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In	a	recent	publication	entitled	“Limitations	of	GCTA	as	a	solution	to	the	missing	

heritability	problem”	Krishna	Kumar	et	al.	(1)	claim	that	“GCTA	applied	to	current	SNP	

data	cannot	produce	reliable	or	stable	estimates	of	heritability”.	Here	we	show	that	

those	claims	are	false	and	that	results	presented	by	Krishna	Kumar	et	al.	are	in	fact	

entirely	consistent	with	and	can	be	predicted	from	the	theory	underlying	GCTA.	

GCTA,	more	precisely,	the	GREML	approach	(2)	implemented	in	the	GCTA	

software	tool	(3),	is	developed	to	estimate	the	total	genetic	variance	in	a	trait	explained	

by	the	SNPs	that	have	been	genotyped	in	an	experiment.	It	is	not	assumed	that	these	

SNPs	actually	cause	variation	in	the	trait.	Rather	it	is	assumed	that	the	SNPs	are	in	

linkage	disequilibrium	(LD)	with	the	causal	variants	and	therefore	tag	them	to	some	

degree.	No	assumption	is	made	in	GREML	that	SNPs	are	in	linkage	equilibrium.	As	the	

number	of	SNPs	used	is	increased,	the	extent	to	which	they	tag	the	causal	variants	
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through	LD	may	increase	so	that	the	total	genetic	variance	explained	by	the	SNPs	

increases,	although	the	variance	explained	per	SNP	may	decrease	simply	because	the	

total	variance	is	spread	across	more	SNPs.	In	Yang	et	al.	(2),	we	presented	theory	and	

experimental	results	to	show	how	the	total	variance	explained	by	the	SNPs	increases	

towards	a	plateau	as	the	number	of	SNPs	used	is	increased.	The	theory	is	based	on	a	

statistically	equivalent	model	of	fitting	effects	of	SNPs	and	genome-wide	effects	of	

individuals	as	random	effects	and	indeed	addresses	‘missing	heritability’	by	estimating	

the	total	variance	that	would	be	explained	from	genome-wide	significant	SNPs	in	an	

infinite	sample	of	individuals	using	the	same	SNP	chip.	The	estimate	from	GCTA-GREML	

is	distinct	from	a	pedigree-based	estimate	of	genetic	variance	because	a	pedigree-based	

estimate	is	independent	on	how	much	of	total	variance	is	tagged	by	the	SNP	chip.	Since	

our	original	publication	in	2010,	there	have	been	a	series	of	method	developments	in	

estimating	genetic	variance	from	SNP	data	in	unrelated	individuals	for	human	complex	

traits	or	common	diseases	(4-8).	

Krishna	Kumar	et	al.	appear	to	misunderstand	the	assumptions	of	GCTA-GREML	

with	a	statement	that	“GCTA	assumes	that	the	SNPs	used	are	in	linkage	equilibrium”	(in	

their	page	2).	They	therefore	mistakenly	believe	that	the	variance	explained	per	SNP	

should	be	the	same	regardless	of	the	number	of	SNPs	fitted	in	the	model.	This	is	not	the	

case	and	is	not	an	assumption	of	the	method.	In	fact,	GREML	fits	all	the	SNPs	jointly	in	a	

random-effect	model	so	that	each	SNP	effect	is	fitted	conditioning	on	the	joint	effects	of	

all	the	other	SNPs	(i.e.	it	accounts	for	LD	between	the	SNPs).	This	is	analogous	to	a	linear	

regression	analysis	(fixed-effect	model)	of	multiple	SNPs.	The	difference	is	that	in	the	

analysis	of	a	random-effect	model	we	assume	the	SNPs	effects	(fitted	jointly)	following	a	

normal	distribution	so	that	the	model	is	solvable	even	when	m	>	N	(m	=	number	of	SNPs	

and	N	=	sample	size).	The	variance	of	SNP	effects	(denoted	as	𝜎!!	in	our	original	
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publication	(2)	and	𝜎!	in	Krishna	Kumar	et	al.)	is	interpreted	as	the	variance	of	a	SNP	

effect	when	it	is	fitted	jointly	with	all	the	other	SNPs.	We	show	below	that	𝜎!	is	constant	

if	all	the	SNPs	are	in	linkage	equilibrium	(LE),	i.e.	independent,	and	that	𝜎!	for	a	random	

subset	of	SNPs	is	larger	than	that	for	the	entire	set	if	SNPs	are	in	LD.	

Krishna	Kumar	et	al.	argue	that	GCTA-GREML	gives	incorrect	estimates	because	it	

overfits	the	data	since	the	number	of	SNPs	used	is	usually	greater	than	the	number	of	

individuals	with	phenotypes.	This	would	be	true	if	SNP	effects	were	estimated	as	fixed	

effects.	As	we	have	mentioned	above,	GREML	fits	all	SNPs	jointly	in	a	random-effect	

model.	Such	models	are	widely	used,	for	instance	in	livestock	genetics	(9,	10),	where	it	is	

common	place	to	fit	models	in	which	the	number	of	random	effects	exceeds	the	number	

of	animals	with	records.	The	only	parameters	estimated	in	a	REML	analysis	are	the	

variance	components,	the	number	of	which	is	typically	much	smaller	than	sample	size,	

so	there	is	no	over-fitting.	

Krishna	Kumar	et	al.	observed	from	simulations	of	unlinked	SNPs	(shown	in	their	

Figure	2)	that	the	sampling	variation	of	𝜎!	for	a	random	subset	of	SNPs	was	much	larger	

than	that	for	the	entire	set.	Their	claim	that	therefore	this	is	a	failure	of	GCTA-GREML	is	

incorrect	because	the	sampling	variance	of	𝜎!	is	expected	to	increases	with	decrease	in	

number	of	SNPs.	Following	Visscher	et	al.	(11),	the	sampling	variance	of	the	estimate	of	

Vg	is	var(𝑉!)	≈	2	/	[N2	var(Ajk)],	where	Ajk	denotes	the	off-diagonal	elements	of	the	

genomic	relationship	matrix	(GRM).	If	SNPs	are	in	linkage	equilibrium	(LE),	var(Ajk)	=	1	

/	m	(2,	12).	We	then	have	var(𝑉!)	=	2m	/	N2.	Therefore,	SD(𝜎!)	=	 var(𝑉!/ 𝑚) = !
!

!
!
.	

For	N	=	2,000,	this	equation	predicts	that	SD(𝜎!)	=	3.2×10-6	when	m	=	50,000,	highly	

consistent	with	the	observation	in	Krishna	Kumar	et	al.	of	3.1×10-6.	This	equation	also	

predicts	that	SD(𝜎!)		=	1.0×10-5	when	m	=	5,000.	Therefore,	the	95%	confidence	interval	
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(CI)	of	the	distribution	shown	in	their	Figure	2	should	be	[-5.9×10-6,	3.3×10-5],	rather	

than	[7.6×10-6,	2.0×10-5]	as	indicated	by	the	red	arrows.	Note	that	Krishna	Kumar	et	al.	

used	the	default	setting	of	GCTA	so	that	all	the	estimates	were	constrained	to	be	

positive.	There	is	an	option	in	GCTA	(--reml-no-constrain)	that	allows	negative	

estimates	so	that	the	mean	from	multiple	replicates	is	unbiased.	Our	predicted	95%	CI	

again	fits	well	with	their	observed	results	in	Figure	2.	Hence	the	results	from	their	

analyses	are	expected	and	consistent	with	the	theory	underlying	GREML.	

Krishna	Kumar	et	al.	simulated	50,000	unlinked	SNPs	so	that	𝜎!	for	a	random	

subset	of	5,000	SNPs	(𝜎!"#!$%! =
!! !"#!$%

!,!!!
= !!/!"

!,!!!
= !!

!",!!!
)	is	expected	to	be	the	same	as	

that	for	the	entire	SNP	set	(𝜎!"#$%!! = !!
!",!!!

).	They	then	claim	that	this	is	also	the	case	in	

real	data	where	SNPs	are	not	independent.	This	misconception	is	the	essential	problem	

in	Krishna	Kumar	et	al.,	and	has	led	to	inappropriate	design	of	their	analytical	

experiments,	misinterpretation	of	the	GREML	results,	and	incorrect	and	confusing	

inference	about	the	bias	in	GREML	estimates.	This	is	surprising	given	that	the	impact	of	

LD	on	GREML	estimation	has	been	explored	in	depth	in	recent	publications	(12-14).	 	

In	their	Figure	4	(results	presented	in	their	Figure	7	are	similar),	they	performed	

a	GCTA-GREML	analysis	for	a	real	data	set	(2,698	individuals	genotyped	on	49,214	SNPs	

from	the	Framingham	Heart	Study,	FHS)	for	systolic	blood	pressure	(SBP).	They	claimed	

that	the	GREML	estimates	are	biased	because	they	observed	that	𝜎!"#!$%! 	for	5,000	

randomly	sampled	SNPs	were	on	average	much	larger	than	𝜎!"#$%!! 	and	were	widely	

distributed	beyond	their	calculated	95%	CI	(indicated	by	the	red	arrows	in	their	Figure	

4A).	They	attributed	the	“bias”	to	population	stratification,	and	found	that	fitting	

eigenvectors	from	principal	component	analysis	as	fixed	effects	could	not	fix	the	“bias”	

(their	pages	3	and	4).	As	we	have	mentioned	above,	𝜎!"#!$%!  is	expected	to	be	larger	than	
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𝜎!"#$%!! 	because	in	the	analysis	of	a	subset	of	SNPs	each	SNP	is	fitted	conditioning	on	a	

much	smaller	number	of	SNPs	than	that	in	the	analysis	of	the	entire	set.	This	is	

analogous	to	that	in	a	linear	regression	analysis	of	multiple	correlated	SNPs	where	the	

mean	variance	explained	for	a	subset	of	SNPs	is	expected	to	be	larger	than	that	for	all	

SNPs.	In	an	extreme	scenario	where	only	one	SNP	is	fitted	at	a	time,	the	mean	variance	

explained	by	SNPs	estimated	from	single-SNP	analyses	is	clearly	much	larger	than	that	

from	a	joint	analysis.	This	also	explains	why	Vg	does	not	decrease	linearly	with	the	

decreased	number	of	SNPs	as	observed	in	Yang	et	al.	(2)	and	mentioned	in	Krishna	

Kumar	et	al.	(they	called	it	“saturation	of	heritability	estimate”).	Moreover,	if	there	are	

related	individuals	in	the	sample,	𝜎!"#!$%! 	would	be	even	larger	because	not	many	SNPs	

are	needed	to	capture	the	pedigree	relatedness.	Krishna	Kumar	et	al.	claimed	that	they	

used	2,698	unrelated	individuals	from	the	FHS	data	(without	describing	how	these	

unrelated	individuals	were	selected	so	that	the	exact	analyses	cannot	be	duplicated	by	

us	and	other	readers),	which	is	much	larger	than	the	number	of	unrelated	individuals	

reported	in	a	previous	study	(see	Supplementary	Note	2	of	Wray	et	al.	(15)),	or	the	

number	shown	in	our	Figure	1	using	a	relatedness	threshold	of	either	0.1	or	0.05	(Note	

that	a	threshold	of	0.05	is	very	stringent	in	this	case	because	of	the	large	sampling	error	

in	GRM	due	to	the	small	number	of	SNPs	used).	This	suggests	that	it	is	very	likely	that	

there	is	remaining	(cryptic)	relatedness	in	the	FHS	data	used	in	Krishna	Kumar	et	al.,	

which	would	lead	to	inflation	in	𝑉!(!"#!$%)	and	𝜎!"#!$%! .	In	conclusion,	Krishna	Kumar	et	al.	

used	the	incorrect	expected	mean	and	SD	of	𝜎!"#!$%! 	to	compare	with	those	observed	

from	resampling,	and	therefore	their	conclusion	about	biasedness	of	GREML	estimates	is	

not	supported	by	empirical	evidence.	They	attributed	the	“bias”	to	population	

stratification,	which	is	also	a	false	statement.		
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Krishna	Kumar	et	al.	also	claim	that	GCTA-GREML	has	a	fundamental	problem	

because	the	singular	values	of	the	matrix	of	genotypes	(Z)	contain	values	that	are	close	

together	or	are	close	to	zero.	However,	we	could	not	reproduce	these	extremely	large	

and	small	singular	values	using	FHS	data	also	downloaded	from	dbGaP	with	or	without	

quality	control	(QC)	on	SNP	genotypes,	or	whether	filtering	the	GRM	for	relatedness	(see	

our	Figure	1).	Even	if	there	are	singular	values	that	are	close	together	or	are	close	to	

zero,	this	does	not	lead	to	unreliable	estimates	of	the	variance	explained	by	the	SNPs.	

Recent	theoretical	studies	(16,	17)	have	clearly	shown	that	the	standard	error	of	the	

estimated	variance	is	largely	dependent	on	two	quantities	–	the	sample	size	and	the	

variance	of	the	eigenvalues	of	the	sample	ZZ’	(which	is	proportional	to	the	GRM),	and	

neither	eigenvalues	close	together	or	near	zero	cause	large	standard	errors.	The	authors	

then	proposed	a	“denoising”	approach	by	setting	the	small	eigenvalues	to	zero,	which	

clearly	loses	information	and	will	lead	to	underestimation	of	the	variance	explained	by	

SNPs.	For	instance,	it	is	shown	in	their	Figure	6	that	the	heritability	estimate	is	unbiased	

without	adjustment	(Figure	6A;	an	estimate	of	0.62	is	not	significantly	different	from	the	

true	parameter	0.65	given	SE	=	0.22)	and	biased	when	the	GRM	is	adjusted	using	the	

denoising	approach	(Figure	6B;	an	estimate	of	0.17	is	significantly	different	from	0.65	

given	SE	=	0.22).		

In	addition	to	the	many	incorrect	claims	about	properties	and	effects	of	the	SNP-

derived	GRM,	Krishna	Kumar	et	al.	claim	that	GREML	is	sensitive	to	measurement	errors	

in	the	phenotypes	(their	page	4)	because	they	observed	variation	in	GREML	estimates	

when	the	phenotype	of	each	individual	was	randomly	sampled	from	repeated	measures	

(their	Figure	5).	However,	such	variation	is	entirely	expected	if	the	correlation	between	

repeated	measures	are	not	perfect,	and	is	not	be	specific	to	a	particular	method.	For	

example,	it	also	applies	to	the	estimate	of	a	sample	mean	in	a	simple	predictable	way.	
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Finally,	we	want	to	emphasize	that	GCTA-GREML	(2,	3)	is	a	method	that	was	

originally	proposed	to	estimate	the	proportion	of	variance	explained	by	all	SNPs	(ℎ!"#! )	

on	a	SNP	genotyping	array	rather	than	total	(narrow	sense)	heritability	(h2).	The	

method	fits	all	the	SNPs	simultaneously.	The	analysis	was	strictly	limited	to	unrelated	

individuals	to	address	the	problem	of	‘missing	heritability’	and	to	avoid	possible	

confounding	from	shared	environment	effects	between	relatives	(2).	Further	

development	of	the	method	has	allowed	for	estimating	ℎ!"#! 	and	h2	simultaneously	in	

family	data	(18).	For	completeness,	we	note	that	in	extension	of	the	GREML	method	to	

disease	traits	more	caution	is	needed	compared	to	analysis	of	quantitative	traits,	

because	any	genotyping	factors	confounded	with	case-control	status	could	be	

partitioned	into	the	GREML	estimate	(4).	The	GREML	estimate	of	ℎ!"#! 	is	the	lower	limit	

of	heritability	because	it	is	very	unlikely	that	all	the	causal	variants	(in	particular	those	

in	low	minor	allele	frequency)	are	all	perfectly	captured	by	the	SNPs	used	in	GWAS.	

There	has	been	substantial	analytical	work	demonstrating	that	ℎ!"#! 	is	an	unbiased	

estimate	of	h2	if	causal	variants	are	a	random	subset	of	all	SNPs	used	in	the	analysis	(2,	

12-14)	and	that	the	reported	SE	of	ℎ!"#! 	is	consistent	with	the	empirical	SD	of	the	

estimates	from	resampling	(11).	Further	discussion	about	how	the	heterogeneity	in	LD	

would	impact	the	biasedness	(13,	14)	have	led	to	new	developments	of	the	GREML	

method	(12),	which	could	be	applied	to	data	from	whole-genome-sequencing	or	

imputation.		
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Figure	1	Singular	values	of	SNP	genotype	matrix	estimated	from	the	FHS	data.	We	

accessed	the	FHS	data	through	dbGaP	(phs000007.v16.p6).	There	are	6,659	individuals	

and	49,094	SNPs	before	QC.	We	removed	individuals	or	SNPs	with	missingness	rate	>	

0.05,	and	excluded	SNPs	with	Hardy-Weinberg	Equilibrium	p-value	<	0.001	or	minor	

allele	frequency	<	0.01.	We	retained	6,597	individuals	and	35,221	SNPs	after	QC.	

Singular	values	of	the	SNP	genotype	matrix	Z	are	the	square	roots	of	eigenvalues	from	a	

principal	component	analysis	of	the	GRM.	In	panels	(c),	(d),	(e)	and	(f),	we	used	a	range	

of	thresholds	to	remove	cryptic	relatedness	using	--grm-cutoff	option	in	GCTA.	
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