
Update: 12/11/2013

Abdus Salam School of Mathematical Sciences (ASSMS), Lahore
6th World Conference on 21st Century Mathematics 2013.
http://www.sms.edu.pk/wc2013.php

Lecture on the abc conjecture
and some of its consequences

by

Michel Waldschmidt

Abstract

The abc Conjecture was proposed in the 80’s by J. Oesterlé and D.W. Masser.
This simple statement implies a number of results and conjectures in number
theory. We state this conjecture and list a few of the many consequences.

This conjecture has gained increasing awareness in August 2012 when
Shinichi Mochizuki released a series of four preprints containing a claim to a
proof of the abc Conjecture using his Inter-universal Teichmüller Theory:

http://www.kurims.kyoto-u.ac.jp/~motizuki/top-english.html

1 The radical of a positive integer, abc–triples

and abc–hits

According to the fundamental theorem of arithmetic, any integer n ≥ 2 can
be written as a product of prime numbers:

n = pa11 p
a2
2 · · · patt .

The radical (also called kernel or core) Rad(n) of n is the product of the
distinct primes dividing n:

Rad(n) = p1p2 · · · pt.

1

http://www.sms.edu.pk/wc2013.php
http://www.kurims.kyoto-u.ac.jp/~motizuki/top-english.html


An abc–triple is a triple (a, b, c) of of three positive coprime integers such
that a+ b = c with a < b. The smallest example of an abc–triple is (1, 2, 3).

An abc–hit is an abc–triple (a, b, c) such that Rad(abc) < c. For instance
(1, 8, 9), is an abc–hit, since 1 + 8 = 9, gcd(1, 8, 9) = 1 and

Rad(1 · 8 · 9) = Rad(23 · 32) = 2 · 3 = 6 < 9.

Among 15 · 106 abc–triples with c < 104, there are 120 abc–hits1.
There are infinitely many abc–hits. Indeed, take k ≥ 1, a = 1, c = 32k ,

b = c− 1. By induction on k, one checks that 2k+2 divides 32k − 1. Hence

Rad((32k − 1) · 32k) ≤ 32k − 1

2k+1
· 3 < 32k .

Hence
(1, 32k − 1, 32k)

is an abc–hit. From this argument one deduces (see [71]):

Lemma 1. There exist infinitely many abc–triples (a, b, c) such that

c >
1

6 log 3
R logR,

where R = Rad(abc).

It is not known (but conjectured in [31]) whether there are abc–triples
(a, b, c) for which c > Rad(abc)2. The largest known value of λ for which
there exists an abc–triple (a, b, c) with c > Rad(abc)λ is λ = 1.62991 . . . ,
which is reached by Reyssat’s example with

a = 2, b = 310 · 109 = 6 436 341, c = 235 = 6 436 343.

Indeed one checks

2 + 310 · 109 = 235, Rad(2 · 310 · 109 · 235) = 2 · 3 · 23 · 109 = 15 042.

When (a, b, c) is an abc–triple, define

λ(a, b, c) =
log c

log Rad(abc)
·

1See the tables of http://rekenmeemetabc.nl/Synthese_resultaten
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In 2013, there are 140 known values of λ(a, b, c) which are ≥ 1.4. Besides
Reyssat’s example, the largest value of λ(a, b, c) is 1.625990 . . . , obtained by
Benne de Weger

a = 112, b = 32 · 56 · 73 = 48 234 375, c = 221 · 23 = 48 234 496 :

112+32·56·73 = 221·23, Rad(221·32·56·73·112·23) = 2·3·5·7·11·23 = 53 130.

According to S. Laishram and T. N. Shorey [39], an explicit version, due
to A. Baker [2], of the abc Conjecture, namely Conjecture 15 below, yields

Conjecture 1. For any abc–triple (a, b, c),

c < Rad(abc)7/4.

2 abc Conjecture

Here is the abc Conjecture of Œsterlé [58] and Masser [50].

Conjecture 2. Let ε > 0. Then the set of abc triples (a, b, c) for which

c > Rad(abc)1+ε

is finite.

It is easily seen that Conjecture 2 is equivalent to the following statement:
• For each ε > 0, there exists κ(ε) such that, for any abc triple (a, b, c),

c < κ(ε)Rad(abc)1+ε.

This may be viewed as a lower bound for Rad(abc) in terms of c.
An unconditional result in the direction of the abc Conjecture has been

obtained in 1986 by Stewart and Tijdeman [71] using lower bounds for linear
combinations of logarithms, in the complex case as well as in the p–adic case:

log c ≤ κR15

with an absolute constant κ. This estimate has been refined by Stewart and
Yukunrui, who proved in 1991 [72]: for any ε > 0 and for c sufficiently large
in terms of ε,

log c ≤ κ(ε)R(2/3)+ε.

In 2001, they refined in [73] the exponent 2/3 to 1/3 when they established
the best known estimate so far:
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Theorem 1 (Stewart-Yu Kunrui). There exists an absolute constant κ such
that any abc triple (a, b, c) satisfies

log c ≤ κR1/3(logR)3

with R = Rad(abc). In other terms,

c ≤ eκR
1/3(logR)3 .

J. Œsterlé and A. Nitaj (see [56]) proved that the abc Conjecture implies
the truth of a previous conjecture by L. Szpiro on the conductor of elliptic
curves (see [36] p 227):

Conjecture 3 (Szpiro’s Conjecture). Given any ε > 0, there exists a con-
stant C(ε) > 0 such that, for every elliptic curve with minimal discriminant
∆ and conductor N ,

|∆| < C(ε)N6+ε.

According to [78, 41, 37], the next statement is equivalent to the abc
Conjecture.

Conjecture 4 (Generalized Szpiro’s Conjecture). Given any ε > 0 and
M > 0, there exists a constant C(ε,M) > 0 such that, for all integers x and
y such that the number D = 4x3 − 27y2 is not 0 and such that the greatest
prime factor of x and y is bounded by M ,

max{|x|3, y2, |D|} < C(ε,M)Rad(D)6+ε.

In view of Conjecture 3, it is natural to introduce another exponent re-
lated with the abc Conjecture. When (a, b, c) is an abc triple, define

%(a, b, c) =
log abc

log Rad(abc)
·

From the abc Conjecture it follows that for any ε > 0, there are only finitely
many abc–triples (a, b, c) such that %(a, b, c) > 3 + ε.

Here are the two largest known values for %(a, b, c), both found by A. Nitaj
[56]

a+ b = c %(a, b, c)

13 · 196 + 230 · 5 = 313 · 112 · 31 4.41901 . . .
25 · 112 · 199 + 515 · 372 · 47 = 37 · 711 · 743 4.26801 . . .
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In 2013, there are 47 known abc-triples (a, b, c) satisfying %(a, b, c) > 4.
In 2006, the Mathematics Department of Leiden University in the Nether-

lands, together with the Dutch Kennislink Science Institute, launched the
ABC@Home project, a grid computing system which aims to discover additional
abc–triples. Although no finite set of examples or counterexamples can re-
solve the abc conjecture, it is hoped that patterns in the triples discovered
by this project will lead to insights about the conjecture and about number
theory more generally. ABC@Home is an educational and non-profit distributed
computing project finding abc–triples related to the abc conjecture.

Surveys on the abc Conjecture have been written by S. Lang [41, 42]; (see
also §7 p. 194–200 of [43]), by A. Nitaj [57] and W.M. Schmidt [66] Epilogue
p. 205.

The Congruence abc Conjecture is discussed in [55], §5.5 and 5.6.
Generalizations of the abc Conjecture to more than three numbers, namely

to a1 + · · ·+ an = 0, have been investigated by J. Browkin and J. Brzeziński
[14] in 1994 and by Hu, Pei-Chu and Yang, Chung-Chun in 2002 [35].

3 Consequences

3.1 Fermat’s Last Theorem

Assume x, y, z, n are positive integers satisfying xn+yn = zn, gcd(x, y, z) = 1
and x < y. Then (xn, yn, zn) is an abc–triple with

Rad(xnynzn) ≤ xyz < z3.

If the explicit abc Conjecture c < Rad(abc)2 of [31] is true, then one deduces
zn < z6, hence n ≤ 5.
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3.2 Perfect powers

Define a perfect power as a positive integer of the form ab where a and b are
positive integers and b ≥ 2. The sequence of perfect powers starts with

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128,

144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400,

441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961,

1000, 1024, 1089, 1024, 1089, 1156, 1225, 1296, 1331, 1369,

1444, 1521, 1600, 1681, 1728, 1764, . . .

The reference of this sequence in Sloane’s Encyclopaedia of Integer Sequences
is http://oeis.org/A001597.

From the abc Conjecture 2, one easily deduces the following Conjecture
due to Subbayya Sivasankaranarayana Pillai [60] (see also [61, 62])

Conjecture 5 (Pillai). In the sequence of perfect powers, the difference be-
tween two consecutive terms tends to infinity.

Pillai’s Conjecture 5 can also be stated in an equivalent way as follows:
• Let k be a positive integer. The equation

xp − yq = k,

where the unknowns x, y, p and q take integer values, all ≥ 2, has only
finitely many solutions (x, y, p, q).

For k = 1, Mihăilescu’s solution of Catalan’s Conjecture states that the
only solution to Catalan’s equation [62, 6]

xp − yq = 1

is 32 − 23 = 1. It is a remarkable fact that there is no value of k ≥ 2 for
which one knows that Pillai’s equation xp − yq = k has only finitely many
solutions.

The abc Conjecture implies the following stronger version of Pillai’s Con-
jecture (see the introduction of Chapters X and XI of [40]):

Conjecture 6 (Lang-Waldschmidt). Let ε > 0. There exists a constant
c(ε) > 0 with the following property. If xp 6= yq, then

|xp − yq| ≥ c(ε) max{xp, yq}κ−ε with κ = 1− 1

p
− 1

q
·
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The motivation of this Conjecture in [40] is the quest for a strong (essen-
tially optimal) lower bound for linear combinations of logarithms of algebraic
numbers.

P. Vojta, in [78] Chap.V appendix ABC, explained connections between
various conjectures. Here is a figure from that reference:

Vojta’s
Conjecture =⇒ abc ⇐⇒ Frey

m m
Hall-Lang-
Waldschmidt-Szpiro ⇐⇒ Generalized Szpiro

⇓ ⇓
Hall-Lang-Waldschmidt Szpiro

⇓ ⇓
Hall Asymptotic Fermat

In the special case p = 3, q = 2, Conjecture 6 reads: If x3 6= y2, then

|x3 − y2| ≥ c(ε) max{x3, y2}(1/6)−ε.

In 1971, Marshall Hall Jr [33] proposed a stronger Conjecture without the
ε (what is called Hall’s Conjecture in [78] has the ε):

Conjecture 7 (M. Hall Jr.). There exists an absolute constant c > 0 such
that, if x3 6= y2, then

|x3 − y2| ≥ cmax{x3, y2}1/6.

This statement does not follow from the abc Conjecture 2. In [33], M. Hall
Jr discusses possible values for his constant c in Conjecture 7. In the other
direction, L.V. Danilov [17] (see also [37]) proved that the inequality

0 < |x3 − y2| < 0.971|x|1/2

has infinitely many solutions in integers x, y. According to F. Beukers and
C.L. Stewart [5], this conjecture maybe too optimistic. Indeed they conjec-
ture:

Conjecture 8 (Beukers–Stewart). Let p, q be coprime integers with p > q ≥
2. Then, for any c > 0, there exist infinitely many positive integers x, y such
that

0 < |xp − yq| < cmax{xp, yq}κ with κ = 1− 1

p
− 1

q
·
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3.3 Generalized Fermat Equation

Consider the equation (see for instance [77])

xp + yq = zr (3.1)

where the unknowns (x, y, z, p, q, r) take their values in the set of tuples of
positive integers for which x, y, z are relatively prime and p, q, r are ≥ 2.
Define

χ =
1

p
+

1

q
+

1

r
− 1·

If χ ≥ 0, then (p, q, r) is a permutation of one of

(2, 2, k) (k ≥ 2), (2, 3, 3), (2, 3, 4),

(2, 3, 5), (2, 4, 4), (2, 3, 6), (3, 3, 3);

in each of these cases, all solutions (x, y, z) are known, often there are in-
finitely many of them (see [4, 16, 38, 39]).

Assume now χ > 0. Then only 10 solutions (x, y, z, p, q, r) with x, y, z
relatively prime (up to obvious symmetries) to the equation (3.1) are known;
by increasing order for zr, they are:

1 + 23 = 32, 25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712,

35 + 114 = 1222, 338 + 1 549 0342 = 15 6133,

1 4143 + 2 213 4592 = 657, 9 2623 + 15 312 2832 = 1137,

177 + 76 2713 = 21 063 9282, 438 + 96 2223 = 30 042 9072.

Beal’s problem, including a 50 000 US$ prize (see [52]), is:

Problem 9 (Beal’s Problem). Assume χ < 0. Either find another solution
to equation (3.1), or prove that there is no further solution.

A related conjecture, due to R. Tijdeman and D. Zagier [52], is:

Conjecture 10 (Tijdeman-Zagier). The equation (3.1) has no solution in
positive integers (x, y, z, p, q, r) with each of p, q and r at least 3 and with x,
y, z relatively prime.

The next conjecture is proposed by H. Darmon and A. Granville [18] :
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Conjecture 11 (Fermat-Catalan Conjecture). The set of solutions (x, y, z, p, q, r)
with χ < 0 to the equation (3.1) is finite.

It is easy to deduce Conjecture 11 from the abc Conjecture 2, once one
notices that for p, q, r positive integers, the assumption χ < 0 implies

χ ≤ − 1

42
·

In 1995, H. Darmon and A. Granville [18] proved unconditionally that
for fixed (p, q, r) with χ < 0, there are only finitely many (x, y, z) satisfying
equation (3.1).

3.4 Wieferich Primes

A Wieferich prime is a prime number p such that p2 divides 2p−1 − 1. Note
that the definition in [55], §5.4 is the opposite. The only known Wieferich
primes below 4 · 1012 are 1093 and 3511.

J.H. Silverman [69] showed that if the abc Conjecture 2 is true, given a
positive integer a > 1, there exist infinitely many primes p such that p2 does
not divide ap−1 − 1. A consequence is that there are infinitely many primes
which are not Wieferich primes, a result which is known only if one assumes
the abc Conjecture. See also [32].

3.5 Erdős–Woods Conjecture

There are infinitely many pairs of positive integers (x, y) with x < y such
that x and y have the same radical, and, at the same time, x + 1 and y + 1
have the same radical. Indeed, for k ≥ 1, the pair of numbers (x, y) with

x = 2k − 2 = 2(2k−1 − 1) and y = (2k − 1)2 − 1 = 2k+1(2k−1 − 1)

satisfy this condition, since

x+ 1 = 2k − 1 and y + 1 = (2k − 1)2.

There is one further sporadic known example, namely (x, y) = (75, 1215),
since

75 = 3 · 52 and 1215 = 35 · 5 with Rad(75) = Rad(1215) = 3 · 5 = 15,
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while

76 = 22·19 and 1216 = 26·19 with Rad(76) = Rad(1216) = 2·19 = 38.

It is not known whether there are further examples. It is not even known
whether there exist two distinct integers x, y such that

Rad(x) = Rad(y), Rad(x+1) = Rad(y+1) and Rad(x+2) = Rad(y+2).

The comparatively weaker assertion below [44, 45, 46, 47] would have inter-
esting consequences in logic:

Conjecture 12 ( Erdős–Woods Conjecture). There exists an absolute con-
stant k such that, if x and y are positive integers satisfying

Rad(x+ i) = Rad(y + i)

for i = 0, 1, . . . , k − 1, then x = y.

M. Langevin [44, 46, 47] (cf. [37]) proved that this Conjecture follows from
the abc Conjecture 2. See also [40] and [3] for connections with conjectures
6 and 7.

3.6 Warings’s Problem

In 1770, a few months before J.L. Lagrange solved a conjecture of Bachet
(1621) and Fermat (1640) by proving that every positive integer is the sum
of at most four squares of integers, E. Waring wrote (see [81]) :

• “Omnis integer numerus vel est cubus, vel e duobus, tribus, 4, 5, 6, 7,
8, vel novem cubis compositus, est etiam quadrato-quadratus vel e duobus,
tribus, &.̧ usque ad novemdecim compositus, & sic deinceps” 2

Waring’s function g is defined as follows: For any integer k ≥ 2, g(k) is
the least positive integer s such that any positive integer N can be written
xk1 + · · ·+ xks .

For each integer k ≥ 2, define I(k) = 2k + [(3/2)k] − 2. It is easy to
show that g(k) ≥ I(k) (this result is due to J. A. Euler, son of Leonhard

2“Every integer is a cube or the sum of two, three, . . . nine cubes; every integer is also
the square of a square, or the sum of up to nineteen such; and so forth. Similar laws may
be affirmed for the correspondingly defined numbers of quantities of any like degree.”

10



Euler). Indeed, write the Euclidean division of 3k by 2k, with quotient q and
remainder r:

3k = 2kq + r with 0 < r < 2k, q =

[(
3

2

)k]

and consider the integer

N = 2kq − 1 = (q − 1)2k + (2k − 1)1k.

Since N < 3k, writing N as a sum of k-th powers can involve no term 3k,
and since N < 2kq, it involves at most (q − 1) terms 2k, all others being 1k;
hence it requires a total number of at least (q − 1) + (2k − 1) = I(k) terms.

The next conjecture [54] is due to C.A. Bretschneider (1853).

Conjecture 13 (Ideal Waring’s Theorem). For any k ≥ 2, g(k) = I(k).

A slight improvement of the upper bound r < 2k for the remainder r =
3k − 2kq would suffice for proving Conjecture 13. Indeed, L.E. Dickson and
S.S. Pillai (see for instance [34], Chap. XXI or [54] p. 226, Chap. IV) proved
independently in 1936 that if r = 3k − 2kq satisfies

r ≤ 2k − q − 2, (3.2)

then g(k) = I(k). The condition (3.2) is satisfied for 4 ≤ k ≤ 471 600 000.
According to K. Mahler, the upper bound (3.2) is valid for all sufficiently

large k. Hence the ideal Waring’s Theorem

g(k) = I(k)

holds also for all sufficiently large k. However, Mahler’s proof uses a p–adic
Diophantine argument related to the Thue–Siegel–Roth Theorem which does
not yield effective results.

S. David (see [60]) noticed that the estimate (3.2) for sufficiently large
k follows from the abc Conjecture 2. S. Laishram checked that the ideal
Waring’s Theorem g(k) = I(k) follows from the explicit abc Conjecture 15.
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3.7 A problem of P. Erdős solved by C.L. Stewart

Let us denote by P (m) the greatest prime factor of an integer m ≥ 2. In
1965, P. Erdős conjectured

P (2n − 1)

n
→∞ when n→∞.

In 2002, R. Murty and S. Wong [53] proved that this is a consequence of the
abc Conjecture 2.

In 2012, C.L. Stewart [70] proved Erdős’s Conjecture (in a wider context
of Lucas and Lehmer sequences) in the stronger form:

P (2n − 1) > n exp
(
log n/104 log log n

)
.

4 Stronger than abc: best possible estimate?

Let δ > 0. In 1986, C.L. Stewart and R. Tijdeman [71] proved that there are
infinitely many abc–triples (a, b, c) for which

c > R exp

(
(4− δ)(logR)1/2

log logR

)
.

This is much better than the lower bound c > R logR obtained in Lemma
1. The coefficient 4 − δ has been improved by M. van Frankenhuijsen [21]
into 6.068 in 2000. In the same paper, M. van Frankenhuijsen suggested that
there may exist two positive absolute constants κ1 and κ2 such that, for any
abc–triples (a, b, c),

c < R exp

(
κ1

(
logR

log logR

)1/2
)
,

while for infinitely many abc–triples (a, b, c),

c > R exp

(
κ2

(
logR

log logR

)1/2
)
.

O. Robert, C.L. Stewart and G. Tenenbaum suggest in [63] the following more
precise limit for the abc Conjecture, which would yield these statements with
κ1 = 4

√
3 + ε for c sufficiently large in terms of ε and κ2 = 4

√
3− ε for any

ε > 0.
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Conjecture 14 (Robert-Stewart-Tenenbaum). There exist positive constants
κ1, κ2, κ3 such that, for any abc–triple (a, b, c) with R = Rad(abc),

c < κ1R exp

(
4
√

3

(
logR

log logR

)1/2(
1 +

log log logR

2 log logR
+

κ2
log logR

))
and there exist infinitely many abc–triples (a, b, c) for which

c > R exp

(
4
√

3

(
logR

log logR

)1/2(
1 +

log log logR

2 log logR
+

κ3
log logR

))
.

The only heuristic argument used in [63] is that, whenever a and b are
relatively prime positive integers, the radicals of a, b and a+b are statistically
independent. The estimates from (14) are based on the work [64] on the
number of positive integers N(x, y) bounded by x whose radical is at most
y.

5 Explicit abc Conjecture

In 1996, A. Baker [1] suggested the following statement. Let (a, b, c) be an
abc–triple and let ε > 0. Then

c ≤ κ
(
ε−ωR

)1+ε
where κ is an absolute constant, R = Rad(abc) and ω = ω(abc) is the number
of distinct prime factors of abc.

A. Granville noticed that the minimum of the function on the right hand
side over ε > 0 occurs essentially with ε = ω/ logR. This incited Baker [2]
to propose a slightly sharper form of his previous conjecture, namely :

c ≤ κR
(logR)ω

ω!
·

He made some computational experiments in order to guess an admissible
value for his absolute constant κ, and he ended up with the following precise
statement:

Conjecture 15 (Explicit abc Conjecture). Let (a, b, c) be an abc–triple. Then

c ≤ 6

5
R

(logR)ω

ω!
,

with R = Rad(abc) and ω = ω(abc).
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P. Philippon in 1999 [59] (Appendix) pointed out how sharp lower bounds
for linear forms in logarithms, involving several metrics, would imply the abc
Conjecture. Effective and explicit versions of the abc Conjecture have plenty
of consequences [10, 8, 13, 39, 65]. Here is a very few set of examples.

The Nagell–Ljunggren equation is the equation

yq =
xn − 1

x− 1

where the unknowns x, y, n, q take their values in the set of tuples of positive
integers satisfying x > 1, y > 1, n > 2 and q > 1. This equation means
that in basis x, all the digits of the perfect power yq are 1 (this is a so–called
repunit).

According to [39], if the explicit abc Conjecture 15 of Baker is true, then
the only solutions are

112 =
35 − 1

3− 1
, 202 =

74 − 1

7− 1
, 73 =

183 − 1

18− 1
·

Further consequences of the explicit abc Conjecture 15 are discussed in
[39], in particular on the Goormaghtigh’s Conjecture, which states that the
only numbers with at least three digits and with all digits equal to 1 in two
different bases are 31 (in bases 2 and 5) and 8191 (in bases 2 and 90):

53 − 1

5− 1
=

25 − 1

2− 1
= 31 and

903 − 1

90− 1
=

213 − 1

2− 1
= 8191.

In other terms, the Goormaghtigh’s Conjecture asserts that if (x, y,m, n) is
a tuple of positive integers satisfying x > y > 1, n > 2, m > 2 and

xm − 1

x− 1
=
yn − 1

y − 1
,

then (x, y,m, n) is either (5, 2, 3, 5) or (90, 2, 3, 13). Surveys on such questions
have been written by T.N. Shorey [67, 68].

6 abc for number fields

In 1991, N. Elkies [19] deduced Faltings’s Theorem on the finiteness of the
set of rational points on an algebraic curve of genus ≥ 2 (previously Mordell’s
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conjecture) from a generalization he proposed of the abc Conjecture to num-
ber fields. See also [31].

In 1994, E. Bombieri [7] deduced from a generalization of the abc Con-
jecture to number fields a refinement of the Thue–Siegel–Roth Theorem on
the rational approximation of algebraic numbers∣∣∣∣α− p

q

∣∣∣∣ > 1

q2+ε
,

where he replaces ε by

κ(log q)−1/2(log log q)−1,

with κ depending only on the algebraic number α.
A. Granville and H.M. Stark [30] proved that the uniform abc Conjecture

for number fields implies a lower bound for the class number of an imaginary
quadratic number field; K. Mahler had shown that this implies that the
associated L–function has no Siegel zero. See also [31].

Further work on the abc Conjecture for number fields ( see [8]) are due to
M. van Frankenhuijsen [20, 21, 22, 24], N. Broberg [9], J. Browkin [11, 12],
A. Granville and H.M. Stark [30], K. Győry, D.W. Masser [51], A. Surroca
[75, 76], P.C. Hu and C.C Yang [36] § 5.6 and [37].

7 Further consequences of the abc Conjecture

Further consequences of the abc Conjecture 2 are quoted in [56], including:
• Erdős’s Conjecture on consecutive powerful numbers. The abc Conjecture
2 implies that the set of triples of consecutive powerful integers (namely
integers of the form a2b3) is finite. R. Mollin and G. Walsh conjecture that
there is no such triple.
• Dressler’s Conjecture: between two positive integers having the same prime
factors, there is always a prime.
• Squarefree and powerfree values of polynomials [15, 29].
• Lang’s conjectures: lower bounds for heights, number of integral points on
elliptic curves [25, 26, 27].
• Bounds for the order of the Tate–Shafarevich group [28].
• Vojta’s Conjecture for curves [78, 79, 80].
• Greenberg’s Conjecture on Iwasawa invariants λ and µ in cyclotomic ex-
tensions.
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• Exponents of class groups of quadratic fields.
• Fundamental units in quadratic and biquadratic fields.

8 abc and meromorphic function fields

There is a rich theory related with Nevanlinna value distribution theory. See
for instance P. Vojta [78, 79, 80], Machiel van Frankenhuijsen [22, 23], Hu,
Pei–Chu and Yang, Chung-Chun [35, 36, 37]. Notice in particular that Vo-
jta’s Conjecture on algebraic points of bounded degree on a smooth complete
variety over a global field of characteristic zero implies the abc Conjecture 2.

9 ABC Theorem for polynomials

We end this lecture with a proof of an analog of the abc conjecture for poly-
nomials – see for instance [31, 43].

Let K be an algebraically closed field. The radical of a monic polynomial

P (X) =
n∏
i=1

(X − αi)ai ∈ K[X],

with αi pairwise distinct, is defined as

Rad(P )(X) =
n∏
i=1

(X − αi) ∈ K[X].

The following result is due to W.W. Stothers [74] and R. Mason [48, 49]. It
can also be deduced from earlier results by A. Hurwitz.

Theorem 2 (ABC Theorem). Let A, B, C be three relatively prime polyno-
mials in K[X] with A+B = C and let R = Rad(ABC). Then

max{deg(A), deg(B), deg(C)} < deg(R).

This result can be compared with the abc Conjecture 2, where the degree
of a polynomial replaces the logarithm of a positive integer.

The proof uses the remark that the radical is related with a gcd: for
P ∈ K[X] a monic polynomial, we have

Rad(P ) =
P

gcd(P, P ′)
· (9.1)
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Indeed, the common zeroes of

P (X) =
n∏
i=1

(X − αi)ai ∈ K[X]

and P ′ are the αi with ai ≥ 2. They are zeroes of P ′ with multiplicity ai− 1.
Hence (9.1) follows.

Now suppose A+B = C with A,B,C relatively prime. Notice that

Rad(ABC) = Rad(A)Rad(B)Rad(C).

We may suppose A, B, C to be monic and, say, deg(A) ≤ deg(B) ≤ deg(C).
Write

A+B = C, A′ +B′ = C ′.

Then the three determinants∣∣∣∣A B
A′ B′

∣∣∣∣ = AB′ − A′B,
∣∣∣∣A C
A′ C ′

∣∣∣∣ = AC ′ − A′C,
∣∣∣∣C B
C ′ B′

∣∣∣∣ = CB′ − C ′B

take the same value; in particular

AB′ − A′B = AC ′ − A′C.

Recall gcd(A,B,C) = 1. Since gcd(C,C ′) divides AC ′ − A′C = AB′ − A′B,
it divides also

AB′ − A′B
gcd(A,A′) gcd(B′B′)

which, according to (9.1), is a polynomial of degree strictly less than

deg
(
Rad(A)

)
+ deg

(
Rad(B)

)
= deg

(
Rad(AB)

)
.

Hence
deg
(
gcd(C,C ′)

)
< deg

(
Rad(AB)

)
.

Using (9.1) again, we deduce

deg(C) = deg
(
Rad(C)

)
+ deg

(
gcd(C,C ′)

)
,

hence

deg(C) < deg
(
Rad(C)

)
+ deg

(
Rad(AB)

)
= deg

(
Rad(ABC)

)
.

17



References

[1] A. Baker – 〈〈Logarithmic forms and the abc-conjecture 〉〉, in Number
theory (Eger, 1996), de Gruyter, Berlin, 1998, p. 37–44.

[2] — , 〈〈Experiments on the abc-conjecture 〉〉, Publ. Math. Debrecen 65
(2004), no. 3-4, p. 253–260.

[3] R. Balasubramanian, T. N. Shorey & M. Waldschmidt – 〈〈On
the maximal length of two sequences of consecutive integers with the
same prime divisors 〉〉, Acta Math. Hungar. 54 (1989), no. 3-4, p. 225–
236.

[4] F. Beukers – 〈〈The Diophantine equation Axp + Byq = Czr 〉〉, Duke
Math. J. 91 (1998), no. 1, p. 61–88.

[5] F. Beukers & C. L. Stewart – 〈〈Neighboring powers 〉〉, J. Number
Theory 130 (2010), no. 3, p. 660–679, Addendum: J. Number Theory
130 (2010), no. 7, p. 1571.

[6] Y. F. Bilu – 〈〈Catalan’s conjecture (after Mihăilescu) 〉〉, Astérisque
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[43] — , Algebra, third éd., Graduate Texts in Mathematics, vol. 211,
Springer-Verlag, New York, 2002.
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Séminaire Bourbaki, Vol. 1987/88.

22

http://www.math.unicaen.fr/~nitaj/abc.html


[59] P. Philippon – 〈〈Quelques remarques sur des questions
d’approximation diophantienne 〉〉, Bull. Austral. Math. Soc. 59 (1999),
no. 2, p. 323–334, Addendum, id., vol. 61 (2000), no. 1, p. 167–169.

[60] S. S. Pillai – Collected works of S. Sivasankaranarayana Pillai, Ra-
manujan Mathematical Society Collected Works Series, vol. 1, Ramanu-
jan Mathematical Society, Mysore, 2010, Edited by R. Balasubramanian
and R. Thangadurai.

[61] P. Ribenboim – 13 lectures on Fermat’s last theorem, Springer-Verlag,
New York, 1979.

[62] — , Catalan’s conjecture, are 8 and 9 the only consecutive powers?,
Academic Press Inc., Boston, MA, 1994.

[63] O. Robert, C. L. Stewart & G. Tenenbaum – 〈〈A refinement of
the abc conjecture 〉〉, 2013, to appear.
http://www.iecn.u-nancy.fr/∼tenenb/PUBLIC/Prepublications−et−publications/.

[64] O. Robert & G. Tenenbaum – 〈〈Sur la répartition du noyau d’un
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• ABC@Home, a project led by Hendrik W. Lenstra Jr., B. de Smit and W. J.
Palenstijn
http://www.abcathome.com/

• Ivars Peterson. — The Amazing ABC Conjecture.
http://www.sciencenews.org/sn_arc97/12_6_97/mathland.htm

• Pierre Colmez. — a+ b = c? Images des Mathématiques, CNRS, 2012.
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• Bart de Smit / ABC triples.
http://www.math.leidenuniv.nl/~desmit/abc/

• Reken mee met abc
http://rekenmeemetabc.nl/Synthese_resultaten

Reken mee met abc is een project dat gericht is op scholieren
en andere belangstellenden. Op deze website vind je allerlei in-
teressante artikelen, wedstrijden en informatie voor een praktis-
che opdracht of profielwerkstuk voor het vak wiskunde. Daarnaast
kun je je computer laten meerekenen aan een groot rekenproject
gebaseerd op een algoritme om abc-drietallen te vinden.

Reken mee met abc is a project aimed at students and other inter-
ested parties. On this website you can find all sorts of interesting
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workpiece profile for mathematics. In addition, you can take your
computer to a large project based on an algorithm to abc–triples.
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