
AWS Security Token Service
Using Temporary Security Credentials

API Version 2011-06-15

Amazon Web Services

AWS Security Token Service Using Temporary Security
Credentials

AWS Security Token Service: Using Temporary Security Credentials
Amazon Web Services
Copyright © 2013 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
Cloudfront, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic Compute Cloud, Amazon Glacier, Kindle, Kindle
Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift, Amazon Route 53, Amazon S3, Amazon VPC. In addition,
Amazon.com graphics, logos, page headers, button icons, scripts, and service names are trademarks, or trade dress of Amazon in
the U.S. and/or other countries. Amazon's trademarks and trade dress may not be used in connection with any product or service that
is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits
Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

AWS Security Token Service Using Temporary Security
Credentials

Welcome ... 1
Scenarios for Granting Temporary Access ... 4
Creating Temporary Security Credentials ... 11
Credentials for Mobile Apps .. 12
Credentials for SAML Federation .. 19
Credentials to Enable Access for Federated Users .. 22
Credentials for Delegating API Access ... 26

About the External ID .. 26
Granting an IAM Group Permission to Create Credentials ... 28
Credentials to Enable Access for IAM Users .. 29
Controlling Permissions for Temporary Security Credentials .. 32
Permissions for Federated Users ... 32
Permissions for IAM Users ... 35
Disabling Permissions .. 35

Denying Access to the Credentials Creator .. 35
Denying Access to a Specific Resource .. 36

Related Topics .. 36
Using Temporary Security Credentials ... 38
Giving Federated Users Direct Access to the AWS Management Console .. 41
Giving Console Access Using SAML .. 41
Giving Console Access by Creating a URL .. 46
AWS Security Token Service Sample Applications ... 51
AWS Services that Support AWS Security Token Service (AWS STS) .. 52
Document History ... 55

API Version 2011-06-15
4

AWS Security Token Service Using Temporary Security
Credentials

Welcome

Topics

• Introduction (p. 1)

• Ways to Get Temporary Security Credentials (p. 2)

• Advantages of Temporary Security Credentials (p. 3)

Introduction
The AWS Security Token Service lets you grant a trusted user temporary, limited access to your Amazon
Web Services (AWS) resources. Here are some are examples of when temporary access is useful:

• Federation.You can grant temporary access to people in a corporate network without having to define
individual IAM identities for each corporate user.You can also let federated users log into the AWS
Management Console without having to be defined as IAM users, which we refer to as single sign-on
(SSO). AWS STS supports open standards like the SAML 2.0 (Security Assertion Markup Language
2.0), or you can manage your own solution for federating user identities.

• Federation for mobile apps.You can grant access to a user who logs in to a mobile application using
Login with Amazon, Facebook, or Google. Users don't have to have IAM identities. (We refer to this
as web identity federation.)

• Cross-account access. This lets IAM users in one account access resources in another account. (We
refer to this as cross-account API access.)

• Security management for applications running on Amazon EC2 instances that need access to AWS
resources. (We refer to this as delegating API access by using roles.)

• Security management to scope down permissions at run time. This is useful for IAM users who are
using multi-factor authentication (MFA).

You can use temporary security credentials to access most AWS services. For a list of the services that
accept temporary security credentials, see AWS Services that Support AWS Security Token Service
(AWS STS) (p. 52).

API Version 2011-06-15
1

AWS Security Token Service Using Temporary Security
Credentials
Introduction

Ways to Get Temporary Security Credentials
To request temporary security credentials using the AWS Security Token Service (AWS STS), you write
code to call the API actions listed in the following table.You can make these calls using one of the AWS
SDKs, which are available in a variety of programming languages, including Java, .NET, Python, Ruby,
Android, and iOS. The SDKs take care of tasks such as cryptographically signing your service requests,
retrying requests if necessary, and handling error responses.You can also use the AWS STS Query API,
which is described in the AWS Security Token Service API Reference.

AWS Security Token Service API Actions

DescriptionAction

Returns a set of temporary security credentials.
You call this API by using the credentials of an
existing IAM user. This API is useful for granting
AWS access to users who do not have an IAM
identity (that is, to federated users). It is also useful
for allowing existing IAM users to access AWS
resources that they don't already have access to,
such as resources in another account. For more
information, see Creating Temporary Security
Credentials for Delegating API Access (p. 26).

AssumeRole

Returns a set of temporary security credentials for
federated users who are authenticated using a
public identity provider like Login with Amazon,
Facebook, or Google. This API is useful for creating
mobile applications or client-based web applications
that require access to AWS but where users do not
have their own AWS or IAM identity. For more
information, see Creating a Role to Allow AWS
Access for the Mobile App (p. 14).

AssumeRoleWithWebIdentity

Returns a set of temporary security credentials for
federated users who are authenticated in your
organization and who pass authentication and
authorization information to AWS using SAML
(Security Assertion Markup Language). This API
is useful in organizations that have integrated their
identity systems (such as Windows Active
Directory) with software that can produce SAML
assertions to provide information about user identity
and permissions. For more information, see
Creating Temporary Security Credentials for SAML
Federation (p. 19).

AssumeRoleWithSAML

Returns a set of temporary security credentials for
federated users.This API differs from AssumeRole
in that the default expiration period is substantially
longer (up to 36 hours instead of up to 1 hour); this
can help reduce the number of calls to AWS
because you do not need to get new credentials
as often. For more information, see Creating
Temporary Security Credentials to Enable Access
for Federated Users (p. 22).

GetFederationToken

API Version 2011-06-15
2

AWS Security Token Service Using Temporary Security
Credentials

Ways to Get Temporary Security Credentials

http://aws.amazon.com/tools/
http://aws.amazon.com/tools/
http://docs.aws.amazon.com/STS/latest/APIReference/
http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://www.oasis-open.org/standards#samlv2.0
http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
http://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html

DescriptionAction

Returns a set of temporary security credentials to
an existing IAM user. This API is useful for
providing enhanced security, such as to make AWS
requests when MFA is enabled for the IAM user.
For more information, see Creating Temporary
Security Credentials to Enable Access for IAM
Users (p. 29).

GetSessionToken

The AWS STS API actions return temporary security credentials that consist of an access key ID, a secret
access key, and a session token. Users (or an application that the user is running) can then use these
temporary security credentials to access your resources.The temporary security credentials are associated
with an IAM access control policy that limits what the user can do when using these credentials. For more
information, see Using Temporary Security Credentials (p. 38).

Important
Although temporary security credentials are short-lived, users who have temporary access can
make lasting changes to your AWS resources. For example, if a user with temporary access
launches an Amazon EC2 instance, the instance can continue to run and incur charges against
your AWS account even after the user's temporary security credentials expire.

Advantages of Temporary Security Credentials
Using AWS Security Token Service to get temporary security credentials is useful for the following reasons:

• You do not have to distribute long-term AWS security credentials with an application.

• You can provide access to your AWS resources to users without having to define an AWS identity for
them.

• The temporary security credentials have a limited lifetime, meaning that you do not have to rotate them
or explicitly revoke them when they're no longer needed. After temporary security credentials have
expired, they cannot be reused.You can specify how long the credentials are good for, up to a maximum
limit.

API Version 2011-06-15
3

AWS Security Token Service Using Temporary Security
Credentials

Advantages of Temporary Security Credentials

http://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html

Scenarios for Granting Temporary
Access

Topics

• Creating a Mobile App with Third-Party Sign-In (p. 4)

• Creating a Mobile App with Custom Authentication (p. 5)

• Using Your Organization's Authentication System to Grant Access to AWS Resources (p. 7)

• Using Your Organization's Authentication System and SAML to Grant Access to AWS
Resources (p. 8)

• Web-Based Single Sign-On (SSO) (p. 9)

• Delegating API Access (p. 10)

• Cross-Account API Access (p. 10)

You might choose to use temporary security credentials for several reasons. This section describes the
most common scenarios.

Creating a Mobile App with Third-Party Sign-In
Adele the developer is building a game for a mobile device where user information such as scores and
profiles is stored using Amazon S3 and Amazon DynamoDB. She knows that for security and maintenance
reasons, long-term AWS security credentials should not be distributed with the game. She also knows
that the game might have a large number of users. For all of these reasons, she does not create new
user identities for each player. Instead, she builds the game so that users can sign in using an identity
that they've already established with Amazon.com, Facebook, or Google. Her game can take advantage
of the authentication mechanism from one of these providers to validate the user's identity.

To enable the mobile app to access her company's AWS resources, Adele first registers for a developer
ID with Login with Amazon, Facebook, and Google. She also configures the application with each of these
providers. In the AWS account that owns the Amazon S3 bucket and Amazon DynamoDB table for the
game, Adele creates IAM roles that precisely define permissions that the game needs.

In the app's code, Adele calls the sign-in interface for the identity provider that the user selects. The
provider handles all the details of letting the user sign in, and the app gets an OAuth access token or
OpenID Connect (OIDC) ID token from the provider. Using this information, Adele's app can call the AWS

API Version 2011-06-15
4

AWS Security Token Service Using Temporary Security
Credentials

Creating a Mobile App with Third-Party Sign-In

http://login.amazon.com/
http://openid.net/connect/

Security Token Service (AWS STS) AssumeRoleWithWebIdentity action.This action returns temporary
security credentials consisting of an AWS access key ID, a secret access key, and a session token. The
user's instance of the app caches the temporary security credentials and uses them to access AWS
services. The app is limited to the permissions defined in the role that it assumes. When the temporary
credentials expire, the mobile app makes another call to AWS STS in order to get a new set of temporary
security credentials.

The following figure shows a simplified flow for how this might work, using Login with Amazon as the
identity provider. For Step 1, the app can also invoke Facebook or Google, but that's not shown here.

The following details enable this scenario:

• Adele the developer has registered the mobile app with different identity providers, who have assigned
an app ID to the app.

• The mobile app includes logic to invoke the appropriate identity provider (depending on which sign-in
option the user chooses) and to get back a token from the provider.

• The app can call AssumeRoleWithWebIdentity without using any AWS security credentials. The
call includes the token from the provider received previously.

• AWS STS is able to verify that the token passed from Adele's app is valid and then returns temporary
security credentials to the app. The mobile app's permissions to access AWS are established by the
role that the app assumes.

You can learn more about web identity federation by working with the following sample applications:

• The Web Identity Federation Playground is an interactive website that lets you walk through the process
of authenticating via Login with Amazon, Facebook, or Google, getting temporary security credentials,
and then using those credentials to make a request to AWS.

• The AWS SDK for iOS and AWS SDK for Android toolkits include a sample application that demonstrates
how to access an Amazon S3 bucket.

Creating a Mobile App with Custom
Authentication

A company is building a mobile app that enables the app's registered users to access the company's
AWS resources on the back end. Unlike the previous scenario, users don't sign in using one of the
supported web identity federation providers (Login with Amazon, Facebook, or Google). Instead, the

API Version 2011-06-15
5

AWS Security Token Service Using Temporary Security
Credentials

Creating a Mobile App with Custom Authentication

https://web-identity-federation-playground.s3.amazonaws.com/index.html
http://aws.amazon.com/sdkforios/
http://aws.amazon.com/sdkforandroid/

company wants to use a custom solution for authenticating users and for managing the identity store. As
in the previous scenario, the company doesn't want to distribute any AWS security credentials with the
app.

Dave is the developer for this app. To enable the mobile app to access the company's AWS resources,
Dave develops a custom identity broker application that runs on Amazon EC2. When the mobile app
runs, it communicates with the custom identity broker. The broker application verifies that the users are
authenticated and then calls an AWS STS action to get temporary security credentials. The application
can call either AssumeRole or GetFederationToken to obtain the temporary credentials, depending
on how Dave wants to manage the policies for users and when the temporary credentials should expire.
(For more information about the differences between these APIs, see Ways to Get Temporary Security
Credentials (p. 2) and Permissions in Temporary Security Credentials for Federated Users (p. 32).)

The AWS STS API returns temporary security credentials consisting of an AWS access key ID, a secret
access key, and a session token.The custom identity broker application returns these temporary security
credentials to the mobile app. The app can then use the temporary credentials to make calls to AWS
directly. The app caches the credentials until they expire, and then requests a new set of temporary
credentials. The following figure illustrates this scenario.

The following details enable this scenario:

• The identity broker application has available a set of long-term AWS security credentials that are
associated with an IAM user that it can use to call the AssumeRole or GetFederationToken action.
The identity broker application runs in a server environment, where the credentials for the IAM user
are not accessible to the apps running on mobile devices.

• The identity broker application (via the security credentials it uses to make the call) has permission to
access the AWS STS API to create temporary security credentials.

• The identity broker application is able to verify that the mobile app users are authenticated.

To see a sample application similar to the application described in this scenario, go to Authenticating
Users of AWS Mobile Applications with a Token Vending Machine at AWS Articles & Tutorials. For
information about creating temporary security credentials, see Creating Temporary Security
Credentials (p. 11).

API Version 2011-06-15
6

AWS Security Token Service Using Temporary Security
Credentials

Creating a Mobile App with Custom Authentication

http://aws.amazon.com/articles/4611615499399490
http://aws.amazon.com/articles/4611615499399490

Using Your Organization's Authentication
System to Grant Access to AWS Resources

Example Corp. has many employees who need to run internal applications that access the company's
AWS resources.The employees already have identities in the company identity and authentication system,
and Example Corp. doesn't want to create a separate IAM user for each company employee.

Bob is a developer at Example Corp. To enable Example Corp. internal applications to access the
company's AWS resources, Bob develops a custom identity broker application. The application verifies
that employees are signed into the existing Example Corp. identity and authentication system, which
might use LDAP, Active Directory, or another system.The identity broker application then obtains temporary
security credentials for the employees. This scenario is similar to the previous one (a mobile app that
uses a custom authentication system), except that the applications that need access to AWS resources
all run within the corporate network, and the company has an existing authentication system.

To get temporary security credentials, the identity broker application calls either AssumeRole or
GetFederationToken to obtain temporary security credentials, depending on how Bob wants to manage
the policies for users and when the temporary credentials should expire. (For more information about the
differences between these APIs, see Ways to Get Temporary Security Credentials (p. 2) and Permissions
in Temporary Security Credentials for Federated Users (p. 32).) The call returns temporary security
credentials consisting of an AWS access key ID, a secret access key, and a session token. The identity
broker application makes these temporary security credentials available to the internal application. The
app can then use the temporary credentials to make calls to AWS directly.The app caches the credentials
until they expire, and then requests a new set of temporary credentials. The following figure illustrates
this scenario.

In this scenario:

• The identity broker application has permissions to access the AWS STS API to create temporary security
credentials.

• The identity broker application is able to verify that employees are authenticated within the existing
authentication system.

• Users are able to get a temporary URL that gives them access to the AWS Management Console
(which is referred to as single sign-on).

API Version 2011-06-15
7

AWS Security Token Service Using Temporary Security
Credentials

Using Your Organization's Authentication System to
Grant Access to AWS Resources

To see a sample application similar to the identity broker application described in this scenario, go to
Identity Federation Sample Application for an Active Directory Use Case at AWS Sample Code & Libraries.
For information about creating temporary security credentials, see Creating Temporary Security
Credentials (p. 11). For more information about federated users getting access to the AWS Management
Console, see Giving Federated Users Direct Access to the AWS Management Console (p. 41).

Using Your Organization's Authentication
System and SAML to Grant Access to AWS
Resources

Clarisse is an administrator who works at an organization that uses a SAML 2.0-compliant identity provider
(IdP) to implement identity federation. In Clarisse's organization, an identity provider can authenticate
users against an internal identity store.The IdP can then produce SAML assertions that indicate who the
user is and that include information that can be used for authorization decisions by a service provider.
Clarisse configures her organization's identity provider, and configures AWS as a service provider that
can trust authentication responses from her organization.

Clarisse writes an application that runs on user's computers in her organization and that stores objects
in Amazon S3 buckets. The application can get user information and ask the identity provider for an
authentication response (assertion). It can then call the AWS STS AssumeRoleWithSAML API, passing
the assertion and additional information.

The API returns temporary security credentials, which Clarisse's application can use to make calls to
AWS directly. The following figure illustrates this scenario.

API Version 2011-06-15
8

AWS Security Token Service Using Temporary Security
Credentials

Using Your Organization's Authentication System and
SAML to Grant Access to AWS Resources

http://aws.amazon.com/code/1288653099190193

This scenario is similar to the previous one (using an organization's existing identity system). However,
because Clarisse's organization uses SAML 2.0, the SAML identity provider in her organization can do
much of the work associated with verifying a user's identity and generating information that can be passed
to service providers, using an open standard for security information. AWS supports SAML 2.0 for
establishing trust and for mapping assertions to IAM roles that determine a user's permissions.

For more information, see Creating Temporary Security Credentials for SAML Federation (p. 19).

Web-Based Single Sign-On (SSO)
Some users who are in an administrative group in your organization need to be able to go to the AWS
Management Console and administer Amazon EC2 instances.You don't want to create new IAM users
for each administrative user and make those users sign in again to the AWS Management Console.

Instead, you can create a SSO experience for your users. They can go to a portal in your organization,
where they're already signed in. From the portal they can choose an option to go to the AWS Management
Console. If they're authorized for AWS access, they're redirected to the AWS Management Console
without having to sign in again. Behind the scenes, authentication information about the users is exchanged
for temporary security credentials that are associated with an IAM role that determines what the users
are allowed to do in AWS.

You can configure SSO in these ways:

• If your organization has an identity system that integrates SAML 2.0 (Security Assertion Markup
Language 2.0), you can set things up in your organization and in IAM so that users can seamlessly be

API Version 2011-06-15
9

AWS Security Token Service Using Temporary Security
Credentials

Web-Based Single Sign-On (SSO)

redirected to the AWS Management Console. For details, see Giving Console Access Using
SAML (p. 41).

• For other scenarios, you can write code that creates a URL that includes identity information and that
you can distribute to users and that gives them secure and direct access to the AWS Management
Console. For details, see Giving Console Access by Creating a URL (p. 46).

Delegating API Access
With IAM roles, you can delegate API access to AWS services (including third-party services) so that
they can access your organization's AWS resources with temporary security credentials. Authorized IAM
users or services can then use the temporary security credentials to access the resources that are defined
in the role.

For more information, see Delegating API Access by Using Roles in Using IAM.

Cross-Account API Access
Occasionally, your organization might have resources that users must access across multiple AWS
accounts. To allow this access, you can establish trust between accounts so that users from one account
can access resources in another account. Using IAM roles, you define trusted entities and the actions
they are permitted to do.

For more information, see Enabling Cross-Account API Access in Using IAM.

API Version 2011-06-15
10

AWS Security Token Service Using Temporary Security
Credentials

Delegating API Access

http://docs.aws.amazon.com/IAM/latest/UserGuide//WorkingWithRoles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/cross-acct-access.html

Creating Temporary Security
Credentials

Topics

• Creating Temporary Security Credentials for Mobile Apps Using Identity Providers (p. 12)

• Creating Temporary Security Credentials for SAML Federation (p. 19)

• Creating Temporary Security Credentials to Enable Access for Federated Users (p. 22)

• Creating Temporary Security Credentials for Delegating API Access (p. 26)

• Granting an IAM Group Permission to Create Temporary Security Credentials (p. 28)

• Creating Temporary Security Credentials to Enable Access for IAM Users (p. 29)

This topic describes how to use the AWS Security Token Service (AWS STS) API to create temporary
security credentials. For information about using one of the supported SDKs to create temporary security
credentials, see Ways to Get Temporary Security Credentials (p. 2).

The method you use to create the temporary security credentials depends on how you intend to use them:

• To get temporary security credentials after the user has authenticated using Login for Amazon, Facebook,
or Google, an application calls AssumeRoleWithWebIdentity. The temporary security credentials
are associated with an IAM role in which the trusted entity (the principal) is the identity provider (Amazon,
Facebook, or Google), and where a condition tests the application ID that the provider assigns when
the application is configured with that identity provider. Optionally, the application that calls
AssumeRoleWithWebIdentity can pass an IAM policy that further restricts what the application
using the temporary credentials is allowed to do in AWS.

• To get temporary security credentials in an organization that supports SAML 2.0 (Security Assertion
Markup Language). In this scenario, your organization acts as a SAML-enabled identity provider and
AWS acts as a service provider. An application in your organization calls the AssumeRoleWithSAML
API using a SAML assertion, which is exchanged for temporary security credentials. The permissions
granted for the temporary security credentials are defined in the IAM role that is assumed.

• To get temporary security credentials for federated users who are authenticated using a custom proxy
application (for example, users can be authenticated against a corporate network identity system), the
proxy application calls GetFederationToken. This call requires that the caller (the proxy application)
use the security credentials of an existing IAM user. The call to GetFederationToken must include
a policy that limits what the temporary security credentials permit the app to do; the final permissions
are the intersection of the policy of the calling IAM user and the policy that's passed in the call.

API Version 2011-06-15
11

AWS Security Token Service Using Temporary Security
Credentials

• To get temporary security credentials for an IAM user in another AWS account, or for an AWS service
(like Amazon EC2), the application or service calls AssumeRole. The role that is assumed by this API
action must list the user or service as a principal.The assuming entity cannot be an AWS root account.

• To get temporary security credentials for their own use, IAM users call the GetSessionToken. Users
do not need explicit permission to use GetSessionToken; it is available to all IAM users.

• To get temporary security credentials to support single sign-on (SSO) that allow users from your
organization who are already signed into your network to access the AWS Management Console without
having to have an IAM user identity and without having to sign in again in AWS. For details, see Giving
Federated Users Direct Access to the AWS Management Console (p. 41).

For more general information about controlling user permissions, see Managing IAM Policies. The AWS
STS API is described in detail in the AWS Security Token Service API Reference.

Important
Once you get temporary security credentials, you cannot revoke them. However, if you must
disable temporary security credentials before they expire, you can modify or disable the
permissions of the IAM user or role that the permissions are associated with. Changes to these
permissions are applicable as soon as they have been propagated to all AWS regions, even if
the temporary credentials have not expired. Because you cannot limit the permissions of a root
user, we strongly recommend that you do not use your root account credentials to create
temporary security credentials. (The AssumeRole action denies access to any request that is
made using root credentials.) For more information, see Disabling Permissions Granted Through
Temporary Security Credentials (p. 35).

Creating Temporary Security Credentials for
Mobile Apps Using Identity Providers

Imagine that you have a mobile app that needs access to AWS resources. (Or it might be a web app that
uses client script; the concepts presented here are the same.) The app might be a game that runs on a
phone and stores player and score information in an Amazon S3 bucket or an Amazon DynamoDB table.
Because the app needs to be able to distinguish individual users, users cannot be anonymous.

Most requests to AWS services must be signed, which requires an access key ID and secret access key.
However, for apps that are downloaded to a user's device or computer, we recommend that you do not
distribute long-term AWS security credentials such as those for an AWS account or for an IAM user.

Instead, you want to build the app such that it requests temporary security credentials using web identity
federation. This lets you create an app that authenticates users—that is, lets users sign in—using these
identity providers:

• Login with Amazon

• Facebook

• Google

Using any of these providers can simplify the development and management of your app. Instead of
providing custom sign-in logic and having to manage user login information (either in a custom system
or as IAM users), your app can rely on well-known and secure sign-in protocols that many users already
have access to. Because you can trade a token from the identity provider for temporary security credentials,
you don't have to distribute any credentials with the app, and you don't need to manage the process of
rotating the credentials.

Topics

• Process for Using Web Identity Federation for Mobile Apps (p. 13)

API Version 2011-06-15
12

AWS Security Token Service Using Temporary Security
Credentials

Credentials for Mobile Apps

http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
http://docs.aws.amazon.com/STS/latest/APIReference/
http://login.amazon.com/
https://www.facebook.com/about/login/
https://developers.google.com/+/

• Invoking the Identity Provider to Authenticate the User (p. 14)

• Creating a Role to Allow AWS Access for the Mobile App (p. 14)

• Getting Temporary Credentials (p. 16)

• Identifying Providers, Apps, and Users with Web Identity Federation (p. 17)

• Additional Resources for Web Identity Federation (p. 18)

Process for Using Web Identity Federation for
Mobile Apps
To use one of the supported identity providers and use web identity federation to get temporary security
credentials, you follow the steps outlined here.

Note
To help understand how web identity federation works, you can use the Web Identity Federation
Playground. This interactive website lets you walk through the process of authenticating via
Login with Amazon, Facebook, or Google, getting temporary security credentials, and then using
those credentials to make a request to AWS.

1. Sign up as a developer with the identity provider.You also configure your app with the provider; when
you do, the provider gives you an ID that's unique to your app. (Different providers use different
terminology for this process. We're using the term configure for the process of identifying your app
with the provider.) Each provider gives you an app ID that's unique to that provider, so if you configure
the same app with multiple providers, your app will have multiple app IDs.You can configure multiple
apps with each provider.

The following external links provide information about using one of the identity providers:

• Login with Amazon Developer Center

• Registration on the Facebook site.

• Using OAuth 2.0 to Access Google APIs on the Google site

2. In AWS, create one or more IAM roles. For each role, define who can assume the role (the trust policy
or trust relationship) and what permissions the app's users will have (the access policy).

Create one role for each identity provider for each app. For example, you might create a role that can
be assumed by an app where the user signed in using Login with Amazon, a second role for the same
app where the user has signed in using Facebook, and a third role for the app where users sign in
using Google. For the trust relationship, specify the identity provider (like Amazon.com) as the federated
principal (the trusted entity), and include a condition that matches the app's ID. Examples of the roles
for different providers are shown later in this topic.

3. In your application, authenticate your users using Login with Amazon, Facebook, or Google. To do
this, call the identity provider using an interface that they provide. For example, you might call an API
and pass the user's credentials and possibly other information that the provider requires. The exact
way in which you authenticate the user depends on the provider and on what platform your app is
running. Typically, if the user is not already signed in, the identity provider takes care of displaying a
sign-in page for that provider. After the identity provider authenticates the user, the provider returns a
token to your app.

4. In your app, make an unsigned call to the AssumeRoleWithWebIdentity action to request temporary
security credentials. In the request, you pass the identity provider's token and specify the ARN for the
IAM role that you created for that identity provider. AWS verifies that the token is trusted and valid. If
so, AWS STS returns temporary security credentials to your app that have the permissions derived
from the role you named in the request. The response also includes metadata about the user from the
identity provider, such as the unique user ID that the identity provider assigned to the user.

5. Using the temporary security credentials you get in the AssumeRoleWithWebIdentity response,
your app makes signed requests to AWS APIs. The user ID information from the identity provider can

API Version 2011-06-15
13

AWS Security Token Service Using Temporary Security
Credentials

Process for Using Web Identity Federation for Mobile
Apps

https://web-identity-federation-playground.s3.amazonaws.com/index.html
https://web-identity-federation-playground.s3.amazonaws.com/index.html
http://login.amazon.com/
https://developers.facebook.com/docs/plugins/registration/
https://developers.google.com/accounts/docs/OAuth2

be used to distinguish users in the app—for example, you can put objects into Amazon S3 folders that
include the user ID as prefixes. This allows you to create access control policies that lock that folder
down so only the user with that ID can access it. For more information, see Identifying Providers, Apps,
and Users with Web Identity Federation (p. 17) later in this topic.

6. Your app caches the temporary security credentials so that you do not have to get new ones each
time the app needs to make a request to AWS. By default, the credentials are good for one hour.When
the credentials expire (or before then), you make another call to AssumeRoleWithWebIdentity to
obtain a new set of temporary security credentials. Depending on the identity provider and how they
manage their tokens, you might have to refresh the provider's token before you make a new call to
AssumeRoleWithWebIdentity, since the provider's tokens also usually expire after a fixed time. (If
you're using the AWS SDK for iOS or the AWS SDK for Android, you can use the
AmazonSTSCredentialsProvider action, which manages the AWS STS credentials, including refreshing
them as required.)

Invoking the Identity Provider to Authenticate the
User
In your app, when a user signs in, you invoke the authentication process for the identity providers you
configured the app with. The specifics of how you do this vary both according to which identity provider
you're using (Login with Amazon, Facebook, or Google) and what platform your app is running on. For
example, an Android app can use a different way to authenticate than an iOS app or a JavaScript-based
web app.

In general, the authentication process returns a token to the app that represents the authenticated user.
You might also get back additional information about the user, depending on what the provider exposes
and what information the user is willing to share.You can use this information in your app.

Creating a Role to Allow AWS Access for the
Mobile App
In order to allow the mobile app to access resources, you must create one or more IAM roles that the
app can assume. As with any role, a role for the mobile app contains two policies. One is the trust policy
that specifies who can assume the role (the trusted entity, or principal). The other policy (the access
policy) specifies the actual AWS actions and resources that the mobile app is allowed or denied access
to, and is similar to user or resource policies.

The trust policy must grant an Allow effect for the sts:AssumeRoleWithWebIdentity action. In this
role, you use two values that let you make sure that the role can be assumed only by your application:

• For the Principal element, you use the string {"Federated":providerUrl}. The following are
acceptable ways to specify the principal:

"Principal":{"Federated":"www.amazon.com"}

"Principal":{"Federated":"graph.facebook.com"}

"Principal":{"Federated":"accounts.google.com"}

• In the Condition element, you use a StringEquals condition to test that the app ID in the request
matches the app ID that you got when you configured the app with the identity provider. This ensures
the request is coming from your app. In the policy, you can test the app ID you have against the following
policy variables:

www.amazon.com:app_id

API Version 2011-06-15
14

AWS Security Token Service Using Temporary Security
Credentials

Invoking the Identity Provider to Authenticate the User

http://mobile.awsblog.com/post/Tx26HMWE5RIMZYB/Using-the-AmazonCredentialsProvider-Protocol-in-the-AWS-SDK-for-iOS

graph.facebook.com:app_id

accounts.google.com:aud

Notice that the values you use for the principal in the role are specific to an identity provider. A role can
specify only one principal.Therefore, if the mobile app allows users to sign in using more than one identity
provider, you must create a role for each of the identity providers.

Note
Because the policy for the trusted entity uses policy variables that represent the provider and
the app ID, you must set the Version element to 2012-10-17.

You can use the IAM console to create a role for web identity federation. The console lets you choose
Roles for Web Identity Provider Access for the role type, and then walks you through the process of
configuring the principal and of creating a condition that tests for the app ID. For more information, see
Creating a Role in Using IAM.

The following example shows a trust policy for a role that the mobile app could assume if the user has
signed in using Login with Amazon. In the example, amzn1.application-oa2-123456 is assumed to
be the app ID that Amazon assigned when you configured the app using Login with Amazon.

{
 "Version":"2012-10-17",
 "Id":"RoleForLoginWithAmazon",
 "Statement":[{
 "Principal":{"Federated":"www.amazon.com"},
 "Effect":"Allow",
 "Action":"sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals":
 {"www.amazon.com:app_id":"amzn1.application-oa2-123456"}
 }
 }]
}

The following example shows a policy for a role that the mobile app could assume if the user has signed
in using Facebook. 111222333444555 is assumed to be the app ID assigned by Facebook.

{
 "Version":"2012-10-17",
 "Id":"RoleForFacebook",
 "Statement":[{
 "Principal":{"Federated":"graph.facebook.com"},
 "Effect":"Allow",
 "Action":"sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals":
 {"graph.facebook.com:app_id":"111222333444555"}
 }
 }]
}

The following example shows a policy for a role that the mobile app could assume if the user has signed
in using Google. 111222333444555666777 is assumed to be the app ID assigned by Google.

API Version 2011-06-15
15

AWS Security Token Service Using Temporary Security
Credentials

Creating a Role to Allow AWS Access for the Mobile App

http://docs.aws.amazon.com/IAM/latest/UserGuide/PolicyVariables.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/creating-role.html

{
 "Version":"2012-10-17",
 "Id":"RoleForGoogle",
 "Statement":[{
 "Principal":{"Federated":"accounts.google.com"},
 "Effect":"Allow",
 "Action":"sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals":
 {"accounts.google.com:aud":"111222333444555666777"}
 }
 }]
}

Getting Temporary Credentials
To get temporary credentials that your app can use to make calls to AWS APIs, you call the
AssumeRoleWithWebIdentity action of the AWS Security Token Service. This is an unsigned call,
meaning that the app does not have to have access to any AWS security credentials in order to make
the call. When you make this call, you pass the following information:

• The ARN of the role that the app should assume, as described in the preceding section. As noted, if
your app supports multiple ways for users to sign in, you will have defined multiple roles, one per identity
provider.The call to AssumeRoleWithWebIdentity should include the ARN of the role that's specific
to the provider through which the user signed in.

• The token that the app got from the identity provider after the app authenticated the user.

• The duration, which specifies how long the temporary security credentials are good for. The maximum
(and the default) is 1 hour (3600 seconds).You need to pass this value only if you want the temporary
credentials to expire before 1 hour. The minimum duration for the credentials is 15 minutes (900
seconds).

• A role session name, which is a string value that can be used to identify the session.

• Optionally, a policy (in JSON format). This policy is combined with the policy associated with the role.
This lets you further restrict the access permissions that will be associated with the temporary credentials,
beyond the restrictions already established by the role access policy. Note that this policy cannot be
used to elevate privileges beyond what the assumed role is allowed to access.

Note
Because a call to AssumeRoleWithWebIdentity is not signed, you should only include this
optional policy if the request is not being transmitted through an untrusted intermediary.

When you call AssumeRoleWithWebIdentity, AWS verifies the authenticity of the token. For example,
depending on the provider, AWS might make a call to the provider and include the token that the app has
passed. Assuming that the identity provider validates the token, AWS returns the following information
to you:

• A set of temporary security credentials. These consist of an access key ID, a secret access key, and
a session token.

• The role ID and the ARN of the assumed role.

• A SubjectFromWebIdentityToken value that contains the unique user ID.

When you have the temporary security credentials, you can use them to make AWS API calls. This is
the same process as making an AWS API call using long-term security credentials, except that you must
include the session token, which lets AWS verify that the temporary security credentials are valid.

API Version 2011-06-15
16

AWS Security Token Service Using Temporary Security
Credentials

Getting Temporary Credentials

Your app should cache the credentials. As noted, by default the credentials expire after an hour. If you
are not using the AmazonSTSCredentialsProvider action in the AWS SDK, it's up to your app to call
AssumeRoleWithWebIdentity again to get a new set of temporary security credentials before the
existing set expires.

Identifying Providers, Apps, and Users with Web
Identity Federation
When you create access policies in IAM, it's often useful to be able to specify permissions based on
configured apps and on the ID of users who have authenticated using an identity provider. For example,
your mobile app that's using web identity federation might keep information in Amazon S3 using a structure
like this:

myBucket/app1/user1
myBucket/app1/user2
myBucket/app1/user3
...
myBucket/app2/user1
myBucket/app2/user2
myBucket/app2/user3
...

You might also want to additionally distinguish these paths by provider. In that case, the structure might
look like the following (only two providers are listed to save space):

myBucket/Amazon/app1/user1
myBucket/Amazon/app1/user2
myBucket/Amazon/app1/user3
...
myBucket/Amazon/app2/user1
myBucket/Amazon/app2/user2
myBucket/Amazon/app2/user3

myBucket/Facebook/app1/user1
myBucket/Facebook/app1/user2
myBucket/Facebook/app1/user3
...
myBucket/Facebook/app2/user1
myBucket/Facebook/app2/user2
myBucket/Facebook/app2/user3
...

For these structures, app1 and app2 represent different apps, such as different games, and each of the
app's users has a distinct folder. The values for app1 and app2 might be friendly names that you assign
(for example, mynumbersgame) or they might be the app IDs that the providers assign when you configure
your app. If you decide to include provider names in the path, those can also be friendly names like
Amazon and Facebook.

You can typically create the folders for app1 and app2 through the AWS Management Console, since
the application names are static values. That's true also if you include the provider name in the path,
since the provider name is also a static value. In contrast, the user-specific folders (user1, user2, user3,
etc.) have to be created at run time from the app, using the user ID that's available in the
SubjectFromWebIdentityToken value that is returned by the request to
AssumeRoleWithWebIdentity.

API Version 2011-06-15
17

AWS Security Token Service Using Temporary Security
Credentials

Identifying Providers, Apps, and Users with Web Identity
Federation

http://mobile.awsblog.com/post/Tx26HMWE5RIMZYB/Using-the-AmazonCredentialsProvider-Protocol-in-the-AWS-SDK-for-iOS

To write policies that allow exclusive access to resources for individual users, you can match the complete
folder name, including the app name and provider name, if you're using that.You can then include the
following provider-specific keys that reference the user ID that is returned from the provider:

• www.amazon.com:user_id

• graph.facebook.com:id

• accounts.google.com:sub

The following example shows an access policy that grants access to a bucket in Amazon S3 whose prefix
matches this:

myBucket/Amazon/mynumbersgame/user1

The example assumes that the user has signed in using Login with Amazon, and that the user is using
the app to which you've given the friendly name mynumbersgame.You would create similar policies for
users who have signed in using Facebook and Google; those policies would use a different provider name
as part of the path and would use different app IDs.

{
 "Version":"2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":["s3:ListBucket"],
 "Resource":["arn:aws:s3:::myBucket"],
 "Condition":
 {"StringLike":
 {"s3:prefix":["Amazon/mynumbersgame/${www.amazon.com:user_id}/*"]}
 }
 },
 {
 "Effect":"Allow",
 "Action":["s3:GetObject", "s3:PutObject", "s3:DeleteObject"],
 "Resource":[
 "arn:aws:s3:::myBucket/amazon/mynumbersgame/${www.amazon.com:user_id}",

 "arn:aws:s3:::myBucket/amazon/mynumbersgame/${www.amazon.com:user_id}/*"

]
 }
]
}

Additional Resources for Web Identity Federation
The following resources can help you learn more about web identity federation:

• The Web Identity Federation Playground is an interactive website that lets you walk through the process
of authenticating via Login with Amazon, Facebook, or Google, getting temporary security credentials,
and then using those credentials to make a request to AWS.

• The entry Web Identity Federation using the AWS SDK for .NET on the AWS .NET Development blog
walks through how to use web identity federation with Facebook and includes code snippets in C# that
show how to call AssumeRoleWithWebIdentity and how to use the temporary security credentials
from that API call in order to access an Amazon S3 bucket.

API Version 2011-06-15
18

AWS Security Token Service Using Temporary Security
Credentials

Additional Resources for Web Identity Federation

https://web-identity-federation-playground.s3.amazonaws.com/index.html
http://blogs.aws.amazon.com/net/post/Tx2KW5KYMRE681I/Web-Identity-Federation-using-the-AWS-SDK-for-NET

• The AWS SDK for iOS and the AWS SDK for Android contain sample apps. These apps include code
that shows how to invoke the identity providers, and then how to use the information from these providers
to get and use temporary security credentials.

• The article Web Identity Federation with Mobile Applications discusses web identity federation and
shows an example of how to use web identity federation to get access to content in Amazon S3.

Creating Temporary Security Credentials for
SAML Federation

AWS supports identity federation using the SAML 2.0 (Security Assertion Markup Language 2.0), an open
standard used by many identity providers. This feature enables federated single sign-on (SSO), which
lets users log into the AWS Management Console or make programmatic calls to AWS APIs. Using SAML
can simplify the process of configuring federation with AWS, because you can use identity provider
software instead of writing code.

AWS STS and IAM support these use cases:

• Web-based single sign-on (WebSSO) to the AWS Management Console from your organization. Users
can sign in to a portal in your organization, select an option to go to AWS, and be redirected to the
console without having to provide additional sign-in information. For more information, see Giving
Console Access Using SAML (p. 41).

• Federated access to allow a user or application in your organization to call AWS APIs using temporary
security credentials. In effect, you can use a SAML assertion (as part of the authentication response)
generated in your organization to get temporary security credentials. This scenario is similar to other
federation scenarios supported by AWS STS and IAM, like those described in Creating Temporary
Security Credentials to Enable Access for Federated Users (p. 22) and Creating Temporary Security
Credentials for Mobile Apps Using Identity Providers (p. 12). However, SAML-based identity providers
in your organization handle many of the details at run time for performing authentication and authorization
checking.

Topics

• Configuring SAML-Based Federation for API Access (p. 19)

• Identifying Users for SAML-Based Federation (p. 21)

Configuring SAML-Based Federation for API
Access
Imagine that in your organization, you want to provide a way for users to copy data from their computers
to a backup folder.You build an application that users can run on their computers. On the back end, the
application reads and writes objects in an Amazon S3 bucket. Users don't have direct access to AWS.
Instead, the application gets the user's information from your organization's identity store (such as an
LDAP directory) and gets a SAML assertion that includes authentication and authorization information
about that user. The application can then use that assertion to make a call to the AWS STS
AssumeRoleWithSAML API to get temporary security credentials and use those credentials to access a
folder in the Amazon S3 bucket that's specific to the user.

The following diagram describes the flow.

API Version 2011-06-15
19

AWS Security Token Service Using Temporary Security
Credentials

Credentials for SAML Federation

http://aws.amazon.com/sdkforios/
http://aws.amazon.com/sdkforandroid/
http://aws.amazon.com/articles/4617974389850313

Process for Using SAML-Based Federation
Inside your organization, you have an identity provider (IdP) that supports SAML 2.0, like Windows Active
Directory Federation Services, Shibboleth, etc.

1. In your organization's IdP you register AWS as a service provider (SP) using the SAML metadata
document that from the following URL:

https://signin.aws.amazon.com/static/saml-metadata.xml

2. Using your organization's IdP, you generate an XML metadata document that includes the issuer name,
a creation date, an expiration date, and keys that AWS can use to validate authentication responses
(assertions) from your organization.

3. In the IAM console, you create a new SAML provider, which is an entity in IAM. As part of this process,
you upload the SAML metadata document that was produced by the IdP in your organization.

4. In IAM, you create one or more IAM roles. In the role's trust policy, you set the SAML provider as a
principal, which establishes a trust relationship between your organization and AWS.The role's access
(permission) policy establishes what users from your organization will be allowed to do in AWS.

5. In your organization's IdP, you create set assertions and map the IAM role to users or groups in your
organization who will be allowed to have the permissions specified in the role. Note that different users
and groups in your organization might map to different IAM roles. The exact steps for performing the
mapping depend on what IdP you're using. In the example of an S3 folder for users, it's possible that
all users will map to the same role that provides Amazon S3 permissions.

6. In the application that you're creating, you call the AWS STS AssumeRoleWithSAML API, passing it
the ARN of the SAML provider in IAM, the ARN of the role to assume, and a SAML assertion about
the current user that you get from your IdP. AWS makes sure that the request to assume the role
comes from the IdP referenced in the SAML provider.

API Version 2011-06-15
20

AWS Security Token Service Using Temporary Security
Credentials

Configuring SAML-Based Federation for API Access

http://docs.aws.amazon.com/IAM/latest/UserGuide/idp-managing-identityproviders.html

7. If the request is successful, the API returns a set of temporary security credentials, which your application
can use to make signed requests to AWS.Your application has information about the current user and
can access user-specific folders in Amazon S3.

Creating a Role to Allow AWS Access from Your Organization
The role or roles that you create in IAM define what federated users from your organization will be allowed
to do in AWS.When you create the trust policy for the role, you specify the SAML provider that you created
earlier as the principal.You can additionally scope the trust policy to allow only certain users to sign in,
based on SAML attributes. For example, you can specify that only users whose SAML affiliation is staff
(as asserted by https://openidp.feide.no) will be allowed to sign in.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:sts::account-number-without-hyphens:saml-
provider/ExampleOrgSSOProvider"},
 "Action": "sts:AssumeRoleWithSAML",
 "Condition": {
 "StringEquals": {
 "SAML:aud": "https://signin.aws.amazon.com/saml",
 "SAML:iss": "https://openidp.feide.no"
 },
 "ForAllValues:StringLike": {"SAML:eduPersonAffiliation": ["staff"]}
 }
 }]
}

For the access (permissions) policy in the role, you specify permissions as you would for any role. For
example, if users from your organization will be allowed to administer Amazon EC2 instances, you explicitly
allow Amazon EC2 actions in the permissions policy, such as those in the Amazon EC2 Full Access
policy template.

Identifying Users for SAML-Based Federation
When you create access policies in IAM, it's often useful to be able to specify permissions based on the
identity of users who have authenticated using an identity provider. For example, for users who have
been federated using SAML, an application might want to keep information in Amazon S3 using a structure
like this:

myBucket/app1/user1
myBucket/app1/user2
myBucket/app1/user3

You can create the bucket (myBucket) and folder (app1) through the Amazon S3 console or the CLI,
since those are static values. However, the user-specific folders (user1, user2, user3, etc.) have to be
created at run time using code, since the value that identifies the user isn't known until then.

To write policies that restrict access so that users can access only their own folders, the information that
you use to identify users has to be available in conditions keys for policies.The following keys are available
for SAML-based federation for use in IAM policies.The values represented by these keys in turn represent
how to create unique user identifiers for resources like Amazon S3 folders.

API Version 2011-06-15
21

AWS Security Token Service Using Temporary Security
Credentials

Identifying Users for SAML-Based Federation

• SAML:namequalifier.This key contains a hash value that represents the combination of the SAML:doc
and SAML:iss values. It is used as a namespace qualifier; the combination of SAML:namequalifier
and SAML:sub uniquely identifies a user.The following pseudocode shows how this value is calculated.
In this pseudocode, "+" indicates concatenation, SHA1 represents a function that produces a message
digest using SHA-1, and Base64 represents a function that produces Base-64 encoded version of the
hash output.

Base64(SHA1(SAML:doc + SAML:iss))

• SAML:sub (string). This is the subject of the claim, which includes a value that uniquely identifies an
individual user within an organization (for example,
_cbb88bf52c2510eabe00c1642d4643f41430fe25e3).

• SAML:sub_type (string). This key can be "persistent" or "transient". A value of "Persistent" indicates
that the value in SAML:sub is the same for a user between sessions. If the value is "Transient", the
user has a different SAML:sub_type value for each session.

The following example shows an access policy that uses the preceding keys to grant permissions to a
user-specific folder in Amazon S3. The policy assumes that the Amazon S3 objects are identified using
a prefix that includes both SAML:namequalifier and SAML:sub. Notice that the Condition element
includes a test to be sure that SAML:sub_type is set to "persistent". If it is set to "Transient", the SAML:sub
value for the user can be different for each session, and the combination of values should not be used
to identity user-specific folders.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::exampleorgBucket/backup/${SAML:namequalifi
er}/${SAML:sub}",
 "arn:aws:s3:::exampleorgBucket/backup/${SAML:namequalifi
er}/${SAML:sub}/*"
],
 "Condition": {
 "StringEquals": {
 "SAML:sub_type":"persistent"
 }
 }
 }]
}

For more information about mapping assertions from the IdP to policy keys, see Configure Assertions for
the SAML Authentication Response (p. 44).

Creating Temporary Security Credentials to
Enable Access for Federated Users

To grant temporary access to a non-AWS user whose identity you can authenticate (a federated user),
you can use the AWS STS AssumeRole or GetFederationToken API actions. If you use a SAML

API Version 2011-06-15
22

AWS Security Token Service Using Temporary Security
Credentials

Credentials to Enable Access for Federated Users

identity provider (IdP) in your organization, you can use the AssumeRoleWithSAML API action. These
actions are useful if you have users who already have identities in an identity store like Microsoft Active
Directory. (If you can authenticate the user using an identity provider like Login with Amazon, Facebook,
or Google, you can use the AssumeRoleWithWebIdentity action. For more information, see Creating
Temporary Security Credentials for Mobile Apps Using Identity Providers (p. 12).)7

You might use temporary security credentials to enable single sign-on (SSO) so that users can use the
AWS Management Console without having to sign in as IAM users.You might also use temporary security
credentials to create applications in your company that access AWS resources.

AssumeRole
When you create temporary security credentials for a federated user, you specify a role Amazon Resource
Name (ARN).You can optionally specify the duration and a scoped-down policy for the temporary security
credentials. The duration can be between 15 minutes to 1 hour. By default, the duration is 1 hour. The
AssumeRole API action returns temporary security credentials consisting of the security token, access
key, secret key, and expiration.

Note
You must use IAM user credentials to call AssumeRole.You can't use AWS account credentials
to call AssumeRole; access is denied.

You use AssumeRole if you want to manage permissions in AWS. To view a sample application that
uses AssumeRole, go to AWS Management Console federation proxy sample use case in the AWS
Sample Code & Libraries.

The following example shows a sample request and response using AssumeRole. In this example, the
request includes the name for the session named Bob.The Policy parameter includes a JSON document
that specifies that the resulting credentials have permissions to access only Amazon S3.

Example Request

https://sts.amazonaws.com/
?Version=2011-06-15
&Action=AssumeRole
&RoleSessionName=Bob
&RoleArn=arn:aws:iam::123456789012:role/demo
&Policy=%7B%22Version%22%3A%222012-10-17%22%2C%22State
ment%22%3A%5B%7B%22Sid%22%3A%20%22Stmt1%22%2C%22Effect%22%3A%20%22Al
low%22%2C%22Action%22%3A%20%22s3%3A*%22%2C%22Resource%22%3A%20%22*%22%7D%5D%7D
&DurationSeconds=3600
&ExternalId=123ABC
&AUTHPARAMS

Note
The policy value shown in the example above is the URL-encoded version of the following policy:
{"Version":"2012-10-17","Statement":[{"Sid": "Stmt1","Effect":
"Allow","Action": "s3:*","Resource": "*"}]}

In addition to the temporary security credentials, the response includes the Amazon Resource Name
(ARN) for the federated user, and the expiration time of the credentials.

Example Response

<AssumeRoleResponse xmlns="https://sts.amazonaws.com/doc/2011-06-15/">
<AssumeRoleResult>

API Version 2011-06-15
23

AWS Security Token Service Using Temporary Security
Credentials

AssumeRole

http://aws.amazon.com/code/4001165270590826

<Credentials>
 <SessionToken>
 AQoDYXdzEPT//////////wEXAMPLEtc764bNrC9SAPBSM22wDOk4x4HIZ8j4FZTwdQW
 LWsKWHGBuFqwAeMicRXmxfpSPfIeoIYRqTflfKD8YUuwthAx7mSEI/qkPpKPi/kMcGd
 QrmGdeehM4IC1NtBmUpp2wUE8phUZampKsburEDy0KPkyQDYwT7WZ0wq5VSXDvp75YU
 9HFvlRd8Tx6q6fE8YQcHNVXAkiY9q6d+xo0rKwT38xVqr7ZD0u0iPPkUL64lIZbqBAz
 +scqKmlzm8FDrypNC9Yjc8fPOLn9FX9KSYvKTr4rvx3iSIlTJabIQwj2ICCR/oLxBA==
 </SessionToken>
 <SecretAccessKey>
 wJalrXUtnFEMI/K7MDENG/bPxRfiCYzEXAMPLEKEY
 </SecretAccessKey>
 <Expiration>2011-07-15T23:28:33.359Z</Expiration>
 <AccessKeyId>AKIAIOSFODNN7EXAMPLE</AccessKeyId>
</Credentials>
<AssumedRoleUser>
 <Arn>arn:aws:sts::123456789012:assumed-role/demo/Bob</Arn>
 <AssumedRoleId>ARO123EXAMPLE123:Bob</AssumedRoleId>
</AssumedRoleUser>
<PackedPolicySize>6</PackedPolicySize>
</AssumeRoleResult>
<ResponseMetadata>
<RequestId>c6104cbe-af31-11e0-8154-cbc7ccf896c7</RequestId>
</ResponseMetadata>
</AssumeRoleResponse>

Note
AssumeRole stores the policy in a packed format. AssumeRole returns the size so you can
adjust the calling parameters. For more information about the size constraints on the policy, go
to AssumeRole in the AWS Security Token Service API Reference.

You can also grant permissions at the resource level. For example, if your AWS account number is
111122223333, and you have an Amazon S3 bucket that you want to allow Bob to access even though
his temporary security credentials don't include a policy for the bucket, you would need to ensure that
the bucket has a policy with an ARN that matches Bob's ARN:
arn:aws:sts::123456789012:assumed-role/demo/Bob.

GetFederationToken
When you make a request to get temporary security credentials for a federated user, you make the request
using the credentials of a specific user identity (an IAM user) and request a maximum duration for the
temporary security credentials to remain valid. Credentials created by IAM users are valid for the specified
duration, between 15 minutes and 36 hours; credentials created using account credentials have a maximum
of one hour.The permissions available with the temporary security credentials are determined by an IAM
policy that you pass when you call GetFederationToken.

The GetFederationToken call returns temporary security credentials consisting of the security token,
access key, secret key, and expiration.You can use GetFederationToken if you want to manage
permissions inside your organization (for example, using the proxy application to assign permissions).
To view a sample application that uses GetFederationToken, go to Identity Federation Sample
Application for an Active Directory Use Case in the AWS Sample Code & Libraries.

The following example shows a sample request and response using GetFederationToken. In this
example, the request includes the name for a federated user named Jean.The Policy parameter includes
a JSON document that specifies that the resulting credentials have permissions to access only Amazon
S3. In addition to the temporary security credentials, the response includes the Amazon Resource Name
(ARN) for the federated user and the expiration time of the credentials.

API Version 2011-06-15
24

AWS Security Token Service Using Temporary Security
Credentials

GetFederationToken

http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
http://aws.amazon.com/code/1288653099190193
http://aws.amazon.com/code/1288653099190193

Example Request

https://sts.amazonaws.com/
?Version=2011-06-15
&Action=GetFederationToken
&Name=Jean
&Policy=%7B%22Version%22%3A%222012-10-17%22%2C%22State
ment%22%3A%5B%7B%22Sid%22%3A%22Stmt1%22%2C%22Effect%22%3A%22Allow%22%2C%22Ac
tion%22%3A%22s3%3A*%22%2C%22Resource%22%3A%22*%22%7D%5D%7D
&DurationSeconds=3600
&AUTHPARAMS

Note
The policy value shown in the example above is the URL-encoded version of this policy:
{"Version":"2012-10-17","Statement":[{"Sid":"Stmt1","Effect":"Allow","Action":"s3:*","Resource":"*"}]}.

Example Response

<GetFederationTokenResponse xmlns="https://sts.amazonaws.com/doc/2011-06-15/">
<GetFederationTokenResult>
<Credentials>
 <SessionToken>
 AQoDYXdzEPT//////////wEXAMPLEtc764bNrC9SAPBSM22wDOk4x4HIZ8j4FZTwdQW
 LWsKWHGBuFqwAeMicRXmxfpSPfIeoIYRqTflfKD8YUuwthAx7mSEI/qkPpKPi/kMcGd
 QrmGdeehM4IC1NtBmUpp2wUE8phUZampKsburEDy0KPkyQDYwT7WZ0wq5VSXDvp75YU
 9HFvlRd8Tx6q6fE8YQcHNVXAkiY9q6d+xo0rKwT38xVqr7ZD0u0iPPkUL64lIZbqBAz
 +scqKmlzm8FDrypNC9Yjc8fPOLn9FX9KSYvKTr4rvx3iSIlTJabIQwj2ICCEXAMPLE==
 </SessionToken>
 <SecretAccessKey>
 wJalrXUtnFEMI/K7MDENG/bPxRfiCYzEXAMPLEKEY
 </SecretAccessKey>
 <Expiration>2011-07-15T23:28:33.359Z</Expiration>
 <AccessKeyId>AKIAIOSFODNN7EXAMPLE;</AccessKeyId>
</Credentials>
<FederatedUser>
 <Arn>arn:aws:sts::123456789012:federated-user/Jean</Arn>
 <FederatedUserId>123456789012:Jean</FederatedUserId>
</FederatedUser>
<PackedPolicySize>6</PackedPolicySize>
</GetFederationTokenResult>
<ResponseMetadata>
<RequestId>c6104cbe-af31-11e0-8154-cbc7ccf896c7</RequestId>
</ResponseMetadata>
</GetFederationTokenResponse>

Note
GetFederationToken stores the policy in a packed format. The action returns the size so you
can adjust the calling parameters. For more information about size constraints on the policy, go
to GetFederationToken in the AWS Security Token Service API Reference.

If you prefer to grant permissions at the resource level (for example, you attach a policy to an Amazon
S3 bucket), you can omit the Policy parameter. However, if you do not include a policy for the federated
user, the temporary security credentials will not grant any permissions. In this case, you must use resource
policies to grant the federated user access to your AWS resources.

For example, if your AWS account number is 111122223333, and you have an Amazon S3 bucket that
you want to allow Susan to access even though her temporary security credentials don't include a policy

API Version 2011-06-15
25

AWS Security Token Service Using Temporary Security
Credentials

GetFederationToken

http://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html

for the bucket, you would need to ensure that the bucket has a policy with an ARN that matches Susan's
ARN, such as arn:aws:sts::111122223333:federated-user/Susan.

Related Topics
• Making Query Requests

• Controlling Permissions for Temporary Security Credentials (p. 32)

• Disabling Permissions Granted Through Temporary Security Credentials (p. 35)

• Overview of Policies

Creating Temporary Security Credentials for
Delegating API Access

You can delegate access to your AWS resources by using IAM roles. IAM roles allow you to establish
trusted relationships with other AWS accounts (trusted entities). After a relationship has been established,
an IAM user or an application from the trusted entity can use the AWS Security Token Service (AWS
STS) AssumeRole action to obtain temporary security credentials that can be used to access AWS
resources in your account.

The temporary security credentials contain an access key ID, a secret access key, and a security token.
With the temporary security credentials, callers are granted the permissions that are defined in the role.
However, callers can scope down the permissions derived from the assumed role by passing a policy in
the AssumeRole call. (The passed policy can never escalate privileges beyond the permissions that are
defined in the role.) This optional policy is useful if multiple callers might call the same role, but each
caller requires different permissions. For example, different callers might require permissions to different
Amazon S3 buckets, but creating a role for each bucket might be tedious. Instead, you can create one
role that includes permissions for multiple buckets. The caller can then pass a policy that denies access
to the buckets that a specific user doesn't need access to.

You can specify the duration of the temporary security credentials to be from 15 minutes to one hour. By
default, the credentials are valid for one hour.

Requirements for assuming a role

To assume a role, the caller must meet the following requirements:

• The caller must have permission to call AssumeRole for the specific role.

• The role defines the caller's AWS account ID as a trusted entity.

• The caller must use IAM user credentials to assume a role.

• If the role has an external ID defined, the caller must pass that external ID when calling AssumeRole.
For more information, see About the External ID (p. 26).

About the External ID
An external ID is an optional piece of information that you can test in an IAM role policy to provide additional
control over who can assume the role. When a role policy includes an external ID, anyone who wants to
assume the role must not only be specified as a principal in the role, but must also include the external
ID.

The external ID is particularly useful when you delegate access to your AWS account to a third party—for
example, when a company has multiple customers and manages AWS resources on behalf of those
customers. Using the external ID as part of a request to assume a customer's role helps ensure that the

API Version 2011-06-15
26

AWS Security Token Service Using Temporary Security
Credentials

Related Topics

http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_UsingQueryAPI.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/PoliciesOverview.html
http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

requester accesses the correct AWS account. (This association helps prevent a form of privilege escalation
known as the "Confused Deputy" problem.)

A typical use is when a third-party company performs AWS tasks for customers, which works like this:

• An AWS customer, Bob, has an AWS account. Bob hires Example Corp, a third-party company, to
administer his AWS resources. Example Corp also has an AWS account, and Example Corp manages
AWS resources for other customers who have their own AWS accounts.

• Example Corp creates a unique identifier for Bob. Example Corp gives Bob his unique identifier and
Example Corp's AWS account number. Bob needs this information to create an IAM role (next step).

• Bob signs into AWS and creates an IAM role that will give Example Corp access to his resources. Like
any IAM role, the role has two policies, a permissions policy and a trust policy. The permissions policy
for the role specifies what the role allows someone to do. For example, Bob might specify that the role
allows someone to manage only his Amazon EC2 and Amazon RDS resources, but not his IAM users
or groups.

The role's trust policy specifies who can assume the role. In this scenario, the policy specifies the AWS
account number of Example Corp as the principal (that is, as the entity that's allowed to assume the
role). In addition, the trust policy includes a Condition element that tests the unique ID that Example
Corp assigned to Bob when he hired the company. The trust policy might look like this:

{
"Version": "2012-10-17",
"Statement": [
{
 "Sid": "",
 "Effect": "Allow"
 "Principal": {
 "AWS": "arn:aws:iam::Example-Corp-account-number:root"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "sts:ExternalId": "ID-issued-to-Bob-by-Example-Corp"
 }
 }
}
]
}

• Bob takes note of the ARN of the role and sends it to Example Corp. The role ARN might look like this:

arn:aws:iam::Bob-account-number:role/RoleForExampleCorp

• When Example Corp needs to administer Bob's AWS resources, someone from the company calls the
AWS STS AssumeRole API. The call includes the ARN of the role to assume and the ExternalID
parameter.

The request is authorized only if the role ARN and the external ID are correct, and if the request comes
from someone using Example Corp's AWS account. If the request succeeds, it returns temporary
security credentials that Example Corp can use to access the AWS resources that Bob's role allows.

API Version 2011-06-15
27

AWS Security Token Service Using Temporary Security
Credentials

About the External ID

http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#Condition
http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

Related Topics
The following information can show you what permissions are required to work with roles, how you can
set role permissions, how to define trusted entities, and how to assume a role:

• Granting Applications that Run on an Amazon EC2 Access to AWS Resources.This information provides
an overview of how applications that run on an instance can use role credentials to access AWS
resources, a method that doesn't require anyone to share credentials on Amazon EC2 instances.

• Enabling Cross-Account Access. This information shows how IAM users can access AWS resources
in another AWS account by using roles.

Granting an IAM Group Permission to Create
Temporary Security Credentials

By default, IAM users do not have permission to create temporary security credentials for federated users
and roles. However, IAM users can call GetSessionToken by default.To grant an IAM group permission
to create temporary security credentials for federated users or roles, you should attach a policy to the
IAM group that the IAM users belong to that grants one or both of the following privileges:

• For federated users, access to AWS STS GetFederationToken.

• For IAM roles, access to AWS STS AssumeRole.

Example A policy that grants permission to create temporary security credentials for a
federated user

The following example shows a policy that grants permission to access GetFederationToken.

{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Action": "sts:GetFederationToken",
"Resource":"*"
}]
}

Important
When you give an IAM user permission to create temporary security credentials for federated
users, you should be aware that this enables the IAM user to delegate his or her own permissions.
For more information about delegating permissions across IAM users and AWS accounts, see
Enabling Cross-Account Access. For more information about controlling permissions in temporary
security credentials, see Controlling Permissions for Temporary Security Credentials (p. 32).

Example Example of granting a user limited permission to create temporary security
credentials for federated users

When you let an IAM user call GetFederationToken to create temporary security credentials for
federated users, it is a best practice to restrict as much as practical the permissions that the IAM user is
allowed to delegate. For example, the following policy shows how to let an IAM user create temporary
security credentials only for federated users whose names start with Manager.

API Version 2011-06-15
28

AWS Security Token Service Using Temporary Security
Credentials

Related Topics

http://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/cross-acct-access.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/Delegation.html

{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Action": "sts:GetFederationToken",
"Resource":["arn:aws:sts::123456789012:federated-user/Manager*"]
}]
}

Example Example of a policy granting permission to assume a role

The following example shows a policy that grants permission to call AssumeRole for the UpdateApp
role in AWS account 123123123123.

{
"Version": "2012-10-17",
"Statement": [
{
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::123123123123:role/UpdateAPP"
}
]
}

Related Topics
• Managing IAM Policies

• Identifiers for IAM Entities

• Roles

Creating Temporary Security Credentials to
Enable Access for IAM Users

IAM users can use the AWS Security Token Service GetSessionToken API action to create temporary
security credentials for themselves. This enables access for IAM users or AWS accounts whose
permissions are already defined. Because the credentials are temporary, they provide enhanced security
when you have an IAM user who will be accessing your resources through a less secure environment,
such as a mobile device or web browser.

By default, temporary security credentials for an IAM user are valid for a maximum of 12 hours, but you
can request a duration as short as 15 minutes, or as long as 36 hours. For security reasons, a token for
an AWS account's root identity is restricted to a duration of one hour.

GetSessionToken returns temporary security credentials consisting of a security token, an access key
ID, and a secret access key. The following example shows a sample request and response using
GetSessionToken.The response also includes the expiration time of the temporary security credentials.

API Version 2011-06-15
29

AWS Security Token Service Using Temporary Security
Credentials

Related Topics

http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/index.html?Using_Identifiers.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html

Example Request

https://sts.amazonaws.com/
?Version=2011-06-15
&Action=GetSessionToken
&DurationSeconds=3600
&AUTHPARAMS

Example Response

<GetSessionTokenResponse xmlns="https://sts.amazonaws.com/doc/2011-06-15/">
<GetSessionTokenResult>
<Credentials>
 <SessionToken>
 AQoEXAMPLEH4aoAH0gNCAPyJxz4BlCFFxWNE1OPTgk5TthT+FvwqnKwRcOIfrRh3c/L
 To6UDdyJwOOvEVPvLXCrrrUtdnniCEXAMPLE/IvU1dYUg2RVAJBanLiHb4IgRmpRV3z
 rkuWJOgQs8IZZaIv2BXIa2R4OlgkBN9bkUDNCJiBeb/AXlzBBko7b15fjrBs2+cTQtp
 Z3CYWFXG8C5zqx37wnOE49mRl/+OtkIKGO7fAE
 </SessionToken>
 <SecretAccessKey>
 wJalrXUtnFEMI/K7MDENG/bPxRfiCYzEXAMPLEKEY
 </SecretAccessKey>
 <Expiration>2011-07-11T19:55:29.611Z</Expiration>
 <AccessKeyId>AKIAIOSFODNN7EXAMPLE</AccessKeyId>
</Credentials>
</GetSessionTokenResult>
<ResponseMetadata>
<RequestId>58c5dbae-abef-11e0-8cfe-09039844ac7d</RequestId>
</ResponseMetadata>
</GetSessionTokenResponse>

Temporary Security Credentials for IAM Users with
Multi-Factor Authentication (MFA)
Optionally, the GetSessionToken request can include SerialNumber and TokenCode values for AWS
multi-factor authentication (MFA) verification. If the provided values are valid, AWS STS provides temporary
security credentials that include the state of MFA authentication so that the temporary security credentials
can be used to access the MFA-protected API actions or AWS websites for as long as the MFA
authentication is valid.

The following example shows a GetSessionToken request that includes an MFA verification code and
device serial number.

https://sts.amazonaws.com/
?Version=2011-06-15
&Action=GetSessionToken
&DurationSeconds=7200
&SerialNumber=YourMFADeviceSerialNumber
&TokenCode=123456
&AUTHPARAMS

API Version 2011-06-15
30

AWS Security Token Service Using Temporary Security
Credentials

Credentials for IAM Users with MFA

Related Topics
• GetSessionToken in the AWS Security Token Service API Reference

• Using Multi-Factor Authentication (MFA) Devices with AWS in Using IAM

• Making Query Requests in Using IAM

API Version 2011-06-15
31

AWS Security Token Service Using Temporary Security
Credentials

Related Topics

http://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_ManagingMFA.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_UsingQueryAPI.html

Controlling Permissions for
Temporary Security Credentials

Topics

• Permissions in Temporary Security Credentials for Federated Users (p. 32)

• Permissions in Temporary Security Credentials for IAM Users (p. 35)

• Disabling Permissions Granted Through Temporary Security Credentials (p. 35)

• Related Topics (p. 36)

AWS determines what permissions to associate with temporary security credentials at the time that the
credentials are created. For example, the permissions for the temporary security credentials are bound
to either the role that was assumed (AssumeRole, AssumeRoleWithWebIdentity, or
AssumeRoleWithSAML) or to the IAM user that made the request (GetFederationToken or
GetSessionToken). The temporary security credentials are not bound to a set of static permissions
when the credentials are created. Instead, the effective permissions are evaluated when a request is
made that uses the credentials, based on the current permissions of the associated IAM user or role that
the temporary security credentials are bound to.

After temporary security credentials have been issued, they are valid through the expiration period and
cannot be revoked. However, because the permissions for the temporary credentials are checked for
each request, you can change the effective permissions for the temporary security credentials by editing
(or deleting) the policy or policies that describe the permissions for the role or user. In effect, you can
change the access rights for those credentials even after the credentials have been issued.

This section describes what you need to know about granting permissions in temporary security credentials,
and how to update or disable permissions after temporary security credentials have been issued.

Permissions in Temporary Security Credentials
for Federated Users

Calls to the AssumeRole action are made using the long-term security credentials of an IAM user. The
call must specify the ARN of the role to assume. The IAM user whose credentials are used to make the
call must as a minimum have sts:AssumeRole permissions, and must be listed as the principal in the
role that is being assumed. By default, the role being assumed determines the permissions that are

API Version 2011-06-15
32

AWS Security Token Service Using Temporary Security
Credentials

Permissions for Federated Users

granted to the temporary security credentials. The permissions of the IAM user that's used to make the
AssumeRole API have no effect on the permissions granted to the temporary security credentials that
are returned by the API. Optionally, the call can include a policy that further restricts the permissions of
the temporary security credentials. The resulting credentials are based on the combination of the role's
permissions and the passed permissions. (This means that the passed permissions can never escalate
the permissions defined in the role.)

For web identity federation (p. 12), calls to AssumeRoleWithWebIdentity are made without any AWS
credentials. As with AssumeRole, a parameter for the API call is the ARN of a role to assume. The role
that is being assumed must list the web identity provider as a principal (for example,
"Principal":{"Federated":"www.amazon.com"}). By default, as with AssumeRole, the permissions
granted to the resulting temporary security credentials are determined by the role that is assumed. In
addition, the call can include a policy that combines with the role's policy to determine the permissions
granted to the temporary security credentials.

Similarly, for SAML-based federation (p. 19), calls to AssumeRoleWithSAML are made without any AWS
credentials. The call includes a SAML assertion, the ARN of an SAML provider in IAM, and the ARN of
the role to be assumed. (The trust policy of the role includes the SAML provider as the principal.) The
permissions associated with the temporary security credentials are determined by the role that is assumed.
The call can include a policy that combines with the role's access policy to further reduce the permissions
associated with the credentials.

Calls to the GetFederationToken API action are made using the credentials of an IAM user. In addition,
you pass a policy as a parameter to GetFederationToken. The permissions granted to the resulting
temporary security credentials (that is, the permissions for the federated user) are the intersection of the
permissions of the IAM user making the request with the permissions that are passed in the call.

Note
Passing a policy to the GetFederationToken action is optional. However, if you do not pass
a policy, the resulting temporary security credentials that are returned have no effective
permissions and requests made using those credentials are always denied. A typical approach
for GetFederationToken is to create a policy for the calling IAM user that allows all actions
on all resources that might possibly be invoked via the proxy application. Then when you call
GetFederationToken to get temporary security credentials for a specific federated user, you
pass an individualized policy that reduces the permissions to an appropriate level for that user.

In all cases, if the resource being accessed also has a policy attached to it (for example, an Amazon S3
bucket), that policy is evaluated along with the policies that are part of the call.

For more information about how permissions are evaluated, see Evaluation Logic in Using IAM.

Example of Permissions for a Federated User
(GetFederationToken)
This section shows an example of how to use policies with the GetFederationToken API to control
how temporary security credentials are created and how permissions are delegated. Suppose you want
to grant read-only permissions to federated users so that they can access your Amazon S3 buckets.You
have a proxy application that can issue temporary credentials, as described in Creating a Mobile App
with Custom Authentication (p. 5).You create an IAM user named Issuer and set the IAM user's
permissions using the following policy. The policy allows Issuer to call GetFederationToken, and it
allows the user to get an item from mybucket in Amazon S3 as long as the item's name begins with
federated-user/.

{
 "Version": "2012-10-17",
 "Statement": [

API Version 2011-06-15
33

AWS Security Token Service Using Temporary Security
Credentials

Example of Permissions for a Federated User

http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_EvaluationLogic.html

 {
 "Effect": "Allow",
 "Action": ["sts:GetFederationToken"],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": ["s3:GetObject"],
 "Resource": "arn:aws:s3:::mybucket/federated-user/*"
 }
]
}

To actually delegate permissions to a federated user, a call is made to GetFederationToken using the
credentials of the user Issuer. The call includes a name that you assign to the federated user, the
duration the token is valid, and a policy granting access to Amazon S3. Temporary security credentials
that are returned by the call enable a federated user to read from the Amazon S3 bucket for as long as
the temporary security credentials are valid.

Now suppose that you want to restrict the permissions for the federated user to a folder in the Amazon
S3 bucket that matches the user's name. (For example, a federated user named Jill is able to read her
own files but not the files of any other federated user.) When you call GetFederationToken using the
credentials of IAM user Issuer, you can pass a policy like the following example.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::mybucket/federated-user/Jill/*"
 }]
}

This policy scopes down the permissions originally granted to user Issuer so that the federated user
Jill has a subset of the issuer's permissions.

If conditions exist in either policy, the conditions must be satisfied by the request for authorization. For
example, if Issuer can make Amazon S3 requests only subject to an aws:SourceIp condition, that
condition also applies to calls made with temporary security credentials issued by Issuer.

AWS checks permissions each time a request is made. Imagine that you call GetFederationToken
using the credentials of user Issuer to get temporary security credentials for federated user Jill, and
that you pass the following policy in the call:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "*",
 "Resource": "*"
 }]
}

The call to GetFederationToken that includes this policy will succeed, even though these permissions
allow more access than the policy that's attached to user Issuer. However, when federated user Jill
makes tries to delete an Amazon S3 bucket, the request fails. Although the policy that was passed

API Version 2011-06-15
34

AWS Security Token Service Using Temporary Security
Credentials

Example of Permissions for a Federated User

GetFederationToken would allow this action, the policy attached to user Issuer does not, and Jill's
effective permissions are the most restrictive set based on the intersection of the permissions for Issuer
and the permissions passed in the call.

Permissions in Temporary Security Credentials
for IAM Users

When the AWS Security Token Service (STS) GetSessionToken API action is called to create temporary
security credentials, the credentials returned in the response match those of the IAM user entity that
made the call. The user can access only the AWS resources that are granted in the policy or policies that
apply to that user.

For more information about IAM user permissions and policies, see Overview of Permissions.

Disabling Permissions Granted Through
Temporary Security Credentials

Temporary security credentials are valid until they expire, and they cannot be revoked. However, because
policies are evaluated each time an AWS request is made using the temporary security credentials, you
can modify access rights for temporary credentials after the credentials have been issued.

For IAM roles (AssumeRole and AssumeRoleWithWebIdentity)

• Delete the IAM role that has been assumed, or modify the role's permissions. For more information,
see Modifying a Role and Deleting Roles or Instance Profiles in the Using IAM guide.

For IAM users and federated users (GetSessionToken and GetFederationToken)

• Create a resource policy that denies access to the user who created the temporary security credentials.

• Create an IAM user policy for the user who created the temporary security credentials that explicitly
denies access to a specific resource by a federated user.

The methods for disabling IAM and federated users using GetSessionToken and GetFederationToken
are described in the following sections.

Note
When you update existing policy permissions, or when you apply a new policy to a user or a
resource, it may take a few minutes for policy updates to take effect.

For more information about how IAM evaluates permissions in the context of temporary security credentials,
see Controlling Permissions for Temporary Security Credentials (p. 32). For general information about
how IAM evaluates permissions, see Overview of Permissions in Using IAM.

Denying Access to the User Who Created the
Temporary Security Credentials
To deny access to a user who has temporary security credentials that have not already expired, you can
deny access to the IAM user whose credentials were used to generate the temporary credentials. In the
case of federated users, denying access to the user who created the temporary credentials is effective

API Version 2011-06-15
35

AWS Security Token Service Using Temporary Security
Credentials

Permissions for IAM Users

http://docs.aws.amazon.com/IAM/latest/UserGuide/PermissionsOverview.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/modifying-role.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/deleting-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/PermissionsOverview.html

because the permissions granted to the federated user cannot exceed the permissions of the IAM user
who created the temporary credentials. In the case of IAM users, the holder of the temporary credentials
and the creator are the same identity.

In the following policy example, if the AWS account owner applied this resource policy to his Amazon
Simple Queue Service (Amazon SQS) queue, the IAM user named John could not send messages from
the queue, and neither could any federated users who have temporary security credentials created by
John.

{
 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement": [{
 "Principal": "arn:aws:iam::111122223333:user/John"
 "Effect": "Deny",
 "Action": "sqs:SendMessage",
 "Resource": "arn:aws:sqs:us-east-1:111122223333:myqueue"
 }]
}

Important
An important reason never to use your root credentials to create temporary security credentials
is the ability to deny access to the user who created those credentials. By using the credentials
of an IAM user (and not your root account credentials) to request temporary security credentials,
you can modify permissions for the issuing user without affecting your root account. For
information about modifying user permissions, see Managing IAM Policies in Using IAM.

Denying Access to a Specific Resource for a
Federated User
If you have issued temporary security credentials to a federated user but you want to revoke that user's
temporary credentials before they expire (and no one else's), you can create a policy like the one in the
following example. The policy includes an explicit Deny effect, which takes precedence over an Allow
effect for the same actions and resources.

To put this policy into effect, you can attach it to the IAM user whose credentials were used to create the
temporary security credentials. For this policy, it doesn't matter that IAM doesn't know who federated user
Jill is. The policy works because it denies the permission of the IAM user who created the temporary
security credentials to delegate access to the Amazon S3 GetObject action for Jill.

 {
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Deny",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::mybucket/federated-user/Jill/*"
 }]
}

Related Topics
• Creating a Role to Allow AWS Access for the Mobile App (p. 14).This section discusses how to configure

IAM roles when you use web identity federation and the AssumeRoleWithWebIdentity API.

API Version 2011-06-15
36

AWS Security Token Service Using Temporary Security
Credentials

Denying Access to a Specific Resource

http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html

• Overview of Policies in Using IAM .

API Version 2011-06-15
37

AWS Security Token Service Using Temporary Security
Credentials

Related Topics

http://docs.aws.amazon.com/IAM/latest/UserGuide/PoliciesOverview.html

Using Temporary Security
Credentials

This document provides an overview of how you use temporary security credentials that you get from
AWS STS.

You can use temporary security credentials to make programmatic requests for AWS resources using
the AWS SDKs or using API calls, the same way that you can use long-term security credentials such
as IAM user credentials. However, there are a few differences:

• When you make a call using temporary security credentials, you must include a session token that is
returned along with those temporary credentials.This is used by AWS to validate the temporary security
credentials.

• The temporary credentials expire after a specified interval. After the credentials expire, any calls that
you make using those credentials will fail, so you must get a new set of credentials.

Using Temporary Security Credentials with the
AWS SDKs

The following example shows pseudocode for how to use temporary security credentials if you're using
an AWS SDK:

assumeRoleResult = AssumeRole(role-arn);
tempCredentials = new SessionAWSCredentials(
 assumeRoleResult.AccessKeyId,
 assumeRoleResult.SecretAccessKey,
 assumeRoleResult.SessionToken);
s3Request = CreateAmazonS3Client(tempCredentials);

For details about how to call AssumeRole, GetFederationToken, and other APIs and about how to
get the temporary security credentials and session token from the result, see the documentation for the
SDK that you're working with.You can find the documentation for all the AWS SDKs on the main AWS
documentation page.

API Version 2011-06-15
38

AWS Security Token Service Using Temporary Security
Credentials

Using Temporary Security Credentials with the AWS
SDKs

http://aws.amazon.com/tools/
http://aws.amazon.com/documentation
http://aws.amazon.com/documentation

You can make sure that you get a new set of credentials before the old ones expire. In some SDKs, you
can use a provider that manages the process of refreshing credentials for you; check the documentation
for the SDK you're using.

Using Temporary Security Credentials with APIs
If you're making direct API requests to AWS, you use the temporary access key ID and secret access
key as you would use long-term credentials. For most services, you do the following:

• Use the temporary access key ID in place of the long-term access key ID that you would normally use
for an AWS call (for example, as the AWSAccessKeyId parameter value in a call).

• Sign the request using the secret access key that is provided as part of the temporary security
credentials.

• Include the IAM session token that is part of the temporary security credentials.You include the session
token as an authorization header to the request—for example, as the X-Amz-Security-Token header.
(The session token is not part of the information that's used to create the signature.)

The following example uses temporary security credentials to authenticate a ListUsers request to IAM.
The request uses Signature Version 4 and includes authorization information in the headers.

Sample for services that use Signature Version 4 and add authorization information in the
header

POST http://iam.amazonaws.com/ HTTP/1.1
Authorization: AWS4-HMAC-SHA256 Credential=Access Key ID provided by AWS Security
 Token Service/20110909/us-east-1/iam/aws4_request, SignedHeaders=host, Signa
ture=signature-calculated-using-the-temporary-access-key
host: iam.amazonaws.com
Content-type: application/x-www-form-urlencoded; charset=utf-8
X-Amz-Date: 20110909T233600Z
X-Amz-Security-Token: session-token

Action=ListUsers&Version=2010-05-08

The following example shows an Amazon SimpleDB request that uses Signature Version 2 and includes
authorization information in the query string.

Sample for services that use Signature Version 2 and add authorization information in the
query string

https://sdb.amazonaws.com/
?Action=GetAttributes
&AWSAccessKeyId=access-key-from-AWS Security Token Service
&DomainName=MyDomain
&ItemName=MyItem
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A07-07%3A00
&Version=2009-04-15
&Signature=signature-calculated-using-the-temporary-access-key
&SecurityToken=session-token

If you send requests using expired credentials, AWS denies the request.

API Version 2011-06-15
39

AWS Security Token Service Using Temporary Security
Credentials

Using Temporary Security Credentials with APIs

More Information
For more information about using AWS STS with other AWS services, see the following links:

• Amazon S3. See Making Requests Using IAM User Temporary Credentials or Making Requests Using
Federated User Temporary Credentials in the Amazon Simple Storage Service Developer Guide.

• Amazon SNS. See Using Temporary Security Credentials in the Amazon Simple Notification Service
Developer Guide.

• Amazon SQS. See Using Temporary Security Credentials in the Amazon Simple Queue Service
Developer Guide.

• Amazon SimpleDB. See Using Temporary Security Credentials in the Amazon SimpleDB Developer
Guide.

API Version 2011-06-15
40

AWS Security Token Service Using Temporary Security
Credentials

More Information

http://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempSessionToken.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempFederationToken.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempFederationToken.html
http://docs.aws.amazon.com/sns/latest/dg/UsingIAMwithSNS.html#UsingTemporarySecurityCredentials_SNS
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html#UsingTemporarySecurityCredentials_SQS
http://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/index.html?UsingTemporarySecurityCredentials_SDB.html

Giving Federated Users Direct
Access to the AWS Management
Console

You can give your federated users single sign-on (SSO) access to the AWS Management Console through
your identity and authorization system, without requiring users to sign into Amazon Web Services (AWS).
The method you use to do this varies depending on how your organization is set up:

• If your organization has an identity system that integrates SAML 2.0 (Security Assertion Markup
Language 2.0), you can set things up in your organization and in IAM so that users can seamlessly
sign in to a portal inside your organization, select an option to go to the AWS Management Console,
and be automatically taken to the console.

• For other scenarios, you can write code that creates a URL that includes identity information.You can
distribute the URL to users to give them secure and direct access to the AWS Management Console.

Topics

• Giving Console Access Using SAML (p. 41)

• Giving Console Access by Creating a URL (p. 46)

Giving Console Access Using SAML
If your organization supports SAML, you can let users who have been authenticated in your organization
access the AWS Management Console without having to have IAM identities and without having to sign
in again. AWS provides a single sign-on (SSO) endpoint (https://signin.aws.amazon.com/saml) that
accepts SAML assertions that are used to grant your users federated access to the console.

Note
You can also configure your IdP and AWS to get temporary security credentials that can be used
for programmatic access to AWS resources. For more information, see Creating Temporary
Security Credentials for SAML Federation (p. 19).

The following diagram describes the flow for SAML-enabled single sign-on.

API Version 2011-06-15
41

AWS Security Token Service Using Temporary Security
Credentials

Giving Console Access Using SAML

1. The user browses to your organization's portal and selects the option to go to the AWS Management
Console. In your organization, the portal functions as a identity provider (IdP) that handles the exchange
of trust between your organization and AWS.

2. The portal verifies the user's identity in your organization.

3. The portal generates a SAML authentication response that includes assertions that identify the user
and include attributes about the user.The portal sends this response to the client (the user's browser).

4. The client posts the SAML assertion to an AWS single sign-on endpoint. The endpoint uses the AWS
STS AssumeRoleWithSAML API to request temporary security credentials and creates a console
sign-in URL.

5. AWS sends the sign-in URL back to the client with a redirect.

6. The client gets the console sign-in and is redirected to the AWS Management Console. (If the
authentication response includes attributes that map to multiple IAM roles, the user is prompted to
select the role to use for access to the console.)

From the user's perspective, the process happens transparently—the user starts at your organization's
internal portal and ends up at the AWS Management Console, without ever having to supply any AWS
credentials.

To use SAML-based federation for access to AWS resources, you perform steps inside your organization's
network in order to configure it as an identity provider.You then configure AWS to act as a service provider.

Topics

• Configure Your Network as a SAML Provider for AWS (p. 43)

• Create a SAML Provider in IAM (p. 43)

• Establish Permissions in AWS for Federated Users (p. 43)

API Version 2011-06-15
42

AWS Security Token Service Using Temporary Security
Credentials

Giving Console Access Using SAML

http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html

• Configure Assertions for the SAML Authentication Response (p. 44)

• Mapping SAML Attributes to AWS Policy Keys (p. 45)

Configure Your Network as a SAML Provider for
AWS
Inside your organization's network, you configure your identity store (such as Windows Active Directory)
to work with a SAML-based identity provider (IdP) like Windows Active Directory Federation Services,
Shibboleth, etc. Using your IdP, you generate a metadata document that describes your organization as
an identity provider and includes authentication keys.You also configure your organization's portal to
route user requests for the AWS Management Console to the AWS SAML endpoint for authentication
using SAML assertions.

Create a SAML Provider in IAM
Next, you go to the AWS Management Console. In the IAM console, you create a new SAML provider,
which is an entity in IAM that holds information about your organization as an identity provider. As part
of this process, you upload the metadata document that was produced by the SAML software in your
organization.

For details, see Managing SAML Providers in the Using IAM guide.

When this task is done, you can create an IAM role that will be able to establish a trust relationship
between your organization and IAM and that identities your organization as a principal (trusted entity) for
purposes of federation.

Establish Permissions in AWS for Federated Users
The next step is to create an IAM role that defines what users from your organization will be allowed to
do in AWS.You can use the IAM console to create this role. When you create the trust policy for the role,
you specify the SAML provider that you created earlier in IAM, and you specify a SAML attribute that
describes the user. For example, you can specify that only users whose SAML eduPersonOrgDN value
is ExampleOrg will be allowed to sign in. The role wizard automatically adds a condition to test the
SAML:aud attribute to make sure that the role is assumed only for SSO. The trust role might look like
this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {

API Version 2011-06-15
43

AWS Security Token Service Using Temporary Security
Credentials

Configure Your Network as a SAML Provider for AWS

http://docs.aws.amazon.com/IAM/latest/UserGuide/idp-managing-identityproviders.html

 "Federated": "arn:aws:iam::account-number-without-hyphens:saml-pro
vider/ExampleOrgSSOProvider"
 },
 "Action": "sts:AssumeRoleWithSAML",
 "Condition": {
 "StringEquals": {
 SAML:eduPersonOrgDN": "ExampleOrg",
 "SAML:aud": "https://signin.aws.amazon.com/saml"
 }
 }
 }
]
}

For the access (permissions) policy in the role, you specify permissions as you would for any role. For
example, if users from your organization will be allowed to administer Amazon EC2 instances, you explicitly
allow Amazon EC2 actions in the permissions policy, such as those in the Amazon EC2 Full Access
policy template.

For details, see Creating a Role for SAML-Based Federation in the Using IAM guide.

Configure Assertions for the SAML Authentication
Response
In your organization, after a user's identity has been verified, the IdP must send an authentication response
to the AWS endpoint (https://signin.aws.amazon.com/saml).This response must be a POST request that
includes a SAML token that adheres to SAML standards and that contains the following assertions. All
of these assertions are required.

• Subject and NameID. The following excerpt shows an example.Your own values would substitute
for the marked ones.

<Subject>
 <NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persist
ent">_cbb88bf52c2510eabe00c1642d4643f41430fe25e3
 </NameID>
 <SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <SubjectConfirmationData NotOnOrAfter="2013-11-05T02:06:42.876Z"
 Recipient="https://signin.aws.amazon.com/saml"/>
 </SubjectConfirmation>
</Subject>

• An attribute with Name set to https://aws.amazon.com/SAML/Attributes/Role. This attribute
contains one or more AttributeValue elements that list the IAM role and SAML provider that the
user is mapped to in your IdP. The role and provider are specified as a comma-delimited pair of ARNs,
in the same format that they are used for the RoleArn and PrincipalArn parameters that are passed
to AssumeRoleWithSAML. The attribute must contain at least one role/provider pair, and can contain
multiple pairs. If the attribute contains multiple pairs, when the user uses WebSSO to sign into the AWS
Management Console, he or she is asked to select the role to assume.

<Attribute Name="https://aws.amazon.com/SAML/Attributes/Role">
 <AttributeValue>arn:aws:iam::account-number:role/role-name,arn:aws:iam::ac
count-number:saml-provider/provider-name</AttributeValue>
 <AttributeValue>arn:aws:iam::account-number:role/role-name,arn:aws:iam::ac

API Version 2011-06-15
44

AWS Security Token Service Using Temporary Security
Credentials

Configure Assertions for the SAML Authentication
Response

http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-saml.html
http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html

count-number:saml-provider/provider-name</AttributeValue>
 <AttributeValue>arn:aws:iam::account-number:role/role-name,arn:aws:iam::ac
count-number:saml-provider/provider-name</AttributeValue>
</Attribute>

• An attribute with Name set to https://aws.amazon.com/SAML/Attributes/RoleSessionName.
The attribute value provides an identifier for the AWS temporary credentials that are issued for SSO.
The value is typically a user name or email address for the principal, and is displayed in the AWS
console. This value must be between 2 and 32 characters long, can contain only alphanumeric
characters, underscores, and the following characters: +=,.@:-. It cannot contain spaces.

<Attribute Name="https://aws.amazon.com/SAML/Attributes/RoleSessionName">
 <AttributeValue>name</AttributeValue>
</Attribute>

Mapping SAML Attributes to AWS Policy Keys
The tables in this section list how commonly used SAML attributes are mapped to policy keys in AWS.

In the eduPerson and eduOrg attributes table, values are typed either as strings or as lists (of strings).
For string values, you can test these values in policies using StringEquals or StringLike conditions.
For list values, you can test the values in policies using the ForAnyValue and ForAllValues policy
set operators.

eduPerson and eduOrg Attributes

TypeAWS KeyeduPerson or eduOrg Attribute

List of stringeduPersonAffiliationurn:oid:1.3.6.1.4.1.5923.1.1.1.1

List of stringeduPersonNicknameurn:oid:1.3.6.1.4.1.5923.1.1.1.2

StringeduPersonOrgDNurn:oid:1.3.6.1.4.1.5923.1.1.1.3

List of stringeduPersonOrgUnitDNurn:oid:1.3.6.1.4.1.5923.1.1.1.4

StringeduPersonPrimaryAffiliationurn:oid:1.3.6.1.4.1.5923.1.1.1.5

StringeduPersonPrincipalNameurn:oid:1.3.6.1.4.1.5923.1.1.1.6

List of stringeduPersonEntitlementurn:oid:1.3.6.1.4.1.5923.1.1.1.7

StringeduPersonPrimaryOrgUnitDNurn:oid:1.3.6.1.4.1.5923.1.1.1.8

List of stringeduPersonScopedAffiliationurn:oid:1.3.6.1.4.1.5923.1.1.1.9

List of stringeduPersonTargetedIDurn:oid:1.3.6.1.4.1.5923.1.1.1.10

List of stringeduPersonAssuranceurn:oid:1.3.6.1.4.1.5923.1.1.1.11

List of stringeduOrgHomePageURIurn:oid:1.3.6.1.4.1.5923.1.2.1.2

List of stringeduOrgIdentityAuthNPolicyURIurn:oid:1.3.6.1.4.1.5923.1.2.1.3

List of stringeduOrgLegalNameurn:oid:1.3.6.1.4.1.5923.1.2.1.4

List of stringeduOrgSuperiorURIurn:oid:1.3.6.1.4.1.5923.1.2.1.5

API Version 2011-06-15
45

AWS Security Token Service Using Temporary Security
Credentials

Mapping SAML Attributes to AWS Policy Keys

http://docs.aws.amazon.com/IAM/latest/UserGuide/conditions-setoperators.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/conditions-setoperators.html

TypeAWS KeyeduPerson or eduOrg Attribute

List of stringeduOrgWhitePagesURIurn:oid:1.3.6.1.4.1.5923.1.2.1.6

List of stringcnurn:oid:2.5.4.3

Giving Console Access by Creating a URL
You can let users who have signed in to your organization's network access the AWS Management
Console by using code to create a URL that gives them secure and direct access to the console.

Note
If your organization uses SAML, you can set up access to the AWS Management Console without
writing code. For details, see Giving Console Access Using SAML (p. 41).

To create the URL you need to complete the following tasks:

• Verify that the user is authenticated.

• Create temporary security credentials for the user.

• Construct the URL that passes the temporary security credentials to the AWS Management Console.

• Distribute the URL to the user.

The URL is valid for 15 minutes from the time it is created.The temporary security credentials associated
with the URL are valid for the duration you specified when you created them, starting from the time they
were created.

Important
Keep in mind that the URL grants access to your AWS resources through the AWS Management
Console, to the extent that you have enabled permissions in the associated temporary security
credentials. For this reason, you should treat the URL as a secret. We recommend returning the
URL through a secure redirect, for example, by using a 302 HTTP response status code over
an SSL connection. For more information about the 302 HTTP response status code, go to RFC
2616, section 10.3.3.

To view a sample application that shows you how you can implement a single sign-on solution, go to
AWS Management Console federation proxy sample use case in the AWS Sample Code & Libraries.

To complete these tasks, you can use the HTTPS Query API for AWS Identity and Access Management
(IAM) and the AWS Security Token Service (AWS STS). Or, you can use programming languages, such
as Java, Ruby, or C#. Each of these methods is described in the following sections.

Constructing the URL for the AWS Management
Console (Query APIs)
This topic describes how to construct a URL that gives your federated users direct access to the AWS
Management Console.This task uses the AWS Identity and Access Management (IAM) and AWS Security
Token Service (AWS STS) HTTPS Query API. For more information about making Query requests, go
to Making Query Requests in Using IAM.

Note
The following procedure contains examples of text strings. To enhance readability, line breaks
have been added to some of the longer examples. When you create these strings for your own
use, you should omit any line breaks.

API Version 2011-06-15
46

AWS Security Token Service Using Temporary Security
Credentials

Giving Console Access by Creating a URL

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://aws.amazon.com/code/4001165270590826
http://docs.aws.amazon.com/IAM/latest/UserGuide//IAM_UsingQueryAPI.html

To give a federated user access to your resources from the AWS Management Console

1. Authenticate the user in your identity and authorization system.

2. Create temporary security credentials for the user. The credentials consist of an access key ID, a
secret access key, and a security token. For more information about creating temporary credentials,
see Creating Temporary Security Credentials (p. 11).

Important
When you create temporary security credentials, you must specify the permissions the
credentials will grant to the user who holds them. For more information about controlling
permissions in temporary security credentials, see Controlling Permissions for Temporary
Security Credentials (p. 32).

3. After you obtain the temporary security credentials, you format them as a JSON string so that you
can exchange them for a sign-in token.The following example shows how to encode the credentials.
You replace the placeholder text with the appropriate values from the credentials that you create.

{"sessionId":"*** AWS Access Key ID ***",
"sessionKey":"*** AWS Secret Access Key ***",
"sessionToken":"*** AWS security token ***"}

4. Next, make a request to the AWS federation endpoint (https://signin.aws.amazon.com/federation)
with the Action and Session parameters, as shown in the following example.

Action = getSigninToken
Session = *** the JSON string described in Step 3, form-urlencoded ***

The following string is an example of what your request might look like.

https://signin.aws.amazon.com/federation?
Action=getSigninToken
&Session=%7B%22sessionId%22%3A%22ASIAEXAMPLEMDLUUAEYQ%22%2C%22sessionKey%22
%3A%22tpSl9thxr2PkEXAMPLETAnVLVGdwC5zXtGDr%2FqWi%22%2C%22sessionToken%22%3A
%22AQoDYXdzEXAMPLE4BrM96BJ7btBQRrAcCjQIbg55555555OBT7y8h2YJ7woJkRzsLpJBpklC
qPXxS2AjRorJAm%2BsBtv1YXlZF%2FfHljgORxOevE388GdGaKRfO9W4DxK4HU0fIpwL%2BQ7oX
2Fj%2BJa%2FAb5u0cL%2BzI1P5rJuDzH%2F0pWEiYfiWXXH20rWruXVXpIIO%2FPhMHlV3Jw%2B
gDc4ZJ0WItuLPsuyP7BVUXWLcAVyTFbxyLy36FBSXF1z8a%2FvJN7utcj0mJRGIiIZSV7FQuepa
WP5YARYMrOUMqBB3v308LKBU8Z0xYe2%2FqthrLXf1nX0njbU%2FJTrct%2BEdG9PRb3907qa5n
VbnnnxdVQJ3mPgQchAZpDI9LsDDbGsa67JHUyFYnyUUUkMRfe7G70gjvbz9gQ%EXAMPLE

The response is a JSON document with an SigninToken value. It will look similar to the following
example.

{"SigninToken":"*** the SigninToken string ***"}

5. Finally, you create the URL that your federated users will use to access the AWS Management
Console. The URL is the federation URL endpoint (https://signin.aws.amazon.com/federation), plus
the following parameters:

Action = login
Issuer = *** the form-urlencoded URL for your internal sign-in page ***
Destination = *** the desired AWS Management Console URL, also
 form-urlencoded ***

API Version 2011-06-15
47

AWS Security Token Service Using Temporary Security
Credentials

Constructing the URL for the AWS Management Console
(Query APIs)

SigninToken = *** the value of SigninToken from the JSON document returned
 in Step 4 ***

The following example shows what the final URL might look like. The URL is valid for 15 minutes
from the time it is created. The temporary security credentials associated with the URL are valid for
the duration you specified when you created them.

https://signin.aws.amazon.com/federation?
Action=login
&Issuer=https%3A%2F%2Fexample.com
&Destination=https%3A%2F%2Fconsole.aws.amazon.com%2Fs
&SigninToken=VCQgs5qZZt3Q6fn8Tr5EXAMPLEmLnwB7JjUc-SHwnUUWabcRdnWsi4DBn-dvC
CZ85wrD0nmldUcZEXAMPLE-vXYH4Q__mleuF_W2BE5HYexbe9y4Of-kje53SsjNNecATfjIzpW1
WibbnH6YcYRiBoffZBGExbEXAMPLE5aiKX4THWjQKC6gg6alHu6JFrnOJoK3dtP6I9a6hi6yPgm
iOkPZMmNGmhsvVxetKzr8mx3pxhHbMEXAMPLETv1pij0rok3IyCR2YVcIjqwfWv32HU2Xlj471u
3fU6uOfUComeKiqTGX974xzJOZbdmX_t_lLrhEXAMPLEDDIisSnyHGw2xaZZqudm4mo2uTDk9Pv
9l5K0ZCqIgEXAMPLEcA6tgLPykEWGUyH6BdSC6166n4M4JkXIQgac7_7821YqixsNxZ6rsrpzwf
nQoS14O7R0eJCCJ684EXAMPLEZRdBNnuLbUYpz2Iw3vIN0tQgOujwnwydPscM9F7foaEK3jwMkg
Apeb1-6L_OB12MZhuFxx55555EXAMPLEhyETEd4ZulKPdXHkgl6T9ZkIlHz2Uy1RUTUhhUxNtSQ
nWc5xkbBoEcXqpoSIeK7yhje9Vzhd61AEXAMPLElbWeouACEMG6-Vd3dAgFYd6i5FYoyFrZLWvm
0LSG7RyYKeYN5VIzUk3YWQpyjP0RiT5KUrsUi-NEXAMPLExMOMdoODBEgKQsk-iu2ozh6r8bxwC
RNhujg

Constructing the URL for the AWS Management
Console (Java)
This topic describes how to programmatically construct a URL that gives your federated users direct
access to the AWS Management Console. The following code snippet uses the AWS SDK for Java.You
replace the placeholder text with your own values.

import java.net.URLEncoder;
import java.net.URL;
import java.net.URLConnection;
import java.io.BufferedReader;
import java.io.InputStreamReader;
// Available at http://www.json.org/java/index.html
import org.json.JSONObject;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.securitytoken.AWSSecurityTokenServiceClient;
import com.amazonaws.services.securitytoken.model.Credentials;
import com.amazonaws.services.securitytoken.model.GetFederationTokenRequest;
import com.amazonaws.services.securitytoken.model.GetFederationTokenResult;

AWSCredentials credentials = new BasicAWSCredentials(
 "*** Access Key ID ***",
 "*** Secret Key ***");
AWSSecurityTokenServiceClient stsClient =
 new AWSSecurityTokenServiceClient(credentials);

GetFederationTokenRequest getFederationTokenRequest =
 new GetFederationTokenRequest();

API Version 2011-06-15
48

AWS Security Token Service Using Temporary Security
Credentials

Constructing the URL for the AWS Management Console
(Java)

getFederationTokenRequest.setDurationSeconds(3600);
getFederationTokenRequest.setName("UserName");

// A sample policy for accessing Amazon SNS in the console.
String policy = "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Ac
tion\":\"sns:*\"," +
 "\"Effect\":\"Allow\",\"Resource\":\"*\"}]}";

getFederationTokenRequest.setPolicy(policy);

GetFederationTokenResult federationTokenResult =
 stsClient.getFederationToken(getFederationTokenRequest);

Credentials federatedCredentials = federationTokenResult.getCredentials();

// The issuer parameter specifies your internal sign-in
// page, for example https://mysignin.internal.mycompany.com/.
// The console parameter specifies the URL to the destination console of the
// AWS Management Console. This example goes to Amazon SNS.
// The signin parameter is the URL to send the request to.
String issuerURL = "https://mysignin.internal.mycompany.com/";
String consoleURL = "https://console.aws.amazon.com/sns";
String signInURL = "https://signin.aws.amazon.com/federation";

// Create the sign-in token using temporary credentials,
// including the Access Key ID, Secret Access Key, and security token.
String sessionJson = String.format(
 "{\"%1$s\":\"%2$s\",\"%3$s\":\"%4$s\",\"%5$s\":\"%6$s\"}",
 "sessionId", federatedCredentials.getAccessKeyId(),
 "sessionKey", federatedCredentials.getSecretAccessKey(),
 "sessionToken", federatedCredentials.getSessionToken());

String getSigninTokenURL = signInURL + "?Action=getSigninToken" +
 "&SessionType=json&Session=" + URLEncoder.encode(sessionJson,
 "UTF-8");
URL url = new URL(getSigninTokenURL);
URLConnection conn = url.openConnection ();
BufferedReader bufferReader = new BufferedReader(new
 InputStreamReader(conn.getInputStream()));
String returnContent = bufferReader.readLine();
String signinToken = new JSONObject(returnContent).getString("SigninToken");

String signinTokenParameter = "&SigninToken=" +
 URLEncoder.encode(signinToken,"UTF-8");

// The issuer parameter is optional, but recommended. Use it to direct users
// to your sign-in page when their session expires.
String issuerParameter = "&Issuer=" + URLEncoder.encode(issuerURL, "UTF-8");
String destinationParameter = "&Destination=" +
 URLEncoder.encode(consoleURL,"UTF-8");
String loginURL = signInURL + "?Action=login" + signinTokenParameter +
 issuerParameter + destinationParameter;

API Version 2011-06-15
49

AWS Security Token Service Using Temporary Security
Credentials

Constructing the URL for the AWS Management Console
(Java)

Constructing the URL for the AWS Management
Console (Ruby)
This topic describes how to programmatically construct a URL that gives your federated users direct
access to the AWS Management Console. This code snippet uses the AWS SDK for Ruby.

require 'rubygems'
require 'json'
require 'open-uri'
require 'cgi'S
require 'aws-sdk'

Normally, the temporary credentials will come from your proxy
application, but for this example we create them here
sts = AWS::STS.new(:access_key_id => "*** Your AWS Access Key ID ***",
 :secret_access_key => "*** Your AWS Secret Access Key ***")

A sample policy for accessing Amazon SNS in the console.
policy = AWS::STS::Policy.new
policy.allow(:actions => "sns:*",:resources => :any)

session = sts.new_federated_session(
 "UserName",
 :policy => policy,
 :duration => 3600)

The issuer parameter specifies your internal sign-in
page, for example https://mysignin.internal.mycompany.com/.
The console parameter specifies the URL to the destination console of the
AWS Management Console. This example goes to Amazon SNS.
The signin parameter is the URL to send the request to.
issuer_url = "https://mysignin.internal.mycompany.com/"
console_url = "https://console.aws.amazon.com/sns"
signin_url = "https://signin.aws.amazon.com/federation"

Create the sign-in token using temporary credentials,
including the Access Key ID, Secret Access Key, and security token.
session_json = {
 :sessionId => session.credentials[:access_key_id],
 :sessionKey => session.credentials[:secret_access_key],
 :sessionToken => session.credentials[:session_token]
}.to_json

get_signin_token_url = signin_url + "?Action=getSigninToken" +
 "&SessionType=json&Session=" + CGI.escape(session_json)
returned_content = URI.parse(get_signin_token_url).read
signin_token = JSON.parse(returned_content)['SigninToken']
signin_token_param = "&SigninToken=" + CGI.escape(signin_token)

The issuer parameter is optional, but recommended. Use it to direct users
to your sign-in page when their session expires.
issuer_param = "&Issuer=" + CGI.escape(issuer_url)
destination_param = "&Destination=" + CGI.escape(console_url)

login_url = signin_url + "?Action=login" + signin_token_param +
 issuer_param + destination_param

API Version 2011-06-15
50

AWS Security Token Service Using Temporary Security
Credentials

Constructing the URL for the AWS Management Console
(Ruby)

AWS Security Token Service
Sample Applications

To see how you can use AWS STS to manage temporary security credentials, you can download the
following sample applications that implement complete example scenarios.

• Identity Federation Sample Application for an Active Directory Use Case. Demonstrates how to issue
temporary security credentials for accessing Amazon S3 files and buckets, using permissions that are
tied to an Active Directory user. (.NET/C#)

• AWS Management Console Federation Proxy Sample Use Case. Demonstrates how to create a
federation proxy that enables single sign-on (SSO) so that existing Active Directory users can sign into
the AWS Management Console. (.NET/C#)

• Integrate Shibboleth with AWS Identity and Access Management. Shows how to use Shibboleth and
SAML to provide users with single sign-on (SSO) access to the AWS Management Console.

• AWS SDK for iOS and AWS SDK for Android. These SDKs contain a sample application that
demonstrates how to use web identity federation (p. 12), which lets you create a mobile app or
client-based web app where users can sign in using Login with Amazon, Facebook, or Google. The
samples include code that shows how to invoke the identity providers, and then how to use the
information from these providers to get and use temporary security credentials.

• Web Identity Federation Playground.This website provides an interactive demonstration of web identity
federation (p. 12).

• Authenticating Users of AWS Mobile Applications with a Token Vending Machine at AWS Articles &
Tutorials. Demonstrates a server-based proxy application that serves temporary credentials to remote
clients (such as mobile apps) so that the clients can sign web requests to AWS. This sample can be
used with the sample client that is part of the AWS SDK for Android and the AWS SDK for iOS. (Java)
For more information, see Credential Management for Mobile Applications, which is an article that
provides additional details on how to secure AWS resources when using the token vending machine
(TVM) with mobile applications.

API Version 2011-06-15
51

AWS Security Token Service Using Temporary Security
Credentials

http://aws.amazon.com/code/1288653099190193
http://aws.amazon.com/code/4001165270590826
http://aws.amazon.com/code/8383453795065208
http://shibboleth.net/
http://aws.amazon.com/sdkforios/
http://aws.amazon.com/sdkforandroid/
https://web-identity-federation-playground.s3.amazonaws.com/index.html
http://aws.amazon.com/articles/4611615499399490
http://aws.amazon.com/code/4598681430241367

AWS Services that Support AWS
Security Token Service (AWS STS)

The following table describes the AWS products that support requests made using the temporary security
credentials that are generated by AWS STS API actions.

For information about how to use temporary security credentials with the AWS SDKs or when making
API calls, see Using Temporary Security Credentials (p. 38).

Supports Temporary Security Credentials?AWS Product

YesAuto Scaling

YesAWS Account Billing

YesAWS CloudFormation

YesAmazon CloudFront

NoAWS CloudHSM

YesAmazon CloudSearch

YesAmazon CloudWatch

YesAWS Data Pipeline

YesAWS Direct Connect

YesAmazon DynamoDB

NoAWS Elastic Beanstalk

YesAmazon Elastic Compute Cloud (Amazon EC2)

YesElastic Load Balancing

NoAmazon Elastic MapReduce (Amazon EMR)

YesAmazon Elastic Transcoder

YesAmazon ElastiCache

API Version 2011-06-15
52

AWS Security Token Service Using Temporary Security
Credentials

Supports Temporary Security Credentials?AWS Product

YesAmazon Flexible Payments Service (Amazon
FPS)

YesAmazon Fulfillment Web Service (Amazon FWS)

YesAmazon Glacier

Yes; see belowAWS Identity and Access Management (IAM)

NoAWS Import/Export

YesAWS Marketplace

NoAmazon Mechanical Turk

YesAWS OpsWorks

YesAmazon Redshift

YesAmazon Relational Database Service (Amazon
RDS)

YesAmazon Route 53

YesAmazon Simple Storage Service (Amazon S3)

YesAmazon Simple Email Service (Amazon SES)

YesAmazon Simple Notification Service (Amazon
SNS)

YesAmazon Simple Queue Service (Amazon SQS)

YesAmazon SimpleDB

YesAWS Storage Gateway

YesAmazon Simple Workflow Service

NoAWS Support

Yes; see belowAWS Security Token Service

YesAWS Storage Gateway

YesAmazon Virtual Private Cloud (Amazon VPC)

• IAM. Supports AssumeRole, AssumeRoleWithWebIdentity, and AssumeRoleWithSAML. If you
use GetFederationToken, you can access IAM when using single sign-on to the AWS Management
Console, but not from the API or CLI. For more information, see Giving Federated Users Direct Access
to the AWS Management Console (p. 41).

• AWS STS.You can use the temporary security credentials that you get from the AssumeRole,
AssumeRoleWithWebIdentity, or AssumeRoleWithSAML call to make subsequent calls to
AssumeRole; however, you cannot use those credentials to call GetFederationToken or
GetSessionToken.You cannot use the temporary security credentials from GetFederationToken
or GetSessionToken to call any STS APIs.

API Version 2011-06-15
53

AWS Security Token Service Using Temporary Security
Credentials

More Information
For more information about using AWS STS with other AWS services, see the following links:

• Amazon S3. See Making Requests Using IAM User Temporary Credentials or Making Requests Using
Federated User Temporary Credentials in the Amazon Simple Storage Service Developer Guide.

• Amazon SNS. See Using Temporary Security Credentials in the Amazon Simple Notification Service
Developer Guide.

• Amazon SQS. See Using Temporary Security Credentials in the Amazon Simple Queue Service
Developer Guide.

• Amazon SimpleDB. See Using Temporary Security Credentials in the Amazon SimpleDB Developer
Guide.

API Version 2011-06-15
54

AWS Security Token Service Using Temporary Security
Credentials

More Information

http://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempSessionToken.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempFederationToken.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempFederationToken.html
http://docs.aws.amazon.com/sns/latest/dg/UsingIAMwithSNS.html#UsingTemporarySecurityCredentials_SNS
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html#UsingTemporarySecurityCredentials_SQS
http://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/index.html?UsingTemporarySecurityCredentials_SDB.html

Document History

The following table describes the documentation for this release of the AWS Security Token Service.

• API version: 2011-06-15

• Latest documentation update: May 21, 2013

Release DateDescriptionChange

This releaseAdded support for identity federation using the Security Assertion
Markup Language (SAML) 2.0. With this feature, your organization
acts as a SAML-enabled identity provider, and AWS acts as a service
provider.Your organization can use SAML assertions to get
temporary security credentials in order to access AWS resources
and to support single sign-in (SSO) for the AWS Management
Console. For more information, see Creating Temporary Security
Credentials for SAML Federation (p. 19).

Identity
federation
using SAML

May 29, 2013Added support for web identity federation. This feature lets you get
temporary security credentials for users who have signed in using
Login with Amazon, Facebook, or Google. For more information, see
Creating Temporary Security Credentials for Mobile Apps Using
Identity Providers (p. 12).

Web identity
federation

July 10, 2012Introduced MFA-protected API access, a feature that enables you
to add an extra layer of security over AWS APIs using AWS
Multi-Factor Authentication (MFA), see Temporary Security
Credentials for IAM Users with Multi-Factor Authentication
(MFA) (p. 30).

MFA-Protected
API access

April 26, 2012Corrected the API version displayed in Using Temporary Security
Credentials. The API version of the AWS Security Token Service is
not the same as the AWS Identity and Access Management IAM API
version.

Fixed API
version in
documentation

January 19,
2012

This release introduces Using Temporary Security Credentials.New Guide

API Version 2011-06-15
55

AWS Security Token Service Using Temporary Security
Credentials

	AWS Security Token Service
	Welcome
	Introduction
	Ways to Get Temporary Security Credentials
	Advantages of Temporary Security Credentials

	Scenarios for Granting Temporary Access
	Creating a Mobile App with Third-Party Sign-In
	Creating a Mobile App with Custom Authentication
	Using Your Organization's Authentication System to Grant Access to AWS Resources
	Using Your Organization's Authentication System and SAML to Grant Access to AWS Resources
	Web-Based Single Sign-On (SSO)
	Delegating API Access
	Cross-Account API Access

	Creating Temporary Security Credentials
	Creating Temporary Security Credentials for Mobile Apps Using Identity Providers
	Process for Using Web Identity Federation for Mobile Apps
	Invoking the Identity Provider to Authenticate the User
	Creating a Role to Allow AWS Access for the Mobile App
	Getting Temporary Credentials
	Identifying Providers, Apps, and Users with Web Identity Federation
	Additional Resources for Web Identity Federation

	Creating Temporary Security Credentials for SAML Federation
	Configuring SAML-Based Federation for API Access
	Process for Using SAML-Based Federation
	Creating a Role to Allow AWS Access from Your Organization

	Identifying Users for SAML-Based Federation

	Creating Temporary Security Credentials to Enable Access for Federated Users
	AssumeRole
	GetFederationToken
	Related Topics

	Creating Temporary Security Credentials for Delegating API Access
	About the External ID
	Related Topics

	Granting an IAM Group Permission to Create Temporary Security Credentials
	Related Topics

	Creating Temporary Security Credentials to Enable Access for IAM Users
	Temporary Security Credentials for IAM Users with Multi-Factor Authentication (MFA)
	Related Topics

	Controlling Permissions for Temporary Security Credentials
	Permissions in Temporary Security Credentials for Federated Users
	Example of Permissions for a Federated User (GetFederationToken)

	Permissions in Temporary Security Credentials for IAM Users
	Disabling Permissions Granted Through Temporary Security Credentials
	Denying Access to the User Who Created the Temporary Security Credentials
	Denying Access to a Specific Resource for a Federated User

	Related Topics

	Using Temporary Security Credentials
	Using Temporary Security Credentials with the AWS SDKs
	Using Temporary Security Credentials with APIs
	More Information

	Giving Federated Users Direct Access to the AWS Management Console
	Giving Console Access Using SAML
	Configure Your Network as a SAML Provider for AWS
	Create a SAML Provider in IAM
	Establish Permissions in AWS for Federated Users
	Configure Assertions for the SAML Authentication Response
	Mapping SAML Attributes to AWS Policy Keys

	Giving Console Access by Creating a URL
	Constructing the URL for the AWS Management Console (Query APIs)
	Constructing the URL for the AWS Management Console (Java)
	Constructing the URL for the AWS Management Console (Ruby)

	AWS Security Token Service Sample Applications
	AWS Services that Support AWS Security Token Service (AWS STS)
	More Information

	Document History

