Uhlík
Uhlík | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
↓ Periodická tabulka ↓ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Diamant a grafit
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Obecné | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Název, značka, číslo | Uhlík, C, 6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cizojazyčné názvy | lat. Carbonium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skupina, perioda, blok | 14. skupina, 2. perioda, blok p | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chemická skupina | Nekovy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Koncentrace v zemské kůře | 200 až 800 ppm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Koncentrace v mořské vodě | 28 mg/l | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vzhled | Černá látka nebo bezbarvá, průhledná látka | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Identifikace | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Registrační číslo CAS | 7440-44-0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomové vlastnosti | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Relativní atomová hmotnost | 12.0107 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomový poloměr | 70 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kovalentní poloměr | 73±4 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Van der Waalsův poloměr | 170 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elektronová konfigurace | [He] 2s2 2p2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidační čísla | +IV, +II, +I, 0, −II, −IV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elektronegativita (Paulingova stupnice) | 2,5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ionizační energie | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
První | 1086,5 KJ/mol | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Druhá | 2352,6 KJ/mol | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Třetí | 4620,5 KJ/mol | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Látkové vlastnosti | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Krystalografická soustava | Šesterečná (grafit) Krychlová (diamant) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Molární objem | 5,29 cm3×10−6 m3/mol | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mechanické vlastnosti | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hustota | 2270 kg/m3 (grafit) 3513 kg/m3 (diamant) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skupenství | Pevné | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Tvrdost | Grafit: 1–2 Diamant: 10 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rychlost zvuku | Diamant: 18350 m/s | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Termické vlastnosti | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Tepelná vodivost | Grafit: 119–165 W·m−1·K−1 Diamant: 900–2300 W⋅m−1⋅K−1 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Termodynamické vlastnosti | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Teplota tání | 3642 (3 915,15 K) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Teplota varu | 4027 (4 300,15 K) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skupenské teplo tání | 117 KJ/mol (grafit) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Měrná tepelná kapacita | 8,517 Jmol−1K−1 (grafit); 6,155 Jmol−1K−1 (diamant) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elektromagnetické vlastnosti | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elektrická vodivost | Grafit: ~ 104 S·m−1 Diamant: ~ 10−3 S/m |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Měrný elektrický odpor | Grafit: ~ 10−4 Ωm Diamant: ~ 103 Ωm |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Magnetické chování | Diamagnetický (grafit i diamant) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Izotopy | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Není-li uvedeno jinak, jsou použity jednotky SI a STP (25 °C, 100 kPa). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Uhlík (chemická značka C, latinsky Carboneum) je chemický prvek, tvořící základní stavební kámen všech organických sloučenin a tím i všech živých organismů na této planetě. Sloučeniny uhlíku jsou jedním ze základů světové energetiky, kde především fosilní paliva jako zemní plyn a uhlí slouží jako energetický zdroj pro výrobu elektřiny a vytápění, produkty zpracování ropy jsou nezbytné pro pohon spalovacích motorů a tak silniční a železniční dopravu. Výrobky chemického průmyslu na bázi uhlíku jsou součástí našeho každodenního života ať jde o plastické hmoty, umělá vlákna, nátěrové hmoty, léčiva a mnoho dalších. V současné době bylo popsáno přibližně 10 milionů organických sloučenin.[1][2]
Obsah
Formy uhlíku[editovat | editovat zdroj]
Elementární uhlík[editovat | editovat zdroj]
Uhlík je typický nekovový chemický prvek, který se v elementárním stavu jako minerál vyskytuje v přírodě ve dvou základních alotropních modifikacích a v posledních přibližně 30 letech byly objeveny v přírodě nebo laboratorně vytvořeny modifikace další:
Grafit (tuha) je nejčastější přírodní modifikace uhlíku, jejíž struktura se skládá z vrstev tzv. grafenu, které jsou tvořeny uhlíky navázanými do šestiúhelníků. Na každý uhlík jsou kovalentně vázány další tři uhlíky (hybridizace sp2). Tvoří se zde rozsáhlý systém delokalizovaných elektronů (π-systém). Jednotlivé vrstvy spolu drží pouze pomocí slabých interakcí tzv. van der Waalsovy síly. Této vlastnosti se využívá např. při výrobě tužek, kde mletá tuha tvoří základní složku tyčinky určené pro psaní a kreslení. Grafit vede elektrický proud.
Diamant je tvořen uhlíkem krystalizujícím v soustavě krychlové a je nejtvrdším[pozn. 1] a velmi cenným přírodním nerostem. Na každý uhlík jsou kovalentně vázány další čtyři uhlíky (hybridizace sp3). Hmotnost diamantů se udává v karátech, největším doposud nalezeným diamantem byl Cullinan, který v surovém stavu při nálezu v JAR dosáhl váhy 3 106 karátů (621,2 gramů). Diamanty se používají pro svou tvrdost a výbornou tepelnou vodivost (až 2300 W·m−1·K−1 při pokojové teplotě a normálním izotopickém složení) v nejrůznějších řezných a vrtných nástrojích. Pro vysokou cenu bývají diamanty vyráběny synteticky.
Lonsdaleit, též zvaný "šesterečný diamant", je velmi řídce se vyskytující přírodní alotropní modifikací uhlíku. Jeho krystalová struktura je tvořena podobně jako u diamantu atomy uhlíku vázanými jednoduchými kovalentními vazbami se čtyřmi sousedy, krystalová soustava je však šesterečná. Původ přírodního lonsdaleitu je vysvětlován přeměnou grafitu při dopadech meteoritů.[pozn. 2]
Chaoit, též zvaný "bílý uhlík", je velmi řídce se vyskytující přírodní alotropní modifikace uhlíku, objevená r. 1968. Tento nerost krystalizuje v šesterečné soustavě. Původ je jako u lonsdaleitu vysvětlován přeměnou grafitu při dopadech meteoritů, v jejichž dopadových kráterech se nachází.
Grafen je forma uhlíku, kterou tvoří jedna či několik málo vrstev rovinné sítě vzájemně propojených atomů uhlíku uspořádaných do tvaru šestiúhelníků (hybridizace sp2). Jedná se o vlastně strukturní součást grafitu, která si vzhledem ke zvláštním fyzikálním vlastnostem, výborné tepelné vodivosti (přes 4000 W·m−1·K−1 u izotopicky čištěného grafenu[5]) a využitelností pro mnohé elektronické a optické aplikace zasloužila vlastní název i Nobelovu cenu za fyziku v r. 2010 pro své objevitele.
Grafyn je společné označení pro formy uhlíku, kterou tvoří jako u grafenu jedna či několik málo vrstev rovinné sítě vzájemně propojených atomů uhlíku, které však již vzhledem k vloženým lineárním úsekům −C≡C− (hybridizace sp) nejsou uspořádány do tvaru šestiúhelníků. Přesto si zachovávají mnohé zvláštní fyzikální vlastnosti. Mohou být takto vytvořeny grafyny různé symetrie, včetně pravoúhelníkové.[6][7]
Fullereny označují sférické (též elipsoidální či podobného tvaru) molekuly z jedné prostorově uzavřené vrstvy grafenu, tedy sítě uhlíkových atomů uspořádaných do šestiúhelníků, doplněných kvůli prostorovému uzavření dvanácti pětiúhelníky. Tyto molekuly jsou mimořádně odolné vůči vnějším fyzikálním vlivům. Zatím nejstabilnější známý fulleren je molekula, obsahující 60 uhlíkových atomů. Fullereny se uměle připravují pyrolýzou organických sloučenin laserem. Výskyt přírodních fullerenů ve vesmíru byl prokázán v r. 2010 Spitzerovým teleskopem.[8] Za objev a studium vlastností fullerenů byla v roce 1996 udělena Nobelova cena Robertu F. Curlovi a Richardu E. Smalleymu a Haroldu W. Krotoovi.
Fullerit se nazývá krystalová struktura tvořená fullereny C60. Fullerit krystalizuje v krychlové soustavě (nad teplotou ~250 K v plošně centrované mřížce, pod teplotou ~220 K v prosté mřížce);[9] někdy se uvádí i soustava čtverečná[10]. Výskyt přírodního fulleritu ve vesmíru byl prokázán v r. 2012 Spitzerovým teleskopem.[8] Doposud nebyl uznán Mezinárodní mineralogickou asociací jako minerál.
Fullerenovou strukturu má pravděpodobně také tzv. skelný či sklovitý uhlík, vyrobený v 50. letech 20. století v laboratořích britské The Carborundum Company.[11]
Uhlíkové nanotrubice jsou uměle vyrobené mikroskopické trubičky složené z válcově svinuté vrstvy grafenu o průměru pouhých několika (1–100) nanometrů. Perspektiva jejich využití se nabízí např. při výrobě velmi pevných a zároveň lehkých kompozitních materiálů a tkanin, v elektronice při výrobě mimořádně malých tranzistorů, jako ideálního materiálu pro uchovávání čistého vodíku pro palivové články a mnohé další.
Uhlíková nanopěna je řídká prostorová síť tvořená klastry uhlíkových atomů o velikosti několika nanometrů, které jsou podobné grafenu, ale protože atomy jsou uspořádány vedle šestiúhelníků také do sedmiúhelníků, je výsledná křivost na rozdíl od fullerenů záporná (hyperbolická).[12] Tato modifikace byla vytvořena v r. 1997. Vyznačuje se pozoruhodnými fyzikálními vlastnostmi – vedle elektrické vodivosti je silně paramagnetická.[13]
Uhlík Q (též Q-uhlík) je umělá alotropní modifikace tvořená krystalickou nanovrstvou kovalentně vázaných atomů uhlíku s hybridizací sp3 (20%–50%) a sp2, která obsahuje monokrystalické nanočástice diamantu. Objev byl zveřejněn v roce 2015. Vytváří se na substrátu jiné látky (safír, sklo, plast) z vrstvy amorfního uhlíku jejím prudkým zahřátím laserovými pulsy na několik tisíc stupňů Celsia a následným prudkým ochlazením. Výsledkem jsou exotické vlastnosti, které se liší podle substrátu, tloušťky vrstvy a rychlosti ochlazení - může být feromagnetický, může při zahřátí světélkovat, může vykazovat tvrdost větší než diamant.[14][15][16][17]
Jako karbyn (někdy karbin podle ruského originálu, též "LAC" z anglického linear acetylenic carbon) se označuje forma tvořená lineárními molekulami polymerního uhlíku, zapsatelnými vzorcem −(C≡C)n−. Uhlíkové atomy s hybridizací sp jsou kovalentně vázány s dvěma sousedními atomy. Chemicky aktivní konce molekul se mohou vzájemně spojovat a vytvářet uzavřené molekulární řetězce. Karbyn se chová jako polovodič. Zájmem nanotechnologů jsou i jeho mechanické vlastnosti[18][19][20] – při dobrém rovnoběžném uspořádání makromolekul se v daném směru vyznačuje modulem pružnosti 40krát vyšším než má diamant; protože pevností v tahu dvojnásobně převyšuje i uhlíkové nanotrubice, jedná se o vůbec nejpevnější známý materiál.[21] Karbyn byl připraven v 60. letech 20. století v Ústavu organických sloučenin Akademie věd SSSR; ještě na začátku 21. století však byla jeho existence jako alotropní modifikace uhlíku zpochybňována.[22]
Amorfní uhlík je forma uhlíku bez pravidelné krystalové struktury. Obsahuje atomy uhlíku jak s hybridizací sp2 (vázaný s třemi sousedními atomy), tak i sp3 (vázaný s čtyřmi sousedními atomy) v různém poměru, přičemž může obsahovat jak velké vakance, tak i nanokrystaly grafitu nebo diamantu v amorfní uhlíkové matrici. Pro praktické využití se připravuje např. jako tzv. aktivní uhlí.
Další nově objevenou amorfní modifikací jsou tzv. uspořádané amorfní uhlíkové klastry (OACC – z anglického ordered amorphous carbon clusters). Vytváří se z fullerenů C60 (propojených xylenovými molekulami), jejichž struktura je působením vysokého tlaku desítek GPa zborcena do kompaktní a velmi tvrdé amorfní látky, schopné rýt i diamant. Protože se vytváří při pokojové teplotě, mohla by v průmyslovém využití konkurovat syntetickým diamantům, pro jejichž výrobu jsou nutné teploty kolem 1500 °C.[23]
Anorganické sloučeniny[editovat | editovat zdroj]
V anorganických chemických sloučeninách se uhlík vyskytuje v mocenství +2, +4 a −1.
Z oxidů je důležitý především oxid uhličitý CO2, který se podílí na vytváření rostlinných tkání v procesu zvaném fotosyntéza a současně se vrací do atmosféry pří dýchání živých organizmů a spalování fosilních paliv.
Ve vodě se CO2 rozpouští za vzniku oxoniového iontu H3O+ a hydrogenuhličitanového iontu HCO3−, což je někdy chybně[zdroj?] označováno jako kyselina uhličitá. Známy jsou především soli. Většina z nich je ve vodě nerozpustná, rozpustné jsou jen uhličitany alkalických kovů a amoniaku. Uhličitany se řadí též i mezi nerosty, některé jsou uvedeny v následující tabulce.
Název nerostu | Chemický název | Vzorec |
Kalcit, Aragonit | Uhličitan vápenatý | CaCO3 |
Magnezit | Uhličitan hořečnatý | MgCO3 |
Azurit | Dihydroxid diuhličitan triměďnatý | Cu3(CO3)2(OH)2 |
Malachit | Dihydroxid uhličitan diměďnatý | Cu2CO3(OH)2 |
Siderit | Uhličitan železnatý | FeCO3 |
Dolomit | Uhličitan hořečnato-vápenatý | MgCa(CO3)2 |
Smithsonit | Uhličitan zinečnatý | ZnCO3 |
Trona | Hydrogendiuhličitan trisodný | Na3H(CO3)2 |
Oxid uhlíku s valencí +2, oxid uhelnatý CO je značně toxický plyn, který blokuje krevní barvivo hemoglobin a znemožňuje tak dýchání. Jeho nebezpečí spočívá především v tom, že je bezbarvý a bez zápachu a člověk proto jeho přítomnost v okolí nemůže poznat svými smysly. Byl příčinou mnoha smrtelných otrav v uhelných dolech nebo v domácnostech, kde se k topení používal svítiplyn.
Se sírou vytváří uhlík toxickou kapalnou sloučeninu – sirouhlík CS2, vytváří se vedením pár síry přes rozžhavený uhlík.
S dusíkem tvoří uhlík kyanidový ion CN− a kyanovodík HCN patří také k mimořádně toxickým látkám. V tomto případě však můžeme detekovat čichem jeho silný zápach po hořkých mandlích.
S kovovými prvky tvoří uhlík karbidy. Nejznámější je karbid vápenatý CaC2, který při reakci s vodou uvolňuje acetylen (ethyn) a byl dříve používán ke svícení v lampách, karbidkách a na svařování. Poměrně známý je i karbid křemíku SiC neboli karborundum, který má krystalickou strukturu podobnou diamantu a vyznačuje se mimořádnou tvrdostí.
Organické sloučeniny[editovat | editovat zdroj]
Organické sloučeniny jsou chemické látky, které obsahují alespoň jeden atom uhlíku a téměř vždy atom vodíku, převážná většina přitom má spolu vázané atomy uhlíku vazbou C-C. Každý atom uhlíku je schopen vytvářet celkem čtyři tyto tzv. jednoduché vazby, kromě toho i vazbu dvojnou C=C a vazbu trojnou C≡C. Mohou proto vznikat dlouhé řetězce a molekuly s rozvětvenou nebo cyklickou strukturou. Společně s uhlíkem se v těchto molekulách váží i další prvky, především biogenní prvky vodík, kyslík, dusík, síra a fosfor, ale mohou to být i halogeny, křemík a mnoho dalších. Díky tomu existuje nesmírně mnoho kombinací; v dnešní době je známo více než 10 milionů organických sloučenin. Jejich výčet je pravidelně registrován v Beilsteinově databázi, která shromažďuje souhnrná data o všech známých organických sloučeninách.
Právě díky této obrovské rozmanitosti se organické látky staly základním stavebním kamenem živé hmoty. Každá buňka živého organismu obsahuje desetitisíce chemických sloučenin, které mají tu jedinou společnou vlastnost, že jejich základní skelet je tvořen atomy uhlíku v různých vazebných stavech.
Následující výčet typů organických sloučenin není zdaleka úplný a měl by pouze podat informaci o nejčastěji používaných a vyráběných typech organických látek.
Uhlovodíky jsou sloučeniny, které ve své molekule obsahují pouze atomy uhlíku a vodíku. Lze je v zásadě rozdělit na:
- alifatické uhlovodíky, jejichž molekuly mají tvar otevřeného (případně rozvětveného) řetězce a
- alicyklické uhlovodíky, jejichž molekuly mají tvar řetězce (případně rozvětveného) uzavřeného do jedné nebo více smyček, a které nespadají do aromatických
- aromatické uhlovodíky (areny), jejichž molekuly obsahují alespoň jeden uzavřený řetězec s delokalizovanými elektrony vazeb π (nejtypičtější je tzv. benzenové jádro s šesti atomy uhlíku).
První dvě skupiny pak podle vazeb mezi atomy uhlíku dělíme na:
- alkany s pouze jednoduchou vazbou C-C
- alkeny, obsahující minimálně jednu dvojnou vazbu C=C a
- alkyny, obsahující minimálně jednu trojnou vazbu C≡C
Sloučeniny, které ve své molekule obsahují C, H a O, lze zhruba rozdělit do následujících skupin:
- alkoholy, obsahující skupinu C-OH
- fenoly, které skupinu -OH mají připojenu k aromatickému jádru
- ethery, obsahující skupinu C-O-C
- organické peroxidy, obsahující skupinu C-O-O-C
- aldehydy, obsahující skupinu HC=O
- ketony, obsahující skupinu C-CO-C
- karboxylové kyseliny, obsahující skupinu -COOH
- estery, obsahující skupinu R-C-OOR
Další typy organických sloučenin, které ve své molekule obsahuji i dusík nebo síru, jsou uvedeny v heslech těchto prvků.
Principy řetězení[editovat | editovat zdroj]
Uhlík je u organických sloučeninách čtyřvazný, což odpovídá oxidačnímu číslu IV. Vazba uhlíku může být:
- jednoduchá
- dvojná vazba je vytvářena dvěma el. páry, které nejsou rovnocenné. El. vazebné, nazývané σ-elektrony, zbývající dva π-elektrony jsou pohyblivější a jsou nositeli reaktivnosti dvojné vazby.
- trojná je tvořena sdílením tří el. párů, dvěma σ- a čtyřmi π-elektrony
- rozvětvená
- nerozvětvená
- uzavřená do cyklů jednoduchých nebo složených
Volné vazby v těchto strukturách mohou být obsazeny atomy H, O, S, N nebo skupinami prvků (radikály). Sloučeniny s vazbami mezi uhlíky se nazývají nasycené (větší stálost), s dvojnou nebo trojnou vazbou jsou nenasycené.
Výskyt a využití[editovat | editovat zdroj]
Na Zemi i ve vesmíru je uhlík poměrně značně rozšířeným prvkem. V zemské kůře je jeho obsah uváděn s relativně vysokým rozptylem v rozmezí 200–800 ppm (mg/kg), obsah v mořské vodě činí 28 mg/l. Ve vesmíru připadá jeden atom uhlíku přibližně na 20 000 atomů vodíku.
Některá využití uhlíku vyžadují zlepšení tvrdosti. Proces, při němž k tomu dochází se nazývá impregnace uhlíku a provádí se buď kovy (měď, hliník, cín, stříbro, olovo, kadmium) nebo syntetickými pryskyřicemi.
Při tepelném zpracování uhlíku vznikají póry – takový proces zveme grafitace.
Grafit[editovat | editovat zdroj]
- Podrobnější informace naleznete v článku Grafit.
Grafit neboli tuha je nerost neboli minerál, který se vyskytuje v mnoha lokalitách na Zemi. Jedny z největších grafitových dolů se nalézají v USA (Texas a stát New York), Mexiku, Indii a Rusku; významná byla i ložiska v jižních Čechách. Grafit je například zároveň složkou sazí, které vznikají spalováním fosilních paliv. Je přitom přítomen v částečkách natolik nepatrných rozměrů, že saze mají spíše vlastnosti amorfního uhlíku.
Grafit se průmyslově využívá především při výrobě tužek. Přitom se nejprve velmi jemně namele společně s vápnem a vylisuje se do vhodného tvaru.
Další významné uplatnění grafitu je v metalurgickém průmyslu. Vzhledem k jeho značné tepelné odolnosti se z něho vyrábějí nádoby, kokily, do kterých se odlévají roztavené kovy a jejich slitiny. Zamezí se tak kontaminaci slitiny kovem, ze kterého by se kokila musela vyrobit. Z grafitu se vyrábějí i elektrody pro elektrolytickou výrobu hliníku z taveniny směsi bauxitu a kryolitu nebo při výrobě křemíku z taveniny oxidu křemičitého.
Z grafitu se dále vyrábějí speciální typy elektrických kontaktů, např. kartáčky elektromotorů. Hlavní důvody pro toto použití uhlíku: uhlík se netaví – kontakty se nespékají a neopalují se při vysokých teplotách, nízký součinitel tření, stálý přechodový odpor.
Grafitový prach se využíval do dnes již přežitých uhlíkových mikrofonů.
Uhlík slouží také jako součást maziv (grafitová vazelína, kolomaz).
Skelný grafit[editovat | editovat zdroj]
Uměle vyrobenou formou uhlíku je tzv. skelný uhlík (angl. glassy carbon, tradičně zvaný též skelný grafit[pozn. 3]), který se vyznačuje vysokou hustotou, nízkou pórovitostí a značnou chemickou a mechanickou odolností. V praxi se vyrábí přesně řízeným dlouhodobým vysokoteplotním (pyrrolitickým) rozkladem organických látek na povrchu normálního grafitu.
Díky mimořádným fyzikálním a chemický vlastnostem skelného grafitu se jeho praktické využití stále rozšiřuje i přes jeho poměrně vysokou cenu.
Pro elektrochemii je důležitý fakt, že povrchy elektrod ze skelného grafitu jsou chemicky vysoce odolné a lze na nich dosáhnout vysokého kladného potenciálu, aniž by docházelo k jejich rozpuštění jako u normálních kovových elektrod. Toho lze využít jak v analytické chemii při zkoumání elektrochemických vlastností organických molekul tak pro preparativní oxidaci při výrobě některých sloučenin.
Analytická metoda GFAAS (atomová absorpční spektrometrie s bezplamennou atomizací) používá pro odpaření analyzovaného vzorku kyvetu, která se během několika sekund zahřívá až na teploty kolem 3 000 °C. Pokrytí vnitřní plochy této kyvety skelným grafitem dramaticky zvyšuje její odolnost a prodlouží její použitelnost ve srovnání s klasickou grafitovou kyvetou.
V metalurgii se pro čištění kovů na vysoké čistoty metodou zonálního tavení mohou uplatnit trubice pokryté sklelným grafitem, v nichž se tavení provádí.
Laboratorní nádobí s povrchem ze skelného grafitu dosahuje stejné nebo i lepší chemické odolnosti jako nádobí z platiny nebo její slitiny s rhodiem.
Diamant[editovat | editovat zdroj]
- Podrobnější informace naleznete v článku Diamant.
Představuje jeden z nejvzácnějších a nejdražších minerálů. Vyskytuje se v různých barevných modifikacích od takřka průhledné až po černou. Protože ke vzniku diamantu je zapotřebí obrovských tlaků a vysokých teplot, jsou nalézány především tam, kde žhavé magma z velkých hloubek vystoupilo na povrch a ztuhlo. Naleziště s nejkvalitnějšími diamanty leží hlavně v Africe – JAR, Namibie, Sierra Leone, dále v Brazílii, Rusku, Kanadě a Austrálii.
Diamanty je v současné době možno vyrábět i průmyslově, i když produkty zdaleka nedosahují kvalit přírodních diamantů. Průmyslové diamanty se proto využívají především k osazování různých vrtných a řezných hlavic nástrojů, které pro svou činnost musí vykazovat mimořádnou tvrdost a odolnost.
Přírodní diamanty slouží již od pradávna především k výrobě těch nejdražších šperků. Aby se mohl diamant zasadit do zlatého nebo platinového šperku, musí být nejprve složitě a pečlivě broušen. K úspěšnému vybroušení drahého a vzácného diamantu je třeba nejen značné zkušenosti, ale i zručnosti a trpělivosti. Středisky broušení diamantů a obchodu s nimi jsou belgické Antverpy a nizozemský Rotterdam a Amsterodam.
Role v biologii[editovat | editovat zdroj]
Uhlík a jeho sloučeniny hrály zcela zásadní roli ve vzniku života tak, jak ho na Zemi známe. Těla všech organismů jsou složená právě především z organických látek, tedy látek obsahujících uhlík. Cukry, tuky, různé kyseliny včetně aminokyselin a nukleových kyselin, všechny myslitelné organické látky v tělech pozemských organismů obsahují uhlík. V lidském těle uhlík představuje 18,5 % hmotnosti,[24] V sušině těla (bez vody) je to ještě mnohem více.
Izotopy uhlíku[editovat | editovat zdroj]
V přírodě se uhlík vyskytuje ve formě izotopů 12C, 13C a 14C. Jejich vlastnosti včetně počtu protonů a neutronů v jejich jádře ukazuje tabulka.
Izotop | Protonů | Neutronů | Atomová hmotnost | Poločas rozpadu | Výskyt v přírodě |
---|---|---|---|---|---|
12C | 6 | 6 | 12 | stabilní | 98,9 % |
13C | 6 | 7 | 13,0033548378 | stabilní | 1,1 % |
14C | 6 | 8 | 14,003241989 | 5730 let | 10−10 % |
Kromě těchto přírodních izotopů existuje přes deset dalších uměle připravených izotopů. Z nich nejstabilnější je izotop 11C s poločasem rozpadu 20,3 minut.
Izotop 14C[editovat | editovat zdroj]
Tento přírodní radioaktivní izotop uhlíku vzniká ve vyšších vrstvách atmosféry. Primárním činitelem jsou zde částice kosmického záření tvořené převážně protony a jádry hélia (α-částicemi). Ty ve vysokých vrstvách atmosféry bombardují zde přítomné atomy a molekuly (především kyslíku, dusíku a vzácných plynů), čímž vzniká sekundární kosmické záření: elementární částice neutrony, positrony, miony a piony. Tyto neutrony pronikají níže do atmosféry, kde převážně ve výškách 9 – 15 km reagují mj. s atomy dusíku 14
7 N, čímž vzniká izotop uhlíku 14C.[25] Tuto reakci lze zapsat rovnicí
- .
Takto vzniklý uhlík zde reaguje s přítomným kyslíkem za vzniku oxidu uhličitého, který se v atmosféře promíchává a postupně se dostává až k zemskému povrchu.
Uhlík 14C (ať v atomické formě nebo ve sloučeninách) se rozpadá beta rozpadem s poločasem 5 730 let na dusík, přičemž je produkován elektron a antineutrino:
- .
Protože intenzita kosmického záření je relativně stabilní, ustavila se v zemské atmosféře rovnováha mezi produkcí uhlíku 14C a jeho radioaktivním rozpadem. Poměr všech 3 izotopů uhlíku v atmosférickém oxidu uhličitém i v jiných sloučeninách se tak dlouhodobě udržuje na konstantní hodnotě.
Radiokarbonová metoda datování[editovat | editovat zdroj]
- Podrobnější informace naleznete v článku Radiokarbonová metoda datování.
Princip této metody zjišťování stáří materiálu vychází ze skutečnosti, že organismy v průběhu svého života průběžně přijímají a vydávají atmosférický CO2 a jeho produkty. U rostlin se tak děje především fotosyntézou, u živočichů příjmem rostlinných produktů – býložravci a následně predátoři. Poměr 14C/12C zůstává proto v průběhu života daného organizmu konstantní.
Po smrti organismu nebo odumření jakékoliv biologické tkáně se výměna uhlíku mezi organismem a prostředím zastaví. Protože v organismu další radioaktivní uhlík 14C nevzniká, klesá jeho koncentrace podle zákona radioaktivního rozpadu.
Radiokarbonová metoda datování využívá tohoto jevu a v archeologickém či jiném nálezu pozůstatku živé hmoty (zbytky tkání, kosti, popel apod.) je analyzován poměr 14C/12C. Zjištěný poměr pak poměrně přesně ukazuje na dobu zániku dané živé hmoty. Vzhledem k uvedenému poločasu rozpadu uhlíku 14C je metoda optimálně použitelná pro objekty o stáří několika set až 50 tisíc let.
Poznámky[editovat | editovat zdroj]
- ↑ Viz následující poznámka:
- ↑ V roce 2009 byly objeveny další dvě teoreticky předpovězené modifikace uhlíku obdobné diamantu a lonsdaleitu.[3][4] V meteoritu Haverö třídy ureilitů byly zjištěny mikrokrystaly (řádově 10 nm) romboedrické modifikace diamantu a tzv. polytypu 21R diamantu. Obě se vyznačují tvrdostí vyšší, než má diamant, což bylo prokázáno leštěním meteoritu pastou obsahující krystaly diamantu.
- ↑ Zažitý název "skelný grafit" je zavádějící, nejedná se o formu grafitu ale o obecnější formu uhlíku, neboť jeho struktura není typicky grafitová, ale spíše fullerenová.[11]
Reference[editovat | editovat zdroj]
- ↑ http://www.beilstein-journals.org/bjoc/home/home.htm
- ↑ http://www.stn-international.com/index.php?id=123
- ↑ FERROIR, Tristan; DUBROVINSKY, Leonid, Ahmed El Goresy, Alexandre Simionovici, Tomoki Nakamura, Philippe Gillet Carbon polymorphism in shocked meteorites: Evidence for new natural ultrahard phases. Earth and Planetary Science Letters [online]. , 15. únor 2010, svazek 290, čís. 1–2 [cit. 2010-02-04], s. 150–154. Dostupné online. PDF: [1].ISSN 0012-821X. DOI:10.1016/j.epsl.2009.12.015. (anglicky)
- ↑ Popularizační zpráva k předchozí referenci
- ↑ http://arxiv.org/ftp/arxiv/papers/1112/1112.5752.pdf – Thermal Properties of Isotopically Engineered Graphene
- ↑ MALKO, , AND, Daniel; NEISS, Christian; VIÑES, Francesc, GÖRLING Andreas. Competition for Graphene: Graphynes with Direction-Dependent Dirac Cones. Physical Review Letters. 24. únor 2012, svazek 108, čís. 8, s. e086804: 1–4. Dostupné online [abstrakt]. DOI:10.1103/PhysRevLett.108.086804. (anglicky)
- ↑ SCHIRBER, Michael. Focus: Graphyne May Be Better than Graphene. Physics [online]. , 24. únor 2012, svazek 5, čís. 24. Popularizační článek k předchozí referenci. Dostupné online. DOI:10.1103/Physics.5.24. (anglicky)
- ↑ a b Spitzer finds solid buckyballs in space. PhysOrg, 22. února 2012 (anglicky)
- ↑ MATYÁŠ, Miloš. Fullereny a fullerity. Pokroky matematiky, fyziky a astronomie. 1992, roč. 37, čís. 5, s. 289. Dostupné online [PDF].
- ↑ Fullerit v mineralogické databázi Mindat.org
- ↑ a b Fullerene-related structure of commercial glassy carbons, P.J.F. Harris, 2003.
- ↑ RODE, A. V., Gamaly, E. G.; Luther-Davies, B. Formation of cluster-assembled carbon nano-foam by high-repetition-rate laser ablation. Applied Physics A: Materials Science & Processing. 2000, svazek 70, čís. 2, s. 135–144. DOI:10.1007/s003390050025. (anglicky)
- ↑ RODE, A. V., et al. Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation. Applied Surface Science. 2002, svazek 197–198, s. 644–649. DOI:10.1016/S0169-4332(02)00433-6. (anglicky)
- ↑ NARAYAN, Jagdish; BHAUMIK, Anagh. Novel Phase of Carbon, Ferromagnetism and Conversion into Diamond. Journal of Applied Physics [online]. 2015. Před vydáním. ISSN 1089-7550. DOI:10.1063/1.4936595. (anglicky)
- ↑ NARAYAN, Jagdish; BHAUMIK, Anagh. Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air. APL Materials [online]. , 7. říjen 2015, svazek 3, čís. 10:100702, kapitola Research Update. Dostupné online. PDF: [2].ISSN 2166-532X. DOI:10.1063/1.4932622. (anglicky)
- ↑ Shipman. Researchers Find New Phase of Carbon, Make Diamond at Room Temperature. NC State News [online]. , 30. listopad 2015. Popularizační článek k předchozím referencím. Dostupné online. (anglicky)
- ↑ MIHULKA, Stanislav. Vědci objevili novou a velice slibnou formu pevného uhlíku. OSEL.cz [online]. , 1. prosinec 2015. Popularizační článek k předchozím referencím. Dostupné online.
- ↑ LIU, Mingjie; ARTYUKHOV, Vasilii I.; LEE, Hoonkyung, XU, Fangbo; YAKOBSON, Boris I. Carbyne from First Principles: Chain of C Atoms, a Nanorod or a Nanorope?. ACS Nano [online]. , 5. říjen 2013. Online před tiskem. Dostupné online. PDF: [3].ISSN 1936-086X. DOI:10.1021/nn404177r. (anglicky)
- ↑ OWANO, Nancy. Carbyne is stronger than any known material. PhysOrg, 20. srpen 2013. Dostupné online (anglicky)
- ↑ Carbon's new champion: Theorists calculate atom-thick carbyne chains may be strongest material ever. PhysOrg, 10. říjen 2013. Dostupné online (anglicky)
- ↑ PAZDERA, Josef: Nejpevnější materiál na světě aneb už v Sovětském svazu. OSEL.cz, 12. říjen 2013.Dostupné online.
- ↑ Harry Kroto: "Carbyne and other myths about carbon", RSC Chemistry World, listopad 2010
- ↑ PERKINS Ceri: New form of carbon is so hard it can indent diamond. PhysicsWorld, 16. srpen 2012 (anglicky)
- ↑ DARLING, David. The Encyclopedia of Science; biological abundance of elements [online]. . Dostupné online.
- ↑ WAGNER, Vladimír. Jaderná fyzika a kulturní dědictví [online]. Osel,s.r.o., 2008-03-15, [cit. 2014-07-15]. Kapitola Určování stáří. Dostupné online.
Literatura[editovat | editovat zdroj]
- Cotton F.A., Wilkinson J.:Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
- Holzbecher Z.:Analytická chemie, SNTL, Praha 1974
- Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
- N. N. Greenwood – A. Earnshaw, Chemie prvků 1. díl, 1. vydání 1993 ISBN 80-85427-38-9
Externí odkazy[editovat | editovat zdroj]
- Obrázky, zvuky či videa k tématu uhlík ve Wikimedia Commons
- Slovníkové heslo uhlík ve Wikislovníku
- (česky) Chemický vzdělávací portál
- (anglicky) Carbon on Britannica
- Carbon – Super Stuff. Animation with sound and interactive 3D-models.