirectionalBlur node
	FilterGrain node
	FilterRadialBlur node
	FilterSharpen node
	FilterVisualArtifacts node
	ScreenCapture node
	ScreenFader node
	SetShadowMode node

	Input Nodes
	ActionFilter node
	ActionHandler node
	ActionListener node
	ActionMapManager node
	Gestures nodes
	Gestures:ClickOrTap node
	Gestures:Drag node
	Gestures:Hold node
	Gestures:Pinch node
	Gestures:Rotate node
	Gestures:Swipe node

	MotionSensor nodes
	MotionSensor:AccelerationGravity node
	MotionSensor:AccelerationRaw node
	MotionSensor:AccelerationUser node
	MotionSensor:MagneticFieldRaw node
	MotionSensor:MagneticFieldUnbiased node
	MotionSensor:MagneticNorth node
	MotionSensor:Orientation node
	MotionSensor:OrientationDelta node
	MotionSensor:RotationRateRaw node
	MotionSensor:RotationRateUnbiased node

	MouseButtonInfo node
	MouseCoords node
	MouseCursor node
	MouseEntitiesInBox node
	MouseRayCast node
	MouseSetPos node
	Touch:MultiTouchEvent node
	Touch:TouchEvent node
	Touch:MultiTouchCoords node
	Touch:TouchRaycast node
	Touch:VirtualThumbstick node

	Interpolate Nodes
	Color node
	Float node
	Int node
	SmoothAngleVec3
	SmoothColor node
	SmoothFloat node
	SmoothInt node
	SmoothVec3 node
	Vec3 node

	Intersection Tests Nodes
	BoundingBoxVsBoundingBox node
	BoundingBoxVsSphere node

	Iterator Nodes
	GetEntities node
	GetEntitiesInArea node
	GetEntitiesInBox node
	GetEntitiesInSphere node

	JSON Nodes
	GetJsonProperty node
	IsValueInJsonArray node
	IterateJsonArrayProperty node
	SetJsonProperty node

	Kinect Nodes
	Alignment node
	Skeleton node

	Logic Nodes
	AND node
	All node
	Any node
	Blocker node
	CountBlocker node
	DeMultiplexer node
	Gate node
	IfCondition node
	Indexer node
	Multiplexer node
	NOT node
	OR node
	OnChange node
	Once node
	OnceNoSerialize node
	RandomSelect node
	RandomTrigger node
	SelectCondition node
	Sequencer node
	XOR node

	Material Nodes
	EntityMaterialChange node
	EntityMaterialParams node
	MaterialClone node
	MaterialParams node
	SetObjectMaterial node

	MaterialFX Nodes
	HUDEndFX node
	HUDStartFX node

	Math Nodes
	Abs node
	Add node
	AnglesToDir node
	ArcCos node
	ArcSin node
	ArcTan node
	ArcTan2 node
	BooleanFrom node
	BooleanTo node
	Calculate node
	Ceil node
	Clamp node
	Cosine node
	Counter node
	DirToAngles node
	Div node
	Equal node
	EvenOrOdd node
	Floor node
	InRange node
	Less node
	Mod node
	Mul node
	Noise1D node
	Noise3D node
	PortCounter node
	Power node
	Random node
	Reciprocal node
	Remainder node
	Round node
	SetColor node
	SetNumber node
	SinCos node
	Sine node
	Sqrt node
	Sub node
	Tangent node
	UpDownCounter node

	Mission Nodes
	GameToken node
	GameTokenCheck node
	GameTokenCheckMulti node
	GameTokenGet node
	GameTokenModify node
	GameTokenSet node
	GameTokensLevelToLevelRestore node
	GameTokensLevelToLevelStore node
	LoadNextLevel node

	Module Nodes
	Call_Character_Controller_Robot node
	Call_Character_Controller_Robot_Completed node
	Call_Free_Cam_Controller node
	Call_VR_Character_Controller_Robot node
	Utils:UserIDToModuleID node

	Movement Nodes
	MoveEntityTo node
	RotateEntity node
	RotateEntityTo node

	Physics Nodes
	ActionImpulse node
	CameraProxy node
	CollisionListener node
	Constraint node
	Dynamics node
	PhysicsEnable node
	PhysicsSleepQuery node
	RayCast node
	RaycastCamera node

	Prefab Nodes
	EventSource node

	ProceduralMaterial Nodes
	GetGraphInstanceID node
	GetInputFloat node
	GetInputFloat2 node
	GetInputFloat3 node
	GetInputFloat4 node
	GetInput node
	GetInput2 node
	GetInput3 node
	GetInput4 node
	QueueGraphInstance node
	RenderASync node
	RenderSync node
	SetInputFloat node
	SetInputFloat2 node
	SetInputFloat3 node
	SetInputFloat4 node
	SetInputImage node
	SetInputInt node
	SetInputInt2 node
	SetInputInt3 node
	SetInputInt4 node

	Stereo Nodes
	ReadStereoParameters node
	StereoParameters node

	String Nodes
	Collect node
	Compare node
	Concat node
	ReplaceString node
	SetString node
	Split node
	URLDecode node

	System Nodes
	Container:Create node
	Container:Edit node
	Container:Iterate node

	Time Nodes
	Delay
	FrameDelay
	MeasureTime
	RandomDelay
	RealTime
	ServerTime
	Time
	TimeOfDay
	TimeOfDayLoadDefinitionFile
	TimeOfDayTransitionTrigger
	TimeOfDayTrigger
	TimedCounter
	Timer

	Twitch Nodes
	Twitch ChatPlay General Nodes
	Twitch:Chatplay:Available node
	Twitch:Chatplay:Channel node
	Twitch:Chatplay:DisconnectAll node
	Twitch:Chatplay:Keyword node
	Twitch:Chatplay:RegisterCredentials node
	Twitch:Chatplay:UnregisterCredentials node
	Twitch:Chatplay:UnregisterAllCredentials node
	Twitch:Chatplay:Whisper node

	Twitch ChatPlay Voting Nodes
	Twitch:Chatplay:Voting:HighScores node
	Twitch:Chatplay:Voting:Option node
	Twitch:Chatplay:Voting:Score node
	Twitch:Chatplay:Voting:Vote node

	Twitch JoinIn Nodes
	Twitch:Joinin:CreateLink node

	TwitchAPI Nodes
	Twitch:API:GET node

	Vec3 Nodes
	AddVec3 node
	Calculate node
	ClampVec3 node
	CrossVec3 node
	DotVec3 node
	EqualVec3 node
	FromVec3 node
	MagnitudeVec3 node
	MulVec3 node
	NormalizeVec3 node
	ReciprocalVec3 node
	RotateVec3onAxis node
	ScaleVec3 node
	SetVec3 node
	SubVec3 node
	ToVec3 node

	Vehicle Nodes
	Attachment node
	ChangeSeat node
	ChaseTarget node
	Damage node
	Destroy node
	Enter node
	FollowPath node
	GetSeatHelper node
	Handbrake node
	Honk node
	Lights node
	Lock node
	MoveActionMult node
	Movement node
	MovementParams node
	Passenger node
	Seat node
	StickPath node
	Turret node
	Unload node

	Video Nodes
	ClipCapture node

	Weapon Nodes
	AmmoChange node
	AutoSightWeapon node
	ChangeFireMode node
	FireWeapon node
	Listener node

	XML Nodes
	ClearValue node
	DeleteAllAttributes node
	DeleteAllChildren node
	DeleteAttribute node
	DeleteChild node
	DeleteChildAt node
	GetAttribute node
	GetAttributeCount node
	GetChild node
	GetChildAt node
	GetChildCount node
	GetParent node
	GetRoot node
	GetValue node
	HasAttribute node
	IncAttribute node
	IncValue node
	NewChild node
	NewDocument node
	OpenDocument node
	SaveDocument node
	SetAttribute node
	SetValue node

	Using Flow Graph Links
	Using Flow Graph Tokens
	Managing Flow Graph Modules
	Module Node Ports

	Debugging Flow Graph
	Using Flow Graph Debugger
	Using Console Variables

	Placing Cached Shadows
	Recommended Settings
	Related Console Variables

	Gems
	Modular Gems System
	Gem Assets
	Gem Code
	Gem JSON File
	Gem List File

	Lumberyard Gems
	Boids Gem
	Configuring the Boids Gem
	Boids Entity Flow Graph Nodes
	entity:Boid Entity Type
	Inputs
	Outputs

	Lua Bindings for Boids
	Console Variable for Boids

	Camera Framework Gem
	Cloud Gem
	Placing Simple Clouds
	Files Associated with Simple Clouds
	Configuring Simple Clouds

	Placing Complex Clouds
	Files Associated with Complex Clouds
	Configuring Complex Clouds

	Cloud Canvas Gem
	GameEffect Gem
	GameLift Gem
	GameLift:Start node
	Node Inputs
	Node Outputs

	GameLift:CreateGameSession node
	Node Inputs
	Node Outputs

	Gestures Gem
	Gestures Flow Graph Nodes
	ClickorTap
	Inputs
	Outputs

	Drag
	Inputs
	Outputs

	Hold
	Inputs
	Outputs

	Pinch
	Inputs
	Outputs

	Rotate
	Inputs
	Outputs

	Swipe
	Inputs
	Outputs

	C++

	Input Management Framework Gem
	Lightning Arc Gem
	Using the LightingArc Sample
	Enabling the Lightning Arc Gem
	Placing Lightning Arc
	Configuring the Lightning Arc
	Customizing a Lightning Arc Preset

	Metastream Gem
	Adding the Metastream Gem
	Setting the Metastream Console Variable
	Setting Options for the HTTP Server
	Exposing Data through Metastream
	Exposing Data through the C++ API
	Exposing Data through Flow Graph
	Node Inputs
	Node Outputs

	Accessing Data through the HTTP API
	Using the Metastream Sample

	Multiplayer Gem
	Multiplayer:IsClient node
	Node Inputs
	Node Outputs

	Multiplayer:IsServer node
	Node Inputs
	Node Outputs

	Multiplayer:Connect node
	Node Inputs
	Node Outputs

	Multiplayer:Disconnect node
	Node Inputs
	Node Outputs

	Multiplayer:Host node
	Node Inputs
	Node Outputs

	Multiplayer:ListServers node
	Node Inputs
	Node Outputs

	Multiplayer:ListServersResult node
	Node Inputs
	Node Outputs

	Multiplayer:SetOwner node
	Node Inputs
	Node Outputs

	Multiplayer:OnConnected node
	Node Outputs

	Multiplayer:OnDisconnected node
	Node Outputs

	Multiplayer:OnPlayerConnected node
	Node Outputs

	Multiplayer:OnPlayerDisconnected node
	Node Outputs

	Multiplayer:OnLocalPlayerReady node
	Node Outputs

	Multiplayer:OnPlayerReady node
	Node Outputs

	Physics Entities Gem
	Process Life Management Gem
	Process Life Management Gem C++

	Rain Gem
	Placing Rain
	Configuring Rain
	Using Console Variables for Rain
	Using the Rain Sample

	Snow Gem
	Placing Snow
	Configuring Snow
	Using Console Variables for Snow
	Using the Snow Sample

	Substance Gem
	Tornadoes Gem
	Configuring Tornadoes
	Customizing a Tornado Preset

	UiBasics Gem
	UiDemo Gem
	User Login Default Gem
	Woodland Asset Collection Gem

	Levels and Environment
	Creating a New Level
	Creating Terrain
	Using the Terrain Heightmap
	Creating a Terrain Heightmap
	Setting Heightmap Properties
	Importing a Terrain Heightmap
	Exporting a Terrain Heightmap
	Resizing a Terrain Heightmap
	Rotating a Terrain Heightmap

	Using Terrain Texture Layers
	Adding a Terrain Texture Layer
	Applying a Texture Layer Material
	Importing Terrain Texture Layers
	Exporting Terrain Texture Layers
	Painting Terrain Texture Layers
	Changing Terrain Tile Resolution
	Generating the Terrain Texture

	Creating Landforms and Topography
	Using the Rise/Lower Brush
	Using the Smooth Brush
	Using the Flatten Brush
	Using the Holes Brush
	Terrain Brush Parameters
	Creating Roads
	Creating the Road Entity
	Applying a Road Material
	Adjusting Road Spline Geometry
	Splitting and Merging Roads

	Creating Bodies of water
	Preparing the Terrain
	Setting Ocean Parameters
	Creating Rivers
	Preparing the River Terrain
	Creating the River Entity
	Applying a River Material
	Adjusting River Spline Geometry
	Splitting and Merging Rivers

	Adding Waterfalls
	Adding Water Puddles
	Adding Fog Above Water
	Advanced Water Volume Parameters

	Copying and Moving Terrain Areas
	Importing and Exporting Terrain Blocks
	Importing Splat Maps

	Adding Sky Effects
	Creating a Dynamic Daytime Sky
	Setting Daytime Atmospheric Effects
	Setting Sun Parameters
	Adding Sun Rays
	Setting Sun Shadow Settings
	Adding Cascaded Sun Shadows

	Creating a Dynamic Night Sky
	Setting Nighttime Atmospheric Effects
	Setting Moon Parameters

	Creating Time of Day Sky Effects
	Setting Dawn and Dusk Effects
	Setting a Day-Night Cycle

	Creating a Static Sky (SkyBox)
	Setting SkyBox Parameters
	Asynchronous SkyBox Switching

	Adding Weather Effects
	Adding Wind Effects
	Adding Global Wind
	Adding Ocean Wind
	Creating Wind Areas
	Adding Localized Wind

	Adding Clouds
	Setting Cloud Shading Parameters
	Adding 3D Cloud Shadows
	Creating 3D Cloud Templates

	Working with Layers
	Managing Level Layers
	Level Layer Settings

	Assigning Objects to Layers
	Streaming and Switching Layers
	Layer Streaming
	Layer Switching

	Adding Vegetation
	Vegetation Best Practices
	Vegetation Recommendations
	Vegetation Texture Mapping
	Adding Trees and Bushes
	Adding Grass
	Adding Grass Manually
	Painting to Add Grass

	Adding Vegetation Bending Effects
	Adding Touch (Collision) Bending Effects
	Using UV Layout Instancing

	Adding Detail (Wind) Bending Effects
	Defining Vegetation Vertex Colors
	Setting the Detail Bending Parameter

	Using AutoMerged Wind Bending Effects

	Vegetation Parameters
	Vegetation Debugging

	Mobile Support
	Android Support
	Prerequisites
	Setting Up Your PC
	Setting Up Your Mac
	Configuring Your Game Project for Android
	Prerequisites
	Setting Your Game Project to Build for Android
	Customizing Android Settings for Your Game Project

	Building Game Assets for Android Games
	Using Assets in Your Game
	Manually Copying Assets
	Building Assets into an .Apk File

	Sharing Game Assets Between PCs and Macs

	Building Shaders for Android Games
	Building the Shader Compiler
	Running the Shader Compiler
	Generating and Retrieving Shaders
	Building Shader .Pak Files
	Deploying Shader .Pak Files

	Building Android Games
	Building Android Games Using Clang
	Building Android Games Using GCC

	Android Debugging
	Deploying Android Games
	Using the Remote Console to Deploy Your Android Game

	Running Android Games
	Using Virtual File System with Android
	Using a Samsung Device with Lumberyard
	Using Lumberyard with Android Studio
	Prerequisites
	Creating a Lumberyard Project for Android Studio
	Importing Your Lumberyard Project into Android Studio
	Building and Debugging Your Lumberyard Android Application in Android Studio

	iOS Support
	Prerequisites
	Setting Up Your Mac
	Building Game Assets for iOS Games
	Sharing Game Assets Between PCs and Macs

	Building Shaders for iOS Games
	Building Shader .Pak Files
	Deploying Shader .Pak Files

	Building and Deploying iOS Games
	iOS Debugging and Troubleshooting
	Creating iOS Games
	Preparing Lumberyard iOS Games for Distribution
	Using Virtual File System with iOS

	Design Considerations for Creating Mobile Games Using Lumberyard
	Input
	Touch
	Gestures
	Motion Sensors

	Game Logic
	Application Lifecycle

	Adding IP Addresses to Allow Access to the Asset Processor and Remote Console

	OS X Support
	Prerequisites
	Setting Up Your Mac
	Building Game Assets for OS X Games
	Sharing Game Assets Between PCs and Macs

	Building Shaders for OS X Games
	Building and Deploying OS X Games
	OS X Debugging and Troubleshooting
	Creating OS X Games

	Particle Effects System
	Particles Best Practices
	Using the Particle Editor
	Using the Preview Window
	Customizing the UI

	Using the Gradient Editor
	Working with Color Gradients

	Using Particle Editor Shortcut Keys
	Managing Particle Libraries
	Adding Particle Libraries
	Importing Particle Libraries
	Exporting Particle Libraries
	Using Particle Libraries

	Creating Custom Attribute Panels
	Particle Trails
	Particle Trail Parameters
	Particle Trail Visibility

	GPU Particles
	Attribute Comment
	GPU Emitter Attribute
	GPU Particles Attribute
	GPU Lighting Attribute
	GPU Size Attribute
	GPU Rotation Attribute
	GPU Movement Attribute
	GPU Particle Parameter Modifiers

	Particle Level Of Detail (LOD)
	Level Of Detail Panel
	LOD Level Panel

	Managing Emitters
	Creating Emitters
	Duplicating Emitters
	Creating Child Emitters
	Editing Emitters
	Organizing Emitters in a Library
	Reverting Changes to Emitter Attributes

	Advanced Particle Techniques
	Attaching Particle Effects to Basic Geometry Entities
	Attaching Particles to Breakable Objects
	Attaching Particles to Character Animations
	Generating Particles from Surface Properties

	Particle Entity Parameters and Properties
	Particle Attributes and Parameters Reference
	Using the Curve Editor
	Attribute Comment
	Emitter Attribute
	Particles Attribute
	Lighting Attribute
	Size Attribute
	Particle Rotation Parameters
	Movement Attribute
	Collision Attribute
	Visibility Attribute
	Advanced Attribute
	Configuration Attribute
	Audio Attribute

	Particle Debugging

	Physics System
	Physics Proxies
	Geometry Guidelines and Best Practices
	Debugging Physics Proxy Issues

	Sounds and Physics
	Debugging Physics

	Project Configurator
	Creating and Launching Game Projects
	Enabling Gems
	Using Lmbr.exe
	Project Commands
	Gem Commands

	Troubleshooting the Project Configurator

	Rendering and Graphics
	Materials and Shaders
	Shader Rendering System
	Image-Based Lighting
	Environment Probes and Cubemaps
	Height Map Ambient Occlusion
	Developing a Custom Shader
	Shader Development Best Practices
	Shader Rendering Pipeline
	Hot Reloading of Shaders
	Remote Shader Compiler
	Running the Remote Shader Compiler
	Remote Shader Compiler Configuration
	Specific Platforms
	Shader Cache Lists
	Game Configuration

	Generating Shader Combinations
	Shader Cache and Generation
	Shader Cache
	ShaderCache.pak File Generation
	ShaderCacheGen.exe
	Packing the Shader Cache Using a Batch File
	Packing the Shader Cache Manually
	Build Platforms

	Shader Reference
	Common.Cloud Shader
	Shader Parameters

	DistanceClouds Shader
	Shader Parameters
	Shader Generation Parameters

	Eye Shader
	Shader Parameters
	Shader Generation Parameters

	GeometryBeam Shader
	Shader Parameters
	Shader Generation Parameters

	Glass Shader
	Shader Parameters
	Shader Generation Parameters

	Hair Shader
	Shader Parameters
	Shader Generation Parameters

	HumanSkin Shader
	Shader Parameters
	Shader Generation Parameters

	Illum Shader
	Shader Parameters
	Shader Generation Parameters

	Lightbeam.LightBeam Shader
	Shader Parameters
	Shader Generation Parameters

	ParticleImposter Shader
	Particles Shader
	Shader Parameters
	Shader Generation Parameters

	Scopes Shader
	Shader Parameters
	Shader Generation Parameters

	Sky Shader
	Shader Parameters

	SkyHDR Shader
	Shader Parameters
	Shader Generation Parameters

	TemplBeamProc Shader
	Best Practices
	Shader Parameters
	Shader Generation Parameters

	Terrain.Layer Shader
	Shader Parameters
	Shader Generation Parameters

	Vegetation Shader
	Shader Parameters
	Shader Generation Parameters

	VolumeObject Shader
	Shader Parameters
	Shader Generation Parameters

	Water Shader
	Shader Parameters
	Shader Generation Parameters

	Waterfall Shader
	Shader Parameters
	Shader Generation Parameters

	WaterVolume Shader
	Shader Parameters
	Shader Generation Parameters

	Selecting Material Surface Type
	Setting Material Opacity
	Setting Material Lighting and Color Settings
	Anisotropic (Colored) Specular

	Material ID Mapping in Autodesk 3ds Max
	Working with Textures
	Texture Map Types
	Texture Best Practices
	Working with Diffuse Maps
	Diffuse Mapping Best Practices

	Working with Normal Maps
	Normal Mapping Best Practices
	Using Normals with Gloss Maps

	Working with Gloss Maps
	Gloss Map Best Practices

	Working with Detail Maps
	Setting Up Detail Map Textures

	Working with Decals
	Decal Projection Types
	Planar Projection
	Deferred Projection
	ProjectOnTerrain Projection
	ProjectOnStaticObjects Projection
	ProjectOnTerrainAndStaticObjects Projection

	Placing a Decal
	Setting Decal Parameters
	To set decal parameters in the Rollup Bar
	To set shader decal parameters

	Debugging Decal Mapping Issues
	Debugging Deferred Decals
	Debugging Decal Flicker

	Displacement Maps and Tessellation
	Displacement Mapping Best Practices
	Setting Displacement Mapping Parameters
	Tessellation
	Setting Tessellation Parameters
	Fixing Tessellation Seams
	Border Seams
	UV Seams

	Working with Substances
	Creating Substances for Lumberyard
	Working with Substance in Lumberyard

	Parallax Mapping
	Parallax Mapping Best Practices
	Applying Parallax Occlusion Mapping (POM)
	Applying Silhouette Parallax Occlusion Mapping (SPOM)
	Using Blend Layers for Parallax Mapping

	Using Vertex Colors
	Customizing Post-Processing Effects
	Post-Effect Group XML Files
	Enabling and Disabling Effect Groups
	Specifying a Blend Curve for Smooth Effect Transitions
	Setting Effect Strength Based on Camera Distance

	Lighting and Shadows
	Environment Lighting
	Illuminance and Auto Exposure Key
	HDR Settings
	Global Environment Lighting
	Local Environment Lighting

	Environment Shadows
	Cached Shadows
	Placement and Update
	Dynamic Distance Shadows
	Console Variables

	Object Shadows
	Using Flow Graph
	Using I3DEngine
	Console Variables

	Shadow Proxies

	Voxel-based Global Illumination (SVOGI)
	Integration Modes
	Voxel GI Parameters
	Debugging
	Current Limits

	Render Cameras and Effects
	Fog Systems
	Standard Fog
	Setting Global (Time of Day) Fog
	Using Fog Volumes
	Setting Ocean Fog Parameters
	Setting Fog Environment Parameters
	Using Console Variables

	Volumetric Fog
	Guidelines and Best Practices for Volumetric Fog
	Setting Global (Time of Day) Volumetric Fog
	Setting Volumetric Fog Environment Parameters
	Adding Volumetric Fog Shadows
	Using Console Variables

	Rendering Cameras
	Depth of Field
	Motion Blur

	Sample Projects and Levels
	Samples Project
	Getting Started Project
	Samples Projects
	Animation Basic Sample
	Camera Sample
	Don't Die
	Movers Sample
	Particles Sample
	Particles Technical Sample
	Trigger Sample
	UIEditor Sample
	VR Box Garden Sample

	Twitch Chat Basics

	Multiplayer Sample Project
	MultiplayerLobby
	MultiplayerGame
	GameLiftLobby

	Legacy Sample Project (GameSDK)
	Beach City Sample Project
	Woodland Asset Package
	FeatureTests Project
	FeatureTest Controls
	FeatureTest Levels

	Testing, Profiling, and Debugging
	Using AZ Test Scanner
	Creating Unit and Integration Test Builds
	Running Unit and Integration Test Builds
	Whitelisting and Blacklisting

	Statoscope Profiler
	User Interface
	Logging Data
	Logging Data to a Socket
	Logging Data to a File

	Filtering Data
	Data Groups
	Lowercase Data Groups
	Uppercase Data Groups

	Creating Data Groups
	Guidelines and Best Practices

	Debugging Issues
	Using Console Debug Views
	Using DebugDraw Console Variables
	Using GBuffer Console Variables

	Troubleshooting
	Viewing Error Log
	Error Message Reference
	Art Assets Errors

	Twitch ChatPlay System
	Setting up a Twitch ChatPlay Channel
	Listening for Twitch Keywords
	Using Flow Graph with Twitch ChatPlay
	Twitch ChatPlay Voting
	Twitch ChatPlay Console Variables
	Generating and Setting a Twitch Client ID
	Generate a Client ID
	Set the Client ID

	Troubleshooting Twitch ChatPlay
	Twitch JoinIn
	Twitch API

	UI System
	Using the UI Editor
	Working with UI Canvases
	Navigating the Viewport
	Changing the Canvas Size
	Previewing Canvases
	Setting Canvas Size in Preview
	Previewing Canvas Performance
	Animation List
	Action Log

	Configuring Canvas Properties
	Rendering Properties
	Input Properties
	Editor Properties

	Associating Canvases with UI Flow Graph Nodes
	Loading Canvases in the Flow Graph Editor
	Loading Canvases in Lua
	UI Lua Reference
	LyShineLua.ShowMouseCursor
	Parameters
	Returns

	UiCanvasLuaProxy:LoadCanvas
	Parameters
	Returns

	UiCanvasLuaProxy:BusConnect
	Parameters
	Returns

	UiCanvasLuaBusSender:FindElementById
	Parameters
	Returns

	UiCanvasNotificationLuaProxy:BusConnect
	Parameters
	Returns

	UiCanvasNotificationLuaBus:OnAction
	Parameters
	Returns

	UiFaderComponent:HasFaderHandler
	Parameters
	Returns

	UiFaderBusSender:SetFadeValue
	Parameters
	Returns

	UiFaderBusSender:Fade
	Parameters
	Returns

	Placing UI Canvases in the 3D World

	UI Elements
	Configuring UI Anchors and Offsets
	Using and Creating UI Prefabs

	UI Components
	Adding or Deleting Components
	Transform2D – Managing UI Anchors and Offsets
	Visual Components
	Image
	Text
	Text Styling Markup
	Tags and Attributes

	Interactive Components
	Properties
	Input Enabled
	States
	Navigation
	First Focus Element
	Interactive Element Controls

	Actions

	Button
	Check box
	Slider
	Text Input
	ScrollBox
	ScrollBar

	Layout Components
	Layout Column
	Layout Row
	Layout Grid

	Other Components
	Fader
	Mask

	Implementing New Fonts
	Adding New Fonts
	Creating Font Families
	Font Family File XML

	Configuring Font Rendering Quality
	Font Texture Width and Height Attributes
	Character Slots
	Font Size

	Using the Animation Editor
	Recording Animation Data
	Playing Animation Sequences
	Editing Animation Data
	Using the Node Pane
	Using the Track Editor
	Working with Keys in the Track Editor
	Moving the Play or Record Point in the Track Editor
	Previewing in the Track Editor

	Using the Curve Editor

	UI Flow Graph Nodes
	UIe Flow Graph Nodes
	UIe Canvas Nodes
	UIe:Canvas:ActionListener Node
	Node Inputs
	Node Outputs

	UIe:Canvas:LoadIntoEntity Node
	Node Inputs
	Node Outputs

	UIe:Canvas:UnloadFromEntity Node
	Node Inputs
	Node Output

	UIe:Canvas:GetKeepLoaded Node
	Node Inputs
	Node Output

	UIe:Canvas:SetKeepLoaded Node
	Node Inputs
	Node Output

	UIe:Canvas:GetDrawOrder Node
	Node Inputs
	Node Output

	UIe:Canvas:SetDrawOrder Node
	Node Inputs
	Node Output

	UIe:Canvas:GetIsPixelAligned Node
	Node Inputs
	Node Output

	UIe:Canvas:SetIsPixelAligned Node
	Node Inputs
	Node Output

	UIe:Canvas:GetEnabled Node
	Node Inputs
	Node Output

	UIe:Canvas:SetEnabled Node
	Node Inputs
	Node Output

	UIe Component Nodes
	UIe Button Component Nodes
	UIe:Button:GetActionName Node
	Node Inputs
	Node Output

	UIe:Button:SetActionName Node
	Node Inputs
	Node Output

	UIe Checkbox Component Nodes
	UIe:Checkbox:GetState Node
	Node Inputs
	Node Output

	UIe:Checkbox:SetState Node
	Node Inputs
	Node Output

	UIe:Checkbox:GetChangedActionName Node
	Node Inputs
	Node Output

	UIe:Checkbox:SetChangedActionName Node
	Node Inputs

	UIe:Checkbox:GetOptionalCheckedEntity Node
	Node Inputs
	Node Output

	UIe:Checkbox:SetOptionalCheckedEntity Node
	Node Inputs
	Node Output

	UIe:Checkbox:GetOptionalUncheckedEntity Node
	Node Inputs
	Node Output

	UIe:Checkbox:SetOptionalUncheckedEntity Node
	Node Inputs
	Node Output

	UIe:Checkbox:GetTurnOnActionName Node
	Node Inputs
	Node Output

	UIe:Checkbox:SetTurnOnActionName Node
	Node Inputs
	Node Output

	UIe:Checkbox:GetTurnOffActionName Node
	Node Inputs
	Node Output

	UIe:Checkbox:SetTurnOffActionName Node
	Node Inputs
	Node Output

	UIe Element Node
	UIe:Element:SetIsEnabled Node
	Node Inputs
	Node Output

	UIe Fader Component Nodes
	UIe:Fader:Animation Node
	Node Inputs
	Node Outputs

	UIe:Fader:GetFadeValue Node
	Node Inputs
	Node Output

	UIe:Fader:SetFadeValue Node
	Node Inputs
	Node Output

	UIe Image Component Nodes
	UIe:Image:GetImageSource Node
	Node Inputs
	Node Outputs

	UIe:Image:SetImageSource Node
	Node Inputs
	Node Output

	UIe:Image:GetSprite Node
	Node Inputs
	Node Output

	UIe:Image:SetSprite Node
	Node Inputs
	Node Output

	UIe:Image:GetImageType Node
	Node Inputs
	Node Output

	UIe:Image:SetImageType Node
	Node Inputs
	Node Output

	UIe:Image:GetColor Node
	Node Inputs
	Node Outputs

	UIe:Image:SetColor Node
	Node Inputs
	Node Output

	UIe Interactable Component Nodes
	UIe:Interactable:SetIsHandlingEvents Node
	Node Inputs
	Node Output

	UIe Layout Column Component Nodes
	UIe:LayoutColumn:GetOrder Node
	Node Inputs
	Node Output

	UIe:LayoutColumn:SetOrder Node
	Node Inputs
	Node Output

	UIe:LayoutColumn:GetPadding Node
	Node Inputs
	Node Outputs

	UIe:LayoutColumn:SetPadding Node
	Node Inputs
	Node Output

	UIe:LayoutColumn:GetSpacing Node
	Node Inputs
	Node Output

	UIe:LayoutColumn:SetSpacing Node
	Node Inputs
	Node Output

	UIe Layout Grid Component Nodes
	UIe:LayoutGrid:GetCellSize Node
	Node Inputs
	Node Outputs

	UIe:LayoutGrid:SetCellSize Node
	Node Inputs
	Node Output

	UIe:LayoutGrid:GetHorizontalOrder Node
	Node Inputs
	Node Output

	UIe:LayoutGrid:SetHorizontalOrder Node
	Node Inputs
	Node Output

	UIe:LayoutGrid:GetPadding Node
	Node Inputs
	Node Output

	UIe:LayoutGrid:SetPadding Node
	Node Inputs
	Node Output

	UIe:LayoutGrid:GetSpacing Node
	Node Inputs
	Node Output

	UIe:LayoutGrid:SetSpacing Node
	Node Inputs
	Node Output

	UIe:LayoutGrid:GetStartingDirection Node
	Node Inputs
	Node Output

	UIe:LayoutGrid:SetStartingDirection Node
	Node Inputs
	Node Output

	UIe:LayoutGrid:GetVerticalOrder Node
	Node Inputs
	Node Output

	UIe:LayoutGrid:SetVerticalOrder Node
	Node Inputs
	Node Output

	UIe Layout Row Component Nodes
	UIe:LayoutRow:GetOrder Node
	Node Inputs
	Node Output

	UIe:LayoutRow:SetOrder Node
	Node Inputs
	Node Output

	UIe:LayoutRow:GetPadding Node
	Node Inputs
	Node Outputs

	UIe:LayoutRow:SetPadding Node
	Node Inputs
	Node Output

	UIe:LayoutRow:GetSpacing Node
	Node Inputs
	Node Output

	UIe:LayoutRow:SetSpacing Node
	Node Inputs
	Node Output

	UIe Mask Component Nodes
	UIe:Mask:GetDrawBehind Node
	Node Inputs
	Node Output

	UIe:Mask:SetDrawBehind Node
	Node Inputs
	Node Output

	UIe:Mask:GetDrawInFront Node
	Node Inputs
	Node Output

	UIe:Mask:SetDrawInFront Node
	Node Inputs
	Node Output

	UIe:Mask:GetIsMaskingEnabled Node
	Node Inputs
	Node Output

	UIe:Mask:SetIsMaskingEnabled Node
	Node Inputs
	Node Output

	UIe:Mask:GetUseAlphaTest Node
	Node Inputs
	Node Output

	UIe:Mask:SetUseAlphaTest Node
	Node Inputs
	Node Output

	UIe ScrollBox Component Nodes
	UIe:ScrollBox:FindClosestContentChildElement Node
	Node Inputs
	Node Output

	UIe:ScrollBox:GetContentEntity Node
	Node Inputs
	Node Output

	UIe:ScrollBox:SetContentEntity Node
	Node Inputs
	Node Output

	UIe:ScrollBox:GetIsHorizontalScrollingEnabled Node
	Node Inputs
	Node Output

	UIe:ScrollBox:SetIsHorizontalScrollingEnabled Node
	Node Inputs
	Node Output

	UIe:ScrollBox:GetIsScrollingConstrained Node
	Node Inputs
	Node Output

	UIe:ScrollBox:SetIsScrollingConstrained Node
	Node Inputs
	Node Output

	UIe:ScrollBox:GetIsVerticalScrollingEnabled Node
	Node Inputs
	Node Output

	UIe:ScrollBox:SetIsVerticalScrollingEnabled Node
	Node Inputs
	Node Output

	UIe:ScrollBox:GetScrollOffset Node
	Node Inputs
	Node Output

	UIe:ScrollBox:SetScrollOffset Node
	Node Inputs
	Node Output

	UIe:ScrollBox:GetScrollOffsetChangedActionName Node
	Node Inputs
	Node Output

	UIe:ScrollBox:SetScrollOffsetChangedActionName Node
	Node Inputs
	Node Output

	UIe:ScrollBox:GetScrollOffsetChangingActionName Node
	Node Inputs
	Node Output

	UIe:ScrollBox:SetScrollOffsetChangingActionName Node
	Node Inputs
	Node Output

	UIe:ScrollBox:GetSnapGrid Node
	Node Inputs
	Node Outputs

	UIe:ScrollBox:SetSnapGrid Node
	Node Inputs
	Node Output

	UIe:ScrollBox:GetSnapMode Node
	Node Inputs
	Node Output

	UIe:ScrollBox:SetSnapMode Node
	Node Inputs
	Node Output

	UIe:ScrollBox:GetHorizontalScrollBarVisibility Node
	Node Inputs
	Node Output

	UIe:ScrollBox:SetHorizontalScrollBarVisibility Node
	Node Inputs
	Node Output

	UIe:ScrollBox:GetVerticalScrollBarVisibility Node
	Node Inputs
	Node Output

	UIe:ScrollBox:SetVerticalScrollBarVisibility Node
	Node Inputs
	Node Output

	UIe:ScrollBox:GetHorizontalScrollBarEntity Node
	Node Inputs
	Node Output

	UIe:ScrollBox:SetHorizontalScrollBarEntity Node
	Node Inputs
	Node Output

	UIe:ScrollBox:GetVerticalScrollBarEntity Node
	Node Inputs
	Node Output

	UIe:ScrollBox:SetVerticalScrollBarEntity Node
	Node Inputs
	Node Output

	UIe ScrollBar Component Nodes
	UIe:Scrollbar:GetHandleEntity Node
	Node Inputs
	Node Output

	UIe:Scrollbar:SetHandleEntity Node
	Node Inputs
	Node Output

	UIe:Scrollbar:GetValue Node
	Node Inputs
	Node Output

	UIe:Scrollbar:SetValue Node
	Node Inputs
	Node Output

	UIe:Scrollbar:GetHandleSize Node
	Node Inputs
	Node Output

	UIe:Scrollbar:SetHandleSize Node
	Node Inputs
	Node Output

	UIe:Scrollbar:GetMinHandlePixelSize Node
	Node Inputs
	Node Output

	UIe:Scrollbar:SetMinHandlePixelSize Node
	Node Inputs
	Node Output

	UIe:Scrollbar:GetValueChangedActionName Node
	Node Inputs
	Node Output

	UIe:Scrollbar:SetValueChangedActionName Node
	Node Inputs
	Node Output

	UIe:Scrollbar:GetValueChangingActionName Node
	Node Inputs
	Node Output

	UIe:Scrollbar:SetValueChangingActionName Node
	Node Inputs
	Node Output

	UIe Slider Component Nodes
	UIe:Slider:GetFillEntity Node
	Node Inputs
	Node Output

	UIe:Slider:SetFillEntity Node
	Node Inputs
	Node Output

	UIe:Slider:GetManipulatorEntity Node
	Node Inputs
	Node Output

	UIe:Slider:SetManipulatorEntity Node
	Node Inputs
	Node Output

	UIe:Slider:GetMaxValue Node
	Node Inputs
	Node Output

	UIe:Slider:SetMaxValue Node
	Node Inputs
	Node Output

	UIe:Slider:GetMinValue Node
	Node Inputs
	Node Output

	UIe:Slider:SetMinValue Node
	Node Inputs
	Node Output

	UIe:Slider:GetStepValue Node
	Node Inputs
	Node Output

	UIe:Slider:SetStepValue Node
	Node Inputs
	Node Output

	UIe:Slider:GetTrackEntity Node
	Node Inputs
	Node Output

	UIe:Slider:SetTrackEntity Node
	Node Inputs
	Node Output

	UIe:Slider:GetValue Node
	Node Inputs
	Node Output

	UIe:Slider:SetValue Node
	Node Inputs
	Node Output

	UIe:Slider:GetValueChangedActionName Node
	Node Inputs
	Node Output

	UIe:Slider:SetValueChangedActionName Node
	Node Inputs
	Node Output

	UIe:Slider:GetValueChangingActionName Node
	Node Inputs
	Node Output

	UIe:Slider:SetValueChangingActionName Node
	Node Inputs
	Node Output

	UIe Text Component Nodes
	UIe:Text:GetColor Node
	Node Inputs
	Node Outputs

	UIe:Text:SetColor Node
	Node Inputs
	Node Output

	UIe:Text:GetFont Node
	Node Inputs
	Node Output

	UIe:Text:SetFontNode
	Node Inputs
	Node Output

	UIe:Text:GetFontSize Node
	Node Inputs
	Node Output

	UIe:Text:SetFontSize Node
	Node Inputs
	Node Output

	UIe:Text:GetOverflowMode Node
	Node Inputs
	Node Output

	UIe:Text:SetOverflowModeNode
	Node Inputs
	Node Output

	UIe:Text:GetText Node
	Node Inputs
	Node Output

	UIe:Text:SetText Node
	Node Inputs
	Node Output

	UIe:Text:GetWrapText Node
	Node Inputs
	Node Output

	UIe:Text:SetWrapText Node
	Node Inputs
	Node Output

	UIe Text Input Component Nodes
	UIe:TextInput:GetChangeAction Node
	Node Inputs
	Node Output

	UIe:TextInput:SetChangeAction Node
	Node Inputs
	Node Output

	UIe:TextInput:GetCursorBlinkInterval Node
	Node Inputs
	Node Output

	UIe:TextInput:SetCursorBlinkInterval Node
	Node Inputs
	Node Output

	UIe:TextInput:GetEndEditAction Node
	Node Inputs
	Node Output

	UIe:TextInput:SetEndEditAction Node
	Node Inputs
	Node Output

	UIe:TextInput:GetEnterAction Node
	Node Inputs
	Node Output

	UIe:TextInput:SetEnterAction Node
	Node Inputs
	Node Output

	UIe:TextInput:GetIsPasswordField Node
	Node Inputs
	Node Output

	UIe:TextInput:SetIsPasswordField Node
	Node Inputs
	Node Output

	UIe:TextInput:GetMaxStringLength Node
	Node Inputs
	Node Output

	UIe:TextInput:SetMaxStringLength Node
	Node Inputs
	Node Output

	UIe:TextInput:GetPlaceHolderTextEntity Node
	Node Inputs
	Node Output

	UIe:TextInput:SetPlaceHolderTextEntity Node
	Node Inputs
	Node Output

	UIe:TextInput:GetText Node
	Node Inputs
	Node Output

	UIe:TextInput:SetText Node
	Node Inputs
	Node Output

	UIe:TextInput:GetTextCursorColor Node
	Node Inputs
	Node Outputs

	UIe:TextInput:SetTextCursorColor Node
	Node Inputs
	Node Output

	UIe:TextInput:GetTextEntity Node
	Node Inputs
	Node Output

	UIe:TextInput:SetTextEntity Node
	Node Inputs
	Node Output

	UIe:TextInput:GetTextSelectionColor Node
	Node Inputs
	Node Outputs

	UIe:TextInput:SetTextSelectionColor Node
	Node Inputs
	Node Output

	UIe Animation Node
	UIe:Sequence:Play Node
	Node Inputs
	Node Outputs

	UI Flow Graph Nodes
	UI Canvas Nodes
	UI:Canvas:ActionListener Node
	Node Inputs
	Node Outputs

	UI:Canvas:Load Node
	Node Inputs
	Node Outputs

	UI:Canvas:Unload Node
	Node Inputs
	Node Output

	UI:Canvas:FindLoaded Node
	Node Inputs
	Node Outputs

	UI:Canvas:GetKeepLoaded Node
	Node Inputs
	Node Output

	UI:Canvas:SetKeepLoaded Node
	Node Inputs
	Node Output

	UI:Canvas:GetDrawOrder Node
	Node Inputs
	Node Output

	UI:Canvas:SetDrawOrder Node
	Node Inputs
	Node Output

	UI:Canvas:GetIsPixelAligned Node
	Node Inputs
	Node Output

	UI:Canvas:SetIsPixelAligned Node
	Node Inputs
	Node Output

	UI:Canvas:GetEnabled Node
	Node Inputs
	Node Output

	UI:Canvas:SetEnabled Node
	Node Inputs
	Node Output

	UI Component Nodes
	UI Button Component Nodes
	UI:Button:GetActionName Node
	Node Inputs
	Node Output

	UI:Button:SetActionName Node
	Node Inputs
	Node Output

	UI Checkbox Component Nodes
	UI:Checkbox:GetState Node
	Node Inputs
	Node Output

	UI:Checkbox:SetState Node
	Node Inputs
	Node Output

	UI:Checkbox:GetChangedActionName Node
	Node Inputs
	Node Output

	UI:Checkbox:SetChangedActionName Node
	Node Inputs

	UI:Checkbox:GetOptionalCheckedEntity Node
	Node Inputs
	Node Output

	UI:Checkbox:SetOptionalCheckedEntity Node
	Node Inputs
	Node Output

	UI:Checkbox:GetOptionalUncheckedEntity Node
	Node Inputs
	Node Output

	UI:Checkbox:SetOptionalUncheckedEntity Node
	Node Inputs
	Node Output

	UI:Checkbox:GetTurnOnActionName Node
	Node Inputs
	Node Output

	UI:Checkbox:SetTurnOnActionName Node
	Node Inputs
	Node Output

	UI:Checkbox:GetTurnOffActionName Node
	Node Inputs
	Node Output

	UI:Checkbox:SetTurnOffActionName Node
	Node Inputs
	Node Output

	UI Element Node
	UI:Element:SetIsEnabled Node
	Node Inputs
	Node Output

	UI Fader Component Nodes
	UI:Fader:Animation Node
	Node Inputs
	Node Outputs

	UI:Fader:GetFadeValue Node
	Node Inputs
	Node Output

	UI:Fader:SetFadeValue Node
	Node Inputs
	Node Output

	UI Image Component Nodes
	UI:Image:GetImageSource Node
	Node Inputs
	Node Outputs

	UI:Image:SetImageSource Node
	Node Inputs
	Node Output

	UI:Image:GetSprite Node
	Node Inputs
	Node Output

	UI:Image:SetSprite Node
	Node Inputs
	Node Output

	UI:Image:GetImageType Node
	Node Inputs
	Node Output

	UI:Image:SetImageType Node
	Node Inputs
	Node Output

	UI:Image:GetColor Node
	Node Inputs
	Node Outputs

	UI:Image:SetColor Node
	Node Inputs
	Node Output

	UI Interactable Component Nodes
	UI:Interactable:SetIsHandlingEvents Node
	Node Inputs
	Node Output

	UI Layout Column Component Nodes
	UI:LayoutColumn:GetOrder Node
	Node Inputs
	Node Output

	UI:LayoutColumn:SetOrder Node
	Node Inputs
	Node Output

	UI:LayoutColumn:GetPadding Node
	Node Inputs
	Node Outputs

	UI:LayoutColumn:SetPadding Node
	Node Inputs
	Node Output

	UI:LayoutColumn:GetSpacing Node
	Node Inputs
	Node Output

	UI:LayoutColumn:SetSpacing Node
	Node Inputs
	Node Output

	UI Layout Grid Component Nodes
	UI:LayoutGrid:GetCellSize Node
	Node Inputs
	Node Outputs

	UI:LayoutGrid:SetCellSize Node
	Node Inputs
	Node Output

	UI:LayoutGrid:GetHorizontalOrder Node
	Node Inputs
	Node Output

	UI:LayoutGrid:SetHorizontalOrder Node
	Node Inputs
	Node Output

	UI:LayoutGrid:GetPadding Node
	Node Inputs
	Node Output

	UI:LayoutGrid:SetPadding Node
	Node Inputs
	Node Output

	UI:LayoutGrid:GetSpacing Node
	Node Inputs
	Node Output

	UI:LayoutGrid:SetSpacing Node
	Node Inputs
	Node Output

	UI:LayoutGrid:GetStartingDirection Node
	Node Inputs
	Node Output

	UI:LayoutGrid:SetStartingDirection Node
	Node Inputs
	Node Output

	UI:LayoutGrid:GetVerticalOrder Node
	Node Inputs
	Node Output

	UI:LayoutGrid:SetVerticalOrder Node
	Node Inputs
	Node Output

	UI Layout Row Component Nodes
	UI:LayoutRow:GetOrder Node
	Node Inputs
	Node Output

	UI:LayoutRow:SetOrder Node
	Node Inputs
	Node Output

	UI:LayoutRow:GetPadding Node
	Node Inputs
	Node Outputs

	UI:LayoutRow:SetPadding Node
	Node Inputs
	Node Output

	UI:LayoutRow:GetSpacing Node
	Node Inputs
	Node Output

	UI:LayoutRow:SetSpacing Node
	Node Inputs
	Node Output

	UI Mask Component Nodes
	UI:Mask:GetDrawBehind Node
	Node Inputs
	Node Output

	UI:Mask:SetDrawBehind Node
	Node Inputs
	Node Output

	UI:Mask:GetDrawInFront Node
	Node Inputs
	Node Output

	UI:Mask:SetDrawInFront Node
	Node Inputs
	Node Output

	UI:Mask:GetIsMaskingEnabled Node
	Node Inputs
	Node Output

	UI:Mask:SetIsMaskingEnabled Node
	Node Inputs
	Node Output

	UI:Mask:GetUseAlphaTest Node
	Node Inputs
	Node Output

	UI:Mask:SetUseAlphaTest Node
	Node Inputs
	Node Output

	UI ScrollBox Component Nodes
	UI:ScrollBox:FindClosestContentChildElement Node
	Node Inputs
	Node Output

	UI:ScrollBox:GetContentEntity Node
	Node Inputs
	Node Output

	UI:ScrollBox:SetContentEntity Node
	Node Inputs
	Node Output

	UI:ScrollBox:GetIsHorizontalScrollingEnabled Node
	Node Inputs
	Node Output

	UI:ScrollBox:SetIsHorizontalScrollingEnabled Node
	Node Inputs
	Node Output

	UI:ScrollBox:GetIsScrollingConstrained Node
	Node Inputs
	Node Output

	UI:ScrollBox:SetIsScrollingConstrained Node
	Node Inputs
	Node Output

	UI:ScrollBox:GetIsVerticalScrollingEnabled Node
	Node Inputs
	Node Output

	UI:ScrollBox:SetIsVerticalScrollingEnabled Node
	Node Inputs
	Node Output

	UI:ScrollBox:GetScrollOffset Node
	Node Inputs
	Node Output

	UI:ScrollBox:SetScrollOffset Node
	Node Inputs
	Node Output

	UI:ScrollBox:GetScrollOffsetChangedActionName Node
	Node Inputs
	Node Output

	UI:ScrollBox:SetScrollOffsetChangedActionName Node
	Node Inputs
	Node Output

	UI:ScrollBox:GetScrollOffsetChangingActionName Node
	Node Inputs
	Node Output

	UI:ScrollBox:SetScrollOffsetChangingActionName Node
	Node Inputs
	Node Output

	UI:ScrollBox:GetSnapGrid Node
	Node Inputs
	Node Outputs

	UI:ScrollBox:SetSnapGrid Node
	Node Inputs
	Node Output

	UI:ScrollBox:GetSnapMode Node
	Node Inputs
	Node Output

	UI:ScrollBox:SetSnapMode Node
	Node Inputs
	Node Output

	UI:ScrollBox:GetHorizontalScrollBarVisibility Node
	Node Inputs
	Node Output

	UI:ScrollBox:SetHorizontalScrollBarVisibility Node
	Node Inputs
	Node Output

	UI:ScrollBox:GetVerticalScrollBarVisibility Node
	Node Inputs
	Node Output

	UI:ScrollBox:SetVerticalScrollBarVisibility Node
	Node Inputs
	Node Output

	UI:ScrollBox:GetHorizontalScrollBarEntity Node
	Node Inputs
	Node Output

	UI:ScrollBox:SetHorizontalScrollBarEntity Node
	Node Inputs
	Node Output

	UI:ScrollBox:GetVerticalScrollBarEntity Node
	Node Inputs
	Node Output

	UI:ScrollBox:SetVerticalScrollBarEntity Node
	Node Inputs
	Node Output

	UI ScrollBar Component Nodes
	UI:Scrollbar:GetHandleEntity Node
	Node Inputs
	Node Output

	UI:Scrollbar:SetHandleEntity Node
	Node Inputs
	Node Output

	UI:Scrollbar:GetValue Node
	Node Inputs
	Node Output

	UI:Scrollbar:SetValue Node
	Node Inputs
	Node Output

	UI:Scrollbar:GetHandleSize Node
	Node Inputs
	Node Output

	UI:Scrollbar:SetHandleSize Node
	Node Inputs
	Node Output

	UI:Scrollbar:GetMinHandlePixelSize Node
	Node Inputs
	Node Output

	UI:Scrollbar:SetMinHandlePixelSize Node
	Node Inputs
	Node Output

	UI:Scrollbar:GetValueChangedActionName Node
	Node Inputs
	Node Output

	UI:Scrollbar:SetValueChangedActionName Node
	Node Inputs
	Node Output

	UI:Scrollbar:GetValueChangingActionName Node
	Node Inputs
	Node Output

	UI:Scrollbar:SetValueChangingActionName Node
	Node Inputs
	Node Output

	UI Slider Component Nodes
	UI:Slider:GetFillEntity Node
	Node Inputs
	Node Output

	UI:Slider:SetFillEntity Node
	Node Inputs
	Node Output

	UI:Slider:GetManipulatorEntity Node
	Node Inputs
	Node Output

	UI:Slider:SetManipulatorEntity Node
	Node Inputs
	Node Output

	UI:Slider:GetMaxValue Node
	Node Inputs
	Node Output

	UI:Slider:SetMaxValue Node
	Node Inputs
	Node Output

	UI:Slider:GetMinValue Node
	Node Inputs
	Node Output

	UI:Slider:SetMinValue Node
	Node Inputs
	Node Output

	UI:Slider:GetStepValue Node
	Node Inputs
	Node Output

	UI:Slider:SetStepValue Node
	Node Inputs
	Node Output

	UI:Slider:GetTrackEntity Node
	Node Inputs
	Node Output

	UI:Slider:SetTrackEntity Node
	Node Inputs
	Node Output

	UI:Slider:GetValue Node
	Node Inputs
	Node Output

	UI:Slider:SetValue Node
	Node Inputs
	Node Output

	UI:Slider:GetValueChangedActionName Node
	Node Inputs
	Node Output

	UI:Slider:SetValueChangedActionName Node
	Node Inputs
	Node Output

	UI:Slider:GetValueChangingActionName Node
	Node Inputs
	Node Output

	UI:Slider:SetValueChangingActionName Node
	Node Inputs
	Node Output

	UI Text Component Nodes
	UI:Text:GetColor Node
	Node Inputs
	Node Outputs

	UI:Text:SetColor Node
	Node Inputs
	Node Output

	UI:Text:GetFont Node
	Node Inputs
	Node Output

	UI:Text:SetFontNode
	Node Inputs
	Node Output

	UI:Text:GetFontSize Node
	Node Inputs
	Node Output

	UI:Text:SetFontSize Node
	Node Inputs
	Node Output

	UI:Text:GetOverflowMode Node
	Node Inputs
	Node Output

	UI:Text:SetOverflowModeNode
	Node Inputs
	Node Output

	UI:Text:GetText Node
	Node Inputs
	Node Output

	UI:Text:SetText Node
	Node Inputs
	Node Output

	UI:Text:GetWrapText Node
	Node Inputs
	Node Output

	UI:Text:SetWrapText Node
	Node Inputs
	Node Output

	UI Text Input Component Nodes
	UI:TextInput:GetChangeAction Node
	Node Inputs
	Node Output

	UI:TextInput:SetChangeAction Node
	Node Inputs
	Node Output

	UI:TextInput:GetCursorBlinkInterval Node
	Node Inputs
	Node Output

	UI:TextInput:SetCursorBlinkInterval Node
	Node Inputs
	Node Output

	UI:TextInput:GetEndEditAction Node
	Node Inputs
	Node Output

	UI:TextInput:SetEndEditAction Node
	Node Inputs
	Node Output

	UI:TextInput:GetEnterAction Node
	Node Inputs
	Node Output

	UI:TextInput:SetEnterAction Node
	Node Inputs
	Node Output

	UI:TextInput:GetIsPasswordField Node
	Node Inputs
	Node Output

	UI:TextInput:SetIsPasswordField Node
	Node Inputs
	Node Output

	UI:TextInput:GetMaxStringLength Node
	Node Inputs
	Node Output

	UI:TextInput:SetMaxStringLength Node
	Node Inputs
	Node Output

	UI:TextInput:GetPlaceHolderTextEntity Node
	Node Inputs
	Node Output

	UI:TextInput:SetPlaceHolderTextEntity Node
	Node Inputs
	Node Output

	UI:TextInput:GetText Node
	Node Inputs
	Node Output

	UI:TextInput:SetText Node
	Node Inputs
	Node Output

	UI:TextInput:GetTextCursorColor Node
	Node Inputs
	Node Outputs

	UI:TextInput:SetTextCursorColor Node
	Node Inputs
	Node Output

	UI:TextInput:GetTextEntity Node
	Node Inputs
	Node Output

	UI:TextInput:SetTextEntity Node
	Node Inputs
	Node Output

	UI:TextInput:GetTextSelectionColor Node
	Node Inputs
	Node Outputs

	UI:TextInput:SetTextSelectionColor Node
	Node Inputs
	Node Output

	UI Animation Node
	UI:Sequence:Play Node
	Node Inputs
	Node Outputs

	Virtual Reality
	Configuring your Project for Virtual Reality
	Configuring Required Console Variables
	Optional Console Variables

	Setting Up Virtual Reality with Flow Graph
	VR:ControllerTracking
	Node Inputs
	Node Outputs

	VR:DeviceInfo
	Node Input
	Node Outputs

	VR:TransformInfo
	Node Outputs

	VR:Dynamics:Controllers
	Node Input
	Node Outputs

	VR:Dynamics:HMD
	Node Input
	Node Outputs

	VR:OpenVR:Playspace
	Node Input
	Node Outputs

	VR:RecenterPose
	VR:VREnabled
	VR:SetTrackingLevel
	VR:TransformInfo
	Node Input
	Node Outputs

	VR:VREnabled
	Setting Up a Basic Virtual Reality Flow Graph
	Setting Up a Custom Playspace with Flow Graph

	Previewing your Virtual Reality Project
	Debugging your Virtual Reality Project

	Waf Build System
	Waf File System
	Waf File List (*.waf_files)
	Waf Branch Spec (waf_branch_spec.py)
	Waf Projects File (project.json)
	Waf Spec Files (*.json)
	Platform-specific Entry Values
	Spec File Format Specification

	Waf Module Files (wscript)
	Lumberyard Engine Build Modules

	Waf Default Settings (default_settings.json)
	Waf User Settings (user_settings.options)

	Waf Commands and Options
	Waf Configuration
	Build Configuration
	Multiplayer Configuration

	Waf Supported Platforms and Compilers
	Waf Project Settings
	Platform and Configuration Targeting
	Features

	Waf Extensions
	Compiling with Incredibuild
	Compiling with QT
	Compiling with Visual Studio

	Using Waf
	Adding a Game Project
	Creating the Project Definition
	Creating a Game Module
	Create a wscript file
	Create source files
	Create a waf_files configuration file

	Updating the User Settings

	Adding a Spec
	Creating a New Project Spec JSON File
	Adding the Spec File to the Visual Studio Solution Generator
	Building the Spec

	Adding a Build Module
	Creating a New Module
	Build Module Keywords
	Creating a Basic Wscript Module
	Creating the .waf_files Content File
	Specifying Additional Include Paths and External Library Linking
	Adding and Linking to a Project Dependency

	Adding User Settings to Waf
	Getter Function
	Validator Function
	Hinter Function

	Adding Qt 5 Content to Waf
	MOC (Meta-Object Compiler) Files
	QRC (QT Resource Collection) files
	UI Files
	Qt Linguist (TS) files

	Using Uber Files
	Configuring Waf

	Debugging Waf

	Game Builds
	Compiling Game Code
	Creating Release Builds for PC
	Running a Build from Visual Studio

	Creating Minimal Release Builds
	Using Visual Studio

	Compiling Shaders for Release Builds
	Adding Custom Game Icons
	Universal Remote Console
	Issuing Commands

	Glossary
	Lumberyard Blog, Forums, and Feedback
	Legal
	Lumberyard Redistributables
	Alternate Web Services

