Amazon Simple Queue Service

Developer Guide

amazon
webservices™

Amazon Simple Queue Service Developer Guide

Amazon Simple Queue Service Developer Guide

Amazon Simple Queue Service: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

Amazon Simple Queue Service Developer Guide

Table of Contents

R TAY = L TSR N 4 F= 0 TS 1 7 1
What can | USe AmMAazon SQS fOr? ..ottt a 1
(O RO TR Y o PP PPRPPRN 2
O aUN S .t e 2
N (o] 71 1= o3 1B 3

HOW QUEUES WOTK ...oiitiitit ettt ettt e e e e et et e e e e e st et e e et e e e e e e et e e eneenanes 4
BASIC Prer@QUISITESttt e e e e 4
1S3 = Va0 F= 1 I 01U =T 5

[T ST=To [N @) o (=T 410 To [PP 5
AL-LEASE-ONCE DEIIVEIY ...eiieiiiii e e e e 6
Retrieving Messages Using Short POIlINGcuiiuiiiiiii e 6
L O T T 1 PP 6
TS ST=To [N @) o (=T 410 To [PP 7
FIFO QUEUE LOGIC .uituitnititit ittt ettt e et et et et et e e e e aeanas 7
EXACHY-ONCE PrOCESSINGeuuitiiitii ettt ettt ettt ettt e e e eneene e 8
Getting Started With FIFO QUEUESouiiiiii i et enas 9
Moving From a Standard Queue t0 @ FIFO QUEUEoviiriiiineiiii e eeeaeanees 11
Queue and Message TAENLfIEIS 12
General THENLIIBIS ... e e 12
Additional Identifiers for FIFO QUEBUEScuiurieiiiiieie et e e enees 13
Resources Required t0 ProCeSS MESSAGESuiuiuiiitii ittt ettt ettt e e eas 13
VISIDIIEY TIMEOUL ..ottt ettt e et ea e ees 14
INFIGNT MESSBGES ...ttt ettt e e e 15
Configuring the Visibility TIMEOULo.uiiii e 15
Changing a Message's Visibility TIMEOULcuiiiiiiiiiii e 15
Terminating a Message's Visibility TIMeOULcooiiiiiiii e 16
API Actions Related to Visibility TIMEOULouuiiiiii e 16
MESSAGE LIFECYCIE ...t 16
[0 1C = o B I T 1= O 01U = 17
Setting up a Dead Letter Queue with the AWS Management Consoleccccvveieninennnnns. 18
Using a Dead Letter Queue with the Amazon SQS APlc.iiriiiii e 19
Issue: Viewing Messages with the Amazon SQS Console Can Cause the Messages to be
Moved t0 @ Dead LEtEr QUEUEieieieit ettt e e et et e e e e e e et e e e e e e aeneens 20
Issue: NumberOfMessagesSent and NumberOfMessagesReceived for the Dead Letter
QUEUE DO NOEt MAICH ...t e e e 21
MESSAGE ALITTDULES ...t ettt 21
Message Attribute Items and Validationcooiiiiiiiii e 22
(- 1t B Y/ 01T PP 22
Using Message Attributes with the AWS Management Consolecceovviviviiiiiiiieieennnn. 23
Using Message Attributes with the AWS SDKSc.iiiiiiii e 24
Using Message Attributes with the Amazon SQS QUEry APl ..o 26
MD5 Message-Digest CalCUlationiiiiiiiii e 28
LONG POIING .t 29
Benefits Of LONG POIING ...c.uiii e 29
Enabling Long Polling with the AWS Management COoNSOIeccoviiiiiiniiniceean, 30
Enabling Long Polling UsiNg the AP ... 32
Enabling Long Polling Using the QUETY AP ... 32
DEIAY QUEUES ...ttt ettt ettt et ettt ettt et e et et e 33
Creating Delay Queues with the AWS Management CONSOIEccvvviiiiiiiiiiiiiiieiieeaenns 34
Creating Delay Queues with the QUETY AP ... 36
= ST= T oI T 4T PP 37
Creating Message Timers Using the CONSO0IEcociiiiiiiiiii e 37
Creating Message Timers Using the QUery APl ... 39
Managing Large Messages USING AMAZON S3 ...t ens 40
PrEIEQUISITES ...ttt et 40

Amazon Simple Queue Service Developer Guide

Using the Amazon SQS Extended Client Library for Javacoooviiiiiiiiiiiiiiiiicneeen 41
AMAzon SQS and JMS .. s 44
L (=TT 0 [LS (=P 44
Getting Started with the Amazon SQS Java Messaging Librarycooooiiiiiiiiinn, 45
Receiving Messages ASYNCNIONOUSIY ... e 48
Using Client ACKNOWIEAGE MOGE ... e 49
Using Unordered Acknowledge MOE ..ot 49
(@0 [= I = 10] o] =P 50
Supported JMS 1.1 IMPIEMENTALIONSc.vneiitii e e 63
LT 0] = PP PP PP 65
Creating @ QUEUER ...ttt et ettt et ettt 65
AWS Management CONSOIEiuieii e ettt e e 65

JA L et 67
Y= oo [T Tz T 1Y =TT ST= o 68
AWS Management CONSOIEiuieii e e e 68

JA L et 70
Receiving and Deleting @ MESSAQEuvuiuieii ettt 71
AWS Management CONSOIEc.iuieii e ettt e e 71

JA L et 74
Subscribing a Queue to an AMAzZON SNS TOPICvueuieinit e aeans 74
AWS Management CONSOIEc..iuieii e et e e 75

BESE PraCliCOS .. ouiitiie e 77
General RECOMMENUALIONSuuititit ittt ettt ens 77
PrOCESSING MESSAGES .. .uinitiit ittt et ettt et et 77
=0 U Tt o 0L £ S 78
Moving from a Standard Queue to a FIFO QUEBUEc.iviiniiiiiiiie e 78
Recommendations for FIFO QUEBUESiiiiiii e aaas 78
Using the Message Deduplication IDoouiiiiiii e e 79
Using the MeSSage GroUP IDuiiei e e ens 79
Using the Receive Request AHEMPL ID ..ot 80

/T T o] TaTo =T To I oo To 1o [0S 81
Monitoring Amazon SQS using CloUdWaALCHooiii e 81
Common MONItOMNG TASKS ...ueii e e e eaen e 82
Access CloudWatch Metrics for Amazon SQS ... 82

Set CloudWatch Alarms for Amazon SQS MEetriCSc.oiriiiiiii e 85
Available CloudWatch Metrics for Amazon SQS ... 87
Logging Amazon SQS API Actions Using CloudTrailcc.ieiiiiiiiii e 20
Amazon SQS Information in CloudTrailcoiiiii s 90
Understanding Amazon SQS Log File ENtres ..o 90

W OTKING Wit AP IS e e e e e et et et e 95
= Lo T e I =T 01 1=] £ 95
e o o 96
MaKing QUEIY REQUESES ...ttt ettt ettt et e et e e et e e eaeaaenns 97
Request AULNENTICALION ... e et eaaeaas 100

RS PONSES ..t 106

S 1 F= =T I U TCTU o PP 108
Programming LANQUAGES ... c.euieiieii et et 111
BAtCh API ACHONS ...ttt 111
Maximum Message Size for SendMessageBatChcoviiiiiiiiiiii e 112
Client-Side Buffering and Request BatChingcoiiiiiiiiiii e 113
Increasing Throughput with Horizontal Scaling and Batchingccccoiiiiiiiiiiiiiiiinnns 116

S U Y ettt et ettt et a s 121
Authentication and ACCESS CONIIOLiu.ieit e 121
AULNENTICALION ...t ettt ettt 121
ACCESS CONIIOL L.ttt ettt et ettt 122
OVerview Of Man@AgING ACCESSuuuiuiinit ettt et e e et e e e aaeae e 123
Using Identity-Based Policies (IAM) Policies for Amazon SQSccooviiiiiiiiiiiiiiieeeeans 128
Creating Custom Policies Using the Access Policy Languagecocoeveiiviiiiniinninennen. 133

Amazon Simple Queue Service Developer Guide

Using Temporary Security CredentialSoouieiiiiiiii e eenas 141

Amazon SQS API Permissions Referenceccoiiiii i 143
0P 145
Limits Related 10 QUEBUESiuiiiiiii i e e et e e e e aes 145
LimitS Related t0 MESSAGES .. .uiuitiit ettt ettt 146
Limits Related t0 POIICIESieeie e e et 146

LR L Fo 100 B LT 10 Lo =Y 147
Document History

vi

Amazon Simple Queue Service Developer Guide
What can | use Amazon SQS for?

What is Amazon Simple Queue
Service?

Amazon Simple Queue Service (Amazon SQS) offers a reliable, highly-scalable hosted queue for
storing messages as they travel between applications or microservices. It moves data between
distributed application components and helps you decouple these components. Amazon SQS provides
familiar middleware constructs such as dead-letter queues and poison-pill management. It also
provides a generic web services API and can be accessed by any programming language that the
AWS SDK supports. Amazon SQS supports both standard (p. 5) and FIFO queues (p. 6).

Topics

What

¢ What can | use Amazon SQS for? (p. 1)

¢ What type of queue do | need? (p. 2)

¢ What are the main features of Amazon SQS? (p. 2)

¢ What is the basic architecture of Amazon SQS? (p. 3)

can | use Amazon SQS for?

Use Amazon SQS when you need each unique message to be consumed only once and for cases
such as the following:

Decoupling the components of an application — You have a queue of work items and want to
track the successful completion of each item independently. Amazon SQS tracks the ACK/FAIL
results, so the application does not have to maintain a persistent checkpoint or cursor. After a
configured visibility timeout, Amazon SQS deletes acknowledged messages and redelivers failed
messages.

Configuring individual message delay — You have a job queue and you need to schedule
individual jobs with a delay. With standard queues, you can configure individual messages to have a
delay of up to 15 minutes.

Dynamically increasing concurrency or throughput at read time — You have a work queue and
want to add more readers until the backlog is cleared. Amazon SQS requires no pre-provisioning.

Scaling transparently — You buffer requests and the load changes as a result of occasional load
spikes or the natural growth of your business. Because Amazon SQS can process each buffered
request independently, Amazon SQS can scale transparently to handle the load without any
provisioning instructions from you.

Amazon Simple Queue Service Developer Guide
Queue Types

What type of queue do | need?

Standard Queue FIFO Queue

Available in all regions. Available in US West (Oregon) and US East
(Ohio).

High Throughput — Standard queues have

nearly-unlimited transactions per second (TPS). | First-In-First-Out Delivery — The order in
which messages are sent and received is strictly

At-Least-Once Delivery — A message is preserved.
delivered at least once, but occasionally more
than one copy of a message is delivered. Exactly-Once Processing — A message is

delivered once and remains available until a
Best-Effort Ordering: — Occasionally, messages consumer processes and deletes it. Duplicates
might be delivered in an order different from are not introduced into the queue.
which they were sent.

Limited Throughput — 300 transactions per

second (TPS).

2z 1 2 3 4 5
3
4
3

Send data between applications when the Send data between applications when the order
throughput is important, for example: of events is important, for example:
« Decouple live user requests from intensive ¢ Ensure that user-entered commands are

background work: let users upload media while executed in the right order.

resizing or encoding it. « Display the correct product price by sending
¢ Allocate tasks to multiple worker nodes: price maodifications in the right order.

process a high number of credit card validation | . prevent a student from enrolling in a course

requests. before registering for an account.

¢ Batch messages for future processing:
schedule multiple entries to be added to a
database.

What are the main features of Amazon SQS?

Amazon SQS provides the following major features:

¢ Redundant infrastructure — Standard queues support at-least-once message delivery, while FIFO
gueues support exactly-once message processing. Amazon SQS provides highly-concurrent access
to messages and high availability for sending and retrieving messages.

¢ Multiple writers and readers — Multiple parts of your system can send or receive messages at the
same time. Amazon SQS locks the message during processing, keeping other parts of your system
from processing the message simultaneously.

¢ Configurable settings per queue — All of your queues don't have to be exactly alike. For example,
you can optimize one queue can for messages that require a longer processing time than others.

¢ Variable message size — Your messages can be up to 262,144 bytes (256 KB) in size. You can
store the contents of larger messages using the Amazon Simple Storage Service (Amazon S3)
or Amazon DynamoDB, with Amazon SQS holding a pointer to the Amazon S3 object. For more

Amazon Simple Queue Service Developer Guide
Architecture

information, see Managing Amazon SQS Messages with Amazon S3. You can also split a large
message into smaller ones.

¢ Access control — You control who can send messages to a queue, and who can receive messages
from a queue.

« Delay queues — You can set a default delay on a queue, so that delivery of all enqueued messages
is postponed for the specified duration. You can set the delay value when you create a queue with
Cr eat eQueue, and you can update the value with Set QueueAt t ri but es. If you update the value,
the new value affects only messages enqueued after the update.

¢ PCI compliance — Amazon SQS supports the processing, storage, and transmission of credit card
data by a merchant or service provider, and has been validated as compliant with Payment Card
Industry (PCI) Data Security Standard (DSS). For more information about PCI DSS, including how to
request a copy of the AWS PCI Compliance Package, see PCI DSS Level 1.

What is the basic architecture of Amazon SQS?

There are three main actors in the overall system:

« The components of your distributed system
¢ Queues
« Messages in the queues

In the following diagram, your system has several components that send messages to the queue and
receive messages from the queue. The diagram shows that a single queue, which has its messages
(labeled A-E), is redundantly saved across multiple Amazon SQS servers.

Your Distributed Your Queue
System's (Distributed on
Components SQS Servers)
Component E
1

Component o
2
A
—_— o o A o
—
Component e o A .

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/s3-messages.html
http://aws.amazon.com/compliance/pci-dss-level-1-faqs/

Amazon Simple Queue Service Developer Guide
Basic Prerequisites

How Amazon SQS Queues Work

This section describes the types of Amazon SQS queues and their basic properties, the identifiers of
queues and messages, and the various queue and message management workflows.
Topics

¢ Basic Prerequisites (p. 4)

e Standard Queues (p.5)

¢ FIFO (First-In-First-Out) Queues (p. 6)

¢ Queue and Message Identifiers (p. 12)

¢ Resources Required to Process Messages (p. 13)

¢ Visibility Timeout (p. 14)

¢ Message Lifecycle (p. 16)

¢ Using Amazon SQS Dead Letter Queues (p. 17)

¢ Using Amazon SQS Message Attributes (p. 21)

¢« Amazon SQS Long Polling (p. 29)

¢ Amazon SQS Delay Queues (p. 33)

¢« Amazon SQS Message Timers (p. 37)

¢ Managing Large Amazon SQS Messages Using Amazon S3 (p. 40)

¢ Using JMS with Amazon SQS (p. 44)

Basic Prerequisites

The following basic prerequisites will help you get started with Amazon SQS queues:

¢ You must assign a name to each of your queues. You can get a list of all your queues or a subset of
your queues that share the same initial characters in their names (for example, you could get a list of
all your queues whose names start with T3).

Amazon Simple Queue Service Developer Guide
Standard Queues

¢ A queue can be empty if you haven't sent any messages to it or if you have deleted all the messages
from it.

¢ You can delete a queue at any time, whether it's empty or not. By default, a queue retains messages
for four days. However, you can configure a queue to retain messages for up to 14 days after the
message is sent.

Note

Unless your application specifically requires repeatedly creating queues and leaving them
inactive or storing large amounts of data in your queue, consider using Amazon S3 for
storing your data.

The following table lists the API actions you can use to work with queues.

To do this... Use this action
Create a queue CreateQueue
Get the URL of an existing queue GetQueueUrl
List your queues ListQueues
Delete a queue DeleteQueue

Standard Queues

Amazon SQS offers standard as the default queue type. A standard queue allows you to have a
nearly-unlimited number of transactions per second. Standard queues support at-least-once message
delivery. However, occasionally (because of the highly-distributed architecture that allows nearly-
unlimited throughput), more than one copy of a message might be delivered out of order. Standard
queues provide best-effort ordering which ensures that messages are generally delivered in the same
order as they're sent.

You can use standard message queues in many scenarios, as long as your application can process
messages that arrive more than once and out of order, for example:

¢ Decouple live user requests from intensive background work — Let users upload media while
resizing or encoding it.

¢ Allocate tasks to multiple worker nodes — Process a high number of credit card validation
requests.

¢ Batch messages for future processing — Schedule multiple entries to be added to a database.

For best practices of working with standard queues, see General Recommendations (p. 77).

Topics
¢ Message Ordering (p. 5)
¢ At-Least-Once Delivery (p. 6)
¢ Retrieving Messages Using Short Polling (p. 6)

Message Ordering

A standard queue makes a best effort to preserve the order of messages, but more than one copy
of a message might be delivered out of order. If your system requires that order be preserved, we

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html

Amazon Simple Queue Service Developer Guide
At-Least-Once Delivery

recommend either using a FIFO (First-In-First-Out) queue (p. 6) or adding sequencing information
in each message so you can reorder the messages when they're received.

At-Least-Once Delivery

Amazon SQS stores copies of your messages on multiple servers for redundancy and high availability.
On rare occasions, one of the servers that stores a copy of a message might be unavailable when you
receive or delete a message.

If this occurs, the copy of the message will not be deleted on that unavailable server, and you might
get that message copy again when you receive messages. You should design your applications to be
idempotent (they should not be affected adversely when processing the same message more than
once).

Retrieving Messages Using Short Polling

The behavior of retrieving messages from the queue depends on whether you use short (standard)
polling, the default behavior, or long polling. For more information about long polling, see Amazon SQS
Long Polling (p. 29).

When you retrieve messages from the queue using short polling, Amazon SQS samples a subset of
the servers (based on a weighted random distribution) and returns messages from just these servers.
Thus, a particular receive request might not return all of your messages. However, if you have a small
number of messages in your queue (fewer than 1,000), one particular request might not return any of
your messages, whereas a subsequent request will. If you keep retrieving from your queues, Amazon
SQS will sample all of the servers, and you'll receive all your messages.

The following figure shows the short-polling behavior of messages returned after one of your system
components makes a receive request. Amazon SQS samples several of the servers (in gray) and
returns the messages from those servers (Message A, C, D, and B). Message E isn't returned to this
particular request, but it will be returned to a subsequent request.

Your Distributed Your Queue
System's (Distributed on
Components SQS Servers)
Component E
1 Messages A E °
Received from 0
Sampled Servers E

— © o
Gompzomnt « a eoe eeo e -

| S,
a LC
—
Com%unem e o é .
—

FIFO (First-In-First-Out) Queues

FIFO queues are available in US West (Oregon) and US East (Ohio). In addition to having all the
capabilities of the standard queue (p. 5), FIFO (First-In-First-Out) queues are designed to
enhance messaging between applications when the order of operations and events is critical, or where

Amazon Simple Queue Service Developer Guide
Message Ordering

duplicates can't be tolerated. FIFO queues also provide exactly-once processing but are limited to 300
transactions per second (TPS).

FIFO queues are designed to enhance messaging between applications when the order of operations
and events is critical, for example:

¢ Ensure that user-entered commands are executed in the right order.
« Display the correct product price by sending price modifications in the right order.
¢ Prevent a student from enrolling in a course before registering for an account.

Note
The name of a FIFO queue must end with the . fi f o suffix.

For best practices of working with FIFO queues, see Recommendations for FIFO (First-In-First-Out)
Queues (p. 78) and General Recommendations (p. 77).

Note
The following clients don't currently support FIFO queues:

¢ Amazon SQS Buffered Asynchronous Client
« Amazon SQS Extended Client Library for Java
¢« Amazon SQS Java Message Service (JMS) Client

Topics
¢ Message Ordering (p. 7)
¢ FIFO Queue Logic (p. 7)
¢ Exactly-Once Processing (p. 8)
¢ Getting Started with FIFO Queues (p. 9)
¢ Moving From a Standard Queue to a FIFO Queue (p. 11)

Message Ordering

The FIFO queue improves upon and complements the standard queue (p. 5). The most important
features of this queue type are FIFO (First-In-First-Out) delivery and exactly-once processing: The
order in which messages are sent and received is strictly preserved and a message is delivered once
and remains available until a consumer processes and deletes it; duplicates are not introduced into the
queue. In addition, FIFO queues support message groups that allow multiple ordered message groups
within a single queue.

FIFO Queue Logic

Key Terms

The following key terms will help you better understand the functionality of FIFO queues.

Message Deduplication ID
The token used for deduplication of sent messages. If a message with a particular message
deduplication ID is sent successfully, any messages sent with the same message deduplication ID
are accepted successfully but aren't delivered during the 5-minute deduplication interval.

Message Group ID
The tag that specifies that a message belongs to a specific message group. Messages that belong
to the same message group are processed in a FIFO manner (however, messages in different
message groups might be processed out of order).

Amazon Simple Queue Service Developer Guide
Exactly-Once Processing

Sequence Number
A large, non-consecutive number that Amazon SQS assigns to each message.

Sending Messages

If multiple messages are sent in succession to a FIFO queue, each with a distinct message
deduplication ID, Amazon SQS stores the messages and acknowledges the transmission. Then, each
message can be received and processed in the exact order in which the messages were transmitted.

In FIFO queues, messages are ordered based on message group ID. If multiple hosts (or different
threads on the same host) send messages with the same message group ID to a FIFO queue, Amazon
SQS stores the messages in the order in which they arrive for processing. To ensure that Amazon
SQS preserves the order in which messages are sent and received, ensure that each sender uses a
unique message group ID to send all its messages.

FIFO queue logic applies only per message group ID. Each message group ID represents a distinct
ordered message group within an Amazon SQS queue. For each message group ID, all messages are
sent and received in strict order. However, messages with different message group ID values might
be sent and received out of order. You must associate a message group ID with a message. If you
don't provide a message group ID, the action fails. If you require a single group of ordered messages,
provide the same message group ID for messages sent to the FIFO queue.

Receiving Messages

You can't request to receive messages with a specific message group ID.

When receiving messages from a FIFO queue with multiple message group IDs, Amazon SQS first
attempts to return as many messages with the same message group ID as possible. This allows other
consumers to process messages with a different message group ID.

Retrying Multiple Times
FIFO queues allow the sender or receiver to attempt multiple retries:

« If the sender detects a failed SendMessage action, it can retry sending as many times as necessary,
using the same receive request attempt ID. Assuming that the sender receives at least one
acknowledgement before the deduplication interval expires, multiple retries neither affect the
ordering of messages nor introduce duplicates.

* If the receiver detects a failed Recei veMessage action, it can retry as many times as necessary,
using the same receive request attempt ID. Assuming that the receiver receives at least one
acknowledgement before the visibility timeout expires, multiple retries do not affect the ordering of
messages.

« When you receive a message with a message group ID, no more more messages for the same
message group ID are returned unless you delete the message or it becomes visible.

Exactly-Once Processing

Unlike standard queues, FIFO queues do not introduce duplicate messages. FIFO queues help
you avoid sending duplicates to a queue. If you retry the SendMessage action within the 5-minute
deduplication interval, Amazon SQS does not introduce any duplicates into the queue.

To configure deduplication, you must do one of the following:

» Enable content-based deduplication. This instructs Amazon SQS to use a SHA-256 hash to generate
the message deduplication ID using the body of the message—»but not the attributes of the message.
For more information, see the documentation on the Cr eat eQueue, Get QueueAttri but es, and
Set QueueAt t ri but es actions in the Amazon Simple Queue Service API Reference.

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html

Amazon Simple Queue Service Developer Guide
Getting Started with FIFO Queues

< Explicitly provide the message deduplication ID (or view the sequence number) for the message.
For more information, see the documentation on the SendMessage, SendMessageBat ch, and
Recei veMessage actions in the Amazon Simple Queue Service API Reference.

Getting Started with FIFO Queues

The following example Java code creates a queue and sends, receives, and deletes a message.

package sqs. fifo.sanpl es;

i mport java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Mp. Entry;

i mport com anmzonaws. Amazond i ent Excepti on;

i mport com anmazonaws. AmazonSer vi ceExcepti on;

i mport com anmzonaws. aut h. AWSCr edent i al s;

i mport com anmzonaws. aut h. Basi cAWSCr edent i al s;

i mport com amazonaws. aut h. profile. Profil eCredenti al sProvi der;
i mport com anmzonaws. r egi ons. Regi on;

i mport com amazonaws. r egi ons. Regi ons;

i mport com amazonaws. servi ces. sqs. AnazonSQs;

i mport com anmzonaws. servi ces. sgs. AnazonSQSC i ent ;

i mport com amazonaws. servi ces. sgs. nodel . Cr eat eQueueRequest ;

i mport com amazonaws. servi ces. sgs. nodel . Del et eMessageRequest ;
i mport com amazonaws. servi ces. sqs. nodel . Del et eQueueRequest ;

i mport com amazonaws. servi ces. sqgs. nodel . Message;

i mport com amazonaws. servi ces. sgs. nodel . Recei veMessageRequest ;
i mport com amazonaws. servi ces. sgs. nodel . SendMessageRequest ;

i mport com amazonaws. servi ces. sgs. nodel . SendMessageResul t ;

public class SQSFI FQJavad i ent Sanpl e {
public static void main(String[] args) throws Exception {

/*
* The Profil eCredential sProvider returns your [default]
* credential profile by reading fromthe credentials file |ocated at
* (~/.aws/credentials).
*/
AWSCredentials credentials = null;
try {
credentials = new Profil eCredential sProvider().getCredentials();
} catch (Exception e) {
t hr ow new Amazond i ent Excepti on(
"Can't |oad the credentials fromthe credential profiles

file. " +
"Pl ease make sure that your credentials file is at the
correct " +
"location (~/.aws/credentials), and is a in valid
format.",
e);
}

AmazonSQSCl i ent sqs = new AmazonSQSC i ent (credenti al s);
sqs. set Endpoi nt ("https://sqgs. us-east-2. anazonaws. cont') ;

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide
Getting Started with FIFO Queues

Systemout. println(" ")
Systemout.println("Getting Started with Arazon SQ@ FI FO Queues");

Systemout. println("
\n");

try {

/!l Create a FlI FO queue

Systemout.println("Creating a new Amazon SQ@ Fl FO queue cal |l ed
M/Fi f oQueue. fifo.\n");

Map<String, String> attributes = new HashMap<String, String>();

/1 A FI FO queue nust have the FifoQueue attribute set to True

attributes. put ("Fi foQueue", "true");

/1l Generate a MessageDeduplicationld based on the content, if the
user doesn't provide a MessageDeduplicationld

attributes. put ("Cont ent BasedDedupl i cation", "true");

/1 The FIFO queue nane nmust end with the .fifo suffix

Cr eat eQueueRequest creat eQueueRequest = new
Cr eat eQueueRequest ("M/Fi foQueue. fifo").withAttri butes(attributes);

String myQueuelr| =
sgs. creat eQueue(cr eat eQueueRequest) . get Queuelr| ();

/1 List queues

Systemout.println("Listing all queues in your account.\n");

for (String queueUrl : sqgs.listQueues().getQeuelrls()) {
Systemout.println(" QueueUl: " + queuelrl);

}

Systemout.println();

/1 Send a nessage
Systemout. println("Sending a nessage to MyFi foQueue.fifo.\n");
SendMessageRequest sendMessageRequest = new
SendMessageRequest (nyQueueUrl, "This is my nessage text.");
/1 You nust provide a non-enpty MessageG oupld when sending
messages to a FlI FO queue
sendMessageRequest . set MessageG oupl d(" nessageG oupl");
/1l Uncomment the following to provide the MessageDeduplicationld
/I sendMessageRequest . set MessageDedupl i cationld("1");
SendMessageResul t sendMessageResult =
sgs. sendMessage(sendMessageRequest) ;
String sequenceNunber = sendMessageResul t. get SequenceNurnber () ;
String nmessagel d = sendMessageResul t. get Messagel d() ;
Systemout. println("SendMessage succeed with nessageld " +

messageld + ", sequence nunber " + sequenceNumber + "\n");

/1 Receive nessages
Systemout. println("Receiving nessages from MyFi f oQueue. fifo.
\n");
Recei veMessageRequest recei veMessageRequest = new
Recei veMessageRequest (nyQueuelr) ;
/1 Uncoment the following to provide the
Recei veRequest Dedupl i cati onl d
/'l recei veMessageRequest . set Recei veRequest Attenpt 1 d("1");
Li st <Message> nessages =
sgs. recei veMessage(recei veMessageRequest) . get Messages() ;
for (Message nessage : nessages) {
Systemout.println(" Message");

10

Amazon Simple Queue Service Developer Guide
Moving From a Standard Queue to a FIFO Queue

Systemout. println(" Messagel d: "+
message. get Messagel d());

Systemout. println(" Recei pt Handl e: " +
nmessage. get Recei pt Handl e()) ;

Systemout. println(" VD5COF Body': "o+
message. get MD5OF Body()) ;

Systemout.println(" Body: "+

message. get Body());
for (Entry<String, String> entry :
message. get Attributes().entrySet()) {
Systemout.println(" Attribute");
Systemout. println(" Narme: " + entry.getKey());
Systemout. println(" Value: " + entry.getValue());
}

}
Systemout. printlin();

/1 Del ete the nessage

Systemout.println("Del eting the nessage.\n");

String messageRecei pt Handl e = nmessages. get (0) . get Recei pt Handl e() ;

sqgs. del et eMessage(new Del et eMessageRequest (nyQueuelr |,
messageRecei pt Handl e)) ;

/1 Del ete the queue
Systemout.println("Del eting the queue.\n");
sqgs. del et eQueue(new Del et eQueueRequest (myQueuelrl));
} catch (AmazonServi ceException ase) {
System out . println("Caught an AnazonServi ceException, which neans
your request nmade it " +
"to Amazon SQS, but was rejected with an error response
for sonme reason.");
Systemout.println("Error Message:
Systemout. println("HTTP Status Code: "
Systemout. println("AWS Error Code: "
Systemout.println("Error Type: "
Systemout. println("Request |D: "
} catch (Amazond i ent Exception ace) {
System out. println("Caught an AnazonC i ent Excepti on, whi ch neans
the client encountered " +
"a serious internal problemwhile trying to comunicate
with SQS, such as not " +
"being able to access the network.");
Systemout.println("Error Message: " + ace.getMessage());

ase. get Message());
ase. get St at usCode());
ase. get Error Code());
ase. getError Type());
ase. get Request 1 d());

+ + + + +

Moving From a Standard Queue to a FIFO Queue

If you have an existing application that uses standard queues and you want to take advantage of the
ordering or exactly-once processing features of FIFO queues, you need to configure the queue and
your application correctly.

Note

You can't convert an existing standard queue into a FIFO queue. To make the move, you
must either create a new FIFO queue for your application or delete your existing standard
gueue and recreate it as a FIFO queue.

11

Amazon Simple Queue Service Developer Guide
Queue and Message Identifiers

Moving Checkilist

Use the following checklist to ensure that your application works correctly with a FIFO queue.

* FIFO queues are limited to 300 transactions per second (TPS). If your application generates a high
throughput of messages, consider using a standard queue instead.

« FIFO queues don't support per-message delays, only per-queue delays. If your application sets the
same value of the Del ay Seconds parameter on each message, you must modify your application to
remove the per-message delay and set Del aySeconds on the entire queue instead.

« Every message sent to a FIFO queue requires a message group ID. If you don't need multiple
ordered message groups, specify the same message group ID for all your messages.

¢ Before sending messages to a FIFO queue, confirm the following:

« If your application can send messages with identical message bodies, you can modify your
application to provide a unique message deduplication ID for each sent message.

« If your application sends messages with unique message bodies, you can enable content-based
deduplication.

* You don't have to make any code changes for your receiver. However, if it takes a long time to
process messages and your visibility timeout is set to a high value, consider adding a receive
request attempt ID to each Recei veMessage action. This will allow you to retry receive attempts in
case of networking failures and will prevent queues from pausing due to failed receive attempts.

For more information, see the Amazon Simple Queue Service API Reference.

Queue and Message ldentifiers

General ldentifiers
Queue Name and URL

When you create a new queue, you must specify a queue name that is unique within the scope of
all your queues. Amazon SQS assigns each queue you create an identifier called a queue URL that
includes the queue name and other Amazon SQS components. Whenever you want to perform an
action on a queue, you provide its queue URL.

The name of a FIFO queue must end with the . f i f o suffix. The suffix counts towards the 80-character
gueue name limit.

The following is the queue URL for a queue named MyQueue owned by a user with the AWS account
number 123456789012.

http://sqgs. us-east-2. amazonaws. com 123456789012/ MyQueue

Important

In your system, always store the entire queue URL exactly as Amazon SQS

returns it to you when you create the queue (for example, htt p: / / sgs. us-

east - 2. amazonaws. com 123456789012/ queue?2). Don't build the queue URL from its
separate components each time you need to specify the queue URL in a request because
Amazon SQS can change the components that make up the queue URL.

You can also get the queue URL for a queue by listing your queues. For more information, see
Li st Queues.

12

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html

Amazon Simple Queue Service Developer Guide
Additional Identifiers for FIFO Queues

Message 1D

Each message receives a system-assigned message ID that Amazon SQS returns to you in the
SendMessage response. This identifier is useful for identifying messages. (However, to delete a
message you need the message's receipt handle.) The maximum length of a message ID is 100
characters.

Receipt Handle

Every time you receive a message from a queue, you receive a receipt handle for that message.
This handle is associated with the action of receiving the message, not with the message itself. To
delete the message or to change the message visibility, you must provide the receipt handle (not
the message ID). Thus, you must always receive a message before you can delete it (you can't
put a message into the queue and then recall it). The maximum length of a receipt handle is 1024
characters.

Important

If you receive a message more than once, each time you receive it, you get a different receipt
handle. You must provide the most recently received receipt handle when you request to
delete the message (otherwise, the message might not be deleted).

The following is an example of a receipt handle.

MbZj 6WDW i +Jvwd aBV+3dcj k2YW2vA3+STFFI j TVBt JJg6HRGEPYSas uWKPJ B+Cw
Lj 1Fj gXW1uSj 1gUPAWB6FU W R4y 2OKpEGYWBNLpRCI VAyeM eUsZBdt ¢ Q+QE
auMzZc8ZRv37s| W2i JKq3MDMFX1YvV11A2x/ KSbkJ0=

Additional Identifiers for FIFO Queues

For more information about the following identifiers, see Exactly-Once Processing (p. 8) and the
Amazon Simple Queue Service APl Reference.

Message Deduplication ID
The token used for deduplication of sent messages. If a message with a particular message

deduplication ID is sent successfully, any messages sent with the same message deduplication ID are
accepted successfully but aren't delivered during the 5-minute deduplication interval.

Message Group ID
The tag that specifies that a message belongs to a specific message group. Messages that belong to

the same message group are processed in a FIFO manner (however, messages in different message
groups might be processed out of order).

Sequence Number

A large, non-consecutive number that Amazon SQS assigns to each message.

Resources Required to Process Messages

To help you estimate the resources you need to process queued messages, Amazon SQS can
determine the approximate number of delayed, visible, and not visible messages in a queue. For more
information about visibility, see Visibility Timeout (p. 14).

13

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/

Amazon Simple Queue Service Developer Guide
Visibility Timeout

Note

For standard queues, the result is approximate because of the distributed architecture of
Amazon SQS. In most cases, the count should be close to the actual number of messages in
the queue.

For FIFO gueues, the result is exact.

The following table lists the API action to use.

To do this... Use this action Use this At tri but eNane

Get the approximate number of Get QueueAt t ri butAmpr oxi mat eNunber Of Messages
messages in the queue.

Get the approximate number of Get QueueAt t ri butAspr oxi mat eNunber of MessagesDel ayed
messages that are pending to be
added to the queue.

Get the approximate number of CGet QueueAt tri butApapr oxi mat eNunber Of MessagesNot Vi si bl e
messages in the queue that are not
visible (messages in flight).

Visibility Timeout

Topics
¢ Inflight Messages (p. 15)
¢ Configuring the Visibility Timeout (p. 15)
¢ Changing a Message's Visibility Timeout (p. 15)
¢ Terminating a Message's Visibility Timeout (p. 16)
e API Actions Related to Visibility Timeout (p. 16)

When a consumer receives and processes a message from a queue, the message remains in the
gueue. Amazon SQS doesn't automatically delete the message: Because it's a distributed system,
there is no guarantee that the component will actually receive the message (the connection can break
or a component can fail to receive the message). Thus, the consumer must delete the message from
the queue after receiving and processing it.

Immediately after the message is received, it remains in the queue. To prevent other receivers from
process the message again, Amazon SQS sets a visibility timeout, a period of time during which
Amazon SQS prevents other consuming components from receiving and processing the message.

Note

For standard queues, the visibility timeout isn't a guarantee against receiving a message
twice. For more information, see At-Least-Once Delivery (p. 6).

FIFO queues allow the sender or receiver to attempt multiple retries:

« If the sender detects a failed SendMessage action, it can retry sending as many times as
necessary, using the same receive request attempt ID. Assuming that the sender receives
at least one acknowledgement before the deduplication interval expires, multiple retries
neither affect the ordering of messages nor introduce duplicates.

« If the receiver detects a failed Recei veMessage action, it can retry as many times as
necessary, using the same receive request attempt ID. Assuming that the receiver receives
at least one acknowledgement before the visibility timeout expires, multiple retries do not
affect the ordering of messages.

14

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html

Amazon Simple Queue Service Developer Guide
Inflight Messages

« When you receive a message with a message group ID, no more more messages for the
same message group ID are returned unless you delete the message or it becomes visible.

Inflight Messages

A message is considered to be in flight after it's received from a queue by a consumer, but not yet
deleted from the queue.

For standard queues, there can be a maximum of 120,000 inflight messages per queue. If you reach
this limit, Amazon SQS returns the Over Li mi t error message. To avoid reaching the limit, you should
delete messages from the queue after they're processed. You can also increase the number of queues
you use to process your messages.

For FIFO queues, there can be a maximum of 20,000 inflight messages per queue. If you reach this
limit, Amazon SQS returns no error messages.

The following figure illustrates the visibility timeout.

RecelveMessage ReceiveMessage
Request

ReceiveMessage ReceiveMessage Request
Request Requast

Visibility Timeout (in seconds)
Time

Message not
returned

Message not
returned

Message returned Message returned

Configuring the Visibility Timeout

The visibility timeout clock starts ticking once Amazon SQS returns the message. During that time,

the component processes and deletes the message. But what happens if the component fails before
deleting the message? If your system doesn't call DeleteMessage for that message before the visibility
timeout expires, the message again becomes visible to the ReceiveMessage calls placed by the
components in your system and it will be received again. If a message should only be received once,
your system should delete it within the duration of the visibility timeout.

Each queue starts with a default setting of 30 seconds for the visibility timeout. You can change that
setting for the entire queue. Typically, you'll set the visibility timeout to the average time it takes to
process and delete a message from the queue. When receiving messages, you can also set a special
visibility timeout for the returned messages without changing the overall queue timeout.

If you don't know how long it takes to process a message, specify the initial visibility timeout (for
example, 2 minutes) and the period of time after which you can check whether the message is
processed (for example, 1 minute). If the message isn't processed, extend the visibility timeout (for
example, to 3 minutes).

Changing a Message's Visibility Timeout

When you receive a message for a queue and begin to process it, the visibility timeout for the
gueue may be insufficient (for example, you might need to process and delete a message).
You can shorten or extend a message's visibility by specifying a new timeout value using the
ChangeMessageVi si bi | i ty action.

15

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html

Amazon Simple Queue Service Developer Guide
Terminating a Message's Visibility Timeout

For example, if the timeout for a queue is 60 seconds, 15 seconds have elapsed, and you send a

ChangeMessageVi si bi i ty call with Vi si bi lityTi neout setto 10 seconds, the total timeout
value will be the elapsed time (15 seconds) plus the new timeout value (10 seconds), a total of 25
seconds. Sending a call after 25 seconds will result in an error.

Note

The new timeout period will take effect from the time you call the

ChangeMessageVi si bi | i ty action. In addition, the new timeout period will apply only to the
particular receipt of the message. The ChangeMessageVi si bi | i t y action does not affect
the timeout of later receipts of the message or later queues.

Terminating a Message's Visibility Timeout

When you receive a message from a queue, you might find that you actually don't want to process and
delete that message. Amazon SQS allows you to terminate the visibility timeout for a specific message.
This makes the message immediately visible to other components in the system and available for
processing.

To terminate a message's visibility timeout after calling Recei veMessage, call
ChangeMessageVi si bi ity with Vi si bi lityTi meout setto 0 seconds.

APl Actions Related to Visibility Timeout

The following table lists the API actions to use to manipulate the visibility timeout. Use each action's
Vi si bilityTi meout parameter to set or get the value.

To do this... Use this action
Set the visibility timeout for a queue SetQueueAttributes
Get the visibility timeout for a queue GetQueueAttributes

Set the visibility timeout for the received messages without = ReceiveMessage
affecting the queue's visibility timeout

Extending or terminating a message's visibility timeout ChangeMessageVisibility

Extending or terminating the visibility timeout for up to ten ChangeMessageVisibilityBatch
messages.

Message Lifecycle

The following diagram describes the lifecycle of an Amazon SQS message, from creation to deletion.
In this example, a queue already exists.

16

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html

Amazon Simple Queue Service Developer Guide
Dead Letter Queues

=

o Component 1 sends /7 [y, Visibility

| | Timeout
Message A to the queue | ¥ Clock

4000
A A
— ﬁ

A A
A
] e
o Component 2 retrieves Message A~ ' Visibility
from the queue and the visibility (| E‘&e:”‘
timeout period starts 407 J
A A
Com PDI'I!I'It 2 _ A
A A

0

o Component 2 processes Message A Wisibility
and then deletes it from the queue (Timaout
40 b

during the visibility timeout period Clock
25

Component 2
A

Message Lifecycle

1 Component 1 sends Message A to a queue, and the message is distributed across the
Amazon SQS servers redundantly.

2 When Component 2 is ready to process a message, it retrieves messages from the
gueue, and Message A is returned. While Message A is being processed, it remains
in the queue and isn't returned to subsequent receive requests for the duration of the
visibility timeout.

3 Component 2 deletes Message A from the queue to prevent the message from being
received and processed again once the visibility timeout expires.

Note

Amazon SQS automatically deletes messages that have been in a queue for more than
maximum message retention period. The default message retention period is 4 days.
However, you can set the message retention period to a value from 60 seconds to 1,209,600
seconds (14 days) using the SetQueueAttributes action.

Using Amazon SQS Dead Letter Queues

Amazon SQS provides support for dead letter queues. A dead letter queue is a queue that other
(source) queues can target for messages that cannot be processed successfully. You can set aside
and isolate these messages in the dead letter queue to determine why their processing did not
succeed.

Note
The dead letter queue of a FIFO queue must also be a FIFO queue. Similarly, the dead letter
gueue of a standard queue must also be a standard queue.

17

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html

Amazon Simple Queue Service Developer Guide
Setting up a Dead Letter Queue
with the AWS Management Console

To specify a dead letter queue, you can use the AWS Management Console or the query API. You
must do this for each queue that will send messages to a dead letter queue. Multiple queues can target
a single dead letter queue.

Important
You must use the same AWS account to create the dead letter queue and the other queues
that will send messages to the dead letter queue. Also, dead letter queues must reside in the
same region as the other queues that use the dead letter queue. For example, if you create a
gueue in the US East (Ohio) region and you want to use a dead letter queue with that queue,
then both queues must be in the US East (Ohio) region.
Topics
¢ Setting up a Dead Letter Queue with the AWS Management Console (p. 18)
¢ Using a Dead Letter Queue with the Amazon SQS API (p. 19)

¢ Issue: Viewing Messages with the Amazon SQS Console Can Cause the Messages to be Moved
to a Dead Letter Queue (p. 20)

¢ Issue: NumberOfMessagesSent and NumberOfMessagesReceived for the Dead Letter Queue Do
Not Match (p. 21)

Setting up a Dead Letter Queue with the AWS
Management Console

You can use the AWS Management Console to send messages that could not be processed
successfully to a specified dead letter queue.

1. For existing and newly-created source queues, select Use Redrive Policy.

N TN TN e T N T e e T AT N

Dead Letter Queue Settings

Use Redrive Policy €) [I

Dead Letier Queue ﬂ Value must be an existing queue name

Maximum Receives 8 Value must be between 1 and 1000.

2. Type the name of the queue to which source queues will send messages.

an'—"‘\ﬂ T AT T e

Dead Letter Queue Settings

Use Redrive Poli
Dead Letter Queue €) | MyDeadLetterQueue ‘ Value must be an existing queue name

Maximum Receives €) Value must be between 1 and 1000

3. Set Maximum Receives to a value between 1 and 1,000.

M'—"‘“‘M\m AT TN T T e

Dead Lefter Queue Settings

Use Redrive Policy €

Dead Letter Queue €} | MyDeadLetterQueue ‘ Value must be an existing queue name

Maximum Receives €) Value must be between 1 and 1000

18

Amazon Simple Queue Service Developer Guide
Using a Dead Letter Queue with the Amazon SQS API

Note
The Maximum Receives setting (the number of times that a message can be received
before being sent to a dead letter queue) applies only to individual messages.

The following figure shows MyQueue with a Redrive Policy configured to send messages to
MyDeadLetterQueue.

Create New Queue Queue Actions +

Filter by Prefix: Q Enter Text
Name

Fl wmyDeadletterQueue

MyQueue

1 5QS Queue selected
Details Permissions Redrive Policy

Maximum Receives &

Dead Letter Queue am:aws’sgs MyDeadl etterQueus

Using a Dead Letter Queue with the Amazon SQS
API

To specify a dead letter queue using the query API, call either the Cr eat eQueue or
Set QueueAt t ri but es actions and set the maxRecei veCount and deadLet t er Tar get Arn
parameters for the Redri vePol i cy queue attribute.

You can set maxRecei veCount to a value between 1 and 1,000. The deadLet t er Tar get Ar n value
is the Amazon Resource Name (ARN) of the queue that will receive the dead letter messages.

The following Java example shows how to use Set QueueAt t ri but es to set the maxRecei veCount
and deadLet t er Tar get Ar n parameters for the Redr i vePol i cy queue attribute. This example is
based on the Si npl eQueueSer vi ceSanpl e. j ava sample from the AWS SDK for Java.

First, set a string that contains JISON-formatted parameters and values for the Redr i vePol i cy queue
attribute:

String redrivePolicy = "{\"nmaxRecei veCount\":\"5\", \"deadLetterTargetArn\":
\"arn: aws: sgs: us- east - 2: 123456789012: MyDeadLet t er Queue\"}";

Next, use Set QueueAt t ri but esRequest to set the Redri vePol i cy queue attribute:

Set QueueAttri but esRequest queueAttri butes = new Set QueueAttri but esRequest();
Map<String, String> attributes = new HashMap<String, String>();

attributes. put ("RedrivePolicy", redrivePolicy);
queueAttributes.setAttributes(attributes);

queueAttri butes. set QueueUr| (nmyQueuelrl);

sgs. set QueueAttri but es(queueAttri butes);

19

Amazon Simple Queue Service Developer Guide
Issue: Viewing Messages with the Amazon
SQS Console Can Cause the Messages
to be Moved to a Dead Letter Queue

An API query request for this example should look similar to the following:

http://sgs. us-east-2. amazonaws. conl 123456789012/ My Sour ceQueue
?Acti on=Set QueueAttri butes

&Attribute. 1. Val ue=%B¥%2maxRecei veCount %22%8A%R25%22%2C
+9®22deadlLet t er Tar get Ar n922%BAY22ar n¥8Aaws ¥B8Asqs ¥BAus-

east - 2%8A123456789012%3AMyDeadLet t er Queue%22%/ D

&Ver si on=2012- 11- 05

&Attri bute. 1. Name=Redri vePol i cy

Note
Queue names and queue URLSs are case-sensitive.

The API query response should look similar to the following:

<Set QueueAt tri but esResponse xm ns="http://queue. anazonaws. conl
doc/ 2012-11- 05/ ">
<ResponseMet adat a>
<Request | d>40945605- b328- 53b5- aed4- 1cc24a7240e8</ Request | d>
</ ResponselMet adat a>
</ Set QueueAttri but esResponse>

Issue: Viewing Messages with the Amazon SQS
Console Can Cause the Messages to be Moved to a
Dead Letter Queue

Amazon SQS counts viewing a message in the Amazon SQS console against the corresponding
qgueue's redrive policy. Thus, if you view a message in the Amazon SQS console the number of times
specified in the corresponding queue's redrive policy, the message is moved to the corresponding
queue's dead letter queue.

To adjust this behavior you can either increase the Maximum Receives setting for the corresponding
queue's redrive policy, or avoid viewing the corresponding queue's messages in the Amazon SQS
console.

To reproduce this behavior:

1. Inthe Amazon SQS console, create queues (p. 65) named MyQueueA and MyQueueB.
From the list of queues, select MyQueueA. Then choose Queue Actions, Configure Queue.

The Configure MyQueueA dialog box is displayed.
3. For Dead Letter Queue Settings, select Use Redrive Policy.

For Dead Letter Queue, type MyQueueB. (MyQueueB will become the dead letter queue for
MyQueueA.)

For Maximum Receives, type 2 and then choose Save Changes. (After a message is viewed
twice, it will be sent to MyQueueB, the dead letter queue.)

4. With MyQueueA still selected in the list of queues, choose Queue Actions, Send a Message.

20

Amazon Simple Queue Service Developer Guide
Issue: NumberOfMessagesSent and
NumberOfMessagesReceived for the

Dead Letter Queue Do Not Match

The Send a Message to MyQueueA dialog box is displayed.
5. Onthe Message Body tab, type any message text, and then choose Send Message.

Choose Send Another Message, and then send another message to MyQueueA. Then choose
Close.

6. With MyQueueA still selected in the list of queues, choose Queue Actions, View/Delete
Messages.

The Start Polling for Messages dialog box is displayed.
Choose Start Polling for Messages. The messages you sent are displayed.

Wait for 1 minute, and then choose Start Polling for Messages again. The messages you sent
are displayed again. (The Receive Count for both messages becomes 2. This is equal to the
Maximum Receives value that you specified.)

9. Wait for 1 minute, and then choose Start Polling for Messages again. This time, the messages
you sent are no longer displayed. (You have already viewed the messages twice. This is equal to
the Maximum Receives value that you specified.) Choose Close.

10. In the list of queues, clear MyQueueA. Then, select MyQueueB, and choose Queue Actions,
View/Delete Messages.

Choose Start Polling for Messages. The messages you sent are displayed. (MyQueueB
becomes the dead letter queue for MyQueueA.)

Issue: NumberOfMessagesSent and
NumberOfMessagesReceived for the Dead Letter
Queue Do Not Match

If you send a message to a dead letter queue manually, it will be captured by the
Nunmber OF MessagesSent metric.

However, if a message is sent to a dead letter queue as a result of a failed processing attempt, it won't
be captured by the Nunber Of MessagesSent metric. In this case, it's possible for the values of the
Nurmber OF MessagesSent and Nunber O MessagesRecei ved metrics to be different.

Using Amazon SQS Message Attributes

Amazon SQS provides support for message attributes. Message attributes allow you to provide
structured metadata items (such as timestamps, geospatial data, signatures, and identifiers) about
the message. Message attributes are optional and separate from, but sent along with, the message
body. This information can be used by the receiver of the message to help decide how to handle

the message without having to first process the message body. Each message can have up to 10
attributes. To specify message attributes, you can use the AWS Management Console, AWS software
development kits (SDKs), or query API.

Topics
¢ Message Attribute Items and Validation (p. 22)
¢ Message Attribute Data Types and Validation (p. 22)
¢ Using Message Attributes with the AWS Management Console (p. 23)
¢ Using Message Attributes with the AWS SDKs (p. 24)

21

Amazon Simple Queue Service Developer Guide
Message Attribute Items and Validation

¢ Using Message Attributes with the Amazon SQS Query API (p. 26)
« MD5 Message-Digest Calculation (p. 28)

Message Attribute Items and Validation

Each message attribute consists of the following items:

* Name — The message attribute name can contain the following characters: A-Z, a-z, 0-9,
underscore(_), hyphen(-), and period (.). The name must not start or end with a period, and it should
not have successive periods. The name is case sensitive and must be unique among all attribute
names for the message. The name can be up to 256 characters long. The name cannot start with
"AWS." or "Amazon." (or any variations in casing) because these prefixes are reserved for use by
Amazon Web Services.

« Type — The supported message attribute data types are String, Number, and Binary. You can also
provide custom information on the type. The data type has the same restrictions on the content as
the message body. The data type is case sensitive, and it can be up to 256 bytes long. For more
information, see the Message Attribute Data Types and Validation (p. 22) section.

¢ Value — The user-specified message attribute value. For string data types, the value attribute has the
same restrictions on the content as the message body. For more information, see SendMessage.

Name, type, and value must not be empty or null. In addition, the message body should not be empty
or null. All parts of the message attribute, including name, type, and value, are included in the message
size restriction, which is currently 256 KB (262,144 bytes).

Message Attribute Data Types and Validation

Message attribute data types identify how the message attribute values are handled by Amazon SQS.
For example, if the type is a number, Amazon SQS will validate that it's a number.

Amazon SQS supports the following logical data types (with optional custom type labels):

String .<Custom Type> (Optional)
Number .<Custom Type> (Optional)
Binary .<Custom Type> (Optional)

e String — Strings are Unicode with UTF-8 binary encoding. For a list of code values, see http://
en.wikipedia.org/wiki/ASCII#ASCII_printable_characters.

¢« Number — Numbers are positive or negative integers or floating point numbers. Numbers have
sufficient range and precision to encompass most of the possible values that integers, floats, and
doubles typically support. A number can have up to 38 digits of precision, and it can be between
107128 to 10M+126. Leading and trailing zeroes are trimmed.

¢ Binary — Binary type attributes can store any binary data, for example, compressed data, encrypted
data, or images.

¢ Custom Type — You can append a custom type label to the supported data types (String, Number,
and Binary) to create custom data types. This capability is similar to type traits in programming
languages. For example, if you have an application that needs to know which type of number is
being sent in the message, then you could create custom types similar to the following: Number.byte,
Number.short, Number.int, and Number.float. Another example using the binary data type is to use
Binary.gif and Binary.png to distinguish among different image file types in a message or batch

22

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

Amazon Simple Queue Service Developer Guide
Using Message Attributes with
the AWS Management Console

of messages. The appended data is optional and opaque to Amazon SQS, which means that the
appended data isn't interpreted, validated, or used by Amazon SQS. The Custom Type extension
has the same restrictions on allowed characters as the message body.

Using Message Attributes with the AWS
Management Console

You can use the AWS Management Console to configure message attributes. In the Amazon SQS
console, select a queue, click the Queue Actions drop-down list, and then select Send a Message.
The console expects the user to input a Base-64-encoded value for sending a Binary type.

Send a Message to MyQueue X

Message Body Message Aftributes
Name
Type String - (Custom Type: Optional)

Value

What is Massage Attribute?

Name Type Values

Cancel

On the Message Attributes tab, enter a name, select the type, and enter a value for the message
attribute. Optionally, you can also append custom information to the type. For example, the following
screen shows the Number type selected with byte added for customization. For more information
about custom data for the supported data types, see the Message Attribute Data Types and

Validation (p. 22) section.

Send a Message to MyQueue X

ge Body

Name MyMessageAttributeName

Type Number v byte

Value | 24

Enter a numerical value.

What is Message Altribute?
Name Type Values
Cancel

23

Amazon Simple Queue Service Developer Guide
Using Message Attributes with the AWS SDKs

To add an attribute, click Add Attribute. The attribute information will then appear in the Name, Type,
and Values list.

Send a Message to MyQueue X
ge Body
Name
Type String - (Custom Type: Optional)
Value
What is Message Altribute?
Name Type Values
MyMessage... MNumberbyte 24 [\ a4
Cancel

You can also use the console to view information about the message attributes for received messages.
In the console, select a queue, click the Queue Actions drop-down list, and then select View/Delete
Messages. In the list of messages, click Message Details to view the information. For example, you
can see the message attribute size and MD5 message digest.

Message Details X
Message Body Message Aftributes
Name Type Value

MyMessageAlt . Numberbyte |24

Message Alfributes Size: 35 bytes
MDb of Message Altributes: 65fbeb22c3b0bfb014c83ab4g

Close

Using Message Attributes with the AWS SDKs

The AWS SDKs provide APIs in several languages for using message attributes with Amazon SQS.
This section includes some Java examples that show how to work with message attributes. These
examples can be integrated with the Si npl eQueueSer vi ceSanpl e. j ava sample from the SDK for
Java. MessageBody and MessageAttributes checksums are automatically calculated and compared
with the data Amazon SQS returns by the latest SDK for Java. For more information about the SDK for
Java, see Getting Started with the AWS SDK for Java.

The following three Java examples show how to use the MessageAttributeValue method to set the
String, Number, and Binary parameters for the message attributes:

24

http://aws.amazon.com/tools/
http://aws.amazon.com/developers/getting-started/java/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_MessageAttributeValue.html

Amazon Simple Queue Service Developer Guide
Using Message Attributes with the AWS SDKs

String

Map<String, MessageAttributeVal ue> nessageAttributes = new HashMap<>();
nmessageAttributes. put ("attributeNane", new

MessageAttri buteVal ue().w thDataType("String").w thStringVval ue("string-
val ue-attri bute-val ue"));

Number

Map<String, MessageAttributeVal ue> nessageAttributes = new HashMap<>();
nmessageAttributes. put ("attributeNane", new
MessageAttri but eVal ue().wi t hDat aType(" Nunber").w t hStringVval ue("230. 000000000

D00000001")) ;

Binary

Map<String, MessageAttributeVal ue> nessageAttributes = new HashMap<>();
messageAttributes. put ("attributeNane", new

MessageAttri buteVal ue().w t hDat aType("Bi nary").w t hBi naryVal ue(Byt eBuf f er. w ap(new

byte[10])));

The following three examples show how to use the optional custom type for the message attributes:

String—Custom

Map<String, MessageAttributeVal ue> nessageAttri butes = new HashMap<>();
nessageAttri butes. put ("Accountld", new
MessageAttri buteVal ue().wi thDataType("String. Accountld").w thStringVal ue("000

123456")) :

Number—Custom

/1 NOTE Because the type is a nunber, the result in the receive nessage call
will be 123456.
Map<String, MessageAttributeVal ue> nessageAttributes = new HashMap<>();
nmessageAttri butes. put ("Accountld", new
MessageAttri but eVal ue(). wi t hDat aType(" Nunber. Accountld").wi thStringVal ue("000

123456")) :

Binary—Custom

Map<String, MessageAttributeVal ue> nessageAttributes = new HashMap<>();
nmessageAt tri but es. put (" Phonel con", new
MessageAttri but eVal ue().wi t hDat aType("Bi nary. JPEG') . wi t hBi nar yVal ue(Byt eBuf f e
byte[10])));

.wrap(new

25

Amazon Simple Queue Service Developer Guide
Using Message Attributes with
the Amazon SQS Query API

To send a message using one of the previous message attribute examples your code should look
similar to the following:

SendMessageRequest request = new SendMessageRequest ();
request.w t hMessageBody("A test nmessage body.");
request.w t hQueueUr| ("MyQueuelr| StringHere");
request.w t hMessageAttri but es(messageAttri butes);

sqs. sendMessage(request);

Using Message Attributes with the Amazon SQS
Query API

To specify message attributes with the query API, you call the SendMessage, SendMessageBatch, or
ReceiveMessage actions.

A query API request for this example will look similar to the following:

How you structure the AUTHPARAMS depends on how you're signing your API request. For
information on AUTHPARAMS in Signature Version 4, see Examples of Signed Signature Version 4
Requests.

POST http://sqgs. us-east-2. amazonaws. com 123456789012/ MyQueue

?Act i on=SendMessage

&\VessageBody=Thi s+i s+a+t est +message

&\VessageAttribute. 1. Nane=test_attri bute_name_1
&\VessageAttribute. 1. Val ue. StringVal ue=test_attribute_value_1
&\vessageAttri bute. 1. Val ue. Dat aType=Stri ng

&\VessageAttri bute. 2. Nane=test_attri bute_name_2

&\VessageAttri bute. 2. Val ue. StringVal ue=test _attribute_val ue_2
&\vessageAttri bute. 2. Val ue. Dat aType=Stri ng

&Ver si on=2012-11- 05

&Expi res=2014- 05- 05T229%8A5298A43PST

&AUTHPARAMS

Note
Queue names and queue URLSs are case-sensitive.

The query API response should look similar to the following:

HTTP/ 1.1 200 K

<SendMessageResponse>
<SendMessageResul t >
<MD5Cf MessageBody>
f af b0Of 5732ab283681e124bf 8747ed1
</ MD5CF MessageBody >
<MD5Cf MessageAttri but es>
3ae8f 24a165a8cedc005670c81a27295
</ MD5CF MessageAt tri but es>
<Messagel d>

26

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

Amazon Simple Queue Service Developer Guide
Using Message Attributes with
the Amazon SQS Query API

5f ea7756- 0ea4- 451a- a703- a558b933e274
</ Messagel d>
</ SendMessageResul t >
<ResponseMet adat a>
<Request | d>
27daac76- 34dd- 47df - bd01- 1f 6e873584a0
</ Request | d>
</ ResponseMet adat a>
</ SendMessageResponse>

When using SendMessageBatch, the message attributes need to be specified on each individual
message in the batch.

A query API request for this example will look similar to the following:

POST http://sqgs. us-east-2. amazonaws. com 123456789012/ MyQueue

?Act i on=SendMessageBat ch
&SendMessageBat chRequest Entry.
&SendMessageBat chRequest Entry.
&SendMessageBat chRequest Entry.
&SendMessageBat chRequest Entry.
&SendMessageBat chRequest Entry.
&SendMessageBat chRequest Entry.
&SendMessageBat chRequest Entry.
&SendMessageBat chRequest Entry.
&Ver si on=2012-11- 05

&Expi r es=2014- 05- 05T22%8A52%8A43PST
&AUTHPARANS

.ld=test_nmsg_001

. MessageBody=t est ¥%20nmessage%20body%201

.ld=test _nmsg_002

. MessageBody=t est ¥%20nmessage%20body %202

. Del aySeconds=60

. MessageAttribute.1l. Nane=test_attribute_name_1

. MessageAttribute. 1. Val ue. StringVal ue=test_attri
. MessageAttribute. 1. Val ue. Dat aType=Stri ng

NNNNNDNPRFP P

The query API response should look similar to the following:

HTTP/ 1.1 200 K

<SendMessageBat chResponse>
<SendMessageBat chResul t >
<SendMessageBat chResul t Entry>
<l d>test _nsg_001</1d>
<Messagel d>0a5231c7- 8bf f - 4955- be2e- 8dc7c50a25f a</ Messagel d>
<MD5Cf MessageBody>0e024d309850c78cbabeabbef f 7cae71</ MD5OF MessageBody >
</ SendMessageBat chResul t Entry>
<SendMessageBat chResul t Entry>
<l d>t est _nsg_002</1d>
<Messagel d>15eeled3- 87e7- 40cl- bdaa- 2e49968ea7e9</ Messagel d>
<MD5Cf MessageBody>7f b8146a82f 95e0af 155278f 406862c2</ MD5Of MessageBody >
<MD5Cf MessageAttri but es>295c5f al5a51laae6884d1d7¢1d99ca50</
MD5OF MessageAt tri but es>
</ SendMessageBat chResul t Entry>
</ SendMessageBat chResul t >
<ResponseMet adat a>
<Request | d>calad5d0- 8271- 408b- 8d0f - 1351bf 547e74</ Request | d>
</ ResponseMet adat a>
</ SendMessageBat chResponse>

27

bute_val ue_1

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html

Amazon Simple Queue Service Developer Guide
MD5 Message-Digest Calculation

MD5 Message-Digest Calculation

If you want to calculate the MD5 message digest for Amazon SQS message attributes and you're
either using the query API or one of the AWS SDKs that does not support MD5 message digest for
Amazon SQS message attributes, then you must use the following information about the algorithm to
calculate the MD5 message digest of the message attributes.

Note

Currently the AWS SDK for Java supports MD5 message digest for Amazon SQS message
attributes. This is available in the MessageMD5ChecksunHandl er class. If you're using the
SDK for Java, then you do not need to use the following information.

The high-level steps of the algorithm to calculate the MD5 message digest for Amazon SQS message
attributes are:

1. Sort all message attributes by name in ascending order.

2. Encode the individual parts of each attribute (name, type, and value) into a buffer.

3. Compute the message digest of the entire buffer.

To encode a single Amazon SQS message attribute:

1.

Encode the name (length of name [4 bytes] + UTF-8 bytes of the name).
Encode the type (length of type [4 bytes] + UTF-8 bytes of the type).
Encode the transport type (string or binary) of the value [1 byte].

a. For the string transport type, encode 1.
b. For the binary transport type, encode 2.

Note
The string and number logical data types use the string transport type. The binary logical
data type uses the binary transport type.

Encode the attribute value.
a. For a string transport type, encode the attribute value (length [4 bytes] + the UTF-8 bytes of
the value).

b. For a binary transport type, encode the attribute value (length [4 bytes] + use the raw bytes
directly).

The following diagram shows the encoding of the MD5 message digest for a single message attribute:

28

Amazon Simple Queue Service Developer Guide

Long Polling
MessageAttributeValue | MessageAttributeValue | MessageAttributeValue [== = _MDEUﬂs.ciges_[()_ —» MD50fMessageAttributes
Encoded Name l Encoded Datatype | Encoded value |
|. Length | AttributeName l I Length l Datatype | l Encoded MessageAttributeValue) |
‘ 4 bytes UTES bytes - | o4 bytes ‘ UTFS bytes 4

stringValue |= null

|+ 4 bytes UTF8 bytes .

|«

: binaryValue != null

|.ﬂh|-125." # bytes ,‘

Amazon SQS Long Polling

Amazon SQS uses short polling by default, querying only a subset of the servers (based on a weighted
random distribution) to determine whether any messages are available for inclusion in the response.

Short polling occurs when the Vi t Ti neSeconds parameter of a Recei veMessage call is setto 0 in
one of two ways:

¢ The Recei veMessage call sets Wai t Ti neSeconds to 0.

¢ The Recei veMessage call doesn't set Wi t Ti meSeconds and the queue attribute
Recei veMessageWai t Ti mneSeconds is set to 0.

Note
For the Wai t Ti neSeconds parameter of Recei veMessage, a value set between 1 and 20
has priority over any value set for the queue attribute Recei veMessageWai t Ti neSeconds.

Topics
¢ Benefits of Long Polling (p. 29)
¢ Enabling Long Polling with the AWS Management Console (p. 30)
e Enabling Long Polling Using the API (p. 32)
¢ Enabling Long Polling Using the Query API (p. 32)

Benefits of Long Polling

Long polling helps reduce your cost of using Amazon SQS by reducing the number of empty responses
(when there are no messages available to return in reply to a Recei veMessage request sent to an
Amazon SQS queue) and eliminating false empty responses (when messages are available in the
gueue but aren't included in the response):

¢ Long polling reduces the number of empty responses by allowing Amazon SQS to wait until a
message is available in the queue before sending a response. Unless the connection times out, the
response to the Recei veMessage request contains at least one of the available messages, up to
the maximum number of messages specified in the Recei veMessage action.

¢ Long polling eliminates false empty responses by querying all (rather than a limited number) of the
servers.

29

Amazon Simple Queue Service Developer Guide
Enabling Long Polling with the
AWS Management Console

¢ Long polling returns messages as soon any message becomes available.

Enabling Long Polling with the AWS Management
Console

You can enable long polling using the AWS Management Console by setting a Receive Message Wait
Time to a value greater than 0.

To enable long polling with the AWS Management Console for a new queue

1. Signinto the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Select Create New Queue.

Create New Queue Queue Actions v

Filter by Prefix: Q Enter Text

Name

3. Inthe Create New Queue dialog box, type the Queue Name.

Create New Queue X

Region US West (Oregon)
Queue Name € | MyQueus]| |
- |

Configure your new queue by setting queue attributes (optional)

Default Visibility Timeout €) 30 seconds ¥ | value must be between 0 seconds and 12 hours
Message Retention Period €) 4 days T value must
Maximum Message Size €) 256 KB Value must
Delivery Delay ﬂ 0 seconds ~ alue must
Receive Message Wait Time € 0 seconds alue must be between 0 and 20 seconds

Dead Letter Queue Settings

Use Redrive Policy € [

Dead Letier Queue 8 Value must be an existing queue name
Maximum Receives ﬁ Value must be between 1 and 1000.
Cancel Create Queue

4. For Receive Message Wait Time, type a positive integer value, from 1 to 20 seconds, .

30

https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide
Enabling Long Polling with the
AWS Management Console

Create New Queue X

Region €) US West (Oregon)

Queue Name €9 MyQueue

Configure your new queue by setting queue attributes (optional).

Default Visibility Timeout € 30 seconds = falue must be between 0 seconds and 12 hours.
Message Retention Period €) 4 days - 4
Maximum Message Size) 256 KB
Delivery Delay € 0 8econds ~ | yalue must be between 0 seconds and 15 minutes
Receive Message Wait Time € ‘:10\ | seconds value must be between 0 and 20 seconds

Dead Lefter Queue Settings

Use Redrive Policy €@ [

Dead Letter Queue €9 Value must be an existing queue name
Maximum Receives 0 Value must be between 1 and 1000
Cancel Create Queue

5. Choose Create Queue.

You can use the AWS Management Console to change the Receive Message Wait Time setting for
an existing queue.

To set a new Receive Message Wait Time value for an existing queue

Select a queue.

From the Queue Actions drop-down list, select Configure Queue.

Create New Queue Queue Actions v

Filter by Prefix: Q) Eni<ji et

View/Delete Messages
Name

Add a Permission

MyQueue
Purge Queue
Delete Queue

Subscribe Queue to SNS Topic

3. For Receive Message Wait Time, type a positive integer value.

31

Amazon Simple Queue Service Developer Guide
Enabling Long Polling Using the API

Configure MyQueue X
Queue Seftings
Default Visibility Timeout € 30 seconds ¥
Message Retention Period €) 4 days -
Maximum Message Size €) 256 KB
Delivery Delay €} 0 seconds =
Receive Message Wait Time 0 ‘ 5| | seconds

Dead Letter Queue Settings
Use Redrive Policy €3 [
Dead Letier Queue 0 Value must be an existing queue name

Maximum Receives 0 Value must be between 1 and 1000.

4. Choose Save Changes.

Enabling Long Polling Using the API

The following table lists the API actions to use.

Use this action Use...

Recei veMessage Wi t Ti meSeconds parameter

Cr eat eQueue Recei veMessageWai t Ti mneSeconds attribute

Set QueueAttri butes Recei veMessageWai t Ti neSeconds attribute
Important

If you decide to implement long polling with multiple queues, we recommend using one thread
for each queue instead of trying to use a single thread for polling all of the queues.
When you use one thread for each queue, your application can process the messages in each
of the queues as they become available. A single thread for multiple queues might cause your
application to become blocked from processing available messages in the other queues while
waiting (up to 20 seconds) for a queue that doesn't have any available messages.

In most cases, when using long polling, set the timeout value to a maximum of 20 seconds. If the 20-
second maximum doesn't work for your application, set a shorter timeout for long polling (the minimum
is 1 second). If you don't use an AWS SDK to access Amazon SQS, or if you configure an AWS

SDK to have a shorter timeout, you may need to modify your Amazon SQS client to allow for longer
requests or to use a shorter timeout for long polling.

Enabling Long Polling Using the Query API

The following example enables long polling by calling the Recei veMessage action with the
Wi t Ti meSeconds parameter set to 10 seconds.

How you structure AUTHPARAMS depends on how you sign your API request. For information on
AUTHPARAMS in Signature Version 4, see Examples of Signed Signature Version 4 Requests in the
Amazon Web Services General Reference.

32

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

Amazon Simple Queue Service Developer Guide
Delay Queues

http://sqgs. us-east-2. amazonaws. conf 123456789012/t est Queue/
?Act i on=Recei veMessage

&Wi t Ti meSeconds=10

&VvaxNunber Of Messages=5

&Vi si bilityTi meout =15

&Attri but eName=Al | ;

&Ver si on=2012-11- 05

&Expi res=2013- 10- 25T22%3A52%8A43PST

&AUTHPARANS

The following example shows another way to enable long polling. Here, the
Recei veMessageWi t Ti meSeconds attribute for the Set QueueAt t ri but es action is set to 20
seconds.

http://sqgs. us-east-2. amazonaws. conl 123456789012/ t est Queue/
?Acti on=Set QueueAttri butes

&At tri but e. Name=Recei veMessageWai t Ti meSeconds

&Attri but e. Val ue=20

&Ver si on=2012-11- 05

&Expi r es=2013- 10- 25T22%8A52%8A43PST

&AUTHPARANS

Amazon SQS Delay Queues

Topics
¢ Creating Delay Queues with the AWS Management Console (p. 34)
¢ Creating Delay Queues with the Query API (p. 36)

Delay queues let you postpone the delivery of new messages in a queue for the specified number

of seconds. If you create a delay queue, any message that you send to that queue is invisible to
consumers for the duration of the delay period. You can use the Cr eat eQueue action to create a delay
gueue by setting the Del aySeconds attribute to any value between 0 and 900 (15 minutes). You can
also change an existing queue into a delay queue using the Set QueueAt tri but es action to set the
gueue's Del aySeconds attribute.

Note

For standard queues, the per-queue delay setting isn't retroactive: If you change the
Del aySeconds attribute, it doesn't affect the delay of messages already in the queue.
For FIFO queues, the per-queue delay setting is retroactive: If you you change the

Del aySeconds attribute, it affects the delay of messages already in the queue.

Delay queues are similar to visibility timeouts because both features make messages unavailable to
consumers for a specific period of time. The difference between delay queues and visibility timeouts is
that for delay queues a message is hidden when it's first added to queue, whereas for visibility timeouts
a message is hidden only after a message is retrieved from the queue. The following figure illustrates
the relationship between delay queues and visibility timeouts.

33

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html

Amazon Simple Queue Service Developer Guide
Creating Delay Queues with
the AWS Management Console

SendMessage ReceiveMessage ReceiveMessage

Request ReceiveMessage Request ReceiveMessage Request
Reguest Reguest

Visibility Timeout

Delay Seconds Weconds)

Time

Message not
returned

Message not
returned

Message added to

M turnad M d
queue essage returm essage returna

Note

A message is considered to be in flight after it's received from a queue by a consumer, but not
yet deleted from the queue.

For standard queues, there can be a maximum of 120,000 inflight messages per queue. If
you reach this limit, Amazon SQS returns the Over Li mi t error message. To avoid reaching
the limit, you should delete messages from the queue after they're processed. You can also
increase the number of queues you use to process your messages.

For FIFO queues, there can be a maximum of 20,000 inflight messages per queue. If you
reach this limit, Amazon SQS returns no error messages.

To set delay seconds on individual messages, rather than for an entire queue, use message timers.
If you send a message with a message timer, Amazon SQS uses the message timer's delay seconds
value instead of the delay queue's delay seconds value. For more information, see Amazon SQS
Message Timers (p. 37).

Creating Delay Queues with the AWS Management
Console

You can create a delay queue using the AWS Management Console by setting a Delivery Delay to a
value greater than 0.

To create a delay queue with the AWS Management Console

1. Signinto the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Choose Create New Queue.

Create New Queue Queue Actions v

Filter by Prefix: Q) Enter Text

Name

3. Inthe Create New Queue dialog box, type your Queue Name.

34

https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide
Creating Delay Queues with
the AWS Management Console

Create New Queue X

Region) US West (Orsgon)
Queue Name € | MyQueue|

Configure your new queue by setting queue attributes (optional).

Default Visibility Timeout € 30 seconds = alue must be between 0 seconds and 12 hours
Message Retention Period €) 4 days - 4
Maximum Message Size) 256 KB
Defivery Delay € 0 8econds ~ | yvajue must be between 0 seconds and 15 minutes
Receive Message Wait Tme € 0 seconds value must be between 0 and 20 seconds

Dead Lefter Queue Settings
Use Redrive Policy @ [

Dead Letter Queue €9 Value must be an existing queue name

Maximum Receives 0 Value must be between 1 and 1000

Cancel Create Queue

4. For Delivery Delay, type a positive integer value.

Create New Queue X

Region €) US west (Oregon)

Queue Name ﬂ MyQueue

Configure your new queue by setting queue attributes (optional)

Default Visibility Timeout €) | 30 seconds ¥ | value must be between 0 seconds and 12 hours
Message Retention Period € 4 days ¥ | value mustbe between 1 minute and 14 days
Maximum Message Size €9 256 KB Value must be between 1 and 256 KB
Delivery Delay €0 30 seconds v -

Receive Message Wait Time ﬁ 0 seconds

Dead Letter Queue Settings
Use Redrive Policy € [

name

Dead Letter Queue 0 Value must be

n existing queue

Maximum Receives €) Value must be

5. Choose Create Queue.

You can use the AWS Management Console to change the Delivery Delay setting for an existing
queue by selecting the Configure Queue action with an existing queue selected.

To set a new delivery delay value for an existing queue

1. Select an existing queue and then from the Queue Actions drop-down box select Configure
Queue.

35

Amazon Simple Queue Service Developer Guide
Creating Delay Queues with the Query API

Create New Queue Queue Actions v

Filter by Prefix: Q Entd Send a Message

View/Delete Messages

Name

Add a Permission

MyQueue
Purge Queue

Delete Queue

Subscribe Queue to SNS Topic

2. Change the Delivery Delay value to a positive integer.

Configure MyQueue X

Queue Seftings

Defauit Visibility Timeout €9 30 seconds ~ alue must be between 0 seconds and 12 hours
Message Retention Period €) 4 days - alue must be between 1 minute and 14 days
Maximum Message Size @ 256 KB alue must be betwee 2
Delivery Delay @ 0 seconds ~ alue must be between 0 seconds and 15 minutes
Receive Message Wait Time € 0 seconds alue must be between 0 and 20 seconds

Dead Lefter Queue Settings
Use Redrive Policy € [J]
Dead Letter Queue €9 Value must be an existing queue name

Maximum Receives 0 Value must be between 1 and 1000

3. Choose Save Changes.

Creating Delay Queues with the Query API

The following Query APl example calls the Cr eat eQueue action to create a delay queue that hides
each message from consumers for the first 45 seconds that the message is in the queue.

How you structure the AUTHPARAMS depends on how you're signing your API request. For
information on AUTHPARAMS in Signature Version 4, see Examples of Signed Signature Version 4
Requests.

http://sqgs. us-east-2. amazonaws. com
?Act i on=Cr eat eQueue

&QueueNane=t est Queue

&Attri bute. 1. Nane=Del aySeconds
&Attri bute. 1. Val ue=45

&Ver si on=2012- 11- 05

&Expi r es=2015- 12- 20T22%8A52%8A43PST
&AUTHPARANS

Note
Queue names and queue URLSs are case-sensitive.

You can also change an existing queue into a delay queue by changing the DelaySeconds attribute
from its default value of O to a positive integer value that is less than or equal to 900. The following

36

http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

Amazon Simple Queue Service Developer Guide
Message Timers

example calls Set QueueAt tri but es to set the Del aySeconds attribute of a queue named
t est Queue to 45 seconds.

http://sqgs. us-east-2. amazonaws. conl 123456789012/ t est Queue/
?Acti on=Set QueueAttri butes

&Del aySeconds=45

&Ver si on=2012-11- 05

&Expi r es=2015- 12- 20T22%8A52%8A43PST

&AUTHPARANS

Amazon SQS Message Timers

Amazon SQS message timers allow you to specify an initial invisibility period for a message that you're
add to a queue. For example, if you send a message with the Del aySeconds parameter set to 45, the
message won't be visible to consumers for the first 45 seconds during which the message stays in the
queue. The default value for Del aySeconds is 0.

Note

FIFO queues don't support timers on individual messages.

A message is considered to be in flight after it's received from a queue by a consumer, but not
yet deleted from the queue.

For standard queues, there can be a maximum of 120,000 inflight messages per queue. If
you reach this limit, Amazon SQS returns the Over Li m t error message. To avoid reaching
the limit, you should delete messages from the queue after they're processed. You can also
increase the number of queues you use to process your messages.

To set a delay period that applies to all messages in a queue, use delay queues (p. 33). A message
timer setting for an individual message overrides any Del aySeconds value that applies to the entire
delay queue.
Topics

¢ Creating Message Timers Using the Console (p. 37)

¢ Creating Message Timers Using the Query API (p. 39)

Creating Message Timers Using the Console

To send a message with a message timer using the AWS Management Console

1. Signin to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Select a queue.

Create New Queue Queue Actions v

Filter by Prefix: Q Enter Text
Name

MyQueue

3. From the Queue Actions drop-down list, select Send a Message.

Note
The Queue Actions drop-down list is available only if a queue is selected.

37

https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide
Creating Message Timers Using the Console

Create New Queue Queue Actions v

Filter by Prefix: | Q Entd

View/Delete sages

Name Configure Queue

Add a Permission
MyQueue
Purge Queue

Delete Queue

Subscribe Queue to SNS Topic

4. Inthe Send a Message to MyQueue dialog box, type a message.

Send a Message to MyQueue X

Body Message Altributes

Enter the text of a message you want to send.

This is a test message with a message timer.

] Delay delivery of this message by |0 seconds ¥ | {(up to 15 minutes)

-

5. Inthe Delay delivery of this message by text box enter a delay value (for example, 30) .

Send a Message to MyQueue X

Body Message Aftributes

Enter the text of a message you want to send.

This iz a test message with a message timer.

Delay delivery of this message by |30 seconds * | (upto 15 minutes).l

o

6. Choose Send Message.

7. Inthe Send a Message to MyQueue confirmation box choose Close.

38

Amazon Simple Queue Service Developer Guide
Creating Message Timers Using the Query API

Send a Message to MyQueue X

Your message has been sent and will be ready to be received in 30 seconds.
Note: It may take up to 80 seconds for the Messages Delayed attribute to update.
Sent Message Attributes:

Message Idenfifier: 429218f3-7542-4d8f-b345-17
MD5 of Body: 69ff9efc67782943833ba5932,

Creating Message Timers Using the Query API

The following Query API example applies a 45 second initial visibility delay for a single message sent
with SendMessage.

How you structure the AUTHPARAMS depends on how you're signing your API request. For
information on AUTHPARAMS in Signature Version 4, see Examples of Signed Signature Version 4
Requests.

http://sqgs. us-east-2. amazonaws. conf 123456789012/t est Queue/
?Act i on=SendMessage

&\vessageBody=Thi s+i s+a+t est +nessage

&At t ri but e. Name=Del aySeconds

&Attri but e. Val ue=45

&Ver si on=2012-11- 05

&EXpi res=2015- 12- 18T22%3A52%8A43PST

&AUTHPARANS

Note
Queue names and queue URLSs are case-sensitive.

You can also use the Query APl SendMessageBat ch action to send up to ten messages with
message timers. You can assign a different Del ay Seconds value to each message or assign no value
at all. If you do not set a value for DelaySeconds, the message might still be subject to a delay if you're
adding the message to a delay queue. For more information about delay queues, see Amazon SQS
Delay Queues (p. 33). The following example uses SendMessageBat ch to send three messages:

one message without a message timer and two messages with different values for Del ay Seconds.

http://sqgs. us-east-2. amazonaws. con 123456789012/ t est Queue/

?Act i on=SendMessageBat ch

&SendMessageBat chRequest Entry. 1. | d=t est _nsg_no_nessage_ti mer
&SendMessageBat chRequest Entry. 1. MessageBody=t est ¥20nessage%20body %201
&SendMessageBat chRequest Entry. 2. | d=t est _nsg_del ay_45_seconds
&SendMessageBat chRequest Entry. 2. MessageBody=t est ¥20nessage%20body %202
&SendMessageBat chRequest Entry. 2. Del aySeconds=45

39

http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

Amazon Simple Queue Service Developer Guide
Managing Large Messages Using Amazon S3

&SendMessageBat chRequest Entry. 3. | d=t est _nsg_del ay_2_mi nut es
&SendMessageBat chRequest Entry. 3. MessageBody=t est ¥20nessage%20body%203
&SendMessageBat chRequest Ent ry. 3. Del aySeconds=120

&Ver si on=2012-11- 05

&Expi res=2015- 12- 18T22%3A52%8A43PST

&AUTHPARANS

Managing Large Amazon SQS Messages Using
Amazon S3

You can manage Amazon SQS messages with Amazon S3. This is especially useful for storing and
retrieving messages with a message size of up to 2 GB. To manage Amazon SQS messages with
Amazon S3, use the Amazon SQS Extended Client Library for Java. Specifically, you use this library
to:

¢ Specify whether messages are always stored in Amazon S3 or only when a message's size exceeds
256 KB.

¢ Send a message that references a single message object stored in an Amazon S3 bucket.
« Get the corresponding message object from an Amazon S3 bucket.
« Delete the corresponding message object from an Amazon S3 bucket.

Note

You can use the Amazon SQS Extended Client Library for Java only to manage Amazon
SQS messages with Amazon S3. you cannot use the AWS CLI, the Amazon SQS console,
the Amazon SQS HTTP API, or any of the AWS SDKs (except for the SDK for Java one, as
described later in this topic).

The Amazon SQS Extended Client Library for Java doesn't currently support FIFO queues.

Prerequisites

To manage Amazon SQS messages with Amazon S3, you need the following:

¢ AWS SDK for Java — There are two different ways to include the SDK for Java in your project. You
can either download and install the SDK for Java, or if you use Maven to obtain the Amazon SQS
Extended Client Library for Java, then the SDK for Java is included as a dependency. The SDK for
Java and Amazon SQS Extended Client Library for Java require the J2SE Development Kit 7.0 or
later. For information about downloading the SDK for Java, see SDK for Java. For more information
about using Maven, see the note following this list.

¢« Amazon SQS Extended Client Library for Java — If you do not use Maven, then you must add the
package file, amazon- sqs-j ava- ext ended-cl i ent-1ib. j ar, to the Java build class path. For
information about downloading, see Amazon SQS Extended Client Library for Java.

¢ Amazon S3 bucket — You must create a new Amazon S3 bucket or use an existing bucket to store
messages. We recommend that you create a new bucket for this purpose. To control bucket space
and charges to your AWS account, you should also set a lifecycle configuration rule on the bucket to
permanently delete message objects after a certain period of time following their creation date. For
instructions, see Managing Lifecycle Configuration or the example (p. 41) following this section.

Note
The Amazon SQS Extended Client Library for Java includes support for Maven as follows:

<dependency>

40

http://aws.amazon.com/sdkforjava/
https://github.com/awslabs/amazon-sqs-java-extended-client-lib
http://docs.aws.amazon.com/AmazonS3/latest/UG/LifecycleConfiguration.html
http://maven.apache.org/

Amazon Simple Queue Service Developer Guide
Using the Amazon SQS Extended Client Library for Java

<groupl d>com amazonaws</ gr oupl d>
<artifactld>anazon-sqs-j ava-extended-client-lib</artifactld>
<versi on>1. 0. 0</ ver si on>

</ dependency>

Using the Amazon SQS Extended Client Library for
Java

After you have met the prerequisites (p. 40), use the following Java code example to get started
managing Amazon SQS messages with Amazon S3.

This example creates an Amazon S3 bucket with a random name and adds a lifecycle rule to
permanently delete objects after 14 days. It then creates a queue and sends to the queue a random
message that is over 256 KB in size. The message is stored in the Amazon S3 bucket. The example
then retrieves the message and prints out information about the retrieved message. The example then
deletes the message, queue, and bucket.

import java.util.Arrays;

import java.util.lterator;

import java.util.List;

import java.util.UU D

i mport com amazon. sgs.j avanessagi ng. AmazonSQSExt endedd i ent ;

i mport com amazonaws. servi ces. sqs. AnazonSQs;

i mport com anmzonaws. servi ces. sgs. AnazonSQSC i ent ;

i mport org.joda.tine. DateTine;

i mport org.joda.tine.format. Dat eTi neFor mat ;

i mport com anazonaws. Amazond i ent Excepti on;

i mport com anmzonaws. aut h. AWSCr edent i al s;

i mport com amazonaws. aut h. profile. Profil eCredenti al sProvi der;
i mport com anmzonaws. r egi ons. Regi on;

i mport com amazonaws. r egi ons. Regi ons;

i mport com anazonaws. servi ces. s3. AmazonS3;

i mport com anmzonaws. servi ces. s3. AnazonS3d i ent ;

i mport com anmzonaws. servi ces. s3. nodel . Bucket Li f ecycl eConfi gurati on;
i mport com anmzonaws. servi ces. s3. nodel . Li st Ver si onsRequest ;

i mport com anmzonaws. servi ces. s3. nodel . Cbj ect Li sti ng;

i mport com amazonaws. servi ces. s3. nodel . S3Chj ect Sunmary;

i mport com anazonaws. servi ces. s3. nodel . S3Ver si onSunmary;

i mport com anmzonaws. servi ces. s3. nodel . Ver si onLi sti ng;

i mport com amazonaws. servi ces. sgs. nodel . Cr eat eQueueRequest ;

i mport com amazonaws. servi ces. sgs. nodel . Del et eMessageRequest ;

i mport com amazonaws. servi ces. sqs. nodel . Del et eQueueRequest ;

i mport com amazonaws. servi ces. sgs. nodel . Message;

i mport com amazonaws. servi ces. sgs. nodel . Recei veMessageRequest ;
i mport com amazonaws. servi ces. sgs. nodel . SendMessageRequest ;

i mport com amazon. sgs. j avanmessagi ng. Ext endedd i ent Confi gur ati on;

public class SQSExtendedd i ent Exanpl e {

private static final String s3BucketNane = UUI D.randonUl D() + "-"
+ Dat eTi meFormat . forPattern("yyMvwd- hhmss"). print (new DateTi nme());

public static void main(String[] args) {

AWBCredentials credentials = null;

try {

41

Amazon Simple Queue Service Developer Guide
Using the Amazon SQS Extended Client Library for Java

credentials = new

Profil eCredenti al sProvider("default").getCredential s();

profiles file.

} catch (Exception e) {
t hrow new Anmazond i ent Excepti on(
"Cannot | oad the AWS credentials fromthe expected AWS credenti al

+ "Make sure that your credentials file is at the correct
+ "l ocation (/honme/$USER/ . aws/ credentials) and is in a valid

format.", e);

to

}

AmazonS3 s3 = new AmazonS3Cl i ent (credential s);
Regi on s3Regi on = Regi on. get Regi on(Regi ons. US_WEST_2) ;
s3. set Regi on(s3Regi on) ;

/1 Set the Amazon S3 bucket name, and set a lifecycle rule on the bucket
/1 pernanently del ete objects a certain nunber of days after

/1 each object's creation date.
/1 Then create the bucket, and enabl e nmessage objects to be stored in

t he bucket.

Bucket Li f ecycl eConfiguration. Rule expirati onRul e = new

Bucket Li fecycl eConfi guration. Rul e();

expi rati onRul e. wi t hExpirati onl nDays(14).w t hStatus("Enabl ed");
Bucket Li fecycl eConfiguration |ifecycleConfig = new

Bucket Li fecycl eConfi guration().w thRul es(expirationRule);

s3. creat eBucket (s3Bucket Nane) ;
s3. set Bucket Li f ecycl eConfi gurati on(s3Bucket Narme, |ifecycleConfig);
Systemout. println("Bucket created and configured.");

/1 Set the SQS extended client configuration with |arge payl oad support

enabl ed.

Ext endedd i ent Confi gurati on extendedd ientConfig = new

Ext endedd i ent Confi gurati on()

.wi t hLar gePayl oadSupport Enabl ed(s3, s3Bucket Nane) ;

AmazonSQS sqgsExt ended = new AnazonSQSExt endedd i ent (new

AmazonSQSd i ent (credenti al s), extendedd ientConfig);

Regi on sqgsRegi on = Regi on. get Regi on(Regi ons. US_WEST_2) ;
sqsExt ended. set Regi on(sqsRegi on) ;

/!l Create a long string of characters for the nessage object to be stored
t he bucket.

int stringlLength = 300000;

char[] chars = new char[stringLength];

Arrays.fill(chars, "x');

String nmyLongString = new String(chars);

/1 Create a nmessage queue for this exanple.
String QueueNanme = "QueueNane" + UU D.randonJUl D().toString();
Cr eat eQueueRequest creat eQueueRequest = new

Cr eat eQueueRequest (QueueNane) ;

String myQueuelr| =

sqsExt ended. cr eat eQueue(cr eat eQueueRequest). get Queuelr| () ;

Systemout. println("Qeue created.");

/1 Send the message.

42

Amazon Simple Queue Service Developer Guide
Using the Amazon SQS Extended Client Library for Java

SendMessageRequest nmyMessageRequest = new SendMessageRequest (myQueuelr |,
nyLongString);

sqsExt ended. sendMessage(myMessageRequest) ;

Systemout. println("Sent the nessage.");

/'l Receive nessages, and then print general information about them
Recei veMessageRequest recei veMessageRequest = new

Recei veMessageRequest (nyQueuelr) ;
Li st <Message> nessages =

sqsExt ended. r ecei veMessage(recei veMessageRequest) . get Messages() ;

for (Message nessage : nessages) {
Systemout. println("\nMessage received:");

Systemout.printin(" [ID " + nessage.getMessageld());
Systemout.println(" Receipt handle: " + nessage. getRecei ptHandl e());
Systemout.println(" Message body (first 5 characters): " +

message. get Body() . substring(0, 5));

/1 Delete the nessage, the queue, and the bucket.

String nmessageRecei pt Handl e = nmessages. get (0) . get Recei pt Handl e() ;

sqsExt ended. del et eMessage(new Del et eMessageRequest (nyQueuelr |,
messageRecei pt Handl e)) ;

Systemout.println("Del eted the message.");

sqsExt ended. del et eQueue(new Del et eQueueRequest (nyQueuelrl));
Systemout.println("Del eted the queue.");

del et eBucket AndAl | Cont ent s(s3);
Systemout. println("Del eted the bucket.");

}
private static void del et eBucket AndAl | Cont ent s(AmazonS3 client) {

oj ectListing objectListing = client.|istObjects(s3Bucket Nane);

while (true) {
for (lterator<?> iterator =
obj ect Li sting.getObjectSunmaries().iterator(); iterator.hasNext();) {
S3bj ect Sunmary obj ect Sunmary = (S30hj ect Sunmary) iterator. next();
client.del et eObj ect (s3Bucket Nane, obj ect Sunmary. getKey());

}

if (objectListing.isTruncated()) {
obj ectListing = client.|istNextBatchO Objects(objectlListing);
} else {
br eak;
}
i

VersionListing list = client.listVersions(new
Li st Ver si onsRequest (). wi t hBucket Nanme(s3Bucket Nan®e)) ;

for (lterator<?> iterator = |list.getVersionSunmaries().iterator();
iterator.hasNext();) {
S3Ver si onSunmary s = (S3VersionSummary) iterator.next();
client. del et eVersi on(s3Bucket Nane, s.getKey(), s.getVersionld());

}

43

Amazon Simple Queue Service Developer Guide
Amazon SQS and JMS

client.del et eBucket (s3Bucket Nane) ;

Using JMS with Amazon SQS

The Amazon SQS Java Messaging Library is a JMS interface for Amazon SQS that lets you take
advantage of Amazon SQS in applications that already use JMS. The interface lets you use Amazon
SQS as the JMS provider with minimal code changes. Together with the AWS SDK for Java, the
Amazon SQS Java Messaging Library lets you create JMS connections and sessions, as well as
producers and consumers that send and receive messages to and from Amazon SQS queues.

The library supports sending and receiving messages to a queue (the JMS point-to-point model)
according to the JMS 1.1 specification. The library supports sending text, byte, or object messages
synchronously to Amazon SQS queues. The library also supports receiving objects synchronously or
asynchronously.

For information about features of the Amazon SQS Java Messaging Library that support the JMS 1.1
specification, see Supported JMS 1.1 Implementations (p. 63) and the Amazon SQS FAQs.

Note
The Amazon SQS Java Message Service (JMS) Client doesn't currently support FIFO
queues.

Topics
¢ Prerequisites (p. 44)
¢ Getting Started with the Amazon SQS Java Messaging Library (p. 45)
¢ Receiving Messages Asynchronously (p. 48)
¢ Using Client Acknowledge Mode (p. 49)
¢ Using Unordered Acknowledge Mode (p. 49)
¢ Code Examples (p. 50)
e Supported JMS 1.1 Implementations (p. 63)

Prerequisites

Before you begin, you must have the following prerequisites:
¢ SDK for Java

There are two ways to include the SDK for Java in your project:
» Download and install the SDK for Java.

» Use Maven to get the Amazon SQS Java Messaging Library. (The SDK for Java is included
as a dependency. The SDK for Java and Amazon SQS Java Messaging Library require J2SE
Development Kit 6.0 or later.)

For information about downloading the SDK for Java, see SDK for Java.
¢ Amazon SQS Java Messaging Library

If you do not use Maven, you must add the package file amazon- sqgs-j ava- nessagi ng-1ib. j ar
to the Java build class path.

44

http://docs.oracle.com/javaee/6/api/javax/jms/package-summary.html
http://aws.amazon.com/sqs/faqs/
http://aws.amazon.com/sdkforjava/

Amazon Simple Queue Service Developer Guide
Getting Started with the Amazon
SQS Java Messaging Library

For information about downloading the library, see Amazon SQS Java Messaging Library.

Note

The Amazon SQS Java Messaging Library includes support for Maven and the Spring
Framework.

For code samples that use Maven, the Spring Framework, and the Amazon SQS Java
Messaging Library, see Code Examples (p. 50).

<dependency>
<groupl d>com anmazonaws</ gr oupl d>
<artifactld>anazon-sqs-j ava- nessagi ng-lib</artifactld>
<versi on>1. 0. 0</ ver si on>
<type>j ar</type>

</ dependency>

¢ Amazon SQS Queue

Create a queue using the AWS Management Console for Amazon SQS, the Cr eat eQueue API, or
the wrapped Amazon SQS client included in the Amazon SQS Java Messaging Library.

For information about creating a queue with Amazon SQS using either the AWS Management
Console or the Cr eat eQueue API, see Creating a Queue (p. 65).

For information about using the Amazon SQS Java Messaging Library, see Getting Started with the
Amazon SQS Java Messaging Library (p. 45).

Getting Started with the Amazon SQS Java
Messaging Library

To get started using JMS with Amazon SQS, use the code examples in this section. The following
sections show how to create a JMS connection and a session, and how to send and receive a
message.

The wrapped Amazon SQS client object included in the Amazon SQS Java Messaging Library checks
if an Amazon SQS queue exists. If the queue does not exist, the client creates it.

Creating a JMS Connection

1. Create a connection factory and call the cr eat eConnect i on method against the factory.

Note

The EnvironmentVariableCredentialsProvider class in the following example assumes
that the AWS_ACCESS_KEY_| D (or AWS_ACCESS_KEY) and AWS_SECRET_KEY (or
AWS_SECRET_ACCESS_KEY) environment variables are set.

For more information on providing the required credentials to the factory, see Interface
AWSCredentialsProvider.

/1 Create the connection factory using the environnent variable credential
provi der.
/1 Connections this factory creates can talk to the queues in us-east-2
region.
SQSConnect i onFactory connectionFactory =
SQSConnecti onFactory. bui | der ()
.wi t hRegi on(Regi on. get Regi on(Regi ons. US_EAST_2))

45

https://github.com/awslabs/amazon-sqs-java-messaging-lib
http://maven.apache.org/
http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-framework/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/EnvironmentVariableCredentialsProvider.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/AWSCredentialsProvider.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/AWSCredentialsProvider.html

Amazon Simple Queue Service Developer Guide
Getting Started with the Amazon
SQS Java Messaging Library

. Wi t hAWSCr edent i al sProvi der (new
Envi ronnent Vari abl eCredenti al sProvi der())
Lbui ld();

/'l Create the connection.
SQ@SConnecti on connection = connectionFactory. createConnection();

The SQSConnect i on class extends j avax. j ms. Connect i on. Together with the JMS standard
connection methods, SQ@SConnect i on offers additional methods, such as get AmazonSQSd i ent
and get W appedAnazonSQSCl i ent . Both methods let you perform administrative

operations not included in the JMS specification, such as creating new queues. However, the

get W appedAmazonSQSd i ent method also provides a wrapped version of the Amazon SQS
client used by the current connection. The wrapper transforms every exception from the client into
an JMSExcept i on, allowing it to be more easily used by existing code that expects JMSExcept i on
occurrences.

. You can use the client objects returned from get AmazonSQSCl i ent and

get W appedAmazonSQSd i ent to perform administrative operations not included in the JMS
specification (for example, you can create an Amazon SQS queue).

If you have existing code that is expecting JMS exceptions, then you should use
get W appedAnmazonSQSd i ent :

¢ If you use get W appedAmazonSQSC i ent , the returned client object transforms all exceptions
into JMS exceptions.

¢ If you use get AmazonSQSC i ent , the exceptions will be Amazon SQS exceptions.

Creating an Amazon SQS Queue

The wrapped client object checks if an Amazon SQS queue exists.

If a queue does not exist, the client creates it. If the queue does exist, then the function does
not return anything. For more information, see the "Create the queue if needed" section in the
TextMessageSender.java (p. 52) example.

/1l Get the wrapped client
AmazonSQSMessagi ngC i ent W apper client =

connecti on. get W appedAmazonSQSC i ent () ;

/1l Create an SQS queue naned ' Test Queue' — if it does not already exist.
if (!client.queueExists("TestQueue")) {

}

client.createQueue("Test Queue");

Sending Messages Synchronously

1.

2.

When the connection and the underlying Amazon SQS queue are ready, create a non-transacted
JMS session with AUTO_ACKNOW.EDGE mode.

/1 Create the non-transacted session with AUTO ACKNOALEDGE node
Sessi on session = connecti on. creat eSessi on(fal se,
Sessi on. AUTO_ACKNOWNLEDCGE) ;

To send a text message to the queue, create a JIMS queue identity and a message producer.

/!l Create a queue identity with nane ' Test Queue' in the session

46

Amazon Simple Queue Service Developer Guide
Getting Started with the Amazon
SQS Java Messaging Library

Queue queue = session. creat eQueue(" Test Queue");

/1l Create a producer for the 'TestQueue'.
MessagePr oducer producer = session. createProducer(queue);

3. Create a text message and send it to the queue.

/1l Create the text nessage.
Text Message nessage = session. createText Message("Hello World!");

/1 Send the message.
producer. send(message) ;
System out. println("JMS Message

+ nessage. get IMSMessagel ()) ;

Receiving Messages Synchronously

1. To receive messages, create a consumer on the same queue and invoke the st art method.

You can call the st art method on the connection at any time. However, the consumer will not begin
to receiving messages until you call it.

/1l Create a consumer for the 'TestQueue'.
MessageConsumer consumer = session. cr eat eConsuner (queue) ;

/1 Start receiving incom ng messages.
connection.start();

2. Call the r ecei ve method on the consumer with a timeout set to 1 second and print the content of
the received message.

/'l Receive a nessage from' Test Queue' and wait up to 1 second
Message recei vedMessage = consumner.recei ve(1000);

/1 Cast the received nessage as Text Message and print the text to screen.
if (receivedMessage != null) {
Systemout. println("Received: " + ((TextMessage)
recei vedMessage) . get Text ());

}

3. Close the connection and the session.

/1 Close the connection (and the session).
connecti on. cl ose();

The output will look similar to the following:

JM5 Message | D: 8exanpl e- 588b- 44e5- bbcf - d816exanpl e2
Recei ved: Hello Wrld!

Note

You can use the Spring Framework to initialize these objects.

For additional information, see Spri ngExanpl eConfi g. xm , Spri ngExanpl e. j ava, and
the other helper classes in Exanpl eConfi gurati on.j ava and Exanpl eConmon. j ava in
Code Examples (p. 50).

47

Amazon Simple Queue Service Developer Guide
Receiving Messages Asynchronously

For complete examples of sending and receiving objects, see TextMessageSender.java (p. 52) and
SyncMessageReceiver.java (p. 53).

Receiving Messages Asynchronously

In the example in Getting Started with the Amazon SQS Java Messaging Library (p. 45), a message
is sent to Test Queue and received synchronously.

The following example shows how to receive the messages asynchronously through a listener.

1. Implement the MessagelLi st ener interface.

cl ass MyLi stener inplenments Messageli stener {

@verride
public void onMessage(Message nmessage) ({
try {
/1 Cast the received nessage as Text Message and print the text
to screen.
if (message !'= null) {
Systemout. println("Received: " + ((TextMessage)
nmessage) . get Text ());

}
} catch (JMSException e) {
e.printStackTrace();

}

The onMessage method of the MessagelLi st ener interface is called when you receive a message.
In this listener implementation, the text stored in the message is printed.

2. Instead of explicitly calling the r ecei ve method on the consumer, set the message listener of
the consumer to an instance of the MyLi st ener implementation. The main thread sleeps for one
second.

/l Create a consuner for the 'Test Queue'.
MessageConsumer consuner = sessi on. cr eat eConsuner (queue) ;

/1 Instantiate and set the nessage |listener for the consuner.
consuner . set MessagelLi st ener (new MyLi stener());

/1 Start receiving incom ng nessages.
connection.start();

/1 Wait for 1 second. The |istener onMessage() nethod will be invoked when
a nessage i s received.
Thr ead. sl eep(1000);

The rest of the steps are identical to the ones in the Getting Started with the Amazon SQS Java
Messaging Library (p. 45) example. For a complete example of an asynchronous receiver, see
AsyncMessageRecei ver . j ava in Code Examples (p. 50).

The output for this example will look similar to the following:

JVMS Message | D: 8exanpl e- 588b- 44e5- bbcf - d816exanpl e2

48

Amazon Simple Queue Service Developer Guide
Using Client Acknowledge Mode

‘Recei ved: Hello Wrld!

Using Client Acknowledge Mode

The example in Getting Started with the Amazon SQS Java Messaging Library (p. 45) uses
AUTO_ACKNOW.EDGE mode where every received message is acknowledged automatically (and
therefore deleted from the underlying Amazon SQS queue).

1. To explicitly acknowledge the messages after they're processed, you must create the session with
CLI ENT_ACKNOW.EDGE mode.

/'l Create the non-transacted session with CLI ENT_ACKNOALEDCGE node.
Sessi on session = connection. createSessi on(fal se,
Sessi on. CLI ENT_ACKNOALEDCE) ;

2. When the message is received, display it and then explicitly acknowledge it.

/1 Cast the received nessage as Text Message and print the text to screen.
Al so acknow edge the nmessage.
if (receivedMessage !'= null) ({
Systemout. println("Received: " + ((TextMessage)
recei vedMessage) . get Text());
recei vedMessage. acknow edge() ;
System out. println("Acknow edged: " + nessage. get JMSMessagel ()) ;

Note

In this mode, when a message is acknowledged, then all messages received prior to this
message are implicitly acknowledged as well. For example, if 10 messages are received,
and only the 10th message is acknowledged (in the order the messages are received), then
all of the previous 9 messages are also acknowledged.

The rest of the steps are identical to the ones in the Getting Started with the Amazon SQS Java
Messaging Library (p. 45) example. For a complete example of a synchronous receiver with
client acknowledge mode, see SyncMessageRecei ver O i ent Acknow edge. j ava in Code
Examples (p. 50).

The output for this example will look similar to the following:

JVMS Message | D: 4dexanpl e- aaOe- 403f - b6df - 5e02exanpl e5
Recei ved: Hello Wrld!
Acknow edged: | D: 4exanpl e- aaOe- 403f - b6df - 5e02exanpl e5

Using Unordered Acknowledge Mode

When using CLI ENT_ACKNOW._EDGE mode, all messages received before an explicitly-acknowledged
message are acknowledged automatically. For more information, see Using Client Acknowledge
Mode (p. 49).

The Amazon SQS Java Messaging Library provides another acknowledgement mode. When
using UNORDERED ACKNOW.EDGE mode, all received messages must be individually and explicitly
acknowledged by the client, regardless of their reception order.

Create a session with UNORDERED ACKNOW.EDGE mode.

49

Amazon Simple Queue Service Developer Guide
Code Examples

/'l Create the non-transacted session with UNORDERED ACKNOANEDGE node.
Sessi on session = connection. createSession(fal se,
SQSSessi on. UNORDERED ACKNOW.EDCE) ;

The remaining steps are identical to the ones in the Using Client Acknowledge Mode (p. 49)
example. For a complete example of a synchronous receiver with UNORDERED ACKNOW_EDGE mode,
see SyncMessageRecei ver Unor der edAcknowl edge. j ava.

In this example, the output will look similar to the following:

JM5 Message | D: dexanpl e- 73ad- 4adb- bc6c- 4357exanpl e7
Recei ved: Hello World!
Acknow edged: | D: dexanpl e- 73ad- 4adb- bc6c- 4357exanpl e7

Important

When you use the JMS library with UNORDERED ACKNOW._EDGE mode, visibility
timeout (p. 14) always takes effect. However, in the case of asynchronous message
processing (p. 48), visibility timeout takes effect only when the message listener
onMessage() returns successfully.

Code Examples
The following code examples show how to use JMS with Amazon SQS.

ExampleConfiguration.java

The following Java code example sets the default queue name, the region, and the credentials to be
used with the other Java examples.

public class Exanpl eConfiguration {
public static final String DEFAULT_QUEUE NAME =
" SQ@IMBA i ent Exanpl eQueue”;

public static final Regi on DEFAULT_REG ON =
Regi on. get Regi on(Regi ons. US_EAST_2) ;

private static String getParaneter(String args[], int i) {
if(i +1>=args.length) {
throw new ||| egal Argunent Exception("M ssing paraneter for " +

args[i]);
}
return args[i+1];
}
/**

* Parse the command line and return the resulting config. If the config
parsing fails

* print the error and the usage nessage and then call Systemexit

* @aramapp the app to use when printing the usage string

* @aramargs the command |ine argunents

* @eturn the parsed config

*/

public static Exanpl eConfiguration parseConfig(String app, String args[])

try {
return new Exanpl eConfi guration(args);

50

Amazon Simple Queue Service Developer Guide
Code Examples

} catch (111 egal Argunent Exception e) {
Systemerr.println("ERROR " + e.getMessage());
Systemerr.println();

Systemerr.println("Usage: " + app + " [--queue <queue>] [--
regi on <region>] [--credentials <credentials>] ");
Systemerr.println(" or");
Systemerr.printlin(" "+ app + " <spring.xm>");
Systemexit(-1);
return null;
}
}
private Exanpl eConfiguration(String args[]) {
for(int i =0; i < args.length; ++i) {
String arg = args[i];
if(arg.equal s("--queue")) {
set QueueNane(get Paraneter(args, i));
i ++;
} else if(arg.equals("--region")) {
String regi onName = get Paraneter(args, i);
try {

set Regi on(Regi on. get Regi on(Regi ons. fronNane(regi onNane)));
} catch(111l egal Argument Exception e) {
throw new I || egal Argument Excepti on("Unrecogni zed regi on

+ regi onNane);

}
i ++;

} else if(arg.equals("--credentials")) {
String credsFile = getParaneter(args, i);
try {

set Credenti al sProvi der(new
PropertiesFil eCredential sProvider(credsFile));
} catch (Amazond i ent Exception e) {
throw new ||| egal Argument Excepti on("Error reading
credentials from" + credsFile, e);

}
i ++;

} else {
t hrow new ||| egal Argunent Excepti on("Unrecogni zed option " +

arg);
}
}
}

private String queueNane = DEFAULT_QUEUE_NAME;

private Region region = DEFAULT_REQ ON;

private AWSCredenti al sProvi der credential sProvider = new
Def aul t AWSCr edent i al sProvi der Chai n();

public String get QieueNane() {
return queueNane;
}

public void set QueueNanme(String queueNane) {
t hi s. queueNane = queueNane;
}

publ i ¢ Regi on getRegion() {

51

Amazon Simple Queue Service Developer Guide
Code Examples

return region;

}

public void setRegi on(Regi on region) ({
this.region = region;
}

publ i c AWSCredenti al sProvi der get Credenti al sProvider() {
return credential sProvider;
}

public void setCredential sProvi der (AWSCr edent i al sProvi der
credential sProvider) {
/1 Make sure they're usable first
credenti al sProvi der. get Credenti al s();
this.credential sProvider = credential sProvi der;

TextMessageSender.java

The following Java code example creates a text message sender.

public class Text MessageSender {
public static void main(String args[]) throws JMSException {
Exanpl eConfi guration config =
Exanpl eConfi gurati on. par seConfi g(" Text MessageSender", args);

Exanpl eCommon. set upLoggi ng() ;

/1 Create the connection factory based on the config
SQSConnect i onFactory connectionFactory =
SQSConnect i onFactory. bui | der ()
.wi t hRegi on(confi g. get Regi on())

. Wi t hAWSCr edent i al sProvi der (confi g. get Credenti al sProvider())
Lbui I d();

/'l Create the connection
SQSConnecti on connection = connectionFactory. creat eConnection();

/1l Create the queue if needed
Exanpl eCommon. ensur eQueueExi st s(connecti on, config. get QueueNane());

/1 Create the session
Sessi on session = connecti on. creat eSessi on(fal se,
Sessi on. AUTO_ACKNOWLEDCGE) ;
MessagePr oducer producer =
sessi on. creat eProducer (sessi on. creat eQueue(config. get QueueNane()));

sendMessages(sessi on, producer);
/1 Cose the connection. This will close the session automatically

connecti on. cl ose();
Systemout. println("Connection closed");

52

Amazon Simple Queue Service Developer Guide
Code Examples

private static void sendMessages(Session session, MessageProducer
producer) {
Buf f er edReader i nput Reader = new Buf f er edReader (
new | nput St r eanReader (System i n,
Charset. defaul t Charset()));

try {
String input;
while(true) {
Systemout.print("Enter message to send (|l eave enpty to
exit): ");
i nput = i nput Reader.readLine();
if(input == null || input.equals("")) break;

Text Message nessage = session. creat eText Message(i nput);

producer. send(message) ;

Systemout.println("Send nmessage " +
message. get IMSMessagel D());

}
} catch (EOFException e) {
/1 Just return on EOF
} catch (1 OException e) {

Systemerr.println("Failed reading input: " + e.getMssage());
} catch (JMSException e) {
Systemerr.println("Failed sending nessage: " +

e. get Message());
e. printStackTrace();
}

SyncMessageReceiver.java

The following Java code example creates a synchronous message receiver.

public class SyncMessageRecei ver {
public static void main(String args[]) throws JMSException {
Exanpl eConfi guration config =
Exanpl eConfi gurati on. par seConfi g(" SyncMessageRecei ver", args);

Exanpl eCommon. set upLoggi ng() ;

/'l Create the connection factory based on the config
SQ@SConnect i onFact ory connectionFactory =
SQSConnect i onFact ory. bui | der ()
. W t hRegi on(confi g. get Regi on())
.wi t hAWSCr edent i al sProvi der (config. get Credenti al sProvi der())
Lbui I d();

/1 Create the connection
SQ@SConnecti on connection = connectionFactory. createConnection();

/1l Create the queue if needed
Exanpl eComon. ensur eQueueExi st s(connecti on, config. get QueueNane());

/1 Create the session
Sessi on session = connecti on. creat eSessi on(fal se,
Sessi on. CLI ENT_ACKNOW.EDGE)

53

Amazon Simple Queue Service Developer Guide
Code Examples

MessageConsumer consuner =
sessi on. creat eConsumner (sessi on. creat eQueue(config. get QueueName()));

connection.start();
recei veMessages(sessi on, consumer);

/1l Close the connection. This will close the session automatically
connecti on. cl ose();
Systemout. println("Connection closed");

}

private static void receiveMessages(Session session, MessageConsuner
consuner) {
try {
while(true) {
Systemout.println("Waiting for nessages");
// Wait 1 minute for a nmessage
Message nessage = consuner.receive(TineUnit. MNUTES.toM I lis(1));
if(nessage == null) {
Systemout.println("Shutting down after 1 minute of
silence");
br eak;
}
Exanpl eCommon. handl eMessage(nessage) ;
nmessage. acknow edge();
Systemout. println("Acknow edged nessage " +
message. get IMSMessagel D());

}

} catch (JMSException e) {
Systemerr.printin("Error receiving from SQs:
e.printStackTrace();

+ e.get Message());

AsyncMessageReceiver.java

The following Java code example creates an asynchronous message receiver.

public class AsyncMessageRecei ver {
public static void main(String args[]) throws JMSExcepti on,
I nt errupt edException {
Exanpl eConfi guration config =
Exanpl eConfi gurati on. parseConfi g("AsyncMessageRecei ver", args);

Exanpl eCommon. set upLoggi ng() ;

/1 Create the session
Sessi on session = connecti on. createSessi on(fal se,
Sessi on. CLI ENT_ACKNOALEDCE) ;
MessageConsumer consunmer =
sessi on. creat eConsumner (sessi on. creat eQueue(config. get QueueName()));

Recei ver Cal | back cal | back = new Recei ver Cal | back();
consuner. set MessagelLi stener(cal | back);

/1 No nmessages will be processed until this is called

54

Amazon Simple Queue Service Developer Guide
Code Examples

connection.start();

cal | back. wai t For OneM nut eOX Si | ence() ;
Systemout.println("Returning after one mnute of silence");

/1l Close the connection. This will close the session automatically
connecti on. cl ose();

Systemout. println("Connection closed");

private static class ReceiverCallback inplenments Messageli stener {
/1 Used to listen for nessage silence
private volatile long ti neCf Last Message = System nanoTi ne();

public void waitForOneM nuteO Sil ence() throws |nterruptedException

for(;;) {
I ong timeSi nceLast Message = System nanoTi ne() -
ti meOf Last Message;
I ong remai ni ngTi || OneM nuteOF Si | ence =
Ti meUni t. M NUTES. t oNanos(1) -
ti meSi nceLast Message;

if(remainingTillOneMnuteOFSilence < 0) {

br eak;
}
Ti meUni t . NANOSECONDS. sl eep(r enai ni ngTi | | OneM nut ek Si | ence) ;
}
}
@verride
public void onMessage(Message nmessage) ({
try {

Exanpl eCommon. handl eMessage(nessage) ;
nmessage. acknow edge() ;
Systemout. println("Acknow edged nessage " +
message. get IMSMessagel ());
ti meCf Last Message = System nanoTi ne();
} catch (JMSException e) {

Systemerr.println("Error processing nessage: " +
e. get Message());

e. printStackTrace();
}

SyncMessageReceiverClientAcknowledge.java

The following Java code example creates a synchronous receiver with client acknowledge mode.

/**

* An exanple class to denonstrate the behavi or of CLI ENT_ACKNOALEDCGE node
for received nessages. This exanple

* conpl enents the exanple given in {@ink

SyncMessageRecei ver Unor der edAcknowl edge} for UNORDERED ACKNOW.EDGE node.

55

Amazon Simple Queue Service Developer Guide
Code Examples

*

* First, a session, a nessage producer, and a nessage consuner are created
Then, two nessages are sent. Next, two nessages

* are received but only the second one is acknow edged. After waiting for
the visibility tinme out period, an attenpt to

* receive another nmessage is made. It's shown that no nessage is returned
for this attenpt since in CLI ENT_ACKNOALEDGE node,

* as expected, all the messages prior to the acknow edged nessages are al so
acknow edged.

*

* This ISN T the behavi or for UNORDERED ACKNOW.EDGE node. Pl ease see {@i nk
SyncMessageRecei ver Unor der edAcknowl edge}

* for an exanple.

*/

public class SyncMessageRecei ver Qi ent Acknow edge {

/1 Visibility tine-out for the queue. It must match to the one set for
the queue for this exanple to work.
private static final |ong TIME_OUT_SECONDS = 1;

public static void main(String args[]) throws JMSExcepti on,
I nt errupt edException {
/'l Create the configuration for the exanple
Exanpl eConfi guration config =
Exanpl eConfi gurati on. parseConfi g(" SyncMessageRecei ver O i ent Acknow edge"
args);

/1 Setup logging for the exanple
Exanpl eConmon. set upLoggi ng() ;

/'l Create the connection factory based on the config
S@SConnect i onFact ory connectionFactory =
SQ@SConnecti onFact ory. bui | der ()
. W thRegi on(confi g. get Regi on())

. Wi t hAWSCr edent i al sProvi der (confi g. get Credenti al sProvider())
Lbui I d();

/'l Create the connection
SQ@SConnecti on connection = connectionFactory. createConnection();

/1l Create the queue if needed
Exanpl eCommon. ensur eQueueExi st s(connecti on, config. get QueueNane());

/1l Create the session wth client acknow edge node
Sessi on session = connecti on. creat eSessi on(fal se,
Sessi on. CLI ENT_ACKNOWLEDGE)

/1 Create the producer and consune
MessagePr oducer producer =

sessi on. creat eProducer (sessi on. creat eQueue(confi g. get QueueNanme()));
MessageConsumer consunmer =

sessi on. cr eat eConsuner (sessi on. creat eQueue(confi g. get QueueNanme()));

/1 Open the connection
connection.start();

/1l Send two text messages
sendMessage(producer, session, "Message 1");

56

Amazon Simple Queue Service Developer Guide
Code Examples

sendMessage(producer, session, "Message 2");

/! Receive a nmessage and don't acknow edge it
recei veMessage(consuner, false);

/| Receive another nmessage and acknow edge it
recei veMessage(consuner, true);

/1 Wait for the visibility tine out, so that unacknow edged nessages
reappear in the queue

Systemout.printin("Waiting for visibility tineout...");

Thr ead. sl eep(Ti meUni t. SECONDS. toM | | i s(TI ME_OUT_SECONDS)) ;

/1l Attenpt to receive another message and acknowl edge it. This wll
result in receiving no nmessages since

/1 we have acknow edged the second nessage. Although we did not
explicitly acknow edge the first nessage,

/1 in the CLI ENT_ACKNOALEDGE npde, all the nessages received prior to
the explicitly acknow edged nessage

/1 are also acknow edged. Therefore, we have inplicitly acknow edged
the first nessage.

recei veMessage(consuner, true);

/1l Close the connection. This will close the session automatically
connecti on. cl ose();
Systemout. println("Connection closed.");

}

/**

* Sends a nessage through the producer.
*
* @aram producer Message producer
* @aram sessi on Session
* @aram messageText Text for the nmessage to be sent
* @hrows JMSException
*/
private static void sendMessage(MessageProducer producer, Session
session, String nessageText) throws JMSException {
/1l Create a text nmessage and send it
producer. send(sessi on. cr eat eText Message(messageText));

}

/**

* Receives a nessage through the consuner synchronously with the default
timeout (TIME_OUT_SECONDS).

* |f a nessage is received, the nessage is printed. |If no nessage is

recei ved, "Queue is enpty!" is
* printed.
*
* @aram consunmer Message consuner
*

@ar am acknow edge |If true and a nessage is received, the received
message i s acknow edged.
* @hrows JMSException
*/
private static void recei veMessage(MessageConsuner consuner, bool ean
acknowl edge) throws JMSException {
/1 Receive a nessage
Message nessage =
consuner.recei ve(TineUnit. SECONDS. toM | | i s(TI ME_OUT_SECONDS)) ;

57

Amazon Simple Queue Service Developer Guide
Code Examples

if (nessage == null) {
Systemout.println("Qeue is empty!");
} else {

/1 Since this queue has only text nessages, cast the nessage
object and print the text

Systemout. println("Received: " + ((TextMessage)
message) . get Text ());

/1 Acknow edge the nessage if asked
if (acknow edge) nessage.acknow edge();

SyncMessageReceiverUnorderedAcknowledge.java

The following Java code example creates a synchronous receiver with unordered acknowledge mode.

/**

* An exanple class to denonstrate the behavi or of UNORDERED_ACKNOW.EDGE node
for received nessages. This exanple

* conpl enents the exanple given in {@ink

SyncMessageRecei ver d i ent Acknowl edge} for CLI ENT_ACKNOAEDGE node.

*

* First, a session, a nessage producer, and a nessage consuner are created.
Then, two nessages are sent. Next, two nessages

* are received but only the second one is acknow edged. After waiting for
the visibility tinme out period, an attenpt to

* receive another nessage is nade. It's shown that the first nessage
received in the prior attenpt is returned again

* for the second attenpt. I n UNORDERED ACKNOALEDGE npde, all the nessages
must be explicitly acknow edged no natter what

* the order they're received.

*

* This ISN T the behavior for CLI ENT_ACKNOALEDCE node. Pl ease see {@i nk
SyncMessageRecei ver d i ent Acknow edge}

* for an exanpl e.

*/

public class SyncMessageRecei ver Unor der edAcknow edge {

/1 Visibility tine-out for the queue. It nmust match to the one set for
the queue for this exanple to work.
private static final |ong TIME_OUT_SECONDS = 1;

public static void main(String args[]) throws JMSExcepti on,
I nt errupt edException {
/'l Create the configuration for the exanple
Exanpl eConfi guration config =
Exanpl eConfi gurati on. par seConfi g(" SyncMessageRecei ver Unor der edAcknow edge",
args);

/1 Setup logging for the exanple
Exanpl eConmon. set upLoggi ng() ;

/'l Create the connection factory based on the config
SQSConnect i onFactory connecti onFactory =
SQSConnect i onFactory. bui | der ()

58

Amazon Simple Queue Service Developer Guide
Code Examples

. W thRegi on(confi g. get Regi on())

. Wi t hAWSCr edent i al sProvi der (confi g. get Credenti al sProvider())
Lbui I d();

/'l Create the connection
SQ@SConnecti on connection = connectionFactory. createConnection();

/1l Create the queue if needed
Exanpl eCommon. ensur eQueueExi st s(connecti on, config. get QueueNane());

/1l Create the session w th unordered acknow edge node
Sessi on session = connecti on. creat eSessi on(fal se,
SQ@SSessi on. UNORDERED ACKNOW.EDGE)

/1 Create the producer and consune
MessagePr oducer producer =

sessi on. creat eProducer (sessi on. creat eQueue(confi g. get QueueNanme()));
MessageConsumner consuner =

sessi on. cr eat eConsuner (sessi on. cr eat eQueue(confi g. get QueueNanme()));

/1 Open the connection
connection.start();

/1l Send two text messages
sendMessage(producer, session, "Message 1");
sendMessage(producer, session, "Message 2");

/! Receive a nmessage and don't acknow edge it
recei veMessage(consuner, fal se);

/| Receive another nmessage and acknow edge it
recei veMessage(consuner, true);

/1 Wait for the visibility tine out, so that unacknow edged nessages
reappear in the queue

Systemout.println("Waiting for visibility tineout...");

Thr ead. sl eep(Ti meUni t. SECONDS. toM | | i s(TI ME_OUT_SECONDS)) ;

/1l Attenpt to receive another message and acknowl edge it. This wll
result in receiving the first message since

/1 we have acknow edged only the second nessage. |In the
UNORDERED_ACKNOW.EDGE npde, all the nessages nust

/1 be explicitly acknow edged

recei veMessage(consuner, true);

/1l Close the connection. This will close the session automatically
connecti on. cl ose();
System out. println("Connection closed.");

}
/**

* Sends a nessage through the producer

*

* @aram producer Message producer

* @aram sessi on Session

* @aram messageText Text for the nmessage to be sent
* @hrows JMSException

*/

59

Amazon Simple Queue Service Developer Guide
Code Examples

private static void sendMessage(MessageProducer producer, Session
session, String nessageText) throws JMSException {
/1l Create a text nmessage and send it
producer. send(sessi on. cr eat eText Message(nessageText));

}

/**
* Receives a nessage through the consuner synchronously with the default
timeout (TIME_OUT_SECONDS).
* |f a nessage is received, the nessage is printed. |If no nessage is
recei ved, "Queue is enpty!" is
* printed.
*
* @aram consunmer Message consuner
* @aram acknow edge |f true and a nessage is received, the received
nmessage i s acknow edged.
* @hrows JMSException
*/
private static void recei veMessage(MessageConsuner consuner, bool ean
acknow edge) throws JMSException {
/1 Receive a nessage
Message nessage =
consuner.receive(TinmeUnit. SECONDS. toM I 1i s(TI ME_OUT_SECONDS)) ;

if (message == null) {
Systemout.println("Qeue is emty!");
} else {

/1 Since this queue has only text nessages, cast the nessage
object and print the text

Systemout. println("Received: " + ((TextMessage)
message) . get Text ());

/1 Acknow edge the nessage if asked
if (acknow edge) nessage.acknow edge();

SpringExampleConfig.xml

The following XML code example is a bean configuration file for SpringExample.java (p. 61).

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans
xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:util="http://ww. springframework. org/schema/util"
xm ns: p="http://ww. springfranmework. org/ schena/ p"
xsi : schemaLocat i on="
http: //ww. spri ngfranmewor k. org/ schena/ beans http://
www. spri ngf ramewor k. or g/ schenma/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. org/ schena/util http://
www. spri ngframewor k. org/ scherma/ util/spring-util-3.0.xsd
">

<bean i d="Credenti al sProvi der Bean"
cl ass="com amazonaws. aut h. Def aul t AWBCr edent i al sProvi der Chai n"/ >

60

Amazon Simple Queue Service Developer Guide
Code Examples

<bean i d="Connecti onFact oryBui | der"
cl ass="com anmazon. sgs. j avanessagi ng. SQSConnect i onFact or y$Bui | der " >
<property nane="regi onNane" val ue="us-east-2"/>
<property nane="nunber Of MessagesToPrefetch" val ue="5"/>
<property nane="awsCredenti al sProvi der" ref="Credential sProvi der Bean"/ >
</ bean>

<bean i d="Connecti onFact ory"

cl ass="com anmazon. sgs. j avanessagi ng. SQSConnect i onFact ory"
factory-bean="Connecti onFact or yBui | der"
factory-nmet hod="buil d" />

<bean i d="Connection" class="javax.ns. Connecti on"
fact ory- bean="Connecti onFact ory"
factory-nmet hod="cr eat eConnecti on"
init-nethod="start"
dest r oy- met hod="cl ose" />

<bean i d="QueueNane" class="java.lang. String">
<constructor-arg val ue="SQSIMsSd i ent Exanpl eQueue"/ >
</ bean>

</ beans>

SpringExample.java

The following Java code example uses the bean configuration file to initialize your objects.

public class SpringExanple {
public static void main(String args[]) throws JMSException {
if(args.length !'=1 || ltargs[0].endsWth(".xm ")) {
Systemerr.println("Usage: " + SpringExanple.cl ass. get Nane() + "
<spring config.xm>");
Systemexit(1);
}

File springFile = new File(args[0]);
if(!'springFile.exists() || !springFile.canRead()) {
Systemerr.printin("File " + args[0] + " does not exist or isn't
readable.");
System exit(2);
}

Exanpl eCommon. set upLoggi ng() ;

Fi | eSyst emXnml Appl i cati onCont ext context =
new Fil eSystenXm Applicati onContext("file://" +
springFil e. get Absol utePath());

Connecti on connecti on;
try {
connecti on = context. get Bean(Connecti on. cl ass);
} catch(NoSuchBeanDefi nitionException e) {
Systemerr.println("Could not find the JM5 connection to use: "
+ e. get Message());
System exit(3);
return;

61

Amazon Simple Queue Service Developer Guide
Code Examples

String queueNane;
try {
gqueueNanme = context. get Bean(" QueueNane", String.class);
} catch(NoSuchBeanDefinitionException e) {
Systemerr.println("Could not find the nane of the queue to use:
+ e. get Message());
System exit(3);
return;

}

i f(connection instanceof SQSConnection) {
Exanpl eComon. ensur eQueueExi st s((SQSConnecti on) connecti on,
queueNane);

}

/1 Create the session

Sessi on session = connecti on. creat eSessi on(fal se,
Sessi on. CLI ENT_ACKNOALEDCE) ;

MessageConsumer consuner =
sessi on. creat eConsuner (sessi on. creat eQueue(queueNane));

recei veMessages(sessi on, consumer);

/1l The context can be setup to close the connection for us
context. close();
Systemout. println("Context closed");

}

private static void recei veMessages(Session session, MessageConsuner
consuner) {
try {
while(true) {
Systemout.println("Waiting for nessages");
// Wait 1 minute for a nmessage
Message nessage =
consuner.receive(TineUnit. MNUTES. toM | lis(1));
if(nessage == null) {
Systemout.println("Shutting down after 1 minute of
silence");
br eak;
}
Exanpl eCommon. handl eMessage(nessage) ;
nmessage. acknow edge() ;
Systemout. println("Acknow edged nessage");

}
} catch (JMSException e) {
Systemerr.printin("Error receiving fromSQ@s: " +
e. get Message());
e.printStackTrace();
}

ExampleCommon.java

The following Java code example checks if an Amazon SQS queue exists and then creates one if it
does not. It also includes example logging code.

62

Amazon Simple Queue Service Developer Guide
Supported JMS 1.1 Implementations

public class Exanpl eConmon {
/**
* Autility function to check the queue exists and create it if needed.
For nost
* use cases this will usually be done by an admi nistrator before the
application
* is run.
*/
public static void ensureQueueExi st s(SQ@Connecti on connection, String
queueNane) throws JMSException {
AmazonSQSMessagi ngd i ent Wapper client =
connecti on. get W appedAmazonSQSd i ent () ;

/**

* For nobst cases this could be done with just a createQueue call,
but Get Queuelrl

* (called by queueExists) is a faster operation for the conmmon case
where the queue

* already exists. Also many users and roles have perm ssion to call
Get Queuelr|

* put do not have permission to call CreateQueue.

*/

if(!'client.queueExi sts(queueNane)) {

client.createQeue(queueNane);
}

}

public static void setupLoggi ng() {

/1 Setup | ogging

Basi cConfi gurator.configure();

Logger . get Root Logger () . set Level (Level . WARN) ;
}

public static void handl eMessage(Message nessage) throws JMSException {
Systemout.println("Got nmessage " + nessage. get JMsMessagel D());
Systemout.printin("Content: ");
i f(nmessage instanceof TextMessage) {
Text Message t xt Message = (Text Message) nessage;
Systemout.println("\t" + txtMessage.getText());
} else if(nessage instanceof BytesMessage){
Byt esMessage byteMessage = (BytesMessage) nessage;
/1 Assune the length fits in an int - SQS only supports sizes up
to 256k so that
/'l should be true
byte[] bytes = new byte[(int)byteMessage. get BodyLength()];
byt eMessage. r eadByt es(byt es) ;
Systemout.println("\t" + Base64.encodeAsString(bytes));
} else if(nmessage instanceof ObjectMssage) {
oj ect Message obj Message = (Obj ect Message) nessage;
Systemout.printin("\t" + obj Message. get Object());

Supported JMS 1.1 Implementations

The Amazon SQS Java Messaging Library supports the following JMS 1.1 implementations.

63

http://docs.oracle.com/javaee/6/api/javax/jms/package-summary.html

Amazon Simple Queue Service Developer Guide
Supported JMS 1.1 Implementations

For more information about the supported features and capabilities of the Amazon SQS Java
Messaging Library, see the Amazon SQS FAQs.

Supported Common Interfaces

¢ Connection

e Connecti onFactory
e Destination

e Session

* MessageConsuner

e MessagePr oducer

Supported Message Types

* ByteMessage
e (bj ect Message
¢ Text Message

Supported Message Acknowledgment Modes

+ AUTO_ACKNOW.EDGE
« CLI ENT_ACKNOW.EDGE

+ DUPS_OK_ACKNOW.EDGE

« UNORDERED_ACKNOW.EDGE

Note
The UNORDERED ACKNOW.EDGE mode isn't part of the JMS 1.1 specification. This mode helps
Amazon SQS allow a JMS client to explicitly acknowledge a message.

JMS-Defined Headers and Reserved Properties

The Amazon SQS JMS client sets the following JMS-defined headers:

e JMBDesti nation
e JMSMessagel D
* JVSRedel i ver ed

The Amazon SQS JMS client sets the following JMS reserved property:

e JMSXDel i ver yCount

64

http://aws.amazon.com/sqs/faqs/

Amazon Simple Queue Service Developer Guide
Creating a Queue

Amazon SQS Tutorials

This section provides tutorials that you can use to explore Amazon SQS features and functionality.

Topics

e Tutorial: Creating an Amazon SQS Queue (p. 65)

e Tutorial: Sending a Message to an Amazon SQS Queue (p. 68)

e Tutorial: Receiving and Deleting a Message from an Amazon SQS Queue (p. 71)

e Tutorial: Subscribing one or more Amazon SQS Queues to an Amazon SNS Topic (p. 74)

Tutorial: Creating an Amazon SQS Queue

The first and most common Amazon SQS task is creating queues. The following example
demonstrates creating and configuring a queue.

AWS Management Console

1.

Sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

Choose Create New Queue.

Create New Queue Queue Actions v

On the Create New Queue page, ensure that you're in the correct region and then type the
Queue Name.

Note
The name of a FIFO queue must end with the . f i f o suffix. FIFO queues are available in
US West (Oregon) and US East (Ohio).

Create New Queue

Queue Name €

AaronTestQueue.fifo

Review the descriptions of Standard Queue (p. 5) and FIFO Queue (p. 6), and then select a queue
type. Standard is selected by default.

65

https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide
AWS Management Console

What type of queue do you need?

Standard

High Throughput: Standard quetes have nearly-unlimited transactions per
second (TPS).

At-Least-Once Delivery: A message is delivered at least once, but
occasionally more than one copy or a message is delivered.

Best-Effort Ordering: Occasionally. messages are delivered in an order
different from which they were sent.

Send data between applications when the throughput is important. for
example:

« Decouple live user requests from intensive background work: let users
upload media while resizing or encoding it.

« Allocate tasks to multiple worker nodes: process a high number of credit
card validation requests.

+ Batch messages for future processing: schedule multiple entries 1o be
added to a database.

5. Create your queue.

First-In-First-out Delivery: The order in which messages are sent and
received is strictly preserved.

Exactly-Once Processing: A message is guaranteed to be delivered at least
once, but all duplicates of the message are removed.

Limited Throughput: 300 transactions per second (TPS).

Send data between applications when the order of events is important, for
example:

« Ensure that user-entered commands are executed in the right order.

« Display the correct product price by sending price modifications in the
right order.

* Prevent a student from enrolling in a course before registering for an
account.

e To create your queue with the default parameters, choose Quick-Create Queue.

¢ To configure your queue's parameters, choose Configure Queue. When you finish configuring

the parameters, choose Create Queue.

Note

The following example shows the content-based deduplication parameter specific to

FIFO queues.

66

Amazon Simple Queue Service Developer Guide

Java
Queue Attributes
Default Visibility Timeout € 30 seconds ~ 1
Message Retention Period € | 4 days ~ 1 1
Maximum Message Size €0 256 KB 1and 2
Delivery Delay € 0 seconds ~ 1
Receive Message Wait Time € 0 seconds 2
Content-Based Deduplication €)
Dead Letter Queue Settings
Use Redrive Policy €
Dead Letter Queue €9 Value must be an existing
Maximum Receives @ Value must be between 1 and 1000

Cancel Create Queue

Your new queue is created and selected in the queue list.

e The Queue Type column helps you distinguish standard queues from FIFO queues at a glance.

If you create a FIFO queue, the Content-Based Deduplication column displays whether you
have enabled exactly-once processing (p. 8).

Name ~ | Queue Type| [Content-Based Deduplication| Messages Available~ Messages in Flight~ Created
AaronTestQueue Standard N/A 0] 2016-11-10 09:08:45 GMT-08:0
[] AaronTestQueue fifo | FIFO Disabled 0 0 2016-11-10 10:40:30 GMT-08:0

¢ Your queue's URL and ARN are displayed on the Details tab.

Details Permissions Redrive Policy Monitoring

Name: AaronTestQueue
URL: https://sos- | =2z on.cor/ [/- 2ronTestQueus
ARN: am:aws:sos: | - -onTestQuele

Java

1. Copy the example Java program (p. 9).

The following section of the code creates the MyFi f oQueue. fi f 0 queue:

/1l Create a FI FO queue

Systemout.println("Creating a new Amazon SQ@ FI FO queue cal | ed
M/Fi foQueue. fifo.\n");

Map<String, String> attributes = new HashMap<String, String>();

/1 A FI FO queue must have the FifoQueue attribute set to True

attributes. put ("Fi foQueue", "true");

/1 Cenerate a MessageDeduplicationld based on the content, if the user
doesn't provide a MessageDeduplicationld

67

Amazon Simple Queue Service Developer Guide
Sending a Message

attri butes. put (" Cont ent BasedDedupl i cati on", "true");
/1 The FIFO queue nanme nust end with the .fifo suffix
Cr eat eQueueRequest creat eQueueRequest = new
Creat eQueueRequest ("MFi foQueue.fifo").withAttributes(attributes);
String myQueueUrl = sgs. createQueue(creat eQueueRequest). get Queuelr! ();

2. Compile and run the example.

The queue is created.

Tutorial: Sending a Message to an Amazon SQS
Queue

After you create your queue, you can send a message to it. The following example demonstrates
sending a message to an existing queue.

AWS Management Console

1. Signinto the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. From the queue list, select a queue.

Name ~ Queue Type~

AaronTestQueue Standard

| @ Aaontesquevedio FiFo|

3. From the Queue Actions drop-down list, select Send a Message.

Create New Queue Queue Actions v

Filter by Prefix: O

View/Delete Mes

Configure Queue

Add a Permission
Name
Purge Queue

AaronTestQueue Delete Queue

B AaronTestQueue.fi

The Send a Message to QueueNane dialog box is displayed.

Note
The following example shows the message group ID and message deduplication ID
parameters specific to FIFO queues (content-based deduplication is disabled).

68

https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide
AWS Management Console

Send a Message to AaronTestQueue.fifo X

Message Body Message Attributes

Enter the text of a message you want to send.

This is my message text.|

Message Group ID €)

Message Deduplication ID €)
Cancel

Send your message.

« To send a message to a standard queue (p. 5), type text into the Message Body and then
choose Send Message.

Send Message

e To send a message to a FIFO queue (p. 6), type text into the Message Body, type the
Message Group ID and the Message Deduplication ID and then choose Send Message. For
more information, see FIFO Queue Logic (p. 7).

Note
The message group ID is always required. However, if content-based deduplication
is enabled, the message deduplication ID is optional.

Message Group ID € MyMessageGroupld1234567890

Message Deduplication ID €% MyMessageDeduplicationld1234567890

Cancel Send Message

Your message is sent and the Send a Message to QueueNane dialog box is displayed, showing
the attributes of the sent message.

Note
The following example shows the sequence number attribute specific to FIFO queues.

69

Amazon Simple Queue Service Developer Guide
Java

Send a Message to AaronTestQueue.fifo X

Your message has been sent and is ready to be received.

Note: It may take up to 60 seconds for the Messages Available column to update.

Sent Message Attributes:

Message Identifier: a6190179-e204-482b-a4e2- |G
MDS5 of Body: 6a1559560f67c5e7a7d5ds N
Sequence Number: 1882531819 N

Close Send Another Message

5. Choose Close. You can also choose Send Another Message.

Java

1. Copy the example Java program (p. 9).

The following section of the code sends the This i s ny nessage text. message to your
queue:

/1 Send a nessage

Systemout. println("Sending a nessage to MyFi foQueue.fifo.\n");

SendMessageRequest sendMessageRequest = new SendMessageRequest (nyQueuelrl ,
"This is ny nessage text.");

/1 You nust provide a non-enpty MessageG oupld when sendi ng nessages to a
FI FO queue

sendMessageRequest . set MessageG oupl d(" messageG oupl");

/1 Uncomment the followi ng to provide the MessageDeduplicationld

/ I sendMessageRequest . set MessageDedupl i cationld("1");

SendMessageResul t sendMessageResult = sgs. sendMessage(sendMessageRequest);

String sequenceNunber = sendMessageResul t. get SequenceNunber () ;

String nmessagel d = sendMessageResul t. get Messagel d();

Systemout. println("SendMessage succeed with nessageld " + nessageld + ",
sequence nunber " + sequenceNunber + "\n");

2. Compile and run the example.

The message is sent to your queue.

70

Amazon Simple Queue Service Developer Guide
Receiving and Deleting a Message

Tutorial: Receiving and Deleting a Message from
an Amazon SQS Queue

After you send a message into a queue, you can receive it (retrieve it from the queue). When you
request a message from a queue, you can't specify which message to get. Instead, you specify the
maximum number of messages (up to 10) that you want to get.

Note

Because Amazon SQS is a distributed system, a queue with very few messages might
display an empty response to a receive request. In this case, you can rerun the request to get
your message. Depending on your application's needs, you might have to use short or long
polling (p. 29) to receive messages.

Amazon SQS doesn't automatically delete a message after retrieving it for you, in case you don't
successfully receive the message (for example, the receiver could fail or lose connectivity). To delete
a message, you must send a separate request which acknowledges that you no longer need the
message because you've successfully received and processed it. The following example demonstrates
receiving and deleting a message.

AWS Management Console

1. Signinto the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. From the queue list, select a queue.

Name - Queue Type ~

AaronTestQueue Standard

[® AaronTestQuevesito FiFo|

3. From the Queue Actions drop-down list, select View/Delete Messages.

Create New Queue Queue Actions v

Filter by Prefix: Q

Configure Queue
Add a Permission
Name

Purge Queue

AaronTestQueue Delete Queue

B AaronTestQueue.fi

The View/Delete Messages in QueueNane dialog box is displayed.

Note

The first time you take this action, an information screen is displayed. To hide the
screen, check the Don't show this again checkbox and then choose Start Polling for
Messages.

4. Choose Start Polling for messages.

71

https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide
AWS Management Console

ViewlDelete Messages in AaronTestQueue b 4
Viewup to: | 10 | messages Poll queue for: | 30 seconds
Polling for new messages once every 2 seconds

Amazon SQS begins to poll the messages in the queue.

The dialog box displays a message from the queue. A progress bar at the bottom of the dialog box
displays the status of the message's visibility timeout.

¢ For both standard queues (p. 5) and FIFO queues (p. 6), the message Body, Size, date Sent,
and Receive Count columns display message information.

» For FIFO queues (p. 6), the Message Group ID, Message Deduplication ID, and sequence
number columns display additional information.

View/Delete Messages in AaronTestQueue.fifo X
Viewup to: | 10 messages Poll queue for: 30 | seconds m
Polling for new messages once every 2 seconds.
Delete Body = GrouplD ~ Deduplication ID ~ Sequence Number ~ | Size
This is my message text. MyMessag.. MyMessageDeduplicatio... 18825318198425583616 24 byte

4

Polling the queue at 0.5 receives/second. Stopping in 11.7 seconds. Messages shown above are currently hidden from other consumers
Close Delete Messages

When the progress bar is filled in, the visibility timeout (p. 14) expires and the message becomes
visible to consumers.

72

Amazon Simple Queue Service Developer Guide
AWS Management Console

View/Delete Messages in AaronTestQueue.fifo X

Viewup to: 10 messages Poll queue for: 30 seconds Start Polling for Messages

Polling for new messages once every 2 seconds

Delete Body * GrouplD ~ DeduplicationID ~ | Sequence Number > | Size
o This is my message text. MyMessag MyMessageDeduplicatio 18825318198425583616 24 byte
4 | 3
100%

Stopped after polling the queue at 0.5 receives/second for 30.3 seconds. Messages shown above are now available to other consumers

Close Delete Messages

Select the message (or messages) that you want to delete and then select Delete 1 Message.

View/Delete Messages in AaronTestQueue.fifo X

Viewup to: 10 messages Poll queue for: 30 seconds Start Polling for Messages

Polling for new messages once every 2 seconds

Delete Body * GrouplD ~ DeduplicationID ~ | Sequence Number > | Size
This is my message text. MyMessag... MyMessageDeduplicatio... 18825318198425583616 24 byte
4 | 3
100%

Stopped after polling the queue at 0.5 receives/second for 30.3 seconds. Messages shown above are now available to other consumers

Close Delete 1 Message

The Delete Messages dialog box is displayed.

Delete Messages X

Are you sure you want to delete the following message?
You may uncheck messages that you do not want to delete.

¥/ This is my message text. (24 bytes)

Cancel Yes, Delete Checked Messages

Confirm that the messages you want to delete are checked, and select Yes, Delete Checked
Messages.

The selected messages are deleted.
Select Close.

73

Amazon Simple Queue Service Developer Guide
Java

Java

1. Copy the example Java program (p. 9).

The following section of the code receives a message from your queue:

/'l Recei ve nessages
System out . println("Receiving messages from MyFi f oQueue.fifo.\n");
Recei veMessageRequest recei veMessageRequest = new

Recei veMessageRequest (myQueueUr|) ;
/1 Uncomment the followi ng to provide the Recei veRequest Deduplicationld
/'l recei veMessageRequest . set Recei veRequest Attenmpt 1d("1");
Li st <Message> nessages =

sQs. recei veMessage(recei veMessageRequest) . get Messages() ;
for (Message nessage : messages) {

Systemout.println(" Message");

System out. println(” Messagel d: " + nmessage. get Messagel d());
System out. println(” Recei pt Handl e: " +
nmessage. get Recei pt Handl e()) ;
System out. println(” MD5CF Body': " + nmessage. get MD5Cf Body());
System out. println(” Body: " + nmessage. get Body());
for (Entry<String, String> entry : nessage.getAttributes().entrySet())
{
Systemout.println(" Attribute");
System out. println(” Name: " + entry.getKey());
System out. println(” Value: " + entry.getValue());
}
}

Systemout. println();

The following section of the code deletes the message:

/1 Delete the message

Systemout.println("Del eting the nmessage.\n");

String messageRecei pt Handl e = nmessages. get (0) . get Recei pt Handl e() ;

sqgs. del et eMessage(new Del et eMessageRequest (myQueuelr |,
nessageRecei pt Handl e)) ;

2. Compile and run the example.

The message is received and deleted.

Tutorial: Subscribing one or more Amazon SQS
Queues to an Amazon SNS Topic

You can subscribe one or more Amazon SQS queues to an Amazon SNS topic from a list of topics
available for the selected queue. Amazon SQS manages the subscription and any necessary
permissions. When you publish an Amazon SQS message to a topic, Amazon SNS sends the
message to any subscribed queues. For more information about Amazon SNS, see What is Amazon
Simple Notification Service? in the Amazon Simple Notification Service Developer Guide.

The following example demonstrates subscribing an existing Amazon SQS queue to an existing
Amazon SNS topic.

74

http://docs.aws.amazon.com/sns/latest/dg/welcome.html
http://docs.aws.amazon.com/sns/latest/dg/welcome.html

Amazon Simple Queue Service Developer Guide
AWS Management Console

Note

When you subscribe an Amazon SQS queue to an Amazon SNS topic, Amazon SNS uses
HTTPS to forward messages to Amazon SQS.

Amazon SNS isn't currently compatible with FIFO queues.

AWS Management Console

1.

Sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

From the list of queues, choose the queue (or queues) to which you want to subscribe an Amazon
SNS topic.

Create New Queue Queue Actions v

Filter by Prefix: O Enter Text
B Name

@ MyQueue

From the Queue Actions drop-down list, select Subscribe Queue to SNS Topic (or Subscribe
Queues to SNS Topic).

Create New Queue

Filter by Prefix: Q Ent

Send a

View/Del

B HName Configure

Add a Pernm
@ MyQueue

Subscribe Queue to SNS Topic

The Subscribe to a Topic dialog box is displayed.

From the Choose a Topic drop-down list, select an Amazon SNS topic to which you want
to subscribe your queue (or queues), select the Topic Region (optional), and then choose
Subscribe.

Subscribe to a Topic X

Select an SNS Topic from the Choose a Topic drop-down or enter a topic's ARN in the Topic ARN text box and
then press Subscribe to allow your queue(s) to receive SNS notifications from the topic and to subscribe your
queue(s) to the topic.

Topic Region €) US West(Oregon) -

Choose a Topic €} éMyTopic -
Topic ARN @ | arn:aws:sns: I /!y T opic

75

https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide
AWS Management Console

Note
Typing a different Topic ARN is useful when you want to subscribe a queue to an

Amazon SNS topic from an AWS account other than the one you used to create your

Amazon SQS queue.
This is also useful if the Amazon SNS topic isn't listed in the Choose a Topic drop-down

list.

The Topic Subscription Result dialog box is displayed.
5. Review the list of Amazon SQS queues that are subscribed to the Amazon SNS topic and choose

OK.

Topic Subscription Result X

Successfully subscribed the following queue to the SNS topic MyTopic.
Permission to receive SNS notifications was added to the queue.

* MyQueue

OK

To verify the results of the subscription, you can publish to the topic and then view the message that
the topic sends to the queue. For more information, see Sending Amazon SNS Messages to Amazon
SQS Queues in the Amazon Simple Notification Service Developer Guide.

76

http://docs.aws.amazon.com/sns/latest/dg/SendMessageToSQS.html
http://docs.aws.amazon.com/sns/latest/dg/SendMessageToSQS.html

Amazon Simple Queue Service Developer Guide
General Recommendations

Best Practices for Amazon SQS

These best practices can help you make the most of Amazon SQS.

Topics
¢ General Recommendations (p. 77)
¢ Recommendations for FIFO (First-In-First-Out) Queues (p. 78)

General Recommendations

The following guidelines can help you reduce costs and process messages efficiently using Amazon
SQS.

Processing Messages

¢ To ensure that there is sufficient time to process a message, you should use one of the following
strategies:

« If you know (or can reasonably estimate) how long it takes to process a message, extend the
message's visibility timeout to the maximum time it takes to process and delete the message.

For more information, see Configuring the Visibility Timeout (p. 15) and Changing a Message's
Visibility Timeout (p. 15).

« If you don't know how long it takes to process a message, specify the initial visibility timeout (for
example, 2 minutes) and the period of time after which you can check whether the message is
processed (for example, 1 minute). If the message isn't processed, extend the visibility timeout (for
example, to 3 minutes).

Note
If you need to extend the visibility timeout for longer than 12 hours, consider using Amazon
Simple Workflow Service.

« To handle request errors, you should use one of the following strategies:

« If you use an AWS SDK, you already have automatic retry and backoff logic at your disposal. For
more information, see Error Retries and Exponential Backoff in AWS in the Amazon Web Services
General Reference.

« If you do not use the AWS SDK features for retry and backoff, allow a pause (for example, 200
ms) before retrying the ReceiveMessage action after receiving no messages, a timeout, or an
error message from Amazon SQS. For subsequent use of Recei veMessage that gives the same
results, allow a longer pause (for example, 400 ms).

77

http://aws.amazon.com/swf/
http://aws.amazon.com/swf/
http://docs.aws.amazon.com/general/latest/gr/api-retries.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide
Reducing Costs

¢ To capture all messages that cannot be processed, and to ensure the correctness of CloudWatch
metrics, you should configure a dead letter queue (p. 17).

» The redrive policy redirects messages to a dead letter queue after the source queue fails to
process a message a specified number of times.

» Using a dead letter queue decreases the number of messages and reduces the possibility of
exposing you to poison pill messages (messages that are received but cannot be processed).

* Including a poison pill message in a queue can distort the
Appr oxi mat eAgeOf A dest Message (p. 87) CloudWatch metric by giving an incorrect age of
the poison pill message. Configuring a dead letter queue helps avoid false alarms when using this
metric.

Reducing Costs

« To reduce costs, batch your message actions:

e To send, receive, and delete messages, and to change the message visibility timeout for multiple
messages with a single action, use the Amazon SQS batch API actions (p. 111).

» To combine client-side buffering with request batching, use long polling together with the buffered
asynchronous client (p. 113) included with the AWS SDK for Java.

Note
The Amazon SQS Buffered Asynchronous Client doesn't currently support FIFO queues.

« To take advantage of additional potential reduced cost or near-instantaneous response, use one of
the following polling modes:

* Long polling lets you retrieve messages from your Amazon SQS queue as soon as they become
available.

¢ To reduce the cost of using Amazon SQS and to decrease the number of empty receives to an
empty queue (responses to the Recei veMessage action which return no messages), enable
long polling. For more information, see Amazon SQS Long Polling (p. 29).

¢ To increase efficiency when polling for multiple threads with multiple receives, decrease the
number of threads.

» Long polling is preferable over short polling in most cases.
« Short polling returns responses immediately, even if the polled Amazon SQS queue is empty.

» To satisfy the requirements of an application that expects immediate responses to the
Recei veMessage request, use short polling.

¢ Short polling is billed the same as long polling.

Moving from a Standard Queue to a FIFO Queue

¢ If you're not setting the Del aySeconds parameter on each message, you can move to a FIFO
gueue by providing a message group ID for every sent message. For more information, see Moving
From a Standard Queue to a FIFO Queue (p. 11).

Recommendations for FIFO (First-In-First-Out)
Queues

The following guidelines can help you use the message deduplication ID and message group ID
optimally. For more information, see the SendMessage and SendMessageBat ch actions in the
Amazon Simple Queue Service APl Reference.

78

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/

Amazon Simple Queue Service Developer Guide
Using the Message Deduplication ID

Using the Message Deduplication ID

¢ If you have a single sender and a single receiver and the messages are unique because an
application-specific message ID is included in the body of the message, you should follow these
guidelines:

Enable content-based deduplication for the queue (each of your messages has a unique body).
The sender can omit the message deduplication ID.

Although the receiver isn't required to provide a receive request attempt ID for each request, it's a
best practice because it allows fail-retry sequences to execute faster.

You can retry send or receive requests because they don't interfere with the ordering of messages
in FIFO queues.

» The sender should provide message deduplication ID values for each message send in the following
scenarios:

Messages sent with identical message bodies that Amazon SQS must treat as unique.

Messages sent with identical content but different message attributes that Amazon SQS must treat
as unique.

Messages sent with different content (for example, retry counts included in the message body) that
Amazon SQS must treat as duplicates.

* The deduplication process in FIFO queues is time-sensitive. When designing your application,
you should ensure that both the sender and the receiver can recover in case of a client or network
outage.

The sender must be aware of the deduplication interval of the queue. Amazon SQS has

a minimum deduplication interval of 5 minutes. Retrying SendMessage requests after the
deduplication interval expires can introduce duplicate messages into the queue. For example,

a mobile device in a car sends messages whose order is important. If the car loses cellular
connectivity for a period of time before receiving an acknowledgement, retrying the request after
regaining cellular connectivity can create a duplicate.

The receiver must have a visibility timeout that minimizes the risk of being unable to process
messages before the visibility timeout expires. You can extend the visibility timeout while the
messages are being processed by calling the ChangeMessageVi si bi | i ty action. However, if
the visibility timeout expires, another receiver can immediately begin to process the messages,
causing a message to be processed multiple times. To avoid this scenario, configure a dead letter
queue (p. 17).

Using the Message Group ID

¢ To interleave multiple ordered message groups within a single FIFO queue, you should use
message group ID values (for example, session data for multiple users). In this scenario, multiple
readers can process the queue, but the session data of each user is processed in a FIFO manner.

Note
When messages that belong to a particular message group ID are invisible, no other
receiver can process messages with the same message group ID.

¢ To avoid processing duplicate messages in a system with multiple readers and writers where
throughput and latency are more important than ordering, the sender should generate a unique
message group ID for each message.

Note
In this scenario, duplicates are eliminated. However, the ordering of message cannot be
guaranteed.

79

Amazon Simple Queue Service Developer Guide
Using the Receive Request Attempt ID

Any scenario with multiple readers and writers increases the risk of inadvertently delivering
a duplicate message if a worker does not process the message within the visibility timeout
and the message becomes available to another worker.

Using the Receive Request Attempt ID

During a long-lasting network outage that causes connectivity issues between your SDK and Amazon
SQS, it's a best practice to provide the receive request attempt ID and to retry with the same receive

request attempt ID if the SDK operation fails.

80

Amazon Simple Queue Service Developer Guide
Monitoring Amazon SQS using CloudWatch

Monitoring and Logging Amazon
SQS Queues

This section provides information on monitoring and logging Amazon SQS queues.

Topics
* Monitoring Amazon SQS using CloudWatch (p. 81)
¢ Logging Amazon SQS API Actions Using AWS CloudTrail (p. 90)

Monitoring Amazon SQS using CloudWatch

Amazon SQS and Amazon CloudWatch are integrated so you can use CloudWatch to view and
analyze metrics for your Amazon SQS queues. You can view and analyze your queues' metrics from
the Amazon SQS console, the CloudWatch console, the command line, or programmatically.

CloudWatch metrics for your Amazon SQS queues are automatically collected and pushed to
CloudWatch every five minutes. (Detailed monitoring, or one-minute metrics, is currently unavailable
for Amazon SQS.) These metrics are gathered on all queues that meet the CloudWatch guidelines for
being active. A queue is considered active by CloudWatch for up to six hours from the last activity (for
example, any API call) on the queue.

Note

There is no charge for the Amazon SQS metrics reported in CloudWatch. They're provided as
part of the Amazon SQS service.

CloudWatch metrics are supported for both standard and FIFO queues.

Topics
¢ Common Monitoring Tasks (p. 82)
¢ Access CloudWatch Metrics for Amazon SQS (p. 82)
¢ Set CloudWatch Alarms for Amazon SQS Metrics (p. 85)

81

Amazon Simple Queue Service Developer Guide
Common Monitoring Tasks

¢ Available CloudWatch Metrics for Amazon SQS (p. 87)

Common Monitoring Tasks

Use the following decision matrix to determine which set of instructions to follow to complete your
desired task.

Task

Quickly display a default view of CloudWatch
metrics over time for up to 10 queues at once.

Further customize the default views of
CloudWatch metrics.

Set alarms when metrics meet or exceed
specified conditions.

Instructions

Access Metrics Using the Amazon SQS
Console (p. 82)

Access Metrics Using the CloudWatch
Console (p. 84)

Set CloudWatch Alarms for Amazon SQS
Metrics (p. 85)

Create complex dashboards that display metrics
for multiple Amazon SQS queues together.

Access CloudWatch metrics from the command
line or programmatically.

Access Metrics Using the AWS CLI (p. 85)

Access Metrics Using the CloudWatch
CLI (p. 85)

Access Metrics Using the CloudWatch
API (p. 85)

Access CloudWatch Metrics for Amazon SQS

You can access metrics for Amazon SQS using the Amazon SQS console, the CloudWatch console,
the AWS CLI, CloudWatch's own CLI, or programmatically using the CloudWatch API. The following
procedures show you how to access the metrics using these different options.

Access Metrics Using the Amazon SQS Console

1. Signinto the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Inthe list of queues, choose (check) the boxes for the queues that you want to access metrics for.
You can show metrics for up to 10 queues.

3. Choose the Monitoring tab.

82

https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide
Access CloudWatch Metrics for Amazon SQS

1 5Q8S Queue selected

_N—Q=]
Details Permissions Redrive Policy
5QS metrics Time Range: LastHour v ¥
Below are your CloudWatch metrics for the selected resources (maximum of 10). Click on a graph to see an expanded view. All times shown are
in UTC. View all CloudWatch metrics
Legend: @ scd-CloudTrail-sgs
NumberOflessagesSent (Count) 8 NumberOfilessagesReceived (Count) 0
25 1
= 075 3
15
0.5
1
05 0325
] 0 e
23 ik 23 ikl
16:30 17:00 16:30 17:00
NumberQOfEmptyReceives (Count) i) NumberOfilessagesDeleted (Count) [i] b |
1 1
0.75 075
05 0
025 02

To understand what a particular graph represents, hover over the information icon next to the
desired graph, or see Available CloudWatch Metrics for Amazon SQS (p. 87).

To change the time range for all of the graphs at the same time, for Time Range, choose the
desired time range (for example, Last Hour).

To view additional statistics for an individual graph, choose the graph. After the graph displays
in a larger dialog box, for Statistic, choose the desired statistic (for example, Sum). For a list of
supported statistics, see Available CloudWatch Metrics for Amazon SQS (p. 87).

CloudWatch Monitoring Details X

NumberOfMessagesSent (Count) Statistic Sum v Time Range Last 24 Hours v Period 1 Howr v o Q

25

e e

20

22 2z L] 213 23 23 23 23 273 23 23
12:00 20:00 22.00 00:00 02:00 04:00 08:00 08:00 10:00 12:00 14:00 16:00

M scd-CloudTrail-sqs

To change the time range and time interval that an individual graph displays (for example, to show
a time range of the last 24 hours instead of the last 5 minutes, or to show a time period of every
hour instead of every 5 minutes), with the graph's dialog box still displayed, for Time Range,
choose the desired time range (for example, Last 24 Hours). For Period, choose the desired time

83

Amazon Simple Queue Service Developer Guide
Access CloudWatch Metrics for Amazon SQS

period within the specified time range (for example, 1 Hour). When you're finished looking at the
graph, choose Close.

8. To work with additional CloudWatch features, on the Monitoring tab, choose View all
CloudWatch metrics, and then follow the instructions in the Access Metrics Using the
CloudWatch Console (p. 84) procedure.

Access Metrics Using the CloudWatch Console

1. Signinto the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

In the navigation pane, choose Metrics.
3. Select the SQS metric namespace.

All metrics Graphed metrics Graph options
Q
18 Metrics
S3 SQs
2 Metrics 16 Metrics

4. Select the Queue Metrics metric dimension.

All metrics Graphed metrics Graph options

Al > SQS Q

16 Metrics

Queue Metrics

16 Metrics

5. You can now examine your Amazon SQS metrics:

* To sort the metrics, use the column heading.
e To graph a metric, select the check box next to the metric.
¢ To filter by metric, choose the metric name and then choose Add to search.

84

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Simple Queue Service Developer Guide
Set CloudWatch Alarms for Amazon SQS Metrics

All metrics Graphed metrics Graph options

Al > SQS > Queue Metrics Q

QueueName (16) - Metric Name

MyQueue ApproximateAgeOfOldestMessage
MyQueue Add to search

MyQueue Search for this only

MyQueue Add to graph

MyQueue Graph this metric only
MyQueue Graph all search results ||
MyQueue & What is this?

MyQueue MumberOfMessagesSent

For more information and additional options, see Graph Metrics and Using Amazon CloudWatch
Dashboards.

Access Metrics Using the AWS CLI

Runthe get-netric-stati sti cs command. For more information, see Get Statistics for a Metric.

Access Metrics Using the CloudWatch CLI

Run the non- get - st at s command.

Access Metrics Using the CloudWatch API

Call the Get Metri cSt ati sti cs operation. For more information, see Get Statistics for a Metric.

Set CloudWatch Alarms for Amazon SQS Metrics

CloudWatch allows you to trigger alarms when a threshold is met for a metric. For example, you could
set an alarm for the Number OF MessagesSent metric so that when the number of messages exceeds
a specified limit over a specified time period, then an email notification could be sent to inform you of
the event.

To set an alarm (CloudWatch console)
1. Signin to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Inthe navigation pane, choose Alarms, and then choose Create Alarm. The Create Alarm dialog
box displays.

3. Onthe Select Metric page, choose Browse Metrics, SQS:

85

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/graph_metrics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
http://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/getting-metric-statistics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/cli-mon-get-stats.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/US_GetStatistics.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Simple Queue Service Developer Guide
Set CloudWatch Alarms for Amazon SQS Metrics

N

Create Alarm

1. Select Metric 2. Define Alarm

Browse Metrics | « Q b'd
All Metrics

e Metrics by Category
EégﬁmDDB c summary has loaded. Total metrics: 1,
EC2 ics - 4 Dynamo
ELB
ElastiCache B4 GlobalS
OpsWorks Metrics
RDS Table Me;
Redshift
53
I ELB Met
e B 334 PerlB M
— Per LB, pe
CloudTrailMetrics By Availa

4. For SQS > Queue Metrics, choose (check) the box that you want to set an alarm for the
combination of QueueName and Metric Name. (For a list of available metrics, see Available
CloudWatch Metrics for Amazon SQS (p. 87)). For example, choosing (checking) the box for
MyQueue, NumberOfMessagesSent sets an alarm based on the number of messages sent to
the MyQueue queue.

Create Alarm b4

1. Select Metric 2. Define Alarm

sQs - Q be € & 1wosooreamenic 3 P
1 MyQueue ApproximateNumberOfVlessagesDelayed

E MyQueue ApproximateNumberOfivlessagesNotVisible =
[MyQueue ApproximateMumberOfilessagesVisible =
[MyQueue NumberOfEmptyReceives

[MyQueue NumberQfMessagesDeleted

[MyQueue NumberOfMlessagesReceived

MyQueue NumberOfilessagesSent | il
Title: NumberOfessagesSent (Count) # Average ~ 5 Minutes v _ N =]

1 Time Range

0 Relative Absolute UTC (GMT) B

From: | 12 hours ago El

To: O minutes ago El

05 Zoom: 1h | 3h | Bh[12h | 1d | 3d | 1w | 2w

201 201 201 2/01 201 201
10:00 12:00 14:00 16:00 1800 20:00
Left axis units: Count

W NumberO fMessagesSent

Cancel

5. Choose Next. The Define Alarm page displays.

86

Amazon Simple Queue Service Developer Guide
Available CloudWatch Metrics for Amazon SQS

6. For Alarm Threshold, fill in the Name and Description boxes. For is, for, Period, and Statistic,
specify the conditions for the alarm. For example, let's say you chose (checked) the box for
MyQueue, NumberOfMessagesSent on the Select Metric page, and you want to alarm
when more than 100 messages are sent in any hour to the MyQueue queue. You'd then set the
following:

e Setis to > 100.
* Setforto 1.
Set Period to 1 Hour.

* Set Statistic to Sum.

Create Alarm X

1. Select Metric 2. Define Alarm

Alarm Threshold Alarm Preview
Provide the details and threshold for your alarm. Use the graph on the right to help set the This alarm will trigger when the blue line goes
appropriate threshold. above the red line for a duration of 1 hour

Name:| | NumberOfMessagesSent=100 HumberOfiessagesSent = 100

Descriptien:| 100+ messages sent in any hour

Whenever: NumberOfllessagesSent 50
25
is: | > [=][100 .

1431 1/31 201 201

for: | 1 consecutive period(s) 00:00 12:00 00:00 12:00

ACtiOnS Namespace: AWS/SQS

Define what actions are taken when your alarm changes state.

QueueName: | MyQueue

Metric Name: | NumberOfVlessagesSe

Notification Delete
Whenever this alarm: | State is ALARM E\ Period: || 1Hour E|
Send notification to: | Selecta notification list E\ New list Enter list € statistic: | sum E|

+ Notification + AutoScaling Action

Cancel | Previous Create Alarm

7. For Actions and Whenever this alarm, choose State is ALARM. For Send notification to, if you
want CloudWatch to send you an email when the alarm state is reached, either select an existing
Amazon SNS topic or choose New list. If you choose New list, you can set the name and list
comma-separated email addresses for a new topic. This list will be saved and appear for future
alarms.

Note

If you choose New list to create a new Amazon SNS topic, the email addresses must be
verified before they'll receive notifications. Emails are sent only when the alarm enters an
alarm state. If this alarm state change happens before the email addresses are verified,
they won't receive a natification.

8. Choose Create Alarm. CloudWatch creates the alarm and then displays the alarms list.

For more information, see Creating Amazon CloudWatch Alarms.

Available CloudWatch Metrics for Amazon SQS

Amazon SQS sends the following metrics to CloudWatch.

87

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon Simple Queue Service Developer Guide
Available CloudWatch Metrics for Amazon SQS

Note

For standard queues, the result is approximate because of the distributed architecture of
Amazon SQS. In most cases, the count should be close to the actual number of messages in
the queue.

For FIFO gueues, the result is exact.

Amazon SQS Metrics

The AWS/ S@S namespace includes the following metrics.

Metric Description

Appr oxi mat eAgef O dest Message The approximate age of the oldest non-
deleted message in the queue.

Units: Seconds

Valid Statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays as
Sample Count in the Amazon SQS console)

Appr oxi mat eNunber Of MessagesDel ayed The number of messages in the queue that
are delayed and not available for reading
immediately. This can happen when the
gueue is configured as a delay queue or
when a message has been sent with a
delay parameter.

Units: Count

Valid Statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays as
Sample Count in the Amazon SQS console)

Appr oxi mat eNunber Of MessagesNot Vi si bl e The number of messages that are "in flight."
Messages are considered in flight if they
have been sent to a client but have not yet
been deleted or have not yet reached the
end of their visibility window.

Units: Count

Valid Statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays as
Sample Count in the Amazon SQS console)

Appr oxi mat eNunber Of MessagesVi si bl e The number of messages available for
retrieval from the queue.

Units: Count

Valid Statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays as
Sample Count in the Amazon SQS console)

Nurber Of Enpt yRecei ves The number of Recei veMessage API calls
that did not return a message.

Units: Count

88

Amazon Simple Queue Service Developer Guide
Available CloudWatch Metrics for Amazon SQS

Metric

Nurmber Of MessagesDel et ed

Nurmber OfF MessagesRecei ved

Number OfF Messages Sent

Sent MessageSi ze

Description

Valid Statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays as
Sample Count in the Amazon SQS console)

The number of messages deleted from the
queue.

Units: Count

Valid Statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays as
Sample Count in the Amazon SQS console)

The number of messages returned by calls
to the Recei veMessage API action.

Units: Count

Valid Statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays as
Sample Count in the Amazon SQS console)

The number of messages added to a
queue.

Units: Count

Valid Statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays as
Sample Count in the Amazon SQS console)

The size of messages added to a queue.
Units: Bytes

Valid Statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays as
Sample Count in the Amazon SQS console)

Note that Sent MessageSi ze does not
display as an available metric in the
CloudWatch console until at least one
message is sent to the corresponding
queue.

Dimensions for Amazon SQS Metrics

The only dimension that Amazon SQS sends to CloudWatch is QueueNare. This means that all

available statistics are filtered by QueueNare.

89

Amazon Simple Queue Service Developer Guide
Logging Amazon SQS API Actions Using CloudTrail

Logging Amazon SQS API Actions Using AWS
CloudTrall

Amazon SQS is integrated with CloudTrail, a service that captures API calls made by or on behalf

of Amazon SQS in your AWS account and delivers the log files to the specified Amazon S3 bucket.
CloudTrail captures API calls made from the Amazon SQS console or from the Amazon SQS API.
You can use the information collected by CloudTrail to determine which requests are made to Amazon
SQS, the source IP address from which the request is made, who made the request, when it is made,
and so on. To learn more about CloudTrail, including how to configure and enable it, see the AWS
CloudTrail User Guide.

CloudTrail is supported for both standard and FIFO queues.

Amazon SQS Information in CloudTralil

When CloudTrail logging is enabled in your AWS account, API calls made to Amazon SQS actions are
tracked in log files. Amazon SQS records are written together with other AWS service records in a log
file. CloudTrail determines when to create and write to a new file based on a time period and file size.

The following actions are supported:

¢ AddPermission

¢ CreateQueue

¢ DeleteQueue

¢ PurgeQueue

« RemovePermission
¢ SetQueueAttributes

Every log entry contains information about who generated the request. The user identity information
in the log helps you determine whether the request was made with root or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userldentity field in the CloudTrail Event Reference.

You can store your log files in your bucket for as long as you want, but you can also define Amazon
S3 lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by
using Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered
if you want to take quick action upon log file delivery. For more information, see Configuring Amazon
SNS Notifications for CloudTrail.

You can also aggregate Amazon SQS log files from multiple AWS regions and multiple AWS accounts
into a single Amazon S3 bucket. For more information, see Receiving CloudTrail Log Files from
Multiple Regions.

Understanding Amazon SQS Log File Entries

CloudTrail log files contain one or more log entries where each entry is made up of multiple JSON-
formatted events. A log entry represents a single request from any source and includes information
about the requested action, any parameters, the date and time of the action, and so on. The log entries
are not guaranteed to be in any particular order. That is, they're not an ordered stack trace of the public
API calls.

90

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_PurgeQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_RemovePermission.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html

Amazon Simple Queue Service Developer Guide
Understanding Amazon SQS Log File Entries

AddPermission

The following example shows a CloudTrail log entry for AddPermission:

{
"Records": [
{

"event Version": "1.01",

"userldentity": {
"type": "I AMJser",
"principalld': "EX PRI NC PAL_I D',
"arn": "arn:aws:iam:123456789012: user/ Alice",
"accountld": "123456789012",
"accessKeyl d": "EXAMPLE KEY_I D',
"user Name": "Alice"

}s

"event Time": "2014-07-16T00: 44: 192",

"event Source": "sqgs.amazonaws. cont,

"event Name": "AddPerm ssion",

"awsRegi on": "us-east-2",

"sour cel PAddress": "192.0.2.0",

"user Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/ 20100101

Fi ref ox/ 24. 0",
"request Paranmeters": {
"actions": [
" SendMessage”
1
"aWSAccount I ds": [
"123456789012"

]

abel ": "l abel",
"queueUrl": "http://test-sqgs. amazon. com 123456789012/ hel | 01"
b,
"responseEl ements": null,
"request| D': "334ccccd- b9bb- 50f a- abdb- 80f 274981d60",
"event| D': "0552b000-09a3-47d6- a810- c5f 9f d2534f e"

CreateQueue

The following example shows a CloudTrail log entry for CreateQueue:

{
"Records": |
{
"event Version": "1.01",
"userldentity": {
"type": "I AMJser",

“principalld": "EX_PRINCI PAL_I D',
"arn": "arn:aws:iam:123456789012: user/ Alice",
"accountld": "123456789012",
"accessKeyl d": "EXAMPLE_KEY_I D',
"user Nane": "Alice"
b,
"event Ti ne": "2014-07-16T00: 42: 427",

91

Amazon Simple Queue Service Developer Guide
Understanding Amazon SQS Log File Entries

"event Source": "sqs.amazonaws. cont,
"event Nane": " Creat eQueue",
"awsRegi on": "us-east-2",

"sourcel PAddress": "192.0.2.0",

"userAgent": "Mzilla/5 0 (X11; Linux x86_64; rv:24.0) CGecko/ 20100101
Fi r ef ox/ 24. 0",

"request Paraneters": {

"queueNare": "hellol"
}s
"responseEl enents": {

"queueUrl": "http://test-sqgs. amazon. com 123456789012/ hel | 01"
}

"request| D': "49ebbdb7-5cd3-5323-8a00-f 1889011f ee9",
"event| D': "68f4e7lc-4f 2f - 4625- 8378- 130ac89660b1"

DeleteQueue

The following example shows a CloudTrail log entry for DeleteQueue:

"Records": |

{

"event Version": "1.01",

"userldentity": {
"type": "I AMJser",
"principalld': "EX_PRINCIPAL_I D',
"arn": "arn:aws:iam:123456789012: user/Alice",
"accountld": "123456789012",
"accessKeyl d": "EXAMPLE_KEY_I D',
"user Name": "Alice"

},

"event Ti me": "2014-07-16T00: 44: 472",

"event Source": "sqs.amazonaws. cont,

"event Nane": "Del et eQueue",

"awsRegi on": "us-east-2",

"sour cel PAddress": "192.0.2.0",

"userAgent": "Mzilla/5 0 (X11; Linux x86_64; rv:24.0) Gecko/20100101
Fi r ef ox/ 24. 0",

"request Paraneters": {

"queueUrl": "http://test-sqgs. amazon. com 123456789012/ hel | 01"

},

"responseEl ements": null,
"request| D': "edcOcc05- 4f aa- 51d5- aab2- 803a8294388d",
"event| D': "af 1bb158-6443- 4b4d- abf d- 1b867280d964"

RemovePermission

The following example shows a CloudTrail log entry for RemovePermission:

q

92

Amazon Simple Queue Service Developer Guide
Understanding Amazon SQS Log File Entries

"Records": [

{
"event Version": "1.01",
"userldentity": {
"type": "I AMJser",
"principalld': "EX_PRINCIPAL_I D',
"arn": "arn:aws:iam:123456789012: user/Alice",
"accountld": "123456789012",
"accessKeyl d": "EXAMPLE_KEY_I D',
"user Name": "Alice"
H
"event Ti me": "2014-07-16T00: 44: 362",
"event Source": "sqs.amazonaws. cont,
"event Nanme": " RenovePerm ssion",
"awsRegi on": "us-east-2",

"sour cel PAddress": "192.0.2.0",
"userAgent": "Mzilla/5 0 (X11; Linux x86_64; rv:24.0) CGecko/20100101
Fi r ef ox/ 24. 0",
"request Paraneters": {
"l abel": "label",
"queueUrl": "http://test-sqgs. amazon. com 123456789012/ hel | 01"

}

esponseEl enents": nul I,
"request| D': "48178821-9c2b-5be0- 88bf-c41e5118162a",
"event| D': "fed8a623-3fe9-4e64-9543-586d9e500159"

SetQueueAttributes

The following example shows a CloudTrail log entry for SetQueueAttributes:

"Records": [

{
"event Version": "1.01",
"userldentity": {
"type": "I AMJser",
"principalld': "EX_PRINCIPAL_I D',
"arn": "arn:aws:iam:123456789012: user/Alice",
"accountld": "123456789012",
"accessKeyl d": "EXAMPLE_KEY_I D',
"user Name": "Alice"
H
"event Ti me": "2014-07-16T00: 43: 152",
"event Source": "sqgs.amazonaws. cont,
"event Nanme": "Set QueueAttributes",
"awsRegi on": "us-east-2",

"sourcel PAddress": "192.0.2.0",
"userAgent": "Mzilla/5 0 (X11; Linux x86_64; rv:24.0) CGecko/20100101
Fi r ef ox/ 24. 0",
"request Paraneters": {
"attributes": {
"VisibilityTi neout": "100"
1
"queueUrl": "http://test-sqgs. amazon. com 123456789012/ hel | 01"

b

93

Amazon Simple Queue Service Developer Guide
Understanding Amazon SQS Log File Entries

"responseEl ements": null,
"request| D': "7f15d706-f3d7-5221- b9ca- 9b393f 349b79",
"event| D': "8b6fb2dc-2661-49b1-b328-94317815088b"

94

Amazon Simple Queue Service Developer Guide
Making APl Requests

Working with Amazon SQS APIs

This section provides information on working with Amazon SQS APIs.

Topics
¢ Making API Requests (p. 95)
¢« Amazon SQS Batch API Actions (p. 111)

Making APl Requests

Topics
¢ Endpoints (p. 96)
« Making Query Requests (p. 97)
¢ Request Authentication (p. 100)
¢ Responses (p. 106)
¢ Shared Queues (p. 108)
¢ Programming Languages (p. 111)

This section describes how to make requests to Amazon SQS. The topics acquaint you with the basic
differences between the interfaces, the components of a request, how to authenticate a request, and
the content of responses.

We also provide SDKs that enable you to access Amazon SQS from your preferred programming
language. The SDKs contain functionality that automatically takes care of tasks such as:

¢ Cryptographically signing your service requests
* Retrying requests
¢ Handling error responses

For a list of available SDKs, see Tools for Amazon Web Services

Important
As of August 8, 2011, Amazon SQS no longer supports SOAP requests.

95

http://aws.amazon.com/tools/

Amazon Simple Queue Service Developer Guide
Endpoints

Endpoints

For information about Amazon SQS regions and endpoints, see Regions and Endpoints in the Amazon
Web Services General Reference.

Every Amazon SQS endpoint is entirely independent. For example, two queues named MyQueue,
onein sqgs. us-east - 1. amazonaws. comand one in sgs. eu- west - 1. amazonaws. com would
be completely independent and would not share any data. Queue names and queue URLSs are case-
sensitive.

The following are general examples of query requests that create queues in different regions. The
structure of AUTHPARAMS depends on how you sign your API request.

Example of Creating a Queue in EU (Ireland)

http://sqgs. eu-west-1. amazonaws. cont
?Act i on=Cr eat eQueue

&Def aul t Vi si bi l'i tyTi meout =40
&QueueNanme=MyQueue

&Ver si on=2012-11- 05

&AUTHPARANS

96

http://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Simple Queue Service Developer Guide
Making Query Requests

Making Query Requests

Topics
e Structure of a GET Request (p. 97)
e Structure of a POST Request (p. 98)
« Related Topics (p. 99)

Amazon SQS supports Query requests for calling service actions. Query requests are simple HTTP or
HTTPS requests, using the GET or POST method. Query requests must contain an Act i on parameter
to indicate the action to be performed. The response is an XML document that conforms to a schema.

Structure of a GET Request

This guide presents the Amazon SQS GET requests as URLSs, which can be used directly in a browser.
The URL consists of:

¢ Endpoint—The resource the request is acting on (in the case of Amazon SQS, the endpoint is a
gueue)

¢ Action—The action you want to perform on the endpoint; for example: sending a message
« Parameters—Any request parameters

The following is an example GET request to send a message to an Amazon SQS queue.

How you structure the AUTHPARAMS depends on how you're signing your API request. For
information on AUTHPARAMS in Signature Version 4, see Examples of Signed Signature Version 4
Requests.

http://sqgs. us-east-2. amazonaws. conf 123456789012/ queuel?
Act i on=SendMessage&MVessageBody=Your %20Message¥20Text &Ver si on=2012- 11- 05
&AUTHPARANS

Important

Because the GET requests are URLs, you must URL encode the parameter values. For
example, in the preceding example request, the value for the MessageBody parameter is
actually Your Message Text . However, spaces are not allowed in URLs, so each space is
URL encoded as "%20". The rest of the example has not been URL encoded to make it easier
for you to read.

Note
Queue names and queue URLSs are case-sensitive.

To make the GET examples even easier to read, this guide presents them in the following parsed
format.

http://sqgs. us-east-2. amazonaws. conf 123456789012/ queuel
?Act i on=SendMessage

&\vessageBody=Your ¥%20Message%?0Text

&Ver si on=2012-11- 05

&Expi res=2011-10- 15T12: 00: 00Z

&AUTHPARAMS

Note
In the example Query requests we present in this guide, we use a false AWS Access Key
ID and false signature, each with EXAMPLE appended. We do this to indicate that you

97

http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

Amazon Simple Queue Service Developer Guide
Making Query Requests

shouldn't expect the signature in the example to be accurate based on the request parameters
presented in the example. The one exception to this is in the instructions for creating Query
request signatures. The example there shows a real signature based on a particular AWS
Access Key ID we specify and the request parameters in the example (for more information,
see Query Request Authentication (p. 105)).

In Amazon SQS, all parameters except MessageBody always have values that have no spaces. The
value you provide for MessageBody in SendMessage requests can have spaces. In this guide, any
example SendMessage Query requests with a MessageBody that includes spaces is displayed with
the spaces URL encoded (as %20). For clarity, the rest of the URL isn't displayed in a URL encoded
format.

The first line represents the endpoint of the request. This is the resource the request acts on. The
preceding example acts on a queue, so the request's endpoint is the queue's identifier, known as the
queue URL. For more details about the queue URL, see Queue Name and URL (p. 12).

After the endpoint is a question mark (?), which separates the endpoint from the parameters. Each
parameter is separated by an ampersand (&).

The Act i on parameter indicates the action to perform (for a list of the actions, see API Actions in
the Amazon SQS API Reference). For a list of the other parameters that are common to all Query
requests, see Common Parameters in the Amazon SQS API Reference.

Structure of a POST Request

Amazon SQS also accepts POST requests. With a POST request, you send the query parameters as a
form in the HTTP request body as described in the following procedure.

How you structure the AUTHPARAMS depends on how you're signing your API request. For
information on AUTHPARAMS in Signature Version 4, see Examples of Signed Signature Version 4
Requests.

To create a POST request

1. Assemble the query parameter names and values into a form.

This means you put the parameters and values together like you'd for a GET request (with an
ampersand separating each name-value pair). The following example shows a SendMessage
request with the line breaks we use in this guide to make the information easier to read.

Act i on=SendMessage
&\VessageBody=Your Message Text
&Ver si on=2012-11- 05

&Expi res=2011-10-15T12: 00: 00Z
&AUTHPARAMS

2. Form-URL-encode the form according to the Form Submission section of the HTML specification
(for more information, see http://www.w3.org/MarkUp/html-spec/html-spec_toc.htmI#SEC8.2.1).

Act i on=SendMessage
&\VessageBody=Your +Message+Text
&Ver si on=2012-11- 05

&Expi res=2011-10- 15T12%3A00%3A00Z
&AUTHPARAMS

3. Add the request signature to the form (for more information, see Query Request
Authentication (p. 105)).

Act i on=SendMessage

98

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/index.html?Operations.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/CommonParameters.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
http://www.w3.org/MarkUp/html-spec/html-spec_toc.html#SEC8.2.1

Amazon Simple Queue Service Developer Guide
Making Query Requests

&\vessageBody=Your +Message+Text
&Ver si on=2012-11- 05

&EXpi res=2011- 10- 15T12%8A00%3A00Z
&AUTHPARANMS

4. Provide the resulting form as the body of the POST request.

5. Include the Cont ent - Type HTTP header with the value set to appl i cati on/ x- ww f or m
ur | encoded.

The following example shows the final POST request.

POST /queuel HTTP/ 1.1
Host: sQs. us-east-2. anazonaws. com
Cont ent - Type: application/ x-wweformurl encoded

Act i on=SendMessage
&\VessageBody=Your +Message+Text
&Ver si on=2012- 11- 05

&Expi res=2011- 10- 15T129%8A00¥8A00Z
&AUTHPARANS

Amazon SQS requires no other HTTP headers in the request besides Cont ent - Type. The
authentication signature you provide is the same signature you'd provide if you sent a GET request (for
information about the signature, see Query Request Authentication (p. 105)).

Note
Your HTTP client typically adds other items to the HTTP request as required by the version of
HTTP the client uses. We don't include those additional items in the examples in this guide.

Related Topics

¢ Query Request Authentication (p. 105)
¢ Responses (p. 106)

99

Amazon Simple Queue Service Developer Guide
Request Authentication

Request Authentication

Topics
¢ What Is Authentication? (p. 100)
¢ Your AWS Account (p. 101)
¢ Your Access Keys (p. 101)
¢ HMAC-SHA Signatures (p. 101)
¢ Query Request Authentication (p. 105)

The topics in this section describe how Amazon SQS authenticates your requests. In this section
you can learn about the basics of authentication, how your AWS account and access keys support
authentication, and how to create a signature. This section also covers the request authentication
requirements for Query requests.

What Is Authentication?

Authentication is a process for identifying and verifying who is sending a request. The following
diagram shows a simplified version of an authentication process.

L1

© [Request |

Recipient

o Request

OK?

. |Request |
6 Yes: |heque To

processing...
—_—
uest
No:
General Process of Authentication
1 The sender obtains the necessary credential.
2 The sender sends a request with the credential to the recipient.

100

Amazon Simple Queue Service Developer Guide

Request Authentication
3 The recipient uses the credential to verify the sender truly sent the request.
4 If yes, the recipient processes the request. If no, the recipient rejects the request and

responds accordingly.

During authentication, AWS verifies both the identity of the sender and whether the sender is
registered to use services offered by AWS. If either test fails, the request isn't processed further.

The subsequent sections describe how Amazon SQS implements authentication to protect your data.

Your AWS Account

To access any web services offered by AWS, you must first create an AWS account at http:/
aws.amazon.com. An AWS account is simply an Amazon.com account that is enabled to use AWS
products; you can use an existing Amazon.com account login and password when creating the AWS
account.

Alternately, you could create a new AWS-enabled Amazon.com account by using a new login and
password. The e-mail address you provide as the account login must be valid. You'll be asked to
provide a credit card or other payment method to cover the charges for any AWS products you use.

From your AWS account you can view your AWS account activity and view usage reports.

Related Topics

¢ Your Access Keys (p. 101)

Your Access Keys

For API access, you need an access key ID and secret access key. Use IAM user access keys
instead of AWS root account access keys. IAM lets you securely control access to AWS services and
resources in your AWS account. For more information about creating access keys, see How Do | Get
Security Credentials? in the AWS General Reference.

Related Topics

¢ HMAC-SHA Signatures (p. 101)
¢ Query Request Authentication (p. 105)

HMAC-SHA Signatures

Topics
¢ Required Authentication Information (p. 102)
¢ Basic Authentication Process (p. 103)
¢ About the String to Sign (p. 104)
¢ About the Time Stamp (p. 104)
e Java Sample Code for Base64 Encoding (p. 105)
¢ Java Sample Code for Calculating SHA256 Signatures (p. 105)

The topics in this section describe how Amazon SQS uses HMAC-SHA signatures to authenticate
Query requests.

101

http://aws.amazon.com
http://aws.amazon.com
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Amazon Simple Queue Service Developer Guide
Request Authentication

Required Authentication Information

When accessing Amazon SQS using the Query API, you must provide the following items so the
request can be authenticated:

¢ AWS Access Key ID—Your AWS account is identified by your Access Key ID, which AWS uses to
look up your Secret Access Key.

¢ Signature—Each request must contain a valid HMAC-SHA request signature, or the request is
rejected.
You calculate the request signature by using your Secret Access Key, which is a shared secret
known only to you and AWS.

« Date—Each request must contain the time stamp of the request. You can provide an expiration date
and time for the request instead of or in addition to the time stamp.

Related Topics

e Your Access Keys (p. 101)

102

Amazon Simple Queue Service Developer Guide
Request Authentication

Basic Authentication Process

Following is the series of tasks required to authenticate requests to AWS using an HMAC-SHA request
signature. It's assumed you have already created an AWS account and created an Access Key ID

and Secret Access Key. For more information about those, see Your AWS Account (p. 101) and Your
Access Keys (p. 101).

You perform the first three tasks.

You
o Create a request: Request
AccessKeyld= .,
Action = ...
Timestamp = ...
ParameterA =
€ (Cratean String based on
HMAC-SHA
. . request contents HMAC
signature: Your Signature
—|— * Calculation *
and
Your Secret Access Key Encoding
wJalrXUtn FEMUKTMDENG!
bPxRACYZEXAMPLEKEY
G’ Send the request
and signature to Request
AWS: AccessKeyld = ..
Action = ...
Timestamp = ..,
ParamaterA = ... #
Your Signatura
Process for Authentication: Tasks You Perform
1 You construct a request to AWS.
2 You calculate a keyed-hash message authentication code (HMAC-SHA) signature using

your Secret Access Key (for information about HMAC, see http://www.fags.org/rfcs/
rfc2104.html)

3 You include the signature and your Access Key ID in the request, and then send the
request to AWS.

103

http://www.faqs.org/rfcs/rfc2104.html
http://www.faqs.org/rfcs/rfc2104.html

Amazon Simple Queue Service Developer Guide
Request Authentication

AWS performs the next three tasks.

AWS
.o Retrieve your Request Get Access Get Secret Your Secret Access Key
Secret Access Key ID Access Key
. AccessKeyld = —_— - wlaliXUtnFEMIKTMDENG!
Key: Action = bPxRACYZEXAMPLEKEY
Timestamp = .
ParameterA = ..
Your Signature
Create an
O s g
signature: &q HMAC Signature
+ Calculation) gl Caleulted bY ANS
and -—
Your Secret Access Key Encoding ——
wlalxUmFEMIKTMDENG!
BPxRACYZEXAMPLEKEY
@) Compare the two Signature Your Slonature
signatures: Calculated by AWS _ - o Yes: Request is authenticated

No: Request fails authentication

Process for Authentication: Tasks AWS Performs

4 AWS uses the Access Key ID to look up your Secret Access Key.

5 AWS generates a signature from the request data and the Secret Access Key using the
same algorithm you used to calculate the signature you sent in the request.

6 If the signature generated by AWS matches the one you sent in the request, the request
is considered authentic. If the comparison fails, the request is discarded, and AWS
returns an error response.

About the String to Sign

Each AWS request you send must include an HMAC-SHA request signature calculated with your
Secret Access Key. The details are covered in Query Request Authentication (p. 105).

About the Time Stamp

The time stamp (or expiration time) you use in the request must be a dat eTi ne object, with the
complete date plus hours, minutes, and seconds (for more information, see http://www.w3.org/
TR/xmlschema-2/#dateTime). For example: 2007-01-31T23:59:59Z. Although it's not required, we
recommend you provide the time stamp in the Coordinated Universal Time (Greenwich Mean Time)
time zone.

If you specify a time stamp (instead of an expiration time), the request automatically expires 15 minutes
after the time stamp (in other words, AWS does not process a request if the request time stamp is
more than 15 minutes earlier than the current time on AWS servers). Make sure your server's time is
set correctly.

104

http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime

Amazon Simple Queue Service Developer Guide
Request Authentication

Important

If you're using .NET you must not send overly specific time stamps, due to different
interpretations of how extra time precision should be dropped. To avoid overly specific time
stamps, manually construct dat eTi ne objects with no more than millisecond precision.

Java Sample Code for Base64 Encoding

Request signatures must be base64 encoded. The following Java sample code shows how to perform
base64 encoding.

package amazon. webservi ces. conmon;

/**

* This class defines conmon routines for encoding data in AWS requests.
*/

public class Encoding {

/**

* Perforns base64-encodi ng of input bytes.

*

* @aramrawbData * Array of bytes to be encoded.

* @eturn * The base64 encoded string representati on of rawbData.
*/

public static String EncodeBase64(byte[] rawbata) {

return Base64. encodeByt es(rawDat a) ;

}
}

Java Sample Code for Calculating SHA256 Signatures

For an example of how to derive a Signature Version 4 Signing Key, see Deriving the Signing Key with
Java.

Note
While both Signature Version 2 and Signature Version 4 support SHA256, only Signature
Version 2 supports SHA1L.

Query Request Authentication

When you programmatically call the functionality exposed by the Amazon SQS API, all calls sent to
Amazon SQS must be signed. If you use an AWS SDK, the SDK handles the signing process for you
so that you do not have to manually complete the tasks. On the other hand, if you submit a Query
request over HTTP/HTTPS, then you must include a signature in every Query request.

Amazon SQS supports signature version 4. Signature version 4 provides improved security and
performance over previous versions. If you're creating new applications that use Amazon SQS, then
you should use signature version 4.

For information on how to create the signature using signature version 4, see Signature Version 4
Signing Process in the AWS General Reference.

105

http://docs.aws.amazon.com/general/latest/gr/signature-v4-examples.html#signature-v4-examples-java
http://docs.aws.amazon.com/general/latest/gr/signature-v4-examples.html#signature-v4-examples-java
http://aws.amazon.com/code/
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon Simple Queue Service Developer Guide
Responses

Responses

Topics
¢ Structure of a Successful Response (p. 106)
e Structure of an Error Response (p. 106)
¢ Related Topics (p. 107)

In response to an action request, Amazon SQS returns an XML data structure that contains the results
of the request. This data conforms to the Amazon SQS schema. For more information, see the API
version in the Amazon SQS API Reference.

Structure of a Successful Response

If the request succeeded, the main response element is named after the action, but with "Response"
appended. For example, Cr eat eQueueResponse is the response element returned for a successful
Cr eat eQueue request. This element contains the following child elements:

¢ ResponseMet adat a, which contains the Request | d child element

¢ An optional element containing action-specific results; for example, the Cr eat eQueueResponse
element includes an element called Cr eat eQueueResul t

The XML schema describes the XML response message for each Amazon SQS action.

The following is an example of a successful response.

<Cr eat eQueueResponse
xm ns=http://sqgs. us-east- 2. amazonaws. com doc/ 2012- 11- 05/
xm ns: xsi =htt p: // www. W3. or g/ 2001/ XM_Schena- i nst ance
Xsi : type=Cr eat eQueueResponse>
<Cr eat eQueueResul t >
<Queuelr| >
http://sgs. us-east-2. amazonaws. conl 770098461991/ queue2
</ Queuelr| >
</ Cr eat eQueueResul t >
<ResponseMet adat a>
<Request | d>cb919c0a- 9bce- 4af e- 9b48- 9bdf 2412bb67</ Request | d>
</ ResponseMet adat a>
</ Cr eat eQueueResponse>

Structure of an Error Response

If a request is unsuccessful, the main response element is called Er r or Response regardless of the
action that was called. This element contains an Er r or element and a Request | d element. Each
Err or includes:

« A Type element that identifies whether the error was a receiver or sender error

¢ A Code element that identifies the type of error that occurred

*« A Message element that describes the error condition in a human-readable form

e« ADetail elementthat might give additional details about the error or might be empty

The following is an example of an error response.

<Error Response>

106

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/

Amazon Simple Queue Service Developer Guide
Responses

<Error>
<Type>
Sender
</ Type>
<Code>
I nval i dPar anet er Val ue
</ Code>
<Message>
Val ue (quenane_nonal pha) for paraneter QueueNane is invalid.
Must be an al phanunmeric String of 1 to 80 in length
</ Message>
</ Error>
<Request | d>
42d59b56- 7407- 4c4a- beOf - 4c88daeea257
</ Request | d>
</ Err or Response>

Related Topics

« Making Query Requests (p. 97)

107

Amazon Simple Queue Service Developer Guide
Shared Queues

Shared Queues

Topics
e Simple API for Shared Queues (p. 108)
¢ Advanced API for Shared Queues (p. 108)
¢ Understanding Resource-Level Permissions (p. 108)
e Granting Anonymous Access to a Queue (p. 109)

Amazon SQS includes methods to share your queues so others can use them, using permissions set
in an access control policy. A permission gives access to another user to use your queue in some
particular way. A policy is the actual document that contains the permissions you've granted.

Amazon SQS offers two methods for setting a policy: a simple API and an advanced API. In the simple
API, Amazon SQS generates an access control policy for you. In the advanced API, you create the
access control policy.

Simple API for Shared Queues

The simple API for sharing a queue has two operations:

e AddPer m ssi on
¢ RenpvePerm ssi on

With the simple API, Amazon SQS writes the policy in the required language for you based on the
information you include in the AddPer ni ssi on operation. However, the policy that Amazon SQS
generates is limited in scope. You can grant permissions to principals, but you can't specify restrictions.

Advanced API for Shared Queues

With the advanced API, you write the policy yourself directly in the access policy language and upload
the policy with the Set QueueAt t ri but es operation. The advanced API allows you to deny access or
to apply finer access restrictions (for example, based on time or based on IP address).

If you choose to write your own policies, you need to understand how policies are structured. For
complete reference information about policies, see Creating Custom Policies Using the Access Policy
Language (p. 133). For examples of policies, see Access Policy Examples (p. 139).

Understanding Resource-Level Permissions

A permission is the type of access you give to a principal (the user receiving the permission). You

give each permission a label that identifies that permission. If you want to delete that permission in

the future, you use that label to identify the permission. If you want to see what permissions are on a
gueue, use the Get QueueAt tri but es operation. Amazon SQS returns the entire policy (containing all
the permissions).

Amazon SQS supports the permission types shown in the following taTo allow anonymous access you
must write your own policy, sble.

Permission Description

* This permission type grants the following actions to a principal on a shared
gueue: change a message's visibility, delete messages, get a queue's
attributes, get a queue's URL, receive messages, and send messages.

108

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_RemovePermission.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html

Amazon Simple Queue Service Developer Guide
Shared Queues

Permission Description

ChangeMessageVi si bi IThig grants permission to extend or terminate the read lock timeout
of a specified message. ChangeMessageVi si bi | i t yBat ch inherits
permissions associated with ChangeMessageVi si bi | i ty. For more
information about visibility timeout, see Visibility Timeout (p. 14). For more
information, see the ChangeMessageVi si bi | ity operation.

Del et eMessage This grants permission to delete messages from the queue.
Del et eMessageBat ch inherits permissions associated with
Del et eMessage. For more information, see the Del et eMessage
operation.

Get QueueAt tri but es | This grants permission to get all of the queue attributes except the policy,
which can only be accessed by the queue's owner. For more information,
see the Get QueueAt t ri but es operation.

Get Queuelr| This grants permission to get a queue's URL. For more information, see
the Get QueueUr | operation.

Recei veMessage This grants permission to receive messages in the queue. For more
information, see the Recei veMessage operation.

SendMessage This grants permission to send messages to the queue.
SendMessageBat ch inherits permissions associated with SendMessage.
For more information, see the SendMessage operation.

Note

Setting permissions for SendMessage, Del et eMessage, or ChangeMessageVisibility
also sets permissions for the corresponding batch versions of those actions:
SendMessageBat ch, Del et eMessageBat ch, and ChangeMessageVi si bi | i t yBat ch.
Setting permissions explicitly on SendMessageBat ch, Del et eMessageBat ch, and
ChangeMessageVi si bi | i t yBat ch isn't allowed.

Permissions for each of the different permission types are considered separate permissions by
Amazon SQS, even though * includes the access provided by the other permission types. For
example, it's possible to grant both * and SendMessage permissions to a user, even though a *
includes the access provided by SendMessage.

This concept applies when you remove a permission. If a principal has only a * permission, requesting
to remove a SendMessage permission does not leave the principal with an "everything but"
permission. Instead, the request does nothing, because the principal did not previously possess an
explicit SendMessage permission.

If you want to remove * and leave the principal with just the Recei veMessage permission, first add the
Recei veMessage permission, then remove the * permission.
Tip
You give each permission a label that identifies that permission. If you want to delete that
permission in the future, you use that label to identify the permission.

Note
If you want to see what permissions are on a queue, use the Get QueueAt tri but es
operation. The entire policy (containing all the permissions) is returned.

Granting Anonymous Access to a Queue

You can allow shared queue access to anonymous users. Such access requires no signature or
Access Key ID.

109

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html

Amazon Simple Queue Service Developer Guide
Shared Queues

To allow anonymous access you must write your own policy, setting the Pri nci pal to *. For
information about writing your own policies, see Creating Custom Policies Using the Access Policy
Language (p. 133).

Caution

Keep in mind that the queue owner is responsible for all costs related to the queue. Therefore
you probably want to limit anonymous access in some other way (by time or IP address, for
example).

110

Amazon Simple Queue Service Developer Guide
Programming Languages

Programming Languages

AWS provides libraries, sample code, tutorials, and other resources for software developers who prefer
to build applications using language-specific APIs instead of Amazon SQS's Query API. These libraries
provide basic functions (not included in Amazon SQS's Query API), such as request authentication,
request retries, and error handling so you can get started more easily. Libraries and resources are
available for the following languages:

« Go

* Java

¢ JavaScript

¢ PHP

¢ Python

¢ Ruby

e Windows and .NET
o C++

For mobile application development, see:

« AWS Mobile SDK for Android
« AWS Mobile SDK for iOS
¢ AWS SDK for Unity

Note
There are also command-line tools available for interacting with Amazon SQS:

¢« The AWS Command Line Interface (AWS CLI). For more information, see Getting Set
Up with the AWS Command Line Interface and the Amazon SQS section of the AWS CLI
Reference.

« The AWS Tools for Windows PowerShell. For more information, see Setting up the AWS
Tools for Windows PowerShell and the Amazon Simple Queue Service section of the AWS
Tools for Windows PowerShell Cmdlet Reference.

Amazon SQS Batch API Actions

Topics
¢ Maximum Message Size for SendMessageBatch (p. 112)
¢ Client-Side Buffering and Request Batching (p. 113)
¢ Increasing Throughput with Horizontal Scaling and Batching (p. 116)

In the 2009-02-01 API version of Amazon SQS, only the Recei veMessage action supports batch
processing (processing more than one message with a single call).

From the 2011-10-01 API version of Amazon SQS, you can use batch functionality to send and delete
messages and to change the message visibility timeout:

¢ To send up to ten messages at once, use the SendMessageBat ch action.
¢ To delete up to ten messages with one API call, use the Del et eMessageBat ch action.

¢ To change the visibility timeout value for up to ten messages, use the
ChangeMessageVi si bi | i t yBat ch action.

111

http://aws.amazon.com/documentation/sdk-for-go
http://aws.amazon.com/java
http://aws.amazon.com/javascript
http://aws.amazon.com/php
http://aws.amazon.com/python
http://aws.amazon.com/ruby
http://aws.amazon.com/net
http://aws.amazon.com/sdk-for-cpp
http://aws.amazon.com/documentation/sdk-for-android/
http://aws.amazon.com/documentation/sdk-for-ios/
http://aws.amazon.com/documentation/sdk-for-unity/
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/reference/sqs/index.html
http://docs.aws.amazon.com/cli/latest/reference/sqs/index.html
http://docs.aws.amazon.com/powershell/latest/userguide/pstools-getting-set-up.html
http://docs.aws.amazon.com/powershell/latest/userguide/pstools-getting-set-up.html
http://docs.aws.amazon.com/powershell/latest/reference/
http://docs.aws.amazon.com/powershell/latest/reference/

Amazon Simple Queue Service Developer Guide
Maximum Message Size for SendMessageBatch

To reduce costs, take advantage of batch functionality by using the Query API or a Software
Development Kit (SDK) that supports the new Amazon SQS batch actions.

Note
The Amazon SQS console does not support batch API actions.

For details and examples of the following three batch API actions, see the Amazon Simple Queue
Service API Reference:

¢ ChangeMessageVisibilityBatch
¢ DeleteMessageBatch
« SendMessageBatch

Maximum Message Size for SendMessageBatch

You can send a message as large as 262,144 bytes (256 KB) with SendMessageBat ch. However,
the total size of all the messages that you send in a single call to SendMessageBat ch cannot exceed
262,144 bytes (256 KB).

112

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html

Amazon Simple Queue Service Developer Guide
Client-Side Buffering and Request Batching

Client-Side Buffering and Request Batching

The AWS SDK for Java (http://aws.amazon.com/sdkforjava/) includes a buffered asynchronous client,
AmazonSQSBufferedAsyncClient, for accessing Amazon SQS. This new client allows for easier
request batching by enabling client-side buffering, where calls made from the client are first buffered
and then sent as a batch request to Amazon SQS.

Client-side buffering allows up to 10 requests to be buffered and sent as a batch request instead
of sending each request separately. As a result, your cost of using Amazon SQS decreases as
you reduce the number of requests sent to the service. AmazonSQSBufferedAsyncClient buffers
both synchronous and asynchronous calls. Batched requests and support for long polling can also
help increase throughput (the number of messages transmitted per second). For more information,
see Amazon SQS Long Polling (p. 29) and Increasing Throughput with Horizontal Scaling and
Batching (p. 116).

Migrating from the asynchronous client, AmazonSQSAsyncClient, to the buffered asynchronous
client, AmazonSQSBufferedAsyncClient, should require only minimal changes to your existing
code. This is because AmazonSQSBufferedAsyncClient implements the same interface as
AmazonSQSAsyncClient.

Note
The Amazon SQS Buffered Asynchronous Client doesn't currently support FIFO queues.

Getting Started with AmazonSQSBufferedAsyncClient

Before you begin using the example code in this section, you must first install the AWS SDK for Java
and set up your AWS credentials. For instructions, see Getting Started in the AWS SDK for Java
Developer Guide.

The following code sample shows how to create a new AmazonSQSBufferedAsyncClient based on the
AmazonSQSAsyncClient.

/1 Create the basic Amazon SQS async client
AmazonSQSAsync sqsAsync = new AmazonSQSAsyncClient();

/'l Create the buffered client
AmazonSQSAsync buf f eredSgs = new AmazonSQSBuf f er edAsyncC i ent (sgsAsync);

After you have created the new AmazonSQSBufferedAsyncClient, you can make calls to it as you do
with the AmazonSQSAsyncClient, as the following code sample demonstrates.

Cr eat eQueueRequest creat eRequest = new
Cr eat eQueueRequest () . wi t hQueueNanme(" MyTest Queue") ;

Creat eQueueResul t res = bufferedSgs. creat eQueue(creat eRequest);

SendMessageRequest request = new SendMessageRequest () ;
String body = "test nessage_" + SystemcurrentTimeMIlis();
request . set MessageBody(body);

request . set Queuelr| (res. get Queuelr ! ());

SendMessageResul t sendResult = bufferedSgs. sendMessage(request);

Recei veMessageRequest recei veRg = new Recei veMessageRequest ()
.wi t hMaxNunber OF Messages(1)
.wi t hQueueUr | (queueUrl);

Recei veMessageResult rx = bufferedSqgs. recei veMessage(recei veRq) ;

113

http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/getting-started.html

Amazon Simple Queue Service Developer Guide
Client-Side Buffering and Request Batching

Advanced Configuration

AmazonSQSBufferedAsyncClient is pre-configured with settings that will work for most use
cases. If you'd like to configure it yourself, you can use the QueueBuf f er Conf i g class to do so.
Just create an instance of QueueBuf f er Conf i g with the settings you want and supply it to the
AmazonSQSBufferedAsyncClient constructor, as the following sample code shows.

/1 Create the basic Amazon SQS async client
AmazonSQSAsync sqsAsync = new AmazonSQSAsyncd ient();

QueueBufferConfig config = new QueueBuf fer Config()
.wi t hMax! nfl i ght Recei veBat ches(5)
.wi t hMaxDoneRecei veBat ches(15) ;

/1 Create the buffered client
AmazonSQSAsync bufferedSgs = new AmazonSQSBuf f er edAsyncC i ent (sgsAsync,
config);

The parameters you can use for configuring QueueBuf f er Conf i g are as follows:

¢ | ongPol | —if this parameter is set to t r ue, AmazonBufferedAsyncClient attempts to use long-
polling when retrieving messages. The default value is t r ue.

¢ | ongPol | Wi t Ti meout Seconds—the maximum amount of time, in seconds, that a receive
message call blocks on the server waiting for messages to appear in the queue before returning with
an empty receive result. This setting has no impact if long polling is disabled. The default value of
this setting is 20 seconds.

* maxBat chOpenMs—the maximum amount of time, in milliseconds, that an outgoing call waits for
other calls of the same type to batch with. The higher the setting, the fewer batches are required
to perform the same amount of work. Of course, the higher the setting, the more the first call in a
batch has to spend waiting. If this parameter is set to zero, submitted requests do not wait for other
requests, effectively disabling batching. The default value of this setting is 200 milliseconds.

* maxBat chSi ze—the maximum number of messages that will be batched together in a single batch
request. The higher the setting, the fewer batches will be required to carry out the same number of
requests. The default value of this setting is 10 requests per batch, which is also the maximum batch
size currently allowed by Amazon SQS.

¢ maxBat chSi zeByt es—the maximum size of a message batch, in bytes, that the client attempts to
send to Amazon SQS. The default value is 256 KB, which is also the maximum message and batch
size currently allowed by Amazon SQS.

* maxDoneRecei veBat ches—the maximum number of receive batches AmazonBufferedAsyncClient
prefetches and stores on the client side. The higher the setting, the more receive requests can be
satisfied without having to make a call to Amazon SQS server. However, the more messages are
pre-fetched, the longer they'll sit in the buffer, which means that their visibility timeout will be expiring.
If this parameter is set to zero, all pre-fetching of messages is disabled and messages are retrieved
only on demand. The default value is 10 batches.

e max| nfli ght Qut boundBat ches—the maximum number of active outbound batches that can
be processed at the same time. The higher the setting, the faster outbound batches can be sent

114

Amazon Simple Queue Service Developer Guide
Client-Side Buffering and Request Batching

(subject to other limits, such as CPU or bandwidth). The higher the setting, the more threads are
consumed by the AmazonSQSBufferedAsyncClient. The default value is 5 batches.

max| nf | i ght Recei veBat ches—the maximum number of active receive batches that can be
processed at the same time. The higher the setting, the more messages can be received (subject to
other limits, such as CPU or bandwidth, are hit). Although, the higher the setting, the more threads
will be consumed by the AmazonSQSBufferedAsyncClient. If this parameter is set to 0, all pre-
fetching of messages is disabled and messages are only retrieved on demand. The default value is
10 batches.

vi si bi i tyTi meout Seconds—if this parameter is set to a positive nonzero value, this visibility
timeout overrides the visibility timeout set on the queue from which messages are retrieved. A
visibility timeout of zero seconds isn't supported. The default value is -1, which means the default
gueue setting is used.

115

Amazon Simple Queue Service Developer Guide
Increasing Throughput with
Horizontal Scaling and Batching

Increasing Throughput with Horizontal Scaling and
Batching

Amazon SQS queues can deliver very high throughput (many thousands of messages per second).
The key to achieving this throughput is to horizontally scale message producers and consumers. In
addition, you can use the batching actions in the Amazon SQS API to send, receive, or delete up to
10 messages at a time. In conjunction with horizontal scaling, batching achieves a given throughput
with fewer threads, connections, and requests than would be required by individual message requests.
Because Amazon SQS charges by the request instead of by the message, batching can also
substantially reduce costs.

This appendix discusses horizontal scaling and batching in more detail. It then walks through a simple
example that you can try out yourself. It also briefly discusses Amazon SQS throughput metrics that
you can monitor by using CloudWatch.

Horizontal Scaling

Because you access Amazon SQS through an HTTP request-response protocol, the request latency
(the time interval between initiating a request and receiving a response) limits the throughput that you
can achieve from a single thread over a single connection. For example, if the latency from an Amazon
Elastic Compute Cloud (Amazon EC2) based client to Amazon SQS in the same region averages
around 20 ms, the maximum throughput from a single thread over a single connection will average 50
operations per second.

Horizontal scaling means increasing the number of your message producers (making SendMessage
requests) and consumers (making ReceiveMessage and DeleteMessage requests) in order to increase
your overall queue throughput. You can scale horizontally by increasing the number of threads on a
client, adding clients, or both. You should achieve essentially linear gains in queue throughput as you
add more clients. For example, if you double the number of clients, you'll get twice the throughput.

Important

As you scale horizontally, you need to ensure that the Amazon SQS queue that you use has
enough connections or threads to support the number of concurrent message producers and
consumers that will be sending requests and receiving responses. For example, by default,
instances of the AWS SDK for Java AmazonSQSClient class maintain at most 50 connections
to Amazon SQS. To create additional concurrent producers and consumers, you'll need to
adjust that limit. For example, in the AWS SDK for Java, you can adjust the maximum number
of allowable producer and consumer threads on an AmazonSQSCl i ent object with this line of
code:

AmazonSQ@S sqsC i ent = new AmazonSQSC i ent (credenti al s,
new
Cl i ent Configuration().w thMaxConnecti ons(producer Count +
consuner Count));

For the SDK for Java asynchronous client AmazonSQSAsyncClient, you'll also need to make
sure there are enough threads available. For more information, consult the documentation for
the SDK library that you're using.

Batching

The batching actions in the Amazon SQS API (SendMessageBatch and DeleteMessageBatch) can
further optimize throughput by processing up to ten messages at a time. ReceiveMessage can process
ten messages at a time, so there is no Recei veMessageBat ch action.

116

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/AmazonSQSClient.html
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/AmazonSQSAsyncClient.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide
Increasing Throughput with
Horizontal Scaling and Batching

The basic idea of batching is to perform more work in each round trip to the service (e.g., sending
multiple messages with a single SendMessageBat ch request), and to distribute the latency of the
batch operation over the multiple messages in the batch request, as opposed to accepting the entire
latency for a single message (for example, a SendMessage request). Because each round-trip carries
more work, batch requests make more efficient use of threads and connections and so improve
throughput. Amazon SQS charges by the request, so the cost can be greatly reduced when fewer
requests are processing the same number of messages. Moreover, fewer threads and connections
reduce client-side resource utilization and can reduce client-side cost by doing the same work with
smaller or fewer hosts.

Batching does introduce a bit of complication for the application. For example, the application has
to accumulate the messages before sending them and it will sometimes have to wait longer for a
response, but batching can be effective in the following circumstances:

¢ Your application is generating a lot of messages in a short time, so the delay is never very long.

* A message consumer fetches messages from a queue at its discretion, as opposed to typical
message producers that need to send messages in response to events they do not control.

Important

A batch request (SendMessageBat ch or Del et eMessageBat ch) may succeed even though
individual messages in the batch have failed. After a batch request, you should always check
for individual message failures and retry them if necessary.

Example

The example presented in this section implements a simple producer-consumer pattern. The complete
example is available as a free download at https://s3.amazonaws.com/cloudformation-examples/sgs-
producer-consumer-sample.tar. The resources that are deployed by each template are described later
in this section.

The code for the samples is available on the provisioned instances in /tmp/sqs-producer-consumer-
sample/src. The command line for the configured run is in /tmp/sgs-producer-consumer-sample/
command.log.

The main thread spawns a number of producer and consumer threads that process 1 KB messages for
a specified time. The example includes producers and consumers that make single-operation requests
and others that make batch requests.

In the program, each producer thread sends messages until the main thread stops the producer thread.
The pr oducedCount object tracks the number of messages produced by all producer threads. Error
handling is simple: if there is an error, the program exits the r un() method. Requests that fail on
transient errors are, by default, retried three times by the AmazonSQSClient, so very few such errors
are surfaced. The retry count can be configured as necessary to reduce the number of exceptions that
are thrown. The run() method on the message producer is implemented as follows:

try {
while (!stop.get()) {
sqsd i ent. sendMessage(new SendMessageRequest (queuelrl, theMessage));
producedCount . i ncrerment AndGet () ;
}
} catch (Amazond i ent Exception e) {
/1 By default AmazonSQSClient retries calls 3 times before failing,
/1 so when this rare condition occurs, sinply stop.
log.error("Producer: " + e.getMessage());
Systemexit(1);

117

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://s3.amazonaws.com/cloudformation-examples/sqs-producer-consumer-sample.tar
https://s3.amazonaws.com/cloudformation-examples/sqs-producer-consumer-sample.tar

Amazon Simple Queue Service Developer Guide
Increasing Throughput with
Horizontal Scaling and Batching

The batch producer is much the same. One noteworthy difference is the need to retry failed individual
batch entries:

SendMessageBat chResult batchResult =
sgsd i ent. sendMessageBat ch(bat chRequest) ;

if (!batchResult.getFailed().isEmty()) {
| og. warn("Producer: retrying sending " + batchResult.getFailed().size() + "
nessages") ;
for (int i =0, n = batchResult.getFailed().size(); i < n; i++)
sqsd i ent. sendMessage(new SendMessageRequest (queueUrl, theMessage));

The consumer run() method is as follows:

while (!stop.get()) {
result = sgsCient.recei veMessage(new Recei veMessageRequest (queuelrl));

if (!'result.getMessages().isEmpty()) {
m = resul t. get Messages().get(0);
sqsC i ent. del et eMessage(new Del et eMessageRequest (queuelr |,

m get Recei pt Handl e())) ;
consunedCount . i ncrenment AndGet () ;

}

Each consumer thread receives and deletes messages until it's stopped by the main thread. The
consunmedCount object tracks the number of messages that are consumed by all consumer threads,
and the count is periodically logged. The batch consumer is similar, except that up to ten messages are
received at a time, and it uses DeleteMessageBatch instead of DeleteMessage.

Running the Example

You can use the AWS CloudFormation templates provided to run the example code in three different
configurations: single host with the single operation requests, two hosts with the single operation
requests, one host with the batch requests.

Important

The complete sample is available in a single .tar file. The resources that are deployed by each
template are described later in this section.

The code for the samples is available on the provisioned instance(s) in /tmp/sqs-producer-
consumer-sample/src. The command line for the configured run is in /tmp/sqgs-producer-
consumer-sample/command.log.

The default duration (20 minutes) is set to provide three or four 5-minute CloudWatch data
points of volume metrics. The Amazon EC2 cost for each run will be the m1.large instance
cost. The Amazon SQS cost varies based on the API call rate for each sample, and that
should range between approximately 38,000 API calls / min for the batching sample and
380,000 API calls / min for the two host single API sample. For example, a run of the single
API sample on a single host should cost approximately 1 instance hour of an ml.large (large
standard on demand instance, $0.32 as of July 2012) and 20 min x 190,000 API calls / min x
$1 /1,000,000 API calls = $3.80 for Amazon SQS operations with the default 20 min duration
(as of July 2012, check current pricing).

If you want to deploy the AWS CloudFormation stack in a region other than the US East (N. Virginia)
region, in the Region box of the AWS CloudFormation console, click the region that you want.

118

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

Amazon Simple Queue Service Developer Guide
Increasing Throughput with
Horizontal Scaling and Batching

To run the example
1. Click the link below that corresponds to the stack that you want to launch:

¢ Single Operation API, One Host: The SQS_Sample_Base_Producer_Consumer.template
sample template uses the single operation form of Amazon SQS API requests: SendMessage,
Recei veMessage, and Del et eMessage. A single ml.large Amazon EC2 instance animates 16
producer threads and 32 consumer threads.

To view the template, see https://s3.amazonaws.com/cloudformation-templates-us-east-1/
SQS_Sample_Base_Producer_Consumer.template

¢ Single Operation API, Two Hosts: SQS_Sample_Base_Producer_Consumer_x2.template
sample template uses the single operation form of Amazon SQS API requests, but instead of
a single ml.large Amazon EC2 instance, it uses two, each with 16 producer threads and 32
consumer threads for a total of 32 producers and 64 consumers. It illustrates Amazon SQS'
elasticity with throughput increasing proportionally to the greater number of producers and
consumers.

To view the template, see https://s3.amazonaws.com/cloudformation-templates-us-east-1/
SQS_Sample_Base_Producer_Consumer_x2.template

e Batch API, One Host: The SQS_Sample_Batch_Producer_Consumer.template sample template
uses the batch form of Amazon SQS API requests on a single ml.large Amazon EC2 instance
with 12 producer threads and 20 consumer threads.

To view the template, see https://s3.amazonaws.com/cloudformation-templates-us-east-1/
SQS_Sample_Batch_Producer_Consumer.template

2. If you're prompted, sign in to the AWS Management Console.
3. Inthe Create Stack wizard, on the Select Template page, click Continue.

4. On the Specify Parameters page, specify how long the program should run, whether or not you
want to automatically terminate the Amazon EC2 instances when the run is complete, and provide
an Amazon EC2 key pair so that you can access the instances that are running the sample. Here
is an example:

Create Stack Cancal (X

Template Description: Single EC2 m1.large producer-consumer processing (single operation API)
1K messages for the specified duration
Specify Parameters

Below are the parameters associated with your CloudFormation template. You may review and
proceed with the default parameters or make customizations as needed below.

DurationMinutes 20
Run duration in minutes (max 60}
TerminateEC2Inst true

Terminate the producer- consumer EC2 instance once the run is complete?

KeyName
Mame of an existing ECZ KeyPair to enable SSH access to the producer-consumer
instance

1 acknowledge that this template may create IAM resources

Back Continue

5. Select the | acknowledge that this template may create IAM resources check box. All
templates create an AWS Identity and Access Management (IAM) user so that the producer-
consumer program can access the queue.

6. When all the settings are as you want them, click Continue.

7. Onthe Review page, review the settings. If they're as you want them, click Continue. If not, click
Back and make the necessary changes.

8. On the final page of the wizard, click Close. Stack deployment may take several minutes.

To follow the progress of stack deployment, in the AWS CloudFormation console, click the sample
stack. In the lower pane, click the Events tab. After the stack is created, it should take less than 5

119

https://console.aws.amazon.com/cloudformation/home?region=us-east-1#cstack=sn~sqs-blog-base|turl~https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Base_Producer_Consumer.template
https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Base_Producer_Consumer.template
https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Base_Producer_Consumer.template
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#cstack=sn~sqs-blog-base-x2|turl~https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Base_Producer_Consumer_x2.template
https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Base_Producer_Consumer_x2.template
https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Base_Producer_Consumer_x2.template
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#cstack=sn~sqs-blog-batch|turl~https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Batch_Producer_Consumer.template
https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Batch_Producer_Consumer.template
https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Batch_Producer_Consumer.template

Amazon Simple Queue Service Developer Guide
Increasing Throughput with
Horizontal Scaling and Batching

minutes for the sample to start running. When it does, you can see the queue in the Amazon SQS
console.

To monitor queue activity, you can do the following:

¢ Access the client instance, and open its output log file (/tmp/sqgs-producer-consumer-sample/
output.log) for a tally of messages produced and consumed so far. This tally is updated once per
second.

¢ Inthe Amazon SQS console, observe changes in the Message Available and Messages in Flight
numbers.

In addition, after a delay of up to 15 minutes after the queue is started, you can monitor the queue in
CloudWatch as described later in this topic.

Although the templates and samples have safeguards to prevent excessive use of resources, it's best
to delete your AWS CloudFormation stacks when you're done running the samples. To do so, in the
Amazon SQS console, click the stack that you want to delete, and then click Delete Stack. When the
resources are all deleted, CloudwWatch metrics will all drop to zero.

Monitoring Volume Metrics from Example Run

Amazon SQS automatically generates volume metrics for messages sent, received, and deleted. You
can access those metrics and others through the CloudWatch console. The metrics can take up to 15
minutes after the queue starts to become available. To manage the search result set, click Search, and
then select the check boxes that correspond to the queues and metrics that you want to monitor.

Here is the NumberOfMessageSent metric for consecutive runs of the three samples. Your results may
vary somewhat, but the results should be qualitatively similar:

NumberOfMessagesSent (Count) edt Statistic: |Sum [¥] Period: |5 Minutes [*]

B single-SqsQueue-MLIVDQFKIGSZ M single-x2-SqsQueue-WTQPEWZKNTEF Ml batch-SqsQueus-ZEHVYSSEUHXH £

¢ The Nunmber O MessagesRecei ved and Nunber O MessagesDel et ed metrics show the same
pattern, but we have omitted them from this graph to reduce clutter.

¢ The first sample (single operation APl on a single m1.large) delivers approximately 210,000
messages over 5 minutes, or about 700 messages per second, with the same throughput for receive
and delete operations.

¢ The second sample (single operation APl on two m1.large instances) delivers roughly double that
throughput: approximately 440,000 messages in 5 minutes, or about 1,450 messages per second,
with the same throughput for receive and delete operations.

¢ The last sample (batch API on a single m1.large) delivers over 800,000 messages in 5 minutes, or
about 2,500 messages per second, with the same throughput for received and deleted messages.
With a batch size of 10, these messages are processed with far fewer requests and therefore at
lower cost.

120

https://console.aws.amazon.com/sqs/home
https://console.aws.amazon.com/sqs/home
https://console.aws.amazon.com/cloudwatch/home

Amazon Simple Queue Service Developer Guide
Authentication and Access Control

Amazon SQS Security

This section provides information on Amazon SQS security, authentication and access control, and the
access policy language.

Topics
¢ Authentication and Access Control for Amazon SQS (p. 121)

Authentication and Access Control for Amazon
SQS

Access to Amazon SQS requires credentials that AWS can use to authenticate your requests. These
credentials must have permissions to access AWS resources, such an Amazon SQS queues and
messages. The following sections provide details on how you can use AWS ldentity and Access
Management (IAM) and Amazon SQS to help secure your resources by controlling access to them.

Topics

¢ Authentication (p. 121)
¢ Access Control (p. 122)

Authentication

You can access AWS as any of the following types of identities:

¢ AWS account root user — When you sign up for AWS, you provide an email address and password
that is associated with your AWS account. These are your root credentials and they provide
complete access to all of your AWS resources.

Important

For security reasons, we recommend that you use the root credentials only to create

an administrator user, which is an 1AM user with full permissions to your AWS account.
Then, you can use this administrator user to create other IAM users and roles with limited
permissions. For more information, see IAM Best Practices and Creating an Admin User
and Group in the IAM User Guide.

121

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Simple Queue Service Developer Guide
Access Control

¢ IAM user — An IAM user is simply an identity within your AWS account that has specific custom
permissions (for example, permissions to create a queue in Amazon SQS). You can use an IAM user
name and password to sign in to secure AWS webpages like the AWS Management Console, AWS
Discussion Forums, or the AWS Support Center.

In addition to a user name and password, you can also generate access keys for each user. You

can use these keys when you access AWS services programmatically, either through one of the
several SDKs or by using the AWS Command Line Interface (CLI). The SDK and CLI tools use the
access keys to cryptographically sign your request. If you don’t use the AWS tools, you must sign the
request yourself. Amazon SQS supports Signature Version 4, a protocol for authenticating inbound
API requests. For more information about authenticating requests, see Signature Version 4 Signing
Process in the AWS General Reference.

« IAM role — An IAM role is another IAM identity you can create in your account that has specific
permissions. It is similar to an IAM user, but it is not associated with a specific person. An IAM
role enables you to obtain temporary access keys that can be used to access AWS services and
resources. |IAM roles with temporary credentials are useful in the following situations:

» Federated user access — Instead of creating an IAM user, you can use preexisting user identities
from AWS Directory Service, your enterprise user directory, or a web identity provider. These are
known as federated users. AWS assigns a role to a federated user when access is requested
through an identity provider. For more information about federated users, see Federated Users
and Roles in the IAM User Guide.

» Cross-account access — You can use an IAM role in your account to grant another AWS account
permissions to access your account’s resources. For an example, see Tutorial: Delegate Access
Across AWS Accounts Using IAM Roles in the IAM User Guide.

« AWS service access — You can use an IAM role in your account to grant an AWS service
permissions to access your account’s resources. For example, you can create a role that allows
Amazon Redshift to access an Amazon S3 bucket on your behalf and then load data stored in the
bucket into an Amazon Redshift cluster. For more information, see Creating a Role to Delegate
Permissions to an AWS Service in the IAM User Guide.

» Applications running on Amazon EC2 — Instead of storing access keys within the EC2 instance
for use by applications running on the instance and making AWS API requests, you can use an
IAM role to manage temporary credentials for these applications. To assign an AWS role to an
EC2 instance and make it available to all of its applications, you can create an instance profile that
is attached to the instance. An instance profile contains the role and enables programs running
on the EC2 instance to get temporary credentials. For more information, see Using Roles for
Applications on Amazon EC2 in the IAM User Guide.

Access Control

Amazon SQS has its own resource-based permissions system that uses policies written in the same
language used for AWS Identity and Access Management (IAM) policies. This means that you can
achieve similar things with Amazon SQS policies and IAM policies.

122

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://console.aws.amazon.com/
https://forums.aws.amazon.com/
https://forums.aws.amazon.com/
https://console.aws.amazon.com/support/home#/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
http://aws.amazon.com/tools/
http://aws.amazon.com/tools/
http://aws.amazon.com/cli/
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

Amazon Simple Queue Service Developer Guide
Overview of Managing Access

Note

It is important to understand that all AWS accounts can delegate their permissions to users
under their accounts. Cross-account access allows you to share access to your AWS
resources without having to manage additional users. For information about using cross-
account access, see Enabling Cross-Account Access in the IAM User Guide.

Currently, Amazon SQS supports only a limited subset of the condition keys available in
IAM. For more information, see Amazon SQS API Permissions: Actions and Resource
Reference (p. 143).

The following sections describe how to manage permissions for Amazon SQS. We recommend that
you read the overview first.

¢ Overview of Managing Access Permissions to Your Amazon Simple Queue Service
Resource (p. 123)

¢ Using Identity-Based Policies (IAM) Policies for Amazon SQS (p. 128)

Overview of Managing Access Permissions to Your
Amazon Simple Queue Service Resource

Every AWS resource is owned by an AWS account, and permissions to create or access a resource
are governed by permissions policies. An account administrator can attach permissions policies to IAM
identities (users, groups, and roles), and some services (such as Amazon SQS) also support attaching
permissions policies to resources.

Note
An account administrator (or administrator user) is a user with administrative privileges. For
more information, see |IAM Best Practices in the IAM User Guide.

When granting permissions, you specify what users get permissions, the resource they get permissions
for, and the specific actions that you want to allow on the resource.

Topics
¢ Amazon Simple Queue Service Resource and Operations (p. 123)
¢ Understanding Resource Ownership (p. 124)
¢ Managing Access to Resources (p. 124)
¢ Specifying Policy Elements: Actions, Effects, Resources, and Principals (p. 127)

Amazon Simple Queue Service Resource and Operations

For Amazon SQS, the queue is the only resource type you can specify in a policy. The following are
examples of the Amazon Resource Name (ARN) format for queues:

¢ An ARN for a normal queue:

arn: aws: sqs: regi on: account _i d: queue_nane

For more information about ARNs, see IAM ARNSs in the IAM User Guide.

¢ An ARN for a queue named nmy_queue in the US East (Ohio) region, belonging to AWS Account
123456789012:

arn: aws: sgs: us-east-2: 123456789012: ny_queue

* An ARN for a queue named nmy_queue in each of the different regions that Amazon SQS supports:

123

http://docs.aws.amazon.com/IAM/latest/UserGuide/Delegation.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys
http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_Identifiers.html#Identifiers_ARNs

Amazon Simple Queue Service Developer Guide
Overview of Managing Access

arn: aws: sgs: *:123456789012: ny_queue

¢ An ARN that uses * or ? as a wildcard for the queue name. In the following examples, the ARN
matches all queues prefixed with my_prefi x_:

arn: aws: sqs: *: 123456789012: ny_prefi x_*

You can retrieve the ARN value for an existing queue by calling the Get QueueAt t ri but es action.
The value of the Ar n attribute is the ARN of the queue.

Understanding Resource Ownership

A resource owner is the AWS account that creates the resource. That is, the resource owner is the
AWS account of the principal entity (the root account, an IAM user, or an IAM role) that authenticates
the request that creates the resource. The following examples illustrate how this works:

« If you use the root account credentials of your AWS account to create an Amazon SQS queue,
your AWS account is the owner of the resource (in Amazon SQS, the resource is the Amazon SQS
gueue).

¢ If you create an Amazon SQS user in your AWS account and grant permissions to create an
Amazon SQS queue to the user, the user can create an Amazon SQS queue. However, your AWS
account (to which the user belongs) owns the Amazon SQS queue resource.

« If you create an IAM role in your AWS account with permissions to create an Amazon SQS queue,
anyone who can assume the role can create a Amazon SQS queue. Your AWS account (to which
the role belongs) owns the Amazon SQS queue resource.

Managing Access to Resources

A permissions policy describes the permissions granted to accounts. The following section explains the
available options for creating permissions policies.

Note

This section discusses using IAM in the context of Amazon Simple Queue Service. It doesn't
provide detailed information about the IAM service. For complete IAM documentation,

see What is IAM? in the IAM User Guide. For information about IAM policy syntax and
descriptions, see AWS |IAM Policy Reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM polices) and policies
attached to a resource are referred to as resource-based policies.

Topics
¢ |dentity-Based (IAM) Features of Resource-Based (Amazon SQS) Policies (p. 124)
¢ Resource-Based (Amazon SQS) and Identity-Based (IAM) Policies (p. 126)

Identity-Based (IAM) Features of Resource-Based (Amazon SQS) Policies

You can use an Amazon SQS policy with a queue to specify which AWS Accounts have access to

the queue. You can specify the type of access and conditions (for example, a condition that grants
permission to use SendMessage, Recei veMessage if the request is made before December 31,
2010). The specific actions you can grant permission for are a subset of the overall list of Amazon SQS
actions. When you write an Amazon SQS policy and specify * to mean "all the Amazon SQS actions",
that means all actions in that subset.

124

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

Amazon Simple Queue Service Developer Guide
Overview of Managing Access

The following diagram illustrates the concept of one of these basic Amazon SQS policies that covers
the subset of actions. The policy is for queue_xyz, and it gives AWS Account 1 and AWS Account 2
permission to use any of the allowed actions with the queue.

Note
The resource in the policy is specified as 123456789012/ queue_xyz, where
123456789012 is the AWS Account ID of the account that owns the queue.

SQS Policy on queue_xyz

Allow who:

AWS account 1
AWS account 2

Actions: *

Resource:
123456789012/queve_xyz

With the introduction of IAM and the concepts of Users and Amazon Resource Names (ARNS), a few
things have changed about SQS policies. The following diagram and table describe the changes.

SQS Policy on queue_xyz

Allow whao:

AWS account 1
AWS account 2

User Bob e "
‘ '_ IN YOur own accourn
User Susan ¥

©)— Actions: *

Resource:

o— arn:aws:sqs:*: 12345678901 2/queue_xyz

1 In addition to specifying which AWS Accounts have access to a queue, you can specify
which users in your own AWS Account have access to the queue. If the users are in different
accounts, see Tutorial: Delegate Access Across AWS Accounts Using IAM Roles in the IAM
User Guide.

2 The subset of actions included in * has expanded. For a list of allowed actions, see Amazon
SQS API Permissions: Actions and Resource Reference (p. 143).

3 You can specify the resource using the Amazon Resource Name (ARN), the standard means
of specifying resources in IAM policies. For information about the ARN format for Amazon SQS
queues, see Amazon Simple Queue Service Resource and Operations (p. 123).

For example, according to the Amazon SQS policy in the preceding figure, anyone who possesses the
security credentials for AWS Account 1 or AWS Account 2 can access queue_xyz. In addition, Users
Bob and Susan in your own AWS Account (with ID 123456789012) can access the queue.

Before the introduction of IAM, Amazon SQS automatically gave the creator of a queue full control over
the queue (that is, access to all possible Amazon SQS actions on that queue). This is no longer true,
unless the creator uses AWS security credentials. Any user who has permission to create a queue
must also have permission to use other Amazon SQS actions in order to do anything with the created
queues.

125

http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html

Amazon Simple Queue Service Developer Guide
Overview of Managing Access

Resource-Based (Amazon SQS) and Identity-Based (IAM) Policies

There are two ways to give your users permissions to your Amazon SQS resources: using the Amazon
SQS policy system and using the IAM policy system. You can use one or the other, or both. For the
most part, you can achieve the same result with either one.

For example, the following diagram shows an IAM policy and an Amazon SQS policy equivalent to it.
The IAM policy grants the rights to the Amazon SQS Recei veMessage and SendMessage actions for
the queue called queue_xyz in your AWS Account, and the policy is attached to users named Bob and
Susan (Bob and Susan have the permissions stated in the policy). This Amazon SQS policy also gives
Bob and Susan rights to the Recei veMessage and SendMessage actions for the same queue.

IAM Policy $QS Policy
Allow Allow who:
Actions: User Bob
is equivalent to User Susan

ReceiveMessage, SendMessage

Resource: Actions:
arm.aws:sqs:”: 12345678901 2/queus_xyz ReceiveMessage, SendMessage
Resource:
User User arn:aws:sqs:*:123456789012/queue_xyz
Bob Susan
queue_xyz
Note

This example shows simple policies without conditions. You can specify a particular condition
in either policy and get the same result.

There is one major difference between IAM and Amazon SQS policies: the Amazon SQS policy system
lets you grant permission to other AWS Accounts, whereas IAM doesn't.

It is up to you how you use both of the systems together to manage your permissions. The following
examples show how the two policy systems work together.

¢ In the first example, Bob has both an IAM policy and an Amazon SQS policy that apply to his
account. The IAM policy grants his account permission for the Recei veMessage action on
queue_xyz, whereas the Amazon SQS policy gives his account permission for the SendMessage
action on the same queue. The following diagram illustrates the concept.

IAM Policy 5QS Policy
Allow Allow who:
Actions: User Bob
ReceiveMessage Actions:
SendMessage

Resource:

arn:aws:sqs: " 12345678801 2/queue_xyz
Resource:

arn;aws:sqs:*: 12345678901 2/queve_xyz

User
Bob
queue_xyz

126

Amazon Simple Queue Service Developer Guide
Overview of Managing Access

If Bob sends a Recei veMessage request to queue_xyz, the IAM policy allows the action. If Bob
sends a SendMessage request to queue_xyz, the Amazon SQS policy allows the action.

In the second example, Bob abuses his access to queue_xyz, so it becomes necessary to remove
his entire access to the queue. The easiest thing to do is to add a policy that denies him access to all
actions for the queue. This policy overrides the other two because an explicit deny always overrides
an al | ow. For more information about policy evaluation logic, see Creating Custom Policies Using
the Access Policy Language (p. 133). The following diagram illustrates the concept.

IAM Policy SQs Policy
Allow Allow who:
Actions: User Bob
ReceiveMessage OiEnes
Resource: SendMessage
arn.aws:sqs:" 12345678901 2lqueus_xyz
Resource:

am:aws:sqs:" 123456789012 /queue_xyz

User
Bob

IAM Policy
queue_xyz
Actions: * Overrides
the other
Resource: policies
arn:awssqs 12345678901 2/queue_xyz

You can also add an additional statement to the Amazon SQS policy that denies Bob any type of
access to the queue. It has the same effect as adding an IAM policy that denies Bob access to the
gueue. For examples of policies that cover Amazon SQS actions and resources, see Customer-
Managed Policy Examples (p. 129). For more information about writing Amazon SQS policies, see
Creating Custom Policies Using the Access Policy Language (p. 133).

Specifying Policy Elements: Actions, Effects, Resources, and
Principals

For each Amazon Simple Queue Service resource (p. 123), the service defines a set of API
operations. To grant permissions for these API operations, Amazon SQS defines a set of actions that
you can specify in a policy.

Note

Performing an API operation can require permissions for more than one action. When granting
permissions for specific actions, you also identify the resource for which the actions are
allowed or denied.

The following are the most basic policy elements:

¢ Resource — In a policy, you use an Amazon Resource Name (ARN) to identify the resource to which
the policy applies.

¢ Action — You use action keywords to identify resource operations that you want to allow or deny. For
example, the sgs: Cr eat eQueue permission allows the user to perform the Amazon Simple Queue
Service Cr eat eQueue operation.

» Effect — You specify the effect when the user requests the specific action—this can be either allow
or deny. If you don't explicitly grant access to a resource, access is implicitly denied. You can also
explicitly deny access to a resource, which you might do to make sure that a user cannot access i,
even if a different policy grants access.

127

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_Operations.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_Operations.html

Amazon Simple Queue Service Developer Guide
Using Identity-Based Policies
(IAM) Policies for Amazon SQS

¢ Principal — In identity-based policies (IAM policies), the user that the policy is attached to is the
implicit principal. For resource-based policies, you specify the user, account, service, or other entity
that you want to receive permissions (applies to resource-based policies only).

To learn more about Amazon SQS policy syntax and descriptions, see AWS IAM Policy Reference in
the IAM User Guide.

For a table of all Amazon Simple Queue Service API actions and the resources that they apply to, see
Amazon SQS API Permissions: Actions and Resource Reference (p. 143).

Using Identity-Based Policies (IAM) Policies for
Amazon SQS

This topic provides examples of identity-based policies in which an account administrator can attach
permissions policies to IAM identities (users, groups, and roles).

Important

We recommend that you first review the introductory topics that explain the basic concepts
and options available for you to manage access to your Amazon Simple Queue Service
resources. For more information, see Overview of Managing Access Permissions to Your
Amazon Simple Queue Service Resource (p. 123).

Writing an Amazon SQS Policy
The following examples provide an introductory breakdown of a permission policy.
Example 1: Allow a User to Create Queues

In the following example, we create a policy for Bob that lets him access all Amazon SQS actions, but
only with queues whose names are prefixed with the literal string bob_queue_.

Amazon SQS doesn't automatically grant the creator of a queue permission to use the queue.
Therefore, we must explicitly grant Bob permission to use all Amazon SQS actions in addition to
Cr eat eQueue action in the 1AM policy.

{
"Version": "2012-10-17",
"Statenment": [{
"Effect":"All ow',
"Action":"sqgs:*",
"Resource":"arn: aws: sqs: *: 123456789012: bob_queue_*"
}
]
}

Example 2: Allow Developers to Write Messages to a Shared Queue

In the following example, we create a group for developers and attach a policy that lets the group use
the Amazon SQS SendMessage action, but only with the queue that belongs to the specified AWS
account and is named CompanyTestQueue.

"Version": "2012-10-17",
"Statenent":[{
"Effect":"All ow',

128

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

Amazon Simple Queue Service Developer Guide
Using Identity-Based Policies
(IAM) Policies for Amazon SQS

"Action":"sqgs: SendMessage",
"Resource":"arn: aws: sqs: *: 123456789012: ConpanyTest Queue"

}

Example 3: Allow Managers to Get the General Size of Queues

In the following example, we create a group for managers and attach a policy that lets the group use
the Amazon SQS Get QueueAt t ri but es action with all of the queues that belong to the specified
AWS account.

{
"Version": "2012-10-17",
"Statenment":[{
"Effect":"A | ow',
"Action":"sqgs: Get QueueAttri butes”,
"Resource":"*"
}
]
}

Example 4: Allow a Partner to Send Messages to a Specific Queue

You can accomplish this task using an Amazon SQS policy or an IAM policy. Using an Amazon SQS
policy might be easier if your partner has an AWS account. However, anyone in the partner's company
who possesses the AWS security credentials can send messages to the queue. If you want to limit
access to a particular user or application, you must treat the partner like a user in your own company
and use an IAM policy instead of an Amazon SQS policy.

In the following example, we perform the following actions:

1. Create a group called WidgetCo to represent the partner company.
2. Create a user for the specific user or application at the partner's company who needs access.
3. Add the user to the group.

4. Attach a policy that gives the group access only to the SendMessage action for only the queue
named W dget Par t ner Queue.

{
"Version": "2012-10-17",
"Statenment":[{
"Effect":"All ow',
"Action":"sqgs: SendMessage",
"Resource":"arn:aws: sqs: *: 123456789012: W dget Par t ner Queue"
}
]
}

Customer-Managed Policy Examples

This section shows example policies for common Amazon SQS use cases.

You can use the console to verify the effects of each policy as you attach the policy to the user. Initially,
the user doesn't have permissions and won't be able to do anything in the console. As you attach
policies to the user, you can verify that the user can perform various actions in the console.

129

Amazon Simple Queue Service Developer Guide
Using Identity-Based Policies
(IAM) Policies for Amazon SQS

We recommend that you use two browser windows: one to grant permissions and the other to sign into
the AWS Management Console using the user's credentials and verify permissions as you grant them
to the user.

Example 1: Grant One Permission to One AWS Account

The following example policy grants AWS account number 111122223333 the SendMessage
permission for the queue named 444455556666/ queuel in the US East (Ohio) region.

"Version": "2012-10-17",
"ld": "Queuel_Policy_UU D',
"Statenment”: [
{
"Sid":"Queuel_SendMessage",
"Effect": "Al ow',
"Principal": {
"AWS': "111122223333"
I
"Action": "sqgs: SendMessage"”,
"Resource": "arn:aws:s(Qs: us-east-2:444455556666: queuel”

Example 2: Grant Two Permissions to One AWS Account

The following example policy grants AWS account number 111122223333 both the SendMessage
and Recei veMessage permission for the queue named 444455556666/ queuel.

{
"Version": "2012-10-17",
"1d": "Queuel_Policy_UU D',
"Statenent": [
{
"Sid":"Queuel Send_Receive",
"Effect": "Allow',
"Principal": {
"AWS': "111122223333"
}
"Action": ["sgs: SendMessage", "sqs: Recei veMessage"],
"Resource": "arn:aws:sqs: *:444455556666: queuel”
}
]
}

Example 3: Grant All Permissions to Two AWS Accounts

The following example policy grants two different AWS accounts numbers (111122223333 and
444455556666) permission to use all actions to which Amazon SQS allows shared access for the
queue named 123456789012/queuel in the US East (Ohio) region.

"Version": "2012-10-17",
"ld": "Queuel_Policy_UU D',
"Statenment": [

{

130

Amazon Simple Queue Service Developer Guide
Using Identity-Based Policies
(IAM) Policies for Amazon SQS

"Sid":"Queuel All Actions",
"Effect": "Alow',
"Principal": {
"AWS": ["111122223333","444455556666"]
1
"Action": "sqgs:*",
"Resource": "arn:aws:s(Qs: us-east-2:123456789012: queuel”

Example 4: Grant a Role and a User Name Cross-Account Permission

The following example policy grants r ol el and user nanel under AWS account number
111122223333 cross-account permission to use all actions to which Amazon SQS allows shared
access for the queue named 123456789012/queuel in the US East (Ohio) region.

"Version": "2012-10-17",

"Id": "Queuel_Policy_ UU D',

"Statement": [

{
"Sid":"Queuel All Actions",
"Effect": "Allow',
"Principal": {
"AWE': ["arn:aws:iam:111122223333:rol e/
rolel","arn:aws:iam:111122223333: user/ user nanel"]

8
"Action": "sqgs:*",
"Resource": "arn:aws:sgs: us-east-2:123456789012: queuel”

Example 5: Grant a Permission to All Users

The following example policy grants all users Recei veMessage permission for the queue named
111122223333/queuel.

{
"Version": "2012-10-17",
"Id": "Queuel_Policy_ UU D',
"Statenent": [
{
"Sid":"Queuel_AnonynpusAccess_Recei veMessage",
"Effect": "Allow',
"Principal": "*",
"Action": "sqgs: Recei veMessage",
"Resource": "arn:aws:sqs:*:111122223333: queuel”
}
]
}

Example 6: Grant a Time-Limited Permission to All Users

The following example policy grants all users Recei veMessage permission for the queue named
111122223333/ queuel, but only between 12:00 p.m. (noon) and 3:00 p.m. on January 31, 2009.

131

Amazon Simple Queue Service Developer Guide
Using Identity-Based Policies
(IAM) Policies for Amazon SQS

"Version": "2012-10-17",
"Id": "Queuel_Policy_UU D',
"Statenent": [

{
"Sid":"Queuel_AnonynmousAccess_Recei veMessage TinmeLimt",
"Effect": "Allow',
"Principal": "*",
"Action": "sqgs: Recei veMessage",
"Resource": "arn:aws:sqgs:*:111122223333: queuel”,
"Condition" : {
"Dat eG eat er Than" : {
"aws: Current Ti me": " 2009-01-31T12: 002"
H
"Dat eLessThan" : {
"aws: Current Ti ne": "2009-01- 31T15: 002"
}
}
}

Example 7: Grant All Permissions to All Users in a CIDR Range

The following example policy grants all users permission to use all possible Amazon SQS actions that
can be shared for the queue named 111122223333/ queuel, but only if the request comes from the
192. 168. 143. 0/ 24 CIDR range.

{
"Version": "2012-10-17",
"1d": "Queuel_Policy_UU D',
"Statenment": [
{
"Sid":"Queuel_AnonynousAccess_Al | Actions_WitelistlP",
"Effect": "Allow',
"Principal": "*",
"Action": "sqgs:*",
"Resource": "arn:aws:sqgs:*:111122223333: queuel”,
"Condition" : {
"l pAddress” : {
"aws: Sour cel p":"192. 168. 143. 0/ 24"
}
}
}
]
}

Example 8: Whitelist and Blacklist Permissions for Users in Different CIDR
Ranges

The following example policy has two statements:

¢ The first statement grants all users in the 192. 168. 143. 0/ 24 CIDR range (except for
192. 168. 143. 188) permission to use the SendMessage action for the queue named
111122223333/queuel.

¢ The second statement blacklists all users in the 10. 1. 2. 0/ 24 CIDR range from using the queue.

132

Amazon Simple Queue Service Developer Guide
Creating Custom Policies Using
the Access Policy Language

{
"Version": "2012-10-17",
"Id": "Queuel_Policy_ UU D',
"Statenent": [
{
"Sid":"Queuel_AnonynmousAccess_SendMessage_ | PLimt",
"Effect": "Alow',
"Principal": "*",
"Action": "sqgs: SendMessage",
"Resource": "arn:aws:sqgs:*:111122223333: queuel”,
"Condition" : {
"I pAddress" : {
"aws: Sourcel p":"192. 168. 143. 0/ 24"
}s
"Not | pAddr ess" : {
"aws: Sourcel p":"192. 168. 143. 188/ 32"
}
}
}s
{
"Sid":"Queuel_AnonymousAccess_All Actions_I PLimt_Deny",
"Effect": "Deny",
"Principal": "*",
"Action": "sqgs:*",
"Resource": "arn:aws:sqgs:*:111122223333: queuel”,
"Condition" : {
"I pAddress" : {
"aws: Sour cel p":"10. 1. 2. 0/ 24"
}
}
}
]
}

Creating Custom Policies Using the Access Policy
Language

If you want to allow Amazon SQS access based only on AWS account ID and basic permissions (such
as for SendMessage or Recei veMessage), you don't need to write your own policies. You can just
use the Amazon SQS AddPer i ssi on action.

If you want to explicitly deny or allow access based on more specific conditions (such as the time the
request comes in or the IP address of the requester), you need to write your own policies and upload
them to the AWS system using the Amazon SQS Set QueueAt t ri but es action.

Key Concepts

To write your own policies, you must be familiar with JISON and a number of key concepts.

allow

The result of a statement (p. 134) that has effect (p. 134) setto al | ow.
action

The activity that the principal (p. 134) has permission to perform, typically a request to AWS.
default-deny

The result of a statement (p. 134) that that has no allow (p. 133) or explicit deny (p. 134)
settings.

133

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
http://json.org/

Amazon Simple Queue Service Developer Guide
Creating Custom Policies Using
the Access Policy Language

condition
Any restriction or detail about a permission (p. 134). Typical conditions are related to date and
time and IP addresses.

effect
The result that you want the statement (p. 134) of a policy (p. 134) to return at evaluation
time. You specify the deny or al | owvalue when you write the policy statement. There can be
three possible results at policy evaluation time: default-deny (p. 133), allow (p. 133), and
explicit deny (p. 134).

explicit deny
The result of a statement (p. 134) that has effect (p. 134) set to deny.
evaluation

The process that Amazon SQS uses to determine whether an incoming request should be denied
or allowed based on a policy (p. 134).

issuer
The user who writes a policy (p. 134) to grant permissions to a resource. The issuer, by
definition is always the resource owner. AWS does not permit Amazon SQS users to create
policies for resources they don't own.

key
The specific characteristic that is the basis for access restriction.

permission
The concept of allowing or disallowing access to a resource using a condition (p. 134) and a
key (p. 134).

policy
The document that acts as a container for one or more statements (p. 134).

Policy A Policy A
Statement 1 Statement 1
is equivalent to

Statement 2 Policy B

Statement 2

Amazon SQS uses the policy to determine whether to grant access to a user for a resource.
principal
The user who receives permission (p. 134) in the policy (p. 134).

resource
The object that the principal (p. 134) requests access to.

statement
The formal description of a single permission, written in the access policy language as part of a
broader policy (p. 134) document.

requester
The user who sends a request for access to a resource (p. 134).

Architecture

The following figure and table describe the main components that together provide access control for
your resources.

134

Amazon Simple Queue Service Developer Guide
Creating Custom Policies Using
the Access Policy Language

AWS Service
Yo @
Resource A Resource B Resource C
o Your policy for Your policy for Your policy for
Resource A Resource B Resource C
Requester
Requester
Incoming ™
requests - o Evaluation Code
Requester —
Requester

1 You, the resource owner.
2 Your resources contained within the AWS service (for example, Amazon SQS queues).

3 Your policies. It is a good practice to have one policy per resource The AWS service itself
provides an API you use to upload and manage your policies.

4 Requesters and their incoming requests to the AWS service.

5 The access policy language evaluation code. This is the set of code within the AWS service
that evaluates incoming requests against the applicable policies and determines whether the
requester is allowed access to the resource.

Process Workflow

The following figure and table describe the the general workflow of access control with the access
policy language.

You write a policy You add the policy Someone requests
— to the system __p to USe your resource

1 2 3
The AWS service The AWS service
determines the evaluates the The AWS service
applicable policies —# policies —n retums the result
4 5 6

1 You write a policy for your Amazon SQS queue.

135

Amazon Simple Queue Service Developer Guide
Creating Custom Policies Using
the Access Policy Language

2 You upload your policy to AWS. The AWS service itself provides an API you use to upload
your policies. For example, you use the Amazon SQS Set QueueAt t ri but es action to upload
a policy for a particular Amazon SQS queue.

3 Someone sends a request to use your Amazon SQS queue.

4 Amazon SQS examines all available Amazon SQS policies and determines which ones are
applicable.

5 Amazon SQS evaluates the policies and determines whether the requester is allowed to use
your queue.

6 Based on the policy evaluation result, Amazon SQS either returns an Access deni ed error to
the requester or continues to process the request.

Evaluation Logic

At evaluation time, Amazon SQS determines whether a request from someone other than the resource
owner should be allowed or denied. The evaluation logic follows several basic rules:

¢ By default, all requests to use your resource coming from anyone but you are denied.

¢ Anallow (p. 133) overrides any default-deny (p. 133).

e Anexplicit deny (p. 134) overrides any allow (p. 133).

« The order in which the policies are evaluated is not important.

The following figure and table describe in detail how Amazon SQS evaluates decisions about access
permission.

136

Amazon Simple Queue Service Developer Guide
Creating Custom Policies Using
the Access Policy Language

Decision

['4) starts at

“‘Deny”
(default deny)

l

Evaluate all
o applicable

policies.

Is there an Ye Final decision = "Deny"
o explicit deny? {explicit deny)

o Is there an allow? Y eg—- Final decision = "Allow™

No

¥

o Final decision =
“‘Deny”
(default deny)

1 The decision starts with a default-deny (p. 133).

2 The enforcement code evaluates all the policies that are applicable to the request (based
on the resource, principal, action, and conditions). The order in which the enforcement code
evaluates the policies is not important

3 The enforcement code looks for an explicit deny (p. 134) instruction that could apply to the
request. If it finds even one, the enforcement code returns a decision of deny and the process
finishes.

4 If no explicit deny (p. 134) instruction is found, the enforcement code looks for any
allow (p. 133) instructions that could apply to the request. If it finds even one, the
enforcement code returns a decision of allow and the process finishes (the service continues
to process the request).

5 If no allow (p. 133) instruction is found, then the final decision is deny (because there is no
explicit deny (p. 134) or allow (p. 133), this is considered a default-deny (p. 133).

Relationships Between Explicit and Default Denials

If a policy doesn't directly apply to a requests, the request results in an default-deny (p. 133). For
example, if a user requests permission to use Amazon SQS but the only policy that applies to the user
can use DynamoDB, the requests results in a default-deny (p. 133).

If a condition in a statement isn't met, the request results in an default-deny (p. 133). If all
conditions in a statement are met, then the request results in either an allow (p. 133) or an explicit
deny (p. 134) based on the value of the effect (p. 134) element of the policy. Policies don't specify

137

Amazon Simple Queue Service Developer Guide
Creating Custom Policies Using
the Access Policy Language

what to do if a condition isn't met, so the default result in this case is a default-deny (p. 133). For
example, you want to prevent requests that come from Antarctica. You write Policy Al that allows a
request only if it doesn't come from Antarctica. The following diagram illustrates the policy.

Policy A1

Effect = Allow

Condition:
if request is NOT from Antarctica

If a user sends a request from the U.S., the condition is met (the request is not from Antarctica), and
the request results in an allow (p. 133). However, if a user sends a request from Antarctica, the
condition isn't met and the request defaults to a default-deny (p. 133). You can change the result
to an explicit deny (p. 134) by writing Policy A2 that explicitly denies a request if it comes from
Antarctica. The following diagram illustrates the policy.

Policy A2
Effect = Deny

Condition:
if request is from Antarctica

If a user sends a request from Antarctica, the condition is met and the request results in an explicit
deny (p. 134).

The distinction between a default-deny (p. 133) and an explicit deny (p. 134) is important
because an allow (p. 133) can overwrite the former but not the latter. For example, Policy B allows
requests if they arrive on June 1, 2010. The following diagram compares combining this policy with
Policy Al and Policy A2.

138

Amazon Simple Queue Service Developer Guide
Creating Custom Policies Using
the Access Policy Language

Scenario 1 Scenario 2
Request arrives from Antarctica on Request arrives from Antarctica on
June 1, 2010 June 1, 2010
I Policy Evaluation I Policy Evaluation
Policy A1 Policy A2
‘ Effect = Allow ‘ Effect = Deny

if request is NOT from Antarctica

Condition:
if request is from Antarctica

‘ Condition:

OR OR
Policy B Policy B
‘ Effect = Allow Effect = Allow
Condition: Condition:

if request comes in on June 1, 2010

l Result

Policy A1 Result: Default Deny
OR Policy B Result: Allow

if request comes in on June 1, 2010

I Rasult

Policy A2 Result: Explicit Deny
OR Policy B Result: Allow

Final Result: Allow Final Result: Deny

In Scenario 1, Policy Al results in a default-deny (p. 133) and Policy B results in an allow (p. 133)
because the policy allows requests that come in on June 1, 2010. The allow (p. 133) from Policy B
overrides the default-deny (p. 133) from Policy Al, and the request is allowed.

In Scenario 2, Policy B2 results in an explicit deny (p. 134) and Poplicy B results in an

allow (p. 133). The explicit deny (p. 134) from Policy A2 overrides the allow (p. 133) from Policy
B, and the request is denied.

Access Policy Examples
The following are examples of typical access control policies.
Example 1: Give Permission to One Account

The following example policy gives AWS account 1111-2222-3333 permission to send to and receive
from queue2 owned by AWS account 4444-5555-6666.

{
"Version":"2012-10-17",

"1d":"UseCasel",
"Statenent" : [

n SI dll: n 1",
"Effect":"All ow',

139

Amazon Simple Queue Service Developer Guide
Creating Custom Policies Using
the Access Policy Language

"Principal"
"AWS': "111122223333"
}

ction":["sgs: SendMessage", "sqs: Recei veMessage"],
"Resource": "arn:aws:sqs: us-east-2: 444455556666: queue2",

Example 2: Give Permission to One or More Accounts

The following example policy gives one or more AWS accounts access to queues owned by your
account for a specific time period. It is necessary to write this policy and to upload it to Amazon
SQS using the Set QueueAt tri but es action because the AddPer mi ssi on action doesn't permit
specifying a time restriction when granting access to a queue.

{
"Version":"2012-10-17",
"1d":"UseCase2",
"Statenent" : [
{
"Sidtotat,
"Effect":"All ow',
"Principal" : {

"AWS"': ["111122223333", "444455556666"]
b
"Action":["sqs: SendMessage"”, "sqs: Recei veMessage"],
"Resource": "arn:aws:sqs: us-east-2: 444455556666: queue2",
"Condition" : {
"Dat eLessThan" : {
"AWS: Current Ti ne": " 2009- 06- 30T12: 00Z"

Example 3: Give Permission to Requests from Amazon EC2 Instances

The following example policy gives access to requests that come from Amazon EC2 instances. This
example builds on the "Example 2: Give Permission to One or More Accounts (p. 140)" example:

it restricts access to before June 30, 2009 at 12 noon (UTC), it restricts access to the IP range

10. 52. 176. 0/ 24. It is necessary to write this policy and to upload it to Amazon SQS using the

Set QueueAt t ri but es action because the AddPer m ssi on action doesn't permit specifying an IP
address restriction when granting access to a queue.

{
"Version":"2012-10-17",
"1 d":"UseCase3",
"Statenent" : [
{
"Sidttat,
"Effect":"All ow',
"Principal "

"AWE': "111122223333"
b

140

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html

Amazon Simple Queue Service Developer Guide
Using Temporary Security Credentials

"Action":["sqs: SendMessage"”, "sqs: Recei veMessage"],
"Resource": "arn:aws:s(s: us-east-2: 444455556666: queue2",
"Condition" : {
"Dat eLessThan" : {
"AWS: Current Ti me": " 2009-06- 30T12: 00Z"

}

pAddress" : {
" AWS: Sour cel p": " 10.52.176. 0/ 24"

Example 4: Deny Access to a Specific Account

The following example policy denies a specific AWS account access to your queue. This example
builds on the "Example 1: Give Permission to One Account (p. 139)" example: it denies access to the
specified AWS account. It is necessary to write this policy and to upload it to Amazon SQS using the
Set QueueAt t ri but es action because the AddPer mi ssi on action doesn't permit deny access to a
gueue (it allows only granting access to a queue).

{
"Version":"2012-10- 17",

"l1d":"UseCased",

"Statenent" : [
{
"Sidh:tr1t,
"Effect":"Deny",
"Principal" @ {

"AWS': "111122223333"
I
"Action":["sqs: SendMessage"”, "sqs: Recei veMessage"],
"Resource": "arn:aws:sQs: us-east-2:444455556666: queue2",

Using Temporary Security Credentials

In addition to creating IAM users with their own security credentials, IAM also allows you to grant
temporary security credentials to any user, allowing the user to access your AWS services and
resources. You can manage users who have AWS accounts (IAM users). You can also manage users
for your system who do not have AWS accounts (federated users). In addition, applications that you
create to access your AWS resources can also be "users."

You can use these temporary security credentials to make requests to Amazon SQS. The API libraries
compute the necessary signature value using those credentials to authenticate your request. If you
send requests using expired credentials, Amazon SQS denies the request.

Note
You cannot set a policy based on temporary credentials.

To get started with temporary security credentials

1. Use IAM to create temporary security credentials:

141

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html

Amazon Simple Queue Service Developer Guide
Using Temporary Security Credentials

e Security token

e Access Key ID

e Secret Access Key

Prepare your string to sign with the temporary Access Key ID and the security token.

Use the temporary Secret Access Key instead of your own Secret Access Key to sign your Query
API request.

When you submit the signed Query API request, don't forget to use the temporary Access Key ID
instead of your own Access Key ID and to include the security token. For more information on IAM
support for temporary security credentials, see Granting Temporary Access to Your AWS Resources in
the IAM User Guide.

To call an Amazon SQS Query API action using temporary security credentials

1.

Request a temporary security token using AWS ldentity and Access Management. For more
information, see Creating Temporary Security Credentials to Enable Access for IAM Users in the
IAM User Guide.

IAM returns a security token, an Access Key ID, and a Secret Access Key.

Prepare your query using the temporary Access Key ID instead of your own Access Key ID and
include the security token. Sign your request using the temporary Secret Access Key instead of
your own.

Submit your signed query string with the temporary Access Key ID and the security token.

The following example demonstrates how to use temporary security credentials to authenticate
an Amazon SQS request. How you structure AUTHPARAMS depends on how you sign your

API request. For information on AUTHPARANS in Signature Version 4, see Examples of Signed
Signature Version 4 Requests.

http://sqgs. us-east-2. anmazonaws. com
?Acti on=Cr eat eQueue

&Def aul t Vi si bi l'i tyTi meout =40
&QueueNane=t est Queue

&Attribute. 1. Nanme=Vi si bilityTi neout
&Attribute. 1. Val ue=40

&Ver si on=2012-11- 05

&EXpi res=2015- 12- 18T22%3A52¥8A43PST
&Securi tyToken=SecurityTokenVal ue
&AWBAccessKeyl d=Access Key I D provided by AWS Security Token Service
&AUTHPARANMS

The following example uses Temporary Security Credentials to send two messages with
SendMessageBat ch.

http://sgs. us-east-2. amazonaws. com

?Act i on=SendMessageBat ch

&SendMessageBat chRequest Entry. 1. | d=t est _nsg_001

&SendMessageBat chRequest Entry. 1. MessageBody=t est ¥20nessage%20body %201
&SendMessageBat chRequest Entry. 2. | d=t est _nsg_002

&SendMessageBat chRequest Entry. 2. MessageBody=t est ¥20nessage%20body %202
&SendMessageBat chRequest Entry. 2. Del aySeconds=60

&Ver si on=2012-11- 05

&Expi r es=2015- 12- 18T22%8A52%8A43PST

&SecurityToken=SecurityTokenVal ue

&AWSAccessKeyl d=Access Key | D provided by AWS Security Token Service

142

http://docs.aws.amazon.com/IAM/latest/UserGuide/TokenBasedAuth.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/CreatingSessionTokens.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

Amazon Simple Queue Service Developer Guide
Amazon SQS API Permissions Reference

‘ &AUTHPARAMS

Amazon SQS API Permissions: Actions and
Resource Reference

When you set up Access Control (p. 122) and write permissions policies that you can attach to an
IAM identity, you can use the following table as a reference. The list includes each Amazon Simple
Queue Service API operation, the corresponding actions for which you can grant permissions to
perform the action, and the AWS resource for which you can grant the permissions.

Specify the actions in the policy's Act i on field, and the resource value in the policy's Resour ce
field. To specify an action, use the sqs: prefix followed by the API operation name (for example,
sqgs: Creat eQueue).

Currently, Amazon SQS supports only a limited subset of the condition keys available in IAM:

e aws: Current Ti ne

e aws: EpochTi e

e aws: Secur eTransport

e aws: Sour ceArn

* aws: Sourcel P

* aws: User Agent

e aws: Mul ti Fact or Aut hAge

e aws: Mul ti Fact or Aut hPr esent
¢ aws: TokenAge

Amazon Simple Queue Service APl and Required Permissions for Actions

AddPermission
Action(s): sgs: AddPer ni ssi on

Resource: arn: aws: sqs: regi on: account _i d: queue_nane

ChangeMessageVisibility
Action(s): sgs: ChangeMessageVisibility

Resource: arn: aws: sqs: regi on: account _i d: queue_nane
ChangeMessageVisibilityBatch

Action(s): sqs: ChangeMessageVi si bilityBatch

Resource: arn: aws: sgs: regi on: account _i d: queue_nane

CreateQueue
Action(s): sgs: Cr eat eQueue

Resource: arn: aws: sqs: regi on: account _i d: queue_nane

DeleteMessage
Action(s): sqgs: Del et eMessage

Resource: arn: aws: sqs: regi on: account _i d: queue_nane

DeleteMessageBatch
Action(s): sqgs: Del et eMessageBat ch

Resource: arn: aws: sqs: regi on: account _i d: queue_nane

143

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html

Amazon Simple Queue Service Developer Guide
Amazon SQS API Permissions Reference

DeleteQueue
Action(s): sqgs: Del et eQueue

Resource: arn: aws: sgs: regi on: account _i d: queue_nane

GetQueueAttributes
Action(s): sqs: Get QueueAttri butes

Resource: arn: aws: sqs: regi on: account _i d: queue_nane

GetQueueUrl
Action(s): sgs: Get Queuelr |

Resource: arn: aws: sqs: regi on: account _i d: queue_nane

ListDeadLetterSourceQueues
Action(s): sqgs: Li st DeadLet t er Sour ceQueues

Resource: arn: aws: sgs: regi on: account _i d: queue_nane

ListQueues
Action(s): sgs: Li st Queues

Resource: arn: aws: sqs: regi on: account _i d: queue_nane

PurgeQueue
Action(s): sqgs: Pur geQueue

Resource: arn: aws: sqs: regi on: account _i d: queue_nane

ReceiveMessage
Action(s): sgs: Recei veMessage

Resource: arn: aws: sgs: regi on: account _i d: queue_nane

RemovePermission
Action(s): sqs: RenovePer m ssi on

Resource: arn: aws: sqs: regi on: account _i d: queue_nane

SendMessage
Action(s): sgs: SendMessage

Resource: arn: aws: sqs: regi on: account _i d: queue_nane

SendMessageBatch
Action(s): sgs: SendMessageBat ch

Resource: arn: aws: sgs: regi on: account _i d: queue_nane

SetQueueAttributes
Action(s): sqgs: Set QueueAttri butes

Resource: arn: aws: sqs: regi on: account _i d: queue_nane

144

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListDeadLetterSourceQueues.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_PurgeQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_RemovePermission.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html

Amazon Simple Queue Service Developer Guide

Limits Related to Queues

Limits in Amazon SQS

This topic lists limits within Amazon Simple Queue Service (Amazon SQS).

Topics

¢ Limits Related to Queues (p. 145)
¢ Limits Related to Messages (p. 146)
¢ Limits Related to Policies (p. 146)

Limits Related to Queues

The following table lists limits related to queues.

Limit

Queue name

Inflight messages per queue

Description

A queue name can have up to 80 characters. The following
characters are accepted: alphanumeric characters,
hyphens (-), and underscores ().

Note

Queue names are case-sensitive (for example,
Test - queue and t est - queue are different
queues).

The name of a FIFO queue must end with the . fi f o suffix.
The suffix counts towards the 80-character queue name
limit.

For standard queues, there can be a maximum of 120,000
inflight messages per queue. If you reach this limit, Amazon
SQS returns the Over Li mi t error message. To avoid
reaching the limit, you should delete messages from the
queue after they're processed. You can also increase the
number of queues you use to process your messages.

For FIFO queues, there can be a maximum of 20,000
inflight messages per queue. If you reach this limit, Amazon
SQS returns no error messages.

145

Amazon Simple Queue Service Developer Guide

Limits Related to Messages

Limits Related to Messages

The following table lists limits related to messages.

Limit
Message attributes

Message content

Message retention

Message size

Message visibility timeout

Policy information

Description
A message can contain up to 10 metadata attributes.

A message can include only XML, JSON, and unformatted
text. The following Unicode characters are allowed:

#x9 | #xA | #xD| #x20 to #xD7FF | #xE000 to #xFFFD |
#x10000 to #x10FFFF

Any characters not included in this list will be rejected. For
more information, see the W3C specification for characters.

By default, a message is retained for 4 days. The minimum
is 60 seconds (1 minute). The maximum is 1,209,600
seconds (14 days).

The minimum message size is 1,024 bytes (1 KB). The
maximum is 262,144 bytes (256 KB).

To send messages larger than 256 KB, you can use the
Amazon SQS Extended Client Library for Java. This library
allows you to send an Amazon SQS message that contains
a reference to a message payload in Amazon S3. The
maximum payload size is 2 GB.

Note
The Amazon SQS Extended Client Library for
Java doesn't currently support FIFO queues.

The maximum visibility timeout for a message is 12 hours.

The maximum limit is 8,192 bytes, 20 statements, 50
principals, or 10 conditions. For more information, see
Limits Related to Policies (p. 146).

Limits Related to Policies

The following table lists limits related to policies.

Name
Bytes
Statements
Principals

Conditions

Maximum Size
8192

20

50

10

146

http://www.w3.org/TR/REC-xml/#charsets
https://github.com/awslabs/amazon-sqs-java-extended-client-lib

Amazon Simple Queue Service Developer Guide

Related Amazon SQS Resources

The following table lists related resources that you'll find useful as you work with this service.

Resource

Amazon Simple Queue Service API
Reference

Amazon SQS Release Notes
Product information for Amazon SQS

Discussion Forums

AWS Premium Support Information

Description

The API reference gives complete descriptions of API
actions, parameters, and data types and a list of errors that
the service returns.

The release notes give a high-level overview of the
current release. They specifically note any new features,
corrections, and known issues.

The primary web page for information about Amazon SQS.

A community-based forum for developers to discuss
technical questions related to Amazon SQS.

The primary web page for information about AWS Premium
Support, a one-on-one, fast-response support channel to
help you build and run applications on AWS infrastructure
services.

147

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
http://aws.amazon.com/releasenotes/Amazon-SQS
http://aws.amazon.com/sqs
https://forums.aws.amazon.com/
http://aws.amazon.com/premiumsupport/

Amazon Simple Queue Service Developer Guide

Document History

The following table describes the important changes to the documentation since the last release of the
Amazon Simple Queue Service Developer Guide.

* APl version: 2012-11-05
¢ Latest documentation update: December 2, 2016

Change

Update

New feature

Description Date Changed
The Authentication and Access Control (p. 121) section has been December 2,
reorganized and updated. 2016

You can use Amazon SQS to create FIFO (First-In-First-Out) November 17,

queues or standard queues (the new name for existing queues) in | 2016
US West (Oregon) and US East (Ohio). For more information on

how FIFO queues work and how to get started using them, see the
following:

¢ FIFO (First-In-First-Out) Queues (p. 6)
¢ Moving From a Standard Queue to a FIFO Queue (p. 11)
¢ Recommendations for FIFO (First-In-First-Out) Queues (p. 78)

For revised Amazon SQS tutorials, see the following:

¢ Creating an Amazon SQS Queue (p. 65)
¢ Sending a Message to an Amazon SQS Queue (p. 68)

¢ Receiving and Deleting a Message from an Amazon SQS
Queue (p. 71)

FIFO queues add the following API functionality:

e The Fi f oQueue and Cont ent BasedDedupl i cati on
attributes for the Cr eat eQueue, Get QueueAt t ri but es, and
Set QueueAt t ri but es actions.

e The MessageDedupl i cati onl d and MessageG oupl d
request parameters for the SendMessage and
SendMessageBat ch actions and attributes for the
Recei veMessage action.

148

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatchRequestEntry.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

Change

Update

New feature

Update
Update

New feature

Update

New feature

New feature

New feature

Update

Description

¢ The Recei veRequest At t enpt | d request parameter for the
Recei veMessage action.

e The SequenceNunber response parameter for the
SendMessage and SendMessageBat ch actions and the
SequenceNunber attribute for the Recei veMessage action.

Important

As of November 17, 2016, Amazon SQS no longer
publishes a WSDL.

The following clients don't currently support FIFO queues:

¢ Amazon SQS Buffered Asynchronous Client
* Amazon SQS Extended Client Library for Java
* Amazon SQS Java Message Service (JMS) Client

FIFO queues don't support timers on individual
messages.
Amazon SNS isn't currently compatible with FIFO queues.

The Walkthroughs section has been renamed to Amazon SQS
Tutorials (p. 65).

You can use the Appr oxi mat eAgef O dest Message
CloudWatch metric to find the approximate age of the oldest
non-deleted message in the queue. For more information, see
Available CloudWatch Metrics for Amazon SQS (p. 87).

Added the Best Practices for Amazon SQS (p. 77) section.
Added the Limits in Amazon SQS (p. 145) section.

You can view CloudWatch metrics from within the Amazon
SQS console for up to 10 of your queues at a time. For
more information, see Monitoring Amazon SQS using
CloudWatch (p. 81).

Updated Amazon SQS console screenshots.

The Amazon SQS Extended Client Library for Java lets you
manage Amazon SQS messages with Amazon S3. For more
information, see Managing Large Amazon SQS Messages
Using Amazon S3 (p. 40) in the Amazon Simple Queue Service
Developer Guide.

Amazon SQS lets you use JMS (Java Message Service) with
Amazon SQS queues. For more information, see Using JMS
with Amazon SQS (p. 44) in the Amazon Simple Queue Service
Developer Guide.

Amazon SQS lets you delete the messages in a queue by using
the Pur geQueue API. For more information, see PurgeQueue in
the Amazon SQS API Reference.

Date Changed

November 2,
2016

August 31,
2016

May 27, 2016
May 12, 2016

February 12,
2016

December 7,
2015

October 27,
2015

December 29,
2014

December 8,
2014

Updated information about access keys. For more information, see | August 4, 2014

Your Access Keys (p. 101).

149

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatchResultEntry.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_PurgeQueue.html

Amazon Simple Queue Service Developer Guide

Change

New feature

New feature

New feature

New feature

New feature

New feature

New feature

Description

Amazon SQS lets you log API calls by using AWS CloudTrail. For
more information, see Logging Amazon SQS API Actions Using
AWS CloudTrail (p. 90).

Amazon SQS provides support for message attributes. For more
information, see Using Amazon SQS Message Attributes (p. 21).

Amazon SQS provides support for dead letter queues. For more
information, see Using Amazon SQS Dead Letter Queues (p. 17).

You can subscribe an Amazon SQS queue to an Amazon SNS
topic using the AWS Management Console for Amazon SQS,
which simplifies the process. For more information, see Tutorial:
Subscribing one or more Amazon SQS Queues to an Amazon
SNS Topic (p. 74).

The 2012-11-05 API version of Amazon SQS adds support

for signature version 4, which provides improved security and
performance. For more information about signature version 4, see
Query Request Authentication (p. 105).

The AWS SDK for Java includes a buffered asynchronous client,
AmazonSQSBufferedAsyncClient, for accessing Amazon SQS.
This client allows for easier request batching by enabling client-
side buffering, where calls made from the client are first buffered
and then sent as a batch request to Amazon SQS. For more
information about client-side buffering and request batching, see
Client-Side Buffering and Request Batching (p. 113).

The 2012-11-05 API version of Amazon SQS adds long polling
support. Long polling allows for Amazon SQS to wait for a
specified amount time for a message to be available instead
of returning an empty response if one isn't available. For

more information about long polling, see Amazon SQS Long
Polling (p. 29).

Date Changed
July 16, 2014

May 6, 2014
January 29,
2014

November 21,
2012

November 5,
2012

November 5,

2012

November 5,
2012

150

	Amazon Simple Queue Service
	Table of Contents
	What is Amazon Simple Queue Service?
	What can I use Amazon SQS for?
	What type of queue do I need?
	What are the main features of Amazon SQS?
	What is the basic architecture of Amazon SQS?

	How Amazon SQS Queues Work
	Basic Prerequisites
	Standard Queues
	Message Ordering
	At-Least-Once Delivery
	Retrieving Messages Using Short Polling

	FIFO (First-In-First-Out) Queues
	Message Ordering
	FIFO Queue Logic
	Key Terms
	Sending Messages
	Receiving Messages
	Retrying Multiple Times

	Exactly-Once Processing
	Getting Started with FIFO Queues
	Moving From a Standard Queue to a FIFO Queue
	Moving Checklist

	Queue and Message Identifiers
	General Identifiers
	Queue Name and URL
	Message ID
	Receipt Handle

	Additional Identifiers for FIFO Queues
	Message Deduplication ID
	Message Group ID
	Sequence Number

	Resources Required to Process Messages
	Visibility Timeout
	Inflight Messages
	Configuring the Visibility Timeout
	Changing a Message's Visibility Timeout
	Terminating a Message's Visibility Timeout
	API Actions Related to Visibility Timeout

	Message Lifecycle
	Using Amazon SQS Dead Letter Queues
	Setting up a Dead Letter Queue with the AWS Management Console
	Using a Dead Letter Queue with the Amazon SQS API
	Issue: Viewing Messages with the Amazon SQS Console Can Cause the Messages to be Moved to a Dead Letter Queue
	Issue: NumberOfMessagesSent and NumberOfMessagesReceived for the Dead Letter Queue Do Not Match

	Using Amazon SQS Message Attributes
	Message Attribute Items and Validation
	Message Attribute Data Types and Validation
	Using Message Attributes with the AWS Management Console
	Using Message Attributes with the AWS SDKs
	Using Message Attributes with the Amazon SQS Query API
	MD5 Message-Digest Calculation

	Amazon SQS Long Polling
	Benefits of Long Polling
	Enabling Long Polling with the AWS Management Console
	Enabling Long Polling Using the API
	Enabling Long Polling Using the Query API

	Amazon SQS Delay Queues
	Creating Delay Queues with the AWS Management Console
	Creating Delay Queues with the Query API

	Amazon SQS Message Timers
	Creating Message Timers Using the Console
	Creating Message Timers Using the Query API

	Managing Large Amazon SQS Messages Using Amazon S3
	Prerequisites
	Using the Amazon SQS Extended Client Library for Java

	Using JMS with Amazon SQS
	Prerequisites
	Getting Started with the Amazon SQS Java Messaging Library
	Creating a JMS Connection
	Creating an Amazon SQS Queue
	Sending Messages Synchronously
	Receiving Messages Synchronously

	Receiving Messages Asynchronously
	Using Client Acknowledge Mode
	Using Unordered Acknowledge Mode
	Code Examples
	ExampleConfiguration.java
	TextMessageSender.java
	SyncMessageReceiver.java
	AsyncMessageReceiver.java
	SyncMessageReceiverClientAcknowledge.java
	SyncMessageReceiverUnorderedAcknowledge.java
	SpringExampleConfig.xml
	SpringExample.java
	ExampleCommon.java

	Supported JMS 1.1 Implementations
	Supported Common Interfaces
	Supported Message Types
	Supported Message Acknowledgment Modes
	JMS-Defined Headers and Reserved Properties

	Amazon SQS Tutorials
	Tutorial: Creating an Amazon SQS Queue
	AWS Management Console
	Java

	Tutorial: Sending a Message to an Amazon SQS Queue
	AWS Management Console
	Java

	Tutorial: Receiving and Deleting a Message from an Amazon SQS Queue
	AWS Management Console
	Java

	Tutorial: Subscribing one or more Amazon SQS Queues to an Amazon SNS Topic
	AWS Management Console

	Best Practices for Amazon SQS
	General Recommendations
	Processing Messages
	Reducing Costs
	Moving from a Standard Queue to a FIFO Queue

	Recommendations for FIFO (First-In-First-Out) Queues
	Using the Message Deduplication ID
	Using the Message Group ID
	Using the Receive Request Attempt ID

	Monitoring and Logging Amazon SQS Queues
	Monitoring Amazon SQS using CloudWatch
	Common Monitoring Tasks
	Access CloudWatch Metrics for Amazon SQS
	Access Metrics Using the Amazon SQS Console
	Access Metrics Using the CloudWatch Console
	Access Metrics Using the AWS CLI
	Access Metrics Using the CloudWatch CLI
	Access Metrics Using the CloudWatch API

	Set CloudWatch Alarms for Amazon SQS Metrics
	Available CloudWatch Metrics for Amazon SQS
	Amazon SQS Metrics
	Dimensions for Amazon SQS Metrics

	Logging Amazon SQS API Actions Using AWS CloudTrail
	Amazon SQS Information in CloudTrail
	Understanding Amazon SQS Log File Entries
	AddPermission
	CreateQueue
	DeleteQueue
	RemovePermission
	SetQueueAttributes

	Working with Amazon SQS APIs
	Making API Requests
	Endpoints
	Making Query Requests
	Structure of a GET Request
	Structure of a POST Request
	Related Topics

	Request Authentication
	What Is Authentication?
	Your AWS Account
	Related Topics

	Your Access Keys
	Related Topics

	HMAC-SHA Signatures
	Required Authentication Information
	Related Topics

	Basic Authentication Process
	About the String to Sign
	About the Time Stamp
	Java Sample Code for Base64 Encoding
	Java Sample Code for Calculating SHA256 Signatures

	Query Request Authentication

	Responses
	Structure of a Successful Response
	Structure of an Error Response
	Related Topics

	Shared Queues
	Simple API for Shared Queues
	Advanced API for Shared Queues
	Understanding Resource-Level Permissions
	Granting Anonymous Access to a Queue

	Programming Languages

	Amazon SQS Batch API Actions
	Maximum Message Size for SendMessageBatch
	Client-Side Buffering and Request Batching
	Getting Started with AmazonSQSBufferedAsyncClient
	Advanced Configuration

	Increasing Throughput with Horizontal Scaling and Batching
	Horizontal Scaling
	Batching
	Example
	Running the Example
	Monitoring Volume Metrics from Example Run

	Amazon SQS Security
	Authentication and Access Control for Amazon SQS
	Authentication
	Access Control
	Overview of Managing Access Permissions to Your Amazon Simple Queue Service Resource
	Amazon Simple Queue Service Resource and Operations
	Understanding Resource Ownership
	Managing Access to Resources
	Identity-Based (IAM) Features of Resource-Based (Amazon SQS) Policies
	Resource-Based (Amazon SQS) and Identity-Based (IAM) Policies

	Specifying Policy Elements: Actions, Effects, Resources, and Principals

	Using Identity-Based Policies (IAM) Policies for Amazon SQS
	Writing an Amazon SQS Policy
	Example 1: Allow a User to Create Queues
	Example 2: Allow Developers to Write Messages to a Shared Queue
	Example 3: Allow Managers to Get the General Size of Queues
	Example 4: Allow a Partner to Send Messages to a Specific Queue

	Customer-Managed Policy Examples
	Example 1: Grant One Permission to One AWS Account
	Example 2: Grant Two Permissions to One AWS Account
	Example 3: Grant All Permissions to Two AWS Accounts
	Example 4: Grant a Role and a User Name Cross-Account Permission
	Example 5: Grant a Permission to All Users
	Example 6: Grant a Time-Limited Permission to All Users
	Example 7: Grant All Permissions to All Users in a CIDR Range
	Example 8: Whitelist and Blacklist Permissions for Users in Different CIDR Ranges

	Creating Custom Policies Using the Access Policy Language
	Key Concepts
	Architecture
	Process Workflow
	Evaluation Logic
	Relationships Between Explicit and Default Denials
	Access Policy Examples
	Example 1: Give Permission to One Account
	Example 2: Give Permission to One or More Accounts
	Example 3: Give Permission to Requests from Amazon EC2 Instances
	Example 4: Deny Access to a Specific Account

	Using Temporary Security Credentials
	Amazon SQS API Permissions: Actions and Resource Reference

	Limits in Amazon SQS
	Limits Related to Queues
	Limits Related to Messages
	Limits Related to Policies

	Related Amazon SQS Resources
	Document History

