
Amazon Kinesis Analytics
Developer Guide

Amazon Kinesis Analytics Developer Guide

Amazon Kinesis Analytics Developer Guide

Amazon Kinesis Analytics: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

Amazon Kinesis Analytics Developer Guide

Table of Contents
What Is Amazon Kinesis Analytics? ... 1

When Should I Use Amazon Kinesis Analytics? ... 1
Are You a First-time User of Amazon Kinesis Analytics? ... 1

How It Works ... 3
Input ... 5

Configuring a Streaming Source .. 5
Configuring a Reference Source ... 7
Using the Schema Discovery Feature and Related Editing ... 9

Application Code ... 10
Output ... 11

Application Output Delivery Model ... 12
Error Handling .. 12

Reporting Errors Using an In-Application Error Stream .. 13
Granting Permissions ... 13

Trust Policy .. 14
Permissions Policy .. 14

Getting Started ... 17
Step 1: Set Up an Account ... 17

Sign up for AWS ... 17
Create an IAM User .. 18
Next Step ... 18

Step 2: Set Up the AWS CLI .. 18
Next Step ... 19

Step 3: Getting Started Exercise .. 19
Step 3.1: Create an Application ... 20
Step 3.2: Configure Input ... 21
Step 3.3: Add Real-Time Analytics (Add Application Code) .. 24
Step 3.4: (Optional) Update Application Code .. 26
Step 3.5: (Optional) Configure Output ... 27

Step 4: Console Feature Summary .. 27
Streaming SQL Concepts ... 31

In-Application Streams and Pumps .. 31
Timestamps and the ROWTIME Column ... 32

Understanding Various Times in Streaming Analytics .. 33
Continuous Queries ... 35
Windowed Queries .. 35

Tumbling Windows .. 36
Sliding Windows .. 37

Stream Joins .. 41
Example 1: Report Orders Where There Are Trades within One Minute of the Order Being
Placed ... 41

Example Applications ... 43
Examples: Preprocessing Streams ... 43

Example: Manipulating Strings and Date Times ... 44
Example: Streaming Source With Multiple Record Types ... 53
Example: Add Reference Data Source ... 59

Examples: Basic Analytics .. 63
Example: Most Frequently Occurring Values .. 63
Example: Count Distinct Values ... 64
Example: Simple Alerts .. 65

Examples: Advanced Analytics .. 66
Example: Detect Anomalies .. 67
Example: Using Different Types of Times in Analytics ... 72

Examples: Post Processing In-Application Stream .. 72
Example: AWS Lambda Integration .. 73

iv

Amazon Kinesis Analytics Developer Guide

Examples: Other Amazon Kinesis Analytics Applications ... 76
Example: Explore the In-Application Error Stream .. 76

Monitoring .. 78
Monitoring Tools ... 79

Automated Tools ... 79
Manual Tools .. 79

Monitoring with Amazon CloudWatch ... 80
Metrics and Dimensions ... 80
Creating Alarms .. 81

Limits .. 83
Best Practices .. 85

Managing Applications ... 85
Defining Input Schema ... 86
Connecting to Outputs ... 87
Authoring Application Code ... 87

Authentication and Access Control ... 89
Authentication ... 89
Access Control ... 90
Overview of Managing Access .. 91

Amazon Kinesis Analytics Resources and Operations ... 91
Understanding Resource Ownership .. 91
Managing Access to Resources .. 92
Specifying Policy Elements: Actions, Effects, and Principals ... 93
Specifying Conditions in a Policy ... 94

Using Identity-Based Policies (IAM Policies) .. 94
Permissions Required to Use the Amazon Kinesis Analytics Console 95
AWS Managed (Predefined) Policies for Amazon Kinesis Analytics 95
Customer Managed Policy Examples ... 96

Amazon Kinesis Analytics API Permissions Reference .. 99
API Reference .. 101

Actions ... 101
AddApplicationInput ... 102
AddApplicationOutput ... 104
AddApplicationReferenceDataSource .. 106
CreateApplication .. 108
DeleteApplication ... 112
DeleteApplicationOutput .. 113
DeleteApplicationReferenceDataSource .. 115
DescribeApplication .. 117
DiscoverInputSchema ... 120
ListApplications ... 123
StartApplication ... 125
StopApplication ... 127
UpdateApplication .. 128

Data Types ... 130
ApplicationDetail .. 132
ApplicationSummary ... 134
ApplicationUpdate .. 135
CSVMappingParameters ... 136
DestinationSchema .. 137
Input .. 138
InputConfiguration .. 139
InputDescription ... 140
InputParallelism ... 142
InputParallelismUpdate ... 143
InputSchemaUpdate ... 144
InputStartingPositionConfiguration .. 145
InputUpdate .. 146

v

Amazon Kinesis Analytics Developer Guide

JSONMappingParameters ... 147
KinesisFirehoseInput .. 148
KinesisFirehoseInputDescription ... 149
KinesisFirehoseInputUpdate .. 150
KinesisFirehoseOutput .. 151
KinesisFirehoseOutputDescription .. 152
KinesisFirehoseOutputUpdate .. 153
KinesisStreamsInput ... 154
KinesisStreamsInputDescription ... 155
KinesisStreamsInputUpdate ... 156
KinesisStreamsOutput .. 157
KinesisStreamsOutputDescription ... 158
KinesisStreamsOutputUpdate .. 159
MappingParameters ... 160
Output ... 161
OutputDescription .. 162
OutputUpdate .. 163
RecordColumn .. 164
RecordFormat ... 165
ReferenceDataSource .. 166
ReferenceDataSourceDescription ... 167
ReferenceDataSourceUpdate .. 168
S3ReferenceDataSource ... 169
S3ReferenceDataSourceDescription ... 170
S3ReferenceDataSourceUpdate ... 171
SourceSchema .. 172

Document History .. 173
AWS Glossary .. 174

vi

Amazon Kinesis Analytics Developer Guide
When Should I Use Amazon Kinesis Analytics?

What Is Amazon Kinesis Analytics?

With Amazon Kinesis Analytics, you can process and analyze streaming data using standard SQL. The
service enables you to quickly author and run powerful SQL code against streaming sources to perform
time series analytics, feed real-time dashboards, and create real-time metrics.

To get started with Amazon Kinesis Analytics, you create a Amazon Kinesis Analytics application that
continuously reads and processes streaming data. The service supports ingesting data from Amazon
Kinesis Streams and Amazon Kinesis Firehose streaming sources. Then, you author your SQL code
using the interactive editor and test it with live streaming data. You can also configure destinations
where you want Amazon Kinesis Analytics to persist the results. Amazon Kinesis Analytics supports
Amazon Kinesis Firehose (Amazon S3, Amazon Redshift, and Amazon Elasticsearch Service), and
Amazon Kinesis Streams as destinations.

When Should I Use Amazon Kinesis Analytics?

Amazon Kinesis Analytics enables you to quickly author SQL code that continuously reads, processes,
and stores data in near real time. Using standard SQL queries on the streaming data, you can
construct applications that transform and gain insights into your data. Following are some of example
scenarios for using Amazon Kinesis Analytics:

• Generate time-series analytics – You can calculate metrics over time windows, and then stream
values to Amazon S3 or Amazon Redshift through an Amazon Kinesis Firehose delivery stream.

• Feed real-time dashboards – You can send aggregated and processed streaming data results
downstream to feed real-time dashboards.

• Create real-time metrics – You can create custom metrics and triggers for use in real-time
monitoring, notifications, and alarms.

Are You a First-time User of Amazon Kinesis
Analytics?

1

Amazon Kinesis Analytics Developer Guide
Are You a First-time User of Amazon Kinesis Analytics?

If you are a first-time user of Amazon Kinesis Analytics, we recommend that you read the following
sections in order:

1. Read the How It Works section of this guide. This section introduces various Amazon Kinesis
Analytics components that you work with to create an end-to-end experience. For more information,
see Amazon Kinesis Analytics: How It Works (p. 3).

2. Try the Getting Started Exercises. For more information, see Getting Started (p. 17).

3. Explore the streaming SQL concepts. For more information, see Streaming SQL
Concepts (p. 31).

4. Try additional examples. For more information, see Example Amazon Kinesis Analytics
Applications (p. 43).

2

Amazon Kinesis Analytics Developer Guide

Amazon Kinesis Analytics: How It
Works

An application is the primary resource in Amazon Kinesis Analytics that you can create in your account.
You can create and manage applications using the console or the Amazon Kinesis Analytics API.
Amazon Kinesis Analytics provides API operations to manage applications. For a list of API operations,
see Actions (p. 101).

Amazon Kinesis Analytics applications continuously read and process streaming data in real-time.
You write application code using SQL to process the incoming streaming data and produce output.
Then, Amazon Kinesis Analytics writes the output to a configured destination. The following diagram
illustrates a typical application architecture.

3

Amazon Kinesis Analytics Developer Guide

Each application has a name, description, version ID, and status. Amazon Kinesis Analytics assigns
a version ID when you first create an application. This version ID is updated when you update any
application configuration. For example, if you add an input configuration, add or delete a reference data
source, or add or delete output configuration, or update application code, Amazon Kinesis Analytics
updates the current application version ID. Amazon Kinesis Analytics also maintains timestamps when
an application was created and last updated.

In addition to these basic properties, each application consists of the following:

• Input – The streaming source for your application. You can select either an Amazon Kinesis stream
or a Firehose delivery stream as the streaming source. In the input configuration, you map the
streaming source to an in-application input stream. The in-application stream is like a continuously
updating table upon which you can perform the SELECT and INSERT SQL operations. In your
application code you can create additional in-application streams to store intermediate query results.

You can optionally partition a single streaming source in multiple in-application input streams to
improve the throughput. For more information, see Limits (p. 83) and Configuring Application
Input (p. 5).

Amazon Kinesis Analytics provides a timestamp column in each application stream called
Timestamps and the ROWTIME Column (p. 32). You can use this column in time-based
windowed queries. For more information, see Windowed Queries (p. 35).

You can optionally configure a reference data source to enrich your input data stream within the
application. It results in an in-application reference table. You must store your reference data as
an object in your S3 bucket. When the application starts, Amazon Kinesis Analytics reads the
S3 object and creates an in-application table. For more information, see Configuring Application
Input (p. 5).

• Application code – A series of SQL statements that process input and produce output. You can
write SQL statements against in-application streams, reference tables, and you can write JOIN
queries to combine data from both of these sources.

In its simplest form, application code can be a single SQL statement that selects from a streaming
input and inserts results into a streaming output. It can also be a series of SQL statements where
output of one feeds into the input of the next SQL statement. Further, you can write application code
to split an input stream into multiple streams and then apply additional queries to process these
streams. For more information, see Application Code (p. 10).

• Output – In application code, query results go to in-application streams. In your application code,
you can create one or more in-application streams to hold intermediate results. You can then
optionally configure application output to persist data in the in-application streams, that hold your
application output (also referred to as in-application output streams), to external destinations.
External destinations can be a Firehose delivery stream or an Amazon Kinesis stream. Note the
following about these destinations:

• You can configure a Firehose delivery stream to write results to Amazon S3, Amazon Redshift, or
Amazon ES.

4

Amazon Kinesis Analytics Developer Guide
Input

• You can also write application output to a custom destination, instead of Amazon S3 or Amazon
Redshift. To do that, you specify an Amazon Kinesis stream as the destination in your output
configuration. Then, you configure AWS Lambda to poll the stream and invoke your Lambda
function. Your Lambda function code receives stream data as input. In your Lambda function code,
you can write the incoming data to your custom destination. For more information, see Using AWS
Lambda with Amazon Kinesis Analytics.

For more information, see Configuring Application Output (p. 11).

In addition, note the following:

• Amazon Kinesis Analytics needs permissions to read records from a streaming source and write
application output to the external destinations. You use IAM roles to grant these permissions.

• Amazon Kinesis Analytics automatically provides an in-application error stream for each application.
If your application has issues while processing certain records, for example because of a type
mismatch or late arrival, that record will be written to the error stream. You can configure application
output to direct Amazon Kinesis Analytics to persist the error stream data to an external destination
for further evaluation. For more information, see Error Handling (p. 12).

• Amazon Kinesis Analytics ensures that your application output records are written to the configured
destination. It uses an "at least once" processing and delivery model, even in the event of an
application interruption for various reasons. For more information, see Delivery Model for Persisting
Application Output to External Destination (p. 12).

Topics

• Configuring Application Input (p. 5)

• Application Code (p. 10)

• Configuring Application Output (p. 11)

• Error Handling (p. 12)

• Granting Amazon Kinesis Analytics Permissions to Access Streaming Sources (Creating an IAM
Role) (p. 13)

Configuring Application Input
Topics

• Configuring a Streaming Source (p. 5)

• Configuring a Reference Source (p. 7)

• Using the Schema Discovery Feature and Related Editing (p. 9)

Your Amazon Kinesis Analytics application can receive input from a single streaming source and,
optionally, use one reference data source. For more information, see Amazon Kinesis Analytics: How It
Works (p. 3). The sections in this topic describe the application input sources.

Configuring a Streaming Source
At the time you create an application, you specify a streaming source. You can also modify and input
after you create the application. Amazon Kinesis Analytics supports the following streaming sources for
your application:

5

http://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html
http://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html

Amazon Kinesis Analytics Developer Guide
Configuring a Streaming Source

• An Amazon Kinesis stream

• An Amazon Kinesis Firehose delivery stream

Amazon Kinesis Analytics continuously polls the streaming source for new data and ingests it in in-
application streams according to the input configuration. Your application code can query the in-
application stream. As part of input configuration you provide the following:

• Streaming source – You provide the Amazon Resource Name (ARN) of the stream and an IAM role
that Amazon Kinesis Analytics can assume to access the stream on your behalf.

• In-application stream name prefix – When you start the application, Amazon Kinesis Analytics
creates the specified in-application stream. In your application code, you access the in-application
stream using this name.

You can optionally map a streaming source to multiple in-application streams. For more information,
see Limits (p. 83). In this case, Amazon Kinesis Analytics creates the specified number of in-
application streams with names as follows: prefix_001, prefix_002, and prefix_003. By
default, Amazon Kinesis Analytics maps the streaming source to one in-application stream called
prefix_001.

There is a limit on the rate that you can insert rows in an in-application stream. Therefore, Amazon
Kinesis Analytics supports multiple such in-application streams to enable you to bring records into
your application at a much faster rate. If you find your application is not keeping up with the data in
the streaming source, you can add units of parallelism to improve performance.

• Mapping schema – You describe the record format (JSON, CSV) on the streaming source, and
describe how each record on the stream maps to columns in the in-application stream that is
created. This is where you provide column names and data types.

Note
Amazon Kinesis Analytics adds quotation marks around the identifiers (stream name and
column names) when creating the input in-application stream. When querying this stream
and the columns, you must specify them in quotation marks using the exact same casing
(matching lowercase and uppercase letters exactly). For more information about identifiers,
see Identifiers in the Amazon Kinesis Analytics SQL Reference.

You can create application and configure inputs in the Amazon Kinesis Analytics console. The
console then makes the necessary API calls. You can configure application input when you create
a new application API or add input configuration to an existing application. For more information,
see CreateApplication (p. 108) and AddApplicationInput (p. 102). The following is the input
configuration part of the Createapplication API request body:

 "Inputs": [
 {
 "InputSchema": {
 "RecordColumns": [
 {
 "IsDropped": boolean,
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],

6

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-identifiers.html

Amazon Kinesis Analytics Developer Guide
Configuring a Reference Source

 "RecordEncoding": "string",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "KinesisFirehoseInput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "KinesisStreamsInput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "Name": "string"
 }
]

Configuring a Reference Source
You can also optionally add a reference data source to an existing application to enrich the data
coming in from streaming sources. You must store reference data as an object in your S3 bucket.
When the application starts, Amazon Kinesis Analytics reads the S3 object and creates an in-
application reference table. Your application code can then join it with an in-application stream.

You store reference data in the S3 object using supported formats (CSV, JSON). For example,
suppose your application performs analytics on stock orders. Assume the following record format on
the streaming source:

Ticker, SalePrice, OrderId

AMZN $700 1003
XYZ $250 1004
...

In this case, you might then consider maintaining a reference data source to provide details for each
stock ticker, such as company name:

Ticker, Company
AMZN, Amazon
XYZ, SomeCompany
...

Amazon Kinesis Analytics provides the following APIs to manage reference data sources.

• AddApplicationReferenceDataSource (p. 106)

• UpdateApplication (p. 128)

7

Amazon Kinesis Analytics Developer Guide
Configuring a Reference Source

Note
Amazon Kinesis Analytics console does not support managing reference data sources for
your applications. You can use the AWS CLI to add reference data source to your application.
For an example, see Example: Adding Reference Data to an Amazon Kinesis Analytics
Application (p. 59).

Note the following:

• If the application is running, Amazon Kinesis Analytics creates an in-application reference table, and
then loads the reference data immediately.

• If the application is not running (for example, it's in the ready state), Amazon Kinesis Analytics
only saves the updated input configuration. When the application starts running, Amazon Kinesis
Analytics loads the reference data in your application as a table.

If you want to refresh the data after Amazon Kinesis Analytics creates the in-application reference
table, perhaps because you updated the S3 object or you want to use different S3 object, you must
explicitly call the UpdateApplication (p. 128). Amazon Kinesis Analytics does not refresh the in-
application reference table automatically.

There is a limit on the size of the S3 object that you can create as a reference data source. For more
information, see Limits (p. 83). If the object size exceeds the limit, Amazon Kinesis Analytics can't
load the data. The application state appears as running, but the data is not being read.

When you add a reference data source, you provide the following information:

• S3 bucket and object key name – In addition to bucket name and object key, you also provide an
IAM role that Amazon Kinesis Analytics can assume to read the object on your behalf.

• In-application reference table name – Amazon Kinesis Analytics creates this in-application table
and populates it by reading the S3 object. This is the table name you specify in your application
code.

• Mapping schema – You describe the record format (JSON, CSV), encoding of data stored in the S3
object. You also describe how each data element maps to columns in the in-application reference
table.

The following shows the request body in the AddApplicationReferenceDataSource API request.

{
 "applicationName": "string",
 "CurrentapplicationVersionId": number,
 "ReferenceDataSource": {
 "ReferenceSchema": {
 "RecordColumns": [
 {
 "IsDropped": boolean,
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],

8

Amazon Kinesis Analytics Developer Guide
Using the Schema Discovery Feature and Related Editing

 "RecordEncoding": "string",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "S3ReferenceDataSource": {
 "BucketARN": "string",
 "FileKey": "string",
 "ReferenceRoleARN": "string"
 },
 "TableName": "string"
 }
}

Using the Schema Discovery Feature and Related
Editing
Providing an input schema that describes how records on the streaming input map to in-application
stream can be cumbersome and error prone. You can use the DiscoverInputSchema (p. 120) API
(called the discovery API) to infer a schema. Using random samples of records on the streaming
source, the API can infer a schema (that is, column names, data types, and position of the data
element in the incoming data).

Note
You can use the discovery API only to infer a schema for a streaming source. It is not
supported for inferring schema for a reference data source.

The console uses the same discovery feature. For a specified streaming source, the console shows the
inferred schema. Using the console, you can also update the schema, such as change column names,
data types, etc. However, you need to make changes carefully to ensure that you do not create an
invalid schema. For more information, see Error Handling (p. 12).

After you finalize a schema for your in-application stream, there are functions you can use to
manipulate string and date time values. You can leverage these functions in your application code
when working with rows in the resulting in-application stream. For more information, see Example:
Manipulating Strings and Date Times (p. 44).

Schema Discovery Issues

What happens if Amazon Kinesis Analytics does not infer a schema for a given streaming source?

Amazon Kinesis Analytics will infer your schema for common formats, such as CSV and JSON, which
are UTF-8 encoded. Amazon Kinesis Analytics supports any UTF-8 encoded records including raw
text like application logs and records with custom column and row delimiter. You can define as schema
manually using the schema editor in the console (or using the API) if Amazon Kinesis Analytics does
not infer a schema.

9

Amazon Kinesis Analytics Developer Guide
Application Code

If you your data does not follow a pattern which you can specify using the schema editor, you
can define a schema as a single column of type VARCHAR(N), where N is the largest number
of characters you expect your record to include. From there, you can use string and date time
manipulation to structure your data after it is in an in-application stream. More information on how
to do this is found in the String and Date Time manipulation section. For examples, see Example:
Manipulating Strings and Date Times (p. 44).

Application Code

Application code is a series of SQL statements that process input and produce output. These SQL
statements operate on in-application streams and reference tables. For more information, see Amazon
Kinesis Analytics: How It Works (p. 3).

In relational databases, you work with tables, using INSERT statements to add records and the
SELECT statement to query the data. In Amazon Kinesis Analytics, you work with streams. You can
write a SQL statement to query these streams. The results of querying one in-application stream
are always sent to another in-application stream. When performing complex analytics, you might
create several in-application streams to hold the results of intermediate analytics. And then finally, you
configure application output to persist results of the final analytics (from one or more in-application
streams) to external destinations. In summary, the following is a typical pattern for writing application
code:

• The SELECT statement is always used in the context of an INSERT statement. That is, when you
select rows, you insert results into another in-application stream.

• The INSERT statement is always used in the context of a pump. That is, you use pumps to write to
an in-application stream.

The following example application code reads records from one in-application
(SOURCE_SQL_STREAM_001) stream and write it to another in-application stream
(DESTINATION_SQL_STREAM). You can insert records to in-application streams using pumps, as
shown following:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
 change DOUBLE,
 price DOUBLE);
-- Create a pump and insert into output stream.
CREATE OR REPLACE PUMP "STREAM_PUMP" AS

 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM ticker_symbol, change,price
 FROM "SOURCE_SQL_STREAM_001";

The identifiers that you specify for stream names and column names follow standard SQL conventions.
For example, if you put quotation marks around an identifier, it will make the identifier case-sensitive. If
you don't, the identifier will default to uppercase. For more information about identifiers, see Identifiers
in the Amazon Kinesis Analytics SQL Reference.

Your application code can consist of many SQL statements. For example:

• You can write SQL queries in a sequential manner where the result of one SQL statement feeds into
the next SQL statement.

• You can also write SQL queries that run independent of each other. For example, you can write
two SQL statements that query the same in-application stream, but send output into different in-
applications streams. You can then query the newly created in-application streams independently.

10

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-identifiers.html

Amazon Kinesis Analytics Developer Guide
Output

You can create in-application streams to save intermediate results. You insert data in in-application
streams using pumps. For more information, see In-Application Streams and Pumps (p. 31).

If you add a in-application reference table, you can write SQL to join data in in-application streams and
reference tables. For more information, see Example: Adding Reference Data to an Amazon Kinesis
Analytics Application (p. 59).

According to the application's output configuration, Amazon Kinesis Analytics writes data from specific
in-application streams to the external destination according to the application's output configuration.
Make sure that your application code writes to the in-application streams specified in the output
configuration.

For more information, see the following topics:

• Streaming SQL Concepts (p. 31)

• Amazon Kinesis Analytics SQL Reference

Configuring Application Output

In your application code, you write the output of SQL statements to one or more in-application streams.
You can optionally add output configuration to your application to persist everything written to an in-
application stream to an external destination such as an Amazon Kinesis stream or a Firehose delivery
stream.

There is a limit on the number of external destinations you can persist an application output. For more
information, see Limits (p. 83).

Note
We recommend that you use one external destination to persist in-application error stream
data so you can investigate the errors.

In each of these output configurations, you provide the following:

• In-application stream name – This is the stream that you want to persist to an external destination.

• External destination – You can persist data to an Amazon Kinesis stream or a Firehose delivery
stream. You provide the Amazon Resource Name (ARN) of the stream and an IAM role that Amazon
Kinesis Analytics can assume write to the stream on your behalf. You also describe the record
format (JSON, CSV) to Amazon Kinesis Analytics to use when writing to the external destination.

Amazon Kinesis Analytics looks for the in-application stream that you specified in the output
configuration (note that the stream name is case-sensitive and must match exactly). You should make
sure that your application code creates this in-application stream.

You can configure the application output using the console. The console makes the API call to save the
configuration. The following JSON fragment shows the Outputs section in the CreateApplication
request body.

"Outputs": [
 {
 "how-it-works-outputchema": {
 "RecordFormatType": "string"
 },
 "KinesisFirehoseOutput": {
 "ResourceARN": "string",

11

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Analytics Developer Guide
Application Output Delivery Model

 "RoleARN": "string"
 },
 "KinesisStreamsOutput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "Name": "string"
 }
]

If Amazon Kinesis Analytics service is not able to write to the streaming destination, the service
continues to try indefinitely. This creates back pressure and your application will fall behind. And, if this
is not resolved, your application will eventually stop processing new data.

Delivery Model for Persisting Application Output to
External Destination

Amazon Kinesis Analytics uses an "at least once" delivery model for application output to the
configured destinations. When an application is running, Amazon Kinesis Analytics takes internal
checkpoints, which are points in time when output records were delivered to the destinations and
there is no data loss. The service uses the checkpoints as needed to ensure your application output is
delivered at least once to the configured destinations.

In a normal situation, your application processes incoming data continuously, and Amazon Kinesis
Analytics writes the output to the configured destinations such as an Amazon Kinesis stream or a
Firehose delivery stream.

However, your application can be interrupted, either by your choice or by some application
configuration change that causes an interruption or failure, such as:

• You might choose to stop your application and restart it later.

• You delete the IAM role that Amazon Kinesis Analytics needs to write your application output to
the configured destination. Without the IAM role, Amazon Kinesis Analytics does not have any
permissions to write to the external destination on your behalf.

• Network outage or other internal service failures causing your application to stop running
momentarily.

When your application starts working again, Amazon Kinesis Analytics ensures it continues to process
and write output from a point before or equal to when the failure occurred, so that it does not miss
delivering any of your application output to the configured destinations.

If you configured multiple destinations from same in-application stream, after the application recovers
from failure, Amazon Kinesis Analytics resumes persisting output to the configured destinations from
the last record that was delivered to the slowest destination. This might result in the same output
record delivered more than once to other destinations. In this case you need to handle potential
duplications in the destination externally.

Error Handling

12

Amazon Kinesis Analytics Developer Guide
Reporting Errors Using an In-Application Error Stream

Amazon Kinesis Analytics returns API or SQL errors directly to you. For more information about API
operations, see Actions (p. 101). For more information about handling SQL errors, see Amazon
Kinesis Analytics SQL Reference.

Amazon Kinesis Analytics reports runtime errors using an in-application error stream called
error_stream.

Reporting Errors Using an In-Application Error
Stream
Amazon Kinesis Analytics reports runtime errors to the in-application error stream called
error_stream. For example:

• A record read from the streaming source does not conform to the input schema.

• Your application code specifies division by zero.

• The rows are out of order (for example, a record appears on the stream with a ROWTIME value that a
user modified that causes a record to go out of order).

we recommend that you either handle these errors programmatically in your SQL code and/or persist
the data on the error stream to an external destination such as a Firehose delivery stream that is
configured to write data to an S3 bucket. This requires you add output configuration (see Configuring
Application Output (p. 11)) to your application. For an example of how in-application error stream
works, see Example: Explore the In-Application Error Stream (p. 76).

Granting Amazon Kinesis Analytics Permissions
to Access Streaming Sources (Creating an IAM
Role)

Amazon Kinesis Analytics needs permissions to read records from a streaming source that you specify
in your application input configuration. Amazon Kinesis Analytics also needs permissions to write your
application output to streams that you specify in your application output configuration.

You can grant these permissions by creating an IAM role that Amazon Kinesis Analytics can assume.
Permissions that you grant to this role determine what Amazon Kinesis Analytics can do when the
service assumes the role.

Note
The information in this section is useful if you want to create an IAM role yourself. When you
create an application in the Amazon Kinesis Analytics console, the console can create an IAM
role for you at that time. The console uses the following naming convention for IAM roles that
it creates:

kinesis-analytics-ApplicationName

After the role is created, you can review the role and attached policies in the IAM console.

Each IAM role has two policies attached to it. In the trust policy, you specify who can assume the role.
In the permissions policy (there can be one or more), you specify the permissions that you want to

13

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html
http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Analytics Developer Guide
Trust Policy

grant to this role. The following sections describe these policies, which you can use when you create
an IAM role.

Trust Policy
To grant Amazon Kinesis Analytics permissions to assume a role, you can attach the following trust
policy to an IAM role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kinesisanalytics.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Permissions Policy
If you are creating an IAM role to allow Amazon Kinesis Analytics to read from an application's
streaming source, you must grant permissions for relevant read actions. Depending on your streaming
source (for example, an Amazon Kinesis stream or a Firehose delivery stream), you can attach the
following permissions policy.

Permissions Policy for Reading an Amazon Kinesis Stream

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadInputKinesis",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords"
],
 "Resource": [
 "arn:aws:kinesis:aws-region:aws-account-
id:stream/inputStreamName"
]
 }
]
}

Permissions Policy for Reading a Firehose Delivery Stream

{
 "Version": "2012-10-17",
 "Statement": [

14

Amazon Kinesis Analytics Developer Guide
Permissions Policy

 {
 "Sid": "ReadInputFirehose",
 "Effect": "Allow",
 "Action": [
 "firehose:DescribeDeliveryStream",
 "firehose:Get*"
],
 "Resource": [
 "arn:aws:firehose:aws-region:aws-account-
id:deliverystream/inputFirehoseName"
]
 }
]
}

If you direct Amazon Kinesis Analytics to write output to external destinations in your application output
configuration, you need to grant the following permission to the IAM role.

Permissions Policy for Writing to an Amazon Kinesis Stream

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "WriteOutputKinesis",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:PutRecord",
 "kinesis:PutRecords"
],
 "Resource": [
 "arn:aws:kinesis:aws-region:aws-account-id:stream/output-
stream-name"
]
 }
]
}

Permissions Policy for Writing to a Firehose Delivery Stream

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "WriteOutputFirehose",
 "Effect": "Allow",
 "Action": [
 "firehose:DescribeDeliveryStream",
 "firehose:PutRecord",
 "firehose:PutRecordBatch"
],
 "Resource": [
 "arn:aws:firehose:aws-region:aws-account-
id:deliverystream/output-firehose-name"
]
 }
]

15

Amazon Kinesis Analytics Developer Guide
Permissions Policy

}

16

Amazon Kinesis Analytics Developer Guide
Step 1: Set Up an Account

Getting Started

This section provides topics to get you started using Amazon Kinesis Analytics. If you are new to
Amazon Kinesis Analytics, we recommend that you review the concepts and terminology presented
in Amazon Kinesis Analytics: How It Works (p. 3) before performing the steps in the Getting Started
section.

Topics

• Step 1: Set Up an AWS Account and Create an Administrator User (p. 17)

• Step 2: Set Up the AWS Command Line Interface (AWS CLI) (p. 18)

• Step 3: Getting Started Exercise (Create an Amazon Kinesis Analytics Application) (p. 19)

• Step 4: Console Feature Summary (p. 27)

Step 1: Set Up an AWS Account and Create an
Administrator User

Before you use Amazon Kinesis Analytics for the first time, complete the following tasks:

1. Sign up for AWS (p. 17)

2. Create an IAM User (p. 18)

Sign up for AWS
When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up for
all services in AWS, including Amazon Kinesis Analytics. You are charged only for the services that
you use.

With Amazon Kinesis Analytics, you pay only for the resources you use. If you are a new AWS
customer, you can get started with Amazon Kinesis Analytics for free. For more information, see AWS
Free Usage Tier.

If you already have an AWS account, skip to the next task. If you don't have an AWS account, perform
the steps in the following procedure to create one.

To create an AWS account

1. Open http://aws.amazon.com/, and then choose Create an AWS Account.

17

http://aws.amazon.com//free/
http://aws.amazon.com//free/
http://aws.amazon.com/

Amazon Kinesis Analytics Developer Guide
Create an IAM User

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

Note your AWS account ID because you'll need it for the next task.

Create an IAM User
Services in AWS, such as Amazon Kinesis Analytics, require that you provide credentials when you
access them so that the service can determine whether you have permissions to access the resources
owned by that service. The console requires your password. You can create access keys for your
AWS account to access the AWS CLI or API. However, we don't recommend that you access AWS
using the credentials for your AWS account. Instead, we recommend that you use AWS Identity and
Access Management (IAM). Create an IAM user, add the user to an IAM group with administrative
permissions, and then grant administrative permissions to the IAM user that you created. You can then
access AWS using a special URL and that IAM user's credentials.

If you signed up for AWS, but you haven't created an IAM user for yourself, you can create one using
the IAM console.

The Getting Started exercises in this guide assume that you have a user (adminuser) with
administrator privileges. Follow the procedure to create adminuser in your account.

To create an administrator user and sign in to the console

1. Create an administrator user called adminuser in your AWS account. For instructions, see
Creating Your First IAM User and Administrators Group in the IAM User Guide.

2. A user can sign in to the AWS Management Console using a special URL. For more information,
How Users Sign In to Your Account in the IAM User Guide.

For more information about IAM, see the following:

• Identity and Access Management (IAM)

• Getting Started

• IAM User Guide

Next Step
Step 2: Set Up the AWS Command Line Interface (AWS CLI) (p. 18)

Step 2: Set Up the AWS Command Line Interface
(AWS CLI)

Follow the steps to download and configure the AWS Command Line Interface (AWS CLI).

Important
You don't need the AWS CLI to perform the steps in the Getting Started exercise. However,
some of the exercises in this guide use the AWS CLI. You can skip this step and go to Step
3: Getting Started Exercise (Create an Amazon Kinesis Analytics Application) (p. 19), and
then set up the AWS CLI later when you need it.

18

http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
http://aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/

Amazon Kinesis Analytics Developer Guide
Next Step

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

• Getting Set Up with the AWS Command Line Interface

• Configuring the AWS Command Line Interface

2. Add a named profile for the administrator user in the AWS CLI config file. You use this profile
when executing the AWS CLI commands. For more information about named profiles, see Named
Profiles in the AWS Command Line Interface User Guide.

[profile adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available AWS regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

3. Verify the setup by entering the following help command at the command prompt:

aws help

Next Step
Step 3: Getting Started Exercise (Create an Amazon Kinesis Analytics Application) (p. 19)

Step 3: Getting Started Exercise (Create an
Amazon Kinesis Analytics Application)

In this section, you create your first Amazon Kinesis Analytics application using the console.

Note
We suggest that you review the Amazon Kinesis Analytics: How It Works (p. 3) section before
trying the Getting Started exercise.

For this Getting Started exercise, you can use the following console features:

• Demo stream – If you choose to use the demo stream, the console creates an Amazon Kinesis
stream (kinesis-analytics-demo-stream) in your account. Then, the console runs a script that
populates stock trade records on the stream. The sample data is stock prices by ticker symbol. You
can use this stream as the streaming source for your application.

Note
The demo stream remains in your account. You can use it to test other examples in this
guide. However, when you leave the console, the script that the console uses stops
populating the data. When needed, the console provides the option to start populating the
stream again.

• Templates with example application code – You use the template code that the console provides
to perform simple analytics on the demo stream.

You use these features to quickly set up your first application as follows:

19

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-multiple-profiles
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-multiple-profiles
http://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Kinesis Analytics Developer Guide
Step 3.1: Create an Application

1. Create an application – You only need to provide a name. The console creates the application and
the service sets the application state to READY.

2. Configure input – First you add a streaming source, the demo stream. You must create a demo
stream in the console before you can use it. Then, the console takes a random sample of records on
the demo stream and infers a schema for the in-application input stream that is created. The console
names the in-application stream SOURCE_SQL_STREAM_001.

The console uses the discovery API to infer the schema. If necessary, you can edit the inferred
schema. For more information, see DiscoverInputSchema (p. 120). Amazon Kinesis Analytics
uses this schema to create an in-application stream.

When you start the application, Amazon Kinesis Analytics reads the demo stream continuously on
your behalf and inserts rows in the SOURCE_SQL_STREAM_001 in-application input stream.

3. Specify application code – You use a template (called Continuous filter) that provides the
following code:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM"
 (symbol VARCHAR(4), sector VARCHAR(12), CHANGE DOUBLE, price DOUBLE);

-- Create pump to insert into output.
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM ticker_symbol, sector, CHANGE, price
 FROM "SOURCE_SQL_STREAM_001"
 WHERE sector SIMILAR TO '%TECH%';

The application code queries the in-application stream SOURCE_SQL_STREAM_001 and inserts the
resulting rows in another in-application stream DESTINATION_SQL_STREAM, using pumps. For more
information about this coding pattern, see Application Code (p. 10).

4. Configuring output – In this exercise, you don't configure any output. That is, you will not persist
data in the in-application stream that your application creates to any external destination. Instead,
you verify query results in the console. There are additional examples in this guide that show how to
configure output. For example, see Example: Simple Alerts (p. 65).

Important
The exercise uses the US East (N. Virginia) Region (us-east-1) to set up the application. You
can use any of the supported regions.

Next Step

Step 3.1: Create an Application (p. 20)

Step 3.1: Create an Application
In this section you create an Amazon Kinesis Analytics application. You configure application input in
the next step.

20

Amazon Kinesis Analytics Developer Guide
Step 3.2: Configure Input

1. Sign in to the AWS Management Console and open the Analytics console at https://
console.aws.amazon.com/kinesisanalytics.

2. Choose Create new application.

3. On the New application page, type an application name, type a description, and then choose
Save and continue.

This creates an Amazon Kinesis Analytics application with a status of READY. The console shows
the application hub where you can configure input and output.

Note
To create an application, the CreateApplication (p. 108) operation requires only the
application name. You can add input and output configuration after you create an
application in the console.

In the next step, you configure input for the application. In the input configuration, you add a
streaming data source to the application and discover a schema for an in-application input stream
by sampling data on the streaming source.

Next Step

Step 3.2: Configure Input (p. 21)

Step 3.2: Configure Input
Your application needs a streaming source. To help you get started, the console can create a demo
stream (called kinesis-analytics-demo-stream). The console also runs a script that populates
records in the stream. Add a streaming source to your application as follows:

1. On the application hub page in the console, choose Connect to a source.

21

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Analytics Developer Guide
Step 3.2: Configure Input

2. On the page that appears, review the following:

• Source section where you specify a streaming source for your application. You can select
an existing stream source or create one. In this exercise, you create a new stream, the demo
stream.

By default the console names the in-application input stream that is created as
INPUT_SQL_STREAM_001. For this exercise, keep this name as it appears.

• Stream reference name – This shows the name of the in-application input stream,
SOURCE_SQL_STREAM_001, that is created. You can change the name, but for this exercise
use this name.

In the input configuration, you map the demo stream to an in-application input stream that is
created. When you start the application, Amazon Kinesis Analytics continuously reads the
demo stream and insert rows in the in-application input stream. You query this in-application
input stream in your application code.

• Permission to access the stream – This is where you specify an IAM role. For more
information, see Configuring a Streaming Source (p. 5). You have the option to choose an
IAM role that exists in your account or create a new role. In this exercise, you create a new
IAM role.

After you provide all the information on this page, the console sends an update request (see
UpdateApplication (p. 128)) to add the input configuration the application.

3. On the Source page, choose Configure a new stream.

4. Choose Create demo stream. The console does the following to configure the application input:

22

Amazon Kinesis Analytics Developer Guide
Step 3.2: Configure Input

• Creates the Amazon Kinesis stream called kinesis-analytics-demo-stream.

• The console also runs a script that populates the stream with sample stock ticker data.

• Using the discovery API (see DiscoverInputSchema (p. 120)) infer a schema by reading
sample records on the stream. This is the schema for the in-application input stream that is
created. For more information, see Configuring Application Input (p. 5).

• Then, the console shows the inferred schema and the sample data it read from the streaming
source to infer the schema.

The console displays the sample records on the streaming source.

Note the following:

• The Raw stream sample tab shows the raw stream records sampled by the discovery API (see
DiscoverInputSchema (p. 120)) to infer the schema.

• The Formatted stream sample tab shows the tabular version of the data in the Raw stream
sample tab.

• The Edit schema option allows you to edit the inferred schema. For this exercise, don't change
the inferred schema.

The Rediscover schema option allows you to request the console to run the discovery schema
API again (see DiscoverInputSchema (p. 120)) and infer the schema.

5. Choose Save and continue.

You now have an application with input configuration added to it. In the next step, you add SQL
code to perform some analytics on the data in-application input stream.

Next Step

Step 3.3: Add Real-Time Analytics (Add Application Code) (p. 24)

23

Amazon Kinesis Analytics Developer Guide
Step 3.3: Add Real-Time Analytics (Add Application Code)

Step 3.3: Add Real-Time Analytics (Add Application
Code)
You can write your own SQL queries against the in-application stream, but for this exercise you use
one of the templates that provides sample code.

1. On the application hub page, choose Go to SQL editor.

2. In the Would you like to start running "GSExample1"? dialog box, choose Yes, start
application.

The console sends a request to start the application (see StartApplication (p. 125)), and then the
SQL editor page appears.

3. The console opens the SQL editor page. Review the page, including the buttons (Add SQL from
templates, Save and run SQL) and various tabs.

4. In the SQL editor, choose Add SQL from templates.

5. From the available template list, choose Continuous filter. Note that the sample code reads
data from one in-application stream (the WHERE clause filers the rows) and inserts it in another in-
application stream as follows:

• Creates the in-application stream DESTINATION_SQL_STREAM.

• Creates a pump STREAM_PUMP, uses it to select rows from SOURCE_SQL_STREAM_001 and
insert them in the DESTINATION_SQL_STREAM.

6. Choose Add this SQL to editor.

7. Test the application code as follows:

Remember, you already started the application (status is RUNNING). Therefore, Amazon Kinesis
Analytics is already continuously reading from the streaming source and adding rows to the in-
application stream SOURCE_SQL_STREAM_001.

24

Amazon Kinesis Analytics Developer Guide
Step 3.3: Add Real-Time Analytics (Add Application Code)

a. In the SQL Editor, click Save and run SQL. The console first sends update request to save
the application code. Then, the code continuously executes.

b. You can see the results in the Real-time analytics tab.

The SQL Editor has the following tabs:

• The Source data tab shows an in-application input stream that is mapped to the streaming
source. Choose the in-application stream and you can see data coming in. Note the
additional columns in the in-application input stream that were not specified in the input
configuration. These include the following timestamp columns:

• ROWTIME – Each row in an in-application stream has a special column called ROWTIME.
It's the timestamp when Amazon Kinesis Analytics inserted the row in the first in-
application stream (the in-application input stream that is mapped to the streaming
source).

• Approximate_Arrival_Time – Each Amazon Kinesis Analytics record includes a value
called Approximate_Arrival_Time. It is the approximate arrival timestamp that is set
when the streaming source successfully receives and stores the record. When Amazon
Kinesis Analytics reads records from a streaming source, it fetches this column into the
in-application input stream.

These timestamp values are useful in windowed queries that are time-based. For more
information, see Windowed Queries (p. 35).

25

Amazon Kinesis Analytics Developer Guide
Step 3.4: (Optional) Update Application Code

• The Real-time analytics tab shows all the other in-application streams created by your
application code. It also includes the error stream. Amazon Kinesis Analytics sends any
rows it cannot process to the error stream. For more information, see Error Handling (p. 12).

Choose the DESTINATION_SQL_STREAM to view the rows your application code inserted.
Note again the additional columns that your application code did not create. These include
the ROWTIME timestamp column. Amazon Kinesis Analytics simply copies these values from
the source (SOURCE_SQL_STREAM_001).

• The Destination tab shows the external destination where Amazon Kinesis Analytics writes
the query results. You have not configured any external destination for your application
output yet.

Next Step

Step 3.4: (Optional) Update Application Code (p. 26)

Step 3.4: (Optional) Update Application Code
In this step, you explore how to update the application code.

1. Create another in-application stream as follows:

• Create another in-application stream called DESTINATION_SQL_STREAM_2.

• Create a pump, and then use it to insert rows in the newly created stream by selecting rows
from the DESTINATION_SQL_STREAM.

In the SQL Editor, append the following code to the existing application code:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM_2"
 (ticker_symbol VARCHAR(4),
 change DOUBLE,
 price DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP_2" AS
 INSERT INTO "DESTINATION_SQL_STREAM_2"
 SELECT STREAM ticker_symbol, change, price
 FROM "DESTINATION_SQL_STREAM";

Save and run the code. Additional in-application streams appear on the Real-time analytics tab.

2. Create two in-application streams. Filter rows in the SOURCE_SQL_STREAM_001 based on stock
ticker, and then insert them in to these separate streams.

Append the following SQL statements to your application code:

CREATE OR REPLACE STREAM "AMZN_STREAM"
 (ticker_symbol VARCHAR(4),
 change DOUBLE,
 price DOUBLE);

26

Amazon Kinesis Analytics Developer Guide
Step 3.5: (Optional) Configure Output

CREATE OR REPLACE PUMP "AMZN_PUMP" AS
 INSERT INTO "AMZN_STREAM"
 SELECT STREAM ticker_symbol, change, price
 FROM "SOURCE_SQL_STREAM_001"
 WHERE ticker_symbol SIMILAR TO '%AMZN%';

CREATE OR REPLACE STREAM "TGT_STREAM"
 (ticker_symbol VARCHAR(4),
 change DOUBLE,
 price DOUBLE);

CREATE OR REPLACE PUMP "TGT_PUMP" AS
 INSERT INTO "TGT_STREAM"
 SELECT STREAM ticker_symbol, change, price
 FROM "SOURCE_SQL_STREAM_001"
 WHERE ticker_symbol SIMILAR TO '%TGT%';

Save and run the code. Notice additional in-application streams on the Real-time analytics tab.

Next Step

Step 3.5: (Optional) Configure Output (p. 27)

Step 3.5: (Optional) Configure Output
You now have your first working Amazon Kinesis Analytics application. In this exercise, you did the
following:

• Created your first Amazon Kinesis Analytics application.

• Configured application input that identified the demo stream as the streaming source and mapped it
to an in-application stream (SOURCE_SQL_STREAM_001) that is created. Amazon Kinesis Analytics
continuously reads the demo stream and inserts records in the in-application stream.

• Your application code queried the SOURCE_SQL_STREAM_001 and wrote output to another in-
application stream called DESTINATION_SQL_STREAM.

Now you can optionally configure application output to write the application output to
an external destination. That is, configure the application output to write records in the
DESTINATION_SQL_STREAM to an external destination. For this exercise, we make this an optional
step. You configure the destination in the next exercise.

Next Step

Step 4: Console Feature Summary (p. 27).

Step 4: Console Feature Summary
This section summarizes some of the useful console features you used in the Getting Started exercise.
These are used in several examples in this guides.

27

Amazon Kinesis Analytics Developer Guide
Step 4: Console Feature Summary

• Demo stream – An Amazon Kinesis Analytics application requires a streaming source. Several
examples of SQL code in this guide use a demo stream that the console can create in your account.
It is an Amazon Kinesis stream called kinesis-analytics-demo-stream. The console also runs
a script that continuously add sample data (simulated stock trade records) on the stream as shown:

Note
The demo stream remains in your account. You can use it to test other examples in this
guide. However, when you leave the console, the script that the console uses stops
populating the data. When needed, the console provides the option to start populating the
stream again.

• Templates – In the SQL editor, you can either author your own code yourself or choose Add SQL
from templates to start with a template that provide example code. The example applications in this
guide use some of these templates. For more information, see Example Amazon Kinesis Analytics
Applications (p. 43).

• Various Tabs in SQL editor – Note the tabs in the SQL editor.

28

Amazon Kinesis Analytics Developer Guide
Step 4: Console Feature Summary

• Source tab – Identifies the streaming source and in-application input stream to which it maps (as
the application input configuration).

Note that Amazon Kinesis Analytics provides the following timestamp columns (you don't need to
provide explicit mapping in your input configuration).

29

Amazon Kinesis Analytics Developer Guide
Step 4: Console Feature Summary

• ROWTIME – Each row in an in-application stream has a special column called ROWTIME. It is
the timestamp when Amazon Kinesis Analytics inserted the row in the first in-application stream.

• Approximate_Arrival_Time – Records on your streaming source include the
Approximate_Arrival_Timestamp column. It is the approximate arrival timestamp
that is set when the streaming source successfully receives and stores the record.
Amazon Kinesis Analytics fetches this column into the in-application input stream as
Approximate_Arrival_Time. Amazon Kinesis Analytics provides this column only in the in-
application input stream that is mapped to the streaming source.

These timestamp values are useful in windowed queries that are time-based. For more
information, see Windowed Queries (p. 35).

• Real-time analytics tab – Shows all the in-application streams that your application code creates.
This also includes the error stream (error_stream) that Amazon Kinesis Analytics provides for
all applications.

• Destination tab – Enables you to configure application output, to persist in-application streams to
external destinations. You can configure output to persist data in any of the in-application streams
to external destinations. For more information, see Configuring Application Output (p. 11).

For additional examples, see Example Amazon Kinesis Analytics Applications (p. 43).

30

Amazon Kinesis Analytics Developer Guide
In-Application Streams and Pumps

Streaming SQL Concepts

Amazon Kinesis Analytics implements the ANSI 2008 SQL standard with extensions. These extensions
enable you to process streaming data. The following topics cover key streaming SQL concepts.

Topics

• In-Application Streams and Pumps (p. 31)

• Timestamps and the ROWTIME Column (p. 32)

• Continuous Queries (p. 35)

• Windowed Queries (p. 35)

• Streaming Data Operations: Stream Joins (p. 41)

In-Application Streams and Pumps
When you configure application input, you map a streaming source to an in-application stream that
is created. Data continuously flows from the streaming source into the in-application stream. An in-
application stream works like a table that you can query using SQL statements, but it's called a stream
because it represents continuous data flow.

Note
Do not confuse in-application streams with the Amazon Kinesis streams and Firehose delivery
streams. In-application streams exist only in the context of an Amazon Kinesis Analytics
application. Amazon Kinesis streams and Firehose delivery streams exist independent of
your application, and you can configure them as a streaming source in your application input
configuration or as a destination in output configuration.

You can also create additional in-application streams as needed to store intermediate query results.
Creating an in-application stream is a two-step process. First, you create an in-application stream, and
then you pump data into it. For example, suppose the input configuration of your application creates
an in-application stream called INPUTSTREAM. In the following example, you create another stream
(TEMPSTREAM), and then you pump data from INPUTSTREAM into it.

1. Create an in-application stream (TEMPSTREAM) with three columns, as shown following:

31

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html

Amazon Kinesis Analytics Developer Guide
Timestamps and the ROWTIME Column

CREATE OR REPLACE STREAM "TEMPSTREAM" (
 "column1" BIGINT NOT NULL,
 "column2" INTEGER,
 "column3" VARCHAR(64));

The column names are specified in quotes, making them case-sensitive. For more information, see
Identifiers in the Amazon Kinesis Analytics SQL Reference.

2. Insert data into the stream using a pump. A pump is a continuous insert query running that inserts
data from one in-application stream to another in-application stream. The following statement
creates a pump (SAMPLEPUMP) and inserts data into the TEMPSTREAM by selecting records from
another stream (INPUTSTREAM).

CREATE OR REPLACE PUMP "SAMPLEPUMP" AS
INSERT INTO "TEMPSTREAM" ("column1",
 "column2",
 "column3")
SELECT STREAM inputcolumn1,
 inputcolumn2,
 inputcolumn3
FROM "INPUTSTREAM";

You can have multiple writers insert into an in-application stream, and there can be multiple readers
selected from the stream. You can think of an in-application stream as implementing a publish/
subscribe messaging paradigm in which the data row, including time of creation and time of receipt,
can be processed, interpreted, and forwarded by a cascade of streaming SQL statements, without
having to be stored in a traditional RDBMS.

After an in-application stream is created, you can perform normal SQL queries.

Note
When querying streams, most SQL statements are bound using a row-based or time-based
window. For more information, see Windowed Queries (p. 35).

You can also join streams. For examples of joining streams, see Streaming Data Operations: Stream
Joins (p. 41).

Timestamps and the ROWTIME Column
In-application streams include a special column called ROWTIME. It stores a timestamp when Amazon
Kinesis Analytics inserts a row in the first in-application stream. ROWTIME reflects the timestamp at
which Amazon Kinesis Analytics inserted a record into the first in-application stream after reading from
the streaming source. This ROWTIME value is then maintained throughout your application.

Note
When you pump records from one in-application stream into another, you don't need to
explicitly copy the ROWTIME column, Amazon Kinesis Analytics copies this column for you.

Amazon Kinesis Analytics guarantees that the ROWTIME values are monotonically increased.
You use this timestamp in time-based windowed queries. For more information, see Windowed
Queries (p. 35).

You can access the ROWTIME column in your SELECT statement like any other columns in your in-
application stream. For example:

32

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-identifiers.html

Amazon Kinesis Analytics Developer Guide
Understanding Various Times in Streaming Analytics

SELECT STREAM ROWTIME,
 some_col_1,
 some_col_2
FROM SOURCE_SQL_STREAM_001

Understanding Various Times in Streaming
Analytics
In addition to ROWTIME, there are other types of times in real-time streaming applications. These are:

• Event time – The timestamp when the event occurred. This is also sometimes called the client-side
time. It is often desirable to use this time in analytics because it is the time when an event occurred.
However, many event sources, such as mobile phones and web clients, do not have reliable clocks,
which can lead to inaccurate times. In addition, connectivity issues can lead to records appearing on
a stream not in the same order the events occurred.

• Ingest time – The timestamp of when record was added to the streaming source. Amazon Kinesis
Streams includes a field called ApproximateArrivalTimeStamp in every record that provides this
timestamp. This is also sometimes referred to as the server-side time. This ingest time is often the
close approximation of event time. If there is any kind of delay in the record ingestion to the stream,
this can lead to inaccuracies, which are typically rare. Also, the ingest time is rarely out of order,
but it can occur due to the distributed nature of streaming data. Therefore, Ingest time is a mostly
accurate and in-order reflection of the event time.

• Processing time – The timestamp when Amazon Kinesis Analytics inserts a row in the first in-
application stream. Amazon Kinesis Analytics provides this timestamp in the ROWTIME column that
exists in each in-application stream. The processing time is always monotonically increasing, but it
will not be accurate if your application falls behind (if an application falls behind, the processing time
will not accurately reflect the event time). This ROWTIME is very accurate in relation to the wall clock,
but it might not be the time when the event actually occurred.

As you can see from the preceding discussion, using each of these times in windowed queries that
are time-based has advantages and disadvantages. We recommend you choose one or more of these
times, and a strategy to deal with the relevant disadvantages based on your use case scenario.

Note
If you are using row-based windows, time is not an issue and you can ignore this section.

We recommend a two-window strategy that uses two time-based, both ROWTIME and one of the other
times (ingest or event time).

• Use ROWTIME as the first window, which controls how frequently the query emits the results, as
shown in the following example. It is not used as a logical time.

• Use one of the other times that is the logical time you want to associated with your analytics. This
time represents when the event occurred. In the following example, the analytics goal is to group the
records and return count by ticker.

The advantage of this strategy is that it can use a time that represents when the event occurred, and
it can gracefully handle when your application falls behind or when events arrive out of order. If the

33

Amazon Kinesis Analytics Developer Guide
Understanding Various Times in Streaming Analytics

application falls behind when bringing records into the in-application stream, they are still grouped by
the logical time in the second window. The query uses ROWTIME to guarantee the order of processing.
Any records that are late (ingest timestamp shows earlier value compared to the ROWTIME value) are
processed successfully too.

Consider the following query against the demo stream used in the Getting Started Exercise. The query
uses the GROUP BY clause and emits ticker count in a one-minute tumbling window.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM"
 (ingest_time timestamp,
 Ticker_Symbol VARCHAR(12),
 symbol_count integer);

--CREATE OR REPLACE PUMP data into output
CREATE OR REPLACE PUMP "myOutputPUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 -- select the ingest time used in the GROUP BY clause
 SELECT STREAM FLOOR("SOURCE_SQL_STREAM_001".Approximate_Arrival_Time TO
 MINUTE) AS ingest_time,
 Ticker_Symbol,
 COUNT(*) AS symbol_count
 FROM "SOURCE_SQL_STREAM_001"
 GROUP BY Ticker_Symbol,
 -- use process time as a trigger, which can be different time
 window as the aggregate
 FLOOR("SOURCE_SQL_STREAM_001".ROWTIME TO MINUTE),
 -- aggregate records based upon ingest time
 FLOOR("SOURCE_SQL_STREAM_001".Approximate_Arrival_Time TO
 MINUTE);

In GROUP BY, you first group the records based on ROWTIME in a one-minute window and then by
Approximate_Arrival_Time.

Note that the timestamp values in the result are rounded to nearest minute. The first group result
emitted by the query shows records in the first minute. The second group of results emitted shows
records in the next minutes based on ROWTIME. The last record indicates that the application was late
in bringing the record in the in-application stream (it shows a late ROWTIME value compared to the
ingest timestamp).

ROWTIME INGEST_TIME TICKER_SYMBOL SYMBOL_COUNT

--First one minute window.
2016-07-19 17:05:00.0 2016-07-19 17:05:00.0 ABC 10
2016-07-19 17:05:00.0 2016-07-19 17:05:00.0 DEF 15
2016-07-19 17:05:00.0 2016-07-19 17:05:00.0 XYZ 6
–-Second one minute window.
2016-07-19 17:06:00.0 2016-07-19 17:06:00.0 ABC 11
2016-07-19 17:06:00.0 2016-07-19 17:06:00.0 DEF 11
2016-07-19 17:06:00.0 2016-07-19 17:05:00.0 XYZ 1 ***

***late-arriving record, instead of appearing in the result of the
first 1-minute windows (based on ingest_time, it is in the result
of the second 1-minute window.

You can combine the results for a final accurate count per minute by pushing the results to a
downstream database. For example, you can configure application output to persist the results
to a Firehose delivery stream that can write to an Amazon Redshift table. After results are in an

34

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Continuous Queries

Amazon Redshift table, you can query the Amazon Redshift table to compute the total count group by
Ticker_Symbol. In the case of ABC, the total is accurate (6+1) even though a record arrived late.

Continuous Queries
A query over a stream executes continuously over streaming data. This continuous execution enables
scenarios, such as the ability for applications to continuously query a stream and generate alerts.

In the Getting Started exercise, you have an in-application stream called SOURCE_SQL_STREAM_001
that continuously receives stock prices from a demo stream (an Amazon Kinesis stream). Following is
the schema:

(TICKER_SYMBOL VARCHAR(4),
 SECTOR varchar(16),
 CHANGE REAL,
 PRICE REAL)

Suppose you are interested in stock price changes greater than 15%. You can use the following query
in your application code. This query runs continuously and emits records when a stock price change
greater than 1% is detected.

SELECT STREAM TICKER_SYMBOL, PRICE
 FROM "SOURCE_SQL_STREAM_001"
 WHERE (ABS((CHANGE / (PRICE-CHANGE)) * 100)) > 1

Use the following procedure to set up an Amazon Kinesis Analytics application and test this query.

To test the query

1. Set up an application by following the Getting Started Exercise.

2. Replace the SELECT statement in the application code with the preceding SELECT query. The
resulting application code is shown following:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol
 VARCHAR(4),
 price DOUBLE);
-- CREATE OR REPLACE PUMP to insert into output
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM TICKER_SYMBOL,
 PRICE
 FROM "SOURCE_SQL_STREAM_001"
 WHERE (ABS((CHANGE / (PRICE-CHANGE)) * 100)) > 1;

Windowed Queries

SQL queries in your application code execute continuously over in-application streams. And, an in-
application stream represents unbounded data that is flowing continuously through your application.
Therefore, to get result sets from this continuously updating input, you often bound queries using a
window defined in terms of time or rows. These are also called windowed SQL.

35

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Tumbling Windows

For a time-based windowed query, you specify the window size in terms of time (for example, a one-
minute window). This requires a timestamp column in your in-application stream that is monotonically
increasing (timestamp for a new row is greater than or equal to previous row). Amazon Kinesis
Analytics provides such a timestamp column called ROWTIME for each in-application stream. You can
use this column when specifying time-based queries. For your application, you might choose some
other timestamp option. For more information, see Timestamps and the ROWTIME Column (p. 32).

For a row-based windowed query, you specify window size in terms of the number of rows.

You can specify a query to process records in a tumbling window or sliding window manner, depending
on your application needs. For more information, see the following topics:

Tumbling Windows (Aggregations Using GROUP
BY)
When a windowed query processes each window in a non-overlapping manner, the window is referred
to as a tumbling window. In this case, each record on an in-application stream belongs to a specific
window, and it's processed only once (when the query processes the window to which the record
belongs).

For example, an aggregation query using a GROUP BY clause processes rows in a tumbling window.
The demo stream in the Getting Started Exercise receives stock price data that is mapped to the in-
application stream SOURCE_SQL_STREAM_001 in your application, which has the following schema:

(TICKER_SYMBOL VARCHAR(4),
 SECTOR varchar(16),
 CHANGE REAL,
 PRICE REAL)

In your application code, suppose you want to find aggregate (min, max) prices for each ticker over a
one-minute window. You can use the following query:

SELECT STREAM ROWTIME,
 Ticker_Symbol,
 MIN(Price) AS Price,
 MAX(Price) AS Price
FROM "SOURCE_SQL_STREAM_001"
GROUP BY Ticker_Symbol,
 FLOOR("SOURCE_SQL_STREAM_001".ROWTIME TO MINUTE);

This is an example of a windowed query that is time-based, the query groups records by ROWTIME
values. For a per-minute basis reporting, the FLOOR function rounds down the ROWTIME values to the
nearest minute.

This query is an example of a non-overlapping (tumbling) window. The GROUP BY clause groups
records in a one-minute window and each record belongs to a specific window (no overlapping). The

36

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Sliding Windows

query emits one output record per minute, providing the min/max ticker price recorded at the specific
minute. This type of query is useful for generating periodic reports (in this example, each minute) from
the input data stream.

To test the query

1. Set up an application by following the Getting Started Exercise.

2. Replace the SELECT statement in the application code by the preceding SELECT query. The
resulting application code is shown following:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 ticker_symbol VARCHAR(4),
 Min_Price DOUBLE,
 Max_Price DOUBLE);
-- CREATE OR REPLACE PUMP to insert into output
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM Ticker_Symbol,
 MIN(Price) AS Min_Price,
 MAX(Price) AS Max_Price
 FROM "SOURCE_SQL_STREAM_001"
 GROUP BY Ticker_Symbol,
 FLOOR("SOURCE_SQL_STREAM_001".ROWTIME TO MINUTE);

Sliding Windows

Instead of grouping records using GROUP BY, you can define a window (time- or row-based). For
example, you can do this by adding an explicit WINDOW clause. In this case, as the window slides
with time, Amazon Kinesis Analytics emits an output when new records appear on the stream, by
processing rows in the window. Note that windows can overlap in this type of processing, a record
can be part of multiple windows and processed with the window. The following example illustrates the
sliding window.

Consider a simple query that counts records on the stream. We assume a five-second window. In
the following example stream, new records arriving at time t1, t2, t6, t7, and three records at time t8
seconds.

Keep the following in mind:

• We assume a five-second window. The five-second window slides continuously with the time.

• For every row that enters a window, an output row is emitted by the sliding window. Soon after the
application starts, initially you see the query emit output for every new record that appears on the
stream, even though it is not a five-second window yet. For example, the query emits output when
a record appears in the first second and second second. Later, the query processes records in the
five-second window.

• The windows slide with time and if an old record on the stream falls out of the window, the query will
not emit any output unless there is also a new record on the stream in that five-second window.

37

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Sliding Windows

Suppose the query starts executing at t0.

1. At the time t0, the query starts. The query will not emit output (count value) because there are no
records at this time.

2. At time t1, a new record appears on the stream, and the query emit count value 1.

3. At time t2, another record appears, and the query emits count 2.

4. The five-second window slides with time.

• At t3, the sliding window t3 to t0.

• At t4 (sliding window t4 to t0), and

• At t5 the sliding window t5-t0.

At all of these times, the five-second window has the same records—there are no new records.
Therefore, the query doesn't emit any output.

5. At time t6, the five-second window is (t6 to t1), the query detects one new record at t6 so it emits
output 2. The record at t1 is no longer in the window and it will not count.

6. At time t7, the five-second window is t7 to t2, the query detects one new record at t7 so it emits output
2. The record at t2 is no longer in the five-second window and, therefore, is not counted.

7. At time t8, the five-second window is t8 to t3, the query detects three new records, and therefore
emits record count 5.

38

Amazon Kinesis Analytics Developer Guide
Sliding Windows

In summary, the window is a fixed size and slides with time. The query emits output when new records
appear.

The following are example queries that use the WINDOW clause to define windows and perform
aggregates. Because the queries don't specify GROUP BY, the query uses the sliding window approach
to process records on the stream.

Example 1: Process a Stream Using a One-Minute Sliding
Window

For example, consider the demo stream in the Getting Started exercise that populates the in-
application stream, SOURCE_SQL_STREAM_001. The following is the schema:

(TICKER_SYMBOL VARCHAR(4),
 SECTOR varchar(16),
 CHANGE REAL,
 PRICE REAL)

Suppose you want your application to compute aggregates using a sliding one-minute window. That is,
for each new record that appears on the stream, you want the application to emit an output by applying
aggregates on records in the preceding one-minute window.

You can use the following time-based windowed query. The query uses the WINDOW clause to define
the one-minute range interval. The PARTITION BY in the WINDOW clause groups records by ticker
values within the sliding window.

SELECT STREAM ticker_symbol,
 MIN(Price) OVER W1 AS Min_Price,
 MAX(Price) OVER W1 AS Max_Price,
 AVG(Price) OVER W1 AS Avg_Price
FROM "SOURCE_SQL_STREAM_001"
WINDOW W1 AS (
 PARTITION BY ticker_symbol
 RANGE INTERVAL '1' MINUTE PRECEDING);

To test the query

1. Set up an application by following the Getting Started Exercise.

2. Replace the SELECT statement in the application code with the preceding SELECT query. The
resulting application code is:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 ticker_symbol VARCHAR(10),
 Min_Price double,
 Max_Price double,
 Avg_Price double);

39

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Sliding Windows

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM ticker_symbol,
 MIN(Price) OVER W1 AS Min_Price,
 MAX(Price) OVER W1 AS Max_Price,
 AVG(Price) OVER W1 AS Avg_Price
 FROM "SOURCE_SQL_STREAM_001"
 WINDOW W1 AS (
 PARTITION BY ticker_symbol
 RANGE INTERVAL '1' MINUTE PRECEDING);

Example 2: Query Applying Aggregates on a Sliding Window

The following query against the demo stream returns the average of the percent change in the price of
each ticker in a ten-second window.

SELECT STREAM Ticker_Symbol,
 AVG(Change / (Price - Change)) over W1 as Avg_Percent_Change
FROM "SOURCE_SQL_STREAM_001"
WINDOW W1 AS (
 PARTITION BY ticker_symbol
 RANGE INTERVAL '10' SECOND PRECEDING);

To test the query

1. Set up an application by following the Getting Started Exercise.

2. Replace the SELECT statement in the application code with the preceding SELECT query. The
resulting application code is:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 ticker_symbol VARCHAR(10),
 Avg_Percent_Change double);
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM Ticker_Symbol,
 AVG(Change / (Price - Change)) over W1 as
 Avg_Percent_Change
 FROM "SOURCE_SQL_STREAM_001"
 WINDOW W1 AS (
 PARTITION BY ticker_symbol
 RANGE INTERVAL '10' SECOND PRECEDING);

Example 3: Query Data from Multiple Sliding Windows on the
Same Stream

You can write queries to emit output in which each column value is calculated using different sliding
windows defined over the same stream.

In this example, the query emits output (that is, ticker, price, a2, and a10) for ticker symbols whose
two-row moving average crosses the ten-row moving average. Note that the a2 and a10 column
values are derived from two-row and ten-row sliding windows

40

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Stream Joins

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 ticker_symbol VARCHAR(12),
 price double,
 average_last2rows double,
 average_last10rows double);

CREATE OR REPLACE PUMP "myPump" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol,
 price,
 avg(price) over last2rows,
 avg(price) over last10rows
FROM SOURCE_SQL_STREAM_001
WINDOW
 last2rows AS (PARTITION BY ticker_symbol ROWS 2 PRECEDING),
 last10rows AS (PARTITION BY ticker_symbol ROWS 10 PRECEDING);

To test this query against the demo stream, follow the test procedure described in Example
1 (p. 39). Use the following application code that creates another in-application stream
DESTINATION_SQL_STREAM.

Streaming Data Operations: Stream Joins
You can have multiple in-application streams in your application. You can write JOIN queries to
correlate data arriving on these streams. For example, suppose you have the following in-application
streams:

• OrderStream – Receives stock orders being placed.

(orderId SqlType, ticker SqlType, amount SqlType, ROWTIME TimeStamp)

• TradeStream – Receives resulting stock trades for those orders.

(tradeId SqlType, orderId SqlType, ticker SqlType, amount SqlType,
 ticker SqlType, amount SqlType, ROWTIME TimeStamp)

The following are JOIN query examples that correlate data on these streams.

Example 1: Report Orders Where There Are Trades
within One Minute of the Order Being Placed
In this example, your query joins both the OrderStream and TradeStream. However, because we
want only trades placed one minute after the orders, the query defines the one-minute window over the
TradeStream. For information about windowed queries, see Sliding Windows (p. 37).

SELECT STREAM
 ROWTIME,
 o.orderId, o.ticker, o.amount AS orderAmount,
 t.amount AS tradeAmount
FROM OrderStream AS o

41

Amazon Kinesis Analytics Developer Guide
Example 1: Report Orders Where There Are Trades

within One Minute of the Order Being Placed

JOIN TradeStream OVER (RANGE INTERVAL '1' MINUTE FOLLOWING) AS t
ON o.orderId = t.orderId;

You can define the windows explicitly using the WINDOW clause and writing the preceding query as
follows:

SELECT STREAM
 ROWTIME,
 o.orderId, o.ticker, o.amount AS orderAmount,
 t.amount AS tradeAmount
FROM OrderStream AS o
JOIN TradeStream OVER t
ON o.orderId = t.orderId
WINDOW t AS
 (RANGE INTERVAL '1' MINUTE FOLLOWING)

When you include this query in your application code, the application code runs continuously. For each
arriving record on the OrderStream, the application emits an output if there are trades within the one-
minute window following the order being placed.

The join in the preceding query is an inner join where the query emits records in OrderStream for
which there is a matching record in TradeStream (and vice versa). Using an outer join you can create
another interesting scenario. Suppose you want stock orders for which there are no trades within one
minute of stock order being placed, and trades reported within the same window but for some other
orders. This is example of an outer join.

SELECT STREAM
 ROWTIME,
 o.orderId, o.ticker, o.amount AS orderAmount,
 t.ticker, t.tradeId, t.amount AS tradeAmount,
FROM OrderStream AS o
OUTER JOIN TradeStream OVER (RANGE INTERVAL '1' MINUTE FOLLOWING) AS t
ON o.orderId = t.orderId;

42

Amazon Kinesis Analytics Developer Guide
Examples: Preprocessing Streams

Example Amazon Kinesis Analytics
Applications

This section provides examples of working with Amazon Kinesis Analytics. Some of these examples
also provide step-by-step instructions for you to create an Amazon Kinesis Analytics application and
test the setup.

Before you explore these walkthroughs, we recommend that you first review Amazon Kinesis Analytics:
How It Works (p. 3) and Getting Started (p. 17).

Topics

• Examples: Preprocessing Streams (p. 43)

• Examples: Basic Analytics (p. 63)

• Examples: Advanced Analytics (p. 66)

• Examples: Post Processing In-Application Stream (p. 72)

• Examples: Other Amazon Kinesis Analytics Applications (p. 76)

Examples: Preprocessing Streams
There are times when your application code needs to preprocess the incoming records before
performing any analytics. This can happen for various reasons, such as records not conforming the
supported record formats that can result into unnormalized columns in in-application input streams.
This section provides examples of how to use the available string functions to normalize data, how to
extract information that you need from string columns, and so on. The section also points to date time
functions that you might find useful.

Topics

• Example: Manipulating Strings and Date Times (p. 44)

• Example: Streaming Source With Multiple Record Types (p. 53)

• Example: Adding Reference Data to an Amazon Kinesis Analytics Application (p. 59)

43

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

Example: Manipulating Strings and Date Times

String Manipulation

Amazon Kinesis Analytics supports formats such as JSON and CSV for records on a streaming source.
For details, see RecordFormat (p. 165). These records then map to rows in in-application stream as
per the input configuration. For details, see Configuring Application Input (p. 5). The input configuration
specifies how record fields in the streaming source map to columns in in-application stream.

This mapping works when records on the streaming source follow the supported formats, that results in
an in-application stream with normalized data.

But, what if data on your streaming source does not conform to supported standards? For example,
what if your streaming source contain data such as clickstream data, IoT sensors, and application
logs? Consider these examples:

• Streaming source contains application logs – The application logs follow the standard Apache
log format, and are written to the stream using JSON format.

{
 "Log":"192.168.254.30 - John [24/May/2004:22:01:02 -0700] "GET /icons/
apache_pb.gif HTTP/1.1" 304 0"
}

For more information about the standard Apache log format, see Log Files on the Apache website.

• Streaming source contains semi-structured data – The following example shows two records.
The Col_E_Unstrucutured field value is a series of comma-separated values.

{ "Col_A" : "string",
 "Col_B" : "string",
 "Col_C" : "string",
 "Col_D" : "string",
 "Col_E_Unstructured" : "value,value,value,value"}

{ "Col_A" : "string",
 "Col_B" : "string",
 "Col_C" : "string",
 "Col_D" : "string",
 "Col_E_Unstructured" : "value,value,value,value"}

There are five columns, the first four have string type values and the last column contains comma-
separated values.

• Records on your streaming source contain URLs and you need a portion of the URL domain name
for analytics.

{ "referrer" : "http://www.amazon.com"}
{ "referrer" : "http://www.stackoverflow.com" }

In such cases, the following two-step process generally works for creating in-application streams that
contain normalized data:

44

https://httpd.apache.org/docs/2.4/logs.html

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

1. Configure application input to map the unstructured field to a column of the VARCHAR(N) type in the
in-application input stream that is created.

2. In your application code, use string functions to split this single column into multiple columns and
then save the rows in another in-application stream. This in-application stream that your application
code creates will have normalized data. You can then perform analytics on this in-application
stream.

Amazon Kinesis Analytics provides string operations, standard SQL functions, and extensions to the
SQL standard for working with string columns, including the following:

• String operators – Operators such as LIKE and SIMILAR are useful in comparing strings. For more
information, see String Operators in the Amazon Kinesis Analytics SQL Reference.

• SQL functions – The following functions are useful when manipulating individual strings. For more
information, see Scalar Functions in the Amazon Kinesis Analytics SQL Reference.

• CHAR_LENGTH – Provides the length of a string.

• LOWER/UPPER – Converts a string to lowercase or uppercase.

• OVERLAY – Replace a portion of the first string argument (the original string) with the second
string argument (the replacement string).

• SUBSTRING – Extracts a portion of a source string starting at a specific position.

• POSITION – Searches for a string within another string.

• SQL Extensions – These are useful for working with unstructured strings such as logs and URIs.

• REGEX_LOG_PARSE – Parses a string based on default Java Regular Expression patterns.

• FAST_REGEX_LOG_PARSER – Works similar to the regex parser, but takes several shortcuts to
ensure faster results. For example, the fast regex parser stops at the first match it finds (known as
lazy semantics).

• W3C_Log_Parse – A function for quickly formatting Apache logs.

• FIXED_COLUMN_LOG_PARSE – Parses fixed-width fields and automatically converts them to
the given SQL types.

• VARIABLE_COLUMN_LOG_PARSE – Splits an input string into fields separated by a delimiter
character or a delimiter string.

For examples using these function, see the following topics:

• Example: String Manipulation (W3C_LOG_PARSE Function) (p. 45)

• Example: String Manipulation (VARIABLE_COLUMN_LOG_PARSE Function) (p. 48)

• Example: String Manipulation (SUBSTRING Function) (p. 50)

Example: String Manipulation (W3C_LOG_PARSE Function)

In this example, you write log records to an Amazon Kinesis stream. Example logs are shown
following:

{"Log":"192.168.254.30 - John [24/May/2004:22:01:02 -0700] "GET /icons/
apache_pba.gif HTTP/1.1" 304 0"}
{"Log":"192.168.254.30 - John [24/May/2004:22:01:03 -0700] "GET /icons/
apache_pbb.gif HTTP/1.1" 304 0"}

45

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-string-operators.html
http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-scalar-functions.html

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

{"Log":"192.168.254.30 - John [24/May/2004:22:01:04 -0700] "GET /icons/
apache_pbc.gif HTTP/1.1" 304 0"}
...

You then create an Amazon Kinesis Analytics application in the console, with the Amazon Kinesis
stream as the streaming source. The discovery process reads sample records on the streaming source
and infers an in-application schema with one column (log), as shown following:

Then, you use the application code with the W3C_LOG_PARSE function to parse the log, and create
another in-application stream with various log fields in separate columns, as shown following:

Step 1: Create an Amazon Kinesis Stream

Create an Amazon Kinesis stream and populate log records as follows:

1. Sign in to the AWS Management Console and open the Analytics console at https://
console.aws.amazon.com/kinesisanalytics.

2. Choose Kinesis Stream and then create a stream with one shard.

3. Run the following Python code to populate sample log records. The Python code is simple, it
continuously writes same log record to the stream.

import json

46

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

from boto import kinesis
import random

kinesis = kinesis.connect_to_region("us-east-1")
def getHighHeartRate():
 data = {}
 data['log'] = '192.168.254.30 - John [24/May/2004:22:01:02 -0700]
 "GET /icons/apache_pb.gif HTTP/1.1" 304 0'
 return data

while True:
 data = json.dumps(getHighHeartRate())
 print data
 kinesis.put_record("stream-name", data, "partitionkey")

Step 2: Create the Amazon Kinesis Analytics Application

Create an Amazon Kinesis Analytics application as follows:

1. Sign in to the AWS Management Console and open the Analytics console at https://
console.aws.amazon.com/kinesisanalytics.

2. Choose Create new application, and specify an application name.

3. On the application hub, connect to the source.

4. On the Source page, do the following:

• Select the stream that you created in the preceding section.

• Choose the create IAM role option.

• Wait for console to show the inferred schema and samples records used to infer the schema for
the in-application stream created. Note that the inferred schema has only one column.

• Choose Save and continue.

5. On the application hub, choose Go to SQL editor. To start the application, choose yes in the
dialog box that appears.

6. In the SQL editor, write application code and verify the results as follows:

• Copy the following application code and paste it into the editor.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
column1 VARCHAR(16),
column2 VARCHAR(16),
column3 VARCHAR(16),
column4 VARCHAR(16),
column5 VARCHAR(16),
column6 VARCHAR(16),
column7 VARCHAR(16));

CREATE OR REPLACE PUMP "myPUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM
 l.r.COLUMN1,
 l.r.COLUMN2,
 l.r.COLUMN3,
 l.r.COLUMN4,

47

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

 l.r.COLUMN5,
 l.r.COLUMN6,
 l.r.COLUMN7
 FROM (SELECT STREAM W3C_LOG_PARSE("log", 'COMMON')
 FROM "SOURCE_SQL_STREAM_001") AS l(r);

• Choose Save and run SQL. On the Real-time analytics tab you can see all of the in-
application streams that the application created and verify the data.

Example: String Manipulation
(VARIABLE_COLUMN_LOG_PARSE Function)

In this example, you write semi-structured records to an Amazon Kinesis stream. The example records
are as follows:

{ "Col_A" : "string",
 "Col_B" : "string",
 "Col_C" : "string",
 "Col_D_Unstructured" : "value,value,value,value"}
{ "Col_A" : "string",
 "Col_B" : "string",
 "Col_C" : "string",
 "Col_D_Unstructured" : "value,value,value,value"}

You then create an Amazon Kinesis Analytics application in the console, with the Amazon Kinesis
stream as the streaming source. The discovery process reads sample records on the streaming source
and infer an in-application schema with one column (log), as shown following:

Then, you use the application code with the VARIABLE_COLUMN_LOG_PARSE function to parse the
comma-separated values, and insert normalized rows in another in-application stream, as shown
following:

48

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

Step 1: Create an Amazon Kinesis Stream

Create an Amazon Kinesis stream and populate log records as follows:

1. Sign in to the AWS Management Console and open the Analytics console at https://
console.aws.amazon.com/kinesisanalytics.

2. Choose Kinesis Stream and then create a stream with one shard.

3. Run the following Python code to populate sample log records. The Python code is simple, it
continuously writes same log record to the stream.

import json
from boto import kinesis
import random

kinesis = kinesis.connect_to_region("us-east-1")
def getHighHeartRate():
 data = {}
 data['Col_A'] = 'a'
 data['Col_B'] = 'b'
 data['Col_C'] = 'c'
 data['Col_E_Unstructured'] = 'x,y,z'
 return data

while True:
 data = json.dumps(getHighHeartRate())
 print data
 kinesis.put_record("teststreamforkinesisanalyticsapps", data,
 "partitionkey")

Step 2: Create the Amazon Kinesis Analytics Application

Create an Amazon Kinesis Analytics application as follows:

1. Sign in to the AWS Management Console and open the Analytics console at https://
console.aws.amazon.com/kinesisanalytics.

2. Choose Create new application, and specify an application name.

3. On the application hub, connect to the source.

4. On the Source page, do the following:

• Select the stream you created in the preceding section.

49

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

• Choose the create IAM role option.

• Wait for console to show the inferred schema and samples records used to infer the schema for
the in-application stream created. Note that the inferred schema has only one column.

• Choose Save and continue.

5. On the application hub, choose Go to SQL editor. To start the application, choose yes in the
dialog box that appears.

6. In the SQL editor, write application code and verify results:

• Copy the following application code and paste it into the editor.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM"(
 "column_A" VARCHAR(16),
 "column_B" VARCHAR(16),
 "column_C" VARCHAR(16),
 "COL_1" VARCHAR(16),
 "COL_2" VARCHAR(16),
 "COL_3" VARCHAR(16));

CREATE OR REPLACE PUMP "SECOND_STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM t."Col_A", t."Col_B", t."Col_C",
 t.r."COL_1", t.r."COL_2", t.r."COL_3"
 FROM (SELECT STREAM
 "Col_A", "Col_B", "Col_C",
 VARIABLE_COLUMN_LOG_PARSE ("Col_E_Unstructured",
 'COL_1 TYPE VARCHAR(16), COL_2 TYPE
 VARCHAR(16), COL_3 TYPE VARCHAR(16)',
 ',') AS r
 FROM "SOURCE_SQL_STREAM_001") as t;

• Choose Save and run SQL. On the Real-time analytics tab you can see all of the in-
application streams that the application created and verify the data.

Example: String Manipulation (SUBSTRING Function)

In this example, you write the following records to your an Amazon Kinesis stream.

{ "referrer" : "http://www.stackoverflow.com" }
{ "referrer" : "http://www.amazon.com"}
{ "referrer" : "http://www.amazon.com"}
...

You then create an Amazon Kinesis Analytics application in the console, with the Amazon Kinesis
stream as the streaming source. The discovery process reads sample records on the streaming source
and infers an in-application schema with one column (log) as shown.

50

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

Then, you use the application code with the SUBSTRING function to parse URL string to retrieve
company name, and insert resulting data in another in-application stream, as shown following:

Step 1: Create an Amazon Kinesis Stream

Create an Amazon Kinesis stream and populate log records as follows:

1. Sign in to the AWS Management Console and open the Analytics console at https://
console.aws.amazon.com/kinesisanalytics.

2. Choose Kinesis Stream, and then create a stream with one shard.

3. Run the following Python code to populate sample log records. The Python code is simple, it
continuously writes same log record to the stream.

import json
from boto import kinesis
import random

kinesis = kinesis.connect_to_region("us-east-1")
def getReferrer():
 data = {}
 data['referrer'] = 'http://www.amazon.com'
 return data

while True:
 data = json.dumps(getReferrer())
 print data

51

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

 kinesis.put_record("teststreamforkinesisanalyticsapps", data,
 "partitionkey")

Step 2: Create the Amazon Kinesis Analytics Application

Create an Amazon Kinesis Analytics application as follows:

1. Sign in to the AWS Management Console and open the Analytics console at https://
console.aws.amazon.com/kinesisanalytics.

2. Choose Create new application, and specify an application name.

3. On the application hub, connect to the source.

4. On the Source page, do the following:

• Select the stream you created in the preceding section.

• Choose the create IAM role option.

• Wait for console to show the inferred schema and samples records used to infer the schema for
the in-application stream created. Note that the inferred schema has only one column.

• Choose Save and continue.

5. On the application hub, choose Go to SQL editor. To start the application, choose yes in the
dialog box that appears.

6. In the SQL editor, write application code and verify the results as follows:

• Copy the following application code and paste it into the editor.

-- CREATE OR REPLACE STREAM for cleaned up referrer
CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 "ingest_time" TIMESTAMP,
 "referrer" VARCHAR(32));

CREATE OR REPLACE PUMP "myPUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM
 "APPROXIMATE_ARRIVAL_TIME",
 SUBSTRING("referrer", 12, (POSITION('.com' IN "referrer") -
 POSITION('www.' IN "referrer") - 4))
 FROM "SOURCE_SQL_STREAM_001";

• Choose Save and run SQL. On the Real-time analytics tab you can see all of the in-
application streams that the application created and verify the data.

Date Time Manipulation

Amazon Kinesis Analytics supports converting columns to timestamps. For example, you might want
to use your own timestamp as part of a GROUP BY clause as another time-based window, in addition
to the ROWTIME column. Amazon Kinesis Analytics provides operations and SQL functions for working
with date and time fields.

• Date and time operators – You can perform arithmetic operations on dates, times, and interval data
types. For more information, see Date, Timestamp, and Interval Operators in the Amazon Kinesis
Analytics SQL Reference.

52

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics
http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-date-timestamp-interval.html

Amazon Kinesis Analytics Developer Guide
Example: Streaming Source With Multiple Record Types

• SQL Functions – These include the following:

• EXTRACT() – Extracts one field from a date, time, timestamp, or interval expression.

• CURRENT_TIME – Returns the time when the query executes (UTC).

• CURRENT_DATE – Returns the date when the query executes (UTC).

• CURRENT_TIMESTAMP – Returns the timestamp when the query executes (UTC).

• LOCALTIME – Returns the current time when the query executes as defined by the environment on
which Amazon Kinesis Analytics is running (UTC).

• LOCALTIMESTAMP – Returns the current timestamp as defined by the environment on which
Amazon Kinesis Analytics is running (UTC).

• SQL Extensions – These include the following:

• CURRENT_ROW_TIMESTAMP – Returns a new timestamp for each row in the stream.

• TSDIFF – Returns the difference of two timestamps in milliseconds.

• CHAR_TO_DATE – Converts a string to a date.

• CHAR_TO_TIME – Converts a string to time.

• CHAR_TO_TIMESTAMP – Converts a string to a timestamp.

• DATE_TO_CHAR – Converts a date to a string.

• TIME_TO_CHAR – Converts a time to a string.

• TIMESTAMP_TO_CHAR – Converts a timestamp to a string.

Most of the preceding SQL functions use a format to convert the columns. The format is flexible. For
example, you can specify the format yyyy-MM-dd hh:mm:ss to convert an input string 2009-09-16
03:15:24 into a timestamp. For more information, Char To Timestamp(Sys) in the Amazon Kinesis
Analytics SQL Reference.

Example: Streaming Source With Multiple Record
Types

Topics

• Step 1: Prepare (p. 56)

• Step 2: Create an Application (p. 57)

A common requirement in Extract, Transform and Load (ETL) applications is to process multiple record
types on a streaming source. You can create Amazon Kinesis Analytics application to process these
kinds of streaming sources. You do the following:

• First, you map the streaming source to an in-application input stream, similar to all other Amazon
Kinesis Analytics applications.

• Then, in your application code you write SQL statements to retrieve rows of specific types from
the in-application input stream, and insert them in separate in-application streams (you can create
additional in-application streams in your application code).

In this exercise, you have a streaming source that receives records of two types (Order and Trade
types). These are stock orders and corresponding trades. For each order, there can be zero or more
trades. Example records of each type are shown following:

Order record

53

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-char-to-timestamp.html

Amazon Kinesis Analytics Developer Guide
Example: Streaming Source With Multiple Record Types

{"RecordType": "Order", "Oprice": 9047, "Otype": "Sell", "Oid": 3811,
 "Oticker": "AAAA"}

Trade record

{"RecordType": "Trade", "Tid": 1, "Toid": 3812, "Tprice": 2089, "Tticker":
 "BBBB"}

When you create an application using the console, the console displays the following inferred schema
for the in-application input stream created. By default, console names this in-application stream as
SOURCE_SQL_STREAM_001.

When you save the configuration, Amazon Kinesis Analytics continuously reads data from the
streaming source and inserts rows in the in-application stream. You can now perform analytics on data
in the in-application stream.

In this example, the application code you first create two additional in-application streams,
Order_Stream, Trade_Stream. You then filter the rows from SOURCE_SQL_STREAM_001 stream
based on record type and insert them in the newly created streams using pumps. For information about
this coding pattern, see Application Code (p. 10).

• Filter order and trade rows into separate in-application streams

• Filter the order records in the SOURCE_SQL_STREAM_001 and save the orders in the
Order_Stream.

--Create Order_Stream.
CREATE OR REPLACE STREAM "Order_Stream"
 (
 order_id integer,
 order_type varchar(10),
 ticker varchar(4),
 order_price DOUBLE,
 record_type varchar(10)
);

54

Amazon Kinesis Analytics Developer Guide
Example: Streaming Source With Multiple Record Types

CREATE OR REPLACE PUMP "Order_Pump" AS
 INSERT INTO "Order_Stream"
 SELECT STREAM oid, otype,oticker, oprice, recordtype
 FROM "SOURCE_SQL_STREAM_001"
 WHERE recordtype = 'Order';

• Filter the trade records in the SOURCE_SQL_STREAM_001 and save the orders in the
Trade_Stream.

--Create Trade_Stream.
CREATE OR REPLACE STREAM "Trade_Stream"
 (trade_id integer,
 order_id integer,
 trade_price DOUBLE,
 ticker varchar(4),
 record_type varchar(10)
);

CREATE OR REPLACE PUMP "Trade_Pump" AS
 INSERT INTO "Trade_Stream"
 SELECT STREAM tid, toid, tprice, tticker, recordtype
 FROM "SOURCE_SQL_STREAM_001"
 WHERE recordtype = 'Trade';

• Now you can perform additional analytics on these streams. In this example, you count number
of trades by ticker in a one-minute tumbling window and save results to yet another stream,
DESTINATION_SQL_STREAM.

--do some analytics on the Trade_Stream and Order_Stream.
-- To see results in console you must write to OPUT_SQL_STREAM.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 ticker varchar(4),
 trade_count integer
);

CREATE OR REPLACE PUMP "Output_Pump" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM ticker, count(*) as trade_count
 FROM "Trade_Stream"
 GROUP BY ticker,
 FLOOR("Trade_Stream".ROWTIME TO MINUTE);

You see the result, as shown following:

55

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html

Amazon Kinesis Analytics Developer Guide
Example: Streaming Source With Multiple Record Types

Next Step

Step 1: Prepare (p. 56)

Step 1: Prepare

In this section, you create an Amazon Kinesis stream, and then populate order and trade records on
the stream. This is your streaming source for the application you create in the next step.

Step 1.1: Create a Streaming Source

You can create an Amazon Kinesis stream using the console or the AWS CLI. The example assumes
OrdersAndTradesStream as the stream name.

• Using the console – Sign in to the AWS Management Console and open the Amazon Kinesis
console at https://console.aws.amazon.com/kinesis. Choose Kinesis Stream, and then create a
stream with one shard.

• Using the AWS CLI – Use the following Amazon Kinesis create-stream CLI command to create
the stream:

$ aws kinesis create-stream \
--stream-name OrdersAndTradesStream \
--shard-count 1 \
--region us-east-1 \
--profile adminuser

Step 1.2: Populate the Streaming Source

Run the following Python script to populate sample records on the OrdersAndTradesStream. If you
created the stream with different name, update the Python code appropriately.

1. Install Python and pip.

For information about installing Python, see the Python website.

You can install dependencies using pip. For information about installing pip, see Installing on the
pip website.

2. Run the following Python code. The put-record command in the code writes the JSON records
to the stream.

import testdata
import json
from boto import kinesis
import random

kinesis = kinesis.connect_to_region("us-east-1")

def getOrderData(orderId, ticker):
 data = {}
 data['RecordType'] = "Order"
 data['Oid'] = orderId
 data['Oticker'] = ticker
 data['Oprice'] = random.randint(500, 10000)
 data['Otype'] = "Sell"
 return data

56

https://console.aws.amazon.com/kinesis
https://www.python.org/
https://pip.pypa.io/en/stable/installing/

Amazon Kinesis Analytics Developer Guide
Example: Streaming Source With Multiple Record Types

def getTradeData(orderId, tradeId, ticker, tradePrice):
 data = {}
 data['RecordType'] = "Trade"
 data['Tid'] = tradeId
 data['Toid'] = orderId
 data['Tticker'] = ticker
 data['Tprice'] = tradePrice
 return data

x = 1
while True:
 #rnd = random.random()
 rnd = random.randint(1,3)
 if rnd == 1:
 ticker = "AAAA"
 elif rnd == 2:
 ticker = "BBBB"
 else:
 ticker = "CCCC"
 data = json.dumps(getOrderData(x, ticker))
 kinesis.put_record("OrdersAndTradesStream", data, "partitionkey")
 print data
 tId = 1
 for y in range (0, random.randint(0,6)):
 tradeId = tId
 tradePrice = random.randint(0, 3000)
 data2 = json.dumps(getTradeData(x, tradeId, ticker, tradePrice));
 kinesis.put_record("OrdersAndTradesStream", data2, "partitionkey")
 print data2
 tId+=1

 x+=1

Next Step

Step 2: Create an Application (p. 57)

Step 2: Create an Application

In this section, you create an Amazon Kinesis Analytics application. You then update the application by
adding input configuration that maps the streaming source you created in the preceding section to an
in-application input stream.

1. Sign in to the AWS Management Console and open the Analytics console at https://
console.aws.amazon.com/kinesisanalytics.

2. Choose Create new application. We assume application name is
ProcessMultipleRecordTypes

3. On the application hub, connect to the source.

4. On the Source page,

a. Select the stream you created in the preceding section.

b. Choose the create IAM role option.

c. Wait for console to show the inferred schema and samples records used to infer the schema
for the in-application stream created.

d. Choose Save and continue.

57

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Analytics Developer Guide
Example: Streaming Source With Multiple Record Types

5. On the application hub, choose Go to SQL editor. To start the application, reply "yes" in the
dialog box that appears.

6. In the SQL editor, write application code and verify results:

a. Copy the following application code and paste it into the editor.

--Create Order_Stream.
CREATE OR REPLACE STREAM "Order_Stream"
 (
 "order_id" integer,
 "order_type" varchar(10),
 "ticker" varchar(4),
 "order_price" DOUBLE,
 "record_type" varchar(10)
);

CREATE OR REPLACE PUMP "Order_Pump" AS
 INSERT INTO "Order_Stream"
 SELECT STREAM "Oid", "Otype","Oticker", "Oprice", "RecordType"
 FROM "SOURCE_SQL_STREAM_001"
 WHERE "RecordType" = 'Order';
--**
--Create Trade_Stream.
CREATE OR REPLACE STREAM "Trade_Stream"
 ("trade_id" integer,
 "order_id" integer,
 "trade_price" DOUBLE,
 "ticker" varchar(4),
 "record_type" varchar(10)
);

CREATE OR REPLACE PUMP "Trade_Pump" AS
 INSERT INTO "Trade_Stream"
 SELECT STREAM "Tid", "Toid", "Tprice", "Tticker", "RecordType"
 FROM "SOURCE_SQL_STREAM_001"
 WHERE "RecordType" = 'Trade';
--***
--do some analytics on the Trade_Stream and Order_Stream.
CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 "ticker" varchar(4),
 "trade_count" integer
);

CREATE OR REPLACE PUMP "Output_Pump" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM "ticker", count(*) as trade_count
 FROM "Trade_Stream"
 GROUP BY "ticker",
 FLOOR("Trade_Stream".ROWTIME TO MINUTE);

b. Choose Save and run SQL. Choose the Real-time analytics tab to see all of the in-
application streams that the application created and verify data.

58

Amazon Kinesis Analytics Developer Guide
Example: Add Reference Data Source

Next Step

You can configure application output to persist results to an external destination, such as another
Amazon Kinesis stream or a Firehose delivery stream.

Example: Adding Reference Data to an Amazon
Kinesis Analytics Application

Topics

• Step 1: Prepare (p. 59)

• Step 2: Add Reference Data Source to the Application Configuration (p. 61)

• Step 3: Test: Query the In-Application Reference Table (p. 62)

In this exercise, you add reference data to an existing Amazon Kinesis Analytics application. For
information about reference data, see the following topics:

• Amazon Kinesis Analytics: How It Works (p. 3)

• Configuring Application Input (p. 5)

In this exercise you add reference data to the application you created in the getting started exercise.
The reference data provides company name for each ticker symbol. For example,

Ticker, Company
AMZN,Amazon
ASD, SomeCompanyA
MMB, SomeCompanyB
WAS, SomeCompanyC

First complete the Getting Started Exercise. Then you do the following to set up and add reference
data to your application.

1. Prepare

• Store preceding reference data as an object in your S3 bucket.

• Create an IAM role, that Amazon Kinesis Analytics can assume to read the S3 object on your
behalf.

2. Add the reference data source to your application. Amazon Kinesis Analytics reads the S3 object
and create an in-application reference table that you can query in your application code.

3. Test. In your application code you will write a join query to join the in-application stream with the in-
application reference table, to get company name for each ticker symbol.

Note
Amazon Kinesis Analytics console does not support managing reference data sources for
your applications. In this exercise, you use the AWS CLI to add reference data source to your
application. If you haven't already done so, set up the AWS CLI.

Step 1: Prepare

In this section, you store sample reference data as an object in your S3 bucket. You also create an IAM
role that Amazon Kinesis Analytics can assume to read the object on your behalf.

59

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/setup-awscli.html

Amazon Kinesis Analytics Developer Guide
Example: Add Reference Data Source

Prepare: Store Reference Data as S3 Object

Store sample reference data as S3 object.

1. Open a text editor, type the following data, and save the file as TickerReference.csv.

Ticker, Company
AMZN,Amazon
ASD, SomeCompanyA
MMB, SomeCompanyB
WAS, SomeCompanyC

2. Upload the TickerReference.csv file to your S3 bucket. For instructions, see Uploading
Objects into Amazon S3 in the Amazon Simple Storage Service Console User Guide.

Prepare: Create an IAM Role

Create an IAM role. Follow the procedure to create an IAM role that Amazon Kinesis Analytics can
assume and read the S3 object.

1. Create an IAM role called KinesisAnalytics-ReadS3Object. In the IAM console, you specify
the following when you create a role:

• Choose AWS Lambda on the Select Role Type. After creating the role, you will change the
trust policy to allow Amazon Kinesis Analytics to assume the role (not AWS Lambda).

• Do not attach any policy on the Attach Policy page.

For instructions, see Creating a Role for an AWS Service (AWS Management Console) in the IAM
User Guide.

2. Update the IAM role policies.

a. In the IAM console, select the role you created.

b. On the Trust Relationships tab, update the trust policy to allow Amazon Kinesis Analytics
permissions to assume the role. The trust policy is shown following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kinesisanalytics.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

c. On the Permissions tab, attach an AWS managed policy called
AmazonS3ReadOnlyAccess. This grants the role permissions to read an S3 object. The
policy is shown following for your information:

60

http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console

Amazon Kinesis Analytics Developer Guide
Example: Add Reference Data Source

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": "*"
 }
]
}

Step 2: Add Reference Data Source to the Application
Configuration

In this section you add reference data source to your application configuration. You will need the
following information:

• Your Amazon Kinesis Analytics application name and current application version ID

• S3 bucket name and object key name

• IAM role ARN

Now, you now use the AWS CLI to complete the step:

1. Run the describe-application to get the application description, as shown following:

$ aws kinesisanalytics describe-application \
--region us-east-1 \
--application-name application-name

2. Note the current application version ID.

Each time you make changes to your application, the current version is updated. So you need to
make sure you have the current application version ID.

3. Use the following JSON to add the reference data source:

{
 "TableName":"CompanyName",
 "S3ReferenceDataSource":{
 "BucketARN":"arn:aws:s3:::bucket-name",
 "FileKey":"TickerReference.csv",
 "ReferenceRoleARN":"arn:aws:iam::aws-account-id:role/IAM-role-name"
 },
 "ReferenceSchema":{
 "RecordFormat":{
 "RecordFormatType":"CSV",
 "MappingParameters":{
 "CSVMappingParameters":{
 "RecordRowDelimiter":"\n",
 "RecordColumnDelimiter":","

61

Amazon Kinesis Analytics Developer Guide
Example: Add Reference Data Source

 }
 }
 },
 "RecordEncoding":"UTF-8",
 "RecordColumns":[
 {
 "Name":"Ticker",
 "SqlType":"VARCHAR(64)"
 },
 {
 "Name":"Company",
 "SqlType":"VARCHAR(64)"
 }
]
 }
}

Run the add-application-reference-data-source command using the preceding
reference data configuration information. You need to provide your bucket name, object key name,
IAM role name, and AWS account ID.

$ aws kinesisanalytics add-application-reference-data-source \
--endpoint https://kinesis-stream-analytics-aws-region.amazon.com \
--region us-east-1 \
--application-name DemoStreamBasedGettingStarted \
--debug \
--reference-data-source
 '{"TableName":"CompanyName","S3ReferenceDataSource":
{"BucketARN":"arn:aws:s3:::bucket-name","FileKey":"TickerReference.csv",
"ReferenceRoleARN":"arn:aws:iam::aws-account-id:role/IAM-
role-name"},"ReferenceSchema":{ "RecordFormat":
{"RecordFormatType":"CSV", "MappingParameters":{"CSVMappingParameters":
{"RecordRowDelimiter":"\n","RecordColumnDelimiter":","} }},"RecordEncoding":"string","RecordColumns":
[{"Name":"Ticker","SqlType":"VARCHAR(64)"},
{ "Name":"Company","SqlType":"VARCHAR(64)"}]}}' \
--current-application-version-id 10

4. Verify that the reference data was added to the application by getting the application description
using the describe-application operation.

Step 3: Test: Query the In-Application Reference Table

You can now query the in-application reference table, CompanyName. You can use the reference
information to enrich your application by joining the ticker price data with the reference table, and then
the result shows the company name.

1. Replace your application code by the following. The query joins the in-application input stream with
the in-application reference table. The application code writes the results to another in-application
stream, DESTINATION_SQL_STREAM.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol
 VARCHAR(4), company varchar(20), sector VARCHAR(12), change DOUBLE, price
 DOUBLE);

62

Amazon Kinesis Analytics Developer Guide
Examples: Basic Analytics

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO
 "DESTINATION_SQL_STREAM"
 SELECT STREAM ticker_symbol, c.company, sector, change, price
 FROM "SOURCE_SQL_STREAM_001" LEFT JOIN CompanyName c
 ON "SOURCE_SQL_STREAM_001".ticker_symbol = c.Ticker;

2. Verify that the application output appears in the SQLResults tab. Make sure some of the rows
show company names (your sample reference data does not have all company names).

Examples: Basic Analytics
This section provides examples of Amazon Kinesis Analytics applications that perform basic analytics.
The examples provide step-by-step instructions to set up an Amazon Kinesis Analytics application.

Topics

• Example: Most Frequently Occurring Values (the TOP_K_ITEMS_TUMBLING Function) (p. 63)

• Example: Counting Distinct Values (the COUNT_DISTINCT_ITEMS_TUMBLING
function) (p. 64)

• Example: Simple Alerts (p. 65)

Example: Most Frequently Occurring Values (the
TOP_K_ITEMS_TUMBLING Function)
In this exercise, you set up an Amazon Kinesis Analytics application to find the top ten most frequently
traded stocks in a one-minute window.

For this exercise, you use the demo stream, which provides continuous flow of simulated stock
trade records and finds the top ten most frequently traded stocks in a one-minute window. For more
information about the demo stream, see Step 4: Console Feature Summary (p. 27).

Use the following application code:

CREATE OR REPLACE STREAM DESTINATION_SQL_STREAM (
 ITEM VARCHAR(1024),
 ITEM_COUNT DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM *
 FROM TABLE(TOP_K_ITEMS_TUMBLING(
 CURSOR(SELECT STREAM * FROM
 "SOURCE_SQL_STREAM_001"),
 'column1', -- name of column in single quote.
 10, -- number of top items.
 60 -- tumbling window size in seconds
)
);

The code uses the TOP_K_ITEMS_TUMBLING function to find the most frequently traded stock.
Note that, for efficiency, the function approximates the most frequently occurring values. For more
information about the function, see TOP_K_ITEMS_TUMBLING Function in the Amazon Kinesis
Analytics SQL Reference.

63

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/top-k.html

Amazon Kinesis Analytics Developer Guide
Example: Count Distinct Values

In the console, this application code is available as a template (Approximate Top-K items), which you
use to quickly create the application. You need to update this template code by replacing 'column1'
with 'TICKER_SYMBOL' to estimate the most frequently occurring values, in a one-minute tumbling
window.

You can use the following procedure to test this template using the demo stream.

To create an application

1. Complete the Getting Started exercise. For instructions, see Step 3: Getting Started Exercise
(Create an Amazon Kinesis Analytics Application) (p. 19).

2. Replace the application code in the SQL editor with the Approximate Top-K items template as
follows in the SQL editor:

a. Delete the existing sample code.

b. Choose Add SQL from templates and then select the TopKItems template.

c. Update the template code by replacing the column name from COLUMN1 to
'TICKER_SYMBOL' (with single quotes around). Also, change the number of items from 10 to
3, so that you get the top three most frequently traded stocks in each one-minute window.

3. Save and run SQL. Review results in the Real-time analytics tab in the SQL editor.

Because the window size is one minute, you need to wait to see the results. The
DESTINATION_SQL_STREAM displays three columns (ROWTIME, ITEM, and ITEM_COUNT). The
query emits results every one minute.

Example: Counting Distinct Values (the
COUNT_DISTINCT_ITEMS_TUMBLING function)

In this exercise, you set up a Amazon Kinesis Analytics application to count distinct values in a one-
minute tumbling window.

For the exercise, you use the demo stream, which provides continuous flow of simulated stock trade
records and finds distinct stocks traded in a one-minute window. For information about the demo
stream, see Step 4: Console Feature Summary (p. 27).

Use the following application code:

CREATE OR REPLACE STREAM DESTINATION_SQL_STREAM (
 NUMBER_OF_DISTINCT_ITEMS BIGINT);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM *
 FROM TABLE(COUNT_DISTINCT_ITEMS_TUMBLING(
 CURSOR(SELECT STREAM * FROM "SOURCE_SQL_STREAM_001"),
 'column1', -- name of column in single quotes
 60 -- tumbling window size in seconds
)
);

The code uses the COUNT_DISTINCT_ITEMS_TUMBLING function to approximate the number of
distinct values. For more information about the function, see COUNT_DISTINCT_ITEMS_TUMBLING
Function in the Amazon Kinesis Analytics SQL Reference.

64

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/count-distinct-items.html
http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/count-distinct-items.html

Amazon Kinesis Analytics Developer Guide
Example: Simple Alerts

In the console, this application code is available as a template (Approximate distinct count),
which you use to quickly create the application. You need to update this template code by replacing
'column1' with 'TICKER_SYMBOL' to estimate the number of distinct stocks traded, in a one-minute
tumbling window.

You can use the following procedure to test this template using the demo stream.

To create an application

1. Complete the getting started exercise. For instructions, see Step 3: Getting Started Exercise
(Create an Amazon Kinesis Analytics Application) (p. 19).

2. Now you replace the application code in the SQL editor by the Approximate distinct count
template as follows. In SQL editor, do the following:

a. Delete the existing sample code.

b. Choose Add SQL from templates and then select the Approximate distinct count
template.

c. Update the template code by replacing the column name from column1 to
'TICKER_SYMBOL' (with single quotes around).

3. Save and run SQL. Review results in the Real-time analytics tab in the SQL editor.

Because the window size is one minute, you need to wait to see the results. The
DESTINATION_SQL_STREAM shows two columns (ROWTIME and NUMBER_OF_DISTINCT_ITEMS).
The query emits results every one minute.

Example: Simple Alerts
In this application, the query runs continuously on the in-application stream created over the demo
stream. For more information, see Continuous Queries (p. 35). If any rows show stock price change
is greater than 1%, those rows are inserted in another in-application stream. In the exercise, you can
configure the application output persist the results to an external destination. You can then further
investigate results. For example, you can use an AWS Lambda function to process records and send
you alerts.

To create a simple alerts application

1. Create the Amazon Kinesis Analytics application as described in the Getting Started Exercise.

2. In the SQL editor, replace the application code with the following:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM"
 (ticker_symbol VARCHAR(4),
 sector VARCHAR(12),
 change DOUBLE,
 price DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM ticker_symbol, sector, change, price
 FROM "SOURCE_SQL_STREAM_001"
 WHERE (ABS(Change / (Price - Change)) * 100) > 1;

The SELECT statement in the application code filters rows in the SOURCE_SQL_STREAM_001
for stock price changes greater than 1%, and inserts those rows to another in-application stream
DESTINATION_SQL_STREAM using a pump. For more information about the coding pattern that
explains using pumps to insert rows in in-application streams, see Application Code (p. 10).

65

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Examples: Advanced Analytics

3. Click Save and run SQL.

4. Add a destination. You can either choose the Destination in the SQL Editor, or choose Add a
destination on the application hub.

a. In SQL editor, choose the Destination tab and then choose Add a destination.

On the Add a destination page, choose Configure a new stream.

b. Choose Go to Kinesis Streams.

c. In the Amazon Kinesis Streams console, create a new Amazon Kinesis stream (for example,
gs-destination) with 1 shard. Wait until the stream status is ACTIVE.

d. Return to the Amazon Kinesis Analytics console. On the Destination page, choose the
stream that you created.

If the stream does not show, refresh the page.

Now you have an external destination, where Amazon Kinesis Analytics persists any records
your application writes to the in-application stream DESTINATION_SQL_STREAM.

e. Choose Save and continue.

Now you have an external destination, a Amazon Kinesis stream, where Amazon Kinesis Analytics
persists your application output in the DESTINATION_SQL_STREAM in-application stream.

5. Configure AWS Lambda to monitor the Amazon Kinesis stream you created and invoke a Lambda
function.

For instructions, see Example: Integrating Amazon Kinesis Analytics with AWS Lambda (p. 73).

Examples: Advanced Analytics
This section provides additional examples of Amazon Kinesis Analytics applications. This includes
using the RANDOM_CUT_FOREST function to assign anomaly scores to your stream data. You can then
evaluate the anomaly scores to determine if the data is anomalous and perhaps take additional action.
In addition, how section provides examples of using different types of times in analytics.

Topics

66

Amazon Kinesis Analytics Developer Guide
Example: Detect Anomalies

• Example: Detecting Data Anomalies on a Stream (the RANDOM_CUT_FOREST
Function) (p. 67)

• Example: Using Different Types of Times in Streaming Analytics (p. 72)

Example: Detecting Data Anomalies on a Stream
(the RANDOM_CUT_FOREST Function)
Amazon Kinesis Analytics provides a function (RANDOM_CUT_FOREST) that can assign an
anomaly score to each record based on values in the numeric columns. For more information, see
RANDOM_CUT_FOREST Function in the Amazon Kinesis Analytics SQL Reference. In this exercise,
you write application code to assign anomaly score to records on your application's streaming source.
You do the following to set up the application:

1. Set up a streaming source – You set up a Amazon Kinesis stream and write sample heartRate
data as shown following:

{"heartRate": 60, "rateType":"NORMAL"}
...
{"heartRate": 180, "rateType":"HIGH"}

The walkthrough provides a Python script for you to populate the stream. The heartRate values
are randomly generated, with 99% of the records having heartRate values between 60 and 100,
and only 1% of heartRate values between 150 and 200. Thus, records with heartRate values
between 150 and 200 are anomalies.

2. Configure input – Using the console, create an Amazon Kinesis Analytics application, and
configure application input by mapping the streaming source to an in-application stream
(SOURCE_SQL_STREAM_001). When the application starts, Amazon Kinesis Analytics continuously
reads the streaming source and inserts records into the in-application stream.

3. Specify application code – Use the following application code:

--Creates a temporary stream.
CREATE OR REPLACE STREAM "TEMP_STREAM" (
 "heartRate" INTEGER,
 "rateType" varchar(20),
 "ANOMALY_SCORE" DOUBLE);

--Creates another stream for application output.
CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 "heartRate" INTEGER,
 "rateType" varchar(20),
 "ANOMALY_SCORE" DOUBLE);

-- Compute an anomaly score for each record in the input stream
-- using Random Cut Forest
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "TEMP_STREAM"
 SELECT STREAM "heartRate", "rateType", ANOMALY_SCORE
 FROM TABLE(RANDOM_CUT_FOREST(
 CURSOR(SELECT STREAM * FROM "SOURCE_SQL_STREAM")));

-- Sort records by descending anomaly score, insert into output stream
CREATE OR REPLACE PUMP "OUTPUT_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM * FROM "TEMP_STREAM"

67

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Analytics Developer Guide
Example: Detect Anomalies

 ORDER BY FLOOR("TEMP_STREAM".ROWTIME TO SECOND), ANOMALY_SCORE DESC;

The code reads rows in the SOURCE_SQL_STREAM_001, assigns an anomaly score, and writes
the resulting rows to another in-application stream (TEMP_STREAM). The application code then
sorts the records in the TEMP_STREAM and saves the results to another in-application stream
(DESTINATION_SQL_STREAM). Note that you use pumps to insert rows in in-application streams.
For more information, see In-Application Streams and Pumps (p. 31).

4. Configure output – You configure the application output to persist data in the
DESTINATION_SQL_STREAM to an external destination, which is another Amazon Kinesis stream.
Reviewing the anomaly scores assigned to each record and determining what score indicates
an anomaly (and you need to be alerted) is external to the application. You can use a Lambda
function to process these anomaly scores and configure alerts.

The exercise uses the US East (N. Virginia) (us-east-1) AWS Region to create these streams and
your application. If you use any other region, you need to update the code accordingly.

Next Step

Step 1: Prepare (p. 68)

Step 1: Prepare

Before you create an Amazon Kinesis Analytics application for this exercise, you create two Amazon
Kinesis streams. You configure one of the streams as the streaming source for your application, and
another stream as destination where Amazon Kinesis Analytics persists your application output.

Step 1.1: Create Two Amazon Kinesis Streams

In this section, you create two Amazon Kinesis streams (ExampleInputStream and
ExampleOutputStream).

1. You can create these streams using the console or the AWS CLI.

• Sign in to the AWS Management Console and open the Analytics console at https://
console.aws.amazon.com/kinesisanalytics.

• Choose Kinesis Stream, and then create a stream with one shard.

• Use the following Amazon Kinesis create-stream CLI command to create the first stream
(ExampleInputStream).

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \
--region us-east-1 \
--profile adminuser

2. Run the same command, changing the stream name to ExampleOutputStream, to create the
second stream that the application will use to write output.

Step 1.2: Write Sample Records to the Input Stream

In this step, you run Python code to continuously generate sample records and write to the
ExampleInputStream stream.

{"heartRate": 60, "rateType":"NORMAL"}

68

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Analytics Developer Guide
Example: Detect Anomalies

...
{"heartRate": 180, "rateType":"HIGH"}

The code writes these records to the ExampleInputStream stream.

1. Install Python and pip.

For information about installing Python, see the Python website.

You can install dependencies using pip. For information about installing pip, see Installation on the
pip website.

2. Run the following Python code. The put-record command in the code writes the JSON records
to the stream.

import json
from boto import kinesis
import random

kinesis = kinesis.connect_to_region("us-east-1")
generate normal heart rate with probability .99
def getNormalHeartRate():
 data = {}
 data['heartRate'] = random.randint(60, 100)
 data['rateType'] = "NORMAL"
 return data
generate high heart rate with probability .01 (very few)
def getHighHeartRate():
 data = {}
 data['heartRate'] = random.randint(150, 200)
 data['rateType'] = "HIGH"
 return data

while True:
 rnd = random.random()
 if (rnd < 0.01):
 data = json.dumps(getHighHeartRate())
 print data
 kinesis.put_record("ExampleInputStream", data, "partitionkey")
 else:
 data = json.dumps(getNormalHeartRate())
 print data
 kinesis.put_record("ExampleInputStream", data, "partitionkey")

Next Step

Step 2: Create an Application (p. 69)

Step 2: Create an Application

In this section, you create an Amazon Kinesis Analytics application as follows:

• Configure the application input to use the Amazon Kinesis stream you created in the preceding
section as the streaming source.

• Use the Anomaly Detection template in the console.

69

https://www.python.org/
https://pip.pypa.io/en/stable/installing/

Amazon Kinesis Analytics Developer Guide
Example: Detect Anomalies

To create an application

1. Follow steps 1, 2, and 3 in Getting Started exercise (see Step 3.1: Create an Application (p. 20)) to
create an application. Note the following:

• In the source configuration, do the following:

• Specify the streaming source you created in the preceding section.

• After the console infers the schema, edit the schema and set the heartRate column type to
INTEGER.

Most of the heart rate values are normal and the discovery process will most likely assign
TINYINT type to this column. But very small percentage of values that show high heart rate.
If these high values don't fit in the TINYINT type, Amazon Kinesis Analytics sends these
rows to error stream. Update the data type to INTEGER so that it can accommodate all of the
generated heart rate data.

• Use the Anomaly Detection template in the console. You then update the template code to
provide appropriate column name.

2. Update the application code by providing column names. The resulting application code is shown
following (you can paste this code into the SQL editor):

--Creates a temporary stream.
CREATE OR REPLACE STREAM "TEMP_STREAM" (
 "heartRate" INTEGER,
 "rateType" varchar(20),
 "ANOMALY_SCORE" DOUBLE);

--Creates another stream for application output.
CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 "heartRate" INTEGER,
 "rateType" varchar(20),
 "ANOMALY_SCORE" DOUBLE);

-- Compute an anomaly score for each record in the input stream
-- using Random Cut Forest
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "TEMP_STREAM"
 SELECT STREAM "heartRate", "rateType", ANOMALY_SCORE
 FROM TABLE(RANDOM_CUT_FOREST(
 CURSOR(SELECT STREAM * FROM "SOURCE_SQL_STREAM")));

-- Sort records by descending anomaly score, insert into output stream
CREATE OR REPLACE PUMP "OUTPUT_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM * FROM "TEMP_STREAM"
 ORDER BY FLOOR("TEMP_STREAM".ROWTIME TO SECOND), ANOMALY_SCORE DESC;

3. Run the SQL code and review results:

70

Amazon Kinesis Analytics Developer Guide
Example: Detect Anomalies

Next Step

Step 3: Configure Application Output (p. 71)

Step 3: Configure Application Output

At this time, you have application code reading heart rate data from a streaming source and assigning
an anomaly score to each. You can now send the application result from the in-application stream to an
external destination, another Amazon Kinesis stream (OutputStreamTestingAnomalyScores). You
can then analyze the anomaly scores and determine which heart rate is anomalous. You can extend
this application further to generate alerts. Follow these steps to configure application output:

1. In the SQL editor, choose either Destination or Add a destination in the application dashboard.

2. On the Add a destination page, choose Select from your streams, and then choose the
OutputStreamTestingAnomalyScores stream you created in the preceding section.

Now you have an external destination, where Amazon Kinesis Analytics persists any records your
application writes to the in-application stream DESTINATION_SQL_STREAM.

3. You can optionally configure AWS Lambda to monitor the
OutputStreamTestingAnomalyScores stream and send you alerts. For instructions, see
Example: Integrating Amazon Kinesis Analytics with AWS Lambda (p. 73). If not, you can
review the records that Amazon Kinesis Analytics writes to the external destination, the Amazon
Kinesis stream OutputStreamTestingAnomalyScores, as described in the next step.

Next Step

Step 4: Verify Output (p. 71)

Step 4: Verify Output

In this step, you use the following AWS CLI commands to read records in the destination stream
written by the application:

71

Amazon Kinesis Analytics Developer Guide
Example: Using Different Types of Times in Analytics

1. Run the get-shard-iterator command to get a pointer to data on the output stream.

aws kinesis get-shard-iterator \
--shard-id shardId-000000000000 \
--shard-iterator-type TRIM_HORIZON \
--stream-name OutputStreamTestingAnomalyScores \
--region us-east-1 \
--profile adminuser

You get a response with a shard iterator value, as shown in the following example response:

 {
 "ShardIterator":
 "shard-iterator-value" }

Copy the shard iterator value.

2. Run the CLI get-records command.

aws kinesis get-records \
--shard-iterator shared-iterator-value \
--region us-east-1 \
--profile adminuser

The command returns a page of records and another shard iterator that you can use in the
subsequent get-records command to fetch the next set of records.

Example: Using Different Types of Times in
Streaming Analytics
For information about different types of times and an example query, see Timestamps and the
ROWTIME Column (p. 32). You can try the example query in that section against the demo stream you
created in the Getting Started Exercise.

Examples: Post Processing In-Application Stream
In your Amazon Kinesis Analytics application, you can create in-application streams to store
intermediate results of analytics. Post processing refers to persisting the results stored in-application
streams to external destinations for further analysis.

In your application configuration, you can configure output to persist data in your in-application streams
to external destinations, such as an Amazon Kinesis stream or an Amazon Kinesis Firehose delivery
stream, for further analysis.

For example, if application output is persisted to an Amazon Kinesis stream, you can configure AWS
Lambda to poll the stream and invoke a Lambda function to process records on the stream.

Topics

• Example: Integrating Amazon Kinesis Analytics with AWS Lambda (p. 73)

72

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Example: AWS Lambda Integration

Example: Integrating Amazon Kinesis Analytics with
AWS Lambda
Integrating Amazon Kinesis Analytics applications with AWS Lambda enable additional scenarios. If
you persist your application output an Amazon Kinesis stream, you can have AWS Lambda poll the
stream and invoke a Lambda function. Your Lambda function can then process records that arrive on
the stream, for example write those records to a destination of your choice.

The example Amazon Kinesis Analytics application in the following sections persist output to an
Amazon Kinesis stream:

• Example: Simple Alerts (p. 65)

• Example: Detecting Data Anomalies on a Stream (the RANDOM_CUT_FOREST
Function) (p. 67)

You can further enhance these examples using AWS Lambda to publish alerts. For illustration,
this section shows how to create a Lambda function and configure AWS Lambda so you get email
notifications when records arrive at the Amazon Kinesis Analytics stream.

You configure AWS Lambda as follows:

• Configure Lambda to poll the Amazon Kinesis stream and invoke your Lambda function when new
records are detected. The Lambda function receives these new records as the event parameter.

• Write a Lambda function to process the events. In this example, the Lambda function publishes a
message to an Amazon Simple Notification Service (Amazon SNS) topic.

For testing, you subscribe to the topic using email protocol. Amazon SNS then notifies you whenever
the Lambda function publishes a message (an alert) to the Amazon SNS topic.

• Add event source mapping in AWS Lambda to associate the Lambda function with your Amazon
Kinesis stream.

Note
The instructions in this exercise use the US East (N. Virginia) Region, (us-east-1).

About AWS Lambda

If you are new to AWS Lambda, we recommend that you read the overview topic What IS AWS
Lambda? in the AWS Lambda Developer Guide. The Using AWS Lambda with Amazon Kinesis
chapter also provides an AWS Lambda and Amazon Kinesis Analytics integration example that you
might find useful. However, that example uses the AWS CLI. In this exercise you use the AWS Lambda
console to quickly create a Lambda function and map it to the destination stream of your application.

Topics

• Step 1: Create an Amazon Kinesis Analytics Application (p. 74)

• Step 2: Create an Amazon SNS Topic (p. 74)

• Step 3: Create a Lambda Function (p. 74)

• Step 4: Verify Results (p. 75)

73

http://docs.aws.amazon.com/lambda/latest/dg/
http://docs.aws.amazon.com/lambda/latest/dg/
http://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html

Amazon Kinesis Analytics Developer Guide
Example: AWS Lambda Integration

Step 1: Create an Amazon Kinesis Analytics Application

In this section you set up an Amazon Kinesis Analytics application as follows:

1. First set up the example application that assigns anomaly score to heart rate data on a stream. For
instructions, see Example: Detecting Data Anomalies on a Stream (the RANDOM_CUT_FOREST
Function) (p. 67).

2. You now update part of the application code that writes rows to the
DESTINATION_SQL_STREAM stream. Now you want application to write only rows with higher
anomaly score to the DESTINATION_SQL_STREAM.

CREATE OR REPLACE PUMP "OUTPUT_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM * FROM "TEMP_STREAM"
 WHERE "ANOMALY_SCORE" > 3.0;

Here we choose, 3.0 anomaly score, you can tweak this value as needed. The idea is to have the
application write high heart rate records to the output.

Step 2: Create an Amazon SNS Topic

Create an Amazon SNS topic and subscribe to it using the email as the protocol. Your Lambda function
will post messages to the topic and you will get email notifications. For instructions, see Getting Started
with Amazon Simple Notification Service in the Amazon Simple Notification Service Developer Guide.

Step 3: Create a Lambda Function

In this step, you do two things—create a Lambda function and then map your application destination
stream as the event source for your Lambda function.

If you are new to AWS Lambda, we recommend that you first review AWS Lambda: How It Works in
the AWS Lambda Developer Guide.

In the AWS Lambda console at https://console.aws.amazon.com/lambda/, choose Create Function
and then follow these steps:

1. On the Step 1: Select blueprint page, select the kinesis-process-record-python blueprint. This
blueprint closely resembles the scenario in this exercise.

2. On the Step2: Configure event sources page, specify the following values:

• Event source type – Kinesis

• Kinesis stream – Select the Amazon Kinesis stream from the that is the configured destination
for your Amazon Kinesis Analytics application.

• Batch size – 1

3. On the Step 3: Configure function page, specify following values:

Name – ProcessAnomalies

Runtime – Python 2.7.

Replace the sample code by the following:

import base64

74

http://docs.aws.amazon.com/sns/latest/dg/GettingStarted.html
http://docs.aws.amazon.com/sns/latest/dg/GettingStarted.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
https://console.aws.amazon.com/lambda/

Amazon Kinesis Analytics Developer Guide
Example: AWS Lambda Integration

import json
import boto3

snsClient = boto3.client('sns')
print('Loading function')

def lambda_handler(event, context):
 for record in event['Records']:
 # Kinesis data is base64 encoded so decode here
 # payload = json.loads(base64.b64decode(record['kinesis']
['data']))
 payload = base64.b64decode(record['kinesis']['data'])
 print payload
 response = snsClient.publish(
 TopicArn='SNS-topic-ARN',
 Message='Anomaly detected ... ' + payload,
 Subject='Anomaly detected',
 MessageStructure='string',
 MessageAttributes={
 'String': {
 'DataType': 'String',
 'StringValue': 'New records have been processed.'
 }
 }
)
 return 'Successfully processed {}
 records.'.format(len(event['Records']))

Note
You need to update the code by providing the TopicArn.

Role – Choose Kinesis execution role. On the detail page that appears, choose View Policy
Document, and then choose edit. Add permission for the sns:Publish action. This allows the
Lambda function to publish the anomaly event to the specific Amazon SNS topic.

Timeout –60 seconds

Leave the default values for the other fields.

4. Choose Create function to create the Lambda function.

5. On the Event sources tab for the Lambda function, verify that the specific event source is
enabled.

You now have a Lambda function created and it is mapped to the destination stream of your
application. AWS Lambda now begins polling the destination stream, and invokes your Lambda
function when records appear on the stream.

Step 4: Verify Results

If all is well, you have the following occurring in your application flow:

• Sample script is writing data to your application's streaming source.

• Your application is processing records on the streaming source (assigning anomaly score to each
record based on the hear rate), and writing records with anomaly scores to in-application output
stream.

• Amazon Kinesis Analytics is writing records from the in-application output stream to the output
destination (an Amazon Kinesis stream) configured for your application.

75

Amazon Kinesis Analytics Developer Guide
Examples: Other Amazon Kinesis Analytics Applications

• AWS Lambda is polling your destination stream and invoking your Lambda function. Your Lambda
function will process each record, and publish a message to your Amazon SNS topic.

• Amazon SNS is sending email notifications to you.

If you don't get Amazon SNS email notifications, you can check the logs in the CloudWatch log for
your application. The logs provide information that can help you debug the problem. For example, your
Lambda function might be posting messages to the Amazon SNS topic, but you have not subscribed to
the topic (or you subscribed to the topic, but did not confirm the subscription). The log provides useful
information that will help you fix the problem.

Examples: Other Amazon Kinesis Analytics
Applications

This section provides examples that help you explore Amazon Kinesis Analytics concepts. This
includes, examples in which you introduce runtime errors that cause your application send rows to
in-application stream, explore console support for editing schemas that the console infers for in-
application input stream, by sampling data on the streaming source.

Topics

• Example: Explore the In-Application Error Stream (p. 76)

Example: Explore the In-Application Error Stream
Amazon Kinesis Analytics provides an in-application error stream for each application you create. Any
rows that your application cannot process are sent to this error stream. You might consider persisting
the error stream data to an external destination so that you can investigate.

In this exercise, you introduce errors in input configuration by editing the schema inferred by the
discovery process, and verify rows sent to the error stream.

You perform this exercise in the console.

Introduce Parse Error
In this exercise, you introduce a parse error.

1. Create an application. For instructions, see Step 3.1: Create an Application (p. 20).

2. On the newly created application hub, choose Connect to a source.

3. On the Source page, select the demo stream (kinesis-anlaytics-demo-stream).

If you followed the Getting Started exercise, you have a demo stream in your account.

4. Amazon Kinesis Analytics takes sample from the demo stream to infer a schema for the in-
application input stream it creates. The console show the inferred schema and sample data in the
Formatted stream sample tab.

5. Now you edit the schema and modify column type to introduce the parse error. Choose Edit
schema.

6. Change the TICKER_SYMBOL column type from VARCHAR(4) to INTEGER.

Now that column type of the in-application schema that is created is invalid, Amazon Kinesis
Analytics will not be able to bring in data in the in-application stream, instead Analytics will send
the rows to error stream.

76

Amazon Kinesis Analytics Developer Guide
Example: Explore the In-Application Error Stream

7. Choose Save schema.

8. Choose Refresh schema samples.

Notice that there are no rows in the Formatted stream sample. However, the Error stream tab
shows data with an error message. The Error stream tab shows data sent to the in-application
error stream.

Because you changed the column data type, Amazon Kinesis Analytics was not able to bring the
data in the in-application input stream, and instead it sent the data to the error stream.

Divide by Zero Error

In this exercise you update application code to introduce a runtime error (division by zero), and notice
that Amazon Kinesis Analytics sends the resulting rows to the in-application error stream, not to the in-
application error stream where the results are supposed to be written.

1. Follow the Getting Started exercise to create an application. For instructions, see Step 3: Getting
Started Exercise (Create an Amazon Kinesis Analytics Application) (p. 19).

Verify the results on the Real-time analytics tab as follows:

Sour

2. Update the SELECT statement in the application code to introduce divide by zero. For example:

SELECT STREAM ticker_symbol, sector, change, (price / 0) as ProblemColumn
FROM "SOURCE_SQL_STREAM_001"
WHERE sector SIMILAR TO '%TECH%';

3. Run the application. Because of the division by zero runtime error occurs, instead of writing results
to the DESTINATION_SQL_STREAM Amazon Kinesis Analytics sends rows to the in-application
error stream. On the Real-time analytics tab, choose the error-stream and then you can see the
rows in the in-application error stream.

77

Amazon Kinesis Analytics Developer Guide

Monitoring Amazon Kinesis
Analytics

Monitoring is an important part of maintaining the reliability, availability, and performance of Amazon
Kinesis Analytics and your Amazon Kinesis Analytics application. You should collect monitoring data
from all of the parts of your AWS solution so that you can more easily debug a multi-point failure if
one occurs. Before you start monitoring Amazon Kinesis Analytics, however, you should create a
monitoring plan that includes answers to the following questions:

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

The next step is to establish a baseline for normal Amazon Kinesis Analytics performance in your
environment, by measuring performance at various times and under different load conditions. As you
monitor Amazon Kinesis Analytics, store historical monitoring data so that you can compare it with
current performance data, identify normal performance patterns and performance anomalies, and
devise methods to address issues.

With Amazon Kinesis Analytics you monitor the application. The application processes data streams
(input or output), both of which include identifiers which you can use to narrow your search on
CloudWatch logs. For information about how Amazon Kinesis Analytics processes data streams, see
Amazon Kinesis Analytics: How It Works (p. 3).

The most important metric is the millisBehindLatest, which indicates how far behind an
application is reading from the streaming source. In a typical case, the millis behind should
be at or near zero. It is common for brief spikes to appear, which appears as an increase in
millisBehindLatest.

We recommend that you set up a CloudWatch alarm that triggers when the application is behind by
more than an hour reading the streaming source. For some use cases that require very close to real-
time processing, such as emitting processed data to a live application, you might choose to set the
alarm at a lower value, such as five minutes.

78

Amazon Kinesis Analytics Developer Guide
Monitoring Tools

For a list of metrics Amazon Kinesis Analytics supports, see Amazon Kinesis Analytics Metrics and
Dimensions (p. 80).

Topics

• Monitoring Tools (p. 79)

• Monitoring with Amazon CloudWatch (p. 80)

Monitoring Tools
AWS provides various tools that you can use to monitor Amazon Kinesis Analytics. You can configure
some of these tools to do the monitoring for you, while some of the tools require manual intervention.
We recommend that you automate monitoring tasks as much as possible.

Automated Monitoring Tools
You can use the following automated monitoring tools to watch Amazon Kinesis Analytics and report
when something is wrong:

• Amazon CloudWatch Alarms – Watch a single metric over a time period that you specify, and
perform one or more actions based on the value of the metric relative to a given threshold over
a number of time periods. The action is a notification sent to an Amazon Simple Notification
Service (Amazon SNS) topic or Auto Scaling policy. CloudWatch alarms do not invoke
actions simply because they are in a particular state; the state must have changed and been
maintained for a specified number of periods. For more information, see Monitoring with Amazon
CloudWatch (p. 80).

• Amazon CloudWatch Logs – Monitor, store, and access your log files from AWS CloudTrail or
other sources. For more information, see Monitoring Log Files in the Amazon CloudWatch User
Guide.

• Amazon CloudWatch Events – Match events and route them to one or more target functions
or streams to make changes, capture state information, and take corrective action. For more
information, see Using Events in the Amazon CloudWatch User Guide.

• AWS CloudTrail Log Monitoring – Share log files between accounts, monitor CloudTrail log files
in real time by sending them to CloudWatch Logs, write log processing applications in Java, and
validate that your log files have not changed after delivery by CloudTrail. For more information, see
Working with CloudTrail Log Files in the AWS CloudTrail User Guide.

Manual Monitoring Tools
Another important part of monitoring Amazon Kinesis Analytics involves manually monitoring those
items that the CloudWatch alarms don't cover. The Amazon Kinesis Analytics, CloudWatch, Trusted
Advisor, and other AWS console dashboards provide an at-a-glance view of the state of your AWS
environment.

• CloudWatch home page shows:

• Current alarms and status

• Graphs of alarms and resources

• Service health status

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services you care about

• Graph metric data to troubleshoot issues and discover trends

• Search and browse all your AWS resource metrics

79

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchEvents.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html

Amazon Kinesis Analytics Developer Guide
Monitoring with Amazon CloudWatch

• Create and edit alarms to be notified of problems

• AWS Trusted Advisor can help you monitor your AWS resources to improve performance, reliability,
security, and cost effectiveness. Four Trusted Advisor checks are available to all users; more than
50 checks are available to users with a Business or Enterprise support plan. For more information,
see AWS Trusted Advisor.

Monitoring with Amazon CloudWatch
You can monitor Amazon Kinesis Analytics applications using CloudWatch, which collects and
processes raw data from Amazon Kinesis Analytics into readable, near real-time metrics. These
statistics are retained for a period of two weeks, so that you can access historical information and
gain a better perspective on how your web application or service is performing. By default, Amazon
Kinesis Analytics metric data is automatically sent to CloudWatch. For more information, see What Are
Amazon CloudWatch, Amazon CloudWatch Events, and Amazon CloudWatch Logs? in the Amazon
CloudWatch User Guide.

Topics

• Amazon Kinesis Analytics Metrics and Dimensions (p. 80)

• Creating CloudWatch Alarms to Monitor Amazon Kinesis Analytics (p. 81)

Amazon Kinesis Analytics Metrics and Dimensions
When your Amazon Kinesis Analytics application processes data streams, Amazon Kinesis Analytics
sends the following metrics and dimensions to CloudWatch. You can use the following procedures to
view the metrics for Amazon Kinesis Analytics.

To view metrics using the CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension combinations
within each namespace.

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Metrics.

3. In the CloudWatch Metrics by Category pane, under the metrics category for Amazon Kinesis
Analytics, select a metrics category, and then in the upper pane, scroll down to view the full list of
metrics.

To view metrics using the AWS CLI

• At a command prompt, use the following command:

aws cloudwatch list-metrics --namespace "AWS/KinesisAnalytics" --
region region

Amazon Kinesis Analytics metrics are collected at the following levels:

• Application-level

• Per input stream

• Per output stream

80

http://aws.amazon.com/premiumsupport/trustedadvisor/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
https://console.aws.amazon.com/cloudwatch/

Amazon Kinesis Analytics Developer Guide
Creating Alarms

Dimensions and Metrics

The metrics and dimensions that Amazon Kinesis Analytics sends to Amazon CloudWatch are listed
below.

Metrics

Amazon Kinesis Analytics sends the following metrics to CloudWatch:

Metric Description

Bytes The number of bytes read (per input stream) or written
(per output stream).

Levels: Per input stream and per output stream

MillisBehindLatest Indicates how far behind from the current time an
application is reading from the streaming source.

Levels: Application-level

Records The number of records read (per input stream) or
written (per output stream).

Levels: Per input stream and per output stream

Dimensions for Metrics

Amazon Kinesis Analytics provide metrics for the following dimensions:

Dimension Description

Flow Per input stream: Input

Per output stream: Output

Id Per input stream: Input Id

Per output stream: Output Id

Creating CloudWatch Alarms to Monitor Amazon
Kinesis Analytics
You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes
state. An alarm watches a single metric over a time period you specify, and performs one or more
actions based on the value of the metric relative to a given threshold over a number of time periods.
The action is a notification sent to an Amazon SNS topic or Auto Scaling policy. Alarms invoke actions
for sustained state changes only. CloudWatch alarms do not invoke actions simply because they are in
a particular state; the state must have changed and been maintained for a specified number of periods.

Set alarms using the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Create Alarm. This launches the Create Alarm Wizard.

81

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Kinesis Analytics Developer Guide
Creating Alarms

3. Choose Kinesis Analytics Metrics and scroll through the Amazon Kinesis Analytics metrics to
locate the metric you want to place an alarm on. To display just the Amazon Kinesis Analytics
metrics in this dialog box, search on the file system id of your file system. Select the metric to
create an alarm on and choose Next.

4. Fill in the Name, Description, Whenever values for the metric.

5. If you want CloudWatch to send you an email when the alarm state is reached, in the Whenever
this alarm: field, choose State is ALARM. In the Send notification to: field, choose an existing
SNS topic. If you select Create topic, you can set the name and email addresses for a new email
subscription list. This list is saved and appears in the field for future alarms.

Note
If you use Create topic to create a new Amazon SNS topic, the email addresses must be
verified before they receive notifications. Emails are only sent when the alarm enters an
alarm state. If this alarm state change happens before the email addresses are verified,
they do not receive a notification.

6. At this point, the Alarm Preview area gives you a chance to preview the alarm you’re about to
create. Choose Create Alarm.

To set an alarm using the CloudWatch CLI

• Call mon-put-metric-alarm. For more information, see Amazon CloudWatch CLI Reference.

To set an alarm using the CloudWatch API

• Call http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/
API_PutMetricAlarm.html. For more information, see Amazon CloudWatch API Reference

82

http://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/cli-mon-put-metric-alarm.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/

Amazon Kinesis Analytics Developer Guide

Limits

When working with Amazon Kinesis Analytics, note the following limits:

• Size of a row in an in-application stream is limited to 50 KB.

• The service is available in specific AWS Regions. For more information, see Amazon Kinesis
Analytics in the AWS General Reference.

• You can create up to five Amazon Kinesis Analytics applications per AWS Region in your account.
You can create a case to request for additional applications via the service limit increase form. For
more information, see AWS Support Center.

• Maximum amount of source parallelism is ten. That is, in your application input configuration, you
can request the mapping of a streaming source to up to ten in-application streams.

• Number of Amazon Kinesis Analytics processing units (KPU) is limited to eight.

With Amazon Kinesis Analytics, you pay only for what you use. You are charged an hourly-rate
based on the average number of Kinesis Processing Units (or KPUs) used to run your stream
processing application. A single KPU provides you with 1 vCPU and 4 GB of memory.

• Each application can have one streaming source and up to one reference data source.

• Amazon Kinesis Analytics supports four total different destinations for configuring application output;
however the per-application limit is three destinations. We recommend that you use one of these
destinations to persist data on the in-application error stream.

• The S3 object that stores reference data can be up to 1 GB in size.

83

http://docs.aws.amazon.com/general/latest/gr/rande.html#ka_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#ka_region
https://console.aws.amazon.com/support/home#/

Amazon Kinesis Analytics Developer Guide

• If you change the reference data stored in the S3 bucket after you upload reference data to an in-
application table, you need use the UpdateApplication (p. 128) operation (using the API or AWS
CLI) to refresh the data in the in-application table. Currently, the console does not support refreshing
reference data in your application.

• Amazon Kinesis Analytics does not currently support data generated by the Amazon Kinesis
Producer Library (KPL).

84

http://docs.aws.amazon.com/kinesis/latest/dev/developing-producers-with-kpl.html
http://docs.aws.amazon.com/kinesis/latest/dev/developing-producers-with-kpl.html

Amazon Kinesis Analytics Developer Guide
Managing Applications

Best Practices

This section describes best practices when working with Amazon Kinesis Analytics applications.

Topics

• Managing Applications (p. 85)

• Defining Input Schema (p. 86)

• Connecting to Outputs (p. 87)

• Authoring Application Code (p. 87)

Managing Applications
When managing Amazon Kinesis Analytics applications, follow these best practices:

• Set up CloudWatch alarms – Using the CloudWatch metrics that Amazon Kinesis Analytics
provides, you can monitor the following:

• Input bytes and input records (number of bytes and records entering the application)

• Output bytes, output record

• MillisBehindLatest (tracks how far behind the application is in reading from the streaming
source)

We recommend that you set up at least two CloudWatch alarms on the following metrics for your in-
production applications:

• Alarm on MillisBehindLatest – For most cases, we recommend that you set this alarm to
trigger when your application is one hour behind the latest data, for an average of one minute. For
applications with lower end-to-end processing needs, you can tune this to a lower tolerance. The
alarm can help you ensure that your application is reading the latest data.

• Limit the number of production applications reading from the same Amazon Kinesis stream to two
applications to avoid getting the ReadProvisionedThroughputException exception.

Note
In this case, the term application refers to any application that can read from the streaming
source. Only an Amazon Kinesis Analytics application can read from a Firehose delivery
stream. However, many applications can read from an Amazon Kinesis stream, such as an

85

Amazon Kinesis Analytics Developer Guide
Defining Input Schema

Amazon Kinesis Analytics application or AWS Lambda. The recommended application limit
refers to all applications that you configure to read from a streaming source.

Amazon Kinesis Analytics reads a streaming source approximately once per second per application.
However, an application that falls behind might read data at a faster rate to catch up. To allow
adequate throughput for applications to catch up, you limit the number of applications reading the
same data source.

• Limit the number of production applications reading from the same Firehose delivery stream to one
application.

A Firehose delivery stream can write to destinations such as Amazon S3, Amazon Redshift, and
it can also be a streaming source for your Amazon Kinesis Analytics application. Therefore, we
recommend you do not configure more than one Amazon Kinesis Analytics application per Firehose
delivery stream to make sure the delivery stream can also deliver to other destinations.

Defining Input Schema
When configuring application input in the console, you first specify a streaming source. The console
then uses the discovery API (see DiscoverInputSchema (p. 120)) to infer a schema by sampling
records on the streaming source. The schema, among other things, defines names and data types of
the columns in the resulting in-application stream. The console displays the schema. We recommend
you do the following with this inferred schema:

• Adequately test the inferred schema. The discovery process uses only a sample of records on the
streaming source to infer a schema. If your streaming source has many record types, there is a
possibility that the discovery API missed sampling one or more record types, which can result in a
schema that does not accurately reflect data on the streaming source.

When your application starts, these missed record types might result in parsing errors. Amazon
Kinesis Analytics sends these records to the in-application error stream. To reduce these parsing
errors, we recommend that you test the inferred schema interactively in the console, and monitor the
in-application stream for missed records.

• The Amazon Kinesis Analytics API does not support specifying the NOT NULL constraint on columns
in the input configuration. If you want NOT NULL constraints on columns in your in-application
stream, you should create these in-application streams using your application code. You can then
copy data from one in-application stream into another, and then the constraint will be enforced.

Any attempt to insert rows with NULL values when a value is required results in an error, and
Amazon Kinesis Analytics sends these errors to the in-application error stream.

• Relax data types inferred by the discovery process. The discovery process recommends columns
and data types based on a random sampling of records on the streaming source. We recommend

86

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/app-tworecordtypes.html

Amazon Kinesis Analytics Developer Guide
Connecting to Outputs

that you review these carefully and consider relaxing these data types to cover all of the possible
cases of records in your input. This ensures fewer parsing errors across the application while it
is running. For example, if inferred schema has a SMALLINT as column type, perhaps consider
changing it to INTEGER.

• Use SQL functions in your application code to handle any unstructured data or columns. You may
have unstructured data or columns, such as log data, in your input. For examples, see Example:
Manipulating Strings and Date Times (p. 44). One approach to handling this type of data is to define
the schema with only one column of type VARCHAR(N), where N is the largest possible row that
you would expect to see in your stream. In your application code you can then read the incoming
records, use the String and Date Time functions to parse and schematize the raw data.

• Make sure that you handle streaming source data that contains nesting more than two levels deep
completely. When source data is JSON, you can have nesting. The discovery API will infer a schema
that flattens one level of nesting. For two levels of nesting, the discovery API will also attempt to
flatten these. Beyond two levels of nesting, there is limited support for flattening. In order to handle
nesting completely, you have to manually modify the inferred schema to suite your needs. Use either
of the following strategies to do this:

• Use the JSON row path to selectively pull out only the required key value pairs for your
application. A JSON row path provides a pointer to the specific key value pair you would like to
bring in your application. This can be done for any level of nesting.

• Use the JSON row path to selectively pull out complex JSON objects and then use string
manipulation functions in your application code to pull the specific data that you need.

Connecting to Outputs
We recommend that every application have at least two outputs. use the first destination to insert the
results of your SQL queries. Use the second destination to insert the entire error stream and send it to
an S3 bucket through a Amazon Kinesis Firehose delivery stream.

Authoring Application Code
We recommend the following:

• In your SQL statement, we recommend that you do not specify time-based window that is longer
than one hour for the following reasons:

• If an application needs to be restarted, either because you updated the application or for Amazon
Kinesis Analytics internal reasons, all data included in the window must be read again from the
streaming data source. This will take time before Amazon Kinesis Analytics can emit output for
that window.

• Amazon Kinesis Analytics must maintain everything related to the application's state, including
relevant data, for the duration. This will consume significant Amazon Kinesis Analytics processing
units.

87

Amazon Kinesis Analytics Developer Guide
Authoring Application Code

• During development, keep window size small in your SQL statements so that you can see the results
faster. When you deploy the application to your production environment, you can set the window size
as appropriate.

• Instead of a single complex SQL statement, you might consider breaking it into multiple statements,
in each step saving results in intermediate in-application streams. This might help you debug faster.

• When using tumbling windows, we recommend that you use two windows, one for processing time
and one for your logical time (ingest time or event time). For more information, see Timestamps and
the ROWTIME Column (p. 32).

88

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html

Amazon Kinesis Analytics Developer Guide
Authentication

Authentication and Access Control
for Amazon Kinesis Analytics

Access to Amazon Kinesis Analytics requires credentials. Those credentials must have permissions
to access AWS resources, such as an Amazon Kinesis Analytics application or an Amazon Elastic
Compute Cloud (Amazon EC2) instance. The following sections provide details on how you can use
AWS Identity and Access Management (IAM) and Amazon Kinesis Analytics to help secure access to
your resources.

• Authentication (p. 89)

• Access Control (p. 90)

Authentication
You can access AWS as any of the following types of identities:

• AWS account root user – When you sign up for AWS, you provide an email address and password
that is associated with your AWS account. These are your root credentials and they provide
complete access to all of your AWS resources.

Important
For security reasons, we recommend that you use the root credentials only to create
an administrator user, which is an IAM user with full permissions to your AWS account.
Then, you can use this administrator user to create other IAM users and roles with limited
permissions. For more information, see IAM Best Practices and Creating an Admin User
and Group in the IAM User Guide.

• IAM user – An IAM user is simply an identity within your AWS account that has specific custom
permissions (for example, permissions to create an application in Amazon Kinesis Analytics).
You can use an IAM user name and password to sign in to secure AWS webpages like the AWS
Management Console, AWS Discussion Forums, or the AWS Support Center.

In addition to a user name and password, you can also generate access keys for each user. You
can use these keys when you access AWS services programmatically, either through one of the

89

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://forums.aws.amazon.com/
https://console.aws.amazon.com/support/home#/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
http://aws.amazon.com/tools/

Amazon Kinesis Analytics Developer Guide
Access Control

several SDKs or by using the AWS Command Line Interface (CLI). The SDK and CLI tools use
the access keys to cryptographically sign your request. If you don’t use the AWS tools, you must
sign the request yourself. Amazon Kinesis Analytics supports Signature Version 4, a protocol for
authenticating inbound API requests. For more information about authenticating requests, see
Signature Version 4 Signing Process in the AWS General Reference.

• IAM role – An IAM role is another IAM identity you can create in your account that has specific
permissions. It is similar to an IAM user, but it is not associated with a specific person. An IAM
role enables you to obtain temporary access keys that can be used to access AWS services and
resources. IAM roles with temporary credentials are useful in the following situations:

• Federated user access – Instead of creating an IAM user, you can use preexisting user identities
from AWS Directory Service, your enterprise user directory, or a web identity provider. These are
known as federated users. AWS assigns a role to a federated user when access is requested
through an identity provider. For more information about federated users, see Federated Users
and Roles in the IAM User Guide.

• Cross-account access – You can use an IAM role in your account to grant another AWS account
permissions to access your account’s resources. For an example, see Tutorial: Delegate Access
Across AWS Accounts Using IAM Roles in the IAM User Guide.

• AWS service access – You can use an IAM role in your account to grant an AWS service
permissions to access your account’s resources. For example, you can create a role that allows
Amazon Redshift to access an Amazon S3 bucket on your behalf and then load data stored in the
bucket into an Amazon Redshift cluster. For more information, see Creating a Role to Delegate
Permissions to an AWS Service in the IAM User Guide.

• Applications running on Amazon EC2 – Instead of storing access keys within the EC2 instance
for use by applications running on the instance and making AWS API requests, you can use an
IAM role to manage temporary credentials for these applications. To assign an AWS role to an
EC2 instance and make it available to all of its applications, you can create an instance profile that
is attached to the instance. An instance profile contains the role and enables programs running
on the EC2 instance to get temporary credentials. For more information, see Using Roles for
Applications on Amazon EC2 in the IAM User Guide.

Access Control
You can have valid credentials to authenticate your requests, but unless you have permissions
you cannot create or access Amazon Kinesis Analytics resources. For example, you must have
permissions to create an Amazon Kinesis Analytics application.

The following sections describe how to manage permissions for Amazon Kinesis Analytics. We
recommend that you read the overview first.

• Overview of Managing Access Permissions to Your Amazon Kinesis Analytics Resources (p. 91)

• Using Identity-Based Policies (IAM Policies) for Amazon Kinesis Analytics (p. 94)

• Amazon Kinesis Analytics API Permissions: Actions, Permissions, and Resources
Reference (p. 99)

90

http://aws.amazon.com/tools/
http://aws.amazon.com/cli/
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

Amazon Kinesis Analytics Developer Guide
Overview of Managing Access

Overview of Managing Access Permissions to
Your Amazon Kinesis Analytics Resources

Every AWS resource is owned by an AWS account, and permissions to create or access a resource
are governed by permissions policies. An account administrator can attach permissions policies to IAM
identities (that is, users, groups, and roles), and some services (such as AWS Lambda) also support
attaching permissions policies to resources.

Note
An account administrator (or administrator user) is a user with administrator privileges. For
more information, see IAM Best Practices in the IAM User Guide.

When granting permissions, you decide who is getting the permissions, the resources they get
permissions for, and the specific actions that you want to allow on those resources.

Topics

• Amazon Kinesis Analytics Resources and Operations (p. 91)

• Understanding Resource Ownership (p. 91)

• Managing Access to Resources (p. 92)

• Specifying Policy Elements: Actions, Effects, and Principals (p. 93)

• Specifying Conditions in a Policy (p. 94)

Amazon Kinesis Analytics Resources and
Operations
In Amazon Kinesis Analytics, the primary resource is an application. In a policy, you use an Amazon
Resource Name (ARN) to identify the resource that the policy applies to.

These resources have unique Amazon Resource Names (ARNs) associated with them, as shown in
the following table.

Resource Type ARN Format

Application arn:aws:kinesisanalytics:region:account-
id:application/application-name

Amazon Kinesis Analytics provides a set of operations to work with Amazon Kinesis Analytics
resources. For a list of available operations, see Amazon Kinesis Analytics Actions (p. 101).

Understanding Resource Ownership
The AWS account owns the resources that are created in the account, regardless of who created the
resources. Specifically, the resource owner is the AWS account of the principal entity (that is, the root
account, an IAM user, or an IAM role) that authenticates the resource creation request. The following
examples illustrate how this works:

• If you use the root account credentials of your AWS account to create an application, your AWS
account is the owner of the resource (in Amazon Kinesis Analytics, the resource is an application).

• If you create an IAM user in your AWS account and grant permissions to create an application to that
user, the user can create an application. However, your AWS account, to which the user belongs,
owns the application resource.

91

http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html

Amazon Kinesis Analytics Developer Guide
Managing Access to Resources

• If you create an IAM role in your AWS account with permissions to create an application, anyone
who can assume the role can create an application. Your AWS account, to which the user belongs,
owns the application resource.

Managing Access to Resources
A permissions policy describes who has access to what. The following section explains the available
options for creating permissions policies.

Note
This section discusses using IAM in the context of Amazon Kinesis Analytics. It doesn't
provide detailed information about the IAM service. For complete IAM documentation,
see What Is IAM? in the IAM User Guide. For information about IAM policy syntax and
descriptions, see AWS IAM Policy Reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM polices) and policies
attached to a resource are referred to as resource-based policies. Amazon Kinesis Analytics supports
only identity-based policies (IAM policies).

Topics

• Identity-Based Policies (IAM Policies) (p. 92)

• Resource-Based Policies (p. 93)

Identity-Based Policies (IAM Policies)

You can attach policies to IAM identities. For example, you can do the following:

• Attach a permissions policy to a user or a group in your account – To grant a user permissions
to create an Amazon Kinesis Analytics resource, such as an application, you can attach a
permissions policy to a user or group that the user belongs to.

• Attach a permissions policy to a role (grant cross-account permissions) – You can attach an
identity-based permissions policy to an IAM role to grant cross-account permissions. For example,
the administrator in account A can create a role to grant cross-account permissions to another AWS
account (for example, account B) or an AWS service as follows:

1. Account A administrator creates an IAM role and attaches a permissions policy to the role that
grants permissions on resources in account A.

2. Account A administrator attaches a trust policy to the role identifying account B as the principal
who can assume the role.

3. Account B administrator can then delegate permissions to assume the role to any users in
account B. Doing this allows users in account B to create or access resources in account A. The
principal in the trust policy can also be an AWS service principal if you want to grant an AWS
service permissions to assume the role.

For more information about using IAM to delegate permissions, see Access Management in the IAM
User Guide.

The following is an example policy that grants permission for the
kinesisanalytics:CreateApplication action, which is required to create an Amazon Kinesis
Analytics application.

Note that:

Note
This is an introductory example policy. When you attach the policy to the user, the user will
be able to create an application using the AWS CLI or AWS SDK. But the user will need more

92

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

Amazon Kinesis Analytics Developer Guide
Specifying Policy Elements:

Actions, Effects, and Principals

permissions to configure input and output. In addition, the user will need more permissions
when using the console. The later sections provide more information.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1473028104000",
 "Effect": "Allow",
 "Action": [
 "kinesisanalytics:CreateApplication"
],
 "Resource": [
 "*"
]
 }
]
}

For more information about using identity-based policies with Amazon Kinesis Analytics, see Using
Identity-Based Policies (IAM Policies) for Amazon Kinesis Analytics (p. 94). For more information
about users, groups, roles, and permissions, see Identities (Users, Groups, and Roles) in the IAM User
Guide.

Resource-Based Policies

Other services, such as Amazon S3, also support resource-based permissions policies. For example,
you can attach a policy to an S3 bucket to manage access permissions to that bucket. Amazon Kinesis
Analytics doesn't support resource-based policies.

Specifying Policy Elements: Actions, Effects, and
Principals
For each Amazon Kinesis Analytics resource, the service defines a set of API operations. To grant
permissions for these API operations, Amazon Kinesis Analytics defines a set of actions that you
can specify in a policy. Some API operations can require permissions for more than one action in
order to perform the API operation. For more information about resources and API operations, see
Amazon Kinesis Analytics Resources and Operations (p. 91) and Amazon Kinesis Analytics
Actions (p. 101).

The following are the most basic policy elements:

• Resource – You use an Amazon Resource Name (ARN) to identify the resource that the
policy applies to. For more information, see Amazon Kinesis Analytics Resources and
Operations (p. 91).

• Action – You use action keywords to identify resource operations that you want to allow or deny. For
example, you can use create to allow users to create an application.

• Effect – You specify the effect, either allow or deny, when the user requests the specific action.
If you don't explicitly grant access to (allow) a resource, access is implicitly denied. You can also
explicitly deny access to a resource, which you might do to make sure that a user cannot access it,
even if a different policy grants access.

• Principal – In identity-based policies (IAM policies), the user that the policy is attached to is the
implicit principal. For resource-based policies, you specify the user, account, service, or other entity
that you want to receive permissions (applies to resource-based policies only). Amazon Kinesis
Analytics doesn't support resource-based policies.

93

http://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

Amazon Kinesis Analytics Developer Guide
Specifying Conditions in a Policy

To learn more about IAM policy syntax and descriptions, see AWS IAM Policy Reference in the IAM
User Guide.

For a list showing all of the Amazon Kinesis Analytics API operations and the resources that they
apply to, see Amazon Kinesis Analytics API Permissions: Actions, Permissions, and Resources
Reference (p. 99).

Specifying Conditions in a Policy
When you grant permissions, you can use the access policy language to specify the conditions when a
policy should take effect. For example, you might want a policy to be applied only after a specific date.
For more information about specifying conditions in a policy language, see Condition in the IAM User
Guide.

To express conditions, you use predefined condition keys. There are no condition keys specific
to Amazon Kinesis Analytics. However, there are AWS-wide condition keys that you can use as
appropriate. For a complete list of AWS-wide keys, see Available Keys for Conditions in the IAM User
Guide.

Using Identity-Based Policies (IAM Policies) for
Amazon Kinesis Analytics

This topic provides examples of identity-based policies that demonstrate how an account administrator
can attach permissions policies to IAM identities (that is, users, groups, and roles) and thereby grant
permissions to perform operations on Amazon Kinesis Analytics resources.

Important
We recommend that you first review the introductory topics that explain the basic concepts
and options available to manage access to your Amazon Kinesis Analytics resources. For
more information, see Overview of Managing Access Permissions to Your Amazon Kinesis
Analytics Resources (p. 91).

Topics

• Permissions Required to Use the Amazon Kinesis Analytics Console (p. 95)

• AWS Managed (Predefined) Policies for Amazon Kinesis Analytics (p. 95)

• Customer Managed Policy Examples (p. 96)

The following shows an example of a permissions policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1473028104000",
 "Effect": "Allow",
 "Action": [
 "kinesisanalytics:CreateApplication"
],
 "Resource": [
 "*"
]
 }
]

94

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Condition
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon Kinesis Analytics Developer Guide
Permissions Required to Use the

Amazon Kinesis Analytics Console

}

The policy has one statement:

• The first statement grants permissions for one Amazon Kinesis Analytics action
(kinesisanalytics:CreateApplication) on a resource using the Amazon Resource Name
(ARN) for the application. The ARN in this case specifies a wildcard character (*) to indicate the
permission is granted for any resource.

For a table showing all of the Amazon Kinesis Analytics API operations and the resources that they
apply to, see Amazon Kinesis Analytics API Permissions: Actions, Permissions, and Resources
Reference (p. 99).

Permissions Required to Use the Amazon Kinesis
Analytics Console
For a user to work with Amazon Kinesis Analytics console, you need to grant the requisite permissions.
For example, if you want to grant a user permission to create an application, you need to grant
permissions that will show the user the streaming sources in the account so that the user can configure
input and output in the console.

We recommend the following:

• Use the AWS-managed policies to grant user permissions. For available policies, see AWS
Managed (Predefined) Policies for Amazon Kinesis Analytics (p. 95).

• Create custom policies. In this case, we recommend that you review the example provided in this
section. For more information, see Customer Managed Policy Examples (p. 96).

AWS Managed (Predefined) Policies for Amazon
Kinesis Analytics
AWS addresses many common use cases by providing standalone IAM policies that are created and
administered by AWS. These AWS managed policies grant necessary permissions for common use
cases so that you can avoid having to investigate what permissions are needed. For more information,
see AWS Managed Policies in the IAM User Guide.

The following AWS managed policies, which you can attach to users in your account, are specific to
Amazon Kinesis Analytics:

• AmazonKinesisAnalyticsReadOnly – Grants permissions for Amazon Kinesis Analytics actions
that enable user to list Amazon Kinesis Analytics applications and review input/output configuration.
It also grants permission that allow user to view a list of Amazon Kinesis streams and Firehose
delivery streams. The application is running, the user can view source data and real-time analytics
results in the console.

• AmazonKinesisAnalyticsFullAccess – Grants permissions for all Amazon Kinesis Analytics
actions and all other permissions that allows a user to create and manage Amazon Kinesis Analytics
applications. However, note the following:

95

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Kinesis Analytics Developer Guide
Customer Managed Policy Examples

• These permissions are not sufficient if the user wants to create a new IAM role in the console
(these permissions allow the user to select an existing role). If you want the user to be able to
create an IAM role in the console, add the IAMFullAccess AWS managed policy.

• A user must have permission for the iam:PassRole action to specify an IAM role when
configuring Amazon Kinesis Analytics application. This AWS managed policy grants permission
for the iam:PassRole action to the user only on the IAM roles that start with the prefix service-
role/kinesis-analytics.

If the user wants to configure the Amazon Kinesis Analytics application with a role that does not
have this prefix, you first need to explicitly grant the user permission for the iam:PassRole action
on the specific role.

Note
You can review these permissions policies by signing in to the IAM console and searching for
specific policies there.

You can also create your own custom IAM policies to allow permissions for Amazon Kinesis Analytics
actions and resources. You can attach these custom policies to the IAM users or groups that require
those permissions.

Customer Managed Policy Examples
The examples in this section provide a group of sample policies that you can attach to a user. If you
are new to creating policies, we recommend that you first create an IAM user in your account and
attach the policies to the user in sequence, as outlined in the steps in this section. You can then use
the console to verify the effects of each policy as you attach the policy to the user.

Initially, the user doesn't have permissions and the user won't be able to do anything in the console. As
you attach policies to the user, you can verify that the user can perform various actions in the console.

We recommend that you use two browser windows: one to create the user and grant permissions,
and the other to sign in to the AWS Management Console using the user's credentials and verify
permissions as you grant them to the user.

For examples that show how to create an IAM role that you can use as an execution role for your
Amazon Kinesis Analytics application, see Creating IAM Roles in the IAM User Guide.

Example Steps

• Step 1: Create an IAM User (p. 96)

• Step 2: Allow the User Permissions for Actions that Are Not Specific to Amazon Kinesis
Analytics (p. 97)

• Step 3: Allow the User to View a List of Applications and View Details (p. 98)

• Step 4: Allow the User to Start a Specific Application (p. 98)

• Step 5: Allow the User to Create an Amazon Kinesis Analytics Application (p. 99)

Step 1: Create an IAM User

First, you need to create an IAM user, add the user to an IAM group with administrative permissions,
and then grant administrative permissions to the IAM user that you created. You can then access AWS
using a special URL and that IAM user's credentials.

For instructions, see Creating Your First IAM User and Administrators Group in the IAM User Guide.

96

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Kinesis Analytics Developer Guide
Customer Managed Policy Examples

Step 2: Allow the User Permissions for Actions that Are Not
Specific to Amazon Kinesis Analytics
Let us first grant a user permission for all actions that aren't specific to Amazon Kinesis Analytics
that the user will need when working with Amazon Kinesis Analytics applications. These include
permissions working with streams (Amazon Kinesis Streams actions, Amazon Kinesis Firehose
actions), and permissions for CloudWatch actions. Attach the following policy to the user.

You need to update the policy by providing an IAM role name for which you want to grant the
iam:PassRole permission, or specify a wildcard character (*) indicating all IAM roles. This is not a
secure practice; however you might not have a specific IAM role created during this testing.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:CreateStream",
 "kinesis:DeleteStream",
 "kinesis:DescribeStream",
 "kinesis:ListStreams",
 "kinesis:PutRecord",
 "kinesis:PutRecords"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "firehose:DescribeDeliveryStream",
 "firehose:ListDeliveryStreams"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:ListMetrics"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "logs:GetLogEvents",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:ListPolicyVersions",
 "iam:ListRoles"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",

97

Amazon Kinesis Analytics Developer Guide
Customer Managed Policy Examples

 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::*:role/service-role/role-name"
 }
]
}

Step 3: Allow the User to View a List of Applications and View
Details

The following policy grants a user the following permissions:

• Permission for the kinesisanalytics:ListApplications action so the user can view a list of
applications. Note that this is a service-level API call, and therefore you specify "*" as the Resource
value.

• Permission for the kinesisanalytics:DescribeApplication action so that you can get
information about any of the applications.

Add this policy to the user.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesisanalytics:ListApplications"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesisanalytics:DescribeApplication"
],
 "Resource": "arn:aws:kinesisanalytics:aws-region:aws-account-
id:application/*"
 }
]
}

Verify these permissions by signing into the Amazon Kinesis Analytics console using the IAM user
credentials.

Step 4: Allow the User to Start a Specific Application

If you want the user to be able to start one of the existing Amazon Kinesis Analytics
applications, you attach the following policy to the user, which provides the permission for
kinesisanalytics:StartApplication action. You will need to update the policy by providing
your account id, region and application name.

{
 "Version": "2012-10-17",
 "Statement": [
 {

98

Amazon Kinesis Analytics Developer Guide
Amazon Kinesis Analytics API Permissions Reference

 "Effect": "Allow",
 "Action": [
 "kinesisanalytics:StartApplication"
],
 "Resource": "arn:aws:kinesisanalytics:aws-region:aws-account-
id:application/application-name"
 }
]
}

Step 5: Allow the User to Create an Amazon Kinesis Analytics
Application

Now suppose you want the user to create an Amazon Kinesis Analytics application. You can then
attach the following policy to the user. You will need to update the policy and provide a region, your
account ID and either a specific application name that you want the user to create or a "*" so the user
can specify any application name (and thus the user can create multiple applications).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1473028104000",
 "Effect": "Allow",
 "Action": [
 "kinesisanalytics:CreateApplication"
],
 "Resource": [
 "*"
]
 },

 {
 "Effect": "Allow",
 "Action": [
 "kinesisanalytics:StartApplication",
 "kinesisanalytics:UpdateApplication",
 "kinesisanalytics:AddApplicationInput",
 "kinesisanalytics:AddApplicationOutput"
],
 "Resource": "arn:aws:kinesisanalytics:aws-region:aws-account-
id:application/application-name"
 }
]
}

Amazon Kinesis Analytics API Permissions:
Actions, Permissions, and Resources Reference

When you are setting up Access Control (p. 90) and writing a permissions policy that you can
attach to an IAM identity (identity-based policies), you can use the following list as a reference. The
list includes each Amazon Kinesis Analytics API operation, the corresponding actions for which you
can grant permissions to perform the action, and the AWS resource for which you can grant the

99

Amazon Kinesis Analytics Developer Guide
Amazon Kinesis Analytics API Permissions Reference

permissions. You specify the actions in the policy's Action field, and you specify the resource value in
the policy's Resource field.

You can use AWS-wide condition keys in your Amazon Kinesis Analytics policies to express
conditions. For a complete list of AWS-wide keys, see Available Keys in the IAM User Guide.

Note
To specify an action, use the kinesisanalytics prefix followed by the API operation name
(for example, kinesisanalytics:AddApplicationInput).

Amazon Kinesis Analytics API and Required Permissions for Actions

API Operation:
Required Permissions (API Action):

Resources:

Amazon Kinesis Analytics API and Required Permissions for Actions

Amazon RDS API and Required Permissions for Actions

API Operation:AddApplicationInput (p. 102)
Action: kinesisanalytics:AddApplicationInput

Resources:

arn:aws:kinesisanalytics: region:accountId:application/application-name

100

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon Kinesis Analytics Developer Guide
Actions

API Reference

You can use the AWS CLI to explore the Amazon Kinesis Analytics API. This guide provides Getting
Started (p. 17) exercises that use the AWS CLI.

Topics

• Actions (p. 101)

• Data Types (p. 130)

Actions
The following actions are supported:

• AddApplicationInput (p. 102)

• AddApplicationOutput (p. 104)

• AddApplicationReferenceDataSource (p. 106)

• CreateApplication (p. 108)

• DeleteApplication (p. 112)

• DeleteApplicationOutput (p. 113)

• DeleteApplicationReferenceDataSource (p. 115)

• DescribeApplication (p. 117)

• DiscoverInputSchema (p. 120)

• ListApplications (p. 123)

• StartApplication (p. 125)

• StopApplication (p. 127)

• UpdateApplication (p. 128)

101

Amazon Kinesis Analytics Developer Guide
AddApplicationInput

AddApplicationInput
Adds a streaming source to your Amazon Kinesis application. For conceptual information, see
Configuring Application Input.

You can add a streaming source either when you create an application or you can use this
operation to add a streaming source after you create an application. For more information, see
CreateApplication (p. 108).

Any configuration update, including adding a streaming source using this operation, results in a new
version of the application. You can use the DescribeApplication (p. 117) operation to find the current
application version.

This operation requires permissions to perform the kinesisanalytics:AddApplicationInput
action.

Request Syntax

{
 "ApplicationName": "string",
 "CurrentApplicationVersionId": number,
 "Input": {
 "InputParallelism": {
 "Count": number
 },
 "InputSchema": {
 "RecordColumns": [
 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncoding": "string",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "KinesisFirehoseInput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "KinesisStreamsInput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "NamePrefix": "string"
 }
}

102

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html

Amazon Kinesis Analytics Developer Guide
AddApplicationInput

Request Parameters

The request accepts the following data in JSON format.

ApplicationName (p. 102)
Name of your existing Amazon Kinesis Analytics application to which you want to add the
streaming source.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

CurrentApplicationVersionId (p. 102)
Current version of your Amazon Kinesis Analytics application. You can use the
DescribeApplication (p. 117) operation to find the current application version.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

Input (p. 102)
When you configure the application input, you specify the streaming source, the in-application
stream name that is created, and the mapping between the two. For more information, see
Configuring Application Input.

Type: Input (p. 138) object

Required: Yes

Response Elements
If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ConcurrentModificationException
Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

InvalidArgumentException
Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceInUseException
Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException
Specified application can't be found.

HTTP Status Code: 400

103

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html

Amazon Kinesis Analytics Developer Guide
AddApplicationOutput

AddApplicationOutput
Adds an external destination to your Amazon Kinesis Analytics application.

If you want Amazon Kinesis Analytics to deliver data from an in-application stream within your
application to an external destination (such as an Amazon Kinesis stream or a Firehose delivery
stream), you add the relevant configuration to your application using this operation. You can configure
one or more outputs for your application. Each output configuration maps an in-application stream and
an external destination.

You can use one of the output configurations to deliver data from your in-application error stream to an
external destination so that you can analyze the errors. For conceptual information, see Understanding
Application Output (Destination).

Note that any configuration update, including adding a streaming source using this operation, results in
a new version of the application. You can use the DescribeApplication (p. 117) operation to find the
current application version.

For the limits on the number of application inputs and outputs you can configure, see Limits.

This operation requires permissions to perform the kinesisanalytics:AddApplicationOutput
action.

Request Syntax

{
 "ApplicationName": "string",
 "CurrentApplicationVersionId": number,
 "Output": {
 "DestinationSchema": {
 "RecordFormatType": "string"
 },
 "KinesisFirehoseOutput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "KinesisStreamsOutput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "Name": "string"
 }
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName (p. 104)
Name of the application to which you want to add the output configuration.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

CurrentApplicationVersionId (p. 104)
Version of the application to which you want add the output configuration. You can use the
DescribeApplication (p. 117) operation to get the current application version. If the version
specified is not the current version, the ConcurrentModificationException is returned.

Type: Long

104

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-output.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-output.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Analytics Developer Guide
AddApplicationOutput

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

Output (p. 104)
An array of objects, each describing one output configuration. In the output configuration, you
specify the name of an in-application stream, a destination (that is, an Amazon Kinesis stream or
an Amazon Kinesis Firehose delivery stream), and record the formation to use when writing to the
destination.

Type: Output (p. 161) object

Required: Yes

Response Elements
If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ConcurrentModificationException
Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

InvalidArgumentException
Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceInUseException
Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException
Specified application can't be found.

HTTP Status Code: 400

105

Amazon Kinesis Analytics Developer Guide
AddApplicationReferenceDataSource

AddApplicationReferenceDataSource
Adds a reference data source to an existing application.

Amazon Kinesis Analytics reads reference data (that is, an Amazon S3 object) and creates an in-
application table within your application. In the request, you provide the source (S3 bucket name and
object key name), name of the in-application table to create, and the necessary mapping information
that describes how data in Amazon S3 object maps to columns in the resulting in-application table.

For conceptual information, see Configuring Application Input. For the limits on data sources you can
add to your application, see Limits.

This operation requires permissions to perform the kinesisanalytics:AddApplicationOutput
action.

Request Syntax

{
 "ApplicationName": "string",
 "CurrentApplicationVersionId": number,
 "ReferenceDataSource": {
 "ReferenceSchema": {
 "RecordColumns": [
 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncoding": "string",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "S3ReferenceDataSource": {
 "BucketARN": "string",
 "FileKey": "string",
 "ReferenceRoleARN": "string"
 },
 "TableName": "string"
 }
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName (p. 106)
Name of an existing application.

Type: String

106

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Analytics Developer Guide
AddApplicationReferenceDataSource

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

CurrentApplicationVersionId (p. 106)
Version of the application for which you are adding the reference data source. You can use the
DescribeApplication (p. 117) operation to get the current application version. If the version
specified is not the current version, the ConcurrentModificationException is returned.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

ReferenceDataSource (p. 106)
The reference data source can be an object in your Amazon S3 bucket. Amazon Kinesis Analytics
reads the object and copies the data into the in-application table that is created. You provide an
S3 bucket, object key name, and the resulting in-application table that is created. You must also
provide an IAM role with the necessary permissions that Amazon Kinesis Analytics can assume to
read the object from your S3 bucket on your behalf.

Type: ReferenceDataSource (p. 166) object

Required: Yes

Response Elements
If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ConcurrentModificationException
Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

InvalidArgumentException
Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceInUseException
Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException
Specified application can't be found.

HTTP Status Code: 400

107

Amazon Kinesis Analytics Developer Guide
CreateApplication

CreateApplication
Creates an Amazon Kinesis Analytics application. You can configure each application with one
streaming source as input, application code to process the input, and up to five streaming destinations
where you want Amazon Kinesis Analytics to write the output data from your application. For an
overview, see How it Works.

In the input configuration, you map the streaming source to an in-application stream, which you
can think of as a constantly updating table. In the mapping, you must provide a schema for the in-
application stream and map each data column in the in-application stream to a data element in the
streaming source.

Your application code is one or more SQL statements that read input data, transform it, and generate
output. Your application code can create one or more SQL artifacts like SQL streams or pumps.

In the output configuration, you can configure the application to write data from in-application streams
created in your applications to up to five streaming destinations.

To read data from your source stream or write data to destination streams, Amazon Kinesis Analytics
needs your permissions. You grant these permissions by creating IAM roles. This operation requires
permissions to perform the kinesisanalytics:CreateApplication action.

For introductory exercises to create an Amazon Kinesis Analytics application, see Getting Started.

Request Syntax

{
 "ApplicationCode": "string",
 "ApplicationDescription": "string",
 "ApplicationName": "string",
 "Inputs": [
 {
 "InputParallelism": {
 "Count": number
 },
 "InputSchema": {
 "RecordColumns": [
 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncoding": "string",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "KinesisFirehoseInput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "KinesisStreamsInput": {

108

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/getting-started.html

Amazon Kinesis Analytics Developer Guide
CreateApplication

 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "NamePrefix": "string"
 }
],
 "Outputs": [
 {
 "DestinationSchema": {
 "RecordFormatType": "string"
 },
 "KinesisFirehoseOutput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "KinesisStreamsOutput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "Name": "string"
 }
]
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationCode (p. 108)
One or more SQL statements that read input data, transform it, and generate output. For example,
you can write a SQL statement that reads data from one in-application stream, generates a
running average of the number of advertisement clicks by vendor, and insert resulting rows in
another in-application stream using pumps. For more inforamtion about the typical pattern, see
Application Code.

You can provide such series of SQL statements, where output of one statement can be used as
the input for the next statement. You store intermediate results by creating in-application streams
and pumps.

Note that the application code must create the streams with names specified in the Outputs.
For example, if your Outputs defines output streams named ExampleOutputStream1 and
ExampleOutputStream2, then your application code must create these streams.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 51200.

Required: No

ApplicationDescription (p. 108)
Summary description of the application.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 1024.

Required: No

ApplicationName (p. 108)
Name of your Amazon Kinesis Analytics application (for example, sample-app).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

109

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-app-code.html

Amazon Kinesis Analytics Developer Guide
CreateApplication

Inputs (p. 108)
Use this parameter to configure the application input.

You can configure your application to receive input from a single streaming source. In this
configuration, you map this streaming source to an in-application stream that is created. Your
application code can then query the in-application stream like a table (you can think of it as a
constantly updating table).

For the streaming source, you provide its Amazon Resource Name (ARN) and format of data
on the stream (for example, JSON, CSV, etc). You also must provide an IAM role that Amazon
Kinesis Analytics can assume to read this stream on your behalf.

To create the in-application stream, you need to specify a schema to transform your data into a
schematized version used in SQL. In the schema, you provide the necessary mapping of the data
elements in the streaming source to record columns in the in-app stream.

Type: array of Input (p. 138) objects

Required: No

Outputs (p. 108)
You can configure application output to write data from any of the in-application streams to up to
five destinations.

These destinations can be Amazon Kinesis streams, Amazon Kinesis Firehose delivery streams,
or both.

In the configuration, you specify the in-application stream name, the destination stream Amazon
Resource Name (ARN), and the format to use when writing data. You must also provide an IAM
role that Amazon Kinesis Analytics can assume to write to the destination stream on your behalf.

In the output configuration, you also provide the output stream Amazon Resource Name (ARN)
and the format of data in the stream (for example, JSON, CSV). You also must provide an IAM role
that Amazon Kinesis Analytics can assume to write to this stream on your behalf.

Type: array of Output (p. 161) objects

Required: No

Response Syntax

{
 "ApplicationSummary": {
 "ApplicationARN": "string",
 "ApplicationName": "string",
 "ApplicationStatus": "string"
 }
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ApplicationSummary (p. 110)
In response to your CreateApplication request, Amazon Kinesis Analytics returns a response
with a summary of the application it created, including the application Amazon Resource Name
(ARN), name, and status.

Type: ApplicationSummary (p. 134) object

Errors

110

Amazon Kinesis Analytics Developer Guide
CreateApplication

CodeValidationException
User-provided application code (query) is invalid. This can be a simple syntax error.

HTTP Status Code: 400

InvalidArgumentException
Specified input parameter value is invalid.

HTTP Status Code: 400

LimitExceededException
Exceeded the number of applications allowed.

HTTP Status Code: 400

ResourceInUseException
Application is not available for this operation.

HTTP Status Code: 400

111

Amazon Kinesis Analytics Developer Guide
DeleteApplication

DeleteApplication
Deletes the specified application. Amazon Kinesis Analytics halts application execution and deletes
the application, including any application artifacts (such as in-application streams, reference table, and
application code).

This operation requires permissions to perform the kinesisanalytics:DeleteApplication
action.

Request Syntax

{
 "ApplicationName": "string",
 "CreateTimestamp": number
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName (p. 112)
Name of the Amazon Kinesis Analytics application to delete.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

CreateTimestamp (p. 112)
You can use the DescribeApplication operation to get this value.

Type: Timestamp

Required: Yes

Response Elements
If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ConcurrentModificationException
Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

ResourceInUseException
Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException
Specified application can't be found.

HTTP Status Code: 400

112

Amazon Kinesis Analytics Developer Guide
DeleteApplicationOutput

DeleteApplicationOutput
Deletes output destination configuration from your application configuration. Amazon Kinesis Analytics
will no longer write data from the corresponding in-application stream to the external output destination.

This operation requires permissions to perform the
kinesisanalytics:DeleteApplicationOutput action.

Request Syntax

{
 "ApplicationName": "string",
 "CurrentApplicationVersionId": number,
 "OutputId": "string"
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName (p. 113)
Amazon Kinesis Analytics application name.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

CurrentApplicationVersionId (p. 113)
Amazon Kinesis Analytics application version. You can use the DescribeApplication (p. 117)
operation to get the current application version. If the version specified is not the current version,
the ConcurrentModificationException is returned.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

OutputId (p. 113)
The ID of the configuration to delete. Each output configuration that is added to the application,
either when the application is created or later using the AddApplicationOutput (p. 104) operation,
has a unique ID. You need to provide the ID to uniquely identify the output configuration that you
want to delete from the application configuration. You can use the DescribeApplication (p. 117)
operation to get the specific OutputId.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

Response Elements
If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ConcurrentModificationException
Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

113

Amazon Kinesis Analytics Developer Guide
DeleteApplicationOutput

HTTP Status Code: 400

ResourceInUseException
Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException
Specified application can't be found.

HTTP Status Code: 400

114

Amazon Kinesis Analytics Developer Guide
DeleteApplicationReferenceDataSource

DeleteApplicationReferenceDataSource
Deletes a reference data source configuration from the specified application configuration.

If the application is running, Amazon Kinesis Analytics immediately removes the in-application table
that you created using the AddApplicationReferenceDataSource (p. 106) operation.

This operation requires permissions to perform the
kinesisanalytics.DeleteApplicationReferenceDataSource action.

Request Syntax

{
 "ApplicationName": "string",
 "CurrentApplicationVersionId": number,
 "ReferenceId": "string"
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName (p. 115)
Name of an existing application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

CurrentApplicationVersionId (p. 115)
Version of the application. You can use the DescribeApplication (p. 117) operation to
get the current application version. If the version specified is not the current version, the
ConcurrentModificationException is returned.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

ReferenceId (p. 115)
ID of the reference data source. When you add a reference data source to your application using
the AddApplicationReferenceDataSource (p. 106), Amazon Kinesis Analytics assigns an ID. You
can use the DescribeApplication (p. 117) operation to get the reference ID.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

Response Elements
If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ConcurrentModificationException
Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

115

Amazon Kinesis Analytics Developer Guide
DeleteApplicationReferenceDataSource

InvalidArgumentException
Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceInUseException
Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException
Specified application can't be found.

HTTP Status Code: 400

116

Amazon Kinesis Analytics Developer Guide
DescribeApplication

DescribeApplication
Returns information about a specific Amazon Kinesis Analytics application.

If you want to retrieve a list of all applications in your account, use the ListApplications (p. 123)
operation.

This operation requires permissions to perform the kinesisanalytics:DescribeApplication
action. You can use DescribeApplication to get the current application versionId, which you need
to call other operations such as Update.

Request Syntax

{
 "ApplicationName": "string"
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName (p. 117)
Name of the application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

Response Syntax

{
 "ApplicationDetail": {
 "ApplicationARN": "string",
 "ApplicationCode": "string",
 "ApplicationDescription": "string",
 "ApplicationName": "string",
 "ApplicationStatus": "string",
 "ApplicationVersionId": number,
 "CreateTimestamp": number,
 "InputDescriptions": [
 {
 "InAppStreamNames": ["string"],
 "InputId": "string",
 "InputParallelism": {
 "Count": number
 },
 "InputSchema": {
 "RecordColumns": [
 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncoding": "string",
 "RecordFormat": {

117

Amazon Kinesis Analytics Developer Guide
DescribeApplication

 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "InputStartingPositionConfiguration": {
 "InputStartingPosition": "string"
 },
 "KinesisFirehoseInputDescription": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "KinesisStreamsInputDescription": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "NamePrefix": "string"
 }
],
 "LastUpdateTimestamp": number,
 "OutputDescriptions": [
 {
 "DestinationSchema": {
 "RecordFormatType": "string"
 },
 "KinesisFirehoseOutputDescription": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "KinesisStreamsOutputDescription": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "Name": "string",
 "OutputId": "string"
 }
],
 "ReferenceDataSourceDescriptions": [
 {
 "ReferenceId": "string",
 "ReferenceSchema": {
 "RecordColumns": [
 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncoding": "string",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {

118

Amazon Kinesis Analytics Developer Guide
DescribeApplication

 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "S3ReferenceDataSourceDescription": {
 "BucketARN": "string",
 "FileKey": "string",
 "ReferenceRoleARN": "string"
 },
 "TableName": "string"
 }
]
 }
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ApplicationDetail (p. 117)
Provides a description of the application, such as the application Amazon Resource Name (ARN),
status, latest version, and input and output configuration details.

Type: ApplicationDetail (p. 132) object

Errors

ResourceNotFoundException
Specified application can't be found.

HTTP Status Code: 400

119

Amazon Kinesis Analytics Developer Guide
DiscoverInputSchema

DiscoverInputSchema
Infers a schema by evaluating sample records on the specified streaming source (Amazon Kinesis
stream or Amazon Kinesis Firehose delivery stream). In the response, the operation returns the
inferred schema and also the sample records that the operation used to infer the schema.

You can use the inferred schema when configuring a streaming source for your application. For
conceptual information, see Configuring Application Input. Note that when you create an application
using the Amazon Kinesis Analytics console, the console uses this operation to infer a schema and
show it in the console user interface.

This operation requires permissions to perform the kinesisanalytics:DiscoverInputSchema
action.

Request Syntax

{
 "InputStartingPositionConfiguration": {
 "InputStartingPosition": "string"
 },
 "ResourceARN": "string",
 "RoleARN": "string"
}

Request Parameters

The request accepts the following data in JSON format.

InputStartingPositionConfiguration (p. 120)
Point at which you want Amazon Kinesis Analytics to start reading records from the specified
streaming source discovery purposes.

Type: InputStartingPositionConfiguration (p. 145) object

Required: Yes

ResourceARN (p. 120)
Amazon Resource Name (ARN) of the streaming source.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]*:\d{12}:[a-zA-
Z_0-9+=,.@\-_/:]+

Required: Yes

RoleARN (p. 120)
ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream on your
behalf.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: Yes

Response Syntax

{
 "InputSchema": {
 "RecordColumns": [

120

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html

Amazon Kinesis Analytics Developer Guide
DiscoverInputSchema

 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncoding": "string",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "ParsedInputRecords": [
 ["string"]
],
 "RawInputRecords": ["string"]
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

InputSchema (p. 120)
Schema inferred from the streaming source. It identifies the format of the data in the streaming
source and how each data element maps to corresponding columns in the in-application stream
that you can create.

Type: SourceSchema (p. 172) object

ParsedInputRecords (p. 120)
An array of elements, where each element corresponds to a row in a stream record (a stream
record can have more than one row).

Type: array of array of Stringss

RawInputRecords (p. 120)
Raw stream data that was sampled to infer the schema.

Type: array of Strings

Errors

InvalidArgumentException
Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceProvisionedThroughputExceededException
Discovery failed to get a record from the streaming source because of the Amazon Kinesis
Streams ProvisionedThroughputExceededException. For more information, see GetRecords in the
Amazon Kinesis Streams API Reference.

HTTP Status Code: 400

121

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html

Amazon Kinesis Analytics Developer Guide
DiscoverInputSchema

UnableToDetectSchemaException
Data format is not valid, Amazon Kinesis Analytics is not able to detect schema for the given
streaming source.

HTTP Status Code: 400

122

Amazon Kinesis Analytics Developer Guide
ListApplications

ListApplications
Returns a list of Amazon Kinesis Analytics applications in your account. For each application, the
response includes the application name, Amazon Resource Name (ARN), and status. If the response
returns the HasMoreApplications value as true, you can send another request by adding the
ExclusiveStartApplicationName in the request body, and set the value of this to the last
application name from the previous response.

If you want detailed information about a specific application, use DescribeApplication (p. 117).

This operation requires permissions to perform the kinesisanalytics:ListApplications action.

Request Syntax

{
 "ExclusiveStartApplicationName": "string",
 "Limit": number
}

Request Parameters

The request accepts the following data in JSON format.

ExclusiveStartApplicationName (p. 123)
Name of the application to start the list with. When using pagination to retrieve the list, you don't
need to specify this parameter in the first request. However, in subsequent requests, you add the
last application name from the previous response to get the next page of applications.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: No

Limit (p. 123)
Maximum number of applications to list.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 50.

Required: No

Response Syntax

{
 "ApplicationSummaries": [
 {
 "ApplicationARN": "string",
 "ApplicationName": "string",
 "ApplicationStatus": "string"
 }
],
 "HasMoreApplications": boolean
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

123

Amazon Kinesis Analytics Developer Guide
ListApplications

ApplicationSummaries (p. 123)
List of ApplicationSummary objects.

Type: array of ApplicationSummary (p. 134) objects

HasMoreApplications (p. 123)
Returns true if there are more applications to retrieve.

Type: Boolean

124

Amazon Kinesis Analytics Developer Guide
StartApplication

StartApplication
Starts the specified Amazon Kinesis Analytics application. After creating an application, you must
exclusively call this operation to start your application.

After the application starts, it begins consuming the input data, processes it, and writes the output to
the configured destination.

The application status must be READY for you to start an application. You can get the application status
in the console or using the DescribeApplication (p. 117) operation.

After you start the application, you can stop the application from processing the input by calling the
StopApplication (p. 127) operation.

This operation requires permissions to perform the kinesisanalytics:StartApplication action.

Request Syntax

{
 "ApplicationName": "string",
 "InputConfigurations": [
 {
 "Id": "string",
 "InputStartingPositionConfiguration": {
 "InputStartingPosition": "string"
 }
 }
]
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName (p. 125)
Name of the application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

InputConfigurations (p. 125)
Identifies the specific input, by ID, that the application starts consuming. Amazon Kinesis Analytics
starts reading the streaming source associated with the input. You can also specify where in the
streaming source you want Amazon Kinesis Analytics to start reading.

Type: array of InputConfiguration (p. 139) objects

Required: Yes

Response Elements
If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

InvalidApplicationConfigurationException
User-provided application configuration is not valid.

HTTP Status Code: 400

125

Amazon Kinesis Analytics Developer Guide
StartApplication

InvalidArgumentException
Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceInUseException
Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException
Specified application can't be found.

HTTP Status Code: 400

126

Amazon Kinesis Analytics Developer Guide
StopApplication

StopApplication
Stops the application from processing input data. You can stop an application only if it is in the running
state. You can use the DescribeApplication (p. 117) operation to find the application state. After the
application is stopped, Amazon Kinesis Analytics stops reading data from the input, the application
stops processing data, and there is no output written to the destination.

This operation requires permissions to perform the kinesisanalytics:StopApplication action.

Request Syntax

{
 "ApplicationName": "string"
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName (p. 127)
Name of the running application to stop.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

Response Elements
If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ResourceInUseException
Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException
Specified application can't be found.

HTTP Status Code: 400

127

Amazon Kinesis Analytics Developer Guide
UpdateApplication

UpdateApplication
Updates an existing Amazon Kinesis Analytics application. Using this API, you can update application
code, input configuration, and output configuration.

Note that Amazon Kinesis Analytics updates the CurrentApplicationVersionId each time you
update your application.

This operation requires permission for the kinesisanalytics:UpdateApplication action.

Request Syntax

{
 "ApplicationName": "string",
 "ApplicationUpdate": {
 "ApplicationCodeUpdate": "string",
 "InputUpdates": [
 {
 "InputId": "string",
 "InputParallelismUpdate": {
 "CountUpdate": number
 },
 "InputSchemaUpdate": {
 "RecordColumnUpdates": [
 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncodingUpdate": "string",
 "RecordFormatUpdate": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "KinesisFirehoseInputUpdate": {
 "ResourceARNUpdate": "string",
 "RoleARNUpdate": "string"
 },
 "KinesisStreamsInputUpdate": {
 "ResourceARNUpdate": "string",
 "RoleARNUpdate": "string"
 },
 "NamePrefixUpdate": "string"
 }
],
 "OutputUpdates": [
 {
 "DestinationSchemaUpdate": {
 "RecordFormatType": "string"
 },

128

Amazon Kinesis Analytics Developer Guide
UpdateApplication

 "KinesisFirehoseOutputUpdate": {
 "ResourceARNUpdate": "string",
 "RoleARNUpdate": "string"
 },
 "KinesisStreamsOutputUpdate": {
 "ResourceARNUpdate": "string",
 "RoleARNUpdate": "string"
 },
 "NameUpdate": "string",
 "OutputId": "string"
 }
],
 "ReferenceDataSourceUpdates": [
 {
 "ReferenceId": "string",
 "ReferenceSchemaUpdate": {
 "RecordColumns": [
 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncoding": "string",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "S3ReferenceDataSourceUpdate": {
 "BucketARNUpdate": "string",
 "FileKeyUpdate": "string",
 "ReferenceRoleARNUpdate": "string"
 },
 "TableNameUpdate": "string"
 }
]
 },
 "CurrentApplicationVersionId": number
}

Request Parameters
The request accepts the following data in JSON format.

ApplicationName (p. 128)
Name of the Amazon Kinesis Analytics application to update.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

129

Amazon Kinesis Analytics Developer Guide
Data Types

Required: Yes

ApplicationUpdate (p. 128)
Describes application updates.

Type: ApplicationUpdate (p. 135) object

Required: Yes

CurrentApplicationVersionId (p. 128)
The current application version ID. You can use the DescribeApplication (p. 117) operation to get
this value.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

Response Elements
If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

CodeValidationException
User-provided application code (query) is invalid. This can be a simple syntax error.

HTTP Status Code: 400

ConcurrentModificationException
Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

InvalidArgumentException
Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceInUseException
Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException
Specified application can't be found.

HTTP Status Code: 400

Data Types
The following data types are supported:

• ApplicationDetail (p. 132)

• ApplicationSummary (p. 134)

• ApplicationUpdate (p. 135)

• CSVMappingParameters (p. 136)

• DestinationSchema (p. 137)

• Input (p. 138)

• InputConfiguration (p. 139)

• InputDescription (p. 140)

• InputParallelism (p. 142)

• InputParallelismUpdate (p. 143)

• InputSchemaUpdate (p. 144)

130

Amazon Kinesis Analytics Developer Guide
Data Types

• InputStartingPositionConfiguration (p. 145)

• InputUpdate (p. 146)

• JSONMappingParameters (p. 147)

• KinesisFirehoseInput (p. 148)

• KinesisFirehoseInputDescription (p. 149)

• KinesisFirehoseInputUpdate (p. 150)

• KinesisFirehoseOutput (p. 151)

• KinesisFirehoseOutputDescription (p. 152)

• KinesisFirehoseOutputUpdate (p. 153)

• KinesisStreamsInput (p. 154)

• KinesisStreamsInputDescription (p. 155)

• KinesisStreamsInputUpdate (p. 156)

• KinesisStreamsOutput (p. 157)

• KinesisStreamsOutputDescription (p. 158)

• KinesisStreamsOutputUpdate (p. 159)

• MappingParameters (p. 160)

• Output (p. 161)

• OutputDescription (p. 162)

• OutputUpdate (p. 163)

• RecordColumn (p. 164)

• RecordFormat (p. 165)

• ReferenceDataSource (p. 166)

• ReferenceDataSourceDescription (p. 167)

• ReferenceDataSourceUpdate (p. 168)

• S3ReferenceDataSource (p. 169)

• S3ReferenceDataSourceDescription (p. 170)

• S3ReferenceDataSourceUpdate (p. 171)

• SourceSchema (p. 172)

131

Amazon Kinesis Analytics Developer Guide
ApplicationDetail

ApplicationDetail
Provides a description of the application, including the application Amazon Resource Name (ARN),
status, latest version, and input and output configuration.

Contents

ApplicationARN
ARN of the application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]*:\d{12}:[a-zA-
Z_0-9+=,.@\-_/:]+

Required: Yes

ApplicationCode
Returns the application code that you provided to perform data analysis on any of the in-
application streams in your application.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 51200.

Required: No

ApplicationDescription
Description of the application.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 1024.

Required: No

ApplicationName
Name of the application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

ApplicationStatus
Status of the application.

Type: String

Valid Values: DELETING | STARTING | STOPPING | READY | RUNNING | UPDATING

Required: Yes

ApplicationVersionId
Provides the current application version.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

CreateTimestamp
Timestamp when the application version was created.

Type: Timestamp

Required: No

InputDescriptions
Describes the application input configuration. For more information, see Configuring Application
Input.

Type: array of InputDescription (p. 140) objects

Required: No

132

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html

Amazon Kinesis Analytics Developer Guide
ApplicationDetail

LastUpdateTimestamp
Timestamp when the application was last updated.

Type: Timestamp

Required: No

OutputDescriptions
Describes the application output configuration. For more information, see Configuring Application
Output.

Type: array of OutputDescription (p. 162) objects

Required: No

ReferenceDataSourceDescriptions
Describes reference data sources configured for the application. For more information, see
Configuring Application Input.

Type: array of ReferenceDataSourceDescription (p. 167) objects

Required: No

133

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-output.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-output.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html

Amazon Kinesis Analytics Developer Guide
ApplicationSummary

ApplicationSummary
Provides application summary information, including the application Amazon Resource Name (ARN),
name, and status.

Contents

ApplicationARN
ARN of the application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]*:\d{12}:[a-zA-
Z_0-9+=,.@\-_/:]+

Required: Yes

ApplicationName
Name of the application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

ApplicationStatus
Status of the application.

Type: String

Valid Values: DELETING | STARTING | STOPPING | READY | RUNNING | UPDATING

Required: Yes

134

Amazon Kinesis Analytics Developer Guide
ApplicationUpdate

ApplicationUpdate
Describes updates to apply to an existing Amazon Kinesis Analytics application.

Contents

ApplicationCodeUpdate
Describes application code updates.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 51200.

Required: No

InputUpdates
Describes application input configuration updates.

Type: array of InputUpdate (p. 146) objects

Required: No

OutputUpdates
Describes application output configuration updates.

Type: array of OutputUpdate (p. 163) objects

Required: No

ReferenceDataSourceUpdates
Describes application reference data source updates.

Type: array of ReferenceDataSourceUpdate (p. 168) objects

Required: No

135

Amazon Kinesis Analytics Developer Guide
CSVMappingParameters

CSVMappingParameters
Provides additional mapping information when the record format uses delimiters, such as CSV. For
example, the following sample records use CSV format, where the records use the '\n' as the row
delimiter and a comma (",") as the column delimiter:

"name1", "address1"

"name2, "address2"

Contents

RecordColumnDelimiter
Column delimiter. For example, in a CSV format, a comma (",") is the typical column delimiter.

Type: String

Required: Yes

RecordRowDelimiter
Row delimiter. For example, in a CSV format, '\n' is the typical row delimiter.

Type: String

Required: Yes

136

Amazon Kinesis Analytics Developer Guide
DestinationSchema

DestinationSchema
Describes the data format when records are written to the destination. For more information, see
Configuring Application Output.

Contents

RecordFormatType
Specifies the format of the records on the output stream.

Type: String

Valid Values: JSON | CSV

Required: No

137

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-output.html

Amazon Kinesis Analytics Developer Guide
Input

Input
When you configure the application input, you specify the streaming source, the in-application stream
name that is created, and the mapping between the two. For more information, see Configuring
Application Input.

Contents

InputParallelism
Describes the number of in-application streams to create.

Data from your source will be routed to these in-application input streams.

(see Configuring Application Input.

Type: InputParallelism (p. 142) object

Required: No

InputSchema
Describes the format of the data in the streaming source, and how each data element maps to
corresponding columns in the in-application stream that is being created.

Also used to describe the format of the reference data source.

Type: SourceSchema (p. 172) object

Required: No

KinesisFirehoseInput
If the streaming source is an Amazon Kinesis Firehose delivery stream, identifies the Firehose
delivery stream's ARN and an IAM role that enables Amazon Kinesis Analytics to access the
stream on your behalf.

Type: KinesisFirehoseInput (p. 148) object

Required: No

KinesisStreamsInput
If the streaming source is an Amazon Kinesis stream, identifies the stream's Amazon Resource
Name (ARN) and an IAM role that enables Amazon Kinesis Analytics to access the stream on your
behalf.

Type: KinesisStreamsInput (p. 154) object

Required: No

NamePrefix
Name prefix to use when creating in-application stream. Suppose you specify a prefix
"MyInApplicationStream". Amazon Kinesis Analytics will then create one or more (as
per the InputParallelism count you specified) in-application streams with names
"MyInApplicationStream_001", "MyInApplicationStream_002" and so on.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: [a-zA-Z][a-zA-Z0-9_]+

Required: Yes

138

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html

Amazon Kinesis Analytics Developer Guide
InputConfiguration

InputConfiguration
When you start your application, you provide this configuration, which identifies the input source and
the point in the input source at which you want the application to start processing records.

Contents

Id
Input source ID. You can get this ID by calling the DescribeApplication (p. 117) operation.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

InputStartingPositionConfiguration
Point at which you want the application to start processing records from the streaming source.

Type: InputStartingPositionConfiguration (p. 145) object

Required: Yes

139

Amazon Kinesis Analytics Developer Guide
InputDescription

InputDescription
Describes the application input configuration. For more information, see Configuring Application Input.

Contents

InAppStreamNames
Returns the in-application stream names that are mapped to the stream source.

Type: array of Strings

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: [a-zA-Z][a-zA-Z0-9_]+

Required: No

InputId
Input ID associated with the application input. This is the ID that Amazon Kinesis Analytics assigns
to each input configuration you add to your application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: No

InputParallelism
Describes the configured parallelism (number of in-application streams mapped to the streaming
source).

Type: InputParallelism (p. 142) object

Required: No

InputSchema
Describes the format of the data in the streaming source, and how each data element maps to
corresponding columns created in the in-application stream.

Type: SourceSchema (p. 172) object

Required: No

InputStartingPositionConfiguration
Point at which the application is configured to read from the input stream.

Type: InputStartingPositionConfiguration (p. 145) object

Required: No

KinesisFirehoseInputDescription
If an Amazon Kinesis Firehose delivery stream is configured as a streaming source, provides the
Firehose delivery stream's Amazon Resource Name (ARN) and an IAM role that enables Amazon
Kinesis Analytics to access the stream on your behalf.

Type: KinesisFirehoseInputDescription (p. 149) object

Required: No

KinesisStreamsInputDescription
If an Amazon Kinesis stream is configured as streaming source, provides Amazon Kinesis
stream's ARN and an IAM role that enables Amazon Kinesis Analytics to access the stream on
your behalf.

Type: KinesisStreamsInputDescription (p. 155) object

Required: No

NamePrefix
In-application name prefix.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: [a-zA-Z][a-zA-Z0-9_]+

Required: No

140

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html

Amazon Kinesis Analytics Developer Guide
InputDescription

141

Amazon Kinesis Analytics Developer Guide
InputParallelism

InputParallelism
Describes the number of in-application streams to create for a given streaming source. For information
about parallelism, see Configuring Application Input.

Contents

Count
Number of in-application streams to create. For more information, see Limits.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 10.

Required: No

142

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Analytics Developer Guide
InputParallelismUpdate

InputParallelismUpdate
Provides updates to the parallelism count.

Contents

CountUpdate
Number of in-application streams to create for the specified streaming source.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 10.

Required: No

143

Amazon Kinesis Analytics Developer Guide
InputSchemaUpdate

InputSchemaUpdate
Describes updates for the application's input schema.

Contents

RecordColumnUpdates
A list of RecordColumn objects. Each object describes the mapping of the streaming source
element to the corresponding column in the in-application stream.

Type: array of RecordColumn (p. 164) objects

Array Members: Minimum number of 1 item. Maximum number of 1000 items.

Required: No

RecordEncodingUpdate
Specifies the encoding of the records in the streaming source. For example, UTF-8.

Type: String

Pattern: UTF-8

Required: No

RecordFormatUpdate
Specifies the format of the records on the streaming source.

Type: RecordFormat (p. 165) object

Required: No

144

Amazon Kinesis Analytics Developer Guide
InputStartingPositionConfiguration

InputStartingPositionConfiguration
Describes the point at which the application reads from the streaming source.

Contents

InputStartingPosition
The starting position on the stream.

• NOW - Start reading just after the most recent record in the stream, start at the request timestamp
that the customer issued.

• TRIM_HORIZON - Start reading at the last untrimmed record in the stream, which is the oldest
record available in the stream. This option is not available for an Amazon Kinesis Firehose
delivery stream.

• LAST_STOPPED_POINT - Resume reading from where the application last stopped reading.
Type: String

Valid Values: NOW | TRIM_HORIZON | LAST_STOPPED_POINT

Required: No

145

Amazon Kinesis Analytics Developer Guide
InputUpdate

InputUpdate
Describes updates to a specific input configuration (identified by the InputId of an application).

Contents

InputId
Input ID of the application input to be updated.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

InputParallelismUpdate
Describes the parallelism updates (the number in-application streams Amazon Kinesis Analytics
creates for the specific streaming source).

Type: InputParallelismUpdate (p. 143) object

Required: No

InputSchemaUpdate
Describes the data format on the streaming source, and how record elements on the streaming
source map to columns of the in-application stream that is created.

Type: InputSchemaUpdate (p. 144) object

Required: No

KinesisFirehoseInputUpdate
If an Amazon Kinesis Firehose delivery stream is the streaming source to be updated, provides an
updated stream Amazon Resource Name (ARN) and IAM role ARN.

Type: KinesisFirehoseInputUpdate (p. 150) object

Required: No

KinesisStreamsInputUpdate
If a Amazon Kinesis stream is the streaming source to be updated, provides an updated stream
ARN and IAM role ARN.

Type: KinesisStreamsInputUpdate (p. 156) object

Required: No

NamePrefixUpdate
Name prefix for in-application streams that Amazon Kinesis Analytics creates for the specific
streaming source.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: [a-zA-Z][a-zA-Z0-9_]+

Required: No

146

Amazon Kinesis Analytics Developer Guide
JSONMappingParameters

JSONMappingParameters
Provides additional mapping information when JSON is the record format on the streaming source.

Contents

RecordRowPath
Path to the top-level parent that contains the records.

For example, consider the following JSON record:

In the RecordRowPath, "$" refers to the root and path "$.vehicle.Model" refers to the
specific "Model" key in the JSON.

Type: String

Required: Yes

147

Amazon Kinesis Analytics Developer Guide
KinesisFirehoseInput

KinesisFirehoseInput
Identifies an Amazon Kinesis Firehose delivery stream as the streaming source. You provide the
Firehose delivery stream's Amazon Resource Name (ARN) and an IAM role ARN that enables Amazon
Kinesis Analytics to access the stream on your behalf.

Contents

ResourceARN
ARN of the input Firehose delivery stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]*:\d{12}:[a-zA-
Z_0-9+=,.@\-_/:]+

Required: Yes

RoleARN
ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream on your
behalf. You need to make sure the role has necessary permissions to access the stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: Yes

148

Amazon Kinesis Analytics Developer Guide
KinesisFirehoseInputDescription

KinesisFirehoseInputDescription
Describes the Amazon Kinesis Firehose delivery stream that is configured as the streaming source in
the application input configuration.

Contents

ResourceARN
Amazon Resource Name (ARN) of the Amazon Kinesis Firehose delivery stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]*:\d{12}:[a-zA-
Z_0-9+=,.@\-_/:]+

Required: No

RoleARN
ARN of the IAM role that Amazon Kinesis Analytics assumes to access the stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: No

149

Amazon Kinesis Analytics Developer Guide
KinesisFirehoseInputUpdate

KinesisFirehoseInputUpdate
When updating application input configuration, provides information about an Amazon Kinesis Firehose
delivery stream as the streaming source.

Contents

ResourceARNUpdate
ARN of the input Amazon Kinesis Firehose delivery stream to read.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]*:\d{12}:[a-zA-
Z_0-9+=,.@\-_/:]+

Required: No

RoleARNUpdate
Amazon Resource Name (ARN) of the IAM role that Amazon Kinesis Analytics can assume to
access the stream on your behalf. You need to grant necessary permissions to this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: No

150

Amazon Kinesis Analytics Developer Guide
KinesisFirehoseOutput

KinesisFirehoseOutput
When configuring application output, identifies an Amazon Kinesis Firehose delivery stream as the
destination. You provide the stream Amazon Resource Name (ARN) and an IAM role that enables
Amazon Kinesis Analytics to write to the stream on your behalf.

Contents

ResourceARN
ARN of the destination Amazon Kinesis Firehose delivery stream to write to.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]*:\d{12}:[a-zA-
Z_0-9+=,.@\-_/:]+

Required: Yes

RoleARN
ARN of the IAM role that Amazon Kinesis Analytics can assume to write to the destination stream
on your behalf. You need to grant the necessary permissions to this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: Yes

151

Amazon Kinesis Analytics Developer Guide
KinesisFirehoseOutputDescription

KinesisFirehoseOutputDescription
For an application output, describes the Amazon Kinesis Firehose delivery stream configured as its
destination.

Contents

ResourceARN
Amazon Resource Name (ARN) of the Amazon Kinesis Firehose delivery stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]*:\d{12}:[a-zA-
Z_0-9+=,.@\-_/:]+

Required: No

RoleARN
ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: No

152

Amazon Kinesis Analytics Developer Guide
KinesisFirehoseOutputUpdate

KinesisFirehoseOutputUpdate
When updating an output configuration using the UpdateApplication (p. 128) operation, provides
information about an Amazon Kinesis Firehose delivery stream configured as the destination.

Contents

ResourceARNUpdate
Amazon Resource Name (ARN) of the Amazon Kinesis Firehose delivery stream to write to.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]*:\d{12}:[a-zA-
Z_0-9+=,.@\-_/:]+

Required: No

RoleARNUpdate
ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream on your
behalf. You need to grant necessary permissions to this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: No

153

Amazon Kinesis Analytics Developer Guide
KinesisStreamsInput

KinesisStreamsInput
Identifies an Amazon Kinesis stream as the streaming source. You provide the stream's ARN and an
IAM role ARN that enables Amazon Kinesis Analytics to access the stream on your behalf.

Contents

ResourceARN
ARN of the input Amazon Kinesis stream to read.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]*:\d{12}:[a-zA-
Z_0-9+=,.@\-_/:]+

Required: Yes

RoleARN
ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream on your
behalf. You need to grant the necessary permissions to this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: Yes

154

Amazon Kinesis Analytics Developer Guide
KinesisStreamsInputDescription

KinesisStreamsInputDescription
Describes the Amazon Kinesis stream that is configured as the streaming source in the application
input configuration.

Contents

ResourceARN
Amazon Resource Name (ARN) of the Amazon Kinesis stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]*:\d{12}:[a-zA-
Z_0-9+=,.@\-_/:]+

Required: No

RoleARN
ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: No

155

Amazon Kinesis Analytics Developer Guide
KinesisStreamsInputUpdate

KinesisStreamsInputUpdate
When updating application input configuration, provides information about an Amazon Kinesis stream
as the streaming source.

Contents

ResourceARNUpdate
Amazon Resource Name (ARN) of the input Amazon Kinesis stream to read.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]*:\d{12}:[a-zA-
Z_0-9+=,.@\-_/:]+

Required: No

RoleARNUpdate
ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream on your
behalf. You need to grant the necessary permissions to this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: No

156

Amazon Kinesis Analytics Developer Guide
KinesisStreamsOutput

KinesisStreamsOutput
When configuring application output, identifies a Amazon Kinesis stream as the destination. You
provide the stream Amazon Resource Name (ARN) and also an IAM role ARN that Amazon Kinesis
Analytics can use to write to the stream on your behalf.

Contents

ResourceARN
ARN of the destination Amazon Kinesis stream to write to.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]*:\d{12}:[a-zA-
Z_0-9+=,.@\-_/:]+

Required: Yes

RoleARN
ARN of the IAM role that Amazon Kinesis Analytics can assume to write to the destination stream
on your behalf. You need to grant the necessary permissions to this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: Yes

157

Amazon Kinesis Analytics Developer Guide
KinesisStreamsOutputDescription

KinesisStreamsOutputDescription
For an application output, describes the Amazon Kinesis stream configured as its destination.

Contents

ResourceARN
Amazon Resource Name (ARN) of the Amazon Kinesis stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]*:\d{12}:[a-zA-
Z_0-9+=,.@\-_/:]+

Required: No

RoleARN
ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: No

158

Amazon Kinesis Analytics Developer Guide
KinesisStreamsOutputUpdate

KinesisStreamsOutputUpdate
When updating an output configuration using the UpdateApplication (p. 128) operation, provides
information about an Amazon Kinesis stream configured as the destination.

Contents

ResourceARNUpdate
Amazon Resource Name (ARN) of the Amazon Kinesis stream where you want to write the output.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]+:[a-zA-Z0-9\-]*:\d{12}:[a-zA-
Z_0-9+=,.@\-_/:]+

Required: No

RoleARNUpdate
ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream on your
behalf. You need to grant the necessary permissions to this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: No

159

Amazon Kinesis Analytics Developer Guide
MappingParameters

MappingParameters
When configuring application input at the time of creating or updating an application, provides
additional mapping information specific to the record format (such as JSON, CSV, or record fields
delimited by some delimiter) on the streaming source.

Contents

CSVMappingParameters
Provides additional mapping information when the record format uses delimiters (for example,
CSV).

Type: CSVMappingParameters (p. 136) object

Required: No

JSONMappingParameters
Provides additional mapping information when JSON is the record format on the streaming source.

Type: JSONMappingParameters (p. 147) object

Required: No

160

Amazon Kinesis Analytics Developer Guide
Output

Output
Describes application output configuration in which you identify an in-application stream and a
destination where you want the in-application stream data to be written. The destination can be an
Amazon Kinesis stream or an Amazon Kinesis Firehose delivery stream.

For limits on how many destinations an application can write and other limitations, see Limits.

Contents

DestinationSchema
Describes the data format when records are written to the destination. For more information, see
Configuring Application Output.

Type: DestinationSchema (p. 137) object

Required: Yes

KinesisFirehoseOutput
Identifies an Amazon Kinesis Firehose delivery stream as the destination.

Type: KinesisFirehoseOutput (p. 151) object

Required: No

KinesisStreamsOutput
Identifies an Amazon Kinesis stream as the destination.

Type: KinesisStreamsOutput (p. 157) object

Required: No

Name
Name of the in-application stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: [a-zA-Z][a-zA-Z0-9_]+

Required: Yes

161

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-output.html

Amazon Kinesis Analytics Developer Guide
OutputDescription

OutputDescription
Describes the application output configuration, which includes the in-application stream name and the
destination where the stream data is written. The destination can be an Amazon Kinesis stream or an
Amazon Kinesis Firehose delivery stream.

Contents

DestinationSchema
Data format used for writing data to the destination.

Type: DestinationSchema (p. 137) object

Required: No

KinesisFirehoseOutputDescription
Describes the Amazon Kinesis Firehose delivery stream configured as the destination where
output is written.

Type: KinesisFirehoseOutputDescription (p. 152) object

Required: No

KinesisStreamsOutputDescription
Describes Amazon Kinesis stream configured as the destination where output is written.

Type: KinesisStreamsOutputDescription (p. 158) object

Required: No

Name
Name of the in-application stream configured as output.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: [a-zA-Z][a-zA-Z0-9_]+

Required: No

OutputId
A unique identifier for the output configuration.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: No

162

Amazon Kinesis Analytics Developer Guide
OutputUpdate

OutputUpdate
Describes updates to the output configuration identified by the OutputId.

Contents

DestinationSchemaUpdate
Describes the data format when records are written to the destination. For more information, see
Configuring Application Output.

Type: DestinationSchema (p. 137) object

Required: No

KinesisFirehoseOutputUpdate
Describes a Amazon Kinesis Firehose delivery stream as the destination for the output.

Type: KinesisFirehoseOutputUpdate (p. 153) object

Required: No

KinesisStreamsOutputUpdate
Describes an Amazon Kinesis stream as the destination for the output.

Type: KinesisStreamsOutputUpdate (p. 159) object

Required: No

NameUpdate
If you want to specify a different in-application stream for this output configuration, use this field to
specify the new in-application stream name.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: [a-zA-Z][a-zA-Z0-9_]+

Required: No

OutputId
Identifies the specific output configuration that you want to update.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

163

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-output.html

Amazon Kinesis Analytics Developer Guide
RecordColumn

RecordColumn
Describes the mapping of each data element in the streaming source to the corresponding column in
the in-application stream.

Also used to describe the format of the reference data source.

Contents

Mapping
Reference to the data element in the streaming input of the reference data source.

Type: String

Required: No

Name
Name of the column created in the in-application input stream or reference table.

Type: String

Pattern: [a-zA-Z][a-zA-Z0-9_]+

Required: Yes

SqlType
Type of column created in the in-application input stream or reference table.

Type: String

Required: Yes

164

Amazon Kinesis Analytics Developer Guide
RecordFormat

RecordFormat
Describes the record format and relevant mapping information that should be applied to schematize the
records on the stream.

Contents

MappingParameters
When configuring application input at the time of creating or updating an application, provides
additional mapping information specific to the record format (such as JSON, CSV, or record fields
delimited by some delimiter) on the streaming source.

Type: MappingParameters (p. 160) object

Required: No

RecordFormatType
The type of record format.

Type: String

Valid Values: JSON | CSV

Required: Yes

165

Amazon Kinesis Analytics Developer Guide
ReferenceDataSource

ReferenceDataSource
Describes the reference data source by providing the source information (S3 bucket name and object
key name), the resulting in-application table name that is created, and the necessary schema to map
the data elements in the Amazon S3 object to the in-application table.

Contents

ReferenceSchema
Describes the format of the data in the streaming source, and how each data element maps to
corresponding columns created in the in-application stream.

Type: SourceSchema (p. 172) object

Required: Yes

S3ReferenceDataSource
Identifies the S3 bucket and object that contains the reference data. Also identifies the IAM role
Amazon Kinesis Analytics can assume to read this object on your behalf.

An Amazon Kinesis Analytics application loads reference data only once. If the data changes, you
call the UpdateApplication (p. 128) operation to trigger reloading of data into your application.

Type: S3ReferenceDataSource (p. 169) object

Required: No

TableName
Name of the in-application table to create.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: [a-zA-Z][a-zA-Z0-9_]+

Required: Yes

166

Amazon Kinesis Analytics Developer Guide
ReferenceDataSourceDescription

ReferenceDataSourceDescription
Describes the reference data source configured for an application.

Contents

ReferenceId
ID of the reference data source. This is the ID that Amazon Kinesis Analytics
assigns when you add the reference data source to your application using the
AddApplicationReferenceDataSource (p. 106) operation.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

ReferenceSchema
Describes the format of the data in the streaming source, and how each data element maps to
corresponding columns created in the in-application stream.

Type: SourceSchema (p. 172) object

Required: No

S3ReferenceDataSourceDescription
Provides the S3 bucket name, the object key name that contains the reference data. It also
provides the Amazon Resource Name (ARN) of the IAM role that Amazon Kinesis Analytics can
assume to read the Amazon S3 object and populate the in-application reference table.

Type: S3ReferenceDataSourceDescription (p. 170) object

Required: Yes

TableName
The in-application table name created by the specific reference data source configuration.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: [a-zA-Z][a-zA-Z0-9_]+

Required: Yes

167

Amazon Kinesis Analytics Developer Guide
ReferenceDataSourceUpdate

ReferenceDataSourceUpdate
When you update a reference data source configuration for an application, this object provides all the
updated values (such as the source bucket name and object key name), the in-application table name
that is created, and updated mapping information that maps the data in the Amazon S3 object to the in-
application reference table that is created.

Contents

ReferenceId
ID of the reference data source being updated. You can use the DescribeApplication (p. 117)
operation to get this value.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

ReferenceSchemaUpdate
Describes the format of the data in the streaming source, and how each data element maps to
corresponding columns created in the in-application stream.

Type: SourceSchema (p. 172) object

Required: No

S3ReferenceDataSourceUpdate
Describes the S3 bucket name, object key name, and IAM role that Amazon Kinesis Analytics can
assume to read the Amazon S3 object on your behalf and populate the in-application reference
table.

Type: S3ReferenceDataSourceUpdate (p. 171) object

Required: No

TableNameUpdate
In-application table name that is created by this update.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: [a-zA-Z][a-zA-Z0-9_]+

Required: No

168

Amazon Kinesis Analytics Developer Guide
S3ReferenceDataSource

S3ReferenceDataSource
Identifies the S3 bucket and object that contains the reference data. Also identifies the IAM role
Amazon Kinesis Analytics can assume to read this object on your behalf.

An Amazon Kinesis Analytics application loads reference data only once. If the data changes, you call
the UpdateApplication (p. 128) operation to trigger reloading of data into your application.

Contents

BucketARN
Amazon Resource Name (ARN) of the S3 bucket.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

FileKey
Object key name containing reference data.

Type: String

Required: Yes

ReferenceRoleARN
ARN of the IAM role that the service can assume to read data on your behalf. This role must have
permission for the s3:GetObject action on the object and trust policy that allows Amazon Kinesis
Analytics service principal to assume this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: Yes

169

Amazon Kinesis Analytics Developer Guide
S3ReferenceDataSourceDescription

S3ReferenceDataSourceDescription
Provides the bucket name and object key name that stores the reference data.

Contents

BucketARN
Amazon Resource Name (ARN) of the S3 bucket.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

FileKey
Amazon S3 object key name.

Type: String

Required: Yes

ReferenceRoleARN
ARN of the IAM role that Amazon Kinesis Analytics can assume to read the Amazon S3 object on
your behalf to populate the in-application reference table.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: Yes

170

Amazon Kinesis Analytics Developer Guide
S3ReferenceDataSourceUpdate

S3ReferenceDataSourceUpdate
Describes the S3 bucket name, object key name, and IAM role that Amazon Kinesis Analytics can
assume to read the Amazon S3 object on your behalf and populate the in-application reference table.

Contents

BucketARNUpdate
Amazon Resource Name (ARN) of the S3 bucket.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

FileKeyUpdate
Object key name.

Type: String

Required: No

ReferenceRoleARNUpdate
ARN of the IAM role that Amazon Kinesis Analytics can assume to read the Amazon S3 object and
populate the in-application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: No

171

Amazon Kinesis Analytics Developer Guide
SourceSchema

SourceSchema
Describes the format of the data in the streaming source, and how each data element maps to
corresponding columns created in the in-application stream.

Contents

RecordColumns
A list of RecordColumn objects.

Type: array of RecordColumn (p. 164) objects

Array Members: Minimum number of 1 item. Maximum number of 1000 items.

Required: Yes

RecordEncoding
Specifies the encoding of the records in the streaming source. For example, UTF-8.

Type: String

Pattern: UTF-8

Required: No

RecordFormat
Specifies the format of the records on the streaming source.

Type: RecordFormat (p. 165) object

Required: Yes

172

Amazon Kinesis Analytics Developer Guide

Document History for the Amazon
Kinesis Analytics

The following table describes the documentation for this release of Amazon Kinesis Analytics.

• API version: 2015-08-14

• Latest documentation update: August 11, 2016

Change Description Date

Public Release Public release of the Amazon
Kinesis Analytics Developer
Guide.

August 11, 2016

Preview release Preview release of the Amazon
Kinesis Analytics Developer
Guide.

January 29, 2016

173

Amazon Kinesis Analytics Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

174

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon Kinesis Analytics
	Table of Contents
	What Is Amazon Kinesis Analytics?
	When Should I Use Amazon Kinesis Analytics?
	Are You a First-time User of Amazon Kinesis Analytics?

	Amazon Kinesis Analytics: How It Works
	Configuring Application Input
	Configuring a Streaming Source
	Configuring a Reference Source
	Using the Schema Discovery Feature and Related Editing
	Schema Discovery Issues

	Application Code
	Configuring Application Output
	Delivery Model for Persisting Application Output to External Destination

	Error Handling
	Reporting Errors Using an In-Application Error Stream

	Granting Amazon Kinesis Analytics Permissions to Access Streaming Sources (Creating an IAM Role)
	Trust Policy
	Permissions Policy

	Getting Started
	Step 1: Set Up an AWS Account and Create an Administrator User
	Sign up for AWS
	Create an IAM User
	Next Step

	Step 2: Set Up the AWS Command Line Interface (AWS CLI)
	Next Step

	Step 3: Getting Started Exercise (Create an Amazon Kinesis Analytics Application)
	Step 3.1: Create an Application
	Step 3.2: Configure Input
	Step 3.3: Add Real-Time Analytics (Add Application Code)
	Step 3.4: (Optional) Update Application Code
	Step 3.5: (Optional) Configure Output

	Step 4: Console Feature Summary

	Streaming SQL Concepts
	In-Application Streams and Pumps
	Timestamps and the ROWTIME Column
	Understanding Various Times in Streaming Analytics

	Continuous Queries
	Windowed Queries
	Tumbling Windows (Aggregations Using GROUP BY)
	Sliding Windows
	Example 1: Process a Stream Using a One-Minute Sliding Window
	Example 2: Query Applying Aggregates on a Sliding Window
	Example 3: Query Data from Multiple Sliding Windows on the Same Stream

	Streaming Data Operations: Stream Joins
	Example 1: Report Orders Where There Are Trades within One Minute of the Order Being Placed

	Example Amazon Kinesis Analytics Applications
	Examples: Preprocessing Streams
	Example: Manipulating Strings and Date Times
	String Manipulation
	Example: String Manipulation (W3C_LOG_PARSE Function)
	Step 1: Create an Amazon Kinesis Stream
	Step 2: Create the Amazon Kinesis Analytics Application

	Example: String Manipulation (VARIABLE_COLUMN_LOG_PARSE Function)
	Step 1: Create an Amazon Kinesis Stream
	Step 2: Create the Amazon Kinesis Analytics Application

	Example: String Manipulation (SUBSTRING Function)
	Step 1: Create an Amazon Kinesis Stream
	Step 2: Create the Amazon Kinesis Analytics Application

	Date Time Manipulation

	Example: Streaming Source With Multiple Record Types
	Step 1: Prepare
	Step 1.1: Create a Streaming Source
	Step 1.2: Populate the Streaming Source

	Step 2: Create an Application

	Example: Adding Reference Data to an Amazon Kinesis Analytics Application
	Step 1: Prepare
	Prepare: Store Reference Data as S3 Object
	Prepare: Create an IAM Role

	Step 2: Add Reference Data Source to the Application Configuration
	Step 3: Test: Query the In-Application Reference Table

	Examples: Basic Analytics
	Example: Most Frequently Occurring Values (the TOP_K_ITEMS_TUMBLING Function)
	Example: Counting Distinct Values (the COUNT_DISTINCT_ITEMS_TUMBLING function)
	Example: Simple Alerts

	Examples: Advanced Analytics
	Example: Detecting Data Anomalies on a Stream (the RANDOM_CUT_FOREST Function)
	Step 1: Prepare
	Step 1.1: Create Two Amazon Kinesis Streams
	Step 1.2: Write Sample Records to the Input Stream

	Step 2: Create an Application
	Step 3: Configure Application Output
	Step 4: Verify Output

	Example: Using Different Types of Times in Streaming Analytics

	Examples: Post Processing In-Application Stream
	Example: Integrating Amazon Kinesis Analytics with AWS Lambda
	Step 1: Create an Amazon Kinesis Analytics Application
	Step 2: Create an Amazon SNS Topic
	Step 3: Create a Lambda Function
	Step 4: Verify Results

	Examples: Other Amazon Kinesis Analytics Applications
	Example: Explore the In-Application Error Stream
	Introduce Parse Error
	Divide by Zero Error

	Monitoring Amazon Kinesis Analytics
	Monitoring Tools
	Automated Monitoring Tools
	Manual Monitoring Tools

	Monitoring with Amazon CloudWatch
	Amazon Kinesis Analytics Metrics and Dimensions
	Dimensions and Metrics
	Metrics
	Dimensions for Metrics

	Creating CloudWatch Alarms to Monitor Amazon Kinesis Analytics

	Limits
	Best Practices
	Managing Applications
	Defining Input Schema
	Connecting to Outputs
	Authoring Application Code

	Authentication and Access Control for Amazon Kinesis Analytics
	Authentication
	Access Control
	Overview of Managing Access Permissions to Your Amazon Kinesis Analytics Resources
	Amazon Kinesis Analytics Resources and Operations
	Understanding Resource Ownership
	Managing Access to Resources
	Identity-Based Policies (IAM Policies)
	Resource-Based Policies

	Specifying Policy Elements: Actions, Effects, and Principals
	Specifying Conditions in a Policy

	Using Identity-Based Policies (IAM Policies) for Amazon Kinesis Analytics
	Permissions Required to Use the Amazon Kinesis Analytics Console
	AWS Managed (Predefined) Policies for Amazon Kinesis Analytics
	Customer Managed Policy Examples
	Step 1: Create an IAM User
	Step 2: Allow the User Permissions for Actions that Are Not Specific to Amazon Kinesis Analytics
	Step 3: Allow the User to View a List of Applications and View Details
	Step 4: Allow the User to Start a Specific Application
	Step 5: Allow the User to Create an Amazon Kinesis Analytics Application

	Amazon Kinesis Analytics API Permissions: Actions, Permissions, and Resources Reference

	API Reference
	Actions
	AddApplicationInput
	Request Syntax
	Request Parameters
	Response Elements
	Errors

	AddApplicationOutput
	Request Syntax
	Request Parameters
	Response Elements
	Errors

	AddApplicationReferenceDataSource
	Request Syntax
	Request Parameters
	Response Elements
	Errors

	CreateApplication
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors

	DeleteApplication
	Request Syntax
	Request Parameters
	Response Elements
	Errors

	DeleteApplicationOutput
	Request Syntax
	Request Parameters
	Response Elements
	Errors

	DeleteApplicationReferenceDataSource
	Request Syntax
	Request Parameters
	Response Elements
	Errors

	DescribeApplication
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors

	DiscoverInputSchema
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors

	ListApplications
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements

	StartApplication
	Request Syntax
	Request Parameters
	Response Elements
	Errors

	StopApplication
	Request Syntax
	Request Parameters
	Response Elements
	Errors

	UpdateApplication
	Request Syntax
	Request Parameters
	Response Elements
	Errors

	Data Types
	ApplicationDetail
	Contents

	ApplicationSummary
	Contents

	ApplicationUpdate
	Contents

	CSVMappingParameters
	Contents

	DestinationSchema
	Contents

	Input
	Contents

	InputConfiguration
	Contents

	InputDescription
	Contents

	InputParallelism
	Contents

	InputParallelismUpdate
	Contents

	InputSchemaUpdate
	Contents

	InputStartingPositionConfiguration
	Contents

	InputUpdate
	Contents

	JSONMappingParameters
	Contents

	KinesisFirehoseInput
	Contents

	KinesisFirehoseInputDescription
	Contents

	KinesisFirehoseInputUpdate
	Contents

	KinesisFirehoseOutput
	Contents

	KinesisFirehoseOutputDescription
	Contents

	KinesisFirehoseOutputUpdate
	Contents

	KinesisStreamsInput
	Contents

	KinesisStreamsInputDescription
	Contents

	KinesisStreamsInputUpdate
	Contents

	KinesisStreamsOutput
	Contents

	KinesisStreamsOutputDescription
	Contents

	KinesisStreamsOutputUpdate
	Contents

	MappingParameters
	Contents

	Output
	Contents

	OutputDescription
	Contents

	OutputUpdate
	Contents

	RecordColumn
	Contents

	RecordFormat
	Contents

	ReferenceDataSource
	Contents

	ReferenceDataSourceDescription
	Contents

	ReferenceDataSourceUpdate
	Contents

	S3ReferenceDataSource
	Contents

	S3ReferenceDataSourceDescription
	Contents

	S3ReferenceDataSourceUpdate
	Contents

	SourceSchema
	Contents

	Document History for the Amazon Kinesis Analytics
	AWS Glossary

