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Abstract
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1 Introduction

How much should we save and invest for the future generations? The important

stream of literature that addresses this question adopts the discounted utilitarian

social welfare function and proceeds as follows. The intertemporal social objective

takes the form
∞∑
t=0

(
1

1 + δ

)t
Eu(ct), (1)

where ct is, to simplify, the consumption of the representative agent of generation

t. An investment from period 0 to period t that yields a sure rate of return r∗ is

worth doing, in the margin, if

u′ (c0) <

(
1

1 + δ

)t
Eu′(ct) (1 + r∗)t ,

i.e., if

ln (1 + r∗) > ln (1 + δ)− 1

t
ln

(
Eu′(ct)

u′ (c0)

)
,

or approximately,

r∗ > δ − 1

t
ln

(
Eu′(ct)

u′ (c0)

)
, (2)

the approximation being exact in continuous time. Equation (2) is know as the

Ramsey formula (Ramsey, 1928). Two questions have been studied around it.

First, a prolific literature has studied the impact of uncertainty about fu-

ture growth on the social discount rate. For instance, the Stern review (Stern,

2006, Part 1 - Appendix of Chapter 2) discusses the implications of increasing

uncertainty on the social discount rate. Numerous papers (Gollier, 2002; Gol-

lier and Weitzman, 2010; Gierlinger and Gollier, 2008; Traeger, 2012) have now

shown that depending on the uncertainty on future growth, it may happen that

1
t

lnEu′(ct) is large when t is large. This occurs when the risk of an unfavorable

growth path is substantial. In this case the threshold rate of return may be very

low, even infinitely negative in the case of fat-tailed risks (Weitzman, 2009). This
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line of argument justifies using a lower discount rate for long term projects than

for short term projects.

The second question is to choose an appropriate value for the pure time dis-

count rate δ and an appropriate calibration of the utility function u. Two con-

flicting views have emerged.1 The so-called “ethical” or prescriptive approach

advocates picking δ in such a way as to respect impartiality across generations.

As the only reason to introduce asymmetry across generations is the possibility

of extinction, this approach advocates a very low value for δ. Indeed, if the prob-

ability of extinction follows a Poisson process, i.e., is the same magnitude p for

every t, then the probability that extinction has not occurred before t is (1− p)t ,

which is equal to
(

1
1+δ

)t
when δ ' p. Following this reasoning, the Stern review

takes δ = 0.001 per annum. The ethical approach also advocates calibrating u

on the basis of inequality aversion within generations. For instance, if a function

u (c) =
1

1− η
c1−η

is adopted, in absence of uncertainty about ct, the threshold return for the ethical

approach is then equal to

ρ = p+ η
1

t
ln

(
ct
c0

)
. (3)

Even if p is low, one may end up with a high threshold if inequality aversion is

high and the average growth rate between 0 and t is substantial. Specifically, η

should be at least 2 if one considers it acceptable to perform a transfer from a rich

to a poor that represents the same fraction of their initial consumption for each

of them. With η ≥ 2 and an annual growth rate of two percent, the threshold is

greater than 4%.2

1They are called the prescriptive and the descriptive approach by Arrow et al. (1996).

2The Stern review adopts a low parameter η (equal to one) without much justification. This is
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The alternative (“descriptive” or “positive”) approach advocates looking at

revealed preferences (see, e.g., Nordhaus, 2008). It then seeks, on the basis of

observed individual choices in markets, to estimate pure time preference for the

calibration of δ and risk aversion and/or intertemporal elasticity of substitution

for the calibration of η. A weakness of the revealed preference approach in this

case is that it is hard to believe that individual preferences over risk and time

within a lifetime should have much to say about the adjudication of conflicting

interests across generations.

Another argument in favor of using the market rate is based on arbitrage.

Investing at a lower rate than the market rate yields returns that are dominated

by the market returns. For instance, a climate policy with low returns appears

dominated by a business-as-usual or a gradual policy that invests in economic

activities with greater returns. With the latter policy, later generations will be

richer and be able to allocate their greater resources between climate preservation

and other uses. As a matter of fact, the arbitrage argument can be considered an

objection against the ethical approach only if one misunderstands the latter. The

ethical approach provides criteria that evaluate whether an investment improves

social welfare. Typically such criteria satisfy the dominance principle that under-

lies the arbitrage argument. If all generations are made better off by a gradual

policy than a more radical climate policy, a typical social welfare criterion will

prefer this policy. An investment with greater returns has a greater net present

value whatever the value of the discount rate that is used to compute the present

value.

In view of these considerations, we consider that the ethical approach, based

on the idea of relying on a well-founded social welfare criterion, is worth being

not inconsistent with its stark insistence on impartiality across generations (because impartiality

and inequality aversion are not the same), but it is nonetheless somewhat surprising.
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pursued. But the classical framework in which the discounting problem is ad-

dressed in the literature, as summarized above, suffers from serious limitations.

In this paper, we study three important amendments to this framework.

First, the utilitarian criterion (1) is questionable in applications involving

risk, although it has been advocated in a seminal paper by Harsanyi (1955).

In the presence of risk, the utility function u must have a specific concavity if

it is meant to reflect the population’s attitude about risk-taking, and this may

be too restrictive for inequality aversion. In order to deal with this dilemma

between excessive paternalism and insufficient inequality aversion, alternative,

non-utilitarian, criteria for the evaluation of collective risks have recently been

proposed (Bommier and Zuber 2008, Fleurbaey 2010, Fleurbaey and Zuber 2012),

and in this paper we examine how to extend these alternative approaches to the

context of long-run evaluation.

Second, most of the literature on long term evaluation assumes an infinite

horizon. Sometimes people consider a small probability of extinction, but this is

thought as a minor amendment to the infinite horizon model. The literature on

intergenerational equity has uncovered many troubling results that are entirely

due to the presence of an infinite horizon in the model (see, e.g., Basu and Mitra,

2003; Lauwers, 2010; Zame, 2007). We advocate that such complications are su-

perfluous because a more realistic assumption is that the life span of humankind3

is finite and uncertain. Moreover, a good framework should be flexible about

how the risk affecting growth and the uncertainty about the survival of the hu-

man species interact. This second point confirms the importance of finding social

criteria which deal with risk in a satisfactory way.

Third, most of the literature on discounting assumes that every generation

can be represented by a single agent. A better framework should allow for intra-

3The other species should ideally be considered as well. They are ignored in this paper.
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generational inequalities and the welfare analysis should be individualistic, i.e.,

compute social welfare on the basis of individual well-being, not directly at the

level of generations. This is not a contentious point, and many authors grant it

(Schelling 1995, Stern 2007, and many others), but it seems important to make in-

tragenerational inequalities part of the main model, instead of a minor extension,

in order to frame the problem in a sound way.

The difficulty of our analysis is that it combines the hard ethical issues having

to do with social choice under uncertainty and with a variable population — as

an uncertain life span induces an uncertain size of the human species. Classi-

cal references in these fields are Broome (1991), Broome (2004), and Blackorby,

Bossert and Donaldson (2005). We particularly build on previous work made by

Bommier and Zuber (2008) and Blackorby, Bossert and Donaldson (2007) about

variable population and uncertainty, and by Fleurbaey (2010) and Fleurbaey and

Zuber (2012) about uncertainty. The paper by Blackorby, Bossert and Donaldson

(2007) is formally the closest to our work and inspires our approach to the variable

population problem, but they introduce strong Pareto and separability principles

which impose the additive structure of utilitarianism, whereas we consider more

general possibilities. Bommier and Zuber (2008) address a similar question and

adopt a similar methodology as our paper, but they exclusively focus on the risk of

extinction, assuming away any intragenerational inequality and any uncertainty

about growth. They rely on a weaker Pareto principle than Blackorby, Bossert

and Donaldson (2007) but even this version may not be satisfactory according

to arguments in Fleurbaey (2010), as we will explain in the next section. Our

proposed social objectives and the ethical principles dealing with uncertainty are

inspired by Fleurbaey (2010) and Fleurbaey and Zuber (2012).4 However, these

4Another related work by Fleurbaey, Gajdos and Zuber (2010) studies social choice under

uncertainty in a very general fashion, allowing for non-expected utility criteria and a weak form
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papers do not address the problem of a variable population.

It turns out that covering variable population sizes requires rethinking some

of the axioms used in discussions about equity and risk. In particular, axioms of

independence with respect to individuals bearing no risk (or past generations),

like those suggested by Fleurbaey and Zuber (2012), have to be adapted: if the

size of the population bearing no risk is fixed, the size of the population bearing

risks may vary, due to the risk on existence. This significantly modifies the

analysis. The variable population framework also leads us to introduce an axiom

of consistency between different population sizes. Another difference with the

previous literature is that the proofs of our results involve different techniques

than the one in Bommier and Zuber (2008) and Fleurbaey and Zuber (2012), who

rely on a method proposed by Keeney and Raiffa (1976).

The paper is organized as follows. Section 2 introduces three families of social

objectives which generalize the utilitarian criterion and a justification is provided

for each of them. Section 3 derives the implications of each of these social objec-

tives for the discount rate and shows that the Ramsey formulae (2) and (3) need

to be supplemented with additional terms involving the relative well-being of fu-

ture individuals and the correlation between their well-being (or their existence)

and social welfare. Section 4 derives the implications of these new criteria for

the question of catastrophic risks which has been studied in the utilitarian con-

text by Weitzman (2009). We show that the dismal theorem can be made more

pressing with some non-utilitarian criteria, but at the cost of a social aversion to

catastrophes that goes against individual preferences. Section 5 concludes. An

Appendix contains the proofs of the results of Section 2.

of consequentialism. In contrast, we are content with the expected utility model as a decision

criterion under risk.
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2 Social objectives

2.1 The framework

We let N denote the set of positive integers, N3 the set of integers starting from 3,

N3 the set of subsets of N with cardinality at least 3, R the set of real numbers,

and R+ the set of non-negative real numbers. For a set S and any n ∈ N, Sn is

the n-fold Cartesian product of S.

Our framework is adapted from Blackorby, Bossert and Donaldson (2007).

The set of potential individuals (who may or may not exist) is N. In the definition

of a person, we include all his or her relevant characteristics (gender, birthplace,

and so forth) and in particular the generation it belongs to. Hence there exists a

mapping T : N → N that associates to each individual i the date he or she will

be born provided he or she comes to life, T (i).

In contrast with Blackorby, Bossert and Donaldson (2007), we work directly

with utility numbers. Hence an alternative u is a collection of utility numbers,

one for each individual alive in the alternative. Let X be a closed interval in R.

We let U =
⋃
n∈N3

Xn denote the set of possible alternatives — an alternative

is a vector of utility numbers, one for each individual living in that particular

alternative. Note that we restrict attention to situations in which the population

has at least three members. In a variable-population framework, the size of the

population may vary from one alternative to another. It is important to keep

track of the population in an alternative. For any u ∈ U , we let N(u) be the set

of individuals in the alternative and n(u) = |N(u)| be the number of individuals

in the alternative.

Uncertainty is described by m ∈ N \ {1} states of the world. A prospect is a

vector belonging to the set U = Um with typical element u = (u1, · · · , um). A

lottery is the combination of a probability vector p = (p1, · · · , pm) ∈ Σm−1 —
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where Σm−1 denotes the closed (m− 1)-simplex — and a prospect u. The set of

lotteries is denoted

L =
{

(p,u); p ∈ Σm−1, u ∈ U
}
.

We choose to work with lotteries rather than prospects even though, in prin-

ciple, all lotteries can be reformulated as prospects for a suitable partition of

states of the world. The reason is that it is convenient in applications to be

able to describe possible scenarios not only in terms of varying consequences, but

also in terms of different probabilities over a small set of identified states of the

world. This makes our analysis more amenable to applications. In particular, the

role of probabilities in the determination of the discount rate will be much more

transparent in this way.

For a prospect u, whenever i ∈ N(us) for s ∈ {1, · · · ,m}, uis denotes the

utility of individual i in state of the world s. For a subpopulation N ⊂ N, we

denote by UN the set of prospects such that, for any u ∈ UN , and any s ∈

{1, · · · ,m}, N(us) = N . These are the prospects such that the same individuals

are present in all states of the world. In this case, ui = (ui1, · · · , uim) represents

the prospect of individual i. We let 1m be the unit vector of Rm.

Our problem is to define a social ordering, i.e., a transitive and complete

binary relation R on L. The expression (p,u)R(q,v) will mean that (p,u) is at

least as good as (q,v). We let P and I denote the corresponding strict preference

and indifference relations.

More precisely, our problem is to select reasonable orderings among the myriad

possible orderings of this set. The standard way of making such a selection is to

list basic requirements (axioms) that embody appealing ethical principles, and to

seek the orderings that satisfy such requirements.
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2.2 Principles

We first want R to be as rational as one could be, given that it serves for a

reasoned evaluation of social situations. The expected utility criterion, in spite of

many criticisms, remains the benchmark of rational decision-making under risk

and the following axiom requires R to take the form of expected (social) utility.

Axiom 1 (Social expected utility hypothesis) There exists a continuous func-

tion V : U → R such that, for all (p,u), (q,v) ∈ L:

(p,u)R(q,v)⇐⇒
m∑
s=1

psV (us) ≥
m∑
s=1

qsV (vs)

One limitation implied by this axiom is that it prevents R from evaluating

what happens in one state of the world taking into account what would have

happened in other states. In this fashion, ex ante fairness in lotteries (Diamond,

1967) is ignored, unless the utility numbers us in any given state do incorporate a

measure of the chances that individuals had in other states. It is formally easy to

generalize the criterion and rewrite it as
∑m

s=1 psVs (p,u) , but it is then difficult

to come up with a precise proposal for the state-specific functions Vs that would

evaluate the consequences in state s as a function of the whole lottery (p,u) (see

Fleurbaey, Gajdos and Zuber, 2010).

The next axiom is a standard anonymity requirement.

Axiom 2 (Anonymity) For all N ,M∈N3, for all p ∈ Σm−1, for all u ∈ UN

and v ∈ UM, if |N | = |M| and if there exists a bijection π : N →M such that

ui = vπ(i) for all i ∈ N , then (p,u)I(p,v).

The Pareto principle is the hallmark of social evaluation, but the principle of

consumer sovereignty is normally invoked when the individuals are fully informed

about the options. In the presence of risk, by definition the individuals do not
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know what will ultimately happen if they choose such or such option, so that

respecting their ex ante preferences is less compelling than under full information.

In particular, there are situations in which the distribution of final situations

across individuals is known ex ante, while it is only the identity of winners and

losers that is not known. In such situations, the ignorant individuals may all be

willing to take a risk, but everyone knows that it is not in the interest of the

ultimate losers and everyone knows that this ex ante unanimous preference for a

risky lottery will break down as soon as uncertainty is resolved. In view of such

considerations, we restrict the application of the Pareto principle to situations

in which such a breakdown of unanimity with greater information cannot occur.

Two cases are retained here. There is first the case of risk-free prospects, in which

full information about final utilities prevails.

Axiom 3 (Pareto for no risk) For all N ∈N3, for all p,q ∈ Σm−1 and u,v ∈

UN such that for all i ∈ N , there is u(i), v(i) ∈ X such that ui = u(i)1m and

vi = v(i)1m,

u(i) ≥ v(i) for all i ∈ N =⇒ (p,u)R(q,v),

and

u(i) ≥ v(i) for all i ∈ N

u(j) > v(j) for some j ∈ N

 =⇒ (p,u)P (q,v).

Second, there is the case in which all individuals share exactly the same fate

in all states of the world. They may ultimately regret5 having taken a risk if they

are unlucky, but they will unanimously do so.

5The notion of regret used here corresponds to a comparison with the decision that would

have been made under full information about the final state of the world. It does not mean

that individuals would want to change their decisions if they had to do it again under the same

informational circumstances.
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Axiom 4 (Pareto for equal risk) For all N ∈N3, for all p,q ∈ Σm−1, for all

u,v ∈ UN such that for all s ∈ {1, · · · ,m} there is u(s), v(s) ∈ X such that

uis = u(s) and vis = v(s) for all i ∈ N ,

(p,u)R(q,v)⇐⇒
m∑
s=1

psu(s) ≥
m∑
s=1

qsv(s).

We also introduce some requirements of subpopulation separability. The mo-

tivation for such axioms is primarily a matter of simplicity. Under separability

it is possible to perform the evaluation of a certain change affecting a particular

population (e.g., the present and future generations) independently of the rest

of the population that is not concerned (e.g., the past generations). The first

separability axiom applies to riskless prospects in which utility is the same in all

states.

Axiom 5 (Separability for sure prospects) For all N ∈N3, for all p,q ∈

Σm−1, for all u,v, ũ, ṽ ∈ UN , if there exists M such that M⊂ N and

ui = vi = u(i)1m for all i ∈M,

ũi = ṽi = ũ(i)1m for all i ∈M,

uj = ũj = u(j)1m for all j ∈ N \M,

vj = ṽj = ṽ(j)1m for all j ∈ N \M,

then (p,u)R(q,v)⇐⇒ (p, ũ)R(q, ṽ).

For prospects that involve risk, separability is a more delicate notion because

the presence of other agents who may be unconcerned but display a certain cor-

relation with the concerned population may appear relevant to the evaluation.

In particular, it makes sense to prefer prospects with positive correlation across

agents (solidarity of fate) to prospects with negative correlation. Therefore we

restrict the application of separability to situations in which the unconcerned

population bears no risk at all. This is typically the situation of past genera-

tions, for instance. Violating this axiom would then require taking account of the
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level of utility of ancient populations in order to assess future policies — a quite

cumbersome obligation.

Axiom 6 (Independence of the utility of the sure) For all p,q ∈ Σm−1,

for all u,v, ũ, ṽ ∈ U, if there exists M such that, for all s ∈ {1, · · · ,m}, M ⊂

N(us) = N(ũs), M⊂ N(vs) = N(ṽs), and

ui = vi = u(i)1m for all i ∈M,

ũi = ṽi = ũ(i)1m for all i ∈M,

for all s ∈ {1, · · · ,m}, uis = ũis for all i ∈ N(us) \M,

for all s ∈ {1, · · · ,m}, vis = ṽis for all i ∈ N(vs) \M,

then (p,u)R(q,v)⇐⇒ (p, ũ)R(q, ṽ).

Note that Axiom 6 is stronger than Axiom 5 not just because it applies to

risky prospects, but also because it allows for situations in which the concerned

populations are not the same in u and v. In this respect, Axiom 6 also differs

from the Independence of the Utility of the Sure in Fleurbaey and Zuber (2012),

which would correspond in the present framework to the following weaker axiom:

Axiom 7 (Same number independence of the utility of the sure) For all

N ∈ N3, for all p,q ∈ Σm−1, for all u,v, ũ, ṽ ∈ UN , if there exists M such that,

for all M⊂ N , and

ui = vi = u(i)1m for all i ∈M,

ũi = ṽi = ũ(i)1m for all i ∈M,

for all s ∈ {1, · · · ,m}, uis = ũis for all i ∈ N \M,

for all s ∈ {1, · · · ,m}, vis = ṽis for all i ∈ N \M,

then (p,u)R(q,v)⇐⇒ (p, ũ)R(q, ṽ).

Axiom 6 is a rather natural extension of the idea of separability. If we consider

two possible scenarios for the future population, with different individuals being
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born in each scenario, it still makes sense to disregard the past generations. It

may therefore seem appropriate to use Axiom 6 rather than Axiom 7.

Our last axiom deals with the comparison of populations with different sizes.

We want to be as flexible as possible and simply require the comparison to be

possible in a certain systematic way. This is the role of the “critical-level” func-

tion.

Axiom 8 (Critical-level consistency) There exists a function C : R× N →

X such that for all p ∈ Σm−1, for all u,v ∈ U, for all s ∈ {1, · · · ,m} and for all

k ∈ N \N(us), if

us′ = vs′ for all s′ ∈ {1, · · · ,m} \ {s},

uis = vis for all i ∈ N(us)

N(vs) = N(us) ∪ {k},

vks = C (V (us) , n(us)) ,

then (p,u)I(p,v).

Compared to the Critical-Level Consistency Axiom by Blackorby, Bossert and

Donaldson (2007), Axiom 8 imposes that the critical level depends on the welfare

of the society without the additional individual rather than the whole vector us.

This is more restrictive but it seems reasonable to argue that if we replace us

with another vector ũs such that V (ũs) = V (us) and n (ũs) = n (us) , there is no

reason to change the critical level.

2.3 Three families of social objectives

As a preliminary, it is worth mentioning that standard utilitarianism (with a

critical level) is the only one to satisfy all the axioms introduced in the previous

section. We state this as a separate proposition but it is simply a corollary of

Propositions 1 and 2 below.

13



Proposition 0 The social ordering R satisfies Axioms 1, 2, 3, 4, 6 and 8 iff

there exists a scalar uc ∈ X such that

(p,u)R(q,v)⇐⇒
m∑
s=1

ps
∑

i∈N(us)

(
uis − uc

)
≥

m∑
s=1

qs
∑

i∈N(vs)

(
vis − uc

)

The problem with this formula is of course that it does not yield any priority

to the worst-off in utility. To avoid this conclusion, some of the axioms must be

dropped. We first state a lemma which shows the implications of separability

for the ex post evaluation of final distributions of utilities. All the proofs of this

section are in the Appendix.

Lemma 1 If the social ordering R satisfies Axioms 1, 2, 3, and 5 then, for all

n ∈ N3, there exist continuous and increasing functions Ψn and φn such that, for

all us such that n(us) = n,

V (us) = Ψn

 ∑
i∈N(us)

φn(uis)

 .

The following proposition identifies a first family of social objectives. It in-

volves the expected value of the equally-distributed equivalent (EDE). Recall that

for any given distribution of utilities across individuals, its equally-distributed

equivalent is the utility level that, were it equally enjoyed by all individuals,

would generate the same level of social welfare as the contemplated distribution.

Proposition 1 The social ordering R satisfies Axioms 1, 2, 3, 4, 5 and 8 iff there

exists a continuous increasing function φ and a sequence (αn, βn) ∈ R++×R such
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that for all (p,u), (q,v) ∈ L:

(p,u)R(q,v)⇐⇒
m∑
s=1

ps

αn(us)φ
−1

 1

n(us)

∑
i∈N(us)

φ(uis)

+ βn(us)

 ≥
m∑
s=1

qs

αn(vs)φ
−1

 1

n(vs)

∑
i∈N(vs)

φ(vis)

+ βn(vs)


and the sequence (αn, βn) , n ≥ 3 satisfies the recursive property:

(n+ 1)φ

(
x− βn+1

αn+1

)
= φ (C (x, n)) + nφ

(
x− βn
αn

)
, (4)

where C is the critical-level function of Axiom 8.

Proposition 1 extends previous results by Fleurbaey (2010) to the variable

population framework. Doing so, it provides a more specific form for the EDE

function and shows how it relates to the VNM function for different population

sizes. It also provides specific results on the form of the critical-level function.

Indeed, the recursive property (4) identified in this Proposition is quite constrain-

ing. If for all n, αn = α and βn = β, Equation (4) implies

C (x, n) =
x− β
α

,

which means that the critical level is equal to the EDE. When the social ordering

exhibits a strong aversion to inequality, the EDE is close to the lowest utility,

which implies that it is then considered acceptable to add new members to society

only when their utility level is above the minimum.

The critical level can also be independent of V (us), but here again the con-

straints are substantial, as stated in the following result.

Corollary 1 If the critical-level function C (x, n) associated with the social or-

dering defined in Prop. 1 is independent of x and if the social ordering is averse
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to inequality (φ strictly concave), then C satisfies the following properties :

1. Either C (x, n) = minX for all x ∈ X and for all n ∈ N3 ; or C (x, n) = maxX

for all x ∈ X and for all n ∈ N3.

2. If X is not bounded above, then C (x, n) = minX for all x ∈ X and for all

n ∈ N3 and there exists ε such that 0 < ε < 1 and for all (p,u), (q,v) ∈ L:

(p,u)R(q,v)⇐⇒
m∑
s=1

ps

 ∑
i∈N(us)

(uis −minX)1−ε

1/(1−ε)

≥

m∑
s=1

qs

 ∑
i∈N(vs)

(vis −minX)1−ε

1/(1−ε)

.

(In this case, αn = n
1

1−ε , βn = −n
1

1−ε minX.)

The case C (x, n) = maxX is not palatable, as it implies a strong form of

anti-populationism. It is noteworthy that the social ordering highlighted in point

2 has limited inequality aversion, as 0 < ε < 1.

It is possible to have C (x, n) = c > minX when φ is no longer required to be

concave everywhere and the social ordering is inequality averse above the critical

level but inequality prone below it, i.e., with a formula like

V (us) = ϕ−1

 1

n(us)

∑
i∈N(us)

ϕ
(
uis − c

) ,

where ϕ(z) = z1−ε when z > 0, ϕ(z) = −(−z)1−ε when z < 0, and 0 < ε < 1.

Although this is a controversial form of social ordering, a possible justification

for it is that it focuses on raising individuals above the critical level c, even if this

means sacrificing those who cannot make it (this is a triage approach discussed

in Roemer, 2004).

For the analysis of the discount rate in the next section, what is important is

the behavior of αn/n. In this respect, we have the following result:
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Corollary 2 If φ is concave and differentiable on X, C(x, n) is non-decreasing

in x, and C (αn minX + βn, n) ≥ minX, then αn/n is non-increasing in n.

This may seem a general result but the assumption that φ is differentiable at

minX is not innocuous in terms of inequality aversion. Observe that in case 2 of

Corollary 1, in particular, αn/n is increasing in n. When αn is a constant, αn/n

is decreasing in n. Therefore both cases are possible.

An inconvenient feature of the family of social orderings singled out in Propo-

sition 1 is that they do not satisfy Axiom 6 and therefore generally require taking

account of seemingly unconcerned individuals (such as the members of past gen-

erations) in the evaluation. It is however possible to use the weakened version of

Independence of the Utility of the Sure, namely Axiom 7, to obtain the following

result:

Corollary 3 The social ordering R satisfies Axioms 1, 2, 3, 4, 7 and 8 iff:

1. Either for all (p,u), (q,v) ∈ L:

(p,u)R(q,v) ⇐⇒
m∑
s=1

ps

αn(us)

 ∑
i∈N(us)

uis

+ βn(us)

 ≥
m∑
s=1

qs

αn(vs)

 ∑
i∈N(vs)

vis

+ βn(vs)

 ;

2. Or there exist κ ∈ R \ {0} and Ω ∈ R such that for all (p,u), (q,v) ∈ L:

(p,u)R(q,v) ⇐⇒ 1

κ

m∑
s=1

ps

αn(us)

 ∏
i∈N(us)

(
Ω + κuis

) 1
n(us)

+ βn(us)

 ≥
1

κ

m∑
s=1

ps

αn(vs)

 ∏
i∈N(vs)

(
Ω + κvis

) 1
n(vs)

+ βn(vs)

 .
Two remarks can be made concerning Corollary 3:
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• In the multiplicative case, the representation is valid only if we restrict X

to be a subset of (−∞,−Ω
κ

) when κ < 0 or a subset of (−Ω
κ
,+∞) when

κ > 0. When X = R, the social ordering R satisfies Axioms 1, 2, 3, 7 and

8 if and only if the additive representation holds.

• If we require ex-post preferences to exhibit inequality aversion, only the

multiplicative case with κ > 0 is admissible.

If one thinks of sure individuals as past generations, the second representation

in Corollary 3 depends on the past only through the number of persons who have

lived in the past. If one wants to avoid even this dependence, one must strengthen

Axiom 7. For this purpose, we now reintroduce Axiom 6, but drop Axiom 4

momentarily, in order to identify two other interesting families. The two families

are extensions to variable populations of two families of social orderings singled

out in Fleurbaey and Zuber (2012).

Proposition 2 The social ordering R satisfies Axioms 1, 2, 3, 6 and 8 iff:

1. Either there exist a scalar uc and a continuous and increasing function φ

such that for all (p,u), (q,v) ∈ L:

(p,u)R(q,v)⇐⇒
m∑
s=1

ps
∑

i∈N(us)

(
φ(uis)− φ(uc)

)
≥

m∑
s=1

qs
∑

i∈N(vs)

(
φ(vis)− φ(uc)

)
.

2. Or there exist a scalar uc, a non-zero scalar γ, and a continuous and in-
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creasing function φ such that for all (p,u), (q,v) ∈ L:

(p,u)R(q,v)⇐⇒

1

γ

m∑
s=1

ps exp

γ ∑
i∈N(us)

(
φ(uis)− φ(uc)

) ≥
1

γ

m∑
s=1

ps exp

γ ∑
i∈N(vs)

(
φ(vis)− φ(uc)

) .

Although it singles out an additive and a multiplicative family of social wel-

fare functions, Proposition 2 differs from results in Fleurbaey and Zuber (2012)

because it does not use a Pareto for (Restricted Subgroup) Equal Risk Axiom.

The technique of proof is therefore different and involves functional equations.

The exponential representation of Proposition 2 can be interpreted in terms

of risk behavior. Indeed, if
∑

i∈N(vs)
(φ(vis)− φ(uc)) is considered an ex post

measure of social welfare, the parameter γ can be viewed as expressing an attitude

towards the risk on social welfare. Hence γ < 0 corresponds to risk aversion

while γ > 0 corresponds to risk loving. Therefore, if we assume that φ is concave

(inequality aversion), the difference with the EDE case (which involves the convex

transformation φ−1) is that we can have a concave function of social welfare, that

is, the risk averse case.

When the risk only bears on the horizon, we can interpret γ as capturing

risk aversion with respect to population size. The case γ < 0 corresponds to

“catastrophe avoidance”, i.e., a preference for guaranteeing the existence of some

generations rather than taking the risk on an earlier end of history, whereas the

case γ > 0 corresponds to “risk equity”, implying a preference for spreading

the risk of existence over more generations, thereby increasing the probability of

existence of later generations (Bommier and Zuber, 2008). More generally, γ also

represents social attitudes towards the correlation of outcomes not just across
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generations but also within, and, in the case of independent individual risks,

it embodies social attitudes about the distribution of such risks. If the society

prefers people in general to have similar outcomes, that is, if it values positive

correlation, or if it values a more equal distribution of independent risks, this is

captured by γ > 0 (risk equity).

If one added Axiom 4 to the list in Proposition 2, the exponential case would

be excluded because it would require the function φ to be such that the mapping

uis → exp (γnφ(uis)) be affine in uis, which is impossible because this would require

φ to depend on n. Moreover, the additive case would have to satisfy that φ(uis)

is affine in uis, implying that the criterion boils down to utilitarianism in same-

number cases.

It is, however, possible to combine inequality aversion and a limited respect for

ex ante individual preferences. The following axiom guarantees that individual

preferences are respected when only one individual takes a risk that does not

affect the unconcerned others.

Axiom 9 (Pareto for individual risk) For all N ∈N3, for all p ∈ Σm−1, for

all u,v ∈ UN , for all i ∈ N , if for all j ∈ N \{i} there exists u(j) ∈ R such that

uj = vj = u(j)1m, then

(p,u)R(p,v)⇐⇒
m∑
s=1

psu
i
s ≥

m∑
s=1

psv
i
s.

When Axiom 9 is added to Proposition 2, we obtain two classes of social

welfare functions which are very similar to the ones in Bommier and Zuber (2008).

Corollary 4 The social ordering R satisfies Axioms 1, 2, 3, 6, 8 and 9 iff:

1. Either there exists a scalar uc such that for all (p,u), (q,v) ∈ L:

(p,u)R(q,v)⇐⇒
m∑
s=1

ps
∑

i∈N(us)

(
uis − uc

)
≥

m∑
s=1

qs
∑

i∈N(vs)

(
vis − uc

)
;
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2. Or there exist a scalar uc, Λ ∈ R \ {0} and λ ∈ R such that for all

(p,u), (q,v) ∈ L:

(p,u)R(q,v) ⇐⇒ 1

Λ

m∑
s=1

ps

 ∏
i∈N(us)

(
λ+ Λ(uis − uc)

) ≥
1

Λ

m∑
s=1

qs

 ∏
i∈N(vs)

(
λ+ Λ(vis − uc)

) .

One can notice the similarity between the representations put forward in

Corollary 4 and those obtained in Corollary 3. The same remarks as the one

made after Corollary 3 therefore apply. The choice between the alternative rep-

resentations hinges on the respective weight one puts on Pareto for Equal Risk

versus Independence of the existence (or utility) of the sure.

One may regret that we propose three families instead of identifying a single

approach. We believe that our work is to clarify the ethical issues, not to advocate

particular solutions. One may argue that the criteria identified in Proposition 1

and Corollaries 1 and 3 are good compromises between inequality aversion and

the Pareto principle. But if one is attracted by stronger separability properties

and is willing to drop the Pareto principle in order to keep sufficient inequality

aversion, the criteria characterized in Proposition 2 and Corollary 4 stand out as

the only alternative possibilities.

3 Implications for the discount rate

In this section we derive the social discount rate for the three families highlighted

in Propositions 1 and 2. In the utilitarian approach exemplified in (2) and (3),

the discount rate on consumption is the simple addition of a discount rate on

utility and a specific term relative to consumption, combining the growth rate of

consumption and the rate of decrease of marginal utility. As we will see, not only
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is the utility discount rate modified with the alternative criteria proposed here,

but the consumption term is also generally different because the simple additive

structure of (2) and (3) is due to the additive structure of the utilitarian criterion

and to specific assumptions about the nature of the risk and the inequalities in

consumption.

3.1 Social and person-to-person discount rates

To start with, consider a social welfare function taking the general form

W (p,u) =
m∑
s=1

psV (us) ,

where us = (u (cis))i∈N(us)
, and cis, the consumption of individual i in state s,

is a real number. We assume here that all individuals have the same utility

function u. Extending the analysis to the case of heterogeneous utility functions

is cumbersome but straightforward.

When individuals, not generations, are the constitutive elements of social

welfare, the discount rate must be computed primarily between two individuals.

Definition 1 The person-to-person discount rate from an individual i in period

0 to an individual j in period t, denoted ρi,jt , is:

ρi,jt =

∑m
s=1 ps

∂V (us)
∂uis

u′ (cis)∑m
s=1 ps

∂V (us)

∂ujs
u′
(
cjs
)
 1

t

− 1. (5)

To understand this definition, imagine that today (period 0) individual i can

make an investment whose sure rate of return is r for the benefit of individual

j living in period t. In the margin, such an investment has no effect on social

welfare if:

m∑
s=1

ps
∂V (us)

∂ujs
u′
(
cjs
)

(1 + r)t =
m∑
s=1

ps
∂V (us)

∂uis
u′
(
cis
)
ε,
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with the convention that ∂V (us) /∂u
j
s = 0 if j does not exist in state s. Observe

that, while the existence and consumption of i in period 0 is certain, the social

marginal utility ∂V (us) /∂u
i
s may vary across states of the world.

When many individuals from period 0 make an investment that benefits many

individuals in period t, one can evaluate the investment with a social discount

rate that aggregates the person-to-person discount rates, provided the shares

of the individuals in the investment (either as investors or as beneficiaries) are

fixed. Suppose that each donor i in period 0 bears a fraction σi0 of the marginal

investment ε, and that each recipient j in period t receives a fraction σjt , with∑
i σ

i
0 =

∑
j σ

j
t = 1. The social discount rate is again the sure rate of return on

the marginal investment that leaves social welfare unchanged.

Definition 2 The social discount rate from period 0 to period t, denoted ρt, is:

ρt =

∑m
s=1 ps

∑
i:T (i)=0 σ

i
0
∂V (us)
∂uis

u′ (cis)∑m
s=1 ps

∑
j:T (j)=t σ

j
t
∂V (us)

∂ujs
u′
(
cjs
)
 1

t

− 1

=

∑
i

σi0

[∑
j

σjt
(
1 + ρi,jt

)−t]−1


1
t

− 1. (6)

In the sequel we focus on the computation of the person-to-person discount

rate. Let us briefly examine how (5) applies in the utilitarian case, before ex-

amining the alternative criteria characterized in the previous section. When V

is the critical-level utilitarian social welfare function
∑

i∈N(us)
(uis − uc), one has

∂V/∂uis = ∂V/∂ujs = 1 for the individuals of period 0 and for the individuals of

period t in the states in which they exist. This considerably simplifies the formula

and one obtains

ρi,jt =

(
u′ (ci)∑m

s=1 psu
′ (cj)

) 1
t

− 1

' 1− p(j)
t

− 1

t
ln

(
Eju′ (cjs)

u′ (ci)

)
,
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where p(j) is the probability that individual j exists and Ej is the expected value

conditional on j’s existence. Noticeably, the critical level plays no role in the

value of the discount rate.

3.2 The Ramsey formula revisited

We obtain the following general results for the families of social welfare func-

tions introduced in the previous section. The order of presentation follows the

increasing order of refinements to the Ramsey formula.

Proposition 3 For the family of additive social welfare functions

W (p,u) =
m∑
s=1

ps
∑

i∈N(us)

(
φ(uis)− φ(uc)

)
,

the person-to-person discount rate can be approximated in the following way:

ρi,jt '
1− p(j)

t
− 1

t
ln
Ejµjs
µi

. (7)

where µjs = φ′(ujs)u
′ (cjs) and µi = φ′(ui)u′ (ci).

Proof. For the additive family,

1 + ρi,jt =

(
φ′(ui)u′(ci)∑

s:j∈N(us)
psφ′(u

j
s)u′(cjs)

)1
t

=

(
1∑

s:j∈N(us)
ps

)1
t (

φ′(ui)u′(ci)∑
s:j∈N(us)

πjsφ′(u
j
s)u′(cjs)

)1
t

.

Therefore,

ρi,jt '
1− p(j)

t
− 1

t
ln

(
Ejφ′(ujs)u′(cjs)
φ′(ui)u′(ci)

)
.

In Equation (7), µjs and µi respectively denote the social priority of increasing

the consumption of j in state s and the social priority of increasing the consump-

tion of i.
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The second term of Equation (7) can be decomposed in order to compare it

with the utilitarian formula. One has

ρi,jt '
1− p(j)

t
− 1

t
ln

(
Eju′(cjs)

u′ (ci)

)
+

1

t
Θ,

for

Θ = − ln

Ej φ
′(u(cjs))
φ′(u(ci))

u′(cjs)

Eju′
(
cjs
)


= − ln

(
1 +

Covj (φ′ (u(cjs)) , u
′ (cjs))

Ejφ′
(
u(cjs)

)
Eju′

(
cjs
) )− ln

(
Ejφ′ (u(cjs))

φ′ (u(ci))

)
,

where Covj is the covariance conditional on j existing. From the first line one

sees that if u(cjs) > u(ci) for all s, then Θ > 0. On the other hand, from the

second line one sees that if Eφ′ (u(cjs)) is not very much lower than φ′ (u(ci)) and

if the risk on cjs is high while the concavity of φ and u is strong (implying a great

covariance term), one will have Θ < 0.

In the additive case, the person-to-person social discount rate between i at

period 0 and j at period t is therefore lower:

• the more likely it is that j exists;

• the less well-off j is on average (conditional on j existing), relative to i.

The additive case is obviously the closest to utilitarianism, the only difference

coming from the inequality aversion that is incorporated when φ′ is decreasing.

As with utilitarianism, the critical level uc has no influence at all on the discount

rate in this approach.

With the exponential class of social orderings, one obtains additional terms

in the formula for the discount rate.
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Proposition 4 For the family of exponential social welfare functions

W (p,u) =
1

γ

m∑
s=1

ps exp

γ ∑
i∈N(us)

(
φ(uis)− φ(uc)

) ,

the person-to-person discount rate can be approximated in the following way:

ρi,jt '
1− p(j)

t
− 1

t
ln
Ejµjs
µi
− 1

t
ln

(
1 +

Covj (µjs, ξs)

EjµjsEjξs

)
− 1

t
ln
Ejξs
Eξs

. (8)

where ξs = 1
γ

exp
(
γ
∑

k∈N(us)

(
φ(uks)− φ(uc)

))
= V (us).

Proof. In the case of the exponential family, we have:

1 + ρi,jt =

(∑
s:i∈N(us)

ps exp(γ
∑
k∈N(us)(φ(uks )−φ(uc)))φ′(ui)u′(ci)∑

s:j∈N(us)
ps exp(γ

∑
k∈N(us)(φ(uks )−φ(uc)))φ′(ujs)u′(cjs)

)1
t

=

(
1

p(j)

)1
t
(

φ′(ui)u′(ci)E exp(γ
∑
k∈N(us)(φ(uks )−φ(uc)))

Ej exp(γ
∑
k∈N(us)(φ(uks )−φ(uc)))φ′(ujs)u′(cjs)

)1
t

.

Therefore,

ρi,jt ' 1− p(j)
t

− 1
t

ln

(
Ej[exp(γ

∑
k∈N(us)(φ(uks )−φ(uc)))φ′(ujs)u′(cjs)]

φ′(ui)u′(ci)E exp(γ
∑
k∈N(us)(φ(uks )−φ(uc)))

)
=

1− p(j)
t

− 1
t

ln

(
Ej[µjsξs]
µiEξs

)
.

One has:

Ejµjsξs = EjµjsE
jξs

(
1 +

Covj (µjs, ξs)

EjµjsEjξs

)
.

Approximation (8) indicates that the person-to-person discount rate between

i at period 0 and j at period t is lower:

• the more likely it is that j exists;

• the less well-off j is on average relative to i;

• the lower the covariance between the state of the population and j’s well-

being;
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• the better-off the population is in the states in which j exists.

The new terms capture the fact that j’s well-being gets all the more priority

as the rest of the population is better off. The covariance term is the covariance of

the relative variations of µjs and ξs. The last term is structurally similar because

it involves the covariance between j’s existence and ξs. Indeed, one has:

Ejξs
Eξs

= 1 +
Cov (1js, ξs)

E1jsEξs
,

where 1js = 1 if j ∈ N(us) and 0 otherwise.

Proposition 5 For the family of EDE social welfare functions

W (p,u) =
m∑
s=1

ps

αn(us)φ
−1

 1

n(us)

∑
i∈N(us)

φ(uis)

+ βn(us)

 ,
the person-to-person discount rate can be approximated in the following way:

ρi,jt '
1− p(j)

t
− 1

t
ln
Ejµjs
µi
− 1

t
ln

(
1 +

Covj (µjs, νs)

EjµjsEjνs

)
− 1

t
ln
Ejνs
Eνs

, (9)

where νs =
αn(us)

n(us)φ′(e(us))
.

Proof. For the EDE family, we have:

1 + ρi,jt =

∑
s:i∈N(us)

ps

[
αn(us)
n(us)

φ′(ui)u′(ci)
φ′(e(us))

]
∑
s:j∈N(us)

ps

[
αn(us)
n(us)

φ′(ujs)u′(cjs)
φ′(e(us))

]


1
t

=

(
1

p(j)

)1
t

 E

[
αn(us)
n(us)

φ′(ui)u′(ci)
φ′(e(us))

]

Ej

[
αn(us)
n(us)

φ′(ujs)u′(cjs)
φ′(e(us))

]


1
t

.

Therefore,

ρi,jt ' 1− p(j)
t

− 1
t

ln

 Ej

[
αn(us)
n(us)

φ′(ujs)u
′(cjs)

φ′(e(us))

]
φ′(ui)u′(ci)E

[αn(us)
n(us)

1
φ′(e(us))

]


1− p(j)
t

− 1
t

ln

(
Ej[µjsνs]
µiEνs

)
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Then we can proceed as in the proof of Proposition 4 to obtain the result.

One obtains an approximate formula (9) which is structurally very similar to

approximation (8) obtained with the exponential class. Like ξs, νs this expression

depends on the state of the population and increases with the well-being of the

population as measured by the EDE.

The novelty however is the role of population size in νs, which is determined

in part by the critical level. Indeed, the term νs may be increasing or decreasing

with the population size depending on the formula for the critical level. It is

in particular decreasing if αn is a constant, which is the case when the critical

level is equal to e (us). It is however increasing if αn = n1/(1−ε), which is the case

when the critical level of consumption is constant and equal to minX. This can

be easily explained when V (us) takes the simple form

V (us) =

 ∑
i∈N(us)

(uis − umin)1−ε

1/(1−ε)

.

The sensitiveness to the utility of a single individual indeed increases with the

size of the population in that case. Intuitively, observe that the derivative of(∑n
i=1 x

1−ε
i

)1/(1−ε)
with respect to xi is equal to

(∑n
i=1 x

1−ε
i

)ε/(1−ε)
x−εi , which is in-

creasing in the number of individuals, whereas the derivative of
(

1
n

∑n
i=1 x

1−ε
i

)1/(1−ε)

with respect to xi is equal to
(

1
n

∑n
i=1 x

1−ε
i

)ε/(1−ε)
x−εi /n, which is decreasing in n.

In the end, we have the following observations in the case of the EDE family.

The personalized social discount rate between i at period 0 and j at period t is

therefore lower:

• the more likely it is that j exists;

• the worse-off j is relative to i;

• the greater the covariance between the priority of j and vs;

28



• the greater vs is in the states in which j exists.

Informally, the last two terms mean that the discount rate is lower:

• the lower the covariance between the well-being of j and the well-being of

the population;

• the better-off the population is in the states in which j exists;

• the greater the covariance between j’s well-being and the size of the popu-

lation, if the critical level is equal to e(us); the lower the covariance between

j’s well-being and the size of the population, if the critical level of consump-

tion is minX;

• the smaller the population is in the states in which j exists, if the critical

level is equal to e(us); the larger the population is in the states in which j

exists, if the critical level of consumption is minX.

From Propositions 4 and 5 we obtain the conclusion that an investment should

be evaluated with a lower discount rate when its benefits in the future will be en-

joyed more by members of the population that are badly-off and by beneficiaries

whose well-being is inversely correlated with social welfare. Note that under a

strong degree of inequality aversion, the worse-off’s well-being is positively corre-

lated with social welfare. Therefore the two aspects may tend to counterbalance

each other. However, the correlation term should be less important when there is

an inverse correlation between the poor and the rich than in the case of a positive

correlation.

4 Catastrophic risk

Weitzman (2009) suggests that the discount rate can approach −1, implying an

absolute priority of future consumption (the “dismal theorem”), in the presence of
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fat tails in the distribution of risk. His argument relies on the utilitarian criterion,

and in this section we reexamine it with the other criteria introduced here.

Weitzman’s basic line of reasoning is as follows. The utilitarian discount rate,

without approximation, satisfies the equation:

ln
(
1 + ρi,jt

)
=
− ln p(j)

t
− 1

t
ln

(
Eju′(cjs)

u′ (ci)

)
.

The critical term for the argument is Eju′(cjs), which, in the case of a CRRA

function u(c) = 1
1−ηc

1−η, η > 1, and a continuous distribution of c depicted by

a PDF f(c), is equal to
∫
c−ηf(c)dc. If one changes variables so as to refer to a

growth rate, c = c0e
gt, the formula becomes

c−η0

∫
e−ηtgf̂(g)dg.

This is essentially the moment-generating function of f̂ , and it is infinite if f̂ has

a fat tail (in the negative values representing catastrophic risks).

A fat tail means that f̂(g) ∝ (−g)−k for some k > 0 when g → −∞. Note

that f cannot have a fat tail in the low values of c because c is bounded from

below. What happens, however, is that one has f(c) = f̂
(

1
t

ln c
c0

)
∝ −k ln c

when c → 0.6 Such a PDF, for instance, has the property that, conditional on

c < q, the probability of c < q/2 remains above 50% when q → 0.

The fact that c is bounded from below suggests that one does not really need

to invoke fat tails on temperatures to support an argument in favor of giving an

absolute priority to the future. Supposing that u′(0) = −∞, it is enough to have

a positive probability of ct = 0 (or g = −∞) to make it an absolute priority to

transfer resources to raise ct above zero. More generally, if there is a subsistence

level cmin such that u′(cmin) = −∞, it is an absolute priority to raise c above cmin

at any period.

6The integral
∫ q
0
c−η ln cdc does not converge when η ≥ 1.
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Given the frightening worst-case scenarios involving temperature increases

above +10◦C or +20◦C, it is not unreasonable to assign a positive probability to

the event of having a substantial part of the population at subsistence level in

future generations.7 The weakness of the argument in the preceding paragraph is,

rather, the assumption of infinite marginal utility. A typical form for the utility

function could be u(c) = 1
1−η

(
c1−η − (cmin)1−η), which has a finite marginal utility

at cmin > 0. With such a function, the utilitarian discount rate remains finite

even when the probability of c = cmin is positive.8

Let us see if the alternative criteria introduced in this paper shed a different

light than utilitarianism on this issue. Consider the additive criterion

W (p,u) =
m∑
s=1

ps
∑

i∈N(us)

(
φ(uis)− φ(uc)

)
.

With this criterion, the discount rate tends to −1 when Ejφ′(ujs)u
′ (cjs)→ +∞. If

u(cmin) = 0 and φ′ (0) = +∞, it becomes an absolute priority to raise c above cmin

even when u′(cmin) is finite. We therefore see a different possible argument for this

conclusion. A high degree of inequality aversion suffices to give the individuals

at the subsistence level an absolute priority over those who are better off.

This line of argument, however, no longer works with the EDE criterion

W (p,u) =
m∑
s=1

ps

αn(us)φ
−1

 1

n(us)

∑
i∈N(us)

φ(uis)

+ βn(us)

 ,
7One should not forget that this is already the case today, for reasons having little to do

with the climate. As Schelling (1995) argued, if the possible poverty of future generations is

the reason to give them priority, we should give a stronger priority to the poor who exist today

with certainty.

8This is the function considered in Weitzman (2009), and he obtains a “dismal” discount

rate only by letting cmin → 0.
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because the critical term is then

Ej

[
αn(us)

n(us)

φ′(ujs)u
′ (cjs)

φ′ (e (us))

]
.

In this term, the ratio φ′(ujs)/φ
′ (e (us)) does not necessarily tend to infinity when

ujs → 0 because one may then have e (us) → 0. In particular, consider φ(x) =

1
1−εx

1−ε, with ε > 1. Then, when m individuals over n have equal utility that

converges to zero, ujs → 0, while the others have positive utilities, one has

φ′(ujs)

φ′ (e (us))
=

(ujs)
−ε(

1
n

∑
i (u

i
s)

1−ε) −ε1−ε
=

(
1

n

∑
i

(
uis
ujs

)1−ε
) ε

1−ε

→
(m
n

) ε
1−ε

.

The difference between the additive criterion and the EDE criterion, as shown

by the axiomatic results, involves the Pareto criterion. When the individuals have

a finite marginal willingness to pay to reduce the risk of falling below subsistence

(which seems to be the case), the utilitarian criterion and the EDE criterion,

which respect individual preferences over risk (provided there is no inequality,

for the EDE), will not give an absolute priority to avoiding this risk for future

generations. In contrast, the additive criterion, with the φ function, introduces

an extra risk aversion linked to inequality aversion, which may impose such a

priority against the preferences of the population.

The exponential criteria

W (p,u) =
1

γ

m∑
s=1

ps exp

γ ∑
i∈N(us)

(
φ(uis)− φ(uc)

) ,

behave in one way or the other depending on how the parameter γ modifies

social risk aversion. A positive γ (risk equity) will tend to tolerate the risk of a

catastrophe, whereas a negative γ (catastrophe avoidance) will display a strong

risk aversion induced by the combination of the φ function and the exponential.

In conclusion, the “dismal theorem” is often criticized for involving fat tails.

But fat tails are less needed than a positive probability of a big catastrophe, which
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is in fact consensual. The main weakness of the theorem is rather on the utility

side. Criteria that respect individual preferences over risk tolerate the risk of big

catastrophes as much as individuals tolerate the risk of individual catastrophes.

But the additive and exponential criteria do offer the possibility to obtain a strong

aversion to catastrophes — at the cost of going against individual preferences.

5 Conclusion

The purpose of this paper was threefold. First, we introduced a general framework

in which the horizon is finite but uncertain, and uncertainty bears on future utility

as well as on the composition of the future population. Second, in this frame-

work we characterized non-utilitarian criteria which embody a greater concern for

equity than utilitarianism, at the cost of relaxing either separability properties

or the Pareto principle. Third, the analysis remained individualistic throughout,

highlighting the specific level and correlation characteristics of individuals that

determine the person-to-person discount rates.

Our most general finding concerning discounting is that the social discount

rate should take account of the distribution of the benefits and costs of the invest-

ments across individuals and across states of the world. Generally the evaluation

is all the more favorable (i.e., the discount rate is lower) as the investment bene-

fits individuals who are worse off, whose well-being is inversely correlated to the

well-being of the population, and pays more in states in which the beneficiaries

are worse off.

The role of correlations between individual and social well-being as an impor-

tant factor in evaluations is our key contribution to the refinement of the Ramsey

formula. Benefiting an individual who is badly off when the population is well

off has a greater impact on social welfare, on average, than benefitting an indi-
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vidual who is badly off when the population is also badly off. This may seem

disturbing because it seems to give a bonus to the states of the world in which

the population is relatively well off. This occurs, however, only in the very special

trade-off between helping a poor with a positive correlation with social welfare

and a poor with a negative correlation. But most policy issues affect broader

populations. Suppose one invests in a public good that is useful mostly in bad

states (e.g., flood protection). When a bad state occurs, the investment benefits

more individuals who are badly off. Even if the correlation between their well-

being and social welfare is high, the fact that the investment benefits many badly

off individuals may be sufficient to give it a greater social value than a similar

investment that would create a public good suited to good states (e.g., a new

transportation infrastructure).

Concerning the effect of inequality aversion on social discounting, it is known

that inequality aversion increases discounting when future generations are better-

off. It is also known that when growth is uncertain, and there is a substantial risk

of future generations being less well-off, a higher inequality aversion can on the

contrary decrease the discount rate. Our more general approach adds that, if the

investment helps the most vulnerable in future generations, inequality aversion

further decreases the discount rate. In addition, inequality aversion magnifies the

effect of the correlation on discounting when future consumption is uncertain.

In the end, this paper provides reasons to think that the specific features

of climate policies may justify evaluating them with a lower discount rate than

other policies. Indeed, they protect the vulnerable, whose fate may be inversely

correlated to that of the rich, and they pay more in states of the world in which

damages hit the poorest. Further research is however needed to substantiate

those intuitions. It would require a more precise description of the uncertainty

(on consumption and the existence of future generations) as well as good scenarios
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describing the costs and benefits. Moreover, in order to assess climate policies,

one may also go beyond the discount rate and evaluate the changes in the risks

they induce, their non-marginal effects and their precise impact.

Another direction of research that we intend to pursue is to enrich the frame-

work further so as to make it possible to discuss the measurement of individual

well-being. In this paper the measurement of utility has been treated as exoge-

nous. A more concrete description of the economic allocations would enable us to

further specify the social evaluation criteria in relation to principles of fairness,

and to provide more concrete indications for applications to the assessment of

integrated scenarios describing the long-term evolution of the climate and the

economy. In particular, the relative prices of different commodities (environmen-

tal goods vs consumption goods) change with time, yielding different discount

rates (Gollier, 2010). It may be important to take into account the relative

scarcity of some goods when evaluating the welfare of future generations.
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Appendix

Appendix A Proofs

Proof of Lemma 1. Take any N ∈N3. Define the ordering R̄N on X |N | as

follows:

(u(i))i∈N R̄N (v(i))i∈N ⇐⇒
(
p, (u(i)1m)i∈N

)
R
(
p, (v(i)1m)i∈N

)
.

By Axiom 1, the relation R̄N is transitive, reflexive, complete and continuous. By

Axiom 3, the relation is monotonic. By Axiom 5, any subset of N is separable.

Therefore, as |N | ≥ 3, there exist continuous and increasing function φiN such

that
∑

i∈N φ
i
N (u(i)) represents R̄N . By Axiom 2 the representation must be

symmetric and can be written
∑

i∈N φN (u(i)). By the definition of the relation

R̄N , we also obtain that, whenever N(us) = N(vs) = N :

V (us) ≥ V (vs)⇐⇒
∑
i∈N

φN (uis) ≥
∑
i∈N

φN (vis).

Thus there must exist a continuous and increasing function ΨN such that, for all

us such that N(us) = N ,

V (us) = ΨN

(∑
i∈N

φN (uis)

)
.

Note that Axiom 2 imposes the Anonymity requirement for subpopulations

of the same size but that may differ. In particular, it implies that, whenever

|N | = |M| and there is a bijection π : N →M such that uis = v
π(i)
s for all i ∈ N ,

ΨN

(∑
i∈N

φN (uis)

)
= ΨM

(∑
i∈M

φM(vis)

)
.

We can therefore take ΨN = ΨM = Ψ|N | and φN = φM = φ|N |.

Proof of Proposition 1. First, note that Lemma 1 applies.
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Take any N ∈N3. For every u ∈ X |N |, define the equally distributed equiva-

lent (EDE) of u as the scalar e(u) ∈ X such that

(p, (u, ..., u)︸ ︷︷ ︸
m

)I(p, e(u)1m,n),

where 1m,n is the m× n unit matrix (all its components equal one). By Axiom 3

and the continuity of V, e(u) exists for every u ∈ X |N |. By the representation in

Lemma 1, we obtain that

e(us) = φ−1
|N |

(
1

|N |
∑
i∈N

φ|N |(u
i
s)

)
.

By Axiom 1, the fact that
(
p, (u, ..., u)

)
I
(
p, e(u)1m,n

)
implies that V (u) =

V
(
e(u)1n

)
, where n = n(us) and 1n is the unit vector of Rn. Therefore, for all

u,v ∈ XN and all p,q ∈ Σm−1,

(p,u)R(q,v)⇐⇒
(
p,
(
e(us)1n

)
s=1,...,m

)
R
(
q,
(
e(vs)1n

)
s=1,...,m

)
By Axiom 4,(
p,
(
e(us)1n

)
s=1,...,m

)
R
(
q,
(
e(vs)1n

)
s=1,...,m

)
⇐⇒

m∑
s=1

pse(us) ≥
m∑
s=1

qse(vs).

Summarizing, for all u,v ∈ XN and all p,q ∈ Σm−1,

(p,u)R(q,v)⇐⇒
m∑
s=1

psφ
−1
|N |

(
1

|N |
∑
i∈N

φ|N |(u
i
s)

)
≥

m∑
s=1

qsφ
−1
|N |

(
1

|N |
∑
i∈N

φ|N |(v
i
s)

)
.

The representation φ−1
|N |

(
1
|N |
∑

i∈N φ|N |(u
i
s)
)

is a vNM utility function for the

society. Hence there exist a positive real number α|N | and a real number β|N |

such that

V (us) = α|N |φ
−1
|N |

(
1

|N |
∑
i∈N

φ|N |(u
i
s)

)
+ β|N |

Consider the allocations u,v described in Axiom 8. Next consider w, z ∈ U

such that:
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• ws′ = zs′ = vs′ for all s′ ∈ {1, · · · ,m} \ {s}

• N(ws) = N(us) = N and N(zs) = N(us) ∪ {k}

• wis = zis = e(us) for all i ∈ N(us)

• zks = C (V (ws) , n (ws)) .

The prospect w is similar to u except that individuals get the EDE welfare

level in state s. Therefore, we have V (ws) = V (us). By Axiom 8, we also

have V (vs) = V (us) and V (zs) = V (ws), so that V (zs) = V (vs). Using the

representation of V and the expression for the EDE, we obtain:

α|N |+1φ
−1
|N |+1

(
1

|N |+ 1

∑
i∈N

φ|N |+1 ◦ φ−1
|N |

(
1

|N |
∑
i∈N

φ|N |(u
i
s)

)
+

1

|N |+ 1
φ|N |+1(zks )

)
+β|N |+1

= α|N |+1φ
−1
|N |+1

(
1

|N |+ 1

∑
i∈N

φ|N |+1(uis) +
1

|N |+ 1
φ|N |+1(vks )

)
+ β|N |+1

Because vks = C (V (us) , n (us)) = C (V (ws) , n (ws)) = zks , the equality re-

duces to:

|N |φ|N |+1 ◦ φ−1
|N |

(
1

|N |
∑
i∈N

φ|N |(u
i
s)

)
=
∑
i∈N

φ|N |+1(uis)

Denoting xi =
φ|N|(u

i
s)

|N | , F (x) = |N |φ|N |+1 ◦ φ−1
|N |(x) and G(x) = φ|N |+1 ◦

φ−1
|N |(|N |x), this yields the functional equation

F

(∑
i∈N

xi

)
=
∑
i∈N

G(xi)

The solution of this Pexider equation is F (x) = ax+ b and G(x) = ax+ b/|N |

for some a > 0 and b ∈ R. Letting y = φ−1
|N |(x), the equation

|N |φ|N |+1 ◦ φ−1
|N |(x) = ax+ b
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is equivalent to

|N |φ|N |+1(y) = aφ|N |(y) + b.

In other words, φ|N |+1(x) = A|N |φ|N |(x) + B|N | for some A|N | > 0 and B|N | ∈ R.

Reasoning by recurrence, it can be shown that, for all l ∈ N, there exist a positive

real number al and a real number bl such that φl = alφ + bl, for a continuous

increasing function φ, so that:

V (us) = α|N |φ
−1

(
1

|N |
∑
i∈N

φ(uis)

)
+ β|N |.

With this formula, we can compute the critical level C (V (us) , n(us)) used to

construct the prospect v from u in Axiom 8:

φ (C (V (us) , |N |)) = (|N |+ 1)φ

(
V (us)− β|N |+1

α|N |+1

)
−
∑
i∈N

φ(uis)

= (|N |+ 1)φ

(
V (us)− β|N |+1

α|N |+1

)
− |N |φ

(
V (us)− β|N |

α|N |

)
.

Proof of Corollary 1. Let cn = C(x, n). By a simple change of variable,

z = (x− βn)/αn, we obtain the functional equation:

(n+ 1)φ
(

αn
αn+1

z + βn−βn+1

αn+1

)
= nφ(z) + φ(cn), (10)

where z ∈ X. Letting a = αn
αn+1

> 0, b = βn−βn+1

αn+1
, this equation reads

φ (az + b) =
n

n+ 1
φ(z) +

1

n+ 1
φ(cn).

The equation implies φ (acn + b) = φ(cn), so that acn + b = cn.

Let f(z) = φ(z + cn)− φ(cn) for z ∈ X. One obtains:

f (az) = φ(az + cn)− φ(cn)

= φ(a (z + cn) + b)− φ(cn)

=
n

n+ 1
φ(z + cn) +

1

n+ 1
φ(cn)− φ(cn)

=
n

n+ 1
f(z).
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Note that it is impossible to have a = 1 because that would mean f(z) =

n
n+1

f(z) for all z.

The general solution to f (az) = n
n+1

f(z) is (Polyanin and Manzhirov, 2007):

f(z) = Θ(z) |z|ω and aω = n
n+1

, where Θ(z) is an arbitrary periodic continuous

(except possibly at 0) solution to the functional equation Θ(az) = Θ(z).

One therefore has φ(z) = f(z− cn) +φ(cn) = Θ(z− cn) |z − cn|ω +φ(cn). The

case z = cn requires that ω > 0. Therefore, the fact that φ is increasing implies

that for all z ∈ X, Θ(z − cn) > 0 if z > cn and Θ(z − cn) < 0 if z < cn.

If there is z ∈ X such that z > cn, the strict concavity of φ imposes ω < 1.

If there is z ∈ X such that z < cn, the strict concavity of φ imposes ω > 1.

Therefore, only two cases are possible: either for all z ∈ X, z ≥ cn, Θ(z− cn) > 0

(except possibly at z = cn), and cn = minX, or for all z ∈ X, z ≤ cn,Θ(z−cn) < 0

(except possibly at z = cn), and cn = maxX.

If X is not bounded above, the latter case is excluded, and the fact that f

is increasing also implies that Θ must be a constant (positive) function. Let

ε = 1 − ω, and note that αn+1 = ((n + 1)/n)1/1−εαn = (n + 1)1/1−εχ where χ =

α3/(3
1/1−ε). We also know that acn + b = cn so that βn−βn+1 = (αn+1−αn)cn =

(αn+1−αn) minX. A sum of such expressions yields β3−βn+1 = (αn+1−α3) minX

so that βn+1 = −αn+1 minX + ζ where ζ = β3 + α3 minX. Hence we obtain:

αnφ
−1

 1
n

∑
i∈N(us)

φ(uis)

+ βn = αn

((
1
n

( ∑
i∈N(us)

(
uis −minX

)1−ε
)) 1

1−ε
+ minX

)
−αn minX + ζ

= χn1/1−ε

 1
n

∑
i∈N(us)

(
uis −minX

)1−ε


1

1−ε

+ ζ

= χ

 ∑
i∈N(us)

(
uis −minX

)1−ε


1

1−ε

+ ζ
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The proof is completed.

Proof of Corollary 2. C (αn minX + βn, n) ≥ minX means that

(n+ 1)φ

(
x− βn+1

αn+1

)
= φ (C (x, n)) + nφ

(
x− βn
αn

)
reads

(n+ 1)φ

(
αn minX + βn − βn+1

αn+1

)
≥ φ (minX) + nφ (minX) ,

implying

αn minX + βn ≥ αn+1 minX + βn+1.

If C(x, n) is non-decreasing in x, so is the expression

(n+ 1)φ

(
x− βn+1

αn+1

)
− nφ

(
x− βn
αn

)
.

This implies
n+ 1

αn+1

φ′
(
x− βn+1

αn+1

)
≥ n

αn
φ′
(
x− βn
αn

)
.

For x = αn minX + βn, this reads

n+ 1

αn+1

φ′
(
αn minX + βn − βn+1

αn+1

)
≥ n

αn
φ′ (minX) .

As αn minX+βn−βn+1

αn+1
≥ minX, by concavity φ′

(
αn minX+βn−βn+1

αn+1

)
≤ φ′ (minX) ,

and therefore
n+ 1

αn+1

≥ n

αn
.

Proof of Corollary 3. First note that Axiom 7 implies Axiom 5 so that

Proposition 1 applies. Consider any specific N and M⊂ N such that |M| ≥ 2.

Consider now any u,v, ũ, ṽ ∈ UN such that

ui = vi = u(i)1m for all i ∈ N \M,

ũi = ṽi = u∗1m for all i ∈ N \M,
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for all s ∈ {1, · · · ,m}, uis = ũis for all i ∈M,

for all s ∈ {1, · · · ,m}, vis = ṽis for all i ∈M

Assume furthermore and without loss of generality that in the representation

given in Proposition 1 φ(u∗) = 0 and denote t =
∑

i∈N\M u(i). Axiom 7 implies

that

m∑
s=1

ps

[
φ−1

(
1

n

∑
i∈M

φ(uis) + t

)]
≥

m∑
s=1

ps

[
φ−1

(
1

n

∑
i∈M

φ(vis) + t

)]

⇐⇒
m∑
s=1

ps

[
φ−1

(
1

n

∑
i∈M

φ(uis)

)]
≥

m∑
s=1

ps

[
φ−1

(
1

n

∑
i∈M

φ(vis)

)]

Hence there exists an increasing function F such that:
∑m

s=1 ps
[
φ−1(UM

s + t)
]

=

F
(∑m

s=1 ps
[
φ−1(UM

s )
])

where UM
s =

∑
i∈M φ(uis). Focusing on the case where

UM
s = UM

s′ for all s 6= s′ we obtain that φ−1(UM + t) = F (φ1(UM)) so that

F (K) = φ−1(φ(K) + t) on its domain. We therefore end up with the following

functional equation:

φ

(
m∑
s=1

ps
[
φ−1(UM

s + t)
])

= φ

(
m∑
s=1

ps
[
φ−1(UM

s )
])

+ t

The solution of this functional equation is (Aczél, 1966, Theorem 2, p.153):

• either there exist A ∈ R++ and B ∈ R such that φ−1(z) = Az +B;

• or there exist A ∈ R++ and κ ∈ R\{0} , B ∈ R such that φ−1(z) = A
γ
eγz+B.

The latter case yields that φ−1
(

1
n

∑
i∈N φ(uis)

)
= A

γ

∏
i∈N

(
γ
A
z − Bγ

A

) 1
n +B.

Proof of Proposition 2. First note that Axiom 6 implies Axiom 5, so that

Lemma 1 applies.

Now take any N ∈N3. Consider a subpopulation C ⊂ N such that |N | >

|C| > 1. Denote R = N \ C and r = |R|. Consider all u ∈ UN such that for all

i ∈ C there exists u(i) ∈ R, ui = u(i)1m. We denote this set UCN and consider the

restriction of R to this set. We denote uR = ((ui)i∈R)
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By Axiom 6, the subset R ∪ A is separable for R for all A ⊂ C (including

A = ∅). Therefore, by Theorem 1 in Gorman (1968), every subset of C, including

C itself, is also separable. By Corollary of Theorem 1 in Gorman (1968), there

exist continuous functions hN : Xrm → R and φ̂i|N | : X → R, i ∈ C, such that for

all u,v ∈ UCN ,

(p,u)R(p,v)⇔ h|N |(uR) +
∑
i∈C

φ̂i|N |(u
i
1) ≥ h|N |(vR) +

∑
i∈C

φ̂i|N |(v
i
1).

Therefore, there exists an increasing function f|N | such that for all u ∈ UCN ,∑
s∈{1,··· ,m}

psΨ|N |

(∑
i∈R

φ|N |(u
i
s) +

∑
i∈C

φ|N |(u
i
1)

)
= f|N |

(
h|N |(uR) +

∑
i∈C

φ̂i|N |(u
i
1)

)
(11)

Fix a particular x0 ∈ X. We can normalize φ|N |(x0) = 0 and h|N |(x
R
0 ) = 0,

where xR0 is the prospect uR such that uis = x0 for all i ∈ R and s ∈ {1, · · · ,m}.

Restricting attention to prospects u ∈ UCN such that uR = xR0 , one obtains the

functional equation:

ḡ

(∑
i∈C

φ|N |(u
i
1)

)
=
∑
i∈C

φ∗i
(
φ|N |(u

i
1)
)
.

where ḡ ≡ f−1
|N |◦Ψ|N | and φ∗i ≡ φ̂i|N |◦φ

−1
|N |. This is a variant of the Pexider equation,

implying that ḡ and φ∗i must be affine (Aczél, 1966), so that there exist λ ∈ R++,

δ ∈ R|C| such that φ̂i|N |(ui1) = λφ|N |(u
i
1) + δi and f|N |(z) = Ψ|N |

(
z−

∑
i∈C δi
λ

)
.

As a result, one can simplify equation (11) and write∑
s∈{1,··· ,m}

psΨ|N |

(∑
i∈R

φ|N |(u
i
s) +

∑
i∈C

φ|N |(u
i
1)

)
= Ψ|N |

(
h̄|N |(uR) +

∑
i∈C

φ|N |(u
i
1)

)
,

(12)

where h̄|N | ≡ h|N |/λ.

For uC = xC0 , this implies

h̄|N |(uR) = Ψ−1
|N |

 ∑
s∈{1,··· ,m}

psΨ|N |

(∑
i∈R

φ|N |(u
i
s)

) .
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Substituting in equation (12), we obtain

∑
s∈{1,··· ,m} psΨ|N |

(∑
i∈R φ|N |(u

i
s) +

∑
i∈C φ|N |(u

i
1)
)

=

Ψ|N |

(
Ψ−1
|N |

(∑
s∈{1,··· ,m} psΨ|N |

(∑
i∈R φ|N |(u

i
s)
))

+
∑

i∈C φ|N |(u
i
1)
)

Defining xs =
∑

i∈R φ|N |(u
i
s), and t =

∑
i∈C φ|N |(u

i
1), this reads

Ψ−1
|N |

 ∑
s∈{1,··· ,m}

psΨ|N | (xs + t)

 = Ψ−1
|N |

 ∑
s∈{1,··· ,m}

psΨ|N |(xs)

+ t.

The solution of this functional equation is (Aczél, 1966, Theorem 2, p.153):

• either there exist A|N | ∈ R++ and B|N | ∈ R such that Ψ|N |(z) = A|N |z +

B|N |;

• or there exist A|N | ∈ R++ and γ|N | ∈ R\{0} , B|N | ∈ R such that Ψ|N |(z) =
A|N|
γ|N|

eγ|N|z +B|N |.

It remains to link the representations for subpopulations of different cardi-

nality. By Blackorby, Bossert and Donaldson (2002), focusing on sure prospects,

we know that because of Axiom 6, critical levels must be fixed, i.e., the function

C(x, n) is constant. For a self-contained proof, here is how this is shown. Let

c := C(V (us), n(us)) for a certain us ∈ U. By definition of critical level, we have

indifference between the two sure lotteries:

(us, ..., us)︸ ︷︷ ︸
m

I((us, c) , ..., (us, c))︸ ︷︷ ︸
m

.

Pick any vs ∈ U. By Axiom 6 applied twice,

((us, vs) , ..., (us, vs)) I ((us, c, vs) , ..., (us, c, vs)) ,

(vs, ..., vs) I ((c, vs) , ..., (c, vs)) .

The last line proves that c = C(V (vs), n(vs)).
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Therefore, by Axiom 8, for all u,v ∈ U, for all s ∈ {1, · · · ,m} and for all

k ∈ N \N(us) if

• us′ = vs′ for all s′ ∈ {1, · · · ,m} \ {s}

• N(vs) = N(us) ∪ {k}

• uis = vis for all i ∈ N(us)

• vks = c,

then V (us) = V (vs).

Denote n = |N |. There are two cases:

Case 1: Ψn(z) = Anz +Bn.

It must be the case that

An
∑
i∈N

φn(uis) +Bn = An+1

(∑
i∈N

φn+1(uis) + φn+1(c)

)
+Bn+1

For this to be true, we need Anφn(z) = φ(z) + bn, An+1φn+1(z) = φ(z) + bn+1

and Bn+1 + (n+ 1) bn+1 = Bn+nbn−φ(c). This relation holds at least for n ≥ 3.

Reasoning recursively, one can write

V (us) =
∑
i∈N

φ(uis) +Bn + nbn

=
∑
i∈N

φ(uis)− (n− 2)φ(c) +B3 + 3b3.

There is no harm in changing the constant, so that one can more elegantly write,

for all us such that n (us) ≥ 3,

V (us) =
∑

i∈N(us)

(
φ(uis)− φ(c)

)
.

Case 2: Ψn(z) = An
γn

exp(γnz) +Bn.
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It must be the case that

An
γn

exp

(
γn
∑
i∈N

φn(uis)

)
+Bn =

An+1

γn+1

exp

(
γn+1

(∑
i∈N

φn+1(uis) + φn+1(c)

))
+Bn+1

For this to be true, we need Bn = Bn+1 = B and

γn
∑
i∈N

φn(uis) + ln(An/ |γn|) = γn+1

(∑
i∈N

φn+1(uis) + φn+1(c)

)
+ ln(An+1/ |γn+1|)

Using the same argument as before, it must be the case that γnφn(z) =

γφ(z) + bn, γn+1φn+1(z) = γφ(z) + bn+1, and ln(An+1/ |γn+1|) + (n+ 1) bn+1 =

ln(An/ |γn|) + nbn − γφ(c), which can be rewritten An+1

γn+1
exp ((n+ 1) bn+1) =

An
γn

exp (nbn) exp (−γφ(c)). Reasoning by recursion down to n = 3, and up to

a multiplicative constant in the first term, one can write

V (us) =
A

γ
exp (−γn (us)φ(c)) exp

γ ∑
i∈N(us)

φ(uis)

+B

=
A

γ
exp

γ ∑
i∈N(us)

(
φ(uis)− φ(c)

)+B.

Proof of Corollary 4. Consider u,v ∈ UN described in Axiom 9. By

Proposition 2, we need to consider two cases:

Case 1: Social preferences are represented by
∑

s∈{1,··· ,m} ps
∑

i∈N(us)
(φ(uis)− φ(c)).

Axiom 9 implies that, for u,v ∈ UN satisfying the premisses of the axiom,∑
s∈{1,··· ,m}

ps
∑

i∈N(us)

(
φ(uis)− φ(c)

)
≥

∑
s∈{1,··· ,m}

ps
∑

i∈N(vs)

(
φ(vis)− φ(c)

)
⇐⇒

∑
s∈{1,··· ,m}

ps
∑

i∈N(us)

φ(uis) ≥
∑

s∈{1,··· ,m}

ps
∑

i∈N(vs)

φ(vis)

⇐⇒
∑

s∈{1,··· ,m}

psu
i
s ≥

∑
s∈{1,··· ,m}

psv
i
s.
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Hence, by the unicity of vNM representations up to an increasing affine trans-

formation, there exist a ∈ R++ and b ∈ R such that φ(z) = az + b.

Case 2: Social preferences are represented by

1

γ

m∑
s=1

ps exp

γ ∑
i∈N(us)

(
φ(uis)− φ(c)

) .

Axiom 9 implies that, for u,v ∈ UN satisfying the premisses of the axiom,

1

γ

m∑
s=1

ps exp

γ ∑
i∈N(us)

(
φ(uis)− φ(c)

) ≥ 1

γ

m∑
s=1

ps exp

γ ∑
i∈N(vs)

(
φ(vis)− φ(c)

)
⇐⇒ 1

γ

m∑
s=1

ps exp γ
(
φ(uis)− φ(c)

)
≥ 1

γ

m∑
s=1

ps exp γ
(
φ(vis)− φ(c)

)
⇐⇒

∑
s∈{1,··· ,m}

psu
i
s ≥

∑
s∈{1,··· ,m}

psv
i
s.

Hence, by the unicity of vNM representations up to an increasing affine trans-

formation, it must be the case that there exist a ∈ R++ and b ∈ R such that

1
γ

exp
(
γ (φ(z)− φ(c))

)
= az + b. For z = c, we must have γb = 1 − γac. Sub-

stituting, we obtain exp γ (φ(z)− φ(c)) = 1 + γa (z − c). Letting γ = aγ, we

obtain

1

γ

m∑
s=1

ps exp

γ ∑
i∈N(us)

(
φ(uis)− φ(c)

) =
1

γ

m∑
s=1

ps
∏

i∈N(us)

exp
(
γ
(
φ(uis)− φ(c)

))
=

a

γ

m∑
s=1

ps
∏

i∈N(us)

(
1 + γ(uis − c)

)
.
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