
AWS Service Catalog
Administrator Guide

AWS Service Catalog Administrator Guide

AWS Service Catalog Administrator Guide

AWS Service Catalog: Administrator Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

AWS Service Catalog Administrator Guide

Table of Contents
What Is AWS Service Catalog? .. 1

Concepts ... 2
AWS Service Catalog Users ... 2
Portfolio ... 3
Product .. 3
Provisioned Product .. 3
Stack .. 3
Versioning .. 3
Permissions ... 3
Constraints ... 4

Limits .. 4
Setting Up ... 5

Sign Up for Amazon Web Services ... 5
Get IAM Permissions for Administrators and End Users .. 5
Get AWS CloudFormation Templates (Optional) .. 6

How It Works ... 7
Catalog Creation ... 7
View and Provision ... 9
Workflow .. 11

Getting Started ... 13
Step 1: Get IAM Permissions as an Administrator .. 13
Step 2: Grant IAM Permissions to the End User .. 15
Step 3: Get Familiar with the AWS CloudFormation Template .. 16
Step 4: Create a Key Pair .. 19
Step 5: Create a Portfolio ... 20
Step 6: Create a Product ... 20
Step 7: Add a Template Constraint .. 21
Step 8: Add a Launch Constraint ... 22
Step 9: Grant End Users Access to Your Portfolio .. 23
Step 10: Test the End User Experience .. 24

Controlling Access and Constraints .. 25
Service-level Permissions ... 25

AWS Managed Policies .. 25
Console Access for End Users .. 26
Product Access for End Users .. 27
Example Access Policies for Provisioned Product Management .. 27

Constraints ... 30
Launch Constraints .. 30
Template Constraints ... 32

Managing Catalogs .. 42
Working With Portfolios .. 42

Creating, Viewing, and Deleting Portfolios ... 42
Managing Portfolio Details .. 43
Creating and Deleting Portfolios .. 43
Adding Products .. 43
Adding Constraints .. 45
Tagging Portfolios ... 45
Granting Access to Users ... 46

Managing Products .. 46
Displaying the Products Page ... 46
Creating Products ... 47
Adding Products to Portfolios .. 47
Updating Products ... 48
Tagging Products .. 48
Deleting Products .. 49

iv

AWS Service Catalog Administrator Guide

Adding an AWS Marketplace Product to Your Portfolio .. 49
Tagging Resources ... 54

Tracking Costs Using Tags ... 54
Portfolio Sharing ... 54

Summary of Relationship Between Shared and Imported Portfolios 55
Sharing a Portfolio .. 57
Importing a Portfolio .. 57

Managing Provisioned Products .. 58
Managing All Provisioned Products as Administrator ... 58
Tutorial: Identifying User Resource Allocation .. 58

Document History .. 65

v

AWS Service Catalog Administrator Guide

What Is AWS Service Catalog?

AWS Service Catalog allows organizations to create and manage catalogs of IT services that are
approved for use on AWS. These IT services can include everything from virtual machine images,
servers, software, and databases to complete multi-tier application architectures. AWS Service Catalog
allows organizations to centrally manage commonly deployed IT services, and helps organizations
achieve consistent governance and meet compliance requirements, while enabling users to quickly
deploy only the approved IT services they need with the constraints your organization sets.

AWS Service Catalog provides the following benefits:

• Promote standardization

Administer and manage approved assets by restricting where the product can be launched, the type
of instance that can be used, and many other configuration options. The result is a standardized
landscape for product provisioning for your entire organization.

1

AWS Service Catalog Administrator Guide
Concepts

• Self-service discovery and launch

Users browse listings of products (services or applications) that they have access to, locate the
product that they want to use, and launch it all on their own as a provisioned product.

• Fine-grain access controls of configuration and provisioning

Administrators assemble portfolios of products from their catalog, add constraints and resource tags
to be used at provsioning, and then grant access to the portfolio through AWS Identity and Access
Management (IAM) users and groups.

• Extensibility and version control

Administrators can add a product to any number of portfolios and restrict it without creating another
copy. Updating the product to a new version propagates the update to all products in every portfolio
that references it.

For more service highlights, see the AWS Service Catalog detail page.

The AWS Service Catalog API provides programmatic control over all end-user actions as an
alternative to using the AWS Management Console. For more information, see AWS Service Catalog
Developer Guide

Concepts
Understanding the basic components of AWS Service Catalog, shown in the following diagram, will
help you get the most out of this service.

Topics

• AWS Service Catalog Users (p. 2)

• Portfolio (p. 3)

• Product (p. 3)

• Provisioned Product (p. 3)

• Stack (p. 3)

• Versioning (p. 3)

• Permissions (p. 3)

• Constraints (p. 4)

AWS Service Catalog Users
AWS Service Catalog users might be either of the following types, depending on the level of
permissions that they have:

• Catalog administrators (administrators) – Manage a catalog of products (applications and
services), organizing them into portfolios and granting access to end users. Catalog administrators
prepare AWS CloudFormation templates, configure constraints, and manage IAM roles that are
assigned to products to provide for advanced resource management.

• End users – Receive AWS credentials from their IT department or manager and use the AWS
Management Console to launch products to which they have been granted access. Sometimes
referred to as simply "users", end users may be granted different permissions depending on your
operational requirements. For example, a user may have the maximum permission level (to launch
and manage all of the resources required by the products they use) or only permission to particular
service features.

2

http://aws.amazon.com/servicecatalog/details
http://docs.aws.amazon.com/servicecatalog/latest/dg/
http://docs.aws.amazon.com/servicecatalog/latest/dg/

AWS Service Catalog Administrator Guide
Portfolio

Portfolio
A portfolio is a collection of products, together with configuration information. Portfolios help manage
who can use specific products and how they can use them. With AWS Service Catalog, you can
create a customized portfolio for each type of user in your organization and selectively grant access
to the appropriate portfolio. When you add a new version of a product to a portfolio, that version
is automatically available to all current users. You also can share your portfolios with other AWS
accounts and allow the administrator of those accounts to distribute your portfolios with additional
constraints, such as limiting which EC2 instances a user can create. Through the use of portfolios,
permissions, sharing, and constraints, you can ensure that users are launching products that are
configured properly for the organization’s needs and standards.

Product
A product is an IT service that you want to make available for deployment on AWS. A product can
comprise one or more AWS resource, such as EC2 instances, storage volumes, databases, monitoring
configurations, and networking components, or packaged AWS Marketplace products. A product can
be a single compute instance running AWS Linux, a fully configured multi-tier web application running
in its own environment, or anything in between. You most commonly create your products by importing
AWS CloudFormation templates. These templates define the AWS resources required for the product,
the relationships between resources, and the parameters that the end user can plug in when they
launch the product to configure security groups, create key pairs, and perform other customizations.

Provisioned Product
When an end user launches a product, an instance of the product is created and is using resources.
Most commonly, a provisioned product is an AWS CloudFormation stack.

Stack
AWS CloudFormation stacks make it easier to manage the lifecycle of your product by allowing you to
provision, tag, update, and terminate your product instance as a single unit. An AWS CloudFormation
stack includes an AWS CloudFormation template and its associated collection of resources. A
provisioned product in AWS Service Catalog is most commonly a stack. When an end user launches a
product, the instance of the product that is provisioned by AWS Service Catalog is a stack of resources
necessary to run the product.

Versioning
AWS Service Catalog allows you to manage multiple versions of the products in your catalog. This
allows you to add new versions of templates and associated resources based on software updates
or configuration changes. When you create a new version of a product, the update is automatically
distributed to all users who have access to the product, allowing the user to select which version of
the product to use. Users can update running instances of the product to the new version quickly and
easily.

Permissions
Granting a user access to a portfolio enables that user to browse the portfolio and launch the products
in it. You apply AWS Identity and Access Management (IAM) permissions to control who can view
and modify your catalog. IAM permissions can be assigned to IAM users, groups, and roles. When
a user launches a product that has an IAM role assigned to it, AWS Service Catalog uses the role to
launch the product's cloud resources using AWS CloudFormation. By assigning an IAM role to each
product, you can avoid giving users permissions to perform unapproved operations and enable them to
provision resources using the catalog.

3

AWS Service Catalog Administrator Guide
Constraints

Constraints
Constraints control the ways that specific AWS resources can be deployed for a product. You can use
them to apply limits to products for governance or cost control. There are two types of constraints:
template and launch. Template constraints restrict the configuration parameters that are available
for the user when launching the product (for example, EC2 instance types or IP address ranges).
Template constraints allow you to reuse generic AWS CloudFormation templates for products and
apply restrictions to the templates on a per-product or per-portfolio basis. Launch constraints allow you
to specify a role for a product in a portfolio. This role is used to provision the resources at launch, so
you can restrict user permissions without impacting users’ ability to provision products from the catalog.

AWS Service Catalog Default Service Limits
By default, AWS limits the products and portfolios you can create, the number of constraints that you
can apply to products, and the number of tags that you can apply to portfolios. For limits for each AWS
Service Catalog resource, see AWS Service Catalog Limits in AWS General Reference.

For more information on limits, including how to increase limits for your account, refer to AWS Service
Limits in AWS General Reference.

4

http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_servicecatalog
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

AWS Service Catalog Administrator Guide
Sign Up for Amazon Web Services

Setting Up

To follow the tutorials in this guide, you will need to set up an account and obtain security credentials.
This topic walks you through the setup process.

Topics

• Sign Up for Amazon Web Services (p. 5)

• Get IAM Permissions for Administrators and End Users (p. 5)

• Get AWS CloudFormation Templates (Optional) (p. 6)

Sign Up for Amazon Web Services
To use Amazon Web Services (AWS), you will need to sign up for an AWS account.

To sign up for an AWS account

1. Open https://aws.amazon.com/, and then choose Create an AWS Account.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

AWS sends you a confirmation email after the sign up process is complete. At any time, you can view
your current account activity and manage your account by going to https://aws.amazon.com/ and
choosing My Account, AWS Management Console.

Get IAM Permissions for Administrators and End
Users

Catalog administrators and end users require different IAM permissions to use AWS Service Catalog.
As a catalog administrator, you must have IAM permissions that allow you to access the AWS Service
Catalog administrator console, create products, and manage products. Before your end users can use
your products, you must grant them permissions that allow them to access the AWS Service Catalog
end user console, launch products, and manage launched products as provisioned products.

5

https://aws.amazon.com/
https://aws.amazon.com/

AWS Service Catalog Administrator Guide
Get AWS CloudFormation Templates (Optional)

AWS provides many of these permissions with the AWS managed policies for AWS Service Catalog.
AWS maintains these policies and provides them in the AWS Identity and Access Management (IAM)
service. You can use these policies by attaching them to the IAM users, groups, or roles that you and
your end users use. For information about these policies, see Controlling Access Using Service-level
Permissions (p. 25). For instructions to grant permissions to end users, see Step 2: Grant IAM
Permissions to the AWS Service Catalog End User (p. 15) in Getting Started.

Get AWS CloudFormation Templates (Optional)
A sample AWS CloudFormation template is provided for you to use with the tutorial in Getting Started.
This guide will cover some basic aspects of AWS CloudFormation, but you should consult the AWS
CloudFormation User Guide if you need to create a template for a complex application.

6

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/

AWS Service Catalog Administrator Guide
Catalog Creation

AWS Service Catalog: How It Works

The following sections provide an overview of AWS Service Catalog service components and how they
interact with each other.

As discussed in the Concepts (p. 2) section, AWS Service Catalog provides two distinct user types:
end users and administrators. This topic provides an overview of administrator and end user actions in
the context of a typical workflow.

Topics

• Administrator: Catalog Creation (p. 7)

• End User: Product View and Product Provisioning (p. 9)

• Overall Workflow (p. 11)

Administrator: Catalog Creation
The following diagram shows the initial workflow for an adminstrator in an example catalog creation
scenario.

7

AWS Service Catalog Administrator Guide
Catalog Creation

8

AWS Service Catalog Administrator Guide
View and Provision

End User: Product View and Product Provisioning
Using the state of the previous example as a starting point, the following diagram shows the initial
workflow for an end user. This example shows the end user product view and provisioning tasks, on
the right, as well as the administrator's tasks, on the left. The tasks are numbered in order.

9

AWS Service Catalog Administrator Guide
View and Provision

10

AWS Service Catalog Administrator Guide
Workflow

Overall Workflow
The following diagram brings together the previous two diagrams into one workflow to show the overall
interaction of tasks.

11

AWS Service Catalog Administrator Guide
Workflow

12

AWS Service Catalog Administrator Guide
Step 1: Get IAM Permissions as an Administrator

Getting Started

This tutorial introduces you to many of the tasks that you do as a catalog administrator. You will update
your AWS Identity and Access Management (IAM) permissions to meet the requirements for catalog
administration, and you will create an IAM user for an end user. Then, you will create a product that is
based on an AWS CloudFormation template, which defines the AWS resources used by the product.
The product, Linux Desktop, is a cloud development environment that runs on Amazon Linux. You will
add the product to a portfolio and distribute it to the end user. Finally, you will log in to AWS as the end
user to test the product. Note that this will create an Amazon EC2 instance, and you will be billed for
the AWS resources used.

Note
The products and portfolios that you create in AWS Service Catalog must be used in the
region in which you create them. When you start this tutorial, check which region your console
is set to and keep the same region setting throughout. For more information, see Selecting a
Region in the AWS Management Console Getting Started Guide.

Topics

• Step 1: Get AWS Service Catalog Administrator IAM Permissions (p. 13)

• Step 2: Grant IAM Permissions to the AWS Service Catalog End User (p. 15)

• Step 3: Get Familiar with the AWS CloudFormation Template (p. 16)

• Step 4: Create a Key Pair (p. 19)

• Step 5: Create an AWS Service Catalog Portfolio (p. 20)

• Step 6: Create an AWS Service Catalog Product (p. 20)

• Step 7: Add a Template Constraint to Limit Instance Size (p. 21)

• Step 8: Add a Launch Constraint to Assign an IAM Role (p. 22)

• Step 9: Grant End Users Access to Your Portfolio (p. 23)

• Step 10: Test the End User Experience (p. 24)

Step 1: Get AWS Service Catalog Administrator
IAM Permissions

As a catalog administrator, you require access to the AWS Service Catalog administrator console view
and IAM permissions that allow you to do tasks such as:

• Creating and managing portfolios

• Creating and managing products

13

http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html#select-region
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html#select-region

AWS Service Catalog Administrator Guide
Step 1: Get IAM Permissions as an Administrator

• Adding template constraints to control the options that are available to end users when launching a
product

• Adding launch constraints to define the IAM roles that AWS Service Catalog assumes when end
users launch products

• Granting end users access to your products

To complete the tutorial, you, or an administrator who manages your IAM permissions, must attach the
AWS managed policy ServiceCatalogAdminFullAccess to your IAM user, group, or role. Then,
you must add a supplementary policy that allows you to do tasks with Amazon EC2 and IAM, which are
required to complete this tutorial.

To get IAM permissions as a catalog administrator

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Users. If you have already created an IAM user that you would like
to use as the catalog administrator, choose that user. Otherwise, do the following:

a. Choose Create New Users.

b. For Enter User Names, type ServiceCatalogAdmin. Then, choose Create. You can
then view the user credentials by choosing Show User Security Credentials, or you can
download the credentials by choosing Download Credentials, but neither action is required
for this tutorial.

c. Choose Close. If you didn't download the credentials, the console displays a warning
that you can ignore. Choose Close again to return to the Users page. Then, choose
ServiceCatalogAdmin by clicking on that name.

3. On the details page for the user, choose the Security Credentials tab.

4. In the Sign-In Credentials section, choose Manage Password. Choose the password
options that you want, and choose Apply. To see the password, choose Show User Security
Credentials. Save the password in a secure location, and then choose Close.

5. On the details page for the user, choose the Permissions tab.

6. In the Managed Policies section, choose Attach Policy.

7. On the Attach Policy page, choose the checkbox for ServiceCatalogAdminFullAccess, and
then choose Attach Policy.

8. On the details page for the user, choose the Permissions tab if it is not already open.

9. Expand the Inline Policies section, and choose click here.

10. Choose Custom Policy, and then choose Select.

11. For Policy Name, type ServiceCatalogAdmin-SupplementalPermissions.

12. Copy the following example policy, and paste it in the Policy Document editor:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateKeyPair",
 "iam:AddRoleToInstanceProfile",
 "iam:AddUserToGroup",
 "iam:AttachGroupPolicy",
 "iam:CreateAccessKey",
 "iam:CreateGroup",
 "iam:CreateInstanceProfile",
 "iam:CreateLoginProfile",

14

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Service Catalog Administrator Guide
Step 2: Grant IAM Permissions to the End User

 "iam:CreateRole",
 "iam:CreateUser",
 "iam:Get*",
 "iam:List*",
 "iam:PutRolePolicy",
 "iam:UpdateAssumeRolePolicy"
],
 "Resource": [
 "*"
]
 }
]
}

Revise the policy as needed to meet the security requirements of your organization.

13. Choose Apply Policy.

14. Sign in as the catalog administrator using the user name and password you created in previous
steps. You can sign in by visiting your account-specific URL, which you can see by choosing
Dashboard in the navigation pane of the IAM console. The URL has the form:

https://AccountID.signin.aws.amazon.com/console

Make a note of the sign-in URL for later use.

You can customize this URL to replace the account ID with an alias that you specify. For details,
see the IAM User Guide.

Step 2: Grant IAM Permissions to the AWS
Service Catalog End User

Before the end user can use AWS Service Catalog, you must grant access to the AWS
Service Catalog end user console view. To grant access, you attach the AWS managed policy
ServiceCatalogEndUserAccess to the IAM user, group, or role that is used by the end user.

This policy allows the end user to access the end user console view, but not to launch products or
manage provisioned products. You will grant permissions for those tasks when you provide an inline
policy to the group you create in this step, and in a later section of the tutorial you attach a launch role
to your product to finish adding all the permissions you'll need for this specific tutorial. The goal of this
is to demonstrate the various levels where permissions can be applied based on common scenarios for
using the service. For more information about AWS managed policies for AWS Service Catalog, see
Controlling Access Using Service-level Permissions (p. 25).

To grant IAM permissions to the end user

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Choose Users in the navigation pane, and choose Create New Users.

3. For Enter User Names, type Engineer, and then choose Create.

4. Choose Close twice to return to the Users page, and then choose Engineer by clicking on that
name.

5. Choose the Security Credentials tab, if it is not already selected.

6. In the Sign-In Credentials section, choose Manage Password. Choose the password options
that you want, and then choose Apply. To see the password, choose Show User Security
Credentials. Save the password in a secure location, and then choose Close.

15

http://docs.aws.amazon.com/IAM/latest/UserGuide/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Service Catalog Administrator Guide
Step 3: Get Familiar with the

AWS CloudFormation Template

7. In the Navigation pane, choose Groups, and then choose Create New Group.

8. For Group Name, type Engineers, and then choose Next Step.

9. Choose the checkbox for the ServiceCatalogEndUserAccess policy, and then choose Next
Step.

10. On the Review page, choose Create Group.

11. Choose Engineers.

12. On the details page for the group, choose the Permissions tab if you are not already on that tab.

13. Expand the Inline Policies section, and choose click here.

14. Choose Custom Policy, Select.

15. For Policy Name, type ServiceCatalogEngineerGroup-SupplementalPermissions.

16. Copy the following example policy, and paste it in the Policy Document editor:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "servicecatalog:ProvisionProduct"
],
 "Resource": "*"
 }
]
}

Revise the policy as needed to meet the security requirements of your organization.

17. Choose Apply Policy.

18. On the Users tab, choose Add Users to Group.

19. Select the user named Engineer and choose Add Users.

Step 3: Get Familiar with the AWS
CloudFormation Template

To provision and configure portfolios and products, you use AWS CloudFormation templates, which are
JSON-formatted text files. These templates describe the resources that you want to provision. You can
use the AWS CloudFormation editor or any text editor to create and save templates. For this tutorial,
a simple template will get you started, so we've provided one called development-environment. This
template launches a single Linux instance configured for SSH access.

The sample template provided for this tutorial, development-environment.template, is available
at https://awsdocs.s3.amazonaws.com/servicecatalog/development-environment.template.

The text of the provided template follows:

{
 "AWSTemplateFormatVersion" : "2010-09-09",

 "Description" : "AWS Service Catalog sample template. Creates an Amazon EC2
 instance
 running the Amazon Linux AMI.The AMI is chosen based on
 the region

16

https://awsdocs.s3.amazonaws.com/servicecatalog/development-environment.template

AWS Service Catalog Administrator Guide
Step 3: Get Familiar with the

AWS CloudFormation Template

 in which the stack is run. This example creates an EC2
 security
 group for the instance to give you SSH access.
 WARNING This
 template creates an Amazon EC2 instance. You will be
 billed for the
 AWS resources used if you create a stack from this
 template.",

 "Parameters" : {
 "KeyName": {
 "Description" : "Name of an existing EC2 key pair for SSH access to the
 EC2 instance.",
 "Type": "AWS::EC2::KeyPair::KeyName"
 },

 "InstanceType" : {
 "Description" : "EC2 instance type.",
 "Type" : "String",
 "Default" : "t2.micro",
 "AllowedValues" : ["t2.micro", "t2.small", "t2.medium", "m3.medium",
 "m3.large",
 "m3.xlarge", "m3.2xlarge"]
 },

 "SSHLocation" : {
 "Description" : "The IP address range that can SSH to the EC2
 instance.",
 "Type": "String",
 "MinLength": "9",
 "MaxLength": "18",
 "Default": "0.0.0.0/0",
 "AllowedPattern": "(\\d{1,3})\\.(\\d{1,3})\\.(\\d{1,3})\\.(\\d{1,3})/(\
\d{1,2})",
 "ConstraintDescription": "Must be a valid IP CIDR range of the form
 x.x.x.x/x."
 }
 },

 "Metadata" : {
 "AWS::CloudFormation::Interface" : {
 "ParameterGroups" : [{
 "Label" : {"default": "Instance configuration"},
 "Parameters" : ["InstanceType"]
 },{
 "Label" : {"default": "Security configuration"},
 "Parameters" : ["KeyName", "SSHLocation"]
 }],
 "ParameterLabels" : {
 "InstanceType": {"default": "Server size:"},
 "KeyName": {"default": "Key pair:"},
 "SSHLocation": {"default": "CIDR range:"}
 }
 }
 },

 "Mappings" : {
 "AWSRegionArch2AMI" : {
 "us-east-1" : { "HVM64" : "ami-08842d60" },

17

AWS Service Catalog Administrator Guide
Step 3: Get Familiar with the

AWS CloudFormation Template

 "us-west-2" : { "HVM64" : "ami-8786c6b7" },
 "us-west-1" : { "HVM64" : "ami-cfa8a18a" },
 "eu-west-1" : { "HVM64" : "ami-748e2903" },
 "ap-southeast-1" : { "HVM64" : "ami-d6e1c584" },
 "ap-northeast-1" : { "HVM64" : "ami-35072834" },
 "ap-southeast-2" : { "HVM64" : "ami-fd4724c7" },
 "sa-east-1" : { "HVM64" : "ami-956cc688" },
 "cn-north-1" : { "HVM64" : "ami-ac57c595" },
 "eu-central-1" : { "HVM64" : "ami-b43503a9" }
 }

 },

 "Resources" : {
 "EC2Instance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 "InstanceType" : { "Ref" : "InstanceType" },
 "SecurityGroups" : [{ "Ref" : "InstanceSecurityGroup" }],
 "KeyName" : { "Ref" : "KeyName" },
 "ImageId" : { "Fn::FindInMap" : ["AWSRegionArch2AMI", { "Ref" :
 "AWS::Region" }, "HVM64"] }
 }
 },

 "InstanceSecurityGroup" : {
 "Type" : "AWS::EC2::SecurityGroup",
 "Properties" : {
 "GroupDescription" : "Enable SSH access via port 22",
 "SecurityGroupIngress" : [{
 "IpProtocol" : "tcp",
 "FromPort" : "22",
 "ToPort" : "22",
 "CidrIp" : { "Ref" : "SSHLocation"}
 }]
 }
 }
 },

 "Outputs" : {
 "PublicDNSName" : {
 "Description" : "Public DNS name of the new EC2 instance",
 "Value" : { "Fn::GetAtt" : ["EC2Instance", "PublicDnsName"] }
 },
 "PublicIPAddress" : {
 "Description" : "Public IP address of the new EC2 instance",
 "Value" : { "Fn::GetAtt" : ["EC2Instance", "PublicIp"] }
 }
 }
}

The template declares the resources that will be created when the product is launched. It consists of
seven sections:

• AWSTemplateFormatVersion – The version of the AWS Template Format used to create this
template.

• Description – A description of the template.

18

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/format-version-structure.html

AWS Service Catalog Administrator Guide
Step 4: Create a Key Pair

• Parameters – Three parameters that your user must specify to launch the product. For each
parameter, the template includes a description and constraints that must be met by the value typed.
For more information about constraints, see Using Constraints (p. 30).

The KeyName parameter allows you to specify an Amazon Elastic Compute Cloud (Amazon EC2)
key pair name that end users must provide when they use AWS Service Catalog to launch your
product. You will create the key pair in the next step.

• Metadata – An optional section that defines details about the template. In this template, the
metadata section contains the AWS::CloudFormation::Interface key, which defines how
the end user console view displays parameters. The ParameterGroups property defines how
parameters are grouped and headings for those groups. The ParameterLabels property defines
friendly parameter names. When a user is specifying parameters to launch a product that is based
on this template, the end user console view displays the parameter labeled Server size: under
the heading Instance configuration, and it displays the parameters labeled Key pair: and
CIDR range: under the heading Security configuration.

For more information about defining parameter groups and labels, see
AWS::CloudFormation::Interface in the AWS CloudFormation User Guide.

• Mappings – A list of regions and the Amazon Machine Image (AMI) that corresponds to each. AWS
Service Catalog uses the mapping to determine which AMI to use based on the region that the user
selects in the AWS Management Console.

• Resources – An EC2 instance running Amazon Linux and a security group that allows SSH access
to the instance. The Properties section of the EC2 instance resource uses the information that the
user types to configure the instance type and a key name for SSH access.

AWS CloudFormation uses the current region to select the AMI ID from the mappings defined earlier
and assigns a security group to it. The security group is configured to allow inbound access on port
22 from the CIDR IP address range that the user specifies.

• Outputs – Text that tells the user when the product launch is complete. The provided template gets
the public DNS name of the launched instance and displays it to the user. The user needs the DNS
name to connect to the instance using SSH.

Step 4: Create a Key Pair
To enable your end users to launch the product that is based on the sample template for this tutorial,
you must create an Amazon EC2 key pair. A key pair is a combination of a public key that is used to
encrypt data and a private key that is used to decrypt data. For more information about key pairs, see
Amazon EC2 Key Pairs in the Amazon EC2 User Guide for Linux Instances.

The AWS CloudFormation template for this tutorial, development-environment.template,
includes the KeyName parameter:

. . .
 "Parameters" : {
 "KeyName": {
 "Description" : "Name of an existing EC2 key pair for SSH access to the
 EC2 instance.",
 "Type": "AWS::EC2::KeyPair::KeyName"
 },
. . .

End users must specify the name of a key pair when they use AWS Service Catalog to launch the
product that is based on the template.

If you already have a key pair in your account that you would prefer to use, you can skip ahead to Step
5: Create an AWS Service Catalog Portfolio (p. 20). Otherwise, complete the following steps.

19

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudformation-interface.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

AWS Service Catalog Administrator Guide
Step 5: Create a Portfolio

To create a key pair

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the navigation pane, under Network & Security, choose Key Pairs.

3. On the Key Pairs page, choose Create Key Pair.

4. For Key pair name, type a name that is easy for you to remember, and then choose Create.

5. When the console prompts you to save the private key file, save it in a safe place.

Important
This is the only chance for you to save the private key file. You'll need to provide the name of
your key pair when you launch an instance and the corresponding private key each time you
connect to the instance.
Your end users will require the name of your key pair when they use AWS Service Catalog to
launch your product.

Step 5: Create an AWS Service Catalog Portfolio
To provide users with products, begin by creating a portfolio for those products.

To create a portfolio

1. Sign in to the AWS Management Console and open the AWS Service Catalog console at https://
console.aws.amazon.com/servicecatalog/.

2. If you are using the AWS Service Catalog administrator console for the first time, choose Get
started to start the wizard for configuring a portfolio. Otherwise, choose Create portfolio.

3. Type the following values:

• Portfolio name – Engineering Tools

• Description – Sample portfolio that contains a single product.

• Owner – IT (it@example.com)

4. Choose Create. AWS Service Catalog creates the portfolio and displays the portfolio details page.
This page displays information about the portfolio and allows you to add products.

5. Expand the Tags section. For Key, type Group, and for Value, type Engineering. Then, choose
Add tag.

Step 6: Create an AWS Service Catalog Product
After you have created a portfolio, you're ready to add a product. For this tutorial, you will create a
product called Linux Desktop, which is a cloud development environment that runs on Amazon Linux.
If you've just completed the previous step, the portfolio details page will already be displayed. If you've
left the page and need to return to it, from the AWS Management Console, choose Service Catalog,
and then choose Engineering Tools.

To create a product

1. On the portfolio details page, choose Upload new product, and then type the following:

• Product name – Linux Desktop

• Short Description – Cloud development environment.

20

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/servicecatalog/
https://console.aws.amazon.com/servicecatalog/

AWS Service Catalog Administrator Guide
Step 7: Add a Template Constraint

• Description – Cloud development environment configured for engineering
staff. Runs AWS Linux.

• Provided by – IT

• Vendor – (blank)

Choose Next.

2. On the Enter support details page, type the following:

• Email contact – ITSupport@example.com

• Support link – https://wiki.example.com/IT/support

• Support description – Contact the IT department for issues deploying or
connecting to this product.

Choose Next.

3. On the Version details page, type the following:

• Select template – Choose Specify an Amazon S3 template URL and type the following URL:

https://awsdocs.s3.amazonaws.com/servicecatalog/development-
environment.template

• Version title – v1.0

• Description – Base Version

Choose Next.

4. On the Review page, verify the information you provided.

5. Choose Confirm and upload to create the product and add it to the Engineering Tools portfolio.

Step 7: Add a Template Constraint to Limit
Instance Size

Constraints add another layer of control over products at the portfolio level. Constraints can control the
launch context of a product (launch constraints), or add rules to the AWS CloudFormation template
(template constraints). For more information about constraints, see Using Constraints (p. 30).

Now add a template constraint to the Linux Desktop product that prevents users from selecting large
instance types at launch time. The development-environment template allows the user to select from
six instance types; this constraint limits valid instance types to the two smallest types, t2.micro and
t2.small. For more information about these instance types, see T2 Instances in the Amazon EC2 User
Guide for Linux Instances.

If you've just completed the previous step, the portfolio details page will already be displayed. If you've
left the page and need to return to it, from the AWS Management Console, choose Service Catalog,
and then choose Engineering Tools.

To add a template constraint to the Linux Desktop product

1. On the portfolio details page, expand the Constraints section, and choose Add constraints.

2. In the Select product and type window, for Product, choose Linux Desktop. Then, for
Constraint type, choose Template.

3. Choose Continue.

21

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.html

AWS Service Catalog Administrator Guide
Step 8: Add a Launch Constraint

4. For Description, type Small instance sizes.

5. Paste the following into the Template constraint text box:

{
 "Rules": {
 "Rule1": {
 "Assertions": [
 {
 "Assert" : {"Fn::Contains": [["t2.micro", "t2.small"], {"Ref":
 "InstanceType"}]},
 "AssertDescription": "Instance type should be t2.micro or
 t2.small"
 }
]
 }
 }
}

6. Choose Submit.

Step 8: Add a Launch Constraint to Assign an
IAM Role

A launch constraint designates an IAM role that AWS Service Catalog assumes when an end user
launches a product. For this step, you will add a launch constraint to the Linux Desktop product so that
AWS Service Catalog can use the AWS resources that are part of the product's AWS CloudFormation
template. This launch constraint will enable the end user to launch the product and, after it is launched,
manage it as a provisioned product.

Without a launch constraint, you would need to grant additional IAM permissions to your end users
before they could use the Linux Desktop product. The ServiceCatalogEndUserAccess policy that
you applied to the Engineers group grants only the minimum IAM permissions required to access
the AWS Service Catalog end user console view. By using a launch constraint, you can keep your end
users' IAM permissions to a minimum, which is an IAM best practice. For more information about this
best practice, see Grant least privilege in the IAM User Guide.

To create the IAM role

1. Sign in to the AWS Management Console, and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the Navigation pane, choose Roles, and then choose Create New Role.

3. For Role Name, type linuxDesktopLaunchRole. Then, choose Next Step.

4. Under AWS Service Roles next to AWS Service Catalog, choose Select.

5. On the Attach Policy page, Choose Next Step.

6. On the Review page, review the information for your role, and then choose Create Role.

To attach a policy to the new role

1. On the Roles page, choose linuxDesktopLaunchRole.

2. On the role details page, choose the Permissions tab, expand the Inline Policies section, and
then, choose click here.

3. Choose Custom Policy, and then choose Select.

22

http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Service Catalog Administrator Guide
Step 9: Grant End Users Access to Your Portfolio

4. For Policy Name, type linuxDesktopPolicy.

Copy the following policy, and paste it into the Policy Document editor:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "catalog-user:*",
 "cloudformation:CreateStack",
 "cloudformation:DeleteStack",
 "cloudformation:DescribeStackEvents",
 "cloudformation:DescribeStacks",
 "cloudformation:GetTemplateSummary",
 "cloudformation:SetStackPolicy",
 "cloudformation:ValidateTemplate",
 "cloudformation:UpdateStack",
 "ec2:*",
 "s3:GetObject",
 "sns:*"
],
 "Resource": "*"
 }
]
}

5. Choose Apply Policy.

To assign the role to a product as a launch constraint

1. Go to the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. Choose the Engineering Tools portfolio.

3. On the portfolio details page, expand the Constraints section, and then choose Add constraints.

4. In the Select product and type window, for Product, choose Linux Desktop, and for Constraint
type, choose Launch. Then choose Continue.

5. On the Launch constraint page, for IAM role, choose linuxDesktopLaunchRole, and then
choose Submit.

Step 9: Grant End Users Access to Your Portfolio
Now that you have created a portfolio and added a product, you are ready to give end users access.

If you've just completed the previous step, the portfolio details page will already be displayed. If you've
left the page and need to return to it, from the AWS Management Console, choose Service Catalog,
and then choose Engineering Tools.

To provide access to the portfolio

1. On the portfolio details page, expand the Users, groups and roles section, and then choose Add
user, group or role.

2. Choose the Groups tab if it is not already open, and select Engineers.

3. Choose Add Access.

23

https://console.aws.amazon.com/servicecatalog/

AWS Service Catalog Administrator Guide
Step 10: Test the End User Experience

Step 10: Test the End User Experience
To verify that the Engineer end user can successfully access the end user console view and launch
your product, sign in to AWS as the end user and perform those tasks.

To verify that the Engineer end user can access the end user console

1. Sign in to AWS as the Engineer IAM user by going to your account-specific user sign-in page. You
can find the URL for your account sign-in on the dashboard of the IAM console. The URL has the
following form:

https://AccountID.signin.aws.amazon.com/console

Tip
When you sign in as the Engineer user, you be signed out of your current session. If
you prefer to keep your current session active, you can sign in as the Engineer user in a
private browsing window.

2. In the AWS Management Console menu, choose the region in which you created the
Engineering Tools portfolio. For example, if you created the portfolio in the US East (N.
Virginia) region, choose that region.

3. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

You now see a list of products and provisioned products:

• Products – The products that the user can use.

• Provisioned products – The provisioned products that the user has launched.

To verify that the Engineer end user can launch the Linux Desktop product

1. In the Products section of the console, choose Linux Desktop.

This page lists the product information that end users will see, including the product name,
description, and support details.

2. Choose Launch product to start the wizard for configuring your product.

3. On the Product version page, for Name, type Linux-Desktop.

4. In the Version table, choose v1.0.

5. Choose Next.

6. On the Parameters page, type the following:

• Server size – Choose t2.micro.

• Key pair – Select the key pair that you created in Step 4: Create a Key Pair (p. 19).

• CIDR range – Type a valid CIDR range for the IP address from which you will connect to the
instance. This can be the default value (0.0.0.0/0) to allow access from any IP address, your IP
address followed by /32 to restrict access to your IP address only, or something in between.

Choose Next.

7. On the Tags page, choose Next.

8. On the Review page, review the information that you typed, and then choose Launch to launch
the stack. The console displays the stack details page for the Linux-Desktop stack. On this page,
the status will display Launching while AWS Service Catalog launches the product, which takes
several minutes. To see the latest status, refresh your browser. After the product is launched, the
status will display Available.

24

https://console.aws.amazon.com/servicecatalog/

AWS Service Catalog Administrator Guide
Service-level Permissions

Controlling Access and Constraints

An AWS Service Catalog administrator needs to be aware of the various ways to control access to the
service, portfolios, and products. The following sections provide detailed information about each type of
access control:

Topics

• Controlling Access Using Service-level Permissions (p. 25)

• Using Constraints (p. 30)

Controlling Access Using Service-level
Permissions

Control the level of access that administrators and end users have to AWS Service Catalog and AWS
resources by applying AWS policies through AWS Identity and Access Management (IAM). These
polices are either created and managed by AWS or individually by administrators and end users. To
control access, you attach these policies to the IAM users, groups, and roles that you use with AWS
Service Catalog. Also, you can customize the access level for each action with support for user, role,
and account levels. This allows users to be granted access to view, update, terminate, and manage
provisioned products created under their role or the account to which they are logged in.

Topics

• AWS Managed Policies (p. 25)

• Console Access for End Users (p. 26)

• Product Access for End Users (p. 27)

• Example Access Policies for Provisioned Product Management (p. 27)

AWS Managed Policies
AWS addresses many common use cases by providing standalone IAM policies that are created and
administered by AWS. These AWS managed policies grant necessary permissions for common use
cases so that you can avoid having to investigate what permissions are needed. For more information,
see AWS Managed Policies in the IAM User Guide.

IAM provides the following AWS managed policies for AWS Service Catalog. They are preconfigured
to provide the permissions that AWS Service Catalog administrators need to create and manage
products, and they provide the initial permissions that end users need to launch products and manage
provisioned products.

25

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

AWS Service Catalog Administrator Guide
Console Access for End Users

Administrators

• ServiceCatalogAdminFullAccess — Grants full access to administrator console view and
permission to create and manage products and portfolios.

• ServiceCatalogAdminReadOnlyAccess — Grants full access to administrator console view.
Cannot create or manage products and portfolios.

End users

• ServiceCatalogEndUserFullAccess — Grants full access to end user console view and
permission to launch products and manage provisioned products.

• ServiceCatalogEndUserAccess — Grants full access to end user console view, Cannot launch
products or manage provisioned products.

To attach a policy to an IAM user

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Users.

3. Choose the name (not the check box) of the IAM user.

4. On the Permissions tab, choose Attach Policy.

5. On the Attach Policy page, select the check box next to the policy, and then choose Attach
Policy.

Note
You can review these permissions policies by signing in to the IAM console and searching for
specific policies there.

You can also create your own custom IAM policies to allow permissions for AWS Service Catalog
actions and resources. You can attach these custom policies to the IAM users or groups that require
those permissions.

Console Access for End Users
Before end users can use a product to which you give access, you must provide them additional
IAM permissions to allow them to use each of the underlying AWS resources in a product's AWS
CloudFormation template. For example, if a product template includes Amazon Relational Database
Service (Amazon RDS), you must grant the users Amazon RDS permissions to launch the product.

The ServiceCatalogEndUserFullAccess and ServiceCatalogEndUserAccess polices grant access
to the AWS Service Catalog end user console view. When a user who has either of these policies
chooses Service Catalog in the AWS Management Console, the end user console view displays.

If you apply the ServiceCatalogEndUserAccess policy, your users have access to the end user
console, but they won't have the permissions that they need to launch products and manage
provisioned products. You can grant these permissions directly to an end user using IAM, but if you
want to limit the access that end users have to AWS resources, you should attach the policy to a
launch role. You then use AWS Service Catalog to apply the launch role to a launch constraint for
the product. For more information about applying a launch role, launch role limitations, and a sample
launch role, see Applying a Launch Constraint (p. 30).

If you grant users the following IAM permissions, which are meant for AWS Service Catalog
administrators, the administrator console view displays instead:

• catalog-admin:ListPortfolios

• catalog-admin:SearchListings

26

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Service Catalog Administrator Guide
Product Access for End Users

Don't grant end users these permissions unless you want them to have access to the administrator
console view.

Product Access for End Users
Before end users can use a product to which you give access, you must provide them additional
IAM permissions to allow them to use each of the underlying AWS resources in a product's AWS
CloudFormation template. For example, if a product template includes Amazon Relational Database
Service (Amazon RDS), you must grant the users Amazon RDS permissions to launch the product.

If you apply the ServiceCatalogEndUserAccess policy, your users have access to the end user
console view, but they won't have the permissions that they need to launch products and manage
provisioned products. You can grant these permissions directly to an end user in IAM, but if you want
to limit the access that end users have to AWS resources, you should attach the policy to a launch role.
You then use AWS Service Catalog to apply the launch role to a launch constraint for the product. For
more information about applying a launch role, launch role limitations, and a sample launch role, see
Applying a Launch Constraint (p. 30).

Example Access Policies for Provisioned Product
Management
You can customize your own policies to help meet the security requirements of your organization. The
following sections describe some examples of how to customize the access level for each action with
support for user, role, and account levels. This allows users to be granted access to view, update,
terminate, and manage provisioned products created only by that user or created by others also under
their role or the account to which they are logged in. This access is hierarchical — granting account
level access also grants role level access and user level access, while adding role level access also
grants user level access but not account level access. These can be specified in the policy JSON
within a Condition block as accountLevel, roleLevel, or userLevel, as shown in the examples.

These examples also apply to access levels for AWS Service Catalog API write operations
UpdateProvisionedProduct and TerminateProvisionedProduct, and read operations DescribeRecord,
ScanProvisionedProducts, and ListRecordHistory. The ScanProvisionedProducts and
ListRecordHistory API operations use an input called AccessLevelFilterKey, and that key's values
correspond to the Condition block levels discussed here (accountLevel is equivalent to an
AccessLevelFilterKey value of "Account", roleLevel to "Role", and userLevel to "User"). For more
information, see the AWS Service Catalog Developer Guide.

Topics

• Full Admin Access to Provisioned Products (p. 27)

• End-user Access to Provisioned Products (p. 28)

• Partial Admin Access to Provisioned Products (p. 29)

Full Admin Access to Provisioned Products
The following policy allows full read and write access to provisioned products and records within the
catalog at the account level.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "servicecatalog:*"

27

http://docs.aws.amazon.com/servicecatalog/latest/dg/

AWS Service Catalog Administrator Guide
Example Access Policies for

Provisioned Product Management

],
 "Resource":"*",
 "Condition": {
 "StringEquals": {
 "servicecatalog:accountLevel": "self"
 }
 }
 }
]
}

This policy is functionally equivalent to the following policy:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "servicecatalog:*"
],
 "Resource":"*"
 }
]
}

In other words, not specifying a Condition block in any policy for AWS Service Catalog is treated
as the same as specifying "servicecatalog:accountLevel" access. Note that accountLevel
access includes roleLevel and userLevel access.

End-user Access to Provisioned Products
The following policy restricts access to read and write operations to only the provisioned products or
associated records that the current user created.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "servicecatalog:DescribeProduct",
 "servicecatalog:DescribeProductView",
 "servicecatalog:DescribeProvisioningParameters",
 "servicecatalog:DescribeRecord",
 "servicecatalog:ListLaunchPaths",
 "servicecatalog:ListRecordHistory",
 "servicecatalog:ProvisionProduct",
 "servicecatalog:ScanProvisionedProducts",
 "servicecatalog:SearchProducts",
 "servicecatalog:TerminateProvisionedProduct",
 "servicecatalog:UpdateProvisionedProduct"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "servicecatalog:userLevel": "self"
 }

28

AWS Service Catalog Administrator Guide
Example Access Policies for

Provisioned Product Management

 }
 }
]
 }

Partial Admin Access to Provisioned Products

The two policies below, if both applied to the same user, allow what might be called a type of "partial
admin access" by providing full read-only access and limited write access. This means the user can
see any provisioned product or associated record within the catalog's account but cannot perform any
actions on any provisioned products or records that aren't owned by that user.

The first policy allows the user access to write operations on the provisioned products that the current
user created, but no provisioned products created by others. The second policy adds full access to
read operations on provisioned products created by all (user, role, or account).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "servicecatalog:DescribeProduct",
 "servicecatalog:DescribeProductView",
 "servicecatalog:DescribeProvisioningParameters",
 "servicecatalog:ListLaunchPaths",
 "servicecatalog:ProvisionProduct",
 "servicecatalog:SearchProducts",
 "servicecatalog:TerminateProvisionedProduct",
 "servicecatalog:UpdateProvisionedProduct"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "servicecatalog:userLevel": "self"
 }
 }
 }
]
 }

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "servicecatalog:DescribeRecord",
 "servicecatalog:ListRecordHistory",
 "servicecatalog:ScanProvisionedProducts"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "servicecatalog:accountLevel": "self"
 }
 }

29

AWS Service Catalog Administrator Guide
Constraints

 }
]
 }

Using Constraints
To control which rules are applied when the end user launches a product from a specific portfolio, you
apply constraints. You apply constraints to products from the portfolio details page. Constraints are
active as soon as you create them and apply to all current versions of a product that are not already
launched when you create the constraint.

Topics

• Applying a Launch Constraint (p. 30)

• Applying a Template Constraint (p. 32)

Applying a Launch Constraint
A launch constraint designates an AWS Identity and Access Management (IAM) role that AWS Service
Catalog assumes when an end user launches a product. An IAM role is a collection of permissions that
an IAM user or AWS service can assume temporarily to use AWS services.

Without a launch constraint, end users must launch and manage products with their own IAM
credentials. To do so, they must have permissions for AWS CloudFormation, the AWS services used
by the products, and AWS Service Catalog. By using a launch role, you can instead limit the end users'
permissions to the minimum that they require. For more information about end user permissions, see
Controlling Access Using Service-level Permissions (p. 25).

Note
To create and assign IAM roles, you must have the following IAM administrative permissions:
iam:CreateRole, iam:PutRolePolicy, iam:PassRole, iam:Get*, and iam:List*

Configuring a Launch Role
The IAM role that you assign to a product as a launch constraint must have permissions to use the
following AWS services:

• AWS CloudFormation.

• The services that are in the AWS CloudFormation template for the product.

• Amazon Simple Storage Service (Amazon S3). AWS Service Catalog must have read access to the
AWS CloudFormation template in Amazon S3.

The IAM role also must have a trust relationship with AWS Service Catalog, which you assign by
selecting AWS Service Catalog as the role type in the following procedure. The trust relationship
allows AWS Service Catalog to assume the role during the launch process to create resources.

Note
The servicecatalog:ProvisionProduct, servicecatalog:TerminateProduct,
and servicecatalog:UpdateProduct permissions cannot be assigned in a launch role.
You must use IAM roles, as shown in the inline policy steps in the section Step 2: Grant IAM
Permissions to the AWS Service Catalog End User (p. 15).

To create a launch role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

30

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Service Catalog Administrator Guide
Launch Constraints

2. Choose Roles.

3. Choose Create New Role.

4. Enter a role name and choose Next Step.

5. Under AWS Service Roles next to AWS Service Catalog, choose Select.

6. On the Attach Policy page, Choose Next Step.

7. To create the role, choose Create Role.

To attach a policy to the new role

1. Choose the role that you created to view the role details page.

2. Choose the Permissions tab, and expand the Inline Policies section. Then, choose click here.

3. Choose Custom Policy, and then choose Select.

4. Enter a name for the policy, and then paste the following into the Policy Document editor:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "catalog-user:*",
 "cloudformation:CreateStack",
 "cloudformation:DeleteStack",
 "cloudformation:DescribeStackEvents",
 "cloudformation:DescribeStacks",
 "cloudformation:GetTemplateSummary",
 "cloudformation:SetStackPolicy",
 "cloudformation:ValidateTemplate",
 "cloudformation:UpdateStack",
 "s3:GetObject"
],
 "Resource":"*"
 }
]
}

5. Add a line to the policy for each additional service that the product uses. For example, to add
permission for Amazon Relational Database Service (Amazon RDS), type a comma at the end of
the last line in the "Action" list, and then add the following line:

"rds:*"

6. Choose Apply Policy.

Applying a launch constraint

Next, assign the role to the product as a launch constraint. This tells AWS Service Catalog to assume
the role when an end user launches the product.

To assign the role to a product

1. Go to the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. Choose the portfolio that contains the product.

31

https://console.aws.amazon.com/servicecatalog/

AWS Service Catalog Administrator Guide
Template Constraints

3. Expand the Constraints section and choose Add constraints.

4. Choose the product and set Constraint type to Launch. Choose Continue.

5. For IAM role, choose the launch role Enter and choose Submit.

Verify That the Launch Constraint Is Applied

Verify that AWS Service Catalog uses the role to launch the product and that the provisioned product
is created successfully by launching the product from the AWS Service Catalog console. To test a
constraint prior to releasing it to users, create a test portfolio that contains the same products and test
the constraints with that portfolio.

To launch the product

1. In the menu for the AWS Service Catalog console, choose Service Catalog, End user.

2. Choose the product to open the Product details page. In the Launch options table, verify that
the Amazon Resource Name (ARN) of the role appears.

3. Choose Launch product.

4. Proceed through the launch steps, filling in any required information.

5. Verify that the product starts successfully.

Applying a Template Constraint
To limit the options that are available to end users when they launch a product, you apply template
constraints. Apply template constraints to ensure that the end users can use products without
breaching the compliance requirements of your organization. You apply template constraints to a
product in an AWS Service Catalog portfolio. A portfolio must contain one or more products before you
can define template constraints.

A template constraint consists of one or more rules that narrow the allowable values for parameters
that are defined in the product's underlying AWS CloudFormation template. The parameters in an AWS
CloudFormation template define the set of values that users can specify when creating a stack. For
example, a parameter might define the various instance types (such as t1.micro, m1.large, and so on)
that users can choose from when launching a stack that includes EC2 instances.

If the set of parameter values in a template is too broad for the target audience of your portfolio, you
can define template constraints to limit the values that users can choose when launching a product. For
example, if the template parameters include EC2 instance types that are too large for users who should
use only small instance types (such as t2.micro or t2.small), then you can add a template constraint to
limit the instance types that end users can choose. For more information about AWS CloudFormation
template parameters, see Parameters in the AWS CloudFormation User Guide.

Template constraints are bound within a portfolio. If you apply template constraints to a product in one
portfolio, and if you then include the product in another portfolio, the constraints will not apply to the
product in the second portfolio.

If you apply a template constraint to a product that has already been shared with users, the constraint
is active immediately for all subxsequent product launches and for all versions of the product in the
portfolio.

You define template constraint rules by using a rule editor or by writing the rules as JSON text in the
AWS Service Catalog administrator console. For more information about rules, including syntax and
examples, see Template Constraint Rules (p. 33).

To test a constraint prior to releasing it to users, create a test portfolio that contains the same products
and test the constraints with that portfolio.

32

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html

AWS Service Catalog Administrator Guide
Template Constraints

To apply template constraints to a product

1. Sign in to the AWS Management Console and open the AWS Service Catalog console at https://
console.aws.amazon.com/servicecatalog/.

2. On the Portfolios page, choose the portfolio that contains the product to which you want to apply
a template constraint.

3. Expand the Constraints section and choose Add constraints.

4. In the Select product and type window, for Product choose the product for which you want to
define the template constraints. Then, for Constraint type, choose Template. Choose Continue.

5. On the Template constraint builder page, edit the constraint rules by using the JSON editor or
the rule builder interface.

• To edit the JSON code for the rule, choose the Constraint Text Editor tab. Several samples
are provided on this tab to help you get started.

To build the rules by using a rule builder interface, choose the Rule Builder tab. On this tab,
you can choose any parameter that is specified in the template for the product, and you can
specify the allowable values for that parameter. Depending on the type of parameter, you
specify the allowable values by choosing items in a checklist, by specifying a number, or by
specifying a set of values in a comma-separated list.

When you have finished building a rule, click Add rule. The rule appears in the table on the
Rule Builder tab. To review and edit the JSON output, choose the Constraint Text Editor tab.

6. When you are done editing the rules for your constraint, choose Submit. To see the constraint, go
to the portfolio details page, and expand the Constraints section.

Template Constraint Rules

The Rules that define template constraints in an AWS Service Catalog portfolio describe when end
users can use the template and which values they can specify for parameters that are declared in the
AWS CloudFormation template used to create the product they are attempting to use. Rules are useful
for preventing end users from inadvertently specifying an incorrect value. For example, you can add a
rule to verify whether end users specified a valid subnet in a given VPC or used m1.small instance
types for test environments. AWS CloudFormation uses rules to validate parameter values before it
creates the resources for the product.

Each rule consists of two properties: a rule condition (optional) and assertions (required). The rule
condition determines when a rule takes effect. The assertions describe what values users can specify
for a particular parameter. If you don't define a rule condition, the rule's assertions always take effect.
To define a rule condition and assertions, you use rule-specific intrinsic functions, which are functions
that can only be used in the Rules section of a template. You can nest functions, but the final result of
a rule condition or assertion must be either true or false.

As an example, assume that you declared a VPC and a subnet parameter in the Parameters
section. You can create a rule that validates that a given subnet is in a particular VPC. So when a
user specifies a VPC, AWS CloudFormation evaluates the assertion to check whether the subnet
parameter value is in that VPC before creating or updating the stack. If the parameter value is invalid,
AWS CloudFormation immediately fail to create or update the stack. If users don't specify a VPC, AWS
CloudFormation doesn't check the subnet parameter value.

Syntax

The Rules section of a template consists of the key name Rules, followed by a single colon. Braces
enclose all rule declarations. If you declare multiple rules, they are delimited by commas. For each rule,
you declare a logical name in quotation marks followed by a colon and braces that enclose the rule
condition and assertions.

33

https://console.aws.amazon.com/servicecatalog/
https://console.aws.amazon.com/servicecatalog/

AWS Service Catalog Administrator Guide
Template Constraints

A rule can include a RuleCondition property and must include an Assertions property. For
each rule, you can define only one rule condition; you can define one or more asserts within the
Assertions property. You define a rule condition and assertions by using rule-specific intrinsic
functions, as shown in the following pseudo template:

"Rules" : {
 "Rule01" : {
 "RuleCondition" : { Rule-specific intrinsic function },
 "Assertions" : [
 {
 "Assert" : { Rule-specific intrinsic function },
 "AssertDescription" : "Information about this assert"
 },
 {
 "Assert" : { Rule-specific intrinsic function },
 "AssertDescription" : "Information about this assert"
 }
]
 },
 "Rule02" : {
 "Assertions" : [
 {
 "Assert" : { Rule-specific intrinsic function },
 "AssertDescription" : "Information about this assert"
 }
]
 }
}

The pseudo template shows a Rules section containing two rules named Rule01 and Rule02.
Rule01 includes a rule condition and two assertions. If the function in the rule condition evaluates
to true, both functions in each assert are evaluated and applied. If the rule condition is false, the rule
doesn't take effect. Rule02 always takes effect because it doesn't have a rule condition, which means
the one assert is always evaluated and applied.

You can use the following rule-specific intrinsic functions to define rule conditions and assertions:

• Fn::And

• Fn::Contains

• Fn::EachMemberEquals

• Fn::EachMemberIn

• Fn::Equals

• Fn::If

• Fn::Not

• Fn::Or

• Fn::RefAll

• Fn::ValueOf

• Fn::ValueOfAll

Example

Conditionally Verify a Parameter Value

The following two rules check the value of the InstanceType parameter. Depending on the value
of the Environment parameter (test or prod), the user must specify m1.small or m1.large for the

34

AWS Service Catalog Administrator Guide
Template Constraints

InstanceType parameter. The InstanceType and Environment parameters must be declared in
the Parameters section of the same template.

"Rules" : {
 "testInstanceType" : {
 "RuleCondition" : {"Fn::Equals":[{"Ref":"Environment"}, "test"]},
 "Assertions" : [
 {
 "Assert" : { "Fn::Contains" : [["m1.small"], {"Ref" :
 "InstanceType"}] },
 "AssertDescription" : "For the test environment, the instance type
 must be m1.small"
 }
]
 },
 "prodInstanceType" : {
 "RuleCondition" : {"Fn::Equals":[{"Ref":"Environment"}, "prod"]},
 "Assertions" : [
 {
 "Assert" : { "Fn::Contains" : [["m1.large"], {"Ref" :
 "InstanceType"}] },
 "AssertDescription" : "For the prod environment, the instance type
 must be m1.large"
 }
]
 }
}

Rule Functions

In the condition or assertions of a rule, you can use intrinsic functions, such as Fn::Equals,
Fn::Not, and Fn::RefAll. The condition property determines if AWS CloudFormation applies the
assertions. If the condition evaluates to true, AWS CloudFormation evaluates the assertions to verify
whether a parameter value is valid when a provisioned product is created or updated. If a parameter
values is invalid, AWS CloudFormation does not create or update the stack. If the condition evaluates
to false, AWS CloudFormation doesn't check the parameter value and proceeds with the stack
operation.

Topics

• Fn::And (p. 36)

• Fn::Contains (p. 36)

• Fn::EachMemberEquals (p. 36)

• Fn::EachMemberIn (p. 37)

• Fn::Equals (p. 37)

• Fn::Not (p. 38)

• Fn::Or (p. 38)

• Fn::RefAll (p. 39)

• Fn::ValueOf (p. 39)

• Fn::ValueOfAll (p. 40)

• Supported Functions (p. 40)

• Supported Attributes (p. 40)

35

AWS Service Catalog Administrator Guide
Template Constraints

Fn::And

Returns true if all the specified conditions evaluate to true; returns false if any one of the
conditions evaluates to false. Fn::And acts as an AND operator. The minimum number of conditions
that you can include is two, and the maximum is ten.

Declaration

"Fn::And": [{condition}, {...}]

Parameters

condition
A rule-specific intrinsic function that evaluates to true or false.

Example

The following example evaluates to true if the referenced security group name is equal to sg-
mysggroup and if the InstanceType parameter value is either m1.large or m1.small:

"Fn::And" : [
 {"Fn::Equals" : ["sg-mysggroup", {"Ref" : "ASecurityGroup"}]},
 {"Fn::Contains" : [["m1.large", "m1.small"], {"Ref" : "InstanceType"}]}
]

Fn::Contains

Returns true if a specified string matches at least one value in a list of strings.

Declaration

"Fn::Contains" : [[list_of_strings], string]

Parameters

list_of_strings
A list of strings, such as "A", "B", "C".

string
A string, such as "A", that you want to compare against a list of strings.

Example

The following function evaluates to true if the InstanceType parameter value is contained in the list
(m1.large or m1.small):

"Fn::Contains" : [
 ["m1.large", "m1.small"], {"Ref" : "InstanceType"}
]

Fn::EachMemberEquals

Returns true if a specified string matches all values in a list of strings.

36

AWS Service Catalog Administrator Guide
Template Constraints

Declaration

"Fn::EachMemberEquals" : [[list_of_strings], string]

Parameters

list_of_strings
A list of strings, such as "A", "B", "C".

string
A string, such as "A", that you want to compare against a list of strings.

Example

The following function returns true if the Department tag for all parameters of type
AWS::EC2::VPC::Id have a value of IT:

"Fn::EachMemberEquals" : [
 {"Fn::ValueOfAll" : ["AWS::EC2::VPC::Id", "Tags.Department"]}, "IT"
]

Fn::EachMemberIn

Returns true if each member in a list of strings matches at least one value in a second list of strings.

Declaration

"Fn::EachMemberIn" : [[strings_to_check], strings_to_match]

Parameters

strings_to_check
A list of strings, such as "A", "B", "C". AWS CloudFormation checks whether each member in
the strings_to_check parameter is in the strings_to_match parameter.

strings_to_match
A list of strings, such as "A", "B", "C". Each member in the strings_to_match parameter is
compared against the members of the strings_to_check parameter.

Example

The following function checks whether users specify a subnet that is in a valid virtual private cloud
(VPC). The VPC must be in the account and the region in which users are working with the stack. The
function applies to all parameters of type AWS::EC2::Subnet::Id.

"Fn::EachMemberIn" : [
 {"Fn::ValueOfAll" : ["AWS::EC2::Subnet::Id", "VpcId"]}, {"Fn::RefAll" :
 "AWS::EC2::VPC::Id"}
]

Fn::Equals

Compares two values to determine whether they are equal. Returns true if the two values are equal
and false if they aren't.

37

AWS Service Catalog Administrator Guide
Template Constraints

Declaration

"Fn::Equals" : ["value_1", "value_2"]

Parameters

value
A value of any type that you want to compare with another value.

Example

The following example evaluates to true if the value for the EnvironmentType parameter is equal to
prod:

"Fn::Equals" : [{"Ref" : "EnvironmentType"}, "prod"]

Fn::Not

Returns true for a condition that evaluates to false, and returns false for a condition that evaluates
to true. Fn::Not acts as a NOT operator.

Declaration

"Fn::Not": [{condition}]

Parameters

condition
A rule-specific intrinsic function that evaluates to true or false.

Example

The following example evaluates to true if the value for the EnvironmentType parameter is not
equal to prod:

"Fn::Not" : [{"Fn::Equals" : [{"Ref" : "EnvironmentType"}, "prod"]}]

Fn::Or

Returns true if any one of the specified conditions evaluates to true; returns false if all of the
conditions evaluate to false. Fn::Or acts as an OR operator. The minimum number of conditions
that you can include is two, and the maximum is ten.

Declaration

"Fn::Or": [{condition}, {...}]

Parameters

condition
A rule-specific intrinsic function that evaluates to true or false.

38

AWS Service Catalog Administrator Guide
Template Constraints

Example

The following example evaluates to true if the referenced security group name is equal to sg-
mysggroup or if the InstanceType parameter value is either m1.large or m1.small:

"Fn::Or" : [
 {"Fn::Equals" : ["sg-mysggroup", {"Ref" : "ASecurityGroup"}]},
 {"Fn::Contains" : [["m1.large", "m1.small"], {"Ref" : "InstanceType"}]}
]

Fn::RefAll

Returns all values for a specified parameter type.

Declaration

"Fn::RefAll" : "parameter_type"

Parameters

parameter_type
An AWS-specific parameter type, such as AWS::EC2::SecurityGroup::Id or AWS::EC2::VPC::Id.
For more information, see Parameters in the AWS CloudFormation User Guide.

Example

The following function returns a list of all VPC IDs for the region and AWS account in which the stack is
being created or updated:

"Fn::RefAll" : "AWS::EC2::VPC::Id"

Fn::ValueOf

Returns an attribute value or list of values for a specific parameter and attribute.

Declaration

"Fn::ValueOf" : ["parameter_logical_id", "attribute"]

Parameters

attribute
The name of an attribute from which you want to retrieve a value. For more information about
attributes, see Supported Attributes (p. 40).

parameter_logical_id
The name of a parameter for which you want to retrieve attribute values. The parameter must be
declared in the Parameters section of the template.

Examples

The following example returns the value of the Department tag for the VPC that is specified by the
ElbVpc parameter:

"Fn::ValueOf" : ["ElbVpc", "Tags.Department"]

39

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html

AWS Service Catalog Administrator Guide
Template Constraints

If you specify multiple values for a parameter, the Fn::ValueOf function can return a list. For example,
you can specify multiple subnets and get a list of Availability Zones where each member is the
Avalibility Zone of a particular subnet:

"Fn::ValueOf" : ["ListOfElbSubnets", "AvailabilityZone"]

Fn::ValueOfAll

Returns a list of all attribute values for a given parameter type and attribute.

Declaration

"Fn::ValueOfAll" : ["parameter_type", "attribute"]

Parameters

attribute
The name of an attribute from which you want to retrieve a value. For more information about
attributes, see Supported Attributes (p. 40).

parameter_type
An AWS-specific parameter type, such as AWS::EC2::SecurityGroup::Id or AWS::EC2::VPC::Id.
For more information, see Parameters in the AWS CloudFormation User Guide.

Example

In the following example, the Fn::ValueOfAll function returns a list of values, where each member is
the Department tag value for VPCs with that tag:

"Fn::ValueOfAll" : ["AWS::EC2::VPC::Id", "Tags.Department"]

Supported Functions

You cannot use another function within the Fn::ValueOf and Fn::ValueOfAll functions. However,
you can use the following functions within all other rule-specific intrinsic functions:

• Ref

• Other rule-specific intrinsic functions

Supported Attributes

The following list describes the attribute values that you can retrieve for specific resources and
parameter types:

The AWS::EC2::VPC::Id parameter type or VPC IDs

• DefaultNetworkAcl

• DefaultSecurityGroup

• Tags.tag_key

The AWS::EC2::Subnet::Id parameter type or subnet IDs

• AvailabilityZone

• Tags.tag_key

• VpcId

40

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html

AWS Service Catalog Administrator Guide
Template Constraints

The AWS::EC2::SecurityGroup::Id parameter type or security group IDs

• Tags.tag_key

41

AWS Service Catalog Administrator Guide
Working With Portfolios

Managing Catalogs

AWS Service Catalog provides an interface for managing portfolios, products, and constraints from an
administrator console.

Note
To perform any of the tasks in this section, you must have administrator permissions for
AWS Service Catalog. For more information, see Controlling Access Using Service-level
Permissions (p. 25).

To access the AWS Service Catalog administrator's console, log in to the AWS Management Console
and navigate to https://console.aws.amazon.com/servicecatalog/. The first time you access the
administrator's console, you are prompted to create a portfolio. Follow the instructions to create your
first portfolio, and then proceed to the Portfolios page.

Topics

• Working With Portfolios (p. 42)

• Managing Products (p. 46)

• Adding an AWS Marketplace Product to Your Portfolio (p. 49)

• Tagging Resources (p. 54)

• Portfolio Sharing (p. 54)

Working With Portfolios
You create, view, and update portfolios on the Portfolios page in the AWS Service Catalog
administrator console.

Creating, Viewing, and Deleting Portfolios
The Portfolios page displays a list of the portfolios that you have created in the current region. Use
this page to create new portfolios, view a portfolio's details, or delete portfolios from your account.

To view the Portfolios page

• Sign in to the AWS Management Console and go to AWS Service Catalog at https://
console.aws.amazon.com/servicecatalog/portfolios.

42

https://console.aws.amazon.com/servicecatalog/
https://console.aws.amazon.com/servicecatalog/portfolios
https://console.aws.amazon.com/servicecatalog/portfolios

AWS Service Catalog Administrator Guide
Managing Portfolio Details

While using AWS Service Catalog, you can return to the Portfolios page at any time by choosing
Service Catalog in the navigation bar, and then choosing Portfolios.

Managing Portfolio Details
In the AWS Service Catalog administrator console the Portfolio details page lists all of the settings for
a portfolio. Use this page to manage the products in the portfolio, grant users access to products, and
apply tags and constraints.

To view the Portfolio details page

1. Sign in to the AWS Management Console and go to AWS Service Catalog at https://
console.aws.amazon.com/servicecatalog/.

2. Choose the portfolio that you want to manage.

Creating and Deleting Portfolios
Use the Portfolios page to create and delete portfolios. Deleting a portfolio removes it from your
account. Before you can delete a portfolio, you must remove all the products, constraints, and users
that it contains.

To create a new portfolio

1. Navigate to the Portfolios page.

2. Choose Create portfolio.

3. On the Create portfolio page, enter the requested information.

4. Choose Create. AWS Service Catalog creates the portfolio and displays the portfolio details.

To delete a portfolio

1. Navigate to the Portfolios page.

2. Select the portfolio by clicking the corresponding radio button or anywhere on the listing except on
the portfolio title.

3. Choose Delete portfolio.

4. Choose Continue.

Adding Products
To add products to a portfolio, you either create a new product or add an existing product from your
catalog to the portfolio.

Note
The AWS CloudFormation template that you upload when you create an AWS Service
Catalog product is stored in an Amazon Simple Storage Service (Amazon S3) bucket that
starts with cf-templates- in your AWS account. Do not delete these files unless you are
sure that they are no longer in use.

Adding a New Product

You add new products directly from the portfolio details page. When you create a product from this
page, AWS Service Catalog adds it to the currently selected portfolio. You can also add a product to
other portfolios.

43

https://console.aws.amazon.com/servicecatalog/
https://console.aws.amazon.com/servicecatalog/

AWS Service Catalog Administrator Guide
Adding Products

To add a new product

1. Navigate to the Portfolios page, and then choose the name of the portfolio to which you want to
add the product.

2. On the portfolio details page, expand the Products section, and then choose Upload new
product.

3. For Enter product details, enter the following:

• Product name – The name of the product.

• Short description – The short description. This description appears in search results to help
the user choose the correct product.

• Description – The full description. This description is shown in the product listing to help the
user choose the correct product.

• Provided by – The name or email address of your IT department or administrator.

• Vendor (optional) – The name of the application's publisher. This field allows users to sort their
products list to makes it easier to find the products that they need.

Choose Next.

4. For Enter support details, enter the following:

• Email contact (optional) – The email address for reporting issues with the product.

• Support link (optional) – A URL to a site where users can find support information or file tickets.
The URL must begin with http:// or https://.

• Support description (optional) – A description of how users should use the Email contact and
Support link.

Choose Next.

5. On the Version details page, enter the following:

• Select template – An AWS CloudFormation template from a local drive or a URL that points
to a template stored in Amazon S3. If you specify an Amazon S3 URL, it must begin with
https://. The extension for the template file must be .template.

• Version title – the name of the product version (e.g., "v1", "v2beta"). No spaces are allowed.

• Description (optional) – A description of the product version including how this version differs
from the previous version.

Choose Next.

6. On the Review page, verify that the information is correct, and then choose Confirm and upload.
After a few seconds, the product appears in your portfolio. You might need to refresh your browser
to see the product.

Adding an Existing Product

You can add existing products to a portfolio from three places: the Portfolios list, the portfolio details
page, or the Products page.

To add an existing product to a portfolio

1. Navigate to the Portfolios page.

2. Choose a portfolio, and then choose Add product.

3. Choose a product, and then choose Add product to portfolio.

44

AWS Service Catalog Administrator Guide
Adding Constraints

Removing a Product from a Portfolio
When you no longer want users to use a product, remove it from a portfolio. The product is still
available in your catalog from the Products page, and you can still add it to other portfolios. You can
remove multiple products from a portfolio at one time.

To remove a product from a portfolio

1. Navigate to the Portfolios page, and then choose the portfolio that contains the product. The
portfolio details page opens.

2. Expand the Products section.

3. Choose one or more products, and then choose Remove product.

4. Choose Continue.

Adding Constraints
To control how users are able to use products, add constraints. The types of constraints that AWS
Service Catalog supports are detailed in the Using Constraints (p. 30) section.

You add constraints to products after they have been placed in a portfolio.

To add a constraint to a product

1. Navigate to the Portfolios page, and then choose a portfolio. The portfolio details page opens.

2. Expand the Constraints section, and then choose Add constraints.

3. For the Product, choose the product that you want to apply the constraint to.

4. For Constraint type, choose one of the following options:

• Launch – The IAM role that AWS Service Catalog uses to launch and manage the product.

• Template – A JSON document that contains one or more rules. Rules are added to the AWS
CloudFormation template used by the product. For more information, see Template Constraint
Rules (p. 33)

5. Click Continue.

To edit a constraint

1. Navigate to the Portfolios page, and then choose a portfolio. The portfolio details page opens.

2. Expand the Constraints section, and then select the constraint to edit.

3. Choose Edit constraints.

4. Edit the constraint as needed, and choose Submit.

For more information about constraint types and their use, see Using Constraints (p. 30).

Tagging Portfolios
You can assign tags to portfolios to track products that are launched from that portfolio. When you add
a tag to a portfolio, the tag is applied to all products launched from that portfolio. Tags are applied to all
resources that are created when a product is launched. You can assign a maximum of three tags to a
portfolio. For more information, see Tagging Resources (p. 54).

To add tags to a portfolio

1. Navigate to the Portfolios page, and then choose the portfolio.

45

AWS Service Catalog Administrator Guide
Granting Access to Users

2. On the portfolio details page, expand the Tags section.

3. Type a key and value for the tag.

4. Choose Add tag.

To delete a tag, choose the check box next to its key, and then choose Delete tag. Deleted tags are
no longer applied to new provisioned products when they launch, but remain on resources that have
already been launched.

Granting Access to Users
Give users access to portfolios by using IAM users, groups, and roles. The best way to provide
portfolio access for many users is to put the users in an IAM group and grant access to that group.
That way you can simply add and remove users from the group to manage portfolio access. For more
information, see IAM Users and Groups in the Using IAM guide.

In addition to access to a portfolio, IAM users must also have access to the AWS Service Catalog end
user console. You grant access to the console by applying permissions in IAM. For more information,
see Controlling Access Using Service-level Permissions (p. 25).

To grant portfolio access to users or groups

1. In the portfolio details page, expand the Users, groups and roles section, and then choose Add
user, group or role.

2. Choose the Groups, Users, or Roles tab to add groups, users, or roles, respectively.

3. Choose one or more users, groups, or roles, and then choose Add Access to grant them access
to the current portfolio.

Tip
To grant access to a combination of groups, users, and roles, you can switch between the
tabs without losing your selection.

To remove access to a portfolio

1. On the portfolio details page, choose the checkbox for the user or group.

2. Choose Remove user, group or role.

Managing Products
You create products by packaging an AWS CloudFormation template with metadata, update products
by creating a new version based on an updated template, and group products together into portfolios to
distribute them to users.

New versions of products are propagated to all users who have access to the product through a
portfolio. When you distribute an update, end users can update existing provisioned products with just
a few clicks.

Displaying the Products Page
You manage products from the Products page in the AWS Service Catalog administrator console.

To view the Products page

1. Sign in to the AWS Management Console, and then navigate to https://console.aws.amazon.com/
servicecatalog/.

46

http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_WorkingWithGroupsAndUsers.html
https://console.aws.amazon.com/servicecatalog/
https://console.aws.amazon.com/servicecatalog/

AWS Service Catalog Administrator Guide
Creating Products

2. Choose Service Catalog in the navigation bar.

3. Choose Products.

Creating Products
To create a new AWS Service Catalog product

1. Navigate to the Products page.

2. Choose Upload new product.

3. For Enter product details, enter the following:

• Product name – The name of the product.

• Short description – The short description. This description appears in search results to help
the user choose the correct product.

• Description – The full description. This description is shown in the product listing to help the
user choose the correct product.

• Provided by – The name of your IT department or administrator.

• Vendor (optional) – The name of the application's publisher. This field allows users to sort their
products list to makes it easier to find the products that they need.

Choose Next.

4. For Enter support details, enter the following:

• Email contact (optional) – The email address for reporting issues with the product.

• Support link (optional) – A URL to a site where users can find support information or file tickets.
The URL must begin with http:// or https://.

• Support description (optional) – A description of how users should use the Email contact and
Support link.

Choose Next.

5. For Version details, enter the following:

• Select template – An AWS CloudFormation template from a local drive or a URL that points
to a template stored in Amazon S3. If you specify an Amazon S3 URL, it must begin with
https://. The extension for the template file must be .template.

• Version title – the name of the product version (e.g., "v1", "v2beta"). No spaces are allowed.

• Description (optional) – A description of the product version including how this version differs
from the previous version.

6. Choose Next.

7. On the Review page, verify that the information is correct, and then choose Confirm and upload.
After a few seconds, the product appears on the Products page. You might need to refresh your
browser to see the product.

Adding Products to Portfolios
You can add products in any number of portfolios. When a product is updated, all of the portfolios that
contain the product automatically receive the new version, including shared portfolios.

To add a product from your catalog to a portfolio

1. Navigate to the Products page.

47

AWS Service Catalog Administrator Guide
Updating Products

2. Choose a product, choose Actions, and then choose Add product to portfolio.

3. Choose a portfolio, and then choose Add product to portfolio.

Updating Products
When you need to update a product's AWS CloudFormationtemplate, you create a new version of your
product. A new product version is automatically available to all users who have access to a portfolio
that contains the product.

Users who are currently running a provisioned product of the previous version of the product can
update their provisioned product using the end user console view. When a new version of a product
is available, users can use the Update provisioned product command on either the Provisioned
product list or Provisioned product details pages.

Note
Before you create a new version of a product, test your product updates in AWS
CloudFormation to ensure that they work.

To create a new product version

1. Navigate to the Products page.

2. Choose the product name.

3. On the product details page, expand the Versions section, and then choose Create new version.

4. For Version details, enter the following:

• Select template – An AWS CloudFormation template from a local drive or a URL that points
to a template stored in Amazon S3. If you specify an Amazon S3 URL, it must begin with
https://. The extension for the template file must be .template.

• Version title – the name of the product version (e.g., "v1", "v2beta"). No spaces are allowed.

• Description (optional) – A description of the product version including how this version differs
from the previous version.

Choose Save.

Tagging Products
You can assign tags to products to track products that are launched. When you add a tag to a product,
the tag is applied to the launched product. Tags are applied to all resources that are created when a
product is launched. You can assign a maximum of three tags to a product. For more information, see
Tagging Resources (p. 54).

To add tags to a product

1. Navigate to the Products page, and then choose the product.

2. On the product details page, expand the Tags section.

3. Type a key and value for the tag.

4. Choose Add tag.

To delete a tag, choose the check box next to its key, and then choose Delete tag. Deleted tags are
no longer applied to new provisioned products when they launch, but remain on resources that have
already been launched.

48

AWS Service Catalog Administrator Guide
Deleting Products

Deleting Products
To remove products from your account completely, delete them from your catalog. Deleting a product
removes all versions of the product from every portfolio that contains the product. Deleted products
cannot be recovered.

To delete a product from your catalog

1. Navigate to the Products page.

2. Choose the product, choose Actions, and then choose Delete product.

3. Verify that you have chosen the product that you want to delete, and then choose Continue.

Adding an AWS Marketplace Product to Your
Portfolio

You can add AWS Marketplace products to your portfolios to make those products available to your
AWS Service Catalog end users.

AWS Marketplace is an online store in which you can find, subscribe to, and immediately start
using a large selection of software and services. The types of products in AWS Marketplace include
databases, application servers, testing tools, monitoring tools, content management tools, and
business intelligence software. AWS Marketplace is available at https://aws.amazon.com/marketplace.

You distribute an AWS Marketplace product to AWS Service Catalog end users by defining the product
in an AWS CloudFormation template and adding the template to a portfolio. Any end user who has
access to the portfolio will be able to launch the product from the console.

Complete the following steps to subscribe to an AWS Marketplace product, define that product in an
AWS CloudFormation template, and add the template to an AWS Service Catalog portfolio.

To subscribe to an AWS Marketplace product

1. Go to AWS Marketplace at https://aws.amazon.com/marketplace.

2. Browse the products or search to find the product that you want to add to your AWS Service
Catalog portfolio. Choose the product to view the product details page.

3. Choose Continue to view the fulfillment page, and then choose the Manual Launch tab.

The information on the fulfillment page includes the supported Amazon Elastic Compute Cloud
(Amazon EC2) instance types, the supported AWS regions, and the Amazon Machine Image
(AMI) ID that the product uses for each AWS region. Note that some choices will affect cost. You
will use this information to customize the AWS CloudFormation template in later steps.

4. Choose Accept Terms to subscribe to the product.

After you subscribe to a product, you can access the information on the product fulfillment page in
AWS Marketplace at any time by choosing Your Software, and then choosing the product.

To define your AWS Marketplace product in an AWS CloudFormation template

To complete the following steps, you will use one of the AWS CloudFormation sample templates as a
starting point, and you will customize the template so that it represents your AWS Marketplace product.
To access the sample templates, see Sample Templates in the AWS CloudFormation User Guide.

49

https://aws.amazon.com/marketplace
https://aws.amazon.com/marketplace
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-sample-templates.html

AWS Service Catalog Administrator Guide
Adding an AWS Marketplace Product to Your Portfolio

1. On the Sample Templates page in the AWS CloudFormation User Guide, choose a region that
your product will be used in. The region must be supported by your AWS Marketplace product.
You can view the supported regions on the product fulfillment page in AWS Marketplace.

2. To view a list of service sample templates that are appropriate for the region, choose the Services
link.

3. You can use any of the samples that are appropriate for your needs as a starting point. The steps
in this procedure use the Amazon EC2 instance in a security group template. To view the
sample template, choose View , and then save a copy of the template locally so that you can edit
it. Your local file must have the .template extension.

4. Open your template file in a text editor.

5. Customize the description at the top of the template. Your description might look like the following
example:

"Description": "Launches a LAMP stack from AWS Marketplace",

6. Customize the InstanceType parameter so that it includes only EC2 instance types that are
supported by your product. If your template includes unsupported EC2 instance types, the product
will fail to launch for your end users.

a. On the product fulfillment page in AWS Marketplace, view the supported EC2 instance types
in the Pricing Details section, as in the following example:

50

AWS Service Catalog Administrator Guide
Adding an AWS Marketplace Product to Your Portfolio

b. In your template, change the default instance type to a supported EC2 instance type of your
choice.

c. Edit the AllowedValues list so that it includes only EC2 instance types that are supported by
your product.

d. Remove any EC2 instance types that you do not want your end users to use when they
launch the product from the AllowedValueslist .

When you are done editing the InstanceType parameter, it might look similar to the following
example:

51

AWS Service Catalog Administrator Guide
Adding an AWS Marketplace Product to Your Portfolio

 "InstanceType" : {
 "Description" : "EC2 instance type",
 "Type" : "String",
 "Default" : "m1.small",
 "AllowedValues" : ["t1.micro", "m1.small", "m1.medium", "m1.large",
 "m1.xlarge", "m2.xlarge", "m2.2xlarge", "m2.4xlarge", "c1.medium",
 "c1.xlarge", "c3.large", "c3.large", "c3.xlarge", "c3.xlarge",
 "c3.4xlarge", "c3.8xlarge"],
 "ConstraintDescription" : "Must be a valid EC2 instance type."
 },

7. In the Mappings section of your template, edit the AWSInstanceType2Arch mappings so that
only supported EC2 instance types and architectures are included.

a. Edit the list of mappings by removing all EC2 instance types that are not included in the
AllowedValues list for the InstanceType parameter.

b. Edit the Arch value for each EC2 instance type to be the architecture type that is supported
by your product. Valid values are PV64, HVM64, and HVMG2. To learn which architecture
your product supports, refer to the product details page in AWS Marketplace. To learn which
architectures are supported by EC2 instance families, see Amazon Linux AMI Instance Type
Matrix.

When you have finished editing the AWSInstanceType2Arch mappings, it might look similar to
the following example:

 "AWSInstanceType2Arch" : {
 "t1.micro" : { "Arch" : "PV64" },
 "m1.small" : { "Arch" : "PV64" },
 "m1.medium" : { "Arch" : "PV64" },
 "m1.large" : { "Arch" : "PV64" },
 "m1.xlarge" : { "Arch" : "PV64" },
 "m2.xlarge" : { "Arch" : "PV64" },
 "m2.2xlarge" : { "Arch" : "PV64" },
 "m2.4xlarge" : { "Arch" : "PV64" },
 "c1.medium" : { "Arch" : "PV64" },
 "c1.xlarge" : { "Arch" : "PV64" },
 "c3.large" : { "Arch" : "PV64" },
 "c3.xlarge" : { "Arch" : "PV64" },
 "c3.2xlarge" : { "Arch" : "PV64" },
 "c3.4xlarge" : { "Arch" : "PV64" },
 "c3.8xlarge" : { "Arch" : "PV64" }
 }
,

8. In the Mappings section of your template, edit the AWSRegionArch2AMI mappings to associate
each AWS region with the corresponding architecture and AMI ID for your product.

a. On the product fulfillment page in AWS Marketplace, view the AMI ID that your product uses
for each AWS region, as in the following example:

52

https://aws.amazon.com/amazon-linux-ami/instance-type-matrix/
https://aws.amazon.com/amazon-linux-ami/instance-type-matrix/

AWS Service Catalog Administrator Guide
Adding an AWS Marketplace Product to Your Portfolio

b. In your template, remove the mappings for any regions that you do not support.

c. Edit the mapping for each region to remove the unsupported architectures (PV64, HVM64, or
HVMG2) and their associated AMI IDs.

d. For each remaining region and architecture mapping, specify the corresponding AMI ID from
the product details page in AWS Marketplace.

When you have finished editing the AWSRegionArch2AMI mappings, your code might look similar
to the following example:

 "AWSRegionArch2AMI" : {
 "us-east-1" : {"PV64" : "ami-nnnnnnnn"},
 "us-west-2" : {"PV64" : "ami-nnnnnnnn"},
 "us-west-1" : {"PV64" : "ami-nnnnnnnn"},
 "eu-west-1" : {"PV64" : "ami-nnnnnnnn"},
 "eu-central-1" : {"PV64" : "ami-nnnnnnnn"},
 "ap-northeast-1" : {"PV64" : "ami-nnnnnnnn"},
 "ap-southeast-1" : {"PV64" : "ami-nnnnnnnn"},
 "ap-southeast-2" : {"PV64" : "ami-nnnnnnnn"},
 "sa-east-1" : {"PV64" : "ami-nnnnnnnn"}
 }

You can now use the template to add the product to an AWS Service Catalog portfolio. If you want
to make additional changes, see Working with AWS CloudFormation Templates to learn more
about templates.

To add your AWS Marketplace product to an AWS Service Catalog portfolio

1. Sign in to the AWS Management Console and navigate to the AWS Service Catalog administrator
console at https://console.aws.amazon.com/servicecatalog/.

2. On the Portfolios page, choose the portfolio that you want to add your AWS Marketplace product
to.

3. On the portfolio details page, choose Upload new product.

4. Type the requested product and support details.

5. On the Version details page, choose Upload a template file, choose Browse, and then choose
your template file.

53

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://console.aws.amazon.com/servicecatalog/

AWS Service Catalog Administrator Guide
Tagging Resources

6. Type a version title and description.

7. Choose Next.

8. On the Review page, verify that the summary is accurate, and then choose Confirm and upload.
The product is added your portfolio. It is now available to end users who have access to the
portfolio.

Tagging Resources
Tags are words or phrases that act as metadata for identifying and organizing your AWS resources.
Each resource can have up to ten tags, each of which consists of a key and a value. For more
information about tagging, see What Is a Tag? in the AWS Billing and Cost Management User Guide.

You can add three tags to a portfolio and three tags to a product. When a product is launched, its tags
and the tags of its portfolio are combined and applied to the provisioned product automatically. For a
portfolio, you might add a CostCenter or GroupName tag for the group that the portfolio is distributed
to. For a product, you could add a ProductOwner, LicenseType, or OperatingSystem tag to
specify information about the product. For a list of

When end users launches a provisioned product, they can add tags to the provisioned product beyond
those inherited from the product or portfolio. If you want your users to add specific tags, specify them in
the product's description. For example, you may want the user to enter a Name tag for the provisioned
product, or a User tag with their user name as the value.

Tags are assigned to provisioned product resources during product launch and cannot be changed
when a provisioned product is updated or at any other time during a provisioned product's lifecycle.

Note
AWS CloudFormation also adds three tags (stack name, stack ID, and logical ID) to
each cloud resource when it is created. These tags do not count toward tag limits.

For examples of using tags with various AWS products, see Applying Tags in the AWS Billing and Cost
Management User Guide.

Tracking Costs Using Tags
The tags you add appear as columns in the Amazon Elastic Compute Cloud (Amazon EC2) console
and are automatically added to the list of filters in the search bar. You can sort by tag to find the
resources you are looking for.

You can also manage tags collectively using Tag Editor in the AWS Management Console. For more
information, see Working with Tag Editor.

Tip
Add a tag with the Name key to name provisioned product resources at launch. The Name
column is displayed by default in the Amazon EC2 console.

Portfolio Sharing
To make your AWS Service Catalog products available to users who are not in your AWS account,
such as users who belong to other organizations or to other AWS accounts in your organization, you
share your portfolios with their AWS accounts.

When you share a portfolio, you allow an AWS Service Catalog administrator of another AWS account
to import your portfolio into his or her account and distribute the products to end users in that account.
This imported portfolio isn't an independent copy. The products and constraints in the imported
portfolio stay in sync with changes that you make to the shared portfolio, the original portfolio that you
shared. The recipient administrator, the administrator with whom you share a portfolio, cannot change

54

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/allocation-what.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/allocation-how.html
https://console.aws.amazon.com/r/tags
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html

AWS Service Catalog Administrator Guide
Summary of Relationship Between

Shared and Imported Portfolios

the products or constraints, but can add AWS Identity and Access Management (IAM) access for
end users and add tags. For more information, see Granting Access to Users (p. 46) and Tagging
Portfolios (p. 45).

The recipient administrator can distribute the products to end users who belong to his or her AWS
account in the following ways:

• By adding IAM users, groups, and roles to the imported portfolio.

• By adding products from the imported portfolio to a local portfolio, a separate portfolio that
the recipient administrator creates and that belongs to his or her AWS account. The recipient
administrator then adds IAM users, groups, and roles to the local portfolio. The constraints that you
applied to the products in the shared portfolio are also present in the local portfolio. The recipient
administrator can add additional constraints to the local portfolio, but cannot remove the imported
constraints.

When you add products or constraints to the shared portfolio or remove products or constraints from it,
the change propagates to all imported instances of the portfolio. For example, if you remove a product
from the shared portfolio, that product is also removed from the imported portfolio. It is also removed
from all local portfolios that the imported product was added to. If an end user launched a product
before you removed it, the end user's provisioned product continues to run, but the product becomes
unavailable for future launches.

If you apply a launch constraint to a product in a shared portfolio, it propagates to all imported
instances of the product. To override this launch constraint, the recipient administrator adds the
product to a local portfolio and then applies a different launch constraint to it. The launch constraint
that is in effect sets a launch role for the product. A launch role is an IAM role that AWS Service
Catalog uses to provision AWS resources (such as EC2 instances or RDS databases) when an end
user launches the product. This launch role is used even if the end user belongs to a different AWS
account than the one that owns the launch role. For more information about launch constraints and
launch roles, see Applying a Launch Constraint (p. 30). The AWS account that owns the launch role
provisions the AWS resources, and this account incurs the usage charges for those resources. For
more information, see AWS Service Catalog Pricing.

Note
You cannot re-share products from a portfolio that has been imported or shared.

Summary of Relationship Between Shared and
Imported Portfolios
The following table summarizes the relationship between an imported portfolio and a shared portfolio
and the actions that an administrator who imports a portfolio can and can't take with that portfolio and
the products in it.

Elements of Shared
Portfolio

Relationship with
Imported Portfolio

What the Recipient
Administrator Can Do

What the Recipient
Administrator Cannot
Do

Products and product
versions

Inherited.

If the portfolio creator
adds products to or
removes products
from the shared
portfolio, the change
propagates to the
imported portfolio.

Add imported products
to local portfolios.
Products stay in sync
with shared portfolio.

Upload or add products
to the imported
portfolio or remove
products from the
imported portfolio.

55

https://aws.amazon.com/servicecatalog/pricing/

AWS Service Catalog Administrator Guide
Summary of Relationship Between

Shared and Imported Portfolios

Elements of Shared
Portfolio

Relationship with
Imported Portfolio

What the Recipient
Administrator Can Do

What the Recipient
Administrator Cannot
Do

Launch constraints Inherited.

If the portfolio
creator adds launch
constraints to or
removes launch
constraints from a
shared product, the
change propagates to
all imported instances
of the product.

If the recipient
administrator adds
an imported product
to a local portfolio,
the imported launch
constraint that is
applied to that product
is present in the local
portfolio.

In a local portfolio,
the administrator can
override the imported
launch constraint by
applying a different one
to the product.

Add launch constraints
to or remove launch
constraints from the
imported portfolio.

Template constraints Inherited.

If the portfolio creator
adds a template
constraint to or
removes a template
constraints from a
shared product, the
change propagates to
all imported instances
of the product.

If the recipient
administrator adds an
imported product to
a local portfolio, the
imported template
constraints that are
applied to that product
are inherited by the
local portfolio.

In a local portfolio, the
administrator can add
template constraints
that take effect in
addition to the imported
constraints.

Remove the imported
template constraints.

IAM users, groups, and
roles

Not inherited. Add IAM users, groups,
and roles that are in
administrator's AWS
account.

Not applicable.

Tags Not inherited. Add tags. Not applicable.

56

AWS Service Catalog Administrator Guide
Sharing a Portfolio

Sharing a Portfolio
To enable an AWS Service Catalog administrator for another AWS account to distribute your products
to end users, share your AWS Service Catalog portfolio with that administrator's AWS account.

To complete these steps, you must obtain the AWS Account ID of the target AWS account. The ID is
provided on the My Account page in the AWS Management Console of the target account.

To share a portfolio

1. Sign in to the AWS Management Console and open the AWS Service Catalog console at https://
console.aws.amazon.com/servicecatalog/.

2. On the Portfolios page, select the portfolio that you want to share, and choose Share Portfolio.

3. In the Enter AWS account ID window, type the account ID of the AWS account that you are
sharing with. Then, choose Share. If sharing succeeds, a message on the Portfolios page
confirms that the portfolio is linked with the target account. It also provides a URL that the recipient
administrator must use to import the portfolio.

4. Send the URL to the AWS Service Catalog administrator of the target account. The URL opens the
Import Portfolio page with the ARN of the shared portfolio automatically provided.

Importing a Portfolio
If an AWS Service Catalog administrator for another AWS account shares a portfolio with you, import
that portfolio into your account so that you can distribute its products to your end users.

To import the portfolio, you must get a URL for importing the portfolio from the administrator, or you
must get the Amazon Resource Name (ARN) of the shared portfolio. The ARN is provided on the
details page of the shared portfolio in the administrator's account.

If you received the import URL

• Visit the URL, and on the Import Portfolio page, choose Import. The Portfolios page displays,
and the portfolio is shown in the Imported Portfolios table.

If you received the portfolio ARN

1. Sign in to the AWS Management Console and open the AWS Service Catalog console at https://
console.aws.amazon.com/servicecatalog/.

2. On the Portfolios page, choose Import portfolio.

3. On the Import Portfolio page, type the ARN of the portfolio in the text box.

4. Choose Import. The Portfolios page displays, and the portfolio is appears in the Imported
Portfolios table.

57

https://console.aws.amazon.com/servicecatalog/
https://console.aws.amazon.com/servicecatalog/
https://console.aws.amazon.com/servicecatalog/
https://console.aws.amazon.com/servicecatalog/

AWS Service Catalog Administrator Guide
Managing All Provisioned Products as Administrator

Managing Provisioned Products

AWS Service Catalog provides an interface for managing provisioned products. You can view, update,
and terminate all provisioned products for your catalog based on access level. Refer to the following
sections for example procedures.

Topics

• Managing All Provisioned Products as Administrator (p. 58)

• Tutorial: Identifying User Resource Allocation (p. 58)

Managing All Provisioned Products as
Administrator

To manage all provisioned products for the account, you will need ServiceCatalogAdminFullAccess
or equivalent access to the provisioned product write operations. For more information, see Controlling
Access Using Service-level Permissions (p. 25).

To view and manage all provisioned products

1. Sign in to the AWS Management Console and open the AWS Service Catalog console at https://
console.aws.amazon.com/servicecatalog/.

If you are already logged in to some other area of the AWS Service Catalog console, choose
Service Catalog, End user.

2. If necessary, scroll down to the Provisioned products section.

3. In the Provisioned products section, choose the View: list and select the level of access you
wish to see: User, Role, or Account. This displays all the provisioned products in the catalog.

4. Choose a provisioned product to view, update, or terminate. For more information about the
information provided in this view, see Viewing Provisioned Product Information.

Tutorial: Identifying User Resource Allocation
You can identify the user who provisioned a product and resources associated with the product using
the AWS Service Catalog console. This tutorial helps translate this example to your own specific
provisioned products.

58

https://console.aws.amazon.com/servicecatalog/
https://console.aws.amazon.com/servicecatalog/
http://docs.aws.amazon.com/servicecatalog/latest/userguide/enduser-viewstack.html

AWS Service Catalog Administrator Guide
Tutorial: Identifying User Resource Allocation

To manage all provisioned products for the account, you need ServiceCatalogAdminFullAccess or
equivalent access to the provisioned product write operations. For more information, see Controlling
Access Using Service-level Permissions (p. 25).

To identify the user who provisioned a product and the associated resources

1. Navigate to the provisioned products console in AWS Service Catalog console.

2. In the Provisioned products pane, for View:, choose Account.

59

AWS Service Catalog Administrator Guide
Tutorial: Identifying User Resource Allocation

3. Identify the provisioned product to investigate, and select the provisioned product.

4. Expand the Events section and note the Provisioned product ID and
CloudformationStackARN values.

60

AWS Service Catalog Administrator Guide
Tutorial: Identifying User Resource Allocation

5. Use the provisioned product ID to identify the CloudTrail record that corresponds to this launch
and identify the requesting user (typically, this is entered as an email address during federation). In
this example, it is "steve".

{
 "eventVersion":"1.03","userIdentity":
 {
 "type":"AssumedRole",
 "principalId":"[id]:steve",
 "arn":"arn:aws:sts::[account number]:assumed-role/SC-usertest/steve",
 "accountId":[account number],
 "accessKeyId":[access key],
 "sessionContext":
 {
 "attributes":
 {
 "mfaAuthenticated":[boolean],
 "creationDate":[timestamp]
 },
 "sessionIssuer":
 {
 "type":"Role",
 "principalId":"AROAJEXAMPLELH3QXY",
 "arn":"arn:aws:iam::[account number]:role/[name]",
 "accountId":[account number],
 "userName":[username]
 }
 }
 },

 "eventTime":"2016-08-17T19:20:58Z","eventSource":"servicecatalog.amazonaws.com",
 "eventName":"ProvisionProduct",
 "awsRegion":"us-west-2",
 "sourceIPAddress":[ip address],
 "userAgent":"Coral/Netty",
 "requestParameters":
 {
 "provisioningArtifactId":[id],
 "productId":[id],
 "provisioningParameters":[Shows all the parameters that the end user
 entered],
 "provisionToken":[token],
 "pathId":[id],
 "provisionedProductName":[name],
 "tags":[],
 "notificationArns":[]
 },
 "responseElements":
 {
 "recordDetail":
 {
 "provisioningArtifactId":[id],
 "status":"IN_PROGRESS",
 "recordId":[id],
 "createdTime":"Aug 17, 2016 7:20:58 PM",
 "recordTags":[],
 "recordType":"PROVISION_PRODUCT",
 "provisionedProductType":"CFN_STACK",

61

AWS Service Catalog Administrator Guide
Tutorial: Identifying User Resource Allocation

 "pathId":[id],
 "productId":[id],
 "provisionedProductName":"testSCproduct",
 "recordErrors":[],
 "provisionedProductId":[id]
 }
 },
 "requestID":[id],
 "eventID":[id],
 "eventType":"AwsApiCall",
 "recipientAccountId":[account number]
}

6. Use the CloudformationStackARN value to identify AWS CloudFormation events to find
information about resources created. You can also use the AWS CloudFormation API to obtain
this information. For more information, see AWS CloudFormation API Reference.

62

http://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/

AWS Service Catalog Administrator Guide
Tutorial: Identifying User Resource Allocation

63

AWS Service Catalog Administrator Guide
Tutorial: Identifying User Resource Allocation

Note that you can perform steps 1 through 4 using the AWS Service Catalog API or the AWS CLI. For
more information, see AWS Service Catalog Developer Guide and AWS Service Catalog Command
Line Reference.

64

http://docs.aws.amazon.com/servicecatalog/latest/dg/
http://docs.aws.amazon.com/cli/latest/reference/servicecatalog/
http://docs.aws.amazon.com/cli/latest/reference/servicecatalog/

AWS Service Catalog Administrator Guide

Document History

The following table describes the important changes to the documentation since the last release of
AWS Service Catalog.

• Latest documentation update: September 15, 2016

Feature Description Release Date

Support for
integrated console

Content updates including console
access information.

November 16, 2016

Support for
access level filter

Content updates including access level
filtering information.

September 15, 2016

Admin Guide
refresh

This update provides a refresh to a
number of sections, and adds several
new sections to make the organization
more optimal.

July 5, 2016

Steps for
importing a
portfolio

The Importing a Portfolio (p. 57)
section provides steps for importing a
portfolio that was shared from another
AWS account.

February 16, 2016

Updates to
permissions
information

The Console Access for End
Users (p. 26) section provides
considerations for granting access to
the end user console view.

February 16, 2016

Updates to getting
started tutorial

The information in Getting
Started (p. 13) is updated.

January 20, 2016

Documentation
updates for
overriding
imported launch
constraints

The information in Portfolio
Sharing (p. 54) is updated to explain
how launch constraints are inherited
by imported portfolios and how the
administrator who imports a portfolio
can override these launch constraints.

July 31, 2015

65

AWS Service Catalog Administrator Guide

Feature Description Release Date

Documentation
updates for IAM
policies and
sample launch
role

Replaced the sample IAM policies in
Controlling Access Using Service-level
Permissions (p. 25) with references
to the AWS managed policies in IAM,
which are preconfigured for AWS
Service Catalog.

Corrected the sample launch role
and added a sample trust policy in
Applying a Launch Constraint (p. 30).

July 22, 2015

New guide This is the first release of AWS Service
Catalog Administrator Guide.

July 9, 2015

66

	AWS Service Catalog
	Table of Contents
	What Is AWS Service Catalog?
	Concepts
	AWS Service Catalog Users
	Portfolio
	Product
	Provisioned Product
	Stack
	Versioning
	Permissions
	Constraints

	AWS Service Catalog Default Service Limits

	Setting Up
	Sign Up for Amazon Web Services
	Get IAM Permissions for Administrators and End Users
	Get AWS CloudFormation Templates (Optional)

	AWS Service Catalog: How It Works
	Administrator: Catalog Creation
	End User: Product View and Product Provisioning
	Overall Workflow

	Getting Started
	Step 1: Get AWS Service Catalog Administrator IAM Permissions
	Step 2: Grant IAM Permissions to the AWS Service Catalog End User
	Step 3: Get Familiar with the AWS CloudFormation Template
	Step 4: Create a Key Pair
	Step 5: Create an AWS Service Catalog Portfolio
	Step 6: Create an AWS Service Catalog Product
	Step 7: Add a Template Constraint to Limit Instance Size
	Step 8: Add a Launch Constraint to Assign an IAM Role
	Step 9: Grant End Users Access to Your Portfolio
	Step 10: Test the End User Experience

	Controlling Access and Constraints
	Controlling Access Using Service-level Permissions
	AWS Managed Policies
	Console Access for End Users
	Product Access for End Users
	Example Access Policies for Provisioned Product Management
	Full Admin Access to Provisioned Products
	End-user Access to Provisioned Products
	Partial Admin Access to Provisioned Products

	Using Constraints
	Applying a Launch Constraint
	Configuring a Launch Role
	Applying a launch constraint
	Verify That the Launch Constraint Is Applied

	Applying a Template Constraint
	Template Constraint Rules
	Syntax
	Example
	Conditionally Verify a Parameter Value

	Rule Functions
	Fn::And
	Declaration
	Parameters
	Example

	Fn::Contains
	Declaration
	Parameters
	Example

	Fn::EachMemberEquals
	Declaration
	Parameters
	Example

	Fn::EachMemberIn
	Declaration
	Parameters
	Example

	Fn::Equals
	Declaration
	Parameters
	Example

	Fn::Not
	Declaration
	Parameters
	Example

	Fn::Or
	Declaration
	Parameters
	Example

	Fn::RefAll
	Declaration
	Parameters
	Example

	Fn::ValueOf
	Declaration
	Parameters
	Examples

	Fn::ValueOfAll
	Declaration
	Parameters
	Example

	Supported Functions
	Supported Attributes

	Managing Catalogs
	Working With Portfolios
	Creating, Viewing, and Deleting Portfolios
	Managing Portfolio Details
	Creating and Deleting Portfolios
	Adding Products
	Adding a New Product
	Adding an Existing Product
	Removing a Product from a Portfolio

	Adding Constraints
	Tagging Portfolios
	Granting Access to Users

	Managing Products
	Displaying the Products Page
	Creating Products
	Adding Products to Portfolios
	Updating Products
	Tagging Products
	Deleting Products

	Adding an AWS Marketplace Product to Your Portfolio
	Tagging Resources
	Tracking Costs Using Tags

	Portfolio Sharing
	Summary of Relationship Between Shared and Imported Portfolios
	Sharing a Portfolio
	Importing a Portfolio

	Managing Provisioned Products
	Managing All Provisioned Products as Administrator
	Tutorial: Identifying User Resource Allocation

	Document History

