AWS Security Token Service

Using Temporary Security Credentials
APl Version 2011-06-15

amazon
web services™

AWS Security Token Service Using Temporary Security
Credentials

Amazon Web Services

AWS Security Token Service Using Temporary Security
Credentials

AWS Security Token Service: Using Temporary Security Credentials
Amazon Web Services
Copyright © 2013 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
Cloudfront, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic Compute Cloud, Amazon Glacier, Kindle, Kindle
Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift, Amazon Route 53, Amazon S3, Amazon VPC. In addition,
Amazon.com graphics, logos, page headers, button icons, scripts, and service names are trademarks, or trade dress of Amazon in
the U.S. and/or other countries. Amazon's trademarks and trade dress may not be used in connection with any product or service that
is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits
Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

AWS Security Token Service Using Temporary Security

Credentials

LAY] (ot 1= TS P PSSP PO PPPPRPPPRRPPRRN 1
Scenarios for Granting TEMPOTArY ACCESSceueiiiiiiieeeiaiieieae et atieeeeeaartreeeesaaaeeeeaesaabaeeeeeaanseeeeeesannneees 4
Creating Temporary Security CredentialSccoi i s e e e st e e e e e nanes 11
Credentials fOr MODIIE APPS ..ot e ettt e e e st e e e e e sttt e e e e eneeeeeeeeannneeeaeean 12
Credentials for SAML FEAEIALIONcccuvtiiiiie ittt esbe e nnnee e 19
Credentials to Enable Access for Federated USEIScocuiiiiiiiiiiiieiiiec e 22
Credentials for Delegating AP ACCESScooiuuiiiie ettt e et e e e e st e e e e s eeeeeanereeeeeeans 26

ADOUL the EXIEINAI IDoiiiiiiiiiiie ettt et e e 26
Granting an IAM Group Permission to Create CredentialSccccvieiiiiiieie e 28
Credentials to Enable ACCESS fOr IAM USEIScoiiiiiiiiiiiiiie et 29
Controlling Permissions for Temporary Security CredentialScccccceeiiiiiieeeeiiiiiieee e 32
Permissions for FEerated USEISuii ittt 32
PermiSSIONS fOr IAM USEISoiuiiiiiiiie ittt b ettt e e e eenaneees 35
(D] IST o] [T gTo = =T o 4 IS (o] o RSO RRR 35

Denying Access to the CredentialsS Creatorueeieiiiiiiiie e 35

Denying Access t0 @ SPECIfIC RESOUICEooiiiiiiiiiie et 36
[RY=]F= 1= To B o] o] {3 RSP 36
Using Temporary Security CredentialSoooiiiiiieiiiiiiiee et e e s e e e e snnees 38
Giving Federated Users Direct Access to the AWS Management CONSOIEcccveveeriiieineeiiiiieeenn. 41
Giving Console ACCESS USING SAMLuuiiiiiiiiiiiie ettt e e e e e e sttt e e e s s aneeeeeesanneeeeeeaan 41
Giving Console Access by Creating @ URLcoooiiiiiiieiiiiiiie et e e e e e e e e enes 46
AWS Security Token Service Sample APPHCALIONScoiiuieiiieiiiiee et 51
AWS Services that Support AWS Security Token Service (AWS STS) ...eoviiiiiiieiieeiiiiieee e 52
(Do ToTU] 0= o1l 113 (o] PRSP 55

APl Version 2011-06-15
4

AWS Security Token Service Using Temporary Security
Credentials
Introduction

Welcome

Topics

¢ Introduction (p. 1)
* Ways to Get Temporary Security Credentials (p. 2)
¢ Advantages of Temporary Security Credentials (p. 3)

Introduction

The AWS Security Token Service lets you grant a trusted user temporary, limited access to your Amazon
Web Services (AWS) resources. Here are some are examples of when temporary access is useful:

Federation. You can grant temporary access to people in a corporate network without having to define
individual IAM identities for each corporate user. You can also let federated users log into the AWS
Management Console without having to be defined as IAM users, which we refer to as single sign-on
(SSO). AWS STS supports open standards like the SAML 2.0 (Security Assertion Markup Language
2.0), or you can manage your own solution for federating user identities.

Federation for mobile apps. You can grant access to a user who logs in to a mobile application using
Login with Amazon, Facebook, or Google. Users don't have to have 1AM identities. (We refer to this
as web identity federation.)

Cross-account access. This lets IAM users in one account access resources in another account. (We
refer to this as cross-account API access.)

Security management for applications running on Amazon EC2 instances that need access to AWS
resources. (We refer to this as delegating API access by using roles.)

Security management to scope down permissions at run time. This is useful for IAM users who are
using multi-factor authentication (MFA).

You can use temporary security credentials to access most AWS services. For a list of the services that
accept temporary security credentials, see AWS Services that Support AWS Security Token Service
(AWS STS) (p. 52).

APl Version 2011-06-15
1

AWS Security Token Service Using Temporary Security
Credentials
Ways to Get Temporary Security Credentials

Ways to Get Temporary Security Credentials

To request temporary security credentials using the AWS Security Token Service (AWS STS), you write
code to call the API actions listed in the following table. You can make these calls using one of the AWS
SDKs, which are available in a variety of programming languages, including Java, .NET, Python, Ruby,
Android, and iOS. The SDKs take care of tasks such as cryptographically signing your service requests,
retrying requests if necessary, and handling error responses. You can also use the AWS STS Query API,
which is described in the AWS Security Token Service API Reference.

AWS Security Token Service API Actions

Action Description

AssumeRole Returns a set of temporary security credentials.
You call this API by using the credentials of an
existing IAM user. This APl is useful for granting
AWS access to users who do not have an IAM
identity (that is, to federated users). It is also useful
for allowing existing IAM users to access AWS
resources that they don't already have access to,
such as resources in another account. For more
information, see Creating Temporary Security
Credentials for Delegating APl Access (p. 26).

AssumeRoleWithWebldentity Returns a set of temporary security credentials for
federated users who are authenticated using a
public identity provider like Login with Amazon,
Facebook, or Google. This APl is useful for creating
mobile applications or client-based web applications
that require access to AWS but where users do not
have their own AWS or IAM identity. For more
information, see Creating a Role to Allow AWS
Access for the Mobile App (p. 14).

AssumeRoleWithSAML Returns a set of temporary security credentials for
federated users who are authenticated in your
organization and who pass authentication and
authorization information to AWS using SAML
(Security Assertion Markup Language). This API
is useful in organizations that have integrated their
identity systems (such as Windows Active
Directory) with software that can produce SAML
assertions to provide information about user identity
and permissions. For more information, see
Creating Temporary Security Credentials for SAML
Federation (p. 19).

GetFederationToken Returns a set of temporary security credentials for
federated users. This API differs from AssuneRol e
in that the default expiration period is substantially
longer (up to 36 hours instead of up to 1 hour); this
can help reduce the number of calls to AWS
because you do not need to get new credentials
as often. For more information, see Creating
Temporary Security Credentials to Enable Access
for Federated Users (p. 22).

APl Version 2011-06-15
2

http://aws.amazon.com/tools/
http://aws.amazon.com/tools/
http://docs.aws.amazon.com/STS/latest/APIReference/
http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://www.oasis-open.org/standards#samlv2.0
http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
http://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html

AWS Security Token Service Using Temporary Security
Credentials
Advantages of Temporary Security Credentials

Action Description

GetSessionToken Returns a set of temporary security credentials to
an existing 1AM user. This APl is useful for
providing enhanced security, such as to make AWS
requests when MFA is enabled for the IAM user.
For more information, see Creating Temporary
Security Credentials to Enable Access for IAM
Users (p. 29).

The AWS STS API actions return temporary security credentials that consist of an access key ID, a secret
access key, and a session token. Users (or an application that the user is running) can then use these
temporary security credentials to access your resources. The temporary security credentials are associated
with an IAM access control policy that limits what the user can do when using these credentials. For more
information, see Using Temporary Security Credentials (p. 38).

Important

Although temporary security credentials are short-lived, users who have temporary access can
make lasting changes to your AWS resources. For example, if a user with temporary access
launches an Amazon EC2 instance, the instance can continue to run and incur charges against
your AWS account even after the user's temporary security credentials expire.

Advantages of Temporary Security Credentials

Using AWS Security Token Service to get temporary security credentials is useful for the following reasons:

* You do not have to distribute long-term AWS security credentials with an application.

* You can provide access to your AWS resources to users without having to define an AWS identity for
them.

¢ The temporary security credentials have a limited lifetime, meaning that you do not have to rotate them
or explicitly revoke them when they're no longer needed. After temporary security credentials have
expired, they cannot be reused. You can specify how long the credentials are good for, up to a maximum
limit.

APl Version 2011-06-15
3

http://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html

AWS Security Token Service Using Temporary Security
Credentials
Creating a Mobile App with Third-Party Sign-In

Scenarios for Granting Temporary
Access

Topics
¢ Creating a Mobile App with Third-Party Sign-In (p. 4)
¢ Creating a Mobile App with Custom Authentication (p. 5)
¢ Using Your Organization's Authentication System to Grant Access to AWS Resources (p. 7)

¢ Using Your Organization's Authentication System and SAML to Grant Access to AWS
Resources (p. 8)

¢ Web-Based Single Sign-On (SSO) (p. 9)
¢ Delegating API Access (p. 10)
e Cross-Account API Access (p. 10)

You might choose to use temporary security credentials for several reasons. This section describes the
most common scenarios.

Creating a Mobile App with Third-Party Sign-In

Adele the developer is building a game for a mobile device where user information such as scores and
profiles is stored using Amazon S3 and Amazon DynamoDB. She knows that for security and maintenance
reasons, long-term AWS security credentials should not be distributed with the game. She also knows
that the game might have a large number of users. For all of these reasons, she does not create new
user identities for each player. Instead, she builds the game so that users can sign in using an identity
that they've already established with Amazon.com, Facebook, or Google. Her game can take advantage
of the authentication mechanism from one of these providers to validate the user's identity.

To enable the mobile app to access her company's AWS resources, Adele first registers for a developer
ID with Login with Amazon, Facebook, and Google. She also configures the application with each of these
providers. In the AWS account that owns the Amazon S3 bucket and Amazon DynamoDB table for the
game, Adele creates IAM roles that precisely define permissions that the game needs.

In the app's code, Adele calls the sign-in interface for the identity provider that the user selects. The
provider handles all the details of letting the user sign in, and the app gets an OAuth access token or
OpenlD Connect (OIDC) ID token from the provider. Using this information, Adele's app can call the AWS

APl Version 2011-06-15
4

http://login.amazon.com/
http://openid.net/connect/

AWS Security Token Service Using Temporary Security
Credentials
Creating a Mobile App with Custom Authentication

Security Token Service (AWS STS) AssunmeRol eW t hWebl dent i t y action. This action returns temporary
security credentials consisting of an AWS access key ID, a secret access key, and a session token. The
user's instance of the app caches the temporary security credentials and uses them to access AWS
services. The app is limited to the permissions defined in the role that it assumes. When the temporary
credentials expire, the mobile app makes another call to AWS STS in order to get a new set of temporary
security credentials.

The following figure shows a simplified flow for how this might work, using Login with Amazon as the
identity provider. For Step 1, the app can also invoke Facebook or Google, but that's not shown here.

Access AWS
APls =
Amazon S3 m
DynamoDB Buckets 5
-
AWS Services
Oy
”“e‘.’.
%
Login with Amazon
Web Identity Federation /

The following details enable this scenario:

« Adele the developer has registered the mobile app with different identity providers, who have assigned
an app ID to the app.

¢ The mobile app includes logic to invoke the appropriate identity provider (depending on which sign-in
option the user chooses) and to get back a token from the provider.

¢ The app can call AssuneRol eW t h\Webl dent i t y without using any AWS security credentials. The
call includes the token from the provider received previously.

¢ AWS STS is able to verify that the token passed from Adele's app is valid and then returns temporary
security credentials to the app. The mobile app's permissions to access AWS are established by the
role that the app assumes.

You can learn more about web identity federation by working with the following sample applications:

¢ The Web Identity Federation Playground is an interactive website that lets you walk through the process
of authenticating via Login with Amazon, Facebook, or Google, getting temporary security credentials,
and then using those credentials to make a request to AWS.

¢ The AWS SDK for iOS and AWS SDK for Android toolkits include a sample application that demonstrates
how to access an Amazon S3 bucket.

Creating a Mobile App with Custom
Authentication

A company is building a mobile app that enables the app's registered users to access the company's
AWS resources on the back end. Unlike the previous scenario, users don't sign in using one of the
supported web identity federation providers (Login with Amazon, Facebook, or Google). Instead, the

APl Version 2011-06-15
5

https://web-identity-federation-playground.s3.amazonaws.com/index.html
http://aws.amazon.com/sdkforios/
http://aws.amazon.com/sdkforandroid/

AWS Security Token Service Using Temporary Security
Credentials
Creating a Mobile App with Custom Authentication

company wants to use a custom solution for authenticating users and for managing the identity store. As
in the previous scenario, the company doesn't want to distribute any AWS security credentials with the

app.

Dave is the developer for this app. To enable the mobile app to access the company's AWS resources,
Dave develops a custom identity broker application that runs on Amazon EC2. When the mobile app
runs, it communicates with the custom identity broker. The broker application verifies that the users are
authenticated and then calls an AWS STS action to get temporary security credentials. The application
can call either AssuneRol e or Get Feder at i onToken to obtain the temporary credentials, depending
on how Dave wants to manage the policies for users and when the temporary credentials should expire.
(For more information about the differences between these APIs, see Ways to Get Temporary Security
Credentials (p. 2) and Permissions in Temporary Security Credentials for Federated Users (p. 32).)

The AWS STS API returns temporary security credentials consisting of an AWS access key ID, a secret
access key, and a session token. The custom identity broker application returns these temporary security
credentials to the mobile app. The app can then use the temporary credentials to make calls to AWS
directly. The app caches the credentials until they expire, and then requests a new set of temporary
credentials. The following figure illustrates this scenario.

- \
/ o \
9 Access AWS : i rr -
' EC2 Amazon
E Instances DynamoDB Bul:kets
AWS Services
Running In EC2 instance(s) N /
AN AWS Cloud

e Authorization

The following details enable this scenario:

« The identity broker application has available a set of long-term AWS security credentials that are
associated with an IAM user that it can use to call the AssumeRol e or Get Feder at i onToken action.
The identity broker application runs in a server environment, where the credentials for the IAM user
are not accessible to the apps running on mobile devices.

¢ The identity broker application (via the security credentials it uses to make the call) has permission to
access the AWS STS API to create temporary security credentials.
¢ The identity broker application is able to verify that the mobile app users are authenticated.

To see a sample application similar to the application described in this scenario, go to Authenticating
Users of AWS Mobile Applications with a Token Vending Machine at AWS Articles & Tutorials. For
information about creating temporary security credentials, see Creating Temporary Security
Credentials (p. 11).

APl Version 2011-06-15
6

http://aws.amazon.com/articles/4611615499399490
http://aws.amazon.com/articles/4611615499399490

AWS Security Token Service Using Temporary Security
Credentials
Using Your Organization's Authentication System to
Grant Access to AWS Resources

Using Your Organization's Authentication
System to Grant Access to AWS Resources

Example Corp. has many employees who need to run internal applications that access the company's
AWS resources. The employees already have identities in the company identity and authentication system,
and Example Corp. doesn't want to create a separate IAM user for each company employee.

Bob is a developer at Example Corp. To enable Example Corp. internal applications to access the
company's AWS resources, Bob develops a custom identity broker application. The application verifies
that employees are signed into the existing Example Corp. identity and authentication system, which
might use LDAP, Active Directory, or another system. The identity broker application then obtains temporary
security credentials for the employees. This scenario is similar to the previous one (a mobile app that
uses a custom authentication system), except that the applications that need access to AWS resources
all run within the corporate network, and the company has an existing authentication system.

To get temporary security credentials, the identity broker application calls either AssunmeRol e or

Get Feder at i onToken to obtain temporary security credentials, depending on how Bob wants to manage
the policies for users and when the temporary credentials should expire. (For more information about the
differences between these APIs, see Ways to Get Temporary Security Credentials (p. 2) and Permissions
in Temporary Security Credentials for Federated Users (p. 32).) The call returns temporary security
credentials consisting of an AWS access key ID, a secret access key, and a session token. The identity
broker application makes these temporary security credentials available to the internal application. The
app can then use the temporary credentials to make calls to AWS directly. The app caches the credentials
until they expire, and then requests a new set of temporary credentials. The following figure illustrates
this scenario.

/@ Enterprise \ @ AWS Cloud (Relving Party) \

[

: Browser or) - I Access AWS .‘ I =
: Application e . [APIs I. '

R, i EC2 Amazon S3
Instances DynamoDB Buckels

User
accesses (1 c°’i'a;:,: %o

AWS Services
Broker

mr——
3) AWS =
Management

Identity broker 83':0‘" T Console

p) M
Authenticate user /

Corporate

\ identity store

In this scenario:

¢ The identity broker application has permissions to access the AWS STS API to create temporary security
credentials.

¢ The identity broker application is able to verify that employees are authenticated within the existing
authentication system.

¢ Users are able to get a temporary URL that gives them access to the AWS Management Console
(which is referred to as single sign-on).

APl Version 2011-06-15
7

AWS Security Token Service Using Temporary Security
Credentials
Using Your Organization's Authentication System and
SAML to Grant Access to AWS Resources

To see a sample application similar to the identity broker application described in this scenario, go to
Identity Federation Sample Application for an Active Directory Use Case at AWS Sample Code & Libraries.
For information about creating temporary security credentials, see Creating Temporary Security
Credentials (p. 11). For more information about federated users getting access to the AWS Management
Console, see Giving Federated Users Direct Access to the AWS Management Console (p. 41).

Using Your Organization's Authentication
System and SAML to Grant Access to AWS
Resources

Clarisse is an administrator who works at an organization that uses a SAML 2.0-compliant identity provider
(IdP) to implement identity federation. In Clarisse's organization, an identity provider can authenticate
users against an internal identity store. The IdP can then produce SAML assertions that indicate who the
user is and that include information that can be used for authorization decisions by a service provider.
Clarisse configures her organization's identity provider, and configures AWS as a service provider that
can trust authentication responses from her organization.

Clarisse writes an application that runs on user's computers in her organization and that stores objects
in Amazon S3 buckets. The application can get user information and ask the identity provider for an
authentication response (assertion). It can then call the AWS STS AssuneRol eW t hSAML API, passing
the assertion and additional information.

The API returns temporary security credentials, which Clarisse's application can use to make calls to
AWS directly. The following figure illustrates this scenario.

APl Version 2011-06-15
8

http://aws.amazon.com/code/1288653099190193

AWS Security Token Service Using Temporary Security
Credentials
Web-Based Single Sign-On (SSO)

Your organization (ldentity Provider)

r N

ug&
5
| n{._.;,a.‘-e
.'dF av Portallldentity provider (IdP)
P 3
I IdP sends client
SAML assertion
LDAP-based
identity store ﬁoﬁ
Client app PQQ ‘;
makes reguest
to IdP
S —— D). 478 .
] - i
! Client () = :
' r
! App i e L — | App uses credentials to
& —_— — /l access AWS resources

This scenario is similar to the previous one (using an organization's existing identity system). However,
because Clarisse's organization uses SAML 2.0, the SAML identity provider in her organization can do
much of the work associated with verifying a user's identity and generating information that can be passed
to service providers, using an open standard for security information. AWS supports SAML 2.0 for
establishing trust and for mapping assertions to IAM roles that determine a user's permissions.

For more information, see Creating Temporary Security Credentials for SAML Federation (p. 19).

Web-Based Single Sign-On (SSO)

Some users who are in an administrative group in your organization need to be able to go to the AWS
Management Console and administer Amazon EC2 instances. You don't want to create new IAM users
for each administrative user and make those users sign in again to the AWS Management Console.

Instead, you can create a SSO experience for your users. They can go to a portal in your organization,
where they're already signed in. From the portal they can choose an option to go to the AWS Management
Console. If they're authorized for AWS access, they're redirected to the AWS Management Console
without having to sign in again. Behind the scenes, authentication information about the users is exchanged
for temporary security credentials that are associated with an IAM role that determines what the users
are allowed to do in AWS.

You can configure SSO in these ways:

« If your organization has an identity system that integrates SAML 2.0 (Security Assertion Markup
Language 2.0), you can set things up in your organization and in IAM so that users can seamlessly be

APl Version 2011-06-15
9

AWS Security Token Service Using Temporary Security
Credentials
Delegating API Access

redirected to the AWS Management Console. For details, see Giving Console Access Using
SAML (p. 41).

« For other scenarios, you can write code that creates a URL that includes identity information and that
you can distribute to users and that gives them secure and direct access to the AWS Management
Console. For details, see Giving Console Access by Creating a URL (p. 46).

Delegating APl Access

With IAM roles, you can delegate API access to AWS services (including third-party services) so that
they can access your organization's AWS resources with temporary security credentials. Authorized 1AM
users or services can then use the temporary security credentials to access the resources that are defined
in the role.

For more information, see Delegating API Access by Using Roles in Using IAM.

Cross-Account API Access

Occasionally, your organization might have resources that users must access across multiple AWS
accounts. To allow this access, you can establish trust between accounts so that users from one account
can access resources in another account. Using 1AM roles, you define trusted entities and the actions
they are permitted to do.

For more information, see Enabling Cross-Account API Access in Using IAM.

APl Version 2011-06-15
10

http://docs.aws.amazon.com/IAM/latest/UserGuide//WorkingWithRoles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/cross-acct-access.html

AWS Security Token Service Using Temporary Security
Credentials

Creating Temporary Security
Credentials

Topics
¢ Creating Temporary Security Credentials for Mobile Apps Using Identity Providers (p. 12)
¢ Creating Temporary Security Credentials for SAML Federation (p. 19)
¢ Creating Temporary Security Credentials to Enable Access for Federated Users (p. 22)
¢ Creating Temporary Security Credentials for Delegating API Access (p. 26)
e Granting an IAM Group Permission to Create Temporary Security Credentials (p. 28)
¢ Creating Temporary Security Credentials to Enable Access for IAM Users (p. 29)

This topic describes how to use the AWS Security Token Service (AWS STS) API to create temporary
security credentials. For information about using one of the supported SDKs to create temporary security
credentials, see Ways to Get Temporary Security Credentials (p. 2).

The method you use to create the temporary security credentials depends on how you intend to use them:

¢ To get temporary security credentials after the user has authenticated using Login for Amazon, Facebook,
or Google, an application calls AssuneRol eW t hWebl dent i t y. The temporary security credentials
are associated with an 1AM role in which the trusted entity (the principal) is the identity provider (Amazon,
Facebook, or Google), and where a condition tests the application ID that the provider assigns when
the application is configured with that identity provider. Optionally, the application that calls
AssunmeRol eW t hWebl dent i t y can pass an IAM policy that further restricts what the application
using the temporary credentials is allowed to do in AWS.

« To get temporary security credentials in an organization that supports SAML 2.0 (Security Assertion
Markup Language). In this scenario, your organization acts as a SAML-enabled identity provider and
AWS acts as a service provider. An application in your organization calls the AssunmeRol eW t hSAML
API using a SAML assertion, which is exchanged for temporary security credentials. The permissions
granted for the temporary security credentials are defined in the 1AM role that is assumed.

« To get temporary security credentials for federated users who are authenticated using a custom proxy
application (for example, users can be authenticated against a corporate network identity system), the
proxy application calls Get Feder at i onToken. This call requires that the caller (the proxy application)
use the security credentials of an existing IAM user. The call to Get Feder at i onToken must include
a policy that limits what the temporary security credentials permit the app to do; the final permissions
are the intersection of the policy of the calling IAM user and the policy that's passed in the call.

APl Version 2011-06-15
11

AWS Security Token Service Using Temporary Security
Credentials
Credentials for Mobile Apps

¢ To get temporary security credentials for an IAM user in another AWS account, or for an AWS service
(like Amazon EC?2), the application or service calls AssuneRol e. The role that is assumed by this API
action must list the user or service as a principal. The assuming entity cannot be an AWS root account.

¢ To get temporary security credentials for their own use, IAM users call the Get Sessi onToken. Users
do not need explicit permission to use Get Sessi onToken; it is available to all IAM users.

¢ To get temporary security credentials to support single sign-on (SSO) that allow users from your
organization who are already signed into your network to access the AWS Management Console without
having to have an IAM user identity and without having to sign in again in AWS. For details, see Giving
Federated Users Direct Access to the AWS Management Console (p. 41).

For more general information about controlling user permissions, see Managing IAM Policies. The AWS
STS APl is described in detail in the AWS Security Token Service API Reference.

Important

Once you get temporary security credentials, you cannot revoke them. However, if you must
disable temporary security credentials before they expire, you can modify or disable the
permissions of the IAM user or role that the permissions are associated with. Changes to these
permissions are applicable as soon as they have been propagated to all AWS regions, even if
the temporary credentials have not expired. Because you cannot limit the permissions of a root
user, we strongly recommend that you do not use your root account credentials to create
temporary security credentials. (The AssunmeRol e action denies access to any request that is
made using root credentials.) For more information, see Disabling Permissions Granted Through
Temporary Security Credentials (p. 35).

Creating Temporary Security Credentials for
Mobile Apps Using Identity Providers

Imagine that you have a mobile app that needs access to AWS resources. (Or it might be a web app that
uses client script; the concepts presented here are the same.) The app might be a game that runs on a
phone and stores player and score information in an Amazon S3 bucket or an Amazon DynamoDB table.
Because the app needs to be able to distinguish individual users, users cannot be anonymous.

Most requests to AWS services must be signed, which requires an access key ID and secret access key.
However, for apps that are downloaded to a user's device or computer, we recommend that you do not
distribute long-term AWS security credentials such as those for an AWS account or for an IAM user.

Instead, you want to build the app such that it requests temporary security credentials using web identity
federation. This lets you create an app that authenticates users—that is, lets users sign in—using these
identity providers:

¢ Login with Amazon
¢ Facebook
e Google

Using any of these providers can simplify the development and management of your app. Instead of
providing custom sign-in logic and having to manage user login information (either in a custom system
or as |IAM users), your app can rely on well-known and secure sign-in protocols that many users already
have access to. Because you can trade a token from the identity provider for temporary security credentials,
you don't have to distribute any credentials with the app, and you don't need to manage the process of
rotating the credentials.

Topics
¢ Process for Using Web Identity Federation for Mobile Apps (p. 13)

APl Version 2011-06-15
12

http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
http://docs.aws.amazon.com/STS/latest/APIReference/
http://login.amazon.com/
https://www.facebook.com/about/login/
https://developers.google.com/+/

AWS Security Token Service Using Temporary Security
Credentials
Process for Using Web Identity Federation for Mobile
Apps

¢ Invoking the Identity Provider to Authenticate the User (p. 14)

¢ Creating a Role to Allow AWS Access for the Mobile App (p. 14)

¢ Getting Temporary Credentials (p. 16)

« ldentifying Providers, Apps, and Users with Web Identity Federation (p. 17)
« Additional Resources for Web Identity Federation (p. 18)

Process for Using Web Identity Federation for
Mobile Apps

To use one of the supported identity providers and use web identity federation to get temporary security
credentials, you follow the steps outlined here.

Note

To help understand how web identity federation works, you can use the Web Identity Federation
Playground. This interactive website lets you walk through the process of authenticating via
Login with Amazon, Facebook, or Google, getting temporary security credentials, and then using
those credentials to make a request to AWS.

1. Sign up as a developer with the identity provider. You also configure your app with the provider; when
you do, the provider gives you an ID that's unique to your app. (Different providers use different
terminology for this process. We're using the term configure for the process of identifying your app
with the provider.) Each provider gives you an app ID that's unique to that provider, so if you configure
the same app with multiple providers, your app will have multiple app IDs. You can configure multiple
apps with each provider.

The following external links provide information about using one of the identity providers:
¢ Login with Amazon Developer Center

« Reqgistration on the Facebook site.

¢ Using OAuth 2.0 to Access Google APIs on the Google site

2. In AWS, create one or more IAM roles. For each role, define who can assume the role (the trust policy
or trust relationship) and what permissions the app's users will have (the access policy).

Create one role for each identity provider for each app. For example, you might create a role that can
be assumed by an app where the user signed in using Login with Amazon, a second role for the same
app where the user has signed in using Facebook, and a third role for the app where users sign in
using Google. For the trust relationship, specify the identity provider (like Amazon.com) as the federated
principal (the trusted entity), and include a condition that matches the app's ID. Examples of the roles
for different providers are shown later in this topic.

3. In your application, authenticate your users using Login with Amazon, Facebook, or Google. To do
this, call the identity provider using an interface that they provide. For example, you might call an API
and pass the user's credentials and possibly other information that the provider requires. The exact
way in which you authenticate the user depends on the provider and on what platform your app is
running. Typically, if the user is not already signed in, the identity provider takes care of displaying a
sign-in page for that provider. After the identity provider authenticates the user, the provider returns a
token to your app.

4. Inyour app, make an unsigned call to the AssuneRol eW t hWebl dent i t y action to request temporary
security credentials. In the request, you pass the identity provider's token and specify the ARN for the
IAM role that you created for that identity provider. AWS verifies that the token is trusted and valid. If
so, AWS STS returns temporary security credentials to your app that have the permissions derived
from the role you named in the request. The response also includes metadata about the user from the
identity provider, such as the unique user ID that the identity provider assigned to the user.

5. Using the temporary security credentials you get in the AssuneRol eW t h\Webl dent i t y response,
your app makes signed requests to AWS APIs. The user ID information from the identity provider can

APl Version 2011-06-15
13

https://web-identity-federation-playground.s3.amazonaws.com/index.html
https://web-identity-federation-playground.s3.amazonaws.com/index.html
http://login.amazon.com/
https://developers.facebook.com/docs/plugins/registration/
https://developers.google.com/accounts/docs/OAuth2

AWS Security Token Service Using Temporary Security
Credentials
Invoking the Identity Provider to Authenticate the User

be used to distinguish users in the app—for example, you can put objects into Amazon S3 folders that
include the user ID as prefixes. This allows you to create access control policies that lock that folder
down so only the user with that ID can access it. For more information, see Identifying Providers, Apps,
and Users with Web Identity Federation (p. 17) later in this topic.

6. Your app caches the temporary security credentials so that you do not have to get new ones each
time the app needs to make a request to AWS. By default, the credentials are good for one hour. When
the credentials expire (or before then), you make another call to AssuneRol eW t hWebl dentity to
obtain a new set of temporary security credentials. Depending on the identity provider and how they
manage their tokens, you might have to refresh the provider's token before you make a new call to
AssunmeRol eW t hWebl dent i t y, since the provider's tokens also usually expire after a fixed time. (If
you're using the AWS SDK for iOS or the AWS SDK for Android, you can use the
AmazonSTSCredentialsProvider action, which manages the AWS STS credentials, including refreshing
them as required.)

Invoking the Identity Provider to Authenticate the
User

In your app, when a user signs in, you invoke the authentication process for the identity providers you
configured the app with. The specifics of how you do this vary both according to which identity provider
you're using (Login with Amazon, Facebook, or Google) and what platform your app is running on. For
example, an Android app can use a different way to authenticate than an iOS app or a JavaScript-based
web app.

In general, the authentication process returns a token to the app that represents the authenticated user.
You might also get back additional information about the user, depending on what the provider exposes
and what information the user is willing to share. You can use this information in your app.

Creating a Role to Allow AWS Access for the
Mobile App

In order to allow the mobile app to access resources, you must create one or more |IAM roles that the
app can assume. As with any role, a role for the mobile app contains two policies. One is the trust policy
that specifies who can assume the role (the trusted entity, or principal). The other policy (the access
policy) specifies the actual AWS actions and resources that the mobile app is allowed or denied access
to, and is similar to user or resource policies.

The trust policy must grant an Al | ow effect for the st s: AssuneRol eW t hWebl dent i t y action. In this
role, you use two values that let you make sure that the role can be assumed only by your application:

¢ Forthe Pri nci pal element, you use the string {" Feder at ed": provi der Ur | } . The following are
acceptable ways to specify the principal:

"Principal":{"Federated":"ww. amazon. coni'}
"Principal ":{"Federated":"graph. facebook. cont'}

"Principal":{"Federated":"accounts. googl e. cont'}

¢ Inthe Condi ti on element, you use a St ri ngEqual s condition to test that the app ID in the request
matches the app ID that you got when you configured the app with the identity provider. This ensures
the request is coming from your app. In the policy, you can test the app ID you have against the following
policy variables:

WWW. anmazon. com app_i d

APl Version 2011-06-15
14

http://mobile.awsblog.com/post/Tx26HMWE5RIMZYB/Using-the-AmazonCredentialsProvider-Protocol-in-the-AWS-SDK-for-iOS

AWS Security Token Service Using Temporary Security
Credentials
Creating a Role to Allow AWS Access for the Mobile App

gr aph. f acebook. com app_i d

account s. googl e. com aud

Notice that the values you use for the principal in the role are specific to an identity provider. A role can
specify only one principal. Therefore, if the mobile app allows users to sign in using more than one identity
provider, you must create a role for each of the identity providers.

Note
Because the policy for the trusted entity uses policy variables that represent the provider and
the app ID, you must set the Ver si on element to 2012- 10- 17.

You can use the IAM console to create a role for web identity federation. The console lets you choose
Roles for Web Identity Provider Access for the role type, and then walks you through the process of
configuring the principal and of creating a condition that tests for the app ID. For more information, see
Creating a Role in Using IAM.

The following example shows a trust policy for a role that the mobile app could assume if the user has
signed in using Login with Amazon. In the example, anznl. appl i cati on- oa2- 123456 is assumed to
be the app ID that Amazon assigned when you configured the app using Login with Amazon.

{
"Version":"2012-10-17",
"1d":"Rol eFor Logi nWt hAmazon",
"Statenent":[{
"Principal ":{"Federated":"ww. anazon. conl'},
"Effect":" Al ow',
"Action":"sts: AssuneRol eWt hWebl dentity",
"Condition": {
"StringEqual s":
{"www. amazon. com app_i d": "anenl. appl i cati on-oa2- 123456"}
}
}H
}

The following example shows a policy for a role that the mobile app could assume if the user has signed
in using Facebook. 111222333444555 is assumed to be the app ID assigned by Facebook.

{
"Version":"2012-10- 17",
"1d": " Rol eFor Facebook",
"Statenent": [{
"Principal ":{"Federated": "graph. facebook. com'},
"Effect":"A | ow',
"Action":"sts: AssunmeRol eWt hWebl dentity",
"Condition": {
"StringEqual s":
{"graph. f acebook. com app_i d":"111222333444555"}
}
}H
}

The following example shows a policy for a role that the mobile app could assume if the user has signed
in using Google. 111222333444555666777 is assumed to be the app ID assigned by Google.

APl Version 2011-06-15
15

http://docs.aws.amazon.com/IAM/latest/UserGuide/PolicyVariables.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/creating-role.html

AWS Security Token Service Using Temporary Security
Credentials
Getting Temporary Credentials

{
"Version":"2012-10-17",
"1d":"Rol eFor Googl e",
"Statenment":[{
"Principal":{"Federated":"accounts. google.coni'},
"Effect":"All ow',
"Action":"sts: AssuneRol eWt hWebl dentity",
"Condition": {
"StringEqual s":
{"accounts. googl e. com aud":"111222333444555666777"}
}
}H
}

Getting Temporary Credentials

To get temporary credentials that your app can use to make calls to AWS APIs, you call the
AssuneRol eW t hWebl dent i t y action of the AWS Security Token Service. This is an unsigned call,
meaning that the app does not have to have access to any AWS security credentials in order to make
the call. When you make this call, you pass the following information:

« The ARN of the role that the app should assume, as described in the preceding section. As noted, if
your app supports multiple ways for users to sign in, you will have defined multiple roles, one per identity
provider. The call to AssuneRol eW t hWebl dent i t y should include the ARN of the role that's specific
to the provider through which the user signed in.

« The token that the app got from the identity provider after the app authenticated the user.

¢ The duration, which specifies how long the temporary security credentials are good for. The maximum
(and the default) is 1 hour (3600 seconds). You need to pass this value only if you want the temporary
credentials to expire before 1 hour. The minimum duration for the credentials is 15 minutes (900
seconds).

« Arole session name, which is a string value that can be used to identify the session.

¢ Optionally, a policy (in JSON format). This policy is combined with the policy associated with the role.
This lets you further restrict the access permissions that will be associated with the temporary credentials,
beyond the restrictions already established by the role access policy. Note that this policy cannot be
used to elevate privileges beyond what the assumed role is allowed to access.

Note
Because a call to AssuneRol eW t hWebl dent i t y is not signed, you should only include this
optional policy if the request is not being transmitted through an untrusted intermediary.

When you call AssunmeRol eW t hWebl dent i t y, AWS verifies the authenticity of the token. For example,
depending on the provider, AWS might make a call to the provider and include the token that the app has
passed. Assuming that the identity provider validates the token, AWS returns the following information
to you:

* A set of temporary security credentials. These consist of an access key ID, a secret access key, and
a session token.

¢ The role ID and the ARN of the assumed role.
¢ A Subj ect FromAébl dent i t yToken value that contains the unique user ID.

When you have the temporary security credentials, you can use them to make AWS API calls. This is
the same process as making an AWS API call using long-term security credentials, except that you must
include the session token, which lets AWS verify that the temporary security credentials are valid.

APl Version 2011-06-15
16

AWS Security Token Service Using Temporary Security
Credentials

Identifying Providers, Apps, and Users with Web Identity
Federation

Your app should cache the credentials. As noted, by default the credentials expire after an hour. If you
are not using the AmazonSTSCredentialsProvider action in the AWS SDK, it's up to your app to call
AssuneRol eW t hWebl dent i t y again to get a new set of temporary security credentials before the
existing set expires.

Identifying Providers, Apps, and Users with Web
Identity Federation

When you create access policies in IAM, it's often useful to be able to specify permissions based on
configured apps and on the ID of users who have authenticated using an identity provider. For example,
your mobile app that's using web identity federation might keep information in Amazon S3 using a structure
like this:

myBucket / appl/ user 1
myBucket / appl/ user 2
myBucket / appl/ user 3

myBucket / app2/ user 1
myBucket / app2/ user 2
myBucket / app2/ user 3

You might also want to additionally distinguish these paths by provider. In that case, the structure might
look like the following (only two providers are listed to save space):

myBucket / Amazon/ appl/ user 1
myBucket / Amazon/ appl/ user 2
myBucket / Amazon/ appl/ user 3

myBucket / Amazon/ app2/ user 1
myBucket / Amazon/ app2/ user 2
myBucket / Amazon/ app2/ user 3

myBucket / Facebook/ appl/ user 1
myBucket / Facebook/ appl/ user 2
myBucket / Facebook/ appl/ user 3

myBucket / Facebook/ app2/ user 1
myBucket / Facebook/ app2/ user 2
myBucket / Facebook/ app2/ user 3

For these structures, appl and app?2 represent different apps, such as different games, and each of the
app's users has a distinct folder. The values for app1 and app2 might be friendly names that you assign
(for example, mynunber sgane) or they might be the app IDs that the providers assign when you configure
your app. If you decide to include provider names in the path, those can also be friendly names like
Amazon and Facebook.

You can typically create the folders for appl and app2 through the AWS Management Console, since
the application names are static values. That's true also if you include the provider name in the path,
since the provider name is also a static value. In contrast, the user-specific folders (user 1, user 2, user 3,
etc.) have to be created at run time from the app, using the user ID that's available in the

Subj ect Fr oMbl dent i t yToken value that is returned by the request to

AssunmeRol eW t hWebl dentity.

APl Version 2011-06-15
17

http://mobile.awsblog.com/post/Tx26HMWE5RIMZYB/Using-the-AmazonCredentialsProvider-Protocol-in-the-AWS-SDK-for-iOS

AWS Security Token Service Using Temporary Security
Credentials
Additional Resources for Web Identity Federation

To write policies that allow exclusive access to resources for individual users, you can match the complete
folder name, including the app name and provider name, if you're using that. You can then include the
following provider-specific keys that reference the user ID that is returned from the provider:

e WWw. amazon. com user _id
e graph. facebook.comid
e accounts. googl e. com sub

The following example shows an access policy that grants access to a bucket in Amazon S3 whose prefix
matches this:

myBucket / Amazon/ nynunber sgane/ user 1

The example assumes that the user has signed in using Login with Amazon, and that the user is using
the app to which you've given the friendly name nmynunber sgane. You would create similar policies for
users who have signed in using Facebook and Google; those policies would use a different provider name
as part of the path and would use different app IDs.

{
"Version":"2012-10-17",

"Statenment": [
"Effect":"All ow',
"Action":["s3:ListBucket"],
"Resource":["arn:aws: s3::: nyBucket"],
"Condi tion":
{"StringLi ke":
{"s3:prefix":["Amazon/ mynunber sganme/ ${ ww. amazon. com user _i d}/*"]}
}

b,
{
"Effect":"All ow',

"Action":["s3: GetOhj ect”, "s3:PutCbject”, "s3:DeleteCbject”],
"Resource": [
"arn: aws: s3::: myBucket/ amazon/ mynunber sgane/ ${ ww. amazon. com user _i d}"

"arn: aws: s3: :: nyBucket/ amazon/ mynunber sgane/ ${ ww. amazon. com user _i d}/*"

Additional Resources for Web Identity Federation

The following resources can help you learn more about web identity federation:

* The Web Identity Federation Playground is an interactive website that lets you walk through the process
of authenticating via Login with Amazon, Facebook, or Google, getting temporary security credentials,
and then using those credentials to make a request to AWS.

¢ The entry Web Identity Federation using the AWS SDK for .NET on the AWS .NET Development blog
walks through how to use web identity federation with Facebook and includes code snippets in C# that
show how to call AssuneRol eW t hWebl dent i t y and how to use the temporary security credentials
from that API call in order to access an Amazon S3 bucket.

APl Version 2011-06-15
18

https://web-identity-federation-playground.s3.amazonaws.com/index.html
http://blogs.aws.amazon.com/net/post/Tx2KW5KYMRE681I/Web-Identity-Federation-using-the-AWS-SDK-for-NET

AWS Security Token Service Using Temporary Security
Credentials
Credentials for SAML Federation

¢ The AWS SDK for iOS and the AWS SDK for Android contain sample apps. These apps include code
that shows how to invoke the identity providers, and then how to use the information from these providers
to get and use temporary security credentials.

* The article Web Identity Federation with Mobile Applications discusses web identity federation and
shows an example of how to use web identity federation to get access to content in Amazon S3.

Creating Temporary Security Credentials for
SAML Federation

AWS supports identity federation using the SAML 2.0 (Security Assertion Markup Language 2.0), an open
standard used by many identity providers. This feature enables federated single sign-on (SSO), which
lets users log into the AWS Management Console or make programmatic calls to AWS APIs. Using SAML
can simplify the process of configuring federation with AWS, because you can use identity provider
software instead of writing code.

AWS STS and IAM support these use cases:

¢ Web-based single sign-on (WebSSO) to the AWS Management Console from your organization. Users
can sign in to a portal in your organization, select an option to go to AWS, and be redirected to the
console without having to provide additional sign-in information. For more information, see Giving
Console Access Using SAML (p. 41).

¢ Federated access to allow a user or application in your organization to call AWS APIs using temporary
security credentials. In effect, you can use a SAML assertion (as part of the authentication response)
generated in your organization to get temporary security credentials. This scenario is similar to other
federation scenarios supported by AWS STS and IAM, like those described in Creating Temporary
Security Credentials to Enable Access for Federated Users (p. 22) and Creating Temporary Security
Credentials for Mobile Apps Using Identity Providers (p. 12). However, SAML-based identity providers
in your organization handle many of the details at run time for performing authentication and authorization
checking.

Topics
¢ Configuring SAML-Based Federation for APl Access (p. 19)
¢ Identifying Users for SAML-Based Federation (p. 21)

Configuring SAML-Based Federation for API
Access

Imagine that in your organization, you want to provide a way for users to copy data from their computers
to a backup folder. You build an application that users can run on their computers. On the back end, the
application reads and writes objects in an Amazon S3 bucket. Users don't have direct access to AWS.
Instead, the application gets the user's information from your organization's identity store (such as an
LDAP directory) and gets a SAML assertion that includes authentication and authorization information
about that user. The application can then use that assertion to make a call to the AWS STS

AssunmeRol eW t hSAML API to get temporary security credentials and use those credentials to access a
folder in the Amazon S3 bucket that's specific to the user.

The following diagram describes the flow.

APl Version 2011-06-15
19

http://aws.amazon.com/sdkforios/
http://aws.amazon.com/sdkforandroid/
http://aws.amazon.com/articles/4617974389850313

AWS Security Token Service Using Temporary Security
Credentials
Configuring SAML-Based Federation for APl Access

Your organization (ldentity Provider)

- 2

2
. ate% ue
X ntic
.'dF aV Portallldentity provider (IdP)
P 3
| IdP sends client
SAML assertion
LDAP-based
identity store ﬁeﬁ
Client app P'QQ ‘;t
makes reguest
to IdP
S —— D). 47S-- .
] - i
! Client () = :
' r
! App g] — | App uses credentials to
& ddl e— /l access AWS resources

Process for Using SAML-Based Federation

Inside your organization, you have an identity provider (IdP) that supports SAML 2.0, like Windows Active
Directory Federation Services, Shibboleth, etc.

1.

In your organization's IdP you register AWS as a service provider (SP) using the SAML metadata
document that from the following URL:

https://signin.aws. amazon. com stati c/sanl - met adat a. xm

. Using your organization's I1dP, you generate an XML metadata document that includes the issuer name,

a creation date, an expiration date, and keys that AWS can use to validate authentication responses
(assertions) from your organization.

. Inthe IAM console, you create a new SAML provider, which is an entity in IAM. As part of this process,

you upload the SAML metadata document that was produced by the I1dP in your organization.

. In 1AM, you create one or more IAM roles. In the role's trust policy, you set the SAML provider as a

principal, which establishes a trust relationship between your organization and AWS. The role's access
(permission) policy establishes what users from your organization will be allowed to do in AWS.

. In your organization's IdP, you create set assertions and map the IAM role to users or groups in your

organization who will be allowed to have the permissions specified in the role. Note that different users
and groups in your organization might map to different IAM roles. The exact steps for performing the

mapping depend on what IdP you're using. In the example of an S3 folder for users, it's possible that
all users will map to the same role that provides Amazon S3 permissions.

. In the application that you're creating, you call the AWS STS AssuneRol eW t hSAM. API, passing it

the ARN of the SAML provider in IAM, the ARN of the role to assume, and a SAML assertion about
the current user that you get from your IdP. AWS makes sure that the request to assume the role
comes from the IdP referenced in the SAML provider.

APl Version 2011-06-15
20

http://docs.aws.amazon.com/IAM/latest/UserGuide/idp-managing-identityproviders.html

AWS Security Token Service Using Temporary Security
Credentials
Identifying Users for SAML-Based Federation

7. Ifthe request is successful, the API returns a set of temporary security credentials, which your application
can use to make signed requests to AWS. Your application has information about the current user and
can access user-specific folders in Amazon S3.

Creating a Role to Allow AWS Access from Your Organization

The role or roles that you create in IAM define what federated users from your organization will be allowed
to do in AWS. When you create the trust policy for the role, you specify the SAML provider that you created
earlier as the principal. You can additionally scope the trust policy to allow only certain users to sign in,
based on SAML attributes. For example, you can specify that only users whose SAML affiliation is st af f
(as asserted by https://openidp.feide.no) will be allowed to sign in.

{
"Version": "2012-10-17",

"Statenent": [{
"Effect": "Allow',
"Principal": {"AWS": "arn:aws:sts::account-nunber-w thout-hyphens: san -
provi der/ Exanpl eOr gSSOPr ovi der "},
"Action": "sts:AssuneRol eWthSAM.",
"Condition": {
"StringEqual s": {

"SAM.: aud": "https://signin.aws.amazon. com sam ",
"SAM.:iss": "https://openidp.feide.no"

b,
"For Al | Val ues: StringLi ke": {"SAM.: eduPersonAffiliation": ["staff"]}

}

For the access (permissions) policy in the role, you specify permissions as you would for any role. For
example, if users from your organization will be allowed to administer Amazon EC2 instances, you explicitly
allow Amazon EC2 actions in the permissions policy, such as those in the Amazon EC2 Full Access
policy template.

Identifying Users for SAML-Based Federation

When you create access policies in IAM, it's often useful to be able to specify permissions based on the
identity of users who have authenticated using an identity provider. For example, for users who have
been federated using SAML, an application might want to keep information in Amazon S3 using a structure
like this:

nyBucket / appl/ user 1
nyBucket / appl/ user 2
nyBucket / appl/ user 3

You can create the bucket (myBucket) and folder (app1) through the Amazon S3 console or the CLI,
since those are static values. However, the user-specific folders (user 1, user 2, user 3, etc.) have to be
created at run time using code, since the value that identifies the user isn't known until then.

To write policies that restrict access so that users can access only their own folders, the information that
you use to identify users has to be available in conditions keys for policies. The following keys are available
for SAML-based federation for use in IAM policies. The values represented by these keys in turn represent
how to create unique user identifiers for resources like Amazon S3 folders.

APl Version 2011-06-15
21

AWS Security Token Service Using Temporary Security
Credentials
Credentials to Enable Access for Federated Users

e SAM.: nanequal i fi er.This key contains a hash value that represents the combination of the SAM_: doc
and SAM_: i ss values. Itis used as a namespace qualifier; the combination of SAML: nanequal i fi er
and SAM_: sub uniquely identifies a user. The following pseudocode shows how this value is calculated.
In this pseudocode, "+" indicates concatenation, SHAL represents a function that produces a message
digest using SHA-1, and Base64 represents a function that produces Base-64 encoded version of the
hash output.

Base64(SHA1(SAML: doc + SAML:i sS))

¢ SAM.: sub (string). This is the subject of the claim, which includes a value that uniquely identifies an
individual user within an organization (for example,
_cbb88bf 52c2510eabe00c1642d4643f 41430f e25e3).

* SAM.: sub_t ype (string). This key can be "persistent" or "transient". A value of "Persistent” indicates
that the value in SAM_: sub is the same for a user between sessions. If the value is "Transient", the
user has a different SAM_: sub_t ype value for each session.

The following example shows an access policy that uses the preceding keys to grant permissions to a
user-specific folder in Amazon S3. The policy assumes that the Amazon S3 objects are identified using
a prefix that includes both SAM.: namequal i fi er and SAM.: sub. Notice that the Condi t i on element
includes a test to be sure that SAM_: sub_t ype is setto "persistent”. If it is set to "Transient", the SAM_: sub
value for the user can be different for each session, and the combination of values should not be used
to identity user-specific folders.

"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action": [
"s3: Get vj ect ™,
"s3: Put Ooj ect ",
"s3: Del et eObj ect”
1,
"Resource": |
"arn: aws: s3: :: exanpl eor gBucket / backup/ ${ SAML: nanmequal i fi
er}/ ${ SAML.: sub}",
"arn: aws: s3: :: exanpl eor gBucket / backup/ ${ SAML: nanequal i fi
er}/ ${ SAM.: sub}/*"
1
"Condition": {
"StringEqual s": {
"SAM.: sub_t ype": "persistent”
}

}H

For more information about mapping assertions from the 1dP to policy keys, see Configure Assertions for
the SAML Authentication Response (p. 44).

Creating Temporary Security Credentials to
Enable Access for Federated Users

To grant temporary access to a non-AWS user whose identity you can authenticate (a federated user),
you can use the AWS STS AssuneRol e or Get Feder ati onToken API actions. If you use a SAML

APl Version 2011-06-15
22

AWS Security Token Service Using Temporary Security
Credentials
AssumeRole

identity provider (IdP) in your organization, you can use the AssuneRol eW t hSAM_ API action. These
actions are useful if you have users who already have identities in an identity store like Microsoft Active
Directory. (If you can authenticate the user using an identity provider like Login with Amazon, Facebook,
or Google, you can use the AssuneRol eW t h\Webl dent i t y action. For more information, see Creating
Temporary Security Credentials for Mobile Apps Using Identity Providers (p. 12).)7

You might use temporary security credentials to enable single sign-on (SSO) so that users can use the
AWS Management Console without having to sign in as IAM users. You might also use temporary security
credentials to create applications in your company that access AWS resources.

AssumeRole

When you create temporary security credentials for a federated user, you specify a role Amazon Resource
Name (ARN).You can optionally specify the duration and a scoped-down policy for the temporary security
credentials. The duration can be between 15 minutes to 1 hour. By default, the duration is 1 hour. The
AssuneRol e API action returns temporary security credentials consisting of the security token, access
key, secret key, and expiration.

Note
You must use IAM user credentials to call AssuneRol e.You can't use AWS account credentials
to call AssuneRol e; access is denied.

You use AssuneRol e if you want to manage permissions in AWS. To view a sample application that
uses AssuneRol e, go to AWS Management Console federation proxy sample use case in the AWS
Sample Code & Libraries.

The following example shows a sample request and response using AssuneRol e. In this example, the
request includes the name for the session named Bob. The Pol i cy parameter includes a JSON document
that specifies that the resulting credentials have permissions to access only Amazon S3.

Example Request

https://sts.amzonaws. com

?Ver si on=2011- 06- 15

&Act i on=AssuneRol e

&Rol eSessi onNanme=Bob

&Rol eArn=arn; aws: i am : 123456789012: r ol e/ deno

&Pol i cy=%B%22Ver si on%R22%8AY222012- 10- 179229%2C%R22St at e

ment ¥%2298AYBY BYR22Si d9R2%8AYR0%R22St nt 192292 CYR2Ef f ect 9R2Y8AYR0%R22Al
| oWR292CYR22Act | ONYR2YBAYR0%R22s3YBA* %2292 CY22Resour ce¥R2Y8A%R20%R2* 92 2% DY& DY D
&Dur at i onSeconds=3600

&Ext ernal | d=123ABC

&AUTHPARANS

Note

The policy value shown in the example above is the URL-encoded version of the following policy:
{"Version":"2012-10-17","Statenent":[{"Sid": "Stnt1","Effect":

"Allow', "Action": "s3:*" "Resource": "*"}]}

In addition to the temporary security credentials, the response includes the Amazon Resource Name
(ARN) for the federated user, and the expiration time of the credentials.

Example Response

<AssuneRol eResponse xm ns="https://sts.amazonaws. com doc/ 2011- 06-15/" >
<AssuneRol eResul t >

APl Version 2011-06-15
23

http://aws.amazon.com/code/4001165270590826

AWS Security Token Service Using Temporary Security
Credentials
GetFederationToken

<Credenti al s>
<Sessi onToken>
AQODYXdzEPT/ /11111111 WEXAMPLEt c764bNr COSAPBSM22WDCOKk4x4HI Z8] 4FZTwd QW
LW KWHCBUFgwAeM cRXnxf pSPf | eol YRqTf | f KD8YUuwt hAX7nSEl / gk PpKPi / ke Gd
Q nmGdeehM4l C1Nt BrUpp2wWUESphUZanpKs bur EDy OKPky QDYWT 7WZ0wg5VSXDvp75 YU
9HFvI Rd8Tx6q6f E8YQe HNVXAKi Y9gq6d+x00r KwT38xVqar 7ZD0u0i PPKUL64I | ZbgBAz
+scqKm znBFDr ypNC9Yj c¢8f POLN9FX9KSYVKTr 4r vx3i Sl | TJabl Qn 21 CCR/ oLxBA==
</ Sessi onToken>
<Secr et AccessKey>
wJal r XUt nFEM / K7VDENG bPxRf i CYzEXAMPLEKEY
</ Secr et AccessKey>
<Expi ration>2011- 07- 15T23: 28: 33. 359Z</ Expi rati on>
<AccessKeyl d>AKI Al OSFODNN7EXAMPLE</ AccessKeyl d>
</ Credenti al s>
<AssunedRol eUser >
<Arn>arn: aws: sts::123456789012: assuned- r ol e/ deno/ Bob</ Ar n>
<AssunedRol el d>AROL23EXAMPLE123: Bob</ AssunedRol el d>
</ AssunedRol eUser >
<PackedPol i cySi ze>6</ PackedPol i cySi ze>
</ AssuneRol eResul t >
<ResponseMet adat a>
<Request | d>c6104che- af 31- 11e0- 8154- cbc7ccf 896¢c7</ Request | d>
</ ResponseMet adat a>
</ AssuneRol eResponse>

Note

AssuneRol e stores the policy in a packed format. AssunmeRol e returns the size so you can
adjust the calling parameters. For more information about the size constraints on the policy, go
to AssumeRole in the AWS Security Token Service API Reference.

You can also grant permissions at the resource level. For example, if your AWS account number is
111122223333, and you have an Amazon S3 bucket that you want to allow Bob to access even though
his temporary security credentials don't include a policy for the bucket, you would need to ensure that
the bucket has a policy with an ARN that matches Bob's ARN:

arn: aws: sts::123456789012: assuned- r ol e/ deno/ Bob.

GetFederationToken

When you make a request to get temporary security credentials for a federated user, you make the request
using the credentials of a specific user identity (an IAM user) and request a maximum duration for the
temporary security credentials to remain valid. Credentials created by IAM users are valid for the specified
duration, between 15 minutes and 36 hours; credentials created using account credentials have a maximum
of one hour. The permissions available with the temporary security credentials are determined by an IAM
policy that you pass when you call Get Feder at i onToken.

The Get Feder at i onToken call returns temporary security credentials consisting of the security token,
access key, secret key, and expiration. You can use Get Feder at i onToken if you want to manage
permissions inside your organization (for example, using the proxy application to assign permissions).
To view a sample application that uses Get Feder at i onToken, go to Identity Federation Sample
Application for an Active Directory Use Case in the AWS Sample Code & Libraries.

The following example shows a sample request and response using Get Feder at i onToken. In this
example, the request includes the name for a federated user named Jean. The Pol i cy parameter includes
a JSON document that specifies that the resulting credentials have permissions to access only Amazon
S3. In addition to the temporary security credentials, the response includes the Amazon Resource Name
(ARN) for the federated user and the expiration time of the credentials.

APl Version 2011-06-15
24

http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
http://aws.amazon.com/code/1288653099190193
http://aws.amazon.com/code/1288653099190193

AWS Security Token Service Using Temporary Security
Credentials
GetFederationToken

Example Request

https://sts. amzonaws. com

?Ver si on=2011- 06- 15

&Act i on=Cet Feder ati onToken

&Nane=Jean

&Pol i cy=%B¥%22Ver si on%R22%38A¥222012- 10- 17922%2C%R22St at e

ment 92298AYSBY BYR22Si dY22YBAYR22St mt 1922%2 CYR2Ef f ect Y22YBAYR22Al | oweR2%92 CY¥22AC
ti on%R2YBAYR2s3YBA* Y2292 CU22Resour ce¥22%38A%R22* %R 2% D¥b DY D

&Dur at i onSeconds=3600

&AUTHPARANMS

Note
The policy value shown in the example above is the URL-encoded version of this policy:
{"Version":"2012-10-17","Statement":[{"Sid":"Stmt1","Effect":"Allow","Action":"s3:*","Resource":"*"}]}.

Example Response

<Cet Feder at i onTokenResponse xm ns="https://sts. amazonaws. conf doc/ 2011- 06- 15/ ">
<Cet Feder ati onTokenResul t >
<Credenti al s>
<Sessi onToken>
AQODYXdzEPT/ /11111111 WEXAMPLEt c764bNr COSAPBSM22WDCKk 4x4HI Z8] 4FZTwd QW
LW\ KWHGBUFqwAeM cRXmxf pSPf | eol YRTf | f KD8YUuwt hAx 7nSE! / gk PpKPi / kMt Gd
Q nzdeehM4l CINt Bnpp2WUE8phUZanpKsbur EDy OKPky QDYWT 7WZ0wg5VSXDvp75YU
9HFvI RA8Tx6q6f EBYQr HNVXAKi YOg6d+x00r KWwT38xVqgr 7ZD0uli PPkUL64I | ZbgBAz
+scqKm znBFDr ypNC9Yj c8f POLN9FX9KSYVKTr 4r vx3i Sl | TJabl Qp 21 CCEXAMPLE==
</ Sessi onToken>
<Secr et AccessKey>
wJal r XUt nFEM / K7MDENG bPxRf i CYzEXAMPLEKEY
</ Secr et AccessKey>
<Expiration>2011-07- 15T23: 28: 33. 359Z</ Expi rati on>
<AccessKeyl d>AKI Al OSFODNN7EXAMPLE; </ AccessKeyl d>
</ Credenti al s>
<Feder at edUser >
<Arn>arn: aws: sts::123456789012: f eder at ed- user/ Jean</ Ar n>
<Feder at edUser | d>123456789012: Jean</ Feder at edUser | d>
</ Feder at edUser >
<PackedPol i cySi ze>6</ PackedPol i cySi ze>
</ Get Feder ati onTokenResul t >
<ResponseMet adat a>
<Request | d>c6104cbe- af 31- 11e0- 8154- chc7ccf 896¢c7</ Request | d>
</ ResponseMet adat a>
</ Get Feder ati onTokenResponse>

Note

Get Feder at i onToken stores the policy in a packed format. The action returns the size so you
can adjust the calling parameters. For more information about size constraints on the policy, go
to GetFederationToken in the AWS Security Token Service API Reference.

If you prefer to grant permissions at the resource level (for example, you attach a policy to an Amazon
S3 bucket), you can omit the Pol i cy parameter. However, if you do not include a policy for the federated
user, the temporary security credentials will not grant any permissions. In this case, you must use resource
policies to grant the federated user access to your AWS resources.

For example, if your AWS account number is 111122223333, and you have an Amazon S3 bucket that
you want to allow Susan to access even though her temporary security credentials don't include a policy

APl Version 2011-06-15
25

http://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html

AWS Security Token Service Using Temporary Security
Credentials
Related Topics

for the bucket, you would need to ensure that the bucket has a policy with an ARN that matches Susan's
ARN, such asarn: aws: sts::111122223333: f eder at ed- user/ Susan.

Related Topics

¢ Making Query Requests

¢ Controlling Permissions for Temporary Security Credentials (p. 32)

¢ Disabling Permissions Granted Through Temporary Security Credentials (p. 35)
¢ Overview of Policies

Creating Temporary Security Credentials for
Delegating APl Access

You can delegate access to your AWS resources by using 1AM roles. IAM roles allow you to establish
trusted relationships with other AWS accounts (trusted entities). After a relationship has been established,
an IAM user or an application from the trusted entity can use the AWS Security Token Service (AWS
STS) AssuneRol e action to obtain temporary security credentials that can be used to access AWS
resources in your account.

The temporary security credentials contain an access key ID, a secret access key, and a security token.
With the temporary security credentials, callers are granted the permissions that are defined in the role.
However, callers can scope down the permissions derived from the assumed role by passing a policy in
the AssuneRol e call. (The passed policy can never escalate privileges beyond the permissions that are
defined in the role.) This optional policy is useful if multiple callers might call the same role, but each
caller requires different permissions. For example, different callers might require permissions to different
Amazon S3 buckets, but creating a role for each bucket might be tedious. Instead, you can create one
role that includes permissions for multiple buckets. The caller can then pass a policy that denies access
to the buckets that a specific user doesn't need access to.

You can specify the duration of the temporary security credentials to be from 15 minutes to one hour. By
default, the credentials are valid for one hour.

Requirements for assuming a role
To assume a role, the caller must meet the following requirements:

¢ The caller must have permission to call AssuneRol e for the specific role.
¢ The role defines the caller's AWS account ID as a trusted entity.
¢ The caller must use IAM user credentials to assume a role.

« If the role has an external ID defined, the caller must pass that external ID when calling AssuneRol e.
For more information, see About the External ID (p. 26).

About the External ID

An external ID is an optional piece of information that you can test in an 1AM role policy to provide additional
control over who can assume the role. When a role policy includes an external ID, anyone who wants to
assume the role must not only be specified as a principal in the role, but must also include the external
ID.

The external ID is particularly useful when you delegate access to your AWS account to a third party—for
example, when a company has multiple customers and manages AWS resources on behalf of those
customers. Using the external ID as part of a request to assume a customer's role helps ensure that the

APl Version 2011-06-15
26

http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_UsingQueryAPI.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/PoliciesOverview.html
http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Security Token Service Using Temporary Security
Credentials
About the External ID

requester accesses the correct AWS account. (This association helps prevent a form of privilege escalation
known as the "Confused Deputy" problem.)

A typical use is when a third-party company performs AWS tasks for customers, which works like this:

¢ An AWS customer, Bob, has an AWS account. Bob hires Example Corp, a third-party company, to
administer his AWS resources. Example Corp also has an AWS account, and Example Corp manages
AWS resources for other customers who have their own AWS accounts.

¢ Example Corp creates a unique identifier for Bob. Example Corp gives Bob his unique identifier and
Example Corp's AWS account number. Bob needs this information to create an IAM role (next step).

¢ Bob signs into AWS and creates an IAM role that will give Example Corp access to his resources. Like
any IAM role, the role has two policies, a permissions policy and a trust policy. The permissions policy
for the role specifies what the role allows someone to do. For example, Bob might specify that the role
allows someone to manage only his Amazon EC2 and Amazon RDS resources, but not his IAM users
or groups.

The role's trust policy specifies who can assume the role. In this scenario, the policy specifies the AWS
account number of Example Corp as the principal (that is, as the entity that's allowed to assume the
role). In addition, the trust policy includes a Condition element that tests the unique ID that Example
Corp assigned to Bob when he hired the company. The trust policy might look like this:

{
"Version": "2012-10-17",

"Statement": [

{
"sidv:o"t,
"Effect": "All ow'
"Principal": {
"AWS": "arn:aws:iam : Exanpl e- Cor p- account - nunber:root"
8

"Action": "sts:AssuneRol e",
"Condition": {
"StringEqual s": {
"sts:Externalld": "IDissued-to-Bob-by-Exanpl e- Cor p"
}
}

fam—

« Bob takes note of the ARN of the role and sends it to Example Corp. The role ARN might look like this:

arn: aws: i am : Bob- account - nunber : r ol e/ Rol eFor Exanpl eCor p

* When Example Corp needs to administer Bob's AWS resources, someone from the company calls the
AWS STS AssumeRole API. The call includes the ARN of the role to assume and the Ext er nal | D
parameter.

The request is authorized only if the role ARN and the external ID are correct, and if the request comes
from someone using Example Corp's AWS account. If the request succeeds, it returns temporary
security credentials that Example Corp can use to access the AWS resources that Bob's role allows.

APl Version 2011-06-15
27

http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#Condition
http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Security Token Service Using Temporary Security
Credentials
Related Topics

Related Topics

The following information can show you what permissions are required to work with roles, how you can
set role permissions, how to define trusted entities, and how to assume a role:

¢ Granting Applications that Run on an Amazon EC2 Access to AWS Resources. This information provides
an overview of how applications that run on an instance can use role credentials to access AWS
resources, a method that doesn't require anyone to share credentials on Amazon EC2 instances.

¢ Enabling Cross-Account Access. This information shows how IAM users can access AWS resources
in another AWS account by using roles.

Granting an IAM Group Permission to Create
Temporary Security Credentials

By default, IAM users do not have permission to create temporary security credentials for federated users
and roles. However, IAM users can call Get Sessi onToken by default. To grant an IAM group permission
to create temporary security credentials for federated users or roles, you should attach a policy to the
IAM group that the IAM users belong to that grants one or both of the following privileges:

* For federated users, access to AWS STS Get Feder at i onToken.
¢ For IAM roles, access to AWS STS AssuneRol e.

Example A policy that grants permission to create temporary security credentials for a
federated user

The following example shows a policy that grants permission to access Get Feder ati onToken.

{
"Version": "2012-10-17",

"Statenent": [{
"Effect": "Allow',

"Action": "sts: GetFederationToken",
"Resource":"*"
}
}
Important

When you give an IAM user permission to create temporary security credentials for federated
users, you should be aware that this enables the IAM user to delegate his or her own permissions.
For more information about delegating permissions across IAM users and AWS accounts, see
Enabling Cross-Account Access. For more information about controlling permissions in temporary
security credentials, see Controlling Permissions for Temporary Security Credentials (p. 32).

Example Example of granting a user limited permission to create temporary security
credentials for federated users

When you let an IAM user call Get Feder at i onToken to create temporary security credentials for
federated users, it is a best practice to restrict as much as practical the permissions that the IAM user is
allowed to delegate. For example, the following policy shows how to let an IAM user create temporary
security credentials only for federated users whose names start with Manager.

APl Version 2011-06-15
28

http://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/cross-acct-access.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/Delegation.html

AWS Security Token Service Using Temporary Security
Credentials
Related Topics

{
"Version": "2012-10-17",

"Statenent": [{
"Effect": "Alow',

"Action": "sts: GetFederationToken",

"Resource":["arn: aws: sts::123456789012: f eder at ed- user/ Manager *"]
}

}

Example Example of a policy granting permission to assume a role

The following example shows a policy that grants permission to call AssuneRol e for the Updat eApp
role in AWS account 123123123123.

{
"Version": "2012-10-17",

"Statenent": [

"Effect": "All ow',
"Action": "sts:AssuneRol e",
"Resource": "arn:aws:iam:123123123123:r ol e/ Updat eAPP"

fa—

Related Topics

¢ Managing IAM Policies
¢ |dentifiers for IAM Entities
* Roles

Creating Temporary Security Credentials to
Enable Access for IAM Users

IAM users can use the AWS Security Token Service Get Sessi onToken API action to create temporary
security credentials for themselves. This enables access for IAM users or AWS accounts whose
permissions are already defined. Because the credentials are temporary, they provide enhanced security
when you have an IAM user who will be accessing your resources through a less secure environment,
such as a mobile device or web browser.

By default, temporary security credentials for an IAM user are valid for a maximum of 12 hours, but you
can request a duration as short as 15 minutes, or as long as 36 hours. For security reasons, a token for
an AWS account's root identity is restricted to a duration of one hour.

Get Sessi onToken returns temporary security credentials consisting of a security token, an access key
ID, and a secret access key. The following example shows a sample request and response using
Get Sessi onToken. The response also includes the expiration time of the temporary security credentials.

APl Version 2011-06-15
29

http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/index.html?Using_Identifiers.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html

AWS Security Token Service Using Temporary Security
Credentials
Credentials for IAM Users with MFA

Example Request

https://sts. amzonaws. com
?Ver si on=2011- 06- 15

&Act i on=Cet Sessi onToken
&Dur at i onSeconds=3600
S&AUTHPARANS

Example Response

<Cet Sessi onTokenResponse xm ns="https://sts.anazonaws. coni doc/ 2011-06- 15/">
<Get Sessi onTokenResul t >
<Credenti al s>
<Sessi onToken>
AQOEXAMPLEHAa0AHOgNCAPY Jxz4Bl CFFXWNELOPTgk5Tt hT+FvwgnKwRc Ol f r Rh3c/ L
To6UDdy JWOOVEVPVLXCr r r Ut dnni CEXAMPLE/ | vU1dYUg2RVAJBanLi Ho4l gRmpRV3z
rkuWOgQs8l ZZal v2BXI a2R40 gkBNObkUDNCIi Beb/ AXI zBBko7b15f j r Bs2+cTQt p
Z3CYWFXGBC5zgx37wnOE49nRI / +O kI KGO7f AE
</ Sessi onToken>
<Secr et AccessKey>
wJal r XUt nFEM / K7 MDENG bPxRf i CYz EXAMPLEKEY
</ Secr et AccessKey>
<Expiration>2011-07-11T19: 55: 29. 611Z</ Expi rati on>
<AccessKeyl d>AKI Al OSFODNN7EXAMPLE</ AccessKeyl d>
</ Credenti al s>
</ Get Sessi onTokenResul t >
<ResponseMet adat a>
<Request | d>58c5dbae- abef - 11e0- 8cf e- 09039844ac7d</ Request | d>
</ ResponseMet adat a>
</ Get Sessi onTokenResponse>

Temporary Security Credentials for IAM Users with
Multi-Factor Authentication (MFA)

Optionally, the Get Sessi onToken request can include Ser i al Nunber and TokenCode values for AWS
multi-factor authentication (MFA) verification. If the provided values are valid, AWS STS provides temporary
security credentials that include the state of MFA authentication so that the temporary security credentials
can be used to access the MFA-protected API actions or AWS websites for as long as the MFA
authentication is valid.

The following example shows a Get Sessi onToken request that includes an MFA verification code and
device serial number.

https://sts. amzonaws. com

?Ver si on=2011- 06- 15

&Act i on=Cet Sessi onToken

&Dur at i onSeconds=7200

&Seri al Nunber =Your MFADevi ceSeri al Nunber
&TokenCode=123456

&AUTHPARANS

APl Version 2011-06-15
30

AWS Security Token Service Using Temporary Security
Credentials
Related Topics

Related Topics

* GetSessionToken in the AWS Security Token Service API Reference
¢ Using Multi-Factor Authentication (MFA) Devices with AWS in Using IAM
e Making Query Requests in Using IAM

APl Version 2011-06-15
31

http://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_ManagingMFA.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_UsingQueryAPI.html

AWS Security Token Service Using Temporary Security
Credentials
Permissions for Federated Users

Controlling Permissions for
Temporary Security Credentials

Topics
¢ Permissions in Temporary Security Credentials for Federated Users (p. 32)
¢ Permissions in Temporary Security Credentials for IAM Users (p. 35)
¢ Disabling Permissions Granted Through Temporary Security Credentials (p. 35)
« Related Topics (p. 36)

AWS determines what permissions to associate with temporary security credentials at the time that the
credentials are created. For example, the permissions for the temporary security credentials are bound
to either the role that was assumed (AssuneRol e, AssuneRol eW t hWebl denti ty, or

AssunmeRol eW t hSAM.) or to the IAM user that made the request (Get Feder at i onToken or

Get Sessi onToken). The temporary security credentials are not bound to a set of static permissions
when the credentials are created. Instead, the effective permissions are evaluated when a request is
made that uses the credentials, based on the current permissions of the associated IAM user or role that
the temporary security credentials are bound to.

After temporary security credentials have been issued, they are valid through the expiration period and
cannot be revoked. However, because the permissions for the temporary credentials are checked for
each request, you can change the effective permissions for the temporary security credentials by editing
(or deleting) the policy or policies that describe the permissions for the role or user. In effect, you can
change the access rights for those credentials even after the credentials have been issued.

This section describes what you need to know about granting permissions in temporary security credentials,
and how to update or disable permissions after temporary security credentials have been issued.

Permissions in Temporary Security Credentials
for Federated Users

Calls to the AssuneRol e action are made using the long-term security credentials of an IAM user. The
call must specify the ARN of the role to assume. The IAM user whose credentials are used to make the
call must as a minimum have st s: AssuneRol e permissions, and must be listed as the principal in the
role that is being assumed. By default, the role being assumed determines the permissions that are

APl Version 2011-06-15
32

AWS Security Token Service Using Temporary Security
Credentials
Example of Permissions for a Federated User

granted to the temporary security credentials. The permissions of the IAM user that's used to make the
AssuneRol e API have no effect on the permissions granted to the temporary security credentials that

are returned by the API. Optionally, the call can include a policy that further restricts the permissions of
the temporary security credentials. The resulting credentials are based on the combination of the role's
permissions and the passed permissions. (This means that the passed permissions can never escalate
the permissions defined in the role.)

For web identity federation (p. 12), calls to AssuneRol eW t hWebl dent i t y are made without any AWS
credentials. As with AssuneRol e, a parameter for the API call is the ARN of a role to assume. The role
that is being assumed must list the web identity provider as a principal (for example,

"Principal": {"Federated":"ww. amazon. coni }). By default, as with AssuneRol e, the permissions
granted to the resulting temporary security credentials are determined by the role that is assumed. In
addition, the call can include a policy that combines with the role's policy to determine the permissions
granted to the temporary security credentials.

Similarly, for SAML-based federation (p. 19), calls to AssumeRol eW t hSAM. are made without any AWS
credentials. The call includes a SAML assertion, the ARN of an SAML provider in IAM, and the ARN of
the role to be assumed. (The trust policy of the role includes the SAML provider as the principal.) The
permissions associated with the temporary security credentials are determined by the role that is assumed.
The call can include a policy that combines with the role's access policy to further reduce the permissions
associated with the credentials.

Calls to the Get Feder at i onToken API action are made using the credentials of an IAM user. In addition,
you pass a policy as a parameter to Get Feder at i onToken. The permissions granted to the resulting
temporary security credentials (that is, the permissions for the federated user) are the intersection of the
permissions of the IAM user making the request with the permissions that are passed in the call.

Note

Passing a policy to the Get Feder at i onToken action is optional. However, if you do not pass
a policy, the resulting temporary security credentials that are returned have no effective
permissions and requests made using those credentials are always denied. A typical approach
for Get Feder at i onToken is to create a policy for the calling IAM user that allows all actions
on all resources that might possibly be invoked via the proxy application. Then when you call
Get Feder at i onToken to get temporary security credentials for a specific federated user, you
pass an individualized policy that reduces the permissions to an appropriate level for that user.

In all cases, if the resource being accessed also has a policy attached to it (for example, an Amazon S3
bucket), that policy is evaluated along with the policies that are part of the call.

For more information about how permissions are evaluated, see Evaluation Logic in Using IAM.

Example of Permissions for a Federated User
(GetFederationToken)

This section shows an example of how to use policies with the Get Feder at i onToken API to control
how temporary security credentials are created and how permissions are delegated. Suppose you want
to grant read-only permissions to federated users so that they can access your Amazon S3 buckets. You
have a proxy application that can issue temporary credentials, as described in Creating a Mobile App
with Custom Authentication (p.5).You create an IAM user named | ssuer and set the IAM user's
permissions using the following policy. The policy allows | ssuer to call Get Feder ati onToken, and it
allows the user to get an item from nybucket in Amazon S3 as long as the item's name begins with

f eder at ed- user/ .

{
"Version": "2012-10-17",

"Statenent": [

APl Version 2011-06-15
33

http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_EvaluationLogic.html

AWS Security Token Service Using Temporary Security
Credentials
Example of Permissions for a Federated User

{
"Effect": "Allow',
"Action": ["sts: GetFederationToken"],
"Resource": "*"
3
{
"Effect": "Allow',
"Action": ["s3:CGetnject"],
"Resource": "arn:aws:s3:::mybucket/federated-user/*"
}

To actually delegate permissions to a federated user, a call is made to Get Feder at i onToken using the
credentials of the user | ssuer . The call includes a name that you assign to the federated user, the
duration the token is valid, and a policy granting access to Amazon S3. Temporary security credentials
that are returned by the call enable a federated user to read from the Amazon S3 bucket for as long as
the temporary security credentials are valid.

Now suppose that you want to restrict the permissions for the federated user to a folder in the Amazon

S3 bucket that matches the user's name. (For example, a federated user named Jill is able to read her

own files but not the files of any other federated user.) When you call Get Feder at i onToken using the
credentials of IAM user | ssuer, you can pass a policy like the following example.

{
"Version": "2012-10-17",
"Statenent": [{
"Effect": "Allow',
"Action": "s3:GetOhject"”,
"Resource": "arn:aws:s3:::mybucket/federated-user/Jill/*"
}H
}

This policy scopes down the permissions originally granted to user | ssuer so that the federated user
Jill has a subset of the issuer's permissions.

If conditions exist in either policy, the conditions must be satisfied by the request for authorization. For
example, if | ssuer can make Amazon S3 requests only subject to an aws: Sour cel p condition, that
condition also applies to calls made with temporary security credentials issued by | ssuer .

AWS checks permissions each time a request is made. Imagine that you call Get Feder at i onToken
using the credentials of user | ssuer to get temporary security credentials for federated user Jill, and
that you pass the following policy in the call:

{
"Version": "2012-10-17",
"Statenent": [{
"Effect": "Allow',
"Action": "*",
"Resource": "*"
}H
}

The call to Get Feder at i onToken that includes this policy will succeed, even though these permissions
allow more access than the policy that's attached to user | ssuer . However, when federated user Jill
makes tries to delete an Amazon S3 bucket, the request fails. Although the policy that was passed

APl Version 2011-06-15
34

AWS Security Token Service Using Temporary Security
Credentials
Permissions for IAM Users

Get Feder at i onToken would allow this action, the policy attached to user | ssuer does not, and Jill's
effective permissions are the most restrictive set based on the intersection of the permissions for | ssuer
and the permissions passed in the call.

Permissions in Temporary Security Credentials
for IAM Users

When the AWS Security Token Service (STS) Get Sessi onToken APl action is called to create temporary
security credentials, the credentials returned in the response match those of the IAM user entity that
made the call. The user can access only the AWS resources that are granted in the policy or policies that
apply to that user.

For more information about IAM user permissions and policies, see Overview of Permissions.

Disabling Permissions Granted Through
Temporary Security Credentials

Temporary security credentials are valid until they expire, and they cannot be revoked. However, because
policies are evaluated each time an AWS request is made using the temporary security credentials, you
can modify access rights for temporary credentials after the credentials have been issued.

For IAM roles (AssumeRole and AssumeRoleWithWebldentity)

* Delete the IAM role that has been assumed, or modify the role's permissions. For more information,
see Modifying a Role and Deleting Roles or Instance Profiles in the Using IAM guide.

For IAM users and federated users (GetSessionToken and GetFederationToken)

» Create aresource policy that denies access to the user who created the temporary security credentials.

¢ Create an IAM user policy for the user who created the temporary security credentials that explicitly
denies access to a specific resource by a federated user.

The methods for disabling IAM and federated users using Get Sessi onToken and Get Feder ati onToken
are described in the following sections.

Note
When you update existing policy permissions, or when you apply a new policy to a user or a
resource, it may take a few minutes for policy updates to take effect.

For more information about how IAM evaluates permissions in the context of temporary security credentials,
see Controlling Permissions for Temporary Security Credentials (p. 32). For general information about
how IAM evaluates permissions, see Overview of Permissions in Using IAM.

Denying Access to the User Who Created the
Temporary Security Credentials

To deny access to a user who has temporary security credentials that have not already expired, you can
deny access to the IAM user whose credentials were used to generate the temporary credentials. In the
case of federated users, denying access to the user who created the temporary credentials is effective

APl Version 2011-06-15
35

http://docs.aws.amazon.com/IAM/latest/UserGuide/PermissionsOverview.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/modifying-role.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/deleting-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/PermissionsOverview.html

AWS Security Token Service Using Temporary Security
Credentials
Denying Access to a Specific Resource

because the permissions granted to the federated user cannot exceed the permissions of the IAM user
who created the temporary credentials. In the case of IAM users, the holder of the temporary credentials
and the creator are the same identity.

In the following policy example, if the AWS account owner applied this resource policy to his Amazon
Simple Queue Service (Amazon SQS) queue, the IAM user named John could not send messages from
the queue, and neither could any federated users who have temporary security credentials created by
John.

"Version": "2012-10-17",
"Id": "Queuel_Policy_UU D',
"Statenent": [{
"Principal": "arn:aws:iam:111122223333: user/John"
"Effect": "Deny",
"Action": "sqgs: SendMessage",
"Resource": "arn:aws:sQs:us-east-1:111122223333: nyqueue"

}H

Important

An important reason never to use your root credentials to create temporary security credentials
is the ability to deny access to the user who created those credentials. By using the credentials
of an IAM user (and not your root account credentials) to request temporary security credentials,
you can modify permissions for the issuing user without affecting your root account. For
information about modifying user permissions, see Managing IAM Policies in Using I1AM.

Denying Access to a Specific Resource for a
Federated User

If you have issued temporary security credentials to a federated user but you want to revoke that user's
temporary credentials before they expire (and no one else's), you can create a policy like the one in the
following example. The policy includes an explicit Deny effect, which takes precedence over an Al | ow
effect for the same actions and resources.

To put this policy into effect, you can attach it to the IAM user whose credentials were used to create the
temporary security credentials. For this policy, it doesn't matter that IAM doesn't know who federated user
Ji | | is. The policy works because it denies the permission of the IAM user who created the temporary
security credentials to delegate access to the Amazon S3 Get Qbj ect action for Jill.

{
"Version": "2012-10-17",

"Statenment": [{
"Effect": "Deny",
"Action": "s3:Getbject”,
"Resource": "arn:aws:s3:::mybucket/federated-user/Jill/*"
}H
}

Related Topics

» Creating a Role to Allow AWS Access for the Mobile App (p. 14). This section discusses how to configure
IAM roles when you use web identity federation and the AssuneRol eW t hWebl dent ity APL.

APl Version 2011-06-15
36

http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html

AWS Security Token Service Using Temporary Security
Credentials
Related Topics

» Overview of Policies in Using IAM .

APl Version 2011-06-15
37

http://docs.aws.amazon.com/IAM/latest/UserGuide/PoliciesOverview.html

AWS Security Token Service Using Temporary Security
Credentials
Using Temporary Security Credentials with the AWS
SDKs

Using Temporary Security
Credentials

This document provides an overview of how you use temporary security credentials that you get from
AWS STS.

You can use temporary security credentials to make programmatic requests for AWS resources using
the AWS SDKs or using API calls, the same way that you can use long-term security credentials such
as IAM user credentials. However, there are a few differences:

« When you make a call using temporary security credentials, you must include a session token that is
returned along with those temporary credentials. This is used by AWS to validate the temporary security
credentials.

¢ The temporary credentials expire after a specified interval. After the credentials expire, any calls that
you make using those credentials will fail, so you must get a new set of credentials.

Using Temporary Security Credentials with the
AWS SDKs

The following example shows pseudocode for how to use temporary security credentials if you're using
an AWS SDK:

assunmeRol eResult = AssuneRol e(rol e-arn);
tenpCredentials = new Sessi onAWSCr edent i al s(
assunmeRol eResul t . AccessKeyl d,
assumeRol eResul t . Secr et AccessKey,
assunmeRol eResul t . Sessi onToken) ;
s3Request = Creat eAnazonS3d ient (tenpCredenti al s);

For details about how to call AssuneRol e, Get Feder at i onToken, and other APIs and about how to
get the temporary security credentials and session token from the result, see the documentation for the
SDK that you're working with. You can find the documentation for all the AWS SDKs on the main AWS
documentation page.

APl Version 2011-06-15
38

http://aws.amazon.com/tools/
http://aws.amazon.com/documentation
http://aws.amazon.com/documentation

AWS Security Token Service Using Temporary Security
Credentials
Using Temporary Security Credentials with APIs

You can make sure that you get a new set of credentials before the old ones expire. In some SDKs, you
can use a provider that manages the process of refreshing credentials for you; check the documentation
for the SDK you're using.

Using Temporary Security Credentials with APIs

If you're making direct API requests to AWS, you use the temporary access key ID and secret access
key as you would use long-term credentials. For most services, you do the following:

¢ Use the temporary access key ID in place of the long-term access key ID that you would normally use
for an AWS call (for example, as the AWBAccessKeyl d parameter value in a call).

¢ Sign the request using the secret access key that is provided as part of the temporary security
credentials.

¢ Include the IAM session token that is part of the temporary security credentials. You include the session
token as an authorization header to the request—for example, as the X- Anz- Securi t y- Token header.
(The session token is not part of the information that's used to create the signature.)

The following example uses temporary security credentials to authenticate a Li st User s request to IAM.
The request uses Signature Version 4 and includes authorization information in the headers.

Sample for services that use Signature Version 4 and add authorization information in the
header

POST http://iam amazonaws.com HTTP/ 1.1

Aut hori zati on: AWS4- HVAC- SHA256 Credenti al =Access Key | D provi ded by AWS Security
Token Service/ 20110909/ us- east - 1/i aml aws4_r equest, Si gnedHeaders=host, Signa

t ure=si gnat ur e- cal cul at ed- usi ng-t he-t enpor ary-access- key

host: iam amazonaws. com

Cont ent -type: application/x-ww+formurl encoded; charset=utf-8

X- Anez- Dat e: 20110909T233600Z

X- Anez- Security-Token: session-token

Acti on=Li st User s&Ver si on=2010- 05- 08

The following example shows an Amazon SimpleDB request that uses Signature Version 2 and includes
authorization information in the query string.

Sample for services that use Signature Version 2 and add authorization information in the
query string

https://sdb. amazonaws. com

?Action=Cet Attributes

&AWBAccessKeyl d=access- key-from AWs Security Token Service
&Domai nNane=MyDonai n

&l t emName=Myl t em

&Si gnat ur eVer si on=2

&Si gnat ur eMet hod=Hmac SHA256

&Ti mest anp=2010- 01- 25T15%8A03%BA07- 07¥BA00

&Ver si on=2009- 04- 15

&Si gnat ur e=si gnat ur e- cal cul at ed- usi ng-t he-t enpor ary-access- key
&SecurityToken=sessi on-t oken

If you send requests using expired credentials, AWS denies the request.

APl Version 2011-06-15
39

AWS Security Token Service Using Temporary Security
Credentials
More Information

More Information

For more information about using AWS STS with other AWS services, see the following links:

¢« Amazon S3. See Making Requests Using IAM User Temporary Credentials or Making Requests Using
Federated User Temporary Credentials in the Amazon Simple Storage Service Developer Guide.

¢« Amazon SNS. See Using Temporary Security Credentials in the Amazon Simple Notification Service
Developer Guide.

¢ Amazon SQS. See Using Temporary Security Credentials in the Amazon Simple Queue Service
Developer Guide.

¢« Amazon SimpleDB. See Using Temporary Security Credentials in the Amazon SimpleDB Developer
Guide.

APl Version 2011-06-15
40

http://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempSessionToken.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempFederationToken.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempFederationToken.html
http://docs.aws.amazon.com/sns/latest/dg/UsingIAMwithSNS.html#UsingTemporarySecurityCredentials_SNS
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html#UsingTemporarySecurityCredentials_SQS
http://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/index.html?UsingTemporarySecurityCredentials_SDB.html

AWS Security Token Service Using Temporary Security
Credentials
Giving Console Access Using SAML

Giving Federated Users Direct
Access to the AWS Management
Console

You can give your federated users single sign-on (SSO) access to the AWS Management Console through
your identity and authorization system, without requiring users to sign into Amazon Web Services (AWS).
The method you use to do this varies depending on how your organization is set up:

« If your organization has an identity system that integrates SAML 2.0 (Security Assertion Markup
Language 2.0), you can set things up in your organization and in IAM so that users can seamlessly
sign in to a portal inside your organization, select an option to go to the AWS Management Console,
and be automatically taken to the console.

¢ For other scenarios, you can write code that creates a URL that includes identity information. You can
distribute the URL to users to give them secure and direct access to the AWS Management Console.

Topics
¢ Giving Console Access Using SAML (p. 41)
¢ Giving Console Access hy Creating a URL (p. 46)

Giving Console Access Using SAML

If your organization supports SAML, you can let users who have been authenticated in your organization
access the AWS Management Console without having to have IAM identities and without having to sign
in again. AWS provides a single sign-on (SSO) endpoint (https://signin.aws.amazon.com/saml) that
accepts SAML assertions that are used to grant your users federated access to the console.

Note

You can also configure your IdP and AWS to get temporary security credentials that can be used
for programmatic access to AWS resources. For more information, see Creating Temporary
Security Credentials for SAML Federation (p. 19).

The following diagram describes the flow for SAML-enabled single sign-on.

APl Version 2011-06-15
41

AWS Security Token Service Using Temporary Security
Credentials
Giving Console Access Using SAML

Your Organization (ldentity Provider)

oy

N AWS (Service P

. The user browses to your organization's portal and selects the option to go to the AWS Management
Console. In your organization, the portal functions as a identity provider (IdP) that handles the exchange
of trust between your organization and AWS.

. The portal verifies the user's identity in your organization.

. The portal generates a SAML authentication response that includes assertions that identify the user
and include attributes about the user. The portal sends this response to the client (the user's browser).

. The client posts the SAML assertion to an AWS single sign-on endpoint. The endpoint uses the AWS
STS AssumeRoleWithSAML API to request temporary security credentials and creates a console
sign-in URL.

. AWS sends the sign-in URL back to the client with a redirect.

. The client gets the console sign-in and is redirected to the AWS Management Console. (If the
authentication response includes attributes that map to multiple 1AM roles, the user is prompted to
select the role to use for access to the console.)

s 1s SP‘T'“[JRL
e A0S dn
e C'he-r:;.n'l sid
o
A2 Portaliidentity provider as5®
(1dP} 4 AWS 550 endpoint
3) 1dP returns - &%
I 5AML assertion &\ﬁ@ -
‘{Q\.‘l@& _
ey : :
e
LDAP 5 :
identity store .
User browses AWS Management Consc
to IdP 1

r’r __ 1'\.I . g

| o~ ; Clientis sentto AW A

i S’ m [nso

! ——— X ; . Manage

i i - I

1 S — N —]
& Browserinterface :

From the user's perspective, the process happens transparently—the user starts at your organization's
internal portal and ends up at the AWS Management Console, without ever having to supply any AWS

credentials.

To use SAML-based federation for access to AWS resources, you perform steps inside your organization's
network in order to configure it as an identity provider. You then configure AWS to act as a service provider.

Topics

¢ Configure Your Network as a SAML Provider for AWS (p. 43)

¢ Create a SAML Provider in IAM (p. 43)
¢ Establish Permissions in AWS for Federated Users (p. 43)

APl Version 2011-06-15
42

http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html

AWS Security Token Service Using Temporary Security
Credentials
Configure Your Network as a SAML Provider for AWS

¢ Configure Assertions for the SAML Authentication Response (p. 44)
¢ Mapping SAML Attributes to AWS Policy Keys (p. 45)

Configure Your Network as a SAML Provider for
AWS

Inside your organization's network, you configure your identity store (such as Windows Active Directory)
to work with a SAML-based identity provider (IdP) like Windows Active Directory Federation Services,
Shibboleth, etc. Using your IdP, you generate a metadata document that describes your organization as
an identity provider and includes authentication keys. You also configure your organization's portal to
route user requests for the AWS Management Console to the AWS SAML endpoint for authentication
using SAML assertions.

Create a SAML Provider in IAM

Next, you go to the AWS Management Console. In the IAM console, you create a new SAML provider,
which is an entity in IAM that holds information about your organization as an identity provider. As part
of this process, you upload the metadata document that was produced by the SAML software in your
organization.

Create Provider Caneel | x
The metadata document contains the definition for your provider such as keys, expiration and issuer
Choose File | No file chosen
¥ Leam more about metadata documents
Ak Create

For details, see Managing SAML Providers in the Using IAM guide.

When this task is done, you can create an |AM role that will be able to establish a trust relationship
between your organization and IAM and that identities your organization as a principal (trusted entity) for
purposes of federation.

Establish Permissions in AWS for Federated Users

The next step is to create an IAM role that defines what users from your organization will be allowed to
do in AWS. You can use the IAM console to create this role. When you create the trust policy for the role,
you specify the SAML provider that you created earlier in IAM, and you specify a SAML attribute that
describes the user. For example, you can specify that only users whose SAML eduPer sonOr gDN value
is Exanpl eOr g will be allowed to sign in. The role wizard automatically adds a condition to test the
SAML.: aud attribute to make sure that the role is assumed only for SSO. The trust role might look like
this:

"Version": "2012-10-17",
"Statenent": [

{
"Effect": "All ow',

"Principal": {

APl Version 2011-06-15
43

http://docs.aws.amazon.com/IAM/latest/UserGuide/idp-managing-identityproviders.html

AWS Security Token Service Using Temporary Security

Credentials
Configure Assertions for the SAML Authentication
Response
"Federated": "arn:aws:iam:account-nunber-w thout-hyphens: sanm -pro
vi der/ Exanpl eOr gSSOPr ovi der "
}s

"Action": "sts:AssunmeRol eWthSAM.",
"Condition": {
"StringEqual s": {
SAM.: eduPer sonOr gDN': " Exanpl eOr g”,
"SAM.: aud": "https://signin.aws.amazon. com sam "

For the access (permissions) policy in the role, you specify permissions as you would for any role. For
example, if users from your organization will be allowed to administer Amazon EC2 instances, you explicitly
allow Amazon EC2 actions in the permissions policy, such as those in the Amazon EC2 Full Access
policy template.

For details, see Creating a Role for SAML-Based Federation in the Using IAM guide.

Configure Assertions for the SAML Authentication
Response

In your organization, after a user's identity has been verified, the IdP must send an authentication response
to the AWS endpoint (https://signin.aws.amazon.com/saml). This response must be a POST request that
includes a SAML token that adheres to SAML standards and that contains the following assertions. All
of these assertions are required.

¢ Subj ect and Nanel D. The following excerpt shows an example. Your own values would substitute
for the marked ones.

<Subj ect >

<Nanel D For nat ="urn: oasi s: hanmes: t c: SAM.: 2. 0: nanei d- f or mat : per si st
ent">_chbb88bf 52c2510eabe00c1642d4643f 41430f e25e3

</ Nanel D>

<Subj ect Confirmati on Met hod="urn: oasi s: nanes: tc: SAM.: 2. 0: cm bearer">

<Subj ect Confirmati onData Not OnOr Aft er ="2013- 11- 05T02: 06: 42. 8762"
Reci pi ent ="https://signin. aws. amazon. com sam "/ >

</ Subj ect Confi rmati on>

</ Subj ect >

¢ An attribute with Nane setto htt ps: // aws. amazon. com SAML/ At t ri but es/ Rol e. This attribute
contains one or more At t ri but eVal ue elements that list the IAM role and SAML provider that the
user is mapped to in your IdP. The role and provider are specified as a comma-delimited pair of ARNSs,
in the same format that they are used for the Rol eAr n and Pri nci pal Ar n parameters that are passed
to AssumeRoleWithSAML. The attribute must contain at least one role/provider pair, and can contain
multiple pairs. If the attribute contains multiple pairs, when the user uses WebSSO to sign into the AWS
Management Console, he or she is asked to select the role to assume.

<Attribute Nane="https://aws. anmazon. conl SAM./ Attri but es/ Rol e" >

<AttributeVal ue>arn: aws: i am : account - nunber:rol e/ rol e-nane, arn: aws:i am : ac
count - nunber : sam - provi der/ provi der - nanme</ At t ri but eVal ue>

<AttributeVal ue>arn: aws: i am : account - nunber:rol e/ rol e-nane, arn: aws:i am: ac

APl Version 2011-06-15
44

http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-saml.html
http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html

AWS Security Token Service Using Temporary Security
Credentials
Mapping SAML Attributes to AWS Policy Keys

count - nunber : sam - provi der/ provi der - nane</ At tri but evVal ue>

<Attri but eVal ue>arn: aws: i am : account - nunber: rol e/rol e-nane, arn: aws: i am: ac
count - nunber : sam - provi der/ provi der - nane</ At tri but evVal ue>
</Attribute>

¢ An attribute with Nane setto ht t ps: // aws. amazon. conl SAM./ At t ri but es/ Rol eSessi onNane.
The attribute value provides an identifier for the AWS temporary credentials that are issued for SSO.
The value is typically a user name or email address for the principal, and is displayed in the AWS
console. This value must be between 2 and 32 characters long, can contain only alphanumeric
characters, underscores, and the following characters: +=, . @ - . It cannot contain spaces.

<Attribute Nanme="https://aws. anmazon. coni SAM./ Attri but es/ Rol eSessi onNanme" >
<AttributeVal ue>nane</ Attri but eVal ue>
</Attribute>

Mapping SAML Attributes to AWS Policy Keys

The tables in this section list how commonly used SAML attributes are mapped to policy keys in AWS.

In the eduPerson and eduOrg attributes table, values are typed either as strings or as lists (of strings).
For string values, you can test these values in policies using St ri ngEqual s or St ri ngLi ke conditions.
For list values, you can test the values in policies using the For AnyVal ue and For Al | Val ues policy
set operators.

eduPerson and eduOrg Attributes

eduPerson or eduOrg Attribute AWS Key Type

urn:oid:1.3.6.1.4.1.5923.1.1.1.1 eduPersonAffiliation List of string

urn:oid:1.3.6.1.4.1.5923.1.1.1.2 eduPer sonNi cknane List of string
urn:oid:1.3.6.1.4.1.5923.1.1.1.3 eduPer sonOr gDN String

urn:oid:1.3.6.1.4.1.5923.1.1.1.4 eduPer sonOr gUni t DN List of string
urn:oid:1.3.6.1.4.1.5923.1.1.1.5 eduPer sonPri naryAffiliation | String

urn:oid:1.3.6.1.4.1.5923.1.1.1.6 eduPer sonPri nci pal Nanme | String

urn:oid:1.3.6.1.4.1.5923.1.1.1.7 eduPer sonEnti t | ement List of string
urn:oid:1.3.6.1.4.1.5923.1.1.1.8 eduPer sonPr i mar yQ gLhi t DN | String

urn:oid:1.3.6.1.4.1.5923.1.1.1.9 eduPer sonScopedAf fi | i ation | List of string
urn:oid:1.3.6.1.4.1.5923.1.1.1.10 |eduPersonTargetedl D List of string
urn:oid:1.3.6.1.4.1.5923.1.1.1.11 | eduPersonAssurance List of string
urn:oid:1.3.6.1.4.1.5923.1.2.1.2 eduOr gHonmrePage URI List of string
urn:oid:1.3.6.1.4.1.5923.1.2.1.3 eduQ gl denti t yAut hNRol i cylR | List of string
urn:oid:1.3.6.1.4.1.5923.1.2.1. 4 eduOr gLegal Nanme List of string
urn:oid:1.3.6.1.4.1.5923.1.2.1.5 eduOr gSuperi or URI List of string

APl Version 2011-06-15
45

http://docs.aws.amazon.com/IAM/latest/UserGuide/conditions-setoperators.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/conditions-setoperators.html

AWS Security Token Service Using Temporary Security
Credentials
Giving Console Access by Creating a URL

eduPerson or eduOrg Attribute AWS Key Type
urn:oid:1.3.6.1.4.1.5923.1.2.1.6 eduOr gWhi t ePagesURI List of string
urn:oid:2.5.4.3 cn List of string

Giving Console Access by Creating a URL

You can let users who have signed in to your organization's network access the AWS Management
Console by using code to create a URL that gives them secure and direct access to the console.

Note
If your organization uses SAML, you can set up access to the AWS Management Console without
writing code. For details, see Giving Console Access Using SAML (p. 41).

To create the URL you need to complete the following tasks:

« Verify that the user is authenticated.

« Create temporary security credentials for the user.

¢ Construct the URL that passes the temporary security credentials to the AWS Management Console.
« Distribute the URL to the user.

The URL is valid for 15 minutes from the time it is created. The temporary security credentials associated
with the URL are valid for the duration you specified when you created them, starting from the time they
were created.

Important

Keep in mind that the URL grants access to your AWS resources through the AWS Management
Console, to the extent that you have enabled permissions in the associated temporary security
credentials. For this reason, you should treat the URL as a secret. We recommend returning the
URL through a secure redirect, for example, by using a 302 HTTP response status code over
an SSL connection. For more information about the 302 HTTP response status code, go to RFC
2616, section 10.3.3.

To view a sample application that shows you how you can implement a single sign-on solution, go to
AWS Management Console federation proxy sample use case in the AWS Sample Code & Libraries.

To complete these tasks, you can use the HTTPS Query API for AWS Identity and Access Management
(IAM) and the AWS Security Token Service (AWS STS). Or, you can use programming languages, such
as Java, Ruby, or C#. Each of these methods is described in the following sections.

Constructing the URL for the AWS Management
Console (Query APIS)

This topic describes how to construct a URL that gives your federated users direct access to the AWS
Management Console. This task uses the AWS Identity and Access Management (IAM) and AWS Security
Token Service (AWS STS) HTTPS Query API. For more information about making Query requests, go
to Making Query Requests in Using IAM.

Note

The following procedure contains examples of text strings. To enhance readability, line breaks
have been added to some of the longer examples. When you create these strings for your own
use, you should omit any line breaks.

APl Version 2011-06-15
46

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://aws.amazon.com/code/4001165270590826
http://docs.aws.amazon.com/IAM/latest/UserGuide//IAM_UsingQueryAPI.html

AWS Security Token Service Using Temporary Security
Credentials

Constructing the URL for the AWS Management Console
(Query APIs)

To give a federated user access to your resources from the AWS Management Console

1. Authenticate the user in your identity and authorization system.

2. Create temporary security credentials for the user. The credentials consist of an access key ID, a
secret access key, and a security token. For more information about creating temporary credentials,
see Creating Temporary Security Credentials (p. 11).

Important

When you create temporary security credentials, you must specify the permissions the
credentials will grant to the user who holds them. For more information about controlling
permissions in temporary security credentials, see Controlling Permissions for Temporary
Security Credentials (p. 32).

3. After you obtain the temporary security credentials, you format them as a JSON string so that you
can exchange them for a sign-in token. The following example shows how to encode the credentials.
You replace the placeholder text with the appropriate values from the credentials that you create.

{"sessionld":"*** AWS Access Key | D ***",
"sessionKey":"*** AWS Secret Access Key ***",
"sessionToken":"*** AWS security token ***"}

4. Next, make a request to the AWS federation endpoint (https://signin.aws.amazon.com/federation)
with the Act i on and Sessi on parameters, as shown in the following example.

Action = getSi gni nToken
Session = *** the JSON string described in Step 3, formurlencoded ***

The following string is an example of what your request might look like.

https://signin. aws. anmazon. coni f ederati on?

Act i on=get Si gni nToken

&Sessi on=%B¥22sessi onl d%22%3A%22AS| AEXAMPLEMDLUUAEYQ/R229%R2C¥22sessi onKey %22
YBAYR2t pSl 9t hxr 2PKEXAMPLETANVLVGIWCSz Xt CDr Y2 FqW 92292 C%22sessi onToken%22%3A
%22 AQoDYXdz EXAMPLE4Br MD6BJ 7bt BQRr AcG Q bg555555550BT7y8h2YJ7woJkRzsLpJBpkl C
gPXxS2Aj Ror JAnY2BsBt v1YX ZF9%2Ff H j gORxOevE388CGd GaKRf O9\WADx K4HUOf | pwi%2BQ70X
2F 92BJa%@2FAb5u0cLY%2Bz] 1P5r JuDz H/2 FOpWVE Yf i WKXH20r W uXVXpl | O%2FPhVH V3Jwe2B
gbc4ZJOW t uLPsuy P7BVUXW.c AVy TFbxyLy36FBSXF1z8a%2FvJIN7ut cj OmIRA i | ZSV7/FQuepa
WP5YARYM QUM BB3v308LKBUBZOxX Ye292Fqt hr LXf 1nX0nj bW@2FJTr ct %2BEdGPRb3907ga5n
VbnnnxdVQI3nPgQchAZpDI 9Ls DDbGsa67JHUy FYny UUUKVRf e7G70gj vbz 9gQYEXAMPLE

The response is a JSON document with an Si gni nToken value. It will look similar to the following
example.

{"Si gni nToken":"*** the SigninToken string ***"}

5. Finally, you create the URL that your federated users will use to access the AWS Management
Console. The URL is the federation URL endpoint (https://signin.aws.amazon.com/federation), plus
the following parameters:

Action = login

Issuer = *** the formurlencoded URL for your internal sign-in page ***
Destination = *** the desired AW Managenent Console URL, al so

formurl encoded ***

APl Version 2011-06-15
47

AWS Security Token Service Using Temporary Security
Credentials
Constructing the URL for the AWS Management Console
(Java)

Si gni nToken = *** the value of SigninToken fromthe JSON docunent returned
in Step 4 ***

The following example shows what the final URL might look like. The URL is valid for 15 minutes
from the time it is created. The temporary security credentials associated with the URL are valid for
the duration you specified when you created them.

https://signin. aws. anmazon. coni f ederati on?

Acti on=l ogi n

&l ssuer =ht t ps¥BAYRFY%2Fexanpl e. com

&Dest i nati on=ht t ps¥BAWRFY2Fconsol e. aws. anazon. cont2Fs

&Si gni nToken=VCQys5qZZt 3Q6f n8Tr SEXAMPLEnLnwB7Jj Uc- SHMnUUWAbcRdnWi 4DBn- dvC
Cz85wr DOnm dUcZEXAMPLE- vXYHAQ _m euF_V2BE5HYexbe9y4X - kj €53Ssj NNecATf j | zpWL
W bbnH6Yc YR Bof f ZBGEXbEXAMPLESai KX4ATHW QKC6gg6al Hu6JFr nQJoK3dt P61 9a6hi 6yPgm
i CkPZMMNGThsvVxet Kzr 8nx3pxhHoMEXAMPLETV 1pi j Or ok31 yCR2YVcl j gwf W32HU2XI j 471u
3f UbuCk UConeKi qTGX974xzJ0OZbdmX_t _| Lr hEXAMPLEDDI i sSnyHGMXxaZZqudminmo2uTDk9Pv
9| 5K0ZCql gEXAMPLEC A6t gLPykEWEUYy HEBASC6166n4MAJKk Xl Qgac7_7821Yqi XxsNXZ6r sr pzwf

nQ0S1407R0eJ CCI684EXAMPLEZRIBNnuLbUYpz 2l w3vI NOt QgQuj wnwy dPscMOF7f oaEK3j wivkg
Apebl- 6L_0B12MZhuFxx55555EXAMPLEhY ETEd4Zul KPdXHkgl 6 T9ZkI | Hz2Uy 1IRUTUhhUx Nt SQ
nW5xkbBoEcXqpoS! eK7yhj e9Vzhd61AEXAMPLEI bWeouACEMGS- VAd3dAgFYd6i 5FYoyFr ZLWm
OLSG7Ry YKeYN5VI zUk3YWQpy|j PORi T5KUr sUi - NEXAMPL Ex MOMdo CDBEgK (s k- i u20zh6r 8bxwC
RNhuj g

Constructing the URL for the AWS Management
Console (Java)

This topic describes how to programmatically construct a URL that gives your federated users direct
access to the AWS Management Console. The following code snippet uses the AWS SDK for Java. You
replace the placeholder text with your own values.

i mport java. net.URLEncoder;

i mport java.net. URL;

i mport java. net.URLConnection;

i mport java.io.BufferedReader;

i mport java.io.lnputStreanReader;

/1 Available at http://ww.json.org/javal/index. htnl

i mport org.json. JSONObj ect;

i mport com amazonaws. aut h. AWSCr edent i al s;

i mport com amazonaws. aut h. Basi cCAWSCr edenti al s;

i mport com amazonaws. servi ces. securitytoken. AWsSecurityTokenServicedient;
i mport com amazonaws. servi ces. securitytoken. nodel . Credenti al s;

i mport com amazonaws. servi ces. securitytoken. nodel . Get Feder ati onTokenRequest ;
i mport com amazonaws. servi ces. securitytoken. nodel . Get Feder ati onTokenResul t;

AWECr edenti al s credentials = new Basi cCAWSCr edenti al s(
"**¥* Access Key ID ***"|
"*x* Secret Key ***");

AWBSecuri tyTokenServiceClient stsCient =
new AWSSecurityTokenServiced ient(credentials);

Get Feder ati onTokenRequest get Feder ati onTokenRequest =
new Get Feder ati onTokenRequest ();

APl Version 2011-06-15
48

AWS Security Token Service Using Temporary Security
Credentials
Constructing the URL for the AWS Management Console
(Java)

get Feder at i onTokenRequest . set Dur at i onSeconds(3600) ;
get Feder at i onTokenRequest . set Nane(" User Nane") ;

/1 A sanple policy for accessing Amazon SNS in the consol e.

String policy = "{\"Version\":\1"2012-10-17\",\"Statenment\":[{\"Ac

tion\":\"sns:*\" " +
"\"Effect\":\"Allom",\"Resource\":\"*\"}]1}";

get Feder ati onTokenRequest . set Pol i cy(policy);

Get Feder ati onTokenResul t federati onTokenResult =
stsC i ent. get Feder ati onToken(get Feder ati onTokenRequest);

Credentials federatedCredentials = federationTokenResul t. getCredential s();

/1 The issuer paraneter specifies your internal sign-in

/1 page, for exanple https://nysignin.internal.nyconpany.coni.

/1 The consol e parameter specifies the URL to the destination console of the
/1 AWS Managenent Consol e. This exanpl e goes to Amazon SNS.

/1 The signin paraneter is the URL to send the request to.

String issuerURL = "https://nysignin.internal.mconpany.conl";

String consol eURL = "https://consol e. aws. anazon. conf sns";

String signlnURL = "https://signin.aws.anmazon. com federation";

/'l Create the sign-in token using tenporary credentials,
/1 including the Access Key ID, Secret Access Key, and security token.
String sessionJson = String.fornmat(
VoSS N oRBs\ M\ OBBS\ M\ " odBs\ "\ " 9BBs\ "\ " BPs\ "},
"sessionld", federatedCredentials.getAccessKeyld(),
"sessionKey", federatedCredentials.getSecretAccessKey(),
"sessionToken", federatedCredentials.getSessionToken());

String getSigninTokenURL = signlnURL + "?Action=getSi gni nToken" +
" &Sessi onType=j son&Sessi on=" + URLEncoder. encode(sessi onJson,
"UTF-8");
URL url = new URL(getSigni nTokenURL);
URLConnection conn = url.openConnection ();
Buf f er edReader buf fer Reader = new Buffer edReader (new
I nput St reanReader (conn. getl nputStrean()));
String returnContent = bufferReader.readLine();
String signinToken = new JSONOhj ect (returnContent). getString("Signi nToken");

String signinTokenParameter = "&Si gni nToken=" +
URLEncoder . encode(si gni nToken, "UTF-8");

/1 The issuer paraneter is optional, but recommended. Use it to direct users
/1 to your sign-in page when their session expires.
String i ssuerParaneter = "& ssuer=" + URLEncoder. encode(issuer URL, "UTF-8");
String destinationParaneter = "&Destination=" +

URLEncoder . encode(consol eURL, " UTF-8");
String |l ogi nURL = signlnURL + "?Action=l ogin" + signinTokenParaneter +

i ssuer Paraneter + destinati onParaneter;

APl Version 2011-06-15
49

AWS Security Token Service Using Temporary Security
Credentials
Constructing the URL for the AWS Management Console
(Ruby)

Constructing the URL for the AWS Management
Console (Ruby)

This topic describes how to programmatically construct a URL that gives your federated users direct
access to the AWS Management Console. This code snippet uses the AWS SDK for Ruby.

require 'rubygens'

require 'json'
require 'open-uri'’
require 'cgi'S
requi re 'aws-sdk’

Normally, the tenporary credentials will come from your proxy

application, but for this exanple we create them here

sts = AWG: : STS. new : access_key_id => "*** Your AWS Access Key | D ***",
:secret _access_key => "*** Your AWS Secret Access Key ***")

A sanple policy for accessing Amazon SNS in the consol e.
policy = AWS: : STS: : Pol i cy. new
policy.allow(:actions => "sns:*",:resources => :any)

session = sts.new_federated_session(
"User Name",
:policy => policy,
:duration => 3600)

The issuer paraneter specifies your internal sign-in

page, for exanple https://nysignin.internal.nyconpany.coni.

The consol e paranmeter specifies the URL to the destination console of the
AWS Managenment Consol e. This exanple goes to Amazon SNS.

The signin paraneter is the URL to send the request to.

issuer_url = "https://mysignin.internal.nyconpany.con"
console_url = "https://consol e. aws. anazon. coni sns"
signin_url = "https://signin.aws.amazon. conl f ederati on"

Create the sign-in token using tenporary credentials,
including the Access Key I D, Secret Access Key, and security token.
session_json = {
:sessionld => session.credential s[:access_key_id],
:sessi onKey => session.credential s[: secret_access_key],
:sessi onToken => session. credential s[: session_token]
}.to_json

get _signin_token_url = signin_url + "?Action=getSi gni nToken" +
" &Sessi onType=j son&Sessi on=" + CG . escape(sessi on_j son)

returned_content = URI. parse(get_signin_token_url).read

signin_token = JSON. parse(returned_content)['Si gni nToken']

si gni n_t oken_param = "&Si gni nToken=" + Cd . escape(si gni n_t oken)

The issuer paraneter is optional, but recommended. Use it to direct users
to your sign-in page when their session expires.

i ssuer _param = "&l ssuer=" + CA . escape(issuer_url)

destination_param = "&Destination=" + CG.escape(console_url)

login_url = signin_url + "?Action=login" + signin_token_param +
i ssuer _param + destination_param

APl Version 2011-06-15
50

AWS Security Token Service Using Temporary Security
Credentials

AWS Security Token Service
Sample Applications

To see how you can use AWS STS to manage temporary security credentials, you can download the
following sample applications that implement complete example scenarios.

Identity Federation Sample Application for an Active Directory Use Case. Demonstrates how to issue
temporary security credentials for accessing Amazon S3 files and buckets, using permissions that are
tied to an Active Directory user. (.NET/C#)

AWS Management Console Federation Proxy Sample Use Case. Demonstrates how to create a
federation proxy that enables single sign-on (SSO) so that existing Active Directory users can sign into
the AWS Management Console. ((NET/C#)

Integrate Shibboleth with AWS Identity and Access Management. Shows how to use Shibboleth and
SAML to provide users with single sign-on (SSO) access to the AWS Management Console.

AWS SDK for iOS and AWS SDK for Android. These SDKs contain a sample application that
demonstrates how to use web identity federation (p. 12), which lets you create a mobile app or
client-based web app where users can sign in using Login with Amazon, Facebook, or Google. The
samples include code that shows how to invoke the identity providers, and then how to use the
information from these providers to get and use temporary security credentials.

Web Identity Federation Playground. This website provides an interactive demonstration of web identity
federation (p. 12).

Authenticating Users of AWS Mobile Applications with a Token Vending Machine at AWS Articles &
Tutorials. Demonstrates a server-based proxy application that serves temporary credentials to remote
clients (such as mobile apps) so that the clients can sign web requests to AWS. This sample can be
used with the sample client that is part of the AWS SDK for Android and the AWS SDK for iOS. (Java)
For more information, see Credential Management for Mobile Applications, which is an article that
provides additional details on how to secure AWS resources when using the token vending machine
(TVM) with mobile applications.

APl Version 2011-06-15
51

http://aws.amazon.com/code/1288653099190193
http://aws.amazon.com/code/4001165270590826
http://aws.amazon.com/code/8383453795065208
http://shibboleth.net/
http://aws.amazon.com/sdkforios/
http://aws.amazon.com/sdkforandroid/
https://web-identity-federation-playground.s3.amazonaws.com/index.html
http://aws.amazon.com/articles/4611615499399490
http://aws.amazon.com/code/4598681430241367

AWS Security Token Service Using Temporary Security
Credentials

AWS Services that Support AWS
Security Token Service (AWS STS)

The following table describes the AWS products that support requests made using the temporary security
credentials that are generated by AWS STS API actions.

For information about how to use temporary security credentials with the AWS SDKs or when making
API calls, see Using Temporary Security Credentials (p. 38).

AWS Product Supports Temporary Security Credentials?
Auto Scaling Yes
AWS Account Billing Yes
AWS CloudFormation Yes
Amazon CloudFront Yes
AWS CloudHSM No
Amazon CloudSearch Yes
Amazon CloudWatch Yes
AWS Data Pipeline Yes
AWS Direct Connect Yes
Amazon DynamoDB Yes
AWS Elastic Beanstalk No

Amazon Elastic Compute Cloud (Amazon EC2) | Yes

Elastic Load Balancing Yes
Amazon Elastic MapReduce (Amazon EMR) No
Amazon Elastic Transcoder Yes
Amazon ElastiCache Yes

APl Version 2011-06-15
52

AWS Security Token Service Using Temporary Security
Credentials

AWS Product

Amazon Flexible Payments Service (Amazon
FPS)

Amazon Fulfillment Web Service (Amazon FWS)

Amazon Glacier

AWS Identity and Access Management (IAM)
AWS Import/Export

AWS Marketplace

Amazon Mechanical Turk

AWS OpsWorks

Amazon Redshift

Amazon Relational Database Service (Amazon
RDS)

Amazon Route 53
Amazon Simple Storage Service (Amazon S3)
Amazon Simple Email Service (Amazon SES)

Amazon Simple Notification Service (Amazon
SNS)

Amazon Simple Queue Service (Amazon SQS)
Amazon SimpleDB

AWS Storage Gateway

Amazon Simple Workflow Service

AWS Support

AWS Security Token Service

AWS Storage Gateway

Amazon Virtual Private Cloud (Amazon VPC)

Supports Temporary Security Credentials?

Yes

Yes
Yes
Yes; see below
No
Yes
No
Yes
Yes

Yes

Yes
Yes
Yes

Yes

Yes
Yes
Yes
Yes
No
Yes; see below
Yes

Yes

¢ IAM. Supports AssurmeRol e, AssuneRol eW t hWebl dent i ty, and AssuneRol eW t hSAML. If you
use Get Feder at i onToken, you can access IAM when using single sign-on to the AWS Management
Console, but not from the API or CLI. For more information, see Giving Federated Users Direct Access

to the AWS Management Console (p. 41).

* AWS STS. You can use the temporary security credentials that you get from the AssuneRol e,
AssuneRol eW t hWebl denti ty, or AssunmeRol eW t hSAM. call to make subsequent calls to
AssuneRol e; however, you cannot use those credentials to call Get Feder ati onToken or
Get Sessi onToken. You cannot use the temporary security credentials from Get Feder at i onToken

or Get Sessi onToken to call any STS APIs.

APl Version 2011-06-15

53

AWS Security Token Service Using Temporary Security
Credentials
More Information

More Information

For more information about using AWS STS with other AWS services, see the following links:

¢« Amazon S3. See Making Requests Using IAM User Temporary Credentials or Making Requests Using
Federated User Temporary Credentials in the Amazon Simple Storage Service Developer Guide.

¢« Amazon SNS. See Using Temporary Security Credentials in the Amazon Simple Notification Service
Developer Guide.

¢ Amazon SQS. See Using Temporary Security Credentials in the Amazon Simple Queue Service
Developer Guide.

¢« Amazon SimpleDB. See Using Temporary Security Credentials in the Amazon SimpleDB Developer
Guide.

APl Version 2011-06-15
54

http://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempSessionToken.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempFederationToken.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempFederationToken.html
http://docs.aws.amazon.com/sns/latest/dg/UsingIAMwithSNS.html#UsingTemporarySecurityCredentials_SNS
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html#UsingTemporarySecurityCredentials_SQS
http://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/index.html?UsingTemporarySecurityCredentials_SDB.html

AWS Security Token Service Using Temporary Security
Credentials

Document History

The following table describes the documentation for this release of the AWS Security Token Service.

« APl version: 2011-06-15
e Latest documentation update: May 21, 2013

Change

Identity
federation
using SAML

Web identity
federation

MFA-Protected
API access

Fixed API
version in
documentation

New Guide

Description

Added support for identity federation using the Security Assertion
Markup Language (SAML) 2.0. With this feature, your organization
acts as a SAML-enabled identity provider, and AWS acts as a service
provider. Your organization can use SAML assertions to get
temporary security credentials in order to access AWS resources
and to support single sign-in (SSO) for the AWS Management
Console. For more information, see Creating Temporary Security
Credentials for SAML Federation (p. 19).

Added support for web identity federation. This feature lets you get
temporary security credentials for users who have signed in using
Login with Amazon, Facebook, or Google. For more information, see
Creating Temporary Security Credentials for Mobile Apps Using
Identity Providers (p. 12).

Introduced MFA-protected API access, a feature that enables you
to add an extra layer of security over AWS APIs using AWS
Multi-Factor Authentication (MFA), see Temporary Security
Credentials for IAM Users with Multi-Factor Authentication

(MFA) (p. 30).

Corrected the API version displayed in Using Temporary Security
Credentials. The API version of the AWS Security Token Service is
not the same as the AWS Identity and Access Management IAM API
version.

This release introduces Using Temporary Security Credentials.

Release Date

This release

May 29, 2013

July 10, 2012

April 26, 2012

January 19,
2012

APl Version 2011-06-15
55

	AWS Security Token Service
	Welcome
	Introduction
	Ways to Get Temporary Security Credentials
	Advantages of Temporary Security Credentials

	Scenarios for Granting Temporary Access
	Creating a Mobile App with Third-Party Sign-In
	Creating a Mobile App with Custom Authentication
	Using Your Organization's Authentication System to Grant Access to AWS Resources
	Using Your Organization's Authentication System and SAML to Grant Access to AWS Resources
	Web-Based Single Sign-On (SSO)
	Delegating API Access
	Cross-Account API Access

	Creating Temporary Security Credentials
	Creating Temporary Security Credentials for Mobile Apps Using Identity Providers
	Process for Using Web Identity Federation for Mobile Apps
	Invoking the Identity Provider to Authenticate the User
	Creating a Role to Allow AWS Access for the Mobile App
	Getting Temporary Credentials
	Identifying Providers, Apps, and Users with Web Identity Federation
	Additional Resources for Web Identity Federation

	Creating Temporary Security Credentials for SAML Federation
	Configuring SAML-Based Federation for API Access
	Process for Using SAML-Based Federation
	Creating a Role to Allow AWS Access from Your Organization

	Identifying Users for SAML-Based Federation

	Creating Temporary Security Credentials to Enable Access for Federated Users
	AssumeRole
	GetFederationToken
	Related Topics

	Creating Temporary Security Credentials for Delegating API Access
	About the External ID
	Related Topics

	Granting an IAM Group Permission to Create Temporary Security Credentials
	Related Topics

	Creating Temporary Security Credentials to Enable Access for IAM Users
	Temporary Security Credentials for IAM Users with Multi-Factor Authentication (MFA)
	Related Topics

	Controlling Permissions for Temporary Security Credentials
	Permissions in Temporary Security Credentials for Federated Users
	Example of Permissions for a Federated User (GetFederationToken)

	Permissions in Temporary Security Credentials for IAM Users
	Disabling Permissions Granted Through Temporary Security Credentials
	Denying Access to the User Who Created the Temporary Security Credentials
	Denying Access to a Specific Resource for a Federated User

	Related Topics

	Using Temporary Security Credentials
	Using Temporary Security Credentials with the AWS SDKs
	Using Temporary Security Credentials with APIs
	More Information

	Giving Federated Users Direct Access to the AWS Management Console
	Giving Console Access Using SAML
	Configure Your Network as a SAML Provider for AWS
	Create a SAML Provider in IAM
	Establish Permissions in AWS for Federated Users
	Configure Assertions for the SAML Authentication Response
	Mapping SAML Attributes to AWS Policy Keys

	Giving Console Access by Creating a URL
	Constructing the URL for the AWS Management Console (Query APIs)
	Constructing the URL for the AWS Management Console (Java)
	Constructing the URL for the AWS Management Console (Ruby)

	AWS Security Token Service Sample Applications
	AWS Services that Support AWS Security Token Service (AWS STS)
	More Information

	Document History

