AWS loT

Developer Guide

amazon
webservices™

AWS IoT Developer Guide

AWS |oT: Developer Guide

Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

AWS IoT Developer Guide

Table of Contents

LAV SR VLTS T (o I ORI 1
AWS 10T COMPONENTS ...ttt et ettt et ettt e et et et ettt e et e e et e nr e et e e enenenes 1

HOW t0 Get Started With AWS 10T ...uu e e 2
ACCESSING AWS 10T ettt ettt et e e et et aaas 2
REIALEA SEIVICES ...ttt ettt ettt 2

HOW AWS 10T WOTKS .ottt ettt et et ettt et e e et e e eneans 2

AWS 10T BULION QUICKSTAITS ... uuietiiiiie ittt ettt e e e e e e e e e e e e e et e e e e e s e et e e ea e e n e e te e eananeeaens 4
AWS 10T Button Wizard QUICKSTAITot e e e e e e ene e ens 5
AWS loT Button AWS CloudFormation QUICKSTAITouiiriiiiiiiiiie e e e aeaeaas 12

N[S =T o L PP 17
Getting Started WIth AWS 10T ... e ettt e e e e e e e e ens 18
Sign in 10 the AWS 10T CONSOIEeueiiieiee e e e e e e eanas 19
Create a Device in the ThING REGISIIYcuuieiii e 20
Create and Activate a Device CertifiCatevuuiieiiiiiii e 21
Create an AWS [OT POLCY ...iuuieiiie et e i eaas 23
Attach an AWS IoT Policy to a Device CertifiCatecociviiiiiiiii e 24
Attach @ Thing t0 @ CertifiCAEuii it ees 26
CONFIGUIE YOUT DBVICEeniniieie et e e e e e e et et e et e e e e ans 27

F L ST (ol I =10 11 (o] o PP PRI 27

View Device MQTT Messages with the AWS 10T MQTT CleNtovveeiiiiiiiei e 29
Configure and TESE RUIES ... e e e e e e e e e eanas 32
Create @ SINS TOPIC ...uienitiiiti ettt e 32

Subscribe to an AMAzoN SNS TOPIC ...uvuuiuitiiiitii e 33

Cre@te @ RUIB ... 34

Test the AMAzon SNS RUIE ... e 37

N[S =T o L PP 40
AWS 0T RUIE TULOTIAIS ...ttt e e et e it en e enes 41
Creating @ DYNamODB RUIEcuuii e 41
Creating @ Lambda RUIE e 50
Create the Lambda FUNCLON 50

Test Your Lambda FUNCHON ... 58

Creating a Lambda RUIE ... e 60

Test YOUr Lambda RUIE ... 63

Managing ThiNgS WIth AWS 10T ... e e e e e e e e e e ans 66
Managing Things with the Thing REGISIIYocuiiiiii e 66
Create @ thingc.ie e 67

LS E NS et e 67

SArCH fOr thiNGS ... et 67

UPALE 8 ThING .. e 69

Delete @ thinNG ... e 69

Attach a principal to @ thiNgo 69

Detach a principal from @ thingc.ooiii e 70

I AL o 1Y oL TP 70
Create @ THING TYPE ..ttt et e e e e et e e et et e e e es 70

LISt NG Y DS ettt 70

DeSCriDE @ thiNG TP e 71

Associate a thing type With @ thing ... e 71

Deprecate @ thiNg tYPE 72

Delete @ thinNG tYPE ... e 73

S T=To VA= Ta Lo [Lo (=T 01 1] YA TR 74
AUTNENEICAtION 1N AWS 10T .. ouii ettt et e e e e e e e ens 75
X509 CIIICAIES vttt ettt 75

IAM Users, Groups, and ROIESiviiiiii i aaaas 82

AMAazon CogNIto THENTILIESiuie it e e e 82
AUTNOTIZALION ..o et 83

AWS IoT Developer Guide

YL S T o I oo = 83

B Va1 010 T AT =T o] U)Y 98
TLS CIpPher SUItE SUPPOIT ... ettt et e e e e a e enas 98

[LSS Vo T =T (0] (= 100
(00T o] R 100
1Y 1@ I PP TPTPPTPTPP 100
H T P e 101
MQTT Over the WebSocket ProtoColoooviiiiii e 101
) S 105
LSS Y=o N o] o T 105
LIfECYCIE EVEINTS ...ttt e et 105
Policy Required for Receiving Lifecycle EVENLSo 105
CoNNECt/DISCONNECT EVENESutiiitii e e et eeans 106
SUDSCribe/UNSUDSCIIDE EVENESot et 107
RUIES e e e 108
Granting AWS 0T the REQUITEA ACCESSvieuiiiiee e e 109
PasS ROIE PEIMISSIONS ...ttt et et ettt e et eene e 110
Creating an AWS 10T RUIE ...t aas 111
VIBWING YOUE RUIES ..ot ettt e e e 114
Y@] Y= £ o] 1= PPN 114
What's New in the 2016-03-23-beta SQL Rules Engine Versioncocovoviiiiiiiieiiiiinenenne. 115
TroubleshOOotiNg @ RUIEo e e aea e 116
DeletiNng @ RUIE ...t e e e e 116
AWS 0T RUIE ACHIONS ...ttt ettt ettt et e et e e enenas 117
CloudWatch AlArmM ACHIONce e e aen e 117
CloudWatCh MEtriC ACHIONiee i e e ens 118
DYNAMODB ACHON ...t e e 119

N 4= o T T S o 1o o 120

LT 2T LT Yo 1T o 120
Lambda ACHION ...t s 121

3 2 X 1o 122

SN S AT ON .ot 123
FIFEN0OSE ACHION ...t 124

SIS AT ON ottt 124
REPUDIISN ACHION ..e e e 125

AWS 10T SQL REIBIENCE ... e 125
D] 12577 o L 126
]I O I O - 1= 127
FROM ClAUSE ..ottt et ettt e e aees 127
WHERE ClAUSE ...t e ettt e e e e e eneaas 128
0T 10 T 128

B8 S] T 1= 0 7T 1 L 132
SUDSHITULION TEMPIALES ... e e et e e e aenes 133
[T T T g = To [0 135
Device Shadows Data FIOW ... et aeaas 135
Device ShadoWs DOCUMENTSc.uit et e e e e et e et e e eneaees 141
DOCUMENE PrOPEITIESeiii ittt et e e e e aaeaes 141
Versioning of @ ThiNG ShaOW ..o e 142

(O3 = T o] 1] PP 142
=T 010 (T To o U] 0 =T o P 142

L 0T 012 T= X T o 143

A B S et e 144
USING DEVICE SNATOWSttt ettt e e e e e e e enenas 144
L 0 (o Tt o] IS o] o T o S 145
Updating @ ThiNG SNAGOW ..o et 145
Retrieving a Thing Shadow DOCUMENTiuiiiii e 146
DIEING DALAeiieiiie e 149
Deleting @ Thing ShadOWiuiiiii e e 150

AWS IoT Developer Guide

DEIA SEALE ... vttt 150
ODbServing State ChaNQGEScuiiiiie e e 152
LSS Vo T (o[152

Trim DeVice ShadOW MESSATESuuiitiit ettt et eaeaees 153
RESTIUL AP o e 154
L= i 1 0 1 2 =T [0 154
Update TRINGSNAOOWoeiii et e es 155
DeleteThINGSNATOW e e es 156
MQTT PUD/SUD TOPICS ..ttt ettt e e e e ee e 156
] 0 = 157

J] o0 = (T = Lo o1 =T (= P 157

JT oo E= (=T o [o o] N3 =T o £ PP 158

FT 00 E= (=] =T 01 =T o 158

FT o0 = (T o 1= - 159

o= PN 159
JQEUACCEPIEA ..o 160

0 1= 7L (= 1o 1T 160
JUBIBTE . 161

F0 1= 1= (= =Tt o1=7 o] (Yo P 161

F0 1= 1= (= (=TT ox 1= Pt 162
DOCUMENT SYNTAX ...ttt e ettt ettt ettt et et et e et a e e e e eenen 162
Request State DOCUMENTS ...ttt e e e e eenenes 163
ReSPONSEe State DOCUMENTS ...ttt e ettt ae s 163

Error RESPONSE DOCUMENTS ...ttt ettt eeene 164

e o Y =TSt Lo [T PP TP 165
AWS 0T SDKS .ttt 167
ANAIOIA SDK .ot 167
AFAUINO YUN SDK .ottt 167
AWS 10T EMbBedded C SDK ...ttt e 168
AWS MODIIE SDK fOF HOS ...ttt 168
AWS 0T JAVA SDK ..ottt 168
AWS 10T JAVASCIIPE SDK ..ot et et e e aeaas 168
AWS 10T Device SDK fOr PYThON ... 169
AWS 10T EMbBedded C SDK ...ttt 169
L (=TT U EST C= 169
Connecting Your RASPDEITY Pi ... 169

AWS 10T Device SDK fOr JAVASCIIPLuitieiiie e nen e 180
L (=TT 0 [T (= 180
Connecting Your RASPDEITY Pl ... 180

11 1 (o 1 T 194
1T 1 (o 1 o 0 Ko o LS 195
AUTOMALEA TOOIS ...ttt et ettt et 195
MANUAI TOOIS ..ottt ettt et 195
Monitoring with Amazon CIOUAWALCK ... e 196
MEtriCS and DIMENSIONS ... c.uieiiiie ettt et ettt e e e 196
USING AWS 10T MBLIICS ..nieiitieti ettt e ettt e e e e e e eneans 198
Creating CloudWatCh AIGIMS ... e aeaes 198
Logging AWS IoT API Calls with AWS CloudTrailovuieiiiie e 201
AWS 10T Information in ClOUdTIalvuuieie e 201
Understanding AWS 10T LOg File ENFIESueueiiiie e 202

JLIC0 81 o] (1] o o i1 o 204
Diagnosing CONNECHVILY ISSUBSuiuiiiit ittt ettt e e e e eeaaenas 204
AUTNENTICALION ..ttt et et 204
AUTNOTIZALION ..ttt 204
Setting Up CloUAWALCH LOGSonieiiii e e ene e 205
Configuring an 1AM ROI€ fOr LOGQING «....uvuniuieiiiiei e ee e 205
CloudWatch Log ENtry FOIMAL ...t e eeaas 206
Logging EVents and Error COUESc.ouiniuii e e 207

AWS IoT Developer Guide

DIagnoSing RUIES ISSUEScuiiit e e e et e e eneaen 209
Diagnosing Problems with Thing Shadows ... 210
F VS (o IR 4T PRSPPI PPN 211
MESSAGE BrOKEr LIMILSeeie ittt et 211
DeVice ShadOW LIMILS et 213
Security and 1dentity LIMitSo.iuii e e e 214
LI L0 1 T 1 £ 214
AWS 10T RUIES ENGING LIMILS ...ttt e enea e 216

Vi

AWS IoT Developer Guide
AWS loT Components

What Is AWS IoT?

AWS IoT provides secure, bi-directional communication between Internet-connected things (such as
sensors, actuators, embedded devices, or smart appliances) and the AWS cloud. This enables you to
collect telemetry data from multiple devices and store and analyze the data. You can also create
applications that enable your users to control these devices from their phones or tablets.

AWS loT Components

AWS loT consists of the following components:

Device gateway
Enables devices to securely and efficiently communicate with AWS loT.

Message broker
Provides a secure mechanism for things and AWS loT applications to publish and receive messages
from each other. You can use either the MQTT protocol directly or MQTT over WebSocket to publish
and subscribe. You can use the HTTP REST interface to publish.

Rules engine
Provides message processing and integration with other AWS services. You can use a SQL-based
language to select data from message payloads, process and send the data to other services, such
as Amazon S3, Amazon DynamoDB, and AWS Lambda. You can also use the message broker to
republish messages to other subscribers.

Security and Identity service
Provides shared responsibility for security in the AWS cloud. Your things must keep their credentials
safe in order to securely send data to the message broker. The message broker and rules engine
use AWS security features to send data securely to devices or other AWS services.

Thing registry
Sometimes referred to as the device registry. Organizes the resources associated with each thing.
You register your things and associate up to three custom attributes with each thing. You can also
associate certificates and MQTT client IDs with each thing to improve your ability to manage and
troubleshoot your things.

Thing shadow
Sometimes referred to as a device shadow. A JSON document used to store and retrieve current
state information for a thing (device, app, and so on).

AWS IoT Developer Guide
How to Get Started with AWS loT

Thing Shadows service
Provides persistent representations of your things in the AWS cloud. You can publish updated state
information to a thing shadow, and your thing can synchronize its state when it connects. Your things
can also publish their current state to a thing shadow for use by applications or devices.

How to Get Started with AWS loT

¢ To learn more about AWS loT, see How AWS loT Works (p. 2).
« To learn how to connect a thing to AWS IoT, see Getting Started with AWS 10T (p. 18).

Accessing AWS IoT

AWS loT provides the following interfaces to create and interact with your things:

¢« AWS Command Line Interface (AWS CLI)—Run commands for AWS loT on Windows, OS X, and
Linux. To get started, see the AWS Command Line Interface User Guide. For more information about
the commands for AWS IoT, see iot in the AWS Command Line Interface Reference.

¢ AWS SDKs—Build your 10T applications using language-specific APIs. For more information, see AWS
SDKs and Tools.

¢ AWS loT API—Build your IoT applications using HTTP or HTTPS requests. For more information about
the API actions for AWS IoT, see Actions in the AWS loT API Reference.

¢ AWS IoT Thing SDK for C—Build loT applications for resource-constrained things, such as
microcontrollers.

Related Services

AWS IloT integrates directly with the following AWS services:

¢« Amazon Simple Storage Service—Provides scalable storage in the AWS cloud. For more information,
see Amazon S3.

< Amazon DynamoDB—Provides managed NoSQL databases. For more information, see Amazon
DynamoDB.

¢« Amazon Kinesis—Enables real-time processing of streaming data at a massive scale. For more
information, see Amazon Kinesis.

¢ AWS Lambda—Runs your code on virtual servers from Amazon EC2 in response to events. For more
information, see AWS Lambda.

¢« Amazon Simple Notification Service—Sends or receives notifications. For more information, see
Amazon SNS.

« Amazon Simple Queue Service—Stores data in a queue to be retrieved by applications. For more
information, see Amazon SQS.

How AWS loT Works

AWS loT enables Internet-connected things to connect to the AWS cloud and lets applications in the
cloud interact with Internet-connected things. Common loT applications either collect and process telemetry
from devices or enable users to control a device remotely.

http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/reference/iot/index.html
http://aws.amazon.com/tools/
http://aws.amazon.com/tools/
http://docs.aws.amazon.com/iot/latest/apireference/API_Operations.html
http://aws.amazon.com/s3/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/kinesis/
http://aws.amazon.com/lambda/
http://aws.amazon.com/sns/
http://aws.amazon.com/sqs/

AWS IoT Developer Guide
How AWS loT Works

Things report their state by publishing messages, in JSON format, on MQTT topics. Each MQTT topic
has a hierarchical name that identifies the thing whose state is being updated. When a message is
published on an MQTT topic, the message is sent to the AWS loT MQTT message broker, which is
responsible for sending all messages published on an MQTT topic to all clients subscribed to that topic.

Communication between a thing and AWS 10T is protected through the use of X.509 certificates. AWS
0T can generate a certificate for you or you can use your own. In either case, the certificate must be
registered and activated with AWS IoT, and then copied onto your thing. When your thing communicates
with AWS 10T, it presents the certificate to AWS loT as a credential.

We recommend all things that connect to AWS loT have an entry in the thing registry. The thing registry
stores information about a thing and the certificates that are used by the thing to secure communication
with AWS loT.

You can create rules that define one or more actions to perform based on the data in a message. For
example, you can insert, update, or query a DynamoDB table or invoke a Lambda function. Rules use
expressions to filter messages. When a rule matches a message, the rules engine invokes the action
using the selected properties. You can use all or only some JSON properties in a message. Rules also
contain an IAM role that grants AWS loT permission to the AWS resources used to perform the action.

- Amazon DynamoDB
Things - = Messoe) . Thing) o
Shadows Amazon Kinesis
Broker Engine | *
Thing SDK »| SN > AWS Lambda
Registry ™ -
‘ ‘ 'l Amazon 53
4 ¥ ¥
Security and |dentity Amazon SN5
laT » -
Applications [» Amazon 505
AWS SDK

Each thing has a thing shadow that stores and retrieves state information. Each item in the state information
has two entries: the state last reported by the thing and the desired state requested by an application.
An application can request the current state information for a thing. The shadow responds to the request
by providing a JSON document with the state information (both reported and desired), metadata, and a
version number. An application can control a thing by requesting a change in its state. The shadow accepts
the state change request, updates its state information, and sends a message to indicate the state
information has been updated. The thing receives the message, changes its state, and then reports its
new state.

AWS IoT Developer Guide

AWS loT Button Quickstarts

The two quickstarts in this section show you how to configure and use the AWS loT button. You can use
the AWS loT button wizard in the AWS Lambda console to easily and quickly configure your AWS loT
button. The AWS Lambda console contains a blueprint that will automate the process of setting up your
AWS IoT button by:

¢ Creating and activating an X.509 certificate and private key for authenticating with AWS IoT.

¢ Walking you through the configuration of your AWS IoT button in order to connect to your Wi-Fi network.

¢ Walking you through the copying of your certificate and private key to your AWS loT button.

¢ Creating and attaching to the certificate an AWS IoT policy that gives the button permission to make
calls to AWS IoT.

¢ Creating an AWS loT rule that invokes a Lambda function when your AWS IoT button is pressed.

« Creating an IAM role and policy that allows the Lambda function to send email messages using Amazon
SNS.

¢ Creating a Lambda function that sends an email message to the address specified in the Lambda
function code.

You can also configure the AWS IoT button by using an AWS CloudFormation template. The second
quickstart shows you how to configure the AWS loT resources required to process the MQTT messages
that are sent when the AWS |oT button is pressed, by using an AWS CloudFormation template.

If you do not have a button, you can purchase one here. For more information about AWS IoT, see What
Is AWS IoT (p. 1).

Topics
¢ AWS loT Button Wizard Quickstart (p. 5)

https://www.amazon.com/dp/B01C7WE5WM

AWS IoT Developer Guide
AWS loT Button Wizard Quickstart

¢ AWS loT Button AWS CloudFormation Quickstart (p. 12)
¢ Next Steps (p. 17)

AWS loT Button Wizard Quickstart

The AWS IoT button wizard is a Lambda blueprint, so you need to sign in to the AWS Lambda console
in order to use it. If you do not have an AWS account, you can create one by following these steps.

To create an AWS account

1. Open the AWS home page and choose Create an AWS Account.

2. Follow the online instructions. Part of the sign-up procedure involves receiving a phone call and
entering a PIN using your phone's keypad.

To configure the AWS loT Button

1. Signinto the AWS Management Console and open the AWS Lambda console.
2. Ifthisis your first time in the AWS Lambda console, you will see the following page. Choose the Get

Started Now button.

AWS Lambda)

AWS Lambda is a compute service that runs developers' code in response to
events and automatically manages the compute resources for them, making it
easy to build applications that respond quickly to new information.

Get Started Now

Learn more about AWS Lambda

Wl e A gt okl At Bl A AT ttisnissntion Vi

If you have used the AWS Lambda console before, you will see the following page. Choose the
Create a Lambda function button.

AWS Lambda Lambda > Functions e
4 You have 32 Lambda function(s) using 1.6 MB of code storage. Choose any Lambda function to view details on invocation requests, duration, and errors (metrics may
Dashboard take up to 60 seconds to appear).

| Functions ;
Create a Lambda function Actions ~

= Y

Function name - Description - Runtime - Code size ~ Last Modified

An AWS Lambda function that sends an email on
myButtonFunction y Node.js 4.3 1.7kB 11 hours ago
the click of an 10T button.

michgreFunction A starter AWS Lambda function. Node.js 4.3 851 bytes last menth
s ettt ot ,_—
3. Onthe Select blueprint page, from the Runtime drop-down menu, choose Node.js 4.3. In the filter
text box, type but t on. To choose the iot-button-email blueprint, double-click it or choose the Next
button.

http://aws.amazon.com/
https://console.aws.amazon.com/lambda/home

AWS IoT Developer Guide
AWS loT Button Wizard Quickstart

Lambda > New function

Select blueprint :
| epr Select blueprint 2]
Configure triggers Blueprints are sample configurations of event sources and Lambda functions. Choose a blueprint that best aligns with your desired scenario
)) and customize as needed, or skip this step if you want to author a Lambda function and configure an event source separately. Except where
Configure function

otherwise noted, blueprints are licensed under CCO.
Review

Welcome to AWS Lambda! You can get started on creating your first Lambda function by choosing one of the blueprints below.

iot-button-email

An AWS Lambda function that sends an
email on the click of an loT button.

nodejs - iot - button

Cancel m

@ Feedback (@ English Privacy Policy Terms of Use

On the Configure triggers page, from the 10T Type drop-down menu, choose I0T Button.

Type the serial number for your device. You'll find the device serial number (DSN) on the back of
the button.

Choose Generate certificate and keys.

Note
You only need to generate a certificate and private key once. Then you can navigate to
http://192.168.0.1/index.html in a browser to configure your button.

Lambda > New function using blueprint iot-button-email

Select blueprint Configure triggers

| Configure triggers Configure an optional trigger to automatically invoke your function.

Configure function

Review - M
AWS loT 4 Lambda

Warning: Altering the description or SQL statement of an existing rule will overwrite it.

loT Type | loT Button * O
Device Serial Number [i]

°

Use the links on the page to download the device certificate and the private key.

http://192.168.0.1/index.html

AWS IoT Developer Guide
AWS loT Button Wizard Quickstart

i}

We have created the necessary AWS loT reseurces (thing, policy, certificate, private key). The remaining resources (rule and action) will
be created after your function is created.

Download these resources by clicking the links below. (NOTE: If you are using Internet Explorer or Safari, right click the links to
save the files.)

a. Your certificate PEM
b. Your private key

To configure the AWS loT Button to use your Wi-Fi and these resources to connect to AWS securely, follow these steps:

2. Connect your computer to the button's Wi-Fi network SSID "Button ConfigureMe - FFD", using "5364XVRB" (last 8 digits of device
serial number) as the WPA2-PSK password.
3. Click here (opens in new tab) and use the following information te fill out the form:
a. Enter your local network's Wi-Fi SSID and password.
b. Select the certificate and private key files that you just downloaded above.
c. Your endpoint subdomain is a182jd32qs965e.
d. Your endpoint region is us-east-1.
e. Check the box to agree to the terms and conditions.
1. Click "configure”.
4. Re-connect to your original Wi-Fi network.

The button should stop blinking blue and you will see a white blinking light followed by a greed solid light. Your button is now configured
to connect to the internet and AWS! Continue creating your function, and your button will be connected to it automatically.

'}
1. Place the button into configuration mode by pressing the button down for 5 seconds until it flashes blue. g}
e . L S SRORr wm.wwj
The page also includes instructions for configuring your AWS loT button. On step 3, you will choose
a link to open a web page that allows you to connect the AWS IoT button to your network. Under
Wi-Fi Configuration, type the network ID (SSID) and network password for your Wi-Fi network.
Under AWS loT Configuration, choose the certificate and private key you downloaded earlier. This
will copy your certificate and private key to your AWS |oT button. Select the check box to agree to
the AWS loT button terms and conditions, and then choose the Configure button.

Button ConfigureMe

Enter the value for any field that you wish to change for device: =

Wi-Fi Configuration:

SSID |Guest E
Security Open Network(No Password)
Password

AWS IoT Configuration:

Certificate Browse.. certificate.pem
Private Key Browse.. private.key

Endpoint Subdomain satzrroxsnT0
Endpoint Region oot 2 E

Final Endpoint dot.us-west-2.amazonaws.com

@ By clicking this box, you agree to the AWS IoT Button Terms and Conditions.

Configure

A configuration confirmation page will be displayed.

AWS IoT Developer Guide
AWS loT Button Wizard Quickstart

Button ConfigureMe Setup

Thank you for configuring your device.

If you are unable to use your device, please enter configuration mode and

Close the Configure tab and go back to the AWS Lambda console page. Choose Enable trigger,
and then choose Next.

On the Configure function page, type a name for your function. The description, runtime, and
Lambda function code will be entered for you.

AWS IoT Developer Guide
AWS loT Button Wizard Quickstart

Lambda > New function using blueprint iot-button-email

Select blueprint Conﬂg ure function

Configure triggers A Lambda function consists of the custom code you want to execute. Learn

| Configure function

Name* = myloTButtonFunction
Review

Description An AWS Lambda function

Runtime* Node.js 4.3

Lambda function code

Provide the code for your function. Use the editor if your code does not requl
libraries, you can upload your code and libraries as a .ZIP file. Learn more ab

Code entrytype | Edit code inline

We have restored the code from your previous session. Would you like to

1, /I'I

2 * This is g sample Lambda function that sends an |
3 * button. It creates a SNS topic, subscribes an er
4 ¥ to the topic and publishes to the topic.

5 *

6 * Follow these steps to complete the configuratior
? *

8 * 1. Update the EMAIL variable with your email ade
9 * 7. Enter a name for your execution role in the
@ * Your function's execution role needs specific
11 o to send an email. We have pre-selected the "
12 * policy template that will automatically add
13 */

14

Y
L

const EMAIL = 'my_email@example.com'; // TODO char

In the Lambda function code, replace the example email address with your own email address.

AWS IoT Developer Guide
AWS loT Button Wizard Quickstart

1, /l-t

2 * This is a sample Lambda function that sends an Email on click of a '
3 * putton. It creates a SNS topic, subscribes an endpoint (EMAIL)

4 * tp the topic and publishes to the topic.

5 ¥

6 * Follow these steps to complete the configuration of your function:

? ¥

8 * 1. lUpdate the EMAIL variable with your email address.

9 ¥ 2. Enter a name for your execution role in the "Role name" field.

1w - Your function's execution role needs specific permissions for SNS operations
11 * to send an email. We have pre-selected the "AWS IoT Button permissions"”

12 - policy template that will automatically add these permissions.

13 +

14 |
15 |const EMAIL = 'my_email@example.com'; ./ TODO change me

16

17 const ANS = require('aws-sdk');

18 const SNS = new AWS.SNS({ apiVersion: '2010-83-31' });

19

20~ function findExistingSubscription(topicArn, nextToken, cb) {

21~ const params = {

22 TopicArn: topichrn,

23 NextToken: nextToken || null,

24 };

25~ SNS.listSubscriptionsByTopic(params, (err, data) == {

26~ if (err) {

B i T P T VSV A T S P L I W SV

In the Lambda function handler and role section, from the Role drop-down menu, choose Create
new role from template(s). Type a unique name for the role.

Lambda function handler and role

Handler* index.handler

Role* | Create new role from template(s) * O
Role name | myloTButtonFole (i}
Policy templates | © AWS loT Button permissi... : v O

e T Y e VINIP WS URS DRI ST R TR

At the bottom of the page, choose Next.

Review the settings for the Lambda function, and then choose Create function.

10

AWS IoT Developer Guide
AWS loT Button Wizard Quickstart

Lambda > New function using blueprint iot-button-email

Select blueprint
Configure triggers
Configure function

| Review

Review

Please review your Lambda function details. You can go back to edit change

complete the setup process.

Triggers

Lambda function

Name

Description

Runtime

Handler

Role name

Policy templates

Memory (MB)

Timeout

VPC

myButtonFunction

An AWS Lambda function th
on the click of an loT button

Node.js 4.3

index.handler

myNewRole

AWS loT Button permission:

128

No VPC

R I R o i Y i TP S WV I e BP E SU _

You should see a page that confirms your Lambda function has been created:

11

AWS IoT Developer Guide
AWS loT Button AWS CloudFormation Quickstart

B AWS -+ Services v

Lambda > Functions > myButtonFunction
Qualifiers Actions ~

Congratulations! Your Lambda function "myButtonFunction" has been successfully created and configured with loT: iofl

Code Configuration Triggers Monitoring

AWS |oT: iotbutton_G030JF055364XVRB

arn:aws:iot:us-east-1: rrulefiotbutton
Rule Description: Event source for your loT Button to Lambda SQL Statement: SELECT * FROM ‘iotbutt

© Add trigger

P I T S A Y WU U PR e T Wy S

6. To test your Lambda function, choose the Test button. After about a minute, you should receive an
email message with AWE Noti fication - Subscription Confirnmation inthe subject line.
Choose the link in the email message to confirm the subscription to an SNS topic created by the
Lambda function. When AWS |oT receives a message from your button, it will send a message to
Amazon SNS. The Lambda function created a subscription to the Amazon SNS topic using the email
address you added in the code. When Amazon SNS receives a message on this Amazon SNS topic,
it will forward the message to your subscribed email address.

Press your button to send a message to AWS loT. The message will cause your Lambda rule to be
triggered, and then your Lambda function will be invoked. The Lambda function will check to see if your
SNS topic exists. The Lambda function will then send the contents of the message to the Amazon SNS
topic. Amazon SNS will then forward the message to the email address you specified in the Lambda
function code.

AWS loT Button AWS CloudFormation
Quickstart

When the AWS IoT button is pressed, it sends basic information about the button to an Amazon SNS
topic. The topic then forwards that information to you in an email message. This quickstart will show you
how to use an AWS CloudFormation template to configure your AWS IoT button.

You will need an AWS account and an AWS |loT button to complete the steps in this quickstart.

1. Use the AWS loT console to create an AWS loT certificate:

12

AWS IoT Developer Guide
AWS loT Button AWS CloudFormation Quickstart

o

sTe "o

Open the AWS |oT console.
If a Welcome page appears, choose Get started.

In the AWS region selector, choose the AWS region where you want to create the AWS loT
certificate (for example, US East (N. Virginia)). You will be creating all supporting AWS resources
(additional AWS loT resources and an Amazon SNS resource) in the same AWS region.

On the Resources page, choose Create a certificate.

Select the Activate box, and then choose 1-Click certificate create.

Choose Download private key, and then choose Download certificate.

Select the box that represents the AWS |oT certificate (the box with the handshake icon).

In the Detail pane, make a note of the certificate ARN value (for example,
arn:aws:iot:region-1D:account-1D:cert/random | D).You will need it later in this
procedure.

Use the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation/ to create
the AWS IloT resources, an Amazon SNS resource, and an |IAM role:

a.

Save the following AWS CloudFormation template file named AWSIoTButtonQuickStart.template
to your computer.

{
" AWSTenpl at eFor mat Ver si on": "2010- 09- 09",

"Description": "Creates required AWS resources to allow an AWS | oT
button to send information through an Anmazon Sinple Notification Service
(Amazon SNS) topic to an enmil address.",
"Paraneters": {
"1 oTButtonDSN': {
"Type": "String",
"All onedPattern”: "G030JFO5[0-9][0-5][0-9][1-7][0-9A-HJ-NP-X][0-9A-
HJ- NP- X] [0- 9A- HJ- NP- X] [0- 9A- HJ- NP- X] ",
"Description": "The device serial nunber (DSN) of the AWS | oT Button.
This can be found on the back of the button. The DSN nmust match the
pattern of ' GO30JFO5[0-9][0-5][0-9][1-7][0-9A HI- NP-X] [0- 9A- HJ- NP- X] [O-
9A- HI- NP- X] [0- 9A- HI-NP-X] * . "
H
"CertificateARN': {
"Type": "String",
"Description": "The Amazon Resource Nane (ARN) of the existing AWS
| oT certificate."
H
" SNSTopi cNarme": {
"Type": "String",
"Default": "aws-iot-button-sns-topic",
"Description": "The name of the Amazon SNS topic for AWS O oudFornation
to create.”
H
" SNSTopi cRol eNane": {
"Type": "String",
"Default": "aws-iot-button-sns-topic-role",
"Description": "The nane of the |AMrole for AWS Cl oudFormation to
create. This IAMrole allows AW5 | oT to send notifications to the Anazon
SNS topic."
b
"Emai | Address": {
"Type": "String",
"Description": "The email|l address for the Amazon SNS topic to send

13

https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/cloudformation/

AWS IoT Developer Guide
AWS loT Button AWS CloudFormation Quickstart

information to."
}
3
"Resources": {
"1 oTThi ng": {
"Type": "AWS: :|o0T:: Thing",
"Properties": {
"Thi ngName": {
"Fn::Join" : ["",
[
"iotbutton_",
{ "Ref": "loTButtonDSN"' }

}
1
"l oTPolicy": {
"Type" : "AWS::|oT::Policy",
"Properties": {
"Pol i cyDocunent": {
"Version": "2012-10-17",
"Statement": [
{
"Action": "iot:Publish",
"Effect": "Alow',
"Resource": {
"Fn::Join": ["",
[.
"arn:aws:iot:",
{ "Ref": "AWS:: Region" },
{ "Ref": "AWS:: Accountld" },
":topic/iotbutton/",
{ "Ref": "loTButtonDSN' }

I
"l oTPol i cyPrinci pal Attachnent": {

"Type": "AWS::1o0T:: PolicyPrincipal Attachment",
"Properties": {
"Pol i cyNanme": {
"Ref": "l oTPolicy"
H
"Principal": {
"Ref": "CertificateARN'

}
1
"1 oTThi ngPrinci pal Attachnent": {
"Type" : "AWS::|oT:: Thi ngPrincipal Attachment",
"Properties": {
"Principal": {

14

AWS IoT Developer Guide
AWS loT Button AWS CloudFormation Quickstart

"Ref": "CertificateARN
b,
"Thi ngName": {

"Ref": "1oTThing"

}
b
"SNSTopi c": {
"Type": "AWS:: SNS:: Topic",
"Properties": {
"Di spl ayNane": "AWS | oT Button Press Notification",
"Subscription": [

{
"Endpoi nt": {
"Ref": "Email Address"
1,
"Protocol": "email"

}

1,
"Topi cName": {
"Ref": "SNSTopi cNane"

}
b
" SNSTopi cRol e": {
"Type": "AWS: : | AM : Rol e",
"Properties": {
"AssuneRol ePol i cyDocunment": {
"Version": "2012-10-17",
"Statenment": [

{
"Effect": "Alow',
"Principal": {
"Service": "iot.amzonaws. cont
b,
"Action": "sts:AssunmeRol e"
}

]

"Path": "/",
"Policies": [

{
"Pol i cyDocunent": {
"Version": "2012-10-17",
"Statement": [
{

b

"Effect": "Alow',

"Action": "sns:Publish",

"Resource": {
"Fn::Join": ["",

[
"arn:aws:sns: ",
{ "Ref": "AWS: : Region" },

{ "Ref": "AWS:: Accountld" },

{ "Ref": "SNSTopi cNane" }
]

15

AWS IoT Developer Guide
AWS loT Button AWS CloudFormation Quickstart

]
}
"Pol i cyName": {
"Ref": "SNSTopi cRol eNane"

}
]
}
}
"l oTTopi cRul e": {
"Type": "AWS::|o0T:: Topi cRul e",
"Properties": {
"Rul eNanme": {
"Fn::Join": [
[
"iotbutton_",
{ "Ref": "loTButtonDSN' }

]
]
b
"Topi cRul ePayl oad": ({
"Actions": [
{
"Sns": {
"Rol eArn": {
"Fn::GetAtt": ["SNSTopicRole", "Arn"]
H
"Target Arn": {
"Ref": "SNSTopic"
}
}
}
1,
" Aws| ot Sgl Version": "2015-10-08",
"Rul eDi sabl ed": fal se,
"Sgl o {
"Fn::Join": ["",

"SELECT * FROM 'iotbutton/",
{ "Ref": "loTButtonDSN" },

Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation/.

Make sure the AWS region selector displays the region where you created the AWS IoT certificate
(for example, US East (N. Virginia)).

Choose Create Stack.

16

https://console.aws.amazon.com/cloudformation/

AWS IoT Developer Guide
Next Steps

On the Select Template page, choose Upload a template to Amazon S3, and then choose
Browse.

Select the AWSIloTButtonQuickStart.template file you saved earlier, choose Open, and then
choose Next.

On the Specify Details page, for Stack name, type a name for this AWS CloudFormation stack
(for example, MyAWSIloTButtonStack).

For CertificateARN, type the Amazon Resource Name (ARN) of the AWS |oT certificate (the
certificate ARN value) that you noted earlier.

For EmailAddress, type your email address.

For loTButtonDSN, type the device serial number (DSN). You'll find it on the back of your AWS
IoT button (for example, GO30JF051234A5BC).

You can leave SNSTopicName and SNSTopicRoleName at their defaults, or specify a different
Amazon SNS topic name and associated IAM role name. For example, if you plan to set up
more AWS loT buttons, you might want to change these values. Choose Next.

You do not need to do anything on the Options page. Choose Next.

On the Review page, select | acknowledge that AWS CloudFormation might create IAM
resources, and then choose Create.

When CREATE_COMPLETE is displayed for MyAWSIoTButtonStack, check your email inbox
for a message with a subject line of AWS IoT Button Press Notification. Choose the Confirm
subscription link in the body of the email message.

3. Using the private key and certificate you created earlier, follow the steps in Configure Your Device
to set up your AWS loT button.

4. After you have set it up, press the button once. A white light should blink several times and then be
followed by a steady green light for a few moments. Shortly afterward, you should receive an email
message with AWS loT Button Press Noatification in the subject line. You will see information sent
by the button in the body of the email message.

5. After you are finished experimenting, you can clean up the AWS resources created by the AWS

CloudFormation template. To do this, return to the AWS CloudFormation console and delete
MyAWSIloTButtonStack. After you delete MyAWSIoTButtonStack, delete the AWS IoT certificate as

follows:

a. Return to the AWS loT console.

b. In the list of resources, select the check box inside of the box that represents the AWS loT
certificate (the box with the handshake icon).

c. For Actions, choose Decativate, and then confirm.

d. With the box that represents the AWS IoT certificate still selected, for Actions, choose Delete,
and then confirm.

e. The private key and certificate that you downloaded earlier will no longer be valid, so you can

now delete them from your computer.

Next Steps

To learn more about the Lambda blueprint used to set up your button, see Getting Started with AWS |oT.
To learn how to use AWS CloudFormation with the AWS IoT button, see http://docs.aws.amazon.com/
iot/latest/developerguide/iot-button-cloud-formation.html

17

http://docs.aws.amazon.com/iot/latest/developerguide/configure-iot.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-button-cloud-formation.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-button-cloud-formation.html

AWS IoT Developer Guide

Getting Started with AWS loT

This section will guide you through the creation of resources required to send, receive, and process MQTT
messages from devices using AWS IoT. You will need a computer with Wi-Fi access to complete this
tutorial. If you have an AWS IoT button (pictured here), you can use it to complete this tutorial.

If you do not have a button, you can purchase one here or you can use the MQTT client in the AWS loT
console to complete this tutorial. For more information about AWS IoT, see What Is AWS IoT (p. 1).

Note

This tutorial uses Amazon Simple Notification Service (Amazon SNS), which is not available in
all regions. When you create AWS resources for this tutorial, make sure to sign in to the US East
(N. Virginia) Region. For more information about AWS regions, see Regions and Endpoints.

Topics
¢ Sign in to the AWS loT Console (p. 19)
¢ Create a Device in the Thing Registry (p. 20)
¢ Create and Activate a Device Certificate (p. 21)
¢ Create an AWS loT Policy (p. 23)
¢ Attach an AWS loT Policy to a Device Certificate (p. 24)
¢ Attach a Thing to a Certificate (p. 26)
¢ Configure Your Device (p. 27)
¢ View Device MQTT Messages with the AWS loT MQTT Client (p. 29)
¢ Configure and Test Rules (p. 32)
¢ Next Steps (p. 40)

18

https://www.amazon.com/dp/B01C7WE5WM
http://docs.aws.amazon.com/general/latest/gr/rande.html

AWS IoT Developer Guide
Sign in to the AWS IoT Console

Sign in to the AWS IoT Console

If you do not have an AWS account, create one.

1. Openthe AWS home page and choose Create an AWS Account.

2. Follow the online instructions. Part of the sign-up procedure involves receiving a phone call and
entering a PIN using your phone's keypad.

3. Sign in to the AWS Management Console and open the AWS IoT console.
4. Onthe Welcome page, choose Get started with AWS IloT.

%

AWS loT

Easily and securely connect devices to the cloud.
Reliably scale to billions of devices and trillions of messages.

started with AWS loT

5. If this is your first time using the AWS |oT console, you will see two options: Get started and Start
interactive tutorial. Choose Get Started.

AWS loT

AWS loT is a managed cloud platform that lets connected devices
-- cars, light bulbs, sensor grids and more -- easily and securely
interact with cloud applications and other devices.

Get started Start interactive tutorial

Getting started documentation

6. Onthe Resources page, if you don't see a blue banner with Create a thing, Create a rule, Create
a certificate, and Create a policy buttons, choose Create a resource.

19

http://aws.amazon.com/
https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Create a Device in the Thing Registry

AWS loT Resources | MOTT Client | Tutorial | Settings | 0 notifications

Resources I + Create a resource I (& Connect AWS loT Button

‘ T Select all
0/0 things 0/0 thingtypes 0/Qrules 0/0 CAs 0/0 certificates 0/0 policies
First Previous - Next Last
i P s o it _"“‘MJ

Create a Device in the Thing Registry

To connect a device to AWS loT, we recommend that you first create a device in the thing registry. This
registry allows you to keep a record of all of the devices that are connected to your AWS IoT account.

1. Choose Create a thing, and then type a name for your device. You can also choose Add attribute
to provide information about your device (for example, its serial number, manufacturer, and more).
Choose Create to add your device to the thing registry.

AWS loT Resocurces | MOQTT Client | Tutorial | Settings | 0 notifications
Resources | ® Close create panel ‘ [Connect AWS loT Button L3
x
=3 o

cS

Create a thing Create 2 thing type Create a rule Use my certificate Create a certificate

Create a thing

Create a thing to represent your device in the cloud. This step creates an entry in the thing registry and a thing shadow for your device.

Name myHaspberryFil

Choose a thing type
You can associate a thing type to your thing. If you do not want to associate your thing with a type, choose No type

2
WWWﬂ-MNWM\}

2. Choose View thing to display information about your device.

Attributes used in a thing search

Next (optional), you can use thing attributes to describe the identity and capabilities of your device. Each attribute is a key-value pair.

20

AWS IoT Developer Guide
Create and Activate a Device Certificate

- AWS IOT Resources | MQTT Client | Tutorial |

Detail
Resources ‘ X Close create panel | (' Connect AWS loT Button
Name m
REST API endpoint h
® a
= = =N Y
\ 5 (@ L :
c LV Thing type
Create a thing Create arule Use my certificate Create a certificate
MQTT topic
Your thing has been created. gt
Attributes used in a
‘You can now connect a device to this thing, or add a rule that will trigger actions when your thing publishes a message. thing search
Linked certificates
View thing
T Select al
1/1things O/0 thing types 0/0rules 0/0 CAs 0/0 certificates
0/0 policies First Previous n Next Last

myRaspberryPi

Create a rule

Create and Activate a Device Certificate

Communication between your AWS loT button and AWS |oT is protected through the use of X.509
certificates. AWS 0T can generate a certificate for you or you can use your own X.509 certificate. This
tutorial assumes that AWS loT will generate the X.509 certificate for you. Certificates must be activated

prior to use.

1. Inthe Create a Certificate section, choose 1-Click certificate create.

Resources | MQTT Client | Tutorial | Settings | 1 notification

% Close create panel |

Resources

Create a certificate Create a policy ‘

Create a thing

Create a certificate

Create a certificate to authenticate your device's connection to AWS loT.

You can generate a certificate with 1-click (recommended), or you can upload your own certificate signing request (CSR) based on a private key you own (advanced).

& Create with CSR | —or — & 1-Click certificate create

You don't have any CAs registered yet. Register your CA certificate

R il T LTI I T ! i o e SIS VA

2. Onthe Resources page, choose the Download private key and Download certificate links, and
then save the private key and certificate to your computer.

21

AWS IoT Developer Guide
Create and Activate a Device Certificate

;\\J S IOT Resources | MAQTT Client | Tutorial | Settings |

Detail

Resources ‘ % Close create panel

Name MyloTButton

REST API endpoint https://
x -1.amazonaws.col
on/shadow

v

MQTT topic 'Saws/things/My!|
il pdate’
Last update No state

Create a thing Create a rule

Attributes None
Your new certificate has been created. You can attach a certificate to a thing so it can connect to AWS loT and attach a policy to give it Linked certificates None
permissions.

Please download these files and save them in a safe place. Certificates can be retrieved at any time, but the private and public keys
will not be retrievable after closing this form.

= Download public key
= Download private key
» Download certificate

Selec

1/1 things 0/ rules 0/0 CAs 1/1 certificates
0/0 policies First Previous n Next Last
MyloTButton
INACTIVE

O

Create a rule

Bt ot rbndiag gk I B e By e s B o Pttt A PP
3. Select the check box on the certificate, and from the Actions menu, choose Activate.

‘\‘J S IOT Resources | MQTT Client | Tutorial | Settings |

Detail

Resou rces | % Close create panel

Name MyloTButton
REST API endpoint hitps://!

x
,’/ . on/shadow
| !
Create a thing Create a rule Create a palicy MQTT topic 'Saws/things/Myl
pdate’
Last update No state
Your new certificate has been created. You can attach a certificate to a thing so it can connect to AWS loT and attach a policy to give it Attributes None
permissions. Linked certificates None

Please download these files and save them in a safe place. Certificates can be retrieved at any time, but the private and public keys
will not be retrievable after closing this form.

= Download public key
= Download private key
» Download certificate

]

Activate

1/1 things 0/0rules 0/0 CAs 11 certificates
0/0 policies

First Prev

Deactivate

Revoke
MyloTButton Delete

Accept transfer
INACTIVE Reject transfer
Transfer

Attach a policy

Attach a thing

Create a rule

22

AWS IoT Developer Guide
Create an AWS IoT Policy

Create an AWS loT Policy

X.5009 certificates are used to authenticate your AWS loT button. AWS IoT policies are used to authorize
your button to perform AWS loT operations, such as subscribing or publishing to MQTT topics. Your
button will present its certificate when sending messages to AWS loT. To allow your button to perform
AWS loT operations, you must create an AWS IoT policy and attach it to your device certificate.

1.
2.
3.

In the AWS |oT console, if you don't see the Create panel, choose Create a resource.
Choose Create a policy.

Inthe Create a policy section, type a name for the policy. From the Action menu, choose iot:Publish.
In the Resource field, type the ARN of your AWS IoT button, and then select the Allow check box.
This allows your button to publish messages to AWS |oT.

Note

The ARN follows this format:

arn: aws: i ot : your - r egi on: your - ans- account : t opi ¢/ i ot but t on/ your - but t on- seri al - nunier
For example:

arn: aws:iot:us-east-1:123456789012: t opi ¢/ i ot butt on/ Q30JF055364XVRB
You can find the serial number on the bottom of your button.

The settings explained in this step assume you are using an AWS loT button which is programmed
to publish on a specific MQTT topic: t opi ¢/ i ot butt on/ but t on-seri al - nunber . The policy
created gives permission to publish to that topic. If you are not using an AWS loT button, you should
modify the ARN described above to contain the MQTT topic on which your device publishes. If your
device is programmed to publish on myDevi ce/ nyTopi ¢ you would use the following ARN:

arn:aws:iot:us-east-1:123456789012: t opi ¢/ nyDevi ce/ nyTopi c.

Choose Add statement, and then choose Create.

23

AWS IoT Developer Guide
Attach an AWS loT Policy to a Device Certificate

Reso urces % Close create panel

ot
Y

Create a thing Create a rule Use

Create a policy

Create a policy to define a set of authorized actions. You can authorize actions on one or more resources (things

Name MyloTButtonPolicy

Add a statement

Action iot:Publish Resource

Add statement

B e e i SO WNP Pl Se

For more information about AWS loT policies, see Managing AWS loT Policies.

Attach an AWS loT Policy to a Device Certificate

Now that you have created a policy, you must attach it to your device certificate. Attaching an AWS loT
policy to a certificate gives the device the permissions specified in the policy.

1. From the AWS loT console, choose your device certificate, and from the Actions menu, choose
Attach a policy.

24

http://docs.aws.amazon.com/iot/latest/developerguide/authorization.html

AWS IoT Developer Guide
Attach an AWS loT Policy to a Device Certificate

Resources

AWS loTi

Resources

‘ % Close create panel

v | . e
Q> — A 8 L (N
WY, L t* W,
L k| e
1
Create a thing Create a rule Use my certificate Create a certificate

Your new policy has been created. You can view your policy and manage it at any time.

Y Filter by resource names or by resource type (below)

0/0 CAs 1/1 certificates 0/2 policies

All - 0/1 things 0/0 rules

ACTIVE

LS

I, M St S A A AT s et B e o b BB it
In the Confirm dialog box, type the name of the AWS loT policy you created in the previous step,

2.
and then choose Attach.

Confirm

Attach policy to the following certificates:

LI el P o e e A . i -

Policy name MyloTButtonPoIicy|

25

AWS IoT Developer Guide
Attach aThing to a Certificate

Attach aThing to a Certificate

To attach a certificate to a device in the thing registry:

1. Inthe AWS loT console, choose the certificate you want to attach, and from the Actions menu,
choose Attach a thing.

AWS IOT Resources | MQTT Client | Tutorial

Resou rces ‘ + Create a resource

Y Filter by resource names or by resource type (below) Select :

1/1 things ~ 1/1 rules 0/0CAs 1/1 certificates

0/0 policies
MyloTButton 3b95b9d18852d75d6 MyS3Rule
d3f1d405d284e5373
1a9f3c67f9bcfdbaf...
ACTIVE ENABLED
® 0 & &£ O

R I e DI L I PSPV DS

2. Inthe Confirm dialog box, type the name of the thing to which you will attach the certificate, and
then choose Attach.

Confirm

Attach the following certificates to a thing:

Thing name MonTButtonl

3. To verify the thing is attached, double-click the certificate. The policy and thing should appear in the
detail pane.

26

AWS IoT Developer Guide
Configure Your Device

Resources

® Close create panel

=

@ 7

N .

C5 U
Create a thing Create a rule

Use my certificate

=7
%‘f}\\] =/
‘__/
Create a certificate Create a policy

Your new policy has been created. You can view your policy and manage it at any time.

Y Filter by resource names or by resource type (below)

1/1 things 1/1 rules

0/0 CAs

1/1 certificates

Select all ‘

First Previous

1/1 policies
MyloTButtonPoli MyloTButton 3b95b9d18852d MyS3Rule
cy 75d6d3f1d405d2
84e53f31a9f3c...
ACTIVE EMABLED

Configure Your Device

Configuring your device allows it to connect to your Wi-Fi network. Your device must be connected to
your Wi-Fi network to install the device certificate and to send messages to AWS IoT. All devices must

have a device certificate in order to communicate with AWS loT.

AWS loT Button

To configure your AWS loT button:

27

AWS IoT Developer Guide
AWS loT Button

Turn on your device

1. Remove the AWS loT button from its packaging, and then press and hold the button for 15 seconds
until a blue blinking light appears.

2. The button acts as a Wi-Fi access point, so when your computer searches for Wi-Fi networks, it will
find one called Button ConfigureMe - XXX where XXX is a three-character string generated by the
button. Use your computer to connect to the button's Wi-Fi access point.

3. Thefirst time you connect to the button's Wi-Fi access point, you will be prompted for the WPA2-PSK
password. Type the last 8 characters of the device serial number (DSN). You'll find the DSN on the
back of the device, as shown here:

/7 DSNXXX XXX 000 Xxxx |\
asamazon)

Copy your device certificate onto your AWS loT button

To connect to AWS IoT, you must copy your device certificate onto the AWS |oT button.

1. Ina browser, navigate to http://192.168.0.1/index.html.
2. Complete the configuration form.

1. Type your Wi-Fi SSID and password.
Browse to and select your certificate and private key.

Find your custom endpoint in the AWS IoT console. Your endpoint will look something like the
following:

ABCDEFGL234567. i ot . us-east-1. amazonaws. com

where ABCDEFGL1234567 is the subdomain and us- east - 1 is the region.

4. Onthe Button ConfigureMe page, type the subdomain, and then choose the region that matches
the region in your AWS loT endpoint.

5. Select the Terms and Conditions check box. Your settings should now look like the following:

28

http://192.168.0.1/index.html
https://console.aws.amazon.com/iot/home?region=us-east-1#/dashboard/help

AWS IoT Developer Guide
View Device MQTT Messages with the AWS loT MQTT
Client

Button ConfigureMe

Enter the value for any field that you wish to change for device: G030JF(

Wi-Fi Configuration:

SSID ‘ Guest ‘ a

Security Open Network(No Password)

Password

AWS TIoT Configuration:

Certificate Chocse File | MyloTButtonCert.pam

Private Kcy Choose File MyloTButto...ateKey.pem

Endpoint Subdomain AMUNIFEMTZ770

Endpoint Region ‘a

Final Endpoint AMUNSF6MTZ770. 10t us-east-1 amazonaws_com

@ By clicking this box, you agree to the AWS IoT Button Terms and Conditions.

Configure

T o N e e P P ot sl ot B TN OBt B TN, b

6. Your button should now connect to your Wi-Fi.

View Device MQTT Messages with the AWS loT
MQTT Client

You can use the AWS IoT MQTT client to better understand the MQTT messages sent by a device.

Devices publish MQTT messages on topics. You can use the AWS loT MQTT client to subscribe to these
topics to see the content of these messages.

To view MQTT messages:

1. Inthe AWS IoT console, choose MQTT Client.

29

https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
View Device MQTT Messages with the AWS loT MQTT
Client

AWS loli

Re sources + Create a resource

Y Filter by resource names or by resource type (below)

1/1 things 1/1 rules 0/0 CAs 1/1 certificates 1/1 policies

Tttt T R T A et T b b a0t et Pt et

2. Type aclient ID or choose Generate client ID, and then choose Connect.

AWS loli

You're not connected to the Device Gateway M
= Go to the "Device Gateway connection” tab H
s Type in your desired Client ID or generate one using the "Generate client ID" button St
* Once the connection to the Device Gateway succeeds, Subscribe or Publish to topics using the "Subscribe
to topic” and "Publish to topic” tabs PL
= |f the connection to the Device Gateway fails, ensure that your Client ID is less than 128 bytes and encoded .
in UTF-8 L

3. Subscribe to the topic on which your thing publishes. In the case of the AWS loT button, you can
subscribe toi ot but t on/ +. Choose Subscribe to topic, in Subscription topic, typei ot but t on/ +,
and then choose Subscribe.

30

AWS IoT Developer Guide
View Device MQTT Messages with the AWS loT MQTT
Client

AWS loT Baas

* Type in your desired Topic Filter and QoS, then click "Subscribe” E
* Once subscribed, you can unsubscribe from the topic by clicking the "x" in the right corner of the tab that will

be generated Py

P

Si

B P T W i

4. Press your AWS loT button, and then view the message in the AWS IoT MQTT client.

31

AWS IoT Developer Guide
Configure and Test Rules

Clear messages

iotbutton/ &1 1 May4, 2016 3:36:15 PM

e Y LV _M’M—-—"I

Configure and Test Rules

The AWS IoT rules engine listens for incoming MQTT messages that match a rule. When a matching
message is received, the rule takes some action with the data in the MQTT message (for example, writing
data to an Amazon S3 bucket, invoking a Lambda function, or sending a message to an Amazon SNS
topic). In this step, you will create and configure a rule to send the data received from a device to an
Amazon SNS topic. Specifically, you will:

¢ Create an Amazon SNS topic.
¢ Subscribe to the Amazon SNS topic using a cell phone number.

¢ Create a rule that will send a message to the Amazon SNS topic when a message is received from
your device.

¢ Test the rule using your AWS loT button or an MQTT client.

In the upper-right corner of this page, there is a Filter View drop-down list. You can choose AWS loT
Button to see instructions for testing your rule by using the AWS loT button or MQTT Client to see
instructions for testing your rule by using the AWS loT MQTT client.

Create an SNS Topic

You will use the Amazon SNS console to create an Amazon SNS topic.

32

AWS IoT Developer Guide
Subscribe to an Amazon SNS Topic

Note
Amazon SNS is not available in all AWS regions.

1. Open the https://console.aws.amazon.com/sns/.

Create new topic

From the left pane, choose Topics, and on the right pane, choose Create new topic.
Type a topic name and a display name, and then choose Create topic.

A topic name will be used to create a paermanent unique identifier called an Amazon Resource Name (ARN).

Topic name MyloTButtonSNSTopic

Display name loT Button

4. Make a note of the ARN for the topic you just created.

Topics

Create new topic Actions -

Filter | MyloTButtonSNSTopic|

Name ARN

MyloTButtonSNSTopic arn:aws:sns:

Cancel n

:MyloTButtonSNSTopic

Naad T P A ARt bt o PN TN il RPNy (NNt T P P

Subscribe to an Amazon SNS Topic

To receive SMS messages on your cell phone, you need to subscribe to the Amazon SNS topic.

1. Inthe Amazon SNS console, from the Actions menu, choose Subscribe to topic.

2. From the Protocol drop-down list, choose SMS.

33

https://console.aws.amazon.com/sns/

AWS IoT Developer Guide
Create a Rule

Create Subscription
Topic ARN arm:aws:sns: :MyloTButtonSNSTopic
Protocol |SMS v
Endpoint

3. In Endpoint, type the phone number of an SMS-enabled cell phone, and then choose Create
Subscription.

Note
Enter the phone number using numbers and dashes only.

You will receive a text message that confirms you successfully created the subscription.

Create a Rule

AWS loT rules consist of a topic filter, a rule action, and, in most cases, an IAM role. Messages published
on topics that match the topic filter trigger the rule. The rule action defines which action to take when the
rule is triggered. The IAM role contains one or more 1AM policies that determine which AWS services the
rule can access. You can create multiple rules that listen on a single topic. Likewise, you can create a
single rule that is triggered by multiple topics. The AWS loT rules engine continuously processes messages
published on topics that match the topic filters defined in the rules.

In this example, you will create a rule that uses Amazon SNS to send an SMS notification to a cell phone
number.

1. Inthe AWS IoT console, choose Create a rule.

34

AWS IoT Developer Guide
Create a Rule

Resources | MQTT Client

Resou rce S ‘ % Close create panel ‘

T S

Create a thing Create a rule Use my certificate Create a certificate Creat

Create a rule

Create a rule to evaluate inbound messages published into AWS loT. Your rule can deliver a message to the topic
endpoint such as a DynamoDB table.

Name your rule and add an optional description.

MName mySNSRule

Description A simple SNS rule

On the Create a rule page, in Name, type a name for your rule.
In Description, type a description for the rule.

In Attribute, type *. This specifies that you want to send the entire MQTT message that triggered
the rule.

The rules engine uses the topic filter to determine which rules to trigger when an MQTT message is
received. In Topic filter, type i ot but t on/ your - but t on- DSN. If you are not using an AWS loT
button, type my/ t opi c.

Note
You can find the DSN on the bottom of the button.

Leave Condition blank.

Indicate the source of the messages you want to process with this rule.

Rule query statement SELECT = FROM 'my/topic'

Attribute * (i]
Topic filter my/topic L3]
Condition e.g. temperature > 75 L3]

Il b A e B G . P, 0 P B P bt e Pl

35

AWS IoT Developer Guide
Create a Rule

From the Choose an action drop-down list, choose Send message as a push notification (SNS).
From the SNS target drop-down list, choose the Amazon SNS topic you created earlier.

7.
8.

Select one or more actions to happen when the above rule query is matched by an inbound message. Actions de
arrive, like storing them in a database, invoking cloud functions, or sending notifications. (* required)

Choose an action SNS v

This action will push the message to a SNS topic.

*SNS target MyloTButtonSNSTopic v | ® Create a new resource @

Create a new role

*Role name Choose a role w | O

Cancel

B el Y I ! i SV SV VOV
Now you need to give AWS loT permission to publish to the Amazon SNS topic on your behalf when

9.
the rule is triggered. Choose the Create a new role link. This will open a web page in the IAM console.

10. Accept the default values, and then choose Allow.
AWS loT is requesting permission to use resources in your account !

Click allow to give AWS loT write access to resources in your account.

+ Hide Details

Role Summary (2]

Provides write access to AWS Services and Resources

L L

aws_jot_sns

Create a new Role Policy v

Don't Allow m
i e W N i Y ol e PR T

36

AWS IoT Developer Guide
Test the Amazon SNS Rule

11. Choose Add action to add the action to the rule.

Select one or more actions to happen when the above rule query is matched by an inbound message. Actions de

storing them in a database, invoking cloud functions, or sending notifications. (* required)

Choose an action SNS v

This action will push the message to a SNS topic.

*SNS target MyloTButtonSNSTopic v | @ Create a new resource @

*Role name aws_iot_sns v | O Create a new role

12. Choose Create to create the rule.

Select one or more actions to happen when the above rule query is matched by an inbound message. Actions define :
like storing them in a database, invoking cloud functions, or sending notifications. (* required)

Choose an action Choose an action W

SNS Action ‘

For more information about creating rules, see AWS loT Rules.

Test the Amazon SNS Rule

You can test your rule by using an AWS IoT button or the AWS loT MQTT client.

37

http://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html

AWS IoT Developer Guide
Test the Amazon SNS Rule

AWS loT Button

Press your button. You should receive an SMS text that shows the current charge on your device.

AWS loT MQTT Client

To test your rule with the AWS loT MQTT client:

1. Inthe AWS loT console, choose MQTT Client.
2. Choose Generate client ID, and then choose Connect.

MQ

You're not connected to the Device Gateway

s Go to the "Device Gateway connection” tab m

s Type in your desired Client |D or generate one using the "Generate client ID" button

Subscr
s Once the connection to the Device Gateway succeeds, Subscribe or Publish to topics using the
"Subscribe to topic" and "Publish to topic" tabs Publis}
s |f the connection to the Device Gateway fails, ensure that your Client ID is less than 128 bytes and .
encoded in UTF-8 e
Client |
18973

N et sl ININGER el ol AN AN sl il Bt B

3. Onthe MQTT client page, choose Publish to topic.

38

https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Test the Amazon SNS Rule

Resources

You don't have any subscriptions.

s Go to the "Subscribe to topic” tab
s Type in your desired Topic Filter and QoS, then click "Subscribe”
s Once subscribed, you can unsubscribe from the topic by clicking the "x" in the right corner of the tab

that will be generated

Dis

W‘."H
In the Publish topic field, type ny/ t opi c.
In Payload, type the following JSON:

"message": "Hello, world from AWS |oT!"

39

AWS IoT Developer Guide
Next Steps

AWS I oT Resources

Once subscribed, you can unsubscribe from the topic by clicking the "x" in the right corner of the tab

that will be generated m

Publist

Qualit

A e Tk b B0 i b b e o A

6. Choose Publish.You should receive an Amazon SNS message on your cell phone.

Next Steps

For more information about AWS IoT rules, see AWS loT Rule Tutorials (p. 41) and AWS IoT Rules (p. 108).

40

AWS IoT Developer Guide
Creating a DynamoDB Rule

AWS IoT Rule Tutorials

This guide includes tutorials that walk you through the creation and testing of AWS IoT rules. If you have
not completed the AWS IoT Getting Started Tutorial (p. 18), we recommend you do that first. It shows
you how to create an AWS account and connect your device to AWS IoT.

An AWS IoT rule consists of a SQL SELECT statement, a topic filter, and a rule action. Devices send
information to AWS IoT by publishing messages to MQTT topics. The SQL SELECT statement allows
you to extract data from an incoming MQTT message. The topic filter of an AWS IoT rule specifies one
or more MQTT topics. The rule is triggered when an MQTT message is received on a topic that matches
the topic filter. Rule actions allow you to take the information extracted from an MQTT message and send
it to another AWS service. Rule actions are defined for AWS services like Amazon DynamoDB, AWS
Lambda, Amazon SNS, and Amazon S3. By using a Lambda rule, you can call other AWS or third-party
web services. For a complete list of rule actions, see AWS loT Rule Actions (p. 117).

In these tutorials we assume you are using the AWS loT button and will use i ot but t on/ + as the topic
filter in the rules. If you do not have an AWS IoT button, you can buy one here.

The AWS IoT button sends a JSON payload that looks like this:

{
"serial Nunber" : "ABCDEFGL2345",
"batteryVol tage" : "2000nV",
"clickType" : "SINGE"

}

You can emulate the AWS loT button by using an MQTT client like the AWS loT MQTT client in the AWS
|oT console. To emulate the AWS IoT button, publish a similar message on the

i ot but t on/ ABCDEFGL2345 topic. The number after the / is arbitrary. It will be used as the serial number
for the button.

You can use your own device, but you will need to know on which MQTT topic your device publishes so
you can specify it as the topic filter in the rule. For more information, see AWS loT Rules (p. 108).

Creating a DynamoDB Rule

DynamoDB rules allow you to take information from an incoming MQTT message and write it to a
DynamoDB table.

41

https://www.amazon.com/dp/B01C7WE5WM
https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Creating a DynamoDB Rule

To create a DynamoDB rule:

1. Inthe AWS |oT console, choose Create a resource.

AWS loT
Resources &' Connect AWS loT Button

T
5/5 things 0/0 thingtypes 3/3rules 0/0CAs 13/13 certificates
5/5 policies
MyloTButton MyloTButtonPolicy MyLightBulb
o 0 O 0

2. Choose Create arule.

42

https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Creating a DynamoDB Rule

Resources

% Close create panel

- T
O e e ||
W ah
cY :
Create a thing Create a thing type Create a nule

Resources

' Connect AWS loT Button

| MQ

Use my certificate

S

Create a certi

T
5/6 things 0/0 thingtypes 3/3rules 0/0CAs 13/13 certificates
5/5 policies
MyloTButton MyloTButtonPolicy MyLightBulb
£ 0 § O £ 0 by

On the Create a rule page:

Type a rule name and description in Name and Description.

The Rule query statement field will be populated automatically when you enter data into the fields

below it.

In Attribute, type *. This determines which part of the incoming message will be sent to the rule
action. Using * sends the entire message.

In Topic filter, type i ot but t on/ +. If you are using a different device, type a topic filter that will
match the MQTT topic on which your device publishes.

From Choose an action, choose Insert message into a database table (DynamoDB).

43

AWS IoT Developer Guide
Creating a DynamoDB Rule

4.

Resources | MOQTT Client | Tutorial

Create a rule

Create a rule to evaluate inbound messages published into AWS loT. Your rule can deliver a message to the topic
cloud endpoint such as a DynamoDB table.

Name your rule and add an optional description.

Name MyDDBRule

Description Sends message data to DDB

Indicate the source of the messages you want to process with this rule.

Rule query statement SELECT % FROM 'iotbutton/+'

SAL version 2016-03-23-beta (¥
Attribute b (i}
Topic filter iotbutton/+ (i}
Condition e.g. temperature > 75 (i}

Select one or more actions to happen when the above rule query is matched by an inbound message. Actions de
that occur when messages arrive, like storing them in a database, invoking cloud functions, or sending notificatio

Choose an action DynamoDB ()

I . TR U B e al FVIOP Y =

The Create a rule page will expand. Next to the Table name drop-down list, choose Create a new
resource. This will open the Amazon DynamoDB console where you can create a DynamoDB table.

44

AWS IoT Developer Guide
Creating a DynamoDB Rule

5.

Resources | MOQTT Client | Tutorial

Indicate the source of the messages you want to process with this rule.

Rule query statement SELECT % FROM 'ioctbutton/+'

SQAL version 2016-03-23-beta W
Attribute * (i}
Topic filter iothutton/+ o
Condition e.g. temperature > 75 Li]

Select one or more actions to happen when the above rule guery is matched by an inbound message. Actions de
that occur when messages arrive, like storing them in a database, invoking cloud functions, or sending notificatiol

Choose an action DynamoDB W

This action will insert the message into a DynamoDB table. (Table must contain Hash ar

Cancel

it AR e a0 o B ol AT A b Bt AT .

Choose Create table.

45

AWS IoT Developer Guide
Creating a DynamoDB Rule

DynamoDB Create table

LUashbaard Amazon DynamoDB is a fully managed non-relational database service

Tables that provides fast and predictable performance with seamless scalability.

Recent alerts

No CloudWatch alarms have been triggered.
View all in CloudWatch

Total capacity for US East (N. Virginia)

Provisioned read capacity 401

Provisioned write capacity 342
Reserved read capacity a
Reserved write capacity 0

Service health

Current Status Detalls

-@ Amazon DynamoDB (M. Virginia) Service is operating normally

» View complete service health details

In Table name, type a name for the table. The partition and sort keys are combined to create a
primary key for your DynamoDB table. For the Partition key, type Seri al Nunber , and then select
Add sort key. For the Sort key, type C i ckType. Both the partition and sort keys should be of type
String.

Your screen should now look like the following:

46

What's 1

+ Enha
+ Titan
+ Elast

Related

« Amaz

Additior

Getti
Getti
FAQ

Reles
Deve
Forur
Repo

AWS IoT Developer Guide
Creating a DynamoDB Rule

Create DynamoDB table Tutorial

DynamoDB is a schema-less database that only requires a table name and primary key. The ta
primary key is made up of one or two attributes that uniquely identify items, partition the data,
sort data within each partition.

Table name* [ctButtonTable (1]
Primary key* Partition key

SerialNumber String ﬁ

@ Add sort key

ClickTyped String (i)

Table settings

Default settings provide the fastest way to get started with your table. You can modify these de
settings now or after your table has been created.

Use default settings

+ No secondary indexes.

+ Provisioned capacity set to 5 reads and 5 writes.

« Basic alarms with 80% upper threshold using SNS topic
“dynamodb".

Additional charges may apply if you exceed the AWS Free Tier levels for CloudWatch or Simple Notification Se
Advanced alarm settings are available in the CloudWatch management console

Cancel E

Choose Create. It will take a few seconds to create your DynamoDB table. Close the browser tab
that contains the Amazon DynamoDB console. If you do not close the tab, your DynamoDB table
will not be displayed in the Table name drop-down list in the AWS loT console. In the AWS loT
console, choose your new table.

In Hash key value, type ${ seri al Nunber} . This instructs the rule to take the value of the

seri al Nunber attribute from the MQTT message and write it into the SerialNumber column in the
DynamoDB table. In Range key value, type ${ cl i ckType} . This writes the value of the cl i ckType
attribute into the ClickType column. Leave Payload field blank. By default, the entire message will
be written to a column in the table called Payload. Select Create a new role.

47

AWS IoT Developer Guide
Creating a DynamoDB Rule

Resources |

Choose an action DynamoDB “w

This will insert the message into a DynamoDB table. (Table must contain Hash and Rang

*Table name loTButtonTable v | @ ©@ Create a new resource @
*Hash key SerialNumber i
*Hash key type STRING o
*Hash key value | SiserialNumber} Li]
Payload field i
Range key clickType (i}
Range key type STRING o
Range key value S{clickType} Li]

Choose or create a new role to grant AWS loT the access to the selected Amazon DynamoDB resource to perforr

Cancel

9. Type a unique role name in the Create a new role dialog box, and then choose the Create button.

Create a new role

Role name | DDB-buttcn-roIe| |

10. Choose Add action to add the action to the rule.

48

AWS IoT Developer Guide
Creating a DynamoDB Rule

Resources | MAQTT Client | Tutorial

*Hash key type STRING (i}
*Hash key value | SiserialNumber} o
Payload field (i}
Range key ClickType (i}
Range key type STRING (i}
Range key value S{clickType} o

Choose or create a new role to grant AWS loT the access to the selected Amazon DynamoDB resource to perfor

*Role name DDB-button-role v | @ Create a new role

Cancel Add action

T e I I e

11. Choose Create to create the rule.

AWS lOT Resources | MQOTT Client | Tutorial

Topic filter iotbutton/+ (i}

Condition i]

Select one or more actions to happen when the above rule query is matched by an inbound message. Actions de
that occur when messages arrive, like storing them in a database, invoking cloud functions, or sending notificatiol

Choose an action Choose an action W

DynamoDB Action .

49

AWS IoT Developer Guide
Creating a Lambda Rule

12. A confirmation message shows the rule has been created.

AWS IOT Resources | MAQTT Client | Tutorial

Re So u rces X Close create panel ' Connect AWS loT Button

P r) 1 e
N N s { ey
LAY o \: F -
C9 . 0 vl et
Create a thing Create a thing type Create a rule Use my certificate Create a certificate (

Your new rule has been created and enabled. Click 'View rule' to review parameters that you may change at any t

A o Bt e et fomttinte, e Bt St AP i etV il

13. Test the rule by either pressing your configured AWS IoT button or using an MQTT client to publish
a message on a topic that matches your rule's topic filter.

Creating a Lambda Rule

You can define a rule that calls a Lambda function, passing in data from the MQTT message that triggered
the rule. This allows you to process the incoming message and then call another AWS or third-party
service.

In this tutorial, we assume you have completed the AWS loT Getting Started Tutorial (p. 18) in which you
create and subscribe to an Amazon SNS topic using your cell phone number. You will create a Lambda
function that publishes a message to the Amazon SNS topic you created in the AWS loT Getting Started
Tutorial (p. 18). You will also create a Lambda rule that calls the Lambda function, passing in some data
from the MQTT message that triggered the rule.

In this tutorial, we also assume you are using an AWS loT button to trigger the Lambda rule. If you do

not have an AWS loT button, you can purchase one here or you can use an MQTT client to send an
MQTT message that will trigger the rule.

Create the Lambda Function

To create the Lambda function:

1. Inthe AWS Lambda console, choose Create a Lambda function.

50

https://www.amazon.com/dp/B01C7WE5WM
https://console.aws.amazon.com/lambda/home

AWS IoT Developer Guide
Create the Lambda Function

Lambda > Functions
You have 32 Lambda function(s) using 1.6 MB of code storage. Choose any Lambda function to view details on invocation 1
take up to 60 seconds to appear).

Create a Lambda function Actions ~

|€ - H Y Filter
Function name > Description b Code size ~ A
myloTButtonFunction A starter AWS Lambda function. 471 bytes 1
myLambaTest Demonstrates running an extern... 409 bytes 1
michgreFunction A starter AWS Lambda function. 778 bytes 1
MyCodeCommitFunction 572 bytes 1
Awesome_CFN_Function_for_CodePipeline Tim's sample function that uses... 3.3kB 1
ParseWiki An Amazon DynamoDB triggert... 56.3 kB 1

T el ol e lTINAONN it ol v ol B P N Pl Py g™

2. For the filter, type hel | o- wor | d, and then choose the hello-world blueprint.

51

AWS IoT Developer Guide
Create the Lambda Function

Lambda > New function

| step 1: Select blueprint

Select blueprint

Blueprints are sample configurations of event sources and Lambda functions. Choose a blueprint that best aligns with
and customize as needed, or skip this step if you want to author a Lambda function and configure an event source sef
otherwise noted, blueprints are licensed under CCO.

T hello-world All languages & < Vi

hello-world hello-world-python

A starter AWS Lambda function. A starter AWS Lambda function.

python2.7

Pt PR B A DI e SN e 8o rtt TV YB et At s gt PP o s et

On the Configure function page, type a name and description for the Lambda function. In Runtime,
choose Node.js 4.3.

Lambda > New function using blueprint hello-world

Step 1: Select blueprint
| Step 2: Configure function

Step 3: Review

Configure function

A Lambda function consists of the custom code you want to execute. Learn more about Lambda functions.

Name™ myloTButtonFunction

Description | Sends a message to SNS|

Runtime* = Node.js 4.3 v

At NIy N il AT o B s T BB ANy, AN B IR e d

52

AWS IoT Developer Guide
Create the Lambda Function

Scroll down to the Lambda function code section of the page. Replace the existing code with the
following:

consol e. | og(' Loadi ng function');
/1 Load the AWS SDK
var AWS = require("aws-sdk");

/1 Set up the code to call when the Lanmbda function is invoked
exports. handl er = (event, context, callback) => {
/1 Load t he nessage passed into the Lanbda function into a JSON obj ect

var event Text = JSON.stringify(event, null, 2);

/1 Log a nessage to the console, you can viewthis text in the Mn
itoring tab in the Lanbda console or in the C oudwWatch Logs consol e
consol e. | og(" Recei ved event:", eventText);

/1 Create a string extracting the click type and serial nunber from
t he nessage sent by the AWS | oT button

var nessageText = "Received "
button ID: " + event.serial Nunber;

+ event.clickType + nessage from

/1 Wite the string to the console
consol e. | og("Message to send: " + nessageText);

/1 Crewate an SNS obj ect
var sns = new AWS. SNS();

/1 Popul ate the parameters for the publish operation
/1l - Message : the text of the nessage to send
/1 - TopicArn : the ARN of the Amazon SNS topic to which you want
to publish
var parans = {
Message: nessageText,
Topi cArn: "arn: aws: sns: us- east - 1: 123456789012: Myl oTBut t onSNSTopi c"

b
sns. publ i sh(parans, context.done);

H

Scroll down to the Lambda function handler and role section of the page. For Role, choose Basic
execution role. The IAM console will open, allowing you to create an IAM role that Lambda can
assume when executing the Lambda function.

To edit the role's policy to give it permission to publish to your Amazon SNS topic:

1. Choose View Policy Document.

53

AWS IoT Developer Guide
Create the Lambda Function

AWS Lambda requires access to your resources

AWS Lambda uses an |AM role that grants your custom code permissions to access AWS resources it needs.

+ Hide Details

Role Summary @
Role Lambda execution role permissions

Description

L L

IAM Role lambda_basic_execution

Policy Name Create a new Role Policy =]

» l|View Policy Document

T i R N i T S AP

Choose Edit to edit the role's policy.

54

AWS IoT Developer Guide
Create the Lambda Function

« Hide Details
Role Summary @

Role Description Lambda execution role permissions

IAM Role lambda_basic_execution =
Policy Name Create a new Role Policy 5

+ Hide Policy Document

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action”: [
"logs:CreatelLogGroup",
“logs:CreatelLogStream”,
“logs:PutLogEvents"
L

e Y PP RSBVl Tt T T R Y N

Replace the policy document with the following:

{
"Version": "2012-10-17",
"Statement”: [
{
"Effect": "Al ow',
"Action": [
"l ogs: Cr eat eLogG oup”,
"l ogs: Creat eLogStreant,
"l ogs: Put LogEvent s"
1
"Resource": "arn:aws:logs:*:*:*"
H
{
"Effect": "Al ow',
"Action": [
"sns: Publ i sh"
1
"Resource": "arn:aws:sns:us-east-1:123456789012: Myl oTBut t on
SNSTopi ¢
}
]
}

55

AWS IoT Developer Guide
Create the Lambda Function

This policy document adds permission to publish to your Amazon SNS topic.

Note
This example uses a fictitious AWS account number in the resource ARN. Make sure
to use the ARN for your Amazon SNS topic.

6. Choose Allow.

+ Hide Details

Role Summary @

Role Description Lambda execution role permissions

IAM Role lambda_basic_execution =
Policy Name Create a new Role Policy 5

¥ Hide Policy Document

Edit

"Effect": "Allow",
"Action": [
"sns:Publish”

J:

"Resource”: "arn:aws:sns:us-east-
1:123456789012iMyloTButtonSNSTopic”
}

7. Leave the settings on the Advanced settings page at their defaults, and choose Next

56

AWS IoT Developer Guide
Create the Lambda Function

Advanced settings

These settings allow you to control the code execution performance and costs for your Lambda function. Changing your
selecting memory) or changing the timeout may impact your function cost. Learn more about how Lambda pricing works.

Memory (MB)* 128 *+ O

Timeout* 0 min 3 sec

All AWS Lambda functions run securely inside a default system-managed VPC. However, you can optionally configure La
resources, such as databases, within your custom VPC. Learn more about accessing VPCs within Lambda. Please ensul
appropriate permissions to configure VPC. Select "Basic with VPC" in the role dropdown above to add these pern

VPG No VPC * | O

* These fields are required. Cancel F

AP At g PNl o AT TAI e NN it N e N e P e

8. Onthe Review page, choose Create function.

57

AWS IoT Developer Guide
Test Your Lambda Function

Review

Please review your Lambda function details. You can go back to edit changes for each section. When you are ready, click

complete the setup process.

Lambda function

Name

Description

Runtime

Handler

Role

Memory (MB)

Timeout

myloTButtonFunction

Sends a message to SNS

Node.js 4.3

index.handler

lambda_basic_execution

128

Cancel Previous

Test Your Lambda Function

To test the Lambda function:

1. From the Actions menu, choose Configure test event.

58

AWS IoT Developer Guide
Test Your Lambda Function

Lambda > Functions > myloTButtonFunction ARN - arn:aws:lambda:us

ro—

Configure test event

Code sources APl endpoints Monitoring
Publish new version
»
Create alias trytype @ Edit code inline Upload a .ZIP file Upload a file fror
Delete function)
1 ion');
Z Download function code
3 E-sdk");
4
5 A7 Set up the code to call when the &LAM; function is invoked
(5] exports.handler = (event, context, callback) == {
7 /7 Load the message passed into the Lambda function into a JSON object
& var eventText = JSON.stringify(event, null, 2);
9
1@ /7 Log a message to the console, you can view this text in the <guilabel>Monitoring</guil
11 console.log("Received event:", eventText);
12
sl At N g A1 g ol O i A, e M

2. Copy and paste the following JSON into the Input test event page, and then choose Save and test.

Input test event

It looks like you have not configured a test event for this function yet. Use the editor below to enter an event to test your
function with (please remember that this will actually execute the code!). You can always edit the event later by choosing
Configure test event in the Actions list. Note that changes to the event will only be saved locally.

Sample event template = Hello World -

{
"serialNumber”: "ABCDEFG12345",
"clickType": "SINGLE",
"batteryVoltage": "2000 mV'

}

(W I R T N

3. Inthe AWS Lambda console, choose the Monitoring tab, and then scroll to the bottom of the screen.
The Log output section displays the output the Lambda function has written to the console.

59

AWS IoT Developer Guide
Creating a Lambda Rule

Log output

The area below shows the logging calls in your code. These correspond to a single row within the CloudWatch log
group corresponding to this Lambda function. Click here to view the CloudWatch log group.

2016-05-89T22:02:49.501Z c4b5b4d1-1631-11e6-b78f-0d4d596724ad Received event: {
"serialNumber": "ABCDEFG12345",
"clickType": "SINGLE",
"batteryVoltage": "Z2@0@ mv"

}
2016-85-09T22:082:49.501Z c4b5b4d1-1631-11e6-b78f-8d4d596724ad Message to send: Received

END RequestId: c4bSb4dl1-1631-11eb-b7&f-0d4dS96724ad
REPORT RequestId: c4bSb4dl-1631-11e6-b78f-0d4d596724ad Duration: 1215.14 ms Billed Duration: 13

L
START RequestId: c4bSb4dl-1631-11e6-b78f-0d4d596724ad Version: SLATEST ;

Creating a Lambda Rule

Now that you have created a Lambda function, you can create a rule that invokes the Lambda function.

1. Inthe AWS loT console, choose Create a resource.
2. Choose Create arule.
3. Type a name and description for the rule.

60

https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Creating a Lambda Rule

Resources | MQTT Clie

Resou rces ‘ ® Close create panel ‘

ol

Create a thing Create a rule Use my certificate Create a certificate Cr

Create a rule

Create a rule to evaluate inbound messages published into AWS loT. Your rule can deliver a message to the topic
such as a DynamoDB table.

Name your rule and add an optional description.

Name MyLambdaRule

Description Invokes a Lambda function & calls SN

TRl b Bt Ryt et T S bt . I A i Ny [Al it

4. Enter the following settings for the rule:

Indicate the source of the messages you want to process with this rule.

Rule query statement = SELECT % FROM 'iotbutton/+'

SaL version 2016-03-23-beta “
Attribute bd (i}
Topic filter iotbutton/+ L)
Condition | |e.g. temperature > 75 Li]

R W P SV S SR W

5. For Choose an action, choose Insert this message into a code function and execute it (Lambda).
6. From Function name, choose your Lambda function name, and then choose Add action.

61

AWS IoT Developer Guide
Creating a Lambda Rule

Resources | MQTT Clie

Topic filter iotbutton/+ L)

Condition e.g. temperature > 75 Li]

Select one or more actions to happen when the above rule query is matched by an inbound message. Actions de
messages arrive, like storing them in a database, invoking cloud functions, or sending notifications. (* reguired)

Choose an action Lambda w

This action will invoke a Lambda function with the message set in the event body.

*Function name myloTButtonFunction v | ©® Create a new resource @

Cancel Add action

7. Choose Create to create your Lambda function.

62

AWS IoT Developer Guide
Test Your Lambda Rule

Resources | MQTT Clie

Topic filter iotbutton/+ (i}

Condition e.g. temperature > 75 (i}

Select one or more actions to happen when the above rule query is matched by an inbound message. Actions de
messages arrive, like storing them in a database, invoking cloud functions, or sending notifications. (* reqguired)

Choose an action Choose an action v

Lambda Action ‘

Al st B b pmn e

Test Your Lambda Rule

In this tutorial, we assume you have completed the AWS loT Getting Started Tutorial (p. 18), which covers:

¢ Configuring an AWS loT button.
¢ Creating and subscribing to an Amazon SNS topic with a cell phone number.

Now that your button is configured and connected to Wi-Fi and you have configured an Amazon SNS
topic, you can press the button to test your Lambda rule. You should receive an SMS text message on
your phone that contains the serial number of your button, the type of button press (SINGLE or DOUBLE),
and the battery voltage.

The message should look like the following:

| OT BUTTON> {
"serial Nunber" : "ABCDEFGl12345",
“clickType" : "SINGLE",
"batteryVoltage" : "2000 nV"

}

If you do not have a button, you can buy one here or you can use the AWS loT MQTT client instead.

1. Inthe AWS IoT console, choose MQTT Client.

63

https://www.amazon.com/dp/B01C7WE5WM
https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Test Your Lambda Rule

2.

e

AWS loli

Re sources + Create a resource

Y Filter by resource names or by resource type (below)

1/1 things 1/1 rules 0/0 CAs 1/1 certificates 1/1 policies

Tttt T R T A et T b b a0t et Pt et

Type a client ID or choose Generate client ID, and then choose Connect.

AWS loli

You're not connected to the Device Gateway M
= Go to the "Device Gateway connection” tab H
s Type in your desired Client ID or generate one using the "Generate client ID" button St
* Once the connection to the Device Gateway succeeds, Subscribe or Publish to topics using the "Subscribe
to topic” and "Publish to topic” tabs PL
= |f the connection to the Device Gateway fails, ensure that your Client ID is less than 128 bytes and encoded .
in UTF-8 L

Choose Publish to topic.
In Publish topic, type i ot but t on/ ABCDEFGL2345.
In Payload, type the following JSON, and then choose Publish.

{
"serial Nunber" : "ABCDEFGL2345",
"clickType" : "SI NGLE",
"batteryVol tage" : "2000 nV"

}

64

AWS IoT Developer Guide
Test Your Lambda Rule

Resources | MQTT Cli

Type in your desired Topic Filter and QoS, then click "Subscribe”)
Subscribe to to

* Once subscribed, you can unsubscribe from the topic by clicking the "x' in the right corner of

the tab that will be generated Publish to topic

Publish log

Publish t

iotbutton/ABCL

Quality of ser
(C

Pay!

IR, SRSttt NN b Bt bt i i P P g e P B s

You should receive a message on your cell phone.

65

AWS IoT Developer Guide
Managing Things with the Thing Registry

Managing Things with AWS loT

AWS 0T provides a thing registry that helps you manage your things. A thing is a representation of a
specific device or logical entity. It can be a physical device or sensor (for example, a light bulb or a switch
on a wall). It can also be a logical entity like an instance of an application or physical entity that does not
connect to AWS |oT but is related to other devices that do (for example, a car that has engine sensors
or a control panel).

Information about a thing is stored in the thing registry as JSON data. Here is an example thing:

"version": 3,
"t hi ngNanme": " MyLi ght Bul b",
"defaultdientld": "MLightBul b",
"t hi ngTypeNane": "LightBul b",
"attributes": {
"nmodel ": "123",
"wat tage": "75"

Things are identified by a name. Things can also have attributes, which are name-value pairs you can
use to store information about the thing, such as its serial number or manufacturer.

A typical device use case involves the use of the thing name as the default MQTT client ID. Although we
do not enforce a mapping between a thing’s registry name and its use of MQTT client IDs, certificates,
or shadow state, we recommend you choose a thing name and use it as the MQTT client ID for both the
thing registry and the Thing Shadows service. This provides organization and convenience to your loT
fleet without removing the flexibility of the underlying device certificate model or thing shadows.

You do not need to create a thing in the thing registry to connect it to AWS loT. Adding your things in the
thing registry allows you to manage and search for them more easily.

Managing Things with the Thing Registry

You use the AWS IoT console or the AWS CLI to interact with the registry. The following sections show
how to use the CLI to work with the thing registry.

66

AWS IoT Developer Guide
Create a thing

Create a thing

The following command shows how to use the AWS 10T cr eat e- t hi ng CLI command to create a thing:

$ aws iot create-thing --thing-name "MLightBulb" --attribute-payload "{\"at
tributes\": {\"wattage\":\"75\", \"nodel\":\"123\"}}"

The cr eat e-t hi ng API will display the name and ARN of your new thing:

"thingArn": "arn:aws:iot:us-east-1:803981987763:t hi ng/ MyLi ght Bul b",
"t hi ngName": " MLi ght Bul b"

List things

You can use the | i st -t hi ngs API to list all things in your account:

$ aws iot list-things

{
"things": [
{
"attributes": {
"nodel ": "123",
"wattage": "75"
}s
"version": 1,
"t hi ngName": " MyLi ght Bul b"
s
{
"attributes": {
"nunCF St at es” ;" 3"
b
"version": 11,
"t hi ngNarme": "M/Wal| Swi tch"
}
]
}

Search for things

You can use the descri be-t hi ng API to list information about a thing:

$ aws iot describe-thing --thing-name "MLightBul b"
{
"version": 3,
"t hi ngNanme": " MLi ght Bul b",
"defaultdientld": "MLightBul b",
"t hi ngTypeNane": "StopLight",
"attributes": {
"model ": "123",
"wattage": "75"

67

AWS IoT Developer Guide
Search for things

You can use the | i st -t hi ngs API to search for all things associated with a thing type name:

$ aws iot list-things --thing-type-nane "LightBul b"

{
"things": [
{
"t hi ngTypeNane": "LightBul b",
"attributes": {
"model ": "123",
"watt age": "75"
b,
"version": 1,
"t hi ngNane": "M/RGBLi ght"
b,
{
"t hi ngTypeNane": "LightBul b",
"attributes": {
"model ": "123",
"watt age": "75"
b,
"version": 1,
"t hi ngNanme": " MySecondLi ght Bul b"
}
]
}

You can use the | i st -t hi ngs API to search for all things that have an attribute with a specific value:

$ aws iot list-things --attribute-name "wattage" --attribute-value "75"
{
"things": [
{

"t hi ngTypeNane": "StopLight",
"attributes": {
“nodel *: "123",
“wattage": "75"
}
"version": 3,
"t hi ngNane": "“MLi ght Bul b"
I8
{
"t hi ngTypeNane": "LightBul b",
"attributes": {
“nodel *: "123",
“wattage": "75"

},

"version": 1,

68

AWS IoT Developer Guide
Update a thing

"t hi ngName": " MyRGBLi ght "

}s
{
"t hi ngTypeNane": "LightBul b",
"attributes": {
"model ": "123",
"wat t age": "75"
}s
"version": 1,
"t hi ngNarme": " MySecondLi ght Bul b"
}

Update a thing

You can use the updat e- t hi ng API to update a thing:

$ aws iot update-thing --thing-nane "MLightBul b" --attribute-payload "{\"at
tributes\": {\"wattage\":\"150\", \"nodel\":\"456\"}}"

The updat e- t hi ng command does not produce output. You can use the descri be-t hi ng API to see
the result:

$ aws iot describe-thing --thing-name "MWLightBul b"

{
"attributes": {
"nmodel ": "456",
"wattage": "150"
}s
"version": 2,
"t hi ngNanme": "MLi ght Bul b"
}

Delete a thing

You can use the del et e- t hi ng API to delete a thing:

$ aws iot delete-thing --thing-name "MThing"

Attach a principal to a thing

A physical device must have an X.509 certificate in order to communicate with AWS IoT. You can associate
the certificate on your device with the thing in the thing registry that represents your device. To attach a
certificate to your thing, use the at t ach- t hi ng- pri nci pal API:

$ aws iot attach-thing-principal --thing-name "M/LightBulb" --principal
"arn:aws:iot:us-east-
1: 123456789012: cert/ a0c01f 5835079de0a7514643d68ef 8414ab739ale94ee4162977b02b12842847"

The at t ach-t hi ng- pri nci pal command does not produce any output.

69

AWS IoT Developer Guide
Detach a principal from a thing

Detach a principal from a thing

You can use the det ach-t hi ng- pri nci pal API to detach a certificate from a thing:

$ aws iot detach-thing-principal --thing-name "M/LightBulb" --principal
"arn:aws:iot:us-east-
1: 123456789012: cer t / aOc01f 5835079de0a7514643d68ef 8414ab739ale94ee4162977b02b12842847"

The det ach-t hi ng- pri nci pal command does not produce any output.

Thing Types

Thing types allow you to store description and configuration information that is common to all things
associated with the same thing type. This simplifies the management of things in the thing registry. For
example, you can define a LightBulb thing type. All things associated with the LightBulb thing type share
a set of attributes: serial number, manufacturer, and wattage. When you create a thing of type LightBulb
(or change the type of an existing thing to LightBulb) you can specify values for each of the attributes
defined in the LightBulb thing type.

Although thing types are optional, their use provides better discovery of things.

¢ Things can have up to 50 attributes.

¢ Things without a thing type can have up to three attributes.

« A thing can only be associated with one thing type.

¢ There is no limit on the number of thing types you can create in your account.

Thing types are immutable. You cannot change a thing type name after it has been created. You can
deprecate a thing type at any time to prevent new things from being associated with it. You can also
delete thing types that have no things associated with them.

Create aThing Type

You can use the cr eat e- t hi ng-t ype API to create a thing type:

$ aws iot create-thing-type
--thing-type-nanme "LightBul b" --thing-type-properties "thingTy
peDescri ption=light bulb type, searchabl eAttributes=wattage, nodel "

The cr eat e- t hi ng-t ype command returns a response that contains the thing type and its ARN:

"t hi ngTypeNane": "LightBul b",
"t hi ngTypeArn": "arn:aws:i ot:us-west-2:803981987763: t hi ngt ype/ Li ght Bul b"

List thing types

You can use the | i st -t hi ng-types API to list thing types:

70

AWS IoT Developer Guide
Describe a thing type

$ aws iot list-thing-types

Theli st-thing-types command returns a list of the thing types defined in your AWS account:

"t hi ngTypes": [

"t hi ngTypeNane": "LightBul b",

"t hi ngTypeProperties": {
"deprecated": false,
"creationDate": 1468423800950,
"searchabl eAttributes": [

"wat t age",
"model "

]

hi ngTypeDescription": "light bulb type"

Describe a thing type

You can use the descri be-t hi ng-t ype API to get information about a thing type:

$ aws iot describe-thing-type --thing-type-nanme "LightBulb"

The descri be-t hi ng-t ype API responds with information about the specified type:

"t hi ngTypeNane": "LightBul b",

"t hi ngTypeProperties": {
"deprecated": false,
"creationDate": 1468423800950,
"searchabl eAttributes": [

"wat t age",
"nmodel "

]

hi ngTypeDescription": "light bulb type"

Associate a thing type with a thing

You can use the cr eat e- t hi ng API to specify a thing type when you create a thing:

$ aws iot create-thing --thing-name "MSecondLi ght Bul b" --thing-type-nane
"LightBul b" --attribute-payload "{\"attributes\": {\"wattage\":\"75\", \"nod
el\":\"123\"}}"

You can use the updat e- t hi ng API at any time to change the thing type associated with a thing:

71

AWS IoT Developer Guide
Deprecate a thing type

$ aws i ot update-thing --thing-nanme "MWLightBul b" --thing-type-nanme "StopLight"
--attribute-payload "{\"attributes\": {\"wattage\":\"75\", \"nodel\":\"123\"}}"

You can also use the updat e-t hi ng API to disassociate a thing from a thing type.

Deprecate a thing type

Thing types are immutable. They cannot be changed after they are defined. You can, however, deprecate
a thing type to prevent users from associating any new things with it. All existing things associated with
the thing type will be unchanged.

To deprecate a thing type, use the depr ecat e-t hi ng-t ype API:

$ aws i ot deprecate-thing-type --thing-type-name "nyThi ngType"

You can use the descri be-t hi ng-t ype API to see the result:

$ aws iot describe-thing --thing-type-nanme "StopLight":

"t hi ngTypeNane": "StopLight",

"t hi ngTypeProperties": {
"deprecated": true,
"creationDate": 1468425854308,
"searchabl eAttributes": [

"wat t age",
"nunt Li ghts",
"nmodel "
1,
"t hi ngTypeDescription": "traffic light type",
"deprecationDate": 1468446026349

Deprecating a thing type is a reversible operation. You can undo a deprecation by using the
- -undo- depr ecat e flag with the depr ecat e-t hi ng-t ype CLI command:

$ aws iot deprecate-thing-type --thing-type-nane "nyThi ngType" --undo-deprecate

You can use the depr ecat e- t hi ng-t ype CLI command to see the result:

$ aws i ot deprecate-thing-type --thing-type-nane "StopLight":

"t hi ngTypeNanme": " StopLight",

"t hi ngTypeProperties": {
"deprecated": false,
"creationDate": 1468425854308,
"searchabl eAttributes": [

"watt age",
"nuntx Li ght s",

72

AWS IoT Developer Guide
Delete a thing type

"nmodel "

I,
"t hi ngTypeDescription": "traffic light type"

Delete a thing type

You can delete thing types only after they have been deprecated. To delete a thing type, use the
del et e-t hi ng-type APIL:

$ aws iot delete-thing-type --thing-type-nanme "StopLight"

Note
You must wait five minutes after you deprecate a thing type before you can delete it.

73

AWS IoT Developer Guide

Security and Identity for AWS IoT

Each connected device must have a credential to access the message broker or the Thing Shadows
service. All traffic to and from AWS loT must be encrypted over Transport Layer Security (TLS). Device
credentials must be kept safe in order to send data securely to the message broker. After data reaches
the message broker, AWS cloud security mechanisms protect data as it moves between AWS loT and
other devices or AWS services.

AWS User

* AWS security

credentials
+ |AM policies

Device

h = loT certificate

~
+ loT policies l@x
=

&

AWS Cognito Idenhty
* Auth provider token + AWS :;;I:'I‘gli-‘-ll-:;les
security credentials o AWS IAM
+ |AM Role policy Roles
« loT policies « AWS security
credentials
+ |AMRole
AWS User policy DynamoDB
* = AWS security
credentials
+ |AM policies

74

AWS IoT Developer Guide
Authentication in AWS loT

» You are responsible for managing device credentials (X.509 certificates, AWS credentials) on your
devices and policies in AWS IoT. You are responsible for assigning unique identities to each device
and managing the permissions for a device or group of devices.

¢ Devices connect using your choice of identity (X.509 certificates, IAM users and groups, or Amazon
Cognito identities) over a secure connection according to the AWS IoT connection model.

» The AWS IoT message broker authenticates and authorizes all actions in your account. The message
broker is responsible for authenticating your devices, securely ingesting device data, and adhering to
the access permissions you place on devices using policies.

* The AWS IoT rules engine forwards device data to other devices and other AWS services according
to rules you define. It is responsible for leveraging AWS access management systems to securely
transfer data to its final destination.

Authentication in AWS loT

AWS loT supports three types of identity principals for authentication:

¢ X.509 certificates
¢ |AM users, groups, and roles
¢ Amazon Cognito identities

Each identity type supports different use cases for accessing the AWS loT message broker and Thing
Shadows service.

The identity type you use depends on your choice of application protocol. If you use HTTP, use IAM
(users, groups, roles) or Amazon Cognito identities. If you use MQTT, use X.509 certificates.

X.509 Certificates

X.5009 certificates are digital certificates that use the X.509 public key infrastructure standard to associate
a public key with an identity contained in a certificate. X.509 certificates are issued by a trusted entity
called a certification authority (CA). The CA maintains one or more special certificates called CA certificates
that it uses to issue X.509 certificates. Only the certification authority has access to CA certificates.

AWS IoT supports the following certificate-signing algorithms:

« SHA256WITHRSA

+ SHA384WITHRSA

« SHA384WITHRSA

+ SHA512WITHRSA

« RSASSAPSS

« DSA_WITH_SHA256
« ECDSA-WITH-SHA256
+ ECDSA-WITH-SHA384
« ECDSA-WITH-SHA512

X.509 certificates provide several benefits over other identification and authentication mechanisms. X.509
certificates enable asymmetric keys to be used with devices. Your manufacturing process and devices
can be in control of keys. You do not need to rely on AWS for generating security credentials. This means
you can burn private keys into secure storage on a device without ever allowing the sensitive cryptographic
material to leave the device. Certificates provide stronger client authentication over other schemes, such
as user name and password or bearer tokens, because the secret key never leaves the device.

75

AWS IoT Developer Guide
X.509 Certificates

AWS loT authenticates certificates using the TLS protocol’s client authentication mode. TLS is available
in many programming languages and operating systems and is commonly used for encrypting data. In
TLS client authentication, AWS loT requests a client X.509 certificate and validates the certificate’s status
and AWS account against a registry of certificates. It then challenges the client for proof of ownership of
the private key that corresponds to the public key contained in the certificate.

To use AWS IoT certificates, clients must support all of the following in their TLS implementation:

e TLS1.2.
¢ SHA-256 RSA certificate signature validation.
¢ One of the cipher suites from the TLS cipher suite support section.

X.509 Certificates and AWS loT

AWS IoT can use AWS loT-generated certificates or certificates signed by a CA certificate for device
authentication. Certificates generated by AWS IoT do not expire. The expiry date and time for certificates
signed by a CA certificate are set when the certificate is created.

To use a certificate that is not created by AWS loT, you must register a CA certificate. All device certificates
must be signed by the CA certificate you register.

You can use the AWS |oT console or CLI to create and manage certificates. The following operations
are available:

« Create and register an AWS |oT certificate.

« Register a CA certificate.

« Reqgister a device certificate.

¢ Activate or deactivate a device certificate.

* Revoke a device certificate.

¢ Transfer a device certificate to another AWS account.

« List all CA certificates registered to your AWS account.

« List all device certificates registered to your AWS account.

For more information about the CLI commands to use to perform these operations, see AWS |oT CLI
Reference.

For more information about using the AWS loT console to create certificates, see Create and Activate a
Device Certificate.

Server Authentication

Device certificates allow AWS IoT to authenticate devices. To ensure your device is communicating with
AWS IoT and not another server impersonating AWS loT, copy the VeriSign root CA certificate onto your
device. Reference the CA root certificate in your device code when connecting to AWS loT. For more
information, see the AWS |oT Device SDKs (p. 167).

Note
You cannot use your own CA certificate to authenticate the AWS loT server, only the VeriSign
root CA certificate.

Create and Register an AWS loT Device Certificate

You can use the AWS IoT console or the AWS IoT CLI to create an AWS loT certificate.

76

http://docs.aws.amazon.com/cli/latest/reference/iot/index.html
http://docs.aws.amazon.com/cli/latest/reference/iot/index.html
http://docs.aws.amazon.com/iot/latest/developerguide/create-device-certificate.html
http://docs.aws.amazon.com/iot/latest/developerguide/create-device-certificate.html
https://www.symantec.com/content/en/us/enterprise/verisign/roots/VeriSign-Class%203-Public-Primary-Certification-Authority-G5.pem

AWS IoT Developer Guide
X.509 Certificates

To create a certificate (console)

You can use the UpdateCertificate API to revoke a certificate at any time. For more information about
managing device certificates, see the AWS Command Line Interface User Guide.

1. Signin to the AWS Management Console and open the AWS |oT console at
https://console.aws.amazon.com/iot.

2. Choose Create aresource, and then choose Create a certificate.

3. Choose 1-Click certificate create. Alternatively, to generate a certificate with a certificate signing
request (CSR), choose the Create with CSR button.

4. Use the links to the public key, private key, and certificate to download each to a secure location.

5. The newly created certificate will be displayed as INACTIVE. Choose it, and from the Actions
drop-down list, choose Activate.

To create a certificate (CLI)
The AWS IoT CLI provides two commands to create certificates:
e create-keys-and-certificate

The CreateKeysAndCertificate API creates a private key, public key, and X.509 certificate.
e create-certificate-from-csr

The CreateCertificateFromCSR API creates a certificate given a CSR.

Use Your Own Certificate

To use your own X.509 certificates, you must register a CA certificate with AWS loT. The CA certificate
can then be used to sign device certificates. You can register up to ten CA certificates with the same
subject field and public key per AWS account. This allows you to have more than one CA sign your device
certificates.

Note

Device certificates must be signed by the registered CA certificate. It is common for a CA
certificate to be used to create an intermediate CA certificate. If you will be using an intermediate
certificate to sign your device certificates, you must register the intermediate CA certificate. You
should use the AWS IoT root CA certificate when connecting to AWS IoT even if you register
your own root CA certificate. The AWS loT root CA certificate is used by a device to verify the
identity of the AWS IoT servers.

Contents
¢ Registering Your CA certificate (p. 78)
¢ Creating a Device Certificate (p. 79)
¢ Registering a Device Certificate (p. 80)
« Registering Device Certificates Manually (p. 80)
¢ Using Automatic/Just-in-Time Registration for Device Certificates (p. 80)
¢ Deactivate the CA Certificate (p. 81)
¢ Revoke the Device Certificate (p. 81)

If you do not have a CA certificate, you can create your own by using OpenSSL tools.
To create a CA certificate

1. Generate a key pair.

77

http://docs.aws.amazon.com/iot/latest/apireference/API_UpdateCertificate.html
http://docs.aws.amazon.com/cli/latest/userguide/
https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/codedeploy
http://docs.aws.amazon.com/cli/latest/reference/iot/create-keys-and-certificate.html
http://docs.aws.amazon.com/iot/latest/apireference/API_CreateKeysAndCertificate.html
http://docs.aws.amazon.com/cli/latest/reference/iot/create-certificate-from-csr.html
http://docs.aws.amazon.com/iot/latest/apireference/API_CreateCertificateFromCSR.html
https://www.openssl.org/

AWS IoT Developer Guide
X.509 Certificates

openssl genrsa -out root CA key 2048

Use the private key from the key pair to generate a CA certificate.

openssl req -x509 -new -nodes -key root CA key -sha256 -days 1024 -out
r oot CA. pem

Registering Your CA certificate

To register your CA certificate, you must get a registration code from AWS IoT, sign a private key
verification certificate with your CA certificate, and pass both your CA certificate and a private key
verification certificate to the r egi st er-ca-certi fi cat e CLI command. The Cormon Nane field in the
private key verification certificate must be set to the registration code generated by the

get -regi strati on- code CLI command. A single registration code is generated per AWS account.
You can use the r egi st er-ca-certifi cat e command or the AWS loT console to register CA
certificates.

To register a CA certificate

1.

Get a registration code from AWS |oT. This code will be used as the Conmon Nane of the private
key verification certificate.

aws iot get-registration-code

Generate a key pair for the private key verification certificate.

openssl genrsa -out privateKeyVerificationCert.key 2048

Create a CSR for the private key verification certificate, setting the Cormon Narre field of the certificate
to your registration code.

openssl req -new -key privateKeyVerificationCert.key -out privateKeyVerific
ationCert.csr

You will be prompted for some information, including the Conmon Nane for the certificate.

Country Name (2 letter code) [AU]:

State or Province Nanme (full name) []:

Locality Nane (eg, city) []:

Organi zati on Nanme (eg, conpany) []:

Organi zational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR nane) []: XXXXOXXXXXXXXMYREG STRATI ONCO
DEXXXXXX

Emai | Address []:

Use the CSR to create a private key verification certificate.

78

AWS IoT Developer Guide
X.509 Certificates

openssl x509 -req -in privateKeyVerificationCert.csr -CA root CA pem - CAkey
root CA. key -CAcreateserial -out privateKeyVerificationCert.crt -days 500
—sha256

Register the CA certificate with AWS IoT, passing in the CA certificate and the private key verification
certificate to the r egi st er-ca-certi fi cat e CLI command.

aws iot register-ca-certificate -—a-certificate file://root CA pem -—veri
fication-cert file://privateKeyVerificationCert.crt

Activate the CA certificate using the updat e- certi fi cat e CLI command.

aws iot update-ca-certificate --certificate-id XXXXXXXXXXX --new st atus
ACTI VE

Creating a Device Certificate

You can use a CA certificate registered with AWS IoT to create a device certificate. The device certificate
must be registered with AWS loT before use.

To create a device certificate

1.

Generate a key pair.

openssl genrsa -out deviceCert.key

Create a CSR for the device certificate.

openssl req -new -key deviceCert. key -out deviceCert.csr

You will be prompted for some additional information, as shown here.

Country Nane (2 letter code) [AU]:

State or Province Nane (full nane) []:

Locality Nane (eg, city) []:

Organi zation Nane (eg, conpany) []:

Organi zational Unit Nane (eg, section) []:
Comon Nane (e.g. server FQDN or YOUR nane) []:
Emai | Address []:

Create a device certificate from the CSR.

openssl x509 -req -in deviceCert.csr -CA root CA pem - CAkey root CA key -
CAcreateserial -out deviceCert.crt -days 500 —sha256

Note

You must use the CA certificate registered with AWS IoT to create device certificates. If you
have more than one CA certificate (with the same subject field and public key) registered
in your AWS account, you must specify the CA certificate used to create the device certificate
when registering your device certificate.

79

AWS IoT Developer Guide
X.509 Certificates

4. Register a device certificate.

aws iot register-certificate -—ertificate file://deviceCert.crt --caCerti
ficate file://caCert.crt

5. Activate the device certificate using the updat e-certi fi cat e CLI command.

aws iot update-certificate --certificate-id XXXXXXXXXXX --new- status ACTI VE

Registering a Device Certificate

You must use the CA certificate registered with AWS 10T to sign device certificates. If you have more
than one CA certificate (with the same subject field and public key) registered in your AWS account, you
must specify the CA certificate used to sign the device certificate when registering your device certificate.
You can register each device certificate manually, or you can use automatic registration, which allows
devices to register their certificate when they connect to AWS |oT for the first time.

Registering Device Certificates Manually

Use the following CLI command to register a device certificate:

aws iot register-certificate -—ertificate file://deviceCert.crt --caCertificate
file://caCert.crt

Using Automatic/Just-in-Time Registration for Device Certificates

You can also have your device certificates automatically registered when devices first connect to AWS
10T. To do this, you must enable automatic registration for your CA certificate. This will automatically
register any device certificate signed by your CA certificate when it connects to AWS IoT.

Enable Auto Registration

Use the updat e- ca- certi fi cat e API to set the CA certificates aut o-r egi strati on- st at us to
ENABLE:

$ aws iot update-ca-certificate --certificate-id caCertificateld --new auto-
regi stration-status ENABLE

You can also set the aut o- r egi strati on- st at us to ENABLE when you register your CA certificate
using the regi ster-ca-certificate APl

aws iot register-ca-certificate -—ea-certificate file://rootCA pem-—verifica
tion-cert file://privateKeyVerificationCert.crt --allowauto-registration

When a device first attempts to connect to AWS 10T, as part of the TLS handshake, it must present a
registered CA certificate and a device certificate. AWS loT will recognize the CA certificate as a registered
CA certificate and will automatically register the device certificate and set its status to

PENDI NG_ACTI VATI ON. This means the device certificate was automatically registered and is awaiting
activation. A certificate must be in the ACTIVE state before it can be used to connect to AWS loT. When
AWS loT automatically registers a certificate or when a certificate in PENDING_ACTIVATION status
connects, AWS loT publishes a message to the following MQTT topic:

80

AWS IoT Developer Guide
X.509 Certificates

$aws/ events/certificates/registered/caCertificatel D

Where caCerti fi cat el Dis the ID of the CA certificate that issued the device certificate.

The message published to this topic has the following structure:

"certificateld": "certificatel D",

"caCertificateld": "caCertificateld",

"timestanmp": tinmestanp,

"certificateStatus": "PENDI NG _ACTI VATI ON',

"awsAccount I d": "awsAccount|d",

"certificateRegistrationTi nestanp”": "certificateRegistrationTi nestanp"”

You can create a rule that listens on this topic and performs some additional actions. We recommend
that you create a Lambda rule that verifies the device certificate is not on a certificate revocation list
(CRL), activates the certificate, and creates and attaches a policy to the certificate. The policy determines
which resources the device is able to access. For more information about how to create a Lambda rule
that listens on the $aws/ event s/ certi fi cat es/ regi stered/ caCerti fi cat el Dtopic and performs
these actions, see Just-in-Time Registration.

Deactivate the CA Certificate

When you attempt to register a device certificate, AWS will check if the associated CA certificate is
ACTI VE. If the CA certificate is | NACTI VE, AWS loT will not allow the device certificate to be registered.
By marking the CA certificate as INACTIVE, you are preventing any new device certificates issued by
the compromised CA to be registered in your account. You can deactivate the CA certificate using the
updat e-ca-certificate APl

$ aws iot update-ca-certificate --certificate-id certificateld --new status
I NACTI VE

Note
Any registered device certificates that were signed by the compromised CA certificate will continue
to work until you explicitly revoke the device certificate.

Use the Li st Certi fi cat esByCA API to get a list of all registered device certificates that were signed
by the compromised CA. For each device certificate signed by the compromised CA certificate, use the
Updat eCerti fi cat e API to revoke the device certificate to prevent it from being used.

Revoke the Device Certificate

If you detect any suspicious activity with a registered device certificate, you can revoke it by using the
updat e-certificate API:

$ aws iot update-certificate --certificate-id certificateld
--new- st at us REVOKED

If any error or exception occurs during the auto-registration of the device certificates, AWS loT will send
the appropriate events or messages to your logs in CloudWatch Logs. For more information about setting
up the CloudWatch Logs for your account, see the Amazon CloudWatch documentation.

81

https://aws.amazon.com/blogs/iot/just-in-time-registration-of-device-certificates-on-aws-iot/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/

AWS IoT Developer Guide
IAM Users, Groups, and Roles

IAM Users, Groups, and Roles

IAM users, groups, and roles are the standard mechanisms for managing identity and authentication in
AWS. As with any other AWS service, you can use them to connect to AWS loT HTTP interfaces using
the AWS SDK and CLI.

IAM roles are also the basis for AWS loT security in the cloud. Roles allow AWS IoT to issue calls to
other AWS resources in your account on your behalf. If you want to have a device publish its state to a
DynamoDB table, for example, IAM roles allow AWS IoT to do the heavy lifting securely. For more
information, see IAM Roles.

For message broker connections, AWS loT authenticates IAM users, groups, and roles using the Signature
Version 4 signing process. For information about authentication with AWS security credentials, see Signing
AWS API Requests.

When using AWS Signature Version 4 with AWS 10T, clients must support the following in their TLS
implementation:

e TLS1.2,TLS 1.1, TLS 1.0.
¢ SHA-256 RSA certificate signature validation.
¢ One of the cipher suites from the TLS cipher suite support section.

For information, see the IAM User Guide.

Amazon Cognito Identities

Amazon Cognito Identity allows you to use your own identity provider or leverage other popular identity
providers, such as Login with Amazon, Facebook, or Google. You exchange a token from your identity
provider for AWS security credentials. The credentials represent an IAM role and can be used with AWS
loT.

AWS loT extends Amazon Cognito and allows policy attachment to Amazon Cognito identities. You can
attach a policy to an Amazon Cognito identity and give fine-grained permissions to an individual user of
your AWS IoT application. This can be used to assign permissions between specific customers and their

devices. For more information, see Amazon Cognito Identity.
_—

-
Device (loT certificate) SUBSCRIBE /thing/123
+ Action: SUBSCRIBE
@ + Resource: /fthing/123 ~r
. Effect: Allow =~
AWS Cognito Identity (loT PUBLISH /thing/123
policy)
@ . Action: PUBLISH
+ Resource: /thing/123
« Effect: Allow

82

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/cognito/latest/developerguide/identity/

AWS IoT Developer Guide
Authorization

Authorization

Communication with AWS loT follows the principle of least privilege. An identity can execute AWS loT
operations only if you grant the appropriate permission. You create AWS IoT and IAM policies to give
permissions to authenticated identities in AWS IoT.

Policies give permissions to AWS IoT clients regardless of the authentication mechanism they use to
connect to AWS IoT. To control which resources a device can access, attach one or more AWS loT
policies to the certificate associated with the device. To control which resources a web or mobile application
can access, attach one or more AWS loT policies to the Amazon Cognito identity pool associated with
the application. AWS IoT policies control access to AWS IoT resources (MQTT topics, devices, thing
shadows, and so on). IAM policies control access to other AWS services and are attached to IAM users,
groups, and roles.

Policy-based authorization is a powerful tool. It gives you complete control over the topics and topic filters
in your AWS account. For example, consider a device connecting to AWS IoT with a certificate. You can
open its access to all topics, or you can restrict its access to a single topic. The latter example allows you
to assign a topic per device. For example, the device ID 123ABC can subscribe to / devi ce/ 123ABC
and you can grant other identities permission to subscribe to this topic, effectively opening a communication
channel to this device.

AWS IoT Policies

AWS IoT policies are JSON documents. They follow the same conventions as |IAM policies. For more
information, see Overview of IAM Policies.

An AWS IoT policy looks like the following:

{
"Version": "2012-10-17",
"Statenment": [{
"Effect": "Allow',
"Action":["iot:Publish"],
"Resource": ["arn:aws:iot:us-east-1:123456789012:topic/foo/bar"]
},
{
"Effect": "Allow',
"Action": ["iot:Connect"],
"Resource": ["*"]
}H
}

This policy allows the principal to connect and publish messages to AWS IoT.

Managing AWS loT Policies

AWS loT supports named policies so many identities can reference the same policy document. Named
policies are versioned so they can be easily rolled back.

AWS |loT Policy Actions

The following actions are available for use with AWS loT:

83

http://docs.aws.amazon.com/IAM/latest/UserGuide//access_policies.html

AWS IoT Developer Guide
AWS IloT Policies

iot:Publish
Checked every time a PUBLISH request is sent to the broker. Used to allow clients to publish to
specific topic patterns.
iot:Subscribe
Checked every time a SUBSCRIBE request is sent to the broker. Used to allow clients to subscribe
to topics that match specific topic patterns.
iot:Receive
Checked every time a message is delivered to a client. Because the Receive permission is checked
on every delivery, it can be used to revoke permissions to clients that are currently subscribed to a
topic.
iot:Connect
Checked every time a CONNECT request is sent to the broker. The message broker does not allow
two clients with the same client ID to stay connected at the same time. After the second client connects,
the broker detects this case and disconnects one of the clients. The Connect permission can be used
to ensure only authorized clients can connect using a specific client ID.
iot:UpdateThingShadow
Checked every time a request is made to update the state of a thing shadow document.
iot:GetThingShadow
Checked every time a request is made to get the state of a thing shadow document.
iot:DeleteThingShadow
Checked every time a request is made to delete the thing shadow document.

Action Resources

The following table shows the resource to specify for each action type:

Action Resource
iot:DeleteThingShadow thing ARN
iot:Connect client ID ARN
iot:Publish topic ARN
iot:Subscribe topic filter ARN
iot:Receive topic ARN
iot:UpdateThingShadow thing ARN
iot:GetThingShadow thing ARN

AWS |oT Policy Variables

AWS loT defines two policy variables that can be used in AWS 1oT policies:i ot: i entld and
aws: Sour cel p. When a policy is evaluated, the variables will be replaced by the actual values.
iot:dientldisreplaced by the client ID that sent an MQTT or HTTP message. aws: Sour cel p is
replaced by the IP address from which the message originated.

The following AWS IoT policy illustrates the use of policy variables:

"Version": "2012-10-17",
"Statenment": [{

84

AWS IoT Developer Guide
AWS IloT Policies

"Effect": "Allow',

"Action": ["iot:Connect"],

"Resource": |
"arn:aws:iot:us-east-1:123451234510:client/${iot:Clientld}"

]

3
{
"Effect": "Allow',
"Action": ["iot:Publish"],
"Resource": |
"arn:aws:iot:us-east-1:123451234510:topic/foo/bar/${iot:dientld}"
]
}H

When you use policy variables like ${i ot : i ent | d}, you can inadvertently open access to topics you
do not want to be accessible. For example, if you use a policy that uses ${i ot : d i ent | d} to specify
a topic filter:

{
"Effect": "Alow',
"Action": ["iot:Subscribe"],
"Resource": |
"arn:aws:iot:us-east-1:123456789012: topicfilter/foo/ ${iot:dientld}/bar"
]
}

A client can connect using + as the client ID. This would allow the user to subscribe to any topic matching
f oo/ +/ bar . To protect against such security gaps, use the i ot : Connect policy action to control which
client IDs are able to connect. For example, this policy will allow only clients whose clientIDiscl i enti d1
to connect:

{
"Version": "2012-10-17",
"Statenment": [{
"Effect": "Alow',
"Action": ["iot:Connect"],
"Resource": [
"arn:aws:iot:us-east-1:123456789012: client/clientidl"
]
}
}

Example Policies

AWS 10T policies are specified in a JSON document. These are the components of an AWS IoT policy:

Version
Must be setto "2012- 10- 17".

Effect
Must be setto " Al | ow" or " Deny".

85

AWS IoT Developer Guide
AWS IloT Policies

Action
Must be set to "iot:<oper at i on- nane>" where <operation-name> is one of the following:

"iot:Publish":MQTT publish.

i ot: Subscri be": MQTT subscribe.

i ot : Updat eThi ngShadow" : Update a thing shadow.
"i ot : Get Thi ngShadow" :Retrieve a thing shadow.

"i ot : Del et eThi ngShadow:Delete a thing shadow.

Resource
Must be set to one of the following:

Client - arn:aws:iot:<r egi on>:<account | d>:client/<cl i ent | d>
Topic ARN - arn:aws:iot:<r egi on>:<account | d>:topic/<t opi cNane>

Topic filter ARN - arn:aws:iot:<r egi on>:<account | d>:topicfilter/<t opi cFi | t er >

Connect Policy Examples

The following policy allows a set of client IDs to connect:

{
"Version": "2012-10-17",
"Statenent": [
{

"Effect": "Alow',

"Action": [

"i ot: Connect"

I,

"Resource": [
"arn:aws:iot:us-east-1:123456789012:client/clientidl",
"arn:aws:iot:us-east-1:123456789012:client/clientid2",
"arn:aws:iot:us-east-1:123456789012:client/clientid3"

]

}s
{

"Effect": "Alow',

"Action": [
"iot:Publish",
"iot: Subscribe",
"iot: Receive"

I,

"Resource": [

W
]
}
]
}

The following policy prevents a set of client IDs from connecting:

86

AWS IoT Developer Guide
AWS IloT Policies

"Version": "2012-10-17",
"Statenent": [
{

"Effect": "Deny",

"Action": [

"i ot: Connect"

I,

"Resource": |
"arn:aws:iot:us-east-1:123456789012:client/clientidl",
"arn:aws:iot: us-east-1:123456789012:client/clientid2"

]

}s
{

"Effect": "Alow',

"Action": [

"i ot: Connect"

I,

"Resource": |
W

]

}
]
}

The following policy allows the certificate holder using any client ID to subscribe to topic filter f oo/ *:

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "All ow',
"Action": [
"i ot: Connect"
I,
"Resource": [
W
]
}
{
"Effect": "All ow',
"Action": [
"i ot:Subscribe"
I,
"Resource": [
"arn:aws:iot:us-east-1:123456789012:topicfilter/fool *"
]
}
]
}

Publish/Subscribe Policy Examples

The policy you use will depend on how you are connecting to AWS IoT. You can connect to AWS loT
using an MQTT client, HTTP, or WebSocket. When you connect with an MQTT client, you will be
authenticating with an X.509 certificate. When you connect over HTTP or the WebSocket protocol, you
will be authenticating with ignature ersion 4 and Amazon Cognito.

87

AWS IoT Developer Guide
AWS IloT Policies

Policies for MQTT Clients

The following policy allows the certificate holder using any client ID to publish to all topics and subscribe
to all topic filters in the AWS account:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Alow',
"Action": [
"iot:*"
1,
"Resource": |
W
]
}
]
}

The following policy allows the certificate holder using any client ID to publish to all topics in the AWS
account:

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Alow',
"Action": [
"iot:Publish",
"i ot: Connect"
1,
"Resource": |
W
]
}
]
}

The following policy allows the certificate holder using any client ID to publish to the f oo/ bar and f oo/ baz
topics:

"Version": "2012-10-17",
"Statenent": [

"Effect": "Alow',

"Action": [
"i ot: Connect"
I,
"Resource": [
wn
]

"Effect": "Alow',

88

AWS IoT Developer Guide
AWS IloT Policies

"Action": [
"iot: Publish"

1,

"Resource": |
"arn:aws:iot:us-east-1:123456789012: t opi ¢/ foo/ bar",
"arn:aws:iot:us-east-1:123456789012: t opi ¢/ f oo/ baz"

The following policy prevents the certificate holder using any client ID from publishing to the f oo/ bar
topic:

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "All ow',
"Action": [
"i ot: Connect"
I,
"Resource": [
W
]
}
{
"Effect": "Deny",
"Action": [
"iot: Publish"
I,
"Resource": [
"arn:aws:iot:us-east-1:123456789012: t opi c/ f oo/ bar™"
]
}
]
}

The following policy allows the certificate holder using any client ID to subscribe to topic filter f oo/ +/ bar :

"Version": "2012-10-17",
"Statenment": [

{
"Effect": "Alow',
"Action": [
"iot: Connect"
1,
"Resource": |
W
]
}s
{

"Effect": "Alow',
"Action": [
"iot:Subscribe"

89

AWS IoT Developer Guide
AWS IloT Policies

1,
"Resource": |
"arn:aws:iot:us-east-1:123456789012: topi cfilter/fool +/ bar"

]

The following policy allows the certificate holder using any client ID to publish on topic f oo and subscribe
to topic filter f oo/ bar / *:

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Alow',
"Action": [
"iot: Connect"
1,
"Resource": |
W
]
},
{
"Effect": "Alow',
"Action": [
"iot: Publish"
1,
"Resource": |
"arn:aws:iot:us-east-1:123456789012: t opi ¢/ f 00"
]
},
{
"Effect": "Alow',
"Action": [
"iot: Subscribe"
1,
"Resource": |
"arn:aws:iot:us-east-1:123456789012: topi cfilter/fool/ bar/*"
]
}
]
}

The following policy allows the certificate holder using any client ID to publish on topic f oo and prevents
the certificate holder using any client ID from publishing to topic bar :

"Version": "2012-10-17",
"Statenment": [

{
"Effect": "Alow',
"Action": [
"iot: Connect"

1.

"Resource": |

90

AWS IoT Developer Guide
AWS IloT Policies

nwgn

]

"Effect": "Alow',

"Action": [
"iot:Publish"

1,
"Resource": |
"arn: aws:iot:us-east-1:123456789012: t opi ¢/ f 00"

]

"Effect": "Deny",

"Action": [
"iot:Publish"

1,

"Resource": |
"arn: aws:iot:us-east-1:123456789012: t opi ¢/ bar"

]

The following policy allows the certificate holder using any client ID to subscribe to topic filter f oo/ bar :

"Version": "2012-10-17",
"Statenent": [

{
{
b
{
}
]
}

"Effect": "All ow',
"Action": [
"i ot: Connect"

]

"Resource": [

wan

"Effect": "All ow',
"Action": [

"iot: Subscribe"
I,
"Resource": [

"arn:aws:iot:us-east-1:123456789012:topi cfilter/fool bar"

The following policy allows the certificate holder using any client ID to publish on the

arn:aws: i ot: us-east-1: 123456789012: t opi ¢/ i ot noni t or/ provi si oni ng/ 8050373158915119971
topic and allows the certificate holder using any client ID to subscribe to the topic filter

arn:aws: i ot : us-east - 1: 123456789012: t opi cfil ter/i ot noni t or/ provi si oni ng/ 8050373158915119971:

91

AWS IoT Developer Guide
AWS IloT Policies

"Version": "2012-10-17",
"Statenment": [

{
"Effect": "Alow',
"Action": [
"i ot: Connect"
I,
"Resource": |
W
]
}
{
"Effect": "Alow',
"Action":
"i ot:Publish",

"iot:Receive"
1,
"Resource": |
"arn:aws:iot:us-east-1:123456789012: t opi c/i ot noni tor/ provision
i ng/ 8050373158915119971"

]
1
{

"Effect": "Allow',

"Action": [
"iot: Subscri be"
1,
"Resource": [
"arn:aws:iot:us-east-1:123456789012:topicfilter/iotnonitor/pro
vi si oni ng/ 8050373158915119971"
]
}

Policies for HTTP and WebSocket Clients

For the following operations, AWS loT uses policies attached to Amazon Cognito identities (through the
Att achPri nci pal Pol i cy API) to scope down the permissions attached to the Amazon Cognito identity
pool with authenticated identities. That means an Amazon Cognito identity needs permission from the
role policy attached to the pool and the policy attached to the Amazon Cognito identity through the AWS
IoT Att achPri nci pal Pol i cy API.

e i ot: Connect

e jiot:Publish

e jot:Subscribe

e iot: Receive

¢ i ot: Get Thi ngShadow

¢ i ot: Updat eThi ngShadow
e i ot: Del et eThi ngShadow

Note
For other AWS loT operations or for unauthenticated identities, AWS loT does not scope down
the permissions attached to the Amazon Cognito identity pool role. For both authenticated and

92

AWS IoT Developer Guide
AWS IloT Policies

unauthenticated identities, this is the most permissive policy that we recommend attaching to
the Amazon Cognito pool role.

To allow unauthenticated Amazon Cognito identities to publish messages over HTTP on any topic, attach
the following policy to the Amazon Cognito identity pool role:

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Alow',
"Action": [
"iot: Connect",
"iot:Publish",
"iot:Subscribe",
"iot: Receive",
"i ot: Get Thi ngShadow",
"i ot : Updat eThi ngShadow",
"i ot: Del et eThi ngShadow'
I,
"Resource": ["*"]
}H
}

To allow unauthenticated Amazon Cognito identities to publish MQTT messages over HTTP on any topic
in your account, attach the following policy to the Amazon Cognito identity pool role:

{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action": ["iot:Publish"],
"Resource": ["*"]
H
}
Note

This example is for illustration only. Unless your service absolutely requires it, we recommend
the use of a more restrictive policy, one that does not allow unauthenticated Amazon Cognito
identities to publish on any topic.

To allow unauthenticated Amazon Cognito identities to publish MQTT messages over HTTP on t opi c1
in your account, attach the following policy to your Amazon Cognito identity pool role:

{
"Version": "2012-10-17",
"Statenment": [{
"Effect": "Alow',
"Action": ["iot:Publish"],
"Resource": ["arn:aws:iot:us-east-1:123456789012:topic/topicl"]
}
}

For an authenticated Amazon Cognito identity to publish MQTT messages over HTTP on t opi c1 in your
AWS account, you must specify two policies, as outlined here. The first policy must be attached to an
Amazon Cognito identity pool role and allow identities from that pool to make a publish call. The second

93

AWS IoT Developer Guide
AWS IloT Policies

policy is attached to an Amazon Cognito user using the AWS loT AttachPrincipalPolicy APl and allows
the specified Amazon Cognito user access to the t opi c1 topic.

Amazon Cognito identity pool policy:

{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action": ["iot:Publish"],
"Resource": ["arn:aws:iot:us-east-1:123456789012:topic/topicl"]
}
}

Amazon Cognito user policy:

{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action": ["iot:Publish"],
"Resource": ["arn:aws:iot:us-east-1:123456789012:topic/topicl"]
}
}

Similarly, the following example policy allows the Amazon Cognito user to publish MQTT messages over
HTTP on the t opi c1 and t opi c2 topics. Two policies are required. The first policy gives the Amazon
Cognito identity pool role the ability to make the publish call. The second policy gives the Amazon Cognito
user access to the t opi c1 and t opi c2 topics.

Amazon Cognito identity pool policy:

{
"Version": "2012-10-17",
"Statenment": [{
"Effect": "All ow',
"Action": ["iot:Publish"],
"Resource": ["*"]
}H
}

Amazon Cognito user policy:

{
"Version": "2012-10-17",
"Statenment": [{
"Effect": "All ow',
"Action": ["iot:Publish"],
"Resource": [
"arn:aws:iot:us-east-1:123456789012:t opi ¢/ topicl",
"arn:aws:iot:us-east-1:123456789012: t opi ¢/t opi c2"
]
}H
}

94

http://docs.aws.amazon.com//iot/latest/apireference/API_AttachPrincipalPolicy.html

AWS IoT Developer Guide
AWS IloT Policies

The following policies allow multiple Amazon Cognito users to publish to a topic. Two policies per Amazon
Cognito identity are required. The first policy gives the Amazon Cognito identity pool role the ability to
make the publish call. The second and third policies give the Amazon Cognito users access to the topics
topi c1 and t opi c2, respectively.

Amazon Cognito identity pool policy:

{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action": ["iot:Publish"],
"Resource": ["*"]
}
}

Amazon Cognito userl policy:

{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action": ["iot:Publish"],
"Resource": ["arn:aws:iot:us-east-1:123456789012:topic/topicl"]
}
}

Amazon Cognito user2 policy:

{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action": ["iot:Publish"],
"Resource": ["arn:aws:iot:us-east-1:123456789012: topi c/topic2"]
}
}

Receive Policy Examples

The following policy prevents the certificate holder using any client ID from receiving messages from a
topic:

"Version": "2012-10-17",
"Statenent": [

{
"Effect": "Deny",
"Action": [
"iot:Receive"
1
"Resource": [
"arn:aws:iot:us-east-1:123456789012:topic/fool/restricted"
]
I8

95

AWS IoT Developer Guide
AWS IloT Policies

{
"Effect": "Alow',
"Action": [
"iot:*"
1,
"Resource": |
W n
]
}

The following policy allows the certificate holder using any client ID to subscribe and receive messages
on one topic:

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Allow',
"Action": [
"iot: Connect"
1,
"Resource": [*]
3
{
"Effect": "Allow',
"Action": [
"iot: Subscribe"
1,
"Resource": |
"arn:aws:iot:us-east-1:123456789012: topi cfilter/fool bar"
]
3
{
"Effect": "Allow',
"Action": [
"iot: Receive"
1,
"Resource": |
"arn:aws:iot:us-east-1:123456789012: t opi ¢/ f oo/ bar"
]
}
]
}

IAM 10T Policies

AWS loT provides a set of IAM policy templates you can either use as-is or as a starting point for creating
custom IAM policies. These templates allow access to configuration and data operations. Configuration

96

AWS IoT Developer Guide
AWS IloT Policies

operations allow you to create things, certificates, policies, and rules. Data operations send data over
MQTT or HTTP protocols. The following table describes these templates.

Policy Template Description

AWSlotLogging Allows the associated identity to configure Cloud-
Watch logging. This policy is attached to your
CloudWatch logging role.

AWSIloTConfigAccess Allows the associated identity access to all AWS
0T configuration operations.

AWSIloTConfigReadOnlyAccess Allows the associated identity to call read-only
configuration operations.

AWSloTDataAccess Allows the associated identity full access to all AWS
loT data operations. Data operations send data
over MQTT or HTTP protocols. When MQTT over
the WebSocket protocol is used, only policies
stored in IAM will apply to the WebSocket connec-
tion.

AWSIoTFullAccess Allows the associated identity full access to all AWS
0T configuration and data operations.

AWSIoTRuleActions Allows the associated identity access to all AWS
services supported in AWS IoT rule actions.

Cross Account Access

AWS loT allows you to enable a principal to publish or subscribe to a topic that is defined in an AWS
account not owned by the principal. You configure cross account access by creating an IAM policy and
IAM role and then attaching the policy to the role.

First, create an IAM policy just like you would for other users and certificates in your AWS account. For
example, the following policy grants permissions to connect and publish to the / f oo/ bar topic.

"Version": "2012-10-17",
"Statenent": [

{
"Effect": "All ow',
"Action": [
"i ot: Connect"
I,
"Resource": [
W
]
b
{
"Effect": "Alow',
"Action": [
"i ot:Publish"

1.
"Resource": [
"arn:aws:iot:us-east-1:123456789012: t opi c/ f oo/ bar"

]

97

AWS IoT Developer Guide
Transport Security

}H

Next, follow the steps in Creating a Role for an IAM User. Enter the AWS account ID of the AWS account
with which you want to share access. Then, in the final step, attach the policy you just created to the role.
If, at a later time, you need to modify the AWS account ID to which you are granting access, you can use
the following trust policy format to do so.

{
"Version":"2012-10-17",
"Statenent":[{
"Effect": "Allow',
"Principal": {
"AWS': "arn:aws:iamus-east-1:111111111111: user/ MyUser"
1
"Action": "sts:AssuneRol e"
}
}

Transport Security

The AWS IoT message broker and Thing Shadows service encrypt all communication with TLS. TLS is
used to ensure the confidentiality of the application protocols (MQTT, HTTP) supported by AWS IoT. TLS
is available in a number of programming languages and operating systems.

For MQTT, TLS encrypts the connection between the device and the broker. TLS client authentication is
used by AWS 10T to identify devices. For HTTP, TLS encrypts the connection between the device and
the broker. Authentication is delegated to AWS Signature Version 4.

TLS Cipher Suite Support

AWS loT supports the following cipher suites:

« ECDHE-ECDSA-AES128-GCM-SHA256 (recommended)
* ECDHE-RSA-AES128-GCM-SHA256 (recommended)
¢ ECDHE-ECDSA-AES128-SHA256

* ECDHE-RSA-AES128-SHA256

¢ ECDHE-ECDSA-AES128-SHA
 ECDHE-RSA-AES128-SHA

* ECDHE-ECDSA-AES256-GCM-SHA384

* ECDHE-RSA-AES256-GCM-SHA384

¢ ECDHE-ECDSA-AES256-SHA384

* ECDHE-RSA-AES256-SHA384

¢ ECDHE-RSA-AES256-SHA

* ECDHE-ECDSA-AES256-SHA

* AES128-GCM-SHA256

* AES128-SHA256

¢ AES128-SHA

* AES256-GCM-SHA384

98

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

AWS IoT Developer Guide
TLS Cipher Suite Support

* AES256-SHA256
* AES256-SHA

99

AWS IoT Developer Guide
Protocols

Message Broker for AWS loT

The AWS IoT message broker is a publish/subscribe broker service that enables the sending and receiving
of messages to and from AWS IoT. When communicating with AWS 10T, a client sends a message

addressed to a topic like Sensor/t enp/ r ooml. The message broker, in turn, sends the message to all
clients that have registered to receive messages for that topic. The act of sending the message is referred
to as publishing. The act of registering to receive messages for a topic filter is referred to as subscribing.

The topic namespace is isolated for each AWS account and region pair. For example, the

Sensor/t enp/ r ooml topic for an AWS account is independent from the Sensor / t enp/ r oontl topic
for another AWS account. This is true of regions, too. The Sensor/t enp/ r ool topic in the same AWS
account in us-east-1 is independent from the same topic in us-west-2. AWS loT does not support sending
and receiving messages across AWS accounts and regions.

The message broker maintains a list of all client sessions and the subscriptions for each session. When
a message is published on a topic, the broker checks for sessions with subscriptions that map to the
topic. The broker then forwards the publish message to all sessions that have a currently connected
client.

Protocols

The message broker supports the use of the MQTT protocol to publish and subscribe and the HTTPS
protocol to publish. Both protocols are supported through IP version 4 and IP version 6. The message
broker also supports MQTT over the WebSocket protocol.

MQTT

MQTT is a widely adopted lightweight messaging protocol designed for constrained devices. For more
information, see MQTT.

Although the AWS IoT message broker implementation is based on MQTT version 3.1.1, it deviates from
the specification as follows:

« In AWS IoT, subscribing to a topic with Quality of Service (QoS) 0 means a message will be delivered
zero or more times. A message might be delivered more than once. Messages delivered more than
once might be sent with a different packet ID. In these cases, the DUP flag is not set.

¢ AWS IoT does not support publishing and subscribing with QoS 2. The AWS IoT message broker does
not send a PUBACK or SUBACK when QoS 2 is requested.

100

http://www.mqtt.org

AWS IoT Developer Guide
HTTP

» The QoS levels for publishing and subscribing to a topic have no relation to each other. One client can
subscribe to a topic using QoS 1 while another client can publish to the same topic using QoS 0.

¢ When responding to a connection request, the message broker sends a CONNACK message. This
message contains a flag to indicate if the connection is resuming a previous session. The value of this
flag might be incorrect if two MQTT clients connect with the same client ID simultaneously.

* When a client subscribes to a topic, there might be a delay between the time the message broker sends
a SUBACK and the time the client starts receiving new matching messages.

* The MQTT specification provides a provision for the publisher to request that the broker retain the last
message sent to a topic and send it to all future topic subscribers. AWS loT does not support retained
messages. If a request is made to retain messages, the connection is disconnected.

» The message broker uses the client ID to identify each client. The client ID is passed in from the client
to the message broker as part of the MQTT payload. Two clients with the same client ID are not allowed
to be connected concurrently to the message broker. When a client connects to the message broker
using a client ID that another client is using, a CONNACK message will be sent to both clients and the
currently connected client will be disconnected.

« The message broker does not support persistent sessions (clean session set to 0). All sessions are
assumed to be clean sessions and messages are not stored across sessions. If an MQTT client sends
a message with the clean session attribute set to false, the client will be disconnected.

» On rare occasions, the message broker might resend the same logical PUBLISH message with a
different packet ID.

« The message broker does not guarantee the order in which messages and ACK are received.

HTTP

The message broker supports clients connecting with the HTTP protocol using a REST API. Clients can
publish by sending a POST message to <AWS | oT
Endpoi nt >/ t opi cs/ <ur| _encoded_t opi c_nanme>?qos=1".

MQTT Over the WebSocket Protocol

AWS loT supports MQTT over the WebSocket protocol to enable browser-based and remote applications
to send and receive data from AWS loT-connected devices using AWS credentials. AWS credentials are
specified using AWS Signature Version 4. WebSocket support is available on TCP port 443, which allows
messages to pass through most firewalls and web proxies.

A WebSocket connection is initiated on a client by sending an HTTP GET request. The URL you use is
of the following form:

wss: // <endpoi nt>.iot.<regi on>. amazonaws. com ngtt

WES
Specifies the WebSocket protocol.

endpoint
Your AWS account-specific AWS loT endpoint. You can use the AWS loT CLI describe-endpoint
command to find this endpoint.
region
The AWS region of your AWS account.
maqtt
Specifies you will be sending MQTT messages over the WebSocket protocol.

When the server responds, the client sends an upgrade request to indicate to the server it will communicate
using the WebSocket protocol. After the server acknowledges the upgrade request, all communication

101

https://en.wikipedia.org/wiki/WebSocket
http://docs.aws.amazon.com/general/latest/gr//sigv4_signing.html
http://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html

AWS IoT Developer Guide
MQTT Over the WebSocket Protocol

is performed using the WebSocket protocol. The WebSocket implementation you use acts as a transport
protocol. The data you send over the WebSocket protocol are MQTT messages.

Using the WebSocket Protocol in aWeb Application

The WebSocket implementation provided by most web browsers does not allow the modification of HTTP
headers, so you must add the Signature Version 4 information to the query string. For more information,
see Adding Signing Information to the Query String.

The following JavaScript defines some utility functions used in generating a Signature Version 4 request.

/**

* utilities to do sigv4
* @lass Sigvaltils

*/

function Sigv4autils() {}

Sigv4alti |l s. get Si gnatureKey = function (key, date, region, service) {
var kDate = AWS. util.crypto. hmac(' AWS4' + key, date, 'buffer');
var kRegion = AWS. util.crypto. hmac(kDate, region, 'buffer');
var kService = AWS. util.crypto. hmac(kRegi on, service, 'buffer');
var kCredentials = AWB. util.crypto. hmac(kService, 'aws4_request', 'buffer');

return kCredenti al s;

}s

Sigv4altils. get SignedUrl = function(host, region, credentials) {
var datetime = AWS. util.date.iso8601(new Date()).replace(/[:\-]|\.\d{3}/g,

var date = datetime.substr(0, 8);

var nethod = ' GET' ;

var protocol = 'wss';
var uri = "'/mtt";
var service = 'iotdevi cegateway';

var al gorithm = "' AW54- HVAC- SHA256" ;

var credential Scope = date + '/' + region + '/' + service + '/' +
'aws4_request’;

var canoni cal Querystring = ' X-Anme-Al gorithm=' + algorithm

canoni cal Querystring += ' &X- Anz- Credenti al = + encodeURI Conponent (creden
tials.accesskKeyld + '/' + credenti al Scope);

canoni cal Querystring += ' &X- Anz-Date=' + datetineg;

canoni cal Querystring += ' &X- Anz- Si gnedHeader s=host "' ;

var canoni cal Headers = '"host:' + host + '\n';

var payl oadHash = AWB. util.crypto.sha256('', 'hex')

var canonical Request = method + '\n" + uri + '"\n' + canonical Querystring +
"\n' + canoni cal Headers + '\nhost\n' + payl oadHash;

var stringToSign = algorithm+ '\n'" + datetine + '\n' + credential Scope +
\n" + AWS. util.crypto.sha256(canoni cal Request, 'hex');
var signingKey = SigV4Util s. get Si gnat ur eKey(credenti al s. secr et AccessKey,
date, region, service);
var signhature = AWS. util.crypto. hmac(signi ngkey, stringToSign, 'hex');

canoni cal Querystring += '&X- Ane-Si gnature=" + signature;

102

http://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html#sigv4-add-signature-querystring

AWS IoT Developer Guide
MQTT Over the WebSocket Protocol

if (credentials.sessionToken) {
canoni cal Querystring += ' &X- Anz- Security-Token=' + encodeURl Conponent (cre
denti al s. sessi onToken) ;

}
var requestU |l = protocol + "'://' + host + uri +'?' + canonical Querystring;

return request Ul ;

}s

To create a Signature Version 4 request
1. Create a canonical request for Signature Version 4.

The following JavaScript code creates a canonical request:

var datetime = AWB. util.date.iso8601(new Date()).replace(/[:\-]]\.\d{3}/qg,
ll).

var date = datetine.substr(0, 8);

var nethod = ' GET';

var protocol = 'wss';
var uri ="'/mtt";
var service = 'iotdevi cegateway';

var al gorithm ="' AWs4- HVAC- SHA256' ;

var credential Scope = date + '/' + region +'/' + service +'/' + "awsd_re

quest';
var canonical Querystring = ' X-Anz-Al gorithm=" + algorithm
canoni cal Querystring += ' &X- Anz-Credential = + encodeURI Conponent (creden

tials.accesskKeyld + '/' + credential Scope);
canoni cal Querystring += ' &X-Ane-Date=' + dateti neg;
canoni cal Querystring += '&X- Ane- Si gnedHeader s=host "' ;

var canonical Headers = 'host:' + host + '\n';

var payl oadHash = AWS. util.crypto.sha256('', 'hex')

var canoni cal Request = nethod + '\n' + uri + '\n" + canonical Querystring +
"\'n'" + canonical Headers + '\nhost\n' + payl oadHash;

2. Create a string to sign, generate a signing key, and sign the string.

Take the canonical URL you created in the previous step and assemble it into a string to sign. You
do this by creating a string composed of the hashing algorithm, the date, the credential scope, and
the SHA of the canonical request. Next, generate the signing key and sign the string, as shown in
the following JavaScript code.

var stringToSign = algorithm+ '"\n' + datetime + '\n' + credential Scope +
"\n" + AWS. util.crypto.sha256(canoni cal Request, 'hex');

var signingKey = SigV4Altil s. get Si gnatureKey(credential s. secret AccessKey,
date, region, service);

var signature = AWS. util.crypto. hmac(signi ngKey, stringToSign, 'hex');

103

AWS IoT Developer Guide
MQTT Over the WebSocket Protocol

3. Add the signing information to the request.

The following JavaScript code shows how to add the signing information to the query string.

canoni cal Querystring += '&X-Ane- Signature=" + signature;

4. If you have session credentials (from an STS server, AssumeRole, or Amazon Cognito), append the
session token to the end of the URL string after signing:

canoni cal Querystring += '&X- Anz- Security-Token=" + encodeURl Conponent(cre
denti al s. sessi onToken) ;

5. Prepend the protocol, host, and URI to the canonicalQuerystring:

var requestU |l = protocol + '://' + host + uri + '?' + canonical Querystring;

6. Open the WebSocket.

The following JavaScript code shows how to create a Paho MQTT client and call CONNECT to AWS
I0T. The endpoi nt argument is your AWS account-specific endpoint. The cl i ent | d is a text
identifier that is uniqgue among all clients simultaneously connected in your AWS account.

var client = new Paho. MJIT.Client(requestUl, clientld);
var connect Options = {
onSuccess: function(){
/1 connect succeeded
b
useSSL: true,
timeout: 3,
mgtt Ver si on: 4,
onFai lure: function() {
/1 connect failed
}
b

client.connect (connect Options);

Using the WebSocket Protocol in a Mobile Application

We recommend using one of the AWS loT Device SDKs to connect your device to AWS loT when making
a WebSocket connection. The following AWS IoT Device SDKs support WebSocket-based MQTT
connections to AWS IloT:

¢ Node.js
« i0S
¢ Android

104

https://github.com/aws/aws-iot-device-sdk-js
http://docs.aws.amazon.com/mobile/sdkforios/developerguide/
http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/

AWS IoT Developer Guide
Topics

For a reference implementation for connecting a web application to AWS loT using MQTT over the
WebSocket protocol, see AWS Labs WebSocket sample.

If you are using a programming or scripting language that is not currently supported, any existing
WebSocket library can be used as long as the initial WebSocket upgrade request (HTTP POST) is signed
using AWS Signature Version 4. Some MQTT clients, such as Eclipse Paho for JavaScript, support the
WebSocket protocol natively.

Topics

The message broker uses topics to route messages from publishing clients to subscribing clients. The
forward slash (/) is used to separate topic hierarchy. The following table lists the wildcards that can be
used in the topic filter when you subscribe.

Topic Wildcards

Wildcard Description

Must be the last character in the topic to which you
are subscribing. Works as a wildcard by matching
the current tree and all subtrees. For example, a
subscription to Sensor / # will receive messages
published to Sensor/, Sensor/t enp,
Sensor/t enp/ r oond, but not the messages
published to Sensor .

+ Matches exactly one item in the topic hierarchy.
For example, a subscription to Sensor/ +/ r oonl
will receive messages published to
Sensor/t enp/ roomntl, Sensor/ noi s-

t ur e/ roont, and so on.

Reserved Topics

Any topics beginning with $ are considered reserved and are not supported for publishing and subscribing
except when working with the Thing Shadows service. For more information, see Thing Shadows.

Lifecycle Events

AWS loT publishes lifecycle events on the MQTT topics discussed in the following sections. These
messages allow you to be notified of lifecycle events from the message broker.

Note
Lifecycle messages might be sent out of order and you might receive duplicate messages.

Policy Required for Receiving Lifecycle Events

The following is an example of the policy required for receiving lifecycle events:

"Version":"2012-10- 17",

105

https://github.com/awslabs/aws-iot-examples
http://www.eclipse.org/paho/
http://docs.aws.amazon.com/iot/latest/developerguide//iot-thing-shadows.html

AWS IoT Developer Guide
Connect/Disconnect Events

"Statenent":[{
"Effect":" Al ow',
"Action":[
"iot:Subscribe",
"iot:Receive"
1,
"Resource": [
"arn:aws:iot:region:account:topicfilter/$aws/events/*"

}

Connect/Disconnect Events

AWS IoT publishes a message to the following MQTT topics when a client connects or disconnects:

$aws/ event s/ presence/ connected/clientld

or

$aws/ event s/ presence/ di sconnected/clientld

Where cl i ent | d is the MQTT client ID that connects to or disconnects from the AWS loT message
broker.

The message published to this topic has the following structure:

"clientl1d": "alb2c3d4e5f 6a7b8c9d0elf 2a3b4c5d6",

"timestanmp": 1460065214626,

"event Type": "connected",

"sessionldentifier": "00000000-0000-0000- 0000- 000000000000",

"principalldentifier": "000000000000/ ABCDEFGH JKLMNOPQRSTU: sone- user/ ABCDE
FCH JKLMNOPQRSTU: some- user "

}

The following is a list of JSON elements that are contained in the connection/disconnection messages
published to the $aws/ event s/ pr esence/ connect ed/ cl i ent | d topic.

clientld
The client ID of the connecting or disconnecting client.
Note
Client IDs that contain # or + will not receive lifecycle events.
eventType

The type of event. Valid values are connect ed or di sconnect ed.

principalldentifier
The credential used to authenticate. For TLS mutual authentication certificates, this is the certificate
ID. For other connections, this is IAM credentials.

sessionldentifier
A globally unique identifier in AWS 10T that exists for the life of the session.

timestamp
An approximation of when the event occurred, expressed in milliseconds since the Unix epoch. The
accuracy of the timestamp is +/- 2 minutes.

106

AWS IoT Developer Guide
Subscribe/Unsubscribe Events

Subscribe/Unsubscribe Events

AWS |oT publishes a message to the following MQTT topic when a client subscribes or unsubscribes to
an MQTT topic:

$aws/ event s/ subscri pti ons/ subscri bed/clientld

or

$aws/ event s/ subscri pti ons/unsubscri bed/clientld

Where cl i ent | d is the MQTT client ID that connects to the AWS IoT message broker.

The message published to this topic has the following structure:

"clientld": "186b5",

"timestamp": 1460065214626,

"event Type": "subscribed" | "unsubscribed",

"sessionldentifier": "00000000-0000-0000-0000-000000000000",

"principalldentifier": "000000000000/ ABCDEFGH JKLMNOPQRSTU: somne- user/ ABCDE
FGH JKLMNOPQRSTU: somre- user "

"topics" : ["foo/bar","devicel/data", "dog/cat"]

}

The following is a list of JSON elements that are contained in the subscribed and unsubscribed messages
published to the $aws/ event s/ subscri pti ons/ subscri bed/clientldand
$aws/ event s/ subscri pti ons/ unsubscri bed/ client | d topics.

clientld
The client ID of the subscribing or unsubscribing client.
Note
Client IDs that contain # or + will not receive lifecycle events.
eventType

The type of event. Valid values are subscri bed or unsubscri bed.
principalldentifier
The credential used to authenticate. For TLS mutual authentication certificates, this is the certificate
ID. For other connections, this is IAM credentials.
sessionldentifier
A globally unique identifier in AWS loT that exists for the life of the session.
timestamp
An approximation of when the event occurred, expressed in milliseconds since the Unix epoch. The
accuracy of the timestamp is +/- 2 minutes.
topics
An array of the MQTT topics to which the client has subscribed.

Note
Lifecycle messages might be sent out of order. You might receive duplicate messages.

107

AWS IoT Developer Guide

Rules for AWS loT

Rules give your devices the ability to interact with AWS services. Rules are analyzed and actions are
performed based on the MQTT topic stream. You can use rules to support tasks like these:

Augment or filter data received from a device.

Write data received from a device to an Amazon DynamoDB database.
Save a file to Amazon S3.

Send a push notification to all users using Amazon SNS.

Publish data to an Amazon SQS queue.

Invoke a Lambda function to extract data.

Process messages from a large number of devices using Amazon Kinesis.
Send data to the Amazon Elasticsearch Service.

Capture a CloudWatch metric.

Change a CloudWatch alarm.

Send the data from an MQTT message to Amazon Machine Learning to make predictions based on
an Amazon ML model.

Before AWS IoT can perform these actions, you must grant it permission to access your AWS resources
on your behalf. When the actions are performed, you incur the standard charges for the AWS services
you use.

Contents

e Granting AWS loT the Required Access (p. 109)
¢ Pass Role Permissions (p. 110)

e Creating an AWS loT Rule (p. 111)

¢ Viewing Your Rules (p. 114)

e SQL Versions (p. 114)

¢ Troubleshooting a Rule (p. 116)

¢ Deleting a Rule (p. 116)

¢« AWS loT Rule Actions (p. 117)

e AWS loT SQL Reference (p. 125)

108

AWS IoT Developer Guide
Granting AWS IoT the Required Access

Granting AWS loT the Required Access

You use IAM roles to control the AWS resources to which each rule has access. Before you create a rule,
you must create an IAM role with a policy that allows access to the required AWS resources. AWS loT
assumes this role when executing a rule.

To create an IAM role (AWS CLI)

1. Save the following trust policy document, which grants AWS loT permission to assume the role, to
a file called iot-role-trust.json:

{
"Version":"2012-10-17",
"Statement":[{
"Effect": "Alow',
"Principal": {
"Service": "iot.anmazonaws. cont
b
"Action": "sts:AssuneRol e"
H
}

Use the create-role command to create an 1AM role specifying the iot-role-trust.json file:

aws iamcreate-role --role-nanme ny-iot-role --assume-rol e-policy-docunent
file://iot-role-trust.json

The output of this command will ook like the following:

{
"Role": {
"AssuneRol ePol i cyDocument": "url -encoded-j son",
"Rol el d": " AKI Al OSFODNN7EXAMPLE" ,
"CreateDate": "2015-09-30T18:43: 32. 82172",
"Rol eNane": "ny-iot-role",
"Path": "/",
"Arn": "arn:aws:iam:123456789012:rol e/ ny-iot-role"
}
}

2. Save the following JSON into a file named iot-policy.json.

{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action": "dynanmodb: *",
"Resource": "*"
H
}

This JSON is an example policy document that grants AWS loT administrator access to DynamoDB.

109

http://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html

AWS IoT Developer Guide
Pass Role Permissions

Use the create-policy command to grant AWS loT access to your AWS resources upon assuming
the role, passing in the iot-policy.json file:

aws i amcreate-policy --policy-nanme ny-iot-policy --policy-docurment file://ny-
i ot-policy-docunent.json

For more information about how to grant access to AWS services in policies for AWS 10T, see Creating
an AWS loT Rule (p. 111).

The output of the create-policy command will contain the ARN of the policy. You will need to attach
the policy to a role.

{
"Policy": {
"PolicyNane": "ny-iot-policy",
"CreateDate": "2015-09-30T19: 31: 18. 6202",
"Attachment Count": O,
"I sAttachabl e": true,
"Policyld": "ZXR6A36LTYANPAlI 7NJ5UV",
"Defaul tVersionld": "v1",
"Path": "/",
"Arn": "arn:aws:iam:123456789012: policy/ ny-iot-policy",
"Updat eDat e": "2015-09-30T19: 31: 18. 6202"
}
}
3. Use the attach-role-policy command to attach your policy to your role:
aws iam attach-role-policy --role-name nmy-iot-role --policy-arn
"arn:aws:iam:123456789012: pol i cy/ ny-i ot - policy"”

Pass Role Permissions

When creating or replacing a rule, you must pass a role that controls the AWS resources to which the
rule has access. The role must be defined in the same AWS account as the rule. The AWS loT rules
engine checks to make sure you have i am PassRol e permission to pass the role to the

creat e-topi c-rul e APL To ensure you have this access, you need to create a policy that grants this
access and attach it to your IAM user. The following policy shows how to allow i am PassRol e permission
for a role.

"Version": "2012-10-17",
"Statenment": [

{
" Si dll : " St m 1II ,
"Effect": "Alow',
"Action": [

"i am PassRol e"
1,
"Resource": |
"arn:aws:iam:123456789012: r ol e/ myRol e"

]

110

http://docs.aws.amazon.com/cli/latest/reference/iam/create-policy.html
http://docs.aws.amazon.com/cli/latest/reference/iam/create-policy.html
http://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html

AWS IoT Developer Guide
Creating an AWS loT Rule

In this policy example, the i am PassRol e permission is granted for the role myRol e. The role is specified
using the role's ARN. You must also attach this policy to your IAM user or role to which your user belongs.
For more information, see Working with Managed Policies.

Note

Lambda functions use resource-based policy, where the policy is attached directly to the Lambda
function itself. When creating a rule that invokes a Lambda function, you do not pass a role, so
the user creating the rule does not need the i am PassRol e permission. For more information
about Lambda function authorization, see Granting Permissions Using a Resource Policy.

Creating an AWS loT Rule

You configure rules to route data from your connected things. Rules consist of the following:

Rule name
The name of the rule.

Optional description
A textual description of the rule.

SQL statement
A simplified SQL syntax to filter messages received on an MQTT topic and push the data elsewhere.
For more information, see AWS IoT SQL Reference (p. 125).

SQL version
The version of the SQL rules engine to use when evaluating the rule. Although this property is optional,
we strongly recommend that you specify the SQL version. If this property is not set, the default,
2015- 10- 08, will be used.

One or more actions
The actions AWS IoT performs when executing the rule. For example, you can insert data into a

DynamoDB table, write data to an Amazon S3 bucket, publish to an Amazon SNS topic, or invoke a
Lambda function.

When you create a rule, be aware of how much data you are publishing on topics. If you create rules that
include a wildcard topic pattern, they might match a large percentage of your messages, and you might
need to increase the capacity of the AWS resources used by the target actions. Also, if you create a
republish rule that includes a wildcard topic pattern, you can end up with a circular rule that causes an
infinite loop.

Note
Creating and updating rules are administrator-level actions. Any user who has permission to
create or update rules will be able to access data processed by the rules.

To create arule (AWS CLI)

Use the create-topic-rule command to create a rule:

aws iot create-topic-rule --rule-nanme ny-rule --topic-rule-payload file://ny-
rule.json

The following is an example payload file with a rule that inserts all messages sentto the i ot/ t est topic
into the specified DynamoDB table. The SQL statement filters the messages and the role ARN grants
AWS loT permission to write to the DynamoDB table.

111

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/cli/latest/reference/iot/create-topic-rule.html

AWS IoT Developer Guide
Creating an AWS loT Rule

{
"sql": "SELECT * FROM 'iot/test'",
"rul eDi sabl ed": fal se,
"awsl ot Sgl Ver si on": "2016-03-23-beta",
"actions": [{
"dynanoDB": {
"t abl eName": "ny-dynanodb-table",
"rol eArn": "arn:aws:iam:123456789012:role/ny-iot-role",
"hashKeyFi el d": "topic",
"hashKeyVal ue": "${topic(2)}",
"rangeKeyFi el d": "tinestamp",
"rangeKeyVal ue": "${timestanp()}"
}
}H
}

The following is an example payload file with a rule that inserts all messages sentto the i ot / t est topic
into the specified S3 bucket. The SQL statement filters the messages, and the role ARN grants AWS loT
permission to write to the Amazon S3 bucket.

{
"rule": {
"awsl ot Sgl Ver si on": "2016-03-23-beta",
"sqgl": "SELECT * FROM 'iot/test'",
"rul eDi sabl ed": fal se,
"actions": [
{
"s3": {
"rol eArn": "arn:aws:iam:123456789012:rol e/ aws_i ot _s3",
"bucket Nane": "nmy-bucket",
"key": "myS3Key"
}
}
I,
"rul eName": "M/S3Rul e"
}
}

The following is an example payload file with a rule that pushes data to Amazon ES:

"sql ":"SELECT *, tinmestanp() as tinestanp FROM 'iot/test'"

"rul eDi sabl ed": f al se,
"awsl ot Sgl Ver si on": "2016-03-23-beta",

"actions":[
{
"el asticsearch":{

"rol eArn":"arn:aws:iam:123456789012: rol e/ aws_i ot _es",
"endpoint":"https://ny-endpoint",
i ndex": " my-index",
“type":"ny-type",
"id":"${newuuid()}"

112

AWS IoT Developer Guide
Creating an AWS loT Rule

The following is an example payload file with a rule that invokes a Lambda function:

"sqgl": "expression",
"rul eDi sabl ed": fal se,
"awsl ot Sgl Ver si on": "2016-03-23-beta",
"actions": [{
"l anbda": {
"functionArn": "arn:aws: | anbda: us-west-2: 123456789012: f uncti on: ny-
| anmbda- f uncti on"
}
}H
}

The following is an example payload file with a rule that publishes to an Amazon SNS topic:

{
"sql": "expression",
"rul eDi sabl ed": fal se,
"awsl ot Sgl Ver si on": "2016-03-23-beta",
"actions": [{
"sns": {
"target Arn": "arn:aws:sns: us-west-2:123456789012: ny-sns-topic",
"roleArn": "arn:aws:iam:123456789012:rol e/ ny-iot-role"
}
}H
}

The following is an example payload file with a rule that republishes on a different MQTT topic:

{
"sql": "expression",
"rul eDi sabl ed": fal se,
"awsl ot Sgl Ver si on": "2016-03-23-beta",
"actions": [{
"republish": {
"topic": "ny-ngtt-topic",
"roleArn": "arn:aws:iam:123456789012:rol e/ ny-iot-role"
}
}H
}

The following is an example payload file with a rule that pushes data to an Amazon Kinesis Firehose
stream:

"sql": "SELECT * FROM 'ny-topic'",
"rul eDi sabl ed": fal se,
"awsl ot Sgl Ver si on": "2016-03-23-beta",
"actions": [{
"firehose": {

113

AWS IoT Developer Guide
Viewing Your Rules

"roleArn": ""arn:aws:iam:123456789012:rol e/ ny-iot-role",
"del i veryStreamNanme": "ny-stream nanme"

}

The following is an example payload file with a rule that uses the Amazon Machine Learning
machi nel ear ni ng_pr edi ct function to republish to a topic if the data in the MQTT payload is classified
asal.

"sql": "SELECT * FROM'iot/test' where machi nel earni ng_predict(' my-nodel ',
"arn:aws:iam:123456789012:rol e/ my-iot-am-role', *).predictedLabel =1",
"rul eDi sabl ed": fal se,
"awsl ot Sgl Ver si on": "2016-03-23-beta",
"actions": [{
"republish": {
"roleArn": "arn:aws:iam:123456789012:rol e/ nmy-iot-role",
“"topic": "ny-ngtt-topic"

1

Viewing Your Rules

Use the list-topic-rules command to list your rules:

aws iot list-topic-rules

Use the get-topic-rule command to get information about a rule:

aws iot get-topic-rule --rule-nanme ny-rule

SQL Versions

The AWS IoT rules engine uses an SQL-like syntax to select data from MQTT messages. The SQL
statements are interpreted based on a SQL version specified with the aws| ot Sql Ver si on property in
a JSON document that describes the rule. For more information about the structure of JSON rule
documents, see Creating a Rule (p. 111). The aws| ot Sql Ver si on property allows you to specify which
version of the AWS loT SQL rules engine you want to use. When a new version is deployed, you can
continue to use an older version or change your rule to use the new version. Your current rules will
continue to use the version with which they were created.

The following JISON example shows how to specify the SQL version using the aws| ot Sql Ver si on
property:

"sql": "expression",
"rul eDi sabl ed": fal se,

114

http://docs.aws.amazon.com/cli/latest/reference/iot/list-topic-rules.html
http://docs.aws.amazon.com/cli/latest/reference/iot/get-topic-rule.html

AWS IoT Developer Guide
What's New in the 2016-03-23-beta SQL Rules Engine
Version

"awsl| ot Sgl Ver si on": "2016-03-23-beta",
"actions": [{
"republish": {
"topic": "ny-ngtt-topic",
"roleArn": "arn:aws:iam:123456789012:rol e/ ny-iot-role"

}H

Current supported versions are:

e 2015- 10- 08, the original SQL version built on 2015-10-08.
e 2016- 03- 23- bet a, the SQL version built on 2016-03-23.

¢ bet a, the most recent beta SQL version. The use of this version might introduce breaking changes to
your rules.

What's New in the 2016-03-23-beta SQL Rules
Engine Version

« Fixes for selecting nested JSON objects.

« Fixes for array queries.

 Inter-object query support.

« Support to output an array as a top-level object.

¢ Adds the encode (value, encodingScheme) function, which can be applied on both JISON and non-JSON
format data.

Inter-Object Queries

This feature allows you to query for an attribute in a JSON object. For example, given the following MQTT
message:

{
"e": [
{ "n": "tenperature", "u": "Cel", "t": 1234, "v":22.5 },
{ "n": "light", "u": "Inf, "t": 1235, "v":135 },
{ "n": "acidity", "u": "pH', "t": 1235, "v":7 }
]
}

And the following rule:

SELECT (SELECT v FROM e WHERE n = 'tenperature') as tenperature FROM' ny/t opic’

The rule will generate the following output:

{"tenperature": [{"v":22.5}]}

Using the same MQTT message, given a slightly more complicated rule such as:

115

AWS IoT Developer Guide
Troubleshooting a Rule

SELECT get ((SELECT v FROM e WHERE n = 'tenperature'),1).v as tenperature FROM
"topic

The rule will generate the following output:

{"tenperature":22.5}

Output an Array as aTop-Level Object

This feature allows a rule to return an array as a top-level object. For example, given the following MQTT
message:

"a": {"b":"c"},
"arr":[1, 2, 3,4]

And the following rule:

SELECT VALUE arr FROM 'topic'

The rule will generate the following output:

[1,2,3, 4]

Encode Function

Encodes the payload, which potentially might be non-JSON data, into its string representation based on
the specified encoding scheme.

Troubleshooting a Rule

If you are having an issue with your rules, you should enable CloudWatch Logs. By analyzing your logs,
you can determine whether the issue is authorization or whether, for example, a WHERE clause condition
did not match. For more information, see Troubleshooting AWS loT (p. 204).

Deleting a Rule

When you are finished with a rule, you can delete it.
To delete a rule (AWS CLI)

Use the delete-topic-rule command to delete a rule:

aws iot delete-topic-rule --rule-nane ny-rule

116

http://docs.aws.amazon.com/cli/latest/reference/iot/delete-topic-rule.html

AWS IoT Developer Guide
AWS IoT Rule Actions

AWS IoT Rule Actions

AWS 10T rule actions are used to specify what to do when a rule is triggered. You can define actions to
write data to a DynamoDB database or an Amazon Kinesis stream or to invoke a Lambda function, and
more. The following actions are supported:

¢ cl oudwat chAl ar mto change a CloudWatch alarm.

e cl oudwat chMet ri ¢ to capture a CloudWatch metric.

¢ dynanoDB to write data to a DynamoDB database.

* el asti csear ch to write data to a Amazon Elasticsearch Service domain.
« ki nesi s to write data to a Amazon Kinesis stream.

« | anrbda to invoke a Lambda function.

* s3 to write data to a Amazon S3 bucket.

* sns to write data as a push notification.

e firehose to write data to an Amazon Kinesis Firehose stream.
¢ sgs to write data to an SQS queue.

e republ i sh to republish the message on another MQTT topic.

Note
The AWS loT rules engine does not currently retry delivery for messages that fail to be published
to another service.

The following sections discuss each action in detail.

CloudWatch Alarm Action

The CloudWatch alarm action allows you to change CloudWatch alarm state. You can specify the state
change reason and value in this call. When creating an AWS 10T rule with a CloudWatch alarm action,
you must specify the following information:

roleArn
The 1AM role that allows access to the CloudWatch alarm.

alarmName
The CloudWatch alarm name.

stateReason
Reason for the alarm change.

stateValue
The value of the alarm state. Acceptable values are OK, ALARM | NSUFFI Cl ENT_DATA.

Note
Ensure the role associated with the rule has a policy granting the cl oudwat ch: Set Al ar nft at e
permission.

The following JISON example shows how to define a CloudWatch alarm action in an AWS IoT rule:

"rule": {
"sql": "SELECT * FROM 'sone/topic'",
"rul eDi sabl ed": fal se,
"actions": [{
"cl oudwat chAl arm': {

117

AWS IoT Developer Guide
CloudWatch Metric Action

"roleArn": "arn:aws:iam:123456789012:rol e/ aws_i ot _cw',
"al armNarme": "lotAl arnt,

"stat eReason": "Tenperature stabilized.",

"stateValue": "OK'

}

For more information, see CloudWatch Alarms.

CloudWatch Metric Action

The CloudWatch metric action allows you to capture a CloudWatch metric. You can specify the metric
namespace, name, value, unit, and timestamp. When creating an AWS loT rule with a CloudWatch metric
action, you must specify the following information:

roleArn
The IAM role that allows access to the CloudWatch alarm.

metricNamespace
CloudWatch metric namespace name.

metricName
The CloudWatch metric name.

metricValue
The CloudWatch metric value.

metricUnit
The metric unit supported by CloudWatch.

metricTimestamp
An optional Unix timestamp.

Note
Ensure the role associated with the rule has a policy granting the ¢l oudwat ch: Put Metri cDat a
permission.

The following JISON example shows how to define a CloudWatch metric action in an AWS IoT rule:

{
"rule": {
"sqgl": "SELECT * FROM 'some/topic'",
"rul eDi sabl ed": fal se,
"actions": [{
"cl oudwat chMetric": {
"rol eArn": "arn:aws:iam:123456789012:rol e/ aws_i ot _cw"',
"metricNanespace": "IotNanespace",
"metricNane": "lotMetric",
"metricVvalue": "1",
"metricUnit": "Count",
"metricTinestanmp": "1456821314"
}
}H
}
}

For more information, see CloudWatch Metrics.

118

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CW_Support_For_AWS.html

AWS IoT Developer Guide
DynamoDB Action

DynamoDB Action

The dynanoDB action allows you to write all or part of an MQTT message to a DynamoDB table. When
creating a DynamoDB rule, you must specify the following information:

hashKeyType
The data type of the hash key (also called the partition key). Valid values are:" STRI NG' or " NUMBER' .

hashKeyField
The name of the hash key (also called the partition key).

hashKeyValue
The value of the hash key.

rangeKeyType
Optional. The data type of the range key (also called the sort key). Valid values are: " STRI NG' or
"NUVBER" .

rangeKeyField
Optional. The name of the range key (also called the sort key).

rangeKeyValue
Optional. The value of the range key.

operation
Optional. The type of operation to be performed. This follows the substitution template, so it can be
${ oper at i on}, but the substitution must result in one of the following: | NSERT, UPDATE, or DELETE.

payloadField
Optional. The name of the field where the payload will be written. If this value is omitted, the payload
is written to payl oad field.

table
The name of the DynamoDB table.

roleARN

The IAM role that allows access to the DynamoDB table. At a minimum, the role must allow the
dynanoDB: Put | t emIAM action.

The data written to the DynamoDB table is the result from the SQL statement of the rule. The
hashKeyVal ue and r angeKeyVal ue fields are usually composed of expressions (for example, “${topic()}’
or “${timestamp()}").

Note

Non-JSON data is written to DynamoDB as binary data. The DynamoDB console will display
the data as Base64-encoded text.

Ensure the role associated with the rule has a policy granting the dynanodb: Put | t empermission.

The following JSON example shows how to define a dynanpDB action in an AWS |oT rule:

{
"rule": {
"rul eDi sabl ed": fal se,
"sqgl": "SELECT * AS nessage FROM 'sone/topic'",
"description": "A test Dynanp DB rul e",
"actions": [{
"dynanoDB": {

"hashKeyFi el d": "key",
"roleArn": "arn:aws:iam:123456789012: rol e/ aws_i ot _dynanoDB",

"tabl eNanme": "ny_ddb_tabl e",
"hashKeyVal ue": "${topic()}",
"rangeKeyVal ue": "${timestamp()}",

119

AWS IoT Developer Guide
Amazon ES Action

"rangeKeyFi el d": "tinestanp"

}

For more information, see the Amazon DynamoDB Getting Started Guide.

Amazon ES Action

The el ast i csear ch action allows you to write data from MQTT messages to an Amazon Elasticsearch
Service domain. Data in Amazon ES can then be queried and visualized by using tools like Kibana. When
you create an AWS IoT rule with an el ast i csear ch action, you must specify the following information:

endpoint
The endpoint of your Amazon ES domain.
index
The Amazon ES index where you want to store your data.
type
The type of document you are storing.
id
The unique identifier for each document.

Note
Ensure the role associated with the rule has a policy granting the es: ESHt t pPut permission.

The following JSON example shows how to define an el asti csear ch action in an AWS |oT rule:

{
"rul e":{
"sql":"SELECT *, tinestanp() as tinestanp FROM 'iot/test'",
"rul eDi sabl ed": f al se,
"actions":[
{
"el asticsearch": {
"roleArn":"arn: aws: i am:123456789012: rol e/ aws_i ot _es",
"endpoint":"https://ny-endpoint",
"index":"my-index",
“type":"ny-type",
"id":"${newuui d()}"
}
}
]
}
}

For more information, see the Amazon ES Developer Guide.

Kinesis Action

The ki nesi s action allows you to write data from MQTT messages into an Amazon Kinesis stream.
When creating an AWS IoT rule with a ki nesi s action, you must specify the following information:

120

http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/
http://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/

AWS IoT Developer Guide
Lambda Action

stream
The Amazon Kinesis stream to which to write data.

partitionKey
The partition key used to determine to which shard the data is written. The partition key is usually
composed of an expression (for example, “${topic()}" or “${timestamp()}").

Note
Ensure that the policy associated with the rule has the ki nesi s: Put Recor d permission.

The following JISON example shows how to define a ki nesi s action in an AWS IoT rule:

{
"rule": {
"sqgl": "SELECT * FROM 'sone/topic'",
"rul eDi sabl ed": fal se,
"actions": [{
"kinesis": {
"rol eArn": "arn:aws:iam:123456789012:rol e/ aws_i ot _ki nesi s",
"streanNane": "nmy_kinesis_streant,
"partitionKey": "${topic()}"
}
H.
}
}

For more information, see the Amazon Kinesis Developer Guide.

Lambda Action

Al anbda action calls a Lambda function, passing in the MQTT message that triggered the rule. In order
for AWS IoT to call a Lambda function, you must configure a policy granting the | anbda: | nvokeFunct i on
permission to AWS IoT. Lambda functions use resource-based policies, so you must attach the policy to
the Lambda function itself. Use the following CLI command to attach a policy granting

| anmbda: | nvokeFunct i on permission:

aws | anbda add- perm ssion --function-nane "function_nane" --region "region" --
principal iot.amzonaws.com--source-arn arn:aws:iot:us-east-1:ac
count _id: rul e/rul e_nanme --source-account "account_id" --statenent-id "unique_id"

--action "lanbda: | nvokeFuncti on"

The following are the parameters for the add- per m ssi on command:

--function-name
Name of the Lambda function whose resource policy you are updating by adding a new permission.
--region
The AWS region of your account.
--principal
The principal who is getting the permission. This should be i ot . amazonaws. comto allow AWS loT
permission to call a Lambda function.

--source-arn
The ARN of the rule. You can use the get - t opi c- r ul e CLI command to get the ARN of a rule.

--source-account
The AWS account where the rule is defined.

121

http://docs.aws.amazon.com/streams/latest/dev/introduction.html

AWS IoT Developer Guide
S3 Action

--statement-id
A unique statement identifier.

--action
The Lambda action you want to allow in this statement. In this case, we want to allow AWS loT to
invoke a Lambda function, so we specify | anbda: | nvokeFunct i on.

For more information, see Lambda Permission Model.

When creating a rule with a | anbda action, you must specify the Lambda function to invoke when the
rule is triggered.

The following JISON example shows a rule that calls a Lambda function:

"rule": {
"sqgl": "SELECT * FROM 'sone/topic'",
"rul eDi sabl ed": fal se,
"actions": [{
"l ambda": {
"functionArn": "arn:aws:| anbda: us-east-1:123456789012: f unc
ti on: nyLanbdaFuncti on"

}
}H

For more information, see the AWS Lambda Developer Guide.

S3 Action

A s3 action writes the data from the MQTT message that triggered the rule to an Amazon S3 bucket.
When creating an AWS IoT rule with an s3 action, you must specify the following information:

bucket
The Amazon S3 bucket to which to write data.

key
The path to the file where the data is written. For example, if the value of this parameter is
"${topic()}/${timestamp()}", the topic the message was sent to is "this/is/my/topic,", and the current
timestamp is 1460685389 the data will be written to a file called "1460685389" in the "this/is/my/topic"
folder on Amazon S3.

Note

Using a static key will result in a single file in Amazon S3 being overwritten for each invocation
of the rule. More common use cases are to use the message timestamp or another unique
message identifier, so that a new file will be saved in Amazon S3 for each message received.

roleArn
The IAM role that allows access to the Amazon S3 bucket.

Note
Make sure the role associated with the rule has a policy granting the s3: Put Cbj ect permission.

The following JISON example shows how to define an s3 action in an AWS loT rule:

122

http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model
http://docs.aws.amazon.com/lambda/latest/dg/

AWS IoT Developer Guide

SNS Action
{
"rule": {
"sqgl": "SELECT * FROM 'some/topic'",
"rul eDi sabl ed": fal se,
"actions": [{
"s3": {
"rol eArn": "arn:aws:iam:123456789012:rol e/ aws_i ot _s3",
"bucket Nane": "nmy-bucket",
"key": "${topic()}/ ${timestamp()}"
}
}H
}
}

For more information, see the Amazon S3 Developer Guide.

SNS Action

A sns action sends the data from the MQTT message that triggered the rule as an SNS push notification.
When creating a rule with an sns action, you must specify the following information:

messageFormat
The message format. Accepted values are "JSON" and "RAW". The default value of the attribute is
"RAW". SNS uses this setting to determine if the payload should be parsed and relevant
platform-specific parts of the payload should be extracted.

roleArn
The IAM role that allows access to SNS.

targetArn
The SNS topic or individual device to which the push notification will be sent.

Note
Make sure the policy associated with the rule has the sns: Publ i sh permission.

The following JISON example shows how to define an sns action in an AWS IoT rule:

{
"rule": {
"sqgl": "SELECT * FROM 'sone/topic'",
"rul eDi sabl ed": false
"actions": [{
"sns": {
"target Arn": "arn:aws:sns:us-east-1:123456789012: my_sns_t opi c",
"rol eArn": "arn:aws:iam:123456789012: rol e/ aws_i ot _sns"
}
}H
}
}

For more information, see the Amazon SNS Developer Guide.

123

http://docs.aws.amazon.com/AmazonS3/latest/dev/
http://docs.aws.amazon.com/sns/latest/dg/

AWS IoT Developer Guide
Firehose Action

Firehose Action

A firehose action sends data from an MQTT message that triggered the rule to an Firehose stream.
When creating a rule with a f i r ehose action, you must specify the following information:

deliveryStreamName
The Firehose stream to which to write the message data.
roleArn
The IAM role that allows access to Firehose.
separator
A character separator that will be used to separate records written to the firehose stream. Valid values
are: '\n' (newline), \t' (tab), \r\n' (Windows newline), ',’ (comma).

Note
Make sure the role associated with the rule has a policy granting the f i r ehose: Put Record
permission.

The following JISON example shows how to create an AWS loT rule with a f i r ehose action:

{
"rule": {
"sqgl": "SELECT * FROM 'some/topic'",
"rul eDi sabl ed": fal se,
"actions": [{
"firehose": {
"rol eArn": "arn:aws:iam:123456789012:rol e/ aws_i ot _firehose",
"del iveryStreamNane": "ny_firehose_streant
}
}H
}
}

For more information, see the Firehose Developer Guide.

SQS Action

A sgs action sends data from the MQTT message that triggered the rule to an SQS queue. When creating
a rule with an sgs action, you must specify the following information:

queueUrl
The URL of the SQS queue to which to write the data.
useBase64
Set to t r ue if you want the MQTT message data to be Base64-encoded before writing to the SQS
gueue; otherwise, setto f al se.
roleArn
The IAM role that allows access to the SQS queue.

Note
Make sure the role associated with the rule has a policy granting the sqs: SendMessage
permission.

The following JSON example shows how to create an AWS loT rule with an sqs action:

124

http://docs.aws.amazon.com/firehose/latest/dev/

AWS IoT Developer Guide
Republish Action

{
"rule": {
"sqgl": "SELECT * FROM 'some/topic'",
"rul eDi sabl ed": fal se,
"actions": [{
"sqgs": {
"queueUrl": "https://sgs.us-east-1.amazon
aws. conl 123456789012/ ny_sqs_queue",
"rol eArn": "arn:aws:iam:123456789012: rol e/ aws_i ot _sqs",
"useBase64": fal se
}
}H
}
}

For more information, see the Amazon SQS Developer Guide.

Republish Action

The r epubl i sh action allows you to republish the message that triggered the role to another MQTT
topic. When creating a rule with a r epubl i sh action, you must specify the following information:

topic

The MQTT topic to which to republish the message.
roleArn

The IAM role that allows publishing to the MQTT topic.

Note
Make sure the role associated with the rule has a policy granting the i ot : Publ i sh permission.

"rule": {
"sql": "SELECT * FROM 'sone/topic'",
"rul eDi sabl ed": fal se,
"actions": [{
"republish": {
"topic": "another/topic",
"roleArn": "arn:aws:iam:123456789012: rol e/ aws_i ot _republi sh"

}

AWS loT SQL Reference

This reference focuses on the differences between ANSI SQL and AWS loT SQL. If you are not familiar
with ANSI SQL, see the W3Schools SQL Tutorial.

All rules include a SQL statement that consists of a SELECT clause and an optional WHERE clause. The
SELECT clause allows you to extract one or more JSON objects or attributes from the MQTT message

payload. The WHERE clause allows you to filter the JSON objects or attributes extracted by the SELECT
clause.

125

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
http://www.w3schools.com/sql/default.asp

AWS IoT Developer Guide
Expressions

All data processed by a SELECT query is assumed to be in JSON format unless certain functions are
used within the query. If the data is in JSON format, it may contain either a single root object or a single
root object with nested objects. For more information about functions applicable to non-JSON data, see
SQL Functions (p. 128).

As with ANSI SQL, white space is insignificant and keywords are not case-sensitive. Strings and JSON

properties are case-sensitive. In our examples, all keywords are capitalized following common practice
for SQL.

Expressions

Select, FROM, and WHERE clauses are all composed of expressions. The following expressions are
allowed in AWS IoT.

Token Meaning Example
= Equal, comparison | color = 'red’
<> Not equal, compar- | color <> 'red'
ison
AND Logical AND color = 'red' AND siren = 'on’
OR Logical OR color = 'red' OR siren ="'on'
) Parenthesis, color = 'red' AND (siren = 'on' OR isTest)
grouping
$ Dollar sign, used in | "$$aws/things/mything/shadow/update/accepted"
reserved topic
names. When spe-
cifying a reserved
topic name in a
substitution tem-
plate, the '$' must
be escaped using
another '$'
+ Addition, arithmetic | 4 + 5
- Subtraction, arith- | 5-4
metic
/ Division, arithmetic | 20/ 4
* Multiplication, 5%4
arithmetic
% Modulo division, 20% 6
arithmetic
< Lessthan, compar- | 5<6
ison
<= Lessthanorequal, 5<=6
comparison
> Greater than,com- | 6 > 5

parison

126

AWS IoT Developer Guide
SELECT Clause

Token Meaning Example

>= Greater than or 6>=5
equal, comparison

Function call A invocation of an | clientld()

SQL function
A JSON extension | An expression that | state.desired.color
expression selects a specific

value in a JSON

document.

CASE ... WHEN ... | Case statement CASE location WHEN 'home'
THEN ... ELSE ... THEN 'off' WHEN 'work’

END THEN 'on' ELSE 'silent' END

SELECT Clause

The AWS IoT SELECT clause is essentially the same as the ANSI SQL SELECT clause, with a few minor
differences. The "AS" keyword is required with AWS loT SELECT clauses unless you are using JSON
extensions ('.' syntax), for example:

SELECT state.tenperature FROM ' nydevi ces/ devi cel’

For more information about JSON extensions, see JSON Extensions (p. 132).

Unlike querying relational databases, you can use SELECT * without the concern of retrieving too much
information. The information returned by the SELECT * AS some_nane clause contains only the JSON
payload of the MQTT message. The message can be returned without parsing, which possibly improves
performance of the query. SELECT queries for a single object JISON document are of the form: SELECT
<object> AS <object-name>. The <object> can be any object or attribute name in the JSON document.
<object-name> provides a name for the result of the SELECT query. SELECT queries for JSON documents
with nested objects are of the form: SELECT <object> where <object> is the root object, any level of
nested objects, and an optional attribute. For example:

¢ object

« object.nestedObject

¢ object.nestedObjectl.nestedObject2

¢ object.nestedObjectl.nestedObject2.attribute

You can specify as many layers of nested objects as there are in the JSON document.

FROM Clause

In ANSI SQL, you select data from tables. In AWS loT SQL, you select data from JSON properties in
MQTT messages.

The data source, which is the topic to which MQTT messages are sent, is specified using the MQJTT()
function, as shown in this example:

127

AWS IoT Developer Guide
WHERE Clause

SELECT * FROM ngtt (' com exanpl e/ sensors/ +')

However, the FROM clause assumes you are querying an MQTT message, so you can omit the call to
the myt t () function and specify only the topic name, as shown in the following example:

SELECT * FROM ' com exanpl e/ sensors'

WHERE Clause

The WHERE clause filters the message data returned by the SELECT clause based on JSON attribute
values. For example, suppose you have a topic filter from an MQTT topic, i ot / t hi ng/ #. The following
is an example JSON payload that could be published by a device:

{
"deviceid" : "iot123",
“"tenp" : 54.98,
"hum dity" : 32.43,
"coords" : {
"latitude" : 47.615694,
"l ongi tude" : -122.3359976
}
}

You could use the following SQL statement in your rule to query the i ot / t hi ng/ # topic and extract the
sensor data when the t enp field is above 50.

SELECT * FROM 'iot/thing/# WHERE tenp > 50

Functions

You can use the following built-in functions in the SELECT or WHERE clauses of your SQL expressions.

Function Description SQL Version
abs(number) Returns the absolute value. 2015-10-08 and later.
accountld() Returns the account ID of the MQTT client | 2015-10-08 and later.

sending the message, or undefined if the
message didn't come through MQTT.

asin(number) Returns the arcsine. 2015-10-08 and later.
atan(number) Returns the arctangent. 2015-10-08 and later.

bitand(numberl, number2) | Returns the result of a bitwise AND operation. | 2015-10-08 and later.

128

AWS IoT Developer Guide
Functions

Function

cast(value as type)

ceil(number)
chr(number)

clientld()

concat(stringl, string2)
cos(number)
cosh(number)
encode(value, encoding-

Scheme)

endswith(input, suffix)

exp(number)

floor(number)

Description

Converts the value to the specified data type.
Supported data types are:

double
Converts the value to a double.

float
Converts the value to a double.

int

Converts the value to an integer.
integer

Converts the value to an integer.

ntext
Converts the value to a string.

num
Converts the value to a double.

number
Converts the value to a double.

nvarchar
Converts the value to a string.

string
Converts the value to a string.

text
Converts the value to a string.

varchar
Converts the value to a string.

Returns the result of rounding up to the
nearest integer.

Returns the ASCII character represented by
number.

Returns the client ID of the MQTT client
sending the message, or undefined if the
message didn't come through MQTT.

Returns the concatenation of two strings.
Returns the cosine.
Returns the hyperbolic cosine.

Encodes the value based on the provided
encoding scheme. The function returns a
string representation of the encoded payload.

Returns true if input ends with suffix.

Returns e to the power of the specified num-
ber.

Returns the result of rounding down to the
nearest integer.

SQL Version
2015-10-08 and later.

2015-10-08 and later.

2015-10-08 and later.

2015-10-08 and later.

2015-10-08 and later.

2015-10-08 and later.

2015-10-08 and later.

2016-03-23-beta and later.

2015-10-08 and later.

2015-10-08 and later.

2015-10-08 and later.

129

AWS IoT Developer Guide
Functions

Function

get_thing_shadow(thing-

Name, roleArn

In(number)
log(n, m)

lower(string)

Ipad(string, n)

Itrim(string)

machinelearning_pre-

dict(modelld, roleArn, re-

cord)
md2(string)
md5(string)
mod(m, n)

nanvl(value, default)

power(m, n)

remainder(m, n)

replace(source, substring,

replacement)

round(number, precision)

rpad(string, n)

rtrim(string)

sign(number)

sin(number)

sinh(number)

Description

Returns the thing shadow of the specified
thing.

thingName
The name of the thing whose state you
want to retrieve.

roleArn
A role with i ot : Get Thi ngShadow per-
mission.

Returns the natural logarithm.
Returns the logarithm of n base m.

Returns the result of converting all characters
to lowercase.

Adds n spaces to the left side of string.

Removes all white space from the left side of
string.

Runs a prediction against the specified model,
role ARN, and record.

Returns the MD2 hash value.
Returns the MD5 hash value.
Returns the remainder of m divided by n.

Returns value if it's non-null, and default oth-
erwise.

Returns m raised to the nth power.
Returns the remainder of m divided by n.

Returns source with all occurrences of sub-
string replaced by replacement.

Returns the result of rounding number to
precision decimal places. If precision is 0, the
function rounds to the nearest whole number.

Adds n spaces to the right side of string.

Removes all white space from the right side
of string.

Returns a value indicating the sign of a num-
ber. If number < 0, then -1. Else, if number =
0, then 0. Else, if number > 0, then 1.

Returns the sine.

Returns the hyperbolic sine.

SQL Version

2016-03-23-beta and later.

2015-10-08 and later.
2015-10-08 and later.
2015-10-08 and later.

2015-10-08 and later.
2015-10-08 and later.

2015-10-08 and later.

2015-10-08 and later.

2015-10-08 and later.

2015-10-08 and later.

2015-10-08 and later.

2015-10-08 and later.
2015-10-08 and later.
2015-10-08 and later.

2015-10-08 and later.

2015-10-08 and later.

2015-10-08 and later.

2015-10-08 and later.

2015-10-08 and later.
2015-10-08 and later.

130

AWS IoT Developer Guide
Functions

Function

sqrt(number)

startswith(input, prefix)

Description
Returns the square root.

Returns true if input starts with prefix.

SQL Version
2015-10-08 and later.

2015-10-08 and later.

tan(number) Returns the tangent. 2015-10-08 and later.
tanh(number) Returns the hyperbolic tangent. 2015-10-08 and later.
traceld() Returns the trace ID of the MQTT message, | 2015-10-08 and later.

topic(number)

trunc(number, precision)

upper(string) Returns the result of converting all characters | 2015-10-08 and later.
to uppercase.
shal(string) Returns the SHA-1 hash value. 2015-10-08 and later.
sha224(string) Returns the SHA-224 hash value. 2015-10-08 and later.
sha256(string) Returns the SHA-256 hash value. 2015-10-08 and later.
shab512(string) Returns the SHA-512 hash value. 2015-10-08 and later.
rand() Returns a random number between 0 and 1. | 2015-10-08 and later.
newuuid() Returns a random 16-byte UUID. 2015-10-08 and later.
timestamp() Returns the current Unix timestamp, as ob- | 2015-10-08 and later.

or undefined if the message didn't come
through MQTT.

Returns the specified topic segment. For ex-
ample, if the topic is foo/bar, topic() returns
"foo/bar", topic(1) returns "foo" and topic(2)
returns "bar".

Returns the result of truncating number to
precision decimal places.

served by the current server.

2015-10-08 and later.

2015-10-08 and later.

Making Predictions with Amazon Machine Learning in an
AWS loT Rule

Use the machi nel ear ni ng_pr edi ct function to make predictions using the data from an MQTT message
based on an Amazon ML model. The parameters for the machi nel ear ni ng_pr edi ct function are:

modelld
The ID of the model to run the prediction against. The real-time endpoint of the model must be
enabled.

roleArn
The IAM role that has a policy with machi nel ear ni ng: Pr edi ct and
machi nel ear ni ng: Get MLMbdel permissions and allows access to the model against which the
prediction is run.

record
The data to be passed into the Amazon Machine Learning Predict API. This should be represented
as a single layer JSON object. If the record is a multi-level JSON object, the record will be flattened
by serializing its values. For example, the following JSON:

131

AWS IoT Developer Guide
JSON Extensions

{ "keyl": {"innerKeyl": "valuel"}, "key2": 0}

would become:

{ "keyl": "{\"innerKeyl\": \"valuel\"}", "key2": 0}

The function returns a JSON object with the following fields:

predictedLabel
The classification of the input based on the model.

details
Contains the following attributes:

PredictiveModelType
The model type. Valid values are REGRESSION, BINARY, MULTICLASS.

Algorithm
The algorithm used by Amazon Machine Learning to make predictions. The value must be SGD.

predictedScores
Contains the raw classification score corresponding to each label.

predictedValue
The value predicted by Amazon Machine Learning.

Encode the Payload Before Further Processing

Use the encode function to encode the payload, which potentially might be non-JSON data, into its string
representation based on the encoding scheme.

value
Any of the valid expressions, as defined in SQL Syntax (p. 126). In addition, you can specify * to
encode the entire payload, regardless of whether it's in JSON format. If you supply an expression,
the result of the evaluation will first be converted to a string before it is encoded.

encodingScheme
A literal string representing the encoding scheme you want to use. Currently, only ' base64' is
supported.

JSON Extensions

You can use the following extensions to ANSI SQL syntax to make it easier to work with nested JSON
objects.

"." Operator

This operator accesses members in embedded JSON objects and functions identically to ANSI SQL and
JavaScript.

* Operator

This functions in the same way as the * wildcard in ANSI SQL. It's used in the SELECT clause only and
creates a new JSON object containing the message data. If the message payload is not in JSON format,
* returns the entire message payload as raw bytes.

Applying a Function to an Attribute Value

132

AWS IoT Developer Guide
Substitution Templates

The following is an example JSON payload that could be published by a device:

{
"deviceid" : "iotl1l23",
"tenp" : 54.98,
"hum dity" : 32.43,
"coords" : {
"latitude" : 47.615694,
"l ongi tude" : -122. 3359976
}
}

The following example applies a function to an attribute value in a JSON payload:

SELECT tenp, nd5(deviceid) AS hashed_id FROM topic/#

The result of this query is the following JSON object:

"tenp": 54.98,
"hashed_id": "e37f81fb397e595c4aeb5645b8chbbbdl"

Substitution Templates

You can use a substitution template to augment the JSON data returned when a rule is triggered and
AWS loT performs an action. The syntax for a substitution template is ${ expression} , where expression
can be any expression supported by AWS 10T in SELECT or WHERE clauses. For more information
about supported expressions, see Expressions (p. 126).

Substitution templates appear in the SELECT clause within a rule, for example:

{
"sql": "SELECT *, topic() AS topic FROM 'ny/iot/topic'",
"rul eDi sabl ed": fal se,
"actions": [{
"republish": {
"topic": "${topic()}",
"rol eArn": "arn:aws:iam:123456789012:rol e/ my-iot-role"
}
}
}

If this rule is triggered by the following JSON:

{
"deviceid" : "iotl1l23",
"tenp" : 54.98,
"hum dity" : 32.43,
"coords" : {
"latitude" : 47.615694,
"l ongi tude" : -122. 3359976
}

133

AWS IoT Developer Guide
Substitution Templates

Here is the output of the rule:

{
"coords": {
"l ongi tude": -122. 3359976,
"l atitude":47.615694
}
"hum dity": 32.43,
"tenp": 54. 98,
"deviceid":"iot123",
"topic":"nyl/iot/topic"
}

134

AWS IoT Developer Guide
Device Shadows Data Flow

Device Shadows for AWS IoT

A thing shadow (sometimes referred to as a device shadow) is a JSON document that is used to store
and retrieve current state information for a thing (device, app, and so on). The Thing Shadows service
maintains a thing shadow for each thing you connect to AWS loT. You can use thing shadows to get and
set the state of a thing over MQTT or HTTP, regardless of whether the thing is connected to the Internet.
Each thing shadow is uniquely identified by its name.

Contents
¢ Device Shadows Data Flow (p. 135)
¢ Device Shadows Documents (p. 141)
¢ Using Device Shadows (p. 144)
¢ Device Shadow RESTful API (p. 154)
¢ Device Shadow MQTT Topics (p. 156)
¢ Device Shadow Document Syntax (p. 162)
¢ Device Shadow Error Messages (p. 165)

Device Shadows Data Flow

The Thing Shadows services acts as an intermediary, allowing devices and applications to retrieve and
update thing shadows.

To illustrate how devices and applications communicate with the Thing Shadows service, this section
walks you through the use of the AWS loT MQTT client and the AWS CLI to simulate communication
between an internet-connected light bulb, an application, and the Thing Shadows service.

The Thing Shadows service uses a number of MQTT topics to facilitate communication between
applications and devices. To see how this works, use the AWS loT MQTT client to subscribe to the
following MQTT topics with QoS 1:

$aws/things/myLightBulb/shadow/update/accepted
The Thing Shadows service sends messages to this topic when an update is successfully made to
a thing shadow.

$aws/things/myLightBulb/shadow/update/rejected
The Thing Shadows service sends messages to this topic when an update to a thing shadow is
rejected.

135

AWS IoT Developer Guide
Device Shadows Data Flow

$aws/things/myLightBulb/shadow/update/delta
The Thing Shadows service sends messages to this topic when a difference is detected between
the reported and desired sections of a thing shadow.

$aws/things/myLightBulb/shadow/get/accepted
The Thing Shadows service sends messages to this topic when a request for a thing shadow is made
successfully.

$aws/things/myLightBulb/shadow/get/rejected
The Thing Shadows service sends messages to this topic when a request for a thing shadow is
rejected.

$aws/things/myLightBulb/shadow/delete/accepted
The Thing Shadows service sends messages to this topic when a thing shadow is deleted.
$aws/things/myLightBulb/shadow/delete/rejected

The Thing Shadows service sends messages to this topic when a request to delete a thing shadow
is rejected.

To learn more about all of the MQTT topics used by the Thing Shadows service, see Device Shadow
MQTT Topics (p. 156).
Note

We recommend you subscribe to the . . . / r ej ect ed topics to see any errors sent by the Thing
Shadows service.

When the light bulb comes online, it sends its current state to the Thing Shadows service by sending an
MQTT message to the $aws/ t hi ngs/ nyLi ght Bul b/ shadow' updat e topic.

To simulate this, use the AWS loT MQTT client to publish the following message to the
$aws/ t hi ngs/ nyLi ght bul b/ shadow updat e topic:

{
"state": {
"reported": {
"color": "red"
}
}
}

The Thing Shadows service responds by sending the following message to the
$aws/ t hi ngs/ nyLi ght Bul b/ shadow updat e/ accept ed topic:

"messageNunber": 4,
"payl oad": {
"state": {
"reported": {
"“color": "red"
}
},

"metadata": {
"reported": {
"color": {

"timestanp": 1469564492
}
}
},

"version": 1,

136

AWS IoT Developer Guide
Device Shadows Data Flow

"timestanp": 1469564492
H
"gqos": O,
"timestamp": 1469564492848,
"topic": "$aws/things/ nmyLi ght Bul b/ shadow updat e/ accept ed"

}

This message indicates the Thing Shadows service received the UPDATE request and updated the thing
shadow. If the thing shadow doesn't exist, it is created. Otherwise, the thing shadow is updated with the
data in the message. If you don't see a message published to

$aws/ t hi ngs/ nyLi ght Bul b/ shadow updat e/ accept ed, check the subscription to

$aws/ t hi ngs/ myLi ght Bul b/ shadow updat e/ r ej ect ed to see any error messages.

An application that interacts with the light bulb comes online and requests the light bulb's current state.
The application sends an empty message to the $aws/ t hi ngs/ nyLi ght Bul b/ shadow/ get topic. To
simulate this, use the AWS loT MQTT client to publish an empty message (") to the

$aws/ t hi ngs/ nyLi ght Bul b/ shadow get topic.

The Thing Shadows service responds by publishing the requested thing shadow to the
$aws/ t hi ngs/ nmyLi ght Bul b/ shadow get / accept ed topic:

"messageNunber": 1,
"payl oad": {
"state": {
"reported": {
"color": "red"
}

b,
"metadata": {
"reported": {
"color": {
"timestanmp": 1469564492
}
}
b,
"version": 1,
"timestanmp": 1469564571
b,
"qos": O,
"timestanp": 1469564571533,
"topic": "$aws/things/ myLi ght Bul b/ shadow get/ accept ed"

If you don't see a message on the $aws/ t hi ngs/ nyLi ght Bul b/ shadow get / accept ed topic, check
the $aws/ t hi ngs/ myLi ght Bul b/ shadow/ get / r ej ect ed topic for any error messages.

The application displays this information to the user, and the user requests a change to the light bulb's
color (from red to green). To do this, the application publishes a message on the
$aws/ t hi ngs/ nyLi ght Bul b/ shadow updat e topic:

{
"state": {
"desired": {
"“color": "green"
}

137

AWS IoT Developer Guide
Device Shadows Data Flow

To simulate this, use the AWS loT MQTT client to publish the preceding message to the

$aws/ t hi ngs/ nyLi ght Bul b/ shadow updat e topic.

The Thing Shadows service responds by sending a message to the
$aws/ t hi ngs/ nmyLi ght Bul b/ shadow' updat e/ accept ed topic:

{

"messageNunber": 5,
"payl oad": {
"state": {
"desired": {
"color": "green"
}
}

"metadata": {
"desired": {
"color": {
"timestanmp": 1469564658
}
}
}
"version": 2,
"timestanmp": 1469564658
}
"gos": O,
"timestanmp": 1469564658286
"topic": "$aws/things/nyLi ght Bul b/ shadow updat e/ accept ed"

}

and to the $aws/ t hi ngs/ myLi ght Bul b/ shadow updat e/ del t a topic:

{

"messageNunber": 1,
"payl oad": {
"version": 2,
"timestanmp": 1469564658,
"state": {
"“color": "green"
H
"metadata": {
"color": {
"timestanmp": 1469564658
}
}
H
"qos": O,
"timestanmp": 1469564658309,
"topic": "$aws/things/nyLi ght Bul b/ shadow updat e/ del t a"

}

The light bulb is subscribed to the $aws/ t hi ngs/ nmyLi ght Bul b/ shadow updat e/ del t a topic, so it
receives the message, changes its color, and publishes its new state. To simulate this, use the AWS loT

138

AWS IoT Developer Guide
Device Shadows Data Flow

MQTT client to publish the following message to the $aws/ t hi ngs/ nyLi ght bul b/ shadow' updat e
topic to update the shadow state:

{
"state":{
"reported":{
"color":"green"
}s
"desired":nul |}
}
}

In response, the Thing Shadows service sends a message to the
$aws/ t hi ngs/ nyLi ght Bul b/ shadow updat e/ accept ed topic:

{
"messageNunber”: 6,
"payl oad": {
"state": {
"reported": {
"color": "green"
s
"desired": null
s
"metadata": {
"reported": {
"color": {
"timestanp": 1469564801
}
}s
"desired": {
"timestanp": 1469564801
}
s
"version": 3,
"timestanp": 1469564801
s
"qos": O,
"timestanmp": 1469564801673,
"topic": "$aws/things/ nyLi ght Bul b/ shadow updat e/ accept ed"
}

The app requests the current state from the Thing Shadows service and displays the most recent state
data. To simulate this, run the following command:

aws iot-data get-thing-shadow --thing-nanme "nyLi ght Bul b" "output.txt" && cat
"out put. txt"

Note

On Windows, omit the & cat "out put. t xt", which displays the contents of output.txt to the
console. You can open the file in Notepad or any text editor to see the contents of the thing
shadow.

The Thing Shadows service returns the thing shadow document:

139

AWS IoT Developer Guide
Device Shadows Data Flow

{
"state":{
"reported":{
"color":"green"
}
H
"met adat a": {
"reported":{
"color":{
"timestanmp": 1469564801
}
}
H

"version":3,
"timestanp": 1469564864}

If you want to determine if a device is currently connected, include a connected setting in the thing shadow
and use an MQTT Last Will and Testament (LWT) message that will set the connected setting to f al se
if a device is disconnected due to error.

Note

Currently, LWT messages sent to AWS IoT reserved topics (topics that begin with $) are ignored.
To work around this issue, register an LWT message to a non-reserved topic and create a rule
that republishes the message on the reserved topic. The following example shows how to create
a republish rule that listens for a messages from the ny/ t hi ngs/ myLi ght Bul b/ updat e topic
and republishes it to $aws/ t hi ngs/ myLi ght Bul b/ shadow/ updat e.

{
"rule": {
"rul eDi sabl ed": fal se,
"sql": "SELECT * FROM ' ny/things/ nmyLi ght Bul b/ update'",
"description": "Turn ny/things/ into $aws/things/",
"actions": [{
"republish": {
"topic": "$$aws/thi ngs/ nyLi ght Bul b/ shadow updat e",
"rol eArn": "arn:aws:iam:123456789012:rol e/ aws_i ot _republ i sh"
}
}
}
}

When a device connects, it registers an LWT that sets the connected setting to f al se:

"reported":

{

"connected": "fal se"

}

It also publishes a message on its update topic ($aws/ t hi ngs/ myLi ght Bul b/ shadow' updat e), setting

its connected state to t r ue:

140

AWS IoT Developer Guide
Device Shadows Documents

"reported":

"connected":"true"

When the device disconnects gracefully, it publishes a message on its update topic and sets its connected
state to f al se:

"reported":

{
}

"connected":"fal se"

If the device disconnects due to an error, its LWT message is posted automatically to the update topic.

To delete the thing shadow, publish an empty message to the
$aws/ t hi ngs/ myLi ght Bul b/ shadow del et e topic. AWS loT will respond by publishing a message
to the $aws/ t hi ngs/ nyLi ght Bul b/ shadow del et e/ accept ed topic:

{
"messageNunber": 2,
"payl oad": {
"version": 3,
"timestanmp": 1469564968
}

"qos": O,
"timestanmp": 1469564968492,
"topic": "$aws/things/ nyLi ght Bul b/ shadow del et e/ accept ed"

}

Device Shadows Documents

The Thing Shadows service respects all rules of the JSON specification. Values, objects, and arrays are
stored in the thing shadow document.

Contents
e Document Properties (p. 141)
¢ \ersioning of a Thing Shadow (p. 142)
e Client Token (p. 142)
¢ Example Document (p. 142)
* Empty Sections (p. 143)
e Arrays (p. 144)

Document Properties

A thing shadow document has the following properties:

141

AWS IoT Developer Guide
Versioning of aThing Shadow

state

desired
The desired state of the thing. Applications can write to this portion of the document to update
the state of a thing without having to directly connect to a thing.

reported
The reported state of the thing. Things write to this portion of the document to report their new
state. Applications read this portion of the document to determine the state of a thing.

met adat a
Information about the data stored in the st at e section of the document. This includes timestamps,
in Epoch time, for each attribute in the st at e section, which enables you to determine when they
were updated.

ti mestanp
Indicates when the message was transmitted by AWS loT. By using the timestamp in the message
and the timestamps for individual attributes in the desi r ed or r epor t ed section, a thing can determine
how old an updated item is, even if it doesn't feature an internal clock.

cl i ent Token
A string unique to the device that enables you to associate responses with requests in an MQTT
environment.

ver si on
The document version. Every time the document is updated, this version number is incremented.
Used to ensure the version of the document being updated is the most recent.

For more information, see Device Shadow Document Syntax (p. 162).

Versioning of aThing Shadow

The Thing Shadows service supports versioning on every update message (both request and response),
which means that with every update of a thing shadow, the version of the JSON document is incremented.
This ensures two things:

¢ A client can receive an error if it attempts to overwrite a shadow using an older version number. The
client is informed it must resync before it can update a thing shadow.

¢ A client can decide not to act on a received message if the message has a lower version than the
version stored by the client.

In some cases, a client might bypass version matching by not submitting a version.

Client Token

You can use a client token with MQTT-based messaging to verify the same client token is contained in
a request and request response. This ensures the response and request are associated.

Example Document

Here is an example thing shadow document:

{
"state" : {
"desired" : {
"color" : "RED',

"sequence" : ["RED', "GREEN', "BLUE"]
3

142

AWS IoT Developer Guide
Empty Sections

"reported" : {
"color" : "GREEN'
}
H
"metadata" : {
"desired" : {
"color" : {
"timestamp" : 12345
H
"sequence" : {
"timestamp" : 12345
}
H
"reported" : {
"color" : {
"timestamp" : 12345
}
}
H
"version" : 10,
"client Token" : "Uni qued ient Token",

"timestamp": 123456789

Empty Sections

A thing shadow document contains a desi r ed section only if it has a desired state. For example, the
following is a valid state document with no desi r ed section:

"reported" : { "temp": 55}

The r epor t ed section can also be empty:

"desired" : { "color" : "RED' }

If an update causes the desi r ed or r epor t ed sections to become null, the section is removed from the
document. To remove the desi r ed section from a document (in response, for example, to a device
updating its state), set the desired section to nul | :

{
"state": {
"reported": {
"color": "red"
b,
"desired": null
}
}

Itis also possible a thing shadow document will not contain desi r ed or r epor t ed sections. In that case,
the shadow document is empty. For example, this is a valid document:

143

AWS IoT Developer Guide
Arrays

Arrays

Thing shadows support arrays, but treat them as normal values in that an update to an array replaces
the whole array. It is not possible to update part of an array.

Initial state:
{

"desired" : { "colors" : ["RED', "GREEN', "BLUE"] }
}
Update:
{

"desired" : { "colors" : ["RED'] }
}
Final state:
{

"desired" : { "colors" : ["RED'] }
}

Arrays can't have null values. For example, the following array is not valid and will be rejected.

"desired" : {
"colors" : [null, "RED', "GREEN']
}

Using Device Shadows

AWS IoT provides three methods for working with thing shadows:

UPDATE
Creates a thing shadow if it doesn't exist, or updates the content of a thing shadow with the data
provided in the request. The data is stored with timestamp information to indicate when it was last
updated. Messages are sent to all subscribers with the difference between desi r ed or r eport ed
state (delta). Things or apps that receive a message can perform an action based on the difference
between desi r ed or r epor t ed states. For example, a device can update its state to the desired
state, or an app can update its Ul to show the change in the device's state.

GET
Retrieves the latest state stored in the thing shadow (for example, during startup of a device to retrieve
configuration and the last state of operation). This method returns the full ISON document, including
metadata.

144

AWS IoT Developer Guide
Protocol Support

DELETE
Deletes a thing shadow, including all of its content. This removes the JSON document from the data
store. You can't restore a thing shadow you deleted, but you can create a new thing shadow with the
same name.

Protocol Support

These methods are supported through both MQTT and a RESTful APl over HTTPS. Because MQTT is
a publish/subscribe communication model, AWS loT implements a set of reserved topics. Things or
applications subscribe to these topics before publishing on a request topic in order to implement a
request—response behavior. For more information, see Device Shadow MQTT Topics (p. 156) and Device
Shadow RESTful API (p. 154).

Updating a Thing Shadow

You can update a thing shadow by using the UpdateThingShadow (p. 155) RESTful API or by publishing
to the /update (p. 157) topic. Updates affect only the fields specified in the request.

Initial state:
{
"state": {
"reported" : {
"color" : { "r" :255, "g": 255, "b": 0}
}
}
}

An update message is sent:

{
"state": {
"desired" : {
"color" : { "r" : 10 },
"engi ne" : "ON'
}
}
}

The device receives the desi r ed state on the / updat e/ del t a topic that is triggered by the previous
/ updat e message and then executes the desired changes. When finished, the device should confirm
its updated state through the r epor t ed section in the thing shadow JSON document.

Final state:
{
"state": {
"reported" : {
“color" : { "r" : 10, "g" : 255, "b": 0},
"engi ne" : "ON'
}
}
}

145

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

AWS IoT Developer Guide
Retrieving a Thing Shadow Document

Retrieving a Thing Shadow Document

You can retrieve a thing shadow by using the GetThingShadow (p. 154) RESTful API or by subscribing
and publishing to the /get (p. 159) topic. This retrieves the entire document plus the delta between the

desi red orreport ed states.

Example document:

"state": {
"desired": {
"lights": {
"color": "RED'
}
"engine": "ON'
}
"reported": {
"lights": {
"color": "GREEN'
}
"engine": "ON'
}
}
"met adata": {
"desired": {
"lights": {
"color": {
"timestanmp": 123456
}
"engi ne": {
"timestanmp": 123456
}
}
}
"reported": {
"lights": {
"color": {
"timestanmp": 789012
}
1
"engi ne": {
"timestanmp": 789012
}
}

"version": 10,
"timestamp": 123456789

Response:

"state": {
"desired": {
"lights": {
"color": "RED'

146

AWS IoT Developer Guide
Retrieving a Thing Shadow Document

b
"engi ne": "ON'
b,
"reported": {
"lights": {
"color": "GREEN'
b
"engi ne": "ON'
b
"delta": {
"lights": {
"color": "RED
}

}
1
"metadata": {
"desired": {
"lights": {
"color": {
"timestanmp": 123456
8
"engi ne": {
"timestanmp": 123456
}
1
"reported": {
"lights": {
"color": {
"timestanmp": 789012
}
8
"engi ne": {
"timestanmp": 789012
}
1
"delta": {
"lights": {
"color": {
"timestanmp": 123456
}

}
}

"version": 10,
"timestamp": 123456789

Optimistic Locking

You can use the state document version to ensure you are updating the most recent version of a thing
shadow document. When you supply a version with an update request, the service rejects the request
with an HTTP 409 conflict response code if the current version of the state document does not match the
version supplied.

For example:

147

AWS IoT Developer Guide
Retrieving a Thing Shadow Document

Initial document:

"state" : {
"desired" : { "colors" : ["RED', "GREEN', "BLUE"] }
b

"version" : 10

Update: (version doesn't match; request will be rejected)

"state": {
"desired": {
"colors": [
" BLUE"
]
}
1

"version": 9

Result:

409 Conflict

Update: (version matches; this request will be accepted)

{
"state": {
"desired": {
"colors": [
" BLUE"
]
}
}
"version": 10
}
Final state:
{
"state": {
"desired": {
"colors": [
" BLUE"
]
}
}
"version": 11
}

148

AWS IoT Developer Guide
Deleting Data

Deleting Data

You can delete data from a thing shadow by publishing to the /update (p. 157) topic, setting the fields to
be deleted to null. Any field with a value of nul | is removed from the document.

Initial state:
{
"state": {
"desired" : {
"lights": { "color": "RED' },
"engi ne" : "ON'
}
"reported" : {
"lights" : { "color": "GREEN' 1},
"engi ne" : "OFF"
}
}
}

An update message is sent:

{
"state": {
"desired": null,
"reported": {
"engi ne": null
}
}
}
Final state:
{
"state": {
"reported" : {
"lights" : { "color" : "GREEN' }
}
}
}

You can delete all data from a thing shadow by setting its state to nul | . For example, sending the following
message will delete all of the state data, but the thing shadow will remain.

"state": null

The thing shadow still exists even if its state is nul | . The version of the thing shadow will be incremented
when the next update occurs.

149

AWS IoT Developer Guide
Deleting a Thing Shadow

Deleting a Thing Shadow

You can delete a thing shadow document by using the Delete ThingShadow (p. 156) RESTful API or by
publishing to the /delete (p. 161) topic.

Initial state:
{
"state": {
"desired" : {
"lights": { "color": "RED' },
"engi ne" : "ON'
}

"reported" : {
"lights" : { "color": "GREEN' 1},
"engi ne" : "OFF"

A message is sent to the /delete topic.

Final state:

HTTP 404 - resource not found

Delta State

Delta state is a virtual type of state that contains the difference between the desi r ed and r epor t ed
states. Fields in the desi r ed section that are not in the r epor t ed section are included in the delta.
Fields that are in the r epor t ed section and not in the desi r ed section are not included in the delta. The
delta contains metadata, and its values are equal to the metadata in the desi r ed field. For example:

"state": {

"desired": {
"color": "RED',
"state": "STOP"

}

"reported": {
"color": "GREEN',
"engi ne": "ON'

1
"delta": {
"color": "RED',
"state": "STOP"
}
1
"met adata": {
"desired": {
"color": {
"timestamp": 12345
1
"state": {

150

AWS IoT Developer Guide
Delta State

"timestamp": 12345

H
"reported": {
"color": {
"timestamp": 12345
H
"engi ne": {
"timestamp": 12345
}
H
"delta": {
"color": {
"timestamp": 12345
H
"state": {
"timestamp": 12345
}
}

b
"version": 17,
"timestamp": 123456789

When nested objects differ, the delta contains the path all the way to the root.

{
"state": {
"desired": {
"lights": {
"color": {
"r": 255,
"g": 255,
"b": 255
}
}
}s
"reported": {
"lights": {
"color": {
"r": 255,
"g": 0,
"b": 255
}
}
}s
"delta": {
"lights": {
"color": {
"g": 255
}
}
}
}s
"version": 18,
"timestamp": 123456789
}

151

AWS IoT Developer Guide
Observing State Changes

The Thing Shadows service calculates the delta by iterating through each field in the desi r ed state and
comparing it to the r epor t ed state.

Arrays are treated like values. If an array in the desi r ed section doesn't match the array in the r epor t ed
section, then the entire desired array is copied into the delta.

Observing State Changes

When a thing shadow is updated, messages are published on two MQTT topics:

¢ $aws/things/t hi ng- nane/shadow/update/accepted
¢ $aws/things/t hi ng- nane/shadow/update/delta

The message sent to the updat e/ del t a topic is intended for the thing whose state is being updated.
This message contains only the difference between the desi r ed and r epor t ed sections of the thing
shadow document. Upon receiving this message, the thing decides whether to make the requested
change. If the thing's state is changed, it publishes its new current state to the

$aws/ t hi ngs/ t hi ng- name/ shadow updat e topic.

Devices and applications can subscribe to either of these topics to be notified when the state of the
document has changed.

Here is an example of that flow:

1. Device reports state.
2. The system updates the state document in its persistent data store.

3. The system publishes a delta message, which contains only the delta and is targeted at the subscribed
devices. Devices should subscribe to this topic to receive updates.

4. The thing shadow publishes an accepted message, which contains the entire received document,
including metadata. Applications should subscribe to this topic to receive updates.

Message Order

There is no guarantee that messages from the AWS loT service will arrive at the device in any specific
order.

Initial state document:

{
"state" : {
"reported” : { "color" : "blue" }
b
"version" : 10,
"timestanp": 123456777
}
Update 1:
{
"state": { "desired" : { "color" : "RED' } },
"version": 10,
"timestanp": 123456777
}

152

AWS IoT Developer Guide
Trim Device Shadow Messages

Update 2:

"state": { "desired" : { "color" : "GREEN' } 1},
"version": 11 ,
"timestanp": 123456778

Final state document:

{
"state": {
"reported": { "color" : "GREEN' }
b
"version": 12,
"timestanp": 123456779
}

This results in two delta messages:

{
"state": {
"color": "RED'
b,
"version": 11,
"timestamp": 123456778
}
{
"state": { "color" : "GREEN' },
"version": 12,
"timestanmp": 123456779
}

The device might receive these messages out of order. Because the state in these messages is cumulative,
a device can safely discard any messages that contain a version number older than the one it is tracking.
If the device receives the delta for version 12 before version 11, it can safely discard the version 11
message.

Trim Device Shadow Messages

To reduce the size of thing shadow messages sent to your device, define a rule that selects only the fields
your device needs and republishes the message on an MQTT topic to which your device is listening.

The rule is specified in JISON and should look like the following:

"sqgl": "SELECT state, version FROM ' $aws/thi ngs/+/ shadow update/delta'",
"rul eDi sabl ed": fal se,
"actions": [{
"republish": {
"topic": "${topic(2)}/delta",
"rol eArn": "arn:aws:iam:123456789012:role/nmy-iot-role"

153

AWS IoT Developer Guide
RESTful API

}

The SELECT statement determines which fields from the message will be republished to the specified
topic. A "+" wildcard is used to match all thing shadow names. The rule specifies that all matching messages
should be republished to the specified topic. In this case, the "t opi ¢c() " function is used to specify the
topic on which to republish. t opi ¢c(2) evaluates to the thing name in the original topic. For more
information about creating rules, see Rules.

Device Shadow RESTful API

A thing shadow exposes the following URI for updating state information:

https://endpoi nt/things/thi ngNanme/ shadow

The endpoint is specific to your AWS account. To retrieve your endpoint, use the describe-endpoint
command. The format of the endpoint is as follows:

identifier.iot.region.amazonaws.com

API Actions
¢ GetThingShadow (p. 154)
¢ UpdateThingShadow (p. 155)
¢ DeleteThingShadow (p. 156)

GetThingShadow

Gets the thing shadow for the specified thing.
The response state document includes the delta between the desi r ed and r epor t ed states.
Request

The request includes the standard HTTP headers plus the following URI:

HTTP CET https://endpoint/things/thingNanme/ shadow

Response

Upon success, the response includes the standard HTTP headers plus the following code and body:

HTTP 200
BODY: response state docunent

For more information, see Example Response State Document (p. 163).

Authorization

154

http://docs.aws.amazon.com/iot/latest/developerguide//iot-rules.html
http://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html

AWS IoT Developer Guide
UpdateThingShadow

Retrieving a thing shadow requires a policy that allows the caller to perform the i ot : Get Thi ngShadow
action. The Thing Shadows service accepts two forms of authentication: Signature Version 4 with IAM
credentials or TLS mutual authentication with a client certificate.

The following is an example policy that allows a caller to retrieve a thing shadow:

{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action": "iot:GetThi ngShadow',
"Resource": ["arn:aws:iot:region:account:thing/thing"]
}
}

UpdateThingShadow

Updates the thing shadow for the specified thing.

Updates affect only the fields specified in the request state document. Any field with a value of nul | is
removed from the thing shadow.

Request

The request includes the standard HTTP headers plus the following URI and body:

HTTP POST https://endpoi nt/things/thingNane/ shadow
BODY: request state docunent

For more information, see Example Request State Document (p. 163).
Response

Upon success, the response includes the standard HTTP headers plus the following code and body:

HTTP 200
BODY: response state docunent

For more information, see Example Response State Document (p. 163).
Authorization

Updating a thing shadow requires a policy that allows the caller to perform the i ot : Updat eThi ngShadow
action. The Thing Shadows service accepts two forms of authentication: ignature ersion 4 with IAM
credentials or TLS mutual authentication with a client certificate.

The following is an example policy that allows a caller to update a thing shadow:

"Version": "2012-10-17",
"Statenent": [{
"Effect": "Allow',
"Action": "iot:UpdateThi ngShadow',
"Resource": ["arn:aws:iot:region:account:thing/thing"]

155

AWS IoT Developer Guide
DeleteThingShadow

}

DeleteThingShadow

Deletes the thing shadow for the specified thing.
Request

The request includes the standard HTTP headers plus the following URI:

HTTP DELETE https://endpoi nt/things/thi ngNane/ shadow

Response

Upon success, the response includes the standard HTTP headers plus the following code and body:

HTTP 200
BODY: Enpty response state docunent

Authorization

Deleting a thing shadow requires a policy that allows the caller to perform the i ot : Del et eThi ngShadow
action. The Thing Shadows service accepts two forms of authentication: gnature Version 4 with IAM
credentials or TLS mutual authentication with a client certificate.

The following is an example policy that allows a caller to delete a thing shadow:

{
"Version": "2012-10-17",
"Statenment": [{
"Effect": "All ow',
"Action": "iot:Del eteThi ngShadow',
"Resource": ["arn:aws:iot:region:account:thing/thing"]
}H
}

Device Shadow MQTT Topics

The Thing Shadows service uses reserved MQTT topics to enable applications and things to get, update,
or delete the state information for a thing (thing shadow). The names of these topics start with
$aws/things/t hi ngNane/shadow. Publishing and subscribing on thing shadow topics requires topic-based
authorization. AWS |loT reserves the right to add new topics to the existing topic structure. For this reason,
we recommend that you avoid wildcard subscriptions to shadow topics. For example, avoid subscribing
to topic filters like $aws/ t hi ngs/ t hi ngName/ shadow # because the number of topics that match this
topic filter might increase as AWS IoT introduces new shadow topics.

The following are the MQTT topics used for interacting with thing shadows.

Topics
e /update (p. 157)
¢ /update/accepted (p. 157)

156

AWS IoT Developer Guide
/update

¢ /update/documents (p. 158)
e /update/rejected (p. 158)

¢ /update/delta (p. 159)

e /get (p. 159)

¢ /get/accepted (p. 160)

« /get/rejected (p. 160)

¢ /delete (p. 161)

« /delete/accepted (p. 161)

« /delete/rejected (p. 162)

/update

A thing publishes a request state document to this topic to update the thing shadow:

$aws/ t hi ngs/ t hi ngNane/ shadow updat e

AWS loT responds by publishing to either /update/accepted (p. 157) or /update/rejected (p. 158).

For more information, see Request State Documents (p. 163).

Example Policy

The following is an example policy:

{
"Version": "2012-10-17",
"Statenment": [{
"Effect": "All ow',
"Action": ["iot:Publish"],
"Resource": ["arn:aws:iot:region:account:topic/$aws/t hi ngs/thi ngNane/ shad
ow/ updat e"]
}H
}
/update/accepted

AWS loT publishes a response state document to this topic when it accepts a change for the thing shadow:

$aws/ t hi ngs/t hi ngNane/ shadow/ updat e/ accept ed

For more information, see Response State Documents (p. 163).

Example Policy

The following is an example of the required policy:

"Version": "2012-10-17",
"Statenment": [{
"Effect": "All ow',

157

AWS IoT Developer Guide
/update/documents

"Action": [
"iot:Subscribe",
"iot:Receive"
1,
"Resource": ["arn:aws:iot:region:account:topicfilter/$aws/things/thing
Nare/ shadow/ updat e/ accept ed"]
}H
}

/update/documents

AWS IoT publishes a state document to this topic whenever an update to the shadow is successfully
performed:

$aws/ t hi ngs/ t hi ngNane/ shadow updat e/ docunent s

The JSON document will contain two primary nodes: pr evi ous and cur r ent . The pr evi ous node will
contain the contents of the full shadow document before the update was performed while cur r ent will
contain the full shadow document after the update is successfully applied. When the device shadow is
updated (created) for the first time, the pr evi ous node will contain nul | .

Example Policy

The following is an example of the required policy:

"Version": "2012-10-17",
"Statenment": [{
"Effect": "All ow',
"Action": [
"i ot: Subscri be",
"iot:Receive"
I
"Resource": ["arn:aws:iot:region:account:topicfilter/$aws/things/thing
Nare/ shadow/ updat e/ docunent s"]

1
}

/update/rejected

AWS loT publishes an error response document to this topic when it rejects a change for the thing shadow:

$aws/ t hi ngs/ t hi ngNane/ shadow updat e/ r ej ect ed

For more information, see Error Response Documents (p. 164).

Example Policy

The following is an example of the required policy:

158

AWS IoT Developer Guide
/lupdate/delta

"Version": "2012-10-17",
"Statenent": [{
"Effect": "Allow',
"Action": [
"iot:Subscribe",
"iot:Receive"
1,
"Resource": ["arn:aws:iot:region:account:topicfilter/$aws/things/thing
Nare/ shadow/ updat e/ r ej ect ed"]

}
}

/update/delta

AWS loT publishes a response state document to this topic when it accepts a change for the thing shadow
and the request state document contains different values for desi r ed and r epor t ed states:

$aws/ t hi ngs/ t hi ngNane/ shadow updat e/ del t a

For more information, see Response State Documents (p. 163).

Publishing Details

¢ A message published on updat e/ del t a includes only the desired attributes that differ between the
desi red and r epor t ed sections. It contains all of these attributes, regardless of whether these
attributes were contained in the current update message or were already stored in AWS |oT. Attributes
that do not differ between the desi r ed and r epor t ed sections are not included.

« If an attribute is in the r epor t ed section but has no equivalent in the desi r ed section, it is not included.
« If an attribute is in the desi r ed section but has no equivalent in the r epor t ed section, it is not included.
¢ Ifan attribute is deleted from the r epor t ed section but still exists in the desi r ed section, it is included.

Example Policy

The following is an example of the required policy:

"Version": "2012-10-17",
"Statenment": [{
"Effect": "Al ow',
"Action": [
"i ot: Subscri be",
"iot:Receive"
1
"Resource": ["arn:aws:iot:region:account:topicfilter/$aws/things/thing
Nare/ shadow/ updat e/ del t a"]
}
}

/get

A thing publishes to this topic to get the thing shadow:

159

AWS IoT Developer Guide
/get/accepted

$aws/ t hi ngs/t hi ngNane/ shadow get

AWS loT responds by publishing to either /get/accepted (p. 160) or /get/rejected (p. 160).

Example Policy

The following is an example of the required policy:

{
"Version": "2012-10-17",
"Statenment": [{
"Effect": "Alow',
"Action": [
"iot:Publish"
1.
"Resource": ["arn:aws:iot:region:account:topic/$aws/t hi ngs/thi ngNane/ shad
ow get "]
}H
}

/get/accepted

AWS loT publishes a response state document to this topic when returning the thing shadow:

$aws/ t hi ngs/ t hi ngNane/ shadow/ get / accept ed

For more information, see Response State Documents (p. 163).

Example Policy

The following is an example of the required policy:

"Version": "2012-10-17",
"Statenment": [{
"Effect": "Alow',
"Action": [
"iot:Subscribe",
"iot:Receive"
1.
"Resource": ["arn:aws:iot:region:account:topicfilter/$aws/things/thing
Nare/ shadow/ get / accept ed"]
}
}

/get/rejected

AWS loT publishes an error response document to this topic when it can't return the thing shadow:

$aws/ t hi ngs/ t hi ngNane/ shadow/ get/rej ect ed

For more information, see Error Response Documents (p. 164).

160

AWS IoT Developer Guide
/delete

Example Policy

The following is an example of the required policy:

"Version": "2012-10-17",
"Statenent": [{
"Action": [
"iot: Subscribe",
"iot: Receive"
1,
"Resource": ["arn:aws:iot:region:account:topicfilter/$aws/things/thing
Narre/ shadow/ get/ rej ect ed"]
H
}

/delete

A thing publishes a document to this topic to delete a thing shadow:

$aws/ t hi ngs/t hi ngNane/ shadow/ del et e

To delete a thing shadow, send a message to the delete topic. The content of the message is ignored.

AWS loT responds by publishing to either /delete/accepted (p. 161) or /delete/rejected (p. 162).

Example Policy

The following is an example policy:

"Version": "2012-10-17",
"Statenent": [{
"Effect": "Allow',
"Action": [
"iot:Subscribe",
"iot: Receive"

1,
"Resource": ["arn:aws:iot:region:account:topic filter/$aws/things/thing
Name/ shadow del et e"]

}H
}

/delete/accepted

AWS loT publishes a message to this topic when deleting a thing shadow:

$aws/ t hi ngs/ t hi ngNanme/ shadow del et e/ accept ed

Example Policy

The following is an example of the required policy:

161

AWS IoT Developer Guide
/delete/rejected

"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action": |
"iot: Subscribe",
"i ot: Receive"

]

source": ["arn:aws:iot:region:account:topicfilter/$aws/things/thing
Nare/ shadow del et e/ accept ed"]

}
}

/delete/rejected

AWS IoT publishes an error response document to this topic when it can't delete the thing shadow:

$aws/ t hi ngs/ t hi ngNanme/ shadow del et e/ rej ect ed

For more information, see Error Response Documents (p. 164).

Example Policy

The following is an example of the required policy:

"Version": "2012-10-17",
"Statement": [{
"Effect": "Alow',
"Action":
"iot: Subscribe",
"i ot: Receive"

]

source": ["arn:aws:iot:region:account:topicfilter/$aws/things/thing
Nare/ shadow/ del et e/ r ej ect ed"]

}
}

Device Shadow Document Syntax

The Thing Shadows service uses the following documents in UPDATE, GET, and DELETE operations
using the RESTful API (p. 154) or MQTT Pub/Sub Messages (p. 156). For more information, see Device
Shadows Documents (p. 141).

Examples
¢ Request State Documents (p. 163)
¢ Response State Documents (p. 163)
¢ Error Response Documents (p. 164)

162

AWS IoT Developer Guide
Request State Documents

Request State Documents

Request state documents have the following format:

{
"state": {
"desired": {
"attributel": integer2,
"attribute2": "string2",
"attributeN': bool ean2
b,
"reported": {
"attributel": integerl,
"attribute2": "stringl",
"attributeN': bool eanl
}
}
"client Token": "token",
"version": version
}

¢ st at e — Updates affect only the fields specified.
¢ cl i ent Token — If used, you can verify that the request and response contain the same client token.

e versi on — If used, the Thing Shadows service processes the update only if the specified version
matches the latest version it has.

Response State Documents

Response state documents have the following format:

{
"state": {
"desired": {
"attributel": integer2,
"attribute2": "string2",
"attributeN': bool ean2
}
"reported": {
"attributel": integerl,
"attribute2": "stringl",
"attributeN': bool eanl
}
"delta": {
"attribute3": integerX,
"attribute5": "stringY"
}
}
"metadata": {
"desired": {

"attributel": {

163

AWS IoT Developer Guide
Error Response Documents

"timestamp": tinestanp
}s
"attribute2": {

"timestamp": tinestanp

b

"attributeN': {
"timestamp": tinestanp

}
H
"reported": {
"attributel": {
"timestamp": tinestanp
H
"attribute2": {
"timestamp": tinestanp
H
"attributeN': {
"timestamp": tinestanp
}
}
}' . .
"timestanp": tinestanp,
"client Token": "token",
"version": version
}
e state

« reported— Only present if a thing reported any data in the r epor t ed section and contains only
fields that were in the request state document.

« desi red — Only present if a thing reported any data in the desi r ed section and contains only fields
that were in the request state document.

* met adat a — Contains the timestamps for each attribute in the desi r ed and r epor t ed sections so
that you can determine when the state was updated.

e ti mest anp — The Epoch date and time the response was generated by AWS loT.

¢ cl i ent Token — Present only if a client token was used when publishing valid JSON to the / updat e
topic.

¢ ver si on —The current version of the document for the thing shadow shared in AWS IoT. It is increased
by one over the previous version of the document.

Error Response Documents

Error response documents have the following format:

{
"code": error-code,
"nmessage": "error-nmessage",
"timestanp": tinestanp,
"client Token": "token"

}

¢ code — An HTTP response code that indicates the type of error.

164

AWS IoT Developer Guide
Error Messages

e nessage — A text message that provides additional information.
e ti mest anp — The date and time the response was generated by AWS |oT.
e cli ent Token — Present only if a client token was used when publishing valid JSON to the / updat e

topic.

For more information, see Device Shadow Error Messages (p. 165).

Device Shadow Error Messages

The Thing Shadows service publishes a message on the error topic (over MQTT) when an attempt to
change the state document fails. This message is only emitted as a response to a publish request on one
of the reserved $aws topics. If the client updates the document using the REST API, then it receives the
HTTP error code as part of its response, and no MQTT error messages are emitted.

HTTP Error Code

400 (Bad Request)

401 (Unauthorized)

403 (Forbidden)

404 (Not Found)

409 (Conflict)

413 (Payload Too Large)

415 (Unsupported Media Type)

429 (Too Many Requests)

Error Messages

Invalid JSON

Missing required node: state

State node must be an object

Desired node must be an object

Reported node must be an object

Invalid version

Invalid clientToken

JSON contains too many levels of nesting; maximum is 6
State contains an invalid node

Unauthorized

Forbidden

Thing not found

Version conflict

The payload exceeds the maximum size allowed

Unsupported documented encoding; supported encoding
is UTF-8

The Thing Shadow service will generate this error message
when there are more than 10 in-flight requests.

165

AWS IoT Developer Guide
Error Messages

HTTP Error Code Error Messages

500 (Internal Server Error) ¢ Internal service failure

166

AWS IoT Developer Guide
Android SDK

AWS IoT SDKs

Contents

Android SDK (p. 167)

Arduino Yun SDK (p. 167)

AWS IoT Embedded C SDK (p. 168)

AWS Mobile SDK for iOS (p. 168)

AWS loT Java SDK (p. 168)

AWS |oT JavaScript SDK (p. 168)

AWS |oT Device SDK for Python (p. 169)

Getting Started with AWS IoT on the Raspberry Pi and the AWS loT Embedded C SDK (p. 169)
Getting Started with AWS loT on Raspberry Pi and the AWS loT Device SDK for JavaScript (p. 180)

The AWS IoT device SDKs help you to easily and quickly connect your device to AWS IoT. The AWS
10T Device SDKs include open source libraries, developer guides with samples, and porting guides so
that you can build innovative loT products or solutions on your choice of hardware platforms.

Android SDK

The AWS SDK for Android contains a library, samples, and documentation for developers to build
connected mobile applications using AWS. This SDK also includes support for calling AWS loT APIs. For
more information, see the following:

* AWS Android SDK on GitHub
*« AWS Android SDK Readme
¢ AWS Android SDK Samples

Arduino Ydn SDK

The AWS loT Arduino Yun SDK allows developers to connect their Arduino Yan-compatible boards to
AWS IoT. By connecting a device to AWS IoT, users can securely work with the message broker, rules,
and thing shadows provided by AWS loT and with other AWS services like AWS Lambda, Amazon Kinesis,
and Amazon S3. For more information, see the following:

167

https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android/blob/master/README.md
https://github.com/awslabs/aws-sdk-android-samples

AWS IoT Developer Guide
AWS loT Embedded C SDK

¢ Arduino Yun SDK on GitHub
* Arduino Yun SDK Readme

AWS IoT Embedded C SDK

The AWS IoT device SDK for embedded C is a collection of C source files that can be used in embedded
applications to securely connect to the AWS loT platform. It includes transport clients, TLS implementations,
and examples for their use. It also supports AWS loT-specific features such as an API to access the
Thing Shadows service. It is distributed as source code and is intended to be built into customer firmware
along with application code, other libraries, and RTOS. For more information see the following:

¢ Embedded C SDK on GitHub
« Embedded C SDK Readme
¢« Embedded C SDK Porting Guide

AWS Mobile SDK for 10S

The AWS SDK for iOS is an open-source software development kit, distributed under an Apache Open
Source license. The SDK for iOS provides a library, code samples, and documentation to help developers
build connected mobile applications using AWS. This SDK also includes support for calling the AWS loT
API.

¢ AWS SDK for iOS on GitHub
* AWS SDK for iOS Readme
¢ AWS SDK for iOS Samples

AWS loT Java SDK

The AWS IoT Device SDK for Java enables Java developers to access the AWS loT platform through
MQTT or MQTT over the WebSocket protocol. The SDK is built with AWS IoT thing shadow support,
providing access to thing shadows using HTTP methods, including GET, UPDATE, and DELETE. It also
supports a simplified thing shadow access model, which allows developers to exchange data with thing
shadows by just using getter and setter methods without having to serialize or deserialize any JSON
documents. For more information, see the following:

¢ AWS loT SDK for Java on GitHub
¢ AWS loT Java SDK readme

AWS loT JavaScript SDK

The aws-iot-device-sdk.js package allows developers to write JavaScript applications that access AWS
10T using MQTT or MQTT over the secure WebSocket protocol. It can be used in Node.js environments
and browser applications. For more information, see the following:

¢« AWS loT SDK for JavaScript on GitHub
¢ AWS loT SDK for JavaScript readme

168

https://github.com/aws/aws-iot-device-sdk-arduino-yun
https://github.com/aws/aws-iot-device-sdk-arduino-yun/blob/master/README.md
https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/aws/aws-iot-device-sdk-embedded-C/blob/master/README.md
https://github.com/aws/aws-iot-device-sdk-embedded-C/blob/master/PortingGuide.md
https://github.com/aws/aws-sdk-ios
https://github.com/aws/aws-sdk-ios/blob/master/README.md
https://github.com/aws/aws-sdk-ios/blob/master/README.md#iot-sample-swift
https://github.com/aws/aws-iot-device-sdk-java
https://github.com/aws/aws-iot-device-sdk-java/blob/master/README.md
https://github.com/aws/aws-iot-device-sdk-js
https://github.com/aws/aws-iot-device-sdk-js/blob/master/README.md

AWS IoT Developer Guide
AWS IoT Device SDK for Python

AWS loT Device SDK for Python

The AWS IoT Device SDK for Python allows developers to write Python scripts to use their devices to
access the AWS IoT platform through MQTT or MQTT over the WebSocket protocol. By connecting their
devices to AWS |oT, users can securely work with the message broker, rules, and thing shadows provided
by AWS loT and with other AWS services like AWS Lambda, Amazon Kinesis, and Amazon S3, and
more.

¢« AWS loT SDK for Python on GitHub
¢ AWS loT SDK for Python readme

Getting Started with AWS IoT on the Raspberry
Pi and the AWS lIoT Embedded C SDK

This guide provides step-by-step instructions for connecting your Raspberry Pi to the AWS loT platform
and setting it up for use with the AWS IoT Embedded C SDK. After following the steps in this guide, you
will be able to get connected to the AWS IoT platform and run sample apps included with the AWS loT
Embedded C SDK.

Prerequisites

« A fully set up Raspberry Pi board with Internet access

For information about setting up your Raspberry Pi, see Raspberry Pi Quickstart Guide.
¢ Chrome or Firefox (Iceweasel) browser

For information about installing Iceweasel, see the instructions on the Embedded Linux wiki.

In this guide, the following hardware and software are used:

¢ Raspberry Pi 2 Model B
¢ Raspbian Wheezy
¢ Iceweasel browser

Connecting Your Raspberry Pi
Sign in to the AWS |oT Console

Turn on your Raspberry Pi and confirm you have an Internet connection.

Sign in to the AWS Management Console and open the AWS |oT console at https://aws.amazon.com/
iot. On the Welcome page, choose Get started with AWS loT.

169

https://github.com/aws/aws-iot-device-sdk-python
https://github.com/aws/aws-iot-device-sdk-python/blob/master/README.rst
https://www.raspberrypi.org/help/quick-start-guide/
http://elinux.org/RPi_IceWeasel#Installing_the_software
https://www.raspberrypi.org/
https://www.raspberrypi.org/downloads/
http://elinux.org/RPi_IceWeasel#Installing_the_software
https://aws.amazon.com/iot
https://aws.amazon.com/iot

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Easily and securely connect devices
Reliably scale to billions of devices and tril

Get started with AWS loT

If this is your first time using the AWS loT console, you will see two buttons: Get Started and Start

interactive tutorial.

AWS |oT

AWS |oT is a managed cloud platform that lets connected devices
-- cars, light bulbs, sensor grids and more -- easily and securely
interact with cloud applications and other devices.

Get started Start interactive tutorial

Getting started documentation

170

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Choose Get Started. The following page should appear.
Resources

AWS loT

+ Create a resource ' Connect AWS loT Button

Resources

0/0 things 0/0 thing types
g g yp

0/0rules 0/f0 CAs 0/0 certificates 0/0 policies

T I ST 0 B0t ol Bt A PPN e, 0, ot MIPANAD el el e
If you don't see a blue banner with Create a thing, Create a rule, Create a certificate, and Create a

policy buttons, choose the Create a resource button:
Resources

AWS loT

0/0 things 0/0 thing types
g g yp

0/0rules 0/f0 CAs 0/0 certificates 0/0 policies

i 0 RIS, o B st I AN NN ol e AN AN o bt el

Create and Attach aThing (Device)

A thing represents a device whose status or data is stored in the AWS loT cloud. The Thing Shadows
service maintains a thing shadow for each device connected to AWS IoT. Thing shadows allow you to

access and modify thing state data.

171

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Choose Create a thing, type a name for the thing, and then choose Create:

AWS I OT Resources

Re SO u rces X% Close create panel ' Connect AWS loT Button

oo
&

T oy -
£ %5 <

Create a thing Create a thing type Create a rule Use my certificate Create a c

2

Create a thing

Create a thing to represent your device in the cloud. This step creates an entry in the thing registry and a thing shado

Name mvHaspberryPﬂ

Choose a thing type

You can associate a thing type to your thing. If you do not want to associate your thing with a type, choose No type

No type v

Attributes used in a thing search

Next (optional), you can use thing attributes to describe the identity and capabilities of your device. Each attribute is a

Add attribute

e I P S P S Y e e it e

In addition to a confirmation message, the View thing button will be displayed:

172

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Resources

% Close create panel &' Connect AWS loT Button

Resources

Create a thing

Create a thing type

N S| <

Create a rule

Use my certificate

e

Createac

Your thing has been created.

You can now connect a device to this thing, or add a rule that will trigger actions when your thing publishes a message

Y
1/1 things

0/0 thing types 0/f0rules 0/0 CAs 0/O certificates 0/0 policies

myRaspberryPi

N 0

Choose View thing to display information about your thing:

173

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Reso u rces ® Close create panel &' Connect AWS loT Button

© @[< =

Create a thing Create a thing type Create a rule Use my certificate Create a certificate [

Your thing has been created.

You can now connect a device to this thing, or add a rule that will trigger actions when your thing publishes a messag

A :
1/1 things ~ 0/0 thing types 0/0 rules 0/0 CAs 0/0 certificates
0/0 policies

myRaspberryPi

B I R R R Y I e PP

Choose the Connect a device button to download a key pair and a certificate generated by AWS IoT:

174

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Reso u rces ® Close create panel &' Connect AWS loT Button

© @[< =

Create a thing Create a thing type Create a rule Use my certificate Create a certificate [

Your thing has been created.

You can now connect a device to this thing, or add a rule that will trigger actions when your thing publishes a messag

A :
1/1 things ~ 0/0 thing types 0/0 rules 0/0 CAs 0/0 certificates
0/0 policies

myRaspberryPi

B I R R R Y I e PP

On the Connect a device page, select the SDK to use, and then choose Generate certificate and
policy:

175

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Resources

Connect a device

Connect your device to one of our many supported SDKs.

© Embedded C I NodelS First, you will need to create and download security credent
will help you to create and download security credentials (a -

(1 Arduino Yin
that defines what the device using this certificate is allowed

You can generate a certificate with 1-click. When you genera
default security policy named myRaspberryPi-Policy. You can
through the 'Resources’ panel of this console.

Generate certificate anc

This will generate an X.509 certificate and key pair; activate the X.509 certificate; and create an AWS
10T policy and attach it to the certificate.

The following page will be displayed:

AWS I OT Resources

Connect a device

Connect your device to one of our many supported SDKs.

© Embedded C " NodeJS Please download these files and save them in a safe place. (

) Arduine Yin but the private and public keys will not be retrievable after cls

¢ Download public key
¢ Download private key
* Download certificate

Confirm & start conne

R Y Y TV ™ U T W S T Y W T

Create a working directory called devi ceSDK where your files will be stored. Choose the links to download
your public and private keys and certificate and save them in the devi ceSDK directory.

176

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Choose Confirm & start connecting. The following page will be displayed:

AWS loT Resources

Connect a device

Connect your device to one of our many supported SDKs.

O Embedded C " 'NodedS
~) Arduino Yan AWS loT C SDK
Download one of the AWS loT C SDKs:
* OpenSSL
* mbed-TLS

Set up the SDK using the instructions in our README on Gi

Add in the following sample code based on your account, Th

// Get from console

i

#define AWS_IOT_MQTT_HOST "advwdyc
#define AWS_IOT_MQTT_PORT 8883
#define AWS_IOT_MQTT_CLIENT_ID "myRaspb
#define AWS_IOT_MY_THING_MNAME "myRaspb
#define AWS_IOT_ROOT_CA_FILENAME "root-CA.

#define AWS_IOT_CERTIFICATE_FILENAME 9335912
#define AWS_IOT_PRIVATE_KEY_FILENAME "9335912
i

Start one of the sample applications found in the SDK. You ¢
the state of your thing's shadow and interact with your devi
device can use a clientlD for connecting to the AWS loT plat
connect multiple devices concurrently please create a separ:
that you intend to connect.

Return to Thing Detail

e ™ e O P A e BN o P b ol O el B gt

There are two versions of the AWS IoT Embedded C SDK: OpenSSL and mbed TLS. Choose the OpenSSL
link. This will download the AWS loT AWS loT Device SDK for C in a tarball
(i nux_nmgtt _openssl -1 at est. tar).Save itin your devi ceSDK directory. In a terminal window, type
the following command to extract the tarball into your devi ceSDK directory:

“tar -xvf linux_ngtt_openssl-latest.tar’

Set Up the Runtime Environment for the AWS loT Embedded
C SDK

Before you can use the AWS loT Embedded C SDK, you must install the OpenSSL library on Raspberry
Pi. . In a terminal window, run sudo apt-get install |ibssl-dev.

177

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Sample App Configuration

The AWS IoT Embedded C SDK includes sample apps for you to try. For simplicity, we are going to run
subscribe_publish_sample. Copy your certificate and private key into the devi ceSDK/ cer t s directory.
Download a root CA certificate here. Copy the root CA text from the browser, paste it into a file, and then
copy it into the devi ceSDK/ cert s directory.

Navigate to the devi ceSDK/ sanpl e_apps/ subscri be_publ i sh_sanpl e directory. You will need to
configure your personal endpoint, private key, and certificate. If you have access to a machine with the
AWS CLlI installed, you can use the aws i ot descri be-endpoi nt command to find your personal
endpoint URL. Otherwise, go to the AWS IoT console, double-click MyNewThing, and copy everything
after "https://" including ".com” from REST API endpoint.

Learn n
ResoUrces + Create a resource ‘
REST 4
Y Filter by resource names or by resource type (below)
‘ Select al ‘
1/1things O/0rules 1/1 certificates _ _
1/1 policies First Previous - Next Last
Linkex

Open the aws_i ot _confi g. h file and update the values for the following:

AWS_IOT_MQTT_HOST
Your personal endpoint.

AWS_IOT_MY_THING_NAME
Your thing name.

AWS_10T_ROQOT_CA_FILENAME
Your root CA certificate.

AWS_IOT_CERTIFICATE_FILENAME
Your certificate.

AWS_IOT_PRIVATE_KEY_FILENAME
Your private key.

Run Sample Applications
Compile the subscri be_publ i sh_sanpl e_app using the included makefile.
make -f Makefile

This will generate an executable file.

178

https://www.symantec.com/content/en/us/enterprise/verisign/roots/VeriSign-Class%203-Public-Primary-Certification-Authority-G5.pem

AWS IoT Developer Guide
Connecting Your Raspberry Pi

- pi@raspber (PIE ~LOWNIoaas/inux_.Mple_apps/SUnsSCrpeE_pUBIIsSN_samplie I:H:H:‘

File Edit Tabs Help
pi@raspberrypi

aws_iot_config.h Makefile subscribe_publish_sample.c
pi@raspberrypi

pi@raspberryf

1s

aws_iot config.h [subscribe pub(ish sample
Makefile subscribe_publish_sample.c
pi@raspberrypi

Now run the subscribe_publish_sample_app. You should see output similar to the following:

- pi@raspber (PIE ~LOWNIoaas/inux_.Mple_apps/SUnsSCrpeE_pUBIIsSN_samplie I:H:H:‘

File Edit Tabs Help

from ¢

o from S

o from

from

Your Raspberry Pi is now connected to AWS loT using the AWS IoT Device SDK for C.

179

AWS IoT Developer Guide
AWS loT Device SDK for JavaScript

Getting Started with AWS |oT on Raspberry Pi
and the AWS loT Device SDK for JavaScript

This guide provides step-by-step instructions for connecting your Raspberry Pi to the AWS loT platform
and setting it up for use with the AWS loT Device SDK for JavaScript. After following the steps in this
guide, you will be able to get connected to the AWS loT platform and run sample apps included in the
SDK.

Prerequisites

¢ A fully set up Raspberry Pi board with Internet access

For information about setting up your Raspberry Pi, see the Raspberry Pi Quickstart Guide.
¢ Chrome or Firefox (Iceweasel) browser

For information about installing Iceweasel, see the instructions on the Embedded Linux wiki.

In this guide, the following hardware and software are used:

¢ Raspberry Pi 2 Model B
¢ Raspbian Jessie
¢ Iceweasel browser

Connecting Your Raspberry Pi
Sign in to the AWS |oT Console

Turn on your Raspberry Pi and confirm you have an Internet connection.

Sign in to the AWS Management Console and open the AWS IoT console at https://aws.amazon.com/
iot. On the Welcome page, choose Get started with AWS loT:

180

https://www.raspberrypi.org/help/quick-start-guide/
http://elinux.org/RPi_IceWeasel#Installing_the_software
https://www.raspberrypi.org/
https://www.raspberrypi.org/downloads/raspbian/
http://elinux.org/RPi_IceWeasel#Installing_the_software
https://aws.amazon.com/iot
https://aws.amazon.com/iot

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Easily and securely connect devices
Reliably scale to billions of devices and tril

Get started with AWS loT

If this is your first time using the AWS loT console, you will see two buttons: Get Started and Start

Interactive Tutorial.

AWS |oT

AWS |oT is a managed cloud platform that lets connected devices
-- cars, light bulbs, sensor grids and more -- easily and securely
interact with cloud applications and other devices.

Get started Start interactive tutorial

Getting started documentation

181

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Choose Get Started. The following page should appear.
Resources

AWS loT

+ Create a resource ' Connect AWS loT Button

Resources

0/0 things 0/0 thing types
g g yp

0/0rules 0/f0 CAs 0/0 certificates 0/0 policies

T I ST 0 B0t ol Bt A PPN e, 0, ot MIPANAD el el e
If you don't see a blue banner with Create a thing, Create a rule, Create a certificate, and Create a

policy buttons, choose the Create a resource button:
Resources

AWS loT

0/0 things 0/0 thing types
g g yp

0/0rules 0/f0 CAs 0/0 certificates 0/0 policies

i 0 RIS, o B st I AN NN ol e AN AN o bt el

Create and Attach aThing (Device)

A thing represents a device whose status or data is stored in the AWS loT cloud. The Thing Shadow
service maintains a thing shadow for each device connected to AWS IoT. Thing shadows allow you to

access and modify thing state data.

182

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Choose Create a thing, type in a name for the thing, and then choose Create:

AWS I OT Resources

Re SO u rces X% Close create panel ' Connect AWS loT Button

oo
&

T oy -
£ %5 <

Create a thing Create a thing type Create a rule Use my certificate Create a c

2

Create a thing

Create a thing to represent your device in the cloud. This step creates an entry in the thing registry and a thing shado

Name mvHaspberryPﬂ

Choose a thing type

You can associate a thing type to your thing. If you do not want to associate your thing with a type, choose No type

No type v

Attributes used in a thing search

Next (optional), you can use thing attributes to describe the identity and capabilities of your device. Each attribute is a

Add attribute

e I P S P S Y e e it e

In addition to a confirmation message, the View thing button will be displayed:

183

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Resources

% Close create panel &' Connect AWS loT Button

Resources

Create a thing

Create a thing type

N S| <

Create a rule

Use my certificate

e

Createac

Your thing has been created.

You can now connect a device to this thing, or add a rule that will trigger actions when your thing publishes a message

Y
1/1 things

0/0 thing types 0/f0rules 0/0 CAs 0/O certificates 0/0 policies

myRaspberryPi

N 0

Choose View thing to display information about your thing:

184

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Reso u rces ® Close create panel &' Connect AWS loT Button

© @[< =

Create a thing Create a thing type Create a rule Use my certificate Create a certificate [

Your thing has been created.

You can now connect a device to this thing, or add a rule that will trigger actions when your thing publishes a messag

A :
1/1 things ~ 0/0 thing types 0/0 rules 0/0 CAs 0/0 certificates
0/0 policies

myRaspberryPi

B I R R R Y I e PP

Choose the Connect a device button to download a key pair and a certificate generated by AWS IoT :

185

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Reso u rces ® Close create panel &' Connect AWS loT Button

© @[< =

Create a thing Create a thing type Create a rule Use my certificate Create a certificate [

Your thing has been created.

You can now connect a device to this thing, or add a rule that will trigger actions when your thing publishes a messag

A :
1/1 things ~ 0/0 thing types 0/0 rules 0/0 CAs 0/0 certificates
0/0 policies

myRaspberryPi

B I R R R Y I e PP

Onthe Connect a device page, select the SDK to use, and then chooseGenerate certificate and policy:

186

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Resources

Connect a device

Connect your device to one of our many supported SDKs.

© Embedded C I NodelS First, you will need to create and download security credent
will help you to create and download security credentials (a -

(1 Arduino Yin
that defines what the device using this certificate is allowed

You can generate a certificate with 1-click. When you genera
default security policy named myRaspberryPi-Policy. You can
through the 'Resources’ panel of this console.

Generate certificate anc

This will generate an X.509 certificate and key pair; activate the X.509 certificate; and create an AWS
10T policy and attach it to the certificate.

The following page will be displayed:

AWS I OT Resources

Connect a device

Connect your device to one of our many supported SDKs.

© Embedded C " NodeJS Please download these files and save them in a safe place. (

) Arduine Yin but the private and public keys will not be retrievable after cls

¢ Download public key
¢ Download private key
* Download certificate

Confirm & start conne

R Y Y TV ™ U T W S T Y W T

Create a working directory called devi ceSDK where your files will be stored. Choose the links to download
your public and private keys and certificate, and then save them in the devi ceSDK directory.

187

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Choose Confirm & start connecting. The following page will be displayed:

AWS loT Resources

Connect a device

Connect your device to one of our many supported SDKs.

O Embedded C " 'NodedS

~ Arduino Yin AWS loT C SDK

Download one of the AWS loT C SDKs:

* OpenSSL
* mbed-TLS

Set up the SDK using the instructions in our README on Gi

Add in the following sample code based on your account, Th

// Get from console

i

#define AWS_IOT_MQTT_HOST "advwdyc
#define AWS_IOT_MQTT_PORT 8883
#define AWS_IOT_MQTT_CLIENT_ID "myRaspb
#define AWS_IOT_MY_THING_MNAME "myRaspb
#define AWS_IOT_ROOT_CA_FILENAME "root-CA.

#define AWS_IOT_CERTIFICATE_FILENAME 9335912
#define AWS_IOT_PRIVATE_KEY_FILENAME "9335912
i

Start one of the sample applications found in the SDK. You ¢
the state of your thing's shadow and interact with your devi
device can use a clientlD for connecting to the AWS loT plat
connect multiple devices concurrently please create a separ:
that you intend to connect.

Return to Thing Detail

I g s YW T i I TV P B e e

Set Up the Runtime Environment for the AWS loT Device
SDK for JavaScript

To use the AWS IoT Device SDK for JavaScript, you need to install Node and the npm development tool
on your Raspberry Pi. These packages are not installed by default.

Note
Before you continue, you might want to configure the keyboard mapping for your Raspberry Pi.
For more information, see Configure Raspberry Pi Keyboard Mapping.

To add the Node repository, open a terminal and run the following command:

curl -sLS https://apt.adafruit.comadd | sudo bash

188

https://www.raspberrypi.org/documentation/configuration/localisation.md

AWS IoT Developer Guide
Connecting Your Raspberry Pi

File Edit Tabs Help
pi@raspberrypi -1

To install Node, run sudo apt-get install node.You should see output similar to the following:

! DI{@rasphemypIr ~ |:| |:| |:|

File Edit Tabs Help

To install npm, run sudo apt-get install npm You should see output similar to the following:

189

AWS IoT Developer Guide
Connecting Your Raspberry Pi

- =

File Edit Tabs Help
pi@raspberrypi

To verify the installation of Node and npm, run node -v and npm - v. You should see output similar to
the following:

! Pl raspherrypi: ~ I:H:H:‘
File Edit Tabs Help

.12.6

aspberrypi npm -v
2.11.2

pi@raspberrypi |

Install the AWS IoT Device SDK for JavaScript

Now you will port the SDK to the Raspberry Pi. On the AWS loT Device SDK page, choose the Get
source in GitHub link:

190

https://aws.amazon.com/iot/sdk

AWS IoT Developer Guide

Connecting Your Raspberry Pi

= Menu amazon AW
wehsearvices

PRCDUCTS

AWE loT >
How It Works >
Pricing >
Getting Started >
FAQS »

S re:lnvent Announcements

Products Solutions Pricing More ~

The AWE loT Device SDK helps you 1o easily and quickly cor
hardware device to AWSE |oT. It provides enhanced features =
hardware device can seamlessly and securely work with the

gateway and device shadow provided by AWES loT.

The AWE loT Device SDK includes open source likraries, the
guide with samples, and the porting guide =o that you can £

loT products or solutions on your choice of hardware platfori

.,
o

SO

Embedded C JavaScript Ar
Get source in GitHuL I-:Bet source in GitHuk Gel
Developer Guide Developer Guide Den

Forting Guide

Open a console window. To keep things simple, we will use npm to install the SDK from the npm repository:

Dl {@raspoerryol

E|=|=

File Edit Tabs Help
iiizjraspherrj,rpi —T

191

AWS IoT Developer Guide
Connecting Your Raspberry Pi

After the installation is complete, you should find the installed module in ~ directory. (/ home/ pi is the
default.)

! Rl@rasphermypi: ~ |:| |:| |:|

File Edit Tabs Help

aspberrypi

) p1
igraspberrypi

pi@raspberrypi

Prepare to Run the Sample Applications

The AWS IoT Device SDK for JavaScript includes sample apps for you to try. To run them, you must
configure your certificates and private key.

Type cd ~ to go to your home directory. Create a directory where your certificate, private key, and root
CA certificate will be stored. Name the directory certs.

Copy your certificate and private key into the directory. Download a root CA certificate from here. Copy
the text from the browser, paste it into a file, and then copy it into the cer t s directory.

You will need to configure your personal endpoint, private key, and certificate. If you have access to a
machine with the AWS CLI installed, you can use the aws i ot descri be- endpoi nt command to find
your personal endpoint URL. Otherwise, go to the AWS loT console, double-click MyNewThing, and
copy everything after "https://" including ".com" from REST API endpoint.

192

https://www.symantec.com/content/en/us/enterprise/verisign/roots/VeriSign-Class%203-Public-Primary-Certification-Authority-G5.pem

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Learn n
Resources + Create a resource ‘
REST .
Y Filter by resource names or by resource type (below)
‘ Select al ‘
1/1things O/0rules 1/1 certificates _ _
1/1 policies First Previous n Next Last
Linke

By default, the files should be named as follows:

« your private key: pri vat e. pem key
 your certificate: certificate. pemecrt
« the CA root certificate: r oot - CA. crt

You can edit the cmdline.js file to change the default names used by each sample.

defaul t: {
region: 'us-east-1',
clientld: clientldDefault,
privateKey: 'private.pemkey',
clientCert: 'certificate.pemecrt',
caCert: 'root-CA. crt,

t est Mode: 1,
reconnect Period: 3 * 1000, /* mlliseconds */
delay: 4 * 1000 /* mlliseconds */

}s

Run the Sample Applications

Now you can run examples using node examples/<YourDesiredExample>.js -f <certs location> (assuming
you are under node_nodul es/ aws- i ot - devi ce- sdk/). In this case, the certificates location should
be ~/ cert s/ .You can specify the certificates location and your own host address using command line
options. For information, see Certificates.

Your Raspberry Pi is now connected to AWS loT using the AWS IoT SDK for JavaScript.

193

https://github.com/aws/aws-iot-device-sdk-js#certificates

AWS IoT Developer Guide

Monitoring AWS IloT

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS loT and
your AWS solutions. You should collect monitoring data from all parts of your AWS solution so that you
can more easily debug a multi-point failure if one occurs. Before you start monitoring AWS IoT, you should
create a monitoring plan that includes answers to the following questions:

» What are your monitoring goals?

¢ Which resources will you monitor?

» How often will you monitor these resources?

* Which monitoring tools will you use?

» Who will perform the monitoring tasks?

¢ Who should be notified when something goes wrong?

The next step is to establish a baseline for normal AWS IoT performance in your environment, by measuring
performance at various times and under different load conditions. As you monitor AWS IoT, store historical
monitoring data so that you can compare it with current performance data, identify normal performance
patterns and performance anomalies, and devise methods to address issues.

For example, if you're using Amazon EC2, you can monitor CPU utilization, disk I/O, and network utilization
for your instances. When performance falls outside your established baseline, you might need to reconfigure
or optimize the instance to reduce CPU utilization, improve disk 1/O, or reduce network traffic.

To establish a baseline you should, at a minimum, monitor the following items:

¢ Publishin.Success

¢ PublishOut.Success

¢ Subscribe.Success

¢ Ping.Success

e Connect.Success

¢ GetThingShadow.Accepted

¢ UpdateThingShadow.Accepted
¢ DeleteThingShadow.Accepted
¢ RulesExecuted

Topics

194

AWS IoT Developer Guide
Monitoring Tools

¢ Monitoring Tools (p. 195)
¢ Monitoring with Amazon CloudWatch (p. 196)
¢ Logging AWS loT API Calls with AWS CloudTrail (p. 201)

Monitoring Tools

AWS provides various tools that you can use to monitor AWS |oT. You can configure some of these tools
to do the monitoring for you, while some of the tools require manual intervention. We recommend that
you automate monitoring tasks as much as possible.

Automated Monitoring Tools

You can use the following automated monitoring tools to watch AWS loT and report when something is
wrong:

Amazon CloudWatch Alarms —Watch a single metric over a time period that you specify, and perform
one or more actions based on the value of the metric relative to a given threshold over a number of
time periods. The action is a notification sent to an Amazon Simple Notification Service (Amazon SNS)
topic or Auto Scaling policy. CloudWatch alarms do not invoke actions simply because they are in a
particular state, the state must have changed and been maintained for a specified number of periods.
For more information, see Monitoring with Amazon CloudWatch (p. 196).

Amazon CloudWatch Logs — Monitor, store, and access your log files from AWS CloudTrail or other
sources. For more information, see Monitoring Log Files in the Amazon CloudWatch Developer Guide.

Amazon CloudWatch Events — Match events and route them to one or more target functions or
streams to make changes, capture state information, and take corrective action. For more information,
see Using Events in the Amazon CloudWatch Developer Guide.

AWS CloudTrail Log Monitoring — Share log files between accounts, monitor CloudTrail log files in
real time by sending them to CloudWatch Logs, write log processing applications in Java, and validate
that your log files have not changed after delivery by CloudTrail. For more information, see Working
with CloudTrail Log Files in the AWS CloudTrail User Guide.

Manual Monitoring Tools

Another important part of monitoring AWS IoT involves manually monitoring those items that the
CloudWatch alarms don't cover. The AWS loT, CloudWatch, and other AWS console dashboards provide
an at-a-glance view of the state of your AWS environment. We recommend that you also check the log
files on AWS loT.

AWS |oT dashboard shows:

» CA certificates

* Certificates

 Polices

* Rules

e Things

CloudWatch home page shows:

e Current alarms and status

» Graphs of alarms and resources
» Service health status

In addition, you can use CloudWatch to do the following:

195

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchEvents.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html

AWS IoT Developer Guide
Monitoring with Amazon CloudWatch

» Create customized dashboards to monitor the services you care about
» Graph metric data to troubleshoot issues and discover trends

» Search and browse all your AWS resource metrics

» Create and edit alarms to be notified of problems

Monitoring with Amazon CloudWatch

You can monitor AWS |oT using CloudWatch, which collects and processes raw data from AWS loT into
readable, near real-time metrics. These statistics are recorded for a period of two weeks, so that you can
access historical information and gain a better perspective on how your web application or service is
performing. By default, AWS loT metric data is automatically sent to CloudWatch in 1 minute periods.
For more information, see What Are Amazon CloudWatch, Amazon CloudWatch Events, and Amazon
CloudWatch Logs? in the Amazon CloudWatch Developer Guide.

Topics
¢ AWS loT Metrics and Dimensions (p. 196)
¢ How Do | Use AWS IoT Metrics? (p. 198)
¢ Creating CloudWatch Alarms to Monitor AWS loT (p. 198)

AWS IoT Metrics and Dimensions

When you interact with AWS 10T, it sends the following metrics and dimensions to CloudWatch every
minute. You can use the following procedures to view the metrics for AWS IoT.

To view metrics using the CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension combinations
within each namespace.

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.
2. In the navigation pane, choose Metrics.

3. Inthe CloudWatch Metrics by Category pane, under the metrics category for AWS loT, select a
metrics category, and then in the upper pane, scroll down to view the full list of metrics.

To view metrics using the AWS CLI

¢« Atacommand prompt, use the following command:

aws cloudwatch list-netrics --nanespace "AWS/ | oT"

CloudWatch displays the following metrics for AWS loT:

AWS loT Metrics

AWS loT sends the following metrics to CloudWatch once per received request.

196

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
https://console.aws.amazon.com/cloudwatch/

AWS IoT Developer Guide

Metrics and Dimensions

Metric

Publishin.Success

PublishOut.Success

Subscribe.Success

Ping.Success

Connect.Success

GetThingShadow.Accepted

UpdateThingShadow.Accepted

Description

A client published on an MQTT topic successfully.
Valid Dimensions: Protocol

Valid Statistics:1 for success, 0 for failure.

Unit: Count

Clients subscribed to an MQTT topic recieved a published
message.

Valid Dimensions: Protocol
Valid Statistics:1 for success, 0 for failure.
Unit: Count

AWS loT message broker received a request to subscribe
to an MQTT topic.

Valid Dimensions: Protocol

Valid Statistics:1 for success, 0 for failure.

Unit: Count

AWS loT received a Ping message.

Valid Dimensions: Protocol

Valid Statistics:1 per ping request from the client.
Unit: Count

A client connected to AWS IoT.

Valid Dimensions: Protocol

Valid Statistics: 1 per successful MQTT connection from
the client.

Unit: Count

AWS loT received a GetThingShadow request.
Valid Dimensions: Protocol

Valid Statistics:1 for success, O for failure.

Unit: Count

AWS loT received a UpdateThingShadow request.
Valid Dimensions: Protocol

Valid Statistics:1 for success, 0 for failure.

Unit: Count

197

AWS IoT Developer Guide
Using AWS IoT Metrics

Metric Description
DeleteThingShadow.Accepted AWS loT received a DeleteThingShadow request.
Valid Dimensions: Protocol
Valid Statistics:1 for success, 0 for failure.
Unit: Count
RulesExecuted AWS loT executed a rule..
Valid Dimensions: Protocol
Valid Statistics:1 for success, 0 for failure.

Unit: Count

Dimensions for AWS IoT Metrics

Metrics use the namespace and provide metrics for the following dimension(s):

Dimension Description

Protocol The protocol with which the request was made. Valid
values are MQTT or HTTP.

How Do | Use AWS IoT Metrics?

The metrics reported by AWS IoT provide information that you can analyze in different ways. The following
use cases are based on a scenario where you have ten things that connect to the internet once a day.
Each day:

¢ Ten things connect to AWS IoT at roughly the same time.

¢ Each thing subscribes to a topic filter, and then waits for an hour before disconnecting. During this
period, things communicate with one another and learn more about the state of the world.

¢ Each thing publishes some perception it has based on its newly found data using Updat eThi ngShadow.
¢ Each thing disconnects from AWS loT.

These are suggestions to get you started, not a comprehensive list.

¢ How can | be notified if my things do not connect successfully each day? (p. 199)
¢ How can | be natified if my things are not publishing data each day? (p. 200)
¢ How can | be notified if my thing's shadow updates are being rejected each day? (p. 200)

Creating CloudWatch Alarms to Monitor AWS IoT

You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes state.
An alarm watches a single metric over a time period you specify and performs one or more actions based
on the value of the metric relative to a given threshold over a number of time periods. The action is a
notification sent to an Amazon SNS topic or Auto Scaling policy. Alarms invoke actions for sustained

198

AWS IoT Developer Guide
Creating CloudWatch Alarms

state changes only. CloudWatch alarms do not invoke actions simply because they are in a particular
state; the state must have changed and been maintained for a specified number of periods.

How can | be notified if my things do not connect
successfully each day?

1. Create an Amazon SNS topic,
arn:aws:sns:us-east-1:123456789012:things-not-connecting-successfully.

For more information, see Set Up Amazon Simple Notification Service.
2. Create the alarm.

Pronpt >aws cl oudwat ch put-metric-alarm\
--al arm nane Connect SuccessAl arm \
--alarmdescription "Al armwhen ny Things don't connect successfully"

--nanmespace AWS/ | oT \

--metric-nane Connect. Success \

--di mensi ons Nane=Pr ot ocol , Val ue=MJTT \

--statistic Sum\

--threshold 10 \

--conpari son-operator LessThanThreshold \

--period 86400 \

--unit Count \

--evaluation-periods 1\

--alarmactions arn: aws: sns: us- east-1: 1234567890: t hi ngs- not - connect i ng-
successful ly

Pronpt >aws cl oudwat ch put-nmetric-alarm\
--al arm name Connect SuccessAl arm\
--alarmdescription "Al armwhen ny Things don't connect successfully"”

--namespace AWS/ | oT \

--netric-nanme Connect. Success \

--di mensi ons Nane=Pr ot ocol , Val ue=MQTT \

--statistic Sum\

--threshold 10 \

--conpari son-operator LessThanThreshold \

--period 86400 \

--unit Count \

--evaluation-periods 1\

--alarmactions arn: aws: sns: us- east-1: 1234567890: t hi ngs- not - connect i ng-
successful ly

3. Testthe alarm.

Pronpt >aws cl oudwat ch set-al arm state --al arm name Connect SuccessAl arm - -
state-reason "initializing" --state-value K

Pr onpt >aws cl oudwat ch set-al armstate --al arm name Connect SuccessAl arm - -
state-reason "initializing" --state-value ALARM

199

Amazon Simple Notification Service Developer GuideUS_SetupSNS.html

AWS IoT Developer Guide
Creating CloudWatch Alarms

How can | be notified if my things are not publishing data
each day?

1.

Create an Amazon SNS topic,
arn: aws: sns: us-east-1:123456789012: t hi ngs- not - publ i shi ng- dat a.

For more information, see Set Up Amazon Simple Notification Service.
Create the alarm.

Pronpt >aws cl oudwat ch put-metric-alarm\

--al arm nane PublishlnSuccessAl arm

--alarmdescription "Alarmwhen ny Things don't publish their data \

--nanmespace AWS/ 1 oT \

--metric-nane Publishln. Success \

--di mensi ons Nane=Pr ot ocol , Val ue=MJTT \

--statistic Sum\

--threshold 10 \

--conpari son-operator LessThanThreshold \

--period 86400 \

--unit Count \

--evaluation-periods 1\

--alarmactions arn: aws: sns: us-east-1: 1234567890: t hi ngs- not - publ i shi ng-
dat a

Test the alarm.

Pronpt >aws cl oudwat ch set-al arm state --al arm nanme Publishl nSuccessAl arm -
-state-reason "initializing" --state-value K

Pronpt >aws cl oudwat ch set-al armstate --al arm name Publishl nSuccessAl arm -
-state-reason "initializing" --state-value ALARM

How can | be notified if my thing's shadow updates are being
rejected each day?

1.

Create an Amazon SNS topic, arn:aws:sns:us-east-1:1234567890:things-shadow-updates-rejected.

For more information, see Set Up Amazon Simple Notification Service.
Create the alarm.

Pronpt >aws cl oudwat ch put-metric-alarm\

--al arm name Updat eThi ngShadowSuccessAl arm \

--alarmdescription "A armwhen my Thi ngs Shadow updates are getting
rejected" \

--namespace AWS/ | oT \

--netric-name Updat eThi ngShadow. Success \

- -di mensi ons Nane=Pr ot ocol , Val ue=MQJTT \

--statistic Sum\

--threshold 10 \

--conpari son-operator LessThanThreshold \

200

Amazon Simple Notification Service Developer GuideUS_SetupSNS.html
Amazon Simple Notification Service Developer GuideUS_SetupSNS.html

AWS IoT Developer Guide
Logging AWS IoT API Calls with AWS CloudTrail

--period 86400 \

--unit Count \

--evaluation-periods 1\

--alarmactions arn: aws: sns: us-east-1: 1234567890: t hi ngs- shadow updat es-
rej ected

3. Testthe alarm.

Pronpt >aws cl oudwat ch set-alarm state --al arm nanme Updat eThi ngShadowSuc
cessAlarm --state-reason "initializing" --state-value K

Pronpt >aws cl oudwat ch set-alarmstate --al arm name Updat eThi ngShadowSuc
cessAlarm --state-reason "initializing" --state-value ALARM

Logging AWS lIoT API Calls with AWS CloudTraill

AWS 10T is integrated with CloudTrail, a service that captures all of the AWS IoTAPI calls and delivers
the log files to an Amazon S3 bucket that you specify. CloudTrail captures API calls from the AWS loT
console or from your code to the AWS loT APIs. Using the information collected by CloudTrail, you can
determine the request that was made to AWS IoT, the source IP address from which the request was
made, who made the request, when it was made, and so on.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail User
Guide.

AWS IoT Information in CloudTrail

When CloudTrail logging is enabled in your AWS account, API calls made to AWS IoT actions are tracked
in CloudTrail log files where they are written with other AWS service records. CloudTrail determines when
to create and write to a new file based on a time period and file size.

All AWS |oT actions are logged by CloudTrail and are documented in the AWS loT API Reference. For
example, calls to the CreateThing, ListThings, and ListTopicRules sections generate entries in the
CloudTrail log files.

Every log entry contains information about who generated the request. The user identity information in
the log entry helps you determine the following:

« Whether the request was made with root or IAM user credentials.
* Whether the request was made with temporary security credentials for a role or federated user.
¢ Whether the request was made by another AWS service.

For more information, see the CloudTrail userldentity Element.

You can store your log files in your Amazon S3 bucket for as long as you want, but you can also define
Amazon S3 lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted
with Amazon S3 server-side encryption (SSE).

If you want to be notified upon log file delivery, you can configure CloudTrail to publish Amazon SNS
notifications when new log files are delivered. For more information, see Configuring Amazon SNS
Notifications for CloudTrail.

201

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/iot/latest/apireference/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html

AWS IoT Developer Guide
Understanding AWS loT Log File Entries

You can also aggregate AWS |oT log files from multiple AWS regions and multiple AWS accounts into a
single Amazon S3 bucket.

For more information, see Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail
Log Files from Multiple Accounts.

Understanding AWS IoT Log File Entries

CloudTrail log files can contain one or more log entries. Each entry lists multiple JSON-formatted events.
A log entry represents a single request from any source and includes information about the requested
action, the date and time of the action, request parameters, and so on. Log entries are not an ordered
stack trace of the public API calls, so they do not appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the At t achPri nci pal Pol i cy
action.

"timestanp":"1460159496",
"Addi ti onal EventData":"",
"Annotation":"",
"Api Version":"",
"ErrorCode":"",
"Error Message":"",
"Event| D': " 8bff 4f ed- c229- 4d2d- 8264- 4abh28a487505",
"Event Name": " AttachPrinci pal Policy",
"Event Ti ne": " 2016- 04- 08T23: 51: 367",
"Event Type": " AwsApi Cal | ",
"ReadOnly":"",
"Reci pi ent Account List":"",
"Request | D": "d4875df 2- f de4- 11e5- b829- 23bf 9b56chbcd”,
"Request Parant ers": {
"principal":"arn:aws:iot: us-east-
1: 123456789012: cert/528ce36e8047f 6a75ee51ab7bed
db4eb268ad41d2ea881al0b67e8e76924d894",
"pol i cyNane": " Exanpl ePol i cyFor | oT"
1,
"Resources":"",
"ResponseEl enents":"",
" Sour cel pAddress": "52.90.213. 26",
"User Agent":"aws-internal /3",
"Userldentity":({
"type": " AssunedRol e",
"principalld":"AKI Al 44QH8DHBEXAMPLE" ,
"arn":"arn:aws: sts::12345678912: assuned-rol e/ i ot noni t or - us- east - 1- bet a-
| nst anceRol e- 1C5T1YCYMHPYT/ i - 35d0a4b6",
"account | d":"222222222222",
"accessKeyl d": "access-key-id",
"sessi onCont ext ": {
"attributes":{
"nf aAut henti cated":"fal se",
"creationDate":"Fri Apr 08 23:51:10 UTC 2016"
1,
"sessionl ssuer": {
"type":"Rol e",
"principalld":"AKI Al 44QH8DHBEXAMPLE" ,
"arn":"arn:aws:iam: 123456789012: r ol e/ execut i onSer vi ceEC2Rol e/ i ot

202

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

AWS IoT Developer Guide
Understanding AWS loT Log File Entries

nmoni t or - us- east - 1- bet a- I nst anceRol e- 1C5T1YCYMHPYT",
"account | d":"222222222222",
"user Nanme": "i ot noni t or - us- east - 1- 1 nst anceRol e- 1C5T1YCYMHPYT"
}
}s
"i nvokedBy": {
"servi ceAccount I d":"111111111111"

}

}s
"VpcEndpointld":""

203

AWS IoT Developer Guide
Diagnosing Connectivity Issues

Troubleshooting AWS IoT

The following information might help you troubleshoot common issues in AWS IoT.

Tasks
¢ Diagnosing Connectivity Issues (p. 204)
¢ Setting Up CloudWatch Logs (p. 205)
¢ Diagnosing Rules Issues (p. 209)
¢ Diagnosing Problems with Thing Shadows (p. 210)

Diagnosing Connectivity Issues

Authentication

How do my devices authenticate AWS IoT endpoints?
Add the AWS loT CA certificate to your client’s trust store. You can download the CA certificate from
here.

How can | validate a correctly configured certificate?
Use the OpenSSL s_cl i ent command to test a connection to the AWS IoT endpoint:

openssl s_client -connect customendpoint.iot.us-east-1.amzonaws.com 8443
-CAfile CA pem-cert cert.pem-key privateKey. pem

Authorization

| received a PUBNACK or SUBNACK response from the broker. What do | do?
Make sure there is a policy attached to the certificate you are using to call AWS IoT. All
publish/subscribe operations are denied by default.

204

https://www.symantec.com/content/en/us/enterprise/verisign/roots/VeriSign-Class%203-Public-Primary-Certification-Authority-G5.pem

AWS IoT Developer Guide
Setting Up CloudWatch Logs

Setting Up CloudWatch Logs

As messages from your devices pass through the message broker and the rules engine, AWS IoT sends
progress events about each message. You can opt in to view these events in CloudWatch Logs. For
more information, see CloudWatch Logs.

Note

Before you enable AWS loT logging, be sure you understand the access permissions to
CloudWatch Logs in your AWS account. Users with access to CloudWatch Logs will be able to
see debugging information from your devices.

Configuring an IAM Role for Logging

Use the IAM console to create a logging role.

Create an IAM Role for Logging

The following policy documents provide the role policy and trust policy that allow AWS IoT to submit logs
to CloudWatch on your behalf.

Role policy:

"Version": "2012-10-17",
"Statenment": [
{
"Effect": "Alow',
"Action": [
"l ogs: Creat eLogG oup",
"l ogs: Creat eLogStreant,
"1 ogs: Put LogEvent s",
"l ogs: PutMetricFilter",
"1 ogs: Put Retenti onPol i cy”
1.
"Resource": [

i

]

Trust policy:

{
"Version": "2012-10-17",

"Statenent”: [

{
"Sid': ",
"Effect": "Alow',
"Principal": {
"Service": "iot.amazonaws. cont
}s
"Action": "sts:AssunmeRol e"
}

205

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide//WhatIsCloudWatchLogs.html

AWS IoT Developer Guide
CloudWatch Log Entry Format

Register the Logging Role with AWS IoT

Use the AWS loT console or the following CLI command to register the logging role with AWS loT.

aws iot set-|ogging-options --1ogging-options-payl oad
rol eArn="arn: aws: i am : <your - aws- account - nun®: r ol e/ | oTLoggi ngRol e", | ogLevel =" NFO'

The log level can be DEBUG, INFO, ERROR, or DISABLED:

« DEBUG provides the most detailed information of AWS IoT activity.

¢ INFO provides a summarized view of most actions. This is sufficient for most users.
* ERROR provides error cases only.

« DISABLED removes logging altogether, but keeps your logging role intact.

CloudWatch Log Entry Format

Each log entry has the following information:

Event
Describes the actions that take place in AWS IoT.

TimeStamp
The time the log was generated.

Traceld
An identifier generated randomly for an incoming request that can be used to filter all of the
corresponding logs to one incoming message.

Principalld
A certificate fingerprint or a thing name, depending on which endpoint (MQTT or HTTP) received the
request from a device.

LogLevel
The logging level. Can be DEBUG, INFO, ERROR, or WARN.

Topic Name
The MQTT topic name, which is added to an entry when an MQTT publish or subscribe message is
received.

Clientld
The ID of the client that sent an MQTT message.

Thingld
The thing identifier, which is added to an entry when a request is sent to an HTTP endpoint to update
or delete thing state.

Ruleld
The rule identifier, which contains the ID of a rule when the rule is triggered.

Log Level

The log level specifies which types of logs will be generated.

DEBUG
Information that might be helpful when debugging a problem.

Logs will include DEBUG, INFO, ERROR, and WARN information.

206

AWS IoT Developer Guide
Logging Events and Error Codes

ERROR
Any error that causes an operation to fail.

Logs will include ERROR information only.

INFO
High-level information about the flow of things.

Logs will include INFO, ERROR, and WARN information.

WARN
Anything that can potentially cause inconsistencies in the system, but might not necessarily cause
the operation to fail.

Logs will include ERROR and WARN information.

Logging Events and Error Codes

This section lists the logging events and error codes sent by AWS loT.

Identity and Security

Operation/Event Name Description
Authentication Success Successfully authenticated a certificate.
Authentication Failure Failed to authenticate a certificate.

Identity and Security Error Codes

Error Code Error Description

401 Unauthorized

Message Broker

Operation/Event Name Description

MQTT Publish MQTT Publish received.

MQTT Subscribe MQTT Subscribe received.

MQTT Connect MQTT Connect received.

MQTT Disconnect MQTT Disconnect received.

HTTP/1.1 POST MHTTP/1.1 POST received.

HTTP/1.1 GET HTTP/1.1 GET received.

HTTP/1.1 Unsupported Method Used when a message contains a syntax error or

the action (HTTP PUT/DELETE/) is forbidden.

Malformed HTTP Message The connection was terminated because of a mal-
formed HTTP message.

Malformed MQTT Message The connection was terminated because of a mal-
formed MQTT message.

207

AWS IoT Developer Guide
Logging Events and Error Codes

Operation/Event Name

Authorization Failed

Package Exceeds Maximum Payload Size

Message Broker Error Codes

Error Code
400
401
403
503

Rules Engine Events

Operation/Event Name
MessageReceived
DynamoActionSuccess
DynamoActionFailure
KinesisActionSuccess
KinesisActionFailure
LambdaActionSuccess
LambdaActionFailure
RepublishActionSuccess
MessageReceived
RepublishActionFailure
S3ActionSuccess
S3ActionFailure
SNSActionSuccess
SNSActionFailure
SQSActionSuccess

SQSActionFailure

Description

This client attempted to publish to or subscribe on
a topic for which it has no authorization.

This client attempted to publish a payload that ex-
ceeds the message broker's upper limit.

Error Description
Bad Request
Unauthorized
Forbidden

Service Unavailable

Description

Received a request for a topic.

Successfully put DynamoDB record.

Failed to put DynamoDB record.

Successfully published Amazon Kinesis message.
Failed to publish Amazon Kinesis message.
Successfully invoked Lambda function.

Failed to invoke Lambda function.
Successfully republished message.

Received request for a topic.

Failed to republish message.

Successfully put Amazon S3 object.

Failed to put Amazon S3 object.

Successfully published to Amazon SNS topic.
Failed to publish to Amazon SNS topic.
Successfully sent message to Amazon SQS.

Failed to send message to Amazon SQS.

208

AWS IoT Developer Guide
Diagnhosing Rules Issues

Thing Shadow Events

Operation/Event Name Description
UpdateThingState A thing's state is updated over HTTP or MQTT.
DeleteThing A thing is deleted.

Thing Shadow Error Codes

Error Code Error Description
400 Bad request.

401 Unauthorized.

403 Forbidden.

404 Not found.

409 Conflict.

413 Request too large.
422 Failed to process request.
429 Too many requests.
500 Internal error.

503 Service unavailable.

Diagnosing Rules Issues

CloudWatch Logs is the best place to debug issues you are having with rules. When you enable
CloudWatch Logs for AWS loT, you get visibility into which rules are triggered and their success or failure.
You also get information about whether WHERE clause conditions match.

The most common issue is authorization. In this case, the logs will tell you your role is not authorized to
perform AssumeRole on the resource.

To view CloudWatch logs (console)

1. In the AWS Management Console, navigate to the CloudWatch console.
2. Choose Logs, and then choose the AWSIoTLogs log group from the list.
3. On the Streams for AWSIoTLogs page, you will find a log stream for each principal (X.509 certificate,

IAM user, or Amazon Cognito identity) that called into AWS loT under your account.
For more information, see CloudWatch Logs.

External services are controlled by the end user. Before rule execution, make sure external services are
set up with enough throughput and capacity units.

209

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide//WhatIsCloudWatchLogs.html

AWS IoT Developer Guide
Diagnosing Problems with Thing Shadows

Diagnosing Thing Shadows

Issue

A thing shadow document is rejected with "Invalid
JSON document.”

| submitted correct JSON, but none or only parts
of it are stored in the thing shadow document.

I received an error that the thing shadow exceeds
the allowed size.

When | receive a thing shadow, it is larger than 8
KB. How can this happen?

My request has been rejected due to incorrect
version. What should | do?

The timestamp is off by several seconds.

My device can publish and subscribe on the corres-
ponding thing shadow topics, but when | attempt
to update the thing shadow document over the
HTTP REST API, | get HTTP 403.

Other issues.

Diagnosing Problems with Thing Shadows

Troubleshooting Guidelines

If you are unfamiliar with JISON, modify the ex-
amples provided in this guide for your own use. For
more information, see Thing Shadow Document
Syntax.

Be sure you are following the JSON formatting
guidelines. Only JSON fields in the desi r ed and
report ed sections will be stored. JSON content
(even if formally correct) outside of those sections
will be ignored.

The thing shadow supports 8 KB of data only. Try
shortening field names inside of your JSON docu-
ment or simply create more thing shadows. A
device can have an unlimited number of thing
shadows. The only requirement is that the thing
name is unigue in your account.

Upon receipt, the AWS loT service adds metadata
to the thing shadow. The service includes this data
in its response, but it does not count toward the
limit of 8 KB. Only the data for desi r ed and r epor -
t ed state inside the state document sent to the
thing shadow counts toward the limit.

Perform a GET operation to sync to the latest state
document version. When using MQTT, subscribe
to the ./update/accepted topic so you will be notified
about state changes and receive the latest version
of the JSON document.

The timestamp for individual fields and the whole
JSON document is updated when the document is
received by the AWS loT service or when the state
document is published onto the ./update/accepted
and ./update/delta message. Messages can be
delayed over the network, which can cause the
timestamp to be off by a few seconds.

Be sure you have created policies in 1AM to allow
access to these topics and for the corresponding
action (UPDATE/GET/DELETE) for the credentials
you are using. IAM policies and certificate policies
are independent.

The Thing Shadows service will log errors to
CloudWatch Logs. To identify device and configur-
ation issues, enable CloudWatch Logs and view
the logs for debug information.

210

http://docs.aws.amazon.com/iot/latest/developerguide/thing-shadow-document-syntax.html
http://docs.aws.amazon.com/iot/latest/developerguide/thing-shadow-document-syntax.html

AWS IoT Developer Guide
Message Broker Limits

AWS loT Limits

The following tables list limits in AWS IoT.

Message Broker Limits

Client ID size

Connection inactivity (keep-alive interval)

Maximum number of slashes in topic and topic filter

128 bytes of UTF-8 encoded characters.

By default, an MQTT client connection is disconnec-
ted after 30 minutes of inactivity. When the client
sends a PUBLISH, SUBSCRIBE, PING, or PUB-
ACK message, the inactivity timer is reset.

A client can request a shorter keep-alive interval
by specifying a value between 5-1,200 seconds in
the MQTT CONNECT message sent to the server.
If a keep-alive value is specified, the server will
disconnect the client if it does not receive a PUB-
LISH, SUBSCRIBE, PINGREQ, or PUBACK mes-
sage within a period 1.5 times the requested inter-
val. The keep-alive timer starts after the sender
sends a CONNACK.

If a client sends a keep-alive value of zero, the de-
fault keep-alive behavior will remain in place.

If a client request a keep-alive shorter than 5
seconds, the server will treat the client as though
it requested a keep-alive interval of 5 seconds.

The keep-alive timer begins immediately after the
server returns a CONNACK to the client. There
might be a brief delay between the client's sending
of a CONNECT message and the start of keep-
alive behavior.

A topic provided while publishing a message or a
topic filter provided while subscribing can have no
more than eight forward slashes (/).

211

AWS IoT Developer Guide
Message Broker Limits

Maximum inbound unacknowledged messages

Maximum outbound unacknowledged messages

Maximum retry interval for delivering QoS 1 mes-
sages

Maximum subscriptions per subscribe call

Message size

Restricted client ID prefix

Restricted topic prefix

Subscriptions per session

Thing name size

Throughput per connection

Topic size

The message broker allows 100 in-progress unac-
knowledged messages per client. (This limit is ap-
plied across all messages that require ACK.) When
this limit is reached, no new messages will be ac-
cepted from this client until an ACK is returned by
the server.

The message broker allows only 100 in-progress
unacknowledged messages per client.(This limit is
applied across all messages that require ACK.)
When this limit is reached, no new messages will
be sent to the client until the client acknowledges
the in-progress messages.

If a connected client is unable to receive an ACK
on a QoS 1 message for one hour, the message
broker will drop the message. The client might be
unable to receive the message if it has 100 in-flight
messages, it is being throttled due to large pay-
loads, or other errors.

A single SUBSCRIBE call is limited to request a
maximum of eight subscriptions.

The payload for every PUBLISH message is limited
to 128 KB. The AWS loT service will reject mes-
sages larger than this size.

'$' is reserved for internally generated client IDs.

Topics beginning with '$' are considered reserved
and are not supported for publishing and subscrib-
ing except when working with the Thing Shadows
service.

The message broker limits each client session to
subscribe to up to 50 subscriptions. A SUBSCRIBE
request that pushes the total number of subscrip-
tions past 50 will result in the connection being
disconnected.

128 bytes of UTF-8 encoded characters. This limit
applies for both the thing registry and Thing Shad-
ow services.

AWS loT limits the ingress and egress rate on each
client connection to 512 KB/s. Data sent or received
at a higher rate will be throttled to this throughput.

The topic passed to the message broker when
publishing a message cannot exceed 256 bytes of
UTF-8 encoded characters.

212

AWS IoT Developer Guide
Device Shadow Limits

WebSocket connection duration

Device Shadow Limits

Maximum depth of JSON device state documents

Maximum number of in-flight, unacknowledged
messages

WebSocket connections are limited to 24 hours. If
the limit is exceeded, the WebSocket connection
will automatically be closed when an attempt is
made to send a message by the client or server. If
you need to maintain an active WebSocket connec-
tion for longer than 24 hours, simply close and re-
open the WebSocket connection from the client
side before the time limit elapses.

AWS loT supports keep-alive values specified in
MQTT CONNECT messages. When a client spe-
cifies a keep-alive value, the client tells the server
to disconnect the client and transmit any last-will
message associated with the MQTT session if the
server does not receive a message (PUBLISH,
SUBSCRIBE, PUBACK, PINGREQ) within 1.5
times the keep-alive period. AWS IoT supports
keep-alive values between 5 seconds and 20
minutes. If a client requests no keep-alive (that is,
sets the field to 0 in the MQTT CONNECT mes-
sage), the server will set the keep-alive value to 20
minutes, which corresponds to the maximum idle
time supported by AWS loT of 30 minutes. Most
MQTT clients (including the AWS SDK clients)
support keep-alive values by sending a PINGREQ
if the keep-alive period expires without the transmis-
sion of any other message by the client.

The maximum number of levels in the " desi r ed"
or"reported" section of the JSON device state
document is 5. For example:

"desired": {
"one": {
"two": {
"three": {
"four": {
"five":{
}
}
}
}
}
}

The Thing Shadows service supports up to 10 in-
flight unacknowledged messages. When this limit
is reached, all new shadow requests will be rejected
with a 429 error code.

213

AWS IoT Developer Guide
Security and Identity Limits

Maximum number of JSON objects per AWS ac-

count
Maximum size of a JSON state document
Maximum size of a thing name

Shadow lifetime

There is no limit on the number of JSON objects
per AWS account.

8 KB.
128 bytes of UTF-8 encoded characters.

A thing shadow is deleted by AWS loT if it has not
been updated or retrieved in more than one year.

Security and Identity Limits

Maximum number of policies that can be attached | 10

to a certificate

Maximum number of named policy versions

Maximum policy document size

Maximum number of device certificates that can

be registered per second

Throttling Limits

5
2048 characters (excluding white space)

15

The following table lists the throttling limits for AWS IoT API:

API

AcceptCertificate Transfer
AttachPrincipalPolicy
AttachThingPrincipal
CancelCertificate Transfer
CreateCertificateFromCsr
CreatePolicy
CreatePolicyVersion
CreateThing
CreateThingType
DeleteCertificate
DeleteCACertificate
DeletePolicy
DeletePolicyVersion
DeleteThing

DeleteThingType

Transaction per Second
10
15
15
10
15
10
10
15
15
10
10
10
10
15
15

214

AWS IoT Developer Guide
Throttling Limits

API
DeprecateThingType
DescribeCertificate
DescribeCACertificate
DescribeThing
DescribeThingType
DetachThingPrincipal
DetachPrincipalPolicy
DeleteRegistrationCode
GetPolicy
GetPolicyVersion
GetRegistrationCode
ListCACertificates
ListCertificates
ListCertificatesByCA
ListOutgoingCertificates
ListPolicies
ListPolicyPrincipals
ListPolicyVersions
ListPrincipalPolicies
ListPrincipalThings
ListThings
ListThingPrincipals
ListThingTypes
RegisterCertificate
RegisterCACertificate
RejectCertificateTransfer
SetDefaultPolicyVersion
TransferCertificate
UpdateCertificate
UpdateCACertificate

UpdateThing

Transaction per Second
15
10
10
10
10
15
15
10
10
15
10
10
10
10
10
10
10
10
15
10
10
10
10
10
10
10
10
10
10
10
10

215

AWS IoT Developer Guide
AWS IoT Rules Engine Limits

AWS loT Rules Engine Limits

Maximum number of rules per AWS account

1000

Actions per rule

A maximum of 10 actions can be defined per rule.

Rule size

Up to 256 KB of UTF-8 encoded characters (includ-
ing white space).

216

	AWS IoT
	Table of Contents
	What Is AWS IoT?
	AWS IoT Components
	How to Get Started with AWS IoT
	Accessing AWS IoT
	Related Services
	How AWS IoT Works

	AWS IoT Button Quickstarts
	AWS IoT Button Wizard Quickstart
	AWS IoT Button AWS CloudFormation Quickstart
	Next Steps

	Getting Started with AWS IoT
	Sign in to the AWS IoT Console
	Create a Device in the Thing Registry
	Create and Activate a Device Certificate
	Create an AWS IoT Policy
	Attach an AWS IoT Policy to a Device Certificate
	Attach a Thing to a Certificate
	Configure Your Device
	AWS IoT Button
	Turn on your device
	Copy your device certificate onto your AWS IoT button

	View Device MQTT Messages with the AWS IoT MQTT Client
	Configure and Test Rules
	Create an SNS Topic
	Subscribe to an Amazon SNS Topic
	Create a Rule
	Test the Amazon SNS Rule
	AWS IoT Button
	AWS IoT MQTT Client

	Next Steps

	AWS IoT Rule Tutorials
	Creating a DynamoDB Rule
	Creating a Lambda Rule
	Create the Lambda Function
	Test Your Lambda Function
	Creating a Lambda Rule
	Test Your Lambda Rule

	Managing Things with AWS IoT
	Managing Things with the Thing Registry
	Create a thing
	List things
	Search for things
	Update a thing
	Delete a thing
	Attach a principal to a thing
	Detach a principal from a thing

	Thing Types
	Create a Thing Type
	List thing types
	Describe a thing type
	Associate a thing type with a thing
	Deprecate a thing type
	Delete a thing type

	Security and Identity for AWS IoT
	Authentication in AWS IoT
	X.509 Certificates
	X.509 Certificates and AWS IoT
	Server Authentication
	Create and Register an AWS IoT Device Certificate
	To create a certificate (console)
	To create a certificate (CLI)

	Use Your Own Certificate
	Registering Your CA certificate
	Creating a Device Certificate
	Registering a Device Certificate
	Registering Device Certificates Manually
	Using Automatic/Just-in-Time Registration for Device Certificates
	Enable Auto Registration

	Deactivate the CA Certificate
	Revoke the Device Certificate

	IAM Users, Groups, and Roles
	Amazon Cognito Identities

	Authorization
	AWS IoT Policies
	Managing AWS IoT Policies
	AWS IoT Policy Actions
	Action Resources
	AWS IoT Policy Variables
	Example Policies
	Connect Policy Examples
	Publish/Subscribe Policy Examples
	Policies for MQTT Clients
	Policies for HTTP and WebSocket Clients
	Receive Policy Examples

	IAM IoT Policies
	Cross Account Access

	Transport Security
	TLS Cipher Suite Support

	Message Broker for AWS IoT
	Protocols
	MQTT
	HTTP
	MQTT Over the WebSocket Protocol
	Using the WebSocket Protocol in a Web Application
	Using the WebSocket Protocol in a Mobile Application

	Topics
	Reserved Topics

	Lifecycle Events
	Policy Required for Receiving Lifecycle Events
	Connect/Disconnect Events
	Subscribe/Unsubscribe Events

	Rules for AWS IoT
	Granting AWS IoT the Required Access
	Pass Role Permissions
	Creating an AWS IoT Rule
	Viewing Your Rules
	SQL Versions
	What's New in the 2016-03-23-beta SQL Rules Engine Version
	Inter-Object Queries
	Output an Array as a Top-Level Object
	Encode Function

	Troubleshooting a Rule
	Deleting a Rule
	AWS IoT Rule Actions
	CloudWatch Alarm Action
	CloudWatch Metric Action
	DynamoDB Action
	Amazon ES Action
	Kinesis Action
	Lambda Action
	S3 Action
	SNS Action
	Firehose Action
	SQS Action
	Republish Action

	AWS IoT SQL Reference
	Expressions
	SELECT Clause
	FROM Clause
	WHERE Clause
	Functions
	Making Predictions with Amazon Machine Learning in an AWS IoT Rule
	Encode the Payload Before Further Processing

	JSON Extensions
	Substitution Templates

	Device Shadows for AWS IoT
	Device Shadows Data Flow
	Device Shadows Documents
	Document Properties
	Versioning of a Thing Shadow
	Client Token
	Example Document
	Empty Sections
	Arrays

	Using Device Shadows
	Protocol Support
	Updating a Thing Shadow
	Retrieving a Thing Shadow Document
	Optimistic Locking

	Deleting Data
	Deleting a Thing Shadow
	Delta State
	Observing State Changes
	Message Order
	Trim Device Shadow Messages

	Device Shadow RESTful API
	GetThingShadow
	UpdateThingShadow
	DeleteThingShadow

	Device Shadow MQTT Topics
	/update
	Example Policy

	/update/accepted
	Example Policy

	/update/documents
	Example Policy

	/update/rejected
	Example Policy

	/update/delta
	Publishing Details
	Example Policy

	/get
	Example Policy

	/get/accepted
	Example Policy

	/get/rejected
	Example Policy

	/delete
	Example Policy

	/delete/accepted
	Example Policy

	/delete/rejected
	Example Policy

	Device Shadow Document Syntax
	Request State Documents
	Response State Documents
	Error Response Documents

	Device Shadow Error Messages

	AWS IoT SDKs
	Android SDK
	Arduino Yún SDK
	AWS IoT Embedded C SDK
	AWS Mobile SDK for iOS
	AWS IoT Java SDK
	AWS IoT JavaScript SDK
	AWS IoT Device SDK for Python
	Getting Started with AWS IoT on the Raspberry Pi and the AWS IoT Embedded C SDK
	Prerequisites
	Connecting Your Raspberry Pi
	Sign in to the AWS IoT Console
	Create and Attach a Thing (Device)
	Set Up the Runtime Environment for the AWS IoT Embedded C SDK
	Sample App Configuration
	Run Sample Applications

	Getting Started with AWS IoT on Raspberry Pi and the AWS IoT Device SDK for JavaScript
	Prerequisites
	Connecting Your Raspberry Pi
	Sign in to the AWS IoT Console
	Create and Attach a Thing (Device)
	Set Up the Runtime Environment for the AWS IoT Device SDK for JavaScript
	Install the AWS IoT Device SDK for JavaScript
	Prepare to Run the Sample Applications
	Run the Sample Applications

	Monitoring AWS IoT
	Monitoring Tools
	Automated Monitoring Tools
	Manual Monitoring Tools

	Monitoring with Amazon CloudWatch
	AWS IoT Metrics and Dimensions
	AWS IoT Metrics
	Dimensions for AWS IoT Metrics

	How Do I Use AWS IoT Metrics?
	Creating CloudWatch Alarms to Monitor AWS IoT
	How can I be notified if my things do not connect successfully each day?
	How can I be notified if my things are not publishing data each day?
	How can I be notified if my thing's shadow updates are being rejected each day?

	Logging AWS IoT API Calls with AWS CloudTrail
	AWS IoT Information in CloudTrail
	Understanding AWS IoT Log File Entries

	Troubleshooting AWS IoT
	Diagnosing Connectivity Issues
	Authentication
	Authorization

	Setting Up CloudWatch Logs
	Configuring an IAM Role for Logging
	Create an IAM Role for Logging
	Register the Logging Role with AWS IoT

	CloudWatch Log Entry Format
	Log Level

	Logging Events and Error Codes

	Diagnosing Rules Issues
	Diagnosing Problems with Thing Shadows

	AWS IoT Limits
	Message Broker Limits
	Device Shadow Limits
	Security and Identity Limits
	Throttling Limits
	AWS IoT Rules Engine Limits

