
February 2016.

�e Plain Person’s Guide to Plain Text Social Science*

Kieran Healy
Duke University
kjhealy@soc.duke.edu

Abstract: As a beginning graduate student in the social sciences, what sort of so�ware should you
use to do your work? More importantly, what principles should guide your choices? �is article
o�ers some answers. �e short version is: you should use tools that give you more control over
the process of data analysis and writing. I recommend you write prose and code using a good
text editor; analyze quantitative data with R or Stata; minimize error by storing your work in a
simple format (plain text is best), and make a habit of documenting what you’ve done. For data
analysis, consider using a format like Rmarkdown and tools like Knitr to make your work more
easily reproducible for your future self. Use Pandoc to turn your plain-text documents into PDF,
HTML, or Word �les to share with others. Keep your projects in a version control system. Back
everything up regularly. Make your computer work for you by automating as many of these steps
as you can. To help you get started, I brie�y discuss a drop-in set of useful defaults to get started
with Emacs (a powerful, free text-editor). I share some templates and style �les that can get you
quickly from plain text to various output formats. And I point to several alternatives, because no
humane person should recommend Emacs without presenting some other options as well.

introduction
You can do productive, maintainable and reproducible work with all kinds of di�erent

so�ware set-ups. �is is the main reason I don’t go around encouraging everyone

to convert to the applications I use. (My rule is that I don’t try to persuade anyone

to switch if I can’t commit to o�ering them technical support during and a�er their

*�is is an updated and expanded version of ‘Choosing Your Work�ow Applications’ (2013). �e
main di�erence is an increased emphasis on Rmarkdown, knitr, and pandoc. �e .md source for this
�le is available at https://github.com/kjhealy/workflow-paper. It is also available as a website, at
http://plain-text.co.

1

kjhealy@soc.duke.edu
https://github.com/kjhealy/workflow-paper
http://plain-text.co

2

move.) So this discussion is not geared toward convincing you there is One True Way

to organize things. I do think, however, that if you’re in the early phase of your career

as a graduate student in, say, Sociology, or Economics, or Political Science, you should

give some thought to how you’re going to organize and manage your work.1 �is is so

for two reasons. First, the transition to graduate school is a good time to make changes.

Early on, there’s less inertia and cost associated with switching things around than

there will be later. Second, in the social sciences, text and data management skills are

usually not taught to students explicitly. �is means that you may end up adopting

the practices of your advisor or mentor, continue to use what you are taught in your

methods classes, or just copy whatever your peers are doing. Following these paths

may lead you to an arrangement that you will be happy with. But maybe not. It’s worth

looking at the options.

Two remarks at the outset. First, because this discussion is aimed at beginning

students, some readers may �nd much with which they are already familiar. Even so,

some sections may still be of interest, as I have tried to keep the so�ware references

current. Second, although in what follows I advocate you take a look at several applica-

tions in particular, it’s not really about the gadgets or utilities. �e Zen of Organization

is not to be found in Fancy So�ware. Nor shall the true path of Getting�ings Done

be revealed to you through the purchase of a nice Moleskine Notebook. Instead, it lies

within—unfortunately.

two revolutions in computing
When talking to undergraduates or graduate students on this topic, and when teaching

classes that use these tools, I increasingly run into the problem that it’s hard to get

started without backing up a bit �rst in order to talk about how the computer they

are using works. I think the reason for this is the rise of the �at-screen, touch-based

model of computing, most obviously on phones and then very secondarily on things

like Apple’s iPad or Microso�’s Surface tablet. Now, most people who need to write

long documents (like papers or dissertations) or work in an involved way with data

do not use a tablet as their primary device. But it does seem clear that some kind of

touch-screen interaction is the future of computing for most people. Indeed, once you

consider phones properly you realize it’s the present of computing for most people.

While it is not strictly impossible, it remains very di�cult to do your academic,

social-science work on a device of this sort. �is is likely to be the case for some time, as

the tools we have are not designed up for them. �at’s not surprising, but I think there

is an underappreciated tension here. Two ongoing computing revolutions are tending

1�is may also be true if you are about to move from being a graduate student to starting as a faculty
member, though perhaps the rationale is less compelling given the costs.

http://www.moleskineus.com/

3

to pull in opposite directions. On one side, the mobile, cloud-centered, touch-screen,

phone-or-tablet model has brought powerful computing to more people than ever

before. �is revolution is the one everyone is talking about, because it is happening on a

huge scale and is where all the money is. In practice it puts single-purpose applications

in the foreground and hides from the user both the workings of the operating system

and (especially) the structure of the �le system where items are stored and moved

around.

On the other side, open-source tools for plain-text coding, data analysis, and

writing are also better andmore accessible than they have ever been. �is has happened

on a smaller scale than the �rst revolution, of course. But still, these tools really have

revolutionized the availability and practice of data analysis and scienti�c computing

generally. �ey continue to do so, too, as people work tomake them better at everything

from slurping up data on the web to presenting it there. �ese tools mostly work by

gluing together separate, specialized widgets into a reproducible work�ow. �ey are

“bitty” or granular because the process of data analysis is that way as well. �ey do

much less to hide the operating system layer—instead they o�en directly mesh with

it—and they also presuppose a working knowledge of the �le system underpinning the

organization of the things the researcher is using or creating, from data �les to code to

�gures and �nal papers.

�e tension is that, increasingly, people—people like the target audience of this

article—entering the world of social science wanting to work with data tend to have

little or no prior experience with text-based, command-line, �le-system-dependent

tools. In many cases, they do not have much experience making e�ective use of a multi-

tasking windowing environment, either, at least in the sense of making applications

work together in the service of a single goal.2 To be clear, this is not something to blame

users for. Neither is it some misguided nostalgia on my part for the command line.

Rather, it is an aspect of how computer use is changing at a very large scale. �e coding

and data analysis tools we have are powerful and for the most part meant to allow

research products to be opened up and inspected. But the way they work clearly runs

against the current of everyday, end-use computing, which increasingly hides many

implementation details and focuses on single-purpose tasks. Again, specialized tools

are necessarily specialized. �e net result for the social sciences in the short to medium

term, I think, is that we will have a suite of powerful tools that enable an amazing

variety of scienti�c activity, developed in the open and mostly available for free. But it

will get harder to teach people how to use them, and perhaps even to convince people

to try them.

2As opposed to multi-tasking in the less-interesting sense of trying to pay attention to a number of
discrete tasks (writing, email, calendar, web-browsing), each controlled by a separate application.

4

what ’s the problem?
�e problem is that doing scholarly work is intrinsically a mess. �ere’s the annoying

business of getting ideas and writing them down, of course, but also everything before,

during, and around it: data analysis and all that comes with it, and the tedious but

unavoidable machinery of scholarly papers—especially citations and references. �ere

is a lot of keep track of, a lot to get right, and a lot to draw together at the time of writing.

Academic papers are by no means the only form of writing subject to constraints of this

sort. Consider this sensible discussion by Dr. Drang, a (pseudonymous) consulting

engineer:

I don’t write �ction, but I can imagine that a lot of �ction writing can

be done without any reference materials whatsoever. Similarly, a lot of

editorials and opinion pieces are remarkably fact-free; these also can

spring directly from the writer’s head. But the type of writing I typically

do—mostly for work, but also here—is loaded with facts. I am constantly

referring to photographs, drawings, experimental test results, calculations,

reports written by others, textbooks, journal articles, and so on. �ese are

not distractions; they are essential to the writing process.

And it’s not just reference material. Quite o�en I need to make my own

graphs and drawings to include in a report. Because the text and the

graphics are all part of a coherent whole, I need to go back and forth

between the two; the words inform the pictures and the pictures inform

the words. �is is not the Platonic ideal of a clean writing environment—a

cup of co�ee on an empty desk in a white room—that you see in videos

for distraction-free editors.

Some of the popularity of these editors is part of the backlash against

multitasking, but people are confusing themselves with their computers.

When I’m writing a report, that is my single task, and I bring to bear what-

ever tools are necessary to complete it. �at my computer is multitasking

by running many programs simultaneously isn’t a source of confusion or

distraction, it’s the natural and e�cient way for me to get my one task

done.

A lot of academic writing is just like this. It can be tricky to manage. It’s even worse

when you have collaborators and other contributors. So, what to do?

http://www.leancrew.com/all-this/2013/12/a-free-distraction/

5

the office model and the engineering model
Let me make a crude distinction. �ere are “O�ce Type” solutions to this problem,

and there are “Engineering Type” solutions. Don’t get hung up on the distinction

or the labels. O�ce solutions tend towards a cluster of tools where something like

Microso� Word is at the center of your work. A Word �le or set of �les is the most

“real” thing in your project. Changes to your work are tracked inside that �le or �les.

Citation and reference managers plug into them. �e outputs of data analyses—tables,

�gures—get dropped into them or kept alongside them. �e master document may be

passed around from person to person or edited and updated in turn. �e �nal output is

exported from it, perhaps to PDF or to HTML, but maybe most o�en the �nal output

just is the .docx �le, cleaned up and with the track changes feature turned o�.

In the Engineering model, meanwhile, plain text �les are at the center of your

work. �e most “real” thing in your project will either be those �les or, more likely,

the Git repository that controls the project. Changes are tracked outside the �les.

Data analysis is managed in code that produces outputs in (ideally) a known and

reproducible manner. Citation and reference management will likely also be done in

plain text, as with a BibTeX .bib �le. Final outputs are assembled from the plain text

and turned to .tex, .html, or .pdf using some kind of typesetting or conversion tool.

Very o�en, because of some unavoidable facts about the world, the �nal output of this

kind of solution is also a .docx �le.

�is distinction is meant to capture a tendency in organization, not a rigid divide—

still less a sort of personality. Obviously it is possible organize things on the O�ce

model. (Indeed, it’s the dominant way.) Applications like Scrivener, meanwhile, com-

bine elements of the two approaches. Scrivener embraces the “bittyness” of large

writing projects in an e�ective way, and can spit out clean copy in a variety of formats.

Scrivener is built for people writing lengthy �ction (or qualitative non-�ction) rather

than anything with quantitative data analysis, so I have never used it extensively. Mi-

croso� Word, meanwhile, still rules large swathes of the Humanities and the Social

Sciences, and the production process of many publishers. So even if you prefer plain

text for other reasons—especially in connection with project management and data

analysis—the routine need or obligation to provide a Word document to someone is

one of the main reasons to want to be able to easily convert things. HTML is a great

lingua franca.

�is article is mostly about the Engineering model. But many people use the O�ce

model, and you may end up working with (or for) some of them. In those cases, it is

generally easier for you to use their so�ware than vice versa, if only because you are

likely have a copy ofWord on your computer already. In these circumstances youmight

also collaborate using Google Docs or some other service that allows for simultaneously

editing the master copy of a document. �is may not be ideal, but it is better than not

http://www.literatureandlatte.com

6

collaborating. �ere is little to be gained from plain-text dogmatism in a .docx world.

make sure you know what you did
For any kind of formal data analysis that leads to a scholarly paper, whichever model

you tend to favor, there are some basic principles to adhere to. Perhaps the most

important thing is to do your work in a way that leaves a coherent record of your

actions. Instead of doing a bit of statistical work and then just keeping the resulting

table of results or graphic that you produced, for instance, write down what you did

as a documented piece of code. Rather than �guring out but not recording a solution

to a problem you might have again, write down the answer as an explicit procedure.

Instead of copying out some archival material without much context, �le the source

properly, or at least a precise reference to it.

A second principle is that a document, �le or folder should always be able to tell you

what it is. Beyond making your work reproducible, you will also need some method for

organizing and documenting your dra� papers, code, �eld notes, datasets, output �les

or whatever it is you’re working with. In a world of easily searchable �les, this maymean

little more than keeping your work in plain text and giving it a descriptive name. It

should generally notmean investing time creating some elaborate classi�cation scheme

or catalog that becomes an end in itself to maintain.

A third principle is that repetitive and error-prone processes should be automated

if possible. (So�ware developers call this “DRY”, or Don’t Repeat Yourself.) �is makes

it easier to check for and correct mistakes. Rather than copying and pasting code over

and over to do basically the same thing to di�erent parts of your data, write a general

function that can be called whenever it’s needed. Instead of retyping and reformatting

the bibliography for each of your papers as you send it out to a journal, use so�ware

that can manage this for you automatically.

�ere are many ways of implementing these principles. You could use Microso�

Word, Endnote and SPSS. Or Textpad and Stata. Or a pile of legal pads, a calculator, a

pair of scissors and a box of �le folders. But so�ware applications are not all created

equal, and some make it easier than others to do the Right�ing. For instance, it is

possible to produce well-structured, easily-maintainable documents using Microso�

Word. But you have to use its styling and outlining features strictly and responsibly,

and most people don’t bother. You can maintain reproducible analyses in SPSS, but

the application isn’t set up to do this automatically or e�ciently, nor does its design

encourage good habits. So, it is probably a good idea to invest some time learning

about the alternatives. Many of them are free to use or try out, and you are at a point

in your career where you can a�ord to play with di�erent setups without too much

trouble.

http://en.wikipedia.org/wiki/Don't_repeat_yourself

7

�e dissertation, book, or articles you write will generally consist of the main text,

the results of data analysis (perhaps presented in tables or �gures) and the scholarly

apparatus of notes and references. �us, as you put a paper or an entire dissertation

together you will want to be able to easily keep a record of your actions as you edit text,
analyze data and present results in a reproducible way. In the next section I describe

some applications and tools designed to let you do all of this. I focus on tools that �t

together well (by design) and that are all freely available for Windows, Linux and Mac

OS X.�ey are not perfect, by any means—in fact, some of them can be awkward to

learn. But graduate-level research andwriting can also be awkward to learn. Specialized

tasks need specialized tools and, unfortunately, although they are very good at what

they do, these tools don’t always go out of their way to be friendly.

Use version control

Writing involves a lot of editing and revision. Data analysis involves cleaning �les,

visualizing information, running models, and repeatedly re-checking your code for

mistakes. You need to keep track of this work. As projects grow and change, and as

you explore di�erent ideas or lines of inquiry, the task of documenting your work

at the level of particular pieces of code or edits to paragraphs in individual �les can

become more involved over time. �e best thing to do is to institute some kind of

version control to keep a complete record of changes to a single �le, a folder of material,

or a whole project. A good version control system allows you to “rewind the tape” to

earlier incarnations of your notes, dra�s, papers and code. It lets you keep explore

di�erent aspects or branches of a project. In its more developed forms it provides you

with some powerful tools for collaborating with other people. And it helps stop you

from having directories full of �les with confusingly similar names like Paper-1.doc,

Paper-2.doc, Paper-conferenceversion.doc, Paper-Final-revised-DONE-lastedits.doc.

In the social sciences and humanities, you are most likely to have come across the

idea of systematic version control by way of the “Track Changes” feature in Microso�

Word, which lets you see the edits you and your collaborators havemade to a document.

Collaborative editing of a single document is also possible through platforms like

Google Docs or Quip. True version control is a way to do these things for whole

projects, not just individual documents, in a comprehensive and transparent fashion.

Modern version control systems such as Mercurial and Git can, if needed, manage very

large projects with many branches spread across multiple users. Git has become the de
facto standard, and GitHub is a place where so�ware developers and social scientists

make their work available, and where you can contribute to ongoing projects or make

public your own.

Modern version control requires getting used to some new concepts related to

tracking your �les, and learning how your version control system implements these

http://quip.com
http://www.selenic.com/mercurial/
http://git.or.cz/
http://github.com

8

concepts. �ere are some good resources for learning them. Because of their power,

these tools might seem like overkill for individual users. (Again, though, many people

�nd Word’s “Track Changes” feature indispensable once they begin using it.) But

version control systems can be used quite straightforwardly in a basic fashion, and they

can o�en be easily integrated with your text editor, or used via a friendlier application

interface that keeps you away from the command line. �e core idea is shown in

Figure 1. You keep your work in a repository. �is can be kept locally, or on a remote

server. As you work, you periodically stage your changes and then commit them to

the repository, along with a little note about what you did. Repositories can be copied,

cloned, merged, and contributed to by you or other people.

Revision control has signi�cant bene�ts. A tool like Git combines the virtues of

“track changes” with those of backups. Every repository is a complete, self-contained,

cryptographically signed copy of the project, with a log of every recorded step in its

development by all of its participants. It puts you in the habit of committing changes to

a �le or project piecemeal as you work on it, and (brie�y) documenting those changes

as you go. It allows you to easily test out alternative lines of development or thinking

by creating “branches” of a project. It allows collaborators to work on a project at

the same time without sending endless versions of the “master” copy back and forth

via email. And it provides powerful tools that allow you to automatically merge or

(when necessary) manually compare changes that you or others have made. Perhaps

most importantly, it lets you revisit any stage of a project’s development at will and

reconstruct what it was you were doing. �is can be useful whether you are writing

code for a quantitative analysis, managing �eld notes, or writing a paper. While you

will probably not need to control everything in this way, I strongly suggest you consider
managing at least the core set of text �les that make up your project (e.g., the code that

does the analysis and generates your tables and �gures; the dataset itself; your notes

and working papers, the chapters of your dissertation, etc). As time goes by you will

generate an extensive, annotated record of your actions that is also a backup of your

project at every stage of its development. Services such as GitHub allow you to store

public or (for a fee) private project repositories and so can be a way to back up work

o�site as well as a platform for collaboration and documentation of your work.

Why should you bother to do any of this? Because the main person you are doing

it for is you. Papers take a long time to write. When you inevitably return to your table

or �gure or quotation nine months down the line, your future self will have been saved

hours spent wondering what it was you thought you were doing and where you got it

from.

https://git-scm.com/book/en/v2
http://www.github.com

9

Figure 1: A schematic git work�ow. (1) You get the most recent version of your project from
a remote repository (such as GitHub), and then (2) You “check-out” the project to work on,
writing text or code, etc. You work on �les as usual in a folder on your computer. But it is the
repository that is “real” as far as the project is concerned. (3) You edit your documents, and
once you are happy with the changes you stage them. Behind the scenes means the changes
are added to an index that Git uses to keep track of things. But these changes are not yet
permanently recorded. (4) You then commit the changes to the repository, along with a note
about what you did. �is is now a �rm record of the changes. (5) You “push” the changes up
to the remote repository, which in e�ect also functions as a backup of your work. Over time,
the repository comes to contain a complete record of the project, any step of which can be
revisited as needed. In the simplest case there is no remote repository, only a local one you
check out and commit changes to. You can do all this from the command line, or use one of
several front-end applications designed to help you manage things.

10

Back up your work

Regardless of whether you choose to use a formal revision control system, you should

nevertheless have some kind of systematic method for keeping track of versions of

your �les. Version-controlled projects are backed-up to some degree if you keep your

repository somewhere other than your work computer. But this is not nearly enough.

Apple’s Time Machine so�ware, for example, backs up and versions your �les on your

disk, or to a local hard drive, allowing you to step back to particular instances of the

�le you want. �is still isn’t enough, though. You need regular, redundant, automatic,

o�-site backups of your work. Because you are lazy and prone to magical thinking, you

will not do this responsibly by yourself. �is is why the most useful backup systems are

the ones that require a minimum amount of work to set up and, once organized, back

up everything automatically without you having to remember to do anything. �is

means paying for a secure, o�site backup service like Crashplan, or Backblaze. O�site

backup means that in the event (unlikely, but not unheard of) that your computer and
your local backups are stolen or destroyed, you will still have copies of your �les. I

know of someone whose o�ce building was hit by a tornado. She returned to �nd her

�les and computer sitting in a foot of water. You never know. Less dramatically, but no

less catastrophic from the point of view of one’s work, I know people who have lost

months or even years of work as a result of dropping a laptop, or having it stolen, or

simply having their computer (or “backup drive”) fail for no apparent reason. Like seat

belts, you don’t need backups until you really, really need them. As Jamie Zawinski has

remarked, when it comes to losing your data “�e universe tends toward maximum

irony. Don’t push it.”

edit text
Use a Text Editor

If you are going to be doing quantitative analysis of any kind then you should write

using a good text editor. �e same can be said, I’d argue, for working with any highly

structured document subject to a lot of revision, such as a scholarly paper. Text editors

are di�erent from word processors. Unlike applications such as Microso� Word, text

editors generally don’t make a big e�ort to make what you write look like as though it

is being written on a printed page.3 Instead, they focus on working with text e�ciently,

while keeping it in a plain and portable format, as opposed to binary �le formats like

.docx. Figure 2 shows an example.

3For further argument about the advantages of text-editors over word processors see Allin Cottrell’s
polemic, “Word Processors: Stupid and Ine�cient.”

http://www.crashplan.com/
http://www.backblaze.com/
http://jwz.livejournal.com/801607.html
http://jwz.livejournal.com/801607.html
http://www.ecn.wfu.edu/~cottrell/wp.html

11

Figure 2: Working on part of this document in Emacs.

12

Text editors can also help you where word processors are not much use. If you

are writing code to do some statistical analysis, for instance, then at a minimum a

good editor will highlight keywords and operators in a way that makes the code more

readable. Typically, it will also passively signal to you when you’ve done something

wrong syntactically (such as forget a closing brace or semicolon or quotation mark),

and automagically indent or tidy up your code as you write it. More advanced editors

can work with a linter to more actively check and �ag stylistic or syntactical errors as

you go. If you are writing a scholarly paper or a dissertation that incorporates data of

any sort, and especially numerical data, a good text editor canmake it easier tomaintain

control of things. Just as the actual numbers are crunched by your stats program—not

your text editor—the typesetting of your paper is handled by a specialized application,

too. �at tool should automatically take care of things like entries in your bibliography,

the labelling of tables and �gures, and cross-references and other paraphernalia. �e

best editors can closely integrate with the tools you use to do the various pieces of your

work.

Emacs is a text editor, in the same way the blue whale is a mammal. It does the

things I have just described, and rather more besides, if you want it to. Combining

Emacs with some other applications and add-ons allows you to manage writing and

data-analysis e�ectively. If it seems odd to do a bunch of di�erent tasks inside an editor,

the blogger Rekado makes a useful analogy to the way people use web browsers:

Just like a browser is used by many as a platform for running applications

operating on some HTML document, Emacs is a platform for anything

that can “reasonably” (this is up for interpretation) be mapped to bu�ers

of text. Applications in browsers are written in JavaScript, applications in

Emacs are written in EmacsLisp (also called “elisp”). . . . If you have used

your web browser (or have observed someone use their web browser) to

play games, listen to music, watch videos, read and compose email, edit

text (e.g. by contributing to the Wikipedia), chat with friends (or chat

about foes), read documentation, installed an extension—well, then the

notion of a generic tool as a platform should not be a foreign concept

to you. Emacs can be understood as such a generic tool providing a text

interface (one of which may be a �le editor).

While very powerful and �exible, Emacs can be annoying. Indeed, to many people

encountering it for the �rst time—especially those used to standard applications on

Windows or Mac OS—its conventions seem bizarre and byzantine. As applications

go, Emacs is quite ancient. �e �rst version was written by Richard Stallman in the

1970s. Because it evolved in a much earlier era of computing (before the development

of decent graphical displays, for instance, and windowmanagers, and possibly also �re),

http://en.wiktionary.org/wiki/automagical
http://en.wikipedia.org/wiki/Lint_(software)
http://elephly.net/posts/2016-02-14-ilovefs-emacs.html

13

it doesn’t share many of the conventions of modern applications. Like most powerful

text editors, Emacs o�ers many opportunities to waste your time learning its particular

conventions, tweaking its settings, and generally customizing it. �ere are several good

alternatives on each major platform, and I discuss some of them below.

Given all that, why mention it in the �rst place? Partly because it’s the editor I use.

Partly because it is available for all of the main desktop and laptop computing plaforms.

And partly becuase it is very, very good at doing what I want it to do. �ere are many

good reasons to use something like TextMate, or Sublime Text instead of Emacs (I

return to these alternatives below). Similarly, when doing data analysis with R, you

may just want to use the RStudio environment. You will do �ne if you prefer these

alternatives. You will do �ne if you go with these alternatives.

Write in Markdown

When you write papers in plain text, how do you manage the formatting, sectioning,

and other related aspects of your document? Markdown is a loosely-standardized way

of writing plain text that includes information about the formatting of your document.

It was originally developed by John Gruber, with input from Aaron Swartz. �e aim

was to make a simple format that could incorporate structural information about the

document (such as headings and subheadings, emphasis, hyperlinks, lists, footnotes,
and so on), with minimal loss of readability. Formats like HTML or TeX are muchmore

extensive markup languages, but Markdown was meant to be simple. Over the years it

has become a de facto standard. Text editors and note-taking applications support it,

and tools exist to convert Markdown not just into HTML (its original target output

format) but many other document types as well. Listing 1 shows the markdown source

for this paragraph and its subheading.

Listing 1: �e Markdown source for a nearby part of this document.
When you write papers in plain text, how do you manage the formatting,

sectioning, and other related aspects of your document?

[Markdown](http://en.wikipedia.org/wiki/Markdown) is a loosely-standardized

way of writing plain text that includes information about the formatting of

your document. It was originally developed by John Gruber, with input

from Aaron Swartz. The aim was to make a simple format that could

incorporate structural information about the document (such as

headings and subheadings, *emphasis*,

[hyperlinks](http://daringfireball.net/markdown), lists, footnotes,

and so on), with minimal loss of readability. Formats like HTML or TeX

are much more extensive markup languages, but Markdown was meant to be

simple. Over the years it has become a *de facto* standard. Text

editors and note-taking applications support it, and tools exist to

convert Markdown not just into HTML (its original target output

https://macromates.com/download
https://www.sublimetext.com
http://rstudio.com
http://en.wikipedia.org/wiki/Markdown
http://daringfireball.net/markdown

14

format) but many other document types as well. @lst:markdown-example shows

the markdown source for this paragraph and its subheading.

�e excerpt shown in Listing 1 shows a few of the most common Markdown con-

ventions, most notably how it represents headings and subheadings (a # symbol for

a top-level header, with ## for the next level down, and so on), how it represents hy-

perlinks, and how it emphasizes text. �ere are a number of Markdown variants, or

“�avors”, that have extended it tomanage things like cross-references and labels, citations,

and other textual elements. Citations are particularly important. �e pandoc-citeproc

�lter is an add-on that handles these. It can be installed alongside pandoc. Your bibliog-

raphy can be stored in one of a variety of formats (such as BibTeX, or EndNote). Within

your .md document, cites are referred to by their key, such as [@healy14datavisualsociol].

When pandoc converts your document, the cite key is replaced with the reference infor-

mation like this (Healy and Moody 2014), and the full bibliographic entry is included

in an automaticaly-generated list of references. Read Pandoc’s documentation for more

details about citations. At the end of the excerpt you can also see that the code listing is

labeled with @lst:markdown-example, for example. A Pandoc �lter named pandoc-crossref

extends this @label convention to deal with labeled Figures, Tables, and so on. Using

Markdown in this way means you do not have to worry whether your reference list is

complete, or whether cross-references (to ‘Figure 3’ for example) remain correct a�er

you move things around in your text.

Use R with ESS or RStudio

Youwill probably be doing some—perhaps a great deal—of quantitative data analysis. R

is an environment for statistical computing. It’s well-supported, continually improving,

and has a very active expert-user community. �e documentation that comes with

the so�ware is complete, if somewhat terse, but there are a large number of excellent

reference and teaching texts that illustrate its use. �ese include Dalgaard (2008),

Venables and Ripley (2002), Maindonald and Braun (2003), Fox (2002), Harrell (2016),

Matlo� (2011), and Gelman and Hill (2007). Although it is a command-line tool at its

core, it can easily be used in conjunction with the RStudio IDE. You can download R

from�e R Project Homepage.

R can be used directly within Emacs by way of a package called ESS (for “Emacs

Speaks Statistics”). As shown in Figure 3, it allows you to work with your code in one

Emacs frame and a live R session in another right beside it. Because everything is

inside Emacs, it is easy to do things like send a chunk of your code over to R using a

keystroke. �is is a very e�cient way of doing interactive data analysis while building

up code you can use again in future.

You’ll present your results in papers, but also in talks where you will likely use some

http://pandoc.org/README.html#citations
http://pandoc.org/README.html#citations
https://github.com/lierdakil/pandoc-crossref
http://rstudio.com
http://www.r-project.org/

15

Figure 3: Working with R in Emacs using ESS. A document containing R code (apple.r) is
open in the top half of the screen. Below the divider, an R session is running, also inside Emacs.
Code from the top pane is sent to the bottom with a keyboard shortcut, where it is evaluated
by R. We can also jump down to the bottom pane and do work there. Small details like a lint
checker, active line highlighting, and revision-control information are also visible.

16

kind of presentation so�ware. You can use Microso� PowerPoint or Apple’s Keynote.

Or, you can produce HTML or PDF slides directly from plain text documents.4

reproduce work and minimize error
We have already seen how the right set of tools can save you time by automatically

highlighting the syntax of your code, ensuring everything you cite ends up in your

bibliography, picking out mistakes in syntax, and providing templates for commonly-

used methods or functions. Your time is saved twice over: you don’t repeat yourself,

and you make fewer errors you’d otherwise have to �x. When it comes to managing

ongoing projects, minimizing error means addressing two related problems. �e �rst

is to �nd ways to further reduce the opportunity for errors to creep in without you

noticing. �is is especially important when it comes to coding and analyzing data. �e

second is to �nd a way to �gure out, retrospectively, what it was you did to generate a

particular result. Using a revision control system gets us a good distance down this

road. But there is more we can do at the level of particular reports or papers.

When you write code it is o�en in the process of doing some analysis on the �y.

Ideas occur to you, you have a few things you want to look at, one thing leads to another.

As a rule, you should try to document your work as you go. If you are writing an R

script, then this usually means adding (brief, but useful) comments to your work to

explain what it is a piece of code is meant to do. Is should also mean trying to write

your code so that is readable. Code is like prose in this respect. Hadley Wickham’s

R Style Guide provides some useful guidelines about writing readable code. �e R

package lintr implements these principles—it acts like a copy-editor for your code. In

Emacs you an use lintr automatically through a tool called �ycheck.

You should also try not to repeat yourself when you write your code. A good rule

is that if you �nd yourself copying and pasting chunks of code (for example, to draw

the same sort of plot or run the same kind of model for a bunch of di�erent variables)

then you should pause and see if you can write a quick convenience function instead

to automate things more e�ectively. �at way, your code can be shorter and also less

prone to the errors and inconsistencies that creep in through repeated copy-and-paste.

Errors in data analysis o�en well up out of the gap that typically exists between

the procedure used to produce a �gure or table in a paper and the subsequent use of

that output later. In the ordinary way of doing things, you have the code for your data

analysis in one �le, the output it produced in another, and the text of your paper in

a third �le. You do the analysis, collect the output and copy the relevant results into

your paper, o�en manually reformatting them on the way. Each of these transitions

4�e actual business of giving talks based on your work is beyond the scope of this discussion. Su�ce
to say that there is plenty of good advice available via Google, and you should pay attention to it.

http://www.apple.com/iwork/keynote/
http://rmarkdown.rstudio.com/ioslides_presentation_format.html
http://adv-r.had.co.nz/Style.html
https://github.com/jimhester/lintr
https://github.com/flycheck/flycheck

17

introduces the opportunity for error. In particular, it is easy for a table of results to get

detached from the sequence of steps that produced it. Almost everyone who has written

a quantitative paper has been confronted with the problem of reading an old dra�

containing results or �gures that need to be revisited or reproduced (as a result of peer-

review, say) but which lack any information about the circumstances of their creation.

Academic papers take a long time to get through the cycle of writing, review, revision,

and publication, even when you’re working hard the whole time. It is not uncommon

to have to return to something you did two years previously in order to answer some

question or other from a reviewer. You do not want to have to do everything over

from scratch in order to get the right answer. I am not exaggerating when I say that,

whatever the challenges of replicating the results of someone else’s quantitative analysis,

a�er a fairly short period of time authors themselves �nd it hard to replicate their own
work. Computer Science people have a term of art for the inevitable process of decay

that overtakes a project simply in virtue of its being le� alone on the hard drive for six

months or more: bit–rot.

Use RMarkdown

An important way to caulk this gap is to use RMarkdown and knitr when doing

quantitative analysis in R. We’ve already seen how to write plain-text documents in

Markdown’s lightweight format. RMarkdown allows you to incorporate code into this

process. It is designed to integrate the plain-text documentation or writeup of a data

analysis and its execution. You write the text of your paper (or, more o�en, your report

documenting a data analysis) as normal. Whenever you want to run a model, produce

a table or display a �gure, rather than paste in the results of your work from elsewhere,

you write down the R code that will produce the output you want. �ese “chunks” of

code can be interspersed throughout the document. �ey are distinguished from the

regular text by a special delimiter at the beginning and end of the block.

When you’re ready, you knit the document (Xie 2015). �at is, you feed your .Rmd

�le to R, which processes the code chunks, and produces a new .md where the code

chunks have been replaced by their output. You can then turn that Markdown �le into

a PDF or HTML document. Relatedly, the rmarkdown library in R provides a render()

function that takes you from .Rmd to HTML or PDF in a single step. �is is what RStudio

uses to produce your documents. Conversely, if you just want to extract the code you’ve

written from the surrounding text, then you “tangle” the �le, which results in an .R �le.

It’s pretty straightforward in practice. �e strength of this approach is that is makes it

much easier to document your work properly. �ere is just one �le for both the data

analysis and the writeup. �e output of the analysis is created on the �y, and the code

to do it is embedded in the paper. If you need to do multiple but identical (or very

similar) analyses of di�erent bits of data, RMarkdown and knitr can make generating

http://rmarkdown.rstudio.com
http://yihui.name/knitr/
http://blog.rstudio.org/2014/06/18/r-markdown-v2/

18

consistent and reliable reports much easier.

RMarkdown is one of several “literate programming” formats. �e idea goes back

to Donald Knuth, the pioneering theorist of computer science who developed the

TeX typesetting system in his spare time. Although his focus was on documenting

computer programs, in retrospect Knuth anticipated many of the main ideas—and

developed several of the initial tools—for reproducible data analysis.

Figure 4, for instance, could be generated on the �y from source-code blocks

included in the .Rmd source for this article. Sometimes we will want to only show the

results produced by the code—in this case, Figure 4. But at other times we will want to

display the code as well, as in Listing 2.

Figure 4: Tea and Biscuits

Listing 2: R code snippet.
library(ggplot2)

tea <- rnorm(100)

biscuits <- tea + rnorm(100,0,1.3)

data <- data.frame(tea, biscuits)

p <- ggplot(data, aes(x=tea, y=biscuits)) +

geom_smooth(method="lm") +

labs(x="Tea", y="Biscuits") + theme_bw()

print(p)

19

knitr and RMarkdown make it easy to produce HTML output, too. �is makes for

easy portability, conversion, and quick previewing while editing. You can work with

RMarkdown �les in any text editor, and Emacs has strong support for them. RStudio

also comes with built-in support for .Rmd �les and makes it very easy to produce HTML

and PDF output, and to publish your reports to the web via its RPubs service.

�e knitr website has numerous examples showing how it works. �ese range from

the basic setup to more developed cases to more developed examples.

�e literate programming approach has its limits. For large or complex analyses it

can still make more sense to produce the �nal result in pieces rather than all at once in a

single .Rmd �le. �is is one of the reasons it remains important to manage your projects

using some kind of version control, so you can keep track of work that is needed but

might not �t inside a single .Rmd document.

pulling it together
We write papers. �ose papers cite books and articles. �ey o�en incorporate tables

and �gures created in R.What we want to do is quickly turn aMarkdown �le containing

things like that into a properly formatted scholarly paper, without giving up any of the

necessary scholarly apparatus (on the output side) or the convenience and convertibilty

of Markdown (on the input side). We want to easily get good-looking output from

the same source in HTML, PDF, and DOCX formats. And we want to do that with an

absolute minimum of—ideally, no—post-processing of the output beyond the basic

conversion step. �is is within our reach.

Figure 5: A plain-text document toolchain.

A sample document �ow is shown in Figure 5. I promise it is less insane than it

appears. Describing it all at oncemightmake it sound a little crazy. But, at bottom, there

http://rpubs.com
http://yihui.name/knitr/
http://yihui.name/knitr/demo/minimal/
https://raw.githubusercontent.com/yihui/knitr-examples/master/001-minimal.Rmd
http://yihui.name/knitr/demos/
http://yihui.name/knitr/demo/showcase/
http://www.r-project.org

20

are just two separable pieces. First, knitr converts .Rmd �les to .md �les. Second, John

MacFarlane’s superb Pandoc converts .md �les to HTML, .tex, PDF, or Word formats.

In both cases we use a few switches, templates and con�guration �les to do that nicely

and with a minimum of fuss. You should install a standard set of Unix developer tools,

which on OS X can conveniently be installed directly from the command line.5 along

with R, knitr, pandoc, and a TeX distribution. Note that the default set-ups for knitr

and pandoc—the two key pieces of the process—will do most of what we want with no

further tweaking. What I will you here are just the relevant options to use and switches

to set for these tools, together with some templates and document samples showing

how nice-looking output can be produced in practice.

I write everything in Emacs, but as I hope is clear by now, that doesn’t matter.

Use whatever text editor you like and just learn the hell out of it. �e custom LaTeX

style �les were originally put together to let me write nice-looking .tex �les directly,

but now they just do their work in the background. Pandoc will use them when it

converts things to PDF.�e heavy li�ing is done by the org-preamble-pd�atex.sty and

memoir-article-styles �les. If you install these �les where LaTeX can �nd them—i.e., if

you can compile a LaTeX document based on this example—then you are good to go.

My BibTeX master �le is also available, but you will probably want to use your own,

changing references to it in the templates as appropriate. Second, we have the custom

pandoc stu�. Here is the repository for that. Much of the material there is designed to

go in the ~/.pandoc/ directory, which is where pandoc expects to �nd its con�guration

�les. I have also set up a sample md-starter project and an rmd-starter project. �ese are

the skeletons of project folders for a paper written in Markdown (just an .md �le, with

no R) and a paper beginning life as an .Rmd �le. �e sample projects contain the basic

starter �le and a Makefile to produce .html, .tex, .pdf and .docx �les.

Listing 3: Markdown �le with document metadata

title: "A Pandoc Markdown Article Starter"

author:

- name: Kieran Healy

affiliation: Duke University

email: kjhealy@soc.duke.edu

- name: Joe Bloggs

affiliation: University of North Carolina, Chapel Hill

email: joebloggs@unc.edu

date: January 2014

abstract: "Lorem ipsum dolor sit amet."

...

5Here’s how. Open a terminal window and type xcode-select --install. You can install pandoc
and many other tools using the Homebrew package manager.

http://pandoc.org
https://developer.apple.com/library/ios/technotes/tn2339/_index.html
https://tug.org/mactex/
https://github.com/kjhealy/latex-custom-kjh
https://github.com/kjhealy/latex-custom-kjh
https://github.com/kjhealy/latex-custom-kjh/tree/master/needs-org-mode
https://github.com/kjhealy/latex-custom-kjh/tree/master/needs-memoir
https://github.com/kjhealy/latex-custom-kjh/blob/master/templates/basic/article.tex
https://github.com/kjhealy/socbibs
https://github.com/kjhealy/pandoc-templates
https://github.com/kjhealy/md-starter
https://github.com/kjhealy/rmd-starter
http://brew.sh

21

Introduction

Lorem ipsum dolor sit amet, consectetur adipisicing elit,

sed do eiusmod tempor incididunt ut labore et dolore magna

aliqua [@fourcade13classsituat]. Notice that citation.

Theory

Lorem ipsum dolor sit amet, consectetur adipisicing

elit, sed do eiusmod tempor incididunt ut labore et

dolore magna aliqua [@fourcade13classsituat].

Let’s start with a straightforward markdown �le—no R code yet, so nothing to

the le� of article.md line in Figure 5. �e start of the sample article-markdown.md �le is

shown in Listing 3. �e bit at the top is metadata, which pandoc understands. �e

HTML and LaTeX templates in the pandoc-templates repository are set up to use this

metadata properly. Pandoc will take care of the citations directly. �ere is more than

one way to have pandoc manage citations, but here we just use the most self-contained

route. Simple documents can be contained in a single .md �le. Documents including

data analysis start life as .Rmd �les which are then knitted into .md �les and converted to

PDF or HTML. At its simplest, a mypaper.md document can be converted to mypaper.pdf

�le by opening a terminal window and typing a command like the one in Listing 4.

Listing 4: �e simplest way to convert a Markdown �le to PDF with pandoc
pandoc mypaper.md -o mypaper.pdf

Because we will probably run commands like this a lot, it’s convenient to automate

them a little bit, and to add some extra bells and whistles to accommodate things we will

routinely add to �les, such as author information and other metadata, together with the

ability to process bibliographic information and cross-references. �ese are handled

by pandoc by turning on various switches in the command, and by ensuring a couple of

external “�lters” are present to manage the bibliographies and cross-references. Rather

than type long commands out repeatedly, we will automate the process. �is kind

of automation is especially useful when our �nal output �le might have a number of

prerequisites before it can be properly produced, and we would like the computer to

be a little bit smart about what needs to be re-processed and under what conditions.

�at way, for example, if a Figure has not changed we will not re-run the (possibly

time-consuming) R script to create it again, unless we have to.

We manage this process using a tool called make. Inside our project folder we put a

plain-text Makefile that contains some rules governing how to produce a target �le that
might have a number of prerequisites. In this case, a PDF or HTML �le is the target,

and the various �gures and data tables are the prerequisites—if the code that produces

the prerequisites changes, the �nal document will change too. Make starts from the

https://github.com/kjhealy/pandoc-templates/tree/master/templates
https://www.gnu.org/software/make/

22

�nal document and works backwards along the chain of prerequisites, re-compiling or

re-creating them as needed. It’s a powerful tool. For a good basic introduction, take

a look at Karl Broman’s “Minimal Make”. (Incidentally, Karl Broman has a number

of tutorials and guides providing accurate and concise tours of many of the tools and

topics described here, including getting started with reproducible research, using git

and GitHub, and working with knitr.)

Following Karl Broman’s example, let’s imagine that you have a paper, paper.md

written in Markdown, that incorporates references to a �gure, fig1.pdf generated by

an R script, fig1.r. You could of course have an .Rmd �le that produces the output, but

there are situations where that isn’t ideal. �e end-point or target is the full article in

PDF form. When the text of the paper changes in paper.md, then paper.pdf will have to

be re-created. In the same way, when we change the content of fig1.r then fig1.pdf will

need to be updated, and thus also paper.pdf will need to be re-created as well. Using

make we can take care of the process.

Here is what a basic Makefile for our example would look like:

Listing 5: A simple Make�le

Read as "mypaper.pdf depends on mypaper.md and fig1.pdf"

mypaper.pdf: mypaper.md fig1.pdf

pandoc mypaper.md -o mypaper.pdf

Read as "fig1.pdf depends on fig1.r"

fig1.pdf: fig1.r

R CMD BATCH fig1.r

�e big gotcha for Makefiles is that for no good reason they use the <TAB> key rather

than spaces to indent the commands associated with rules. If you use spaces, make will

not work. With the Makefile in Listing 5, typing make at the command line will have

make check the state of the �nal target (makefile.pdf) and all its dependencies. If the

target isn’t present, make will create it in accordance with the rules speci�ed. If the target

is present, make will check to see if any of its prerequisites have changed since it was last

created. If so, it will recreate the �le. �e chain of prerequisites propagates backwards,

so that if you change fig1.r, then make will notice and re-run it to create fig1.pdf before

running the commands in the rule to create mypaper.pdf. You can also choose to just

invoke single rules from the make�le, e.g. by typing make fig1.pdf instead of make at the

command line. �is will evaluate just the fig1.pdf rule and any associated prerequisites.

For a simple example like this, make is mostly a minor convenience, saving you

the trouble of typing a sequence of commands over and over to create your paper.

However, it becomes very useful once you have projects with many documents and

dependencies—for example, a dissertation consisting of separate chapters, each of

http://kbroman.org/minimal_make/
http://kbroman.org/pages/tutorials
http://kbroman.org/pages/tutorials
http://kbroman.org/steps2rr
http://kbroman.org/github_tutorial
http://kbroman.org/github_tutorial
http://kbroman.org/knitr_knutshell

23

which contains �gures and tables, which in turn depend on various R scripts to set

up and clean data. In those cases, make becomes a very powerful and helpful way of

ensuring your �nal output really is up to date.

To deal with more complex projects and chains of prerequisites, make can make use

of a number of variables to save you from (for example) typing out the name of every

figure-x.pdf in your directory.

�e Makefile in the sample md-starter project will convert any markdown �les in the

working directory to HTML, .tex, .pdf, or .docx �les as requested. Typing make html at

the command line will produce .html �les from any .md �les in the directory, for example.

�e PDF output (from make pdf) will look like this article, more or less. �e di�erent

pieces of the Makefile de�ne a few variables that specify the relationship between the

di�erent �le types. In essence the rules say, for example, that all the PDF �les in the

directory depend on changes to an .md �le with the same name; that the same is true

of the HTML �les in the directory, and so on. �en the show the pandoc commands

that generate the output �les from the markdown input. �e Make�le itself is shown

in Listing 6 makes use of a few variables as shorthand, as well as special variables like

$@ and $<, which mean “the name of the current target” and “the name of the current

prerequisite”, respectively.

Listing 6: Amore complicated Make�le
Extension (e.g. md, markdown, mdown).

for all markdown files in the directory

MEXT = md

Variable expands to a list of all markdown files

in the working directory

SRC = $(wildcard *.$(MEXT))

Location of Pandoc support files.

PREFIX = /Users/kjhealy/.pandoc

Location of your working bibliography file

BIB = /Users/kjhealy/Documents/bibs/socbib-pandoc.bib

CSL stylesheet (located in the csl folder of the PREFIX directory).

CSL = apsa

x.pdf depends on x.md, x.html depends on x.md, etc

PDFS=$(SRC:.md=.pdf)

HTML=$(SRC:.md=.html)

TEX=$(SRC:.md=.tex)

DOCX=$(SRC:.md=.docx)

https://github.com/kjhealy/md-starter

24

Rules -- make all, make pdf, make html. The ‘clean‘ rule is below.

all: $(PDFS) $(HTML) $(TEX) $(DOCX)

pdf: clean $(PDFS)

html: clean $(HTML)

tex: clean $(TEX)

docx: clean $(DOCX)

The commands associated with each rule.

This first one is run when ‘make html‘ is typed.

Read the rule as "When making the html file,

run this pandoc command if the .md file has changed."

%.html: %.md

pandoc -r markdown+simple_tables+table_captions+yaml_metadata_block \

-w html -S --template=$(PREFIX)/templates/html.template \

--css=$(PREFIX)/marked/kultiad-serif.css --filter pandoc-crossref \

--filter pandoc-citeproc --csl=$(PREFIX)/csl/$(CSL).csl \

--bibliography=$(BIB) -o $@ $<

Same goes for the other file types. Watch out for the TAB before ’pandoc’

%.tex: %.md

pandoc -r markdown+simple_tables+table_captions+yaml_metadata_block \

--listings -w latex -s -S --latex-engine=pdflatex \

--template=$(PREFIX)/templates/latex.template \

--filter pandoc-crossref --filter pandoc-citeproc \

--csl=$(PREFIX)/csl/ajps.csl --filter pandoc-citeproc-preamble \

--bibliography=$(BIB) -o $@ $<

%.pdf: %.md

pandoc -r markdown+simple_tables+table_captions+yaml_metadata_block \

--listings -s -S --latex-engine=pdflatex \

--template=$(PREFIX)/templates/latex.template \

--filter pandoc-crossref --filter pandoc-citeproc \

--csl=$(PREFIX)/csl/$(CSL).csl --filter pandoc-citeproc-preamble \

--bibliography=$(BIB) -o $@ $<

%.docx: %.md

pandoc -r markdown+simple_tables+table_captions+yaml_metadata_block \

-s -S --filter pandoc-crossref --csl=$(PREFIX)/csl/$(CSL).csl \

--bibliography=$(BIB) -o $@ $<

clean:

rm -f *.html *.pdf *.tex *.aux *.log *.docx

.PHONY: clean

25

Note that the pandoc commands are interpreted single lines of text, not several lines

separated by the <return> key. But you can use the \ symbol to tell make to continue to

the next line without a break. With this Make�le, typing make pdf would take all the

.md �les in the directory one at a time and run the pandoc command to turn each one

into a PDF, using the APSR reference style, my latex template, and a .bib �le called

socbib-pandoc.bib.

You shouldn’t use this Makefile blindly. Take the time to learn how make works and

how it can help your project. �e o�cial manual is pretty clear. Make’s backward-

looking chain of prerequisites can make it tricky to write rules for complex projects.

When writing or inspecting a Makefile and its speci�c rules, it can be helpful to use the

--dry-run switch, as in make --dry-run. �is will print out the sequence of commands make

would run, but without actually executing them. You can try this with the Makefile in

Listing 6 in a directory with at least one .md �le in it. For example, look at the list of com-

mands produced by make pdf --dry-run or make docx --dry-run or make clean --dry-run.

�e particular steps needed for many projects may be quite simple, and not require

the use of any variables or other frills. If you �nd yourself repeatedly running the

same sequence of commands to assemble a document (e.g. cleaning data; running

preliminary code; producing �gures; assembling a �nal document) then make can do a

lot to automate the process. For further examples of Makefiles doing things relevant to

data analysis, see Lincoln Mullen’s discussion of the things he uses make to manage.

�e particular steps needed for many projects may be quite simple, and not require

the use of any variables or other frills. If you �nd yourself repeatedly running the

same sequence of commands to assemble a document (e.g. cleaning data; running

preliminary code; producing �gures; assembling a �nal document) then make can do a

lot to automate the process.

�e examples directory includes a sample .Rmd �le. �e code chunks in the �le

provide examples of how to generate tables and �gures in the document. In particular

they show some useful options that can be passed to knitr. Consult the knitr project

page for extensive documentation and many more examples. To produce output from

the article-knitr.Rmd �le, you could of course launch R in the working directory, load

knitr, and process the �le. �is produces the article-knitr.md �le, together with some

graphics in the figures/ folder (and some working �les in the cache/ folder). We set

things up in the .Rmd �le so that knitr produces both PNG and PDF versions of whatever

�gures are generated by R.�at prepares the way for easy conversion to HTML and

LaTeX. Once the article-knitr.md �le is produced, HTML, .tex, and PDF versions of it

can be produced as before, by typing make at the command line. But of course there’s

no reason make can’t automate that �rst step, too. �e rmd-starter project has a sample

Makefile that begins with the .Rmd �les in the directory and produces the outputs from

there.

https://www.apsanet.org/utils/journal.cfm?Journal=APSR
https://www.gnu.org/software/make/manual/
http://lincolnmullen.com/blog/makefiles-for-ocr-and-converting-shapefiles
https://github.com/kjhealy/pandoc-templates/blob/master/examples/article-knitr.Rmd
http://yihui.name/knitr/
http://yihui.name/knitr/
http://github.com/kjhealy/rmd-starter

26

Using Marked

In everyday use, I �nd Brett Terpstra’s application Marked to be a very useful way of

previewing text while writing. Marked shows you your Markdown �les as HTML,

updating the preview on the �y whenever changes are saved in the Markdown �le.

It can render ordinary Markdown by default, but it also supports pandoc as a custom

processor. �is means it can manage the various extra bells and whistles of scholarly

formatting discussed so far. Essentially, you tell Marked run a pandoc command similar

or identical the one shown above to generate its HTML previews. You do this in the

“Advanced” tab of Marked’s preferences. �e “Path” �eld in the preferences dialog

contains the full path to pandoc, and the “Args” �eld contains all the relevant command

switches—in my case, the same as in the Make�le above.

When editing your markdown �le in your favorite text editor, you point Marked

at the �le and get a live preview. You can add the CSS �les in the pandoc-templates

repository to the list of Custom CSS �les Marked knows about, via the “Style” tab in

the Preferences window. �at way, Marked’s preview will look the same as the HTML

�le that’s produced. Figure 6 shows what this looks like in practice.

Figure 6: Working on this document in Emacs (le�), with a live HTML version displayed in
Marked (right).

�e upshot of all of this is powerful editing using Emacs, ESS, R, and other tools;

�exible conversion using pandoc; quick and easy previewing via HTML and Marked;

http://marked2app.com
https://github.com/kjhealy/pandoc-templates/blob/master/marked/kultiad-serif.css
https://github.com/kjhealy/pandoc-templates/blob/master/marked/kultiad-serif.css
http://ess.r-project.org

27

and high-quality PDF typesetting at the same time (or whenever needed). All of it can

be generated directly from plain text, and will include almost all of the machinery most

scholarly papers need, most notably properly labeled Tables and Figures that can be

cross-referenced in the text. While it all may seem quite complex when laid out in this

way, in use it is quite straightforward, and doesn’t require any thought when in use. I

just live in my text editor. �e various scripts and settings do their work quietly, and I

get the formatted output I want.

An Emacs Starter Kit

A step-by-step guide to downloading and installing every piece of so�ware I’ve men-

tioned so far is beyond the scope of this discussion. But let’s say you take the plunge

and download Emacs, a TeX distribution, R, and maybe even Git. Now what? If you’re

going to work in Emacs, there are a variety of tweaks and add-ons that are very helpful

but not set by default. To make things a little easier, I maintain an Emacs Starter Kit

for the Social Sciences. It’s designed to smooth out Emacs’ rough edges by giving you a

drop-in collection of default settings, as well as automatically installing some important

add-on packages. It will, I hope, help you skirt the abyss of Setting�ings Up Forever.

do i have to use all this stuff?
Installation/setup/whatever is always harder and much more poorly docu-

mented than mere usage — Jenny’s Law

Pros and Cons

Running your data analysis in R, writing documents in Markdown or RMarkdown,

doing both inside Emacs, processing them with pandoc, tracking things with Git and

using (behind the scenes) various Unix tools and LaTeX . . . this all sounds rather

complicated. It has four main advantages. First, these formats, tools, and applications

are all free. You can try them out without much in the way of monetary expense. (Your

time may be a di�erent matter, but although you don’t believe me, you have more of

that now than you will later.) Second, they are all open-source projects and are all

available for Mac OS X, Linux and Windows. Portability is important, as is the long-

term viability of the platform you choose to work with. If you change your computing

system, your work can move with you easily. �ird, they allow you to do your work

in a portable, documented, and reproducible way. And fourth, the applications are

closely integrated. Everything (including version control) can work inside Emacs. All

of them can work directly with or take advantage of the others.

http://kjhealy.github.com/emacs-starter-kit/
http://kjhealy.github.com/emacs-starter-kit/
https://twitter.com/JennyBryan/status/699462966282858500

28

Figure 7: How to Draw an Owl

None of these tools is perfect. �ey can do very useful and important things for

you, but they are not magic. �ere are bad habits associated with working in plain

text, just as there are bad habits associated with writing everything in word. �ese

tools are powerful, but they can be tedious to learn. However, you don’t have to start

out using all of them at once, or learn everything about them right away—the only

thing you really, really need to start doing immediately is keeping good backups. �ere

are a number of ways to try these tools out in whole or in part. You could try writing

something in Markdown �rst, using any text editor. You could begin using R with

RStudio. Revision control is more bene�cial when implemented at the beginning of

projects, and best of all when committing changes to a project becomes a habit of work.

But it can be added at any time.

You are not condemned to use these applications forever, either. RMarkdown and

(especially) Markdown documents can be converted into many other formats. Your

text �les are editable in any other text editor and on any other computer. Statistical

http://rstudio.com

29

code is by nature much less portable, but the openness of R means that it is not likely

to become obsolete or inaccessible any time soon. In everyday use, you may �nd that

documents start life as plain-text, Markdown-formatted notes jotted down on your

phone, or computer; then they become longer .md �les that grow references and �gures

and so on; and eventually migrate to Word or Google Docs or something similar if

you acquire a collaborator or the time comes to submit a manuscript to a journal.

A disadvantage of these particular applications is that I’m in aminority with respect

to other people in my �eld. �is is less and less true in the case of R, and more recently

with tools like Git as well. Writing papers in RMarkdown orMarkdown is less common.

Most people useMicroso�Word to write papers, and if you’re collaborating with people

(people you can’t boss around, I mean) this can be an issue. It is usually easier to use

applications like Word than convert people to a plain-text work�ow. If you do, at least

try and implement some of the principles discussed here when it comes to tracking

changes to documents and managing the code and output of your data analysis.

Alternatives Might Be Better

�ere are many other applications you might put at the center of your work�ow, de-

pending on need, personal preference, willingness to pay some money, or desire to

work on a speci�c platform. For text editing, especially, there is a plethora of choices.

On the Mac, quality editors include BBEdit (beloved of many web developers, but with

relatively little support for R beyond syntax highlighting), and TextMate 2 (shown in

Figure 8). On Linux, the standard alternative to Emacs is vi or Vim, but there are many

others. For Windows there is Textpad, WinEdt, UltraEdit, and NotePad++ amongst

many others. Most of these applications have strong support for LaTeX and some also

have good support for statistics programming.

Sublime Text 3 is a cross-platform text editor under active development, andwith an

increasingly large user base. Sublime Text is fast, �uid, and contains a powerful plugin

system based on the Python programming language. Uniquely amongst alternatives to

Emacs and ESS, Sublime Text includes a well-developed REPL that allows R to be run

easily inside the editor.6 Sublime Text costs $70.

Finally, and as noted throughout this article, for a di�erent approach to working

with R you should consider RStudio. A screenshot is shown in Figure 9. Although

it appears quite late in this discussion, it might well be your �rst choice. I use it

when teaching. It is not a text editor but rather an “IDE”, an integrated development

environment. Your code and �gures, together with an R console, documentation,

and other output are all displayed in di�erent panes and tabs of RStudio’s application

6TextMate also has some support for this way of working, but it is conceived and accomplished a
little di�erently.

http://www.barebones.com/products/bbedit/index.shtml
http://macromates.com/download
http://www.eng.hawaii.edu/Tutor/vi.html
http://www.vim.org/
http://www.textpad.com/
http://www.winedt.com/
http://www.ultraedit.com/
http://notepad-plus.sourceforge.net/uk/site.htm
http://www.sublimetext.com/
http://python.org
http://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
http://www.rstudio.com

30

Figure 8: Part of an R �le being edited in TextMate.

window. Data and script �les are managed via various windows and menus. RStudio is

available for Mac OS X, Windows, and Linux. It intergrates nicely with R’s help �les. It

understands knitr and Git. As discussed above, it has full support for Rmarkdown and

generates HTML, PDF, and other formats for you very easily. It is the easiest way by far

to get into using R, and provides a straightforward way to manage many of the tools

already discussed here.

For statistical analysis in the social sciences, the main alternative to R is Stata.

Stata is not free, but like R it is versatile, powerful, extensible and available for all the

main computing platforms. It has a large body of user-contributed so�ware. In recent

versions its graphics capabilities have improved a great deal, as has its editor. ESS can

highlight Stata .do �les in the same way as it can do for R. Other editors can also be

made to work with Stata. More recently, Python has been coming into frequent use in

the social sciences. Python is a general-purpose computing language that is relatively

straightforward to learn. It is o�en used for manipulating, cutting, and cleaning data

prior to analysis in applications like R or Stata. But it is also increasingly a scienti�c

computing platform in its own right. SciPy is a useful place to begin learning about

Python’s capabilities on this front. Like R and RMarkdown, it has good support for

http://www.stata.com/
http://python.org
http://www.scipy.org

31

Figure 9: RStudio running on Windows.

literate programming through tools like iPython Notebooks. Naturally, Emacs has

good support for working with Python.

Amongst social scientists, revision control is perhaps the least widely-used of the

tools I have discussed. But I am convinced that it is the most important one over the

long term. While tools like Git take a little getting used to both conceptually and in

practice, the services they provide are extremely useful. It is already quite easy to use

version control in conjunction with most of the text editors discussed above. �ere are

also full-featured clients like Tower that allow you to administer git without having to

use the command line. Taking a longer view, version control is likely to become more

widely available through intermediary services or even as part of the basic functionality

of operating systems.

http://ipython.org/notebook.html
https://www.git-tower.com

32

a broader perspective
It would be nice if all you needed to do your work was a box so�ware of so�ware

tricks and shortcuts. But of course it’s a bit more complicated than that. In order to get

to the point where you can write a paper, you need to be organized enough to have

read the right literature, maybe collected some data, and most importantly asked an

interesting question in the �rst place. No amount of so�ware is going to solve those

problems for you. Too much concern with the details of your setup hinders your work.

Indeed—and I speak from experience here—this concern is itself a kind self-imposed

distraction that placates work-related anxiety in the short term while storing up more

of it for later.7 On the hardware side, there’s the absurd productivity counterpart to the

hedonic treadmill, where for some reason it’s hard to get through the to-do list even

though the cafe you’re at contains more computing power than was available to the

Pentagon in 1965. On the so�ware side, the besetting vice of so�ware is the tendency

to waste a lot of your time installing, updating, and generally obsessing about it.8 Even

more generally, e�cient work�ow habits are themselves just a means to the end of

completing the projects you are really interested in, of making the things you want to

make, of �nding the answers to the questions that brought you to graduate school. �e

process of idea generation and project management can be run well, too, and perhaps

even the business of choosing what the projects should be in the �rst place. But this is

not the place—and I am not the person—to be giving advice about that.

All of which is just to reiterate two things. First, I am not advocating these tools

on the grounds that they will make you more “productive”. Rather, they may help you

stay in control of—and able to reproduce—your own prior work. �at is an important

di�erence. If you care about getting the right answer in your data analysis, or at least

being able to repeatedly get the same probably wrong answer, then tools that enhance

this sort of control should appeal to you. Second, even with that caveat it is still the

principles of work�ow management that are important. �e so�ware is just a means

to an end. One of the smartest, most productive people I’ve ever known spent half of

his career writing on a typewriter and the other half on an ancient IBM Displaywriter.

His backup solution for having hopelessly outdated hardware was to keep a spare

Displaywriter in a nearby closet, in case the �rst one broke. It never did.

7See Merlin Mann, amongst others, for more on this point.
8Mike Hall’s brilliant “Org-Mode in your Pocket is a GNU-Shaped Devil” makes this point very

well.

http://en.wikipedia.org/wiki/David_Kellogg_Lewis
http://www-03.ibm.com/ibm/history/exhibits/pc/pc_8.html
http://inboxzero.com/
http://mph.puddingbowl.org/2010/02/org-mode-in-your-pocket-is-a-gnu-shaped-devil/

33

appendix : links to resources
Basic Tools

• Apple’sDeveloperToolsUnix toolchain. Install directlywith xcode-select --install,

or just try to use e.g. git from the terminal and have OS X prompt you to install

the tools.

• Homebrew package manager. A convenient way to install several of the tools

here, including Emacs and Pandoc.

• Emacs. A powerful text editor. Ready-to-go Mac version at Emacs for Mac OS

X.

• R. A platform for statistical computing.

• knitr. Reproducible plain-text documents from within R.

• Python and SciPy. Python is a general-purpose programming language increas-

ingly used in data manipulation and analysis.

• RStudio. An IDE for R.�e most straightforward way to get into using R and

RMarkdown.

• TeX and LaTeX. A typesetting and document preparation system. You can write

�les in .tex format directly, or you can just have it available in the background

for other tools to use. �e MacTeX Distribution is the one to install for OS X.

• Pandoc. Converts plain-text documents to and from a wide variety of formats.

Can be installed with Homebrew. Be sure to also install pandoc-citeproc for

processing citations and bibliographies, and pandoc-crossref for producing cross-

references and labels.

• Git. Version control system. Installs with Apple’s Developer Tools, or get the

latest version via Homebrew.

• GNUMake. You tell make what the steps are to create the pieces of a document

or program. As you edit and change the various pieces, it automatically �gures

out which pieces need to be updated and recompiled, and issues the commands

to do that. See Karl Broman’s Minimal Make for a short introduction. Make will

be installed automatically with Apple’s developer tools.

• lintr and �ycheck. Tools that nudge you to write neater code.

Helpers and Templates

• Emacs Starter Kit for the Social Sciences. Set Emacs up to use many of the tools

described in this guide.

• Pandoc Templates. LaTeX and HTML templates, together with Pandoc con�gu-

ration �les and other things needed to produce good-looking PDF, HTML, and

Word documents from plain text sources using Pandoc.

• md-starter project and rmd-starter project. Assuming you have the tools and

https://developer.apple.com/library/ios/technotes/tn2339/_index.html
http://brew.sh
http://www.gnu.org/software/emacs/
http://emacsformacosx
http://emacsformacosx
http://r-project.org
http://yihui.name/knitr/
http://python.org
http://www.scipy.org/
http://rstudio.com
http://tug.org
http://tug.org/mactex
http://pandoc.org
http://git-scm.org
http://www.gnu.org/software/make
http://kbroman.org/minimal_make/
https://github.com/jimhester/lintr
https://github.com/flycheck/flycheck
http://kjhealy.github.com/emacs-starter-kit/
https://github.com/kjhealy/pandoc-templates
https://github.com/kjhealy/md-starter
https://github.com/kjhealy/rmd-starter

34

Pandoc/LaTeX templates installed, these skeleton project folders contain a basic

.md or .rmd starter �le and a Makefile to produce .html, .tex, .pdf and .docx �les as

described in this guide.

• RMarkdown Cheatsheet An overview of Markdown and RMarkdown conven-

tions.

• RStudio Cheatsheets Other quick guides, including a more comprehensive

RMarkdown reference and a information about using RStudio’s IDE, and some

of the main tools in R.

Guides

• R Style Guide. Write readable code.

• knitr Documentation and examples for knitr by its author, Yihui Xie. �ere is

also a knitr book covering the same ground in more detail.

• Rmarkdown documentation from the makers of RStudio. Lots of good examples.

• Plain Person’s Guide�e git repository for this project.

• Jenny Bryan’s Stat 545. Notes and tutorials for a Data Analysis course taught by

Jennifer Bryan at the University of British Columbia. Lots of useful material.

• Karl Broman’s Tutorials and Guides Accurate and concise guides to many of

the tools and topics described here, including getting started with reproducible

research, using git and GitHub, and working with knitr.

• Make�les forOCR and converting Shape�les. Some further examples of Makefiles

in the data-analysis pipeline, by Lincoln Mullen

Paid Applications and Services

• Backblaze. Secure o�-site backup.

• Crashplan. Secure o�-site backup.

• GitHub. Host public Git repositories for free. Pay to host private ones. Also a

source for publicly available code (e.g. R packages and utilities) written by other

people.

• Marked 2. Live HTML previewing of Markdown documents. Mac OS X only.

• Sublime Text. Python-based text editor.

• Zotero, Mendeley, and Papers are citation managers that incorporate PDF stor-

age, annotation and other features. Zotero is free to use. Mendeley has a premium

tier. Papers is a paid application a�er a trial period. I don’t use these tools much,

but that’s not for any strong principled reason—mostly just intertia. If you use

one and want to integrate with the material here, just make sure it can export

to BibTeX/BibLaTeX �les. Papers, which I’ve used most recently, can handily

output citation keys in pandoc’s format amongst several others.

https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
https://rstudio.com/resources/cheatsheets/
http://adv-r.had.co.nz/Style.html
http://yihui.name/knitr/demos
http://www.amazon.com/dp/1498716962/
http://rmarkdown.rstudio.com
http://github.com/kjhealy/plain-text.co
http://stat545-ubc.github.io/topics.html
http://www.stat.ubc.ca/~jenny/
http://kbroman.org/pages/tutorials
http://kbroman.org/steps2rr
http://kbroman.org/steps2rr
http://kbroman.org/github_tutorial
http://kbroman.org/knitr_knutshell
http://lincolnmullen.com/blog/makefiles-for-ocr-and-converting-shapefiles
http://lincolnmullen.com
http://backblaze.com
http://crashplan.com
http://github.com
http://marked2app.com
http://sublimetext.com
http://zotero.org
http://mendeley.com
http://papersapp.com

35

references
Dalgaard, Peter. 2008. Introductory Statistics with R. Second edition. New York: Springer.

Fox, John. 2002. An R and S-Plus Companion to Applied Regression. �ousand Oaks: Sage.

Gelman, Andrew, and Jennifer Hill. 2007. Data Analysis Using Regression and Multilevel/Hier-
archical Models. New York: Cambridge University Press.

Harrell, Frank. 2016. Regression Modeling Strategies. Second. New York: Springer.

Healy, Kieran, and James Moody. 2014. “Data Visualization in Sociology.” Annual Review of
Sociology 40: 105–28.

Maindonald, John, and John Braun. 2003. Data Analysis and Graphics Using R: An Example-
Based Approach. New York: Cambridge University Press.

Matlo�, Norman. 2011. �e Art of R Programming. San Francisco: No Starch Press.

Venables, W.N., and B.D. Ripley. 2002. Modern Applied Statistics with S. Fourth. New York:
Springer.

Xie, Yihui. 2015. Dynamic Documents with R and Knitr. Second. New York: Chapman; Hall.

	Introduction
	Two Revolutions in Computing
	What's the Problem?
	The Office Model and the Engineering Model
	Make Sure You Know What You Did
	Edit Text
	Reproduce Work and Minimize Error
	Pulling it Together
	Do I Have to Use All this Stuff?
	A Broader Perspective
	Appendix: Links to Resources

