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Abstract

In this paper I explore the question of how artificial life might be used to get a handle on philosophical issues
concerning the mind-body problem. I focus on questions concerning what the physical precursors were to the earliest
evolved versions of intelligent life. I discuss how cellular automata might constitute an experimental platform for the
exploration of such issues, since cellular automata offer a unified framework for the modeling of physical, biological,
and psychological processes. I discuss what it would take to implement in a cellular automaton the evolutionary
emergence of cognition from non-cognitive artificial organisms. I review work on the artificial evolution of
minimally cognitive organisms and discuss how such projects might be translated into cellular automata simulations.

1. Introduction

We know that some physical processes suffice to support mental processes. What we don't know is what general
conditions result in physical processes giving rise to mental processes. Not all physical processes give rise to mental
processes. There were periods in which there were only physical processes and not mental processes. One strong
hunch is that life is an intermediary step, that mind emerged only after life did. Questions of cosmic evolution are
difficult to settle experimentally since we are hardly in the position to start the whole universe over and see what
happens the next time around. Computer simulations allow us to circumvent this limitation, or at least simulate a
circumvention. Much work in the field of artificial life is the pursuit of such computer assisted cosmological
experimentation.

In 2000, several prominent artificial life researchers published their co-authored list of 14 "open problems in
artificial life". Of special interest to the current article is their open problem number 11: "Demonstrate the emergence
of intelligence and mind in an artificial living system" (Bedau et al., 2000 p. 365). Not only do the authors pose the
problem, but they give what strikes me as excellent advice towards its solution:

To make progress, one must have a method to detect intelligence and mind when they are present

in a system. Consciousness is the most difficult aspect of mind to detect, and initial progress is

certain to be somewhere else. A more tractable aspect of mind to detect is meaning, that is, internal

states that have semantic or representational significance for the entity and that influence the

entity’s behavior by means of their semantic content (ibid. pp 372-373).

Progress along these recommended lines toward the solution of problem 11 will also involve work of relevance to
what they identify as open problem number 10: "Develop a theory of information processing, information flow, and
information generation for evolving systems." Among their remarks on information, one in particular strikes me as
especially significant:

Firstly, there appear to be two complementary kinds of information transmission in living systems.

One is the conservative hereditary transmission of information through evolutionary time. The

other is transmission of information specified in a system’s physical environment to components of

the system, possibly mediated by the components themselves, with the concomitant possibility of a

combination of information processing and transmission. The latter is clearly also linked with the

generation of information (to be discussed last). Clarifying the range of possibilities for

information transmission, and determining which of those possibilities the biosphere exploits, is a

fundamental enquiry of artificial life (ibid., p. 372).



As I read the quoted passage, the first kind of information transmission is that which passes from parent to offspring
in virtue of reproduction. This is information transmission that traverses generations. The second kind of
information transmission is from the environment to the organism. This is something that can happen over multiple
generations as populations adapt and evolve. But the transmission of information from environment to organism can
also take place within the lifetime of a single organism and this is especially evident in creatures capable of sensory
perception and memory. Both perception and memory are amenable to information-theoretic analyses: perception
involves the transmission of a signal across space and memory involves the transmission of a signal across time.

The search for mind will be guided by the search for entities that have states with "semantic or
representational significance". The earliest instances of such states will be ones that constitute the pick-up by
organisms of information about their environments via sensory components. Slightly more sophisticated instances
will involve the retention and processing of that information over time via mechanisms of memory and computation.
These forms of information transmission and processing—the ones that constitute the earliest instances of
cognition—will emerge in the course of the evolution of organisms that are not themselves in possession of anything
cognitive, but may nonetheless be understood in informational terms as follows. The pre-cognitive forbears of
cognizers, the non-cognitive "mere" organisms from which cognitive organisms evolve, can be characterized in
terms of the transmission of information from parents to offspring via inheritance and the acquisition of novel
information at the species level. Non-cognitive or "mere" organisms are not capable of the acquisition of information
except by inheritance: novel information is acquired only at the species level over evolutionary time. In contrast,
cognitive organisms are the ones capable of the acquisition of novel information in their own lifetime.

These remarks help to suggest a method for addressing open problem number 11: develop a method for
evolving artificial organisms in ways such that we (1) are able to detect which of the various kinds of information
transmission are present in the system and (2) manipulate factors such as environments and fitness functions to
encourage the evolution of the modes of information transmission distinctive of cognitive activity. It is the goal of
this paper to explore the feasibility of implementing (1) and (2) in a cellular automaton.

Cellular Automata (CA’s) comprise a class of dynamical systems defined as (i) n-dimensional arrays of
cells in which (ii) each cell can be in one of k states at a given time t, and (iii) what state some cell Cisinattis a
function (which can be either deterministic or pseudo-random) of what states a designated set of other cells (C’s
neighborhood) were in at time t-1. CA’s are typically spatially and temporally discrete: cells are the discrete units of
space in CA’s and the smallest units of time are called “generations” or “ticks”. (However, continuous CA's have
been investigated (Wolfram, 2002)).

CA's have a long history in the study of artificial life. One of the earliest uses of CA's was von Neumann's
exploration of mechanical self-reproduction and his construction a CA pattern that implemented a universal
constructor (von Neumann, 1966). One particularly famous CA is John Horton Conway’s Game of Life (Berlekamp
et al., 1982). Life is (i) a 2-dimensional array in which (ii) each cell C can be in one of 2 states (ON or OFF), (iii) as
a deterministic function (The Rule) of the states of the eight cells diagonally and orthogonally adjacent to C.

The Rule: If at time t C has exactly two neighbors that are ON, C will be in the same state at t+1
asint. Ifattime t C has exactly three neighbors that are ON, C will be ON at time t+1. If the
number of C’s neighbors that are ON at time t is less than two or greater than three, C will be OFF
att+1.

Watching the graphical display of a computer applying The Rule reveals many interesting phenomena:

Shimmering forms pulsate, grow, or flicker out of existence. “Gliders” slide across the screen.
Life fields tend to fragment into a “constellation” of scattered geometric forms suggestive of a
Miré painting. (Poundstone 1985: 24)

The pulsating and gliding patterns observed in Life are excellent examples of macro-level phenomena that
‘emerge’ from micro-level interactions. For example, at the lowest level are the cells which change state but do not
move. At higher levels are patterns such as gliders which move. Thus is movement an emergent property of the Life
universe insofar as it is a property had by higher but not lower levels of organization. Might a cellular automaton
such as life be an illuminating basis for the study of how mind emerges from matter in our own universe? Cellular
automata are useful tools for studying physical phenomena as well as studying the emergence of higher level
properties. Perhaps some of the higher level properties that CA's can support include those considered cognitive. One
piece of evidence in favor of this hypothesis is that cellular automata are capable of sustaining universal



computation. Conway proved the existence of cellular automata capable of supporting universal computation.
(Berlekamp et al., 1982. See also Rendell 2001).

On the assumption of the computational theory of mind, we know then that cellular automata are capable of
supporting cognition. What has not been shown yet is the existence of a cellular automaton that, in the course of its
evolution, will give rise to cognition. That is, what has not been shown is the implementation of cognition in a
cellular automaton without it being built in by hand. One suspicion, based on the way things happened in our
universe, is that a cellular automaton will give rise to mind only if it first gives rise to life. While cellular automata
have been used to study artificial life, no instance yet has been put forward in which a cellular automaton that
supports life also gives rise to cognition. However, artificial life researchers do have somewhat of a handle on the
problem of how to start with simulated instances of biological phenomena and wind up via evolution by natural
selection with instances of cognitive phenomena. However, the systems that they were working with were not
cellular automata. They were not even systems whereby the biological properties were emergent from non-biological
physical properties. What I propose is to conjoin the insights of the emergence of life from cellular automata with the
insights of the emergence of cognition from artificial life and sketch out a plan for devising a system wherein the
emergence of cognition can arise—all the way from the bottom, as it were—with the emergence of life as an
intermediary. Such a cellular automaton would start off with merely physical properties which later give rise to
biological properties, which in turn give rise to psychological properties. No such cellular automaton has been
constructed nor do I have a fully worked out plan of how such a construction would proceed. Many of the main
obstacles are that we aren't quite sure what we would be looking for. How could we tell whether mind emerged or
not? What would make one cellular automaton a better choice for such a thing than another? What I hope to provide
are sketches of materials that would put us closer to such answers.

The sketch of the remainder of the paper is as follows. In section 2 I discuss projects that have involved
implementations of computation in cellular automata. I will focus on both how far these projects go toward and how
far they fall short of the goal of implementing cognition. Central to my concerns of the insufficiency of computation
for cognition is that natural instances of cognition are all embodied and embedded, that is, in the service of the
functioning and guidance of a natural organism's body in its environment. I will sketch how these concerns arose
during the history of functionalist theories of mind associated with philosophical interest in the notion of Turing
machines. In section 3 I flesh out further a characterization of cognition that more closely relates it to biological
function. To help spell this out I describe artificial life research that involves evolving simple cognitive systems from
non-cognitive replicators. In section 4 I describe attempts to emulate life in cellular automata, especially the life-like
properties of self-replication and evolution by natural selection. In section 5 I present speculations as to how the
insights from the kinds of work described in sections 3 and 4 might be combined to give rise to the emergence, in a
cellular automaton, of cognition from a biological (albeit synthetic) substrate.

2. Computation, cognition, and cellular automata

My main goals in this section are to describe why it's a big deal, but only part of the story, that cellular automata
support universal computation. I begin by addressing why it's a big deal. What follows is a very brief and biased
history of Al from Turing to connectionism to embedded, embodied, evolutionary approaches most associated with
artificial life.

In the history of cellular automata research, three key discoveries involve applications of some notion or
other of universality: von Neumann proved the existence of cellular automata capable of supporting universal
construction (von Neumann, 1966). Conway proved the existence of cellular automata capable of supporting
universal computation (Berlekamp et al., 1982). Wolfram proved the existence of universal cellular automata:
cellular automata capable of supporting emulations of any other cellular automaton (Wolfram, 2002). Of particular
interest to the current section is Conway's result. It will be useful first to sketch the significance of Turing's notion of
computation for the study of cognition.

There's nothing new to the suggestion that people are nothing but machines and further, that a crucial step in
understanding how we are machines will involve construing reasoning as the effecting of a mechanical procedure.
Such views are at least as old as Hobbes' Leviathan. What is crucial about Turing's contribution is not simply the
suggestion that cognition may be regarded as a mechanical, but in his suggestion of how such a mechanization can
be subjected to a mathematical treatment. This is crucial because, as Rosenthal points out, "Post-Galilean physics
demands that all physical properties be described in mathematical terms" (2006, p. 12). Alan Turing's contributions



were monumental in fleshing out Hobbes' suggestion in mathematical terms. Turing's 1950 "Computing machinery
and intelligence" advanced the proposition that a suitably programmed digital computer could think. However,
Turing's crucial link to a mathematization of cognition via computation was his explication of what computation
consists in in his 1936 "On Computable Numbers, with an Application to the Entscheidungsproblem". Turing's
suggestion constituted a way of thinking of mathematical answers being arrived at in terms of collections of
mechanistic steps or effective procedures. Famously, Turing spelled this out in terms of an abstraction referred to as
a 'Turing machine'. A Turing machine consists in the machine proper which can be in one of a finite number of states
and an infinite tape of cells upon which symbols may be written and from which symbols may be read. The machine
goes into various states including reading a symbol, writing a symbol and shifting to the left or right as specified by
the machine's look-up table which contains specifications of the transition functions from state to state. Different
Turing machines are distinguished by their different look-up tables. Universal Turing machines have look-up tables
that allow them to emulate any other Turing machine. Part of what makes such universality possible is the possibility
of encoding on a Turing machine's tape a representation of some other Turing machine's look-up table.

While mathematical interest in Turing machines involves the way in which the notion of computing may be
defined in terms of the actions of Turing machines, cognitive scientific interest in Turing machines involves the way
in which the notion of cognition, or more broadly, the having of mental states, may be defined in mechanistic terms.
This has been especially interesting to cognitive scientists and philosophers of mind who advocate the view of the
mind known as functionalism. One early philosophical treatment of minds in terms of the kinds of machines Turing
hypothesized was due to Putnam (1967) and merits quoting at some length. Putnam proposed

... the hypothesis that pain, or the state of being in pain, is a functional state of a whole

organism....I shall assume the notion of a Probabilistic Automaton has been generalized to allow

for "sensory inputs," and "motor outputs"—that is, the Machine Table specifies, for every possible

combination of a "state" and a complete set of "sensory inputs," an "instruction" which determines

the probability of the next "state," and also the probabilities of the "motor outputs." (This replaces

the idea of the Machine as printing on a tape.) I shall also assume that the physical realization of

the sense organs responsible for the various inputs, and of the motor organs, is specified, but that

the "states" and the "inputs" themselves are, as usual, specified only "implicitly"--i.e., by the set of

transition probabilities given by the Machine Table....A Description of S where S is a system, is

any true statement to the effect that S possesses distinct states S1, S2 ..., Sn which are related to

one another and to the motor outputs and sensory inputs by the transition probabilities given in

such-and-such a Machine Table (p. 199).

The question arises as to what machine tables suffice to specify minds, for surely not just any finite state
machine suffices to implement cognition. Thus is computation insufficient for cognition since not just any
computation will implement cognition. Questions arise as to what constraints on computation are needed to
implement cognitions. We get a prominent set of answers to these sorts of questions from so-called analytic
functionalists. Of course, analytical functionalists are not without there own problems, but it will be useful to briefly
review their place in the history of these discussions. What makes analytical functionalists functionalists is their
belief that what makes something a mental state is the role that it plays in a complex economy of causal interactions.
What makes analytical functionalists analytical is their belief that which roles are essential is to be discovered by a
consultation of common sense knowledge about mental states. Thus, as Braddon-Mitchell and Jackson (2000) write:

We distinguish the roles that matter for having a mind, and matter for being in one or another
mental state, by drawing on what is common knowledge about mental states. We extract the crucial
functional roles from the huge collection of what is pretty much common knowledge about pains,
itches, beliefs, desires, intentions, and so on and so forth, focusing on what is most central to our
conception of what a pain is, what a belief is, what it is to desire beer and all the rest. And we can
group the common knowledge into the three clauses distinctive of the functionalist approach. The
input clauses will contain sentences like 'Bodily damage causes pain' and 'Chairs in front of people
in daylight cause perceptions as of chairs'; the output clauses will contain sentences like 'Pain
causes bodily movement that relieves the pain and minimizes damage' and 'Desire for beer causes
behaviour that leads to beer consumption'; the internal clauses will contain sentences like
'Perception as of beer in front of one typically causes belief in beer in front of one' and 'Belief that
if p then ¢ typically causes belief that ¢ on learning p'.



What then is a given mental state M, according to the common sense functionalist story? It is the
state that plays the M role in the network of interconnections delivered by common knowledge
about the mind. The network in effect identifies a role for each mental state, and thus, according to
it, a mental state is simply the state that occupies the role definitive of it (pp 45-47).

There are three serious related problems that arise for analytical functionalism. The first problem is that
analytical functionalism appears to be committed to the existence of analytical truths and various philosophers
inspired by Quine have been skeptical of analytical truths. As Prinz (2006) succinctly sums up this Quinean
skepticism, the objection is that "[r]Joughly, definitions of analyticity are either circular because they invoke semantic
concepts that presuppose analyticity, or they are epistemically implausible, because they presuppose a notion of
unrevisability that cannot be reconciled with the holistic nature of confirmation" (p. 92). There are two main ways in
which analytic functionalism seems saddled with belief in analytic truths. The first concerns the nature of
psychological state types such as beliefs and desires. Analytical functionalism is committed to there being analytic
truths concerning the necessary and sufficient conditions for being a belief. The second concerns the meaning of
mental representations. The most natural theory of meaning for the analytic functionalist to adopt is that what makes
one's belief about, say, cows, have the meaning that it does, is the causal relations it bears to all other belief states.
However, it is likely that no two people have all the same beliefs about cows. Thus, on pain of asserting that no one
means the same thing when they think about cows, the functionalist cannot allow that every belief one has about
cows affects the meaning of one's cow thoughts. In order to allow that people with divergent beliefs about cows can
both share the concept of cows, that is, both think about the same things when they think about cows, the analytic
functionalist seems forced to draw a distinction between analytic and synthetic beliefs, eg., a distinction between
beliefs about cows that are constitutive of cow concepts and beliefs that are not. But if Quinean skepticism about the
analytic/synthetic distinction is correct, no such distinction is forthcoming.

The second problem arises from worries about how minds are implemented in brains. Many so-called
connectionists may be seen to agree with analytical functionalists that mental states are defined in terms of networks.
However, many connectionists may object that when one looks to neural network implementations of cognitive
functions, it is not clear that the sets of nodes and relations postulated by common sense psychology will map on to
the nodes and relations postulated by a connectionist architecture (see, e.g. Ramsey, et al., 1991). The question arises
of whether folk-psychological states will smoothly reduce to brain states or be eliminated in favor of them. (I will not
discuss further the third option that folk-psychological states concern a domain autonomous from brainstates.)

A third problem arises from worries about the evolution of cognition. If a mind just is whatever the
collection of folk psychological platitudes are true of, then there seem not to be any simple minds, for a so called
simple mind would be something that the folk psychological platitudes were only partially true of in the sense that
only some proper subset of the platitudes were true of it. However a very plausible proposal for how our minds
evolved is from simpler minds. It counts against a theory that it rules out a priori the existence of simpler minds than
ours for it leaves utterly mysterious what the evolutionary forebears of our minds were. This third problem is
especially pertinent to artificial life researchers and the 11" problem.

One promising solution to these three problems involves appreciating a certain view concerning how
information-bearing or representational states are implemented in neural networks and how similarities between
states in distinct networks may be measured. Models of neural networks frequently involve three kinds of
interconnected neurons: input neurons, output neurons, and neurons intermediate between inputs and outputs
sometimes referred to as "interneurons” or "hidden-neurons". These three kinds of neurons comprise three "layers" of
a network: the input layer, the hidden layer, and the output layer. Each neuron can be, at any given time, one of
several states of activation. The state of activation of a given neuron is determined in part by the states of activations
of neurons connected to it. Connections between neurons may have varying weights which determine how much the
activation of one neuron can influence the other. Each neuron has a transition function that determines how its state
is to depend on the states of its neighbors, for example, the transition function may be a linear function of the
weighted sums of the activations of neighboring neurons. Learning in neural networks is typically modeled by
procedures for changing the connection weights. States of a network may be modeled by state spaces wherein, for
example, each dimension of the space corresponds to the possible values of a single hidden neuron. Each point in
that space is specified by an ordered n-tuple or vector. A network's activation vector in response to an input may be
regarded as its representation of that input. A state of hidden-unit activation for a three-unit hidden layer is a point in
a three-dimensional vector-space. A cluster of points may be regarded as a concept (Churchland 1989).

Laakso and Cottrell (1999, 2000) propose a method whereby representations in distinct networks may be
quantified with respect to their similarity. Such a similarity measure may apply even in cases where the networks in
question differ with respect to their numbers of hidden units and thus the number of dimensions of their respective



vector spaces. In brief the technique involves first assessing the distances between various vectors within a single
network and second measuring correlations between relative distances between points in one network and points in
another. Points in distinct networks are highly similar if their distinct relative distances are highly correlated.

Regarding the analytic/synthetic distinction related worries, the Laakso and Cottrell technique allows one to
bypass attributions of literally identical representations to distinct individuals and make do instead with objective
measures of degrees of similarity between the representations of different individuals. Thus if I believe that a cow
once ate my bother's hat and you have no such belief, we may nonetheless have measurably similar cow concepts.
This is no less true of our psychological concepts such as our concepts of belief and concepts of desire. The so-called
common-sense platitudes of folk psychology so important to analytic functionalism may very well diverge from folk
to folk and the best we can say is that each person's divergent beliefs about beliefs may be similar. And similarity
measures are not restricted to the concepts that constitute various folk theories, we may additionally make
meaningful comparisons between various folk theories and various scientific theories. This last maneuver allows us
to retain one of the key insights of analytic functionalism mentioned earlier: that we are in need of some kind of
answer to the question 'how do you know that your theory is a theory of belief?" The answer will be along the lines
of "because what I'm talking about is similar to beliefs."

Regarding the question of simple minds, if there are no analytic truths, then there is no a priori basis (if
any) for drawing a boundary between the systems that are genuine minds and those that are not. Similarity
measurements between simple minds and human minds would form the basis for a (mind-body?) continuum along
which to position various natural and artificial instances. How useful for understanding human minds will be the
study of systems far away on the continuum? We cannot know a priori the answer to such a question.

The crucial aspects of the above discussion concern (i) how analytic functionalism helped to connect the
crucial notions from Turing’s work to a philosophical account of the nature of mental states and (ii) the remaining
problems left unsolved by analytic functionalism cry out for evolved and embodied solutions.

We are in a position now to more fruitfully return to the main questions of this paper concerning the
implementation of cognition in a cellular automaton. We are also in a position, now, to see why, in spite of being a
big deal, the demonstration of universal computation in cellular automata is only a proper part of the story of how to
implement cognition. The earliest evolved minds probably won't themselves be universal Turing machines or neural
networks equivalent to universal Turing machines. While there have been successful implementations of
computation in cellular automata, they have shown at best, necessary conditions for minds not sufficient ones being
implemented in cellular automata. As I will flesh out in further detail in the next section, the quest for cognitive
cellular automata needs to be informed by recognition of the importance of embodiment and evolution.

3. Features of early natural minds and their artificial analogs

Minds arise naturally only after organisms have. While some have attributed mentality to organisms as simple as
bacteria and paramecia, the less controversial examples of early cognizers were not only multicellular but in
possession of a nervous system. The earliest nervous systems have very little going on between input and output. The
evolution of nervous systems has witnessed an increase in the complexity of what goes on in between inputs and
outputs. There is, however, a basic commonality between the simplest and the most complex organisms and it has to
do with the nature of their sensory motor periphery. In all of these organisms, environmental energies must be
encoded into sensory information for later use by central systems. Further, central results must be conveyed to
behavioral outputs whereby motor commands are decoded by motor effectors. In both cases—from input to central
and from central to output—we have a code that can be accounted for in terms of information.

The mathematical notions of information developed by Claude Shannon in his mathematical theory of
communication may be especially useful in detecting the emergence of information-using cognitive systems in a
cellular automaton. It will be useful to briefly review some of Shannon's core concepts. The first is that of the self-
information or surprisal of a message. If we view a message as one of several possible events then the more
improbable the event is, the more self-information (or surprisal) its occurrence has. The related notion of entropy
may be defined as the average self-information of messages in an ensemble of possible messages. Entropy may thus
be viewed as an amount of uncertainty that one of several messages will occur. Mutual information or
transinformation of X relative to Y is a measure of how much information about Y is carried by X. Mutual
information between X and Y may be defined as the sum of the entropy of X and the entropy of Y minus the joint
entropy of X and Y. The capacity of an information channel can be expressed as the maximum transinformation
between channel input and output.



Transinformation is of interest to the current discussion for two reasons. The first is that sensory and motor
systems may be regarded as information channels. The second is that Langton (1990) used average transinformation
as a measure of complexity in a cellular automaton. Cellular automata with high average transinformation
correspond to cellular automata that Wolfram labels as class IV automata (automata that exhibit a high degree of
complexity as opposed to either quiescence or noise).

Greater cognitive complexity is due not only to greater amounts of transinformation in input and output
channels. More complex nervous systems can be characterized in terms of advancements of memory. For simplest
organisms a given stimulus will eventuate in a given response. However, when memory is on the scene, a given
stimulus might result in different responses depending on what past stimuli have impacted on memory. Memory too
is amenable to an informational analysis, as memory may be regarded as the transmission of a signal through time
(Feynman 1989).

Much of the mind can be considered as information flow: perception, intention, memory. But what about
thought? A natural suggestion for how to model thought scientifically is as computation. What does computation
have to do with information? In some circles "computation" and "information processing" are near synonymous, but
this equivalence is not particularly illuminating. However, much of the connection between information and
computation can be spelled out when we consider the Turing machine abstraction. There is the memory, which can
be explicated as above in terms of information. There is the reading and the writing, both of which are informational.
There is the execution of the program, which itself is informational, there is a flow of information from the
commands to their execution.

Perhaps a more important connection for the current paper is the connection between information and the
evolution of the earliest minds. The evolution of the earliest minds will involve the evolution of the first organisms
able to pick up and utilize information. One of the simplest adaptive behaviors that is nonetheless sufficiently
complex to be regarded as cognitive is taxis: the movement toward or away from a stimulus. Positive phototaxis and
negative phototaxis—the movement toward and away from light, respectively—are perhaps too simple to merit
regarding as examples of visually guided action. Nonetheless, the accomplishment of such taxes does involve the
transduction and processing of information.

To appreciate the informational demands that taxes pose on organisms, it will be illuminating to consider
some examples of how real organisms accomplish positive chemotaxis. Positive chemotaxis is often the way in
which organisms are guided toward a nutrient source. Positive chemotaxis involves navigating a chemical gradient
and the motion problem a motile creature positioned somewhere in the gradient must solve is how to orient its body
in the direction of the greatest concentration. A creature with multiple sensors located on different parts of its body is
in a position to solve this problem by comparing the activity in the different sensors. Level of activity in a single
sensor may be assumed to correspond to the level of chemical concentration at that location. If so, then greater
activity on the right than on the left indicates that orienting up the gradient will be accomplished by turning to the
right. However, the demands of chemotaxis are a bit more daunting for creatures that are restricted to a single sensor
or, what amounts to effectively the same thing, have multiple sensors insufficiently far apart to register any
appreciable differences in the local chemical concentration. This latter situation describes the position that the
chemotactic bacterium E. coli is in. While it has multiple sensors, the sensors are insufficiently far apart and the
gradients navigated too diffuse for there to be any significant difference in the activation of the different sensors. One
natural hypothesis for how to solve the problem of single-sensor chemotaxis is to utilize some sort of memory. If a
creature moves to a location that results in a different level of activity in the sensor, and a memory record is stored of
the previous sensor activity, then the creature is in a position to compare current to past sensor activity and compute
whether its motions have been taking it up the gradient. Koshland (1977) has tested the hypothesis that E. coli make
use of memory.

E. coli move by alternating between "runs" and "tumbles". During runs, their various cilia curl around each
other forming an impromptu tail allowing for relatively straight motion. During tumbles, the cilia separate and point
out it various directions making the motion of the bacterium much more erratic. When the bacterium is moving from
a region of low concentration to high, this increases the likelihood that it will go into run mode and when moving
from high to low this increases the likelihood of going into tumble mode.

Koshland tested the hypothesis that the bacteria were utilizing memory to ascertain the change in sensor
activity. The researcher reasoned that if the bacterium were not utilizing memory then its reaction to a chemical
solution with a uniform concentration would not differ as a function of what the concentration was of the solution it
was in previously. Conversely, if memory is employed then a given concentration would result in a different
behavior if it was higher than a previous concentration than if it is lower. More specifically, the bacterium if moved
from low to high, would be more likely to go into run mode and, if moved from high to low, would be more likely to
go into tumble mode. This is indeed what the experimenters found.



Single celled organisms are not the only organisms that perform what is effectively single-sensor
chemotaxis. The nematode C. Elegans is in a similar position. C. elegans have a pair of sensors on their head and
another pair on their tail. However, C. elegans can perform positive chemotaxis even when the tail sensors are
removed. Further, when navigating chemical gradients on the flat surfaces of Petri dishes, the worms lie on their
side, so the pair of head sensors is perpendicular to the gradient. And even if they weren't perpendicular to the
gradient, the head sensors are too close together for any appreciable difference in activity to be utilized (Feree and
Lockery 1999).

How might C. elegans navigate their gradients? As with E. coli, the suggestion that they are implementing
some kind of memory mechanism is a natural one. One possible implementation of memory would involve recurrent
neural networks (networks that have feed-back as well as feed-forward connections). Recurrence allows for a kind of
memory in a neural network since it allows for neural activation to remain even after the input activation is no longer
present. Anatomical studies of the networks that mediate between C. elegans sensors and muscles show evidence of
recurrence (Dunn et al., 2004). Another neural implementation of memory would involve a delay circuit.

In several publications (Mandik 2003, Mandik 2002, Mandik et al in press) I describe artificial life
experiments I have conducted concerning the kinds of positive chemotaxis exhibited by the real world creatures
described above. The simulations used the Framsticks 3-D Artificial Life software (Komosinski 2000) to show the
evolvability in an artificial life simulation of minimally cognitive creatures. The simulations reviewed below involve
the implementations of memory in a neural network: a feed-forward implementation and a recurrent implementation.
The feed-forward implementation involves passing a sensory signal through two channels one of which delays the
signal. The two channels allow for a comparison of sensory signals concerning concentrations at two different times,
the delayed signal constituting a memory of a past concentration. The second, recurrent, implementation takes
advantage of the way in which signals in a recurrent network may cycle through the network triggering a series of
oscillating activations in the neurons that eventually decay and thus constitute a form of short-term memory.

In Mandik (2003) the artificial life simulations of the delay-based memory implementations was explored.
A population of creatures was created and evolution was allowed to act upon certain aspects of the creatures' nervous
systems. More specifically, the creatures' bodies and neural topologies were set by hand with initial weights of neural
connections also set. Evolution was allowed to work only on neural weights by allowing mutations to occur only in
the neural weights. In the experiments involving memory described in Mandik (2003), a population of walking
creatures was designed and then subjected to evolutionary pressures to see if the creatures could evolve to find food
by positive chemotaxis. The creatures' environments had various food sources scattered about and each creature was
born with a finite initial store of energy which, if not replenished with food, would reach zero over time and thus kill
the creature. Creatures had a single sensor and a steering muscle which, when flexed, could alternately steer the
creature to the left or right. One group of creatures had a single feed forward connection leading from the sensor to
the steering muscle. Another group had an additional route from the sensor to the steering muscle which involved
passing the sensory signal through a chain of neurons thus delaying the arrival of the signal at the steering muscle.
Both groups were subjected to evolution by Darwinian selection whereby fitness was defined in terms of total
horizontal distance traversed in the lifetime of the creature. Such a fitness function was picked to encourage the
evolution of creatures that not only move, but extend their life spans by moving toward food. Populations in the two
groups initially were equally poor at finding food, but after 200 million steps of running the program, the creatures
with memory buffers showed a fitness significantly superior to the creatures without.

Mandik et al. (forthcoming) explored similar artificial life simulations but with recurrent instead of feed-
forward implementations of memory. In these experiments creatures in three different groups were compared. In the
first group, creatures had only feed-forward connections from a single sensor to steering muscles. In the second
group there were both feed-forward and feed back connections thus implementing recurrence. In the third group the
creatures had no sensors. As in the previous simulations, creatures' morphologies and neural topologies were set by
hand and mutations were allowed to only the connection weights. Fitness was once again defined as lifetime
horizontal distance. The three groups initially had similarly poor performance but over time (240 million steps) one
group—the recurrence group—rvastly out performed the other groups. Especially surprising was the finding that the
single-sensor feed-forward group fared as poorly as the creatures with no sensors as all. Having a single sensor
without a memory mechanism conferred no advantages over being blind. As in the previous experiment, having
information about past as well as present local concentration allows the artificial life-forms to solve the problem
posed by single-sensor chemotaxis.

It is worth discussing how far the above simulations go in answering the open question # 11 concerning the
demonstration of "the emergence of intelligence and mind in an artificial living system": First off, the initial
populations in the Framsticks simulations were not in the possession of either perceptual or mnemonic sensory states.
They were, however, both initially and throughout the duration of the simulation, capable of evolution by natural



selection and thus arguably satisfied conditions for being a living system. Through evolution some of the creatures
acquired the ability to use not only information about the current chemical concentration but also the past. The
utilization of this information constitutes the computation of a food-increasing heading for the creature. What merits
the ascription of such mental states to the creature? The answer is the similarity of the theory that explains their
behavior to the theory that explains the behavior of humans and non-humans solving a similar problem (Mandik et
al., forthcoming).

As already mentioned, we can contrast life and mind in terms of information transmission. The virtue of the
informational view for the current project is that it paves the way for the automatic detection of minds in a cellular
automaton. If these insights are to guide the construction of cognitive cellular automata, it will be helpful to look at
work that has implemented life in cellular automata.

4. Life in cellular automata

This is neither the time nor place to attempt to settle controversies concerning what all and only living organisms
have in common. This issue can be sidestepped somewhat by asking not what properties are criterial of living
organisms, but what properties were crucially had by the first instances of life. To ask these sorts of questions is not
necessarily to ask easy questions, but it does focus things in a manner useful to the current discussion. While the
question of the origin of life from non-living matter is vexing indeed, there has been work done on the matter.
Theories of the origin of life from non-living matter—abiogenesis—fall roughly into the following groups:
reproduction first, metabolism first, and both reproduction and metabolism at the same time. According to Dyson
(1999), much attention has been paid to the reproduction-first approach because reproduction is so much easier to
define than metabolism. This sort of bias is no less present among researchers in artificial life, and many artificial life
projects simulate self-reproduction without bothering to simulate metabolism. In the current paper I will side with the
reproduction group and while this may ultimately not be the correct theory of abiogenesis (who's in a position to
know at this stage of the game?) it will be instructive to see how far the project of cognitive cellular automata can go
if the initial assumptions side with the reproduction-first view. It will suffice, then, for the purposes of this paper, to
characterize as living any systems capable of self-reproduction. Especially interesting examples of self-reproducing
systems will be those with just a right amount of slop in the system to give rise to evolution by natural selection,
since Darwinian evolution occurs wherever the mechanisms of the variable inheritance of fitness are in place.

The earliest work concerning simulations of life in cellular automata tackled life's capacity for self-
reproduction. There was a time when self-reproduction seemed especially difficult for any purely mechanical system
to achieve and it was posited that possession of élan vital was necessary to pull off such a fancy trick. As mentioned
previously, von Neumann (1966) constructed a CA that demonstrated the capacity for mechanical self-reproduction.
Von Neumann constructed a cellular automaton and a pattern within it that constituted a universal constructor. It
could construct any pattern possible in that CA space, including itself. The resulting constructor was quite complex
and subsequent cellular automata researchers sought implementations of self-reproduction that were neither so
complex nor universal constructors. One early success along these lines was the work of Langton (1984). Langton's
self-reproducing patterns were implemented in a cellular automaton wherein each cell had eight possible states and
each cell had five neighbors. The self-reproducing pattern looked like a rectilinear lower-case "q", the tail of which
would lengthen over time. When the length of the growing tail advanced in an increment equal to the width of the
body—the square loop—the tail's growth would proceed along a right angled bend until another such increment of
length was achieved. After three such bends and four new sides were created, the result is a loop similar to the body
of the original pattern. The new loop then grows its own tail and the tail of the parent loop dissolves. The parent
loop, after birthing its sole offspring, goes into a quiescent state and remains as subsequent generations spread into
the cellular automaton space with one offspring each. In each of these patterns, the tail and the sides of the loop are a
three-layer structure consisting of two outer sheath layers and one inner core layer. The cells in the sheath layer are
in a single state whereas cells in the core layer change and different states "move" around the loop and down the tail.
Different circulating core states have different functions, of particular interest are two different gene states: one for
straight tail growth and one for right-angled turning. The gene signal states circulate around the core of the loop and
down the length of the tail. When a gene signal arrives at the end of the tail, the gene signal triggers an increment of
tail growth along either the straight path or at a right angle. What is of special note concerning the gene signals is
how they constitute a certain kind of signaling or information flow within the organism. However this flow of
information is only from the inner to the outer and from parent to offspring. Individuals do not have the capacity to
pick up information from the environment. Nor does the population as a whole have the capacity to pick up



information, since while Langton's loops implement reproduction, they do not constitute an implementation of
evolution. However, the researcher Sayama modified Langton's loops to create patterns capable of evolution by
natural selection.

The first innovation Sayama introduced was to create a state designated as a "dissolving state" that could
travel along the structure of a pattern and dissolve any adjacent structures. The dissolving state allowed for a kind of
death. The second innovation Sayama introduced was to modify the reproductive mechanism so that not only one
kind of pattern was a viable self-reproducer. Thus different sized patterns could compete for space. These two
innovations allowed for a kind of natural selection, but this did not constitute evolution because the variation did not
arise spontaneously. Sayama's third innovation was to modify the cellular automaton further so as to allow for the
appearance of variation over the natural course of the running of the simulation. With these three modifications to
Langton's loop implemented, evolution can be demonstrated in a cellular automaton space that starts off with a single
loop. As Sayama describes such a simulation:

At first an ancestral loop is set alone in the center of the space. When simulation begins, the

ancestral loop soon proliferates to all the space. Then, self-reproduction and structural dissolution

of loops begin to happen frequently in the space, which produce various kinds of variants such as

sterile loops, loops with two arms, loops not self-reproducing but reproducing smaller offsprings

than themselves, and so forth. A self-reproducing loop of smaller species also emerges by accident

from this melee, and once it appears, it is naturally selected to proliferate in the space, due to its

quicker self-reproductive ability. Such an evolutionary process develops in the space as time

proceeds, and eventually, the whole space becomes filled with loops of species 4, which is the

strongest species in this world.

I turn now to explore the question of how far such a cellular automaton takes us in the quest for a cognitive cellular
automaton.

5. Evolving mind from life

The evolving artificial creatures in simulations such as Sayama's exhibit no adaptability in a single life time. Contrast
these against simple motile organisms that must change something about themselves, namely their position, in order
to go to where there is food and/or to where there are no predators. One of the most simple of such adaptive
behaviors is positive chemotaxis. This sort of adaptability demands the pick-up of information by an organism in its
lifetime.

Langton's and Sayama's loops both involve a kind of representation or information processing but not the
kind that constitutes the pick-up of information by an individual in its lifetime. In both Langton's and Sayama's
loops, genes code for aspects of loop growth and reproduction but the flow of information is from the inside out,
whereas pick-up of environmental information is from the outside in. Sayama's evoloops potentially involve pickup
of environmental information, but only at the species level over evolutionary time, not at the level of an individual
organism.

The question naturally arises as to what modifications to Sayama's loops would suffice to implement
sensory and/or mnemonic aspects of mentality. In order for Sayama's loops to exhibit the above-mentioned kind of
adaptability, there would have to be some sort of point to it for the organism. Perhaps there would be items in the
environment that were required for reproduction or needed avoiding on pain of death. Sayama himself provides some
possible mechanisms for encouraging adaptation, although he is not explicitly concerned with the questions of
cognition. In subsequent work with the evoloops, Sayama (2004) explores modifications of the evoloops that would
constitute mechanisms of self-protection of a loop from other loops. Sayama explores three potential strategies:

Shielded: the attacked loop generates a dissolving state ...at the tip of the attacker's arm. Since the
dissolving state usually becomes canceled by the gene flow in the arm, most likely the attacker
suffers from only a partial dissolution of the tip of its arm, and the same attack occurs repeatedly.
Deflecting: The attacked loop generates an umbilical cord dissolver ... at the tip of the attacker's
arm. The umbilical cord dissolver goes back to the attacker, removing the entire arm, and then
deceives the attacker into believing that self-replication has been completed. The attacker then
starts another attempt of self-replication in a different direction rotated by 90 degrees
counterclockwise.
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Poisoning: The attacked loop generates a poison ... at the tip of the attacker's arm. The poison

works as a kind of dissolving state with extra strength that will never be canceled until it deletes

the whole contiguous structure. This may be one of the most radical and merciless mechanisms of

self-protection (p.85).

Two remarks are especially in order. The first concerns Sayama's attribution of beliefs to the deflecting loops. The
second concerns how all three strategies employ an attack detector state. Regarding the belief attribution it is
especially pertinent to the current paper whether it is in fact true since if it is, then Sayama has thereby produced a
cognitive cellular automaton. The belief in question is the belief that "self-replication has been completed". This is
allegedly a false belief had by an attacker as the result of being tricked by a loop employing the deflecting strategy of
self-protection. If an organism is capable of having a belief that "self-replication has been completed" then it makes
sense to ask what kind of belief it is. Is it a perceptual belief? An introspective belief? A volitional belief? I take it
that the most plausible candidate is perceptual belief. If the loop has a belief at all, then it has a perceptual belief.
However, the having of a perceptual belief has certain necessary conditions that the loop fails to satisfy. In particular,
a necessary condition on having my the perceptual belief that P--that is, a perceptual belief concerning some state of
affairs, P--is that I have a state S that is at one end of an information channel which has at the other end P. Further, S
must carry the information that P and be caused by P. Thus if I am to have the perception that there is a fly on the far
side of the room, then I must have a state that carries the information that there is a fly. Lacking the ability to have
such a state I might come to believe that there's a fly, but that belief certainly cannot be a perceptual belief. In other
words, perceivers of flies must be capable of detecting flies. Failing an ability to detect flies, one fails to perceive
them and likewise fails to have perceptual beliefs about them. Do Sayama's loops have any capacity to detect the
termination of their self-reproductive procedures? It seems not, since they have no detector states that carry the
information that self-replication has terminated. They thus fail to satisfy a crucial condition for the having of
perceptual belief. And on the assumption that perceptual beliefs were the only plausible candidates, then we can
conclude that insofar as Sayama's attribution was literal, it is literally false. However, just because Sayama's loops do
not have detector states for replication termination, they are not devoid of detector states altogether. As previously
mentioned, they have attack detecting states. The question arises as to how far the attack detection schemes in
Sayama's loops go toward the evolution of cognition. One thing to note is that the self-defensive strategies triggered
by the attack detection state, as well as the attack detection state itself, were designed by Sayama and are not
products of evolution in the loops.

It would be interesting if modifications to Sayama's rules could result in the evolutionary emergence of self-
protection. One potentially crucial difference between the detection mechanisms in Sayama's loops and those of the
Framsticks organisms described earlier is that the latter have states that vary along an ordering relation (lower to
higher neural activation) which is causally correlated with environmental magnitudes that themselves vary along an
ordering relation (e.g. higher-lower chemical concentration). Because of the preexisting causally correlated
isomorphisms between neural activations and chemical concentration, when an organism acquires the capacity to
represent any concentration it simultaneously acquires the capacity to acquire representations of many
concentrations. Thus the existence of causally correlated isomorphisms between various environmental states and
possible physiological states allows for the evolutionary acquisition of many representations via only small genotype
changes.

If an evolutionary cellular automaton is to implement the emergence of cognition along the sorts of lines
suggested above, then future explorations would do well to include implementations of sufficient environmental
complexity to allow for the possibility of causal correlations between ordered states of evolving organisms and
ordered states of their environments. Such inclusions are likely to provide a base from which minimally cognitive
creatures can emerge and constitute artificial individuals capable of the acquisition of novel information in their
individual lifetimes.
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