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Travel Grants for 1,000 Mathematicians
ICM 2014 Invitation Program : “NANUM 2014”

http://www.icm2014.org/

Tentative schedule for the application and review process :
• Call for application : June 1, 2013
• Deadline to submit all the application documents : August
31, 2013
• Selection of the travel grant recipient : September 2013
December 2013
• Notification to applicants of acceptance : January 2014
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Abstract

According to Nature News, 10 September 2012, quoting

Dorian Goldfeld, the abc Conjecture is “the most important

unsolved problem in Diophantine analysis”. It is a kind of grand

unified theory of Diophantine curves : “The remarkable thing

about the abc Conjecture is that it provides a way of reformulating

an infinite number of Diophantine problems,” says Goldfeld, “and,

if it is true, of solving them.” Proposed independently in the

mid-80s by David Masser of the University of Basel and Joseph

Œsterlé of Pierre et Marie Curie University (Paris 6), the abc
Conjecture describes a kind of balance or tension between addition

and multiplication, formalizing the observation that when two

numbers a and b are divisible by large powers of small primes,

a+ b tends to be divisible by small powers of large primes. The abc
Conjecture implies – in a few lines – the proofs of many di�cult

theorems and outstanding conjectures in Diophantine equations–

including Fermat’s Last Theorem.
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Abstract (continued)
This talk will be at an elementary level, giving a collection of
consequences of the abc Conjecture. It will not include an
introduction to the Inter-universal Teichmüller Theory of
Shinichi Mochizuki.

http://www.kurims.kyoto-u.ac.jp/⇠motizuki/top-english.html
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The radical of a positive integer
According to the fundamental theorem of arithmetic, any
integer n � 2 can be written as a product of prime numbers :

n = p

a1
1

p

a2
2

· · · patt .

The radical or square free part Rad(n) of n is the product of
the distinct primes dividing n :

n = p

1

p

2

· · · pt.

Examples :

Rad(2

2 · 112 · 53) = 2 · 11 · 5 = 110,

Rad(2 · 310 · 235 · 109) = 2 · 3 · 23 · 109 = 15 042.

Rad(2

21 · 32 · 56 · 73 · 112 · 23) = 2 · 3 · 5 · 7 · 11 · 23 = 53 130.
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abc–triples

An abc–triple is a triple of three positive integers a, b, c which
are coprime, a < b and that a+ b = c.

Examples:

1 + 2 = 3, 1 + 8 = 9,

1 + 80 = 81, 4 + 121 = 125,

2 + 3

10 · 109 = 23

5

, 11

2

+ 3

2

5

6

7

3

= 2

21 · 23.
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abc–hits

Following F. Beukers, an
abc–hit is an abc–triple such
that Rad(abc) < c.

http://www.staff.science.uu.nl/⇠beuke106/ABCpresentation.pdf

Example: (1, 8, 9) is an abc–hit since 1 + 8 = 9,
gcd(1, 8, 9) = 1 and

Rad(1 · 8 · 9) = Rad(2

3 · 32) = 2 · 3 = 6 < 9.

But for a � 1,
(2

a
, 2

a+3

, 2

a · 32)
is not an abc–hit since these three numbers are not coprime.
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Some abc–hits

(1, 80, 81) is an abc–hit since 1 + 80 = 81, gcd(1, 80, 81) = 1

and

Rad(1 · 80 · 81) = Rad(2

4 · 5 · 34) = 2 · 5 · 3 = 30 < 81.

(4, 121, 125) is an abc–hit since 4 + 121 = 125,
gcd(4, 121, 125) = 1 and

Rad(4 · 121 · 125) = Rad(2

2 · 53 · 112) = 2 · 5 · 11 = 110 < 125.
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Further abc–hits

• (2, 3

10 · 109, 235) = (2, 6 436 341, 6 436 343)

is an abc–hit since 2 + 3

10 · 109 = 23

5 and
Rad(2 · 310 · 109 · 235) = 15 042 < 23

5

= 6436 343.

• (11

2

, 3

2 · 56 · 73, 221 · 23) = (121, 48 234 275, 48 234 496)

is an abc–hit since 11

2

+ 3

2 · 56 · 73 = 2

21 · 23 and
Rad(2

21 · 32 · 56 · 73 · 112 · 23) = 53 130 < 2

21 · 23 = 48 234 496.

• (1, 5 · 127 · (2 · 3 · 7)3, 196) = (1, 47 045 880, 47 045 881)

is an abc–hit since 1 + 5 · 127 · (2 · 3 · 7)3 = 19

6 and
Rad(5 · 127 · (2 · 3 · 7)3 · 196) = 5 · 127 · 2 · 3 · 7 · 19 = 506 730.
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abc–triples and abc–hits

Among 15 · 106 abc–triples with c < 10

4 , we have 120

abc–hits.

Among 380 · 106 abc–triples with c < 5 · 104 , we have 276

abc–hits.
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More abc–hits

(1, 3

16 � 1, 3

16

) = (1, 43 046 720, 43 046 721)

is an abc–hit.
Proof.

3

16 � 1= (3

8 � 1)(3

8

+ 1)

= (3

4 � 1)(3

4

+ 1)(3

8

+ 1)

= (3

2 � 1)(3

2

+ 1)(3

4

+ 1)(3

8

+ 1)

= (3� 1)(3 + 1)(3

2

+ 1)(3

4

+ 1)(3

8

+ 1)

is divisible by 2

6.
Hence

Rad((3

16 � 1) · 316)  3

16 � 1

2

6

· 2 · 3 < 3

16

.
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Infinitely many abc–hits

Proposition. There are infinitely many abc–hits.

Take k � 1, a = 1, c = 3

2

k
, b = c� 1.

Lemma. 2k+2

divides 3

2

k � 1 .

Proof : Induction on k.

Consequence :

Rad((3

2

k � 1) · 32k)  3

2

k � 1

2

k+1

· 3 < 3

2

k
.

Hence
(1, 3

2

k � 1, 3

2

k
)

is an abc–hit.
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Infinitely many abc–hits

This argument, due to F. Beukers, shows that there exist
infinitely many abc–triples such that

c >

1

6 log 3

R logR

with R = Rad(abc).

Question : Are there abc–triples for which c > Rad(abc)

2

?

Answer: this is unknown.

13 / 79

Examples

When a, b and c are three positive relatively prime integers
satisfying a+ b = c, define

�(a, b, c) =

log c

log Rad(abc)

·

Here are the two largest known values for �(abc)

a+ b = c �(a, b, c) authors
2 + 3

10 · 109 = 23

5

1.629912 . . . É. Reyssat
11

2

+ 3

2

5

6

7

3

= 2

21 · 23 1.625990 . . . B.M. de Weger

There are 140 known values of �(a, b, c) which are � 1.4.
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Eric Reyssat : 2 + 310 · 109 = 235
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Example of Reyssat 2 + 310 · 109 = 235

a+ b = c

a = 2, b = 3

10 · 109, c = 23

5

= 6436 343,

Rad(abc) = Rad(2 · 310 · 109 · 235) = 2 · 3 · 109 · 23 = 15 042,

�(a, b, c) =

log c

log Rad(abc)

=

5 log 23

log 15 042

' 1.62991.
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Continued fraction

2 + 109 · 310 = 23

5

Continued fraction of 1091/5 : [2; 1, 1, 4, 77733, . . . ],
approximation : 23/9

109

1/5
= 2.555 555 39 . . .

23

9

= 2.555 555 55 . . .

N. A. Carella. Note on the ABC Conjecture

http://arXiv.org/abs/math/0606221
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Benne de Weger : 112 + 32 · 56 · 73 = 221 · 23

Rad(2

21 · 32 · 56 · 73 · 112 · 23) = 2 · 3 · 5 · 7 · 11 · 23 = 53 130.

2

21 · 23 = 48 234 496 = (53 130)

1.625990...
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Explicit abc Conjecture

According to S. Laishram and T. N. Shorey, an explicit
version, due to A. Baker, of the abc Conjecture, yields

c < Rad(abc)

7/4

for any abc–triple (a, b, c).

19 / 79

The abc Conjecture

Recall that for a positive integer n, the radical or square free

part of n is
Rad(n) =

Y

p|n

p.

abc Conjecture. For each " > 0 there exists (") such that, if

a, b and c in Z>0

are relatively prime and satisfy a+ b = c,

then

c < (")Rad(abc)

1+"
.
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The abc Conjecture of Œsterlé and Masser

The abc Conjecture resulted from a discussion between
J. Œsterlé and D. W. Masser in the mid 1980’s.
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C.L. Stewart and Yu Kunrui
Best known non conditional result : C.L. Stewart and Yu
Kunrui (1991, 2001) :

log c  R

1/3
(logR)

3

.

with R = Rad(abc) :

c  e

R1/3
(logR)

3
.
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Lucien Szpiro

J. Œsterlé and A. Nitaj
proved that the abc

Conjecture implies a previous
conjecture by L. Szpiro on the
conductor of elliptic curves.

Given any " > 0, there exists a constant C(") > 0 such that,

for every elliptic curve with minimal discriminant � and

conductor N ,

|�| < C(")N

6+"
.
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Further examples

When a, b and c are three positive relatively prime integers
satisfying a+ b = c, define

%(a, b, c) =

log abc

log Rad(abc)

·

Here are the two largest known values for %(abc), found by
A. Nitaj.

a+ b = c %(a, b, c)

13 · 196 + 230 · 5 = 313 · 112 · 31 4.41901 . . .
25 · 112 · 199 + 515 · 372 · 47 = 37 · 711 · 743 4.26801 . . .

There are 47 known triples (a, b, c) with 0 < a < b < c,
a+ b = c and gcd(a, b) = 1 satisfying %(a, b, c) > 4.
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Abderrahmane Nitaj

http://www.math.unicaen.fr/⇠nitaj/abc.html
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Fermat’s Last Theorem x

n + y

n = z

n for n � 6

Pierre de Fermat Andrew Wiles
1601 – 1665 1953 –

Solution in 1994
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Fermat’s last Theorem for n � 6 as a consequence

of the abc Conjecture

Assume x

n
+ y

n
= z

n with gcd(x, y, z) = 1 and x < y. Then
(x

n
, y

n
, z

n
) is an abc–triple with

Rad(x

n
y

n
z

n
)  xyz < z

3

.

If the explicit abc Conjecture c < Rad(abc)

2 is true, then one
deduces

z

n
< z

6

,

hence n  5.
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Square, cubes. . .

• A perfect power is an integer of the form a

b where a � 1

and b > 1 are positive integers.

• Squares :

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, . . .

• Cubes :

1, 8, 27, 64, 125, 216, 343, 512, 729, 1 000, 1 331, . . .

• Fifth powers :

1, 32, 243, 1 024, 3 125, 7 776, 16 807, 32 768, . . .
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Perfect powers

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125,

128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343,

361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, . . .

Neil J. A. Sloane’s encyclopaedia
http ://oeis.org/A001597
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Consecutive elements in the sequence of perfect

powers

• Di↵erence 1 : (8, 9)

• Di↵erence 2 : (25, 27), . . .

• Di↵erence 3 : (1, 4), (125, 128), . . .

• Di↵erence 4 : (4, 8), (32, 36), (121, 125), . . .

• Di↵erence 5 : (4, 9), (27, 32),. . .
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Two conjectures

Eugène Charles Catalan (1814 – 1894)

Subbayya Sivasankaranarayana Pillai
(1901-1950)

• Catalan’s Conjecture : In the sequence of perfect powers,
8, 9 is the only example of consecutive integers.

• Pillai’s Conjecture : In the sequence of perfect powers, the
di↵erence between two consecutive terms tends to infinity.
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Pillai’s Conjecture :

• Pillai’s Conjecture : In the sequence of perfect powers, the
di↵erence between two consecutive terms tends to infinity.

• Alternatively : Let k be a positive integer. The equation

x

p � y

q
= k,

where the unknowns x, y, p and q take integer values, all � 2,
has only finitely many solutions (x, y, p, q).
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Results

P. Mihăilescu, 2002.

Catalan was right : the
equation x

p � y

q
= 1 where

the unknowns x, y, p and q

take integer values, all � 2,

has only one solution

(x, y, p, q) = (3, 2, 2, 3).
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Previous work on Catalan’s Conjecture

Preliminary results :
J.W.S. Cassels, Rob Tijdeman

Also Maurice Mignotte, Yuri Bilu.
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Pillai’s conjecture and the abc Conjecture

There is no value of k � 2 for which one knows that Pillai’s
equation x

p � y

q
= k has only finitely many solutions.

Pillai’s conjecture as a consequence of the abc Conjecture :
if x

p 6= y

q
, then

|xp � y

q| � c(✏)max{xp
, y

q}�✏

with

 = 1� 1

p

� 1

q

·
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Not a consequence of the abc Conjecture

p = 3, q = 2

Hall’s Conjecture (1971) :

if x

3 6= y

2

, then

|x3 � y

2| � cmax{x3

, y

2}1/6.

http://en.wikipedia.org/wiki/Marshall�Hall,�Jr
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Conjecture of F. Beukers and C.L. Stewart (2010)

Let p, q be coprime integers with p > q � 2. Then, for any

c > 0, there exist infinitely many positive integers x, y such

that

0 < |xp � y

q| < cmax{xp
, y

q}

with  = 1� 1

p

� 1

q

·
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Generalized Fermat’s equation x

p + y

q = z

r

Consider the equation x

p
+ y

q
= z

r in positive integers
(x, y, z, p, q, r) such that x, y, z relatively prime and p, q, r
are � 2.

If
1

p

+

1

q

+

1

r

� 1,

then (p, q, r) is a permutation of one of

(2, 2, k), (2, 3, 3), (2, 3, 4), (2, 3, 5),

(2, 4, 4), (2, 3, 6), (3, 3, 3)

and in each case there are infinitely many solutions (x, y, z).
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Frits Beukers and Don Zagier

For
1

p

+

1

q

+

1

r

< 1,

only 10 solutions (x, y, z, p, q, r) (up to obvious symmetries)
to the equation

x

p
+ y

q
= z

r

are known.
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Generalized Fermat’s equation

For
1

p

+

1

q

+

1

r

< 1,

the equation
x

p
+ y

q
= z

r

has the following 10 solutions with x, y, z relatively prime :

1 + 2

3

= 3

2

, 2

5

+ 7

2

= 3

4

, 7

3

+ 13

2

= 2

9

, 2

7

+ 17

3

= 71

2

,

3

5

+ 11

4

= 122

2

, 33

8

+ 1 549 034

2

= 15 613

3

,

1 414

3

+ 2 213 459

2

= 65

7

, 9 262

3

+ 15 312 283

2

= 113

7

,

17

7

+ 76 271

3

= 21 063 928

2

, 43

8

+ 96 222

3

= 30 042 907

2

.
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Andrew Beal

Find another solution, or prove that there is no further

solution.

http://www.forbes.com/2009/04/03/banking-andy-beal-business-wall-street-beal.html
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Beal’s Prize : 50, 000$ US

Mauldin, R. D. – A generalization of Fermat’s last theorem :

the Beal Conjecture and prize problem. Notices Amer. Math.
Soc. 44 N�11 (1997), 1436–1437.
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Conjecture of R. Tijdeman and D. Zagier

The equation x

p
+ y

q
= z

r has no solution in positive integers
(x, y, z, p, q, r) with each of p, q and r at least 3 and with x,
y, z relatively prime.
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Henri Darmon, Andrew Granville

“Fermat-Catalan” Conjecture (H. Darmon and A. Granville),
consequence of the abc Conjecture : the set of solutions

(x, y, z, p, q, r) to x

p
+ y

q
= z

r
with

(1/p) + (1/q) + (1/r) < 1 is finite.

Hint:
1

p

+

1

q

+

1

r

< 1 implies
1

p

+

1

q

+

1

r

 41

42

·

1995 (H. Darmon and A. Granville) : for fixed (p, q, r), only
finitely many (x, y, z).
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Fermat’s Little Theorem

For a > 1, any prime p not
dividing a divides ap�1 � 1.

Hence if p is an odd prime,
then p divides 2p�1 � 1.

Wieferich primes (1909) : p2 divides 2p�1 � 1

The only known Wieferich primes below 4 · 1012 are 1093 and
3511.
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Not too many Wieferich primes assuming abc

J.H. Silverman : if the abc

Conjecture is true, given a
positive integer a > 1, there
exist infinitely many primes p
such that p2 does not divide
a

p�1 � 1.
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Consecutive integers with the same radical

Notice that

75 = 3 · 52 and 1215 = 3

5 · 5

hence
Rad(75) = Rad(1215) = 3 · 5 = 15.

But also
76 = 2

2 · 19 and 1216 = 2

6 · 19

have the same radical

Rad(76) = Rad(1216) = 2 · 19 = 38.
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Consecutive integers with the same radical

For k � 1, the two numbers

x = 2

k � 2 = 2(2

k�1 � 1)

and
y = (2

k � 1)

2 � 1 = 2

k+1

(2

k�1 � 1)

have the same radical, and also

x+ 1 = 2

k � 1 and y + 1 = (2

k � 1)

2

have the same radical.
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Consecutive integers with the same radical

Are there further examples of x 6= y with

Rad(x) = Rad(y) and Rad(x+ 1) = Rad(y + 1)?

Is–it possible to find two distinct integers x, y such that

Rad(x) = Rad(y),

Rad(x+ 1) = Rad(y + 1)

and
Rad(x+ 2) = Rad(y + 2)?
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Erdős – Woods Conjecture

http://school.maths.uwa.edu.au/⇠woods/

There exists an absolute constant k such that, if x and y are
positive integers satisfying

Rad(x+ i) = Rad(y + i)

for i = 0, 1, . . . , k � 1, then x = y.
50 / 79

Erdős – Woods as a consequence of abc

M. Langevin : The abc

Conjecture implies that there
exists an absolute constant k
such that, if x and y are
positive integers satisfying

Rad(x+ i) = Rad(y + i)

for i = 0, 1, . . . , k � 1, then
x = y.
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Erdős Conjecture on 2p � 1

In 1965, P. Erdős conjectured that the greatest prime factor
P (2

n � 1) satisfies

P (2

n � 1)

n

! 1 when n ! 1.

In 2002, R. Murty and S. Wong proved that this is a
consequence of the abc Conjecture.
In 2012, C.L. Stewart proved Erdős Conjecture (in a wider
context of Lucas and Lehmer sequences) :

P (2

n � 1) > n exp

�
log n/104 log log n

�
.
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Is abc Conjecture optimal ?

Let � > 0. In 1986, C.L. Stewart and R. Tijdeman proved that
there are infinitely many abc–triples for which

c > R exp

✓
(4� �)

(logR)

1/2

log logR

◆
.

Better than c > R logR.
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C.L. Stewart ’s Conjectures

Let " > 0. There exists (") > 0 such that for any abc triple
with R = Rad(abc) > 8,

c < (")R exp

 
(4

p
3 + ")

✓
logR

log logR

◆
1/2
!
.

Further, there exist infinitely many abc–triples for which

c > R exp

 
(4

p
3� ")

✓
logR

log logR

◆
1/2
!
.
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Waring’s Problem

Edward Waring
(1736 - 1798)

In 1770, a few months before J.L. Lagrange
solved a conjecture of Bachet (1621)
and Fermat (1640) by proving
that every positive integer is the
sum of at most four squares of integers,
E. Waring wrote :

“Every integer is a cube or the sum of two, three, . . .nine

cubes ; every integer is also the square of a square, or the sum

of up to nineteen such ; and so forth. Similar laws may be

a�rmed for the correspondingly defined numbers of quantities

of any like degree.”
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Waring’s functions g(k) and G(k)

• Waring’s function g is defined as follows : For any integer

k � 2, g(k) is the least positive integer s such that any

positive integer N can be written x

k
1

+ · · ·+ x

k
s .

• Waring’s function G is defined as follows : For any integer

k � 2, G(k) is the least positive integer s such that any

su�ciently large positive integer N can be written

x

k
1

+ · · ·+ x

k
s .
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The ideal Waring’s Theorem

For each integer k � 2, define I(k) = 2

k
+ [(3/2)

k
]� 2. It is

easy to show that g(k) � I(k). Indeed, write

3

k
= 2

k
q + r with 0 < r < 2

k
, q = [(3/2)

k
],

and consider the integer

N = 2

k
q � 1 = (q � 1)2

k
+ (2

k � 1)1

k
.

Since N < 3

k, writing N as a sum of k-th powers can involve
no term 3

k, and since N < 2

k
q, it involves at most (q � 1)

terms 2k, all others being 1

k ; hence it requires a total number
of at least (q � 1) + (2

k � 1) = I(k) terms.
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The ideal Waring’s Theorem

L.E. Dickson and S.S. Pillai proved independently in 1936
that g(k) = I(k), provided that r = 3

k � 2

k
q satisfies

r  2

k � q � 2.

The condition r  2

k � q � 2 is satisfied for
3  k  471 600 000.
The conjecture, dating back to 1853, is
g(k) = I(k) = 2

k
+ [(3/2)

k
]� 2 for any k � 2. This is true as

soon as �����

✓
3

2

◆k
����� �

✓
3

4

◆k

,

where k · k denote the distance to the nearest integer.
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Mahler’s contribution

• The estimate
�����

✓
3

2

◆k
����� �

✓
3

4

◆k

is valid for all su�ciently large
k.

Kurt Mahler
(1903 - 1988)

Hence the ideal Waring’s Theorem

g(k) = 2

k
+ [(3/2)

k
]� 2

holds for all su�ciently large k.
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Waring’s Problem and the abc Conjecture

S. David : the estimate
�����

✓
3

2

◆k
����� �

✓
3

4

◆k

for su�ciently large k follows
from the abc Conjecture.

S. Laishram : the ideal Waring’s Theorem
g(k) = 2

k
+ [(3/2)

k
]� 2 follows from the explicit abc

Conjecture.
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Alan Baker (1996)

Let (a, b, c) be an abc–triple and let ✏ > 0. Then

c  

�
✏

�!
R

�
1+✏

where  is an absolute constant, R = Rad(abc) and
! = !(abc) is the number of distinct prime factors of abc.

Remark of Andrew Granville : the minimum of the function on
the right over ✏ > 0 occurs essentially with ✏ = !/ logR. This
yields a slightly sharper form of the conjecture :

c  R

(logR)

!

!!

·
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Alan Baker : explicit abc Conjecture (2004)

Let (a, b, c) be an abc–triple.
Then

c  6

5

R

(logR)

!

!!

·

with R = Rad(abc) the
radical of abc and ! = !(abc)

the number of distinct prime
factors of abc.
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Shanta Laishram and Tarlok Shorey

The Nagell–Ljunggren
equation is the equation

y

q
=

x

n � 1

x� 1

in integers x > 1, y > 1,
n > 2, q > 1.

This means that in basis x, all the digits of the perfect power
y

q are 1.
If the explicit abc–conjecture of Baker is true, then the only
solutions are

11

2

=

3

5 � 1

3� 1

, 20

2

=

7

4 � 1

7� 1

, 7

3

=

18

3 � 1

18� 1

·
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The abc Conjecture for number fields

Kálmán Győry
http://www.math.klte.hu/algebra/gyorya.htm

Jerzy Browkin

64 / 79



Mordell’s Conjecture (Faltings’s Theorem)

Using an extension of the abc Conjecture for number fields,
N. Elkies deduces Faltings’s Theorem on the finiteness of the
set of rational points on an algebraic curve of genus � 2.

L.J. Mordell (1922) G. Faltings (1984) N. Elkies (1991)

65 / 79

Thue–Siegel–Roth Theorem (Bombieri)

Using the abc Conjecture for number fields, E. Bombieri
(1994) deduces a refinement of the Thue–Siegel–Roth
Theorem on the rational approximation of algebraic numbers

����↵� p

q

���� >
1

q

2+"

where he replaces " by

(log q)

�1/2
(log log q)

�1

where  depends only on the
algebraic number ↵.
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Siegel’s zeroes (A. Granville and H.M. Stark)

The uniform abc Conjecture for number fields implies a lower
bound for the class number of an imaginary quadratic number
field, and K. Mahler has shown that this implies that the
associated L–function has no Siegel zero.
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Further consequences of the abc Conjecture

• Erdős’s Conjecture on consecutive powerful numbers.
• Dressler’s Conjecture : between two positive integers having
the same prime factors, there is always a prime.
• Squarefree and powerfree values of polynomials.
• Lang’s conjectures : lower bounds for heights, number of
integral points on elliptic curves.
• Bounds for the order of the Tate–Shafarevich group.
• Vojta’s Conjecture for curves.
• Greenberg’s Conjecture on Iwasawa invariants � and µ in
cyclotomic extensions.
• Exponents of class groups of quadratic fields.
• Fundamental units in quadratic and biquadratic fields.
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abc and meromorphic function fields

Nevanlinna value distribution theory.

Recent work of Hu, Pei–Chu and Yang, Chung-Chun.
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abc and Vojta’s height Conjecture

Paul Vojta

Vojta’s Conjecture on
algebraic points of bounded
degree on a smooth complete
variety over a global field of
characteristic zero implies the
abc Conjecture.
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ABC Theorem for polynomials

Let K be an algebraically closed field. The radical or square
free part of a monic polynomial

P (X) =

nY

i=1

(X � ↵i)
ai 2 K[X]

with ↵i pairwise distinct is defined as

Rad(P )(X) =

nY

i=1

(X � ↵i) 2 K[X].
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ABC Theorem for polynomials

ABC Theorem (A. Hurwitz,
W.W. Stothers, R. Mason).
Let A, B, C be three
relatively prime polynomials in
K[X] with A+B = C and
let R = Rad(ABC). Then

max{deg(A), deg(B), deg(C)}

< deg(R). Adolf Hurwitz (1859–1919)

This result can be compared with the abc Conjecture, where
the degree replaces the logarithm.
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The radical of a polynomial as a gcd

The common zeroes of

P (X) =

nY

i=1

(X � ↵i)
ai 2 K[X]

and P

0 are the ↵i with ai � 2. They are zeroes of P 0 with
multiplicity ai � 1. Hence

Rad(P ) =

P

gcd(P, P

0
)

·
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Proof of the ABC Theorem for polynomials

Now suppose A+B = C with A,B,C relatively prime.

Notice that

Rad(ABC) = Rad(A)Rad(B)Rad(C).

We may suppose A, B, C to be monic and, say,
deg(A)  deg(B)  deg(C).

Write
A+B = C, A

0
+B

0
= C

0
,

and
AB

0 � A

0
B = AC

0 � A

0
C.
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Proof of the ABC Theorem for polynomials
Recall gcd(A,B,C) = 1. Since gcd(C,C

0
) divides

AC

0 � A

0
C = AB

0 � A

0
B, it divides also

AB

0 � A

0
B

gcd(A,A

0
) gcd(B

0
B

0
)

which is a polynomial of degree

< deg

�
Rad(A)

�
+ deg

�
Rad(B)

�
= deg

�
Rad(AB)

�
.

Hence
deg

�
gcd(C,C

0
)

�
< deg

�
Rad(AB)

�

and

deg(C) < deg

�
Rad(C)

�
+ deg

�
Rad(AB)

�
= deg

�
Rad(ABC)

�
.
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Shinichi Mochizuki

INTER-UNIVERSAL
TEICHMÜLLER THEORY
IV :
LOG-VOLUME
COMPUTATIONS AND
SET-THEORETIC
FOUNDATIONS
by
Shinichi Mochizuki
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http ://www.kurims.kyoto-u.ac.jp/⇠motizuki/
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Papers of Shinichi Mochizuki

• General Arithmetic Geometry

• Intrinsic Hodge Theory

• p–adic Teichmüller Theory

• Anabelian Geometry, the Geometry of Categories

• The Hodge-Arakelov Theory of Elliptic Curves

• Inter-universal Teichmüller Theory
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Shinichi Mochizuki

[1] Inter-universal Teichmüller Theory I : Construction of
Hodge Theaters. PDF

[2] Inter-universal Teichmüller Theory II :
Hodge-Arakelov-theoretic Evaluation. PDF

[3] Inter-universal Teichmüller Theory III : Canonical Splittings
of the Log-theta-lattice. PDF

[4] Inter-universal Teichmüller Theory IV : Log-volume
Computations and Set-theoretic Foundations. PDF

79 / 79


