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What is SLAM?

= Estimate the pose of a robot and the map of
the environment at the same time

= SLAM is hard, because

= a map is needed for localization and
= a good pose estimate is needed for mapping

= Localization: inferring location given a
map

= Mapping: inferring a map given locations

= SLAM: learning a map and locating the
robot simultaneously



The SLAM Problem

= SLAM is a chicken-or-egg problem:
— a map is needed for localization and
— a pose estimate is needed for mapping




SLAM Applications

= SLAM is central to a range of indoor,
outdoor, in-air and underwater applications
for both manned and autonomous vehicles.

Examples:

= At home: vacuum cleaner, lawn mower

= Air: surveillance with unmanned air vehicles
= Underwater: reef monitoring

= Underground: exploration of mines

= Space: terrain mapping for localization



SLAM Applications
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Map Representations

Examples: Subway map, city map,
landmark-based map
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Maps are topological and/or metric
models of the environment



Map Representations in Robotics

= Grid maps or scans, 2d, 3d >\

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99;
Haehnel, 01; Grisetti et al., 05; ...]
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The SLAM Problem

= SLAM is considered a fundamental
problems for robots to become truly
autonomous

= Large variety of different SLAM
approaches have been developed

= The majority uses probabilistic
concepts

= History of SLAM dates back to the
mid-eighties



Feature-Based SLAM

Given:
» The robot’ s controls

Ui.. :{ul,uz,...,uk} 4
= Relative observations

Zl:k — {Zla K2y ,Zk}
Wanted:
= Map of features

m={mi,mo,...,my}

= Path of the robot
Xl:k — {mla L2,y ... 73316}



Feature-Based SLAM
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Why is SLAM a hard problem?

1. Robot path and map are both unknown

2. Errors in map and pose estimates correlated
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Why is SLAM a hard problem?

= The mapping between observations and
landmarks is unknown

= Picking wrong data associations can have
catastrophic consequences (divergence)
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SLAM: Simultaneous
Localization And Mapping

= Full SLAM:

p('xO:t 1M l Z1:t ’ulzt)

Estimates entire path and map!

= Online SLAM:
p(xt’m lZl:t’ulzt) = ff"'fp(xlzt’m lZl:t’ulzt) dxldXZ"'dxt—l

Estimates most recent pose and map!

= [Integrations (marginalization) typically

done recursively, one at a time 3



Graphical Model of Full SLAM

p(xlzt , M | Zl:t 9u1:t)




Graphical Model of Online SLAM

p(x,,m|z,,u,) =ff...fp(x1:t,m |z, Uy, ) dx, dx,..dx,_,
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Motion and Observation Model

"Observation model"
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Remember the KF Algorithm

Algorithm Kalman_filter(u,_;, 2, ;, U, 2,):

Prediction:
Et = Attut—l + Btut
> =A% A +R

1= t-1

il e\

Correction:
K =3Cl'(CzC+0)"
wo=u,+K(z,-Cu,)
3 =(-K,C)Z

O N U

Return u,,
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EKF SLAM: State representation

= Localization

3x1 pose vector Tk o Ooy  Ono
. Xk — Yk Ck - Oyz Oy  Oyob
3X3 cov. matrix 0, o gy O3
= SLAM

Landmarks simply extend the state.
Growing state vector and covariance matrix!

X R Cr CrMmy Crm, -+ Cgwm,

m; Cvur Cvy Cvom, -+ Cuym,,

x, = | M2 Cp=| Omer Crvonmy, COn, -0 Chowm,
- m, |, | Cm,r Cmpony COmom, -0 COm, |y




EKF SLAM: State representation

= Map with n landmarks: (3+2n)-dimensional
Gaussian

X w Oy Oy Oy Oy,
y xy Gyz Oy Gyll Oylz Gylzv
0 Op Oy 092 Oy, O, Oy,
Bel(x,,m)) = L, o, 0, 0y 0 0, 0,
L, Oy, Oy, Oy, Oy 0122 O,
Iy Oy, Oy, Og, 01, Oy 012N

= Can handle hundreds of dimensions
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EKF SLAM: Building the Map

Filter Cycle, Overview:

A 00 A W N =

. State prediction (odometry)

. Measurement prediction

. Observation

. Data Association  su:

. Update

. Integration of new landmarks
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EKF SLAM: Building the Map

= State Prediction Odometry:
)ACR — f(xRa u)
A Cr=F,CrFT + F,UFT

Robot-landmark cross-
covariance prediction:

Cru, = Fy Cru,

(skipping time index k)

XR Cr Crvy, Crym, -+ Cru,
m; Cvur Cumy  Cuinm, - Cuyw,

x, = | M2 C,= | Ommr Cmymy,  Cm, -+ Chpum,
Mp |k | Cvm,r Cvmomy, Cmpm, -+ COm,, ]
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EKF SLAM: Building the Map

= Measurement Prediction

a Global-to-local
frame transform #
""""" Zr = h(Xg)
[ Xp | - Cg Crvy Crm, - Crum, |
ml CMIR CMl CMle e CMan
x, = | M2 C,=| Omr Cmymy,  Cm, -0 Chpum,
my |, | Cmur Orny COmpns, -0 COm, |y
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EKF SLAM: Building the Map

= Observation (x,y)-point landmarks

- Y1 - Z1]
. 2k = o | | Zo
,‘\'\.\\ 5 I y2 ]
@* [ Rt O
| ﬂ R=| R2]

[ xp | [ Cg Crvy, Crum, - Crwm,
m;y CMIR CMl CMle e ngMn
X, — | m2 C,=| Omr Cmymy,  Cm, -0 Chpum,
k B .
. ' . Cy
i mn 1k | CMnR CM'n,Ml CMnM2 n dk
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EKF SLAM: Building the Map

= Data Association

N 4
L aa?

Xk =

[ Cg Cru,
Cum,r  Chy
Cv,r  Cryn,y

| Cv,r Cumany

Associates predicted
measurements z;,
with observation z;
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EKF SLAM: Building the Map
= Filter Update

L

Xk =

kg

%

[ Cg Cru,
Cvur Oy
Cv,r  Curyny

| Cv,r Cum,ny

The usual Kalman
filter expressions

Ky =Cy HTS?
X = X + K vk

Cy = (I — Ky, H) Cy

Crv, - Crum,
Cv,m, -+ Chrym,

CM2 * o o CM2Mn

CMnM2 o o o CMn _k
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EKF SLAM: Building the Map

= Integrating New Landmarks
State augmented by

my1 = g(XRr,%j)
Cum,., = GrCrGEL + G, R;GE

L

X —

PAY

es
o

Cr Cru,
CwmR Chw,
Cum,r Chr,

Cv,r  Cwum,m,
i CMn+1R CMn-I—lMl

Cross-covariances:

Cwm,..m; = GrCRruM;

Cum,.1r = GRrCR

Cru,

Cy M,
Cwm,

Cwm, M,

CMn_,_le ce

Crm,,
Chu, M,
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Cum
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CRMn—l—l
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EKF SLAM

Map

Correlation matrix
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EKF SLAM

Map

Correlation matrix
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EKF SLAM

Correlation matrix

Map
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EKF SLAM: Correlations Matter

= What if we neglected cross-correlations?

Ck

e
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Crm, = 03%2

Cwm; M = O2x2
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EKF SLAM: Correlations Matter

= What if we neglected cross-correlations?

-CR 0 0 |

0 Cuy, - 0

Cp= 1| . L .
0 0 CMn_k-

Crm, = 03%2

Cwm; M = O2x2

* Landmark and robot uncertainties would

pecome overly optimistic
= Data association would fail

= Multiple map entries of the same landmark

= Inconsistent map
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SLAM: Loop Closure

= Recognizing an already mapped area,
typically after a long exploration path (the
robot "closes a loop”)

= Structurally identical to data association,
but
= high levels of ambiguity
= possibly useless validation gates
= environment symmetries

= Uncertainties collapse after a loop closure
(whether the closure was correct or not)

36



SLAM: Loop Closure

= Before loop closure
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SLAM: Loop Closure

= After loop closure
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SLAM: Loop Closure

= By revisiting already mapped areas,
uncertainties in robot and landmark
estimates can be reduced

= This can be exploited when exploring an
environment for the sake of better (e.g.
more accurate) maps

= Exploration: the problem of where to
acquire new information

— See separate chapter on exploration
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KF-SLAM Properties

(Linear Case)

* The determinant of any sub-matrix of the map
covariance matrix decreases monotonically as
successive observations are made

21 = When a new land-
mark is initialized,
its uncertainty is
maximal

1 = Landmark uncer-
tainty decreases
monotonically

or L with each new
&gﬁ

1.5

Standard Deviation in X (m)

— observation
0 1 1 l 1 l %

40 50 60 70 80 90 100

Time (sec) [Digosanayake et al., 2001] 40




KF-SLAM Properties
(Linear Case)

= In the limit, the landmark estimates
become fully correlated

[Dissanayake et al., 2001] 44



KF-SLAM Properties
(Linear Case)

= In the limit, the covariance associated with
any single landmark location estimate is
determined only by the initial covariance
in the vehicle location estimate.

v
> = &
"

[Dissanayake et al., 2001] 4>




EKF SLAM Example:
Victoria Park Dataset
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Victoria Park: Data Acquisition

[courtesy by E. Nebot]
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Victoria Park: Estimated
Trajectory
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Victoria Park: Landmarks

[courtesy by E. Nebot]
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EKF SLAM Example: Tennis
Court

[courtesy by J. Leonard] 47



EKF SLAM Example: Tennis
Court

Odometry Profile of the Robot Locations

odometry

50 --- S R S R, S RS :

estimated trajectory

[courtesy by John Leonard]
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EKF SLAM Example: Line

Features
= KTH Bakery Data Set "[. 7.
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EKF-SLAM: Complexity

= Cost per step: quadratic in n, the
number of l[andmarks: O(n?)

= Total cost to build a map with n
landmarks: O(n3)

= Memory consumption: O(n?)

= Problem: becomes computationally
intractable for large maps!

= There exists variants to circumvent
these problems
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SLAM Techniques

= EKF SLAM
= FastSLAM
= Graph-based SLAM

= Topological SLAM
(mainly place recognition)

= Scan Matching / Visual Odometry
(only locally consistent maps)

= Approximations for SLAM: Local submaps,
Sparse extended information filters, Sparse
links, Thin junction tree filters, etc.
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EKF-SLAM: Summary

= The first SLAM solution

= Convergence proof for linear Gaussian
case

= Can diverge if nonlinearities are large
(and the reality is nonlinear...)

= Can deal only with a single mode
= Successful in medium-scale scenes

= Approximations exists to reduce the
computational complexity
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