
Amazon EC2 Container Service
Developer Guide

API Version 2014-11-13

Amazon EC2 Container Service Developer Guide

Amazon EC2 Container Service Developer Guide

Amazon EC2 Container Service: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

Amazon EC2 Container Service Developer Guide

Table of Contents
What is Amazon ECS? .. 1

Features of Amazon ECS .. 1
Containers and Images .. 3
Task Definitions .. 3
Tasks and Scheduling ... 4
Clusters ... 4
Container Agent .. 4

How to Get Started with Amazon ECS ... 5
Related Services ... 5
Accessing Amazon ECS .. 6
Pricing ... 7

Setting Up ... 8
Sign Up for AWS .. 8
Create an IAM User .. 9
Create an IAM Role for your Container Instances and Services .. 10
Create a Key Pair ... 10
(Optional) Install the Amazon ECS Command Line Interface (CLI) .. 12

Docker Basics .. 13
Installing Docker ... 13
(Optional) Sign up for a Docker Hub Account .. 14
(Optional) Amazon EC2 Container Registry ... 14
Create a Docker Image and Upload it to Docker Hub .. 15
Next Steps ... 17

Getting Started ... 20
Cleaning Up ... 24

Scale Down Services ... 24
Delete Services ... 25
Deregister Container Instances .. 25
Delete a Cluster .. 25
Delete the AWS CloudFormation Stack .. 26

Clusters ... 27
Cluster Concepts ... 27
Creating a Cluster ... 27
Scaling a Cluster .. 28
Deleting a Cluster ... 29

Container Instances ... 32
Container Instance Concepts .. 32
Container Instance Life Cycle ... 33
Check the Instance Role for your Account .. 34
Container Instance AMIs .. 34

Amazon ECS-optimized AMI ... 34
Launching a Container Instance .. 39
Connect to your Container Instance ... 42
CloudWatch Logs .. 43

CloudWatch Logs IAM Policy .. 43
Installing the CloudWatch Logs Agent .. 44
Configuring and Starting the CloudWatch Logs Agent ... 44
Viewing CloudWatch Logs .. 47
Configuring CloudWatch Logs at Launch with User Data ... 48

Managing Container Instances Remotely .. 50
Run Command IAM Policy .. 51
Installing the SSM Agent on the Amazon ECS-optimized AMI ... 51
Using Run Command .. 52

Starting a Task at Container Instance Launch Time .. 53
Deregister Container Instance ... 56

API Version 2014-11-13
iv

Amazon EC2 Container Service Developer Guide

Container Agent .. 58
Installing the Amazon ECS Container Agent .. 58
Container Agent Versions ... 61

Amazon ECS-optimized AMI Container Agent Versions ... 61
Updating the Amazon ECS Container Agent .. 63

Checking your Amazon ECS Container Agent Version .. 63
Updating the Amazon ECS Container Agent on the Amazon ECS-optimized AMI 65
Manually Updating the Amazon ECS Container Agent (for Non-Amazon ECS-optimized
AMIs) .. 67

Amazon ECS Container Agent Configuration ... 69
Available Parameters ... 70
Storing Container Instance Configuration in Amazon S3 .. 74

Automated Task and Image Cleanup ... 75
Tunable Parameters .. 75
Cleanup Workflow ... 76

Private Registry Authentication .. 76
Authentication Formats ... 76
Enabling Private Registries ... 77

Amazon ECS Container Agent Introspection .. 78
HTTP Proxy Configuration .. 80

Task Definitions .. 82
Application Architecture .. 83
Creating a Task Definition .. 84

Task Definition Template .. 85
Using a Docker Image in a Task Definition ... 87
Task Definition Parameters ... 88

Family ... 89
Task Role .. 89
Network Mode .. 89
Container Definitions .. 89
Volumes ... 101

Using Data Volumes in Tasks ... 102
Using the awslogs Log Driver .. 107

Enabling the awslogs Log Driver on your Container Instances .. 107
Creating Your Log Groups .. 108
Available awslogs Log Driver Options ... 108
Specifying a Log Configuration in your Task Definition ... 109
Viewing awslogs Container Logs in CloudWatch Logs ... 111

Example Task Definitions ... 112
WordPress and MySQL .. 113
awslogs Log Driver .. 114
Amazon ECR Image and Task Definition IAM Role ... 114
Entrypoint with Command ... 115

Deregistering Task Definitions ... 115
Scheduling Tasks .. 117

Running Tasks .. 118
Task Life Cycle ... 119

Services ... 121
Service Concepts .. 121
Service Definition Parameters .. 122
Service Load Balancing .. 124

Load Balancing Concepts ... 126
Check the Service Role for your Account .. 126
Creating a Load Balancer ... 127

Service Auto Scaling .. 134
Service Auto Scaling Required IAM Permissions .. 134
Service Auto Scaling Concepts .. 135
Amazon ECS Console Experience ... 135

API Version 2014-11-13
v

Amazon EC2 Container Service Developer Guide

AWS CLI and SDK Experience .. 136
Tutorial: Service Auto Scaling .. 136

Creating a Service ... 142
Configuring Basic Service Parameters .. 142
(Optional) Configuring Your Service to Use a Load Balancer .. 143
(Optional) Configuring Your Service to Use Service Auto Scaling 145
Review and Create Your Service ... 147

Updating a Service .. 147
Deleting a Service ... 148

Repositories .. 150
Using Amazon ECR Images with Amazon ECS .. 150

CloudWatch Metrics ... 152
Enabling CloudWatch Metrics .. 152
Available Metrics and Dimensions .. 153

Amazon ECS Metrics ... 153
Dimensions for Amazon ECS Metrics ... 154

Cluster Reservation ... 155
Cluster Utilization .. 156
Service Utilization .. 157
Service RUNNING Task Count .. 157
Viewing Amazon ECS Metrics ... 158

Viewing Cluster Metrics in the Amazon ECS Console .. 159
Viewing Service Metrics in the Amazon ECS Console ... 160
Viewing Amazon ECS Metrics in the CloudWatch Console ... 162

Tutorial: Scaling with CloudWatch Alarms ... 162
Prerequisites ... 163
Step 1: Create a CloudWatch Alarm for a Metric .. 163
Step 2: Create a Launch Configuration for an Auto Scaling Group 164
Step 3: Create an Auto Scaling Group for your Cluster .. 166
Step 4: Verify and Test your Auto Scaling Group .. 166
Step 5: Cleaning Up .. 167

IAM Policies, Roles, and Permissions ... 168
Policy Structure ... 169

Policy Syntax .. 169
Actions for Amazon ECS .. 170
Amazon Resource Names for Amazon ECS .. 170
Condition Keys for Amazon ECS ... 171
Testing Permissions ... 172

Supported Resource-Level Permissions .. 173
Creating IAM Policies ... 174
Managed Policies .. 175

Amazon ECS Managed Policies .. 175
Amazon ECR Managed Policies .. 178

Amazon ECS Container Instance IAM Role ... 180
Adding Amazon S3 Read-only Access to your Container Instance Role 182

Amazon ECS Service Scheduler IAM Role .. 182
Amazon ECS Service Auto Scaling IAM Role .. 184
Amazon EC2 Container Service Task Role ... 186
IAM Roles for Tasks .. 186

Benefits of Using IAM Roles for Tasks .. 187
Enabling Task IAM Roles on your Container Instances .. 188
Creating an IAM Role and Policy for your Tasks .. 188
Using a Supported AWS SDK ... 189
Specifying an IAM Role for your Tasks ... 190

Amazon ECS IAM Policy Examples .. 190
Amazon ECS First Run Wizard ... 190
Clusters ... 192
Container Instances ... 194

API Version 2014-11-13
vi

Amazon EC2 Container Service Developer Guide

Task Definitions ... 195
Run Tasks .. 195
Start Tasks ... 196
List and Describe Tasks ... 196
Create Services ... 197
Update Services .. 198

Using the ECS CLI .. 199
Installing the Amazon ECS CLI ... 199
Configuring the Amazon ECS CLI .. 200
Amazon ECS CLI Tutorial ... 201

Step 1: Create your Cluster .. 201
Step 2: Create a Compose File ... 202
Step 3: Deploy the Compose File to a Cluster ... 203
Step 4: View the Running Containers on a Cluster .. 203
Step 5: Scale the Tasks on a Cluster ... 204
Step 6: Create an ECS Service from a Compose File .. 204
Step 7: Clean Up .. 205

ECS CLI Command Line Reference ... 206
ecs-cli .. 206
ecs-cli configure .. 207
ecs-cli up ... 210
ecs-cli down ... 213
ecs-cli scale .. 214
ecs-cli ps .. 215
ecs-cli license ... 216
ecs-cli compose .. 216
ecs-cli compose service .. 219

Using the AWS CLI ... 224
Step 1: (Optional) Create a Cluster .. 224
Step 2: Launch an Instance with the Amazon ECS AMI ... 225
Step 3: List Container Instances .. 226
Step 4: Describe your Container Instance ... 226
Step 5: Register a Task Definition .. 228
Step 6: List Task Definitions ... 229
Step 7: Run a Task ... 230
Step 8: List Tasks ... 231
Step 9: Describe the Running Task .. 231

Service Limits ... 232
CloudTrail Logging ... 233

Amazon ECS Information in CloudTrail ... 233
Understanding Amazon ECS Log File Entries .. 234

Troubleshooting ... 235
Checking Stopped Tasks for Errors .. 235
Service Event Messages .. 237
Troubleshooting Service Load Balancers ... 239
Enabling Docker Debug Output ... 241
Amazon ECS Log File Locations ... 242

Amazon ECS Container Agent Log .. 242
Amazon ECS ecs-init Log .. 242
IAM Roles for Tasks Credential Audit Log ... 242

Amazon ECS Logs Collector ... 243
Agent Introspection Diagnostics ... 244
Docker Diagnostics .. 245

List Docker Containers ... 245
View Docker Logs ... 246
Inspect Docker Containers .. 246

API failures Error Messages ... 247
AWS Glossary .. 249

API Version 2014-11-13
vii

Amazon EC2 Container Service Developer Guide
Features of Amazon ECS

What is Amazon EC2 Container
Service?

Amazon EC2 Container Service (Amazon ECS) is a highly scalable, fast, container management
service that makes it easy to run, stop, and manage Docker containers on a cluster of Amazon Elastic
Compute Cloud (Amazon EC2) instances. Amazon ECS lets you launch and stop container-based
applications with simple API calls, allows you to get the state of your cluster from a centralized service,
and gives you access to many familiar Amazon EC2 features.

You can use Amazon ECS to schedule the placement of containers across your cluster based on your
resource needs, isolation policies, and availability requirements. Amazon ECS eliminates the need for
you to operate your own cluster management and configuration management systems or worry about
scaling your management infrastructure.

Amazon ECS can be used to create a consistent deployment and build experience, manage and scale
batch and Extract-Transform-Load (ETL) workloads, and build sophisticated application architectures
on a microservices model. For more information about Amazon ECS use cases and scenarios, see
Container Use Cases.

AWS Elastic Beanstalk can also be used to rapidly develop, test, and deploy Docker containers
in conjunction with other components of your application infrastructure; however, using Amazon
ECS directly provides more fine-grained control and access to a wider set of use cases. For more
information, see the AWS Elastic Beanstalk Developer Guide.

Features of Amazon ECS
Amazon ECS is a regional service that simplifies running application containers in a highly available
manner across multiple Availability Zones within a region. You can create Amazon ECS clusters within
a new or existing VPC. After a cluster is up and running, you can define task definitions and services
that specify which Docker container images to run across your clusters. Container images are stored in
and pulled from container registries, which may exist within or outside of your AWS infrastructure.

API Version 2014-11-13
1

https://aws.amazon.com/containers/use-cases/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/

Amazon EC2 Container Service Developer Guide
Features of Amazon ECS

API Version 2014-11-13
2

Amazon EC2 Container Service Developer Guide
Containers and Images

The following sections dive into these individual elements of the Amazon ECS architecture in more
detail.

Containers and Images
To deploy applications on Amazon ECS, your application components must be architected to run in
containers. A Docker container is a standardized unit of software development, containing everything
that your software application needs to run: code, runtime, system tools, system libraries, etc.
Containers are created from a read-only template called an image.

Images are typically built from a Dockerfile, a plain text file that specifies all of the components that
are included in the container. These images are then stored in a registry from which they can be
downloaded and run on your container instances. For more information about container technology,
see Docker Basics (p. 13).

Task Definitions
To prepare your application to run on Amazon ECS, you create a task definition. The task definition
is a text file in JSON format that describes one or more containers that form your application. It can
be thought of as a blueprint for your application. Task definitions specify various parameters for your
application, such as which containers to use and the repositories in which they are located, which ports
should be opened on the container instance for your application, and what data volumes should be
used with the containers in the task. For more information about creating task definitions, see Amazon
ECS Task Definitions (p. 82).

The following is an example of a simple task definition containing a single container that runs an Nginx
web server. For a more extended example demonstrating the use of multiple containers in a task
definition, see Example Task Definitions (p. 112).

{
 "family": "webserver",
 "containerDefinitions": [
 {
 "name": "web",
 "image": "nginx",
 "cpu": 99,
 "memory": 100,

API Version 2014-11-13
3

Amazon EC2 Container Service Developer Guide
Tasks and Scheduling

 "portMappings": [{
 "containerPort": 80,
 "hostPort": 80
 }]
 }]
}

Tasks and Scheduling
A task is the instantiation of a task definition on a container instance within your cluster. After you have
created a task definition for your application within Amazon ECS, you can specify the number of tasks
that will run on your cluster.

The Amazon ECS task scheduler is responsible for placing tasks on container instances. There
are several different scheduling options available. For example, you can define a service that runs
and maintains a specified number of tasks simultaneously. For more information about the different
scheduling options available, see Scheduling Amazon ECS Tasks (p. 117).

Clusters
When you run tasks using Amazon ECS, you place them on a cluster, which is a logical grouping of
EC2 instances. Amazon ECS downloads your container images from a registry that you specify, and
runs those images on the container instances within your cluster.

For more information about creating clusters, see Amazon ECS Clusters (p. 27). For more
information about creating container instances, see Amazon ECS Container Instances (p. 32).

Container Agent
The container agent runs on each instance within an Amazon ECS cluster. It sends information about
the instance's current running tasks and resource utilization to Amazon ECS, and starts and stops
tasks whenever it receives a request from Amazon ECS. For more information, see Amazon ECS
Container Agent (p. 58).

API Version 2014-11-13
4

Amazon EC2 Container Service Developer Guide
How to Get Started with Amazon ECS

How to Get Started with Amazon ECS
If you are using Amazon ECS for the first time, the AWS Management Console for Amazon ECS
provides a first-run wizard that steps you through defining a task definition for a web server, configuring
a service, and launching your first cluster. The first-run wizard is highly recommended for users who
have no prior experience with Amazon ECS. For more information, see the Getting Started with
Amazon ECS (p. 20) tutorial.

Alternatively, you can install the AWS Command Line Interface (AWS CLI) to use Amazon ECS. For
more information, see Setting Up with Amazon ECS (p. 8).

Related Services
Amazon ECS can be used in conjunction with the following AWS services:

AWS Identity and Access Management
IAM is a web service that helps you securely control access to AWS resources for your users. Use
IAM to control who can use your AWS resources (authentication) and what resources they can use
in which ways (authorization). In Amazon ECS, IAM can be used to control access at the container
instance level using IAM roles, and at the task level using IAM task roles. For more information,
see Amazon ECS IAM Policies, Roles, and Permissions (p. 168)

Auto Scaling
Auto Scaling is a web service that enables you to automatically launch or terminate EC2 instances
based on user-defined policies, health status checks, and schedules. You can use Auto Scaling
to scale out and scale in the container instances within a cluster in response to a number of

API Version 2014-11-13
5

Amazon EC2 Container Service Developer Guide
Accessing Amazon ECS

metrics. For more information, see Tutorial: Scaling Container Instances with CloudWatch
Alarms (p. 162).

Elastic Load Balancing
Elastic Load Balancing automatically distributes incoming application traffic across multiple
EC2 instances in the cloud. It enables you to achieve greater levels of fault tolerance in your
applications, seamlessly providing the required amount of load balancing capacity needed
to distribute application traffic. You can use Elastic Load Balancing to create an endpoint
that balances traffic across services in a cluster. For more information, see Service Load
Balancing (p. 124).

Amazon EC2 Container Registry
Amazon ECR is a managed AWS Docker registry service that is secure, scalable, and reliable.
Amazon ECR supports private Docker repositories with resource-based permissions using IAM
so that specific users or EC2 instances can access repositories and images. Developers can use
the Docker CLI to push, pull, and manage images. For more information, see the Amazon EC2
Container Registry User Guide.

AWS CloudFormation
AWS CloudFormation gives developers and systems administrators an easy way to create and
manage a collection of related AWS resources, provisioning and updating them in an orderly and
predictable fashion. You can define clusters, task definitions, and services as entities in an AWS
CloudFormation script. For more information, see AWS CloudFormation Template Reference.

Accessing Amazon ECS
You can work with Amazon ECS in any of the following ways:

AWS Management Console
The console is a browser-based interface to manage Amazon ECS resources. For a tutorial that
guides you through the console, see Getting Started with Amazon ECS (p. 20).

AWS command line tools
You can use the AWS command line tools to issue commands at your system's command line
to perform Amazon ECS and AWS tasks; this can be faster and more convenient than using the
console. The command line tools are also useful for building scripts that perform AWS tasks.

AWS provides two sets of command line tools: the AWS Command Line Interface (AWS CLI) and
the AWS Tools for Windows PowerShell. For more information, , see the AWS Command Line
Interface User Guideand AWS Tools for Windows PowerShell User Guide.

Amazon ECS CLI
In addition to using the AWS CLI to access Amazon ECS resources, you can use the Amazon
ECS CLI, which provides high-level commands to simplify creating, updating, and monitoring
clusters and tasks from a local development environment using Docker Compose. For more
information, see Using the Amazon ECS Command Line Interface (p. 199).

AWS SDKs
We also provide SDKs that enable you to access Amazon ECS from a variety of programming
languages. The SDKs automatically take care of tasks such as:

• Cryptographically signing your service requests

• Retrying requests

• Handling error responses

For more information about available SDKs, see Tools for Amazon Web Services.

API Version 2014-11-13
6

http://docs.aws.amazon.com/AmazonECR/latest/userguide/
http://docs.aws.amazon.com/AmazonECR/latest/userguide/
http://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/
http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/powershell/latest/userguide/
http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/powershell/latest/userguide/
http://aws.amazon.com/tools/

Amazon EC2 Container Service Developer Guide
Pricing

Pricing
There is no additional charge for using Amazon ECS beyond the underlying AWS resources used to
host your applications. For more information, see AWS ECS Pricing.

API Version 2014-11-13
7

https://aws.amazon.com/ecs/pricing/

Amazon EC2 Container Service Developer Guide
Sign Up for AWS

Setting Up with Amazon ECS

If you've already signed up for Amazon Web Services (AWS) and have been using Amazon Elastic
Compute Cloud (Amazon EC2), you are close to being able to use Amazon ECS. The set up process
for the two services is very similar, as Amazon ECS uses EC2 instances in the clusters. The following
guide prepares you for launching your first cluster using either the Amazon ECS first-run wizard or the
Amazon ECS Command Line Interface (CLI).

Note
Because Amazon ECS uses many components of Amazon EC2, you use the Amazon EC2
console for many of these steps.

Complete the following tasks to get set up for Amazon ECS. If you have already completed any of
these steps, you may skip them and move on to installing the custom AWS CLI.

1. Sign Up for AWS (p. 8)

2. Create an IAM User (p. 9)

3. Create an IAM Role for your Container Instances and Services (p. 10)

4. Create a Key Pair (p. 10)

5. (Optional) Install the Amazon ECS Command Line Interface (CLI) (p. 12)

Sign Up for AWS
When you sign up for AWS, your AWS account is automatically signed up for all services, including
Amazon EC2 and Amazon ECS. You are charged only for the services that you use.

If you have an AWS account already, skip to the next task. If you don't have an AWS account, use the
following procedure to create one.

To create an AWS account

1. Open http://aws.amazon.com/, and then choose Create an AWS Account.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

Note your AWS account number, because you'll need it for the next task.

API Version 2014-11-13
8

http://aws.amazon.com/

Amazon EC2 Container Service Developer Guide
Create an IAM User

Create an IAM User
Services in AWS, such as Amazon EC2 and Amazon ECS, require that you provide credentials
when you access them, so that the service can determine whether you have permission to access
its resources. The console requires your password. You can create access keys for your AWS
account to access the command line interface or API. However, we don't recommend that you access
AWS using the credentials for your AWS account; we recommend that you use AWS Identity and
Access Management (IAM) instead. Create an IAM user, and then add the user to an IAM group with
administrative permissions or and grant this user administrative permissions. You can then access
AWS using a special URL and the credentials for the IAM user.

If you signed up for AWS but have not created an IAM user for yourself, you can create one using the
IAM console.

To create an IAM user for yourself and add the user to an Administrators group

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Users, and then choose Add user.

3. For User name, type a user name, such as Administrator. The name can consist of letters,
digits, and the following characters: plus (+), equal (=), comma (,), period (.), at (@), underscore
(_), and hyphen (-). The name is not case sensitive and can be a maximum of 64 characters in
length.

4. Select the check box next to AWS Management Console access, select Custom password,
and then type the new user's password in the text box. You can optionally select Require
password reset to force the user to select a new password the next time the user signs in.

5. Choose Next: Permissions.

6. On the Set permissions for user page, choose Add user to group.

7. Choose Create group.

8. In the Create group dialog box, type the name for the new group. The name can consist of letters,
digits, and the following characters: plus (+), equal (=), comma (,), period (.), at (@), underscore
(_), and hyphen (-). The name is not case sensitive and can be a maximum of 128 characters in
length.

9. For Filter, choose Job function.

10. In the policy list, select the check box for AdministratorAccess. Then choose Create group.

11. Back in the list of groups, select the check box for your new group. Choose Refresh if necessary
to see the group in the list.

12. Choose Next: Review to see the list of group memberships to be added to the new user. When
you are ready to proceed, choose Add permissions.

You can use this same process to create more groups and users, and to give your users access to
your AWS account resources. To learn about using policies to restrict users' permissions to specific
AWS resources, go to Access Management and Example Policies for Administering AWS Resources.

To sign in as this new IAM user, sign out of the AWS console, then use the following URL, where
your_aws_account_id is your AWS account number without the hyphens (for example, if your AWS
account number is 1234-5678-9012, your AWS account ID is 123456789012):

https://your_aws_account_id.signin.aws.amazon.com/console/

Enter the IAM user name and password that you just created. When you're signed in, the navigation
bar displays "your_user_name @ your_aws_account_id".

API Version 2014-11-13
9

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/access.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html

Amazon EC2 Container Service Developer Guide
Create an IAM Role for your

Container Instances and Services

If you don't want the URL for your sign-in page to contain your AWS account ID, you can create an
account alias. From the IAM dashboard, choose Create Account Alias and enter an alias, such as
your company name. To sign in after you create an account alias, use the following URL:

https://your_account_alias.signin.aws.amazon.com/console/

To verify the sign-in link for IAM users for your account, open the IAM console and check under IAM
users sign-in link on the dashboard.

For more information about IAM, see the AWS Identity and Access Management User Guide.

Create an IAM Role for your Container Instances
and Services

Before the Amazon ECS agent can register container instance into a cluster, the agent must know
which account credentials to use. You can create an IAM role that allows the agent to know which
account it should register the container instance with. When you launch an instance with the Amazon
ECS-optimized AMI provided by Amazon using this role, the agent automatically registers the container
instance into your default cluster.

The Amazon ECS container agent also makes calls to the Amazon EC2 and Elastic Load Balancing
APIs on your behalf, so container instances can be registered and deregistered with load balancers.
Before you can attach a load balancer to an Amazon ECS service, you must create an IAM role for
your services to use before you start them. This requirement applies to any Amazon ECS service that
you plan to use with a load balancer.

Note
The Amazon ECS instance and service roles are automatically created for you in the console
first run experience, so if you intend to use the Amazon ECS console, you can move ahead
to Create a Key Pair (p. 10). If you do not intend to use the Amazon ECS console, and
instead plan to use the AWS CLI, complete the procedures in Amazon ECS Container
Instance IAM Role (p. 180) and Amazon ECS Service Scheduler IAM Role (p. 182) before
launching container instances or using Elastic Load Balancing load balancers with services.

Create a Key Pair
AWS uses public-key cryptography to secure the login information for your instance. A Linux instance,
such as an Amazon ECS container instance, has no password to use for SSH access; you use a key
pair to log in to your instance securely. You specify the name of the key pair when you launch your
container instance, then provide the private key when you log in using SSH.

If you haven't created a key pair already, you can create one using the Amazon EC2 console. Note that
if you plan to launch instances in multiple regions, you'll need to create a key pair in each region. For
more information about regions, see Regions and Availability Zones in the Amazon EC2 User Guide for
Linux Instances.

To create a key pair

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the navigation bar, select a region for the key pair. You can select any region that's available
to you, regardless of your location: however, key pairs are specific to a region. For example, if you
plan to launch an instance in the US East (N. Virginia) region, you must create a key pair for the
instance in the same region.

API Version 2014-11-13
10

http://docs.aws.amazon.com/IAM/latest/UserGuide/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://console.aws.amazon.com/ec2/

Amazon EC2 Container Service Developer Guide
Create a Key Pair

Note
Amazon ECS is available in the following regions:

Region Name Region

US East (N.
Virginia)

us-east-1

US East (Ohio) us-east-2

US West (N.
California)

us-west-1

US West (Oregon) us-west-2

EU (Ireland) eu-west-1

EU (Frankfurt) eu-central-1

Asia Pacific (Tokyo) ap-northeast-1

Asia Pacific
(Singapore)

ap-southeast-1

Asia Pacific
(Sydney)

ap-southeast-2

3. Choose Key Pairs in the navigation pane.

4. Choose Create Key Pair.

5. Enter a name for the new key pair in the Key pair name field of the Create Key Pair dialog box,
and then choose Create. Choose a name that is easy for you to remember, such as your IAM user
name, followed by -key-pair, plus the region name. For example, me-key-pair-useast1.

6. The private key file is automatically downloaded by your browser. The base file name is the name
you specified as the name of your key pair, and the file name extension is .pem. Save the private
key file in a safe place.

Important
This is the only chance for you to save the private key file. You'll need to provide the
name of your key pair when you launch an instance and the corresponding private key
each time you connect to the instance.

7. If you will use an SSH client on a Mac or Linux computer to connect to your Linux instance, use
the following command to set the permissions of your private key file so that only you can read it.

$ chmod 400 your_user_name-key-pair-region_name.pem

For more information, see Amazon EC2 Key Pairs in the Amazon EC2 User Guide for Linux Instances.

To connect to your instance using your key pair

To connect to your Linux instance from a computer running Mac or Linux, specify the .pem file to your
SSH client with the -i option and the path to your private key. To connect to your Linux instance from
a computer running Windows, you can use either MindTerm or PuTTY. If you plan to use PuTTY, you'll
need to install it and use the following procedure to convert the .pem file to a .ppk file.

(Optional) To prepare to connect to a Linux instance from Windows using PuTTY

1. Download and install PuTTY from http://www.chiark.greenend.org.uk/~sgtatham/putty/. Be sure to
install the entire suite.

API Version 2014-11-13
11

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/

Amazon EC2 Container Service Developer Guide
(Optional) Install the Amazon ECS

Command Line Interface (CLI)

2. Start PuTTYgen (for example, from the Start menu, choose All Programs, PuTTY, and
PuTTYgen).

3. Under Type of key to generate, choose SSH-2 RSA.

4. Choose Load. By default, PuTTYgen displays only files with the extension .ppk. To locate your
.pem file, choose the option to display files of all types.

5. Select the private key file that you created in the previous procedure and choose Open. Choose
OK to dismiss the confirmation dialog box.

6. Choose Save private key. PuTTYgen displays a warning about saving the key without a
passphrase. Choose Yes.

7. Specify the same name for the key that you used for the key pair. PuTTY automatically adds the
.ppk file extension.

(Optional) Install the Amazon ECS Command
Line Interface (CLI)

Note
This step is not required if you use the first-run wizard to create your cluster.

The Amazon EC2 Container Service (Amazon ECS) command line interface (CLI) provides high-level
commands to simplify creating, updating, and monitoring clusters and tasks from a local development
environment. The Amazon ECS CLI supports Docker Compose, a popular open-source tool for
defining and running multi-container applications. For more information about installing and using the
Amazon ECS CLI, see Using the Amazon ECS Command Line Interface (p. 199).

You can also choose to use Amazon ECS through the AWS AWS CLI. However, you will need to
create your VPC and security groups separately, whereas both the Amazon ECS CLI and the first-
run wizard will create this necessary infrastructure for you. For information about installing the AWS
CLI or upgrading it to the latest version, see Installing the AWS Command Line Interface in the AWS
Command Line Interface User Guide.

API Version 2014-11-13
12

https://docs.docker.com/compose/
http://docs.aws.amazon.com/cli/latest/userguide/installing.html

Amazon EC2 Container Service Developer Guide
Installing Docker

Docker Basics

Docker is a technology that allows you to build, run, test, and deploy distributed applications that are
based on Linux containers. Amazon ECS uses Docker images in task definitions to launch containers
on EC2 instances in your clusters. For Amazon ECS product details, featured customer case studies,
and FAQs, see the Amazon EC2 Container Service product detail pages.

The documentation in this guide assumes that readers possess a basic understanding of what Docker
is and how it works. For more information about Docker, see What is Docker? and the Docker User
Guide.

Topics

• Installing Docker (p. 13)

• (Optional) Sign up for a Docker Hub Account (p. 14)

• (Optional) Amazon EC2 Container Registry (p. 14)

• Create a Docker Image and Upload it to Docker Hub (p. 15)

• Next Steps (p. 17)

Installing Docker
Docker is available on many different operating systems, including most modern Linux distributions,
like Ubuntu, and even Mac OSX and Windows. For more information about how to install Docker on
your particular operating system, go to the Docker installation guide.

You don't even need a local development system to use Docker. If you are using Amazon EC2 already,
you can launch an Amazon Linux instance and install Docker to get started.

To install Docker on an Amazon Linux instance

1. Launch an instance with the Amazon Linux AMI. For more information, see Launching an Instance
in the Amazon EC2 User Guide for Linux Instances.

2. Connect to your instance. For more information, see Connect to Your Linux Instance in the
Amazon EC2 User Guide for Linux Instances.

3. Update the installed packages and package cache on your instance.

[ec2-user ~]$ sudo yum update -y

4. Install Docker.

[ec2-user ~]$ sudo yum install -y docker

API Version 2014-11-13
13

http://aws.amazon.com/ecs
http://aws.amazon.com/docker/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/installation/#installation
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-instance.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Amazon EC2 Container Service Developer Guide
(Optional) Sign up for a Docker Hub Account

5. Start the Docker service.

[ec2-user ~]$ sudo service docker start
Starting cgconfig service: [OK]
Starting docker: [OK]

6. Add the ec2-user to the docker group so you can execute Docker commands without using
sudo.

[ec2-user ~]$ sudo usermod -a -G docker ec2-user

7. Log out and log back in again to pick up the new docker group permissions.

8. Verify that the ec2-user can run Docker commands without sudo.

[ec2-user ~]$ docker info
Containers: 2
Images: 24
Storage Driver: devicemapper
 Pool Name: docker-202:1-263460-pool
 Pool Blocksize: 65.54 kB
 Data file: /var/lib/docker/devicemapper/devicemapper/data
 Metadata file: /var/lib/docker/devicemapper/devicemapper/metadata
 Data Space Used: 702.3 MB
 Data Space Total: 107.4 GB
 Metadata Space Used: 1.864 MB
 Metadata Space Total: 2.147 GB
 Library Version: 1.02.89-RHEL6 (2014-09-01)
Execution Driver: native-0.2
Kernel Version: 3.14.27-25.47.amzn1.x86_64
Operating System: Amazon Linux AMI 2014.09

(Optional) Sign up for a Docker Hub Account
Docker uses images that are stored in repositories to launch containers with. The most common
Docker image repository (and the default repository for the Docker daemon) is Docker Hub. Although
you don't need a Docker Hub account to use Amazon ECS or Docker, having a Docker Hub account
gives you the freedom to store your modified Docker images so you can use them in your ECS task
definitions.

For more information about Docker Hub, and to sign up for an account, go to https://hub.docker.com.

Docker Hub offers public and private registries. You can create a private registry on Docker Hub and
configure Private Registry Authentication (p. 76) on your ECS container instances to use your
private images in task definitions.

(Optional) Amazon EC2 Container Registry
Another registry option is Amazon EC2 Container Registry (Amazon ECR). Amazon ECR is a
managed AWS Docker registry service. Customers can use the familiar Docker CLI to push, pull, and
manage images. For Amazon ECR product details, featured customer case studies, and FAQs, see the
Amazon EC2 Container Registry product detail pages. To finish this walkthrough using Amazon ECR,
see Create a Docker Image in the Amazon EC2 Container Registry User Guide.

API Version 2014-11-13
14

https://hub.docker.com
http://aws.amazon.com/ecr
http://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-basics.html#docker_hub_create_upload

Amazon EC2 Container Service Developer Guide
Create a Docker Image and Upload it to Docker Hub

Create a Docker Image and Upload it to Docker
Hub

Amazon ECS task definitions use Docker images to launch containers on the container instances in
your clusters. In this section, you create a Docker image of a simple PHP web application, and test it
on your local system or EC2 instance, and then push the image to your Docker Hub registry so you can
use it in an ECS task definition.

To create a Docker image of a PHP web application

1. Install git and use it to clone the simple PHP application from your GitHub repository onto your
system.

a. Install git.

[ec2-user ~]$ sudo yum install -y git

b. Clone the simple PHP application onto your system.

[ec2-user ~]$ git clone https://github.com/awslabs/ecs-demo-php-
simple-app

2. Change directories to the ecs-demo-php-simple-app folder.

[ec2-user ~]$ cd ecs-demo-php-simple-app

3. Examine the Dockerfile in this folder. A Dockerfile is a manifest that describes the base image to
use for your Docker image and what you want installed and running on it. For more information
about Dockerfiles, go to the Dockerfile Reference.

[ec2-user ecs-demo-php-simple-app]$ cat Dockerfile
FROM ubuntu:12.04

Install dependencies
RUN apt-get update -y
RUN apt-get install -y git curl apache2 php5 libapache2-mod-php5 php5-
mcrypt php5-mysql

Install app
RUN rm -rf /var/www/*
ADD src /var/www

Configure apache
RUN a2enmod rewrite
RUN chown -R www-data:www-data /var/www
ENV APACHE_RUN_USER www-data
ENV APACHE_RUN_GROUP www-data
ENV APACHE_LOG_DIR /var/log/apache2

EXPOSE 80

CMD ["/usr/sbin/apache2", "-D", "FOREGROUND"]

This Dockerfile uses the Ubuntu 12.04 image. The RUN instructions update the package caches,
install some software packages for the web server and PHP support, and then add your PHP

API Version 2014-11-13
15

https://docs.docker.com/engine/reference/builder/

Amazon EC2 Container Service Developer Guide
Create a Docker Image and Upload it to Docker Hub

application to the web server's document root. The EXPOSE instruction exposes port 80 on the
container, and the CMD instruction starts the web server.

4. Build the Docker image from your Dockerfile. Substitute my-dockerhub-username with your
Docker Hub user name.

[ec2-user ecs-demo-php-simple-app]$ docker build -t my-dockerhub-username/
amazon-ecs-sample .

5. Run docker images to verify that the image was created correctly and that the image name
contains a repository that you can push to (in this example, your Docker Hub user name).

[ec2-user ecs-demo-php-simple-app]$ docker images
REPOSITORY TAG IMAGE ID
 CREATED VIRTUAL SIZE
my-dockerhub-username/amazon-ecs-sample latest 43c52559a0a1
 12 minutes ago 258.1 MB
ubuntu 12.04 78cef618c77e
 3 weeks ago 133.7 MB

6. Run the newly built image. The -p 80:80 option maps the exposed port 80 on the container
to port 80 on the host system. For more information about docker run, go to the Docker run
reference.

[ec2-user ecs-demo-php-simple-app]$ docker run -p 80:80 my-dockerhub-
username/amazon-ecs-sample
apache2: Could not reliably determine the server's fully qualified domain
 name, using 172.17.0.2 for ServerName

Note
Output from the Apache web server is displayed in the terminal window. You can ignore
the "Could not reliably determine the server's fully qualified domain
name" message.

7. Open a browser and point to the server that is running Docker and hosting your container.

• If you are using an EC2 instance, this is the Public DNS value for the server, which is the
same address you use to connect to the instance with SSH. Make sure that the security group
for your instance allows inbound traffic on port 80.

• If you are running Docker locally, point your browser to http://localhost/.

• If you are using docker-machine on a Windows or Mac computer, find the IP address of the
VirtualBox VM that is hosting Docker with the docker-machine ip command, substituting
machine-name with the name of the docker machine you are using.

$ docker-machine ip machine-name
192.168.59.103

You should see a web page running the simple PHP app.

API Version 2014-11-13
16

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
http://localhost/

Amazon EC2 Container Service Developer Guide
Next Steps

8. Stop the Docker container by typing Ctrl+c.

Next Steps
After the image push is finished, you can use the my-dockerhub-username/amazon-ecs-sample
image in your Amazon ECS task definitions, which you can use to run tasks with.

To register a task definition with the amazon-ecs-sample image

1. Examine the simple-app-task-def.json file in the ecs-demo-php-simple-app folder.

{
 "family": "console-sample-app",
 "volumes": [
 {
 "name": "my-vol",
 "host": {}
 }
],
 "containerDefinitions": [
 {

API Version 2014-11-13
17

Amazon EC2 Container Service Developer Guide
Next Steps

 "environment": [],
 "name": "simple-app",
 "image": "amazon/amazon-ecs-sample",
 "cpu": 10,
 "memory": 500,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "mountPoints": [
 {
 "sourceVolume": "my-vol",
 "containerPath": "/var/www/my-vol"
 }
],
 "entryPoint": [
 "/usr/sbin/apache2",
 "-D",
 "FOREGROUND"
],
 "essential": true
 },
 {
 "name": "busybox",
 "image": "busybox",
 "cpu": 10,
 "memory": 500,
 "volumesFrom": [
 {
 "sourceContainer": "simple-app"
 }
],
 "entryPoint": [
 "sh",
 "-c"
],
 "command": [
 "/bin/sh -c \"while true; do /bin/date > /var/www/my-vol/
date; sleep 1; done\""
],
 "essential": false
 }
]
}

This task definition JSON file specifies two containers, one of which uses the amazon-ecs-
sample image. By default, this image is pulled from the Amazon Docker Hub repository, but you
can change the amazon repository defined above to your own repository if you want to use the
my-dockerhub-username/amazon-ecs-sample image you pushed earlier.

2. Register a task definition with the simple-app-task-def.json file.

[ec2-user ecs-demo-php-simple-app]$ aws ecs register-task-definition --
cli-input-json file://simple-app-task-def.json

The task definition is registered in the console-sample-app family as defined in the JSON file.

API Version 2014-11-13
18

Amazon EC2 Container Service Developer Guide
Next Steps

To run a task with the console-sample-app task definition

Important
Before you can run tasks in Amazon ECS, you need to launch container instances into your
cluster. For more information about how to set up and launch container instances, see Setting
Up with Amazon ECS (p. 8) and Getting Started with Amazon ECS (p. 20).

• Use the following AWS CLI command to run a task with the console-sample-app task
definition.

[ec2-user ecs-demo-php-simple-app]$ aws ecs run-task --task-definition
 console-sample-app

API Version 2014-11-13
19

Amazon EC2 Container Service Developer Guide

Getting Started with Amazon ECS

Let's get started with Amazon EC2 Container Service (Amazon ECS) by creating a task definition,
scheduling tasks, and configuring a cluster in the Amazon ECS console.

You can optionally create an Amazon EC2 Container Registry (Amazon ECR) image repository and
push an image to it. For more information on Amazon ECR, see the Amazon EC2 Container Registry
User Guide.

The Amazon ECS first run wizard will guide you through the process to get started with Amazon ECS.
The wizard gives you the option of creating a cluster and launching our sample web application, or
if you already have a Docker image you would like to launch in Amazon ECS, you can create a task
definition with that image and use that for your cluster instead.

Important
Before you begin, be sure that you've completed the steps in Setting Up with Amazon
ECS (p. 8) and that your AWS user has the required permissions specified in the Amazon
ECS First Run Wizard (p. 190) IAM policy example.

Choose your Amazon ECS first run wizard configuration options

1. Open the Amazon ECS console first run wizard at https://console.aws.amazon.com/ecs/home#/
firstRun.

2. Select your Amazon ECS first run options.

To create an Amazon ECS cluster and deploy a container application to it, check the top option.
To create an Amazon ECR repository and push an image to it, which you can use in your Amazon
ECS task definitions, check the bottom option. Choose Continue to proceed.

API Version 2014-11-13
20

http://docs.aws.amazon.com/AmazonECR/latest/userguide/
http://docs.aws.amazon.com/AmazonECR/latest/userguide/
https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun

Amazon EC2 Container Service Developer Guide

3. If you've chosen to create an Amazon ECR repository, then complete the next two sections of the
first run wizard, Configure repository and Build, tag, and push Docker image . If you are not
creating an Amazon ECR repository, skip ahead to Create a task definition (p. 21).

Configure repository

A repository is a place that you store Docker images in Amazon ECR. Every time you push or pull an
image from Amazon ECR, you specify the registry and repository location to tell Docker where to push
the image to or where to pull it from.

• For Repository name, enter a unique name for your repository and choose Next step.

Build, tag, and push Docker image

In this section of the wizard, you use the Docker CLI to tag an existing local image (that you have
built from a Dockerfile or pulled from another registry, such as Docker Hub) and then push the tagged
image to your Amazon ECR registry.

1. Retrieve the docker login command that you can use to authenticate your Docker client to your
registry by pasting the aws ecr get-login command from the console into a terminal window.

Note
The get-login command is available in the AWS CLI starting with version 1.9.15. You can
check your AWS CLI version with the aws --version command.

2. Run the docker login command that was returned in the previous step. This command provides
an authorization token that is valid for 12 hours.

Important
When you execute this docker login command, the command string can be visible by
other users on your system in a process list (ps -e) display. Because the docker login
command contains authentication credentials, there is a risk that other users on your
system could view them this way and use them to gain push and pull access to your
repositories. If you are not on a secure system, you should consider this risk and log in
interactively by omitting the -p password option, and then entering the password when
prompted.

3. (Optional) If you have a Dockerfile for the image you want to push, build the image and tag it
for your new repository by pasting the docker build command from the console into a terminal
window (make sure you are in the same directory as your Dockerfile).

4. Tag the image for your Amazon ECR registry and your new repository by pasting the docker
tag command from the console into a terminal window. The console command assumes that
your image was built from a Dockerfile in the previous step; if you did not build your image from a
Dockerfile, replace the first instance of repository:latest with the image ID or image name of
your local image that you want to push.

5. Push the newly tagged image to your Amazon ECR repository by pasting the docker push
command into a terminal window.

6. Choose Done to finish.

Create a task definition

A task definition is like a blue print for your application. Every time you launch a task in Amazon ECS,
you specify a task definition so the service knows which Docker image to use for containers, how many
containers to use in the task, and the resource allocation for each container.

1. Configure your task definition parameters.

The first run wizard comes preloaded with a task definition, and you can see the simple-app
container defined in the console. You can optionally rename the task definition or review and

API Version 2014-11-13
21

Amazon EC2 Container Service Developer Guide

edit the resources used by the container (such as CPU units and memory limits) by choosing the
container name and editing the values shown (CPU units are under the Advanced container
configuration menu). Task definitions created in the first run wizard are limited to a single
container for simplicity's sake. You can create multi-container task definitions later in the Amazon
ECS console.

Note
If you are using an Amazon ECR image in your task definition, be sure to use the full
registry/repository:tag naming for your Amazon ECR images. For example,
aws_account_id.dkr.ecr.region.amazonaws.com/my-web-app:latest.

For more information on what each of these task definition parameters does, see Task Definition
Parameters (p. 88).

2. Choose Next step to continue.

Configure service

In this section of the wizard, you select how you would like to configure the Amazon ECS service that
is created from your task definition. A service launches and maintains a specified number of copies of
the task definition in your cluster. The Amazon ECS sample application is a web-based "Hello World"
style application that is meant to run indefinitely, so by running it as a service, it will restart if the task
becomes unhealthy or unexpectedly stops.

1. In the Service Name field, select a name for your service.

2. In the Desired number of tasks field, enter the number of tasks you would like to launch with your
specified task definition.

Note
If your task definition contains static port mappings, the number of container instances
you launch in the next section of the wizard must be greater than or equal to the number
of tasks specified here.

3. (Optional) You can choose to use an Elastic Load Balancing load balancer with your service.
When a task is launched from a service that is configured to use a load balancer, the container
instance that the task is launched on is registered with the load balancer and traffic from the load
balancer is distributed across the instances in the load balancer.

Important
Elastic Load Balancing load balancers do incur cost while they exist in your AWS
resources. For more information on Elastic Load Balancing pricing, see Elastic Load
Balancing Pricing.

Complete the following steps to use a load balancer with your service.

a. In the Elastic load balancing section, choose the Container name: host port menu, and
then choose simple-app:80. The default values here are set up for the sample application,
but you can configure different listener options for the load balancer. For more information,
see Service Load Balancing (p. 124).

b. In the Service IAM Role section, choose the Select IAM role for service menu, and then
choose an existing Amazon ECS service (ecsServiceRole) role that you have already
created, or click Create new role to create the required IAM role for your service.

4. Review your load balancer settings and click Next Step.

Configure cluster

In this section of the wizard, you name your cluster, and then configure the container instances that
your tasks can be placed on, the address range that you can reach your instances and load balancer
from, and the IAM roles to use with your container instances that let Amazon ECS take care of this
configuration for you.

API Version 2014-11-13
22

http://aws.amazon.com/elasticloadbalancing/pricing/
http://aws.amazon.com/elasticloadbalancing/pricing/

Amazon EC2 Container Service Developer Guide

1. In the Cluster name field, choose a name for your cluster.

2. In the EC2 instance type field, choose the instance type to use for your container instances.
Instance types with more CPU and memory resources can handle more tasks. For more
information on the different instance types, see Amazon EC2 Instances.

3. In the Number of instances field, type the number of Amazon EC2 instances you want to launch
into your cluster for tasks to be placed on. The more instances you have in your cluster, the more
tasks you can place on them. Amazon EC2 instances incur costs while they exist in your AWS
resources. For more information, see Amazon EC2 Pricing.

Note
If you created a service with more than one desired task in it that exposes container ports
on to container instance ports, such as the Amazon ECS sample application, you need
to specify at least that many instances here.

4. Select a key pair name to use with your container instances. This is required for you to log
into your instances with SSH; if you do not specify a key pair here, you cannot connect to your
container instances with SSH. If you do not have a key pair, you can create one in the Amazon
EC2 console at https://console.aws.amazon.com/ec2/.

5. (Optional) In the Security Group section, you can choose a CIDR block that restricts access to
your instances. The default value (Anywhere)allows access from the entire Internet.

6. In the Container instance IAM role section, choose an existing Amazon ECS container instance
(ecsInstanceRole) role that you have already created, or choose Create new role to create the
required IAM role for your container instances.

7. Click Review and Launch to proceed.

Review

1. Review your task definition, task configuration, and cluster configurations and click Launch
Instance & Run Service to finish. You are directed to a Launch Status page that shows the
status of your launch and describes each step of the process (this can take a few minutes to
complete while your Auto Scaling group is created and populated).

2. After the launch is complete, choose View service to view your service in the Amazon ECS
console.

API Version 2014-11-13
23

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/pricing/
https://console.aws.amazon.com/ec2/

Amazon EC2 Container Service Developer Guide
Scale Down Services

Cleaning Up your Amazon ECS
Resources

When you are finished experiment with or using a particular Amazon ECS cluster, you should clean up
the resources associated with it to avoid incurring charges for resources that you are not using.

Some Amazon ECS resources, such as tasks, services, clusters, and container instances, are cleaned
up using the Amazon ECS console. Other resources, such as Amazon EC2 instances, Elastic Load
Balancing load balancers, and Auto Scaling groups, must be cleaned up manually in the Amazon EC2
console or by deleting the AWS CloudFormation stack that created them.

Topics

• Scale Down Services (p. 24)

• Delete Services (p. 25)

• Deregister Container Instances (p. 25)

• Delete a Cluster (p. 25)

• Delete the AWS CloudFormation Stack (p. 26)

Scale Down Services
If your cluster contains any services, you should first scale down the desired count of tasks in these
services to 0 so that Amazon ECS does not try to start new tasks on your container instances while
you are cleaning up. Follow the procedure in Updating a Service (p. 147) and enter 0 in the Number
of tasks field.

Alternatively, you can use the following AWS CLI command to scale down your service. Be sure to
substitute the region name, cluster name, and service name for each service that you are scaling
down.

$ aws --region us-west-2 ecs update-service --cluster default --
service service_name --desired-count 0

API Version 2014-11-13
24

Amazon EC2 Container Service Developer Guide
Delete Services

Delete Services
Before you can delete a cluster, you must delete the services inside that cluster. After your service has
scaled down to 0 tasks, you can delete it. For each service inside your cluster, follow the procedures in
Deleting a Service (p. 148) to delete it.

Alternatively, you can use the following AWS CLI command to delete your services. Be sure to
substitute the region name, cluster name, and service name for each service that you are deleting.

$ aws --region us-west-2 ecs delete-service --cluster default --
service service_name

Deregister Container Instances
Before you can delete a cluster, you must deregister the container instances inside that cluster.
For each container instance inside your cluster, follow the procedures in Deregister a Container
Instance (p. 56) to deregister it.

Alternatively, you can use the following AWS CLI command to deregister your container instances. Be
sure to substitute the region name, cluster name, and container instance ID for each container instance
that you are deregistering.

$ aws --region us-west-2 ecs deregister-container-instance --cluster default
 --container-instance container_instance_id --force

Delete a Cluster
After you have removed the active resources from your Amazon ECS cluster, you can delete it. Use
the following procedure to delete your cluster.

To delete a cluster

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, select the region that your cluster is in.

3. In the navigation pane, select Clusters.

4. On the Clusters page, click the x in the upper-right-hand corner of the cluster you want to delete.

API Version 2014-11-13
25

https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Developer Guide
Delete the AWS CloudFormation Stack

5. Choose Yes, Delete to delete the cluster.

Alternatively, you can use the following AWS CLI command to delete your cluster. Be sure to substitute
the region name and cluster name for each cluster that you are deleting.

$ aws --region us-west-2 ecs delete-cluster --cluster default

Delete the AWS CloudFormation Stack
If you created your Amazon ECS resources by following the console first-run wizard, then your
resources are contained in a AWS CloudFormation stack. You can completely clean up all of
your remaining AWS resources that are associated with this stack by deleting it. Deleting the
CloudFormation stack terminates the EC2 instances, removes the Auto Scaling group, deletes any
Elastic Load Balancing load balancers, and removes the Amazon VPC subnets and Internet gateway
associated with the cluster.

To delete the AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation/.

2. From the navigation bar, select the region that your cluster was created in.

3. Select the stack that is associated with your Amazon ECS resources. The Stack Name value
starts with EC2ContainerService-default.

4. Choose Delete Stack and then choose Yes, Delete to delete your stack resources.

API Version 2014-11-13
26

https://console.aws.amazon.com/cloudformation/

Amazon EC2 Container Service Developer Guide
Cluster Concepts

Amazon ECS Clusters

An Amazon EC2 Container Service (Amazon ECS) cluster is a logical grouping of container instances
that you can place tasks on. When you first use the Amazon ECS service, a default cluster is created
for you, but you can create multiple clusters in an account to keep your resources separate.

Topics

• Cluster Concepts (p. 27)

• Creating a Cluster (p. 27)

• Scaling a Cluster (p. 28)

• Deleting a Cluster (p. 29)

Cluster Concepts
• Clusters can contain multiple different container instance types.

• Clusters are region-specific.

• Container instances can only be a part of one cluster at a time.

• You can create custom IAM policies for your clusters to allow or restrict users' access to specific
clusters. For more information, see the Clusters (p. 192) section in Amazon ECS IAM Policy
Examples (p. 190).

Creating a Cluster
You can create a Amazon ECS cluster using the AWS Management Console, as described in
this topic. Before you begin, be sure that you've completed the steps in Setting Up with Amazon
ECS (p. 8). After you've created your cluster, you can register container instances into it and run tasks
and services.

To create a cluster

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

API Version 2014-11-13
27

https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Developer Guide
Scaling a Cluster

2. From the navigation bar, select the region to use.

Note
Amazon ECS is available in the following regions:

Region Name Region

US East (N.
Virginia)

us-east-1

US East (Ohio) us-east-2

US West (N.
California)

us-west-1

US West (Oregon) us-west-2

EU (Ireland) eu-west-1

EU (Frankfurt) eu-central-1

Asia Pacific (Tokyo) ap-northeast-1

Asia Pacific
(Singapore)

ap-southeast-1

Asia Pacific
(Sydney)

ap-southeast-2

3. In the navigation pane, choose Clusters.

4. On the Clusters page, select Create Cluster.

5. In the Cluster name field, enter a name for your cluster. Up to 255 letters (uppercase and
lowercase), numbers, hyphens, and underscores are allowed.

6. Choose Create to create your cluster.

Scaling a Cluster
If your cluster was created with the console first-run experience described in Getting Started with
Amazon ECS (p. 20) after November 24th, 2015, then the Auto Scaling group associated with the AWS
CloudFormation stack created for your cluster can be scaled up or down to add or remove container
instances. You can perform this scaling operation from within the Amazon ECS console.

If your cluster was not created with the console first-run experience described in Getting Started with
Amazon ECS (p. 20) after November 24th, 2015, then you cannot scale your cluster from the Amazon
ECS console. However, you can still modify existing Auto Scaling groups associated with your cluster
in the Auto Scaling console. If you do not have an Auto Scaling group associated with your cluster,
you can manually launch or terminate container instances from the Amazon EC2 console; for more
information see Launching an Amazon ECS Container Instance (p. 39).

To scale a cluster

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, choose the region that your cluster exists in.

3. In the navigation pane, choose Clusters.

4. Choose the cluster that you want to scale.

5. On the Cluster : name page, choose the ECS Instances tab.

API Version 2014-11-13
28

https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Developer Guide
Deleting a Cluster

If a Scale ECS Instances button appears, then you can scale your cluster in the next step. If not,
you must manually adjust your Auto Scaling group to scale up or down your instances, or you can
manually launch or terminate your container instances in the Amazon EC2 console.

6. Choose Scale ECS Instances.

7. In the Desired number of instances field, enter the number of instances you wish to scale your
cluster to and choose Scale.

Note
If you reduce the number of container instances in your cluster, any tasks that are running
on terminated instances are stopped.

Deleting a Cluster
If you are finished using a cluster, you can delete it. When you delete a cluster in the Amazon ECS
console, the associated resources that are deleted with it vary depending on how the cluster was
created. Step 5 (p. 30) of the following procedure changes based on that condition.

If your cluster was created with the console first-run experience described in Getting Started with
Amazon ECS (p. 20) after November 24th, 2015, then the AWS CloudFormation stack that was
created for your cluster is also deleted when you delete your cluster.

If your cluster was created manually or with the console first run experience prior to November 24th,
2015, then you must deregister (or terminate) any container instances associated with the cluster
before you can delete it. For more information, see Deregister a Container Instance (p. 56). In
this case, after the cluster is deleted, you should delete any remaining AWS CloudFormation stack
resources or Auto Scaling groups associated with the cluster to avoid incurring any future charges for
those resources. For more information, see Delete the AWS CloudFormation Stack (p. 26).

API Version 2014-11-13
29

Amazon EC2 Container Service Developer Guide
Deleting a Cluster

To delete a cluster

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, select the region to use.

Note
Amazon ECS is available in the following regions:

Region Name Region

US East (N.
Virginia)

us-east-1

US East (Ohio) us-east-2

US West (N.
California)

us-west-1

US West (Oregon) us-west-2

EU (Ireland) eu-west-1

EU (Frankfurt) eu-central-1

Asia Pacific (Tokyo) ap-northeast-1

Asia Pacific
(Singapore)

ap-southeast-1

Asia Pacific
(Sydney)

ap-southeast-2

3. In the navigation pane, choose Clusters.

4. On the Clusters page, find the cluster you want to delete, and choose the X in the upper-right-
hand corner of the cluster window.

Note
If your cluster has registered container instances, you must deregister or terminate them.
For more information, see Deregister a Container Instance (p. 56).

5. Choose Delete to delete the cluster. You will see one of two confirmation prompts:

• Deleting the cluster also deletes the CloudFormation stack
EC2ContainerService-cluster_name: Deleting this cluster cleans up the associated

API Version 2014-11-13
30

https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Developer Guide
Deleting a Cluster

resources that were created with the cluster, including Auto Scaling groups, VPCs or load
balancers.

• Deleting the cluster does not affect CloudFormation resources...: Deleting this cluster
does not clean up any resources that are associated with the cluster, including Auto Scaling
groups, VPCs or load balancers. Also, any container instances that are registered with
this cluster must be deregistered or terminated before you can delete the cluster; for
more information, see Deregister a Container Instance (p. 56). You can visit the AWS
CloudFormation console at https://console.aws.amazon.com/cloudformation/ to update or
delete any of these resources; for more information, see Delete the AWS CloudFormation
Stack (p. 26).

API Version 2014-11-13
31

https://console.aws.amazon.com/cloudformation/

Amazon EC2 Container Service Developer Guide
Container Instance Concepts

Amazon ECS Container Instances

An Amazon EC2 Container Service (Amazon ECS) container instance is an Amazon EC2 instance
that is running the Amazon ECS container agent and has been registered into a cluster. When you run
tasks with Amazon ECS, your tasks are placed on your active container instances.

Topics

• Container Instance Concepts (p. 32)

• Container Instance Life Cycle (p. 33)

• Check the Instance Role for your Account (p. 34)

• Container Instance AMIs (p. 34)

• Launching an Amazon ECS Container Instance (p. 39)

• Connect to your Container Instance (p. 42)

• Using CloudWatch Logs with Container Instances (p. 43)

• Managing Container Instances Remotely (p. 50)

• Starting a Task at Container Instance Launch Time (p. 53)

• Deregister a Container Instance (p. 56)

Container Instance Concepts
• Your container instance must be running the Amazon ECS container agent to register into one of

your clusters. If you are using the Amazon ECS-optimized AMI, the agent is already installed. If you
want to use a different operating system, you need to install the agent. For more information, see
Amazon ECS Container Agent (p. 58).

• Because the Amazon ECS container agent makes calls to Amazon ECS on your behalf, you need
to launch container instances with an IAM role that authenticates to your account and provides the
required resource permissions. For more information, see Amazon ECS Container Instance IAM
Role (p. 180).

• If any of the containers associated with your tasks require external connectivity, you can map their
network ports to ports on the host Amazon ECS container instance so they are reachable from the

API Version 2014-11-13
32

Amazon EC2 Container Service Developer Guide
Container Instance Life Cycle

Internet. Your container instance security group must allow inbound access to the ports you want
to expose. For more information, see Create a Security Group in the Amazon VPC Getting Started
Guide.

• Amazon ECS strongly recommends launching your container instances inside a VPC, because
Amazon VPC delivers more control over your network and offers more extensive configuration
capabilities. For more information, see Amazon EC2 and Amazon Virtual Private Cloud in the
Amazon EC2 User Guide for Linux Instances.

• Container instances need external network access to communicate with the Amazon ECS service
endpoint, so if your container instances do not have public IP addresses, then they must use network
address translation (NAT) or an HTTP proxy to provide this access. For more information, see NAT
Instances in the Amazon VPC User Guide and HTTP Proxy Configuration (p. 80) in this guide.

• The type of EC2 instance that you choose for your container instances determines the resources
available in your cluster. Amazon EC2 provides different instance types, each with different CPU,
memory, storage, and networking capacity that you can use to run your tasks. For more information,
see Amazon EC2 Instances.

• Because each container instance has unique state information that is stored locally on the container
instance and within Amazon ECS, they should not be deregistered from one cluster and re-
registered into another. To relocate container instance resources, we recommend that you terminate
container instances from one cluster and launch new container instances with the latest Amazon
ECS-optimized AMI in the new cluster. For more information, see Terminate Your Instance in
the Amazon EC2 User Guide for Linux Instances and Launching an Amazon ECS Container
Instance (p. 39).

• Because each container instance has unique state information that is stored locally on the container
instance and within Amazon ECS, you cannot stop a container instance and change its instance
type. Instead, we recommend that you terminate the container instance and launch a new container
instance with the desired instance size and the latest Amazon ECS-optimized AMI in your desired
cluster. For more information, see Terminate Your Instance in the Amazon EC2 User Guide for Linux
Instances and Launching an Amazon ECS Container Instance (p. 39).

Container Instance Life Cycle
When the Amazon ECS container agent registers an instance into your cluster, the container instance
reports its status as ACTIVE and its agent connection status as TRUE. This container instance can
accept run task requests.

If you stop (not terminate) an Amazon ECS container instance, the status remains ACTIVE, but the
agent connection status transitions to FALSE within a few minutes. Any tasks that were running on the
container instance stop. If you start the container instance again, the container agent reconnects with
the Amazon ECS service, and you are able to run tasks on the instance again.

Important
If you stop and start a container instance, or reboot that instance, some older versions of the
Amazon ECS container agent register the instance again without deregistering the original
container instance ID, so Amazon ECS will list more container instances in your cluster than
you actually have. (If you have duplicate container instance IDs for the same Amazon EC2
instance ID, you can safely deregister the duplicates that are listed as ACTIVE with an agent
connection status of FALSE.) This issue is fixed in the current version of the Amazon ECS
container agent. To update to the current version, see Updating the Amazon ECS Container
Agent (p. 63).

If you deregister or terminate a container instance, the container instance status changes to INACTIVE
immediately, and the container instance is no longer reported when you list your container instances.
However, you can still describe the container instance for one hour following termination. After one
hour, the instance description is no longer available.

API Version 2014-11-13
33

http://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/getting-started-create-security-group.html
http://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/
http://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-vpc.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_NAT_Instance.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_NAT_Instance.html
http://aws.amazon.com/ec2/instance-types/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html

Amazon EC2 Container Service Developer Guide
Check the Instance Role for your Account

Check the Instance Role for your Account
The Amazon ECS container agent makes calls to the Amazon ECS APIs on your behalf, so container
instances that run the agent require an IAM policy and role for the service to know that the agent
belongs to you.

In most cases, the Amazon ECS instance role is automatically created for you in the console first-run
experience. You can use the following procedure to check and see if your account already has an
Amazon ECS service role.

To check for the ecsInstanceRole in the IAM console

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Roles.

3. Search the list of roles for ecsInstanceRole. If the role exists, you do not need to create it. If the
role does not exist, follow the procedures in Amazon ECS Container Instance IAM Role (p. 180)
to create the role.

Container Instance AMIs
The basic Amazon EC2 Container Service (Amazon ECS) container instance specification consists of
the following:

Required

• A modern Linux distribution running at least version 3.10 of the Linux kernel.

• The Amazon ECS container agent (preferably the latest version). For more information, see Amazon
ECS Container Agent (p. 58).

• A Docker daemon running at least version 1.5.0, and any Docker runtime dependencies. For more
information, see Check runtime dependencies in the Docker documentation.

Note
For the best experience, we recommend the Docker version that ships with and is
tested with the corresponding Amazon ECS agent version that you are using. For more
information, see Amazon ECS-optimized AMI Container Agent Versions (p. 61).

Recommended

• An initialization and nanny process to run and monitor the Amazon ECS agent. The Amazon ECS-
optimized AMI uses the ecs-init upstart process. For more information, see the ecs-init project
on GitHub.

The Amazon ECS-optimized AMI is preconfigured with these requirements and recommendations, and
we recommend that you use the Amazon ECS-optimized AMI for your container instances unless your
application requires a specific operating system or a Docker version that is not yet available in that
AMI. For more information, see Amazon ECS-optimized AMI (p. 34).

Amazon ECS-optimized AMI
The Amazon ECS-optimized AMI is the recommended AMI for you to use to launch your Amazon
ECS container instances. Although you can create your own container instance AMI that meets the

API Version 2014-11-13
34

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.docker.com/engine/installation/binaries/#check-runtime-dependencies
https://github.com/aws/amazon-ecs-init

Amazon EC2 Container Service Developer Guide
Amazon ECS-optimized AMI

basic specifications outlined in Container Instance AMIs (p. 34), the Amazon ECS-optimized AMI is
preconfigured and tested on Amazon ECS by AWS engineers, and it is the simplest AMI for you to get
started and to get your containers running on AWS quickly.

The current Amazon ECS-optimized AMI (amzn-ami-2016.09.b-amazon-ecs-optimized)
consists of:

• The latest minimal version of the Amazon Linux AMI

• The latest version of the Amazon ECS container agent (1.13.1)

• The recommended version of Docker for the latest Amazon ECS container agent (1.11.2)

• The latest version of the ecs-init package to run and monitor the Amazon ECS agent (1.13.1-1)

How to Launch the Latest Amazon ECS-optimized AMI

The following are several ways that you can launch the latest Amazon ECS-optimized AMI into your
cluster:

• The Amazon ECS console first-run wizard launches your container instances with the latest Amazon
ECS-optimized AMI. For more information, see Getting Started with Amazon ECS (p. 20).

• You can launch your container instances manually in the Amazon EC2 console by following the
procedures in Launching an Amazon ECS Container Instance (p. 39), or by choosing the EC2
console link in the table below that corresponds to your cluster's region.

• Use an AMI ID from the table below that corresponds to your cluster's region with the AWS CLI, the
AWS SDKs, or an AWS CloudFormation template to launch your instances.

The current Amazon ECS-optimized AMI IDs by region are listed below for reference.

Region AMI Name AMI ID EC2 console link

us-east-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-eca289fb Launch instance

us-east-2 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-446f3521 Launch instance

us-west-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-9fadf8ff Launch instance

us-west-2 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-7abc111a Launch instance

eu-west-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-a1491ad2 Launch instance

eu-central-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-54f5303b Launch instance

ap-northeast-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-9cd57ffd Launch instance

API Version 2014-11-13
35

https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#LaunchInstanceWizard:ami=ami-eca289fb
https://console.aws.amazon.com/ec2/v2/home?region=us-east-2#LaunchInstanceWizard:ami=ami-446f3521
https://console.aws.amazon.com/ec2/v2/home?region=us-west-1#LaunchInstanceWizard:ami=ami-9fadf8ff
https://console.aws.amazon.com/ec2/v2/home?region=us-west-2#LaunchInstanceWizard:ami=ami-7abc111a
https://console.aws.amazon.com/ec2/v2/home?region=eu-west-1#LaunchInstanceWizard:ami=ami-a1491ad2
https://console.aws.amazon.com/ec2/v2/home?region=eu-central-1#LaunchInstanceWizard:ami=ami-54f5303b
https://console.aws.amazon.com/ec2/v2/home?region=ap-northeast-1#LaunchInstanceWizard:ami=ami-9cd57ffd

Amazon EC2 Container Service Developer Guide
Amazon ECS-optimized AMI

Region AMI Name AMI ID EC2 console link

ap-southeast-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-a900a3ca Launch instance

ap-southeast-2 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-5781be34 Launch instance

For previous versions of the Amazon ECS-optimized AMI and its corresponding Docker and Amazon
ECS container agent versions, see Amazon ECS-optimized AMI Container Agent Versions (p. 61).

Storage Configuration
By default, the Amazon ECS-optimized AMI ships with 30 GiB of total storage (which you can modify at
launch time to increase or decrease the available storage on your container instance). This storage is
used for the operating system and for Docker images and metadata. The sections below describe the
storage configuration of the Amazon ECS-optimized AMI, based on the AMI version.

Version 2015.09.d and later

Amazon ECS-optimized AMIs from version 2015.09.d and later launch with an 8 GiB volume for the
operating system that is attached at /dev/xvda and mounted as the root of the file system. There is
an additional 22 GiB volume that is attached at /dev/xvdcz that Docker uses for image and metadata
storage. The volume is configured as a Logical Volume Management (LVM) device and it is accessed
directly by Docker via the devicemapper back end. Because the volume is not mounted, you cannot
use standard storage information commands (such as df -h) to determine the available storage.
However, you can use LVM commands and docker info to find the available storage by following the
procedure below. For more information about LVM, see the LVM HOWTO in The Linux Documentation
Project.

The docker-storage-setup utility configures the LVM volume group and logical volume for Docker
when the instance launches. By default, docker-storage-setup creates a volume group called
docker, adds /dev/xvdcz as a physical volume to that group, and then creates a logical volume
called docker-pool that uses 99% of the available storage in the volume group. The remaining 1% of
the available storage is reserved for metadata.

Note
Earlier Amazon ECS-optimized AMI versions (2015.09.d to 2016.03.a) create a logical
volume that uses 40% of the available storage in the volume group. When the logical volume
becomes 60% full, the logical volume is increased in size by 20%.

To determine the available storage for Docker

• You can use the LVM commands, vgs and lvs, or the docker info command to view available
storage for Docker.

Note
The LVM command output displays storage values in GiB (2^30 bytes), and docker info
displays storage values in GB (10^9 bytes).

• You can view the available storage in the volume group with the vgs command. This
command shows the total size of the volume group and the available space in the volume
group that can be used to grow the logical volume. The example below shows a 22 GiB
volume with 204 MiB of free space.

[ec2-user ~]$ sudo vgs
 VG #PV #LV #SN Attr VSize VFree

API Version 2014-11-13
36

https://console.aws.amazon.com/ec2/v2/home?region=ap-southeast-1#LaunchInstanceWizard:ami=ami-a900a3ca
https://console.aws.amazon.com/ec2/v2/home?region=ap-southeast-2#LaunchInstanceWizard:ami=ami-5781be34
http://tldp.org/HOWTO/LVM-HOWTO/

Amazon EC2 Container Service Developer Guide
Amazon ECS-optimized AMI

 docker 1 1 0 wz--n- 22.00g 204.00m

• You can view the available space in the logical volume with the lvs command. The example
below shows a logical volume that is 21.75 GiB in size, and it is 7.63% full. This logical
volume has the ability to grow until there is no more free space in the volume group.

[ec2-user@ ~]$ sudo lvs
 LV VG Attr LSize Pool Origin Data% Meta% Move
 Log Cpy%Sync Convert
 docker-pool docker twi-aot--- 21.75g 7.63 4.96

• The docker info command also provides information about how much data space it is using,
and how much data space is available. However, its available space value is based on the
logical volume size that it is using.

Note
Because docker info displays storage values as GB (10^9 bytes), instead of GiB
(2^30 bytes), the values displayed here look larger for the same amount of storage
displayed with lvs, but the values are equal (23.35 GB = 21.75 GiB).

[ec2-user ~]$ docker info | grep "Data Space"
 Data Space Used: 1.782 GB
 Data Space Total: 23.35 GB
 Data Space Available: 21.57 GB

To extend the Docker logical volume

The easiest way to add storage to your container instances is to terminate the existing instances and
launch new ones with larger data storage volumes. However, if you are unable to do this, you can add
storage to the volume group that Docker uses and extend its logical volume by following these steps.

Note
If your container instance storage is filling up too quickly, there are a few actions that you can
take to reduce this effect:

• (Amazon ECS container agent 1.8.0 and later) Reduce the amount of time
that stopped or exited containers remain on your container instances. The
ECS_ENGINE_TASK_CLEANUP_WAIT_DURATION agent configuration variable sets the
time duration to wait from when a task is stopped until the docker container is removed
(by default, this value is 3 hours). However, as this removes the docker container data,
be aware that if this value is set too low, you may not be able to inspect your stopped
containers or view the logs before they are removed. For more information, see Amazon
ECS Container Agent Configuration (p. 69).

• Remove non-running containers and unused images from your container instances. You
can use the following example commands to manually remove stopped containers and
unused images; however, deleted containers cannot be inspected later, and deleted images
must be pulled again prior to starting new containers from them.

To remove non-running containers, execute the following command on your container
instance:

docker rm $(docker ps -aq)

To remove unused images, execute the following command on your container instance:

docker rmi $(docker images -q)

API Version 2014-11-13
37

Amazon EC2 Container Service Developer Guide
Amazon ECS-optimized AMI

1. Create a new Amazon EBS volume in the same Availability Zone as your container instance. For
more information, see Creating an Amazon EBS Volume in the Amazon EC2 User Guide for Linux
Instances.

2. Attach the volume to your container instance. The default location for the Docker data volume is
/dev/xvdcz. For consistency, attach additional volumes in reverse alphabetical order from that
device name (for example, /dev/xvdcy). For more information, see Attaching an Amazon EBS
Volume to an Instance in the Amazon EC2 User Guide for Linux Instances.

3. Connect to your container instance using SSH. For more information, see Connect to your
Container Instance (p. 42).

4. Check the size of your docker-pool logical volume. The example below shows a logical volume
of 409.19 GiB.

[ec2-user ~]$ sudo lvs
 LV VG Attr LSize Pool Origin Data% Meta% Move Log
 Cpy%Sync Convert
 docker-pool docker twi-aot--- 409.19g 0.16 0.08

5. Check the current available space in your volume group. The example below shows 612.75 GiB in
the VFree column.

[ec2-user ~]$ sudo vgs
 VG #PV #LV #SN Attr VSize VFree
 docker 1 1 0 wz--n- 1024.00g 612.75g

6. Add the new volume to the docker volume group, substituting the device name to which you
attached the new volume. In this example, a 1 TiB volume was previously added and attached to /
dev/xvdcy.

[ec2-user ~]$ sudo vgextend docker /dev/xvdcy
 Physical volume "/dev/sdcy" successfully created
 Volume group "docker" successfully extended

7. Verify that your volume group size has increased with the vgs command. The VFree column
should show the increased storage size. The example below now has 1.6 TiB in the VFree
column, which is 1 TiB larger than it was previously. Your VFree column should be the sum of the
original VFree value and the size of the volume you attached.

[ec2-user ~]$ sudo vgs
 VG #PV #LV #SN Attr VSize VFree
 docker 2 1 0 wz--n- 2.00t 1.60t

8. Extend the docker-pool logical volume with the size of the volume you added earlier. The
command below adds 1024 GiB to the logical volume, which is entered as 1024G.

[ec2-user ~]$ sudo lvextend -L+1024G /dev/docker/docker-pool
 Size of logical volume docker/docker-pool_tdata changed from 409.19 GiB
 (104752 extents) to 1.40 TiB (366896 extents).
 Logical volume docker-pool successfully resized

9. Verify that your logical volume has increased in size.

[ec2-user ~]$ sudo lvs
 LV VG Attr LSize Pool Origin Data% Meta% Move Log
 Cpy%Sync Convert
 docker-pool docker twi-aot--- 1.40t 0.04 0.12

API Version 2014-11-13
38

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-creating-volume.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-attaching-volume.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-attaching-volume.html

Amazon EC2 Container Service Developer Guide
Launching a Container Instance

10. (Optional) Verify that docker info also recognizes the added storage space.

Note
Because docker info displays storage values as GB (10^9 bytes), instead of GiB (2^30
bytes), the values displayed here look larger for the same amount of storage displayed
with lvs, but the values are equal (1.539 TB =1.40 TiB).

[ec2-user ~]$ docker info | grep "Data Space"
 Data Space Used: 109.6 MB
 Data Space Total: 1.539 TB
 Data Space Available: 1.539 TB

Version 2015.09.c and earlier

Amazon ECS-optimized AMIs from version 2015.09.c and earlier launch with a single 30 GiB volume
that is attached at /dev/xvda and mounted as the root of the file system. This volume shares the
operating system and all Docker images and metadata. You can determine the available storage on
your container instance with standard storage information commands (such as df -h).

There is no practical way to add storage (that Docker can use) to instances launched from these AMIs
without stopping them, so if you find that your container instances need more storage than the default
30 GiB, you should terminate each instance and launch another in its place with the latest Amazon
ECS-optimized AMI and a large enough data storage volume.

Launching an Amazon ECS Container Instance
You can launch an Amazon ECS container instance using the AWS Management Console, as
described in this topic. Before you begin, be sure that you've completed the steps in Setting Up with
Amazon ECS (p. 8). After you've launched your instance, you can use it to run tasks.

To launch a container instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the navigation bar, select the region to use.

Note
Amazon ECS is available in the following regions:

Region Name Region

US East (N.
Virginia)

us-east-1

US East (Ohio) us-east-2

US West (N.
California)

us-west-1

US West (Oregon) us-west-2

EU (Ireland) eu-west-1

EU (Frankfurt) eu-central-1

Asia Pacific (Tokyo) ap-northeast-1

API Version 2014-11-13
39

https://console.aws.amazon.com/ec2/

Amazon EC2 Container Service Developer Guide
Launching a Container Instance

Region Name Region

Asia Pacific
(Singapore)

ap-southeast-1

Asia Pacific
(Sydney)

ap-southeast-2

3. From the console dashboard, choose Launch Instance.

4. On the Choose an Amazon Machine Image (AMI) page, choose Community AMIs.

5. Choose an AMI for your container instance. You can choose the Amazon ECS-optimized AMI,
or another operating system, such as CoreOS or Ubuntu. If you do not choose the Amazon
ECS-optimized AMI, you need to follow the procedures in Installing the Amazon ECS Container
Agent (p. 58).

Note
For Amazon ECS-specific CoreOS installation instructions, see https://coreos.com/docs/
running-coreos/cloud-providers/ecs/.

To use the Amazon ECS-optimized AMI, type amazon-ecs-optimized in the Search community
AMIs field and press the Enter key. Choose Select next to the amzn-ami-2016.09.b-amazon-
ecs-optimized AMI. The current Amazon ECS-optimized AMI IDs by region are listed below for
reference.

Region AMI ID

us-east-1 ami-eca289fb

us-east-2 ami-446f3521

us-west-1 ami-9fadf8ff

us-west-2 ami-7abc111a

eu-west-1 ami-a1491ad2

eu-central-1 ami-54f5303b

ap-northeast-1 ami-9cd57ffd

ap-southeast-1 ami-a900a3ca

ap-southeast-2 ami-5781be34

6. On the Choose an Instance Type page, you can select the hardware configuration of your
instance. The t2.micro instance type is selected by default. The instance type that you select
determines the resources available for your tasks to run on.

7. Choose Next: Configure Instance Details.

8. On the Configure Instance Details page, set the Auto-assign Public IP field depending on
whether or not you want your instance to be accessible from the public Internet. If your instance
should be accessible from the Internet, verify that the Auto-assign Public IP field is set to
Enable. If your instance should not be accessible from the Internet, set this field to Disable.

Note
Container instances need external network access to communicate with the Amazon
ECS service endpoint, so if your container instances do not have public IP addresses,
then they must use network address translation (NAT) or an HTTP proxy to provide this
access. For more information, see NAT Instances in the Amazon VPC User Guide and
HTTP Proxy Configuration (p. 80) in this guide.

API Version 2014-11-13
40

https://coreos.com/docs/running-coreos/cloud-providers/ecs/
https://coreos.com/docs/running-coreos/cloud-providers/ecs/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_NAT_Instance.html

Amazon EC2 Container Service Developer Guide
Launching a Container Instance

9. On the Configure Instance Details page, select the ecsInstanceRole IAM role value that you
created for your container instances in Setting Up with Amazon ECS (p. 8).

Important
If you do not launch your container instance with the proper IAM permissions, your
Amazon ECS agent will not connect to your cluster. For more information, see Amazon
ECS Container Instance IAM Role (p. 180).

10. (Optional) Configure your Amazon ECS container instance with user data, such as the agent
environment variables from Amazon ECS Container Agent Configuration (p. 69); Amazon EC2
user data scripts are executed only once, when the instance is first launched.

By default, your container instance launches into your default cluster. If you want to launch into
your own cluster instead of the default, choose the Advanced Details list and paste the following
script into the User data field, replacing your_cluster_name with the name of your cluster.

#!/bin/bash
echo ECS_CLUSTER=your_cluster_name >> /etc/ecs/ecs.config

Or, if you have an ecs.config file in Amazon S3 and have enabled Amazon S3 read-only access
to your container instance role, choose the Advanced Details list and paste the following script
into the User data field, replacing your_bucket_name with the name of your bucket to install the
AWS CLI and write your configuration file at launch time.

Note
For more information about this configuration, see Storing Container Instance
Configuration in Amazon S3 (p. 74).

#!/bin/bash
yum install -y aws-cli
aws s3 cp s3://your_bucket_name/ecs.config /etc/ecs/ecs.config

11. Choose Next: Add Storage.

12. On the Add Storage page, configure the storage for your container instance.

If you are using an Amazon ECS-optimized AMI prior to the 2015.09.d version, your instance has
a single volume that is shared by the operating system and Docker.

If you are using the 2015.09.d or later Amazon ECS-optimized AMI, your instance has two
volumes configured. The Root volume is for the operating system's use, and the second Amazon
EBS volume (attached to /dev/xvdcz) is for Docker's use.

You can optionally increase or decrease the volume sizes for your instance to meet your
application needs.

13. Choose Review and Launch.

14. On the Review Instance Launch page, under Security Groups, you'll see that the wizard created
and selected a security group for you. Instead, select the security group that you created in Setting
Up with Amazon ECS (p. 8) using the following steps:

a. Choose Edit security groups.

b. On the Configure Security Group page, ensure that the Select an existing security group
option is selected.

c. Select the security group you created for your container instance from the list of existing
security groups, and choose Review and Launch.

15. On the Review Instance Launch page, choose Launch.

16. In the Select an existing key pair or create a new key pair dialog box, choose Choose an
existing key pair, then select the key pair that you created when getting set up.

API Version 2014-11-13
41

Amazon EC2 Container Service Developer Guide
Connect to your Container Instance

When you are ready, select the acknowledgment field, and then choose Launch Instances.

17. A confirmation page lets you know that your instance is launching. Choose View Instances to
close the confirmation page and return to the console.

18. On the Instances screen, you can view the status of your instance. It takes a short time for an
instance to launch. When you launch an instance, its initial state is pending. After the instance
starts, its state changes to running, and it receives a public DNS name. (If the Public DNS
column is hidden, choose the Show/Hide icon and select Public DNS.)

Connect to your Container Instance
To perform basic administrative tasks on your instance, such as updating or installing software or
accessing diagnostic logs, you need to connect to the instance using SSH. To connect to your instance
using SSH, your container instances must meet the following prerequisites:

• Your container instances need external network access to connect using SSH, so if your container
instances are running in a private VPC, they need an SSH bastion instance to provide this access.
For more information, see the Securely connect to Linux instances running in a private Amazon VPC
blog post.

• Your container instances must have been launched with a valid Amazon EC2 key pair. Amazon ECS
container instances have no password, and you use a key pair to log in using SSH. If you did not
specify a key pair when you launched your instance, there is no way to connect to the instance.

• SSH uses port 22 for communication. Port 22 must be open in your container instance security group
for you to connect to your instance using SSH.

Note
The Amazon ECS console first-run experience creates a security group for your container
instances without inbound access on port 22. If your container instances were launched
from the console first-run experience, you need to add inbound access to port 22 on the
security group used for those instances. For more information, see Authorizing Network
Access to Your Instances in the Amazon EC2 User Guide for Linux Instances.

To connect to your container instance

1. Find the public IP or DNS address for your container instance.

a. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

b. Select the cluster that hosts your container instance.

c. On the Cluster page, choose ECS Instances.

d. On the Container Instance column, select the container instance to connect to.

e. On the Container Instance page, record the Public IP or Public DNS for your instance.

2. Find the default username for your container instance AMI. The user name for instances launched
with the Amazon ECS-optimized AMI is ec2-user. For Ubuntu AMIs, the default user name is
ubuntu. For CoreOS, the default user name is core.

3. If you are using a Mac or Linux computer, connect to your instance with the following command,
substituting the path to your private key and the public address for your instance:

$ ssh -i /path/to/my-key-pair.pem ec2-
user@ec2-198-51-100-1.compute-1.amazonaws.com

If you are using a Windows computer, see Connecting to Your Linux Instance from Windows Using
PuTTY in the Amazon EC2 User Guide for Linux Instances.

API Version 2014-11-13
42

http://blogs.aws.amazon.com/security/post/Tx3N8GFK85UN1G6/Securely-connect-to-Linux-instances-running-in-a-private-Amazon-VPC
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
https://console.aws.amazon.com/ecs/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html

Amazon EC2 Container Service Developer Guide
CloudWatch Logs

Important
If you experience any issues connecting to your instance, see Troubleshooting
Connecting to Your Instance in the Amazon EC2 User Guide for Linux Instances.

Using CloudWatch Logs with Container Instances
You can configure your container instances to send log information to CloudWatch Logs. This enables
you to view different logs from your container instances in one convenient location. This topic helps you
get started using CloudWatch Logs on your container instances that were launched with the Amazon
ECS-optimized AMI.

To send container logs from your tasks to CloudWatch Logs, see Using the awslogs Log
Driver (p. 107). For more information on CloudWatch Logs, see Monitoring Log Files in the Amazon
CloudWatch User Guide.

Topics

• CloudWatch Logs IAM Policy (p. 43)

• Installing the CloudWatch Logs Agent (p. 44)

• Configuring and Starting the CloudWatch Logs Agent (p. 44)

• Viewing CloudWatch Logs (p. 47)

• Configuring CloudWatch Logs at Launch with User Data (p. 48)

CloudWatch Logs IAM Policy
Before your container instances can send log data to CloudWatch Logs, you must create an IAM policy
to allow your container instances to use the CloudWatch Logs APIs, and then you must attach that
policy to the ecsInstanceRole.

To create the ECS-CloudWatchLogs IAM policy

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Policies.

3. Choose Create Policy.

4. On the Create Policy page, choose Create Your Own Policy.

5. On the Review Policy page, enter the following information and choose Create Policy.

a. In the Policy Name field, enter ECS-CloudWatchLogs.

b. In the Policy Document field, paste the following policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": [

API Version 2014-11-13
43

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon EC2 Container Service Developer Guide
Installing the CloudWatch Logs Agent

 "arn:aws:logs:*:*:*"
]
 }
]
}

To attach the ECS-CloudWatchLogs policy to your ecsInstanceRole

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Roles.

3. Choose ecsInstanceRole. If the role does not exist, follow the procedures in Amazon ECS
Container Instance IAM Role (p. 180) to create the role.

4. Choose the Permissions tab.

5. In the Managed Policies section, choose Attach Policy.

6. In the Filter box, type ECS-CloudWatchLogs to narrow the available policies to attach.

7. Check the box to the left of the ECS-CloudWatchLogs policy and choose Attach Policy.

Installing the CloudWatch Logs Agent
After you have added the ECS-CloudWatchLogs policy to your ecsInstanceRole, you can install
the CloudWatch Logs agent on your container instances.

Note
This procedure was written for the Amazon ECS-optimized AMI, and may not work on other
operating systems. For information on installing the agent on other operating systems, see
Getting Started with CloudWatch Logs in the Amazon CloudWatch User Guide.

To install the CloudWatch Logs agent

• Run the following command to install the CloudWatch Logs agent.

[ec2-user ~]$ sudo yum install -y awslogs

After you have installed the agent, proceed to the next section to configure the agent.

Configuring and Starting the CloudWatch Logs
Agent
The CloudWatch Logs agent configuration file (/etc/awslogs/awslogs.conf) describes the log
files to send to CloudWatch Logs. The agent configuration file's [general] section defines common
configurations that apply to all log streams, and you can add individual log stream sections for each
file on your container instances that you want to monitor. For more information, see CloudWatch Logs
Agent Reference in the Amazon CloudWatch User Guide.

The example configuration file below is configured for the Amazon ECS-optimized AMI, and it provides
log streams for several common log files:

/var/log/dmesg
The message buffer of the Linux kernel.

/var/log/messages
Global system messages.

API Version 2014-11-13
44

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CWL_GettingStarted.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AgentReference.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AgentReference.html

Amazon EC2 Container Service Developer Guide
Configuring and Starting the CloudWatch Logs Agent

/var/log/docker
Docker daemon log messages.

/var/log/ecs/ecs-init.log
Log messages from the ecs-init upstart job.

/var/log/ecs/ecs-agent.log
Log messages from the Amazon ECS container agent.

/var/log/ecs/audit.log
Log messages from the IAM roles for tasks credential provider.

You can use the example file below for your Amazon ECS container instances, but you must substitute
the {cluster} and {container_instance_id} entries with the cluster name and container
instance ID for each container instance so that the log streams are grouped by cluster name and
separate for each individual container instance. The procedure that follows the example configuration
file has steps to replace the cluster name and container instance ID placeholders.

[general]
state_file = /var/lib/awslogs/agent-state

[/var/log/dmesg]
file = /var/log/dmesg
log_group_name = /var/log/dmesg
log_stream_name = {cluster}/{container_instance_id}

[/var/log/messages]
file = /var/log/messages
log_group_name = /var/log/messages
log_stream_name = {cluster}/{container_instance_id}
datetime_format = %b %d %H:%M:%S

[/var/log/docker]
file = /var/log/docker
log_group_name = /var/log/docker
log_stream_name = {cluster}/{container_instance_id}
datetime_format = %Y-%m-%dT%H:%M:%S.%f

[/var/log/ecs/ecs-init.log]
file = /var/log/ecs/ecs-init.log.*
log_group_name = /var/log/ecs/ecs-init.log
log_stream_name = {cluster}/{container_instance_id}
datetime_format = %Y-%m-%dT%H:%M:%SZ

[/var/log/ecs/ecs-agent.log]
file = /var/log/ecs/ecs-agent.log.*
log_group_name = /var/log/ecs/ecs-agent.log
log_stream_name = {cluster}/{container_instance_id}
datetime_format = %Y-%m-%dT%H:%M:%SZ

[/var/log/ecs/audit.log]
file = /var/log/ecs/audit.log.*
log_group_name = /var/log/ecs/audit.log
log_stream_name = {cluster}/{container_instance_id}
datetime_format = %Y-%m-%dT%H:%M:%SZ

To configure the CloudWatch Logs agent

1. Back up the existing CloudWatch Logs agent configuration file.

API Version 2014-11-13
45

Amazon EC2 Container Service Developer Guide
Configuring and Starting the CloudWatch Logs Agent

[ec2-user ~]$ sudo mv /etc/awslogs/awslogs.conf /etc/awslogs/
awslogs.conf.bak

2. Create a blank configuration file.

[ec2-user ~]$ sudo touch /etc/awslogs/awslogs.conf

3. Open the /etc/awslogs/awslogs.conf file with a text editor, and copy the example file above
into it.

4. Install the jq JSON query utility.

[ec2-user ~]$ sudo yum install -y jq

5. Query the Amazon ECS introspection API to find the cluster name and set it to an environment
variable.

[ec2-user ~]$ cluster=$(curl -s http://localhost:51678/v1/metadata | jq -r
 '. | .Cluster')

6. Replace the {cluster} placeholders in the file with the value of the environment variable you set
in the previous step.

[ec2-user ~]$ sudo sed -i -e "s/{cluster}/$cluster/g" /etc/awslogs/
awslogs.conf

7. Query the Amazon ECS introspection API to find the container instance ID and set it to an
environment variable.

[ec2-user ~]$ container_instance_id=$(curl -s http://localhost:51678/v1/
metadata | jq -r '. | .ContainerInstanceArn' | awk -F/ '{print $2}')

8. Replace the {container_instance_id} placeholders in the file with the value of the
environment variable you set in the previous step.

[ec2-user ~]$ sudo sed -i -e "s/{container_instance_id}/
$container_instance_id/g" /etc/awslogs/awslogs.conf

To configure the CloudWatch Logs agent region

By default, the CloudWatch Logs agent sends data to the us-east-1 region. If you would like to send
your data to a different region, such as the region that your cluster is located in, you can set the region
in the /etc/awslogs/awscli.conf file.

1. Open the /etc/awslogs/awscli.conf file with a text editor.

2. In the [default] section, replace us-east-1 with the region where you want to view log data.

3. Save the file and exit your text editor.

To start the CloudWatch Logs agent

1. Start the CloudWatch Logs agent with the following command.

[ec2-user ~]$ sudo service awslogs start

API Version 2014-11-13
46

Amazon EC2 Container Service Developer Guide
Viewing CloudWatch Logs

Starting awslogs: [OK]

2. Use the chkconfig command to ensure that the CloudWatch Logs agent starts at every system
boot.

[ec2-user ~]$ sudo chkconfig awslogs on

Viewing CloudWatch Logs
After you have given your container instance role the proper permissions to send logs to CloudWatch
Logs, and you have configured and started the agent, your container instance should be sending its log
data to CloudWatch Logs. You can view and search these logs in the AWS Management Console.

Note
New instance launches may take a few minutes to send data to CloudWatch Logs.

To view your CloudWatch Logs data

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Choose Logs in the left navigation.

3. You should see the log groups you configured in Configuring and Starting the CloudWatch Logs
Agent (p. 44).

4. Choose a log group that you would like to view.

5. Choose a log stream to view. The streams are identified by the cluster name and container
instance ID that sent the logs.

API Version 2014-11-13
47

https://console.aws.amazon.com/cloudwatch/

Amazon EC2 Container Service Developer Guide
Configuring CloudWatch Logs at Launch with User Data

Configuring CloudWatch Logs at Launch with User
Data
When you launch an Amazon ECS container instance in Amazon EC2, you have the option of passing
user data to the instance that can be used to perform common automated configuration tasks and even
run scripts after the instance starts. You can pass several types of user data to instances, including
shell scripts, cloud-init directives, and Upstart jobs. You can also pass this data into the launch
wizard as plain text, as a file (this is useful for launching instances via the command line tools), or as
base64-encoded text (for API calls).

The example user data block below performs the following tasks:

• Installs the awslogs package, which contains the CloudWatch Logs agent

• Installs the jq JSON query utility

• Writes the configuration file for the CloudWatch Logs agent and configures the region to send data to
(the region that the container instance is located)

• Gets the cluster name and container instance ID after the Amazon ECS container agent starts and
then writes those values to the CloudWatch Logs agent configuration file log streams

• Starts the CloudWatch Logs agent

• Configures the CloudWatch Logs agent to start at every system boot

Content-Type: multipart/mixed; boundary="==BOUNDARY=="
MIME-Version: 1.0

--==BOUNDARY==
MIME-Version: 1.0
Content-Type: text/x-shellscript; charset="us-ascii"
#!/bin/bash
Install awslogs and the jq JSON parser
yum install -y awslogs jq

API Version 2014-11-13
48

Amazon EC2 Container Service Developer Guide
Configuring CloudWatch Logs at Launch with User Data

Inject the CloudWatch Logs configuration file contents
cat > /etc/awslogs/awslogs.conf <<- EOF
[general]
state_file = /var/lib/awslogs/agent-state

[/var/log/dmesg]
file = /var/log/dmesg
log_group_name = /var/log/dmesg
log_stream_name = {cluster}/{container_instance_id}

[/var/log/messages]
file = /var/log/messages
log_group_name = /var/log/messages
log_stream_name = {cluster}/{container_instance_id}
datetime_format = %b %d %H:%M:%S

[/var/log/docker]
file = /var/log/docker
log_group_name = /var/log/docker
log_stream_name = {cluster}/{container_instance_id}
datetime_format = %Y-%m-%dT%H:%M:%S.%f

[/var/log/ecs/ecs-init.log]
file = /var/log/ecs/ecs-init.log.*
log_group_name = /var/log/ecs/ecs-init.log
log_stream_name = {cluster}/{container_instance_id}
datetime_format = %Y-%m-%dT%H:%M:%SZ

[/var/log/ecs/ecs-agent.log]
file = /var/log/ecs/ecs-agent.log.*
log_group_name = /var/log/ecs/ecs-agent.log
log_stream_name = {cluster}/{container_instance_id}
datetime_format = %Y-%m-%dT%H:%M:%SZ

[/var/log/ecs/audit.log]
file = /var/log/ecs/audit.log.*
log_group_name = /var/log/ecs/audit.log
log_stream_name = {cluster}/{container_instance_id}
datetime_format = %Y-%m-%dT%H:%M:%SZ

EOF

--==BOUNDARY==
MIME-Version: 1.0
Content-Type: text/x-shellscript; charset="us-ascii"
#!/bin/bash
Set the region to send CloudWatch Logs data to (the region where the
 container instance is located)
region=$(curl 169.254.169.254/latest/meta-data/placement/availability-zone |
 sed s'/.$//')
sed -i -e "s/region = us-east-1/region = $region/g" /etc/awslogs/awscli.conf

--==BOUNDARY==
MIME-Version: 1.0
Content-Type: text/upstart-job; charset="us-ascii"

#upstart-job
description "Configure and start CloudWatch Logs agent on Amazon ECS
 container instance"

API Version 2014-11-13
49

Amazon EC2 Container Service Developer Guide
Managing Container Instances Remotely

author "Amazon Web Services"
start on started ecs

script
 exec 2>>/var/log/ecs/cloudwatch-logs-start.log
 set -x

 until curl -s http://localhost:51678/v1/metadata
 do
 sleep 1
 done

 # Grab the cluster and container instance ARN from instance metadata
 cluster=$(curl -s http://localhost:51678/v1/metadata | jq -r '. | .Cluster')
 container_instance_id=$(curl -s http://localhost:51678/v1/metadata | jq -r
 '. | .ContainerInstanceArn' | awk -F/ '{print $2}')

 # Replace the cluster name and container instance ID placeholders with the
 actual values
 sed -i -e "s/{cluster}/$cluster/g" /etc/awslogs/awslogs.conf
 sed -i -e "s/{container_instance_id}/$container_instance_id/g" /etc/awslogs/
awslogs.conf

 service awslogs start
 chkconfig awslogs on
end script
--==BOUNDARY==--

If you have created the ECS-CloudWatchLogs policy and attached it to your ecsInstanceRole
as described in CloudWatch Logs IAM Policy (p. 43), then you can add the above user data block
to any container instances that you launch manually, or you can add it to an Auto Scaling launch
configuration, and your container instances that are launched with this user data will begin sending
their log data to CloudWatch Logs as soon as they launch. For more information, see Launching an
Amazon ECS Container Instance (p. 39).

Managing Container Instances Remotely
You can use the Amazon EC2 Run Command feature to securely and remotely manage the
configuration of your Amazon ECS container instances. Run Command provides a simple way of
performing common administrative tasks without having to log on locally to the instance. You can
manage configuration changes across your clusters by simultaneously executing commands on
multiple container instances. Run Command reports the status and results of each command.

Here are some examples of the types of tasks you can perform with Run Command:

• Install or uninstall packages

• Perform security updates

• Clean up Docker images

• Stop or start services

• View system resources

• View log files

• Perform file operations

API Version 2014-11-13
50

Amazon EC2 Container Service Developer Guide
Run Command IAM Policy

This topic covers basic installation of Run Command on the Amazon ECS-optimized AMI and a few
simple use cases, but it is by no means exhaustive. For more information about Run Command, see
Manage Amazon EC2 Instances Remotely in the Amazon EC2 User Guide for Linux Instances.

Topics

• Run Command IAM Policy (p. 51)

• Installing the SSM Agent on the Amazon ECS-optimized AMI (p. 51)

• Using Run Command (p. 52)

Run Command IAM Policy
Before you can send commands to your container instances with Run Command, you must attach
an IAM policy that allows access to the Amazon EC2 Simple Systems Manager (SSM) APIs to the
ecsInstanceRole. The procedure below describes how to attach the AmazonEC2RoleforSSM
managed policy to your container instance role so that instances launched with this role can use Run
Command.

To attach the AmazonEC2RoleforSSM policy to your ecsInstanceRole

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Roles.

3. Choose ecsInstanceRole. If the role does not exist, follow the procedures in Amazon ECS
Container Instance IAM Role (p. 180) to create the role.

4. Choose the Permissions tab.

5. In the Managed Policies section, choose Attach Policy.

6. For Filter, type AmazonEC2RoleforSSM to narrow the available policies to attach.

7. Select the check box for AmazonEC2RoleforSSM policy and choose Attach Policy.

Installing the SSM Agent on the Amazon ECS-
optimized AMI
After you have attached the AmazonEC2RoleforSSM policy to your ecsInstanceRole, you can
install the SSM agent on your container instances. The SSM agent processes Run Command requests
and configures the instances that are specified in the request. Use the following procedures to install
the SSM agent on your Amazon ECS-optimized AMI container instances.

To manually install the SSM agent on existing Amazon ECS-optimized AMI container
instances

1. Connect to your container instance. (p. 42)

2. Install the SSM agent RPM. The SSM agent is available in all regions that Amazon ECS is
available in, and each region has its own region-specific download URL; the example command
below works for all regions that Amazon ECS supports, but you can avoid cross-region data
transfer costs for the RPM download by substituting the region of your container instance.

[ec2-user ~]$ sudo yum install -y https://amazon-ssm-us-
east-1.s3.amazonaws.com/latest/linux_amd64/amazon-ssm-agent.rpm

API Version 2014-11-13
51

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/execute-remote-commands.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon EC2 Container Service Developer Guide
Using Run Command

To install the SSM agent on new instance launches with Amazon EC2 user data

• Launch one or more container instances by following the procedure in Launching an Amazon ECS
Container Instance (p. 39), but in Step 10 (p. 41), copy and paste the user data script below
into the User data field. You can also add the commands from this user data script to another
existing script that you may have to perform other tasks, such as setting the cluster name for the
instance to register into.

Note
The user data script below installs the jq JSON parser and uses that to determine the
region of the container instance. Then it downloads and installs the SSM agent.

#!/bin/bash
Install JQ JSON parser
yum install -y jq

Get the current region from the instance metadata
region=$(curl -s http://169.254.169.254/latest/dynamic/instance-identity/
document | jq -r .region)

Install the SSM agent RPM
yum install -y https://amazon-ssm-$region.s3.amazonaws.com/latest/
linux_amd64/amazon-ssm-agent.rpm

Using Run Command
After you have attached the AmazonEC2RoleforSSM policy to your ecsInstanceRole, and installed
the SSM agent on your container instances, you can start using Run Command to send commands
to your container instances. The following topics in the Amazon EC2 User Guide for Linux Instances
explain how to run commands and shell scripts on your instances and view the resulting output:

• Running Shell Scripts with Run Command

• Viewing Command Output in the Amazon EC2 Console

For more information about Run Command, see Manage Amazon EC2 Instances Remotely in the
Amazon EC2 User Guide for Linux Instances.

Example: To update container instance software with Run Command

One of the most common use cases for Run Command on Amazon ECS container instances is to
update the instance software on your entire fleet of container instances at once, simultaneously.

1. Attach the AmazonEC2RoleforSSM policy to your ecsInstanceRole. (p. 51)

2. Install the SSM agent on your container instances. For more information, see Installing the SSM
Agent on the Amazon ECS-optimized AMI (p. 51).

3. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

4. In the left navigation, choose Commands.

5. Choose Run a command.

6. For Command document, choose AWS-RunShellScript.

7. In the Target instances section, choose Select instances and check the container instances to
send the update command to.

8. In the Commands section, enter the command or commands to send to your container instances.
In this example, the command below updates the instance software, but you can send any
command that you want.

API Version 2014-11-13
52

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/remote-commands-shellcript.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/output-commands.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/execute-remote-commands.html
https://console.aws.amazon.com/ec2/

Amazon EC2 Container Service Developer Guide
Starting a Task at Container Instance Launch Time

yum update -y

9. Choose Run to send the command to the specified instances.

10. (Optional) Choose View result to see the results of your command.

11. (Optional) Choose a command from the list of recent commands to view the command output.

12. (Optional) Choose the Output tab, and then choose View Output. The image below shows a
snippet of the container instance output for the yum update command.

Note
Unless you configure a command to save the output to an Amazon S3 bucket, then the
command output is truncated at 2500 characters.

Starting a Task at Container Instance Launch
Time

Depending on your application architecture design, you may need to run a specific container on every
container instance to deal with operations or security concerns such as monitoring, security, metrics,
service discovery, or logging.

API Version 2014-11-13
53

Amazon EC2 Container Service Developer Guide
Starting a Task at Container Instance Launch Time

One method you can use to accomplish this goal is to configure your container instances to call the
docker run command with the user data script at launch or in some init system such as Upstart or
systemd. While this works, it has some disadvantages because Amazon ECS has no knowledge of
the container and cannot monitor the CPU, memory, ports, or any other resources used. To ensure
that Amazon ECS can properly account for all task resources, you should create a task definition for
the container you want to run on your container instances, and use Amazon ECS to place the task at
launch time with EC2 user data.

The EC2 user data script in the following procedure uses the Amazon ECS introspection API to identify
the container instance and then it uses the AWS CLI and the start-task command to run a specified
task on itself during start up.

To start a task at container instance launch time

1. If you have not done so already, create a task definition with the container you want to run on your
container instance at launch by following the procedures in Creating a Task Definition (p. 84).

2. Modify your ecsInstanceRole IAM role to add permissions for the StartTask API operation.
For more information, see Amazon ECS Container Instance IAM Role (p. 180).

a. Open the Identity and Access Management (IAM) console at https://
console.aws.amazon.com/iam/.

b. In the navigation pane, choose Roles.

c. Choose the ecsInstanceRole. If the role does not exist, use the procedure in Amazon ECS
Container Instance IAM Role (p. 180) to create the role and return to this procedure. If the
role does exist, select the role to view the attached policies.

d. In the Inline Policies section, choose Create Role Policy.

e. On the Set Permissions page, choose Custom Policy and then choose Select.

f. In the Policy Name field, enter StartTask.

g. In the Policy Document field, copy and paste the following policy and choose Apply Policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:StartTask"
],
 "Resource": "*"
 }
]
}

3. Launch one or more container instances by following the procedure in Launching an Amazon ECS
Container Instance (p. 39), but in Step 10 (p. 41), copy and paste the MIME multipart user
data script below into the User data field, substituting your_cluster_name with the cluster you
want the container instance to register into and my_task_def and the task definition you want to
run on the instance at launch.

Note
The MIME multipart content below uses a shell script to set configuration values and
install packages, and an Upstart job to start the task after the ecs service is running and
the introspection API is available.

Content-Type: multipart/mixed; boundary="==BOUNDARY=="
MIME-Version: 1.0

API Version 2014-11-13
54

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon EC2 Container Service Developer Guide
Starting a Task at Container Instance Launch Time

--==BOUNDARY==
MIME-Version: 1.0
Content-Type: text/text/x-shellscript; charset="us-ascii"

#!/bin/bash
Specify the cluster that the container instance should register into
cluster=your_cluster_name

Write the cluster configuration variable to the ecs.config file
(add any other configuration variables here also)
echo ECS_CLUSTER=$cluster >> /etc/ecs/ecs.config

Install the AWS CLI and the jq JSON parser
yum install -y aws-cli jq
--==BOUNDARY==
MIME-Version: 1.0
Content-Type: text/text/upstart-job; charset="us-ascii"

#upstart-job
description "Amazon EC2 Container Service (start task on instance boot)"
author "Amazon Web Services"
start on started ecs

script
 exec 2>>/var/log/ecs/ecs-start-task.log
 set -x
 until curl -s http://localhost:51678/v1/metadata
 do
 sleep 1
 done

 # Grab the container instance ARN and AWS region from instance metadata
 instance_arn=$(curl -s http://localhost:51678/v1/metadata | jq -r '.
 | .ContainerInstanceArn' | awk -F/ '{print $NF}')
 cluster=$(curl -s http://localhost:51678/v1/metadata | jq -r '.
 | .Cluster' | awk -F/ '{print $NF}')
 region=$(curl -s http://localhost:51678/v1/metadata | jq -r '.
 | .ContainerInstanceArn' | awk -F: '{print $4}')

 # Specify the task definition to run at launch
 task_definition=my_task_def

 # Run the AWS CLI start-task command to start your task on this container
 instance
 aws ecs start-task --cluster $cluster --task-definition $task_definition
 --container-instances $instance_arn --started-by $instance_arn --region
 $region
end script
--==BOUNDARY==--

4. Verify that your container instances launch into the correct cluster and that your tasks have
started.

a. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

b. From the navigation bar, choose the region that your cluster is in.

c. In the navigation pane, choose Clusters.

d. Choose the cluster that hosts your container instances.

e. On the Cluster page, choose the Tasks tab.

API Version 2014-11-13
55

https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Developer Guide
Deregister Container Instance

Each container instance you launched should have your task running on it, and the container
instance ARN should be in the Started By column.

If you do not see your tasks, you can log into your container instances with SSH and check
the /var/log/ecs/ecs-start-task.log file for debugging information.

Deregister a Container Instance
When you are finished with a container instance, you can deregister it from your cluster.

Following deregistration, the container instance is no longer able to accept new tasks. If you have
tasks running on the container instance when you deregister it, these tasks remain running until you
terminate the instance or the tasks stop through some other means, but they are orphaned (no longer
monitored or accounted for by Amazon ECS). If an orphaned task on your container instance is part
of an Amazon ECS service, then the service scheduler starts another copy of that task, on a different
container instance if possible. Any containers in orphaned service tasks that are registered with a
Classic Load Balancer or an Application Load Balancer target group are deregistered, and they will
begin connection draining according to the settings on the load balancer or target group.

If you intend to use the container instance for some other purpose after deregistration, you should stop
all of the tasks running on the container instance before deregistration to avoid any orphaned tasks
from consuming resources.

Important
Because each container instance has unique state information, they should not be
deregistered from one cluster and re-registered into another. To relocate container instance
resources, we recommend that you terminate container instances from one cluster and launch
new container instances with the latest Amazon ECS-optimized AMI in the new cluster. For

API Version 2014-11-13
56

Amazon EC2 Container Service Developer Guide
Deregister Container Instance

more information, see Terminate Your Instance in the Amazon EC2 User Guide for Linux
Instances and Launching an Amazon ECS Container Instance (p. 39).

Deregistering a container instance removes the instance from a cluster, but it does not terminate the
EC2 instance; if you are finished using the instance, be sure to terminate it in the Amazon EC2 console
to stop billing. For more information, see Terminate Your Instance in the Amazon EC2 User Guide for
Linux Instances.

Note
If you terminate a running container instance with a connected Amazon ECS container
agent, the agent automatically deregisters the instance from your cluster (stopped container
instances or instances with disconnected agents are not automatically deregistered when
terminated).

To deregister a container instance

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, choose the region that your container instance is registered in.

3. In the navigation pane, choose Clusters.

4. Choose the cluster that hosts your container instance.

5. On the Cluster : name page, choose the ECS Instances tab.

6. Choose the container instance ID that you want to deregister.

7. On the Container Instance : id page, choose Deregister.

8. Review the deregistration message, and choose Yes, Deregister to deregister the container
instance.

9. If you are finished with the container instance, you should terminate the underlying Amazon EC2
instance. For more information, see Terminate Your Instance in the Amazon EC2 User Guide for
Linux Instances.

Note
If your instance is maintained by an Auto Scaling group or AWS CloudFormation stack,
terminate the instance by updating the Auto Scaling group or AWS CloudFormation stack;
otherwise, the Auto Scaling group will recreate the instance after you terminate it.

API Version 2014-11-13
57

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://console.aws.amazon.com/ecs/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html

Amazon EC2 Container Service Developer Guide
Installing the Amazon ECS Container Agent

Amazon ECS Container Agent

The Amazon ECS container agent allows container instances to connect to your cluster. The Amazon
ECS container agent is included in the Amazon ECS-optimized AMI, but you can also install it on any
EC2 instance that supports the Amazon ECS specification. The Amazon ECS container agent is only
supported on EC2 instances.

Note
The source code for the Amazon ECS container agent is available on GitHub. We encourage
you to submit pull requests for changes that you would like to have included. However,
Amazon Web Services does not currently provide support for running modified copies of this
software.

Topics

• Installing the Amazon ECS Container Agent (p. 58)

• Amazon ECS Container Agent Versions (p. 61)

• Updating the Amazon ECS Container Agent (p. 63)

• Amazon ECS Container Agent Configuration (p. 69)

• Automated Task and Image Cleanup (p. 75)

• Private Registry Authentication (p. 76)

• Amazon ECS Container Agent Introspection (p. 78)

• HTTP Proxy Configuration (p. 80)

Installing the Amazon ECS Container Agent
If your container instance was not launched from an AMI that includes the Amazon ECS container
agent, you can install it using the following procedure.

Note
The Amazon ECS container agent is included in the Amazon ECS-optimized AMI and does
not require installation.

To install the Amazon ECS container agent on an Amazon Linux EC2 Instance

1. Launch an Amazon Linux instance with an IAM role that allows access to Amazon ECS. For more
information, see Amazon ECS Container Instance IAM Role (p. 180).

2. Connect to your instance.

API Version 2014-11-13
58

https://github.com/aws/amazon-ecs-agent

Amazon EC2 Container Service Developer Guide
Installing the Amazon ECS Container Agent

3. Install the ecs-init package. For more information on ecs-init, you can view the source code
on GitHub.

[ec2-user ~]$ sudo yum install -y ecs-init

4. Start the Docker daemon.

[ec2-user ~]$ sudo service docker start
Starting cgconfig service: [OK]
Starting docker: [OK]

5. Start the ecs-init upstart job.

[ec2-user ~]$ sudo start ecs
ecs start/running, process 2804

6. (Optional) You can verify that the agent is running and see some information on your new
container instance with the agent introspection API. For more information, see the section called
“Amazon ECS Container Agent Introspection” (p. 78).

[ec2-user ~]$ curl http://localhost:51678/v1/metadata
{
 "Cluster": "default",
 "ContainerInstanceArn": "<container_instance_ARN>",
 "Version": "Amazon ECS Agent - v1.13.1 (efe53c6)"
}

To install the Amazon ECS container agent on a non-Amazon Linux EC2 instance

1. Launch an EC2 instance with an IAM role that allows access to Amazon ECS. For more
information, see Amazon ECS Container Instance IAM Role (p. 180).

2. Connect to your instance.

3. Install Docker on your instance. Amazon ECS requires a minimum Docker version of 1.5.0
(version 1.11.2 is recommended), and the default Docker versions in many system package
managers, such as yum or apt-get do not meet this minimum requirement. For information
about installing the latest Docker version on your particular Linux distribution, go to https://
docs.docker.com/engine/installation/.

Note
The Amazon Linux AMI always includes the recommended version of Docker for use
with Amazon ECS. You can install Docker on Amazon Linux with the sudo yum install
docker -y command.

4. Check your Docker version to verify that your system meets the minimum version requirement.

ubuntu:~$ sudo docker version
Client version: 1.4.1
Client API version: 1.16
Go version (client): go1.3.3
Git commit (client): 5bc2ff8
OS/Arch (client): linux/amd64
Server version: 1.4.1
Server API version: 1.16
Go version (server): go1.3.3
Git commit (server): 5bc2ff8

API Version 2014-11-13
59

https://github.com/aws/amazon-ecs-init
https://github.com/aws/amazon-ecs-init
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/

Amazon EC2 Container Service Developer Guide
Installing the Amazon ECS Container Agent

In this example, the Docker version is 1.4.1, which is below the minimum version of 1.5.0. This
instance needs to upgrade its Docker version before proceeding. For information about installing
the latest Docker version on your particular Linux distribution, go to https://docs.docker.com/
engine/installation/.

5. Run the following commands on your container instance to enable IAM roles for tasks. For more
information, see IAM Roles for Tasks (p. 186).

sysctl -w net.ipv4.conf.all.route_localnet=1
iptables -t nat -A PREROUTING -p tcp -d 169.254.170.2 --dport 80 -j DNAT
 --to-destination 127.0.0.1:51679
iptables -t nat -A OUTPUT -d 169.254.170.2 -p tcp -m tcp --dport 80 -j
 REDIRECT --to-ports 51679

6. Pull and run the latest Amazon ECS container agent on your container instance.

Note
You should use Docker restart policies or a process manager (such as upstart or
systemd) to treat the container agent as a service or a daemon and ensure that it is
restarted if it exits. For more information, see Automatically start containers and Restart
policies in the Docker documentation. The Amazon ECS-optimized AMI uses the ecs-
init RPM for this purpose, and you can view the source code for this RPM on GitHub.

The following example agent run command is broken into separate lines to show each option.

• The --env=ECS_CLUSTER=cluster_name option is not required if you want to register into
your default cluster.

• You can optionally store your agent environment variables in a file (which can be downloaded
to your container instances from Amazon S3 at launch time using EC2 user data) and pass
them all at one time with the --env-file path_to_env_file option. This is recommended
for sensitive information such as authentication credentials for private repositories. For more
information, see Storing Container Instance Configuration in Amazon S3 (p. 74) and Private
Registry Authentication (p. 76).

• If your task definitions specify log configuration options for a particular log driver, the Amazon
ECS container agent running on your container instances must register the specified log
driver with the ECS_AVAILABLE_LOGGING_DRIVERS environment variable. For example,
to register a container instance with the json-file and awslogs logging drivers, add the
--env=ECS_AVAILABLE_LOGGING_DRIVERS=["json-file","awslogs"] option to
the docker run command below. For more information, see Amazon ECS Container Agent
Configuration (p. 69).

• Operating systems with SELinux enabled require the --privileged option in your docker
run command. In addition, for SELinux-enabled container instances, we recommend that you
add the :Z option to the /log and /data volume mounts; however, the host mounts for these
volumes must exist before you run the command or you will receive a no such file or
directory error. Take the following action if you experience difficulty running the Amazon ECS
agent on an SELinux-enabled container instance:

• Create the host volume mount points on your container instance.

$ sudo mkdir -p /var/log/ecs
$ sudo mkdir -p /var/lib/ecs/data

• Add the --privileged option to the docker run command below.

• Append the :Z option to the /log and /data container volume mounts (for example, --
volume=/var/log/ecs/:/log:Z) to the docker run command below.

For more information on these and other agent runtime options, see Amazon ECS Container
Agent Configuration (p. 69).

API Version 2014-11-13
60

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/admin/host_integration/
https://docs.docker.com/engine/reference/run/#restart-policies-restart
https://docs.docker.com/engine/reference/run/#restart-policies-restart
https://github.com/aws/amazon-ecs-init

Amazon EC2 Container Service Developer Guide
Container Agent Versions

ubuntu:~$ sudo docker run --name ecs-agent \
--detach=true \
--restart=on-failure:10 \
--volume=/var/run/docker.sock:/var/run/docker.sock \
--volume=/var/log/ecs/:/log \
--volume=/var/lib/ecs/data:/data \
--net=host \
--env=ECS_LOGFILE=/log/ecs-agent.log \
--env=ECS_LOGLEVEL=info \
--env=ECS_DATADIR=/data \
--env=ECS_CLUSTER=cluster_name \
--env=ECS_ENABLE_TASK_IAM_ROLE=true \
--env=ECS_ENABLE_TASK_IAM_ROLE_NETWORK_HOST=true \
amazon/amazon-ecs-agent:latest

Note
If you receive an Error response from daemon: Cannot start container
message, you can delete the failed container with the sudo docker rm ecs-agent
command and try running the agent again.

Amazon ECS Container Agent Versions
Each Amazon ECS container agent version supports a different feature set and provides bug fixes from
previous versions. When possible, we always recommend using the latest version of the Amazon ECS
container agent. To update your container agent to the latest version, see Updating the Amazon ECS
Container Agent (p. 63).

Launching your container instances from the most recent Amazon ECS-optimized AMI ensures that
you receive the current container agent version. To launch a container instance with the latest Amazon
ECS-optimized AMI, see Launching an Amazon ECS Container Instance (p. 39).

To install the latest version of the Amazon ECS container agent on another operating system, see
Installing the Amazon ECS Container Agent (p. 58). The table in Amazon ECS-optimized AMI
Container Agent Versions (p. 61) shows the Docker version that is tested on Amazon Linux for each
agent version.

To see which features and enhancements are included with each agent release, see https://
github.com/aws/amazon-ecs-agent/releases.

Amazon ECS-optimized AMI Container Agent
Versions
The Amazon ECS-optimized AMI comes prepackaged with the Amazon ECS container agent, Docker,
and the ecs-init service that controls the starting and stopping of the agent at boot and shutdown.
The following table lists the container agent version, the ecs-init version, and the Docker version
that is tested and packaged with each Amazon ECS-optimized AMI.

Note
As new Amazon ECS-optimized AMIs and Amazon ECS agent versions are released, older
versions are still available for launch in Amazon EC2; however, we encourage you to update
to the latest version (p. 63) of the Amazon ECS agent and to keep your container instance
software up to date. If you request support for an older version of the Amazon ECS agent
through AWS Support, you may be asked to move to the latest version as a part of the
support process.

API Version 2014-11-13
61

https://github.com/aws/amazon-ecs-agent/releases
https://github.com/aws/amazon-ecs-agent/releases

Amazon EC2 Container Service Developer Guide
Amazon ECS-optimized AMI Container Agent Versions

Amazon ECS-
optimized AMI

Amazon ECS
container agent
version

Docker version ecs-init version

2016.09.b 1.13.1 1.11.2 1.13.1-1

2016.09.a 1.13.0 1.11.2 1.13.0-1

2016.03.j 1.13.0 1.11.2 1.13.0-1

2016.03.i 1.12.2 1.11.2 1.12.2-1

2016.03.h 1.12.1 1.11.2 1.12.1-1

2016.03.g 1.12.0 1.11.2 1.12.0-1

2016.03.f 1.11.1 1.11.2 1.11.1-1

2016.03.e 1.11.0 1.11.2 1.11.0-1

2016.03.d 1.10.0 1.11.1 1.10.0-1

2016.03.c 1.10.0 1.11.1 1.10.0-1

2016.03.b 1.9.0 1.9.1 1.9.0-1

2016.03.a 1.8.2 1.9.1 1.8.2-1

2015.09.g 1.8.1 1.9.1 1.8.1-1

2015.09.f 1.8.0 1.9.1 1.8.0-1

2015.09.e 1.7.1 1.9.1 1.7.1-1

2015.09.d 1.7.1 1.9.1 1.7.1-1

2015.09.c 1.7.0 1.7.1 1.7.0-1

2015.09.b 1.6.0 1.7.1 1.6.0-1

2015.09.a 1.5.0 1.7.1 1.5.0-1

2015.03.g 1.4.0 1.7.1 1.4.0-2

2015.03.f 1.4.0 1.6.2 1.4.0-1

2015.03.e 1.3.1 1.6.2 1.3.1-1

2015.03.d 1.2.1 1.6.2 1.2.0-2

2015.03.c 1.2.0 1.6.2 1.2.0-1

2015.03.b 1.1.0 1.6.0 1.0-3

2015.03.a 1.0.0 1.5.0 1.0-1

For more information about the Amazon ECS-optimized AMI, including AMI IDs for the latest version in
each region, see Amazon ECS-optimized AMI (p. 34).

API Version 2014-11-13
62

Amazon EC2 Container Service Developer Guide
Updating the Amazon ECS Container Agent

Updating the Amazon ECS Container Agent
Occasionally, you may need to update the Amazon ECS container agent to pick up bug fixes and new
features. Updating the Amazon ECS container agent does not interrupt running tasks or services on
the container instance. The process for updating the agent differs depending on whether your container
instance was launched with the Amazon ECS-optimized AMI or another operating system.

Topics

• Checking your Amazon ECS Container Agent Version (p. 63)

• Updating the Amazon ECS Container Agent on the Amazon ECS-optimized AMI (p. 65)

• Manually Updating the Amazon ECS Container Agent (for Non-Amazon ECS-optimized
AMIs) (p. 67)

Checking your Amazon ECS Container Agent
Version
You can check the version of the container agent that is running on your container instances to see
if you need to update it. The container instance view in the Amazon ECS console provides the agent
version. Use the following procedure to check your agent version.

To check if your Amazon ECS container agent is running the latest version in the
console

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. On the Clusters page, select the cluster that hosts the container instance or instances to check.

3. On the Cluster : cluster_name page, choose ECS Instances.

4. Note the Agent version column for your container instances. If you are using an outdated agent
version on any of your container instances, the console alerts you with a message and flags the
outdated agent version.

API Version 2014-11-13
63

https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Developer Guide
Checking your Amazon ECS Container Agent Version

If your agent version is 1.13.1, you are running the latest container agent. If your agent version is
below 1.13.1, you can update your container agent with the following procedures:

• If your container instance is running the Amazon ECS-optimized AMI, see Updating the Amazon
ECS Container Agent on the Amazon ECS-optimized AMI (p. 65).

• If your container instance is not running the Amazon ECS-optimized AMI, see Manually
Updating the Amazon ECS Container Agent (for Non-Amazon ECS-optimized AMIs) (p. 67).

Important
To update the Amazon ECS agent version from versions prior to v1.0.0 on your Amazon
ECS-optimized AMI we recommend that you terminate your current container instance
and launch a new instance with the most recent Amazon ECS-Optimized AMI. Any
container instances that use a preview version of the Amazon ECS-optimized AMI should
be retired and replaced with the most recent AMI. For more information, see Launching
an Amazon ECS Container Instance (p. 39).

You can also use the Amazon ECS container agent introspection API to check the agent version
from the container instance itself. For more information, see Amazon ECS Container Agent
Introspection (p. 78).

To check if your Amazon ECS container agent is running the latest version with the
introspection API

1. Log into your container instance via SSH.

API Version 2014-11-13
64

Amazon EC2 Container Service Developer Guide
Updating the Amazon ECS Container

Agent on the Amazon ECS-optimized AMI

2. Query the introspection API.

[ec2-user ~]$ curl -s 127.0.0.1:51678/v1/metadata | python -mjson.tool
{
 "Cluster": "default",
 "ContainerInstanceArn": "arn:aws:ecs:us-
west-2:<aws_account_id>:container-instance/4d3910c1-27c8-410c-b1df-
f5d06fab4305",
 "Version": "Amazon ECS Agent - v1.13.1 (efe53c6)"
}

Note
The introspection API added Version information in the version v1.0.0 of the Amazon
ECS container agent. If Version is not present when querying the introspection API, or
the introspection API is not present in your agent at all, then the version you are running
is v0.0.3 or earlier, and you should update it.

Updating the Amazon ECS Container Agent on the
Amazon ECS-optimized AMI
If you are using the Amazon ECS-optimized AMI, you have several options to get the latest version of
the Amazon ECS container agent (shown in order of recommendation):

• Terminate your current container instances and launch the latest version of the Amazon ECS-
optimized AMI (either manually or by updating your Auto Scaling launch configuration with the latest
AMI). This provides a fresh container instance with the most current tested and validated versions
of Amazon Linux, Docker, ecs-init, and the Amazon ECS container agent. For more information,
see Amazon ECS-optimized AMI (p. 34).

• Connect to the instance with SSH and update the ecs-init package (and its dependencies) to the
latest version. This operation provides the most current tested and validated versions of Docker and
ecs-init that are available in the Amazon Linux repositories and the latest version of the Amazon
ECS container agent. For more information, see To update the ecs-init package on the Amazon
ECS-optimized AMI (p. 65).

• Update the container agent with the UpdateContainerAgent API operation, either through the
console or with the AWS CLI or AWS SDKs. For more information, see Updating the Amazon ECS
Container Agent with the UpdateContainerAgent API Operation (p. 66).

To update the ecs-init package on the Amazon ECS-optimized AMI

1. Log into your container instance via SSH. For more information, see Connect to your Container
Instance (p. 42).

2. Update the ecs-init package with the following command.

[ec2-user ~]$ sudo yum update -y ecs-init

Note
The ecs-init package and the Amazon ECS container agent are updated immediately;
however, newer versions of Docker are not loaded until the Docker daemon is restarted
(either by rebooting the instance, or by running sudo service docker restart to restart
Docker and then sudo start ecs to restart the container agent).

API Version 2014-11-13
65

Amazon EC2 Container Service Developer Guide
Updating the Amazon ECS Container

Agent on the Amazon ECS-optimized AMI

Updating the Amazon ECS Container Agent with the
UpdateContainerAgent API Operation

Important
This update process is only supported on the Amazon ECS-optimized AMI. For container
instances that are running other operating systems, see Manually Updating the Amazon ECS
Container Agent (for Non-Amazon ECS-optimized AMIs) (p. 67).
To update the Amazon ECS agent version from versions prior to v1.0.0 on your Amazon ECS-
optimized AMI we recommend that you terminate your current container instance and launch
a new instance with the most recent Amazon ECS-Optimized AMI. Any container instances
that use a preview version of the Amazon ECS-optimized AMI should be retired and replaced
with the most recent AMI. For more information, see Launching an Amazon ECS Container
Instance (p. 39).

The update process begins when you request an agent update, either through the console or with the
AWS CLI or AWS SDKs. Amazon ECS checks your current agent version against the latest available
agent version, and if an update is possible, the update process progresses as shown in the flow
chart below. If an update is not available, for example, if the agent is already running the most recent
version, then a NoUpdateAvailableException is returned.

The stages in the update process shown above are as follows:

PENDING
An agent update is available, and the update process has started.

STAGING
The agent has begun downloading the agent update. If the agent cannot download the update, or
if the contents of the update are incorrect or corrupted, then the agent sends a notification of the
failure and the update transitions to the FAILED state.

STAGED
The agent download has completed and the agent contents have been verified.

API Version 2014-11-13
66

Amazon EC2 Container Service Developer Guide
Manually Updating the Amazon ECS Container
Agent (for Non-Amazon ECS-optimized AMIs)

UPDATING
The ecs-init service is restarted and it picks up the new agent version. If the agent is for some
reason unable to restart, the update transitions to the FAILED state; otherwise, the agent signals
Amazon ECS that the update is complete.

To update the Amazon ECS container agent on the Amazon ECS-optimized AMI in the
console

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. On the Clusters page, select the cluster that hosts the container instance or instances to check.

3. On the Cluster : cluster_name page, choose ECS Instances.

4. Select the container instance to update.

5. On the Container Instance page, choose Update agent.

To update the Amazon ECS container agent on the Amazon ECS-optimized AMI with the
AWS CLI

• Use the following command to update the Amazon ECS container agent on your container
instance:

$ aws ecs update-container-agent --cluster cluster_name --container-
instance container_instance_id

Manually Updating the Amazon ECS Container
Agent (for Non-Amazon ECS-optimized AMIs)
To manually update the Amazon ECS container agent (for non-Amazon ECS-optimized
AMIs)

1. Log into your container instance via SSH.

2. Check to see if your agent uses the ECS_DATADIR environment variable to save its state.

[ec2-user ~]$ docker inspect ecs-agent | grep ECS_DATADIR
 "ECS_DATADIR=/data",

Important
If the previous command does not return the ECS_DATADIR environment variable, you
must stop any tasks running on this container instance before updating your agent. Newer
agents with the ECS_DATADIR environment variable save their state and you can update
them while tasks are running without issues.

3. Stop the Amazon ECS container agent.

[ec2-user ~]$ docker stop ecs-agent
ecs-agent

4. Delete the agent container.

[ec2-user ~]$ docker rm ecs-agent
ecs-agent

API Version 2014-11-13
67

https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Developer Guide
Manually Updating the Amazon ECS Container
Agent (for Non-Amazon ECS-optimized AMIs)

5. Run the following commands on your container instance to enable IAM roles for tasks. For more
information, see IAM Roles for Tasks (p. 186).

sysctl -w net.ipv4.conf.all.route_localnet=1
iptables -t nat -A PREROUTING -p tcp -d 169.254.170.2 --dport 80 -j DNAT
 --to-destination 127.0.0.1:51679
iptables -t nat -A OUTPUT -d 169.254.170.2 -p tcp -m tcp --dport 80 -j
 REDIRECT --to-ports 51679

6. Pull the latest Amazon ECS container agent image from Docker Hub.

[ec2-user ~]$ docker pull amazon/amazon-ecs-agent:latest
Pulling repository amazon/amazon-ecs-agent
a5a56a5e13dc: Download complete
511136ea3c5a: Download complete
9950b5d678a1: Download complete
c48ddcf21b63: Download complete
Status: Image is up to date for amazon/amazon-ecs-agent:latest

7. Run the latest Amazon ECS container agent on your container instance.

Note
You should use Docker restart policies or a process manager (such as upstart or
systemd) to treat the container agent as a service or a daemon and ensure that it is
restarted if it exits. For more information, see Automatically start containers and Restart
policies in the Docker documentation. The Amazon ECS-optimized AMI uses the ecs-
init RPM for this purpose, and you can view the source code for this RPM on GitHub.

The following example agent run command is broken into separate lines to show each option.

• The --env=ECS_CLUSTER=cluster_name option is not required if you want to register into
your default cluster.

• You can optionally store your agent environment variables in a file (which can be downloaded
to your container instances from Amazon S3 at launch time using EC2 user data) and pass
them all at one time with the --env-file path_to_env_file option. This is recommended
for sensitive information such as authentication credentials for private repositories. For more
information, see Storing Container Instance Configuration in Amazon S3 (p. 74) and Private
Registry Authentication (p. 76).

• If your task definitions specify log configuration options for a particular log driver, the Amazon
ECS container agent running on your container instances must register the specified log
driver with the ECS_AVAILABLE_LOGGING_DRIVERS environment variable. For example,
to register a container instance with the json-file and awslogs logging drivers, add the
--env=ECS_AVAILABLE_LOGGING_DRIVERS=["json-file","awslogs"] option to
the docker run command below. For more information, see Amazon ECS Container Agent
Configuration (p. 69).

• Operating systems with SELinux enabled require the --privileged option in your docker
run command. In addition, for SELinux-enabled container instances, we recommend that you
add the :Z option to the /log and /data volume mounts; however, the host mounts for these
volumes must exist before you run the command or you will receive a no such file or
directory error. Take the following action if you experience difficulty running the Amazon ECS
agent on an SELinux-enabled container instance:

• Create the host volume mount points on your container instance.

$ sudo mkdir -p /var/log/ecs
$ sudo mkdir -p /var/lib/ecs/data

• Add the --privileged option to the docker run command below.

API Version 2014-11-13
68

https://docs.docker.com/engine/admin/host_integration/
https://docs.docker.com/engine/reference/run/#restart-policies---restart
https://docs.docker.com/engine/reference/run/#restart-policies---restart
https://github.com/aws/amazon-ecs-init

Amazon EC2 Container Service Developer Guide
Amazon ECS Container Agent Configuration

• Append the :Z option to the /log and /data container volume mounts (for example, --
volume=/var/log/ecs/:/log:Z) to the docker run command below.

For more information about these and other agent runtime options, see Amazon ECS Container
Agent Configuration (p. 69).

ubuntu:~$ sudo docker run --name ecs-agent \
--detach=true \
--restart=on-failure:10 \
--volume=/var/run/docker.sock:/var/run/docker.sock \
--volume=/var/log/ecs/:/log \
--volume=/var/lib/ecs/data:/data \
--net=host \
--env=ECS_LOGFILE=/log/ecs-agent.log \
--env=ECS_LOGLEVEL=info \
--env=ECS_DATADIR=/data \
--env=ECS_CLUSTER=cluster_name \
--env=ECS_ENABLE_TASK_IAM_ROLE=true \
--env=ECS_ENABLE_TASK_IAM_ROLE_NETWORK_HOST=true \
amazon/amazon-ecs-agent:latest

Note
If you receive an Error response from daemon: Cannot start container
message, you can delete the failed container with the sudo docker rm ecs-agent
command and try running the agent again.

Amazon ECS Container Agent Configuration
The Amazon ECS container agent supports a number of configuration options, most of which should
be set through environment variables. The following environment variables are available, and all of
them are optional.

If your container instance was launched with the Amazon ECS-optimized AMI, you can set these
environment variables in the /etc/ecs/ecs.config file and then restart the agent. You can also
create a custom ecs.config file that contains these configuration variables and store it in Amazon S3
for container instances to download at run time using Amazon EC2 user data. For more information,
see Storing Container Instance Configuration in Amazon S3 (p. 74).

If you are manually starting the Amazon ECS container agent (for non-Amazon ECS-optimized AMIs),
you can use these environment variables in the docker run command that you use to start the agent
with the syntax --env=VARIABLE_NAME=VARIABLE_VALUE. For sensitive information, such as
authentication credentials for private repositories, you should store your agent environment variables in
a file and pass them all at one time with the --env-file path_to_env_file option.

Topics

• Available Parameters (p. 70)

• Storing Container Instance Configuration in Amazon S3 (p. 74)

API Version 2014-11-13
69

Amazon EC2 Container Service Developer Guide
Available Parameters

Available Parameters
Environment
Key

Example Values Description Default
Value

ECS_CLUSTERMyCluster The cluster that this agent should
check into.

default

ECS_RESERVED_PORTS[22, 80, 5000, 8080] An array of ports that should
be marked as unavailable for
scheduling on this container
instance.

[22,
2375,
2376,
51678]

ECS_RESERVED_PORTS_UDP[53, 123] An array of UDP ports that should
be marked as unavailable for
scheduling on this container
instance.

[]

ECS_ENGINE_AUTH_TYPEdockercfg | docker Required for private registry
authentication. This is the
type of authentication data in
ECS_ENGINE_AUTH_DATA.
For more information, see
Authentication Formats (p. 76).

Null

ECS_ENGINE_AUTH_DATAExample
(ECS_ENGINE_AUTH_TYPE=dockercfg):

{"https://
index.docker.io/v1/":
{"auth":"zq212MzEXAMPLE7o6T25Dk0i","email":"email@example.com"}}

Example
(ECS_ENGINE_AUTH_TYPE=docker):

{"https://
index.docker.io/v1/":
{"username":"my_name","password":"my_password","email":"email@example.com"}}

Required for private
registry authentication. If
ECS_ENGINE_AUTH_TYPE=dockercfg,
then the
ECS_ENGINE_AUTH_DATA
value should be the contents
of a Docker configuration file
(~/.dockercfg or ~/.docker/
config.json) created by
running docker login. If
ECS_ENGINE_AUTH_TYPE=docker,
then the
ECS_ENGINE_AUTH_DATA
value should be a JSON
representation of the registry
server to authenticate against,
as well as the authentication
parameters required by that
registry (such as user name,
password, and email address for
that account).

Null

AWS_DEFAULT_REGIONus-east-1 The region to be used in API
requests as well as to infer the
correct back-end host.

Taken
from EC2
instance
metadata.

AWS_ACCESS_KEY_IDAKIAIOSFODNN7EXAMPLE The access key used by the agent
for all calls.

Taken
from EC2
instance
metadata.

AWS_SECRET_ACCESS_KEYwJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY

The secret key used by the agent
for all calls.

Taken
from EC2

API Version 2014-11-13
70

http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html

Amazon EC2 Container Service Developer Guide
Available Parameters

Environment
Key

Example Values Description Default
Value

instance
metadata.

DOCKER_HOSTunix:///var/run/docker.sock Used to create a connection to the
Docker daemon; behaves similarly
to the environment variable as
used by the Docker client.

unix:///
var/run/
docker.sock

ECS_LOGLEVELcrit | error | warn | info
| debug

The level to log at on stdout. info

ECS_LOGFILE/ecs-agent.log The path to output full debugging
information to. If blank, no logs are
recorded. If this value is set, logs
at the debug level (regardless of
ECS_LOGLEVEL) are written to that
file.

Null

ECS_CHECKPOINTtrue | false Whether or not to save the
checkpoint state to the location
specified with ECS_DATADIR.

If
ECS_DATADIR
is explicitly
set to a
non-empty
value, then
ECS_CHECKPOINT
is set to
true;
otherwise,
it is set to
false.

ECS_DATADIR/data The name of the persistent data
directory on the container that
is running the Amazon ECS
container agent. The directory is
used to save information about the
cluster and the agent state.

Null

ECS_UPDATES_ENABLEDtrue | false Whether to exit for ECS agent
updates when they are requested.

false

ECS_UPDATE_DOWNLOAD_DIR/cache The filesystem location to place
update tarballs within the container
when they are downloaded.

ECS_DISABLE_METRICStrue | false Whether to disable CloudWatch
metrics for Amazon ECS. If this
value is set to true, CloudWatch
metrics are not collected.

false

ECS_DOCKER_GRAPHPATH/var/lib/docker Used to create the path to the
state file of launched containers.
The state file is used to read
utilization metrics of containers.

/var/lib/
docker

API Version 2014-11-13
71

Amazon EC2 Container Service Developer Guide
Available Parameters

Environment
Key

Example Values Description Default
Value

AWS_SESSION_TOKEN The session token used for
temporary credentials.

Taken
from EC2
instance
metadata.

ECS_RESERVED_MEMORY32 The amount of memory, in MiB, to
reserve for processes that are not
managed by ECS.

0

ECS_AVAILABLE_LOGGING_DRIVERS["json-file","syslog"]
For information about how to use
the awslogs log driver, see Using
the awslogs Log Driver (p. 107).

For more information about the
different log drivers available for
your Docker version and how to
configure them, see Configure
logging drivers in the Docker
documentation.

The logging drivers available
on the container instance. The
Amazon ECS container agent
running on a container instance
must register the logging drivers
available on that instance with the
ECS_AVAILABLE_LOGGING_DRIVERS
environment variable before
containers placed on that instance
can use log configuration options
for those drivers in tasks.

["json-
file"]

ECS_DISABLE_PRIVILEGEDtrue | false Whether launching privileged
containers is disabled on the
container instance. If this value is
set to true, privileged containers
are not permitted.

false

ECS_SELINUX_CAPABLEtrue | false Whether SELinux is available on
the container instance.

false

ECS_APPARMOR_CAPABLEtrue | false Whether AppArmor is available on
the container instance.

false

ECS_ENGINE_TASK_CLEANUP_WAIT_DURATION1h (Valid time units are "ns",
"us" (or "µs"), "ms", "s", "m", and
"h".)

Time duration to wait from when
a task is stopped until the docker
container is removed. As this
removes the docker container
data, be aware that if this value is
set too low, you may not be able
to inspect your stopped containers
or view the logs before they are
removed. The minimum duration
is 1m; any value shorter than 1
minute is ignored.

3h

ECS_CONTAINER_STOP_TIMEOUT10m (Valid time units are "ns",
"us" (or "µs"), "ms", "s", "m", and
"h".)

Time duration to wait from when
a task is stopped before its
containers are forcefully killed if
they do not exit normally on their
own.

30s

API Version 2014-11-13
72

http://docs.aws.amazon.com/STS/latest/UsingSTS/Welcome.html
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/

Amazon EC2 Container Service Developer Guide
Available Parameters

Environment
Key

Example Values Description Default
Value

HTTP_PROXY10.0.0.131:3128 The hostname (or IP address) and
port number of an HTTP proxy to
use for the ECS agent to connect
to the Internet (for example, if
your container instances do not
have external network access
through an Amazon VPC Internet
gateway or NAT gateway or
instance). If this variable is set,
you must also set the NO_PROXY
variable to filter EC2 instance
metadata and Docker daemon
traffic from the proxy. For more
information, see HTTP Proxy
Configuration (p. 80).

Null

NO_PROXY 169.254.169.254,/var/run/
docker.sock

The HTTP traffic that should not
be forwarded to the specified
HTTP_PROXY. You must specify
169.254.169.254,/var/
run/docker.sock to filter EC2
instance metadata and Docker
daemon traffic from the proxy. For
more information, see HTTP Proxy
Configuration (p. 80).

Null

ECS_ENABLE_TASK_IAM_ROLEtrue | false Whether IAM roles for tasks
should be enabled on the
container instance. For more
information, see IAM Roles for
Tasks (p. 186).

false

ECS_ENABLE_TASK_IAM_ROLE_NETWORK_HOSTtrue | false Whether IAM roles for tasks
should be enabled on the
container instance when the agent
is started with the host network
mode.

false

ECS_DISABLE_IMAGE_CLEANUPtrue Whether to disable automated
image cleanup for the Amazon
ECS agent. For more information,
see Automated Task and Image
Cleanup (p. 75).

false

ECS_IMAGE_CLEANUP_INTERVAL30m The time interval between
automated image cleanup cycles.
If set to less than 10 minutes, the
value is ignored.

30m

ECS_IMAGE_MINIMUM_CLEANUP_AGE30m The minimum time interval
between when an image is pulled
and when it can be considered for
automated image cleanup.

1h

API Version 2014-11-13
73

Amazon EC2 Container Service Developer Guide
Storing Container Instance Configuration in Amazon S3

Environment
Key

Example Values Description Default
Value

ECS_NUM_IMAGES_DELETE_PER_CYCLE5 The maximum number of images
to delete in a single automated
image cleanup cycle. If set to less
than 1, the value is ignored.

5

Storing Container Instance Configuration in Amazon
S3
Amazon ECS container agent configuration is controlled with the environment variables described
above. The Amazon ECS-optimized AMI checks for these variables in /etc/ecs/ecs.config when
the container agent starts and configures the agent accordingly. Certain innocuous environment
variables, such as ECS_CLUSTER, can be passed to the container instance at launch time through
Amazon EC2 user data and written to this file without consequence. However, other sensitive
information, such as your AWS credentials or the ECS_ENGINE_AUTH_DATA variable, should never
be passed to an instance in user data or written to /etc/ecs/ecs.config in a way that they would
show up in a .bash_history file.

Storing configuration information in a private bucket in Amazon S3 and granting read-only access
to your container instance IAM role is a secure and convenient way to allow container instance
configuration at launch time. You can store a copy of your ecs.config file in a private bucket, and
then use Amazon EC2 user data to install the AWS CLI and copy your configuration information to /
etc/ecs/ecs.config when the instance launches.

To allow Amazon S3 read-only access for your container instance role

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Roles.

3. Choose the IAM role you use for your container instances (this role is likely titled
ecsInstanceRole). For more information, see Amazon ECS Container Instance IAM
Role (p. 180).

4. Under Managed Policies, choose Attach Policy.

5. On the Attach Policy page, type S3 into the Filter field to narrow the policy results.

6. Check the box to the left of the AmazonS3ReadOnlyAccess policy and click Attach Policy.

To store an ecs.config file in Amazon S3

1. Create an ecs.config file with valid environment variables and values from Amazon
ECS Container Agent Configuration (p. 69) using the following format. This example
configures private registry authentication. For more information, see Private Registry
Authentication (p. 76).

ECS_ENGINE_AUTH_TYPE=dockercfg
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":
{"auth":"zq212MzEXAMPLE7o6T25Dk0i","email":"email@example.com"}}

2. Create a private bucket in Amazon S3 to store your configuration file. For more information, see
Create a Bucket in the Amazon Simple Storage Service Getting Started Guide.

3. Upload the ecs.config file to your Amazon S3 bucket. For more information, see Add an Object
to a Bucket in the Amazon Simple Storage Service Getting Started Guide.

API Version 2014-11-13
74

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/PuttingAnObjectInABucket.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/PuttingAnObjectInABucket.html

Amazon EC2 Container Service Developer Guide
Automated Task and Image Cleanup

To load an ecs.config file from Amazon S3 at launch

1. Complete the above procedures in this section to allow read-only Amazon S3 access to your
container instances and store an ecs.config file in a private Amazon S3 bucket.

2. Launch new container instances by following the steps in Launching an Amazon ECS Container
Instance (p. 39). In Step 10 (p. 41), use the following example script that installs the AWS CLI and
copies your configuration file to /etc/ecs/ecs.config.

#!/bin/bash
yum install -y aws-cli
aws s3 cp s3://your_bucket_name/ecs.config /etc/ecs/ecs.config

Automated Task and Image Cleanup
Each time a task is placed on a container instance, the Amazon ECS container agent checks to see
if the images referenced in the task are the most recent of the specified tag in the repository; if not, it
pulls the images from their respective repositories. If you frequently update the images in your tasks
and services (for example, if you are using a continuous integration and continuous deployment (CI/
CD) pipeline), your container instance storage can quickly fill up with Docker images that you are no
longer using and will likely never use again.

Likewise, containers that belong to stopped tasks can also consume container instance storage with
log information, data volumes, and other artifacts. These artifacts are useful for debugging containers
that have stopped unexpectedly, but most of this storage can be safely freed up after a period of time.

By default, the Amazon ECS container agent automatically cleans up stopped tasks and Docker
images that are not being used by any tasks on your container instances.

Note
The automated image cleanup feature requires at least version 1.13.0 of the Amazon ECS
container agent. To update your agent to the latest version, see Updating the Amazon ECS
Container Agent (p. 63).

Tunable Parameters
The following agent configuration variables are available to tune your automated task and image
cleanup experience. For more information about how to set these variables on your container
instances, see Amazon ECS Container Agent Configuration (p. 69).

ECS_ENGINE_TASK_CLEANUP_WAIT_DURATION
This variable specifies the time to wait before removing any containers that belong to stopped
tasks. The image cleanup process cannot delete an image as long as there is a container that
references it. After images are not referenced by any containers (either stopped or running), then
the image becomes a candidate for cleanup. By default, this parameter is set to 3 hours but you
can reduce this period to as low as 1 minute, if you need to for your application.

ECS_DISABLE_IMAGE_CLEANUP
If you set this variable to true, then automated image cleanup is disabled on your container
instance and no images are automatically removed.

ECS_IMAGE_CLEANUP_INTERVAL
This variable specifies how frequently the automated image cleanup process should check for
images to delete. The default is every 30 minutes but you can reduce this period to as low as 10
minutes to remove images more frequently.

API Version 2014-11-13
75

Amazon EC2 Container Service Developer Guide
Cleanup Workflow

ECS_IMAGE_MINIMUM_CLEANUP_AGE
This variable specifies the minimum amount of time between when an image was pulled and when
it may become a candidate for removal; this is used to prevent cleaning up images that have just
been pulled. The default is 1 hour.

ECS_NUM_IMAGES_DELETE_PER_CYCLE
This variable specifies how many images may be removed during a single cleanup cycle. The
default is 5 and the minimum is 1.

Cleanup Workflow
When the Amazon ECS container agent is running and automated image cleanup is not
disabled, the agent checks for Docker images that are not referenced by running or stopped
containers at a frequency determined by the ECS_IMAGE_CLEANUP_INTERVAL variable. If
unused images are found and they are older than the minimum cleanup time specified by the
ECS_IMAGE_MINIMUM_CLEANUP_AGE variable, the agent removes up to the maximum number of
images that are specified with the ECS_NUM_IMAGES_DELETE_PER_CYCLE variable, with the least-
recently referenced images deleted first. After the images are removed, the agent waits until the next
interval and repeats the process again.

Private Registry Authentication
The Amazon ECS container agent can authenticate with private registries, including Docker Hub, using
basic authentication. When you enable private registry authentication, you can use private Docker
images in your task definitions.

The agent looks for two environment variables when it launches: ECS_ENGINE_AUTH_TYPE, which
specifies the type of authentication data that is being sent, and ECS_ENGINE_AUTH_DATA, which
contains the actual authentication credentials.

The Amazon ECS-optimized AMI scans the /etc/ecs/ecs.config file for these variables when the
container instance launches, and each time the service is started (with the sudo start ecs command).
AMIs that are not Amazon ECS-optimized should store these environment variables in a file and pass
them with the --env-file path_to_env_file option to the docker run command that starts the
container agent.

Important
We do not recommend that you inject these authentication environment variables at instance
launch time with Amazon EC2 user data or pass them with the --env option to the docker
run command. These methods are not appropriate for sensitive data like authentication
credentials. To safely add authentication credentials to your container instances, see Storing
Container Instance Configuration in Amazon S3 (p. 74).

Authentication Formats
There are two available formats for private registry authentication, dockercfg and docker.

dockercfg Authentication Format

The dockercfg format uses the authentication information stored in the configuration file that is
created when you run the docker login command. You can create this file by running docker login
on your local system (or by logging into a container instance and running the command there) and
entering your registry user name, password, and email address. Depending on your Docker version,
this file is saved as either ~/.dockercfg or ~/.docker/config.json.

$ cat ~/.docker/config.json

API Version 2014-11-13
76

Amazon EC2 Container Service Developer Guide
Enabling Private Registries

{"https://index.docker.io/v1/":
{"auth":"zq212MzEXAMPLE7o6T25Dk0i","email":"email@example.com"}}

In the above example, the following environment variables should be added to the environment
variable file (/etc/ecs/ecs.config for the Amazon ECS-optimized AMI) that the Amazon ECS
container agent loads at run time. If you are not using the Amazon ECS-optimized AMI and you are
starting the agent manually with docker run, specify the environment variable file with the --env-
file path_to_env_file option when you start the agent.

ECS_ENGINE_AUTH_TYPE=dockercfg
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":
{"auth":"zq212MzEXAMPLE7o6T25Dk0i","email":"email@example.com"}}

docker Authentication Format

The docker format uses a JSON representation of the registry server that the agent should
authenticate with, as well as the authentication parameters required by that registry (such as user
name, password, and the email address for that account). For a Docker Hub account, the JSON
representation looks like this:

{
 "https://index.docker.io/v1/": {
 "username": "my_name",
 "password": "my_password",
 "email": "email@example.com"
 }
}

In this example, the following environment variables should be added to the environment variable
file (/etc/ecs/ecs.config for the Amazon ECS-optimized AMI) that the Amazon ECS container
agent loads at run time. If you are not using the Amazon ECS-optimized AMI and you are starting
the agent manually with docker run, specify the environment variable file with the --env-file
path_to_env_file option when you start the agent.

ECS_ENGINE_AUTH_TYPE=docker
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":
{"username":"my_name","password":"my_password","email":"email@example.com"}}

Enabling Private Registries
Use the following procedure to enable private registries for your container instances.

To enable private registries in the Amazon ECS-optimized AMI

1. Log into your container instance via SSH.

2. Open the /etc/ecs/ecs.config file and add the ECS_ENGINE_AUTH_TYPE and
ECS_ENGINE_AUTH_DATA values for your registry and account.

[ec2-user ~]$ sudo vi /etc/ecs/ecs.config

This example authenticates a Docker Hub user account.

ECS_ENGINE_AUTH_TYPE=docker

API Version 2014-11-13
77

Amazon EC2 Container Service Developer Guide
Amazon ECS Container Agent Introspection

ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":
{"username":"my_name","password":"my_password","email":"email@example.com"}}

3. Check to see if your agent uses the ECS_DATADIR environment variable to save its state.

[ec2-user ~]$ docker inspect ecs-agent | grep ECS_DATADIR
 "ECS_DATADIR=/data",

Important
If the previous command does not return the ECS_DATADIR environment variable, you
must stop any tasks running on this container instance before stopping the agent. Newer
agents with the ECS_DATADIR environment variable save their state and you can stop
and start them while tasks are running without issues. For more information, see Updating
the Amazon ECS Container Agent (p. 63).

4. Stop the ecs service.

[ec2-user ~]$ sudo stop ecs
ecs stop/waiting

5. Restart the ecs service.

[ec2-user ~]$ sudo start ecs
ecs start/running, process 2959

6. (Optional) You can verify that the agent is running and see some information about your new
container instance by querying the agent introspection API. For more information, see the section
called “Amazon ECS Container Agent Introspection” (p. 78).

[ec2-user ~]$ curl http://localhost:51678/v1/metadata
{
 "Cluster": "default",
 "ContainerInstanceArn": "<container_instance_ARN>",
 "Version": "Amazon ECS Agent - v1.13.1 (efe53c6)"
}

Amazon ECS Container Agent Introspection
The Amazon ECS container agent provides an API for gathering details about the container instance
that the agent is running on and the associated tasks that are running on that instance. You can use
the curl command from within the container instance to query the Amazon ECS container agent (port
51678) and return container instance metadata or task information.

To view container instance metadata, such as the container instance ID, the Amazon ECS cluster the
container instance is registered into, and the Amazon ECS container agent version info, log into your
container instance via SSH and run the following command:

[ec2-user ~]$ curl http://localhost:51678/v1/metadata
{
 "Cluster": "default",
 "ContainerInstanceArn": "<container_instance_ARN>",
 "Version": "Amazon ECS Agent - v1.13.1 (efe53c6)"
}

API Version 2014-11-13
78

Amazon EC2 Container Service Developer Guide
Amazon ECS Container Agent Introspection

To view information about all of the tasks that are running on a container instance, log into your
container instance via SSH and run the following command:

[ec2-user ~]$ curl http://localhost:51678/v1/tasks
{
 "Tasks": [
 {
 "Arn": "arn:aws:ecs:us-east-1:<aws_account_id>:task/example5-58ff-46c9-
ae05-543f8example",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Family": "hello_world",
 "Version": "8",
 "Containers": [
 {
 "DockerId":
 "9581a69a761a557fbfce1d0f6745e4af5b9dbfb86b6b2c5c4df156f1a5932ff1",
 "DockerName": "ecs-hello_world-8-mysql-fcae8ac8f9f1d89d8301",
 "Name": "mysql"
 },
 {
 "DockerId":
 "bf25c5c5b2d4dba68846c7236e75b6915e1e778d31611e3c6a06831e39814a15",
 "DockerName": "ecs-hello_world-8-wordpress-e8bfddf9b488dff36c00",
 "Name": "wordpress"
 }
]
 }
]
}

You can view information for a particular task that is running on a container instance by
specifying a task ARN (append ?taskarn=task_arn to the request) or the Docker ID (append ?
dockerid=docker_id to the request) for an individual container inside a task. To get task information
with a Docker ID, log into your container instance via SSH and run the following command:

Note
The Amazon ECS container agent introspection API requires full Docker IDs, not the short
version that is shown with docker ps. You can get the full Docker ID for a container by
running the docker ps --no-trunc command on the container instance.

[ec2-user ~]$ curl http://localhost:51678/v1/tasks?
dockerid=9581a69a761a557fbfce1d0f6745e4af5b9dbfb86b6b2c5c4df156f1a5932ff1
{
 "Arn": "arn:aws:ecs:us-east-1:<aws_account_id>:task/example5-58ff-46c9-
ae05-543f8example",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Family": "hello_world",
 "Version": "8",
 "Containers": [
 {
 "DockerId":
 "9581a69a761a557fbfce1d0f6745e4af5b9dbfb86b6b2c5c4df156f1a5932ff1",
 "DockerName": "ecs-hello_world-8-mysql-fcae8ac8f9f1d89d8301",
 "Name": "mysql"
 },
 {

API Version 2014-11-13
79

Amazon EC2 Container Service Developer Guide
HTTP Proxy Configuration

 "DockerId":
 "bf25c5c5b2d4dba68846c7236e75b6915e1e778d31611e3c6a06831e39814a15",
 "DockerName": "ecs-hello_world-8-wordpress-e8bfddf9b488dff36c00",
 "Name": "wordpress"
 }
]
}

HTTP Proxy Configuration
If you need to configure your Amazon ECS container agent to use an HTTP proxy, you may do so by
setting the following variables in the /etc/ecs/ecs.config file at launch time (with Amazon EC2
user data), or you can manually edit the configuration file and restart the agent afterwards:

HTTP_PROXY=10.0.0.131:3128
Set this value to the hostname (or IP address) and port number of an HTTP proxy to use for the
ECS agent to connect to the Internet (for example, if your container instances do not have external
network access through an Amazon VPC Internet gateway or NAT gateway or instance).

NO_PROXY=169.254.169.254,169.254.170.2,/var/run/docker.sock
Set this value to 169.254.169.254,169.254.170.2,/var/run/docker.sock to filter EC2
instance metadata, IAM roles for tasks, and Docker daemon traffic from the proxy.

The above variable only affect the Amazon ECS container agent; they do not configure Docker or any
other services (such as yum) to use the proxy.

API Version 2014-11-13
80

Amazon EC2 Container Service Developer Guide
HTTP Proxy Configuration

Example HTTP proxy user data script

The example user data cloud-boothook script below configures the Amazon ECS container agent,
the Docker daemon, and yum to use an HTTP proxy that you specify. You can also specify a cluster
name that the container instance will register itself into.

To use this script when you launch a container instance, follow the steps in Launching an Amazon ECS
Container Instance (p. 39), and in Step 10 (p. 41), copy and paste the cloud-boothook script below
into the User data field (be sure to substitute the red example values with your own proxy and cluster
information).

#cloud-boothook
Configure Yum, the Docker daemon, and the ECS agent to use an HTTP proxy

Specify proxy host, port number, and ECS cluster name to use
PROXY_HOST=10.0.0.131
PROXY_PORT=3128
CLUSTER_NAME=proxy-test

Set Yum HTTP proxy
if [! -f /var/lib/cloud/instance/sem/config_yum_http_proxy]; then
 echo "proxy=http://$PROXY_HOST:$PROXY_PORT" >> /etc/yum.conf
 echo "$$: $(date +%s.%N | cut -b1-13)" > /var/lib/cloud/instance/sem/
config_yum_http_proxy
fi

Set Docker HTTP proxy
if [! -f /var/lib/cloud/instance/sem/config_docker_http_proxy]; then
 echo "export HTTP_PROXY=http://$PROXY_HOST:$PROXY_PORT/" >> /etc/sysconfig/
docker
 echo "$$: $(date +%s.%N | cut -b1-13)" > /var/lib/cloud/instance/sem/
config_docker_http_proxy
fi

Set ECS agent HTTP proxy
if [! -f /var/lib/cloud/instance/sem/config_ecs-agent_http_proxy]; then
 echo "ECS_CLUSTER=$CLUSTER_NAME" >> /etc/ecs/ecs.config
 echo "HTTP_PROXY=$PROXY_HOST:$PROXY_PORT" >> /etc/ecs/ecs.config
 echo "NO_PROXY=169.254.169.254,169.254.170.2,/var/run/docker.sock" >> /etc/
ecs/ecs.config
 echo "$$: $(date +%s.%N | cut -b1-13)" > /var/lib/cloud/instance/sem/
config_ecs-agent_http_proxy
fi

API Version 2014-11-13
81

Amazon EC2 Container Service Developer Guide

Amazon ECS Task Definitions

A task definition is required to run Docker containers in Amazon ECS. Some of the parameters you can
specify in a task definition include:

• Which Docker images to use with the containers in your task

• How much CPU and memory to use with each container

• Whether containers are linked together in a task

• The Docker networking mode to use for the containers in your task

• What (if any) ports from the container are mapped to the host container instance

• Whether the task should continue to run if the container finishes or fails

• The command the container should run when it is started

• What (if any) environment variables should be passed to the container when it starts

• Any data volumes that should be used with the containers in the task

• What (if any) IAM role your tasks should use for permissions

You can define multiple containers and data volumes in a task definition. For a complete description of
the parameters available in a task definition, see Task Definition Parameters (p. 88).

Your entire application stack does not need to exist on a single task definition, and in most cases it
should not. Your application can span multiple task definitions by combining related containers into
their own task definitions, each representing a single component. For more information, see Application
Architecture (p. 83).

Topics

• Application Architecture (p. 83)

• Creating a Task Definition (p. 84)

• Using a Docker Image in a Task Definition (p. 87)

• Task Definition Parameters (p. 88)

• Using Data Volumes in Tasks (p. 102)

• Using the awslogs Log Driver (p. 107)

• Example Task Definitions (p. 112)

API Version 2014-11-13
82

Amazon EC2 Container Service Developer Guide
Application Architecture

• Deregistering Task Definitions (p. 115)

Application Architecture
When you’re considering how to model task definitions and services, it helps to think about what
processes need to run together on the same instance and how you will scale each component. As an
example, imagine an application that consists of the following components:

• A front-end service that displays information on a web page

• A back-end service that provides APIs for the front-end service

• A data store

In your development environment, you probably run all three containers together on your Docker host.
You might be tempted to use the same approach for your production environment, but this approach
has several drawbacks:

• Changes to one component can impact all three components, which may be a larger scope for the
change than you want

• Each component is more difficult to scale because you have to scale every container proportionally

• Task definitions can only have 10 container definitions and your application stack might require
more, either now or in the future

• Every container in a task definition must land on the same container instance, which may limit your
instance choices to the largest sizes

Instead, you should create task definitions that group the containers that are used for a common
purpose, and separate the different components into multiple task definitions. In this example, three
task definitions each specify one container. The example cluster below has three container instances
registered with three front-end service containers, two back-end service containers, and one data store
service container.

API Version 2014-11-13
83

Amazon EC2 Container Service Developer Guide
Creating a Task Definition

You can group related containers in a task definition, such as linked containers that must be run
together. For example, you could add a log streaming container to your front-end service and include
that in the same task definition.

After you have your task definitions, you can create services from them to maintain the availability of
your desired tasks. For more information, see Creating a Service (p. 142). In your services, you can
associate containers with Elastic Load Balancing load balancers. For more information, see Service
Load Balancing (p. 124). When your application requirements change, you can update your services
to scale the number of desired tasks up or down, or to deploy newer versions of the containers in your
tasks. For more information, see Updating a Service (p. 147).

Creating a Task Definition
Before you can run Docker containers on Amazon ECS, you need to create a task definition.

To create a new task definition

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, choose the region to register your task definition in.

3. In the navigation pane, choose Task Definitions.

4. On the Task Definitions page, select Create new Task Definition.

5. (Optional) If you have a JSON representation of your task definition that you would like to use,
complete the following steps:

a. On the Create a Task Definition page, scroll to the bottom of the page and choose
Configure via JSON.

b. Paste your task definition JSON into the text area and choose Save.

c. Verify your information and select Create.

6. In the Task Definition Name field, enter a name for your task definition. Up to 255 letters
(uppercase and lowercase), numbers, hyphens, and underscores are allowed.

7. (Optional) In the Task Role field, choose an IAM role that provides permissions for containers
in your task to make calls to AWS APIs on your behalf. For more information, see IAM Roles for
Tasks (p. 186).

Note
Only roles that have the Amazon EC2 Container Service Task Role trust relationship
are shown here. For help creating an IAM role for your tasks, see Creating an IAM Role
and Policy for your Tasks (p. 188).

8. (Optional) In the Network Mode field, choose the Docker network mode that you would like to use
for the containers in your task. The available network modes correspond to those described in
Network settings in the Docker run reference.

The default Docker network mode is bridge. If the network mode is set to none, you cannot
specify port mappings in your container definitions, and the task's containers do not have external
connectivity. The host network mode offers the highest networking performance for containers
because they use the host network stack instead of the virtualized network stack provided by the
bridge mode; however, exposed container ports are mapped directly to the corresponding host
port, so you cannot take advantage of dynamic host port mappings or run multiple instantiations of
the same task on a single container instance if port mappings are used.

9. For each container in your task definition, complete the following steps.

a. Choose Add Container Definition.

b. Fill out each required field and any optional fields to use in your container definitions (more
container definition parameters are available in the Advanced container configuration
menu). For more information, see Task Definition Parameters (p. 88).

API Version 2014-11-13
84

https://console.aws.amazon.com/ecs/
https://docs.docker.com/engine/reference/run/#/network-settings

Amazon EC2 Container Service Developer Guide
Task Definition Template

c. Select Add to add your container to the task definition.

10. (Optional) To define data volumes for your task, choose Add volume. For more information, see
Using Data Volumes in Tasks (p. 102).

a. In the Name field, enter a name for your volume. Up to 255 letters (uppercase and
lowercase), numbers, hyphens, and underscores are allowed.

b. (Optional) In the Source Path field, enter the path on the host container instance to present to
the container. If this you leave this field empty, then the Docker daemon assigns a host path
for you. If you specify a source path, then the data volume persists at the specified location
on the host container instance until you delete it manually. If the source path does not exist
on the host container instance, the Docker daemon creates it. If the location does exist, the
contents of the source path folder are exported to the container.

11. Choose Create to finish.

Task Definition Template
An empty task definition template is shown below. You can use this template to create your task
definition which can then be pasted into the console JSON input area or saved to a file and used with
the AWS CLI --cli-input-json option. For more information about these parameters, see Task
Definition Parameters (p. 88).

{
 "family": "",
 "taskRoleArn": "",
 "networkMode": "",
 "containerDefinitions": [
 {
 "name": "",
 "image": "",
 "cpu": 0,
 "memory": 0,
 "memoryReservation": 0,
 "links": [
 ""
],
 "portMappings": [
 {
 "containerPort": 0,
 "hostPort": 0,
 "protocol": ""
 }
],
 "essential": true,
 "entryPoint": [
 ""
],
 "command": [
 ""
],
 "environment": [
 {
 "name": "",
 "value": ""
 }
],
 "mountPoints": [

API Version 2014-11-13
85

Amazon EC2 Container Service Developer Guide
Task Definition Template

 {
 "sourceVolume": "",
 "containerPath": "",
 "readOnly": true
 }
],
 "volumesFrom": [
 {
 "sourceContainer": "",
 "readOnly": true
 }
],
 "hostname": "",
 "user": "",
 "workingDirectory": "",
 "disableNetworking": true,
 "privileged": true,
 "readonlyRootFilesystem": true,
 "dnsServers": [
 ""
],
 "dnsSearchDomains": [
 ""
],
 "extraHosts": [
 {
 "hostname": "",
 "ipAddress": ""
 }
],
 "dockerSecurityOptions": [
 ""
],
 "dockerLabels": {
 "KeyName": ""
 },
 "ulimits": [
 {
 "name": "",
 "softLimit": 0,
 "hardLimit": 0
 }
],
 "logConfiguration": {
 "logDriver": "",
 "options": {
 "KeyName": ""
 }
 }
 }
],
 "volumes": [
 {
 "name": "",
 "host": {
 "sourcePath": ""
 }
 }
]

API Version 2014-11-13
86

Amazon EC2 Container Service Developer Guide
Using a Docker Image in a Task Definition

}

Note
You can generate the above task definition template with the following AWS CLI command.

$ aws ecs register-task-definition --generate-cli-skeleton

Using a Docker Image in a Task Definition
This procedure demonstrates how to define a task definition that uses the amazon-ecs-sample
image created in the article Docker Basics (p. 13).

To register a task definition with the amazon-ecs-sample image

1. Examine the simple-app-task-def.json file in the ecs-demo-php-simple-app folder.

{
 "family": "console-sample-app",
 "volumes": [
 {
 "name": "my-vol",
 "host": {}
 }
],
 "containerDefinitions": [
 {
 "environment": [],
 "name": "simple-app",
 "image": "amazon/amazon-ecs-sample",
 "cpu": 10,
 "memory": 500,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "mountPoints": [
 {
 "sourceVolume": "my-vol",
 "containerPath": "/var/www/my-vol"
 }
],
 "entryPoint": [
 "/usr/sbin/apache2",
 "-D",
 "FOREGROUND"
],
 "essential": true
 },
 {
 "name": "busybox",
 "image": "busybox",
 "cpu": 10,
 "memory": 500,

API Version 2014-11-13
87

Amazon EC2 Container Service Developer Guide
Task Definition Parameters

 "volumesFrom": [
 {
 "sourceContainer": "simple-app"
 }
],
 "entryPoint": [
 "sh",
 "-c"
],
 "command": [
 "/bin/sh -c \"while true; do /bin/date > /var/www/my-vol/
date; sleep 1; done\""
],
 "essential": false
 }
]
}

This task definition JSON file specifies two containers, one of which uses the amazon-ecs-
sample image. By default, this image is pulled from the Amazon Docker Hub repository, but you
can change the amazon repository defined above to your own repository if you want to use the
my-dockerhub-username/amazon-ecs-sample image you pushed earlier.

2. Register a task definition with the simple-app-task-def.json file.

[ec2-user ecs-demo-php-simple-app]$ aws ecs register-task-definition --
cli-input-json file://simple-app-task-def.json

The task definition is registered in the console-sample-app family as defined in the JSON file.

To run a task with the console-sample-app task definition

Important
Before you can run tasks in Amazon ECS, you need to launch container instances into your
cluster. For more information about how to set up and launch container instances, see Setting
Up with Amazon ECS (p. 8) and Getting Started with Amazon ECS (p. 20).

• Use the following AWS CLI command to run a task with the console-sample-app task
definition.

[ec2-user ecs-demo-php-simple-app]$ aws ecs run-task --task-definition
 console-sample-app

Task Definition Parameters
Task definitions are split into four basic parts: the task family, the IAM task role, container definitions,
and volumes. The family is the name of the task, and each family can have multiple revisions. The IAM
task role specifies the permissions that containers in the task should have. Container definitions specify
which image to use, how much CPU and memory the container are allocated, and many more options.
Volumes allow you to share data between containers and even persist the data on the container
instance when the containers are no longer running. The family and container definitions are required
in a task definition, while task role, network mode, and volumes are optional.

Topics

• Family (p. 89)

API Version 2014-11-13
88

Amazon EC2 Container Service Developer Guide
Family

• Task Role (p. 89)

• Network Mode (p. 89)

• Container Definitions (p. 89)

• Volumes (p. 101)

Family
family

Type: string

Required: yes

When you register a task definition, you give it a family, which is similar to a name for multiple
versions of the task definition, specified with a revision number. The first task definition that is
registered into a particular family is given a revision of 1, and any task definitions registered after
that are given a later sequential revision number.

Task Role
taskRoleArn

Type: string

Required: no

When you register a task definition, you can provide a task role for an IAM role that allows the
containers in the task permission to call the AWS APIs that are specified in its associated policies
on your behalf. For more information, see IAM Roles for Tasks (p. 186).

Network Mode
networkMode

Type: string

Required: no

When you register a task definition, you can specify the Docker networking mode to use with its
containers. The default Docker network mode is bridge. If the network mode is set to none,
you cannot specify port mappings in your container definitions, and the task's containers do not
have external connectivity. The host network mode offers the highest networking performance
for containers because they use the host network stack instead of the virtualized network stack
provided by the bridge mode; however, exposed container ports are mapped directly to the
corresponding host port, so you cannot take advantage of dynamic host port mappings or run
multiple instantiations of the same task on a single container instance if port mappings are used.

Container Definitions
When you register a task definition, you must specify a list of container definitions that are passed
to the Docker daemon on a container instance. The following parameters are allowed in a container
definition.

Topics

• Standard Container Definition Parameters (p. 90)

• Advanced Container Definition Parameters (p. 92)

API Version 2014-11-13
89

Amazon EC2 Container Service Developer Guide
Container Definitions

Standard Container Definition Parameters

The following task definition parameters are either required or used in most container definitions.

name
Type: string

Required: yes

The name of a container. If you are linking multiple containers together in a task definition, the
name of one container can be entered in the links of another container to connect the containers.
Up to 255 letters (uppercase and lowercase), numbers, hyphens, and underscores are allowed.
This parameter maps to name in the Create a container section of the Docker Remote API and the
--name option to docker run.

image
Type: string

Required: yes

The image used to start a container. This string is passed directly to the Docker daemon. Images
in the Docker Hub registry are available by default. You can also specify other repositories with
repository-url/image:tag. Up to 255 letters (uppercase and lowercase), numbers, hyphens,
underscores, colons, periods, forward slashes, and number signs are allowed. This parameter
maps to Image in the Create a container section of the Docker Remote API and the IMAGE
parameter of docker run.

• Images in Amazon ECR repositories use the full registry/repository:tag naming
convention. For example, aws_account_id.dkr.ecr.region.amazonaws.com/my-web-
app:latest

• Images in official repositories on Docker Hub use a single name (for example, ubuntu or
mongo).

• Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent).

• Images in other online repositories are qualified further by a domain name (for example,
quay.io/assemblyline/ubuntu).

memory
Type: integer

Required: no

The hard limit (in MiB) of memory to present to the container. If your container attempts to exceed
the memory specified here, the container is killed. This parameter maps to Memory in the Create a
container section of the Docker Remote API and the --memory option to docker run.

You must specify a non-zero integer for one or both of memory or memoryReservation in
container definitions. If you specify both, memory must be greater than memoryReservation.
If you specify memoryReservation, then that value is subtracted from the available memory
resources for the container instance on which the container is placed; otherwise, the value of
memory is used.

The Docker daemon reserves a minimum of 4 MiB of memory for a container, so you should not
specify fewer than 4 MiB of memory for your containers.

memoryReservation
Type: integer

Required: no

The soft limit (in MiB) of memory to reserve for the container. When system memory is under
contention, Docker attempts to keep the container memory to this soft limit; however, your

API Version 2014-11-13
90

https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/

Amazon EC2 Container Service Developer Guide
Container Definitions

container can consume more memory when it needs to, up to either the hard limit specified with
the memory parameter (if applicable), or all of the available memory on the container instance,
whichever comes first. This parameter maps to MemoryReservation in the Create a container
section of the Docker Remote API and the --memory option to docker run.

You must specify a non-zero integer for one or both of memory or memoryReservation in
container definitions. If you specify both, memory must be greater than memoryReservation.
If you specify memoryReservation, then that value is subtracted from the available memory
resources for the container instance on which the container is placed; otherwise, the value of
memory is used.

For example, if your container normally uses 128 MiB of memory, but occasionally bursts to 256
MiB of memory for short periods of time, you can set a memoryReservation of 128 MiB, and a
memory hard limit of 300 MiB. This configuration would allow the container to only reserve 128 MiB
of memory from the remaining resources on the container instance, but also allow the container to
consume more memory resources when needed.

portMappings
Type: object array

Required: no

Port mappings allow containers to access ports on the host container instance to send or receive
traffic. This parameter maps to PortBindings in the Create a container section of the Docker
Remote API and the --publish option to docker run. If the network mode of a task definition is
set to none, then you cannot specify port mappings. If the network mode of a task definition is set
to host, then host ports must either be undefined or they must match the container port in the port
mapping.

Note
After a task reaches the RUNNING status, manual and automatic host and container
port assignments are visible in the Network Bindings section of a container description
of a selected task in the Amazon ECS console, or the networkBindings section of
describe-tasks AWS CLI command output or DescribeTasks API responses.

hostPort
Type: integer

Required: no

The port number on the container instance to reserve for your container. You can specify a
non-reserved host port for your container port mapping (this is referred to as static host port
mapping), or you can omit the hostPort (or set it to 0) while specifying a containerPort
and your container will automatically receive a port (this is referred to as dynamic host port
mapping) in the ephemeral port range for your container instance operating system and
Docker version.

The default ephemeral port range is 49153 to 65535, and this range is used for Docker
versions prior to 1.6.0. For Docker version 1.6.0 and later, the Docker daemon tries to read
the ephemeral port range from /proc/sys/net/ipv4/ip_local_port_range (which
is 32768 to 61000 on the latest Amazon ECS-optimized AMI); if this kernel parameter is
unavailable, the default ephemeral port range is used. You should not attempt to specify a
host port in the ephemeral port range, since these are reserved for automatic assignment. In
general, ports below 32768 are outside of the ephemeral port range.

The default reserved ports are 22 for SSH, the Docker ports 2375 and 2376, and the Amazon
ECS container agent port 51678. Any host port that was previously user-specified for a
running task is also reserved while the task is running (after a task stops, the host port
is released). The current reserved ports are displayed in the remainingResources of
describe-container-instances output, and a container instance may have up to 100 reserved
ports at a time, including the default reserved ports (automatically assigned ports do not count
toward the 100 reserved ports limit).

API Version 2014-11-13
91

https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/

Amazon EC2 Container Service Developer Guide
Container Definitions

containerPort
Type: integer

Required: yes, when portMappings are used

The port number on the container that is bound to the user-specified or automatically assigned
host port. If you specify a container port and not a host port, your container automatically
receives a host port in the ephemeral port range (for more information, see hostPort). Port
mappings that are automatically assigned in this way do not count toward the 100 reserved
ports limit of a container instance.

protocol
Type: string

Required: no

The protocol used for the port mapping. Valid values are tcp and udp. The default is tcp.

Important
UDP support is only available on container instances that were launched with version
1.2.0 of the Amazon ECS container agent (such as the amzn-ami-2015.03.c-
amazon-ecs-optimized AMI) or later, or with container agents that have been
updated to version 1.3.0 or later. To update your container agent to the latest version,
see Updating the Amazon ECS Container Agent (p. 63).

If you are specifying a host port, use the following syntax:

"portMappings": [
 {
 "containerPort": integer,
 "hostPort": integer
 }
 ...
]

If you want an automatically assigned host port, use the following syntax:

"portMappings": [
 {
 "containerPort": integer
 }
 ...
]

Advanced Container Definition Parameters

The following advanced container definition parameters provide extended capabilities to the docker
run command that is used to launch containers on your Amazon ECS container instances.

Topics

• Environment (p. 93)

• Network Settings (p. 95)

• Storage and Logging (p. 96)

• Security (p. 99)

• Resource Limits (p. 100)

• Docker Labels (p. 101)

API Version 2014-11-13
92

https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/

Amazon EC2 Container Service Developer Guide
Container Definitions

Environment

cpu
Type: integer

Required: no

The number of cpu units to reserve for the container. A container instance has 1,024 cpu units for
every CPU core. This parameter specifies the minimum amount of CPU to reserve for a container,
and containers share unallocated CPU units with other containers on the instance with the same
ratio as their allocated amount. This parameter maps to CpuShares in the Create a container
section of the Docker Remote API and the --cpu-shares option to docker run.

Note
You can determine the number of CPU units that are available per Amazon EC2 instance
type by multiplying the vCPUs listed for that instance type on the Amazon EC2 Instances
detail page by 1,024.

For example, if you run a single-container task on a single-core instance type with 512 CPU
units specified for that container, and that is the only task running on the container instance, that
container could use the full 1,024 CPU unit share at any given time. However, if you launched
another copy of the same task on that container instance, each task would be guaranteed a
minimum of 512 CPU units when needed, and each container could float to higher CPU usage if
the other container was not using it, but if both tasks were 100% active all of the time, they would
be limited to 512 CPU units.

The Docker daemon on the container instance uses the CPU value to calculate the relative CPU
share ratios for running containers. For more information, see CPU share constraint in the Docker
documentation. The minimum valid CPU share value that the Linux kernel will allow is 2; however,
the CPU parameter is not required, and you can use CPU values below 2 in your container
definitions. For CPU values below 2 (including null), the behavior varies based on your Amazon
ECS container agent version:

• Agent versions <= 1.1.0: Null and zero CPU values are passed to Docker as 0, which Docker
then converts to 1,024 CPU shares. CPU values of 1 are passed to Docker as 1, which the
Linux kernel converts to 2 CPU shares.

• Agent versions >= 1.2.0: Null, zero, and CPU values of 1 are passed to Docker as 2.

essential
Type: Boolean

Required: no

If the essential parameter of a container is marked as true, and that container fails or stops for
any reason, all other containers that are part of the task are stopped. If the essential parameter
of a container is marked as false, then its failure does not affect the rest of the containers in a
task. If this parameter is omitted, a container is assumed to be essential.

All tasks must have at least one essential container. If you have an application that is composed
of multiple containers, you should group containers that are used for a common purpose into
components, and separate the different components into multiple task definitions. For more
information, see Application Architecture (p. 83).

"essential": true|false

entryPoint

Important
Early versions of the Amazon ECS container agent do not properly handle entryPoint
parameters. If you have problems using entryPoint , update your container agent or
enter your commands and arguments as command array items instead.

API Version 2014-11-13
93

https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/
http://aws.amazon.com/ec2/instance-types/
https://docs.docker.com/engine/reference/run/#cpu-share-constraint

Amazon EC2 Container Service Developer Guide
Container Definitions

Type: string array

Required: no

The entry point that is passed to the container. This parameter maps to Entrypoint in the Create
a container section of the Docker Remote API and the --entrypoint option to docker run. For
more information about the Docker ENTRYPOINT parameter, go to https://docs.docker.com/engine/
reference/builder/#entrypoint.

"entryPoint": ["string", ...]

command
Type: string array

Required: no

The command that is passed to the container. This parameter maps to Cmd in the Create a
container section of the Docker Remote API and the COMMAND parameter to docker run. For more
information about the Docker CMD parameter, go to https://docs.docker.com/engine/reference/
builder/#cmd.

"command": ["string", ...]

workingDirectory
Type: string

Required: no

The working directory in which to run commands inside the container. This parameter maps to
WorkingDir in the Create a container section of the Docker Remote API and the --workdir
option to docker run.

"workingDirectory": "string"

environment
Type: object array

Required: no

The environment variables to pass to a container. This parameter maps to Env in the Create a
container section of the Docker Remote API and the --env option to docker run.

Important
We do not recommend using plain text environment variables for sensitive information,
such as credential data.

name
Type: string

Required: yes, when environment is used

The name of the environment variable.

value
Type: string

Required: yes, when environment is used

The value of the environment variable.

API Version 2014-11-13
94

https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/builder/#cmd
https://docs.docker.com/engine/reference/builder/#cmd
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/

Amazon EC2 Container Service Developer Guide
Container Definitions

"environment" : [
 { "name" : "string", "value" : "string" },
 { "name" : "string", "value" : "string" }
]

Network Settings

disableNetworking
Type: Boolean

Required: no

When this parameter is true, networking is disabled within the container. This parameter maps to
NetworkDisabled in the Create a container section of the Docker Remote API.

"disableNetworking": true|false

links
Type: string array

Required: no

The link parameter allows containers to communicate with each other without the need for port
mappings. The name:internalName construct is analogous to name:alias in Docker links. Up
to 255 letters (uppercase and lowercase), numbers, hyphens, and underscores are allowed. For
more information about linking Docker containers, go to https://docs.docker.com/engine/userguide/
networking/default_network/dockerlinks/. This parameter maps to Links in the Create a container
section of the Docker Remote API and the --link option to docker run.

Important
Containers that are collocated on a single container instance may be able to
communicate with each other without requiring links or host port mappings. Network
isolation is achieved on the container instance using security groups and VPC settings.

"links": ["name:internalName", ...]

hostname
Type: string

Required: no

The hostname to use for your container. This parameter maps to Hostname in the Create a
container section of the Docker Remote API and the --hostname option to docker run.

"hostname": "string"

dnsServers
Type: Boolean

Required: no

A list of DNS servers that are presented to the container. This parameter maps to Dns in the
Create a container section of the Docker Remote API and the --dns option to docker run.

Type: string array

Required: no

API Version 2014-11-13
95

https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/userguide/networking/default_network/dockerlinks/
https://docs.docker.com/engine/userguide/networking/default_network/dockerlinks/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/

Amazon EC2 Container Service Developer Guide
Container Definitions

"dnsServers": ["string", ...]

dnsSearchDomains
Type: string array

Required: no

A list of DNS search domains that are presented to the container. This parameter maps to
DnsSearch in the Create a container section of the Docker Remote API and the --dns-search
option to docker run.

"dnsSearchDomains": ["string", ...]

extraHosts
Type: object array

Required: no

A list of hostnames and IP address mappings to append to the /etc/hosts file on the container.
This parameter maps to ExtraHosts in the Create a container section of the Docker Remote API
and the --add-host option to docker run.

"extraHosts": [
 {
 "hostname": "string",
 "ipAddress": "string"
 }
 ...
]

hostname
Type: string

Required: yes, when extraHosts are used

The hostname to use in the /etc/hosts entry.

ipAddress
Type: string

Required: yes, when extraHosts are used

The IP address to use in the /etc/hosts entry.

Storage and Logging

readonlyRootFilesystem
Type: Boolean

Required: no

When this parameter is true, the container is given read-only access to its root file system. This
parameter maps to ReadonlyRootfs in the Create a container section of the Docker Remote API
and the --read-only option to docker run.

"readonlyRootFilesystem": true|false

API Version 2014-11-13
96

https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/

Amazon EC2 Container Service Developer Guide
Container Definitions

mountPoints
Type: object array

Required: no

The mount points for data volumes in your container. This parameter maps to Volumes in the
Create a container section of the Docker Remote API and the --volume option to docker run.

sourceVolume
Type: string

Required: yes, when mountPoints are used

The name of the volume to mount.

containerPath
Type: string

Required: yes, when mountPoints are used

The path on the container to mount the host volume at.

readOnly
Type: boolean

Required: no

If this value is true, the container has read-only access to the volume. If this value is false,
then the container can write to the volume. The default value is false.

"mountPoints": [
 {
 "sourceVolume": "string",
 "containerPath": "string",
 "readOnly": true|false
 }
]

volumesFrom
Type: object array

Required: no

Data volumes to mount from another container. This parameter maps to VolumesFrom in the
Create a container section of the Docker Remote API and the --volumes-from option to docker
run.

sourceContainer
Type: string

Required: yes, when volumesFrom is used

The name of the container to mount volumes from.

readOnly
Type: Boolean

Required: no

If this value is true, the container has read-only access to the volume. If this value is false,
then the container can write to the volume. The default value is false.

"volumesFrom": [
 {
 "sourceContainer": "string",

API Version 2014-11-13
97

https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/

Amazon EC2 Container Service Developer Guide
Container Definitions

 "readOnly": true|false
 }
]

logConfiguration
Type: LogConfiguration object

Required: no

The log configuration specification for the container. This parameter maps to LogConfig in the
Create a container section of the Docker Remote API and the --log-driver option to docker
run. By default, containers use the same logging driver that the Docker daemon uses; however
the container may use a different logging driver than the Docker daemon by specifying a log driver
with this parameter in the container definition. To use a different logging driver for a container, the
log system must be configured properly on the container instance (or on a different log server for
remote logging options). For more information on the options for different supported log drivers,
see Configure logging drivers in the Docker documentation.

For more information on using the awslogs log driver in task definitions to send your container
logs to CloudWatch Logs, see Using the awslogs Log Driver (p. 107).

Note
Amazon ECS currently supports a subset of the logging drivers available to the Docker
daemon (shown in the valid values below). Currently unsupported log drivers may be
available in future releases of the Amazon ECS container agent.

This parameter requires version 1.18 of the Docker Remote API or greater on your container
instance. To check the Docker Remote API version on your container instance, log into your
container instance, run the following command, and look for the server API version in the output:

$ sudo docker version

Note
The Amazon ECS container agent running on a container instance must register the
logging drivers available on that instance with the ECS_AVAILABLE_LOGGING_DRIVERS
environment variable before containers placed on that instance can use these log
configuration options. For more information, see Amazon ECS Container Agent
Configuration (p. 69).

"logConfiguration": {
 "logDriver": "json-
file"|"syslog"|"journald"|"gelf"|"fluentd"|"awslogs",
 "options": {"string": "string"
 ...}

logDriver
Type: string

Valid values: "json-file" | "syslog" | "journald" | "gelf" | "fluentd" |
"awslogs"

Required: yes, when logConfiguration is used

The log driver to use for the container. The valid values listed above are log drivers that the
Amazon ECS container agent can communicate with by default.

Note
If you have a custom driver that is not listed above that you would like to work with
the Amazon ECS container agent, you can fork the Amazon ECS container agent

API Version 2014-11-13
98

http://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LogConfiguration.html
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/admin/logging/overview/

Amazon EC2 Container Service Developer Guide
Container Definitions

project that is available on GitHub and customize it to work with that driver. We
encourage you to submit pull requests for changes that you would like to have
included. However, Amazon Web Services does not currently provide support for
running modified copies of this software.

This parameter requires version 1.18 of the Docker Remote API or greater on your container
instance. To check the Docker Remote API version on your container instance, log into your
container instance, run the following command, and look for the server API version in the
output:

$ sudo docker version

options
Type: string to string map

Required: no

The configuration options to send to the log driver. This parameter requires version 1.19 of
the Docker Remote API or greater on your container instance. To check the Docker Remote
API version on your container instance, log into your container instance, run the following
command, and look for the server API version in the output:

$ sudo docker version

Security

privileged
Type: Boolean

Required: no

When this parameter is true, the container is given elevated privileges on the host container
instance (similar to the root user). This parameter maps to Privileged in the Create a container
section of the Docker Remote API and the --privileged option to docker run.

"privileged": true|false

user
Type: string

Required: no

The user name to use inside the container. This parameter maps to User in the Create a container
section of the Docker Remote API and the --user option to docker run.

"user": "string"

dockerSecurityOptions
Type: string array

Required: no

A list of strings to provide custom labels for SELinux and AppArmor multi-level security systems.
This parameter maps to SecurityOpt in the Create a container section of the Docker Remote
API and the --security-opt option to docker run.

API Version 2014-11-13
99

https://github.com/aws/amazon-ecs-agent
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/

Amazon EC2 Container Service Developer Guide
Container Definitions

"dockerSecurityOptions": ["string", ...]

Note
The Amazon ECS container agent running on a container instance must register with
the ECS_SELINUX_CAPABLE=true or ECS_APPARMOR_CAPABLE=true environment
variables before containers placed on that instance can use these security options. For
more information, see Amazon ECS Container Agent Configuration (p. 69).

Resource Limits

ulimits
Type: object array

Required: no

A list of ulimits to set in the container. This parameter maps to Ulimits in the Create a
container section of the Docker Remote API and the --ulimit option to docker run. This
parameter requires version 1.18 of the Docker Remote API or greater on your container instance.
To check the Docker Remote API version on your container instance, log into your container
instance, run the following command, and look for the server API version in the output:

$ sudo docker version

"ulimits": [
 {
 "name":
 "core"|"cpu"|"data"|"fsize"|"locks"|"memlock"|"msgqueue"|"nice"|"nofile"|"nproc"|"rss"|"rtprio"|"rttime"|"sigpending"|"stack",
 "softLimit": integer,
 "hardLimit": integer
 }
 ...
]

name
Type: string

Valid values: "core" | "cpu" | "data" | "fsize" | "locks" | "memlock" |
"msgqueue" | "nice" | "nofile" | "nproc" | "rss" | "rtprio" | "rttime"
| "sigpending" | "stack"

Required: yes, when ulimits are used

The type of the ulimit.

hardLimit
Type: integer

Required: yes, when ulimits are used

The hard limit for the ulimit type.

softLimit
Type: integer

Required: yes, when ulimits are used

The soft limit for the ulimit type.

API Version 2014-11-13
100

https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/

Amazon EC2 Container Service Developer Guide
Volumes

Docker Labels

dockerLabels
Type: string to string map

Required: no

A key/value map of labels to add to the container. This parameter maps to Labels in the Create
a container section of the Docker Remote API and the --label option to docker run. This
parameter requires version 1.18 of the Docker Remote API or greater on your container instance.
To check the Docker Remote API version on your container instance, log into your container
instance, run the following command, and look for the server API version in the output:

$ sudo docker version

"dockerLabels": {"string": "string"
 ...}

Volumes
When you register a task definition, you can optionally specify a list of volumes that will be passed to
the Docker daemon on a container instance and become available for other containers on the same
container instance to access. For more information, see Using Data Volumes in Tasks (p. 102). The
following parameters are allowed in a container definition:

name
Type: string

Required: yes

The name of the volume. Up to 255 letters (uppercase and lowercase), numbers, hyphens, and
underscores are allowed. This name is referenced in the sourceVolume parameter of container
definition mountPoints.

host
Type: object

Required: no

The contents of the host parameter determine whether your data volume persists on the host
container instance and where it is stored. If the host parameter is empty, then the Docker daemon
assigns a host path for your data volume, but the data is not guaranteed to persist after the
containers associated with it stop running.

By default, Docker-managed volumes are created in /var/lib/docker/vfs/dir/. You can
change this default location by writing OPTIONS="-g=/my/path/for/docker/volumes" to /
etc/sysconfig/docker on the container instance.

sourcePath
Type: string

Required: no

The path on the host container instance that is presented to the container. If this parameter is
empty, then the Docker daemon assigns a host path for you.

If the host parameter contains a sourcePath file location, then the data volume persists
at the specified location on the host container instance until you delete it manually. If the

API Version 2014-11-13
101

https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/#create-a-container
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.19/
https://docs.docker.com/engine/reference/commandline/run/

Amazon EC2 Container Service Developer Guide
Using Data Volumes in Tasks

sourcePath value does not exist on the host container instance, the Docker daemon creates
it. If the location does exist, the contents of the source path folder are exported.

[
 {
 "name": "string",
 "host": {
 "sourcePath": "string"
 }
 }
]

Using Data Volumes in Tasks
There are several use cases for using data volumes in Amazon ECS task definitions. Some common
examples are to provide persistent data volumes for use with containers, to define an empty,
nonpersistent data volume and mount it on multiple containers on the same container instance, and
to share defined data volumes at different locations on different containers on the same container
instance.

Note
For operating systems that use devicemapper (such as Amazon Linux and the Amazon
ECS-optimized AMI), only file systems that are available when the Docker daemon is started
will be available to Docker containers. You can use a cloud boothook to mount your file
system before the Docker daemon starts, or you can restart the Docker daemon and the
Amazon ECS container agent after the file system is mounted to make the file system
available to your container volume mounts.

To provide persistent data volumes for containers

When a volume is defined with a sourcePath value, the data volume persists even after all containers
that referenced it have stopped. Any files that exist in the at the sourcePath are presented to the
containers at the containerPath value, and any files that are written to the containerPath
value by running containers that mount the data volume are written to the sourcePath value on the
container instance.

Important
Amazon ECS does not sync your data volumes across container instances. Tasks that use
persistent data volumes can be placed on any container instance in your cluster that has
available capacity. If your tasks require persistent data volumes after stopping and restarting,
you should always specify the same container instance at task launch time with the AWS CLI
start-task command.

1. In the task definition volumes section, define a data volume with name and sourcePath values.

 "volumes": [
 {
 "name": "webdata",
 "host": {
 "sourcePath": "/ecs/webdata"
 }
 }
]

2. In the containerDefinitions section, define a container with mountPoints that reference
the name of the defined volume and the containerPath value to mount the volume at on the
container.

API Version 2014-11-13
102

http://cloudinit.readthedocs.io/en/latest/topics/format.html#cloud-boothook
http://docs.aws.amazon.com/cli/latest/reference/ecs/start-task.html

Amazon EC2 Container Service Developer Guide
Using Data Volumes in Tasks

 "containerDefinitions": [
 {
 "name": "web",
 "image": "nginx",
 "cpu": 99,
 "memory": 100,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "webdata",
 "containerPath": "/usr/share/nginx/html"
 }
]
 }
]

To provide nonpersistent empty data volumes for containers

In some cases, you want containers to share the same empty data volume, but you aren't interested in
keeping the data after the task has finished. For example, you may have two database containers that
need to access the same scratch file storage location during a task.

1. In the task definition volumes section, define a data volume with the name database_scratch.

Note
Because the database_scratch volume does not specify a source path, the Docker
daemon manages the volume for you. When no containers reference this volume, the
Amazon ECS container agent task cleanup service eventually deletes it (by default, this
happens 3 hours after the container exits, but you can configure this duration with the
ECS_ENGINE_TASK_CLEANUP_WAIT_DURATION agent variable). For more information,
see Amazon ECS Container Agent Configuration (p. 69). If you need this data to persist,
specify a sourcePath value for the volume.

 "volumes": [
 {
 "name": "database_scratch",
 "host": {}
 }
]

2. In the containerDefinitions section, create the database container definitions so they mount
the nonpersistent data volumes.

 "containerDefinitions": [
 {
 "name": "database1",
 "image": "my-repo/database",
 "cpu": 100,
 "memory": 100,
 "essential": true,

API Version 2014-11-13
103

Amazon EC2 Container Service Developer Guide
Using Data Volumes in Tasks

 "mountPoints": [
 {
 "sourceVolume": "database_scratch",
 "containerPath": "/var/scratch"
 }
]
 },
 {
 "name": "database2",
 "image": "my-repo/database",
 "cpu": 100,
 "memory": 100,
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "database_scratch",
 "containerPath": "/var/scratch"
 }
]
 }
]

To mount a defined volume on multiple containers

You can define a data volume in a task definition and mount that volume at different locations on
different containers. For example, your host container has a website data folder at /data/webroot,
and you may want to mount that data volume as read-only on two different web servers that have
different document roots.

1. In the task definition volumes section, define a data volume with the name webroot and the
source path /data/webroot.

 "volumes": [
 {
 "name": "webroot",
 "host": {
 "sourcePath": "/data/webroot"
 }
 }
]

2. In the containerDefinitions section, define a container for each web server with
mountPoints values that associate the webroot volume with the containerPath value
pointing to the document root for that container.

 "containerDefinitions": [
 {
 "name": "web-server-1",
 "image": "my-repo/ubuntu-apache",
 "cpu": 100,
 "memory": 100,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],

API Version 2014-11-13
104

Amazon EC2 Container Service Developer Guide
Using Data Volumes in Tasks

 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "webroot",
 "containerPath": "/var/www/html",
 "readOnly": true
 }
]
 },
 {
 "name": "web-server-2",
 "image": "my-repo/sles11-apache",
 "cpu": 100,
 "memory": 100,
 "portMappings": [
 {
 "containerPort": 8080,
 "hostPort": 8080
 }
],
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "webroot",
 "containerPath": "/srv/www/htdocs",
 "readOnly": true
 }
]
 }
]

To mount volumes from another container using volumesFrom

You can define one or more volumes on a container, and then use the volumesFrom parameter
in a different container definition (within the same task) to mount all of the volumes from the
sourceContainer at their originally defined mount points. The volumesFrom parameter applies to
volumes defined in the task definition, and those that are built into the image with a Dockerfile.

1. (Optional) To share a volume that is built into an image, you need to build the image with the
volume declared in a VOLUME instruction. The following example Dockerfile uses an httpd image
and then adds a volume and mounts it at dockerfile_volume in the Apache document root
(which is the folder used by the httpd web server):

FROM httpd
VOLUME ["/usr/local/apache2/htdocs/dockerfile_volume"]

You can build an image with this Dockerfile and push it to a repository, such as Docker Hub, and
use it in your task definition. The example my-repo/httpd_dockerfile_volume image used in
the following steps was built with the above Dockerfile.

2. Create a task definition that defines your other volumes and mount points for the containers. In this
example volumes section, you create an empty volume called empty, which the Docker daemon
will manage. There is also a host volume defined called host_etc, which exports the /etc folder
on the host container instance.

{
 "family": "test-volumes-from",

API Version 2014-11-13
105

Amazon EC2 Container Service Developer Guide
Using Data Volumes in Tasks

 "volumes": [
 {
 "name": "empty",
 "host": {}
 },
 {
 "name": "host_etc",
 "host": {
 "sourcePath": "/etc"
 }
 }
],

In the container definitions section, create a container that mounts the volumes defined earlier.
In this example, the web container (which uses the image built with a volume in the Dockerfile)
mounts the empty and host_etc volumes.

 "containerDefinitions": [
 {
 "name": "web",
 "image": "my-repo/httpd_dockerfile_volume",
 "cpu": 100,
 "memory": 500,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "mountPoints": [
 {
 "sourceVolume": "empty",
 "containerPath": "/usr/local/apache2/htdocs/empty_volume"
 },
 {
 "sourceVolume": "host_etc",
 "containerPath": "/usr/local/apache2/htdocs/host_etc"
 }
],
 "essential": true
 },

Create another container that uses volumesFrom to mount all of the volumes that are associated
with the web container. All of the volumes on the web container will likewise be mounted on the
busybox container (including the volume specified in the Dockerfile that was used to build the my-
repo/httpd_dockerfile_volume image).

 {
 "name": "busybox",
 "image": "busybox",
 "volumesFrom": [
 {
 "sourceContainer": "web"
 }
],
 "cpu": 100,
 "memory": 500,

API Version 2014-11-13
106

Amazon EC2 Container Service Developer Guide
Using the awslogs Log Driver

 "entryPoint": [
 "sh",
 "-c"
],
 "command": [
 "echo $(date) > /usr/local/apache2/htdocs/empty_volume/date &&
 echo $(date) > /usr/local/apache2/htdocs/host_etc/date && echo $(date)
 > /usr/local/apache2/htdocs/dockerfile_volume/date"
],
 "essential": false
 }
]
}

When this task is run, the two containers mount the volumes, and the command in the busybox
container writes the date and time to a file called date in each of the volume folders, which are
then visible at the web site displayed by the web container.

Note
Because the busybox container runs a quick command and then exits, it needs to be set
as "essential": false in the container definition to prevent it from stopping the entire
task when it exits.

Using the awslogs Log Driver
You can configure the containers in your tasks to send log information to CloudWatch Logs. This
enables you to view different logs from your containers in one convenient location, and it prevents your
container logs from taking up disk space on your container instances. This topic helps you get started
using the awslogs log driver in your task definitions.

To send system logs from your Amazon ECS container instances to CloudWatch Logs, see Using
CloudWatch Logs with Container Instances (p. 43). For more information about CloudWatch Logs, see
Monitoring Log Files in the Amazon CloudWatch User Guide.

Topics

• Enabling the awslogs Log Driver on your Container Instances (p. 107)

• Creating Your Log Groups (p. 108)

• Available awslogs Log Driver Options (p. 108)

• Specifying a Log Configuration in your Task Definition (p. 109)

• Viewing awslogs Container Logs in CloudWatch Logs (p. 111)

Enabling the awslogs Log Driver on your Container
Instances
Your Amazon ECS container instances require at least version 1.9.0 of the container agent to enable
the awslogs log driver. For information about checking your agent version and updating to the latest
version, see Updating the Amazon ECS Container Agent (p. 63).

Note
If you are not using the Amazon ECS-optimized AMI (with at least version 1.9.0-1 of the
ecs-init package) for your container instances, you also need to specify that the awslogs
logging driver is available on the container instance when you start the agent by using the
following environment variable in your docker run statement or environment variable file. For
more information, see Installing the Amazon ECS Container Agent (p. 58).

API Version 2014-11-13
107

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html

Amazon EC2 Container Service Developer Guide
Creating Your Log Groups

ECS_AVAILABLE_LOGGING_DRIVERS=["json-file","awslogs"]

Your Amazon ECS container instances also require logs:CreateLogStream and
logs:PutLogEvents permission on the IAM role with which you launch your container instances. If
you created your Amazon ECS container instance role before awslogs log driver support was enabled
in Amazon ECS, then you might need to add this permission. If your container instances use the
managed IAM policy for container instances, then your container instances should have the correct
permissions. For information about checking your Amazon ECS container instance role and attaching
the managed IAM policy for container instances, see To check for the ecsInstanceRole in the IAM
console (p. 181).

Creating Your Log Groups
The awslogs log driver can send log streams to existing log groups in CloudWatch Logs, but it cannot
create log groups. Before you launch any tasks that use the awslogs log driver, you must create the
log groups that you intend your containers to use.

As an example, you could have a task with a WordPress container (which uses the awslogs-
wordpress log group) that is linked to a MySQL container (which uses the awslogs-mysql log
group). The sections below show how to create these log groups with the AWS CLI and with the
CloudWatch console.

Creating a Log Group with the AWS CLI
The AWS Command Line Interface (AWS CLI) is a unified tool to manage your AWS services. With
just one tool to download and configure, you can control multiple AWS services from the command line
and automate them through scripts. For more information, see the AWS Command Line Interface User
Guide.

If you have a working installation of the AWS CLI, you can use it to create your log groups. The
command below creates a log group called awslogs-wordpress in the ap-northeast-1 region.
Run this command for each log group to create, replacing the log group name with your value and
region name to the desired log destination.

$ aws logs create-log-group --log-group-name awslogs-wordpress --region ap-
northeast-1

Creating a Log Group with the CloudWatch Console
The following procedure creates a log group in the CloudWatch console.

To create a log group in the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the left navigation pane, choose Logs.

3. Choose Actions, Create log group.

4. For Log Group Name, enter the name of the log group to create.

5. Choose Create log group to finish.

Available awslogs Log Driver Options
The awslogs log driver supports the following options in Amazon ECS task definitions:

awslogs-region
Required: Yes

API Version 2014-11-13
108

http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/userguide/
https://console.aws.amazon.com/cloudwatch/

Amazon EC2 Container Service Developer Guide
Specifying a Log Configuration in your Task Definition

Specify the region to which the awslogs log driver should send your Docker logs. You can choose
to send all of your logs from clusters in different regions to a single region in CloudWatch Logs so
that they are all visible in one location, or you can separate them by region for more granularity. Be
sure that the specified log group exists in the region that you specify with this option.

awslogs-group

Required: Yes

You must specify a log group to which the awslogs log driver will send its log streams. For more
information, see Creating Your Log Groups (p. 108).

awslogs-stream-prefix

Required: No

The awslogs-stream-prefix option allows you to associate a log stream with the specified
prefix, the container name, and the ID of the Amazon ECS task to which the container belongs. If
you specify a prefix with this option, then the log stream takes the following format:

prefix-name/container-name/ecs-task-id

If you do not specify a prefix with this option, then the log stream is named after the container ID
that is assigned by the Docker daemon on the container instance. Because it is difficult to trace
logs back to the container that sent them with just the Docker container ID (which is only available
on the container instance), we recommend that you specify a prefix with this option.

For Amazon ECS services, you could use the service name as the prefix, which would allow you to
trace log streams to the service that the container belongs to, the name of the container that sent
them, and the ID of the task to which the container belongs.

Specifying a Log Configuration in your Task
Definition
Before your containers can send logs to CloudWatch, you must specify the awslogs log driver for
containers in your task definition. This section describes the log configuration for a container to use the
awslogs log driver. For more information, see Creating a Task Definition (p. 84).

The task definition JSON shown below has a logConfiguration object specified for each container;
one for the WordPress container that sends logs to a log group called awslogs-wordpress, and one
for a MySQL container that sends logs to a log group called awslogs-mysql. Both containers use the
awslogs-example log stream prefix.

{
 "containerDefinitions": [
 {
 "name": "wordpress",
 "links": [
 "mysql"
],
 "image": "wordpress",
 "essential": true,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",

API Version 2014-11-13
109

Amazon EC2 Container Service Developer Guide
Specifying a Log Configuration in your Task Definition

 "options": {
 "awslogs-group": "awslogs-wordpress",
 "awslogs-region": "ap-northeast-1",
 "awslogs-stream-prefix": "awslogs-example"
 }
 },
 "memory": 500,
 "cpu": 10
 },
 {
 "environment": [
 {
 "name": "MYSQL_ROOT_PASSWORD",
 "value": "password"
 }
],
 "name": "mysql",
 "image": "mysql",
 "cpu": 10,
 "memory": 500,
 "essential": true,
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "awslogs-mysql",
 "awslogs-region": "ap-northeast-1",
 "awslogs-stream-prefix": "awslogs-example"
 }
 }
 }
],
 "family": "awslogs-example"
}

In the Amazon ECS console, the log configuration for the wordpress container is specified as shown
in the image below.

API Version 2014-11-13
110

Amazon EC2 Container Service Developer Guide
Viewing awslogs Container Logs in CloudWatch Logs

After you have registered a task definition with the awslogs log driver in a container definition
log configuration, you can run a task or create a service with that task definition to start sending
logs to CloudWatch Logs. For more information, see Running Tasks (p. 118) and Creating a
Service (p. 142).

Viewing awslogs Container Logs in CloudWatch
Logs
After your container instance role has the proper permissions to send logs to CloudWatch Logs, your
container agents are updated to at least version 1.9.0, and you have configured and started a task with
containers that use the awslogs log driver, your configured containers should be sending their log
data to CloudWatch Logs. You can view and search these logs in the console.

To view your CloudWatch Logs data for a container from the Amazon ECS console

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. On the Clusters page, select the cluster that contains the task to view.

3. On the Cluster: cluster_name page, choose Tasks and select the task to view.

4. On the Task: task_id page, expand the container view by choosing the arrow to the left of the
container name.

5. In the Log Configuration section, choose View logs in CloudWatch, which opens the
associated log stream in the CloudWatch console.

To view your CloudWatch Logs data in the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the left navigation pane, choose Logs.

3. Select a log group to view. You should see the log groups that you created in Creating Your Log
Groups (p. 108).

API Version 2014-11-13
111

https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/cloudwatch/

Amazon EC2 Container Service Developer Guide
Example Task Definitions

4. Choose a log stream to view.

Example Task Definitions
Below are some task definition examples that you can use to start creating your own task
definitions. For more information, see Task Definition Parameters (p. 88) and Creating a Task
Definition (p. 84).

Topics

API Version 2014-11-13
112

Amazon EC2 Container Service Developer Guide
WordPress and MySQL

• WordPress and MySQL (p. 113)

• awslogs Log Driver (p. 114)

• Amazon ECR Image and Task Definition IAM Role (p. 114)

• Entrypoint with Command (p. 115)

WordPress and MySQL
The following task definition specifies a WordPress container and a MySQL container that are linked
together. These WordPress container exposes the container port 80 on the host port 80. The security
group on the container instance would need to open port 80 in order for this WordPress installation to
be accessible from a web browser.

For more information about the WordPress container, go to the official WordPress Docker Hub
repository at https://registry.hub.docker.com/_/wordpress/. For more information about the MySQL
container, go to the official MySQL Docker Hub repository at https://registry.hub.docker.com/_/mysql/.

Important
If you use this task definition with a load balancer, you need to complete the WordPress setup
installation through the web interface on the container instance immediately after the container
starts. The load balancer health check ping expects a 200 response from the server, but
WordPress returns a 301 until the installation is completed. If the load balancer health check
fails, the load balancer deregisters the instance.

{
 "containerDefinitions": [
 {
 "name": "wordpress",
 "links": [
 "mysql"
],
 "image": "wordpress",
 "essential": true,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "memory": 500,
 "cpu": 10
 },
 {
 "environment": [
 {
 "name": "MYSQL_ROOT_PASSWORD",
 "value": "password"
 }
],
 "name": "mysql",
 "image": "mysql",
 "cpu": 10,
 "memory": 500,
 "essential": true
 }
],
 "family": "hello_world"

API Version 2014-11-13
113

https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/mysql/

Amazon EC2 Container Service Developer Guide
awslogs Log Driver

}

awslogs Log Driver
The following example demonstrates how to use the awslogs log driver in a task definition. The nginx
container will send its logs to the ecs-log-streaming log group in the us-west-2 region. For more
information, see Using the awslogs Log Driver (p. 107).

{
 "containerDefinitions": [
 {
 "memory": 128,
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80,
 "protocol": "tcp"
 }
],
 "essential": true,
 "name": "nginx-container",
 "image": "nginx",
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "ecs-log-streaming",
 "awslogs-region": "us-west-2"
 }
 },
 "cpu": 0
 }
],
 "family": "example_task_1"
}

Amazon ECR Image and Task Definition IAM Role
The following example uses an Amazon ECR image called aws-nodejs-sample with the v1
tag from the 123456789012.dkr.ecr.us-west-2.amazonaws.com registry. The container
in this task will inherit IAM permissions from the arn:aws:iam::123456789012:role/
AmazonECSTaskS3BucketRole role. For more information, see IAM Roles for Tasks (p. 186).

{
 "containerDefinitions": [
 {
 "name": "sample-app",
 "image": "123456789012.dkr.ecr.us-west-2.amazonaws.com/aws-nodejs-
sample:v1",
 "memory": "200",
 "cpu": "10",
 "essential": true
 }
],
 "family": "example_task_3",
 "taskRoleArn": "arn:aws:iam::123456789012:role/AmazonECSTaskS3BucketRole"

API Version 2014-11-13
114

Amazon EC2 Container Service Developer Guide
Entrypoint with Command

}

Entrypoint with Command
The following example demonstrates the syntax for a Docker container that uses an entry point and a
command argument. This container will ping google.com 4 times and then exit.

{
 "containerDefinitions": [
 {
 "memory": 32,
 "essential": true,
 "entryPoint": [
 "ping"
],
 "name": "alpine_ping",
 "readonlyRootFilesystem": true,
 "image": "alpine:3.4",
 "command": [
 "-4",
 "google.com"
],
 "cpu": 16
 }
],
 "family": "example_task_2"
}

Deregistering Task Definitions
If you decide that you no longer need a task definition in Amazon ECS, you can deregister the task
definition so that it no longer displays in your ListTaskDefinition API calls or in the console when
you want to run a task or update a service.

When you deregister a task definition, it is immediately marked as INACTIVE. Existing tasks and
services that reference an INACTIVE task definition continue to run without disruption, and existing
services that reference an INACTIVE task definition can still scale up or down by modifying the
service's desired count.

You cannot use an INACTIVE task definition to run new tasks or create new services, and you cannot
update an existing service to reference an INACTIVE task definition (although there may be up to a 10
minute window following deregistration where these restrictions have not yet taken effect).

Use the following procedure to deregister a task definition.

To deregister a task definition

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, choose the region that contains your task definition.

3. In the navigation pane, choose Task Definitions.

4. On the Task Definitions page, choose the task definition name that contains one or more
revisions that you want to deregister.

5. On the Task Definition name page, select the box to the left of each task definition revision you
want to deregister.

API Version 2014-11-13
115

https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Developer Guide
Deregistering Task Definitions

6. Choose Actions, and then choose Deregister.

7. Verify the information in the Deregister Task Definition window, and choose Deregister to finish.

API Version 2014-11-13
116

Amazon EC2 Container Service Developer Guide

Scheduling Amazon ECS Tasks

Amazon EC2 Container Service (Amazon ECS) is a shared state, optimistic concurrency system that
provides flexible scheduling capabilities for your tasks and containers. The Amazon ECS schedulers
leverage cluster state information provided by the Amazon ECS API to make an appropriate placement
decision. Amazon ECS provides the service scheduler (for long-running tasks and applications), and
the RunTask action (for batch jobs or single run tasks), which place tasks on your cluster for you, as
well as the StartTask action, which allows you to specify a container instance for the task, so you can
integrate with custom, third-party schedulers or use to place a task manually on a specific container
instance.

Services

The service scheduler is ideally suited for long running stateless services and applications. The
service scheduler ensures that the specified number of tasks are constantly running and reschedules
tasks when a task fails (for example, if the underlying container instance fails for some reason).
The service scheduler optionally also makes sure that tasks are registered against an Elastic Load
Balancing load balancer. You can update your services that are maintained by the service scheduler,
such as deploying a new task definition, or changing the running number of desired tasks. For more
information, see Services (p. 121).

Running Tasks

The RunTask action is ideally suited for processes such as batch jobs that perform work and then stop.
RunTask randomly distributes tasks across your cluster and tries to minimize the chances that a single
instance on your cluster will get a disproportionate number of tasks. For example, you could have
a process that calls RunTask when work comes into a queue. The task pulls work from the queue,
performs the work such as a data transformation, and then exits. For more information, see Running
Tasks (p. 118).

The StartTask API

In addition to providing a set of default schedulers, Amazon ECS also allows you to write your
own schedulers that meet the needs of your business, or leverage third party schedulers. The
ECSSchedulerDriver is an open source proof of concept that shows you how can integrate Amazon
ECS with third-party schedulers; in this case, with the open source Apache Mesos framework. To
write your own scheduler, you can use the Amazon ECS List and Describe actions to get the state
of your cluster and then use the StartTask action to place your tasks on the appropriate container
instance based on your business and application requirements. The StartTask action is available
in the AWS CLI, the AWS SDKs, or the Amazon ECS API. For more information, see StartTask in the
Amazon EC2 Container Service API Reference.

Topics

• Running Tasks (p. 118)

API Version 2014-11-13
117

https://github.com/awslabs/ecs-mesos-scheduler-driver
http://mesos.apache.org/
http://docs.aws.amazon.com/AmazonECS/latest/APIReference//API_StartTask.html
http://docs.aws.amazon.com/AmazonECS/latest/APIReference/

Amazon EC2 Container Service Developer Guide
Running Tasks

• Task Life Cycle (p. 119)

Running Tasks
Running tasks manually is ideal in certain situations. Perhaps you are developing a task and you are
not ready to deploy this task with the service scheduler, or perhaps your task is a one-time or periodic
batch job that does not make sense to keep running or restart if it finishes. Use the following procedure
to use the default Amazon ECS scheduler to randomly place your task within your cluster.

Note
If you want a specified number of tasks to always remain running or if you want to place your
tasks behind a load balancer, you should use the Amazon ECS service scheduler. For more
information, see Services (p. 121).

To run a task

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, select the region that your cluster is in.

3. In the navigation pane, select Task Definitions.

4. On the Task Definitions page, choose the task definition that you want to run.

• To run the latest revision of a task definition shown here, check the box to the left of the name
of the task definition that you want to run.

• To run an earlier revision of a task definition shown here, choose the task definition to view all
active revisions, then select the revision to run.

5. Choose Actions, and then choose Run Task.

6. On the Run Task page, select the cluster you would like to use.

7. For Number of tasks, enter the number of tasks to launch with this task definition.

8. (Optional) To send command or environment variable overrides to one or more containers in your
task definition, or to specify an IAM role task override, complete the following steps:

a. Choose the Advanced Options menu.

b. On the Task Role Override menu, choose an IAM role that provides permissions for
containers in your task to make calls to AWS APIs on your behalf. For more information, see
IAM Roles for Tasks (p. 186).

Note
Only roles that have the Amazon EC2 Container Service Task Role trust
relationship are shown here. For help creating an IAM role for your tasks, see
Creating an IAM Role and Policy for your Tasks (p. 188).

c. On the Container Overrides menu, select a container to which to send a command or
environment variable override.

• For a command override: In the Command override field, type the command override
to send. If your container definition does not specify an ENTRYPOINT, the format should
be a comma-separated list of non-quoted strings. For example:

/bin/sh,-c,echo,$DATE

If your container definition does specify an ENTRYPOINT (such as sh,-c), the format
should be an unquoted string, which is surrounded with double quotes and passed as an
argument to the ENTRYPOINT command. For example:

while true; do echo $DATE > /var/www/html/index.html; sleep 1; done

API Version 2014-11-13
118

https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Developer Guide
Task Life Cycle

• For environment variable overrides: Choose Add Environment Variable. For
Key, enter the name of your environment variable. For Value, enter the string your
environment value should be set to (without surrounding quotes).

The above environment variable override is sent to the container as:

MY_ENV_VAR="This variable contains a string."

9. Review your task information and choose Run Task.

Note
If your task moves from PENDING to STOPPED, or if it displays a PENDING status and then
disappears from the listed tasks, your task may be stopping due to an error. For more
information, see Checking Stopped Tasks for Errors (p. 235) in the troubleshooting
section.

Task Life Cycle
When a task is started on a container instance, either manually or as part of a service, it can pass
through several states before it finishes on its own or is stopped manually. Some tasks are meant to
run as batch jobs that naturally progress through from PENDING to RUNNING to STOPPED. Other tasks,
which can be part of a service, are meant to continue running indefinitely, or to be scaled up and down
as needed.

When task status changes are requested, such as stopping a task or updating the desired count of
a service to scale it up or down, the Amazon ECS container agent tracks these changes as the last
known status of the task and the desired status of the task. The flow chart below shows the different
paths that task status can take, based on the action that causes the status change.

API Version 2014-11-13
119

Amazon EC2 Container Service Developer Guide
Task Life Cycle

The center path shows the natural progression of a batch job that stops on its own. A persistent task
that is not meant to finish would also be on the center path, but it would stop at the RUNNING:RUNNING
stage. The paths to the right show what happens at a given state if an API call reaches the agent to
stop the task or a container instance. The paths to the left show what happens if the container instance
a task is running on is removed, whether by forcefully deregistering it or by terminating the instance.

API Version 2014-11-13
120

Amazon EC2 Container Service Developer Guide
Service Concepts

Services

Amazon ECS allows you to run and maintain a specified number (the "desired count") of instances of
a task definition simultaneously in an ECS cluster. This is called a service. If any of your tasks should
fail or stop for any reason, the Amazon ECS service scheduler launches another instance of your task
definition to replace it and maintain the desired count of tasks in the service.

In addition to maintaining the desired count of tasks in your service, you can optionally run your service
behind a load balancer. The load balancer distributes traffic across the tasks that are associated with
the service.

Topics

• Service Concepts (p. 121)

• Service Definition Parameters (p. 122)

• Service Load Balancing (p. 124)

• Service Auto Scaling (p. 134)

• Creating a Service (p. 142)

• Updating a Service (p. 147)

• Deleting a Service (p. 148)

Service Concepts
• If a task in a service stops, the task is killed and restarted. This process continues until your service

reaches the number of desired running tasks.

• You can optionally run your service behind a load balancer. For more information, see Service Load
Balancing (p. 124).

• You can optionally specify a deployment configuration for your service. During a deployment (which
is triggered by updating the task definition or desired count of a service), the service scheduler
uses the minimum healthy percent and maximum percent parameters to determine the deployment
strategy. For more information, see Service Definition Parameters (p. 122).

• When the service scheduler launches new tasks, it attempts to balance them across the Availability
Zones in your cluster with the following logic:

• Determine which of the container instances in your cluster can support your service's task
definition (for example, they have the required CPU, memory, ports, and container instance
attributes).

• Sort the valid container instances by the fewest number of running tasks for this service in the
same Availability Zone as the instance. For example, if zone A has one running service task and

API Version 2014-11-13
121

Amazon EC2 Container Service Developer Guide
Service Definition Parameters

zones B and C each have zero, valid container instances in either zone B or C are considered
optimal for placement.

• Place the new service task on a valid container instance in an optimal Availability Zone (based on
the previous steps), favoring container instances with the fewest number of running tasks for this
service.

Service Definition Parameters
A service definition defines which task definition to use with your service, how many instantiations of
that task to run, and which load balancers (if any) to associate with your tasks.

{
 "cluster": "",
 "serviceName": "",
 "taskDefinition": "",
 "loadBalancers": [
 {
 "targetGroupArn": "",
 "loadBalancerName": "",
 "containerName": "",
 "containerPort": 0
 }
],
 "desiredCount": 0,
 "clientToken": "",
 "role": "",
 "deploymentConfiguration": {
 "maximumPercent": 0,
 "minimumHealthyPercent": 0
 }
}

Note
You can create the above service definition template with the following AWS CLI command.

$ aws ecs create-service --generate-cli-skeleton

You can specify the following parameters in a service definition.

cluster
The short name or full Amazon Resource Name (ARN) of the cluster on which to run your service
on. If you do not specify a cluster, the default cluster is assumed.

serviceName
The name of your service. Up to 255 letters (uppercase and lowercase), numbers, hyphens,
and underscores are allowed. Service names must be unique within a cluster, but you can have
similarly named services in multiple clusters within a region or across multiple regions.

taskDefinition
The family and revision (family:revision) or full ARN of the task definition to run in your
service.

loadBalancers

A load balancer object representing the load balancer to use with your service. Currently, you
are limited to one load balancer per service. After you create a service, the load balancer name,
container name, and container port specified in the service definition are immutable.

API Version 2014-11-13
122

Amazon EC2 Container Service Developer Guide
Service Definition Parameters

For Elastic Load Balancing Classic Load Balancers, this object must contain the load balancer
name, the container name (as it appears in a container definition), and the container port to access
from the load balancer. When a task from this service is placed on a container instance, the
container instance is registered with the load balancer specified here.

For Elastic Load Balancing Application Load Balancers, this object must contain the load balancer
target group ARN, the container name (as it appears in a container definition), and the container
port to access from the load balancer. When a task from this service is placed on a container
instance, the container instance and port combination is registered as a target in the target group
specified here.

targetGroupArn
The full Amazon Resource Name (ARN) of the Elastic Load Balancing target group associated
with a service.

loadBalancerName
The name of the load balancer.

containerName
The name of the container (as it appears in a container definition) to associate with the load
balancer.

containerPort
The port on the container to associate with the load balancer. This port must correspond to a
containerPort in the service's task definition. Your container instances must allow ingress
traffic on the hostPort of the port mapping.

desiredCount
The number of copies of the specified task definition to place and keep running on your cluster.

clientToken
Unique, case-sensitive identifier you provide to ensure the idempotency of the request. Up to 32
ASCII characters are allowed.

role
The name or full Amazon Resource Name (ARN) of the IAM role that allows Amazon ECS to make
calls to your load balancer on your behalf. This parameter is only required if you are using a load
balancer with your service.

If your specified role has a path other than /, then you must either specify the full role ARN (this is
recommended) or prefix the role name with the path. For example, if a role with the name bar has
a path of /foo/ then you would specify /foo/bar as the role name. For more information, see
Friendly Names and Paths in the IAM User Guide.

deploymentConfiguration
Optional deployment parameters that control how many tasks run during the deployment and the
ordering of stopping and starting tasks.

maximumPercent
The maximumPercent parameter represents an upper limit on the number of your service's
tasks that are allowed in the RUNNING or PENDING state during a deployment, as a
percentage of the desiredCount (rounded down to the nearest integer). This parameter
enables you to define the deployment batch size. For example, if your service has a
desiredCount of four tasks and a maximumPercent value of 200%, the scheduler may
start four new tasks before stopping the four older tasks (provided that the cluster resources
required to do this are available). The default value for maximumPercent is 200%.

The maximum number of tasks during a deployment is the desiredCount multiplied by the
maximumPercent/100, rounded down to the nearest integer value.

minimumHealthyPercent
The minimumHealthyPercent represents a lower limit on the number of your service's
tasks that must remain in the RUNNING state during a deployment, as a percentage of the
desiredCount (rounded up to the nearest integer). This parameter enables you to deploy
without using additional cluster capacity. For example, if your service has a desiredCount
of four tasks and a minimumHealthyPercent of 50%, the scheduler may stop two existing

API Version 2014-11-13
123

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-friendly-names

Amazon EC2 Container Service Developer Guide
Service Load Balancing

tasks to free up cluster capacity before starting two new tasks. Tasks for services that do not
use a load balancer are considered healthy if they are in the RUNNING state; tasks for services
that do use a load balancer are considered healthy if they are in the RUNNING state and the
container instance it is hosted on is reported as healthy by the load balancer. The default
value for minimumHealthyPercent is 50% in the console and 100% for the AWS CLI, the
AWS SDKs, and the APIs.

The minimum healthy tasks during a deployment is the desiredCount multiplied by the
minimumHealthyPercent/100, rounded up to the nearest integer value.

Service Load Balancing
Your Amazon ECS service can optionally be configured to use Elastic Load Balancing to distribute
traffic evenly across the tasks in your service.

Elastic Load Balancing provides two types of load balancers: Application Load Balancers and Classic
Load Balancers.

Application Load Balancer

An Application Load Balancer makes routing decisions at the application layer (HTTP/HTTPS),
supports path-based routing, and can route requests to one or more ports on each container instance
in your cluster. Application Load Balancers support dynamic host port mapping. For example, if your
task's container definition specifies port 80 for an NGINX container port, and port 0 for the host port,
then the host port is dynamically chosen from the ephemeral port range of the container instance (such
as 32768 to 61000 on the latest Amazon ECS-optimized AMI). When the task is launched, the NGINX
container is registered with the Application Load Balancer as an instance ID and port combination, and
traffic is distributed to the instance ID and port corresponding to that container. This dynamic mapping
allows you to have multiple tasks from a single service on the same container instance. For more
information, see the Application Load Balancer Guide.

API Version 2014-11-13
124

http://docs.aws.amazon.com/elasticloadbalancing/latest/application/

Amazon EC2 Container Service Developer Guide
Service Load Balancing

Classic Load Balancer

A Classic Load Balancer makes routing decisions at either the transport layer (TCP/SSL) or the
application layer (HTTP/HTTPS). Classic Load Balancers currently require a fixed relationship between
the load balancer port and the container instance port. For example, it is possible to map the load
balancer port 80 to the container instance port 3030 and the load balancer port 4040 to the container
instance port 4040. However, it is not possible to map the load balancer port 80 to port 3030 on one
container instance and port 4040 on another container instance. This static mapping requires that your
cluster has at least as many container instances as the desired count of a single service that uses a
Classic Load Balancer. For more information, see the Classic Load Balancer Guide.

Amazon ECS services can use either type of load balancer. However, Application Load Balancers offer
several new features that make them particularly attractive for use with Amazon ECS services:

• Application Load Balancers allow containers to use dynamic host port mapping (so that multiple
tasks from the same service are allowed per container instance).

• Application Load Balancers support path-based routing and priority rules (so that multiple services
can use the same listener port on a single Application Load Balancer).

We recommend using Application Load Balancers for your Amazon ECS services so that you can
take advantage of these latest features. For more information about Elastic Load Balancing and the
differences between the two load balancer types, see the Elastic Load Balancing User Guide.

Topics

• Load Balancing Concepts (p. 126)

• Check the Service Role for your Account (p. 126)

• Creating a Load Balancer (p. 127)

API Version 2014-11-13
125

http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/
http://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/

Amazon EC2 Container Service Developer Guide
Load Balancing Concepts

Load Balancing Concepts
• All of the containers that are launched in a single task definition are always placed on the same

container instance. For Classic Load Balancers, you may choose to put multiple containers (in the
same task definition) behind the same load balancer by defining multiple host ports in the service
definition and adding those listener ports to the load balancer. For example, if a task definition
consists of Elasticsearch using port 3030 on the container instance, with Logstash and Kibana using
port 4040 on the container instance, the same load balancer can route traffic to Elasticsearch and
Kibana through two listeners. For more information, see Listeners for Your Classic Load Balancer in
the Classic Load Balancer Guide.

Important
We do not recommend connecting multiple services to the same Classic Load Balancer.
Because entire container instances are registered and deregistered with Classic Load
Balancers (and not host and port combinations), this configuration can cause issues if a
task from one service stops, causing the entire container instance to be deregistered from
the Classic Load Balancer while another task from a different service on the same container
instance is still using it. If you want to connect multiple services to a single load balancer (for
example, to save costs), we recommend using an Application Load Balancer.

• There is a limit of one load balancer or target group per service.

• Your load balancer subnet configuration must include all subnets that your container instances
reside in.

• After you create a service, the target group ARN or load balancer name, container name, and
container port specified in the service definition are immutable. You cannot add, remove, or change
the load balancer configuration of an existing service. If you update the task definition for the service,
the container name and container port that were specified when the service was created must
remain in the task definition.

• If a service's task fails the load balancer health check criteria, the task is killed and restarted. This
process continues until your service reaches the number of desired running tasks.

• If you are experiencing problems with your load balancer-enabled services, see Troubleshooting
Service Load Balancers (p. 239).

Check the Service Role for your Account
Amazon ECS needs permission to register and deregister container instances with your load balancer
when tasks are created and stopped.

In most cases, the Amazon ECS service role is automatically created for you in the Amazon ECS
console first run experience. You can use the following procedure to check and see if your account
already has an Amazon ECS service role.

To check for the ecsServiceRole in the IAM console

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Roles.

3. Search the list of roles for ecsServiceRole. If the role does not exist, see Amazon ECS Service
Scheduler IAM Role (p. 182) to create the role. If the role does exist, select the role to view the
attached policies.

4. Choose Permissions.

5. In the Managed Policies section, ensure that the AmazonEC2ContainerServiceRole managed
policy is attached to the role. If the policy is attached, your Amazon ECS service role is properly
configured. If not, follow the substeps below to attach the policy.

API Version 2014-11-13
126

http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-listener-config.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon EC2 Container Service Developer Guide
Creating a Load Balancer

a. Choose Attach Policy.

b. For Filter, type AmazonEC2ContainerServiceRole to narrow the available policies to
attach.

c. Select the box to the left of the AmazonEC2ContainerServiceRole policy and choose
Attach Policy.

6. Choose Trust Relationships, Edit Trust Relationship.

7. Verify that the trust relationship contains the following policy. If the trust relationship matches the
policy below, choose Cancel. If the trust relationship does not match, copy the policy into the
Policy Document window and choose Update Trust Policy.

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Creating a Load Balancer
This section provides a hands-on introduction to using Elastic Load Balancing through the AWS
Management Console to use with your Amazon ECS services. In this section, you create an external
load balancer that receives public HTTP traffic and routes it to your Amazon ECSinstances.

Elastic Load Balancing provides two types of load balancers: Application Load Balancers and Classic
Load Balancers, and Amazon ECS services can use either type of load balancer. However, Application
Load Balancers offer several new features that make them particularly attractive for use with Amazon
ECS services:

• Application Load Balancers allow containers to use dynamic host port mapping (so that multiple
tasks from the same service are allowed per container instance).

• Application Load Balancers support path-based routing and priority rules (so that multiple services
can use the same listener port on a single Application Load Balancer).

We recommend that you use Application Load Balancers for your Amazon ECS services so that you
can take advantage of these latest features. For more information about Elastic Load Balancing and
the differences between the two load balancer types, see the Elastic Load Balancing User Guide.

Topics

• Creating an Application Load Balancer (p. 127)

• Creating a Classic Load Balancer (p. 131)

Creating an Application Load Balancer

This section walks you through the process of creating an Application Load Balancer in the AWS
Management Console.

API Version 2014-11-13
127

http://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/

Amazon EC2 Container Service Developer Guide
Creating a Load Balancer

Define Your Load Balancer

First, provide some basic configuration information for your load balancer, such as a name, a network,
and a listener.

A listener is a process that checks for connection requests. It is configured with a protocol and a
port for front-end (client to load balancer) connections, and protocol and a port for back-end (load
balancer to back-end instance) connections. In this example, you configure a listener that accepts
HTTP requests on port 80 and sends them to the containers in your tasks on port 80 using HTTP.

To define your load balancer

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the navigation bar, select a region for your load balancer. Be sure to select the same region
that you selected for your Amazon ECS container instances.

3. In the navigation pane, under LOAD BALANCING, choose Load Balancers.

4. Choose Create Load Balancer.

5. On the Select load balancer type page, choose Application Load Balancer and then choose
Continue.

6. Complete the Configure Load Balancer page as follows:

a. For Name, type a name for your load balancer.

b. For Scheme, an Internet-facing load balancer routes requests from clients over the Internet to
targets. An internal load balancer routes requests to targets using private IP addresses.

c. For Listeners, the default is a listener that accepts HTTP traffic on port 80. You can keep
the default listener settings, modify the protocol or port of the listener, or choose Add to add
another listener.

d. For VPC, select the same VPC that you used for the container instances on which you intend
to run your service.

e. For Available subnets, select at least two subnets from different Availability Zones, and
choose the icon in the Actions column. The subnets are moved under Selected subnets.
Note that you can select only one subnet per Availability Zone. If you select a subnet from an
Availability Zone where there is already a selected subnet, this subnet replaces the currently
selected subnet for the Availability Zone. Your load balancer subnet configuration must
include all subnets that your container instances reside in.

f. Choose Next: Configure Security Settings.

(Optional) Configure Security Settings

If you created a secure listener in the previous step, complete the Configure Security Settings page
as follows; otherwise, choose Next: Configure Security Groups.

To configure security settings

1. If you have a certificate from AWS Certificate Manager, choose Choose an existing certificate
from AWS Certificate Manager (ACM), and then choose the certificate from Certificate name.

2. If you have already uploaded a certificate using IAM, choose Choose an existing certificate
from AWS Identity and Access Management (IAM), and then choose your certificate from
Certificate name.

3. If you have a certificate ready to upload, choose Upload a new SSL Certificate to AWS Identity
and Access Management (IAM). For Certificate name, type a name for the certificate. For
Private Key, copy and paste the contents of the private key file (PEM-encoded). In Public Key
Certificate, copy and paste the contents of the public key certificate file (PEM-encoded). In

API Version 2014-11-13
128

https://console.aws.amazon.com/ec2/

Amazon EC2 Container Service Developer Guide
Creating a Load Balancer

Certificate Chain, copy and paste the contents of the certificate chain file (PEM-encoded), unless
you are using a self-signed certificate and it's not important that browsers implicitly accept the
certificate.

4. For Select policy, keep the one existing predefined security policy.

5. Choose Next: Configure Security Groups.

Configure Security Groups

You must assign a security group to your load balancer that allows inbound traffic to the ports that you
specified for your listeners. Amazon ECS does not automatically update the security groups associated
with Elastic Load Balancing load balancers or Amazon ECS container instances.

To assign a security group to your load balancer

1. On the Assign Security Groups page, choose Create a new security group.

2. Enter a name and description for your security group, or leave the default name and description.
This new security group contains a rule that allows traffic to the port that you configured your
listener to use.

Note
Later in this topic, you will create a security group rule for your container instances
that allows traffic on all ports coming from the security group created here, so that the
Application Load Balancer can route traffic to dynamically assigned host ports on your
container instances.

3. Choose Next: Configure Routing to go to the next page in the wizard.

Configure Routing

In this section, you create a target group for your load balancer and the health check criteria for targets
that are registered within that group.

To create a target group and configure health checks

1. For Target group, keep the default, New target group.

2. For Name, type a name for the new target group.

3. Set Protocol and Port as needed.

4. For Health checks, keep the default health check settings.

5. Choose Next: Register Targets.

API Version 2014-11-13
129

Amazon EC2 Container Service Developer Guide
Creating a Load Balancer

Register Targets

Your load balancer distributes traffic between the targets that are registered to its target groups. When
you associate a target group to an Amazon ECS service, Amazon ECS automatically registers and
deregisters containers with your target group. Because Amazon ECS handles target registration, you
do not add targets to your target group at this time.

To skip target registration

1. In the Registered instances section, ensure that no instances are selected for registration.

2. Choose Next: Review to go to the next page in the wizard.

Review and Create

Review your load balancer and target group configuration and choose Create to create your load
balancer.

Create a Security Group Rule for your Container Instances

After your Application Load Balancer has been created, you must add an inbound rule to your
container instance security group that allows traffic from your load balancer to reach the containers.

To allow inbound traffic from your load balancer to your container instances

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the left navigation, choose Security Groups.

3. Choose the security group that your container instances use. If you created your container
instances by using the Amazon ECS first run wizard, this security group may have the description,
ECS Allowed Ports.

4. Choose the Inbound tab, and then choose Edit.

5. For Type, choose All traffic.

6. For Source, choose Custom, and then type the name of your Application Load Balancer security
group that you created in Configure Security Groups (p. 129). This rule allows all traffic from your
Application Load Balancer to reach the containers in your tasks that are registered with your load
balancer.

7. Choose Save to finish.

API Version 2014-11-13
130

https://console.aws.amazon.com/ec2/

Amazon EC2 Container Service Developer Guide
Creating a Load Balancer

Create an Amazon ECS Service

After your load balancer and target group are created, you can specify the target group in a service
definition when you create a service. When each task for your service is started, the container and port
combination specified in the service definition is registered with your target group and traffic is routed
from the load balancer to that container. For more information, see Creating a Service (p. 142).

Creating a Classic Load Balancer

This section walks you through the process of creating a Classic Load Balancer in the AWS
Management Console.

Note that you can create your Classic Load Balancer for use with EC2-Classic or a VPC. Some of the
tasks described in these procedures apply only to load balancers in a VPC.

Define Your Load Balancer

First, provide some basic configuration information for your load balancer, such as a name, a network,
and a listener.

A listener is a process that checks for connection requests. It is configured with a protocol and a port
for front-end (client to load balancer) connections and a protocol, and protocol and a port for back-end
(load balancer to back-end instance) connections. In this example, you configure a listener that accepts
HTTP requests on port 80 and sends them to the back-end instances on port 80 using HTTP.

To define your load balancer

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the navigation bar, select a region for your load balancer. Be sure to select the same region
that you selected for your Amazon ECS container instances.

3. In the navigation pane, under LOAD BALANCING, choose Load Balancers.

4. Choose Create Load Balancer.

5. On the Select load balancer type page, choose Classic Load Balancer.

6. For Load Balancer name, enter a unique name for your load balancer.

The load balancer name you choose must be unique within your set of load balancers, must have
a maximum of 32 characters, and must only contain alphanumeric characters or hyphens.

7. For Create LB inside, select the same network that your container instances are located in: EC2-
Classic or a specific VPC.

8. The default values configure an HTTP load balancer that forwards traffic from port 80 at the
load balancer to port 80 of your container instances, but you can modify these values for your
application. For more information, see Listeners for Your Classic Load Balancer in the Classic
Load Balancer Guide.

9. [EC2-VPC] To improve the availability of your load balancer, select at least two subnets in different
Availability Zones. Your load balancer subnet configuration must include all subnets that your
container instances reside in. In the Select Subnets section, under Available Subnets, select the
subnets. The subnets that you select are moved under Selected Subnets.

Note
If you selected EC2-Classic as your network, or you have a default VPC but did not
choose Enable advanced VPC configuration, you do not see Select Subnets.

API Version 2014-11-13
131

https://console.aws.amazon.com/ec2/
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-listener-config.html

Amazon EC2 Container Service Developer Guide
Creating a Load Balancer

10. Choose Next: Assign Security Groups to go to the next page in the wizard.

Assign a Security Group to Your Load Balancer in a VPC

If you created your load balancer in a VPC, you must assign it a security group that allows inbound
traffic to the ports that you specified for your load balancer and the health checks for your load
balancer. Amazon ECS does not automatically update the security groups associated with Elastic Load
Balancing load balancers or Amazon ECS container instances.

Note
If you selected EC2-Classic as your network, you do not see this page in the wizard and you
can go to the next step. Elastic Load Balancing provides a security group that is assigned to
your load balancer for EC2-Classic automatically.

To assign a security group to your load balancer

1. On the Assign Security Groups page, choose Create a new security group.

2. Enter a name and description for your security group, or leave the default name and description.
This new security group contains a rule that allows traffic to the port that you configured your load
balancer to use. If you specified a different port for the health checks, you must choose Add Rule
to add a rule that allows inbound traffic to that port as well.

Note
You should also assign this security group to container instances in your service, or
another security group with the same rules.

3. Choose Next: Configure Security Settings to go to the next page in the wizard.

(Optional) Configure Security Settings

For this tutorial, you can choose Next: Configure Health Check to continue to the next step. For more
information about creating a HTTPS load balancer and using additional security features, see HTTPS
Load Balancers in the Classic Load Balancer Guide.

API Version 2014-11-13
132

http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-https-load-balancers.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-https-load-balancers.html

Amazon EC2 Container Service Developer Guide
Creating a Load Balancer

Configure Health Checks for Your EC2 Instances

Elastic Load Balancing automatically checks the health of the tasks in your service. If Elastic Load
Balancing finds an unhealthy task, it stops sending traffic to the instance and reroutes traffic to healthy
instances. Amazon ECS stops your unhealthy task and starts another instance of that task.

Note
The following procedure configures an HTTP (port 80) load balancer, but you can modify
these values for your application.

To configure a health check for your instances

1. On the Configure Health Check page, do the following:

a. Leave Ping Protocol set to its default value of HTTP.

b. Leave Ping Port set to its default value of 80.

c. For Ping Path, replace the default value with a single forward slash ("/"). This tells Elastic
Load Balancing to send health check queries to the default home page for your web server,
such as index.html or default.html.

d. Leave the other fields at their default values.

2. Choose Next: Add EC2 Instances to go to the next page in the wizard.

Load Balancer Instance Registration

Your load balancer distributes traffic between the instances that are registered to it. When you assign
your load balancer to an Amazon ECS service, Amazon ECS automatically registers and deregisters
container instances when tasks from your service are running on them. Because Amazon ECS handles
container instance registration, you do not add container instances to your load balancer at this time.

To skip instance registration and tag the load balancer

1. On the Add EC2 Instances page, for Add Instances to Load Balancer, ensure that no instances
are selected for registration.

2. Leave the other fields at their default values.

3. Choose Next: Add Tags to go to the next page in the wizard.

Tag Your Load Balancer (Optional)

You can tag your load balancer, or continue to the next step. Note that you can tag your load balancer
later on; for more information, see Tag Your Classic Load Balancer in the Classic Load Balancer
Guide.

To add tags to your load balancer

1. On the Add Tags page, specify a key and a value for the tag.

2. To add another tag, choose Create Tag and specify a key and a value for the tag.

API Version 2014-11-13
133

http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/add-remove-tags.html

Amazon EC2 Container Service Developer Guide
Service Auto Scaling

3. After you are finished adding tags, choose Review and Create.

Create and Verify Your Load Balancer

Before you create the load balancer, review the settings that you selected. After creating the load
balancer, you can create a service that uses it to verify that it's sending traffic to your container
instances.

To finish creating your load balancer

1. On the Review page, check your settings. If you need to make changes to the initial settings,
choose the corresponding edit link.

2. Choose Create to create your load balancer.

3. After you are notified that your load balancer was created, choose Close.

Create an Amazon ECS Service

After your load balancer is created, you can specify it in a service definition when you create a service.
For more information, see Creating a Service (p. 142).

Service Auto Scaling
Your Amazon ECS service can optionally be configured to use Service Auto Scaling to adjust its
desired count up or down in response to CloudWatch alarms. Service Auto Scaling is available in all
regions that support Amazon ECS.

Amazon ECS publishes CloudWatch metrics with your service’s average CPU and memory usage.
You can use these service utilization metrics to scale your service up to deal with high demand at
peak times, and to scale your service down to reduce costs during periods of low utilization. For more
information, see Service Utilization (p. 157).

You can also use CloudWatch metrics published by other services, or custom metrics that are specific
to your application. For example, a web service could increase the number of tasks based on Elastic
Load Balancing metrics such as SurgeQueueLength, and a batch job could increase the number of
tasks based on Amazon SQS metrics like ApproximateNumberOfMessagesVisible.

You can also use Service Auto Scaling in conjunction with Auto Scaling for Amazon EC2 on your ECS
cluster to scale your cluster, and your service, as a result to the demand. For more information, see
Tutorial: Scaling Container Instances with CloudWatch Alarms (p. 162).

Service Auto Scaling Required IAM Permissions
Service Auto Scaling is made possible by a combination of the Amazon ECS, CloudWatch, and
Application Auto Scaling APIs. Services are created and updated with Amazon ECS, alarms are
created with CloudWatch, and scaling policies are created with Application Auto Scaling. IAM
users must have the appropriate permissions for these services before they can use Service Auto
Scaling in the AWS Management Console or with the AWS CLI or SDKs. In addition to the standard
IAM permissions for creating and updating services, Service Auto Scaling requires the following
permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {

API Version 2014-11-13
134

Amazon EC2 Container Service Developer Guide
Service Auto Scaling Concepts

 "Effect": "Allow",
 "Action": [
 "application-autoscaling:*",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm"
],
 "Resource": [
 "*"
]
 }
]
}

The Create Services (p. 197) and Update Services (p. 198) IAM policy examples show the
permissions that are required for IAM users to use Service Auto Scaling in the AWS Management
Console.

The Application Auto Scaling service needs permission to describe your ECS services and
CloudWatch alarms, as well as permissions to modify your service's desired count on your behalf. You
must create an IAM role (ecsAutoscaleRole) for your ECS services to provide these permissions
and then associate that role with your service before it can use Application Auto Scaling. If an IAM user
has the required permissions to use Service Auto Scaling in the Amazon ECS console, create IAM
roles, and attach IAM role policies to them, then that user can create this role automatically as part of
the Amazon ECS console create service (p.) or update service (p. 147) workflows, and then
use the role for any other service later (in the console or with the CLI/SDKs). You can also create the
role by following the procedures in Amazon ECS Service Auto Scaling IAM Role (p. 184).

Service Auto Scaling Concepts
• The ECS service scheduler respects the desired count at all times, but as long as you have active

scaling policies and alarms on a service, Service Auto Scaling could change a desired count that
was manually set by you.

• If a service's desired count is set below its minimum capacity value, and an alarm triggers a scale
out activity, Application Auto Scaling scales the desired count up to the minimum capacity value
and then continues to scale out as required, based on the scaling policy associated with the alarm.
However, a scale in activity will not adjust the desired count, because it is already below the
minimum capacity value.

• If a service's desired count is set above its maximum capacity value, and an alarm triggers a scale
in activity, Application Auto Scaling scales the desired count down to the maximum capacity value
and then continues to scale in as required, based on the scaling policy associated with the alarm.
However, a scale out activity will not adjust the desired count, because it is already above the
maximum capacity value.

• During scaling activities, the actual running task count in a service is the value that Service Auto
Scaling uses as its starting point, as opposed to the desired count, which is what processing
capacity is supposed to be. This prevents excessive (runaway) scaling that could not be satisfied,
for example, if there are not enough container instance resources to place the additional tasks. If
the container instance capacity is available later, the pending scaling activity may succeed, and then
further scaling activities can continue after the cool down period.

Amazon ECS Console Experience
The Amazon ECS console's service creation and service update workflows support Service Auto
Scaling. The ECS console handles the ecsAutoscaleRole and policy creation, provided that the IAM
user who is using the console has the permissions described in Service Auto Scaling Required IAM
Permissions (p. 134), and that they can create IAM roles and attach policies to them.

API Version 2014-11-13
135

Amazon EC2 Container Service Developer Guide
AWS CLI and SDK Experience

When you configure a service to use Service Auto Scaling in the console, your service is automatically
registered as a scalable target with Application Auto Scaling so that you can configure scaling
policies that scale your service up and down. You can also create and update the scaling policies and
CloudWatch alarms that trigger them in the Amazon ECS console.

To create a new ECS service that uses Service Auto Scaling, see Creating a Service (p. 142).

To update an existing service to use Service Auto Scaling, see Updating a Service (p. 147).

AWS CLI and SDK Experience
You can configure Service Auto Scaling by using the AWS CLI or the AWS SDKs, but you must
observe the following considerations.

• Service Auto Scaling is made possible by a combination of the Amazon ECS, CloudWatch, and
Application Auto Scaling APIs. Services are created and updated with Amazon ECS, alarms are
created with CloudWatch, and scaling policies are created with Application Auto Scaling. For
more information about these specific API operations, see the Amazon EC2 Container Service
API Reference, the Amazon CloudWatch API Reference, and the Application Auto Scaling API
Reference. For more information about the AWS CLI commands for these services, see the ecs,
cloudwatch, and application-autoscaling sections of the AWS Command Line Interface Reference.

• Before your service can use Service Auto Scaling, you must register it as a scalable target with the
Application Auto Scaling RegisterScalableTarget API operation.

• After your ECS service is registered as a scalable target, you can create scaling policies with the
Application Auto Scaling PutScalingPolicy API operation to specify what should happen when your
CloudWatch alarms are triggered.

• After you create the scaling policies for your service, you can create the CloudWatch alarms that
trigger the scaling events for your service with the CloudWatch PutMetricAlarm API operation.

Tutorial: Service Auto Scaling with CloudWatch
Service Utilization Metrics
The following procedures help you to create an Amazon ECS cluster and a service that uses Service
Auto Scaling to scale up (and down) using CloudWatch alarms.

Amazon ECS publishes CloudWatch metrics with your service’s average CPU and memory usage.
You can use these service utilization metrics to scale your service up to deal with high demand at
peak times, and to scale your service down to reduce costs during periods of low utilization. For more
information, see Service Utilization (p. 157).

In this tutorial, you create a cluster and a service (that runs behind an Elastic Load Balancing load
balancer) using the Amazon ECS first run wizard. Then you configure Service Auto Scaling on the
service with CloudWatch alarms that use the CPUUtilization metric to scale your service up or
down, depending on the current application load.

When the CPU utilization of your service rises above 75% (meaning that more than 75% of the CPU
that is reserved for the service is being used), the scale out alarm triggers Service Auto Scaling to add
another task to your service to help out with the increased load. Conversely, when the CPU utilization
of your service drops below 25%, the scale in alarm triggers a decrease in the service's desired count
to free up those cluster resources for other tasks and services.

Prerequisites

This tutorial assumes that you have an AWS account and an IAM administrative user with permissions
to perform all of the actions described within, and an Amazon EC2 key pair in the current region. If

API Version 2014-11-13
136

http://docs.aws.amazon.com/AmazonECS/latest/APIReference/
http://docs.aws.amazon.com/AmazonECS/latest/APIReference/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/
http://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/
http://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/
http://docs.aws.amazon.com/cli/latest/reference/ecs
http://docs.aws.amazon.com/cli/latest/reference/cloudwatch
http://docs.aws.amazon.com/cli/latest/reference/application-autoscaling
http://docs.aws.amazon.com/cli/latest/reference/
http://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_RegisterScalableTarget.html
http://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_PutScalingPolicy.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html

Amazon EC2 Container Service Developer Guide
Tutorial: Service Auto Scaling

you do not have these resources, or your are not sure, you can create them by following the steps in
Setting Up with Amazon ECS (p. 8).

Your Amazon ECS container instances also require ecs:StartTelemetrySession permission on
the IAM role that you launch your container instances with. If you created your Amazon ECS container
instance role before CloudWatch metrics were available for Amazon ECS, then you might need to
add this permission. For information about checking your Amazon ECS container instance role and
attaching the managed IAM policy for container instances, see To check for the ecsInstanceRole in
the IAM console (p. 181).

Step 1: Create a Cluster and a Service

After you have enabled CloudWatch metrics for your clusters and services, you can create a cluster
and service using the Amazon ECS first run wizard. The first run wizard takes care of creating the
necessary IAM roles and policies for this tutorial, an Auto Scaling group for your container instances,
and it creates a service that runs behind a load balancer. The wizard also makes the later clean up
process much easier, because you can delete the entire AWS CloudFormation stack in one step.

For this tutorial, you create a cluster called service-autoscaling and a service called sample-
webapp.

To create your cluster and service

1. Open the Amazon ECS console first run wizard at https://console.aws.amazon.com/ecs/home#/
firstRun.

2. By default, you are given the option to create an image repository and push an image to Amazon
ECR.

For this tutorial, you will not use Amazon ECR, so be sure to clear the lower option. Choose
Continue to proceed.

3. On the Create a task definition page, leave all of the default options and choose Next step.

4. On the Configure service page, for Container name: host port, choose simple-app:80.

Important
Elastic Load Balancing load balancers do incur cost while they exist in your AWS
resources. For more information, see Elastic Load Balancing Pricing.

5. For Select IAM role for service, choose an existing Amazon ECS service (ecsServiceRole)
role that you have already created, or choose Create new role to create the required IAM role for
your service.

6. The remaining default values here are set up for the sample application, so leave them as they are
and choose Next step.

7. On the Configure cluster page, enter the following information:

a. For Cluster name, type service-autoscaling.

API Version 2014-11-13
137

https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun
http://aws.amazon.com/elasticloadbalancing/pricing/

Amazon EC2 Container Service Developer Guide
Tutorial: Service Auto Scaling

b. For instance type, choose any available instance type. The default t2.micro works fine for
this tutorial.

c. For Number of instances, enter the number of instances to launch into your cluster. For the
purposes of this tutorial, two instances are sufficient.

Important
Your AWS account incurs the standard Amazon EC2 usage fees for these instances
from the time that you launch the instances until you terminate them (which is the
final task of this tutorial), even if they remain idle.

d. (Optional) For Key pair, choose a key pair to use for SSH access to your instances. This
is not required, but it can be useful for diagnostic purposes if you need to troubleshoot your
instances later.

e. For Container instance IAM role, choose an existing Amazon ECS container instance
(ecsInstanceRole) role that you have already created, or choose Create new role to
create the required IAM role for your container instances.

f. Choose Review and Launch to proceed. Review your configurations and choose Launch
instance & run service to finish.

You are directed to a Launch Status page that shows the status of your launch and describes
each step of the process (this can take a few minutes to complete while your Auto Scaling group is
created and populated).

8. When your cluster and service are created, choose View service to view your new service.

Step 2: Configure Service Auto Scaling

Now that you have launched a cluster and created a service in that cluster that is running behind a load
balancer, you can configure Service Auto Scaling by creating scaling policies to scale your service up
and down in response to CloudWatch alarms.

To configure basic Service Auto Scaling parameters

1. On the Service: sample-webapp page, your service configuration should look similar to the
image below (although the task definition revision and load balancer name will likely be different).
Choose Update to update your new service.

API Version 2014-11-13
138

Amazon EC2 Container Service Developer Guide
Tutorial: Service Auto Scaling

2. On the Update service page, choose Configure Service Auto Scaling.

3. For Service Auto Scaling, choose Configure Service Auto Scaling to adjust your service’s
desired count.

4. For Minimum number of tasks, enter 1 for the lower limit of the number of tasks for Service Auto
Scaling to use. Your service's desired count will not be automatically adjusted below this amount.

5. For Desired number of tasks, this field is pre-populated with the value you entered earlier. This
value must be between the minimum and maximum number of tasks specified on this page. Leave
this value at 1.

6. For Maximum number of tasks, enter 2 for the upper limit of the number of tasks for Service Auto
Scaling to use. Your service's desired count will not be automatically adjusted above this amount.

API Version 2014-11-13
139

Amazon EC2 Container Service Developer Guide
Tutorial: Service Auto Scaling

7. For IAM role for Service Auto Scaling, choose an IAM role to authorize the Application Auto
Scaling service to adjust your service's desired count on your behalf. If you have not previously
created such a role, choose Create new role and the role is created for you. For future reference,
the role that is created for you is called ecsAutoscaleRole. For more information, see Amazon
ECS Service Auto Scaling IAM Role (p. 184).

To configure scaling policies for your service

These steps will help you create scaling policies and CloudWatch alarms that can be used to trigger
scaling activities for your service. You can create a scale out alarm to increase the desired count of
your service, and a scale in alarm to decrease the desired count of your service.

1. For Policy name, enter ScaleOutPolicy

2. For Execute policy when, choose Create new alarm.

a. For Alarm name, enter sample-webapp-cpu-gt-75.

b. For ECS service metric, choose CPUUtilization.

c. For Alarm threshold, enter the following information to match the image below. This causes
the CloudWatch alarm to trigger when the service's CPU utilization is greater than 75% for
one minute.

d. Choose Save to save your alarm.

3. For Scaling action, enter the following information to match the image below. This causes your
service's desired count to increase by 1 task when the alarm is triggered.

4. For Cooldown period, enter 60 for the number of seconds between scaling actions and choose
Save to save your ScaleOutPolicy.

5. After you return to the Service Auto Scaling (optional) page, choose Add scaling policy to
configure your ScaleInPolicy.

6. For Policy name, enter ScaleInPolicy

7. For Execute policy when, choose Create new alarm.

a. For Alarm name, enter sample-webapp-cpu-lt-25.

b. For ECS service metric, choose CPUUtilization.

c. For Alarm threshold, enter the following information to match the image below. This causes
the CloudWatch alarm to trigger when the service's CPU utilization is less than 25% for one
minute.

API Version 2014-11-13
140

Amazon EC2 Container Service Developer Guide
Tutorial: Service Auto Scaling

d. Choose Save to save your alarm.

8. For Scaling action, enter the following information to match the image below. This causes your
service's desired count to decrease by 1 task when the alarm is triggered.

9. For Cooldown period, enter 60 for the number of seconds between scaling actions and choose
Save to save your ScaleOutPolicy.

10. After you return to the Service Auto Scaling (optional) page, choose Update Service to finish
your Service Auto Scaling configuration.

11. When your service status is finished updating, choose View Service.

Step 3: Trigger a Scaling Activity

After your service is configured with Service Auto Scaling, you can trigger a scaling activity by pushing
your service's CPU utilization into the ALARM state. Because the example in this tutorial is a web
application that is running behind a load balancer, you can send thousands of HTTP requests to
your service (using the ApacheBench utility) to spike the service CPU utilization above our threshold
amount. This spike should trigger the alarm, which in turn triggers a scaling activity to add one task to
your service.

After the ApacheBench utility finishes the requests, the service CPU utilization should drop below your
25% threshold, triggering a scale in activity that returns the service's desired count to 1.

To trigger a scaling activity for your service

1. From your service's main view page in the console, choose the load balancer name to view
its details in the Amazon EC2 console. You need the load balancer's DNS name, which
should look something like this: EC2Contai-EcsElast-SMAKV74U23PH-96652279.us-
east-1.elb.amazonaws.com.

2. Use the ApacheBench (ab) utility to make thousands of HTTP requests to your load balancer in a
short period of time.

Note
This command is installed by default on Mac OSX, and it is available for many Linux
distributions, as well. For example, you can install ab on Amazon Linux with the following
command:

$ sudo yum install -y httpd24-tools

Run the following command, substituting your load balancer's DNS name.

API Version 2014-11-13
141

Amazon EC2 Container Service Developer Guide
Creating a Service

$ ab -n 100000 -c 1000 http://EC2Contai-EcsElast-SMAKV74U23PH-96652279.us-
east-1.elb.amazonaws.com/

3. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

4. Choose Alarms in the left navigation pane.

5. Wait for your ab HTTP requests to trigger the scale out alarm in the CloudWatch console. You
should see your Amazon ECS service scale out and add 1 task to your service's desired count.

6. Shortly after your ab HTTP requests complete (between 1 and 2 minutes), your scale in alarm
should trigger and the scale in policy reduces your service's desired count back to 1.

Step 5: Cleaning Up

When you have completed this tutorial, you may choose to keep your cluster, Auto Scaling group,
load balancer, and EC2 instances. However, if you are not actively using these resources, you should
consider cleaning them up so that your account does not incur unnecessary charges.

To delete your cluster and CloudWatch alarms

1. In the Amazon ECS console, switch to Clusters in the left navigation pane.

2. On the Clusters page, choose the x in the upper right hand corner of the service-autoscaling
cluster to delete the cluster.

3. Review and choose Delete to confirm your cluster deletion. It may take a few minutes for the
cluster AWS CloudFormation stack to finish cleaning up.

4. In the CloudWatch console Alarms view, select the alarms that begin with sample-webapp-cpu-
and then choose Delete to delete the alarms.

5. Choose Yes, Delete to confirm your alarm deletion.

Creating a Service
When you create an Amazon ECS service, you specify several parameters that define what makes up
your service and how it should behave. These parameters create a service definition. Use the following
procedure to create a service.

Note
If you want to use an Elastic Load Balancing load balancer to distribute traffic across the
containers in your service, see Service Load Balancing (p. 124) to choose a load balancer
type and create the required resources in advance.
You must verify that your container instances can receive traffic from your load balancers.
You can allow traffic to all ports on your container instances from your load balancer's security
group to ensure that traffic can reach any containers that use dynamically assigned ports.

Configuring Basic Service Parameters
All services require some basic configuration parameters that define the service, such as the task
definition to use, which cluster the service should run on, how many tasks should be placed for the
service, and so on; this is called the service definition. For more information about the parameters
defined in a service definition, see Service Definition Parameters (p. 122).

This section covers creating a service with the basic service definition parameters that are required;
when you have configured these parameters, you can create your service or move on to the next
sections for optional service definition configuration, such as configuring your service to use a load
balancer.

API Version 2014-11-13
142

https://console.aws.amazon.com/cloudwatch/

Amazon EC2 Container Service Developer Guide
(Optional) Configuring Your

Service to Use a Load Balancer

To configure the basic service definition parameters

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. On the navigation bar, select the region that your cluster is in.

3. In the navigation pane, choose Task Definitions.

4. On the Task Definitions page, choose the name of the task definition from which to create your
service.

5. On the Task Definition name page, choose the revision of the task definition from which to create
your service.

6. Review the task definition, and choose Create Service.

7. On the Create Service page, for Cluster, choose the cluster in which to create your service.

8. For Service name, enter a unique name for your service.

9. For Number of tasks, enter the number of tasks to launch and maintain on your cluster.

Note
If your task definition uses static host port mappings on your container instances, then
you need at least one container instance with the specified port available in your cluster
for each task in your service. This restriction does not apply if your task definition uses
dynamic host port mappings. For more information, see portMappings (p.) in the
Task Definition Parameters (p. 88) topic.

10. (Optional) You can specify deployment parameters that control how many tasks run during the
deployment and the ordering of stopping and starting tasks.

• Minimum healthy percent: Specify a lower limit on the number of your service's tasks that
must remain in the RUNNING state during a deployment, as a percentage of the service's desired
number of tasks (rounded up to the nearest integer). For example, if your service has a desired
number of four tasks and a minimum healthy percent of 50%, the scheduler may stop two
existing tasks to free up cluster capacity before starting two new tasks. Tasks for services that
do not use a load balancer are considered healthy if they are in the RUNNING state; tasks for
services that do use a load balancer are considered healthy if they are in the RUNNING state and
the container instance it is hosted on is reported as healthy by the load balancer. The default
value for minimum healthy percent is 50% in the console, and 100% with the AWS CLI or SDKs.

• Maximum percent: Specify an upper limit on the number of your service's tasks that are
allowed in the RUNNING or PENDING state during a deployment, as a percentage of the service's
desired number of tasks (rounded down to the nearest integer). For example, if your service has
a desired number of four tasks and a maximum percent value of 200%, the scheduler may start
four new tasks before stopping the four older tasks (provided that the cluster resources required
to do this are available). The default value for maximum percent is 200%.

11. If you do not want to run your service behind a load balancer or configure your service to use
Service Auto Scaling, then you can proceed to Review and Create Your Service (p. 147).
Otherwise, proceed to the next sections.

(Optional) Configuring Your Service to Use a Load
Balancer
If you have an available Elastic Load Balancing load balancer configured, you can attach it to your
service with the following procedures, or you can configure a new load balancer in the Amazon EC2
console; for more information see Creating a Load Balancer (p. 127).

Note
You must create your Elastic Load Balancing load balancer resources prior to following these
procedures.

API Version 2014-11-13
143

https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Developer Guide
(Optional) Configuring Your

Service to Use a Load Balancer

First, you must choose the load balancer type to use with your service. Then you can configure your
service to work with the load balancer.

To choose a load balancer type

1. If you have not done so already, follow the basic service creation procedures in Configuring Basic
Service Parameters (p. 142).

2. On the Create Service page, choose Configure ELB.

3. Choose the load balancer type to use with your service:

Application Load Balancer
Allows containers to use dynamic host port mapping (multiple tasks allowed per container
instance). Multiple services can use the same listener port on a single load balancer with rule-
based routing and paths.

Classic Load Balancer
Requires static host port mappings (only one task allowed per container instance); rule-based
routing and paths are not supported.

We recommend that you use Application Load Balancers for your Amazon ECS services so that
you can take advantage of the advanced features available to them.

4. For Select IAM role for service, choose Create new role to create a new role for your service, or
select an existing IAM role to use for your service (by default, this is ecsServiceRole).

Important
If you choose to use an existing ecsServiceRole IAM role, you must verify that the
role has the proper permissions to use Application Load Balancers and Classic Load
Balancers, as shown in Amazon ECS Service Scheduler IAM Role (p. 182).

5. For ELB Name, choose the name of the load balancer to use with your service. Only load
balancers that correspond to the load balancer type you selected earlier are visible here.

6. The following steps differ based on the load balancer type for your service. If you've
chosen an Application Load Balancer, follow the steps in To configure an Application Load
Balancer (p. 144). If you've chosen a Classic Load Balancer, follow the steps in To configure a
Classic Load Balancer (p. 145).

To configure an Application Load Balancer

1. For Select a Container, choose the container and port combination from your task definition that
your load balancer should distribute traffic to, and choose Add to ELB.

2. For Listener port, choose the listener port and protocol of the listener that you created in Creating
an Application Load Balancer (p. 127) (if applicable), or choose create new to create a new
listener and then enter a port number and choose a port protocol in Listener protocol.

3. For Target group name, choose the target group that you created in Creating an Application Load
Balancer (p. 127) (if applicable), or choose create new to create a new target group.

4. (Optional) If you chose to create a new target group, complete the following fields as follows:

• For Target group name, enter a name for your target group.

• For Target group protocol, enter the protocol to use for routing traffic to your tasks.

• For Path pattern, if your listener does not have any existing rules, the default path pattern (/) is
used. If your listener already has a default rule, then you must enter a path pattern that matches
traffic that you want to have sent to your service's target group. For example, if your service is a
web application called web-app, and you want traffic that matches http://my-elb-url/web-
app to route to your service, then you would enter /web-app* as your path pattern. For more
information, see ListenerRules in the Application Load Balancer Guide.

API Version 2014-11-13
144

http://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-listeners.html#listener-rules

Amazon EC2 Container Service Developer Guide
(Optional) Configuring Your Service

to Use Service Auto Scaling

• For Health check path, enter the path to which the load balancer should send health check
pings.

5. When you are finished configuring your Application Load Balancer, choose Save to save your
configuration and proceed to Review and Create Your Service (p. 147).

To configure a Classic Load Balancer

1. The Health check port, Health check protocol, and Health check path fields are all pre-
populated with the values you configured in Creating a Classic Load Balancer (p. 131) (if
applicable). You can update these settings in the Amazon EC2 console.

2. For Container for ELB health check, choose the container to send health checks.

3. When you are finished configuring your Classic Load Balancer, choose Save to save your
configuration and proceed to Review and Create Your Service (p. 147).

(Optional) Configuring Your Service to Use Service
Auto Scaling
Your Amazon ECS service can optionally be configured to use Auto Scaling to adjust its desired
count up or down in response to CloudWatch alarms. For more information see Service Auto
Scaling (p. 134).

To configure basic Service Auto Scaling parameters

1. If you have not done so already, follow the basic service creation procedures in Configuring Basic
Service Parameters (p. 142).

2. On the Create Service page, choose Configure Service Auto Scaling.

3. On the Service Auto Scaling page, select Configure Service Auto Scaling to adjust your
service’s desired count.

4. For Minimum number of tasks, enter the lower limit of the number of tasks for Service Auto
Scaling to use. Your service's desired count will not be automatically adjusted below this amount.

5. For Desired number of tasks, this field is pre-populated with the value you entered earlier. You
can change your service's desired count at this time, but this value must be between the minimum
and maximum number of tasks specified on this page.

6. For Maximum number of tasks, enter the upper limit of the number of tasks for Service Auto
Scaling to use. Your service's desired count will not be automatically adjusted above this amount.

7. For IAM role for Service Auto Scaling, choose an IAM role to authorize the Application Auto
Scaling service to adjust your service's desired count on your behalf. If you have not previously
created such a role, choose Create new role and the role will be created for you. For future
reference, the role that is created for you is called ecsAutoscaleRole. For more information, see
Amazon ECS Service Auto Scaling IAM Role (p. 184).

To configure scaling policies for your service

These steps will help you create scaling policies and CloudWatch alarms that can be used to trigger
scaling activities for your service. You can create a Scale out alarm to increase the desired count of
your service, and a Scale in alarm to decrease the desired count of your service.

1. For Policy name, enter a descriptive name for your policy, or use the default policy name that is
already entered.

2. For Execute policy when, select the CloudWatch alarm that you want to use to scale your service
up or down.

API Version 2014-11-13
145

Amazon EC2 Container Service Developer Guide
(Optional) Configuring Your Service

to Use Service Auto Scaling

You can use an existing CloudWatch alarm that you have previously created, or you can choose
to create a new alarm. The Create new alarm workflow allows you to create CloudWatch alarms
that are based on the CPUUtilization and MemoryUtilization of the service that you are
creating. To use other metrics, you can create your alarm in the CloudWatch console and then
return to this wizard to choose that alarm.

3. (Optional) If you've chosen to create a new alarm, complete the following steps.

a. For Alarm name, enter a descriptive name for your alarm. For example, if your alarm
should trigger when your service CPU utilization exceeds 75%, you could call the alarm
service_name-cpu-gt-75.

b. For ECS service metric, choose the service metric to use for your alarm. For more
information about these service utilization metrics, see Service Utilization (p. 157).

c. For Alarm threshold, enter the following information to configure your alarm:

• Choose the CloudWatch statistic for your alarm (the default value of Average works in
many cases). For more information, see Statistics in the Amazon CloudWatch User Guide.

• Choose the comparison operator for your alarm and enter the value that the comparison
operator checks against (for example, > and 75).

• Enter the number of consecutive periods before the alarm is triggered and the period
length. For example, a 2 consecutive periods of 5 minutes would take 10 minutes before
the alarm triggered. Because your Amazon ECS tasks can scale up and down quickly, you
should consider using a low number of consecutive periods and a short period duration to
react to alarms as soon as possible.

d. Choose Save to save your alarm.

4. For Scaling action, enter the following information to configure how your service responds to the
alarm:

• Choose whether to add to, subtract from, or set a specific desired count for your service.

• If you chose to add or subtract tasks, enter the number of tasks (or percent of existing tasks) to
add or subtract when the scaling action is triggered. If you chose to set the desired count, enter
the desired count that your service should be set to when the scaling action is triggered.

• (Optional) If you chose to add or subtract tasks, choose whether the previous value is used as
an integer or a percent value of the existing desired count.

• Enter the lower boundary of your step scaling adjustment. By default, for your first scaling
action, this value is the metric amount where your alarm is triggered. For example, the following
scaling action adds 100% of the existing desired count when the CPU utilization is greater than
75%.

5. (Optional) You can repeat Step 4 (p. 146) to configure multiple scaling actions for a single
alarm (for example, to add 1 task if CPU utilization is between 75-85%, and to add 2 tasks if CPU
utilization is greater than 85%).

6. (Optional) If you chose to add or subtract a percentage of the existing desired count, enter a
minimum increment value for Add tasks in increments of N task(s).

7. For Cooldown period, enter the number of seconds between scaling actions.

8. Repeat Step 1 (p. 145) through Step 7 (p. 146) for the Scale in policy and choose Save to
save your Service Auto Scaling configuration.

API Version 2014-11-13
146

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cloudwatch_concepts.html#Statistic

Amazon EC2 Container Service Developer Guide
Review and Create Your Service

Review and Create Your Service
After you have configured your basic service definition parameters and optionally configured your
service to use a load balancer, you can review your configuration and then choose Create Service to
finish creating your service.

Note
After you create a service, the target group ARN or load balancer name, container name, and
container port specified in the service definition are immutable. You cannot add, remove, or
change the load balancer configuration of an existing service. If you update the task definition
for the service, the container name and container port that were specified when the service
was created must remain in the task definition.

Updating a Service
You can update a running service to change the number of tasks that are maintained by a service or
which task definition is used by the tasks. If you have an application that needs more capacity, you can
scale up your service to use more of your container instances (as long as they are available). If you
have unused capacity that you would like to scale down, you can reduce the number of desired tasks in
your service and free up resources.

If you have updated the Docker image of your application, you can create a new task definition with
that image and deploy it to your service. The service scheduler uses the minimum healthy percent and
maximum percent parameters (in the service's deployment configuration) to determine the deployment
strategy.

The minimum healthy percent represents a lower limit on the number of your service's tasks that must
remain in the RUNNING state during a deployment, as a percentage of the desired number of tasks
(rounded up to the nearest integer). This parameter enables you to deploy without using additional
cluster capacity. For example, if your service has a desired number of four tasks and a minimum
healthy percent of 50%, the scheduler may stop two existing tasks to free up cluster capacity before
starting two new tasks. Tasks for services that do not use a load balancer are considered healthy if
they are in the RUNNING state; tasks for services that do use a load balancer are considered healthy if
they are in the RUNNING state and the container instance it is hosted on is reported as healthy by the
load balancer. The default value for minimum healthy percent is 50% in the console and 100% for the
AWS CLI, the AWS SDKs, and the APIs.

The maximum percent parameter represents an upper limit on the number of your service's tasks
that are allowed in the RUNNING or PENDING state during a deployment, as a percentage of the
desired number of tasks (rounded down to the nearest integer). This parameter enables you to define
the deployment batch size. For example, if your service has a desired number of four tasks and a
maximum percent value of 200%, the scheduler may start four new tasks before stopping the four
older tasks (provided that the cluster resources required to do this are available). The default value for
maximum percent is 200%.

When the service scheduler replaces a task during an update, if a load balancer is used by the service,
the service first removes the task from the load balancer and waits for the connections to drain. Then
the equivalent of docker stop is issued to the containers running in the task. This results in a SIGTERM
signal and a 30-second timeout, after which SIGKILL is sent and the containers are forcibly stopped.
If the container handles the SIGTERM signal gracefully and exits within 30 seconds from receiving it,
no SIGKILL signal is sent. The service scheduler starts and stops tasks as defined by your minimum
healthy percent and maximum percent settings.

Important
If you are changing the ports used by containers in a task definition, you may need to update
your container instance security groups to work with the updated ports.

API Version 2014-11-13
147

Amazon EC2 Container Service Developer Guide
Deleting a Service

If your service uses a load balancer, the load balancer configuration defined for your service
when it was created cannot be changed. If you update the task definition for the service, the
container name and container port that were specified when the service was created must
remain in the task definition.
To change the load balancer name, the container name, or the container port associated with
a service load balancer configuration, you must create a new service.
Amazon ECS does not automatically update the security groups associated with Elastic Load
Balancing load balancers or Amazon ECS container instances.

To update a running service

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. On the navigation bar, select the region that your cluster is in.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, select the name of the cluster that your service resides in.

5. On the Cluster: name page, choose Services.

6. Check the box to the left of the service to update and choose Update.

7. On the Update Service page, your service information is pre-populated. Change the task
definition, deployment configuration, or number of desired tasks (or any combination of these).

8. (Optional) You can use Service Auto Scaling to scale your service up and down automatically in
response to CloudWatch alarms.

a. Under Optional configurations, choose Configure Service Auto Scaling.

b. Proceed to Step 3 (p. 145) of (Optional) Configuring Your Service to Use Service Auto
Scaling (p. 145).

c. Complete the steps in that section and then return here.

9. Choose Update Service to finish and update your service.

Deleting a Service
You can delete a service if you have no running tasks in it and the desired task count is zero. If the
service is actively maintaining tasks, you cannot delete it, and you must update the service to a desired
task count of zero. For more information, see Updating a Service (p. 147).

Note
When you delete a service, if there are still running tasks that require cleanup, the
service status moves from ACTIVE to DRAINING, and the service is no longer visible
in the console or in ListServices API operations. After the tasks have stopped, then
the service status moves from DRAINING to INACTIVE. Services in the DRAINING or
INACTIVE status can still be viewed with DescribeServices API operations; however,
in the future, INACTIVE services may be cleaned up and purged from Amazon ECS
record keeping, and DescribeServices API operations on those services will return a
ServiceNotFoundException error.

Use the following procedure to delete an empty service.

To delete an empty service

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. On the navigation bar, select the region that your cluster is in.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, select the name of the cluster that your service resides in.

5. On the Cluster : name page, choose Services.

API Version 2014-11-13
148

https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Developer Guide
Deleting a Service

6. Check the box to the left of the service to update and choose Delete.

Note
Your service must have zero desired or running tasks before it can be deleted.

7. Choose Yes, Delete to confirm your service deletion.

API Version 2014-11-13
149

Amazon EC2 Container Service Developer Guide
Using Amazon ECR Images with Amazon ECS

Amazon ECR Repositories

Amazon ECR is a managed AWS Docker registry service. Customers can use the familiar Docker CLI
to push, pull, and manage images. Amazon ECR provides a secure, scalable, and reliable registry.
Amazon ECR supports private Docker repositories with resource-based permissions using AWS IAM
so that specific users or Amazon EC2 instances can access repositories and images. Developers can
use the Docker CLI to author and manage images.

Note
Amazon ECR is available in the following regions:

Region Name Region

US East (N. Virginia) us-east-1

US East (Ohio) us-east-2

US West (N.
California)

us-west-1

US West (Oregon) us-west-2

EU (Ireland) eu-west-1

EU (Frankfurt) eu-central-1

Asia Pacific (Tokyo) ap-northeast-1

Asia Pacific
(Singapore)

ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

For more information on how to create repositories, push and pull images from Amazon ECR, and set
access controls on your repositories, see the Amazon EC2 Container Registry User Guide.

Using Amazon ECR Images with Amazon ECS
You can use your Amazon ECR images with Amazon ECS, but you need to satisfy some prerequisites:

API Version 2014-11-13
150

http://docs.aws.amazon.com/AmazonECR/latest/userguide/

Amazon EC2 Container Service Developer Guide
Using Amazon ECR Images with Amazon ECS

• Your container instances must be using at least version 1.7.0 of the Amazon ECS container agent.
The latest version of the Amazon ECS-optimized AMI supports Amazon ECR images in task
definitions. For more information, including the latest Amazon ECS-optimized AMI IDs, see Amazon
ECS Container Agent Versions (p. 61).

• The Amazon ECS container instance role (ecsInstanceRole) that you use with your container
instances must possess the following IAM policy permissions for Amazon ECR.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer",
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 }
]
}

If you use the AmazonEC2ContainerServiceforEC2Role managed policy for your container
instances, then your role has the proper permissions. To check that your role supports Amazon
ECR, see Amazon ECS Container Instance IAM Role (p. 180).

• In your Amazon ECS task definitions, make sure that you are using the full
registry/repository:tag naming for your Amazon ECR images. For example,
aws_account_id.dkr.ecr.region.amazonaws.com/my-web-app:latest.

API Version 2014-11-13
151

Amazon EC2 Container Service Developer Guide
Enabling CloudWatch Metrics

Amazon ECS CloudWatch Metrics

You can monitor your Amazon ECS resources using Amazon CloudWatch, which collects and
processes raw data from Amazon ECS into readable, near real-time metrics. These statistics are
recorded for a period of two weeks, so that you can access historical information and gain a better
perspective on how your clusters or services are performing. Amazon ECS metric data is automatically
sent to CloudWatch in 1-minute periods. For more information about CloudWatch, see the Amazon
CloudWatch User Guide.

Topics

• Enabling CloudWatch Metrics (p. 152)

• Available Metrics and Dimensions (p. 153)

• Cluster Reservation (p. 155)

• Cluster Utilization (p. 156)

• Service Utilization (p. 157)

• Service RUNNING Task Count (p. 157)

• Viewing Amazon ECS Metrics (p. 158)

• Tutorial: Scaling Container Instances with CloudWatch Alarms (p. 162)

Enabling CloudWatch Metrics
Your Amazon ECS container instances require at least version 1.4.0 of the container agent to enable
CloudWatch metrics; however, we recommend using the latest container agent version. For information
about checking your agent version and updating to the latest version, see Updating the Amazon ECS
Container Agent (p. 63).

If you are starting your agent manually (for example, if you are not using the Amazon ECS-optimized
AMI for your container instances), be sure to add volume mounts for the cgroup virtual file system
and the execdriver path. For more information about an example run command with these volume
mounts, see Manually Updating the Amazon ECS Container Agent (for Non-Amazon ECS-optimized
AMIs) (p. 67).

Your Amazon ECS container instances also require ecs:StartTelemetrySession permission on
the IAM role that you launch your container instances with. If you created your Amazon ECS container
instance role before CloudWatch metrics were available for Amazon ECS, then you might need to
add this permission. For information about checking your Amazon ECS container instance role and
attaching the managed IAM policy for container instances, see To check for the ecsInstanceRole in
the IAM console (p. 181).

API Version 2014-11-13
152

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/

Amazon EC2 Container Service Developer Guide
Available Metrics and Dimensions

Note
You can disable CloudWatch metrics collection by setting ECS_DISABLE_METRICS=true
in your Amazon ECS container agent configuration. For more information, see Amazon ECS
Container Agent Configuration (p. 69).

Available Metrics and Dimensions
The metrics and dimensions that Amazon ECS sends to Amazon CloudWatch are listed below.

Amazon ECS Metrics
Amazon ECS provides metrics for you to monitor the CPU and memory reservation and utilization
across your cluster as a whole, and the CPU and memory utilization on the services in your clusters.

Amazon ECS sends the following metrics to CloudWatch every minute.

Metric Description

CPUReservation The percentage of CPU units that are reserved by
running tasks in the cluster.

Cluster CPU reservation (this metric can only be filtered
by ClusterName) is measured as the total CPU units
that are reserved by Amazon ECS tasks on the cluster,
divided by the total CPU units that were registered for
all of the container instances in the cluster.

Valid Dimensions: ClusterName, ServiceName

Valid Statistics: Average, Minimum, Maximum, Sum,
Data Samples.

Unit: Percent

CPUUtilization The percentage of CPU units that are used in the
cluster or service.

Cluster CPU utilization (metrics that are filtered by
ClusterName without ServiceName) is measured
as the total CPU units in use by Amazon ECS tasks
on the cluster, divided by the total CPU units that
were registered for all of the container instances in the
cluster.

Service CPU utilization (metrics that are filtered by
ClusterName and ServiceName) is measured as the
total CPU units in use by the tasks that belong to the
service, divided by the total number of CPU units that
are reserved for the tasks that belong to the service.

Valid Dimensions: ClusterName, ServiceName

Valid Statistics: Average, Minimum, Maximum, Sum,
Data Samples.

Unit: Percent

API Version 2014-11-13
153

Amazon EC2 Container Service Developer Guide
Dimensions for Amazon ECS Metrics

Metric Description

MemoryReservation The percentage of memory that is reserved by running
tasks in the cluster.

Cluster memory reservation (this metric can only be
filtered by ClusterName) is measured as the total
memory that is reserved by Amazon ECS tasks on the
cluster, divided by the total amount of memory that
was registered for all of the container instances in the
cluster.

Valid Dimensions: ClusterName, ServiceName

Valid Statistics: Average, Minimum, Maximum, Sum,
Data Samples.

Unit: Percent

MemoryUtilization The percentage of memory that is used in the cluster or
service.

Cluster memory utilization (metrics that are filtered by
ClusterName without ServiceName) is measured
as the total memory in use by Amazon ECS tasks on
the cluster, divided by the total amount of memory that
was registered for all of the container instances in the
cluster.

Service memory utilization (metrics that are filtered by
ClusterName and ServiceName) is measured as
the total memory in use by the tasks that belong to the
service, divided by the total memory that is reserved for
the tasks that belong to the service.

Valid Dimensions: ClusterName, ServiceName

Valid Statistics: Average, Minimum, Maximum, Sum,
Data Samples.

Unit: Percent

Dimensions for Amazon ECS Metrics
Amazon ECS metrics use the AWS/ECS namespace and provide metrics for the following dimensions:

Dimension Description

ClusterName This dimension filters the data you request for all
resources in a specified cluster. All Amazon ECS
metrics are filtered by ClusterName.

ServiceName This dimension filters the data you request for all
resources in a specified service within a specified
cluster.

API Version 2014-11-13
154

Amazon EC2 Container Service Developer Guide
Cluster Reservation

Cluster Reservation
Cluster reservation metrics are measured as the percentage of CPU and memory that is reserved
by all Amazon ECS tasks on a cluster when compared to the aggregate CPU and memory that was
registered for each active container instance in the cluster.

 (Total CPU units reserved by tasks in
 cluster) x 100
Cluster CPU reservation =
 --
 (Total CPU units registered by container instances
 in cluster)

 (Total MiB of memory reserved by tasks
 in cluster x 100)
Cluster memory reservation =
 --
 (Total MiB of memory registered by container
 instances in cluster)

When you run a task in a cluster, Amazon ECS parses its task definition and reserves the aggregate
CPU units and MiB of memory that is specified in its container definitions. Each minute, Amazon ECS
calculates the number of CPU units and MiB of memory that are currently reserved for each task that
is running in the cluster. The total amount of CPU and memory reserved for all tasks running on the
cluster is calculated, and those numbers are reported to CloudWatch as a percentage of the total
registered resources for the cluster.

For example, a cluster has two active container instances registered, a c4.4xlarge instance and a
c4.large instance. The c4.4xlarge instance registers into the cluster with 16,384 CPU units and
30,158 MiB of memory. The c4.large instance registers with 2,048 CPU units and 3,768 MiB of
memory. The aggregate resources of this cluster are 18,432 CPU units and 33,926 MiB of memory.

If a task definition reserves 1,024 CPU units and 2,048 MiB of memory, and ten tasks are started with
this task definition on this cluster (and no other tasks are currently running), a total of 10,240 CPU units
and 20,480 MiB of memory are reserved, which is reported to CloudWatch as 55% CPU reservation
and 60% memory reservation for the cluster.

The illustration below shows the total registered CPU units in a cluster and what their reservation
and utilization means to existing tasks and new task placement. The lower (Reserved, utilized) and
center (Reserved, not utilized) blocks represent the total CPU units that are reserved for the existing
tasks that are running on the cluster, or the CPUReservation CloudWatch metric. The lower block
represents the reserved CPU units that the running tasks are actually using on the cluster, or the
CPUUtilization CloudWatch metric. The upper block represents CPU units that are not reserved by
existing tasks; these CPU units are available for new task placement. Existing tasks can utilize these
unreserved CPU units as well, if their need for CPU resources increases. For more information, see the
cpu (p.) task definition parameter documentation.

API Version 2014-11-13
155

Amazon EC2 Container Service Developer Guide
Cluster Utilization

Cluster Utilization
Cluster utilization is measured as the percentage of CPU and memory that is used by all Amazon ECS
tasks on a cluster when compared to the aggregate CPU and memory that was registered for each
active container instance in the cluster.

 (Total CPU units used by tasks in cluster)
 x 100
Cluster CPU utilization =
 --
 (Total CPU units registered by container instances
 in cluster)

 (Total MiB of memory used by tasks in
 cluster x 100)
Cluster memory utilization =
 --
 (Total MiB of memory registered by container
 instances in cluster)

Each minute, the Amazon ECS container agent on each container instance calculates the number
of CPU units and MiB of memory that are currently being used for each task that is running on that
container instance, and this information is reported back to Amazon ECS. The total amount of CPU
and memory used for all tasks running on the cluster is calculated, and those numbers are reported to
CloudWatch as a percentage of the total registered resources for the cluster.

API Version 2014-11-13
156

Amazon EC2 Container Service Developer Guide
Service Utilization

For example, a cluster has two active container instances registered, a c4.4xlarge instance and a
c4.large instance. The c4.4xlarge instance registers into the cluster with 16,384 CPU units and
30,158 MiB of memory. The c4.large instance registers with 2,048 CPU units and 3,768 MiB of
memory. The aggregate resources of this cluster are 18,432 CPU units and 33,926 MiB of memory.

If ten tasks are running on this cluster that each consume 1,024 CPU units and 2,048 MiB of memory,
a total of 10,240 CPU units and 20,480 MiB of memory are utilized on the cluster, which is reported to
CloudWatch as 55% CPU utilization and 60% memory utilization for the cluster.

Service Utilization
Service utilization is measured as the percentage of CPU and memory that is used by the Amazon
ECS tasks that belong to a service on a cluster when compared to the CPU and memory that is defined
in the service's task definition.

 (Total CPU units used by tasks in
 service) x 100
Service CPU utilization =
 --
 (Total CPU units reserved in task definition) x
 (number of tasks in service)

 (Total MiB of memory used by tasks
 in service) x 100
Service memory utilization =
 --
 (Total MiB of memory reserved in task
 definition) x (number of tasks in service)

Each minute, the Amazon ECS container agent on each container instance calculates the number of
CPU units and MiB of memory that are currently being used for each task owned by the service that
is running on that container instance, and this information is reported back to Amazon ECS. The total
amount of CPU and memory used for all tasks owned by the service that are running on the cluster is
calculated, and those numbers are reported to CloudWatch as a percentage of the total resources that
are reserved for the service in the service's task definition.

For example, the task definition for a service reserves a total of 512 CPU units and 1,024 MiB of
memory for all of its containers. The service has a desired count of 1 running task, the service is
running on a cluster with 1 c4.large container instance (with 2,048 CPU units and 3,768 MiB of
memory), and there are no other tasks running on the cluster. Although the task has 512 CPU units
reserved, because it is the only running task on a container instance with 2,048 CPU units, it has the
ability to use up to four times the reserved amount (2,048 / 512); however, the memory reservation
of 1,024 MiB is a hard limit and it cannot be exceeded, so service memory utilization cannot exceed
100%.

If this task is performing CPU-intensive work during a period and using all 2,048 of the available
CPU units and 512 MiB of memory, then the service reports 400% CPU utilization and 50% memory
utilization. If the task is idle and using 128 CPU units and 128 MiB of memory, then the service reports
25% CPU utilization and 12.5% memory utilization.

Service RUNNING Task Count
You can use CloudWatch metrics to view the number of tasks in your services that are in the RUNNING
state. For example, you can set a CloudWatch alarm for this metric to alert you if the number of running
tasks in your service falls below a specified value.

API Version 2014-11-13
157

Amazon EC2 Container Service Developer Guide
Viewing Amazon ECS Metrics

To view the number of running tasks in a service

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Under the Metrics section of the navigation pane, choose ECS.

3. Scroll down to the ECS > ClusterName,ServiceName table and choose any metric (either
CPUUtilization or MemoryUtilization) that corresponds to the service to view running tasks
in.

4. Change the period to 1 Minute.

5. Change the statistic to Data Samples. The value displayed indicates the number of RUNNING
tasks in the service.

Viewing Amazon ECS Metrics
After you have enabled CloudWatch metrics for Amazon ECS, you can view those metrics in both the
Amazon ECS and CloudWatch consoles. The Amazon ECS console provides a 24-hour maximum,
minimum, and average view of your cluster and service metrics, while the CloudWatch console
provides a fine-grained and customizable display of your resources, as well as the number of running
tasks in a service.

Topics

• Viewing Cluster Metrics in the Amazon ECS Console (p. 159)

• Viewing Service Metrics in the Amazon ECS Console (p. 160)

API Version 2014-11-13
158

https://console.aws.amazon.com/cloudwatch/

Amazon EC2 Container Service Developer Guide
Viewing Cluster Metrics in the Amazon ECS Console

• Viewing Amazon ECS Metrics in the CloudWatch Console (p. 162)

Viewing Cluster Metrics in the Amazon ECS
Console
Cluster and service metrics are available in the Amazon ECS console. The view provided for cluster
metrics shows the average, minimum, and maximum values for the previous 24-hour period, with
data points available in 5-minute intervals. For more information about cluster metrics, see Cluster
Reservation (p. 155) and Cluster Utilization (p. 156).

To view cluster metrics in the console

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. Choose the cluster to view metrics with.

3. On the Cluster: cluster-name page, choose the Metrics tab to view cluster metrics.

API Version 2014-11-13
159

https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Developer Guide
Viewing Service Metrics in the Amazon ECS Console

Viewing Service Metrics in the Amazon ECS
Console
Service CPU and memory utilization metrics are available in the Amazon ECS console. The view
provided for service metrics shows the average, minimum, and maximum values for the previous
24-hour period, with data points available in 5-minute intervals. For more information about service
utilization metrics, see Service Utilization (p. 157).

API Version 2014-11-13
160

Amazon EC2 Container Service Developer Guide
Viewing Service Metrics in the Amazon ECS Console

To view service metrics in the console

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. Choose the cluster that contains the service to view metrics with.

3. On the Cluster: cluster-name page, choose the Services tab to view the services in that
cluster.

4. Choose the service to view metrics with.

5. On the Service: service-name page, choose the Metrics tab to view service metrics.

API Version 2014-11-13
161

https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Developer Guide
Viewing Amazon ECS Metrics in the CloudWatch Console

Viewing Amazon ECS Metrics in the CloudWatch
Console
Amazon ECS cluster and service metrics can also be viewed in the CloudWatch console. The
CloudWatch console provides the most detailed view of Amazon ECS metrics, and you can tailor the
views to suit your needs. You can view Cluster Reservation (p. 155), Cluster Utilization (p. 156),
Service Utilization (p. 157), and the Service RUNNING Task Count (p. 157). For more information
about CloudWatch, see the Amazon CloudWatch User Guide.

To view metrics in the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the Metrics section in the left navigation, choose ECS.

3. Choose the metrics to view. Cluster metrics are scoped as ECS > ClusterName and service
utilization metrics are scoped as ECS > ClusterName, ServiceName. The example below shows
cluster CPU and memory utilization.

Tutorial: Scaling Container Instances with
CloudWatch Alarms

The following procedures help you to create an Auto Scaling group for an Amazon ECS cluster that
you can scale up (and down) using CloudWatch alarms.

Depending on the Amazon EC2 instance types you use in your clusters, and quantity of container
instances you have in a cluster, your tasks have a limited amount of resources that they can use when
they are run. ECS monitors the resources available in the cluster to work with the schedulers to place
tasks. If your cluster runs low on any of these resources, such as memory, you will eventually be
unable to launch more tasks until you add more container instances, reduce the number of desired
tasks in a service, or stop some of the running tasks in your cluster to free up the constrained resource.

API Version 2014-11-13
162

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
https://console.aws.amazon.com/cloudwatch/

Amazon EC2 Container Service Developer Guide
Prerequisites

In this tutorial, you create a CloudWatch alarm using the MemoryReservation metric for your cluster.
When the memory reservation of your cluster rises above 75% (meaning that only 25% of the memory
in your cluster is available to for new tasks to reserve), the alarm triggers the Auto Scaling group to add
another instance and provide more resources for your tasks and services.

Prerequisites
This tutorial assumes that you have enabled CloudWatch metrics for your clusters and services.
Metrics are not available until the clusters and services send the metrics to CloudWatch, and you
cannot create CloudWatch alarms for metrics that do not exist yet.

Your Amazon ECS container instances require at least version 1.4.0 of the container agent to enable
CloudWatch metrics. For information about checking your agent version and updating to the latest
version, see Updating the Amazon ECS Container Agent (p. 63).

Your Amazon ECS container instances also require ecs:StartTelemetrySession permission on
the IAM role that you launch your container instances with. If you created your Amazon ECS container
instance role before CloudWatch metrics were available for Amazon ECS, then you might need to
add this permission. For information about checking your Amazon ECS container instance role and
attaching the managed IAM policy for container instances, see To check for the ecsInstanceRole in
the IAM console (p. 181).

Step 1: Create a CloudWatch Alarm for a Metric
After you have enabled CloudWatch metrics for your clusters and services, and the metrics for your
cluster are visible in the CloudWatch console, you can set alarms on the metrics. For more information,
see Creating Amazon CloudWatch Alarms in the Amazon CloudWatch User Guide.

For this tutorial, you create an alarm on the cluster MemoryReservation metric to alert when the
cluster's memory reservation is above 75%.

To create a CloudWatch alarm on a metric

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. On the left navigation, choose Alarms.

3. Choose Create Alarm.

4. In the CloudWatch Metrics by Category section, choose ECS > ClusterName.

5. On the Modify Alarm page, choose the MemoryReservation metric for the default cluster and
choose Next.

6. In the Alarm Threshold section, enter a name and description for your alarm.

• Name: memory-above-75-pct

• Description: Cluster memory reservation above 75%

7. Set the threshold and time period requirement to MemoryReservation greater than 75% for 1
period.

API Version 2014-11-13
163

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
https://console.aws.amazon.com/cloudwatch/

Amazon EC2 Container Service Developer Guide
Step 2: Create a Launch Configuration

for an Auto Scaling Group

8. (Optional) Configure a notification to send when the alarm is triggered. You can also choose to
delete the notification if you don't want to configure one now.

9. Choose Create Alarm. Now you can use this alarm to trigger your Auto Scaling group to add a
container instance when the memory reservation is above 75%.

10. (Optional) You can also create another alarm that triggers when the memory reservation is below
25%, which you can use to remove a container instance from your Auto Scaling group.

Step 2: Create a Launch Configuration for an Auto
Scaling Group
Now that you have enabled CloudWatch metrics and created an alarm based on one of those metrics,
you can create a launch configuration and an Auto Scaling group for your cluster. For more information
and other configuration options, see the Auto Scaling User Guide.

To create an Auto Scaling launch configuration

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. On the left navigation, choose Auto Scaling Groups.

3. On the Welcome to Auto Scaling page, choose Create Auto Scaling Group.

4. On the Create Auto Scaling Group page, choose Create launch configuration.

5. On the Choose AMI step of the Create Auto Scaling Group wizard, choose Community AMIs.

6. Choose the ECS-optimized AMI for your Auto Scaling group.

To use the Amazon ECS-optimized AMI, type amazon-ecs-optimized in the Search community
AMIs field and press the Enter key. Choose Select next to the amzn-ami-2016.09.b-amazon-
ecs-optimized AMI. The current Amazon ECS-optimized AMI IDs by region are listed below for
reference.

Region AMI Name AMI ID EC2 console link

us-east-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-eca289fb Launch instance

us-east-2 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-446f3521 Launch instance

API Version 2014-11-13
164

http://docs.aws.amazon.com/autoscaling/latest/userguide/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#LaunchInstanceWizard:ami=ami-eca289fb
https://console.aws.amazon.com/ec2/v2/home?region=us-east-2#LaunchInstanceWizard:ami=ami-446f3521

Amazon EC2 Container Service Developer Guide
Step 2: Create a Launch Configuration

for an Auto Scaling Group

Region AMI Name AMI ID EC2 console link

us-west-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-9fadf8ff Launch instance

us-west-2 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-7abc111a Launch instance

eu-west-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-a1491ad2 Launch instance

eu-central-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-54f5303b Launch instance

ap-northeast-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-9cd57ffd Launch instance

ap-southeast-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-a900a3ca Launch instance

ap-southeast-2 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-5781be34 Launch instance

7. On the Choose Instance Type step of the Create Auto Scaling Group wizard, choose an
instance type for your Auto Scaling group and choose Next: Configure details.

8. On the Configure details step of the Create Auto Scaling Group wizard, enter the following
information. The other fields are optional. For more information, see Creating Launch
Configurations in the Auto Scaling User Guide.

• Name: Enter a name for your launch configuration.

• IAM role: Select the ecsInstanceRole for your container instances. If you do not have this
role configured, see Amazon ECS Container Instance IAM Role (p. 180).

• IP Address Type: Choose the IP address type option that you want for your container
instances. If you want external traffic to be able to reach your containers, choose Assign a
public IP address to every instance.

9. (Optional) If you have configuration information that you want to pass to your container instances
with EC2 user data, choose Advanced Details and enter your user data in the User data field.
For more information, see Amazon ECS Container Agent Configuration (p. 69).

10. Choose Next: Add Storage.

11. On the Add Storage step of the Create Auto Scaling Group wizard, make any storage
configuration changes you need for your instances and choose Next: Configure Security Group.

12. On the Configure Security Group step of the Create Auto Scaling Group wizard, select an
existing security group that meets the needs of your containers, or create a new security group
and choose Review.

13. Review your launch configuration and choose Create launch configuration.

14. Select a private key to use for connecting to your instances with SSH and choose Create launch
configuration to finish and move on to creating an Auto Scaling group with your new launch
configuration.

API Version 2014-11-13
165

https://console.aws.amazon.com/ec2/v2/home?region=us-west-1#LaunchInstanceWizard:ami=ami-9fadf8ff
https://console.aws.amazon.com/ec2/v2/home?region=us-west-2#LaunchInstanceWizard:ami=ami-7abc111a
https://console.aws.amazon.com/ec2/v2/home?region=eu-west-1#LaunchInstanceWizard:ami=ami-a1491ad2
https://console.aws.amazon.com/ec2/v2/home?region=eu-central-1#LaunchInstanceWizard:ami=ami-54f5303b
https://console.aws.amazon.com/ec2/v2/home?region=ap-northeast-1#LaunchInstanceWizard:ami=ami-9cd57ffd
https://console.aws.amazon.com/ec2/v2/home?region=ap-southeast-1#LaunchInstanceWizard:ami=ami-a900a3ca
https://console.aws.amazon.com/ec2/v2/home?region=ap-southeast-2#LaunchInstanceWizard:ami=ami-5781be34
http://docs.aws.amazon.com/autoscaling/latest/userguide/WorkingWithLaunchConfig.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/WorkingWithLaunchConfig.html

Amazon EC2 Container Service Developer Guide
Step 3: Create an Auto Scaling Group for your Cluster

Step 3: Create an Auto Scaling Group for your
Cluster
After the launch configuration is complete, continue with the following procedure to create an Auto
Scaling group that uses your launch configuration.

To create an Auto Scaling group

1. On the Configure Auto Scaling group details step of the Create Auto Scaling Group wizard,
enter the following information and choose Next: Configure scaling policies.

• Group name: Enter a name for your Auto Scaling group.

• Group size: Specify the number of container instances your Auto Scaling group should start
with.

• Network: Choose a VPC to launch your container instances into.

• Subnet: Choose the subnets you would like to launch your container instances into. For a highly
available cluster, we recommend that you enable all of the subnets in the region.

2. On the Configure scaling policies step of the Create Auto Scaling Group wizard, choose Use
scaling policies to adjust the capacity of this group.

3. Enter the minimum and maximum number of container instances for your Auto Scaling group.

4. In the Increase Group Size section, enter the following information.

• Execute policy when: Choose the memory-above-75-pct CloudWatch alarm you configured
earlier.

• Take the action: Enter the number of instances you would like to add to your cluster when the
alarm is triggered.

5. If you configured an alarm to trigger a group size reduction, set that alarm in the Decrease Group
Size section and specify how many instances to remove if that alarm is triggered. Otherwise,
collapse the Decrease Group Size section by clicking the X in the upper-right-hand corner of the
section.

Note
If you configure your Auto Scaling group to remove container instances, any tasks
running on the removed container instances are killed. If your tasks are running as part of
a service, Amazon ECS restarts those tasks on another instance if the required resources
are available (CPU, memory, ports); however, tasks that were started manually will are
not restarted automatically.

6. Choose Review to review your Auto Scaling group and then choose Create Auto Scaling Group
to finish.

Step 4: Verify and Test your Auto Scaling Group
Now that you've created your Auto Scaling group, you should be able to see your instances launching
in the Amazon EC2 console Instances page. These instances should register into your Amazon ECS
cluster as well after they launch.

To test that your Auto Scaling group is configured properly, you can create some tasks that consume a
considerable amount of memory and start launching them into your cluster. After your cluster exceeds
the 75% memory reservation from the CloudWatch alarm for the specified number of periods, you
should see a new instance launch in the EC2 console.

API Version 2014-11-13
166

Amazon EC2 Container Service Developer Guide
Step 5: Cleaning Up

Step 5: Cleaning Up
When you have completed this tutorial, you may choose to keep your Auto Scaling group and Amazon
EC2 instances in service for your cluster. However, if you are not actively using these resources,
you should consider cleaning them up so your account does not incur unnecessary charges. You
can delete your Auto Scaling group to terminate the Amazon EC2 instances within it, but your launch
configuration remains intact and you can create a new Auto Scaling group with it later if you choose.

To delete your Auto Scaling group

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. On the left navigation, choose Auto Scaling Groups.

3. Choose the Auto Scaling group you created for this tutorial.

4. Choose Actions and then choose Delete.

5. Choose Yes, Delete to delete your Auto Scaling group.

API Version 2014-11-13
167

https://console.aws.amazon.com/ec2/

Amazon EC2 Container Service Developer Guide

Amazon ECS IAM Policies, Roles,
and Permissions

By default, IAM users don't have permission to create or modify Amazon ECS resources, or perform
tasks using the Amazon ECS API. (This means that they also can't do so using the Amazon ECS
console or the AWS CLI.) To allow IAM users to create or modify resources and perform tasks, you
must create IAM policies that grant IAM users permission to use the specific resources and API actions
they'll need, and then attach those policies to the IAM users or groups that require those permissions.

When you attach a policy to a user or group of users, it allows or denies the users permission to
perform the specified tasks on the specified resources. For more general information about IAM
policies, see Permissions and Policies in the IAM User Guide. For more information about managing
and creating custom IAM policies, see Managing IAM Policies.

Likewise, Amazon ECS container instances make calls to the Amazon ECS and Amazon EC2 APIs
on your behalf, so they need to authenticate with your credentials. This authentication is accomplished
by creating an IAM role for your container instances and associating that role with your container
instances when you launch them. For more information, see Amazon ECS Container Instance IAM
Role (p. 180). If you use an Elastic Load Balancing load balancer with your Amazon ECS services,
calls to the Amazon EC2 and Elastic Load Balancing APIs are made on your behalf to register and
deregister container instances with your load balancers. For more information, see Amazon ECS
Service Scheduler IAM Role (p. 182). For more general information about IAM roles, see IAM Roles
in the IAM User Guide.

Getting Started

An IAM policy must grant or deny permission to use one or more Amazon ECS actions. It must also
specify the resources that can be used with the action, which can be all resources, or in some cases,
specific resources. The policy can also include conditions that you apply to the resource.

Amazon ECS partially supports resource-level permissions. This means that for some Amazon ECS
API actions, you cannot specify which resource a user is allowed to work with for that action; instead,
you have to allow users to work with all resources for that action.

Topics

• Policy Structure (p. 169)

• Supported Resource-Level Permissions for Amazon ECS API Actions (p. 173)

• Creating Amazon ECS IAM Policies (p. 174)

API Version 2014-11-13
168

http://docs.aws.amazon.com/IAM/latest/UserGuide/PermissionsAndPolicies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html

Amazon EC2 Container Service Developer Guide
Policy Structure

• Managed Policies (p. 175)

• Amazon ECS Container Instance IAM Role (p. 180)

• Amazon ECS Service Scheduler IAM Role (p. 182)

• Amazon ECS Service Auto Scaling IAM Role (p. 184)

• Amazon EC2 Container Service Task Role (p. 186)

• IAM Roles for Tasks (p. 186)

• Amazon ECS IAM Policy Examples (p. 190)

Policy Structure
The following topics explain the structure of an IAM policy.

Topics

• Policy Syntax (p. 169)

• Actions for Amazon ECS (p. 170)

• Amazon Resource Names for Amazon ECS (p. 170)

• Condition Keys for Amazon ECS (p. 171)

• Checking that Users Have the Required Permissions (p. 172)

Policy Syntax
An IAM policy is a JSON document that consists of one or more statements. Each statement is
structured as follows:

{
 "Statement":[{
 "Effect":"effect",
 "Action":"action",
 "Resource":"arn",
 "Condition":{
 "condition":{
 "key":"value"
 }
 }
 }
]
}

There are various elements that make up a statement:

• Effect: The effect can be Allow or Deny. By default, IAM users don't have permission to use
resources and API actions, so all requests are denied. An explicit allow overrides the default. An
explicit deny overrides any allows.

• Action: The action is the specific API action for which you are granting or denying permission. To
learn about specifying action, see Actions for Amazon ECS (p. 170).

• Resource: The resource that's affected by the action. Some Amazon ECS API actions allow you to
include specific resources in your policy that can be created or modified by the action. To specify a
resource in the statement, you need to use its Amazon Resource Name (ARN). For more information
about specifying the arn value, see Amazon Resource Names for Amazon ECS (p. 170). For
more information about which API actions support which ARNs, see Supported Resource-Level

API Version 2014-11-13
169

Amazon EC2 Container Service Developer Guide
Actions for Amazon ECS

Permissions for Amazon ECS API Actions (p. 173). If the API action does not support ARNs, use
the * wildcard to specify that all resources can be affected by the action.

• Condition: Conditions are optional. They can be used to control when your policy will be in effect.
For more information about specifying conditions for Amazon ECS, see Condition Keys for Amazon
ECS (p. 171).

For more information about example IAM policy statements for Amazon ECS, see Creating Amazon
ECS IAM Policies (p. 174).

Actions for Amazon ECS
In an IAM policy statement, you can specify any API action from any service that supports IAM.
For Amazon ECS, use the following prefix with the name of the API action: ecs:. For example:
ecs:RunTask and ecs:CreateCluster.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": ["ecs:action1", "ecs:action2"]

You can also specify multiple actions using wildcards. For example, you can specify all actions whose
name begins with the word "Describe" as follows:

"Action": "ecs:Describe*"

To specify all Amazon ECS API actions, use the * wildcard as follows:

"Action": "ecs:*"

For a list of Amazon ECS actions, see Actions in the Amazon EC2 Container Service API Reference.

Amazon Resource Names for Amazon ECS
Each IAM policy statement applies to the resources that you specify using their ARNs.

Important
Currently, not all API actions support individual ARNs; we'll add support for additional API
actions and ARNs for additional Amazon ECS resources later. For information about which
ARNs you can use with which Amazon ECS API actions, as well as supported condition
keys for each ARN, see Supported Resource-Level Permissions for Amazon ECS API
Actions (p. 173).

An ARN has the following general syntax:

arn:aws:[service]:[region]:[account]:resourceType/resourcePath

service
The service (for example, ecs).

region
The region for the resource (for example, us-east-1).

account
The AWS account ID, with no hyphens (for example, 123456789012).

resourceType
The type of resource (for example, instance).

API Version 2014-11-13
170

http://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Operations.html

Amazon EC2 Container Service Developer Guide
Condition Keys for Amazon ECS

resourcePath
A path that identifies the resource. You can use the * wildcard in your paths.

For example, you can indicate a specific cluster (default) in your statement using its ARN as follows:

"Resource": "arn:aws:ecs:us-east-1:123456789012:cluster/default"

You can also specify all clusters that belong to a specific account by using the * wildcard as follows:

"Resource": "arn:aws:ecs:us-east-1:123456789012:cluster/*"

To specify all resources, or if a specific API action does not support ARNs, use the * wildcard in the
Resource element as follows:

"Resource": "*"

The following table describes the ARNs for each type of resource used by the Amazon ECS API
actions.

Resource Type ARN

All Amazon ECS resources arn:aws:ecs:*

All Amazon ECS resources
owned by the specified account
in the specified region

arn:aws:ecs:region:account:*

Cluster arn:aws:ecs:region:account:cluster/cluster-name

Container instance arn:aws:ecs:region:account:container-instance/container-instance-
id

Task definition arn:aws:ecs:region:account:task-definition-family-name:task-
definition-revision-number

Service arn:aws:ecs:region:account:service/service-name

Task arn:aws:ecs:region:account:task/task-id

Container arn:aws:ecs:region:account:container/container-id

Many Amazon ECS API actions accept multiple resources. To specify multiple resources in a single
statement, separate their ARNs with commas, as follows:

"Resource": ["arn1", "arn2"]

For more general information about ARNs, see Amazon Resource Names (ARN) and AWS Service
Namespaces in the Amazon Web Services General Reference.

Condition Keys for Amazon ECS
In a policy statement, you can optionally specify conditions that control when it is in effect. Each
condition contains one or more key-value pairs. Condition keys are not case-sensitive. We've defined
AWS-wide condition keys, plus additional service-specific condition keys.

API Version 2014-11-13
171

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon EC2 Container Service Developer Guide
Testing Permissions

If you specify multiple conditions, or multiple keys in a single condition, we evaluate them using a
logical AND operation. If you specify a single condition with multiple values for one key, we evaluate
the condition using a logical OR operation. For permission to be granted, all conditions must be met.

You can also use placeholders when you specify conditions. For more information, see Policy
Variables in the IAM User Guide.

Amazon ECS implements the AWS-wide condition keys (see Available Keys), plus the following
service-specific condition keys. (We'll add support for additional service-specific condition keys for
Amazon ECS later.)

Condition Key Key/Value Pair Evaluation
Types

ecs:cluster "ecs:cluster":"cluster-arn"

Where cluster-arn is the ARN for the Amazon ECS cluster

ARN, Null

ecs:container-
instances

"ecs:container-instances":"container-instance-arns"

Where container-instance-arns is one or more container
instance ARNs.

ARN, Null

For information about which condition keys you can use with which Amazon ECS resources,
on an action-by-action basis, see Supported Resource-Level Permissions for Amazon ECS API
Actions (p. 173). For example policy statements for Amazon ECS, see Creating Amazon ECS IAM
Policies (p. 174).

Checking that Users Have the Required
Permissions
After you've created an IAM policy, we recommend that you check whether it grants users the
permissions to use the particular API actions and resources they need before you put the policy into
production.

First, create an IAM user for testing purposes, and then attach the IAM policy that you created to the
test user. Then, make a request as the test user. You can make test requests in the console or with the
AWS CLI.

Note
You can also test your policies with the IAM Policy Simulator. For more information on the
policy simulator, see Working with the IAM Policy Simulator in the IAM User Guide.

If the action that you are testing creates or modifies a resource, you should make the request using
the DryRun parameter (or run the AWS CLI command with the --dry-run option). In this case,
the call completes the authorization check, but does not complete the operation. For example, you
can check whether the user can terminate a particular instance without actually terminating it. If the
test user has the required permissions, the request returns DryRunOperation; otherwise, it returns
UnauthorizedOperation.

If the policy doesn't grant the user the permissions that you expected, or is overly permissive, you can
adjust the policy as needed and retest until you get the desired results.

Important
It can take several minutes for policy changes to propagate before they take effect. Therefore,
we recommend that you allow five minutes to pass before you test your policy updates.

If an authorization check fails, the request returns an encoded message with diagnostic information.
You can decode the message using the DecodeAuthorizationMessage action. For more

API Version 2014-11-13
172

http://docs.aws.amazon.com/IAM/latest/UserGuide/PolicyVariables.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/PolicyVariables.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#AvailableKeys
https://policysim.aws.amazon.com/home/index.jsp?#
http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_testing-policies.html

Amazon EC2 Container Service Developer Guide
Supported Resource-Level Permissions

information, see DecodeAuthorizationMessage in the AWS Security Token Service API Reference, and
decode-authorization-message in the AWS Command Line Interface Reference.

Supported Resource-Level Permissions for
Amazon ECS API Actions

Resource-level permissions refers to the ability to specify which resources users are allowed to
perform actions on. Amazon ECS has partial support for resource-level permissions. This means
that for certain Amazon ECS actions, you can control when users are allowed to use those actions
based on conditions that have to be fulfilled, or specific resources that users are allowed to use. For
example, you can grant users permission to launch instances, but only of a specific type, and only
using a specific AMI.

The following table describes the Amazon ECS API actions that currently support resource-level
permissions, as well as the supported resources, resource ARNs, and condition keys for each action.

Important
If an Amazon ECS API action is not listed in this table, then it does not support resource-level
permissions. If an Amazon ECS API action does not support resource-level permissions, you
can grant users permission to use the action, but you have to specify a * for the resource
element of your policy statement.

API action Resource Condition keys

DeleteCluster Cluster

arn:aws:ecs:region:account:cluster/my-
cluster

N/A

DeregisterContainerInstanceCluster

arn:aws:ecs:region:account:cluster/my-
cluster

N/A

DescribeClusters Cluster

arn:aws:ecs:region:account:cluster/my-
cluster1,
arn:aws:ecs:region:account:cluster/my-
cluster2

N/A

DescribeContainerInstancesContainer instance

arn:aws:ecs:region:account:container-
instance/container-instance-id1,
arn:aws:ecs:region:account:container-
instance/container-instance-id2

ecs:cluster

DescribeTasks Task

arn:aws:ecs:region:account:task/
1abf0f6d-a411-4033-
b8eb-a4eed3ad252a,
arn:aws:ecs:region:account:task/
1abf0f6d-a411-4033-b8eb-
a4eed3ad252b

ecs:cluster

ListContainerInstances Cluster N/A

API Version 2014-11-13
173

http://docs.aws.amazon.com/STS/latest/APIReference/API_DecodeAuthorizationMessage.html
http://docs.aws.amazon.com/cli/latest/reference/sts/decode-authorization-message.html

Amazon EC2 Container Service Developer Guide
Creating IAM Policies

API action Resource Condition keys

arn:aws:ecs:region:account:cluster/my-
cluster

ListTasks Container instance

arn:aws:ecs:region:account:container-
instance/container-instance-id

ecs:cluster

Poll Container instance

arn:aws:ecs:region:account:container-
instance/container-instance-id

ecs:cluster

RegisterContainerInstanceCluster

arn:aws:ecs:region:account:cluster/my-
cluster

N/A

RunTask Task definition

arn:aws:ecs:region:account:task-
definition/hello_world:8

ecs:cluster

StartTask Task definition

arn:aws:ecs:region:account:task-
definition/hello_world:8

ecs:cluster

ecs:container-instances

StartTelemetrySession Container instance

arn:aws:ecs:region:account:container-
instance/container-instance-id

ecs:cluster

StopTask Task

arn:aws:ecs:region:account:task/
1abf0f6d-a411-4033-b8eb-
a4eed3ad252a

ecs:cluster

SubmitContainerStateChangeCluster

arn:aws:ecs:region:account:cluster/my-
cluster

N/A

SubmitTaskStateChange Cluster

arn:aws:ecs:region:account:cluster/my-
cluster

N/A

UpdateContainerAgent Container instance

arn:aws:ecs:region:account:container-
instance/container-instance-id

ecs:cluster

Creating Amazon ECS IAM Policies
You can create specific IAM policies to restrict the calls and resources that users in your account have
access to, and then attach those policies to IAM users.

API Version 2014-11-13
174

Amazon EC2 Container Service Developer Guide
Managed Policies

When you attach a policy to a user or group of users, it allows or denies the users permission to
perform the specified tasks on the specified resources. For more general information about IAM
policies, see Permissions and Policies in the IAM User Guide. For more information about managing
and creating custom IAM policies, see Managing IAM Policies.

To create an IAM policy for a user

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Policies and then choose Create Policy.

3. In the Create Policy section, choose Select next to Create Your Own Policy.

4. In the Policy Name field, type your own unique name, such as AmazonECSUserPolicy.

5. In the Policy Document field, paste the policy to apply to the user. For example policies, see
Amazon ECS IAM Policy Examples (p. 190).

6. Choose Create Policy to finish.

To attach an IAM policy to a user

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Users and then choose the user you would like to attach the policy
to.

3. In the Permissions tab, choose Attach Policy.

4. In the Attach Policy section, select the custom policy you created in the previous procedure and
then choose Attach Policy.

Managed Policies
Amazon ECS and Amazon ECR provide several managed policies that you can attach to IAM users or
EC2 instances that allow differing levels of control over resources and API operations. You can apply
these policies directly, or you can use them as starting points for creating your own polices.

Topics

• Amazon ECS Managed Policies (p. 175)

• Amazon ECR Managed Policies (p. 178)

Amazon ECS Managed Policies
Amazon ECS provides several managed policies that you can attach to IAM users or EC2 instances
that allow differing levels of control over Amazon ECS resources and API operations. You can apply
these policies directly, or you can use them as starting points for creating your own polices. For more
information about each API operation mentioned in these policies, see Actions in the Amazon EC2
Container Service API Reference.

Topics

• AmazonEC2ContainerServiceFullAccess (p. 176)

• AmazonEC2ContainerServiceforEC2Role (p. 176)

• AmazonEC2ContainerServiceRole (p. 177)

• AmazonEC2ContainerServiceAutoscaleRole (p. 177)

API Version 2014-11-13
175

http://docs.aws.amazon.com/IAM/latest/UserGuide/PermissionsAndPolicies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Operations.html

Amazon EC2 Container Service Developer Guide
Amazon ECS Managed Policies

• AmazonEC2ContainerServiceTaskRole (p. 178)

AmazonEC2ContainerServiceFullAccess

This policy allows full administrator access to Amazon ECS.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "autoscaling:Describe*",
 "autoscaling:UpdateAutoScalingGroup",
 "cloudformation:CreateStack",
 "cloudformation:DeleteStack",
 "cloudformation:DescribeStack*",
 "cloudformation:UpdateStack",
 "cloudwatch:GetMetricStatistics",
 "ec2:Describe*",
 "elasticloadbalancing:*",
 "ecs:*",
 "iam:ListInstanceProfiles",
 "iam:ListRoles",
 "iam:PassRole"
],
 "Resource": "*"
 }
]
}

AmazonEC2ContainerServiceforEC2Role

This policy allows Amazon ECS container instances to make calls to AWS on your behalf. For more
information, see Amazon ECS Container Instance IAM Role (p. 180).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:CreateCluster",
 "ecs:DeregisterContainerInstance",
 "ecs:DiscoverPollEndpoint",
 "ecs:Poll",
 "ecs:RegisterContainerInstance",
 "ecs:StartTelemetrySession",
 "ecs:Submit*",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "logs:CreateLogStream",
 "logs:PutLogEvents"

API Version 2014-11-13
176

Amazon EC2 Container Service Developer Guide
Amazon ECS Managed Policies

],
 "Resource": "*"
 }
]
}

AmazonEC2ContainerServiceRole
This policy allows Elastic Load Balancing load balancers to register and deregister Amazon ECS
container instances on your behalf. For more information, see Amazon ECS Service Scheduler IAM
Role (p. 182).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:Describe*",
 "elasticloadbalancing:DeregisterInstancesFromLoadBalancer",
 "elasticloadbalancing:DeregisterTargets",
 "elasticloadbalancing:Describe*",
 "elasticloadbalancing:RegisterInstancesWithLoadBalancer",
 "elasticloadbalancing:RegisterTargets"
],
 "Resource": "*"
 }
]
}

AmazonEC2ContainerServiceAutoscaleRole
This policy allows Application Auto Scaling to scale your Amazon ECS service's desired count up
and down in response to CloudWatch alarms on your behalf. For more information, see Amazon ECS
Service Auto Scaling IAM Role (p. 184).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1456535218000",
 "Effect": "Allow",
 "Action": [
 "ecs:DescribeServices",
 "ecs:UpdateService"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "Stmt1456535243000",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:DescribeAlarms"
],

API Version 2014-11-13
177

Amazon EC2 Container Service Developer Guide
Amazon ECR Managed Policies

 "Resource": [
 "*"
]
 }
]
}

AmazonEC2ContainerServiceTaskRole

This policy allows containers in your Amazon ECS tasks to make calls to the AWS APIs on your behalf.
For more information, see Amazon EC2 Container Service Task Role (p. 186).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs-tasks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Amazon ECR Managed Policies
Amazon ECR provides several managed policies that you can attach to IAM users or EC2 instances
that allow differing levels of control over Amazon ECR resources and API operations. You can apply
these policies directly, or you can use them as starting points for creating your own polices. For more
information about each API operation mentioned in these policies, see Actions in the Amazon EC2
Container Registry API Reference.

Topics

• AmazonEC2ContainerRegistryFullAccess (p. 178)

• AmazonEC2ContainerRegistryPowerUser (p. 179)

• AmazonEC2ContainerRegistryReadOnly (p. 179)

AmazonEC2ContainerRegistryFullAccess

This policy allows full administrator access to Amazon ECR.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecr:*"
],
 "Resource": "*"
 }
]

API Version 2014-11-13
178

http://docs.aws.amazon.com/AmazonECR/latest/APIReference/API_Operations.html

Amazon EC2 Container Service Developer Guide
Amazon ECR Managed Policies

}

AmazonEC2ContainerRegistryPowerUser

This policy allows power user access to Amazon ECR, which allows read and write access to
repositories, but does not allow users to delete repositories or change the policy documents applied to
them.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:GetRepositoryPolicy",
 "ecr:DescribeRepositories",
 "ecr:ListImages",
 "ecr:BatchGetImage",
 "ecr:InitiateLayerUpload",
 "ecr:UploadLayerPart",
 "ecr:CompleteLayerUpload",
 "ecr:PutImage"
],
 "Resource": "*"
 }
]
}

AmazonEC2ContainerRegistryReadOnly

This policy allows read-only access to Amazon ECR, such as the ability to list repositories and the
images within the repositories, and also to pull images from Amazon ECR with the Docker CLI.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:GetRepositoryPolicy",
 "ecr:DescribeRepositories",
 "ecr:ListImages",
 "ecr:BatchGetImage"
],
 "Resource": "*"
 }
]
}

API Version 2014-11-13
179

Amazon EC2 Container Service Developer Guide
Amazon ECS Container Instance IAM Role

Amazon ECS Container Instance IAM Role
The Amazon ECS container agent makes calls to the Amazon ECS API actions on your behalf, so
container instances that run the agent require an IAM policy and role for the service to know that the
agent belongs to you. Before you can launch container instances and register them into a cluster, you
must create an IAM role for those container instances to use when they are launched. This requirement
applies to container instances launched with the Amazon ECS-optimized AMI provided by Amazon, or
with any other instances that you intend to run the agent on.

Important
Containers that are running on your container instances have access to all of the permissions
that are supplied to the container instance role through instance metadata. We recommend
that you limit the permissions in your container instance role to the minimal list of permissions
provided in the managed AmazonEC2ContainerServiceforEC2Role policy shown below.
If the containers in your tasks need extra permissions that are not listed here, we recommend
providing those tasks with their own IAM roles. For more information, see IAM Roles for
Tasks (p. 186).
You can prevent containers on the docker0 bridge from accessing the permissions supplied
to the container instance role (while still allowing the permissions that are provided by IAM
Roles for Tasks (p. 186)) by running the following iptables command on your container
instances; however, containers will not be able to query instance metadata with this rule in
effect. Note that this command assumes the default Docker bridge configuration and it will
not work for containers that use the host network mode. For more information, see Network
Mode (p. 89).

iptables --insert FORWARD 1 --in-interface docker+ --destination
 169.254.169.254/32 --jump DROP

The AmazonEC2ContainerServiceforEC2Role policy is shown below.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:CreateCluster",
 "ecs:DeregisterContainerInstance",
 "ecs:DiscoverPollEndpoint",
 "ecs:Poll",
 "ecs:RegisterContainerInstance",
 "ecs:StartTelemetrySession",
 "ecs:Submit*",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
}

API Version 2014-11-13
180

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Amazon EC2 Container Service Developer Guide
Amazon ECS Container Instance IAM Role

Note
The ecs:CreateCluster line in the above policy is optional, provided that the cluster you
intend to register your container instance into already exists. If the cluster does not already
exist, the agent must have permission to create it, or you can create the cluster with the
create-cluster command prior to launching your container instance.
If you omit the ecs:CreateCluster line, the Amazon ECS container agent will not be able
to create clusters, including the default cluster.

The ecs:Poll line in the above policy is used to grant the agent permission to connect with the
Amazon ECS service to report status and get commands.

The Amazon ECS instance role is automatically created for you in the console first-run experience;
however, you should manually attach the managed IAM policy for container instances to allow Amazon
ECS to add permissions for future features and enhancements as they are introduced. You can use the
following procedure to check and see if your account already has the Amazon ECS instance role and
to attach the managed IAM policy if needed.

To check for the ecsInstanceRole in the IAM console

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Roles.

3. Search the list of roles for ecsInstanceRole. If the role does not exist, use the procedure below
to create the role. If the role does exist, select the role to view the attached policies.

4. Choose the Permissions tab.

5. In the Managed Policies section, ensure that the AmazonEC2ContainerServiceforEC2Role
managed policy is attached to the role. If the policy is attached, your Amazon ECS instance role is
properly configured. If not, follow the substeps below to attach the policy.

a. Choose Attach Policy.

b. In the Filter box, type AmazonEC2ContainerServiceforEC2Role to narrow the available
policies to attach.

c. Check the box to the left of the AmazonEC2ContainerServiceforEC2Role policy and choose
Attach Policy.

6. Choose the Trust Relationships tab, and Edit Trust Relationship.

7. Verify that the trust relationship contains the following policy. If the trust relationship matches the
policy below, choose Cancel. If the trust relationship does not match, copy the policy into the
Policy Document window and choose Update Trust Policy.

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

API Version 2014-11-13
181

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon EC2 Container Service Developer Guide
Adding Amazon S3 Read-only Access

to your Container Instance Role

To create the ecsInstanceRole IAM role for your container instances

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Roles and then choose Create New Role.

3. In the Role Name field, type ecsInstanceRole to name the role, and then choose Next Step.

4. In the Select Role Type section, choose Select next to the Amazon EC2 Role for EC2
Container Service role.

5. In the Attach Policy section, select the AmazonEC2ContainerServiceforEC2Role policy and
then choose Next Step.

6. Review your role information and then choose Create Role to finish.

Adding Amazon S3 Read-only Access to your
Container Instance Role
Storing configuration information in a private bucket in Amazon S3 and granting read-only access
to your container instance IAM role is a secure and convenient way to allow container instance
configuration at launch time. You can store a copy of your ecs.config file in a private bucket, use
Amazon EC2 user data to install the AWS CLI and then copy your configuration information to /etc/
ecs/ecs.config when the instance launches.

For more information about creating an ecs.config file, storing it in Amazon S3, and launching
instances with this configuration, see Storing Container Instance Configuration in Amazon S3 (p. 74).

To allow Amazon S3 read-only access for your container instance role

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Roles.

3. Choose the IAM role you use for your container instances (this role is likely titled
ecsInstanceRole). For more information, see Amazon ECS Container Instance IAM
Role (p. 180).

4. Choose the Permissions tab.

5. Under Managed Policies, choose Attach Policy.

6. On the Attach Policy page, type S3 into the Filter field to narrow the policy results.

7. Check the box to the left of the AmazonS3ReadOnlyAccess policy and click Attach Policy.

Note
This policy allows read-only access to all Amazon S3 resources. For more restrictive
bucket policy examples, see Bucket Policy Examples in the Amazon Simple Storage
Service Developer Guide.

Amazon ECS Service Scheduler IAM Role
The Amazon ECS service scheduler makes calls to the Amazon EC2 and Elastic Load Balancing APIs
on your behalf to register and deregister container instances with your load balancers. Before you can
attach a load balancer to an Amazon ECS service, you must create an IAM role for your services to
use before you start them. This requirement applies to any Amazon ECS service that you plan to use
with a load balancer.

In most cases, the Amazon ECS service role is created for you automatically in the console first-run
experience. You can use the following procedure to check if your account already has the Amazon
ECS service role.

API Version 2014-11-13
182

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html

Amazon EC2 Container Service Developer Guide
Amazon ECS Service Scheduler IAM Role

The AmazonEC2ContainerServiceRole policy is shown below.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:Describe*",
 "elasticloadbalancing:DeregisterInstancesFromLoadBalancer",
 "elasticloadbalancing:DeregisterTargets",
 "elasticloadbalancing:Describe*",
 "elasticloadbalancing:RegisterInstancesWithLoadBalancer",
 "elasticloadbalancing:RegisterTargets"
],
 "Resource": "*"
 }
]
}

Note
The ec2:AuthorizeSecurityGroupIngress rule is reserved for future use. Amazon ECS
does not automatically update the security groups associated with Elastic Load Balancing load
balancers or Amazon ECS container instances.

To check for the ecsServiceRole in the IAM console

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Roles.

3. Search the list of roles for ecsServiceRole. If the role does not exist, use the procedure below to
create the role. If the role does exist, select the role to view the attached policies.

4. Choose the Permissions tab.

5. In the Managed Policies section, ensure that the AmazonEC2ContainerServiceRole managed
policy is attached to the role. If the policy is attached, your Amazon ECS service role is properly
configured. If not, follow the substeps below to attach the policy.

a. Choose Attach Policy.

b. In the Filter box, type AmazonEC2ContainerServiceRole to narrow the available policies to
attach.

c. Check the box to the left of the AmazonEC2ContainerServiceRole policy and choose
Attach Policy.

6. Choose the Trust Relationships tab, and Edit Trust Relationship.

7. Verify that the trust relationship contains the following policy. If the trust relationship matches the
policy below, choose Cancel. If the trust relationship does not match, copy the policy into the
Policy Document window and choose Update Trust Policy.

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {

API Version 2014-11-13
183

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon EC2 Container Service Developer Guide
Amazon ECS Service Auto Scaling IAM Role

 "Service": "ecs.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

To create an IAM role for your service scheduler load balancers

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Roles and then choose Create New Role.

3. In the Role Name field, type ecsServiceRole to name the role, and then choose Next Step.

4. In the Select Role Type section, scroll down and choose Select next to the Amazon EC2
Container Service Role service role.

5. In the Attach Policy section, select the AmazonEC2ContainerServiceRole policy and then
choose Next Step.

6. Review your role information and then choose Create Role to finish.

Amazon ECS Service Auto Scaling IAM Role
Before you can use Service Auto Scaling with Amazon ECS, the Application Auto Scaling service
needs permission to describe your CloudWatch alarms and registered services, as well as permission
to update your Amazon ECS service's desired count on your behalf. These permissions are provided
by the Service Auto Scaling IAM role (ecsAutoscaleRole).

Note
IAM users also require permissions to use Service Auto Scaling; these permissions are
described in Service Auto Scaling Required IAM Permissions (p. 134). If an IAM user has the
required permissions to use Service Auto Scaling in the Amazon ECS console, create IAM
roles, and attach IAM role policies to them, then that user can create this role automatically
as part of the Amazon ECS console create service (p.) or update service (p. 147)
workflows, and then use the role for any other service later (in the console or with the CLI/
SDKs).

You can use the following procedure to check and see if your account already has Service Auto
Scaling.

The AmazonEC2ContainerServiceAutoscaleRole policy is shown below.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1456535218000",
 "Effect": "Allow",
 "Action": [
 "ecs:DescribeServices",
 "ecs:UpdateService"
],
 "Resource": [
 "*"
]

API Version 2014-11-13
184

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon EC2 Container Service Developer Guide
Amazon ECS Service Auto Scaling IAM Role

 },
 {
 "Sid": "Stmt1456535243000",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:DescribeAlarms"
],
 "Resource": [
 "*"
]
 }
]
}

To check for the Service Auto Scaling role in the IAM console

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Roles.

3. Search the list of roles for ecsAutoscaleRole. If the role does not exist, use the procedure
below to create the role. If the role does exist, select the role to view the attached policies.

4. Choose the Permissions tab.

5. In the Managed Policies section, ensure that the AmazonEC2ContainerServiceAutoscaleRole
managed policy is attached to the role. If the policy is attached, your Amazon ECS service role is
properly configured. If not, follow the substeps below to attach the policy.

a. Choose Attach Policy.

b. For Filter, type AmazonEC2ContainerServiceAutoscaleRole to narrow the available
policies to attach.

c. Select the box to the left of the AmazonEC2ContainerAutoscaleRole policy and choose
Attach Policy.

6. Choose Trust Relationships, Edit Trust Relationship.

7. Verify that the trust relationship contains the following policy. If the trust relationship matches the
policy below, choose Cancel. If the trust relationship does not match, copy the policy into the
Policy Document window and choose Update Trust Policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "application-autoscaling.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

To create an IAM role for Service Auto Scaling

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Roles and then choose Create New Role.

API Version 2014-11-13
185

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon EC2 Container Service Developer Guide
Amazon EC2 Container Service Task Role

3. In the Role Name field, type ecsAutoscaleRole to name the role, and then choose Next Step.

4. In the Select Role Type section, scroll down and choose Select next to the Amazon EC2
Container Service Autoscale Role service role.

5. In the Attach Policy section, select the AmazonEC2ContainerServiceAutoscaleRole policy and
then choose Next Step.

6. Review your role information and then choose Create Role to finish.

Amazon EC2 Container Service Task Role
Before you can use IAM roles for tasks , Amazon ECS needs permission to make calls to the AWS
APIs on your behalf. These permissions are provided by the Amazon EC2 Container Service Task
Role.

You can create a task IAM role for each task definition that needs permission to call AWS APIs. You
simply create an IAM policy that defines which permissions your task should have, and then attach
that policy to a role that uses the Amazon EC2 Container Service Task Role managed policy. For more
information, see Creating an IAM Role and Policy for your Tasks (p. 188).

The Amazon EC2 Container Service Task Role trust relationship is shown below.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs-tasks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

IAM Roles for Tasks
With IAM roles for Amazon ECS tasks, you can specify an IAM role that can be used by the containers
in a task. Applications must sign their AWS API requests with AWS credentials, and this feature
provides a strategy for managing credentials for your applications to use, similar to the way that
Amazon EC2 instance profiles provide credentials to EC2 instances. Instead of creating and
distributing your AWS credentials to the containers or using the EC2 instance’s role, you can associate
an IAM role with an ECS task definition or RunTask API operation. The applications in the task’s
containers can then use the AWS SDK or CLI to make API requests to authorized AWS services.

Important
Containers that are running on your container instances have access to all of the permissions
that are supplied to the container instance role. We recommend that you limit the permissions
in your container instance role to the minimal list of permissions shown in Amazon ECS
Container Instance IAM Role (p. 180).
You can prevent containers on the docker0 bridge from accessing the permissions supplied
to the container instance role (while still allowing the permissions that are provided by IAM
roles for tasks) by running the following iptables command on your container instances;
however, containers will not be able to query instance metadata with this rule in effect. Note

API Version 2014-11-13
186

Amazon EC2 Container Service Developer Guide
Benefits of Using IAM Roles for Tasks

that this command assumes the default Docker bridge configuration and it will not work for
containers that use the host network mode. For more information, see Network Mode (p. 89).

iptables --insert FORWARD 1 --in-interface docker+ --destination
 169.254.169.254/32 --jump DROP

You define the IAM role to use in your task definitions, or you can use a taskRoleArn
override when running a task manually with the RunTask API operation. The Amazon ECS
agent receives a payload message for starting the task with additional fields that contain
the role credentials. The Amazon ECS agent sets the task’s UUID as an identification token
and updates its internal credential cache so that the identification token for the task points to
the role credentials that are received in the payload. The Amazon ECS agent populates the
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI environment variable in the Env object (available
with the docker inspect container_id command) for all containers that belong to this task with the
following relative URI: /credential_provider_version/credentials?id=task_UUID.

From inside the container, you can query the credentials with the following command:

$ curl 169.254.170.2$AWS_CONTAINER_CREDENTIALS_RELATIVE_URI
{
 "AccessKeyId": "ACCESS_KEY_ID",
 "Expiration": "EXPIRATION_DATE",
 "RoleArn": "TASK_ROLE_ARN",
 "SecretAccessKey": "SECRET_ACCESS_KEY",
 "Token": "SECURITY_TOKEN_STRING"
}

If your container instance is using at least version 1.11.0 of the container agent and
a supported version of the AWS CLI or SDKs, then the SDK client will see that the
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI variable is available, and it will use the provided
credentials to make calls to the AWS APIs. For more information, see Enabling Task IAM Roles on
your Container Instances (p. 188) and Using a Supported AWS SDK (p. 189).

Each time the credential provider is used, the request is logged locally on the host container instance
at /var/log/ecs/audit.log.YYYY-MM-DD-HH. For more information, see IAM Roles for Tasks
Credential Audit Log (p. 242).

Topics

• Benefits of Using IAM Roles for Tasks (p. 187)

• Enabling Task IAM Roles on your Container Instances (p. 188)

• Creating an IAM Role and Policy for your Tasks (p. 188)

• Using a Supported AWS SDK (p. 189)

• Specifying an IAM Role for your Tasks (p. 190)

Benefits of Using IAM Roles for Tasks
• Credential Isolation: A container can only retrieve credentials for the IAM role that is defined in the

task definition to which it belongs; a container never has access to credentials that are intended for
another container that belongs to another task.

• Authorization: Unauthorized containers cannot access IAM role credentials defined for other tasks.

• Auditability: Access and event logging is available through CloudTrail to ensure retrospective
auditing. Task credentials have a context of taskArn that is attached to the session, so CloudTrail
logs show which task is using which role.

API Version 2014-11-13
187

Amazon EC2 Container Service Developer Guide
Enabling Task IAM Roles on your Container Instances

Enabling Task IAM Roles on your Container
Instances
Your Amazon ECS container instances require at least version 1.11.0 of the container agent to enable
task IAM roles; however, we recommend using the latest container agent version. For information
about checking your agent version and updating to the latest version, see Updating the Amazon ECS
Container Agent (p. 63). If you are using the Amazon ECS-optimized AMI, your instance needs at least
1.11.0-1 of the ecs-init package. If your container instances are launched from version 2016.03.e
or later, then they contain the required versions of the container agent and ecs-init. For more
information, see Amazon ECS-optimized AMI (p. 34).

If you are not using the Amazon ECS-optimized AMI for your container instances, be sure to add the
ECS_ENABLE_TASK_IAM_ROLE=true environment variable and the --net=host option to your
docker run command that starts the agent. For an example run command, see Manually Updating the
Amazon ECS Container Agent (for Non-Amazon ECS-optimized AMIs) (p. 67). You will also need to
set the following networking commands on your container instance so that the containers in your tasks
can retrieve their AWS credentials:

sysctl -w net.ipv4.conf.all.route_localnet=1
iptables -t nat -A PREROUTING -p tcp -d 169.254.170.2 --dport 80 -j DNAT --
to-destination 127.0.0.1:51679
iptables -t nat -A OUTPUT -d 169.254.170.2 -p tcp -m tcp --dport 80 -j
 REDIRECT --to-ports 51679

Creating an IAM Role and Policy for your Tasks
You must create an IAM policy for your tasks to use that specifies the permissions that you would like
the containers in your tasks to have. You have several ways to create a new IAM permission policy.
You can copy a complete AWS managed policy that already does some of what you're looking for and
then customize it to your specific requirements. For more information, see Creating a New Policy in the
IAM User Guide.

You must also create a role for your tasks to use before you can specify it in your task definitions.
You can create the role using the Amazon EC2 Container Service Task Role managed role policy.
Then you can attach your specific IAM policy to the role that gives the containers in your task the
permissions you desire. The procedures below describe how to do this.

If you have multiple task definitions or services that require IAM permissions, you should consider
creating a role for each specific task definition or service with the minimum required permissions for the
tasks to operate so that you can minimize the access that you provide for each task.

To create an IAM policy for your tasks

In this example, we create a policy to allow read-only access to an Amazon S3 bucket. You could
store database credentials or other secrets in this bucket, and the containers in your task can read the
credentials from the bucket and load them into your application.

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Policies and then choose Create Policy.

3. In the Create Policy section, choose Select next to Create Your Own Policy.

4. In the Policy Name field, type your own unique name, such as
AmazonECSTaskS3BucketPolicy.

API Version 2014-11-13
188

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon EC2 Container Service Developer Guide
Using a Supported AWS SDK

5. In the Policy Document field, paste the policy to apply to your tasks. The example below allows
permission to the my-task-secrets-bucket Amazon S3 bucket. You can modify the policy
document to suit your specific needs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1465589882000",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::my-task-secrets-bucket/*"
]
 }
]
}

6. Choose Create Policy to finish.

To create an IAM role for your tasks

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Roles and then choose Create New Role.

3. In the Role Name field, enter a name for your role. For this example, type
AmazonECSTaskS3BucketRole to name the role, and then choose Next Step.

4. In the Select Role Type section, choose Select next to the Amazon EC2 Container Service
Task Role role.

5. In the Attach Policy section, select the policy you want to use for your tasks (in this example
AmazonECSTaskS3BucketPolicy, and then choose Next Step.

6. Review your role information and then choose Create Role to finish.

Using a Supported AWS SDK
Support for IAM roles for tasks was added to the AWS SDKs on July 13th, 2016, so the containers in
your tasks must use an AWS SDK version that was created on or after that date. AWS SDKs that are
included in Linux distribution package managers may not be new enough to support this feature.

To ensure that you are using a supported SDK, follow the installation instructions for your preferred
SDK at Tools for Amazon Web Services when you are building your containers.

The following AWS SDK versions and above support IAM roles for tasks:

• AWS CLI: 1.10.47

• C++: 0.12.19

• CoreCLR: 3.2.6-beta

• Go: 1.2.5

• Java: 1.11.16

• .NET: 3.1.6

• Node.js: 2.4.7

API Version 2014-11-13
189

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://aws.amazon.com/tools/

Amazon EC2 Container Service Developer Guide
Specifying an IAM Role for your Tasks

• PHP: 3.18.28

• Python (botocore): 1.4.37

• Python (Boto3): 1.4.0

Note
The botocore module provides the low-level core functionality for Boto3, and each version
of Boto3 supports a range of botocore module versions. For Boto3 support of IAM roles
for tasks, you must ensure that your underlying botocore module is at least the minimum
version shown above.

• Ruby: 2.3.22

Specifying an IAM Role for your Tasks
After you have created a role and attached a policy to that role, you can run tasks that assume the role.
You have several options to do this:

• Specify an IAM role for your tasks in the task definition. You can create a new task definition or a
new revision of an existing task definition and specify the role you created previously. If you use
the console to create your task definition, choose your IAM role in the Task Role field. If you use
the AWS CLI or SDKs, specify your task role ARN using the taskRoleArn parameter. For more
information, see Creating a Task Definition (p. 84).

Note
This option is required if you want to use IAM task roles in an Amazon ECS service.

• Specify an IAM task role override when running a task. You can specify an IAM task role override
when running a task. If you use the console to run your task, choose Advanced Options and then
choose your IAM role in the Task Role field. If you use the AWS CLI or SDKs, specify your task role
ARN using the taskRoleArn parameter in the overrides JSON object. For more information, see
Running Tasks (p. 118).

Amazon ECS IAM Policy Examples
The following examples show policy statements that you could use to control the permissions that IAM
users have to Amazon ECS.

Topics

• Amazon ECS First Run Wizard (p. 190)

• Clusters (p. 192)

• Container Instances (p. 194)

• Task Definitions (p. 195)

• Run Tasks (p. 195)

• Start Tasks (p. 196)

• List and Describe Tasks (p. 196)

• Create Services (p. 197)

• Update Services (p. 198)

Amazon ECS First Run Wizard
The Amazon ECS first run wizard simplifies the process of creating a cluster and running your tasks
and services. However, users require permissions to many API operations from multiple AWS services

API Version 2014-11-13
190

Amazon EC2 Container Service Developer Guide
Amazon ECS First Run Wizard

to complete the wizard. The policy below shows the required permissions to complete the Amazon
ECS first run wizard.

Note
If you want to create an Amazon ECR repository in the first run wizard, tag and push an image
to that repository, and use that image in an Amazon ECS task definition, then your user also
needs the permissions listed in the AmazonEC2ContainerRegistryFullAccess managed
policy. For more information, see Amazon ECR Managed Policies (p. 178).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "autoscaling:CreateAutoScalingGroup",
 "autoscaling:CreateLaunchConfiguration",
 "autoscaling:CreateOrUpdateTags",
 "autoscaling:DeleteAutoScalingGroup",
 "autoscaling:DeleteLaunchConfiguration",
 "autoscaling:DescribeAutoScalingGroups",
 "autoscaling:DescribeAutoScalingInstances",
 "autoscaling:DescribeAutoScalingNotificationTypes",
 "autoscaling:DescribeLaunchConfigurations",
 "autoscaling:DescribeScalingActivities",
 "autoscaling:DescribeTags",
 "autoscaling:DescribeTriggers",
 "autoscaling:UpdateAutoScalingGroup",
 "cloudformation:CreateStack",
 "cloudformation:DescribeStack*",
 "cloudformation:DeleteStack",
 "cloudformation:UpdateStack",
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:ListMetrics",
 "ec2:AssociateRouteTable",
 "ec2:AttachInternetGateway",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CreateInternetGateway",
 "ec2:CreateKeyPair",
 "ec2:CreateNetworkInterface",
 "ec2:CreateRoute",
 "ec2:CreateRouteTable",
 "ec2:CreateSecurityGroup",
 "ec2:CreateSubnet",
 "ec2:CreateTags",
 "ec2:CreateVpc",
 "ec2:DeleteInternetGateway",
 "ec2:DeleteRoute",
 "ec2:DeleteRouteTable",
 "ec2:DeleteSecurityGroup",
 "ec2:DeleteSubnet",
 "ec2:DeleteTags",
 "ec2:DeleteVpc",
 "ec2:DescribeAccountAttributes",
 "ec2:DescribeAvailabilityZones",
 "ec2:DescribeInstances",
 "ec2:DescribeInternetGateways",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeNetworkInterface",

API Version 2014-11-13
191

Amazon EC2 Container Service Developer Guide
Clusters

 "ec2:DescribeRouteTables",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeTags",
 "ec2:DescribeVpcAttribute",
 "ec2:DescribeVpcs",
 "ec2:DetachInternetGateway",
 "ec2:DisassociateRouteTable",
 "ec2:ModifyVpcAttribute",
 "ec2:RunInstances",
 "ec2:TerminateInstances",
 "ecr:*",
 "ecs:*",
 "elasticloadbalancing:ApplySecurityGroupsToLoadBalancer",
 "elasticloadbalancing:AttachLoadBalancerToSubnets",
 "elasticloadbalancing:ConfigureHealthCheck",
 "elasticloadbalancing:CreateLoadBalancer",
 "elasticloadbalancing:DeleteLoadBalancer",
 "elasticloadbalancing:DeleteLoadBalancerListeners",
 "elasticloadbalancing:DeleteLoadBalancerPolicy",
 "elasticloadbalancing:DeregisterInstancesFromLoadBalancer",
 "elasticloadbalancing:DescribeInstanceHealth",
 "elasticloadbalancing:DescribeLoadBalancerAttributes",
 "elasticloadbalancing:DescribeLoadBalancerPolicies",
 "elasticloadbalancing:DescribeLoadBalancerPolicyTypes",
 "elasticloadbalancing:DescribeLoadBalancers",
 "elasticloadbalancing:ModifyLoadBalancerAttributes",
 "elasticloadbalancing:SetLoadBalancerPoliciesOfListener",
 "iam:AttachRolePolicy",
 "iam:CreateRole",
 "iam:GetPolicy",
 "iam:GetPolicyVersion",
 "iam:GetRole",
 "iam:ListAttachedRolePolicies",
 "iam:ListInstanceProfiles",
 "iam:ListRoles",
 "iam:ListGroups",
 "iam:ListUsers",
 "iam:CreateInstanceProfile",
 "iam:AddRoleToInstanceProfile",
 "iam:ListInstanceProfilesForRole"
],
 "Resource": "*"
 }
]
}

Clusters
The following IAM policy allows permission to create and list clusters. The CreateCluster and
ListClusters actions do not accept any resources, so the resource definition is set to * for all
resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

API Version 2014-11-13
192

Amazon EC2 Container Service Developer Guide
Clusters

 "Action": [
 "ecs:CreateCluster",
 "ecs:ListClusters"
],
 "Resource": [
 "*"
]
 }
]
}

The following IAM policy allows permission to describe and delete a specific cluster. The
DescribeCluster and DeleteCluster actions accept cluster ARNs as resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:DescribeCluster",
 "ecs:DeleteCluster"
],
 "Resource": [
 "arn:aws:ecs:us-east-1:<aws_account_id>:cluster/<cluster_name>"
]
 }
]
}

The following IAM policy can be attached to a user or group that would only allow that user or group to
perform operations on a specific cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ecs:Describe*",
 "ecs:List*"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Action": [
 "ecs:DeleteCluster",
 "ecs:DeregisterContainerInstance",
 "ecs:ListContainerInstances",
 "ecs:RegisterContainerInstance",
 "ecs:SubmitContainerStateChange",
 "ecs:SubmitTaskStateChange"
],
 "Effect": "Allow",
 "Resource": "arn:aws:ecs:us-east-1:<aws_account_id>:cluster/default"
 },
 {

API Version 2014-11-13
193

Amazon EC2 Container Service Developer Guide
Container Instances

 "Action": [
 "ecs:DescribeContainerInstances",
 "ecs:DescribeTasks",
 "ecs:ListTasks",
 "ecs:UpdateContainerAgent",
 "ecs:StartTask",
 "ecs:StopTask",
 "ecs:RunTask"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:us-east-1:<aws_account_id>:cluster/
default"
 }
 }
 }
]
}

Container Instances
Container instance registration is handled by the Amazon ECS agent, but there may be times where
you want to allow a user to deregister an instance manually from a cluster. Perhaps the container
instance was accidentally registered to the wrong cluster, or the instance was terminated with tasks still
running on it.

The following IAM policy allows a user to list and deregister container instances in a specified cluster:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:DeregisterContainerInstance",
 "ecs:ListContainerInstances"
],
 "Resource": [
 "arn:aws:ecs:<region>:<aws_account_id>:cluster/<cluster_name>"
]
 }
]
}

The following IAM policy allows a user to describe a specified container instance in a specified cluster.
To open this permission up to all container instances in a cluster, you can replace the container
instance UUID with *.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:DescribeContainerInstance"

API Version 2014-11-13
194

Amazon EC2 Container Service Developer Guide
Task Definitions

],
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:<region>:<aws_account_id>:cluster/
<cluster_name>"
 }
 },
 "Resource": [
 "arn:aws:ecs:<region>:<aws_account_id>:container-instance/
<container_instance_UUID>"
]
 }
]
}

Task Definitions
Task definition IAM policies do not support resource-level permissions, but the following IAM policy
allows a user to register, list, and describe task definitions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:RegisterTaskDefinition",
 "ecs:ListTaskDefinitions",
 "ecs:DescribeTaskDefinition"
],
 "Resource": [
 "*"
]
 }
]
}

Run Tasks
The resources for RunTask are task definitions. To limit which clusters a user can run task definitions
on, you can specify them in the Condition block. The advantage is that you don't have to list both
task definitions and clusters in your resources to allow appropriate access. You can apply one, the
other, or both.

The following IAM policy allows permission to run any revision of a specific task definition on a specific
cluster:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:RunTask"
],
 "Condition": {

API Version 2014-11-13
195

Amazon EC2 Container Service Developer Guide
Start Tasks

 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:<region>:<aws_account_id>:cluster/
<cluster_name>"
 }
 },
 "Resource": [
 "arn:aws:ecs::<region>:<aws_account_id>:task-definition/
<task_family>:*"
]
 }
]
}

Start Tasks
The resources for StartTask are task definitions. To limit which clusters and container instances a
user can start task definitions on, you can specify them in the Condition block. The advantage is that
you don't have to list both task definitions and clusters in your resources to allow appropriate access.
You can apply one, the other, or both.

The following IAM policy allows permission to start any revision of a specific task definition on a
specific cluster and specific container instance:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:StartTask"
],
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:<region>:<aws_account_id>:cluster/
<cluster_name>",
 "ecs:container-instances" : [
 "arn:aws:ecs:<region>:<aws_account_id>:container-instance/
<container_instance_UUID>"
]
 }
 },
 "Resource": [
 "arn:aws:ecs::<region>:<aws_account_id>:task-definition/
<task_family>:*"
]
 }
]
}

List and Describe Tasks
The following IAM policy allows a user to list tasks for a specified cluster:

{
 "Version": "2012-10-17",
 "Statement": [

API Version 2014-11-13
196

Amazon EC2 Container Service Developer Guide
Create Services

 {
 "Effect": "Allow",
 "Action": [
 "ecs:ListTasks"
],
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:<region>:<aws_account_id>:cluster/
<cluster_name>"
 }
 },
 "Resource": [
 "*"
]
 }
]
}

The following IAM policy allows a user to describe a specified task in a specified cluster:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:DescribeTask"
],
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:<region>:<aws_account_id>:cluster/
<cluster_name>"
 }
 },
 "Resource": [
 "arn:aws:ecs:<region>:<aws_account_id>:task/<task_UUID>"
]
 }
]
}

Create Services
The following IAM policy allows a user to create Amazon ECS services in the AWS Management
Console:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:Describe*",
 "application-autoscaling:PutScalingPolicy",
 "application-autoscaling:RegisterScalableTarget",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",

API Version 2014-11-13
197

Amazon EC2 Container Service Developer Guide
Update Services

 "ecs:List*",
 "ecs:Describe*",
 "ecs:CreateService",
 "elasticloadbalancing:Describe*",
 "iam:AttachRolePolicy",
 "iam:CreateRole",
 "iam:GetPolicy",
 "iam:GetPolicyVersion",
 "iam:GetRole",
 "iam:ListAttachedRolePolicies",
 "iam:ListRoles",
 "iam:ListGroups",
 "iam:ListUsers"
],
 "Resource": [
 "*"
]
 }
]
}

Update Services
The following IAM policy allows a user to update Amazon ECS services in the AWS Management
Console:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:Describe*",
 "application-autoscaling:PutScalingPolicy",
 "application-autoscaling:DeleteScalingPolicy",
 "application-autoscaling:RegisterScalableTarget",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "ecs:List*",
 "ecs:Describe*",
 "ecs:UpdateService",
 "iam:AttachRolePolicy",
 "iam:CreateRole",
 "iam:GetPolicy",
 "iam:GetPolicyVersion",
 "iam:GetRole",
 "iam:ListAttachedRolePolicies",
 "iam:ListRoles",
 "iam:ListGroups",
 "iam:ListUsers"
],
 "Resource": [
 "*"
]
 }
]
}

API Version 2014-11-13
198

Amazon EC2 Container Service Developer Guide
Installing the Amazon ECS CLI

Using the Amazon ECS Command
Line Interface

The Amazon EC2 Container Service (Amazon ECS) command line interface (CLI) provides high-level
commands to simplify creating, updating, and monitoring clusters and tasks from a local development
environment. The Amazon ECS CLI supports Docker Compose, a popular open-source tool for
defining and running multi-container applications. Use the CLI as part of your everyday development
and testing cycle as an alternative to the AWS Management Console.

Note
The source code for the Amazon ECS CLI is available on GitHub. We encourage you to
submit pull requests for changes that you would like to have included. However, Amazon Web
Services does not currently provide support for running modified copies of this software.

Topics

• Installing the Amazon ECS CLI (p. 199)

• Configuring the Amazon ECS CLI (p. 200)

• Amazon ECS CLI Tutorial (p. 201)

• ECS CLI Command Line Reference (p. 206)

Installing the Amazon ECS CLI
Follow these instructions to install the Amazon ECS CLI on your Mac OSX or Linux system.

Note
The Amazon ECS CLI is not available for Windows systems at this time.

To install the Amazon ECS CLI

1. Download the binary.

• For Mac OSX:

API Version 2014-11-13
199

https://docs.docker.com/compose/
https://github.com/aws/amazon-ecs-cli

Amazon EC2 Container Service Developer Guide
Configuring the Amazon ECS CLI

$ sudo curl -o /usr/local/bin/ecs-cli https://s3.amazonaws.com/amazon-
ecs-cli/ecs-cli-darwin-amd64-latest

• For Linux systems:

$ sudo curl -o /usr/local/bin/ecs-cli https://s3.amazonaws.com/amazon-
ecs-cli/ecs-cli-linux-amd64-latest

2. (Optional) Verify the downloaded binary with the MD5 sum provided.

• For Mac OSX: https://s3.amazonaws.com/amazon-ecs-cli/ecs-cli-darwin-amd64-latest.md5

• For Linux systems: https://s3.amazonaws.com/amazon-ecs-cli/ecs-cli-linux-amd64-latest.md5

3. Apply execute permissions to the binary.

$ sudo chmod +x /usr/local/bin/ecs-cli

4. Verify that the CLI is working properly.

$ ecs-cli --version
ecs-cli version 0.4.1 (e27df48)

After you have installed the CLI, proceed to Configuring the Amazon ECS CLI (p. 200).

Configuring the Amazon ECS CLI
The Amazon ECS CLI requires some basic configuration information before you can use it, such as
your AWS credentials, the AWS region in which to create your cluster, and the name of the Amazon
ECS cluster to use with the ecs-cli configure command. These settings are stored in the ~/.ecs/
config file.

AWS Credentials

The Amazon ECS CLI requires your AWS credentials to make calls to AWS APIs on your behalf (for
more information, see Managing Access Keys for your AWS Account in the Amazon Web Services
General Reference). You can configure your AWS credentials in several ways:

• You can set the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables.
When you run ecs-cli configure, the values of those variables are stored in the Amazon ECS CLI
configuration file.

• You can use a named profile from the ~/.aws/credentials file on your system, if you have
previously configured your AWS credentials there for another tool, such as the AWS CLI. You can
follow the Quick Configuration instructions in the AWS Command Line Interface User Guide to set
up a default profile if you have not already done so. You can then pass this named profile as --
profile default when you run the ecs-cli configure command.

• You can pass credentials directly on the command line with the --access-key and --secret-key
options.

To configure the Amazon ECS CLI

• Configure the CLI with the following command, substituting us-west-2 with your desired AWS
region, ecs-cli-demo with the name of an existing Amazon ECS cluster or a new cluster to use,
and the $AWS_ACCESS_KEY_ID and $AWS_SECRET_ACCESS_KEY environment variables with
your AWS credentials.

API Version 2014-11-13
200

https://s3.amazonaws.com/amazon-ecs-cli/ecs-cli-darwin-amd64-latest.md5
https://s3.amazonaws.com/amazon-ecs-cli/ecs-cli-linux-amd64-latest.md5
http://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration

Amazon EC2 Container Service Developer Guide
Amazon ECS CLI Tutorial

$ ecs-cli configure --region us-west-2 --access-key $AWS_ACCESS_KEY_ID --
secret-key $AWS_SECRET_ACCESS_KEY --cluster ecs-cli-demo
INFO[0000] Saved ECS CLI configuration for cluster (ecs-cli-demo)

After you have installed and configured the CLI, you can try the Amazon ECS CLI Tutorial (p. 201).
For more information, see the ECS CLI Command Line Reference (p. 206).

Amazon ECS CLI Tutorial
This simple tutorial shows a few of the different commands and capabilities of the Amazon ECS CLI.
Before you can start this tutorial, you must install and configure the Amazon ECS CLI. For more
information, see Installing the Amazon ECS CLI (p. 199).

Topics

• Step 1: Create your Cluster (p. 201)

• Step 2: Create a Compose File (p. 202)

• Step 3: Deploy the Compose File to a Cluster (p. 203)

• Step 4: View the Running Containers on a Cluster (p. 203)

• Step 5: Scale the Tasks on a Cluster (p. 204)

• Step 6: Create an ECS Service from a Compose File (p. 204)

• Step 7: Clean Up (p. 205)

Step 1: Create your Cluster
The first action you should take is to create a cluster of Amazon ECS container instances that you can
launch your containers on with the ecs-cli up command. There are many options that you can choose
to configure your cluster with this command, but most of them are optional. In this example, you create
a simple cluster of two t2.medium container instances that use the id_rsa key pair for SSH access
(substitute your own key pair here).

By default, the security group created for your container instances opens port 80 for inbound traffic.
You can use the --port option to specify a different port to open, or if you have more complicated
security group requirements, you can specify an existing security group to use with the --security-
group option.

$ ecs-cli up --keypair id_rsa --capability-iam --size 2 --instance-type
 t2.medium
INFO[0000] Created cluster cluster=ecs-cli-demo
INFO[0000] Waiting for your cluster resources to be created
INFO[0001] Cloudformation stack status
 stackStatus=CREATE_IN_PROGRESS
INFO[0061] Cloudformation stack status
 stackStatus=CREATE_IN_PROGRESS
INFO[0121] Cloudformation stack status
 stackStatus=CREATE_IN_PROGRESS
INFO[0182] Cloudformation stack status
 stackStatus=CREATE_IN_PROGRESS

This command may take a few minutes to complete as your resources are created. Now that you have
a cluster, you can create a Docker compose file and deploy it.

API Version 2014-11-13
201

Amazon EC2 Container Service Developer Guide
Step 2: Create a Compose File

Step 2: Create a Compose File
For this step, create a simple Docker compose file that creates a WordPress application consisting of a
web server and a MySQL database. At this time, the Amazon ECS CLI supports Docker compose file
syntax versions 1 and 2.

The following parameters are supported in compose files for the Amazon ECS CLI:

• command

• cpu_shares

• dns

• dns_search

• entrypoint

• environment: If an environment variable value is not specified in the compose file, but it exists in
the shell environment, the shell environment variable value is passed to the task definition that is
created for any associated tasks or services.

Important
We do not recommend using plain text environment variables for sensitive information, such
as credential data.

• env_file

Important
We do not recommend using plain text environment variables for sensitive information, such
as credential data.

• extra_hosts

• hostname

• image

• labels

• links

• log_driver

• log_opt

• mem_limit (in bytes)

• ports

• privileged

• read_only

• security_opt

• ulimits

• user

• volumes

• volumes_from

• working_dir

Important
The build directive is not supported at this time.

For more information about Docker compose file syntax, see the Compose file reference in the Docker
documentation.

Here is the compose file, which you can call hello-world.yml. Each container has 100 CPU units
and 500 MiB of memory. The wordpress container exposes port 80 to the container instance for
inbound traffic to the web server.

API Version 2014-11-13
202

https://docs.docker.com/compose/compose-file/#versioning
https://docs.docker.com/compose/compose-file/#versioning
https://docs.docker.com/compose/compose-file/#/compose-file-reference

Amazon EC2 Container Service Developer Guide
Step 3: Deploy the Compose File to a Cluster

version: '2'
services:
 wordpress:
 image: wordpress
 cpu_shares: 100
 mem_limit: 524288000
 ports:
 - "80:80"
 links:
 - mysql
 mysql:
 image: mysql
 cpu_shares: 100
 mem_limit: 524288000
 environment:
 MYSQL_ROOT_PASSWORD: password

Step 3: Deploy the Compose File to a Cluster
After you create the compose file, you can deploy it to your cluster with the ecs-cli compose up
command. By default, the command looks for a file called docker-compose.yml in the current
directory, but you can specify a different file with the --file option. By default, the resources created
by this command have the current directory in the title, but you can override that with the --project-
name project_name option.

$ ecs-cli compose --file hello-world.yml up
INFO[0000] Using ECS task definition
 TaskDefinition=ecscompose-docker-compose:2
INFO[0000] Starting container... container=340488e0-
a307-4322-b41c-99f1b70e97f9/wordpress
INFO[0000] Starting container... container=340488e0-
a307-4322-b41c-99f1b70e97f9/mysql
INFO[0000] Describe ECS container status container=340488e0-
a307-4322-b41c-99f1b70e97f9/wordpress desiredStatus=RUNNING
 lastStatus=PENDING taskDefinition=ecscompose-docker-compose:2
INFO[0000] Describe ECS container status container=340488e0-
a307-4322-b41c-99f1b70e97f9/mysql desiredStatus=RUNNING lastStatus=PENDING
 taskDefinition=ecscompose-docker-compose:2
INFO[0054] Started container... container=340488e0-
a307-4322-b41c-99f1b70e97f9/wordpress desiredStatus=RUNNING
 lastStatus=RUNNING taskDefinition=ecscompose-docker-compose:2
INFO[0054] Started container... container=340488e0-
a307-4322-b41c-99f1b70e97f9/mysql desiredStatus=RUNNING lastStatus=RUNNING
 taskDefinition=ecscompose-docker-compose:2

Step 4: View the Running Containers on a Cluster
After you deploy the compose file, you can view the containers that are running on your cluster with the
ecs-cli ps command.

$ ecs-cli ps
Name State Ports
 TaskDefinition
340488e0-a307-4322-b41c-99f1b70e97f9/wordpress RUNNING 52.89.204.137:80-
>80/tcp ecscompose-docker-compose:2

API Version 2014-11-13
203

Amazon EC2 Container Service Developer Guide
Step 5: Scale the Tasks on a Cluster

340488e0-a307-4322-b41c-99f1b70e97f9/mysql RUNNING
 ecscompose-docker-compose:2

In the above example, you can see the wordpress and mysql containers from your compose file, and
also the IP address and port of the web server. If you point a web browser to that address, you should
see the WordPress installation wizard.

Step 5: Scale the Tasks on a Cluster
You can scale your task count up so you could have more instances of your application with the ecs-cli
compose scale command. In this example, you can increase the count of your application to two.

$ ecs-cli compose --file hello-world.yml scale 2

Now you should see two more containers in your cluster.

$ ecs-cli ps
Name State Ports
 TaskDefinition
340488e0-a307-4322-b41c-99f1b70e97f9/wordpress RUNNING 52.89.204.137:80-
>80/tcp ecscompose-docker-compose:2
340488e0-a307-4322-b41c-99f1b70e97f9/mysql RUNNING
 ecscompose-docker-compose:2
f80d82d5-3724-4f2f-86b1-5ee5891ce995/mysql RUNNING
 ecscompose-docker-compose:2
f80d82d5-3724-4f2f-86b1-5ee5891ce995/wordpress RUNNING 52.89.205.89:80->80/
tcp ecscompose-docker-compose:2

Step 6: Create an ECS Service from a Compose
File
Now that you know that your containers work properly, you can make sure that they are replaced
if they fail or stop. You can do this by creating a service from your compose file with the ecs-cli
compose service up command. This command creates a task definition from the latest compose file
(if it does not already exist) and creates an ECS service with it, with a desired count of 1.

Before starting your service, stop the containers from your compose file with the ecs-cli compose
down command so that you have an empty cluster to work with.

$ ecs-cli compose --file hello-world.yml down
INFO[0000] Stopping container... container=340488e0-
a307-4322-b41c-99f1b70e97f9/wordpress
INFO[0000] Stopping container... container=340488e0-
a307-4322-b41c-99f1b70e97f9/mysql
INFO[0000] Stopping container...
 container=f80d82d5-3724-4f2f-86b1-5ee5891ce995/mysql
INFO[0000] Stopping container...
 container=f80d82d5-3724-4f2f-86b1-5ee5891ce995/wordpress
INFO[0000] Describe ECS container status
 container=f80d82d5-3724-4f2f-86b1-5ee5891ce995/mysql desiredStatus=STOPPED
 lastStatus=RUNNING taskDefinition=ecscompose-docker-compose:2
INFO[0000] Describe ECS container status
 container=f80d82d5-3724-4f2f-86b1-5ee5891ce995/wordpress
 desiredStatus=STOPPED lastStatus=RUNNING taskDefinition=ecscompose-docker-
compose:2

API Version 2014-11-13
204

Amazon EC2 Container Service Developer Guide
Step 7: Clean Up

INFO[0000] Describe ECS container status container=340488e0-
a307-4322-b41c-99f1b70e97f9/wordpress desiredStatus=STOPPED
 lastStatus=RUNNING taskDefinition=ecscompose-docker-compose:2
INFO[0000] Describe ECS container status container=340488e0-
a307-4322-b41c-99f1b70e97f9/mysql desiredStatus=STOPPED lastStatus=RUNNING
 taskDefinition=ecscompose-docker-compose:2
INFO[0006] Stopped container... container=340488e0-
a307-4322-b41c-99f1b70e97f9/wordpress desiredStatus=STOPPED
 lastStatus=STOPPED taskDefinition=ecscompose-docker-compose:2
INFO[0006] Stopped container... container=340488e0-
a307-4322-b41c-99f1b70e97f9/mysql desiredStatus=STOPPED lastStatus=STOPPED
 taskDefinition=ecscompose-docker-compose:2
INFO[0006] Stopped container...
 container=f80d82d5-3724-4f2f-86b1-5ee5891ce995/mysql desiredStatus=STOPPED
 lastStatus=STOPPED taskDefinition=ecscompose-docker-compose:2
INFO[0006] Stopped container...
 container=f80d82d5-3724-4f2f-86b1-5ee5891ce995/wordpress
 desiredStatus=STOPPED lastStatus=STOPPED taskDefinition=ecscompose-docker-
compose:2

Now you can create your service.

$ ecs-cli compose --file hello-world.yml service up
INFO[0000] Using ECS task definition
 TaskDefinition=ecscompose-docker-compose:2
INFO[0000] Created an ECS Service
 serviceName=ecscompose-service-docker-compose taskDefinition=ecscompose-
docker-compose:2
INFO[0000] Updated ECS service successfully desiredCount=1
 serviceName=ecscompose-service-docker-compose
INFO[0000] Describe ECS Service status desiredCount=1
 runningCount=0 serviceName=ecscompose-service-docker-compose
INFO[0015] ECS Service has reached a stable state desiredCount=1
 runningCount=1 serviceName=ecscompose-service-docker-compose

Step 7: Clean Up
When you are done with this tutorial, you should clean up your resources so they do not incur any
more charges. First, delete the service so that it stops the existing containers and does not try to run
any more tasks.

$ ecs-cli compose --file hello-world.yml service rm
INFO[0000] Updated ECS service successfully desiredCount=0
 serviceName=ecscompose-service-docker-compose
INFO[0000] Describe ECS Service status desiredCount=0
 runningCount=1 serviceName=ecscompose-service-docker-compose
INFO[0015] ECS Service has reached a stable state desiredCount=0
 runningCount=0 serviceName=ecscompose-service-docker-compose
INFO[0015] Deleted ECS service service=ecscompose-
service-docker-compose
INFO[0015] ECS Service has reached a stable state desiredCount=0
 runningCount=0 serviceName=ecscompose-service-docker-compose

Now, take down your cluster, which cleans up the resources that you created earlier with ecs-cli up.

$ ecs-cli down --force

API Version 2014-11-13
205

Amazon EC2 Container Service Developer Guide
ECS CLI Command Line Reference

INFO[0000] Waiting for your cluster resources to be deleted
INFO[0000] Cloudformation stack status
 stackStatus=DELETE_IN_PROGRESS
INFO[0061] Cloudformation stack status
 stackStatus=DELETE_IN_PROGRESS
INFO[0121] Deleted cluster cluster=ecs-cli-demo

ECS CLI Command Line Reference
The following commands are available in the Amazon ECS CLI. Help text for each command is
available by appending the --help option to the final command argument; for example, help text for
ecs-cli compose service up is displayed with the following command:

$ ecs-cli compose service up --help

Available Commands

• ecs-cli (p. 206)

• ecs-cli configure (p. 207)

• ecs-cli up (p. 210)

• ecs-cli down (p. 213)

• ecs-cli scale (p. 214)

• ecs-cli ps (p. 215)

• ecs-cli license (p. 216)

• ecs-cli compose (p. 216)

• ecs-cli compose service (p. 219)

ecs-cli

Description

The Amazon EC2 Container Service (Amazon ECS) command line interface (CLI) provides high-level
commands to simplify creating, updating, and monitoring clusters and tasks from a local development
environment. The Amazon ECS CLI supports Docker Compose, a popular open-source tool for
defining and running multi-container applications.

For a quick walkthrough of the ECS CLI, see the Amazon ECS CLI Tutorial (p. 201).

Help text is available for each individual subcommand with ecs-cli subcommand --help.

Syntax

ecs-cli [--version] [subcommand] [--help]

Options

Name Description

--version, -v Prints the version information for the Amazon ECS CLI.

Required: No

API Version 2014-11-13
206

https://docs.docker.com/compose/

Amazon EC2 Container Service Developer Guide
ecs-cli configure

Name Description

--help, -h Show the help text for the specified command.

Required: No

Available Subcommands

The ecs-cli command supports the following subcommands:

configure
Configures your AWS credentials, the AWS region to use, and the Amazon ECS cluster name to
use with the Amazon ECS CLI. For more information, see ecs-cli configure (p. 207).

up
Creates the ECS cluster (if it does not already exist) and the AWS resources required to set up the
cluster. For more information, see ecs-cli up (p. 210).

down
Deletes the CloudFormation stack that was created by ecs-cli up and the associated resources.
For more information, see ecs-cli down (p. 213).

scale
Modifies the number of container instances in an ECS cluster. For more information, see ecs-cli
scale (p. 214).

ps
Lists all of the running containers in an ECS cluster. For more information, see ecs-cli
ps (p. 215).

license
Prints the LICENSE files for the ECS CLI and its dependencies. For more information, see ecs-cli
license (p. 216).

compose
Executes docker-compose–style commands on an ECS cluster. For more information, see ecs-cli
compose (p. 216).

help
Shows the help text for the specified command.

ecs-cli configure

Description

Configures your AWS credentials, the AWS region to use, resource creation prefixes, and the ECS
cluster name to use with the Amazon ECS CLI. The resulting configuration is stored in the ~/.ecs/
config file.

Each time you run the ecs-cli configure command, the configuration values in ~/.ecs/config are
replaced with the values from the latest command (and if existing configuration parameters are not
specified with their associated option flags or environment variables, they are removed or replaced with
the default values).

Syntax

ecs-cli configure [--region region] [--access-key aws_access_key_id] [--
secret-key aws_secret_access_key] [--profile profile_name] --cluster

API Version 2014-11-13
207

Amazon EC2 Container Service Developer Guide
ecs-cli configure

cluster_name [--compose-project-name-prefix prefix] [--compose-service-name-
prefix prefix] [--cfn-stack-name-prefix prefix] [--help]

Options

Name Description

--region, -r region Specifies the AWS region to use. If the AWS_REGION
environment variable is set when ecs-cli configure is run,
then the AWS region is set to the value of that environment
variable.

Type: String

Required: No

--access-key
aws_access_key_id

Specifies the AWS access key to use. If the
AWS_ACCESS_KEY_ID environment variable is set when
ecs-cli configure is run, then the AWS access key ID is
set to the value of that environment variable.

Type: String

Required: No

--secret-key
aws_secret_access_key

Specifies the AWS secret key to use. If the
AWS_SECRET_ACCESS_KEY environment variable is set
when ecs-cli configure is run, then the AWS secret access
key is set to the value of that environment variable.

Type: String

Required: No

--profile, -p profile_name Specifies your AWS credentials with an existing named
profile from ~/.aws/credentials. If the AWS_PROFILE
environment variable is set when ecs-cli configure is
run, then the AWS named profile is set to the value of that
environment variable.

Type: String

Required: No

--cluster, -c cluster_name Specifies the ECS cluster name to use. If the cluster does
not exist, it is created when you try to add resources to it
with the ecs-cli up command.

Type: String

Required: Yes

--compose-project-name-prefix
prefix

Specifies the prefix to add to an ECS task definition that is
registered from a compose file. You can specify an empty
string (--compose-project-name-prefix "") with this
option to omit the default prefix.

Important
This prefix is used to name and later manage
resources created by the ECS CLI. Resources
that are created with a prefix are only addressable

API Version 2014-11-13
208

Amazon EC2 Container Service Developer Guide
ecs-cli configure

Name Description

from the ECS CLI if the configured prefix matches
the prefix that was used when the resource was
created. Before you change the prefix value,
you should consider the effects on any active
resources.

Type: String

Default: ecscompose-

Required: No

--compose-service-name-prefix
prefix

Specifies the prefix to add to an ECS service that is created
from a compose file. You can specify an empty string (--
compose-service-name-prefix "") with this option to
omit the default prefix.

Important
This prefix is used to name and later manage
resources created by the ECS CLI. Resources
that are created with a prefix are only addressable
from the ECS CLI if the configured prefix matches
the prefix that was used when the resource was
created. Before you change the prefix value,
you should consider the effects on any active
resources.

Type: String

Default: ecscompose-service-

Required: No

--cfn-stack-name-prefix
prefix

Specifies the prefix to add to the AWS CloudFormation
stack that is created on ecs-cli up. You can specify an
empty string (--cfn-stack-name-prefix "") with this
option to omit the default prefix.

Important
This prefix is used to name and later manage
resources created by the ECS CLI. Resources
that are created with a prefix are only addressable
from the ECS CLI if the configured prefix matches
the prefix that was used when the resource was
created. Before you change the prefix value,
you should consider the effects on any active
resources.

Type: String

Default: amazon-ecs-cli-setup-

Required: No

--help, -h Show the help text for the specified command.

Required: No

API Version 2014-11-13
209

Amazon EC2 Container Service Developer Guide
ecs-cli up

Examples

Example

This example configures the ECS CLI to create and/or use a cluster called ecs-cli in the us-west-2
region.

$ ecs-cli configure --region us-west-2 --access-key $AWS_ACCESS_KEY_ID --
secret-key $AWS_SECRET_ACCESS_KEY --cluster ecs-cli
INFO[0000] Saved ECS CLI configuration for cluster (ecs-cli)

Example

This example configures the ECS CLI to create and/or use a cluster called ecs-cli in the us-west-2
region and omit the default ECS CLI prefixes on future resource creation.

Note
Any existing resources, such as task definitions, services, or AWS CloudFormation stacks,
that were created with the default prefixes will not be addressable from the ECS CLI until the
configured prefix matches the prefix that was used when the resource was created.

$ ecs-cli configure --region us-west-2 --access-key $AWS_ACCESS_KEY_ID --
secret-key $AWS_SECRET_ACCESS_KEY --cluster ecs-cli --compose-project-name-
prefix "" --compose-service-name-prefix "" --cfn-stack-name-prefix ""
INFO[0000] Saved ECS CLI configuration for cluster (ecs-cli)

ecs-cli up

Description

Create the ECS cluster (if it does not already exist) and the AWS resources required to set up the
cluster.

This command creates a new AWS CloudFormation stack called amazon-ecs-cli-
setup-cluster_name; you can view the progress of the stack creation in the AWS Management
Console.

Syntax

ecs-cli up --keypair keypair_name --capability-iam [--size n] [--azs
availability_zone_1,availability_zone_2] [--security-group security_group_id]
[--cidr ip_range] [--port port_number] [--subnets subnet_1,subnet_2] [--vpc
vpc_id] [--instance-type instance_type] [--image-id ami_id] [--help]

Options

Name Description

--verbose, --debug Provide more verbose output for debugging purposes.

Required: No

--keypair keypair_name Specifies the name of an existing Amazon EC2 key pair to
enable SSH access to the EC2 instances in your cluster.

API Version 2014-11-13
210

Amazon EC2 Container Service Developer Guide
ecs-cli up

Name Description

For help creating a key pair, see Setting Up with Amazon
EC2 in the Amazon EC2 User Guide for Linux Instances.

Type: String

Required: Yes

--capability-iam Acknowledges that this command may create IAM
resources.

Required: Yes

--size n Specifies the number of instances to launch and register to
the cluster.

Type: Integer

Default: 1

Required: No

--azs
availability_zone_1,availability_zone_2

Specifies a comma-separated list of 2 VPC Availability
Zones in which to create subnets (these zones must have
the available status). This option is recommended if you
do not specify a VPC ID with the --vpc option.

Warning
Leaving this option blank can result in failure to
launch container instances if an unavailable zone
is chosen at random.

Type: String

Required: No

--security-group
security_group_id

Specifies an existing security group to associate with your
container instances. If you do not specify a security group
here, then a new one is created.

For more information, see Security Groups in the Amazon
EC2 User Guide for Linux Instances.

Required: No

--cidr ip_range Specifies a CIDR/IP range for the security group to use for
container instances in your cluster.

Note
This parameter is ignored if an existing security
group is specified with the --security-group
option.

Type: CIDR/IP range

Default: 0.0.0.0/0

Required: No

API Version 2014-11-13
211

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html

Amazon EC2 Container Service Developer Guide
ecs-cli up

Name Description

--port port_number Specifies a port to open on the security group to use for
container instances in your cluster.

Note
This parameter is ignored if an existing security
group is specified with the --security-group
option.

Type: Integer

Default: 80

Required: No

--subnets subnet_1,subnet_2 Specifies a comma-separated list of existing VPC Subnet
IDs in which to launch your container instances.

Type: String

Required: This option is required if you specify a VPC with
the --vpc option.

--vpc vpc_id Specifies the ID of an existing VPC in which to launch your
container instances. If you specify a VPC ID, you must
specify a list of existing subnets in that VPC with the --
subnets option. If you do not specify a VPC ID, a new
VPC is created with two subnets.

Type: String

Required: No

--instance-type instance_type Specifies the EC2 instance type for your container
instances.

For more information on EC2 instance types, see Amazon
EC2 Instances.

Type: String

Default: t2.micro

Required: No

--image-id ami_id Specifies the EC2 AMI ID to use for your container
instances.

Type: String

Default: The latest Amazon ECS-optimized AMI for the
specified region.

Required: No

--help, -h Show the help text for the specified command.

Required: No

API Version 2014-11-13
212

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/

Amazon EC2 Container Service Developer Guide
ecs-cli down

Examples

Example

This example brings up a cluster of 4 c4.large instances and configures them to use the EC2 keypair
called id_rsa.

$ ecs-cli up --keypair id_rsa --capability-iam --size 4 --instance-type
 c4.large
INFO[0000] Created cluster cluster=ecs-cli
INFO[0000] Waiting for your cluster resources to be created
INFO[0001] Cloudformation stack status
 stackStatus=CREATE_IN_PROGRESS
INFO[0061] Cloudformation stack status
 stackStatus=CREATE_IN_PROGRESS
INFO[0121] Cloudformation stack status
 stackStatus=CREATE_IN_PROGRESS
INFO[0181] Cloudformation stack status
 stackStatus=CREATE_IN_PROGRESS

ecs-cli down

Description

Deletes the CloudFormation stack that was created by ecs-cli up and the associated resources. The
--force option is required.

Note
The ECS CLI can only manage tasks, services, and container instances that were created
with the ECS CLI. To manage tasks, services, and container instances that were not created
by the ECS CLI, use the AWS Command Line Interface or the AWS Management Console.

The ecs-cli down command attempts to delete the cluster specified in ~/.ecs/config. However,
if there are any active services (even with a desired count of 0) or registered container instances in
your cluster that were not created by ecs-cli up (for example, if you used an existing ECS cluster with
registered container instances, such as the default cluster), the cluster is not deleted and the services
and pre-existing container instances remain active.

If you have remaining services or container instances in your cluster that you would like to remove, you
can follow the procedures in Cleaning Up your Amazon ECS Resources (p. 24) to remove them and
then delete your cluster.

Syntax

ecs-cli down --force [--help]

Options

Name Description

--force, -f Acknowledges that this command permanently deletes
resources.

Required: Yes

API Version 2014-11-13
213

Amazon EC2 Container Service Developer Guide
ecs-cli scale

Name Description

--help, -h Show the help text for the specified command.

Required: No

Examples

Example

This example brings up a cluster of 4 c4.large instances and configures them to use the EC2 keypair
called id_rsa.

$ ecs-cli down --force
INFO[0001] Waiting for your cluster resources to be deleted
INFO[0001] Cloudformation stack status
 stackStatus=DELETE_IN_PROGRESS
INFO[0062] Cloudformation stack status
 stackStatus=DELETE_IN_PROGRESS
INFO[0123] Cloudformation stack status
 stackStatus=DELETE_IN_PROGRESS
INFO[0154] Deleted cluster

ecs-cli scale

Description
Modifies the number of container instances in your cluster. This command changes the desired and
maximum instance count in the Auto Scaling group created by the ecs-cli up command. You can use
this command to scale up (increase the number of instances) or scale down (decrease the number of
instances) your cluster.

Note
The ECS CLI can only manage tasks, services, and container instances that were created
with the ECS CLI. To manage tasks, services, and container instances that were not created
by the ECS CLI, use the AWS Command Line Interface or the AWS Management Console.

Syntax
ecs-cli scale --capability-iam --size n [--help]

Options

Name Description

--capability-iam Acknowledges that this command may create IAM
resources.

Required: Yes

--size n Specifies the number of instances to maintain in your
cluster.

Type: Integer

Required: Yes

API Version 2014-11-13
214

Amazon EC2 Container Service Developer Guide
ecs-cli ps

Name Description

--help, -h Show the help text for the specified command.

Required: No

Examples

Example

This example scales the current cluster to 2 container instances.

$ ecs-cli scale --capability-iam --size 2
INFO[0001] Waiting for your cluster resources to be updated
INFO[0001] Cloudformation stack status
 stackStatus=UPDATE_IN_PROGRESS

ecs-cli ps

Description

Lists all of the running containers in your ECS cluster.

Syntax

ecs-cli ps [--help]

Options

Name Description

--help, -h Show the help text for the specified command.

Required: No

Examples

Example

This example shows the containers that are running in the cluster.

$ ecs-cli ps
Name State Ports
 TaskDefinition
595deba7-16a1-4aaf-9b27-e152eba03ccc/wordpress RUNNING 52.33.62.24:80->80/
tcp ecscompose-hello-world:3
595deba7-16a1-4aaf-9b27-e152eba03ccc/mysql RUNNING
 ecscompose-hello-world:3
7fc0a2a4-9202-47d2-8b06-4463286b63de/mysql RUNNING
 ecscompose-hello-world:3
7fc0a2a4-9202-47d2-8b06-4463286b63de/wordpress RUNNING 52.32.232.166:80-
>80/tcp ecscompose-hello-world:3

API Version 2014-11-13
215

Amazon EC2 Container Service Developer Guide
ecs-cli license

ecs-cli license

Description
Prints the LICENSE files for the ECS CLI and its dependencies.

Syntax
ecs-cli license [--help]

Options

Name Description

--help, -h Show the help text for the specified command.

Required: No

Examples

Example

This example prints the license files.

$ ecs-cli license
Copyright 2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You may not
 use this file except in compliance with the
License. A copy of the License is located at

 http://aws.amazon.com/apache2.0/

or in the "license" file accompanying this file. This file is distributed on
 an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
 specific language governing permissions
and limitations under the License.
...

ecs-cli compose

Description
Manage Amazon ECS tasks with docker-compose-style commands on an ECS cluster.

Note
If you want to create Amazon ECS services with the ECS CLI, see ecs-cli compose
service (p. 219).

The ecs-cli compose command works with a Docker compose file to create task definitions and
manage tasks. At this time, the latest version of the Amazon ECS CLI supports Docker compose file
syntax versions 1 and 2. By default, the command looks for a compose file in the current directory,
called docker-compose.yml; however, you can specify a different file name or path to a compose
file with the --file option. This is especially useful for managing tasks and services from multiple
compose files at a time with the ECS CLI.

API Version 2014-11-13
216

https://docs.docker.com/compose/compose-file/#versioning
https://docs.docker.com/compose/compose-file/#versioning

Amazon EC2 Container Service Developer Guide
ecs-cli compose

The ecs-cli compose command uses a project name with the task definitions and services it
creates. When the CLI creates a task definition from a compose file, the task definition is called
ecscompose-project-name. When the CLI creates a service from a compose file, the service
is called ecscompose-service-project-name. By default, the project name is the name of the
current working directory. However, you can specify your own project name with the --project-name
option.

Note
The ECS CLI can only manage tasks, services, and container instances that were created
with the ECS CLI. To manage tasks, services, and container instances that were not created
by the ECS CLI, use the AWS Command Line Interface or the AWS Management Console.

The following parameters are supported in compose files for the Amazon ECS CLI:

• command

• cpu_shares

• dns

• dns_search

• entrypoint

• environment: If an environment variable value is not specified in the compose file, but it exists in
the shell environment, the shell environment variable value is passed to the task definition that is
created for any associated tasks or services.

Important
We do not recommend using plain text environment variables for sensitive information, such
as credential data.

• env_file

Important
We do not recommend using plain text environment variables for sensitive information, such
as credential data.

• extra_hosts

• hostname

• image

• labels

• links

• log_driver

• log_opt

• mem_limit (in bytes)

• ports

• privileged

• read_only

• security_opt

• ulimits

• user

• volumes

• volumes_from

• working_dir

Important
The build directive is not supported at this time.

For more information about Docker compose file syntax, see the Compose file reference in the Docker
documentation.

API Version 2014-11-13
217

https://docs.docker.com/compose/compose-file/#/compose-file-reference

Amazon EC2 Container Service Developer Guide
ecs-cli compose

Syntax

ecs-cli compose [--verbose] [--file compose-file] [--project-name project-
name] [subcommand] [arguments] [--help]

Options

Name Description

--verbose, --debug Increase the verbosity of command output to aid in
diagnostics.

Required: No

--file, -f compose-file Specifies the Docker compose file to use. At this time,
the latest version of the Amazon ECS CLI supports
Docker compose file syntax versions 1 and 2. If the
COMPOSE_FILE environment variable is set when ecs-cli
compose is run, then the Docker compose file is set to the
value of that environment variable.

Type: String

Default: ./docker-compose.yml

Required: No

--project-name, -p project-
name

Specifies the project name to use. If the
COMPOSE_PROJECT_NAME environment variable is set
when ecs-cli compose is run, then the project name is set
to the value of that environment variable.

Type: String

Default: The current directory name.

Required: No

--help, -h Show the help text for the specified command.

Required: No

Available Subcommands

The ecs-cli compose command supports the following subcommands:

create
Creates an ECS task definition from your compose file.

start
Starts a single task from the task definition created from your compose file.

up
Creates an ECS task definition from your compose file (if it does not already exist) and runs one
instance of that task on your cluster (a combination of create and start)

ps
Lists all the containers in your cluster that were started by the compose project.

scale n
Scales the number of running tasks to the specified count.

API Version 2014-11-13
218

https://docs.docker.com/compose/compose-file/#versioning

Amazon EC2 Container Service Developer Guide
ecs-cli compose service

run [containerName] [command] ...
Starts all containers overriding commands with the supplied one-off commands for the containers.

stop
Stops all the running tasks created by the compose project.

service [subcommand]
Creates an ECS service from your compose file. For more information, see ecs-cli compose
service (p. 219).

help
Shows the help text for the specified command.

Examples

Example 1

This example creates a task definition with the project name hello-world from the hello-
world.yml compose file.

$ ecs-cli compose --project-name hello-world --file hello-world.yml create
INFO[0000] Using ECS task definition
 TaskDefinition=ecscompose-hello-world:5

ecs-cli compose service

Description

Manage Amazon ECS services with docker-compose-style commands on an ECS cluster.

Note
If you want run tasks Amazon ECS with the ECS CLI instead of creating services, see ecs-cli
compose (p. 216).

The ecs-cli compose service command works with a Docker compose file to create task definitions
and manage services. At this time, the Amazon ECS CLI supports Docker compose file syntax
versions 1 and 2. By default, the command looks for a compose file in the current directory, called
docker-compose.yml; however, you can specify a different file name or path to a compose file with
the --file option. This is especially useful for managing tasks and services from multiple compose
files at a time with the ECS CLI.

The ecs-cli compose service command uses a project name with the task definitions and services
it creates. When the CLI creates a task definition from a compose file, the task definition is called
ecscompose-project-name. When the CLI creates a service from a compose file, the service
is called ecscompose-service-project-name. By default, the project name is the name of the
current working directory. However, you can specify your own project name with the --project-name
option.

Note
The ECS CLI can only manage tasks, services, and container instances that were created
with the ECS CLI. To manage tasks, services, and container instances that were not created
by the ECS CLI, use the AWS Command Line Interface or the AWS Management Console.

The following parameters are supported in compose files for the Amazon ECS CLI:

• command

• cpu_shares

• dns

API Version 2014-11-13
219

https://docs.docker.com/compose/compose-file/#versioning

Amazon EC2 Container Service Developer Guide
ecs-cli compose service

• dns_search

• entrypoint

• environment: If an environment variable value is not specified in the compose file, but it exists in
the shell environment, the shell environment variable value is passed to the task definition that is
created for any associated tasks or services.

Important
We do not recommend using plain text environment variables for sensitive information, such
as credential data.

• env_file

Important
We do not recommend using plain text environment variables for sensitive information, such
as credential data.

• extra_hosts

• hostname

• image

• labels

• links

• log_driver

• log_opt

• mem_limit (in bytes)

• ports

• privileged

• read_only

• security_opt

• ulimits

• user

• volumes

• volumes_from

• working_dir

Important
The build directive is not supported at this time.

For more information about Docker compose file syntax, see the Compose file reference in the Docker
documentation.

Syntax

ecs-cli compose [--verbose] [--file compose-file] [--project-name project-
name] service [subcommand] [arguments] [--help]

Options

Name Description

--verbose, --debug Increase the verbosity of command output to aid in
diagnostics.

Required: No

API Version 2014-11-13
220

https://docs.docker.com/compose/compose-file/#/compose-file-reference

Amazon EC2 Container Service Developer Guide
ecs-cli compose service

Name Description

--file, -f compose-file Specifies the Docker compose file to use. At this time,
the latest version of the Amazon ECS CLI supports
Docker compose file syntax versions 1 and 2. If the
COMPOSE_FILE environment variable is set when ecs-cli
compose is run, then the Docker compose file is set to the
value of that environment variable.

Type: String

Default: ./docker-compose.yml

Required: No

--project-name, -p project-
name

Specifies the project name to use. If the
COMPOSE_PROJECT_NAME environment variable is set
when ecs-cli compose is run, then the project name is set
to the value of that environment variable.

Type: String

Default: The current directory name.

Required: No

--help, -h Show the help text for the specified command.

Required: No

Available Subcommands

The ecs-cli compose service command supports the following subcommands and arguments:

create [--deployment-max-percent n] [--deployment-min-healthy-percent n]
Creates an ECS service from your compose file. The service is created with a desired count of 0,
so no containers are started by this command.

The --deployment-max-percent option specifies the upper limit (as a percentage of the
service's desiredCount) of the number of running tasks that can be running in a service
during a deployment (the default value is 200). The --deployment-min-healthy-
percent option specifies the lower limit (as a percentage of the service's desiredCount)
of the number of running tasks that must remain running and healthy in a service during a
deployment (the default value is 100). For more information, see maximumPercent (p. 123) and
minimumHealthyPercent (p. 123).

start
Starts one copy of each of the containers on the created ECS service. This command updates the
desired count of the service to 1.

up [--deployment-max-percent n] [--deployment-min-healthy-percent n]
Creates an ECS service from your compose file (if it does not already exist) and runs one instance
of that task on your cluster (a combination of create and start). This command updates the
desired count of the service to 1.

The --deployment-max-percent option specifies the upper limit (as a percentage of the
service's desiredCount) of the number of running tasks that can be running in a service
during a deployment (the default value is 200). The --deployment-min-healthy-
percent option specifies the lower limit (as a percentage of the service's desiredCount)
of the number of running tasks that must remain running and healthy in a service during a

API Version 2014-11-13
221

https://docs.docker.com/compose/compose-file/#versioning

Amazon EC2 Container Service Developer Guide
ecs-cli compose service

deployment (the default value is 100). For more information, see maximumPercent (p. 123) and
minimumHealthyPercent (p. 123).

ps
Lists all the containers in your cluster that belong to the service created with the compose project.

scale [--deployment-max-percent n] [--deployment-min-healthy-percent n] n
Scales the desired count of the service to the specified count.

The --deployment-max-percent option specifies the upper limit (as a percentage of the
service's desiredCount) of the number of running tasks that can be running in a service
during a deployment (the default value is 200). The --deployment-min-healthy-
percent option specifies the lower limit (as a percentage of the service's desiredCount)
of the number of running tasks that must remain running and healthy in a service during a
deployment (the default value is 100). For more information, see maximumPercent (p. 123) and
minimumHealthyPercent (p. 123).

stop
Stops the running tasks that belong to the service created with the compose project. This
command updates the desired count of the service to 0.

rm
Updates the desired count of the service to 0 and then deletes the service.

help
Shows the help text for the specified command.

Examples

Example 1

This example brings up an Amazon ECS service with the project name hello-world from the
hello-world.yml compose file.

$ ecs-cli compose --project-name hello-world --file hello-world.yml service
 up
INFO[0001] Using ECS task definition
 TaskDefinition=ecscompose-hello-world:3
INFO[0001] Created an ECS Service
 serviceName=ecscompose-service-hello-world taskDefinition=ecscompose-hello-
world:3
INFO[0002] Updated ECS service successfully desiredCount=1
 serviceName=ecscompose-service-hello-world
INFO[0002] Describe ECS Service status desiredCount=1
 runningCount=0 serviceName=ecscompose-service-hello-world
INFO[0033] Describe ECS Service status desiredCount=1
 runningCount=0 serviceName=ecscompose-service-hello-world
INFO[0063] Describe ECS Service status desiredCount=1
 runningCount=0 serviceName=ecscompose-service-hello-world
INFO[0093] Describe ECS Service status desiredCount=1
 runningCount=0 serviceName=ecscompose-service-hello-world
INFO[0108] ECS Service has reached a stable state desiredCount=1
 runningCount=1 serviceName=ecscompose-service-hello-world

Example 2

This example scales the service created by the hello-world project to a desired count of 2.

$ ecs-cli compose --project-name hello-world --file hello-world.yml service
 scale 2

API Version 2014-11-13
222

Amazon EC2 Container Service Developer Guide
ecs-cli compose service

INFO[0001] Updated ECS service successfully desiredCount=2
 serviceName=ecscompose-service-hello-world
INFO[0001] Describe ECS Service status desiredCount=2
 runningCount=1 serviceName=ecscompose-service-hello-world
INFO[0032] Describe ECS Service status desiredCount=2
 runningCount=1 serviceName=ecscompose-service-hello-world
INFO[0063] ECS Service has reached a stable state desiredCount=2
 runningCount=2 serviceName=ecscompose-service-hello-world

Example 3

This example scales the service created by the hello-world project to a desired count of 0 and then
deletes the service.

$ ecs-cli compose --project-name hello-world --file hello-world.yml service
 rm
INFO[0000] Updated ECS service successfully desiredCount=0
 serviceName=ecscompose-service-hello-world
INFO[0000] Describe ECS Service status desiredCount=0
 runningCount=2 serviceName=ecscompose-service-hello-world
INFO[0016] ECS Service has reached a stable state desiredCount=0
 runningCount=0 serviceName=ecscompose-service-hello-world
INFO[0016] Deleted ECS service service=ecscompose-
service-hello-world
INFO[0016] ECS Service has reached a stable state desiredCount=0
 runningCount=0 serviceName=ecscompose-service-hello-world

API Version 2014-11-13
223

Amazon EC2 Container Service Developer Guide
Step 1: (Optional) Create a Cluster

Using the AWS CLI with Amazon
ECS

The following steps will help you set up a cluster, register a task definition, run a task, and perform
other common scenarios in Amazon ECS with the AWS CLI.

The AWS Command Line Interface (CLI) is a unified tool to manage your AWS services. With just one
tool to download and configure, you can control multiple AWS services from the command line and
automate them through scripts. For more information on the AWS CLI, see http://aws.amazon.com/cli/.

For more information on the other tools available for managing your AWS resources, including the
different AWS SDKs, IDE toolkits, and the Windows PowerShell command line tools, see http://
aws.amazon.com/tools/.

1. Step 1: (Optional) Create a Cluster (p. 224)

2. Step 2: Launch an Instance with the Amazon ECS AMI (p. 225)

3. Step 3: List Container Instances (p. 226)

4. Step 4: Describe your Container Instance (p. 226)

5. Step 5: Register a Task Definition (p. 228)

6. Step 6: List Task Definitions (p. 229)

7. Step 7: Run a Task (p. 230)

8. Step 8: List Tasks (p. 231)

9. Step 9: Describe the Running Task (p. 231)

Step 1: (Optional) Create a Cluster
By default, your account receives a default cluster when you launch your first container instance.

Note
The benefit of using the default cluster that is provided for you is that you don't have to
specify the --cluster cluster_name option in the following commands. If you do create
your own non-default cluster, you need to specify --cluster cluster_name for each
command that you intend to use with that cluster.

API Version 2014-11-13
224

http://aws.amazon.com/cli/
http://aws.amazon.com/tools/
http://aws.amazon.com/tools/

Amazon EC2 Container Service Developer Guide
Step 2: Launch an Instance with the Amazon ECS AMI

However, you can create your own cluster with a unique name with the following command.

$ aws ecs create-cluster --cluster-name MyCluster
{
 "cluster": {
 "clusterName": "MyCluster",
 "status": "ACTIVE",
 "clusterArn": "arn:aws:ecs:region:aws_account_id:cluster/MyCluster"
 }
}

Step 2: Launch an Instance with the Amazon ECS
AMI

You must have an ECS container instance in your cluster before you can run tasks on it. If you do
not already have any container instances in your cluster, see Launching an Amazon ECS Container
Instance (p. 39) for more information. The current Amazon ECS-optimized AMI IDs by region are listed
below for reference.

Region AMI Name AMI ID EC2 console link

us-east-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-eca289fb Launch instance

us-east-2 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-446f3521 Launch instance

us-west-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-9fadf8ff Launch instance

us-west-2 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-7abc111a Launch instance

eu-west-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-a1491ad2 Launch instance

eu-central-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-54f5303b Launch instance

ap-northeast-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-9cd57ffd Launch instance

ap-southeast-1 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-a900a3ca Launch instance

ap-southeast-2 amzn-ami-2016.09.b-
amazon-ecs-
optimized

ami-5781be34 Launch instance

API Version 2014-11-13
225

https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#LaunchInstanceWizard:ami=ami-eca289fb
https://console.aws.amazon.com/ec2/v2/home?region=us-east-2#LaunchInstanceWizard:ami=ami-446f3521
https://console.aws.amazon.com/ec2/v2/home?region=us-west-1#LaunchInstanceWizard:ami=ami-9fadf8ff
https://console.aws.amazon.com/ec2/v2/home?region=us-west-2#LaunchInstanceWizard:ami=ami-7abc111a
https://console.aws.amazon.com/ec2/v2/home?region=eu-west-1#LaunchInstanceWizard:ami=ami-a1491ad2
https://console.aws.amazon.com/ec2/v2/home?region=eu-central-1#LaunchInstanceWizard:ami=ami-54f5303b
https://console.aws.amazon.com/ec2/v2/home?region=ap-northeast-1#LaunchInstanceWizard:ami=ami-9cd57ffd
https://console.aws.amazon.com/ec2/v2/home?region=ap-southeast-1#LaunchInstanceWizard:ami=ami-a900a3ca
https://console.aws.amazon.com/ec2/v2/home?region=ap-southeast-2#LaunchInstanceWizard:ami=ami-5781be34

Amazon EC2 Container Service Developer Guide
Step 3: List Container Instances

Step 3: List Container Instances
Within a few minutes of launching your container instance, the Amazon ECS agent registers the
instance with your default cluster. You can list the container instances in a cluster by running the
following command:

$ aws ecs list-container-instances --cluster default
{
 "containerInstanceArns": [
 "arn:aws:ecs:us-east-1:aws_account_id:container-
instance/container_instance_ID"
]
}

Step 4: Describe your Container Instance
After you have the ARN or ID of a container instance, you can use the describe-container-instances
command to get valuable information on the instance, such as remaining and registered CPU and
memory resources.

$ aws ecs describe-container-instances --cluster default --container-
instances container_instance_ID
{
 "failures": [],
 "containerInstances": [
 {
 "status": "ACTIVE",
 "registeredResources": [
 {
 "integerValue": 1024,
 "longValue": 0,
 "type": "INTEGER",
 "name": "CPU",
 "doubleValue": 0.0
 },
 {
 "integerValue": 995,
 "longValue": 0,
 "type": "INTEGER",
 "name": "MEMORY",
 "doubleValue": 0.0
 },
 {
 "name": "PORTS",
 "longValue": 0,
 "doubleValue": 0.0,
 "stringSetValue": [
 "22",
 "2376",
 "2375",
 "51678"
],
 "type": "STRINGSET",
 "integerValue": 0
 },

API Version 2014-11-13
226

Amazon EC2 Container Service Developer Guide
Step 4: Describe your Container Instance

 {
 "name": "PORTS_UDP",
 "longValue": 0,
 "doubleValue": 0.0,
 "stringSetValue": [],
 "type": "STRINGSET",
 "integerValue": 0
 }
],
 "ec2InstanceId": "instance_id",
 "agentConnected": true,
 "containerInstanceArn": "arn:aws:ecs:us-
west-2:aws_account_id:container-instance/container_instance_ID",
 "pendingTasksCount": 0,
 "remainingResources": [
 {
 "integerValue": 1024,
 "longValue": 0,
 "type": "INTEGER",
 "name": "CPU",
 "doubleValue": 0.0
 },
 {
 "integerValue": 995,
 "longValue": 0,
 "type": "INTEGER",
 "name": "MEMORY",
 "doubleValue": 0.0
 },
 {
 "name": "PORTS",
 "longValue": 0,
 "doubleValue": 0.0,
 "stringSetValue": [
 "22",
 "2376",
 "2375",
 "51678"
],
 "type": "STRINGSET",
 "integerValue": 0
 },
 {
 "name": "PORTS_UDP",
 "longValue": 0,
 "doubleValue": 0.0,
 "stringSetValue": [],
 "type": "STRINGSET",
 "integerValue": 0
 }
],
 "runningTasksCount": 0,
 "attributes": [
 {
 "name": "com.amazonaws.ecs.capability.privileged-
container"
 },
 {

API Version 2014-11-13
227

Amazon EC2 Container Service Developer Guide
Step 5: Register a Task Definition

 "name": "com.amazonaws.ecs.capability.docker-remote-
api.1.17"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-
api.1.18"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-
api.1.19"
 },
 {
 "name": "com.amazonaws.ecs.capability.logging-
driver.json-file"
 },
 {
 "name": "com.amazonaws.ecs.capability.logging-
driver.syslog"
 }
],
 "versionInfo": {
 "agentVersion": "1.5.0",
 "agentHash": "b197edd",
 "dockerVersion": "DockerVersion: 1.7.1"
 }
 }
]
}

You can also find the EC2 instance ID that you can use to monitor the instance in the Amazon EC2
console or with the aws ec2 describe-instances --instance-id instance_id command.

Step 5: Register a Task Definition
Before you can run a task on your ECS cluster, you must register a task definition. Task definitions
are lists of containers grouped together. The following example is a simple task definition that uses a
busybox image from Docker Hub and simply sleeps for 360 seconds. For more information about the
available task definition parameters, see Amazon ECS Task Definitions (p. 82).

{
 "containerDefinitions": [
 {
 "name": "sleep",
 "image": "busybox",
 "cpu": 10,
 "command": [
 "sleep",
 "360"
],
 "memory": 10,
 "essential": true
 }
],
 "family": "sleep360"
}

API Version 2014-11-13
228

Amazon EC2 Container Service Developer Guide
Step 6: List Task Definitions

The above example JSON can be passed to the AWS CLI in two ways: you can save the task definition
JSON as a file and pass it with the --cli-input-json file://path_to_file.json option,
or you can escape the quotation marks in the JSON and pass the JSON container definitions on
the command line as in the below example. If you choose to pass the container definitions on the
command line, your command additionally requires a --family parameter that is used to keep
multiple versions of your task definition associated with each other.

To use a JSON file for container definitions:

$ aws ecs register-task-definition --cli-input-json file://$HOME/tasks/
sleep360.json

To use a JSON string for container definitions:

$ aws ecs register-task-definition --family sleep360 --container-definitions
 "[{\"name\":\"sleep\",\"image\":\"busybox\",\"cpu\":10,\"command\":[\"sleep
\",\"360\"],\"memory\":10,\"essential\":true}]"

The register-task-definition returns a description of the task definition after it completes its
registration.

{
 "taskDefinition": {
 "volumes": [],
 "taskDefinitionArn": "arn:aws:ec2:us-east-1:aws_account_id:task-
definition/sleep360:1",
 "containerDefinitions": [
 {
 "environment": [],
 "name": "sleep",
 "mountPoints": [],
 "image": "busybox",
 "cpu": 10,
 "portMappings": [],
 "command": [
 "sleep",
 "360"
],
 "memory": 10,
 "essential": true,
 "volumesFrom": []
 }
],
 "family": "sleep360",
 "revision": 1
 }
}

Step 6: List Task Definitions
You can list the task definitions for your account at any time with the list-task-definitions command.
The output of this command shows the family and revision values that you can use together when
calling run-task or start-task.

API Version 2014-11-13
229

Amazon EC2 Container Service Developer Guide
Step 7: Run a Task

$ aws ecs list-task-definitions
{
 "taskDefinitionArns": [
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/sleep300:1",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/sleep300:2",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/sleep360:1",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/wordpress:3",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/wordpress:4",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/wordpress:5",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/wordpress:6"
]
}

Step 7: Run a Task
After you have registered a task for your account and have launched a container instance that is
registered to your cluster, you can run the registered task in your cluster. For this example, you place a
single instance of the sleep360:1 task definition in your default cluster.

$ aws ecs run-task --cluster default --task-definition sleep360:1 --count 1
{
 "tasks": [
 {
 "taskArn": "arn:aws:ecs:us-east-1:aws_account_id:task/task_ID",
 "overrides": {
 "containerOverrides": [
 {
 "name": "sleep"
 }
]
 },
 "lastStatus": "PENDING",
 "containerInstanceArn": "arn:aws:ecs:us-
east-1:aws_account_id:container-instance/container_instance_ID",
 "clusterArn": "arn:aws:ecs:us-east-1:aws_account_id:cluster/
default",
 "desiredStatus": "RUNNING",
 "taskDefinitionArn": "arn:aws:ecs:us-east-1:aws_account_id:task-
definition/sleep360:1",
 "containers": [
 {
 "containerArn": "arn:aws:ecs:us-
east-1:aws_account_id:container/container_ID",
 "taskArn": "arn:aws:ecs:us-
east-1:aws_account_id:task/task_ID",
 "lastStatus": "PENDING",
 "name": "sleep"
 }
]
 }
]
}

API Version 2014-11-13
230

Amazon EC2 Container Service Developer Guide
Step 8: List Tasks

Step 8: List Tasks
List the tasks for your cluster. You should see the task that you ran in the previous section. You can
take the task ID or the full ARN that is returned from this command and use it to describe the task later.

$ aws ecs list-tasks --cluster default
{
 "taskArns": [
 "arn:aws:ecs:us-east-1:aws_account_id:task/task_ID"
]
}

Step 9: Describe the Running Task
Describe the task using the task ID retrieved earlier to get more information about the task.

$ aws ecs describe-tasks --cluster default --task task_ID
{
 "failures": [],
 "tasks": [
 {
 "taskArn": "arn:aws:ecs:us-east-1:aws_account_id:task/task_ID",
 "overrides": {
 "containerOverrides": [
 {
 "name": "sleep"
 }
]
 },
 "lastStatus": "RUNNING",
 "containerInstanceArn": "arn:aws:ecs:us-
east-1:aws_account_id:container-instance/container_instance_ID",
 "clusterArn": "arn:aws:ecs:us-east-1:aws_account_id:cluster/
default",
 "desiredStatus": "RUNNING",
 "taskDefinitionArn": "arn:aws:ecs:us-east-1:aws_account_id:task-
definition/sleep360:1",
 "containers": [
 {
 "containerArn": "arn:aws:ecs:us-
east-1:aws_account_id:container/container_ID",
 "taskArn": "arn:aws:ecs:us-
east-1:aws_account_id:task/task_ID",
 "lastStatus": "RUNNING",
 "name": "sleep",
 "networkBindings": []
 }
]
 }
]
}

API Version 2014-11-13
231

Amazon EC2 Container Service Developer Guide

Amazon ECS Service Limits

The following table provides the default limits for Amazon ECS for an AWS account which can be
changed. For more information, see AWS Service Limitsin the Amazon Web Services General
Reference.

Resource Default Limit

Number of clusters per region, per account 1000

Number of container instances per cluster 1000

Number of services per cluster 500

The following table provides other limitations for Amazon ECS that cannot be changed.

Resource Default Limit

Number of load balancers per service 1

Number of tasks per service (the desired count) 1000

Number of tasks launched (count) per run-task 10

Number of container instances per start-task 10

Throttle on container instance registration rate 1 per second / 60 max per minute

Task definition size limit 32 KiB

Task definition max containers 10

Throttle on task definition registration rate 1 per second / 60 max per minute

API Version 2014-11-13
232

http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon EC2 Container Service Developer Guide
Amazon ECS Information in CloudTrail

Logging Amazon ECS API Calls By
Using AWS CloudTrail

Amazon ECS is integrated with AWS CloudTrail, a service that captures API calls made by or on behalf
of Amazon ECS in your AWS account and delivers the log files to an Amazon S3 bucket that you
specify. CloudTrail captures API calls from the Amazon ECS console or from the Amazon ECS API.
Using the information collected by CloudTrail, you can determine what request was made to Amazon
ECS, the source IP address from which the request was made, who made the request, when it was
made, and so on. To learn more about CloudTrail, including how to configure and enable it, see the
AWS CloudTrail User Guide.

Amazon ECS Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to Amazon ECS actions are
tracked in log files. Amazon ECS records are written together with other AWS service records in a log
file. CloudTrail determines when to create and write to a new file based on a time period and file size.

All of the Amazon ECS actions are logged and are documented in the Amazon EC2 Container Service
API Reference. For example, calls to the CreateService, RunTask, and RegisterContainerInstance
actions generate entries in the CloudTrail log files.

Every log entry contains information about who generated the request. The user identity information
in the log helps you determine whether the request was made with root or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userIdentity field in the CloudTrail Event Reference.

You can store your log files in your bucket for as long as you want, but you can also define Amazon
S3 life cycle rules to archive or delete log files automatically. By default, your log files are encrypted by
using Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered
if you want to take quick action upon log file delivery. For more information, see Configuring Amazon
SNS Notifications.

You can also aggregate Amazon ECS log files from multiple AWS regions and multiple AWS accounts
into a single S3 bucket. For more information, see Aggregating CloudTrail Log Files to a Single
Amazon S3 Bucket.

API Version 2014-11-13
233

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/AmazonECS/latest/APIReference/
http://docs.aws.amazon.com/AmazonECS/latest/APIReference/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

Amazon EC2 Container Service Developer Guide
Understanding Amazon ECS Log File Entries

Understanding Amazon ECS Log File Entries
CloudTrail log files can contain one or more log entries where each entry is made up of multiple JSON-
formatted events. A log entry represents a single request from any source and includes information
about the requested action, any parameters, the date and time of the action, and so on. The log entries
are not guaranteed to be in any particular order. That is, they are not an ordered stack trace of the
public API calls.

API Version 2014-11-13
234

Amazon EC2 Container Service Developer Guide
Checking Stopped Tasks for Errors

Amazon ECS Troubleshooting

You may need to troubleshoot issues with your load balancers, tasks, services, or container instances.
This chapter helps you find diagnostic information from the Amazon ECS container agent, the Docker
daemon on the container instance, and the service event log in the Amazon ECS console.

Topics

• Checking Stopped Tasks for Errors (p. 235)

• Service Event Messages (p. 237)

• Troubleshooting Service Load Balancers (p. 239)

• Enabling Docker Debug Output (p. 241)

• Amazon ECS Log File Locations (p. 242)

• Amazon ECS Logs Collector (p. 243)

• Agent Introspection Diagnostics (p. 244)

• Docker Diagnostics (p. 245)

• API failures Error Messages (p. 247)

Checking Stopped Tasks for Errors
If you have trouble starting a task (for example, you run the task and the task displays a PENDING
status and then disappears) your task might be stopping because of an error. You can view errors like
this in the Amazon ECS console by displaying the stopped task and inspecting it for error messages.

To check stopped tasks for errors

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. On the Clusters page, choose the cluster in which your stopped task resides.

3. On the Cluster : clustername page, choose the Tasks tab to view your tasks.

4. In the Desired task status table header, choose Stopped to view stopped tasks, and then choose
the stopped task you want to inspect. The most recent stopped tasks are listed first.

5. In the Details section, inspect the Stopped reason field to see the reason the task was stopped.

API Version 2014-11-13
235

https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Developer Guide
Checking Stopped Tasks for Errors

Some possible reasons and their explanations are listed below:

Task failed ELB health checks in (elb elb-name)
The current task failed the ELB health check for the load balancer that is associated with the
task's service. For more information, see Troubleshooting Service Load Balancers (p. 239).

Scaling activity initiated by (deployment deployment-id)
When you reduce the desired count of a stable service, some tasks need to be stopped in
order to reach the desired number. Tasks that are stopped by downscaling services have this
stopped reason.

Host EC2 (instance id) stopped/terminated
If you stop or terminate a container instance with running tasks, then the tasks are given this
stopped reason.

Container instance deregistration forced by user
If you force the deregistration of a container instance with running tasks, then the tasks are
given this stopped reason.

Essential container in task exited
Containers marked as essential in task definitions cause a task to stop if they exit or die.
When an essential container exiting is the cause of a stopped task, the Step 6 (p. 236) can
provide more diagnostic information as to why the container stopped.

6. If you have a container that has stopped, expand the container and inspect the Status reason row
to see what caused the task state to change.

API Version 2014-11-13
236

Amazon EC2 Container Service Developer Guide
Service Event Messages

In the previous example, the container image name cannot be found. This can happen if you
misspell the image name.

If this inspection does not provide enough information, you can connect to the container instance
with SSH and inspect the Docker container locally. For more information, see Inspect Docker
Containers (p. 246).

Service Event Messages
If you are troubleshooting a problem with a service, the first place you should check for diagnostic
information is the service event log.

To check the service event log in the Amazon ECS console

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. On the Clusters page, choose the cluster in which your service resides.

3. On the Cluster : clustername page, choose the service that you would like to inspect.

4. On the Service : servicename page, choose the Events tab.

API Version 2014-11-13
237

https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Developer Guide
Service Event Messages

5. Examine the Message column for errors or other helpful information.

(service service-name) was unable to place a task because the resources could not be found.

In the above image, this service could not find the available resources to add another task. The
possible causes for this are:

API Version 2014-11-13
238

Amazon EC2 Container Service Developer Guide
Troubleshooting Service Load Balancers

Not enough ports
If your task uses fixed host port mapping (for example, your task uses port 80 on the host for a
web server), you must have at least one container instance per task, because only one container
can use a single host port at a time. You should add container instances to your cluster or reduce
your number of desired tasks.

Not enough memory
If your task definition specifies 1000 MiB of memory, and the container instances in your cluster
each have 1024 MiB of memory, you can only run one copy of this task per container instance.
You can experiment with less memory in your task definition so that you could launch more than
one task per container instance, or launch more container instances into your cluster.

Not enough CPU
A container instance has 1,024 CPU units for every CPU core. If your task definition specifies
1,000 CPU units, and the container instances in your cluster each have 1,024 CPU units, you can
only run one copy of this task per container instance. You can experiment with less CPU units in
your task definition so that you could launch more than one task per container instance, or launch
more container instances into your cluster.

Container instance missing required attribute
Some task definition parameters require a specific Docker remote API version to be installed on
the container instance. Others, such as the logging driver options, require the container instances
to register those log drivers with the ECS_AVAILABLE_LOGGING_DRIVERS agent configuration
variable. If your task definition contains a parameter that requires a specific container instance
attribute, and you do not have any available container instances that can satisfy this requirement,
the task cannot be placed. For more information on which attributes are required for specific task
definition parameters and agent configuration variables, see Task Definition Parameters (p. 88)
and Amazon ECS Container Agent Configuration (p. 69).

(service service-name) was unable to place a task because no container instance met all of its
requirements. The closest matching container-instance container-instance-id encountered error
"AGENT".

The Amazon ECS container agent on the closest matching container instance for task placement is
disconnected. If you can connect to the container instance with SSH, you can examine the agent logs;
for more information, see Amazon ECS Container Agent Log (p. 242). You should also verify that
the agent is running on the instance. If you are using the Amazon ECS-optimized AMI, you can try
stopping and restarting the agent with the following commands:

[ec2-user ~]$ sudo stop ecs
ecs stop/waiting
[ec2-user ~]$ sudo start ecs
ecs start/running, process 26119

(service service-name) (instance instance-id) is unhealthy in (elb elb-name) due to (reason
Instance has failed at least the UnhealthyThreshold number of health checks consecutively.)

This service is registered with a load balancer and the load balancer health checks are failing. For
more information, see Troubleshooting Service Load Balancers (p. 239).

Troubleshooting Service Load Balancers
Amazon ECS services can register tasks with an Elastic Load Balancing load balancer. Load balancer
configuration errors are common causes for stopped tasks. If your stopped tasks were started by
services that use a load balancer, consider the following possible causes.

API Version 2014-11-13
239

Amazon EC2 Container Service Developer Guide
Troubleshooting Service Load Balancers

Improper IAM permissions for the ecsServiceRole IAM role
The ecsServiceRole allows Amazon ECS services to register container instances with Elastic
Load Balancing load balancers. You must have the proper permissions set for this role. For more
information, see Amazon ECS Service Scheduler IAM Role (p. 182).

Container instance security group
If your container is mapped to port 80 on your container instance, your container instance security
group must allow inbound traffic on port 80 for the load balancer health checks to pass.

Elastic Load Balancing load balancer not configured for all Availability Zones
Your load balancer should be configured to use all of the Availability Zones in a region, or at least
all of the Availability Zones in which your container instances reside. If a service uses a load
balancer and starts a task on a container instance that resides in an Availability Zone that the load
balancer is not configured to use, the task never passes the health check and it is killed.

Elastic Load Balancing load balancer health check misconfigured
The load balancer health check parameters can be overly restrictive or point to resources that
do not exist. If a container instance is determined to be unhealthy, it is removed from the load
balancer. Be sure to verify that the following parameters are configured correctly for your service
load balancer.

Ping Port
The Ping Port value for a load balancer health check is the port on the container instances
that the load balancer checks to determine if it is healthy. If this port is misconfigured, the
load balancer will likely deregister your container instance from itself. This port should be
configured to use the hostPort value for the container in your service's task definition that
you are using with the health check.

Ping Path
This value is often set to index.html, but if your service does not respond to that request,
then the health check fails. If your container does not have an index.html file, you can set
this to / to target the base URL for the container instance.

Response Timeout
This is the amount of time that your container has to return a response to the health check
ping. If this value is lower than the amount of time required for a response, the health check
fails.

Health Check Interval
This is the amount of time between health check pings. The shorter your health check
intervals are, the faster your container instance can reach the Unhealthy Threshold.

Unhealthy Threshold
This is the number of times your health check can fail before your container instance is
considered unhealthy. If you have an unhealthy threshold of 2, and a health check interval of
30 seconds, then your task has 60 seconds to respond to the health check ping before it is
assumed unhealthy. You can raise the unhealthy threshold or the health check interval to give
your tasks more time to respond.

Unable to update the service servicename: Load balancer container name or port changed in task
definition

If your service uses a load balancer, the load balancer configuration defined for your service when
it was created cannot be changed. If you update the task definition for the service, the container
name and container port that were specified when the service was created must remain in the task
definition.

To change the load balancer name, the container name, or the container port associated with a
service load balancer configuration, you must create a new service.

API Version 2014-11-13
240

Amazon EC2 Container Service Developer Guide
Enabling Docker Debug Output

Enabling Docker Debug Output
If you are having trouble with Docker containers or images, you can enable debug mode on your
Docker daemon. Enabling debugging provides more verbose output from the daemon and you can use
this information to find out more about why your containers or images are having issues.

Enabling Docker debug mode can be especially useful in retrieving error messages that are sent from
container registries, such as Amazon ECR, and, in many circumstances, enabling debug mode is the
only way to see these error messages.

To enable debug mode on your Docker daemon

1. Connect to your container instance. For more information, see Connect to your Container
Instance (p. 42).

2. Open the Docker options file with a text editor, such as vi.

• For Amazon Linux, Red Hat Enterprise Server, and CentOS, the Docker options file is at /
etc/sysconfig/docker.

• For Ubuntu and Debian, the Docker options file is at /etc/default/docker.

3. Find the Docker options statement and add the -D option to the string, inside the quotes.

Note
If the Docker options statement begins with a #, you need to remove that character to
uncomment the statement and enable the options.

• For Amazon Linux, Red Hat Enterprise Server, and CentOS, the Docker options statement is
called OPTIONS. For example:

Additional startup options for the Docker daemon, for example:
OPTIONS="--ip-forward=true --iptables=true"
By default we limit the number of open files per container
OPTIONS="-D --default-ulimit nofile=1024:4096"

• For Ubuntu and Debian, the Docker options statement is called DOCKER_OPTS. For example:

Use DOCKER_OPTS to modify the daemon startup options.
DOCKER_OPTS="-D --dns 8.8.8.8 --dns 8.8.4.4"

4. Save the file and exit your text editor.

5. Restart the Docker daemon.

$ sudo service docker restart
Stopping docker: [OK]
Starting docker: . [OK]

Your Docker logs should now show more verbose output. For example:

time="2015-12-30T21:48:21.907640838Z" level=debug msg="Unexpected response
 from server: \"{\\\"errors\\\":[{\\\"code\\\":\\\"DENIED\\\",\\\"message\
\\":\\\"User: arn:aws:sts::1111:assumed-role/ecrReadOnly/i-abcdefg is not
 authorized to perform: ecr:InitiateLayerUpload on resource: arn:aws:ecr:us-
east-1:1111:repository/nginx_test\\\"}]}\\n\" http.Header{\"Connection\":
[]string{\"keep-alive\"}, \"Content-Type\":[]string{\"application/json;
 charset=utf-8\"}, \"Date\":[]string{\"Wed, 30 Dec 2015 21:48:21 GMT\"},
 \"Docker-Distribution-Api-Version\":[]string{\"registry/2.0\"}, \"Content-
Length\":[]string{\"235\"}}"

API Version 2014-11-13
241

Amazon EC2 Container Service Developer Guide
Amazon ECS Log File Locations

Amazon ECS Log File Locations
Amazon ECS stores logs in the /var/log/ecs folder of your container instances. There are logs
available from the Amazon ECS container agent and the ecs-init service that controls the state
of the agent (start/stop) on the container instance. You can view these log files by connecting to a
container instance using SSH. For more information, see Connect to your Container Instance (p. 42).

Note
If you are unsure how to collect all of the various logs on your container instances, you
can use the Amazon ECS logs collector. For more information, see Amazon ECS Logs
Collector (p. 243).

Amazon ECS Container Agent Log
The Amazon ECS container agent stores logs at /var/log/ecs/ecs-agent.log.timestamp.

Note
You can increase the verbosity of the container agent logs by setting ECS_LOGLEVEL=debug
and restarting the container agent. For more information, see Amazon ECS Container Agent
Configuration (p. 69).

[ec2-user ~]$ cat /var/log/ecs/ecs-agent.log.2016-08-15-15
2016-08-15T15:54:41Z [INFO] Starting Agent: Amazon ECS Agent - v1.12.0
 (895f3c1)
2016-08-15T15:54:41Z [INFO] Loading configuration
2016-08-15T15:54:41Z [WARN] Invalid value for task cleanup duration, will be
 overridden to 3h0m0s, parsed value 0, minimum threshold 1m0s
2016-08-15T15:54:41Z [INFO] Checkpointing is enabled. Attempting to load
 state
2016-08-15T15:54:41Z [INFO] Loading state! module="statemanager"
2016-08-15T15:54:41Z [INFO] Detected Docker versions [1.17 1.18 1.19 1.20
 1.21 1.22]
2016-08-15T15:54:41Z [INFO] Registering Instance with ECS
2016-08-15T15:54:41Z [INFO] Registered! module="api client"

Amazon ECS ecs-init Log
The ecs-init process stores logs at /var/log/ecs/ecs-init.log.timestamp.

[ec2-user ~]$ cat /var/log/ecs/ecs-init.log.2015-04-22-20
2015-04-22T20:51:45Z [INFO] pre-start
2015-04-22T20:51:45Z [INFO] Loading Amazon EC2 Container Service Agent into
 Docker
2015-04-22T20:51:46Z [INFO] start
2015-04-22T20:51:46Z [INFO] No existing agent container to remove.
2015-04-22T20:51:46Z [INFO] Starting Amazon EC2 Container Service Agent

IAM Roles for Tasks Credential Audit Log
When the IAM roles for tasks credential provider is used to provide credentials to tasks, these requests
are logged in /var/log/ecs/audit.log.YYYY-MM-DD-HH. The log entry format is as follows:

• Timestamp

• HTTP response code

API Version 2014-11-13
242

Amazon EC2 Container Service Developer Guide
Amazon ECS Logs Collector

• IP address and port number of request origin

• Relative URI of the credential provider

• The user agent that made the request

• The task ARN that the requesting container belongs to

• The GetCredentials API name and version number

• The Amazon ECS cluster name that the container instance is registered to

• The container instance ARN

An example log entry is shown below:

[ec2-user ~]$ cat /var/log/ecs/audit.log.2016-07-13-16
2016-07-13T16:11:53Z 200 172.17.0.5:52444 "/v1/credentials" "python-
requests/2.7.0 CPython/2.7.6 Linux/4.4.14-24.50.amzn1.x86_64" TASK_ARN
 GetCredentials 1 CLUSTER_NAME CONTAINER_INSTANCE_ARN

Amazon ECS Logs Collector
If you are unsure how to collect all of the various logs on your container instances, you can use the
Amazon ECS logs collector, which is available on GitHub. The script collects general operating system
logs as well as Docker and Amazon ECS container agent logs, which can be helpful for troubleshooting
AWS Support cases, and then it compresses and archives the collected information into a single file
that can easily be shared for diagnostic purposes. It also supports enabling debug mode for the Docker
daemon and the Amazon ECS container agent on Amazon Linux variants, such as the Amazon ECS-
optimized AMI. Currently, the Amazon ECS logs collector supports the following operating systems:

• Amazon Linux

• Red Hat Enterprise Linux 7

• Debian 8

Note
The source code for the Amazon ECS logs collector is available on GitHub. We encourage
you to submit pull requests for changes that you would like to have included. However,
Amazon Web Services does not currently provide support for running modified copies of this
software.

To download and run the Amazon ECS logs collector

1. Connect to your container instance. For more information, see Connect to your Container
Instance (p. 42).

2. Download the Amazon ECS logs collector script.

[ec2-user ~]$ curl -O https://raw.githubusercontent.com/awslabs/ecs-logs-
collector/master/ecs-logs-collector.sh

3. Run the script to collect the logs and create the archive.

Note
To enable debug mode for the Docker daemon and the Amazon ECS container agent,
add the --mode=debug option to the command below.

[ec2-user ~]$ sudo bash ./ecs-logs-collector.sh

API Version 2014-11-13
243

https://github.com/awslabs/ecs-logs-collector
https://github.com/awslabs/ecs-logs-collector

Amazon EC2 Container Service Developer Guide
Agent Introspection Diagnostics

After you have run the script, you can examine the collected logs in the collect folder that the script
created. The collect.tgz file is a compressed archive of all of the logs, which you can share with
AWS Support for diagnostic help.

Agent Introspection Diagnostics
The Amazon ECS agent introspection API can provide helpful diagnostic information. For example, you
can use the agent introspection API to get the Docker ID for a container in your task. You can use the
agent introspection API by connecting to a container instance using SSH. For more information, see
Connect to your Container Instance (p. 42).

The below example shows two tasks, one that is currently running and one that was stopped.

Note
The command below is piped through the python -mjson.tool for greater readability.

[ec2-user ~]$ curl http://localhost:51678/v1/tasks | python -mjson.tool
 % Total % Received % Xferd Average Speed Time Time Time
 Current
 Dload Upload Total Spent Left Speed
100 1095 100 1095 0 0 117k 0 --:--:-- --:--:-- --:--:--
 133k
{
 "Tasks": [
 {
 "Arn": "arn:aws:ecs:us-
west-2:aws_account_id:task/090eff9b-1ce3-4db6-848a-a8d14064fd24",
 "Containers": [
 {
 "DockerId":
 "189a8ff4b5f04affe40e5160a5ffadca395136eb5faf4950c57963c06f82c76d",
 "DockerName": "ecs-console-sample-app-static-6-simple-
app-86caf9bcabe3e9c61600",
 "Name": "simple-app"
 },
 {
 "DockerId":
 "f7f1f8a7a245c5da83aa92729bd28c6bcb004d1f6a35409e4207e1d34030e966",
 "DockerName": "ecs-console-sample-app-static-6-busybox-
ce83ce978a87a890ab01",
 "Name": "busybox"
 }
],
 "Family": "console-sample-app-static",
 "KnownStatus": "STOPPED",
 "Version": "6"
 },
 {
 "Arn": "arn:aws:ecs:us-west-2:aws_account_id:task/1810e302-
eaea-4da9-a638-097bea534740",
 "Containers": [
 {
 "DockerId":
 "dc7240fe892ab233dbbcee5044d95e1456c120dba9a6b56ec513da45c38e3aeb",
 "DockerName": "ecs-console-sample-app-static-6-simple-
app-f0e5859699a7aecfb101",
 "Name": "simple-app"
 },

API Version 2014-11-13
244

Amazon EC2 Container Service Developer Guide
Docker Diagnostics

 {
 "DockerId":
 "096d685fb85a1ff3e021c8254672ab8497e3c13986b9cf005cbae9460b7b901e",
 "DockerName": "ecs-console-sample-app-static-6-
busybox-92e4b8d0ecd0cce69a01",
 "Name": "busybox"
 }
],
 "DesiredStatus": "RUNNING",
 "Family": "console-sample-app-static",
 "KnownStatus": "RUNNING",
 "Version": "6"
 }
]
}

In the above example, the stopped task (090eff9b-1ce3-4db6-848a-a8d14064fd24) has two
containers. You can use docker inspect container-ID to view detailed information on each
container. For more information, see Amazon ECS Container Agent Introspection (p. 78).

Docker Diagnostics
Docker provides several diagnostic tools that can help you troubleshoot problems with your containers
and tasks. For more information about all of the available Docker command line utilities, go to the
Docker Command Line topic in the Docker documentation. You can access the Docker command line
utilities by connecting to a container instance using SSH. For more information, see Connect to your
Container Instance (p. 42).

The exit codes that Docker containers report can also provide some diagnostic information (for
example, exit code 137 means that the container received a SIGKILL signal). For more information,
see Exit Status in the Docker documentation.

List Docker Containers
You can use the docker ps command on your container instance to list the running containers. In the
below example, only the Amazon ECS container agent is running. For more information, go to docker
ps in the Docker documentation.

[ec2-user ~]$ docker ps
CONTAINER ID IMAGE COMMAND
 CREATED STATUS PORTS NAMES
cee0d6986de0 amazon/amazon-ecs-agent:latest "/agent" 22
 hours ago Up 22 hours 127.0.0.1:51678->51678/tcp ecs-agent

You can use the docker ps -a command to see all containers (even stopped or killed containers).
This is helpful for listing containers that are unexpectedly stopping. In the following example, container
f7f1f8a7a245 exited 9 seconds ago, so it would not show up in a docker ps output without the -a
flag.

[ec2-user ~]$ docker ps -a
CONTAINER ID IMAGE COMMAND
 CREATED STATUS PORTS
 NAMES
db4d48e411b1 amazon/ecs-emptyvolume-base:autogenerated "not-
applicable" 19 seconds ago

API Version 2014-11-13
245

https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/run/#exit-status
https://docs.docker.com/engine/reference/commandline/cli/#ps
https://docs.docker.com/engine/reference/commandline/cli/#ps

Amazon EC2 Container Service Developer Guide
View Docker Logs

 ecs-console-sample-app-static-6-internalecs-emptyvolume-
source-c09288a6b0cba8a53700
f7f1f8a7a245 busybox:buildroot-2014.02 "\"sh -c '/
bin/sh -c 22 hours ago Exited (137) 9 seconds ago
 ecs-console-sample-app-static-6-busybox-ce83ce978a87a890ab01
189a8ff4b5f0 httpd:2 "httpd-
foreground" 22 hours ago Exited (137) 40 seconds ago
 ecs-console-sample-app-static-6-simple-
app-86caf9bcabe3e9c61600
0c7dca9321e3 amazon/ecs-emptyvolume-base:autogenerated "not-
applicable" 22 hours ago
 ecs-console-sample-app-static-6-internalecs-emptyvolume-
source-90fefaa68498a8a80700
cee0d6986de0 amazon/amazon-ecs-agent:latest "/agent"
 22 hours ago Up 22 hours 127.0.0.1:51678-
>51678/tcp ecs-agent

View Docker Logs
You can view the STDOUT and STDERR streams for a container with the docker logs command. In
this example, the logs are displayed for the dc7240fe892a container and piped through the head
command for brevity. For more information, go to docker logs in the Docker documentation.

[ec2-user ~]$ docker logs dc7240fe892a | head
AH00558: httpd: Could not reliably determine the server's fully qualified
 domain name, using 172.17.0.11. Set the 'ServerName' directive globally to
 suppress this message
AH00558: httpd: Could not reliably determine the server's fully qualified
 domain name, using 172.17.0.11. Set the 'ServerName' directive globally to
 suppress this message
[Thu Apr 23 19:48:36.956682 2015] [mpm_event:notice] [pid 1:tid
 140327115417472] AH00489: Apache/2.4.12 (Unix) configured -- resuming normal
 operations
[Thu Apr 23 19:48:36.956827 2015] [core:notice] [pid 1:tid 140327115417472]
 AH00094: Command line: 'httpd -D FOREGROUND'
10.0.1.86 - - [23/Apr/2015:19:48:59 +0000] "GET / HTTP/1.1" 200 348
10.0.0.154 - - [23/Apr/2015:19:48:59 +0000] "GET / HTTP/1.1" 200 348
10.0.1.86 - - [23/Apr/2015:19:49:28 +0000] "GET / HTTP/1.1" 200 348
10.0.0.154 - - [23/Apr/2015:19:49:29 +0000] "GET / HTTP/1.1" 200 348
10.0.1.86 - - [23/Apr/2015:19:49:50 +0000] "-" 408 -
10.0.0.154 - - [23/Apr/2015:19:49:50 +0000] "-" 408 -
10.0.1.86 - - [23/Apr/2015:19:49:58 +0000] "GET / HTTP/1.1" 200 348
10.0.0.154 - - [23/Apr/2015:19:49:59 +0000] "GET / HTTP/1.1" 200 348
10.0.1.86 - - [23/Apr/2015:19:50:28 +0000] "GET / HTTP/1.1" 200 348
10.0.0.154 - - [23/Apr/2015:19:50:29 +0000] "GET / HTTP/1.1" 200 348
time="2015-04-23T20:11:20Z" level="fatal" msg="write /dev/stdout: broken
 pipe"

Inspect Docker Containers
If you have the Docker ID of a container, you can inspect it with the docker inspect command.
Inspecting containers provides the most detailed view of the environment in which a container was
launched. For more information, go to docker inspect in the Docker documentation.

[ec2-user ~]$ docker inspect dc7240fe892a
[{

API Version 2014-11-13
246

https://docs.docker.com/engine/reference/commandline/cli/#logs
https://docs.docker.com/engine/reference/commandline/cli/#inspect

Amazon EC2 Container Service Developer Guide
API failures Error Messages

 "AppArmorProfile": "",
 "Args": [],
 "Config": {
 "AttachStderr": false,
 "AttachStdin": false,
 "AttachStdout": false,
 "Cmd": [
 "httpd-foreground"
],
 "CpuShares": 10,
 "Cpuset": "",
 "Domainname": "",
 "Entrypoint": null,
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/
bin:/usr/local/apache2/bin",
 "HTTPD_PREFIX=/usr/local/apache2",
 "HTTPD_VERSION=2.4.12",
 "HTTPD_BZ2_URL=https://www.apache.org/dist/httpd/
httpd-2.4.12.tar.bz2"
],
 "ExposedPorts": {
 "80/tcp": {}
 },
 "Hostname": "dc7240fe892a",
...

API failures Error Messages
In some cases, an API call that you have triggered through the Amazon ECS console or the AWS
CLI exits with a failures error message. The following possible API failures error messages are
explained below for each API call. The failures occur on a particular resource, and the resource in
parentheses is the resource associated with the failure.

Many resources are region-specific, so make sure the console is set to the correct region for your
resources, or that your AWS CLI commands are being sent to the correct region with the --region
region option.

• DescribeClusters

MISSING (cluster ID)
Your cluster was not found. The cluster name may not have been spelled correctly or the wrong
region may be specified.

• DescribeInstances

MISSING (container instance ID)
The container instance you are attempting to describe does not exist. Perhaps the wrong cluster
or region has been specified, or the container instance ARN or ID is misspelled.

• DescribeServices

MISSING (service ID)
The service you are attempting to describe does not exist. Perhaps the wrong cluster or region
has been specified, or the container instance ARN or ID is misspelled.

• DescribeTasks

MISSING (task ID)
The task you are trying to describe does not exist. Perhaps the wrong cluster or region has been
specified, or the task ARN or ID is misspelled.

API Version 2014-11-13
247

Amazon EC2 Container Service Developer Guide
API failures Error Messages

• RunTask or StartTask

RESOURCE:* (container instance ID)
The resource or resources requested by the task are unavailable on the given container
instance. If the resource is CPU or memory, you may need to add container instances to your
cluster.

AGENT (container instance ID)
The container instance that you attempted to launch a task onto has an agent which is currently
disconnected. In order to prevent extended wait times for task placement, the request was
rejected.

ATTRIBUTE (container instance ID)
Your task definition contains a parameter that requires a specific container instance attribute
that is not available on your container instances. For more information on which attributes are
required for specific task definition parameters and agent configuration variables, see Task
Definition Parameters (p. 88) and Amazon ECS Container Agent Configuration (p. 69).

• StartTask

MISSING (container instance ID)
The container instance you attempted to launch the task onto does not exist. Perhaps the wrong
cluster or region has been specified, or the container instance ARN or ID is misspelled.

INACTIVE (container instance ID)
The container instance that you attempted to launch a task onto was previously deregistered
with Amazon ECS and cannot be used.

API Version 2014-11-13
248

Amazon EC2 Container Service Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

API Version 2014-11-13
249

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon EC2 Container Service
	Table of Contents
	What is Amazon EC2 Container Service?
	Features of Amazon ECS
	Containers and Images
	Task Definitions
	Tasks and Scheduling
	Clusters
	Container Agent

	How to Get Started with Amazon ECS
	Related Services
	Accessing Amazon ECS
	Pricing

	Setting Up with Amazon ECS
	Sign Up for AWS
	Create an IAM User
	Create an IAM Role for your Container Instances and Services
	Create a Key Pair
	(Optional) Install the Amazon ECS Command Line Interface (CLI)

	Docker Basics
	Installing Docker
	(Optional) Sign up for a Docker Hub Account
	(Optional) Amazon EC2 Container Registry
	Create a Docker Image and Upload it to Docker Hub
	Next Steps

	Getting Started with Amazon ECS
	Cleaning Up your Amazon ECS Resources
	Scale Down Services
	Delete Services
	Deregister Container Instances
	Delete a Cluster
	Delete the AWS CloudFormation Stack

	Amazon ECS Clusters
	Cluster Concepts
	Creating a Cluster
	Scaling a Cluster
	Deleting a Cluster

	Amazon ECS Container Instances
	Container Instance Concepts
	Container Instance Life Cycle
	Check the Instance Role for your Account
	Container Instance AMIs
	Amazon ECS-optimized AMI
	How to Launch the Latest Amazon ECS-optimized AMI
	Storage Configuration
	Version 2015.09.d and later
	Version 2015.09.c and earlier

	Launching an Amazon ECS Container Instance
	Connect to your Container Instance
	Using CloudWatch Logs with Container Instances
	CloudWatch Logs IAM Policy
	Installing the CloudWatch Logs Agent
	Configuring and Starting the CloudWatch Logs Agent
	Viewing CloudWatch Logs
	Configuring CloudWatch Logs at Launch with User Data

	Managing Container Instances Remotely
	Run Command IAM Policy
	Installing the SSM Agent on the Amazon ECS-optimized AMI
	Using Run Command

	Starting a Task at Container Instance Launch Time
	Deregister a Container Instance

	Amazon ECS Container Agent
	Installing the Amazon ECS Container Agent
	Amazon ECS Container Agent Versions
	Amazon ECS-optimized AMI Container Agent Versions

	Updating the Amazon ECS Container Agent
	Checking your Amazon ECS Container Agent Version
	Updating the Amazon ECS Container Agent on the Amazon ECS-optimized AMI
	Updating the Amazon ECS Container Agent with the UpdateContainerAgent API Operation

	Manually Updating the Amazon ECS Container Agent (for Non-Amazon ECS-optimized AMIs)

	Amazon ECS Container Agent Configuration
	Available Parameters
	Storing Container Instance Configuration in Amazon S3

	Automated Task and Image Cleanup
	Tunable Parameters
	Cleanup Workflow

	Private Registry Authentication
	Authentication Formats
	Enabling Private Registries

	Amazon ECS Container Agent Introspection
	HTTP Proxy Configuration

	Amazon ECS Task Definitions
	Application Architecture
	Creating a Task Definition
	Task Definition Template

	Using a Docker Image in a Task Definition
	Task Definition Parameters
	Family
	Task Role
	Network Mode
	Container Definitions
	Standard Container Definition Parameters
	Advanced Container Definition Parameters
	Environment
	Network Settings
	Storage and Logging
	Security
	Resource Limits
	Docker Labels

	Volumes

	Using Data Volumes in Tasks
	Using the awslogs Log Driver
	Enabling the awslogs Log Driver on your Container Instances
	Creating Your Log Groups
	Creating a Log Group with the AWS CLI
	Creating a Log Group with the CloudWatch Console

	Available awslogs Log Driver Options
	Specifying a Log Configuration in your Task Definition
	Viewing awslogs Container Logs in CloudWatch Logs

	Example Task Definitions
	WordPress and MySQL
	awslogs Log Driver
	Amazon ECR Image and Task Definition IAM Role
	Entrypoint with Command

	Deregistering Task Definitions

	Scheduling Amazon ECS Tasks
	Running Tasks
	Task Life Cycle

	Services
	Service Concepts
	Service Definition Parameters
	Service Load Balancing
	Load Balancing Concepts
	Check the Service Role for your Account
	Creating a Load Balancer
	Creating an Application Load Balancer
	Define Your Load Balancer
	(Optional) Configure Security Settings
	Configure Security Groups
	Configure Routing
	Register Targets
	Review and Create
	Create a Security Group Rule for your Container Instances
	Create an Amazon ECS Service

	Creating a Classic Load Balancer
	Define Your Load Balancer
	Assign a Security Group to Your Load Balancer in a VPC
	(Optional) Configure Security Settings
	Configure Health Checks for Your EC2 Instances
	Load Balancer Instance Registration
	Tag Your Load Balancer (Optional)
	Create and Verify Your Load Balancer
	Create an Amazon ECS Service

	Service Auto Scaling
	Service Auto Scaling Required IAM Permissions
	Service Auto Scaling Concepts
	Amazon ECS Console Experience
	AWS CLI and SDK Experience
	Tutorial: Service Auto Scaling with CloudWatch Service Utilization Metrics
	Prerequisites
	Step 1: Create a Cluster and a Service
	Step 2: Configure Service Auto Scaling
	Step 3: Trigger a Scaling Activity
	Step 5: Cleaning Up

	Creating a Service
	Configuring Basic Service Parameters
	(Optional) Configuring Your Service to Use a Load Balancer
	(Optional) Configuring Your Service to Use Service Auto Scaling
	Review and Create Your Service

	Updating a Service
	Deleting a Service

	Amazon ECR Repositories
	Using Amazon ECR Images with Amazon ECS

	Amazon ECS CloudWatch Metrics
	Enabling CloudWatch Metrics
	Available Metrics and Dimensions
	Amazon ECS Metrics
	Dimensions for Amazon ECS Metrics

	Cluster Reservation
	Cluster Utilization
	Service Utilization
	Service RUNNING Task Count
	Viewing Amazon ECS Metrics
	Viewing Cluster Metrics in the Amazon ECS Console
	Viewing Service Metrics in the Amazon ECS Console
	Viewing Amazon ECS Metrics in the CloudWatch Console

	Tutorial: Scaling Container Instances with CloudWatch Alarms
	Prerequisites
	Step 1: Create a CloudWatch Alarm for a Metric
	Step 2: Create a Launch Configuration for an Auto Scaling Group
	Step 3: Create an Auto Scaling Group for your Cluster
	Step 4: Verify and Test your Auto Scaling Group
	Step 5: Cleaning Up

	Amazon ECS IAM Policies, Roles, and Permissions
	Policy Structure
	Policy Syntax
	Actions for Amazon ECS
	Amazon Resource Names for Amazon ECS
	Condition Keys for Amazon ECS
	Checking that Users Have the Required Permissions

	Supported Resource-Level Permissions for Amazon ECS API Actions
	Creating Amazon ECS IAM Policies
	Managed Policies
	Amazon ECS Managed Policies
	AmazonEC2ContainerServiceFullAccess
	AmazonEC2ContainerServiceforEC2Role
	AmazonEC2ContainerServiceRole
	AmazonEC2ContainerServiceAutoscaleRole
	AmazonEC2ContainerServiceTaskRole

	Amazon ECR Managed Policies
	AmazonEC2ContainerRegistryFullAccess
	AmazonEC2ContainerRegistryPowerUser
	AmazonEC2ContainerRegistryReadOnly

	Amazon ECS Container Instance IAM Role
	Adding Amazon S3 Read-only Access to your Container Instance Role

	Amazon ECS Service Scheduler IAM Role
	Amazon ECS Service Auto Scaling IAM Role
	Amazon EC2 Container Service Task Role
	IAM Roles for Tasks
	Benefits of Using IAM Roles for Tasks
	Enabling Task IAM Roles on your Container Instances
	Creating an IAM Role and Policy for your Tasks
	Using a Supported AWS SDK
	Specifying an IAM Role for your Tasks

	Amazon ECS IAM Policy Examples
	Amazon ECS First Run Wizard
	Clusters
	Container Instances
	Task Definitions
	Run Tasks
	Start Tasks
	List and Describe Tasks
	Create Services
	Update Services

	Using the Amazon ECS Command Line Interface
	Installing the Amazon ECS CLI
	Configuring the Amazon ECS CLI
	Amazon ECS CLI Tutorial
	Step 1: Create your Cluster
	Step 2: Create a Compose File
	Step 3: Deploy the Compose File to a Cluster
	Step 4: View the Running Containers on a Cluster
	Step 5: Scale the Tasks on a Cluster
	Step 6: Create an ECS Service from a Compose File
	Step 7: Clean Up

	ECS CLI Command Line Reference
	ecs-cli
	Description
	Syntax
	Options
	Available Subcommands

	ecs-cli configure
	Description
	Syntax
	Options
	Examples
	Example
	Example

	ecs-cli up
	Description
	Syntax
	Options
	Examples
	Example

	ecs-cli down
	Description
	Syntax
	Options
	Examples
	Example

	ecs-cli scale
	Description
	Syntax
	Options
	Examples
	Example

	ecs-cli ps
	Description
	Syntax
	Options
	Examples
	Example

	ecs-cli license
	Description
	Syntax
	Options
	Examples
	Example

	ecs-cli compose
	Description
	Syntax
	Options
	Available Subcommands
	Examples
	Example 1

	ecs-cli compose service
	Description
	Syntax
	Options
	Available Subcommands
	Examples
	Example 1
	Example 2
	Example 3

	Using the AWS CLI with Amazon ECS
	Step 1: (Optional) Create a Cluster
	Step 2: Launch an Instance with the Amazon ECS AMI
	Step 3: List Container Instances
	Step 4: Describe your Container Instance
	Step 5: Register a Task Definition
	Step 6: List Task Definitions
	Step 7: Run a Task
	Step 8: List Tasks
	Step 9: Describe the Running Task

	Amazon ECS Service Limits
	Logging Amazon ECS API Calls By Using AWS CloudTrail
	Amazon ECS Information in CloudTrail
	Understanding Amazon ECS Log File Entries

	Amazon ECS Troubleshooting
	Checking Stopped Tasks for Errors
	Service Event Messages
	Troubleshooting Service Load Balancers
	Enabling Docker Debug Output
	Amazon ECS Log File Locations
	Amazon ECS Container Agent Log
	Amazon ECS ecs-init Log
	IAM Roles for Tasks Credential Audit Log

	Amazon ECS Logs Collector
	Agent Introspection Diagnostics
	Docker Diagnostics
	List Docker Containers
	View Docker Logs
	Inspect Docker Containers

	API failures Error Messages

	AWS Glossary

