Amazon API Gateway

Developer Guide

amazon
webservices™

Amazon API Gateway Developer Guide

Amazon API Gateway: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

Amazon API Gateway Developer Guide

Table of Contents

What IS AMAZON APL GAIEWAY?uieiiiitei ittt ettt ettt e e et a e e e et e et e e et e aeans 1
APL GAtEWAY CONCEPTS .. euitteeetetet et ettt et ettt e e e et et e e e et et et e et e e e e 2
7= ui] T] 7= Ut (=0 4
Get Ready t0 USE AP GAIEWAYuieuieniiiteiet e e e e e e e e e et e e ene e ens 4
SION UP fOr AN S ettt 5
Create an IAM User, Group or Role in YOUr AWS ACCOUNTvuveerinieeieeiieieaeeeteeeeeaneaneneanas 5
Grant IAM Users Permissions to Access APl Gateway Control and Execution Services 5

N[RS =T o PP 6
Learn from an EXAMPIE ... 6
BUild @n API SEEP DY ST v 14
Call Lambda FUuNCtions SYNCRIONOUSIYcuuiuiiiii e eaas 22
I =T o I IR o =T =T 071 1= 22

SEEP 2: Create AN AP ..o e 22

SEEP 3: Creale @ RESOUICE .ouiiiii ittt et e e e e e et et et et e e e e e enenenan 22

Step 4: Create Lambda FUNCHONSo e e een s 23

Step 5: Create and Test a GET Methodc.oveiniiiii e 26

Step 6: Create and Test a POST Methodoouiuiiinii e 27

StEP 7: DEPIOY the APl ... e 28

I =T o TS A =S 1 L Y 28

SEEP 91 ClEAN UP . oniiiiiiii e 29

[N RS =T o L PP 30
Appendix: Create Lambda Invocation and Execution ROIEScocoeviiiiiiiiiiiiiii e, 30

Map ReQUEST ParameEterSo e 33
PrEIEQUISITES ..ttt 35

SEEP L: Creale RESOUITES .. .iuiiieieit ittt ettt et et et et et e e et e e e e e n e e neenananannn 35

Step 2: Create GET and POST MEthOGSvuiuiiieiiie et e e ee e 36

Step 3: Set Up and Test the MethOdSveiiiii e 36

StEP 4: DEPIOY the AP ... e e 39

I =T o T TR =S 1 L Y 39

[N RS =T o L PP 41
Transform ReSPONSE PaylOadoouiiiiiiiiiii e 41
PrEIEQUISITES ..ttt 43

I =T o I A O 1= o Y L=/ To 1= £ 43

SEEP 2: CrEale RESOUITES .. .uiiieieit ettt ettt et et et et et et e e e e e e e e e a e e eenanenannn 45

Step 3: Create GET MethOUSviiii e e e e e 46

Step 4: Create a Lambda FUNCHONouiieii e ene e 47

Step 5: Set Up and Test the MethOdSveiiiiiii e 48

StEP 6: DEPIOY the AP ... e e 52

I =T o B 1= 1 L Y 52

SEEP 8 ClEAN UP . oniiiiiiit e 54

[N RS =T o L PP 54
Create an AWS SEIVICE PrOXYc.iuiiiiiit ettt e e 55
PrEIEQUISITES ..ttt ittt et 55

StEP 1: Create the RESOUICEuiii e et et e e e e et e et e e eenen 55

Step 2: Create the GET MELNOMc.vniii i e eaeaas 56

Step 3: Create the AWS Service Proxy EXecution ROIEcooviiiiiiiiinie, 56

Step 4: Specify Method Settings and Test the Methodccooviiiiiiiiiic e 58

StEP 5: DEPIOY the APl ... e 58

I =T o I G TR = 1 L Y 59

SEEP 71 ClEAN UP ettt e 59
CrEALING AN AP L. anas 61
Create an AP N APL GAIEWAYc.uiuuieiiiteiet e e e e e e e e ettt e et e et e e aeaaanas 61
Create an API Using the APl Gateway CONSOIEcuiiuiiiiiiiiiii e 61
Create an API Using the API Gateway Control Service APlc.oiuiiiiiiiiieeee e, 62
Create an API Using the AWS SDK for API GatEWAYc.ovuiiiiiiiiiiiiiiiiiiieneeee e 62

Amazon API Gateway Developer Guide

Create an APL USING the AWS CLIui e
Set up Method and INTEGIatioN ... e e
Before Configuring MethOSoonieiii e
After Setting Up Methods and INtegrationc.oeiieiiiiiii e
Configure How a Method Is Integrated with a Back Endcocooiiiiiiiiiiiiiiie,
Configure How a User Calls an API Methodcooiiiiiiiii e
Configure How Data Is Mapped between Method and Integrationcccoceiiiiiiiiniiinnnnn.
Configure Mock Integration for a Method
Set Up Request and Response Payload Mappingsocvuiiiiiiiii e
Y oo (=] PP PP TPTRPI
V= T 11 o =T 4] 0] = L=
Tasks for Models and Mapping TEMPIAEScveiniiiiie e
Create @ MOGEI
View @ LiSt Of MOUEIS ..o e
Delete @ MOUEI ... et
PhoOtOS EXAMPIE ..o e e
NEWS AFtICIE EXAMPIEeeieiie e e et ens
SalesS INVOICE EXAMPIE ... e
Employee ReCOrd EXamPIE ... e
Request and Response Parameter-Mapping Referenceoooiiiiiiiiiiiiiiic e
Map Data to Integration Request Parametersc.oiiiiiiiii e
Map Data to Method ReSpONSE HEAUEISviieiiii e
Transform Request and ReSponse BOAIESc.ouiiiiiiiiii e
Request and Response Payload-Mapping Referenceoooooviiiiiiiiiii e
Accessing the $context Variableo
Accessing the $INpUtVariable ..o
Accessing the $stageVariables Variable ...
Accessing the SUtil Variable ...
Integration Passthrough BEhaviors ..o
IMPOIrt @NA EXPOIT AP ..ottt et et ena
TP AN AP . e e
EXPOIT AN AP .o s
API Gateway EXIENSIONS 10 SWAGGET .. .uuvuinitiit et e e e ee e enas
Create an APl as an AMAzZon S3 PrOXYeueiiiiie e e
Create an IAM Role and Policy for the APl to Access AmMazon S3ccovvviiiiiiiiiiiiieneenen.
Create API Resources for Amazon S3 FEAUIEScuiuiiiiiiiieeee e
Expose a GET Method on an API Root as Get Service Action in Amazon S3
Expose Methods on an API Folder Resource as Bucket Actions in Amazon S3
Expose Methods on an API Item in a Folder as Actions on an Amazon S3 Object in a
BUCKET ..t
Swagger Definitions of a Sample APl as an Amazon S3 ProXyccccevvviniieiiiiiiiienaeanen.
Create an APl as @ Lambda PrOXYoououiniiiiii e
Set Up an IAM Role and Policy for an API to Invoke Lambda Functionsccocoeenee.
Create a Lambda Function in the Back ENdcoiiiiiiiiii e,
Create API Resources for the Lambda FUNCHONcooiiiiiiii e,
Create a GET Method with Query Strings to Call the Lambda Functionoooenee.
Create a POST Method with a JSON Payload to Call the Lambda Function
Create a GET Method with Path Parameters to Call the Lambda Function
Swagger Definitions of a Sample APl as Lambda ProXycccoociiiiiiiiiiniiiiiiience
Create an APl as an Amazon KiNESIS PrOXYc.uiuiei et eeaes
Create an IAM Role and Policy for the APl to Access Amazon Kinesisccccvvvviiiininennen.
Start to Create an APl as an Amazon Kinesis ProXYooeviiiiiiiiiiiii e
List Streams in AMAZON KINESISuiiiiiiii e
Create, Describe, and Delete a Stream in AMazon KINESISooviieiieiiiiiiiieee e
Get Records from and Add Records to a Stream in Amazon Kinesiscooeviiviieninnnn.
Swagger Definitions of an APl as @ KinesSiS ProXYc.viiiuiiiiiiii e
(0] 110] 1T o 20127 P
St TAM PEIMISSIONS ...ttt ettt

Amazon API Gateway Developer Guide

Control Access to API Gateway with IAM POIICIESooviuiiiii e 188
Create and Attach a Policy t0 @an JAM USEIooiuiiiii e 190
Statement Reference of IAM Policies for Managing APl in APl Gatewayccocovevvennnen. 191
Statement Reference of IAM Policies for Executing APl in APl Gatewayccocovviiennnen. 192

IAM Policy Examples for APl Gateway APIS ..ot 193

IAM Policy Examples for APl EXecution PErmiSSiONScc.veiiuiiiiuieiieiieniieeaeenaeienns 198
Enable CORS fOr @ RESOUITEieiiiie et 198
L (=TT 0 [LS (= 199
Enable CORS USING the CONSOIEc.inieii e 199
Enable CORS Using Swagger Definition ..o 201

USE BN AP K BY . 203
L (=TT 0 UL (= 203

Use an API Key with the APl Gateway CONSOIEoviuiiiiii e 203

USE CUSLOM AULNOTIZEIS ..ottt et e 204
Custom authOrIZAtION OVEIVIEWieiiieieit ettt 204
Create the Custom Authorizer Lambda FUNCHONooiiiiii e 205

INPUL t0 @ CUSIOM AULNOTIZETee e e 206
Output from @ CUSLtOM AULNOTIZETo e 207
Configure Custom AULNOTIZETo e 208

Call an API with Custom authOriZatioNc.ovuiiiii e 210
Authenticate API Clients with Amazon Cognito Your User POOIccooiiiiiiiiiiiiieee, 212
Create @ USEI POOI ... 212
Integrate an APl With @ USEr POOI ...t 213

Call an API Integrated with @ USer POOI ..o 214

Use Client-Side SSL CertifiCAEScuiuiiiiiii e 215
Generate a Client Certificate Using the APl Gateway CONSOlecccoviiiiiiiiiiiiiiiiienns 215
Configure an API 1o Use SSL CertifiCatesoiuiiiiii i 216

TESE INVOKE ...ttt ettt 217
Configure Back End to AUthentiCate APoo.iuiii e 217

= U L= T T T = U Y 218
VIBW @ LIST OF APIS ..ot e et 218
L (=TT U EST C= 218

View a List of APIs with the API Gateway CONSOIEooiiuiiiieiii e 218
DIBIE BN AP .. e e 218
L (=TT U EST C= 219
Delete an API with the APl Gateway CONSOIEc.iiiiiiiiii e 219
DEIBIE @ RESOUITE ...ttt e ettt et 219
Delete a Resource with the APl Gateway CONSOIEc.ociuiiiiiiiiii e 219

VIEW @ MEENOUS LISTeeeiei e e 219
L (=TT 0 [T (=P 219

View a Methods List with the APl Gateway CONSOIEcoouiiiiiiiiii e 220
Delete @ MELNOMt 220
Delete a Method with the APl Gateway CONSOIEooiuiiiiiiiie e 220
DEPIOYING BN AP .o e 221
Deploy an API with the APl Gateway CONSOIE ..o e 221
L (=TT 0 UL (= 221
Deploy an APl with the APl Gateway CONSOIE ..ot 221
Update deployment configuration with the APl Gateway Consolecc.cocviiiiiiiiiinennne. 222
Change a Stage to Use a Different Deployment with the APl Gateway Console 222
DEPIOY AN APT TN SEAOES ... uviiiiiie e e 223
(01T 1= B = To = PP PP 223

VIEW @ LISt Of STAGES . euinitiiit i e et 223

St U 8 S A i 224
DEIBEE @ SlAGE .. euieiiit ittt 227
Manage APl ReqUESE TRIOLHINGt e ene e 227
Account-Level Throttling ... e 227
Stage-Level and Method-Level Throttlingo.oviiii i 227
ENable API CaChingc.ooiiiiii e 227

Amazon API Gateway Developer Guide

e o I = Tod a1 To T @ AT T 228
Enable API CaChing ... 228
Override Stage Caching for Method Cachingcoooiiiiiiii e 229

Use Method/Integration Parameters as Cache KeYScovviiiiiiiiiiiiiiiieiieee e 230
Flush the API Stage Cache in APl GateWaYccoiuiiiiniiiiiiie e 231
Invalidate an APl Gateway Cache ENtrYooiuiiiiniiiiiii e aeaes 231
Manage API Deployment with Stage Variables ..o 233
USE CaSES . .tiieitiiiit ettt ettt et e 234
0= T 010 ST 234

Set Stage Variables ... 235

Use Stage Variables ... 238
Stage Variables REfEIENCEouii i 244
Generate an SDK Or @n AP 245
L (=TT 0 U LS (= 246
Generate an SDK for an API with the API Gateway ConsOlec.cooiiiiiiiiiiiiiiiiiieiaeene 246

Use an API Gateway-Generated AP SDK for ANdroidcooviiiiiiiiiiiiiieeceenes 247
Integrate an API Gateway-Generated iOS SDK into Your iOS Projectcocoveviiiniennenn. 248
Integrate an API| Gateway-Generated JavaScript SDK into Your JavaScript Code 250

Use a Custom DOMEAIN NAIMEottt ea e 251
L (=TT U EST C= 252

Set Up a Custom Domain Name for an API Gateway APlccoiiiiiiiiiiiie 253
Specify APl Mappings for a Custom Domain Nameccuveiiiiiiiiiiiiie e 255

Base Path Examples of API Mappings for a Custom Domain Namecccoevviiiniiinenn. 256
Upload and Renew an EXpiring CertifiCatecovoiiiiiii e 256

Call Your API with Custom Domain NaMESc.iuiiiiiiiie e 257
Calling @ DEPlOyEd AP ... e e 258
L (=TT [T = 258
Obtain an API's Invoke URL in the APl Gateway CONSOIEcouiiiiiiiiiiiii e 259
Test a Method UsSiNg the CONSOIEieii e e 259
L (=TT 0 [T (= 259

Test a Method with the APl Gateway CONSOIEcueuiuiiiiiie e 259

Use POoStMan t0 TESE @N AP ... e 260
Monitoring and TroUDIESNOOLING e 261
Log APl Management Calls with CloudTrailc.oiiriiii e 261
API Gateway Information in CloudTrail ..o 262
Understanding API Gateway Log File ENtrieS ..o 262
Monitor API execution with Amazon CIOUAWALCKcviiiiii 263
Amazon AP| Gateway Dimensions and MEtriCSc.ouviieiiiii e 263
View Metrics with the API DashbDOardc.oooiiiiiiii e 265

View Metrics in the CloudWatch CONSOIEcuiiiiiiiiiii e 266
MOoNItoring TOOIS IN AWS ... e e e et eeaen 266
Creating and UsIiNG USAQE PIANS ... et eeaas 268
What IS @ USAgE Plan? ... et et 268
How to Configure @ USage Plan? ... 268
Configure Usage Plans Using the APl Gateway CONSOIEovuiiiiiiiiiiiiiiie e 269
Create and Deploy an APl for Usage Plans ..o 269
Configure an APl Method to Require an API KEY ..o 269
Create AN APl KBY ... 270
IMPOIT AP KBY S .ot et 270
Migrate to Default Usage PIaNnS ... 271
Create USAge PlanS ... s 271

TeSt @ USAQE Plan ... 273
MaNAGE PlAN USAQE ... ettt 273
Configure Usage Plans Using the APl Gateway REST APl ..ot 274
Require an APl Key 0N @ Methodouiiiiii e 274
Create Or IMPOrt APL KEYS ... e 275
Migrate to Default Usage PIanS ... 275
Create @ UsSage Plan ... e 275

Vi

Amazon API Gateway Developer Guide

Manage a USage PIaN ... s 276
TESEUSAQE PIANS ..o e 276

API Gateway APl Key File FOIMAL ..o e 277

APL Gateway REST AP ..o 278
Limits, Pricing and KNOWN ISSUESt ettt et e e e e eneaas 279
F I o Y7 Y I 1 Y 279

API Gateway Limits for Configuring and Running an APlooiiiiiiiiiieeeee 279

API Gateway Limits for Creating, Deploying and Managing an APlccoooiiiiiiiiiiiiinenenne. 280

F I T 1002 1Y = o3 oo 281
KNOWN ISSUES ...ttt ettt e ettt en e eees 281

[0 o U] 0 =Y oL 1] (o Y 282
TS T 110 LSS T 285

Vii

Amazon API Gateway Developer Guide

What Is Amazon AP| Gateway?

Amazon API Gateway consists of two services: the API Gateway control service and API Gateway
execution service. The control service lets you create a RESTful API to expose selected back-end features.
The back end can be another AWS service, such as AWS Lambda or Amazon DynamoDB, or it can be
an existing web application. The execution service lets an app call the API to access the exposed back-end
features. The app can interact with the APl using standard HTTP protocols or using a platform- or
language-specific SDK generated by the API creator.

The API you create in API Gateway consists of a set of resources and methods. A resource is a logical
entity that can be accessed through a resource path using the API. A resource can have one or more
operations that are defined by appropriate HTTP verbs such as GET, POST, and DELETE. A combination
of a resource path and an operation identify a method in the API. Each method corresponds to a REST
API request submitted by the user of your API and the corresponding response returned to the user. API
Gateway integrates the method with a targeted back end by mapping the method request to an integration
request acceptable by the back end and then mapping the integration response from the back end to the
method response returned to the user. As an API developer, you can configure how methods are mapped
to integrations and vice versa by stipulating what parameters to use and specifying mapping templates
to transform payloads of given data models.

You can create an API by using the API Gateway management console, described in Getting

Started (p. 4), or by using the API Gateway AP| Gateway REST API (p. 278). In addition, you can integrate
API creation with AWS CloudFormation templates or API Gateway Extensions to Swagger (p. 115). For
a list of regions where API Gateway is available, as well as the associated control service endpoints, see
Regions and Endpoints.

API Gateway helps developers deliver robust, secure, and scalable mobile and web application back
ends. APl Gateway allows developers to securely connect mobile and web applications to business logic
hosted on AWS Lambda, APIs hosted on Amazon EC2, or other publicly addressable web services hosted
inside or outside of AWS. With APl Gateway, developers can create and operate APIs for their back-end
services without developing and maintaining infrastructure to handle authorization and access control,
traffic management, monitoring and analytics, version management, and software development kit (SDK)
generation.

API Gateway is designed for web and mobile developers who want to provide secure, reliable access to
back-end APIs for access from mobile apps, web apps, and server apps that are built internally or by
third-party ecosystem partners. The business logic behind the APIs can either be provided by a publicly
accessible endpoint that APl Gateway proxies call, or it can be entirely run as a Lambda function.

To better understand the terminology used in this documentation, you may find it useful to peruse the
API Gateway Concepts (p. 2) section.

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-reference.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region

Amazon API Gateway Developer Guide

API Gateway Concepts

API Gateway

API| Gateway API

API developer or APl owner

App developer or client
developer

App user, end user or client
endpoint

API Key

API Deployment and stage

Method request

Integration request

Integration response

An AWS service that 1) supports creating, deploying and managing
a RESTful application programming interface (API) to expose back-end
HTTP endpoints, AWS Lambda function, or other AWS services; and
2) invoking exposed APl methods through the front-end HTTP
endpoints.

A collection of resources and methods that are integrated with
back-end HTTP endpoints, Lambda functions or other AWS services
and can be deployed in one or more stages. API methods are invoked
through front-end HTTP endpoints that can be associated with a
registered custom domain names. Permissions to invoke a method
can be granted using IAM roles and policies or APl Gateway custom
authorizers. An API can present a certificate to be authenticated by
the back end. Typically, API resources are organized in a resource
tree according to the application logic. Each API resource can expose
one or more API methods that must have unique HTTP verbs
supported by API Gateway.

An AWS account that owns an API Gateway deployment (for example,
a service provider who also supports programmatic access.)

An app creator who may or may not have an AWS account and
interacts with the API deployed by the API developer. An app
developer can be represented by an API Key.

An entity that uses the application built by an app developer that
interacts with APIs in Amazon API Gateway. An app user can be
represented by an Amazon Cognito identity or a bearer token.

An alphanumeric string, which can be generated by API Gateway on
behalf of an API owner or imported from an external source such as
a CSV file, is used to identify an app developer of the API. An API
owner can use API keys to permit or deny access of given APIs based
on the apps in use.

An API deployment is a point-in-time snapshot of the API Gateway
API resources and methods. For a deployment to be accessible for
invocation by a client, it must be associated with one or more stages.
A stage is a logical reference to a life-cycle status of your API (e.g.,
‘dev', 'prod, 'beta’, 'v2'). The identifier of an API stage consists of an
API ID and stage name.

The public interface of an APl method in APl Gateway that defines
the parameters and body that an app developer must send in the
requests to access the back end through the API.

An API Gateway internal interface that defines how API Gateway
maps the parameters and body of a method request into the formats
required by the back end.

An API Gateway internal interface that defines how APl Gateway
maps data. The integration response includes the status codes,
headers, and payload that are received from the back end into the
formats defined for an app developer.

Amazon API Gateway Developer Guide

API Gateway Concepts

Method response

Mapping template

Model

Usage plan

The public interface of an API that defines the status codes, headers,
and body models that an app developer should expect from API
Gateway.

Scripts, expressed in Velocity Template Language (VTL), to transform
a request body from the front-end data format to the back-end data
format or to transform a response body from the back-end data format
to the front-end data format. Mapping templates are specified in the
integration request or integration response and they can reference
data made available at run time in the forms of context and stage
variables. An identity transformation is referred to as pass-through in
which a payload is passed as-is from the client to the back end for a
request and from the back end to the client for a response.

Data schema specifying the data structure of a request or response
payload. It is required for generating strongly typed SDK of an API,
used for validating payload, and convenient for generating a sample
mapping template to initiate creation of a production mapping template.
Although useful, a model is not required for creating a mapping
template.

A usage plan provides selected API clients with access to one or more
deployed APIs with configurable throttling and quota limits enforced
on individual client API keys.

http://velocity.apache.org/engine/devel/vtl-reference.html

Amazon API Gateway Developer Guide
Get Ready to Use API Gateway

Getting Started with Amazon API
Gateway

The following walkthroughs include hands-on exercises, using the APl Gateway console, to help you
learn about API Gateway.

Topics
¢ Get Ready to Use Amazon API Gateway (p. 4)
¢ Build and Test an API Gateway API from an Example (p. 6)
¢ Build an API Gateway API Step by Step (p. 14)
¢ Make Synchronous Calls to Lambda Functions (p. 22)
¢ Map Request Parameters for an API Gateway APl as an HTTP Proxy (p. 33)
¢ Use Models and Mapping Templates to Transform Response Payload (p. 41)
¢ Create an AWS Service Proxy for Amazon SNS (p. 55)

Get Ready to Use Amazon API Gateway

Before using APl Gateway for the first time, you must have an AWS account set up. To create, configure
and deploy an APl in APl Gateway, you must have appropriate IAM policy provisioned with permissible
access rights to the API Gateway control service. To permit your API clients to invoke your APl in API
Gateway, you must set up the right IAM policy to allow the clients to call the APl Gateway execution
service. To allow API Gateway to invoke an AWS service in the back end, APl Gateway must have
permissions to assume the roles required to call the back-end AWS service. When an API Gateway API
is set up to use AWS IAM roles and policies to control client access, the client must sign APl Gateway
API requests with Signature Version 4.

Understanding of these topics are important to use API Gateway and to follow the tutorials and instructions
presented here. This section provides brief discussions of or quick references to these topics.

Topics
¢ Sign Up for AWS (p. 5)
¢ Create an IAM User, Group or Role in Your AWS Account (p. 5)
¢ Grant IAM Users Permissions to Access APl Gateway Control and Execution Services (p. 5)
¢ Next Step (p. 6)

http://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

Amazon API Gateway Developer Guide
Sign Up for AWS

Sign Up for AWS

Go to http://aws.amazon.com/, choose Create an AWS Account, and follow the instructions therein.

Create an IAM User, Group or Role in Your AWS
Account

For better security practices, you should refrain from using your AWS root account to access API Gateway.
Instead, create a new AWS Identity and Access Management (IAM) user or use an existing one in your
AWS account, and then access AP| Gateway with that IAM user credentials.

To manage access for a user, you can create an |AM user, grant the user API Gateway access permissions.
To create a new IAM user, see Creating an IAM User.

To manage access for a group of users, you can create an IAM group, grant the group API Gateway
access permissions and then add one or more 1AM users to the group. To create an IAM group, see
Creating IAM Groups.

To delegate access to specific users, apps or service, you can create an IAM role, add the specified users
or groups to the role, and grant the users or groups API Gateway access permissions. To create an IAM
role, see Creating IAM Roles.

When setting up your API, you need to specify the ARN of an IAM role to control access the API's methods.
Make sure that this is ready when creating an API.

Grant IAM Users Permissions to Access API
Gateway Control and Execution Services

In AWS, access permissions are stated as policies. A policy created by AWS is a managed policy and
one created by a user is an inline policy.

For the API Gateway control service, the managed policy of AmazonAPIGatewayAdministrator
(arn: aws:iam: aws: pol i cy/ AmazonAPIl Gat ewayAdmi ni st r at or) grants the full access to create,
configure and deploy an APl in API Gateway:

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Alow',
"Action": [
"api gat enay: *"
I,
"Resource": "arn:aws:api gateway: *::/*"
}
]
}

To grant the stated permissions to a user, attach the policy to the user, a group containing the user. To
attach a policy, see Attaching Managed Policies.

Attaching the preceding policy to an IAM user provides the user with access to all APl Gateway control
service actions and resources associated with the AWS account. To learn how to restrict IAM users to a
limited set of APl Gateway control service actions and resources, see Set IAM Permissions (p. 188).

http://aws.amazon.com/
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html#Using_CreateUser_console
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console

Amazon API Gateway Developer Guide
Next Step

For the API Gateway execution service, the managed policy of AmazonAPIGatewayInvokeFullAccess
(arn:aws:iam:aws: pol i cy/ AmazonAPI Gat ewayl nvokeFul | Access) provides full access to
invoke an API in API Gateway:

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Alow',
"Action": [
"execut e-api : | nvoke"
1,
"Resource": "arn:aws:execute-api:*:*:*"
}
]
}

Attaching the preceding policy to an IAM user provides the user with access to all APl Gateway execution
service actions and resources associated with the AWS account. To learn how to restrict IAM users to a
limited set of API Gateway execution service actions and resources, see Set IAM Permissions (p. 188).

To grant the state permissions to a user, attach the policy to the user, a group containing the user. To
attach a policy, see Attaching Managed Policies.

In this documentation, we will use managed policies, whenever possible. To create and use inline policies,
see Working with Inline Policies.

Note
To complete the steps above, you must have permission to create the IAM policy and attach it
to the desired 1AM user.

Next Step

You are now ready to start using API Gateway. See Build and Test an AP| Gateway API from an
Example (p. 6).

Build and Test an APl Gateway API from an
Example

The Amazon API Gateway console now provides an option for you to create an APl Gateway API by
example, with helpful hints provided along the way. If you are new to APl Gateway, you may find it useful
as a learning tool. The following steps walk you through using this create-by-example option to create
and test the example API.

1. Do one of the following:

a. For the first API in your account, choose Get Started from the APl Gateway console welcome
page:

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html

Amazon API Gateway Developer Guide
Learn from an Example

1] AWS ~ Services ~

Amazon API Gateway

Amazon API Gateway helps developers to create and manage APls to
back-end systems running on Amazon EC2, AWS Lambda, or any
publicly addressable web service. With Amazon APl Gateway, you can
generate custom client SDKs for your APls, to connect your back-end
systems to mobile, web, and server applications or services.

Getting Started Guide

——

SDK generation
Amazon AP| Gateway can generate client
SDKs for JavaScript, Java, i0S, and Android
which you can use to quickly test new APIs
from your applications and distribute SDKs fo
third-party developers,

ol

n

am
=

Streamline API development

Amazon AP Gateway lets you simultaneously

run multiple versions and release stages of the

same AP, allowing you to quickly iterate, test,
and release new versions

El

Performance at scale
Amazon AP| Galeway helps you improve
performance by managing traffic to your
existing back-end systems, throttiing API call
spikes, and enabling result caching

If prompted with a modal dialog box containing hints at a stage of the process, choose OK to

close the modal dialog and continue.
For your next API, choose Create API from the API Gateway APIs home page:

T AWS ~ Services ¥ Edit ~

42 Amazon aPi Gateway | aPss

IAPIS ' Create API '
4

PetStore PetStore
API Keys No description
Custom Domain Names
Client Certificates

Settings

Under Create new API, select Examples API and then choose Import to create the example API.
For your first API, the APl Gateway console will start with this option as default.

Amazon API Gateway Developer Guide
Learn from an Example

Create new API

In Amazon AP| Gateway, an AP| refers to a collection of resources and methods that can be invoked through HTTPS endpoints.

New API

Example API

Clone from existing API

Import from Swagger (@ Example API

Learn about the service by importing an example API and turning on hints throughout the console.

T B
“swagger”:
"info": {
"title":

207,
"PetStore”

1
2
3
4
5 b
6 “schemes”: [
7 “https”
8 »
“paths™: {
WAL
"post™: {
“produces”: [
“application/json”

"responses”: {

16 200" {

17 “description™: "200 response”,

18 “schema”: {

19 "$ref": "#/definitions/Empty”
= -/
21

(v)

You can scroll down the Swagger definition for details of this example API before choosing Import.
3. The resulting display shows the newly created API:
:1: Amazon AP| Gateway APIls > PeiStore (1epdigide)) > Resources > /(pn9a20tux4)
APls Resources Actions- o/ Methods
PetStore - RE SOURCE ACTIONS
T =N Create Method Ef.;ﬁ”
Resources [
Create Resource
Stages Ipetstore-demo-endpoint.execute-api.com/...
Enable CORS
Custom Authorizers
- & /pets
Models APIACTIONS
API Keys Deploy API 4
Import API
Custom Domain Names ~ & /petid} Delete AP
Client Certificates
Settings Mock Endpoint
Authorization one
APl Key Not Required
© OPTIONS
Mock Endpoint
Authorization
APl Key Not Required
The API Gateway navigation pane on the left shows your available APIs, any API keys, custom
domain names and client certificates that you created for your APIs, as well as the settings for logging
your APIs' performance metrics. API-specific resources, deployment, custom authorizers and
payload-mapping data models are organized under individual APIs.
The Resources pane in the middle shows the structure of the selected API as a tree of nodes. API
methods defined on each resource are edges of the tree. When a resource is selected, all of its
methods are listed in the Methods pane on the right. Displayed under each method is a brief summary
of the method, including its endpoint URL, authorization type, and API Key requirement.
4.

To view the details of a method, to modify its set-up, or to test the method invocation, choose the

method name from either the method list or the resource tree.

Amazon API Gateway Developer Guide
Learn from an Example

/ - POST - Method Execution

TES Method Request Integration Request 4
& ® L O
Auth: NONE Type: HTTP 3

° ARN: arn:aws:execute- Input passthrough: Yes _%
apieu- =

west-1.718 "g4iL E

/POST/ z

=)

®

Q.

4 1 3 g

= @

o @

= 3
N g
Method Response Integration ResEonse 5

™ =~

L]

HTTP Status: 200 HTTP status pattern: >

e}

Models: application/json - %

=> Empty Qutput passthrough: No o

T

o

o

3

The resulting Method Execution pane for the chosen method presents a logical view of the method's
structure and behaviors: a client accesses a back-end service by interacting with the API through
Method Request. APl Gateway translates the client request, if necessary, into the form acceptable
to the back end before forwarding the request to the back end. The transformed request is known
as the integration request and is depicted by Integration Request in the display. Similarly, the
response from the back end goes through Integration Response and then Method Response
before being received by the client. Again, if necessary, APl Gateway maps the response from the
form shaped in the back end to a form expected by the client.

For the POST method on this API's root (/) resource, the method's integration request shows that
the method is integrated with the endpoint of

http:// petstore-denp-endpoi nt. execut e-api . com pet st ore/ pets inthe back end. The
method request payload will be passed through to the integration request without modification. The
GET / method request uses the MOCK integration type and is not tied to any endpoint in the back
end. When the method is called, the APl Gateway simply accepts the request and immediately returns
a response, by way of from Integration Response to Method Response. You can use the mock
integration to test an API without requiring a back-end endpoint. You can also use it to serve a local
response. In fact, the example APl uses it to return a local HTML page as the home page of the API.
It uses a mapping template to generate the home page in Integration Response.

As an API developer, you control the behaviors of your API's front-end interactions by configuring
the method request and a method response. You control the behaviors of your API's back-end
interactions by setting up the integration request and integration response. They involve data mappings
between a method and its corresponding integration. We will cover the method setup in Build an API
Gateway API Step by Step (p. 14). For now, we focus on testing the API to provide an end-to-end
user experience.

Choose Test shown on Client (as shown in the previous image) to start testing. Enter the following
{"type": "dog","price": 249.99} payload into the Request Body before choosing the Test
button.

Amazon API Gateway Developer Guide
Learn from an Example

€ Method Execution [/ - POST - Method Test

Make a test call to your method with the provided input

Path

No path parameters exist for this resource. You can define path
parameters by using the syntax {myPathParam} in a resource
path.

Query Strings
No query string parameters exist for this method. You can add
them via Method Request.

Headers
No header parameters exist for this method. You can add them
via Method Request.

Stage Variables
Mo stage variables exist for this method.

Client Certificate
Mo client certificates have been generated.

Request Body
1 @yge": dog", "price": 249‘999

The input specifies the attributes of the pet that we wish to add to the list of pets on the PetStore
website.

6. The results display as follows:

10

Amazon API Gateway Developer Guide
Learn from an Example

Request: /
Status: 200
Latency: 1445 ms
Response Body
{
"pet™: {

“type”: "dog”,
"price": 243.99

)
"message”: "success"

Response Headers

"Access-Control-Allow-origin®™:"#", "content-Type®: "application/json”™
g] ¥ PP J

Logs

Execution log for reguest test-request

Mon Apr 84 84:59:85 UTC 2816 : Starting execution for reguest: test-invoke-request

Mon Apr 84 @4:59:85 UTC 2816 : WTTP Methed: POST, Resource Path: /

MOn Apr 84 @4:59:85 UTC 2816 : Method request path: {}

Mon Apr 84 @4:59:85 UTC 2816 : Method request query string: {}

Mon Apr 84 84:59:85 UTC 2816 : Method request headers: {}

MOn Apr @4 e4:59:85 UTC 2816 : Method request body before transformations: {“type": “dog","price™: 249
.99}

Mon Apr @4 @4:53:85 UTC 2816 : Endpoint request URI: htip://petstore-demo-endpoint.execute-api.com/pet
store/pets

Mon Apr 84 84:59:85 UTC 2816 : Endpoint request headers: {x-amzn-apigateway-apl-id=g4iukm23bf, Accept=
application/json, User-Agent=AmazonAPIGateway_g4iukm23bf, Content-Type=application/json}

Mon Apr @4 @4:59:85 UTC 2816 : Endpoint request bedy after transformatiens: {“type": “deg","price”: 24

9.99}
Mon Apr @4 @4:59:@6 UTC 2816 : Endpoint respense body before transformations: {
"pet: {

ntypen: "dog”,
"price": 243.99

b

“"message”: “success”
T
Mon Apr @4 @4:59:86 UTC 2816 : Endpoint response headers: {date=mon, @4 Apr 2816 84:59:86 GMT, content
-length=81, x-powered-by=Express, content-type-application/json; charset=utf-g, connection-keep-alive}
Mon Apr 84 @4:53:86 UTC 2816 : Method response body after transformations: {

pet™:
“type": "dog",
"price": 243.99

b

"message”: "success"

T

Mon Apr 84 @4:59:86 UTC 2816 : Method response headers: {Access-Control-Allow-Origin=*, Content-Type=a
pplication/json}

MON Apr @4 84:59:86 UTC 2816 : successfully completed execution

Mon Apr 84 @4:53:86 UTC 2816 : Method completed with status: 2ee

The Logs entry of the output shows the state changes from the method request to the integration
request and from the integration response to the method response. This can be useful for
troubleshooting any mapping errors that cause the request to fail. In this example, no mapping is
applied: the method request is identical to the integration request and the integration response is the
same as the method response.

To test the API using a client other than the API Gateway test-invoke-request feature, you must first
deploy the API to a stage.

To deploy the sample API, select the PetStore API and the root / resource, and then choose Deploy
API from the Actions menu.

11

Amazon API Gateway Developer Guide
Learn from an Example

APls . Resources Actions- | o / Methods
PetStore & i RESOURCE ACTIONS
Create Method ST
I Resources
Create Resource X
Stages - Ipetstore-demo-endpoint.execute-api.com...
OPTIONS Enable CORS
Custom Authorizers o
-~ & /pets horization None
Models s APIKey Mot Required
AP Keys LI
CFTONS Import AP1
Custom Domain Names * & /fpetig) Delete AP
Client Certificates O GET
Seftings Mock Endpoint

Authorization Hone

APl Key Not Required

© OPTIONS

Mock Endpoint

Authorization Hone

APl Key Not Required

In Deploy API, for Deployment stage, choose [New Stage] because this is the first deployment of
the API. Type a name (e.g., t est) in Stage name and, optionally, type descriptions in Stage
description and Deployment description. Choose Deploy.

Deploy API

Choose a stage where your AP| will be deployed. For example, a test version of your
API could be deployed to a stage named beta.

Deployment stage E|

Stage name*

Stage description)
Deployment description qsample API first deploymeni)]

Cancel Deploy

In the resulting Stage Editor pane, Invoke URL displays the URL to invoke the API's GET / method
request.

12

Amazon API Gateway Developer Guide
Learn from an Example

test Stage Editor

® Invoke URL@EXEC ute-api.us-west-2 am@

Seftings Stage Variables SDK Generation = Export = Deployment History

Configure the metering and caching settings for the test stage.

Cache Settings
Enable APl cache
CloudWatch Settings
Enable CloudWatch Logs | '@
Enable CloudWatch Metrics || €
Throttling Settings
Rate 500 :
Burst Limit 1000 %

Client Certificate

On Stage Editor, follow the Invoke URL link to submit the GET / method request in a browser. The
result, generated from the mapping template in the integration response, is shown as follows:

https://0m_m wi execute-api.us-west-2.amazonaws.com/test 2> || Q Search E + #H =
Welcome to your Pet Store API

You have succesfully deployed your first API. You are seeing this HTML page because the c=r method to the
root resource of your API returns this content as a Mock integration.

The Pet Store API contains the /pets and /pets/pet1d) resources. By making a cer request to /pets you can
retrieve a list of Pets in your APL. If you are looking for a specific pet, for example the pet with ID 1, you can
make a ger request to /pets/1.

You can use a REST client such as Postman to test the rost methods in your API to create a new pet. Use
the sample body below to send the post request:

: 123,11

In the Stages navigation pane, expand the test stage, select GET on / pet s/ { pet | d}, and then
copy the Invoke URL value of

https://api-id.execute-api.regi on. amazonaws. conitest/pets/{petld}.{petld}
stands for a path variable.

Paste the Invoke URL value (obtained in the previous step) into the address bar of a browser,
replacing { pet | d} by, for example, 1, and press Enter to submit the request. A 200 OK response
should return with the following JSON payload:

{
id': 1,
"type": "dog",
"price": 249.99
}

13

Amazon API Gateway Developer Guide
Build an API Step by Step

Invoking the API method as shown is possible because its Authorization type is set to NONE. If the
AWS_| AMauthorization were used, you would sign the request using the Signature Version 4 protocols.
For an example of such a request, see Build an AP| Gateway API Step by Step (p. 14).

Build an APl Gateway API Step by Step

You can create an API in the Amazon AP| Gateway console from the ground up. In essence, you use
the console as an API design studio to scope the API features, to experiment with its behaviors, to build
the API, and to deploy your API in stages.

This section walks you through the steps to create resources, expose methods on a resource, configure
a method to achieve the desired API behaviors, and to test and deploy the API.

1. From Create new API, select New API, type a name in APl Name, optionally add a description in
Description, and then choose Create API.

Create new API

In Amazon AP| Gateway, an API refers to a collection of resources and methods that can be invoked through HTTPS endpoints.

@ newart) © cione from existing APl) import from swagger) Example API

Name and description

Choose a friendly name and description for your API

APl name*
Description (A sample AP)

* Required ‘ Create API

As a result, an empty API is created. The Resources tree shows the root resource (/) without any
methods. In this exercise, we will build the API as an HTTP proxy of the PetStore demo website
(http://petstore-demo-endpoint.execute-api.come.) For illustration purposes, we will create a / pet s
resource as a child of the root and expose a GET method on this resource for a client to retrieve a
list of available Pets items from the PetStore website.

2. Tocreate the / pet s resource, select the root, choose Actions and then choose Create Resource.

Resources e/ Methods
&] RESOURCE ACTION S
Create Method

Enable CORS

AP| ACTION S
Deploy API
Import API
Delete API

Type Pet s in Resource Name, leave the Resource Path value as given, and choose Create
Resource.

14

Amazon API Gateway Developer Guide
Build an API Step by Step

New Child Resource

Use this page to create a new child resource for your resource

Resource Name*

Resource Path” | pets

You can add path parameters using brackets. For example, the
resource path {username} represents a path parameter called
‘username’

To expose a GET method on the / pet s resource, choose Actions and then Create Method.

Resources ./pets Methods

RESOURCE ACTIONS

™
Create Method
)

Create Resource
Enable CORS

Delete Resource

API ACTION S
Deploy API
Import API
Delete API

Choose GET from the list under the /pets resource node and choose the checkmark icon to finish
creating the method.

Resources Actions - ./pets Methods
&
& Ipets
& -@o
Note

Other options for an APl method include:

e POST, primarily used to create child resources.

« PUT, primarily used to update existing resources (and, although not recommended, can
be used to create child resources).

* DELETE, used to delete resources.
e PATCH, used to update resources.

15

Amazon API Gateway Developer Guide
Build an API Step by Step

« HEAD, primarily used in testing scenarios. It is the same as GET but does not return the
resource representation.

« OPTIONS, which can be used by callers to get information about available communication
options for the target service.

The method created is not yet integrated with the back end. The next step sets this up.

In the method's Setup pane, select HTTP Proxy for Integration type, select GET from the HTTP
method drop-down list, type

http:// petstore-denp-endpoi nt. execut e-api . com pet st or e/ pet s asthe Endpoint URL
value, and then choose Save.

Note

For the integration request's HTTP method, you must choose one supported by the back
end. For HTTP Proxy or Mock i nt egrati on, it makes sense that the method request
and the integration request use the same HTTP verb. For other integration types the method
request will likely use an HTTP verb different from the integration request. For example, to
call a Lambda function, the integration request must use POST to invoke the function, whereas
the method request may use any HTTP verb depending on the logic of the Lambda function.

/pets - GET - Setup

Choose the integration point for your new method €

Integration type Lambda Function

@ HTTP Proxy

Mock Integration

Show advanced

HTTP method (GET) E‘

Endpoint URL @p lipetstore-demo-endpoint.exec utefap\.comfpetstorefpetﬂj

When the method setup finishes, you are presented with the Method Execution pane, where you
can further configure the method request to add query string or custom header parameters. You can
also update the integration request to map input data from the method request to the format required
by the back end.

The PetStore website allows you to retrieve a list of Pet items by the pet type (e.g., "Dog" or "Cat")
on a given page. It uses the t ype and page query string parameters to accept such input. As such,
we must add the query string parameters to the method request and map them into the corresponding
query strings of the integration request.

In the GET method's Method Execution pane, choose Method Request, select AW5_| AMfor
Authorization, expand the URL Query String Parameters section, and choose Add query string
to create two query string parameters named t ype and page. Choose the checkmark icon to save
the newly added query string parameters.

16

Amazon API Gateway Developer Guide
Build an API Step by Step

€ Method Execution /pets - GET - Method Request

Provide information about this method's authorization settings and the parameters it can receive.

Authorization Settings

Authorization Li]

APl Key Required false

~ URL Query String Parameters

Name Caching
(]

s

© Add query string
» HTTP Request Headers

» Request Models Create a Model

The client can now supply a pet type and a page number as query string parameters when submitting
a request. These input parameters must be mapped into the integration's query string parameters
to forward the input values to our PetStore website in the back end. Because the method uses
AWE_| AM you must sign the request to invoke the method.

From the method's Integration Request page, expand the URL Query String Parameters section.
By default, the method request query string parameters are mapped to the like-named integration
request query string parameters. This default mapping works for our demo API. We will leave them
as given. To map a different method request parameter to the corresponding integration request
parameter, choose the pencil icon for the parameter to edit the mapping expression, shown in the
Mapped from column. To map a method request parameter to a different integration request
parameter, first choose the delete icon to remove the existing integration request parameter, choose
Add query string to specify a new name and the desired method request parameter mapping
expression.

17

Amazon API Gateway Developer Guide
Build an API Step by Step

€ Method Execution /pets - GET -@tegration Reque.@

Provide information about the target backend that this method will call and whether the incoming request data
should be modified

Integration type () | ambda Function
@ HTTP Proxy
© Mock Integration

Show advanced

HTTP method GET &

Endpoint URL hiip //petstore-demo-endpoint execute-api com/petstore/pets #

» URL Path Parameters

~ URL Query String Parameters

Name Mapped from & Caching
type method.request querystring.type] %]
page method.request querystring. page O $O

© Add query string
» HTTP Headers

» Body Mapping Templates

This completes building the simple demo API. It's time to test the API.

To test the API using the API Gateway console, choose Test from the GET-on-Pets method's Method

Execution pane. In the Method Test pane, enter Dog and 2 for the type and page query strings,
respectively, and then choose Test.

18

Amazon API Gateway Developer Guide
Build an API Step by Step

€ Method Execution /pets - GET {Method Test

Make a test call to your method with the provided input

Path
No path parameters exist for this resource. You can define path parameters by using the syntax
{myPathParam} in a resource path

Query Strings
type

page

€

Headers
No header parameters exist for this method. You can add them via Method Request

Stage Variables
No stage variables exist for this method.

Client Certificate
No client certificates have been generated.

Request Body
Request Body is not supported for GET methods.

The result is shown as follows. (You may need to scroll down to see the test result.)

19

Amazon API Gateway Developer Guide
Build an API Step by Step

Request: /pets?type=Dog&page=2
Status: 200

Latency: 1036 ms

Response Body

{
"id": 4,
"type": "Dog",
“price™: 999.99
1,
{
"id=: 5,
"type": "Dog",
"price™: 249.99
I
{
~id~: 6,
"type": "Dog",
"price™: 49.97
¥

]

Response Headers
{"Content-Type": "application/json"}
Logs

Execution log for request test-request

Mon Apr @4 @5:48:01 UTC 2016 : Starting execution for request: test-invoke-request
Mon Apr @4 @5:48:01 UTC 2016 : HTTP Method: GET, Resource Path: /pets

Mon Apr 84 @5:48:81 UTC 2816 : Method request path: {}

Mon Apr 04 @5:48:01 UTC 2016 : Method request query string: {page=2, type=Dog}
Mon Apr @4 @5:48:01 UTC 2016 : Method request headers: {}

Mon Apr @4 @5:48:01 UTC 2016 : Method request body before transformations: null

Now that the test is successful, we can deploy the API to make it publicly available.
8. To deploy the API, select the API and then choose Deploy API from the Actions drop-down menu.

APIs . Resources Actions- | o / Methods
RESOURCE ACTIONS
<>
Create Method
I Resources > & Ipets
o Create Resource
Stages
Enable CORS
Custom Autharizers
Models API ACTIONS
PetStore Deploy API
Import API
API Keys Delete API

Custom Domain Names
Client Certificates

Settings

In the Deploy API dialog, choose a stage (or [New St age] for the API's first deployment); enter a
name (e.g., "test", "prod", "dev", etc.) in the Stage name input field; optionally, provide a description
in Stage description and/or Deployment description; and then choose Deploy.

20

Amazon API Gateway Developer Guide
Build an API Step by Step

Deploy APD

Choose a stage where your API will be deployed. For example, a test version of your
API could be deployed to a stage named beta.

Deployment stage [New Stage] El

Stage name*
Stage description T on Pets only

Deployment description Initial deployment > l

Cancel (gl 4%

Once deployed, you can obtain the invocation URLs (Invoke URL) of the API's endpoints. For
example, the GET on Pets method's invocation URL is as follows:

48 Amazon API Gateway APis > myApi(ngm7nérSOg) > Stages > fest > fpets > GET (2]
|API5 . swaes test - GET - /pets
‘ myApi - & fosi
- & Invoke URL: hitps /iy 0g execule-apius-wes!-2 amazumd@
Resources
- & Ipels
@ Use this page to override the lesl stage seltings for the GET 1o /pels method
thonzers Settings @ Inherit from stage
Overnde for this method
Dashboard
PelStore
Save Changes
APl Keys

Custom Domain Names
Client Certificates

Settings

To invoke this APl method in a client (e.g., a Postman browser), append the query string parameters
to the stage-specific method invocation URL (as shown in the previous image) to create the complete
method request URL:

https://api-id.execute-api.regi on.anazonaws. coni t est/ pet s?t ype=Dog&page=2

Specify this URL in the address bar of the browser. Choose GET as the HTTP verb. Select AWS
Signature for the Authorization type and then specify the required properties (as shown), following
the Signature Version 4 protocols. Finally, send the request.

Jg.execute-api.us-west-2.amazonaws.com/test/pets7type=Dog&page=2 Params Send v Save

Save helper data to request

21

https://www.getpostman.com/
http://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

Amazon API Gateway Developer Guide
Call Lambda Functions Synchronously

If you use an SDK to create a client, you can call the methods exposed by the SDK to sign the
request. For implementation details, see the AWS SDK of your choosing.

Note
When changes are made to your API, you must redeploy the API to make the new or updated
features available before invoking the request URL again.

Make Synchronous Calls to Lambda Functions

AWS Lambda provides an easy way to build back ends without managing servers. APl Gateway and
Lambda together can be powerful to create and deploy serverless Web applications. In this walkthrough,
you learn how to create Lambda functions and build an APl Gateway API to enable a Web client to call
the Lambda functions synchronously. For more information about Lambda, see the AWS Lambda Developer
Guide. For information about asynchronous invocation of Lambda functions, see Create an APl as a
Lambda Proxy (p. 143).

Topics
« Step 1: Prerequisites (p. 22)
¢ Step 2: Create an API (p. 22)
« Step 3: Create a Resource (p. 22)
¢ Step 4: Create Lambda Functions (p. 23)
« Step 5: Create and Test a GET Method (p. 26)
¢ Step 6: Create and Test a POST Method (p. 27)
« Step 7: Deploy the API (p. 28)
¢ Step 8: Test the API (p. 28)
¢ Step 9: Clean Up (p. 29)
¢ Next Steps (p. 30)
* Create Lambda Invocation and Execution Roles (p. 30)

Step 1: Prerequisites

You must grant APl Gateway access permission to the IAM user who will perform the tasks discussed
here. The IAM user must have full access to work with Lambda. For this, you can use or customize the
managed policy of AWSLambdaFullAccess (ar n: aws: i am : aws: pol i cy/ AWBLanbdaFul | Access)
and attach it to the IAM user. For more information, see Get Ready to Use API Gateway (p. 4). The IAM
user must also be allowed to create policies and roles in IAM. For this you can use or customize the
managed policy of IAMFullAccess (ar n: aws: i am : aws: pol i cy/ | AMFul | Access and attach itto the
user.

Step 2: Create an API

In this step, you will create a new APl named MyDenpAPI . To create the new API, follow the steps in
Build an APl Gateway API Step by Step (p. 14).

Step 3: Create a Resource

In this step, you will create a new resource named MyDenpResour ce. To create this resource, follow the
steps in Build an API Gateway API Step by Step (p. 14).

22

https://aws.amazon.com/tools/
http://docs.aws.amazon.com/lambda/latest/dg/
http://docs.aws.amazon.com/lambda/latest/dg/

Amazon API Gateway Developer Guide
Step 4: Create Lambda Functions

Step 4: Create Lambda Functions

Note
Creating Lambda functions may result in charges to your AWS account.

In this step, you will create two new Lambda functions. The first Lambda function, Get Hel | oWor | d, will
log the call to Amazon CloudWatch and return the JSON object {"Hel | o": "Wér| d"}. For more
information about JSON, see Introducing JSON.

The second Lambda function, Get Hel | oW t hNang, will take an input ("name"), log the call to CloudWatch,
and return the JSON object {" Hel | 0" : user-suppl i ed-i nput - val ue}.If no input value is provided,
the value will be " No- Nane" .

You will use the Lambda console to create the Lambda functions and set up the required execution
role/policy. You will then use the APl Gateway console to create an API to integrate APl methods with
the Lambda functions; the API Gateway console will set up the required Lambda invocation role/policy.
If you set up the API without using the API Gateway console, such as when importing an API from Swagger,
you must explicitly create, if necessary, and set up an invocation role/policy for APl Gateway to invoke
the Lambda functions. For more information on how to set up Lambda invocation and execution roles,
see Create Lambda Invocation and Execution Roles (p. 30). For more information about Lambda see
AWS Lambda Developer Guide.

To create the GetHelloWorld Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.
2. Do one of the following:

« If the welcome page appears, choose Get Started Now.
 If the Lambda: Function list page appears, choose Create a Lambda function.

3. From Select blueprint, select the hello-world blueprint for nodej s. You may need to type Hel | o
as the search filter to bring the blueprint in focus.

4. For Name, type Get Hel | oWor | d.

5. For Description, type Returns {"Hel |l o":"World"}.

6. For Runtime, choose Node.js or leave as-is.

7. Under Lambda function code, replace the default code statements in the inline code editor with
the following:
‘use strict';

consol e. | og(' Loadi ng event');

exports. handl er = function(event, context) {
console.log('"Hello":"World"");
context.done(null, {"Hello":"Wrld"}); // SUCCESS with nessage

H

Tip

The preceding code is written in Node.js. The consol e. | og method writes information to
an Amazon CloudWatch Log. The event parameter contains the event's data. The cont ext
parameter contains callback context. Lambda uses cont ext . done to perform follow-up
actions. For more information about how to write Lambda function code, see the
"Programming Model" section in AWS Lambda: How it Works and the sample walkthroughs
in the AWS Lambda Developer Guide.

23

http://json.org
https://github.com/awslabs/api-gateway-secure-pet-store/blob/master/src/main/resources/swagger.yaml#L39
http://alpha-docs-aws.amazon.com/lambda/latest/dg/welcome.html
https://console.aws.amazon.com/lambda/
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html

Amazon API Gateway Developer Guide
Step 4: Create Lambda Functions

10.
11.
12.
13.

14.

15.

16.

17.

Under Lambda function handler and role, leave the default of i ndex. handl er for Handler.
For Role, choose * Basi ¢ executi on rol e under Create new role.

a. Leave the default selection of | anbda_basi c_execut i on for IAM Role.
b. Leave the default selection of Create a new Rol e Pol i cy for Policy Name.
c. Choose Allow.

For Advanced settings leave the default setting as is.

Choose Next

Choose Create function.

For the newly created GetHelloWorld function, note the AWS region where you created this function.
You will need it later.

To test the newly created function, as a good practice, choose Actions and then select Configure
test event.

For Input test event, replace any default code statements with the following, and then choose Save
and test.

{

}
Tip
This function does not use any input. Therefore, we provide an empty JSON object as the
input.

Choose Test to invoke the function. The Execution result section shows {"Hel | 0": "Worl d"}.

The output is also written to CloudWatch Logs.
Go to the Functions list to create the next Lambda function.

In addition to the Lambda function, an IAM role (I anbda_basi c_execut i on) is also created as the
result of this procedure. You can view this in the IAM console. Attached to this IAM role is the following
inline policy that grants users of your AWS account permission to call the CloudWatch Cr eat eLogG oup,
Cr eat eLogSt r eans, and Put LogEvent s actions on any of the CloudWatch resources.

"Version": "2012-10-17",
"Statenment": [

{
"Effect": "Allow',

"Action": [
"l ogs: Cr eat eLogGr oup",
"l ogs: Creat eLogStreant,
"l ogs: Put LogEvent s"

1.

"Resource": "arn:aws:|logs:*:*:*"

A trusted entity of this IAM role is | anbda. amazonaws. com which has the following trust relationship:

24

Amazon API Gateway Developer Guide
Step 4: Create Lambda Functions

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Alow',
"Principal": {
"Service": "lanbda. anazonaws. cont
b
"Action": "sts:AssuneRol e"
}
]
}

The combination of this trust relationship and the inline policy makes it possible for the user to invoke the
Lambda function and for Lambda to call the supported CloudWatch actions on the user's behalf.

To create the GetHelloWithName Lambda function

Choose Create a Lambda function.

From Select blueprint, select the hello-world blueprint for nodej s.

Type Get Hel | oW t hNarre for Name.

For Description, type Returns {"Hello0":", a user-provided string, and "}.
For Runtime, choose Node.js.

In the code editor under Lambda function code replace the default code statements with the
following:

o0k~ wNPE

'use strict';
consol e. | og(' Loadi ng event');

exports. handl er = function(event, context) {

var name = (event.nanme === undefined ? 'No-Name' : event.nane);
console.log('"Hello":"" + name + '"");

context.done(null, {"Hello":name}); // SUCCESS wi th nmessage

h

7. Under Lambda function handler and role, leave the default of i ndex. handl er for Handler.

8. ForRole, choose | anbda_basi c_execut i on under Use existing role, assuming you have created
the | anbda_basi c_execut i on role in the previous procedure.

9. Leave the default values for Advanced settings. Then choose Next.
10. Choose Create function.

11. For the newly created GetHelloWorldName function, note the AWS region where you created this
function. You will need it in later steps.

12. To test this newly created function, choose Actions and then Configure test event.
13. In Input test event, replace any default code statements with the following, and then choose Save

and test.
{

"name": " User"
}

25

Amazon API Gateway Developer Guide
Step 5: Create and Test a GET Method

Tip
The function calls cont ext . nane to read the input name. We expectittoreturn{" Hel | 0" :
"User "}, given the above input.

You can experiment with this function by removing " nane": "User" from the Input test event for
the function and choosing Save and test again. You should see the output of {"Hel | 0":
"No- Name"} under Execution result in the Lambda console, as well as in CloudWatch Logs.

Step 5: Create and Test a GET Method

Switch back to the API Gateway console. In this step, you will create a GET method, connect it to your
Get Hel | oWor | d function in Lambda, and then test it. You use a GET method primarily to retrieve or
read a representation of a resource. If successful, the GET method will return a JSON-formatted object.

To create and test the GET method

1. Inthe API Gateway console, from APIs, choose MyDemoAPI.

2. Inthe Resources pane, choose /mydemoresource. From Actions, choose Create Method. Choose
GET from the HTTP method drop-down list and then choose the checkmark to create the method.

3. Inthe GET method Setup pane, for Integration type, choose Lambda Function. For Lambda
Region, choose the region (.e.g, us- east - 1) where you created the Lambda functions. In Lambda
Function, type Get Hel | oWor | d. Choose Save to finish setting up the integration request for this
method.

For a list of region names and identifiers, see AWS Lambda in the Amazon Web Services General
Reference.

Resources Actions~ | o /mydemoresource - GET - Setup

- &
- & Imydemoresour

Choose the integration point for your new method. ©

@ Integration typ& @ Lambda Functio

HTTP Proxy
Mock Integration

Show advanced

Lambda Reg\e
Lambda Function {GetHelloworld

4. For Add Permission to Lambda Function, choose OK.

5. Inthe Method Execution pane, choose TEST from the Client box, and then choose the Test button.
If successful, Response Body will display the following:

"Hel lo": "World"

By default, API Gateway will pass through the request from the API caller. For the GET method call you
just created, as well as for HEAD method calls, a Lambda function will receive an empty JSON response
by default and then return the response from the Lambda function without modifications.

26

http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

Amazon API Gateway Developer Guide
Step 6: Create and Test a POST Method

In the next step, you will create a POST method call. For POST and PUT method calls, you can pass in
a request body in JSON format, which the Lambda function will receive as its input event. Optionally, you
can transform the input to the Lambda function by using mapping templates in API Gateway.

Step 6: Create and Test a POST Method

In this step, you will create a new POST method, connect it to your Get Hel | oW t hNane function in
Lambda, and then test it. If successful, the POST method typically returns to the caller the URI of the
newly created resource. In this walkthrough, the POST method will simply return a JSON-formatted object.

To create and test the POST method

1. Inthe Resources pane, choose /mydemoresource, and then choose Create Method.

2. For the HTTP method, choose POST, and then choose the checkmark to save your choice.

3. Inthe Setup pane, for Integration Type, choose Lambda Function.

4. For Lambda Region, choose the region identifier that corresponds to the region name in which you
created the Get Hel | oW t hNane Lambda function.

5. For Lambda Function, type Get Hel | oW t hNane, and then choose Save.

6. When you are prompted to give APl Gateway permission to invoke your Lambda function, choose
OK.

7. Inthe Method Execution pane, in the Client box, and then choose TEST. Expand Request Body,
and type the following:

"nanme": "User"

8. Choose Test. If successful, Response Body will display the following:

{
"Hel l o": "User"
}
9. Change Request Body by removing "nanme": "User" so that only a set of curly braces ({ })
remain, and then choose Test again. If successful, Response Body will display the following:
{
"Hel I 0": " No- Nane"
}

The API Gateway console-assisted Lambda function integration uses the AWS service proxy integration
type for Lambda. It streamlines the process to integrate an API method with a Lambda function by setting
up, among other things, the required Lambda function invocation URI and the invocation role on behalf
of the API developer.

The GET and POST methods discussed here are both integrated with a POST request in the back end:

POST /2015-03-31/functions/ Functi onArn/invocati ons?Qual ifier=Qualifier HITP/ 1.1

27

Amazon API Gateway Developer Guide
Step 7: Deploy the API

X- Anez- | nvocati on- Type: Request Reponse

Cont ent - Type: application/json
Content - Lengt h: Payl oadSi ze

Payl oad

The X- Anz- | nvocat i on- Type: Request Reponse header specifies that the Lambda function be
invoked synchronously. Funct i onAr n is of the

arn: aws: | anbda: r egi on: account -i d: functi on: Funct i onNane format. In this walkthrough, the
console sets Funct i onNane as Get Hel | oWor | d for the GET method request and supplies an empty
JSON payload when you test-invoke the method. For the POST method, the console sets Funct i onNane
as Get Hel | oW t hName and passes the caller-supplied method request payload to the integration request.
You can regain full control of a method creation and setup by going through the AWS service proxy
integration directly. For more information, see Create an API as a Lambda Proxy (p. 143).

Step 7: Deploy the API

You are now ready to deploy your API so that you can call it outside of the APl Gateway console. In this
step, you will create a stage. In AP| Gateway, a stage defines the path through which an API deployment
is accessible. For example, you can define a t est stage and deploy your API to it, so that a resource
named MyDenpAPI is accessible through a URI thatends in . . ./t est/ MyDenpAPI .

To deploy the API

1. Choose the API from the APIs pane or choose a resource or method from the Resources pane.
Choose Deploy API from the Actions drop-down menu.

2. For Deployment stage, choose New Stage.
3. For Stage name, type t est .

Note
The input must be UTF-8 encoded (i.e., unlocalized) text.

4. For Stage description, type This is a test.
5. For Deployment description, type Cal | i ng Lanbda functi ons wal kt hr ough.
6. Choose Deploy.

Step 8: Test the API

In this step, you will go outside of the API Gateway console to call the GET and POST methods in the
API you just deployed.

To test the GET-on-mydemoresource method

1. Inthe Stage Editor pane, copy the URL from Invoke URL to the clipboard. It should look something
like this:

https://nmy-api-id. execute-api.region-id.amazonaws. coni t est

2. In aseparate web browser tab or window, paste the URL into the address box. Append the path to
your resource (/ mydenor esour ce) to the end of the URL. The URL should look something like this:

28

Amazon API Gateway Developer Guide
Step 9: Clean Up

https://nmy-api-id. execute-api.region-id.anmazonaws. coni t est/ mydenor esour ce

3. Browse to this URL. If the GET method is successfully called, the web page will display:

{"Hello":"World"}

To test the POST-on-mydemoresource method

1. You will not be able to test a POST method request with your web browser's address bar. Instead,
use an advanced REST API client, such as Postman, or the cURL command-line tool.

2. Send a POST method request to the URL from the previous procedure. The URL should look
something like this:

https://ny-api-id. execute-api.region-id.amzonaws. com test/ mydenoresource

Be sure to append to the request headers the following header:

Cont ent - Type: application/json

Also, be sure to add the following code to the request body:

nane": "User"

For example, if you use the cURL command-line tool, run a command similar to the following:

curl -H "Content-Type: application/json" -X POST -d "{\"nane\": \"User\"}"
https://my-api-id. execute-api.region-id.anmzonaws. conitest/ mydenoresource

If the POST method is successfully called, the response should contain:

{"Hello":"User"}

Step 9: Clean Up

If you no longer need the Lambda functions you created for this walkthrough, you can delete them now.
You can also delete the accompanying IAM resources.

Caution

If you plan to complete the other walkthroughs in this series, do not delete the Lambda execution
role or the Lambda invocation role. If you delete a Lambda function that your APIs rely on, those
APIs will no longer work. Deleting a Lambda function cannot be undone. If you want to use the
Lambda function again, you must re-create the function.

If you delete an IAM resource that a Lambda function relies on, that Lambda function will no
longer work, and any APIs that rely on that function will no longer work. Deleting an IAM resource
cannot be undone. If you want to use the IAM resource again, you must re-create the resource.

29

https://www.getpostman.com/
https://curl.haxx.se/

Amazon API Gateway Developer Guide
Next Steps

To delete the Lambda functions

1. Signin to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. From the list of functions, choose GetHelloWorld, choose Actions and then choose Delete function.
When prompted, choose Delete again.

3. From the list of functions, choose GetHelloWithName, choose Actions, and then choose Delete
function. When prompted, choose Delete again.

To delete the associated IAM resources

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/iam/.
2. From Details, choose Roles.

3. Fromthelist of roles, choose APIGatewaylLambdaExecRole, choose Role Actions and then choose
Delete Role. When prompted, choose Yes, Delete.

4. From Details, choose Policies.

5. From the list of policies, choose APIGatewayLambdaExecPolicy, choose Policy Actions and then
choose Delete. When prompted, choose Delete.

You have now reached the end of this walkthrough.

Next Steps

You may want to proceed to the next walkthrough, which shows how to map header parameters from the
method request to the integration request and from the integration response to the method response. It
uses the HTTP proxy integration to connect your API to HTTP endpoints in the back end.

For more information about AP| Gateway, see What Is Amazon API Gateway? (p. 1). For more information
about REST, see RESTful Web Services: A Tutorial.

Create Lambda Invocation and Execution Roles

Before you create AWS Lambda functions, you must assign appropriate permissions for the functions to
execute the specified Amazon CloudWatch action (namely, writing to the CloudWatch Log) and for API
Gateway to invoke the Lambda functions. You set up the permissions using IAM roles and policies for
API Gateway to invoke your code and for Lambda to execute your code. For more information about
invocation and execution roles/policies in Lambda see Permission Model in the AWS Lambda Developer
Guide.

To create the Lambda invocation role and its policy
1. Open the IAM console at https://console.aws.amazon.com/iam/.

If you are using the IAM-managed AWSLambdaRole policy, skip to Step 8 to create an invocation
role.

2. In Details, choose Paolicies.
3. Do one of the following:

« If a list of policies appears, choose Create Policy.

« Ifthe Welcome to Managed Policies page appears, choose Get Started, and then choose Create
Policy.

4. For Create Your Own Policy, choose Select.

30

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/iam/
http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Appendix: Create Lambda Invocation and Execution
Roles

10.

11.

12.

13.

14.

For Policy Name, type a name for the policy; for example, APl Gat ewayLanbdal nvokePol i cy.
For Description, type Enabl es APl Gateway to call Lanbda functions.
For Policy Document, type the following, and then choose Create Policy.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Alow',
"Resource": [
W
I,
"Action": [
"| ambda: | nvokeFuncti on"
|
}
|
}

In Details, choose Roles.

Choose Create New Role.

For Role Name, type a name for the invocation role; for example, APl Gat ewayLanbdal nvokeRol e,
and then choose Next Step.

Under Select Role Type, with the option button next to AWS Service Roles already chosen, for
Amazon API Gateway, choose Select.

For Attach Policy, if the policy you want is in the list, choose it before choosing Next Step. Otherwise,
simply choose Next Step to proceed.

For Role ARN, make a note of the invocation role's Amazon Resource Name (ARN). You will need
this ARN in later steps when you specify the invocation role explicitly. The ARN should look similar
to this: arn: aws: i am : 123456789012: r ol e/ APl Gat ewayLanbdal nvokeRol e, where
123456789012 is your AWS account ID.

Choose Create Role.

The newly created IAM role will have the following trust policy.

"Version": "2012-10-17",
"Statement": [
{
"Sidt:o ",
"Effect": "All ow',
"Principal": {
"Service": "apigateway.amazonaws. cont'

I

"Action": "sts:AssuneRol e"

The preceding policy document enables API Gateway to assume roles taken up by and, hence, take
actions on behalf of your AWS account.

31

Amazon API Gateway Developer Guide
Appendix: Create Lambda Invocation and Execution
Roles

To create the Lambda execution role and its policies

No o r~ODdNPE

10.

11.

Open the IAM console at https://console.aws.amazon.com/iam/.

In Details, choose Policies.

Choose Create Policy.

For Create Your Own Policy, choose Select.

For Policy Name, type a name for the policy (for example, APl Gat ewayLanbdaExecPol i cy).
For Description, type Enabl es Lanbda to execute code.

For Policy Document, type the following, and then choose Create Policy.

{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"l ogs: *"
1.
"Effect": "Alow',
"Resource": "arn:aws:logs:*:*:*"
}
]
}
Note

The preceding policy document permits all log actions on Amazon CloudWatch Logs.
Typically, you would add other permissions required by your Lambda function to interact
with AWS services, such as uploading an object to an Amazon S3 bucket. In this walkthrough,
the Lambda functions you create are very simple; they do not interact with AWS services.

In Details, choose Roles.
Choose Create New Role.

In Role Name, type a name for the execution role (for example, APl Gat ewayLanbdaExecRol e),

and then choose Next Step.
Next to AWS Lambda, choose Select.

Note
IAM will attach the following resource-policy document in Trust Relationships:

{
"Version": "2012-10-17",
"Statement": [
{
"Sid':o"t,
"Effect": "Allow',
"Principal": {
"Service": "l anbda. amazonaws. conf
b

"Action": "sts:AssuneRol e"

This policy document enables Lambda to assume roles taken up by and, hence, to take
actions on behalf of your AWS account.

32

https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Map Request Parameters

Map Request Parameters for an APl Gateway
APl as an HTTP Proxy

In this walkthrough, you will learn how to map method request parameters to the corresponding integration
request parameters for an API Gateway API. As an illustration, we will create an example APl as an HTTP
proxy and use it to demonstrate how to use API Gateway to map a method request parameter to the
corresponding integration request parameter and to access the publicly accessible HTTP endpoint of:

http:// petstore-denp-endpoi nt. execut e-api.com petstore/pets

If you copy the above URL, paste it into the address bar of a web browser, and hit the Ent er or Ret urn
key, you will get the following JSON-formatted response body:

[
{
"idhro1,
"type":
"price":
b
{
"idhr 2,
"type":
"price":
b
{
"id": 3,
"type":
"price":
}
]

"dog",
249. 99

"cat",
124. 99

“fish",
0.99

The above endpoint can take two query parameters: t ype and page. For example, if you change the
above URL to the following:

http:// petstore-denp-endpoi nt. execut e-api . com pet st or e/ pet s?t ype=cat &age=2

you will receive the following JSON-formatted response payload, displaying page 2 of only the cats:

[

{
"id": 4,
"type":
"price":

}

{
"id": 5,
"type":
"price":

}

{
"id": 6,
"type":

"cat”,
999. 99

"cat"
249. 99

cat”,

33

Amazon API Gateway Developer Guide
Map Request Parameters

"price": 49.97
}
]

This endpoint also supports the use of an item ID, as expressed by a URL path parameter. For example,
if you browse to the following:

http:// petstore-denp-endpoi nt. execut e-api.conl petstore/pets/1

The following JSON-formatted information about the item with an ID of 1 is displayed:

{
"id': 1,
"type": "dog",
"price": 249.99
}

In addition to supporting GET operations, this endpoint also take POST requests with a payload. For
example, if you use Postman to send a POST method request to the following:

http:// petstore-denp-endpoi nt. execut e-api.conf petstore/pets

including the header Cont ent -t ype: appl i cati on/j son and the following request body:

{
"type": "dog",
"price": 249.99

}

you will receive following JSON object in the response body:

{
"pet": {
"type": "dog",
"price": 249.99
I
"message": "success"
}

We now expose these and other features by building an API Gateway APl as an HTTP proxy of this
PetStore website. The tasks includes the following:

* Create an API with a resource of
https://ny-api-id. execute-api.region-id. amazonaws. coni t est/ pet st or ewal kt hr ough/ pet s
acting as a proxy to the HTTP endpoint of
http:// petstore-denp-endpoi nt. execut e-api . contf petstore/pets.

¢ Enable the API to accept two method request query parameters of pet Type and pet sPage, map them
to the t ype and page query parameters of the integration request, respectively, and pass the request
to the HTTP endpoint.

¢ Support a path parameter of { pet | d} on the API's method request URL to specify an item ID, map it
tothe {i d} path parameter in the integration request URL, and send the request to the HTTP endpoint.

34

https://www.getpostman.com/

Amazon API Gateway Developer Guide
Prerequisites

¢ Enable the method request to accept the JISON payload of the format defined by the back end website,
pass the payload without modifications through the integration request to the back-end HTTP endpoint.

Topics

Prerequisites (p. 35)

Step 1: Create Resources (p. 35)

Step 2: Create GET and POST Methods (p. 36)
Step 3: Set Up and Test the Methods (p. 36)
Step 4: Deploy the API (p. 39)

Step 5: Test the API (p. 39)

Next Steps (p. 41)

Prerequisites

Before you begin this walkthrough, you should do the following:

1.

Complete the steps in Get Ready to Use API Gateway (p. 4), including assigning APl Gateway
access permission to the IAM user.

At a minimum, follow the steps in Build an API Gateway API Step by Step (p. 14) to create a new
API named MyDenpAPI in the API Gateway console.

Step 1. Create Resources

In this step, you will create three resources that will enable the API to interact with the HTTP endpoint.

To create the first resource

1.

In the Resources pane, select the resource root, as represented by a single forward slash (/), and
then choose Create Resource from the Actions drop-down menu.

For Resource Name, type pet st or ewal kt hr ough.

This maps to pet st or e in the HTTP endpoint.
For Resource Path, accept the default of /petstorewalkthrough, and then choose Create Resource.

This maps to / pet st or e in the HTTP endpoint.

To create the second resource

1.
2.

In the Resources pane, choose /petstorewalkthrough, and then choose Create Resource.
For Resource Name, type pet s.

This maps to pet s in the HTTP endpoint.

For Resource Path, accept the default of /petstorewalkthrough/pets, and then choose Create
Resource.

This maps to / pet st or e/ pet s in the HTTP endpoint.

To create the third resource

1.

In the Resources pane, choose /petstorewalkthrough/pets, and then choose Create Resource.

35

Amazon API Gateway Developer Guide
Step 2: Create GET and POST Methods

2. For Resource Name, type pet | d. This maps to the item ID in the HTTP endpoint.

3. For Resource Path, overwrite petid with { pet | d} . Be sure to use curly braces ({ }) around pet 1 d
so that /petstorewalkthrough/pets/{petld} is displayed, and then choose Create Resource.

This mapsto/ pet store/ pets/ny-itemidinthe HTTP endpoint.

Step 2: Create GET and POST Methods

In this step, you will create two GET methods and a POST method to interact with the HTTP endpoint.

To create the first GET method

1. Inthe Resources pane, choose /petstorewalkthrough/pets, and then choose Create Method from
the Actions drop-down menu.

2. For the HTTP method, choose GET, and then save your choice.

To create the second GET method

1. Inthe Resources pane, choose /petstorewalkthrough/pets/{petld}, and then choose Create
Method.

2. For the HTTP method, choose GET, and then save your choice.

To create the POST method

1. Inthe Resources pane, choose /petstorewalkthrough/pets again, and then choose Create Method.
2. For the HTTP method, choose POST, and then save your choice.

Step 3: Set Up and Test the Methods

In this step, you will integrate the methods with the back-end HTTP endpoints, map the GET method
request parameters to the corresponding integration request parameters, and then test the methods.

To set up and test the first GET method

This procedure demonstrates the following:

* Integrate the method request of GET / pet st or ewal kt hr ough/ pet s with the integration request of
CGET https://petstore-denp- endpoi nt. execut e-api . coni pet st ore/ pets.

« Map the method request query parameters of pet Type and pet sPage to the integration request query
string parameters of t ype and page, respectively.

1. Inthe Resources pane, in /petstorewalkthrough/pets, choose GET.
2. Inthe Setup pane, for HTTP method, choose GET.

3. For Endpoint URL, type
http:// petstore-denp-endpoi nt. execut e-api . con petstore/pets.

4, Choose Save.

5. Inthe Method Execution pane, choose Method Request, and then choose the arrow next to URL
Query String Parameters.

6. Choose Add query string.
7. For Name, type pet Type.

36

Amazon API Gateway Developer Guide
Step 3: Set Up and Test the Methods

10.

11.
12.

13.
14.
15.

16.
17.
18.
19.

20.
21.

22.

This specifies the pet Type query parameter in the API's method request.
Choose Create a new query string (the check mark icon).

Choose Add query string again.

For Name, type pet sPage.

This specifies the pet sPage query parameter in the API's method request.
Choose Create a new query string.

Choose Method Execution, choose Integration Request, and then choose the arrow next to URL
Query String Parameters.

Choose Add query string.
For Name, type t ype.
For Mapped from, type net hod. r equest . querystri ng. pet Type.

This maps the method request's pet Type query parameter to the integration request's t ype query
parameter.

Choose Create (the check mark icon).

Choose Add query string again.

For Name, type page.

For Mapped from, type net hod. r equest . querystri ng. pet sPage.

This maps the method request's pet sPage query parameter to the integration request's page query
parameter.

Choose Create.

Choose Method Execution, and in the Client box, choose TEST. In the Query Strings area, for
petType, type cat . For petsPage, type 2.

Choose Test. If successful, Response Body will display the following:

{
"id": 4
"type": "cat",
"price": 999.99
},
{
"id": b5,
"type": "cat",
"price": 249.99
}
{
"id": 6,
"type": "cat",
"price": 49.97
}

To set up and test the second GET method

This procedure demonstrates the following:

 Integrate the method request of GET / pet st or ewal kt hr ough/ pet s/ { pet | d} with the integration
request of GET htt ps:// pet st or e- denp- endpoi nt . execut e- api . conl pet st ore/ pets/{id}.

» Map the method request path parameters of pet | d to the integration request path parameters of i d.

37

Amazon API Gateway Developer Guide
Step 3: Set Up and Test the Methods

1. Inthe Resources list, in /petstorewalkthrough/pets/{petid}, choose GET.
2. Inthe Setup pane, for HTTP method, choose GET.

3. For Endpoint URL, type
http:// pet st ore-denp- endpoi nt. execut e-api . con petstore/pets/{id}.

4, Choose Save.

5. Inthe Method Execution pane, choose Integration Request, and then choose the arrow next to
URL Path Parameters.

6. Choose Add path.
7. For Name, typei d.
8. For Mapped from, type net hod. r equest . pat h. pet | d.

This maps the method request's path parameter of pet | d to the integration request's path parameter
ofid.

9. Choose Create.

10. Choose Method Execution, and in the Client box, choose TEST. In the Path area, for petld, type
1.

11. Choose Test. If successful, Response Body will display the following:

{
"idro1,
"type": "dog",
"price": 249.99
}

To set up and test the POST method
This procedure demonstrates the following:

« Integrate the method request of POST / pet st or ewal kt hr ough/ pet s with the integration request
of POST https:// petstore-denp- endpoi nt. execut e-api . cont pet st ore/ pets.

» Pass the method request JSON payload through to the integration request payload, without modification.

1. Inthe Resources pane, in /petstorewalkthrough/pets, choose POST.
2. Inthe Setup pane, for HTTP method, choose POST.

3. For Endpoint URL, type
http://petstore-denp-endpoi nt. execut e-api.com petstore/pets.

4. Choose Save.

5. Inthe Method Execution pane, in the Client box, choose TEST. Expand Request Body, and then
type the following:

{
"type": "dog",
"price": 249.99
}

6. Choose Test. If successful, Response Body will display the following:

"pet": {

38

Amazon API Gateway Developer Guide
Step 4: Deploy the API

"type": "dog",
"price": 249.99

},

"nmessage": "success"

}

Step 4: Deploy the API

In this step, you will deploy the API so that you can begin calling it outside of the API Gateway console.
To deploy the API

1. Inthe Resources pane, choose Deploy API.
2. For Deployment stage, choose t est .

Note
The input must be UTF-8 encoded (i.e., unlocalized) text.

3. For Deployment description, type Cal | i ng HTTP endpoi nt wal kt hr ough.
4. Choose Deploy.

Step 5: Test the API

In this step, you will go outside of the API Gateway console and use your API to access the HTTP endpoint.

1. Inthe Stage Editor pane, next to Invoke URL, copy the URL to the clipboard. It should look something
like this:

https://ny-api-id. execute-api.region-id.amazonaws. coni t est

2. Paste this URL in the address box of a new browser tab.
3. Append/ pet st or ewal kt hr ough/ pet s so that it looks like this:

https://nmy-api-id. execute-api.region-id.amazonaws. conl t est/ pet st or ewal k
t hr ough/ pet s

Browse to the URL. The following information should be displayed:

{
"id":o1,
"type": "dog",
"price": 249.99
h
{
idto 2,
"type": "cat",
"price": 124.99
h
{

39

Amazon API Gateway Developer Guide
Step 5: Test the API

"type": "fish",
"price": 0.99
}
]

After pet st or ewal kt hr ough/ pet s, type ?pet Type=cat &pet sPage=2 so that it looks like this:

https://ny-api-id.execute-api.region-id. amazonaws. com test/ petstorewal k
t hr ough/ pet s?pet Type=cat &pet sPage=2

Browse to the URL. The following information should be displayed:

{
"id": 4,
"type": "cat",
"price": 999.99
},
{
"id": 5,
"type": "cat",
"price": 249.99
},
{
"id": 6,
"type": "cat",
"price": 49.97
}

After pet st or ewal kt hr ough/ pet s, replace ?pet Type=cat &pet sPage=2 with/ 1 so that it looks
like this:

https://ny-api-id.execute-api.region-id. amazonaws. com t est/ petstorewal k
t hr ough/ pets/ 1

Browse to the URL. The following information should be displayed:

{
"idro1,
"type": "dog",
"price": 249.99
}

Using a web debugging proxy tool or the cURL command-line tool, send a POST method request to
the URL from the previous procedure. Be sure to append / pet st or ewal kt hr ough/ pet s so that
it looks like this:

https://ny-api-id. execute-api.region-id.amazonaws. conit est/ pet st orewal k
t hr ough/ pet s

Also, be sure to append the following header:

40

Amazon API Gateway Developer Guide
Next Steps

Cont ent - Type: application/json

And be sure to add the following code to the request body:

{
"type": "dog",
"price": 249.99

}

For example, if you use the cURL command-line tool, run a command similar to the following:

curl -H "Content-Type: application/json" -X POST -d "{\"type\":
\"dog\",\"price\": 249.99}" https://ny-api-id.execute-api.region-id.anazon
aws. coni t est/ pet st or ewal kt hr ough/ pet s

The following information should be returned in the response body:

{
"pet": {
"type": "dog",
"price": 249.99
b,
"nmessage": "success"
}

You have reached the end of this walkthrough.

Next Steps

You may want to begin the next walkthrough, which shows you how to use models and mappings in API
Gateway to transform the output of an API call from one data format to another. See Transform Response
Payload (p. 41).

Use Models and Mapping Templates to
Transform Response Payload

In this walkthrough, you will learn how to use models and mapping templates in API Gateway to transform
the output of an API call from one data schema to another. This walkthrough builds on the instructions
and concepts in the Call Lambda Functions Synchronously (p. 22) and the Map Request

Parameters (p. 33). If you have not yet completed those walkthroughs, we suggest you do them first.

In this walkthrough, you will use APl Gateway to get example data from a publicly-accessible HTTP
endpoint and from an AWS Lambda function you will create. Both the HTTP endpoint and the Lambda
function return the same example data:

41

Amazon API Gateway Developer Guide
Transform Response Payload

"type": "dog",
"price": 249.99
1
{
"id' 2,
"type": "cat",
"price": 124.99
1
{
"id": 3,
"type": "fish",
"price": 0.99
}

You will use models and mapping templates to transform this data to one or more output formats. In API
Gateway, a model defines the format, also known as the schema or shape, of some data. In API Gateway,
a mapping template is used to transform some data from one format to another. For more information,
see Set Up Request and Response Payload Mappings (p. 72).

The first model and mapping template is used to rename i d to nunber, t ype to cl ass, and pri ce to
sal esPri ce, as follows:

{

"nunber": 1,

"class": "dog",

"sal esPrice": 249.99
}
{

"nunber": 2,

"class": "cat",

"sal esPrice": 124.99
}
{

"nunber": 3,

"class": "fish",

"sal esPrice": 0.99
}

The second model and mapping template is used to combine i d and t ype into descri pti on, and to
rename pri ce to aski ngPri ce, as follows:

{
"description": "ltem1l is a dog.",
"aski ngPrice": 249.99

}

{
"description": "ltem2 is a cat.",
"aski ngPrice": 124.99

}

{

"description":
"aski ngPrice":

"Iltem3 is a fish.",
0.99

42

Amazon API Gateway Developer Guide
Prerequisites

The third model and mapping template is used to combine i d, t ype, and pri ce intoasetof | i sti ngs,
as follows:

{
"listings": [
"Item1l is a dog. The asking price is 249.99.",
"Item2 is a cat. The asking price is 124.99.",
"Item3 is a fish. The asking price is 0.99."
]
}
Topics

¢ Prerequisites (p. 43)

e Step 1: Create Models (p. 43)

e Step 2: Create Resources (p. 45)

¢ Step 3: Create GET Methods (p. 46)

e Step 4: Create a Lambda Function (p. 47)

¢ Step 5: Set Up and Test the Methods (p. 48)
e Step 6: Deploy the API (p. 52)

¢ Step 7:Test the API (p. 52)

e Step 8: Clean Up (p. 54)

¢ Next Steps (p. 54)

Prerequisites

Before you begin this walkthrough, you should have already done the following:

1. Complete the steps in Get Ready to Use API Gateway (p. 4), including assigning APl Gateway
access permission to an IAM user.

2. Open the API Gateway console and create a new APl named MyDenoAPI . For more information,
see Build an API Gateway API Step by Step (p. 14).

3. Create two resources: pet st or ewal kt hr ough and pet s. For more information, see Create
Resources (p. 35) in the Map Request Parameters (p. 33).

4. To use the Lambda portions of this walkthrough, make sure the IAM user has full access to work
with Lambda. You can use the IAM console to attach the AWSLambdaFullAccess AWS managed
policy to the IAM user.

5. Make sure the IAM user has access to create policies and roles in IAM. If you have not done so
already, create a Lambda execution role named API Gat ewayLanbdaExecRol e in IAM. For more
information, see Create Lambda Functions (p. 23) in the Call Lambda Functions Synchronously (p. 22).

Step 1: Create Models

In this step, you will create four models. The first three models represent the data output formats for use
with the HTTP endpoint and the Lambda function. The last model represents the data input schema for
use with the Lambda function.

43

Amazon API Gateway Developer Guide
Step 1: Create Models

To create the first output model

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
If MyDemoAPI is displayed, choose Models.

Choose Create.

For Model name, type Pet sModel NoFl at t en.

For Content type, type appl i cati on/j son.

For Model description, type Changes id to nunber, type to class, and price to
sal esPri ce.

7. For Model schema, type the following JSON Schema-compatible definition:

IR A e

{
"$schemn": "http://json-schema. org/draft-04/schema#",
"title": "PetsMdel NoFl atten",
"type": "array",
"items": {
"type": "object",
"properties": {
"nunber": { "type": "integer" },
"class": { "type": "string" },
"sal esPrice": { "type": "nunber" }
}
}
}

8. Choose Create model.

To create the second output model

Choose Create.
For Model name, type Pet shbdel Fl att enSore.
For Content type, type appl i cati on/j son.

For Model description, type Conbi nes id and type into description, and changes
price to askingPrice.

PN E

5. For Model schema, type the following:

{
"$schema": "http://json-schema. org/draft-04/schema#",
"title": "PetsModel Fl attenSone",
"type": "array",
"items": {
"type": "object",
"properties": {
"description": { "type": "string" },
"askingPrice": { "type": "nunber" }
}
}
}

6. Choose Create model.

44

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Step 2: Create Resources

To create the third output model

Choose Create.

For Model name, type Pet shodel Fl att enAl | .

For Content type, type appl i cati on/j son.

For Model description, type Conbi nes id, type, and price into a set of l|istings.
For Model schema, type the following:

AN

"$schema": "http://json-schema. org/draft-04/schema#",
"title": "PetsModel FlattenAll",
"type": "object",
"properties": {
"listings": {
"type": "array",
"items": {
"type": "string"
}
}
}
}

6. Choose Create model.

To create the input model

Choose Create.

For Model name, type Pet sLanbdaModel .

For Content type, type appl i cati on/j son.

For Model description, type Get Pet sl nf o nodel .
For Model schema, type the following:

A

"$schema": "http://json-schema. org/draft-04/schema#",
"title": "PetsLanbdaMWodel ",
"type": "array",
"items": {
"type": "object"”,
"properties": {
"id"': { "type": "integer" },
"type": { "type": "string" },
"price": { "type": "nunber" }
}
}
}

6. Choose Create model.

Step 2: Create Resources

In this step, you will create four resources. The first three resources will enable you to get the example
data from the HTTP endpoint in the three output formats. The last resource will enable you to get the

45

Amazon API Gateway Developer Guide
Step 3: Create GET Methods

example data from the Lambda function in the output schema that combines i d and t ype into
descri pti on and renames pri ce to aski ngPri ce.

To create the first resource

In the links list, choose Resources.
In the Resources pane, choose /petstorewalkthrough, and then choose Create Resource.
For Resource Name, type NoFl at t en.

For Resource Path, accept the default of /petstorewalkthrough/noflatten, and then choose Create
Resource.

PwNPE

To create the second resource

1. Inthe Resources pane, choose /petstorewalkthrough again, and then choose Create Resource.
2. For Resource Name, type Fl at t enSone.
3. For Resource Path, accept the default of /petstorewalkthrough/flattensome, and then choose

Create Resource.
To create the third resource

1. Inthe Resources pane, choose /petstorewalkthrough again, and then choose Create Resource.
For Resource Name, type Fl att enAl | .
3. For Resource Path, accept the default of /petstorewalkthrough/flattenall, and then choose Create

Resource.
To create the fourth resource

1. Inthe Resources pane, choose /petstorewalkthrough again, and then choose Create Resource.
For Resource Name, type LanbdaFl at t enSore.

3. For Resource Path, accept the default of /petstorewalkthrough/lambdaflattensome, and then
choose Create Resource.

Step 3: Create GET Methods

In this step, you will create a GET method for each of the resources you created in the previous step.
To create the first GET method

1. Inthe Resources list, choose /petstorewalkthrough/flattenall, and then choose Create Method.
2. For the HTTP method, choose GET, and then save your choice.

To create the second GET method

1. Inthe Resources list, choose /petstorewalkthrough/lambdaflattensome, and then choose Create
Method.

2. For the HTTP method, choose GET, and then save your choice.

To create the third GET method

1. Inthe Resources list, choose /petstorewalkthrough/flattensome, and then choose Create Method.

46

Amazon API Gateway Developer Guide
Step 4: Create a Lambda Function

2.

For the HTTP method, choose GET, and then save your choice.

To create the fourth GET method

1.

2.

In the Resources list, choose /petstorewalkthrough/noflatten, and then choose Actions, Create
Method.

For the HTTP method, choose GET, and then save your choice.

Step 4: Create a Lambda Function

In this step, you will create a Lambda function that returns the sample data.

To create the Lambda function

1.
2.

o0 ko

10.
11.
12.
13.

Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.
Do one of the following:

 If a welcome page appears, choose Get Started Now.
 If the Lambda: Function list page appears, choose Create a Lambda function.

For Name, type Get Pet sl nf o.

For Description, type Get s i nformati on about pets.
For Code template, choose None.

Type the following code:

consol e. | og(' Loadi ng event');

exports. handl er = function(event, context) {
cont ext . done(nul I,
[{"id": 1, "type": "dog", "price": 249.99},
{"id": 2, "type": "cat", "price": 124.99},
{"id": 3, "type": "fish", "price": 0.99}]); // SUCCESS with nessage
b

Tip
In the preceding code, written in Node.js, consol e. | og writes information to an Amazon
CloudWatch log. event contains the event's data. cont ext contains callback context.
Lambda uses cont ext . done to perform follow-up actions. For more information about how
to write Lambda function code, see the "Programming Model" section in AWS Lambda: How
it Works and the sample walkthroughs in the AWS Lambda Developer Guide.

For Handler name, leave the default of i ndex. handl er.

For Role, choose the Lambda execution role, APIGatewaylLambdaExecRole, you created in the
Call Lambda Functions Synchronously (p. 22).

Choose Create Lambda function.

In the list of functions, choose GetPetsInfo to show the function's details.

Make a note of the AWS region where you created this function. You will need it later.
In the pop-up list, choose Edit or test function.

For Sample event, replace any code that appears with the following:

47

https://console.aws.amazon.com/lambda/
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html

Amazon API Gateway Developer Guide
Step 5: Set Up and Test the Methods

14.

15.

Tip

The empty curly braces mean there are no input values for this Lambda function. This
function simply returns the JSON object containing the pets information, so those key/value
pairs are not required here.

Choose Invoke. Execution result shows

[{"id":1"type" "dog', "price": 249.99},{"id": 2 "type": "ca", "price": 124. 98}, {"id": 3 "type": "fish',"price": 0. 98}],
which is also written to the CloudWatch logs.

Choose Go to function list.

Step 5: Set Up and Test the Methods

In this step, you will specify the URL and data output schema for the three GET methods associated with
the HTTP endpoint, testing each method as you proceed. You will also specify the Lambda function name,
data input schema, and data output schema for the GET method associated with the Lambda function.
You will then test this method.

To specify settings for the first GET method and then test it

1.
2.
3.

10.
11.

In the Resources pane, in /petstorewalkthrough/flattenall, choose GET.
For HTTP Method, choose GET.

In the Setup pane, for Endpoint URL, type
http:// petstore-denp-endpoi nt. execut e-api.com petstore/pets.

Choose Save.
In the Method Execution pane, choose Method Response, and then choose the arrow next to 200.

In the Response Models for 200 area, for application/json, choose Edit. For Models, choose
PetsModelFlattenAll, and then choose Save.

Choose Method Execution, choose Integration Response, and then choose the arrow next to 200.

In the Template Mappings area, for Content type, choose application/json, and then choose Edit.
Clear Output passthrough. For Generate template from model, choose PetsModelFlattenAll.
This displays the PetsModelFlattenAll model as a starting point.

Modify the code as follows:

#set ($i nput Root = $i nput.path('$'))
{
"listings" : [
#f or each($el emin $i nput Root)
"ltem nunber $elemid is a $elemtype. The asking price is
$el em pri ce. "#i f ($f or each. hasNext), #end

#end

]
}

Choose Update.

Choose Method Execution, and in the Client box, choose TEST, and then choose Test. If successful,
Response Body will display the following:

48

Amazon API Gateway Developer Guide
Step 5: Set Up and Test the Methods

{
"listings" : [
"I'temnunber 1 is a dog. The asking price is 249.99.",
"Itemnunber 2 is a cat. The asking price is 124.99.",
"Itemnunber 3 is a fish. The asking price is 0.99."
]
}

To specify settings for the second GET method and then test it

o s

© 0N

11.
12.

13.
14.

15.

In the Resources pane, in /petstorewalkthrough/lambdaflattensome, choose GET.
In the Setup pane, for Execution Type, choose Lambda Function.

For Lambda Region, choose the region identifier that corresponds to the region in which you created
the Get Pet sl| nf o Lambda function. For example, if you created this Lambda in the US East (N.
Virginia) region, you would choose us- east - 1. For a list of region names and identifiers, see AWS
Lambda in the Amazon Web Services General Reference.

For Lambda Function, type Get Pet sl nf o, and then choose Save.

When you are prompted to give API Gateway permission to invoke your Lambda function, choose
Ok.

In the Method Execution pane, choose Integration Request.
Next to Templates, choose Add.
For Content-Type, type application/json.

Leave Input passthrough cleared. For Generate template from model, choose PetsLambdaModel.
This displays the PetsLambdaModel model as a starting point.

. In the Input mapping area, modify the code as follows, and then choose Update:

#set ($i nput Root = $input.path('$'))

[
#f or each($el em i n $i nput Root)

{
"id" : $elemid,
"type" : "$elemtype",
"price" : $elemprice

} #i f ($f oreach. hasNext), #end

#end
]

Choose Method Execution, choose Method Response, and then choose the arrow next to 200.

In the Response Models for 200 area, for application/json, choose Edit. For Models, choose
PetsModelFlattenSome, and then choose Save.

Choose Method Execution, choose Integration Response, and then choose the arrow next to 200.

In the Template Mappings area, for Content type, choose application/json, and then choose Edit.
Clear Output passthrough. For Generate template from model, choose PetsModelFlattenSome.
This displays the PetsModelFlattenSome model as a starting point.

Modify the code as follows, and then choose Update:

#set ($i nput Root = $i nput.path('$'))

[
#f oreach($el emin $i nput Root)

49

http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

Amazon API Gateway Developer Guide
Step 5: Set Up and Test the Methods

{

"description" : "ltem$elemid is a $elemtype."”,
"askingPrice" : $elemprice
} #i f ($f oreach. hasNext), #end

#end
]

16. Choose Method Execution, and in the Client box, choose TEST, and then choose Test. If successful,
Response Body will display the following:

[
{
"description" : "ltem1 is a dog.",
"askingPrice" : 249.99
},
{
"description" : "ltem2 is a cat.",
"askingPrice" : 124.99
},
{
"description" : "ltem3 is a fish.",
"askingPrice" : 0.99
}
|

To specify settings for the third GET method and then test it

1. Inthe Resources pane, in /petstorewalkthrough/flattensome, choose GET.
2. Inthe Setup pane, for HTTP method, choose GET.

3. For Endpoint URL, type
http:// petstore-denp-endpoi nt. execut e-api . com petstore/pets.

4. Choose Save.
5. Inthe Method Execution pane, choose Method Response, and then choose the arrow next to 200.

6. Inthe Response Models for 200 area, for application/json, choose Edit. For Models, choose
PetsModelFlattenSome, and then choose Save.

7. Choose Method Execution, choose Integration Response, and then choose the arrow next to 200.

8. Inthe Template Mappings area, for Content type, choose application/json, and then choose Edit.
Clear Output passthrough. For Generate template from model, choose PetsModelFlattenSome.
This displays the PetsModelFlattenSome model as a starting point.

9. Modify the code as follows:

#set ($i nput Root = $input.path('$'))
[

#f oreach($el emin $i nput Root)

{

"description': "ltem$elemid is a $elemtype.”,
"aski ngPrice": $elemprice
}#i f ($f oreach. hasNext), #end

#end
|

50

Amazon API Gateway Developer Guide
Step 5: Set Up and Test the Methods

10.
11.

Choose Update.

Choose Method Execution, and in the Client box, choose TEST, and then choose Test. If successful,
Response Body will display the following:

{
"description": "ltem1 is a dog.",
"askingPrice": 249.99

b

{
"description": "ltem2 is a cat.",
"askingPrice": 124.99

b

{
"description": "ltem3 is a fish.",
"askingPrice": 0.99

}

To specify settings for the fourth GET method and then test it

gk, wdPeE

N o

10.

11.

12.
13.

Return to the APl Gateway console.

If MyDemoAPI is displayed, choose Resources.

In the Resources pane, in /petstorewalkthrough/noflatten, choose GET.
In the Setup pane, for HTTP method, choose GET.

For Endpoint URL, type
http:// petstore-denp-endpoi nt. execut e-api.com petstore/pets.

Choose Save.
In the Method Execution pane, choose Method Response, and then expand 200.

In the Response Models for 200 area, for application/json, choose Edit. For Models, choose
PetsModelNoFlatten, and then choose Save.

Choose Method Execution, choose Integration Response, and then choose the arrow next to 200.

In the Template Mappings area, for Content type, choose application/json, and then choose Edit.
Clear Output passthrough. For Generate template from model, choose PetsModelNoFlatten.
This displays the PetsModelNoFlatten model as a starting point.

Modify the code as follows:

#set ($i nput Root = $i nput.path('$'))
[
#f or each($el emin $i nput Root)
{
"nunber": $elemid,
"class": "$elemtype",
"salesPrice": $elemprice
}#i f ($f or each. hasNext), #end

#end
|

Choose Update.

Choose Method Execution, and in the Client box, choose TEST, and then choose Test. If successful,
Response Body will display the following:

51

Amazon API Gateway Developer Guide
Step 6: Deploy the API

[
{
"nunber": 1,
"class": "dog",
"sal esPrice": 249.99
b
{
"nunber": 2,
"class": "cat",
"sal esPrice": 124.99
b
{
"nunber": 3,
"class": "fish",
"sal esPrice": 0.99
}
]

Step 6: Deploy the API

In this step, you will deploy the API so that you can begin calling it outside of the API Gateway console.

To deploy the API

In the Resources pane, choose Deploy API.

For Deployment stage, choose t est .

For Deployment description, type Usi ng nodel s and nmappi ng tenpl at es wal kt hr ough.
Choose Deploy.

PopdpPE

Step 7:Test the API

In this step, you will go outside of the API Gateway console to interact with both the HTTP endpoint and
the Lambda function.

1. Inthe Stage Editor pane, next to Invoke URL, copy the URL to the clipboard. It should look something
like this:

https://nmy-api-id. execute-api.region-id.amazonaws. coni t est

2. Paste this URL in the address box of a new browser tab.
3. Append/ pet st or ewal kt hr ough/ nof | att en so that it looks like this:

https://ny-api-id.execute-api.region-id. amazonaws. com test/ petstorewal k
t hrough/ nof | atten

Browse to the URL. The following information should be displayed:

"nunber": 1,

52

Amazon API Gateway Developer Guide
Step 7: Test the API

"class": "dog",

"sal esPrice": 249.99
b
{

"nunber": 2,

"class": "cat",

"sal esPrice": 124.99
b
{

"nunber": 3,

"class": "fish",

"sal esPrice": 0.99
}

After pet st or ewal kt hr ough/ , replace nof | att en with f | at t ensone.
Browse to the URL. The following information should be displayed:

{
"description": "ltem1 is a dog.",
"aski ngPrice": 249.99

},

{
"description": "ltem2 is a cat.",
"askingPrice": 124.99

},

{
"description": "ltem3 is a fish.",
"askingPrice": 0.99

}

After pet st or ewal kt hr ough/ , replace f| att ensonme withfl attenal | .
Browse to the URL. The following information should be displayed:

{
"listings" : [
"ltemnunber 1 is a dog. The asking price is 249.99.",
"ltemnunber 2 is a cat. The asking price is 124.99.",
"Itemnunber 3 is a fish. The asking price is 0.99."
]
}

After pet st or ewal kt hr ough/ , replace f | at t enal | with | anbdaf | at t ensone.
Browse to the URL. The following information should be displayed:

{
"descri ption" "Item1l is a dog.",
"aski ngPrice" 249. 99

},

{

53

Amazon API Gateway Developer Guide
Step 8: Clean Up

"description" : "ltem2 is a cat.",
"askingPrice" : 124.99

b

{
"description" : "ltem3 is a fish.",
"askingPrice" : 0.99

}

Step 8: Clean Up

If you no longer need the Lambda function you created for this walkthrough, you can delete it now. You
can also delete the accompanying IAM resources.

Caution

If you delete a Lambda function your APIs rely on, those APIs will no longer work. Deleting a
Lambda function cannot be undone. If you want to use the Lambda function again, you must
re-create the function.

If you delete an IAM resource a Lambda function relies on, the Lambda function and any APIs
that rely on it will no longer work. Deleting an IAM resource cannot be undone. If you want to
use the IAM resource again, you must re-create the resource. If you plan to continue
experimenting with the resources you created for this and the other walkthroughs, do not delete
the Lambda invocation role or the Lambda execution role.

API Gateway does not currently support the deactivation or deletion of APIs that no longer work.

To delete the Lambda function

1.

Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

On the Lambda: Function list page, in the list of functions, choose the button next to GetPetsInfo,
and then choose Actions, Delete. When prompted, choose Delete again.

To delete the associated IAM resources

Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/iam/.
In the Details area, choose Roles.

Select APIGatewaylLambdaExecRole, and then choose Role Actions, Delete Role. When prompted,
choose Yes, Delete.

In the Details area, choose Policies.

Select APIGatewaylLambdaExecPolicy, and then choose Policy Actions, Delete. When prompted,
choose Delete.

You have now reached the end of this walkthrough.

Next Steps

You may want to begin the next walkthrough, which shows you how to create an APl Gateway API to
access an AWS service. See Create an AWS Service Proxy (p. 55).

54

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Create an AWS Service Proxy

Create an AWS Service Proxy for Amazon SNS

In this walkthrough, you will learn how to use APl Gateway to connect a custom API to an AWS service
through what we call an AWS service proxy. This enables you to call an AWS service directly instead of
through an AWS Lambda function. An AWS service proxy can call only one action in an AWS service,
and that action typically does not change. If you want more flexibility, you should call a Lambda function
instead.

This walkthrough builds on the instructions and concepts in the Call Lambda Functions

Synchronously (p. 22), which shows you how to use API Gateway to create a custom API, connect it to
a set of AWS Lambda functions, and then call the Lambda functions from your API. If you have not yet
completed that walkthrough, we suggest that you do it first.

Topics
* Prerequisites (p. 55)
¢ Step 1: Create the Resource (p. 55)
e Step 2: Create the GET Method (p. 56)
¢ Step 3: Create the AWS Service Proxy Execution Role (p. 56)
« Step 4: Specify Method Settings and Test the Method (p. 58)
¢ Step 5: Deploy the API (p. 58)
e Step 6: Test the API (p. 59)
¢ Step 7: Clean Up (p. 59)

Prerequisites

Before you begin this walkthrough, you should have already done the following:

1. Complete the steps in Get Ready to Use API Gateway (p. 4).

2. Make sure the IAM user has access to create policies and roles in IAM. You will need to create an
IAM policy and role in this walkthrough.

3. Ata minimum, open the APl Gateway console and create a new APl named MyDenpAPI . For more
information, see Build an API Gateway API Step by Step (p. 14).

4. Deploy the API at least once to a stage named t est . For more information, see Deploy the API (p. 28)
in the Call Lambda Functions Synchronously (p. 22).

5. Complete the rest of the steps in the Call Lambda Functions Synchronously (p. 22).

6. Create at least one topic in Amazon Simple Notification Service (Amazon SNS). You will use the
deployed API to get a list of topics in Amazon SNS that are associated with your AWS account. To
learn how to create a topic in Amazon SNS, see Create a Topic. (You do not need to copy the topic
ARN mentioned in step 5.)

Step 1: Create the Resource

In this step, you will create a resource that will enable the AWS service proxy to interact with the AWS
service.

To create the resource

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.
2. If MyDemoAPI is displayed, choose Resources.

55

http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Step 2: Create the GET Method

3. Inthe Resources pane, choose the resource root, represented by a single forward slash (/), and
then choose Create Resource.

4. For Resource Name, type MyDenmoAWSPr oxy, and then choose Create Resource.

Step 2: Create the GET Method

In this step, you will create a GET method that will enable the AWS service proxy to interact with the AWS
service.

To create the GET method

1. Inthe Resources pane, choose /mydemoawsproxy, and then choose Create Method.
2. For the HTTP method, choose GET, and then save your choice.

Step 3: Create the AWS Service Proxy Execution
Role

In this step, you will create an IAM role that your AWS service proxy will use to interact with the AWS
service. We call this IAM role an AWS service proxy execution role. Without this role, APl Gateway cannot
interact with the AWS service. In later steps, you will specify this role in the settings for the GET method
you just created.

To create the AWS service proxy execution role and its policy

1. Signin to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Choose Policies.
3. Do one of the following:

« Ifthe Welcome to Managed Policies page appears, choose Get Started, and then choose Create
Policy.
« If a list of policies appears, choose Create Policy.

4. Next to Create Your Own Policy, choose Select.
5. For Policy Name, type a name for the policy (for example, APl Gat eway AWSPr oxyExecPol i cy).
6. For Description, type Enabl es APl Gateway to call AWS services.
7. For Policy Document, type the following, and then choose Create Policy.
{
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Alow',
"Resource": [
W
1.
"Action": [
"sns: Li st Topi cs"
|
}

56

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Step 3: Create the AWS Service Proxy Execution Role

Note
This policy document allows the caller to get a list of the Amazon SNS topics for the AWS
account.

8. Choose Roles.

9. Choose Create New Role.

10. For Role Name, type a name for the execution role (for example, APl Gat eway AWEPr oxyExecRol e),

and then choose Next Step.
11. Nextto Amazon EC2, choose Select.

Note

You choose Select here because you need to choose a standard AWS service role statement
before you can continue. There is currently no option to choose a standard API Gateway
service role statement. Later in this step, you will modify the standard Amazon EC2 service
role statement for use with APl Gateway.

12. Inthe list of policies, select APIGatewayAWSProxyExecPolicy, and then choose Next Step.

13. For Role ARN, make a note of the Amazon Resource Name (ARN) for the execution role. You will
need it later. The ARN should look similar to:
arn: aws: i am : 123456789012: r ol e/ APl Gat eway AWSPr oxyExecRol e, where 123456789012
is your AWS account ID.

14. Choose Create Role.

The invocation role IAM just created enables Amazon EC2 to get a list of the Amazon SNS topics
for the AWS account. You will change this role to enable API Gateway to get a list of the Amazon
SNS topics for the AWS account instead.

15. Inthe list of roles, select APIGatewayAWSProxyExecRole.
16. Inthe Trust Relationships area, choose Edit Trust Relationship.

17. For Policy Document, replace ec2. anazonaws. comwith api gat eway. amazonaws. comso that
the access control policy document now looks as follows:

"Version": "2012-10-17",
"Statement": [
{
"Sidv:o ",
"Effect": "Alow',
"Principal": {
"Service": "api gateway. amazonaws. cont'

}

"Action": "sts:AssuneRol e"

This policy document enables API Gateway to take actions on behalf of your AWS account.
18. Choose Update Trust Policy.

57

Amazon API Gateway Developer Guide
Step 4: Specify Method Settings and Test the Method

Step 4: Specify Method Settings and Test the
Method

In this step, you will specify the settings for the GET method so that it can interact with an AWS service
through an AWS service proxy. You will then test the method.

To specify settings for the GET method and then test it

1.

In the API Gateway console, in the Resources pane for the APl named MyDenpAPI , in
/mydemoawsproxy, choose GET.

In the Setup pane, for Integration type, choose Show advanced, and then choose AWS Service
Proxy.

For AWS Region, choose the name of the AWS region where you want to get the Amazon SNS
topics.

For AWS Service, choose SNS.

For HTTP method, choose GET.

For Action, type Li st Topi cs.

For Execution Role, type the ARN for the execution role.

Leave Path Override blank.

Choose Save.

. Inthe Method Execution pane, in the Client box, choose TEST, and then choose Test. If successful,

Response Body will display a response similar to the following:

{
"Li st Topi csResponse": {
"Li st Topi csResul t": {
"Next Token": null,
"Topics": [
{
"Topi cArn": "arn:aws:sns: us-east-1: 80398EXAMPLE: MySNSTopi c- 1"
H
{
"Topi cArn": "arn:aws:sns: us-east-1: 80398EXAMPLE: MySNSTopi c- 2"
H
{
"Topi cArn": "arn:aws:sns: us-east-1: 80398EXAMPLE: MySNSTopi c- N'
}
]
b
"ResponseMet adat a": {
"Request | d": "abclde23-45fa-6789-b0cl- d2e345f a6b78"
}
}
}

Step 5: Deploy the API

In this step, you will deploy the API so that you can begin calling it from outside of the API Gateway
console.

58

Amazon API Gateway Developer Guide
Step 6: Test the API

To deploy the API

In the Resources pane, choose Deploy API.

For Deployment stage, choose t est .

For Deployment description, type Cal | i ng AWS servi ce proxy wal kt hrough.
Choose Deploy.

AwdhPE

Step 6: Test the API

In this step, you will go outside of the APl Gateway console and use your AWS service proxy to interact
with the Amazon SNS service.

1. Inthe Stage Editor pane, next to Invoke URL, copy the URL to the clipboard. It should look like
this:

https://ny-api-id.execute-api.region-id. amazonaws. com't est

2. Paste the URL into the address box of a new browser tab.
3. Append/ nmydenpawspr oxy so that it looks like this:

https://nmy-api-id. execute-api.region-id.amzonaws. com t est/ mydenoawspr oxy

Browse to the URL. Information similar to the following should be displayed:

{" Li st Topi csResponse": {"Li st Topi csResul t": {" Next Token": nul |, " Topi cs": [{" Topi
cArn": "arn:aws:sns: us-east-1: 80398EXAMPLE: MySNSTopi c-1"}, {" Topi cCArn":
"arn:aws: sns: us- east - 1: 80398EXAMPLE: MySNSTopi c-2"},...{" Topi cArn":

"arn: aws: sns: us- east - 1: 80398EXAMPLE: MySNSTopi c- N}]}, "ResponseMet adata": {"Re
quest | d": "abclde23- 45f a- 6789- bOc1l- d2e345f a6b78} }}

Step 7: Clean Up

You can delete the IAM resources the AWS service proxy needs to work.

Caution

If you delete an IAM resource an AWS service proxy relies on, that AWS service proxy and any
APIs that rely on it will no longer work. Deleting an 1AM resource cannot be undone. If you want
to use the IAM resource again, you must re-create it.

To delete the associated IAM resources

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/iam/.
2. Inthe Details area, click Roles.

3. Select APIGatewayAWSProxyExecRole, and then choose Role Actions, Delete Role. When
prompted, choose Yes, Delete.

4. Inthe Details area, choose Policies.

5. Select APIGatewayAWSProxyExecPolicy, and then choose Policy Actions, Delete. When
prompted, choose Delete.

59

https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Step 7: Clean Up

You have reached the end of this walkthrough. For more detailed discussions about creating APl as an
AWS service proxy, see Create an APl as an Amazon S3 Proxy (p. 125), Create an APl as a Lambda
Proxy (p. 143) or Create an APl as an Amazon Kinesis Proxy (p. 158).

60

Amazon API Gateway Developer Guide
Create an APl in API Gateway

Creating an APl in Amazon API
Gateway

Topics
e Create an API in API Gateway (p. 61)
¢ Set up API Gateway API Method and Integration (p. 62)
¢ Set Up Amazon API Gateway API Request and Response Payload Mappings (p. 72)
« Amazon API Gateway API Request and Response Parameter-Mapping Reference (p. 98)
¢ API Gateway APl Request and Response Payload-Mapping Template Reference (p. 101)
¢ Import and Export API Gateway API with Swagger Definition Files (p. 109)
¢ Create an API as an Amazon S3 Proxy (p. 125)
¢ Create an API Gateway APl as an AWS Lambda Proxy (p. 143)
¢ Create an API Gateway APl as an Amazon Kinesis Proxy (p. 158)

Create an APl in API Gateway

In Amazon API Gateway you can create an API using the API Gateway console, AWS CLI, the API
Gateway control service REST API, and platform-specific or language-specific SDKs.

Topics
¢ Create an API Using the API Gateway Console (p. 61)
¢ Create an API Using the API Gateway Control Service API (p. 62)
¢ Create an API Using the AWS SDK for API Gateway (p. 62)
¢ Create an API Using the AWS CLI (p. 62)

Create an API Using the API Gateway Console

To create an API Gateway API using the API Gateway console, see Build an APl Gateway API Step by
Step (p. 14).

You can learn how to create an API by following an example. For more information, see Build and Test
an API Gateway API from an Example (p. 6).

61

Amazon API Gateway Developer Guide
Create an API Using the API Gateway Control Service
API

Alternatively, you can create an API by using the API Gateway Import API (p. 110) feature to upload an
external API definition, such as one expressed in the Swagger 2.0 with the API Gateway Extensions to
Swagger (p. 115). The example provided in Build and Test an API Gateway API from an Example (p. 6)
uses the Import API feature.

Create an API Using the API Gateway Control
Service API

For more information about the APl Gateway Control Service API, see Amazon AP| Gateway REST API
Reference.

Create an APl Using the AWS SDK for APl Gateway

For more information using a AWS SDK, see AWS SDKs.

Create an API Using the AWS CLI

For an example of creating an API Gateway AP| Using AWS CLlI, see Create an API Gateway API for
Lambda tutorial.

Set up APl Gateway API Method and Integration
Before Configuring Methods

¢ You must have the method available in APl Gateway. Follow the instructions in Build an API Gateway
API Step by Step (p. 14).

« If you want the method to communicate with a Lambda function, you must have already created the
Lambda invocation role and Lambda execution role in IAM and created the Lambda function with which
your method will communicate in AWS Lambda. To create the roles and function, use the instructions
in Step 4: Create Lambda Functions (p. 23) of the Call Lambda Functions Synchronously (p. 22).

 If you want the method to communicate with an HTTP proxy, you must have already created and have
access to the HTTP endpoint URL with which your method will communicate.

After Setting Up Methods and Integration

The next step is to deploy the API to make it open for access. For instructions, see Deploying an
API (p. 221).

Topics
¢ Configure How API Gateway Integrates the Method with a Back End (p. 63)
¢ Configure How an API User Calls an API Method in Amazon API Gateway (p. 65)
¢ Configure How Data Is Mapped between a Method and its Integration in Amazon API Gateway (p. 67)
¢ Configure Mock Integration for a Method in APl Gateway (p. 69)

62

http://swagger.io/specification/
http://docs.aws.amazon.com/apigateway/api-reference/
http://docs.aws.amazon.com/apigateway/api-reference/
https://aws.amazon.com/tools/
http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https-example-configure-event-source.html
http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https-example-configure-event-source.html

Amazon API Gateway Developer Guide
Configure How a Method Is Integrated with a Back End

Configure How API Gateway Integrates the Method
with a Back End

The settings of an APl method defines the method and describes its behaviors. To create a method, you
must specify a resource, including the root (“/"), on which the method is exposed, a method type (GET,
POST, etc.), and how it will be integrated with the targeted back end. The method request and response
specify the contract with the calling app, stipulating which parameters the API can receive and what the
response looks like. The integration request and response specifies how API Gateway interacts with their
back end: enforcing secure communications over HTTPS with the back end and translating data formats
between the client and back end. The following topics describe how to use the APl Gateway console to
specify a method settings.

1.
2.

In the Resources pane, choose the method.

In the Method Execution pane, choose Integration Request. For Integration type, choose one of
the following:

Choose Lambda Function if your API will be communicating with a Lambda function.
Choose HTTP Proxy if your APl will be communicating with an HTTP endpoint.

Choose Show Advanced, AWS Service Proxy if your APl will be communicating directly with an
AWS service.

Choose Mock Integration if your APl is not yet final, but you want to generate API responses from
API Gateway anyway to unblock dependent teams for testing. If you choose this option, skip the
rest of the instructions in this topic and see Configure Mock Integration for a Method (p. 69).

If you chose Lambda Function, do the following:

1.

For Lambda Region, choose the region identifier that corresponds to the region where you
created the Lambda function. For example, if you created the Lambda function in the US East
(N. Virginia) region, you would choose us- east - 1. For a list of region names and identifiers,
see AWS Lambda in the Amazon Web Services General Reference.

For Lambda Function, type the name of the Lambda function, and then choose the function's
corresponding ARN.

Choose Save.

If you chose HTTP Proxy, do the following:

1.

For HTTP method, choose the HTTP method type that most closely matches the method in the
HTTP proxy.

For Endpoint URL, type the URL of the HTTP proxy you want this method to use.
Choose Save.

If you chose Mock Integration, do the following:

Choose Save.

If you chose Show advanced, AWS Service Proxy, do the following:

1.
2.

For AWS Region, choose the AWS region you want this method to use to call the action.
For AWS Service, choose the AWS service you want this method to call.

63

http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

Amazon API Gateway Developer Guide
Configure How a Method Is Integrated with a Back End

3. For HTTP method, choose the HTTP method type that corresponds to the action. For HTTP
method type, see the API reference documentation for the AWS service you chose for AWS
Service.

4. For Action, type the action you want to use. For a list of available actions, see the API reference
documentation for the AWS service you chose for AWS Service.

5. For Execution Role, type the ARN of the IAM role the method will use to call the action.

To create the IAM role, you can adapt the instructions in "To create the Lambda invocation role
and its policies" and "To create the Lambda execution role and its policy" in the Create Lambda
Functions (p. 23) section of the Call Lambda Functions Synchronously (p. 22); and specify an

access policy of the following format, with the desired number of action and resource statements:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow',
"Action": [
"action-statenent”
|
"Resource": [
"resource-statenment”
]
b,
]
}

For the action and resource statement syntax, see the documentation for the AWS service you
chose for AWS Service.

For the IAM role's trust relationship, specify the following, which enables APl Gateway to take
actions on behalf of your AWS account:

"Version": "2012-10-17",
"Statement": [
{
"Sidv:ott,
"Effect": "Allow',
"Principal": {
"Service": "api gateway. amazonaws. cont

3

"Action": "sts:AssunmeRol e"

6. If the action you typed for Action provides a custom resource path you want this method to use,
for Path Override, type this custom resource path. For the custom resource path, see the API
reference documentation for the AWS service you chose for AWS Service.

7. Choose Save.

7. Do both of the following:

64

Amazon API Gateway Developer Guide
Configure How a User Calls an API Method

« Specify how the method will receive requests from, and send responses to, callers (which API
Gateway refers to as the API's method request/response), and how the method will authorize
requests by following the instructions in Configure How a User Calls an API Method (p. 65).

« Specify how the method will send requests to, and receive responses from, the Lambda function,
HTTP proxy, or AWS service proxy (which APl Gateway refers to as the API's integration
request/response) by following the instructions in Configure How Data Is Mapped between Method
and Integration (p. 67).

Configure How an API User Calls an APl Method
iIn Amazon API Gateway

To use the API Gateway console to specify an API's method request/response and the way in which the
method will authorize requests, follow these instructions.

Note
These instructions assume you have already completed the steps in Configure How a Method
Is Integrated with a Back End (p. 63).

1. With the method selected in the Resources pane, in the Method Execution pane, choose Method
Request.

2. To assign custom access permissions to the method, in the Authorization Settings area, for
Authorization Type, choose Edit, and then choose AWS_IAM. Only IAM roles with the correct IAM
policy attached will be allowed to call this method. If you do not want to assign custom access
permissions to the method, choose NONE.

« To create the IAM role, specify an access policy with a format like the following:

{
"Version": "2012-10-17",
"Statenment": [
{
"Effect": "Allow',
"Action": [
"execut e- api : | nvoke"
1,
"Resource": |
"resource-statenment"
]
}
]
}

In this access policy, r esour ce- st at enent is the value of the ARN field in the Authorization
Settings section.

To create the IAM role, you can adapt the instructions in "To create the Lambda invocation role and
its policy" and "To create the Lambda execution role and its policy" in the Create Lambda
Functions (p. 23) section of the Call Lambda Functions Synchronously (p. 22).

To save your choice, choose Update. Otherwise, choose Cancel.

65

Amazon API Gateway Developer Guide
Configure How a User Calls an API Method

Note
You can also enable an API key. For instructions, see Use an API Key with the API Gateway
Console (p. 203).

To add a query string parameter to the method, do the following:

Choose the arrow next to URL Query String Parameters, and then choose Add query string.
For Name, type the name of the query string parameter.
Choose Create a new query string.

Note

To remove the query string parameter, choose Cancel or Remove.

To change the name of the query string parameter, you must remove it and create a hew
one.

To add a header parameter to the method, do the following:

Choose the arrow next to HTTP Request Headers, and then choose Add header.
For Name, type the name of the header parameter.

Optionally, check the Caching option to make this method as an API cache key. For more
information, see Use Method/Integration Parameters as Cache Keys (p. 230).

Choose Create

Tip

To remove the header parameter, choose Cancel or Remove.

To change the name of the header parameter, you must remove the old header parameter
and create a new one in its place.

For non-GET method types, expand Request Models, and for Content Type and Model name,
type the content type and choose the name of a model that will transform caller-supplied data into
the expected format.

To create a model, see Create a Model (p. 79).

To send a set of custom response headers, a custom response data format, or both, back to callers
based on the HTTP status code returned by the method, do the following:

a.

In the Method Execution pane, choose Method Response. By default, 200 response is included
in the method responses. You can modify it, e.g., to have the method return 201 instead. In
addition, you can add other responses, e.g., 409 for access denial and 500 for uninitialized
stage variables used. Either choose the arrow icon next to 200 to specify settings for the 200
response, or choose Add Response to specify settings for any other HTTP response status
code. If you choose Add Response, for HTTP Status, choose the response, choose Create,
and choose the arrow next to the response.

Tip

You will use Method Response to specify all possible response codes for your API

and use Integration Response to indicate to APl Gateway how back-end errors are

mapped to an HTTP status code.

For each custom header you want to include in the response, in the Response Headers area,
choose Add Header, type the name of the header, and then choose Save. (Choose Remove
to remove a header from this list.)

To specify a response model to transform the output's data from one format to another, in the
Response Models area, choose Add Response Model. Type the content type (for Content
type), choose the model's name (for Models), and then choose Save. Choose Add Response
Model to specify an additional model, or choose Create a model to define a new model. (Choose
Remove to remove a response model selection from this list.)

66

Amazon API Gateway Developer Guide
Configure How Data Is Mapped between Method and
Integration

Configure How Data Is Mapped between a Method
and its Integration in Amazon APl Gateway

Note
API Gateway does not currently support binary payloads. Binary data can be passed around in
a payload as a JSON property value of a Base64-encoded string.

To use the API Gateway console to define the API's integration request/response, follow these instructions.

Note
These instructions assume you have already completed the steps in Configure How a Method
Is Integrated with a Back End (p. 63).

1. With the method selected in the Resources pane, in the Method Execution pane, choose Integration
Request.

2. ForanHTTP proxy or an AWS service proxy, to associate a path parameter, a query string parameter,
or a header parameter defined in the integration request with a corresponding path parameter, query
string parameter, or header parameter in the method request of the HTTP proxy or AWS service
proxy, do the following:

a. Choose the arrow next to URL Path Parameters, URL Query String Parameters, or HTTP
Headers respectively, and then choose Add path, Add query string, or Add header,
respectively.

b. For Name, type the name of the path parameter, query string parameter, or header parameter
in the HTTP proxy or AWS service proxy.

c. For Mapped from, type the mapping value for the path parameter, query string parameter, or
header parameter. Use one of the following formats:

e net hod. r equest . pat h. par anet er - nane for a path parameter named par anet er - nane
as defined in the Method Request page.

e net hod. request . querystring. par anet er - nane for a query string parameter named
par anet er - nane as defined in the Method Request page.

* net hod. request . header. par anet er - nane for a header parameter named
par anet er - nane as defined in the Method Request page.

Alternatively, you can set a literal string value (enclosed by a pair of single quotes) to an
integration header.

d. Choose Create. (To delete a path parameter, query string parameter, or header parameter,
choose Cancel or Remove next to the parameter you want to delete.)

3. Inthe Body Mapping Templates area, choose an option for Request body passthrough to configure
how the method request body of an unmapped content type will be passed through the integration
request without transformation to the Lambda function, HTTP proxy, or AWS service proxy. There
are three options:

« Choose When no template matches the request Content-Type header if you want the method
request body to pass through the integration request to the back end without transformation when
the method request content type does not match any content types associated with the mapping
templates, as defined in the next step.

Note
When calling the API Gateway API, you choose this option by setting WHEN_NO_MATCH
as the passt hr oughBehavi or property value on the Integration resource.

67

http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/

Amazon API Gateway Developer Guide
Configure How Data Is Mapped between Method and
Integration

¢ Choose When there are no templates defined (recommended) if you want the method request
body to pass through the integration request to the back end without transformation when no
mapping template is defined in the integration request. If a template is defined when this option is
selected, the method request of an unmapped content type will be rejected with an HTTP 415
Unsupported Media Type response.

Note
When calling the API Gateway API, you choose this option by setting WHEN_NO _TEMPLATE
as the passt hr oughBehavi or property value on the Integration resource.

« Choose Never if you do not want the method request to pass through when either the method
request content type does not match any content type associated with the mapping templates
defined in the integration request or no mapping template is defined in the integration request. The
method request of an unmapped content type will be rejected with an HTTP 415 Unsupported
Media Type response.

Note
When calling the API Gateway API, you choose this option by setting NEVER as the
passt hr oughBehavi or property value on the Integration resource.

For more information about the integration passthrough behaviors, see Integration Passthrough
Behaviors (p. 108).

To define a mapping template for an incoming request, choose Add mapping template under
Content-Type. Type a content type (e.g., appl i cat i on/ j son) in the input text box and then choose
the check mark icon to save the input. Then, type the mapping template manually or choose Generate
template to create one from a model template. For more information, see Set Up Request and
Response Payload Mappings (p. 72).

You can map an integration response from the back-end to a method response of the API returned
to the calling app. This includes returning to the client selected response headers from the available
ones from the back end, transforming the data format of the back-end response payload to an
API-specified format. You can specify such mapping by configuring Method Response and
Integration Response from the Method Execution page.

a. Inthe Method Execution pane, choose Integration Response. Choose either the arrow next
to 200 to specify settings for a 200 HTTP response code from the method, or choose Add
integration response to specify settings for any other HTTP response status code from the
method.

b. For Lambda error regex (for a Lambda function) or HTTP status regex (for an HTTP proxy or
AWS service proxy), type a regular expression to specify which Lambda function error strings
(for a Lambda function) or HTTP response status codes (for an HTTP proxy or AWS service
proxy) map to this output mapping. For example, to map all 2xx HTTP response status codes
from an HTTP proxy to this output mapping, type "2\ \ d{ 2} " for HTTP status regex. To return
an error message containing "Invalid Request" from a Lambda function to a 400 Bad Request
response, type". *I nval i d request. *"asthe Lambda error regex expression. On the other
hand, to return 400 Bad Request for all unmapped error messages from Lambda, type
"(\'n] .)+"in Lambda error regex. This last regular expression can be used for the default
error response of an API.

Note

The error patterns are matched against the entire string of the er r or Message property
in the Lambda response, which is populated by cont ext . fai | (error Message) in
Node.js or by t hr ow new MyExcepti on(error Message) in Java. Also, escaped
characters are unescaped before the regular expression is applied.

If you use '.+' as the selection pattern to filter responses, be aware that it may not match
a response containing a newline ('\n') character.

c. Ifenabled, for Method response status, choose the HTTP response status code you defined
in the Method Response page.

68

http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/

Amazon API Gateway Developer Guide
Configure Mock Integration for a Method

d. For Header Mappings, for each header you defined for the HTTP response status code in the
Method Response page, specify a mapping value by choosing Edit. For Mapping value, use
the formati nt egr ati on. r esponse. header . header - nane where header - nane is the name
of a response header from the backend. For example, to return the backend response's Dat e
header as an API method's response's Ti mest anp header, the Response header column will
contain an Timestamp entry and the associated Mapping value should be set to
integration.response.header.Date.

e. Inthe Template Mappings area, next to Content type, choose Add. In the Content type box,
type the content type of the data that will be passed from the Lambda function, HTTP proxy, or
AWS service proxy to the method. Choose Update.

f. Select Output passthrough if you want the method to receive, but not modify, the data from
the Lambda function, HTTP proxy, or AWS service proxy.

g. If Output passthrough is cleared, for Output mapping, specify the output mapping template
you want the Lambda function, HTTP proxy, or AWS service proxy to use to send data to the
method. You can either type the mapping template manually or choose a model from Generate
template from model.

h. Choose Save.

Configure Mock Integration for a Method in API
Gateway

Amazon API Gateway supports mock integrations for APl methods. This feature enables API developers
to generate API responses from APl Gateway directly, without the need for an integration back end. As
an API developer, you can use this feature to unblock other dependent teams needing to work with an
API before the project development is complete. You can also leverage this feature to provision a landing
page of your API, which can provide an overview of and navigation to your API. For an example of such
a landing page, see the integration request and response of the GET method on the root resource of the
example API discussed in Build and Test an API Gateway API from an Example (p. 6).

As an API developer, you decide how API Gateway responds to a mock integration request. For this, you
configure the method's integration request and integration response to associate a response with a given
status code. The tasks involve setting up a mapping template in the integration request to specify a
supported status code in the request payload and setting up maping templates, one for a supported status
code, in the integration response to provide associated response payloads. At run time API Gateway
retrieves the status code from the request payload and invokes the matching template to return the
associated response payload. The integration request payload's content type must be appl i cati on/j son
and its format must be of { " st at usCode": ddd, ... },where ddd stands for an HTTP status code.
The integration response payload's content type can be any of those matching the response data, including
application/json,application/xm ,6text/htm , text/plainandetc.

In this section, you will learn how to use the API Gateway console to enable the mock integration for an
APl method.

Topics
¢ Prerequisites (p. 70)
* Enable Mock Integration on a Method (p. 70)
¢ Example Request Templates (p. 71)
¢ Example Response Templates (p. 72)

69

Amazon API Gateway Developer Guide
Configure Mock Integration for a Method

Prerequisites

You must have the method available in API Gateway. Follow the instructions in Build an API Gateway
API Step by Step (p. 14).

Enable Mock Integration on a Method

1.

Choose an API resource and create a method. In the Setup pane, choose Mock Integration , and
then choose Save.

In the Method Execution pane, choose Integration Request.

By default, mock integrations return a 200 HTTP status code. To customize this default behavior, do
the following:

1. Expand Mapping Templates.
For Content-Type, do one of the following:

« If the desired content type is already visible (for example, application/json), then choose it.

« If the desired content type is not already visible, then choose Add mapping template, type
the desired content type (for example, appl i cati on/ j son), and then choose Create.

3. Inthe Template editor, type the content of the template you want APl Gateway to use to
determine which HTTP status code to use in the integration response. The template must output
a JSON payload containing the st at usCode property. For more information, see Example
Request Templates (p. 71).

4. Nextto Mapping template, choose Save.

For each query string parameter or header parameter you want to add to the method, do the following:

1. Choose Method Execution, and then choose Method Request.

Choose the arrow next to URL Query String Parameters or HTTP Request Headers, and then
choose Add query string or Add header, respectively.

3. For Name, type the name of the query string parameter or header parameter, and then choose
Create a new query string or Create, respectively.

Note

To remove a query string parameter or header parameter, choose Cancel or Remove.
To change the name of a query string parameter or header parameter, you must remove
it and create a new one in its place.

Choose Method Execution, and then choose Method Response.
Do one of the following:

« If all of the HTTP Status entries you want to use are already visible (for example, 200), then skip
ahead to step 8.

« If any of the HTTP Status entries you want to use are not already visible, then for each missing
HTTP Status entry, choose Add Response, choose the HTTP status code that you want to use,
and then choose Create.

Choose Method Execution, and then choose Integration Response.
Do one of the following:

70

Amazon API Gateway Developer Guide
Configure Mock Integration for a Method

« If all of the Method response status entries you want to use are already visible (for example,
200), then skip ahead to step 10.

« If any of the Method response status entries you want to use are not already visible, then for
each missing Method response status entry, choose Add integration response, for Method
response status choose the HTTP Status entry you created earlier, and then choose Save.

9. For each Method response status entry you want to use, do the following:

1. Expand the row that corresponds to the Method response status entry you want to use.

For HTTP status regex, type the matching HTTP Status entry (for example, type 400 for a 400
HTTP Status entry or 500 for a 500 HTTP Status entry). Or specify a range of matching HTTP
status codes (for example, 5/ d{ 2} matches all 5XX HTTP status codes).

3. Expand Mapping Templates.
4. For Content-Type, do one of the following:

« If the desired content type is already visible (for example, application/json), then choose it.

« If the desired content type is not already visible, then choose Add mapping template, type
the desired content type (for example, appl i cati on/j son), and then choose Create.

5. Inthe Template editor, type the contents of the template that you want APl Gateway to use to
respond to the caller. For more information, see Example Response Templates (p. 72).

6. Nextto Mapping template, choose Save.

10. Do one of the following to test the method:

 Call the method from the API Gateway console. Follow the instructions in Test a Method Using
the Console (p. 259).

« Call the method from a web browser, a web debugging proxy tool or the cURL command-line tool,
or from your own API. Follow the instructions in Calling a Deployed API (p. 258).

Example Request Templates

The following example shows a request template that always uses the 200 HTTP status code.

{
}

"statusCode": 200

The following example shows a request template that uses the 200 HTTP status code if the request
specifies the pet Type parameter of cat ; 400 if the request specifies dog; and uses 500 otherwise. This
example is based on the one in the Map Request Parameters (p. 33).

#i f ($input. parans(' petType') == "cat")
"statusCode": 200

#el sei f ($i nput. paranms(' pet Type') == "dog")
"statusCode": 400

#el se

"stat usCode": 500

71

Amazon API Gateway Developer Guide
Set Up Request and Response Payload Mappings

#end

Example Response Templates

The following two examples show response templates that respond with the same information every time.
These examples are based on the one in the Map Request Parameters (p. 33).

Exanpl e 400 response.
{

}

"Message": "Error: petType not valid."

Exanpl e 500 response.
{

}

"Message": "Error: petType not valid or not specified.”

The following example shows a response template that responds with the same information every time,
but includes the value the caller specified for the pet Type parameter. This example is based on the one
in the Map Request Parameters (p. 33).

Exanpl e 200 response for ?pet Type=cat (response will contain "type": "cat").
{
"id"r 1,
"nane": "Kitty",
"type": "$input.parans(' petType')"

Set Up Amazon APl Gateway APl Request and
Response Payload Mappings

In API Gateway, an API's method request can take a payload in a different format from the corresponding
integration request payload, as required in the back end. Similarly, the back end may return an integration
response payload different from the method response payload, as expected by the front end. APl Gateway
lets you map the payload from a method request to the corresponding integration request and from an
integration response to the corresponding method response. You use mapping templates to specify the
mapping and can create model to facilitate the template generation. The section explains how to use the
map the API request and response payload using models and mapping templates.

Topics
¢ Models (p. 73)
« Mapping Templates (p. 76)
¢ Tasks for Models and Mapping Templates (p. 79)
¢ Create a Model in APl Gateway (p. 79)
¢ View a List of Models in APl Gateway (p. 80)
¢ Delete a Model in API Gateway (p. 80)
¢ Photos Example (APl Gateway Models and Mapping Templates) (p. 81)

72

Amazon API Gateway Developer Guide
Models

¢ News Article Example (APl Gateway Models and Mapping Templates) (p. 84)
¢ Sales Invoice Example (API Gateway Models and Mapping Templates) (p. 88)
« Employee Record Example (APl Gateway Models and Mapping Templates) (p. 93)

Models

In API Gateway, a model defines the format, also known as the schema or shape, of some data. Models
are most useful for generating strongly typed SDK of your API. They can also be useful in helping generate
a mapping template or validate a payload. Because API Gateway is designed to work primarily with
JavaScript Object Notation (JSON)-formatted data, APl Gateway uses JSON Schema to define the
expected schema of the data.

For example, the following expresses some JSON data:

{
"departnment": "produce",
"categories": [
"fruit",
"veget abl es"
1,
"bins": [
{
"category": "fruit",
"type": "apples",
"price": 1.99,
"unit": "pound",
"quantity": 232
},
{
"category": "fruit",
"type": "bananas",
"price": 0.19,
"unit": "each",
"quantity": 112
1
{
"category": "vegetabl es",
"type": "carrots",
"price": 1.29,
"unit": "bag",
"quantity": 57
}
]
}

In the preceding example:

« The top-level or root object contains a depar t nent string object, a cat egor i es array, and a bi ns
array.

* The cat egori es array contains a collection of string values.

¢ The bi ns array contains a collection of objects. Each object contains a cat egor y string object, at ype
string object, a pri ce number object, a uni t string object, and a quant i t y number object.

The corresponding model is expressed in JISON Schema notation:

73

Amazon API Gateway Developer Guide
Models

{
"$schemn": "http://json-schena. org/draft-04/schema#"
"title": "GroceryStorel nput Model ",
"type": "object"
"properties": {
"department": { "type": "string" },
"categories": {
"type": "array",
"itenms": { "type": "string" }
b
"bins": {
"type": "array",
"items": {
"type": "object"
"properties": {
"category": { "type": "string" },
"type": { "type": "string" },
"price": { "type": "nunber" },
"unit": { "type": "string" },
"quantity": { "type": "integer" }
}
}
}
}
}

In the preceding example:

¢ The $schena object represents a valid JISON Schema version identifier. In this example, it refers to
JSON Schema, draft v4.

e Thetitl e objectis a human-readable identifier for the model. In this example, it is
GrocerySt or el nput Model .

¢ The top-level, or root, construct in the JSON data is an object.
¢ The root object in the JSON data contains depart nent, cat egori es, and bi ns properties.
« The depart nent property is a string object in the JSON data.

e The cat egori es property is an array in the JSON data. The array contains string values in the JSON
data.

* The bi ns property is an array in the JSON data. The array contains objects in the JSON data. Each
of these objects in the JSON data contains a cat egor y string, at ype string, a pri ce number, a uni t
string, and a quant i t y integer (a number without a fraction or exponent part).

Alternatively, you could include part of this schema, for example, the item definition of the bi ns array, in
a separate section of the same file and use the $r ef primitive to reference this reusable definition in
other parts of the schema. Using $r ef , the above model definition file can be expressed as follows:

{
"$schema": "http://json-schena. org/draft-04/ schena#",
"title": "G oceryStorel nput Model ",
"type": "object",
"properties": {
"department”: { "type": "string" },
"categories": {
"type": "array",
"items": { "type": "string" }

74

Amazon API Gateway Developer Guide

Models

b
"bins": {

"type": "array",

"items": {

"$ref": "#/definitions/Bin"

}

}

}

"definitions": {
"Bin" : {
"type": "object"
"properties": {
"category": { "type": "string" },
"type": { "type": "string" },
"price": { "type": "nunber" },
"unit": { "type": "string" },
"quantity": { "type": "integer" }

The defi ni ti ons section contains the schema definition of the Bi n item that is referenced in the bi ns
array with "ref": "#/ defini ti ons/ Bi n". Using reusable definitions this way makes your model
definition easier to read.

In addition, you can also reference another model schema defined in an external model file by setting
that model's URL as the value of the $r ef property: " $ref":

"https://api gat eway. amazonaws. coni rest api s/ {restapi _i d}/ nodel s/ { rodel _nane}".
For example, supposed you have the following full-fledged model named Bi n2 created under an APl with
an identifier of f ugvj dxtri :

{
"$schema": "http://json-schena. org/draft-04/schena#",
"title": "GroceryStorel nput Model ",
"type": "object",
"properties": {
"Bin" : {
"type": "object",
"properties": {
"category": { "type": "string" },
"type": { "type": "string" },
"price": { "type": "nunmber" },
"unit": { "type": "string" },
"quantity": { "type": "integer" }
}
}
}
}

You can then reference it from the Gr ocer y St or el nput Model from the same API, as shown as follows:

{
"$schemn": "http://json-schenn. org/draft-04/ schema#",
"title": "GroceryStorel nput Model ",

"type": "object",

75

Amazon API Gateway Developer Guide
Mapping Templates

"properties": {
"department": { "type": "string" },
"categories": {
"type": "array",
"itens": { "type": "string" }

b
"bins": {

"type": "array",

"items": {

"$ref": "https://api gat eway. amazonaws. com r est api s/ fugvj dxtri/ nod
el s/ Bi n2"

}

}

}
}

The referencing and referenced models must be from the same API.

The examples do not use advanced JSON Schema features, such as specifying required items; minimum
and maximum allowed string lengths, numeric values, and array item lengths; regular expressions; and
more. For more information, see Introducing JSON and JSON Schema.

For more complex JSON data formats and their models, see the following examples:

¢ Input Model (Photos Example) (p. 82) and Output Model (Photos Example) (p. 83) in the Photos
Example (p. 81)

¢ Input Model (News Article Example) (p. 85) and Output Model (News Article Example) (p. 87) in the
News Article Example (p. 84)

« Input Model (Sales Invoice Example) (p. 89) and Output Model (Sales Invoice Example) (p. 91) in the
Sales Invoice Example (p. 88)

¢ Input Model (Employee Record Example) (p. 94) and Output Model (Employee Record Example) (p. 96)
in the Employee Record Example (p. 93)

To experiment with models in API Gateway, follow the instructions in Transform Response Payload (p. 41),
specifically Step 1: Create Models (p. 43).

Mapping Templates

In APl Gateway, a mapping template is used to transform some data from one format to another. You
create and use input mapping templates and output mapping templates when you need to inform API
Gateway about the schema of the data being sent from or returned to the caller, respectively. APl Gateway
uses the Velocity Template Language (VTL) and JSONPath expressions to define mapping templates.

For an example of an input mapping template, consider the example JSON data from the previous section.
The following input mapping template makes no transform to the JSON data as APl Gateway receives
the JSON data from the caller:

#set ($i nput Root = $i nput.path('$'))
{
"department": "$input Root. departnment",
"categories": [
#f oreach($el em i n $i nput Root . cat egori es)
"$el ent #i f ($f or each. hasNext), #end

#end

76

http://json.org
http://json-schema.org
http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://goessner.net/articles/JsonPath/

Amazon API Gateway Developer Guide
Mapping Templates

]

"’ins" o

#f oreach($el em i n $i nput Root . bi ns)

{
"category" : "$el em category",
"type" : "$elemtype",
"price" : $elemprice,
"unit" : "$elemunit",
"quantity" : $elemquantity

} #i f ($f or each. hasNext) , #end

#end

}

]

The preceding input mapping template is expressed as follows:

Let the variable $i nput Root in the input mapping template represent the root object in the original
JSON data.

The values of the depar t nent objectand cat egor i es and bi ns arrays in the input mapping template
(represented by $i nput Root . depart nment, $i nput Root . cat egori es, and $i nput Root . bi ns)
map to the corresponding values of the depar t nent object and cat egori es and bi ns arrays in the
root object in the original JSON data.

In the input mapping template, each of the values in the cat egor i es array (represented by the first
$el en), and each of the objects in the bi ns array (represented by the second $el em), map to the
corresponding values in the cat egor i es array and objects in the bi ns array, respectively, within the
root object in the original JSON data.

For each of objects in the bi ns object, the values of the cat egory, t ype, pri ce,uni t,andquantity
objects in the input mapping template (represented by $el em cat egory, $el em t ype, $el em pri ce,
$el em uni t,and $el em quant i t y, respectively) map to the corresponding values of the cat egory,
type, pri ce, unit,and quantity objects in the original JSON data, respectively.

For an example of an output mapping template, first consider the following JSON data schema, which is
based on the example JSON data from the previous section.

Note
None of the array and object names in this JSON data schema match the JSON data from the
previous section:

"choices": [

{
"kind": "apples",
"suggestedPrice": "1.99 per pound",
"avail abl e": 232

}

{
"ki nd": "bananas",
"suggestedPrice": "0.19 per each",
"avail able": 112

}

{

"kind": "carrots",
"suggestedPrice": "1.29 per bag",
"avail abl e": 57

77

Amazon API Gateway Developer Guide
Mapping Templates

To transform the example JSON data from the previous section into this JSON data schema, you would
use the following model:

{
"$schemn": "http://json-schena. org/draft-04/schema#",
"title": "GroceryStoreQut put Model ",
"type": "object",
"properties": {
"choi ces": {
"type": "array",
"items": {
"type": "object",
"properties": {
"kind": { "type": "string" },
"suggestedPrice": { "type": "string" },
"available": { "type": "integer" }
}
}
}
}
}

In the preceding example, the JSON schema is expressed as follows:

* The $schena object represents a valid JSON Schema version identifier. In this example, it refers to
JSON Schema, draft v4.

e Thetitl e objectis a human-readable identifier for the model. In this example, it is
Grocer ySt or eCut put Model .

¢ The top-level, or root, construct in the JSON data is an object.
« The root object in the JSON data contains an array of objects.

¢ Each object in the array of objects contains a ki nd string, a suggest edPri ce string, and an avai | abl e
integer (a number without a fraction or exponent part).

You would then use the following output mapping template, which is based on this model:

#set ($i nput Root = $i nput.path('$'))

"choices": |
#f oreach($el em i n $i nput Root . bi ns)

"kind": "$elemtype",
"suggestedPrice": "$elemprice per $elemunit",
"avail abl e": $elem quantity

}#i f ($f or each. hasNext), #end

#end

]
}

The preceding output mapping template is expressed as follows:

78

Amazon API Gateway Developer Guide
Tasks for Models and Mapping Templates

 Let the variable $i nput Root in the output mapping template represent the root object in the original
JSON data from the previous section. Note the variables in the output mapping template map to the
original JSON data, not the desired transformed JSON data schema.

e The choi ces array in the output mapping template maps to the bi ns array with the root object in the
original JSON data ($i nput Root . bi ns).

« In the output mapping template, each of the objects in the choi ces array (represented by $el em) map
to the corresponding objects in the bi ns array within the root object in the original JSON data.

« In the output mapping template, for each of objects in the choi ces object, the values of the ki nd and
avai | abl e objects (represented by $el em t ype and $el em quant i t y) map to the corresponding
values of the t ype and val ue objects in each of the objects in the original JSON data'’s bi ns array,
respectively.

¢ In the output mapping template, for each of objects in the choi ces object, the value of the
suggest edPri ce objectis a concatenation of the corresponding value of the pri ce and uni t objects
in each of the objects in the original JSON data, respectively, with each value separated by the word
per .

For more information about the Velocity Template Language, see Apache Velocity - VTL Reference. For
more information about JSONPath, see JISONPath - XPath for JSON.

To explore more complex mapping templates, see the following examples:

¢ Input Mapping Template (Photos Example) (p. 82) and Output Mapping Template (Photos
Example) (p. 84) in the Photos Example (p. 81)

¢ Input Mapping Template (News Article Example) (p. 86) and Output Mapping Template (News Article
Example) (p. 87) in the News Article Example (p. 84)

¢ Input Mapping Template (Sales Invoice Example) (p. 90) and Output Mapping Template (Sales Invoice
Example) (p. 92) in the Sales Invoice Example (p. 88)

¢ Input Mapping Template (Employee Record Example) (p. 95) and Output Mapping Template (Employee
Record Example) (p. 97) in the Employee Record Example (p. 93)

To experiment with mapping templates in APl Gateway, follow the instructions in Transform Response
Payload (p. 41), specifically Step 5: Set Up and Test the Methods (p. 48).

Tasks for Models and Mapping Templates

For additional things you can do with models and mapping templates, see the following:

e Create a Model (p. 79)
« View a List of Models (p. 80)
¢ Delete a Model (p. 80)

Create a Model in APl Gateway

Use the API Gateway console to create a model for an API.

Topics
¢ Prerequisites (p. 80)
¢ Create a Model With the APl Gateway Console (p. 80)

79

http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://goessner.net/articles/JsonPath

Amazon API Gateway Developer Guide
View a List of Models

Prerequisites

e You must have an API available in APl Gateway. Follow the instructions in Creating an API (p. 61).

Create a Model With the API Gateway Console

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

In the box that contains the name of the APl where you want to create the model, choose Models.
Choose Create.

For Model Name, type a name for the model.

For Content Type, type the model's content type (for example, appl i cati on/j son for JSON).
(Optional) For Model description, type a description for the model.

For Model schema, type the model's schema. For more information about model schemas, see Set
Up Request and Response Payload Mappings (p. 72).

8. Choose Create model.

No o s~wodhPE

View a List of Models in APl Gateway

Use the API Gateway console to view a list of models.

Topics
¢ Prerequisites (p. 80)
¢ View a List of Models with the APl Gateway Console (p. 80)

Prerequisites

¢ You must have at least one model in API Gateway. Follow the instructions in Create a Model (p. 79).

View a List of Models with the APl Gateway Console

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.
2. Inthe box that contains the name of the API, choose Models.

Delete a Model in APl Gateway

Use the API Gateway console to delete a model.

Warning
Deleting a model may cause part or all of the corresponding API to become unusable by API
callers. Deleting a model cannot be undone.

Delete a Model with the APl Gateway Console

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

In the box that contains the name of the API for the model, choose Models.

In the Models pane, choose the model you want to delete, and then choose Delete Model.
When prompted, choose Delete.

PoDNPE

80

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Photos Example

Photos Example (APl Gateway Models and
Mapping Templates)

The following sections provide examples of models and mapping templates that could be used for a
sample photo API in APl Gateway. For more information about models and mapping templates in API
Gateway, see Set Up Request and Response Payload Mappings (p. 72).

Topics
¢ Original Data (Photos Example) (p. 81)
¢ Input Model (Photos Example) (p. 82)
¢ Input Mapping Template (Photos Example) (p. 82)
¢ Transformed Data (Photos Example) (p. 83)
¢ Output Model (Photos Example) (p. 83)
¢ Output Mapping Template (Photos Example) (p. 84)

Original Data (Photos Example)

The following is the original JISON data for the photos example:

{
"photos": {
"page": 1,
"pages": "1234",
"perpage": 100,
"total": "123398",
"photo": [
{
"id": "12345678901",
"owner": "23456789@\12",
"secret": "abcl123d456",
"server": "1234",
"farnm': 1,
"title": "Sanmple photo 1",
"ispublic": 1,
"isfriend": O,
"isfamly": O
}
{
"id": "23456789012",
"owner": "34567890@823",
"secret": "bcd234e567",
"server": "2345",
"farnm': 2,
"title": "Sanmple photo 2",
"ispublic": 1,
"isfriend": O,
"isfamly": O
}
]
}
}

81

Amazon API Gateway Developer Guide
Photos Example

Input Model (Photos Example)

The following is the input model that corresponds to the original JSON data for the photos example:

{
"$schemn": "http://json-schenma. org/draft-04/ schema#"
"title": "Photosl nput Model ",
"type": "object"
"properties": {
"phot os": {
"type": "object"
"properties": {
"page": { "type": "integer" },
"pages": { "type": "string" },
"perpage": { "type": "integer" },
"total": { "type": "string" },
"phot 0o": {
"type": "array",
"items": {
"type": "object"
"properties": {
"id": { "type": "string" },
"owner": { "type": "string" },
"secret": { "type": "string" },
"server": { "type": "string" },
"farm': { "type": "integer" },
"title": { "type": "string" },
"ispublic": { "type": "integer" },
"isfriend": { "type": "integer" },
"isfam ly": { "type": "integer" }
}
}
}
}
}
}
}

Input Mapping Template (Photos Example)

The following is the input mapping template that corresponds to the original JSON data for the photos
example:

#set ($i nput Root = $i nput.path('$'))
{
"photos": {
"page": $i nput Root. phot os. page,
"pages": "$i nput Root. phot os. pages",
"perpage": $input Root. phot os. per page,
"total ": "$inputRoot.photos.total"
"photo": [
#f oreach($el em i n $i nput Root . phot 0s. phot 0)
{
"id': "$elemid",
"owner": "$el em owner",
"secret": "$el em secret”

82

Amazon API Gateway Developer Guide
Photos Example

"server": "$elem server",
"farnl: $elemfarm
"title": "$elemtitle",

"ispublic": $elemispublic,

"isfriend": $elemisfriend,

"isfamly": $elemisfanmly
} #i f ($f or each. hasNext) , #end

#end

Transformed Data (Photos Example)

The following is one example of how the original photos example JSON data could be transformed for
output:

{
"photos": [

{
"id": "12345678901",

"owner": "23456789@A12",

"title":

" Sampl e phot o

"ispublic":
"isfriend":
"isfamly":

1,
0,
0

=

"id": "23456789012",
"owner": "34567890@B23",
"title": "Sanple photo 2",
"ispublic": 1,

"isfriend": O,

"isfam ly": O

Output Model (Photos Example)

The following is the output model that corresponds to the transformed JSON data format:

"$schemn": "http://json-schena. org/draft-04/schema#",
"title": "PhotosCutput Model ",

"type": "object",

"properties": {

"photos": {
"type": "array",
"itenms": {

"type": "object",

"properties": {
"id": { "type": "string" },
"owner": { "type": "string" },

83

Amazon API Gateway Developer Guide
News Article Example

"title": { "type": "string" },

"ispublic": { "type": "integer" },
"isfriend": { "type": "integer" },
"isfam ly": { "type": "integer" }

Output Mapping Template (Photos Example)

The following is the output mapping template that corresponds to the transformed JSON data format.
The template variables here are based on the original, not transformed, JSON data format:

#set ($i nput Root = $i nput.path('$'))

{
"photos": [
#f oreach($el em i n $i nput Root . phot os. phot 0)
{
"id': "$elemid",
"owner": "$el em owner",
"title": "$Selemtitle",
"ispublic": $elemispublic,
"isfriend': $elemisfriend,
"isfam ly": $elemisfanily
}#i f ($f or each. hasNext), #end
#end
|
}

News Article Example (APl Gateway Models and
Mapping Templates)

The following sections provide examples of models and mapping templates that could be used for a
sample news article APl in AP| Gateway. For more information about models and mapping templates in
API Gateway, see Set Up Request and Response Payload Mappings (p. 72).

Topics
¢ Original Data (News Article Example) (p. 84)
¢ Input Model (News Article Example) (p. 85)
¢ Input Mapping Template (News Article Example) (p. 86)
» Transformed Data (News Article Example) (p. 86)
¢ Output Model (News Article Example) (p. 87)
¢ Output Mapping Template (News Article Example) (p. 87)

Original Data (News Article Example)

The following is the original JSON data for the news article example:

84

Amazon API Gateway Developer Guide
News Article Example

{
"count": 1,
"items": [
{
"l ast _updat ed_date": "2015-04-24",
"expire_date": "2016-04-25",
"aut hor _first_nane": "John",
"description": "Sanple Description",
"creation_date": "2015-04-20",
"title": "Sanple Title",
"al | ow_coment": "1",
"aut hor": {
"l ast _nanme": "Doe",
"emai | ": "johndoe@xanpl e. cont',
"first_nanme": "John"
b
"body": "Sanple Body",
"publish_date": "2015-04-25",
"version": "1",
"aut hor _| ast _nane": "Doe",
"parent _id": 2345678901,
"article_url": "http://ww. exanpl e.confarticl es/ 3456789012"
}
] ! .
"version": 1
}

Input Model (News Article Example)

The following is the input model that corresponds to the original JSON data for the news article example:

"$schema": "http://json-schenn. org/draft-04/ schema#",
"title": "NewsArticl el nput Model ",
"type": "object",
"properties": {
"count": { "type": "integer" },
"items": {
"type": "array",
"items": {
"type": "object",
"properties": {
"l ast _updated_date": { "type": "string" },
"expire_date": { "type": "string" },

"aut hor _first_nane": { "type": "string" },
"description": { "type": "string" },
"creation_date": { "type": "string" },
"title": { "type": "string" },

"all ow_coment™: { "type": "string" },
"aut hor": {

"type": "object",

"properties": {
"last_nanme": { "type": "string" },
"emai |l ": { "type": "string" },
"first_nane": { "type": "string" }

}

85

Amazon API Gateway Developer Guide
News Article Example

body": { "type": "string" },
"publish_date": { "type": "string" },

"version": { "type": "string" },
"aut hor _l ast _name": { "type": "string" },
"parent _id": { "type": "integer" },
"article_url": { "type": "string" }
}
}
1
"version": { "type": "integer" }

Input Mapping Template (News Article Example)

The following is the input mapping template that corresponds to the original JSON data for the news
article example:

#set ($i nput Root = $i nput.path('$'))
{
"count": $i nput Root. count,
"items": [
#f oreach($el emin $i nput Root.itemns)
{
"l ast _updated_date": "$el em | ast_updat ed_date",
"expire_date": "$el em expire_date",
"author _first_nanme": "$el em author_first_nane",
"description": "$el emdescription",
"creation_date": "$elemcreation_date",
"title": "$Selemtitle",
"all ow_conment": "$el em al | ow_conmment ",
"aut hor": {
"l ast _name": "$el em aut hor. | ast_nane",
"emai | ": "$el em aut hor.emil",
"first_name": "$el emauthor.first_nane"
I
"body": "$el em body",
"publish_date": "$el em publish_date",
"version": "$el em version",
"aut hor _| ast _name": "$el em aut hor _| ast_nane",
"parent_id": $elem parent_id,
"article_url": "$elemarticle_url"
}#i f ($f or each. hasNext), #end

#end
1.

"version": $inputRoot.version

Transformed Data (News Article Example)

The following is one example of how the original news article example JSON data could be transformed
for output:

86

Amazon API Gateway Developer Guide
News Article Example

{
"count": 1,
"items": [
{
"creation_date": "2015-04-20",
"title": "Sanple Title",
"aut hor": "John Doe",
"body": "Sanple Body",
"publish_date": "2015-04-25",
"article_url": "http://ww. exanpl e.confarticl es/ 3456789012"
}
] ! .
"version": 1
}

Output Model (News Article Example)

The following is the output model that corresponds to the transformed JSON data format:

{
"$schema": "http://json-schenn. org/draft-04/ schema#",
"title": "NewsArticl eQutputMdel ",
"type": "object",
"properties": {
"count": { "type": "integer" },
"items": {
"type": "array",
"items": {
"type": "object",
"properties": {
"creation_date": { "type": "string" },
"title": { "type": "string" },
"author": { "type": "string" },
"body": { "type": "string" },
"publish_date": { "type": "string" },
"article_url": { "type": "string" }
}
}
1
"version": { "type": "integer" }
}
}

Output Mapping Template (News Article Example)

The following is the output mapping template that corresponds to the transformed JSON data format.
The template variables here are based on the original, not transformed, JSON data format:

#set ($i nput Root = $i nput.path('$'))

{
"count": $i nput Root. count,
"items": [
#f oreach($el em i n $i nput Root . i t ens)
{
"creation_date": "$el emcreation_date",

87

Amazon API Gateway Developer Guide
Sales Invoice Example

"title": "$elemtitle",
"author": "S$el em author.first_name $el em aut hor.| ast_nane",
"body": "$el em body",
"publish_date": "$el em publish_date",
"article_url": "$elemarticle_url"
} #i f ($f or each. hasNext) , #end

#end
1.

"version": $inputRoot.version

}

Sales Invoice Example (API Gateway Models and
Mapping Templates)

The following sections provide examples of models and mapping templates that could be used for a
sample sales invoice APl in APl Gateway. For more information about models and mapping templates
in AP| Gateway, see Set Up Request and Response Payload Mappings (p. 72).

Topics
¢ Original Data (Sales Invoice Example) (p. 88)
¢ Input Model (Sales Invoice Example) (p. 89)
¢ Input Mapping Template (Sales Invoice Example) (p. 90)
¢ Transformed Data (Sales Invoice Example) (p. 91)
¢ Output Model (Sales Invoice Example) (p. 91)
¢ Output Mapping Template (Sales Invoice Example) (p. 92)

Original Data (Sales Invoice Example)

The following is the original JSON data for the sales invoice example:

"DueDat e": "2013-02-15",
"Bal ance": 1990. 19,
"DocNunber": " SAMPO0O1",

"Status": "Payable",
"Line": [
{
"Description": "Sanple Expense",
"Amount ": 500,
"Detail Type": "ExpenseDetail",
"ExpenseDetail ": {

"Custoner": {
"val ue": "ABC123",

"name": "Sanple Custoner"
}s
"Ref": {
"val ue": "DEF234",
"name": "Sanple Construction"
}s
"Account "

c A
"val ue": "EFG345",

88

Amazon API Gateway Developer Guide
Sales Invoice Example

"name": "Fuel"
H
"LineStatus": "Billable"
}
}
1,
"Vendor": {
"val ue": "CHI 456",
"name": "Sanpl e Bank"
H
"APRef ": {
"val ue": "HI J567",
"name": "Accounts Payabl e"
}

“"Total Ant": 1990. 19

Input Model (Sales Invoice Example)

The following is the input model that corresponds to the original JISON data for the sales invoice example:

"$schema": "http://json-schenn. org/draft-04/ schema#",
"title": "lnvoicel nput Model ",
"type": "object",
"properties": {
"DueDate": { "type": "string" },
"Bal ance": { "type": "nunber" },
"DocNunber™: { "type": "string" },
"Status": { "type": "string" },

"Line": {
"type": "array",
"items": {

"type": "object",
"properties": {
"Description": { "type": "string" },

"Amount": { "type": "integer" },
"Detail Type": { "type": "string" },
"ExpenseDetail ": {

"type": "object",
"properties": {
"Custoner": {
"type": "object",
"properties": {
"value": { "type": "string" },
"name": { "type": "string" }

}
s
"Ref": {
"type": "object",
"properties": {
"value": { "type": "string" },
"name": { "type": "string" }
}
s

"Account": {

89

Amazon API Gateway Developer Guide
Sales Invoice Example

"type": "object",
"properties": {

"value": { "type": "string" },
"name": { "type": "string" }
}
}s
"LineStatus": { "type": "string" }
}
}
}
}
}s
"Vendor": {
"type": "object",
"properties": {
"value": { "type": "string" },
"name": { "type": "string" }
}
}s
"APRef ": {
"type": "object",
"properties": {
"value": { "type": "string" },
"name": { "type": "string" }
}
}

"Total Anmt": { "type": "nunber" }

Input Mapping Template (Sales Invoice Example)

The following is the input mapping template that corresponds to the original JSON data for the sales
invoice example:

#set ($i nput Root = $i nput.path('$'))

{
"DueDat e": "$i nput Root . DueDat e",
"Bal ance": $i nput Root . Bal ance,
"DocNunber": "$i nput Root. DocNunber",
"Status": "$inputRoot. Status",
"Line": [
#f oreach($el em i n $i nput Root . Li ne)
{
"Description": "$el em Description",

"Anmpount ": $el em Anmount,
"Detail Type": "$el em Detail Type",

"ExpenseDetail ": {

"Custoner": {
"val ue": "$el em ExpenseDet ai | . Cust oner. val ue",
"nanme": "$el em ExpenseDet ai | . Cust oner . nane"

s

"Ref": {
"val ue": "$el em ExpenseDet ai | . Ref . val ue",
"name": "$el em ExpenseDet ai | . Ref . nane"

s

90

Amazon API Gateway Developer Guide
Sales Invoice Example

"Account": {

"val ue": "$el em ExpenseDet ai |l . Account . val ue",
"name": "$el em ExpenseDet ai | . Account. nanme"

}s

"LineStatus": "$el em ExpenseDetail.LineStatus"

}
} #i f ($f oreach. hasNext) , #end

#end

1,

"Vendor": {
"val ue": "$i nput Root. Vendor. val ue",
"name": "$i nput Root . Vendor. nane"

H

"APRef ": {
"val ue": "$i nput Root. APRef. val ue",
"name": "$i nput Root . APRef . nane"

}

"Total Ant": $i nput Root. Tot al At

Transformed Data (Sales Invoice Example)

The following is one example of how the original sales invoice example JSON data could be transformed
for output:

{
"DueDate": "2013-02-15",
"Bal ance": 1990. 19,
"DocNunber": " SAMPOO1",
"Status": "Payable",
"Line": [
{
"Description": "Sanmple Expense",
"Amount": 500,
"Detail Type": "ExpenseDetail",
"Custoner": "ABCl23 (Sanple Customer)”,
"Ref": "DEF234 (Sample Construction)",
"Account": "EFG345 (Fuel)",
"LineStatus": "Bill abl e"
}
1.
"Total Ant": 1990. 19
}

Output Model (Sales Invoice Example)

The following is the output model that corresponds to the transformed JSON data format:

"$schemn": "http://json-schena. org/draft-04/schema#",
"title": "lnvoi ceQutput Model ",
"type": "object",
"properties": {
"DueDate": { "type": "string" },

91

Amazon API Gateway Developer Guide
Sales Invoice Example

"Bal ance": { "type": "nunber" },
"DocNunber": { "type": "string" },
"Status": { "type": "string" },
"Line": {
"type": "array",
"items": {
"type": "object",
"properties": {
"Description": { "type": "string" },
"Amount": { "type": "integer" },
"Detail Type": { "type": "string" },
"Custoner": { "type": "string" },
"Ref": { "type": "string" },
"Account": { "type": "string" },
"LineStatus": { "type": "string" }
}
}

b
"Total Amt": { "type": "nunber" }

Output Mapping Template (Sales Invoice Example)

The following is the output mapping template that corresponds to the transformed JSON data format.
The template variables here are based on the original, not transformed, JSON data format:

#set ($i nput Root = $i nput.path('$'))

{
"DueDat e": "$i nput Root . DueDat e",
"Bal ance": $i nput Root . Bal ance,
"DocNunber": "$i nput Root. DocNumber"”,
"Status": "$inputRoot. Status",
"Line": [
#f oreach($el em i n $i nput Root . Li ne)
{
"Description": "$el em Description",
"Anmpount ": $el em Anmount,
"Detail Type": "$el em Detail Type",
"Customer”: "$el em ExpenseDet ai | . Cust oner . val ue ($el em ExpenseDet ai | . Cus
t omer. nane) ",
"Ref": "$el em ExpenseDetail.Ref.val ue ($el em ExpenseDetai |l . Ref.nanme)",
"Account": "$el em ExpenseDetail. Account. val ue ($el em ExpenseDetail . Ac

count . nane) ",
"LineStatus": "$el em ExpenseDetai | . Li neSt at us"
} #i f ($f or each. hasNext), #end

#end

I,
"Total Ant": $i nput Root . Tot al Ant

92

Amazon API Gateway Developer Guide
Employee Record Example

Employee Record Example (APl Gateway Models
and Mapping Templates)

The following sections provide examples of models and mapping templates that can be used for a sample
employee record API in API Gateway. For more information about models and mapping templates in API
Gateway, see Set Up Request and Response Payload Mappings (p. 72).

Topics
¢ Original Data (Employee Record Example) (p. 93)
¢ Input Model (Employee Record Example) (p. 94)
¢ Input Mapping Template (Employee Record Example) (p. 95)
e Transformed Data (Employee Record Example) (p. 96)
¢ Output Model (Employee Record Example) (p. 96)
¢ Output Mapping Template (Employee Record Example) (p. 97)

Original Data (Employee Record Example)

The following is the original JSON data for the employee record example:

{
"QueryResponse": {
"maxResul ts": "1",
"startPosition": "1",
"Enpl oyee": {
"Organi zation": "fal se",
"Title": "Ms.",
"G venNane": "Jane",
"M ddl eNane": "Lane",
"Fami | yNane": "Doe",
"Di spl ayNane": "Jane Lane Doe",
"Print OnCheckNanme": "Jane Lane Doe",
"Active": "true",
"PrimaryPhone": { "FreeFormNunber": "505.555.9999" },
"PrimaryEmai | Addr": { "Address": "janedoe@xanple.coni },
"Enpl oyeeType": "Regul ar",
"status": "Synchronized",
"Id": "ABCl123",
"SyncToken": "1",
"Met aData": {
"CreateTi ne": "2015-04-26T19: 45: 032",
"Last Updat edTi me": "2015-04-27T21: 48: 23Z"
}
"PrimaryAddr": {
"Linel": "123 Any Street",
"City": "Any CGity",
" Count rySubDi vi si onCode": "WA",
" Post al Code": "01234"
}
}
}
“time": "2015-04-27T22:12:32.0122Z"
}

93

Amazon API Gateway Developer Guide
Employee Record Example

Input Model (Employee Record Example)

The following is the input model that corresponds to the original JSON data for the employee record
example:

"$schema": "http://json-schena. org/draft-04/schema#",
"title": "Enployeel nput Model ",
"type": "object",
"properties": {
"QueryResponse": {
"type": "object",
"properties": {

"maxResul ts": { "type": "string" },
"startPosition": { "type": "string" },
"Enpl oyee": {

"type": "object",
"properties": {
"Organi zation": { "type": "string" },
"Title": { "type": "string" },
"G venNare": { "type": "string" },
"M ddl eNane": { "type": "string" },
"Fam | yNane": { "type": "string" }
"Di spl ayName": { "type": "string" },
"Print OnCheckNane": { "type": "string" },
"Active": { "type": "string" },
"Pri maryPhone": {
"type": "object",
"properties": {
"FreeFormNunber": { "type": "string" }
}
}s
"PrimaryEmai |l Addr": {
"type": "object",
"properties": {
"Address": { "type": "string" }
}

1

1
"Enpl oyeeType": { "type": "string" },
"status": { "type": "string" },
"Id": { "type": "string" },
"SyncToken": { "type": "string" },
"MetaData": {
"type": "object",
"properties": {
"CreateTinme": { "type": "string" },
"Last Updat edTi nme": { "type": "string" }
}
1
"PrimaryAddr": {
"type": "object",
"properties": {
"Linel": { "type": "string" },
"City": { "type": "string" },
"Count rySubbi vi si onCode": { "type": "string" },
"Postal Code": { "type": "string" }

94

Amazon API Gateway Developer Guide
Employee Record Example

"time": { "type": "string" }

Input Mapping Template (Employee Record Example)

The following is the input mapping template that corresponds to the original JSON data for the employee
record example:

#set ($i nput Root = $input.path('$'))
{
"Quer yResponse": ({
"maxResul ts": "$i nput Root. Quer yResponse. maxResul ts",
"startPosition": "$inputRoot.QueryResponse.startPosition",
"Enpl oyee": {
"Organi zation": "$i nput Root. Quer yResponse. Enpl oyee. Or gani zati on",
"Title": "$input Root. QueryResponse. Enpl oyee. Title",
"G venNane": "$i nput Root . Quer yResponse. Enpl oyee. G venNane",
"M ddl eNane": "$i nput Root . Quer yResponse. Enpl oyee. M ddl eNane",
"Fam | yNane": "$i nput Root . Quer yResponse. Enpl oyee. Fami | yNane",
"Di spl ayNane": "$i nput Root . Quer yResponse. Enpl oyee. Di spl ayNane",
"Print OnCheckNane": "$i nput Root . Quer yResponse. Enpl oyee. Pri nt OnCheckNane",

"Active": "$input Root.QueryResponse. Enpl oyee. Active",

"PrimaryPhone": { "FreeFormNunber": "$i nput Root. QueryResponse. Enpl oy
ee. Pri mar yPhone. Fr eeFor mNunmber " },

"PrimaryEmai | Addr": { "Address": "$input Root. QueryResponse. Enpl oy
ee. Pri mar yEmai | Addr . Addr ess" },

" Enpl oyeeType": "$i nput Root . Quer yResponse. Enpl oyee. Enpl oyeeType",

"status": "$input Root. QueryResponse. Enpl oyee. st at us",

"1d": "$input Root. Quer yResponse. Enpl oyee. |1 d",

"SyncToken": "$i nput Root. Quer yResponse. Enpl oyee. SyncToken",

"Met aData": {

"CreateTi me": "$input Root. QueryResponse. Enpl oyee. Met aDat a. Creat eTi me",

"Last Updat edTi me": " $i nput Root . Quer yResponse. Enpl oyee. Met aDat a. Last Up
dat edTi me"
}
"PrimaryAddr" : {
"Li nel": "$input Root. QueryResponse. Enpl oyee. Pri mar yAddr . Li nel",
"City": "$inputRoot.QueryResponse. Enpl oyee. Pri naryAddr. G ty",
" Count r ySubDi vi si onCode": "$i nput Root . Quer yResponse. Enpl oyee. Pri maryAd
dr. Count rySubDi vi si onCode",
" Post al Code": "$i nput Root. Quer yResponse. Enpl oyee. Pri mar yAddr . Post al Code"

"time": "$inputRoot.tine"

95

Amazon API Gateway Developer Guide
Employee Record Example

Transformed Data (Employee Record Example)

The following is one example of how the original employee record example JSON data could be transformed
for output:

"QueryResponse": {

"maxResul ts": "1",
"startPosition": "1",
"Enpl oyees": [

{

"Title": "Ms.",

"G venNane": "Jane",

"M ddl eNane": "Lane",

"Fam | yNane": "Doe",

"Di spl ayNane": "Jane Lane Doe",
"Print OnCheckNane": "Jane Lane Doe",

"Active": "true",
"Pri maryPhone": "505.555. 9999",
"Email " [

{

"type": "primary",
"Address": "janedoe@xanpl e. cont
}
]

npl oyeeType": "Regul ar",
"PrimaryAddr": {
"Linel": "123 Any Street",
"City": "Any City",
" Count rySubDi vi si onCode": "WA",
"Post al Code": "01234"

"time": "2015-04-27T22:12:32.0122"

Output Model (Employee Record Example)

The following is the output model that corresponds to the transformed JSON data format:

"$schemn": "http://json-schena. org/draft-04/schenma#",
"title": "Enpl oyeeQut put Model ",
"type": "object",
"properties": {
"Quer yResponse": {
"type": "object",
"properties": {
"maxResul ts": { "type": "string" },
"startPosition": { "type": "string" },
"Enpl oyees": {
"type": "array",
"items": {
"type": "object",

96

Amazon API Gateway Developer Guide
Employee Record Example

"properties": {

"Title": { "type": "string" },

"G venNane": { "type": "string" },
"M ddl eNane": { "type": "string" }
"Fam | yNane": { "type": "string" }
"Di spl ayName": { "type": "string" },
"Print OnCheckNane": { "type": "string" },
"Active": { "type": "string" },
"PrimaryPhone": { "type": "string" },

1

1

"Email " {
"type": "array",
"items": {

"type": "object",
"properties": {
"type": { "type": "string" },
"Address": { "type": "string" }
}
}
1
"Enpl oyeeType": { "type": "string" },
"PrimaryAddr": {
"type": "object",
"properties": {
"Linel": {"type": "string" },
"City": { "type": "string" },
"Count rySubbDi vi si onCode": { "type": "string" },
"Postal Code": { "type": "string" }
}
}
}

"time": { "type": "string" }

Output Mapping Template (Employee Record Example)

The following is the output mapping template that corresponds to the transformed JSON data format.
The template variables here are based on the original, not transformed, JSON data format:

#set ($i nput Root = $i nput.path('$'))

{
"Quer yResponse": ({

"maxResul ts": "$i nput Root. Quer yResponse. maxResul ts",

"startPosition": "$inputRoot.QueryResponse. startPosition",
"Enpl oyees": [
{

"Title": "$inputRoot. QueryResponse. Enpl oyee. Title",
"G venNane": "$i nput Root . Quer yResponse. Enpl oyee. G venNane",
"M ddl eNane": " $i nput Root . Quer yResponse. Enpl oyee. M ddl eNane",
"Fam | yNane": "$i nput Root. Quer yResponse. Enpl oyee. Fami | yNane",
"Di spl ayNane": "$i nput Root . Quer yResponse. Enpl oyee. Di spl ayNane",
"Print OnCheckNane": "$i nput Root . Quer yResponse. Enpl oyee. Pri nt OnCheckNane",

97

Amazon API Gateway Developer Guide
Request and Response Parameter-Mapping Reference

"Active": "$inputRoot. QueryResponse. Enpl oyee. Active",
"Pri mar yPhone": "3$i nput Root. Quer yResponse. Enpl oyee. Pri mar yPhone. Fr ee

For m\unber ",
"Emai l " 1
{ .
"type": "primry",
"Address": "$i nput Root. Quer yResponse. Enpl oyee. Pri mar yEmai | Addr . Ad
dress”
}

1,
"Enpl oyeeType": "3$i nput Root. Quer yResponse. Enpl oyee. Enpl oyeeType",
"PrimaryAddr": {
"Linel": "$input Root. QueryResponse. Enpl oyee. Pri mar yAddr . Li nel",
"City": "$inputRoot. QueryResponse. Enpl oyee. Pri maryAddr. City",
"Count r ySubDi vi si onCode": "$i nput Root . Quer yResponse. Enpl oyee. Pri mary
Addr . Count r ySubDi vi si onCode",
"Post al Code": "$i nput Root. Quer yResponse. Enpl oyee. Pri mar yAd
dr . Post al Code"
}
}
]
}

ime": "$inputRoot.tine"

Amazon API Gateway APl Request and
Response Parameter-Mapping Reference

This section explains how to set up data mappings from an API's method request data, including other
data stored in cont ext (p.102), st age (p.106) oruti | (p.107) variables, to the corresponding integration
request parameters and from an integration response data, including the other data, to the method
response parameters. The method request data includes request parameters (path, query string, headers)
and the body The integration response data includes response parameters (headers), and the body. For
more information about using the stage variables, see Amazon API Gateway Stage Variables
Reference (p. 244).

Topics
¢ Map Data to Integration Request Parameters (p. 98)
« Map Data to Method Response Headers (p. 100)
¢ Transform Request and Response Bodies (p. 101)

Map Data to Integration Request Parameters

Integration request parameters, in the form of path variables, query strings or headers, can be mapped
from any defined method request parameters and the payload.

98

Amazon API Gateway Developer Guide
Map Data to Integration Request Parameters

Integration request data mapping expressions

Mapped data source Mapping expression

Method request path nmet hod. r equest . pat h. PARAM _NAVE

Method request query string met hod. r equest . quer ystri ng. PARAM NAVE

Method request header met hod. r equest . header . PARAM NAMVE

Method request body nmet hod. r equest . body

Method request body (JsonPath) nmet hod. r equest . body. JSONPat h_EXPRES-
SI ON.

Stage variables st ageVari abl es. VARI ABLE_NAVE

Context variables cont ext . VARI ABLE_NAME that must be one of
the supported context variables (p. 102).

Static value " STATI C_VALUE' .The STATI C_VALUE s a string
literal and must be enclosed within a pair of single
quotes.

Here, PARAM NAME is the name of a method request parameter of the given parameter type. It must have
been defined before it can be referenced. JSONPat h_ EXPRESSI ONis a JSONPath expression for a JSON
field of the body of a request or response. However, the "$." prefix is omitted in this syntax.

Example mappings from method request parameter in Swagger

The following example shows a Swagger snippet that maps 1) the method request's header, named
met hodRequest HeadPar am into the integration request path parameter, named

i nt egrati onPat hPar am 2) the method request query string, named net hodRequest Quer yPar am
into the integration request query string, named i nt egr at i onQuer yPar am

"request Paraneters" : {

"integration.request.path.integrationPathParant : "nethod.request. header. meth
odRequest Header Par ant',

"integration.request.querystring.integrati onQueryParant : "method.re

quest . querystring. met hodRequest Quer yPar ant'

}

Integration request parameters can also be mapped from fields in the JSON request body using a
JSONPath expression. The following table shows the mapping expressions for a method request body
and its JSON fields.

99

http://goessner.net/articles/JsonPath/index.html#e2

Amazon API Gateway Developer Guide
Map Data to Method Response Headers

Example mapping from method request body in Swagger

The following example shows a Swagger snippet that maps 1) the method request body to the integration
request header, named body- header, and 2) a JSON field of the body, as expressed by a JSON
expression (pet st or e. pet s[0] . nane, without the $. prefix).

"request Paraneters" : {
"integration.request. header. body-header" : "nmethod. request. body",
"integration.request. path. pet-nane" : "nethod. request. body. pet
store. pets[0].nane",

}

Map Data to Method Response Headers

Method response header parameters can be mapped from any integration response header or from the
integration response body.

Method response header mapping expressions

Mapped Data Source Mapping expression

Integration response header i ntegration. response. header. PARAM NAVE

Integration response body i nt egration. response. body

Integration response body (JsonPath) i ntegration. response. body. JSONPat h_EX-
PRESSI ON

Stage variable st ageVari abl es. VARI ABLE_NAVE

Context variable cont ext . VARI ABLE NANME that must be one of
the supported context variables (p. 102).

Static value " STATI C_VALUE' .The STATI C_VALUE s a string
literal and must be enclosed within a pair of single
quotes.

100

Amazon API Gateway Developer Guide
Transform Request and Response Bodies

Example data mapping from integration response in Swagger

The following example shows a Swagger snippet that maps 1) the integration response'sr edi rect . url ,
JSONPath field into the request response's | ocat i on header; and 2) the integration response's x- app- i d
header to the method response's i d header.

"responseParaneters” : {
"met hod. response. header. |l ocation" : "integration.response. body.redirect.url",
"met hod. response. header.id" : "integration.response. header. x-app-id",

Transform Request and Response Bodies

Integration request and method response bodies can be transformed from the method request and
integration response bodies, respectively, by using Mapping Templates (p. 76) written in Velocity Template
Language (VTL). JSON data can be manipulated using VTL logic and JSONPath expressions, and
additional data can be included from HTTP parameters, the calling context, and stage variables.

Select Mapping Templates

The request mapping template used to transform the method request body into the integration request
body is selected by the value of the "Content-Type" header sent in the client request.

The response mapping template used to transform the integration response body into the method response
body is selected by the value of the "Accept" header sent in the client request.

For example, if the client sends headers of " Cont ent - Type : application/xm ", and" Accept
appl i cati on/j son",the request template with the appl i cat i on/ xm key will be used for the integration
request, and the response template with the appl i cati on/j son key will be used for the method
response.

Only the MIME type is used from the Accept and Cont ent - Type headers when selecting a mapping
template. For example, a header of " Cont ent - Type: application/json; charset=UTF-8" will
have a request template with the appl i cati on/j son key selected.

API Gateway APl Request and Response
Payload-Mapping Template Reference

Amazon API Gateway defines a set of variables for working with models and mapping templates. This
document describes those functions and provides examples for working with input payloads.

Topics
¢ Accessing the $context Variable (p. 102)
¢ Accessing the $input Variable (p. 103)
¢ Accessing the $stageVariables Variable (p. 106)

101

http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://velocity.apache.org/engine/devel/vtl-reference-guide.html

Amazon API Gateway Developer Guide
Accessing the $context Variable

» Accessing the $util Variable (p. 107)
¢ Integration Passthrough Behaviors (p. 108)

Accessing the $context Variable

The $cont ext variable holds all the contextual information of your API call.

$context Variable Reference

Parameter
$context.apild

$cont ext . aut hori zer. principal I d

$cont ext . aut hori zer. cl ai ms. property

$cont ext . htt pMet hod

$context.identity.accountld
$cont ext.identity. api Key

$context.identity.caller

$cont ext . i dentity. cognit oAut henti cati on-
Provi der

$cont ext . i dentity. cognit oAut henti cati on-

Type

$context.identity.cognitoldentityld

$context.identity.cognitoldentityPoolld

$context.identity.sourcelp

Description
The identifier API Gateway assigns to your API.

The principal user identification associated with the
token sent by the client.

A property of the claims returned from the Amazon
Cognito user pool after the method caller is success-
fully authenticated.

Note
Calling $cont ext . aut hori zer. cl ai s
returns null.

The HTTP method used. Valid values include: DE-
LETE, GET, HEAD, OPTI ONS, PATCH, PCST, and
PUT.

The AWS account ID associated with the request.
The API owner key associated with your API.

The principal identifier of the caller making the re-
quest.

The Amazon Cognito authentication provider used
by the caller making the request. Available only if
the request was signed with Amazon Cognito cre-
dentials.

For information related to this and the other
Amazon Cognito $cont ext variables, see Amazon
Cognito Identity.

The Amazon Cognito authentication type of the
caller making the request. Available only if the re-
quest was signed with Amazon Cognito credentials.

The Amazon Cognito identity ID of the caller mak-
ing the request. Available only if the request was
signed with Amazon Cognito credentials.

The Amazon Cognito identity pool ID of the caller
making the request. Available only if the request
was signed with Amazon Cognito credentials.

The source IP address of the TCP connection
making the request to APl Gateway.

102

http://docs.aws.amazon.com/cognito/devguide/identity/
http://docs.aws.amazon.com/cognito/devguide/identity/

Amazon API Gateway Developer Guide
Accessing the $input Variable

Parameter Description

$context.identity. user The principal identifier of the user making the re-
quest.

$context.identity. user Agent The User Agent of the API caller.

$context.identity.userArn The Amazon Resource Name (ARN) of the effective
user identified after authentication.

$cont ext . request | d An automatically generated ID for the API call.

$cont ext.resourcel d The identifier APl Gateway assigns to your re-
source.

$cont ext . resour cePat h The path to your resource. For more information,

see Build an API Gateway API Step by Step (p. 14).

$cont ext . st age The deployment stage of the API call (for example,
Beta or Prod).

Example

You may want to use the $cont ext variable if you're using AWS Lambda as the target backend that the
APl method calls. For example, you may want to perform two different actions depending on whether the
stage is in Beta or in Prod.

Context Variables Template Example

The following example shows how to get context variables:

{
"stage" : "$context.stage",
"request_id" : "$context.requestld",
“api_id" : "$context.apild",
"resource_path" : "$context.resourcePath",
"resource_id" : "$context.resourceld",
“http_met hod" : "$context.httpMethod”,
"source_i p" : "$context.identity.sourcelp",
"user-agent" : "$context.identity.userAgent",
"account _id" : "$context.identity.accountld",
"api _key" : "$context.identity.apiKey",
"caller" : "$context.identity.caller",
"user" : "S$context.identity.user",
"user_arn" : "$context.identity.userArn"

}

Accessing the $input Variable

The $i nput variable represents the input payload and parameters to be processed by your template. It
provides four functions:

103

Amazon API Gateway Developer Guide
Accessing the $input Variable

Function Reference

Variable and Function Description
$i nput . body Returns the raw payload as a string.
$i nput . j son(x) This function evaluates a JSONPath expression

and returns the results as a JSON string.

For example, $i nput . j son(' $. pets') willreturn
a JSON string representing the pets structure.

For more information about JISONPath, see
JSONPath or JSONPath for Java.

$i nput . par ans() Returns a map of all the request parameters of your
API call.
$i nput . par ans(x) Returns the value of a method request parameter

from the path, query string, or header value (in that
order) given a parameter name string x.

$i nput . pat h(x) Takes a JSONPath expression string (x) and re-
turns an object representation of the result. This
allows you to access and manipulate elements of
the payload natively in Apache Velocity Template
Language (VTL).

For example, $i nput . pat h(' $. pets'). si ze()

For more information about JISONPath, see
JSONPath or JSONPath for Java.

Examples

You may want to use the $i nput variable to get query strings and the request body with or without using
models. You may also want to get the parameter and the payload, or a subsection of the payload, into
your AWS Lambda function. The examples below show how to do this.

Example JSON Mapping Template

The following example shows how to use a mapping to read a name from the query string and then include
the entire POST body in an element:

"nanme" : "$input.parans(’'nane')",
"body" : $input.json('$')

If the JSON input contains unescaped characters that cannot be parsed by JavaScript, a 400 response
may be returned. Applying $uti | . escapeJavaScri pt ($i nput.json('$')) above will ensure that
the JSON input can be parsed properly.

104

http://goessner.net/articles/JsonPath/
https://github.com/jayway/JsonPath
http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://goessner.net/articles/JsonPath/
https://github.com/jayway/JsonPath

Amazon API Gateway Developer Guide
Accessing the $input Variable

Example Inputs Mapping Template

The following example shows how to pass a JISONPath expression to the j son() method. You could
also read a specific property of your request body object by using a period (.) , followed by your property
name:

"name" : "$input.parans(' nane')",
"body" : $input.json('$. nykey')

If a method request payload contains unescaped characters that cannot be parsed by JavaScript, you
may get 400 response. In this case, you need to call $uti | . escapeJavaScri pt () function in the
mapping template, as shown as follows:

"name" : "$input.parans(' nane')",
"body" : $util.escapedavaScri pt ($i nput.json('$. mykey'))

Param Mapping Template Example

The following parameter-mapping example passes all parameters, including path, querystring and header,
through to the integration endpoint via a JSON payload

#set ($al | Parans = $i nput. parans())

{
"parans" @ {
#f oreach($type in $al |l Parans. keySet ())
#set ($parans = $al | Par ans. get ($type))
"$type" : {
#f or each($par anName i n $par ans. keySet ())
"$paramNanme" : "$util.escapeJavaScri pt ($parans. get ($par anNane))"
#i f ($f or each. hasNext), #end
#end
}
#i f ($f or each. hasNext), #end
#end
}
}

In effect, this mapping template outputs all the request parameters in the payload as outlined as follows:

{

"paraneters" : {
"path" : {
"path_name" : "path_val ue",

}

"header" : {
"header _nane" : "header val ue",

}
‘querystring” : {
"querystring_name" : "querystring_val ue",

105

Amazon API Gateway Developer Guide
Accessing the $stageVariables Variable

Example Request and Response
Here’s an example that uses all three functions:

Request Template:

Resource: /things/{id}

Wth input tenplate:

{
"id" : "$input.parans('id)",
"count" : "$input.path('$.things').size()",
"things" : $util.escapedavaScript($input.json('$.things'))
}
POST /t hi ngs/ abc
{
"things" : {
"1 (),
"2" (],
"3t)
}
}
Response:
{
"id": "abc",
count": "3",
things": {
"1 (),
"2" (),
"3 {}
}
}

For more mapping examples, see Set Up Request and Response Payload Mappings (p. 72)

Accessing the $stageVariables Variable

The syntax for inserting a stage variable looks like this: $st ageVari abl es.

$stageVariables Reference

Syntax Description
$st ageVari abl es. <vari abl e_nane> <vari abl e_nane> represents a stage variable
name.

106

Amazon API Gateway Developer Guide
Accessing the $util Variable

Syntax Description
$st ageVari abl es[' <vari abl e_nane>'] <vari abl e_nane> represents any stage variable
name.

${stageVari abl es[' <vari abl e_nanme>']} <vari abl e_nane> represents any stage variable
name.

Accessing the $util Variable

The $ut i | variable contains utility functions for use in mapping templates.

Note
Unless otherwise specified, the default character set is UTF-8.

$util Variable Reference

Function Description
$util.escapedavaScript () Escapes the characters in a string using JavaScript
string rules.
Note

This function will turn any regular single
quotes (') into escaped ones (\ '). How-
ever, the escaped single quotes are not
valid in JSON. Thus, when the output from
this function is used in a JSON property,
you must turn any escaped single quotes
(\ ') back to regular single quotes (*). This
is shown in the following example:

$util.escapelavaScript(data).re
placeAl | ("\"",""")

107

Amazon API Gateway Developer Guide
Integration Passthrough Behaviors

Function Description

$util . parsedson() Takes "stringified" JSON and returns an object
representation of the result. You can use the result
from this function to access and manipulate ele-
ments of the payload natively in Apache Velocity
Template Language (VTL). For example, if you
have the following payload:

{"errorMes

sage: "{\"keyD\":\"var I\, \"keyA " {\"arr\":[1,2, 3 }}"}

and use the following mapping template

#set ($errorMessageOhj =
$util . parseJson($i nput. pat h(' $. error Mes

sage')))
{

"error MessageObj Key2ArrVal " : S$er
ror MessageQbj . key2. arr[0]

}

You will get the following output:

{
“error MessageObj Key2ArrVval" : 1
}
$util.url Encode() Converts a string into "application/x-www-form-ur-

lencoded" format.

$util.url Decode() Decodes an "application/x-www-form-urlencoded"”
string.

$util. base64Encode() Encodes the data into a base64-encoded string.

$util . base64Decode() Decodes the data from a base64-encoded string.

Integration Passthrough Behaviors

When a method request carries a payload and either the Content-Type header does not match any
specified mapping template or no mapping template is defined, you can choose to pass the client supplied
request payload through the integration request to the back end without transformation. The process is
known as integration passthrough. The actual passthrough behavior of an incoming request is determined
by the option you choose for a specified mapping template, during integration request set-up (p. 67), and
the Content Type header that a client set in the incoming request. The following examples illustrate the
possible passthrough behaviors.

Example 1: One mapping template is defined in the integration request for the appl i cati on/j son
content type.

108

Amazon API Gateway Developer Guide

Import and Export API

Content-Type head-
er\Selected
passthrough option

None (defaultto appl i c-

ation/json

application/json

application/xm

WHEN_NO_MATCH

The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

The request payload is
not transformed and is
sent to the back end as-
is.

WHEN_NO_TEMPLATE

The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

The request is rejected
with an HTTP 415 Un-
supported Media
Type response.

NEVER

The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

The request is rejected
with an HTTP 415 Un-
supported Medi a
Type response.

Example 2: One mapping template is defined in the integration request for the appl i cat i on/ xm content

type.
Content-Type head-

er\Selected
passthrough option

None (defaultto appl i c-
ation/json

application/json

application/xm

WHEN_NO_MATCH

The request payload is
not transformed and is
sent to the back end as-
is.

The request payload is
not transformed and is
sent to the back end as-
is.

The request payload is
transformed using the
template.

WHEN_NO_TEMPLATE

The request is rejected
with an HTTP 415 Un-
supported Media
Type response.

The request is rejected
with an HTTP 415 Un-
supported Media
Type response.

The request payload is
transformed using the
template.

NEVER

The request is rejected
with an HTTP 415 Un-
supported Medi a
Type response.

The request is rejected
with an HTTP 415 Un-
supported Medi a
Type response.

The request payload is
transformed using the
template.

Import and Export APl Gateway API with
Swagger Definition Files

As an alternative to using the Amazon API Gateway console to create and update your API, you can use
the API Gateway Import API feature to upload API definitions into API Gateway from external API definition
files, such as those using the Swagger specification with the API Gateway extensions (p. 115).

After an APl is created and configured in APl Gateway, you can download it as a Swagger definition file
using the Amazon API Gateway Export API. The API Gateway console has enabled this feature for you
to export an API using intuitive visual interfaces.

Topics
¢ Import an API into API Gateway (p. 110)
¢ Export an API from API Gateway (p. 113)
¢ API Gateway Extensions to Swagger (p. 115)

109

https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md

Amazon API Gateway Developer Guide
Import an API

Import an APl into API Gateway

You can use the API| Gateway Import API feature to import an API from an external definition file into API
Gateway. Currently, the Import API feature supports Swagger v2.0 definition files.

With the Import API, you can either create a new API by submitting a POST request that includes a
definition as the payload, or you can update an existing API by using a PUT request that contains a
definition in the payload. You can update an API by overwriting it with a new definition, or merge a definition
with an existing API. You specify the options in the request URL using a nbde query parameter.

Note
For RAML API definitions, you can continue to use AP| Gateway Importer.

Besides making explicit calls to the REST API, as described below, you can also use the Import API
feature in the AP Gateway console. The option is available as an item in the Actions drop-down menu.
For an example of using the Import API feature from the API Gateway console, see Build and Test an
API Gateway API from an Example (p. 6).

Use the Import API to Create a New API

To use the Import API feature to create a new API, POST your API definition file to
htt ps:// api gat eway. <r egi on>. amazonaws. conf r est api s?node=i npor t . This request results
in a new RestApi, along with Resources, Models, and other items defined in the definition file.

The following code snippet shows an example of the POST request with the payload of a JSON-formatted
Swagger definition:

POST /rest api s?node=i nport

Host : api gat eway. <r egi on>. amazonaws. com
Cont ent - Type: application/json

Cont ent - Lengt h:

Swagger APl definition in JSON (p. 155)

Use the Import API to Update an Existing API

You can use the Import API feature to update an existing APl when there are aspects of that API you
would like to preserve, such as stages and stage variables, or references to the API from API Keys.

An API update can occur in two modes: merge or overwrite. Merging an API is useful when you have
decomposed your external API definitions into multiple, smaller parts and only want to apply changes
from one of those parts at a time. For example, this might occur if multiple teams are responsible for
different parts of an APl and have changes available at different rates. In this mode, items from the existing
API that are not specifically defined in the imported definition will be left alone.

Overwriting an APl is useful when an external API definition contains the complete definition of an API.
In this mode, items from an existing API that are not specifically defined in the imported definition will be
deleted.

To merge an API, submit a PUT request to
htt ps:// api gat eway. <r egi on>. amazonaws. conf r est api s/ <r est api _i d>?node=ner ge. The
rest api _i d path parameter value specifies the API to which the supplied API definition will be merged.

The following code snippet shows an example of the PUT request to merge a Swagger API definition in
JSON, as the payload, with the specified API already in APl Gateway.

110

http://swagger.io/specification/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-import/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-put/
https://github.com/awslabs/aws-apigateway-importer

Amazon API Gateway Developer Guide
Import an API

PUT /restapi s/ <restapi _i d>?node=ner ge
Host : api gat eway. <r egi on>. anazonaws. com
Cont ent - Type: application/json

Cont ent - Lengt h:

A Swagger APl definition in JSON (p. 155)

The merging update operation takes two complete API definitions and merges them together. For a small
and incremental change, you can use the resource update operation.

To overwrite an API, submit a PUT request to
https:// api gat eway. <r egi on>. amazonaws. coni r est api s/ <rest api _i d>?node=overwite.
Ther est api _i d path parameter specifies the API that will be overwritten with the supplied API definitions.

The following code snippet shows an example of an overwriting request with the payload of a
JSON-formatted Swagger definition:

PUT /restapis/<restapi_i d>?nmode=overwite
Host : api gat eway. <r egi on>. amazonaws. com
Cont ent - Type: application/json

Cont ent - Lengt h:

A Swagger APl definition in JSON (p. 155)

When the node query parameter is not specified, merge is assumed.

Note

The PUT operations are idempotent, but not atomic. That means if a system error occurs part
way through processing, the APl can end up in a bad state. However, repeating the operation
will put the API into the same final state as if the first operation had succeeded.

Swagger basepath

In Swagger, you can use the basePat h property to provide one or more path parts that precede each
path defined in the paths property. Because API Gateway has several ways to express a resource’s path,
the Import API feature provides three options for interpreting the basePat h property during an import:

ignore

If the Swagger file has a basePat h value of "/ a/ b/ ¢" and the pat hs property contains"/e" and"/f",
the following POST or PUT request:

PCOST /rest api s?node=i nport &asepat h=i gnor e

PUT /restapi s/ api _i d?basepat h=i gnore

will result in the following resources in the API:

o/

111

http://integ-docs-aws.amazon.com/apigateway/api-reference/link-relation/resource-update/
http://swagger.io/specification/

Amazon API Gateway Developer Guide
Import an API

e [e
o /f

The effect is to treat the basePat h as if it was not present, and all of the declared API resources are
served relative to the host. This can be used, for example, when you have a custom domain name with
an API mapping that does not include a Base Path and a Stage value that refers to your production stage.

Note
API Gateway will automatically create a root resource for you, even if it is not explicitly declared
in your definition file.

prepend

If the Swagger file has a basePat h value of "/ a/ b/ ¢" and the pat hs property contains"/e" and"/f",
the following POST or PUT request:

POST /restapi s?node=i nport &asepat h=pr epend

PUT /restapis/api _i d?basepat h=pr epend

will result in the following resources in the API:

o/

e Ja

e /alb

« /alblc

e [alblcle
 /alb/c/f

The effect is to treat the basePat h as specifying additional resources (without methods) and to add them
to the declared resource set. This can be used, for example, when different teams are responsible for
different parts of an API and the basePat h could reference the path location for each team's API part.

Note
API Gateway will automatically create intermediate resources for you, even if they are not explicitly
declared in your definition.

split

If the Swagger file has a basePat h value of "/ a/ b/ ¢" and the pat hs property contains"/e" and"/f",
the following POST or PUT request:

POST /rest api s?node=i nport &asepat h=spl it

PUT /restapis/api _i d?basepat h=split

will result in the following resources in the API:

o/

e /b

* /blc
« /bicle

112

Amazon API Gateway Developer Guide
Export an API

o [blclt

The effect is to treat top-most path part, "/ a", as the beginning of each resource's path, and to create
additional (no method) resources within the API itself. This could, for example, be used when " a" is a
stage name that you want to expose as part of your API.

Errors during Import

During the import, errors can be generated for major issues like an invalid Swagger document. Errors
are returned as exceptions (e.g., BadRequest Except i on) in an unsuccessful response. When an error
occurs, the new API definition is discarded and no change is made to the existing API.

Warnings during Import

During the import, warnings can be generated for minor issues like a missing model reference. If a warning
occurs, the operation will continue if the f ai | onwar ni ngs=f al se query expression is appended to the
request URL. Otherwise, the updates will be rolled back. By default, f ai | onwar ni ngs is setto f al se.
In such cases, warnings are returned as a field in the resulting RestApi resource. Otherwise, warnings

are returned as a message in the exception.

Export an API from API Gateway

Once you created and configured an APl in API Gateway, using the APl Gateway console or otherwise,
you can export it to a Swagger file using the APl Gateway Export API, which is part of the Amazon API
Gateway Control Service. You have options to include the APl Gateway integration extensions, as well
as the Postman extensions, in the exported Swagger definition file.

You cannot export an API if its payloads are not of the appl i cati on/j son type. If you try, you will get
an error response stating that JSON body models are not found.

Request to Export an API

With the Export API, you export an existing API by submitting a GET request, specifying the to-be-exported
API as part of URL paths. The request URL is of the following format:

https://<host>/restapis/<restapi_id>/stages/<stage_nanme>/exports/swagger

You can append the ext ensi ons query string to specify whether to include API Gateway extensions
(with the i nt egr at i on value) or Postman extensions (with the post man value).

In addition, you can set the Accept header to appl i cati on/j son or appli cati on/yanl to receive
the API definition output in JSON or YAML format, respectively.

For more information about submitting GET requests using the APl Gateway Export API, see Making
HTTP Requests.

Note

If you define models in your API, they must be for the content type of "application/json" for API
Gateway to export the model. Otherwise, APl Gateway throws an exception with the "Only found
non-JSON body models for ..." error message.

113

http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://www.getpostman.com
http://docs.aws.amazon.com/apigateway/api-reference/making-http-requests
http://docs.aws.amazon.com/apigateway/api-reference/making-http-requests

Amazon API Gateway Developer Guide
Export an API

Download API Swagger Definition in JSON

To export and download an API in Swagger definitions in JSON format:

GET /restapi s/ <restapi _i d>/ stages/ <stage_nane>/ export s/ swagger
Host: api gat eway. <r egi on>. amazonaws. com
Accept: application/json

Here, <r egi on> could be, for example, us- east - 1. For all the regions where API Gateway is available,
see Regions and Endpoints

Download API Swagger Definition in YAML

To export and download an API in Swagger definitions in YAML format:

GET /restapis/<restapi _i d>/ stages/ <stage_nane>/ export s/ swagger
Host: api gat eway. <r egi on>. amazonaws. com
Accept: application/yam

Download API Swagger Definition with Postman Extensions
in JSON

To export and download an API in Swagger definitions with the Postman extension in JSON format:

CGET /restapi s/ <restapi _i d>/ st ages/ <st age_nane>/ export s/ swagger ?ext ensi ons=post nan
Host: api gat eway. <r egi on>. amazonaws. com
Accept: application/json

Download API Swagger Definition with APl Gateway
Integration in YAML

To export and download an API in Swagger definitions with AP Gateway integration in YAML format:

GET /restapi s/ <restapi _i d>/ st ages/ <st age_nane>/ export s/ swagger ?ext ensi ons=i nt eg
ration

Host: api gat eway. <r egi on>. amazonaws. com

Accept: application/yam

114

http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

Export API Using the API Gateway Console

From the stage configuration page in the API Gateway console, choose the Export tab and then one
of the available options (Export as Swagger, Export as Swagger + API Gateway Integrations and
Export as Postman) to download your API's Swagger definition.

Settings Stage Variables SDK Generation Export = Deployment History

Export as Swagger Export as Swagger + APl Gateway Integrations Export as Postman

JSON | YAML

APl Gateway Extensions to Swagger

The API Gateway extensions support the AWS-specific authorization and API Gateway-specific API
integrations. In this section, we will describe the APl Gateway extensions to the Swagger specification.
Tip
To understand how the API Gateway extensions are used in an app, you can use the API Gateway

console to create an APl and export it to a Swagger definition file. For more information on how
to export an API, see Export an API (p. 113).

Topics
¢ X-amazon-apigateway-authorizer Object (p. 115)
¢ X-amazon-apigateway-authtype Property (p. 117)
¢ X-amazon-apigateway-integration Object (p. 118)
¢ X-amazon-apigateway-integration.requestTemplates Object (p. 120)
¢ X-amazon-apigateway-integration.requestParameters Object (p. 121)
¢ X-amazon-apigateway-integration.responses Object (p. 122)
¢ X-amazon-apigateway-integration.response Object (p. 123)
¢ X-amazon-apigateway-integration.responseTemplates Object (p. 124)
¢ X-amazon-apigateway-integration.responseParameters Object (p. 124)

X-amazon-apigateway-authorizer Object

Defines a custom authorizer to be applied for authorization of method invocations in API Gateway. This
object is an extended property of the Swagger Security Definitions Operation object.

115

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#securityDefinitionsObject

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

Properties

Property Name Type Description

type string The type of the authorizer. This is
a required property and the value
must be "token".

authorizerUri string The Uniform Resource Identifier
(URI) of the authorizer (a Lambda
function). For example,

"arn: aws: api gat eway: us-
east - 1: | anbda: pat h/ 2015-
03-31/func

tions/arn: aws: | anbda: us-
east-1:account-id:func
tion:auth_function_nane/in
vocat i ons"

authorizerCredentials string Credentials required for the author-
izer, if any, in the form of an ARN
of an IAM execution role. For ex-
ample, "arn:aws:iam::account -
i d:l AM rol e".

identityValidationExpression string A regular expression for validating
the incoming identity. For ex-
ample, "x-[a-z]+".

authorizerResultTtlinSeconds string The number of seconds during
which the resulting IAM policy is
cached.

X-amazon-apigateway-authorizer Example

The following Swagger security definitions example specifies a custom authorizer named
t est - aut hori zer.

"securityDefinitions" : {
"test-authorizer" : {
"type" : "api Key", /'l Required and the val ue nust
be "api Key" for an APl Gateway API.
"nanme" : "Authorization", /1 The source header nane
identifying this authorizer.
"in" : "header", /'l Required and the val ue nust
be "header" for an AAPI Gateway API.
" X-amazon- api gat eway- aut ht ype" : "oauth2", // Specifies the authorization
nmechani sm for the client.
"Xx-anmazon- api gat eway- aut hori zer" : { /] An APl Gateway custom au
thorizer definition
"type" : "token", /1 Required property and the
val ue nust "token"
"authorizerUri" : "arn:aws: api gat eway: us- east - 1: | anbda: pat h/ 2015- 03-

116

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

31/ functions/arn: aws: | anbda: us-east-1: account -i d: functi on: functi on-nane/i nvoca
tions",

"authorizerCredentials" : "arn:aws:iam:account-id:role",
"identityValidati onExpression" : "~x-[a-z]+",
"aut hori zerResul t Tt1 I nSeconds" : 60

The following Swagger operation object snippet sets the GET / ht t p to use the custom authorizer specified
above.

"Ihttp" @ {
"get" : {
"responses” : { },
"security" : [{
"test-authorizer" : []
ol
"X-amazon- api gat eway-i ntegration" : {
"type" : "http",
"responses" : {
"default" : {
"statusCode" : "200"
}
},
"httpMethod" : "GET",
"uri" : "http://api.exanple.cont

X-am azon-apigateway-authtype Pro perty

Specify the type of a custom authorizer. It is parsed by the APl Gateway APl import and export features.
This property is an extended property of the Swagger Security Definitions Operation object.
X-amazon-apigateway-authtype Example

The following example sets the type of a custom authorizer using OAuth 2.

"cust-authorizer" : {

"type" : "...", I/l required

"name" : "...", /] name of the identity source header

"in" : "header", // nust be header

" x-amazon- api gat eway- aut htype" : "oauth2", // Specifies the authorization
mechani sm for the client.

"Xx-amazon- api gat eway- aut hori zer" : {

}

117

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#securityDefinitionsObject

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

The following security definition example specifies authorization using AWS Signature Version 4:

"sigvad" : {
"type" : "apiKey",
"nanme" : "Authorization",
"in" : "header",
"x-anmazon- api gat eway- aut htype" : "awsSi gv4"

X-amazon-apigateway-integration Object

Specifies details of the back-end integration used for this method. This extension is an extended property
of the Swagger Operation object. The result is an API Gateway integration object.

Properties

Property Name Type Description

type string The type of integration with the
specified back end. The valid
value is ht t p (for integration with
an HTTP back end) or aws (for
integration with AWS Lambda
functions or other AWS services,
such as DynamoDB, SNS or

SQS).

uri string The endpoint URI of the back end.
For integrations of the aws type,
this is an ARN value. For the HT-
TP integration, this is the URL of
the HTTP endpoint including the
ht t ps or ht t p scheme.

httpMethod string The HTTP method used in the in-
tegration request. For Lambda
function invocations, the value
must be PCST.

118

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md#operationObject
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

Property Name Type Description

credentials string For AWS IAM role-based creden-
tials, specify the ARN of an appro-
priate IAM role. If unspecified,
credentials will default to re-
source-based permissions that
must be added manually to allow
the API to access the resource.
For more information, see Grant-
ing Permissions Using a Resource
Policy. Note: when using IAM
credentials, please ensure that
AWS STS regional endpoints are
enabled for the region where this
API is deployed for best perform-
ance.

requestTemplates X-amazon-apigateway-integra- | Mapping templates for a request
tion.requestTemplates (p. 120) | payload of specified MIME types.

requestParameters X-amazon-apigateway-integra- | Specifies mappings from method
tion.requestParameters (p. 121) | request parameters to integration
request parameters. Supported
request parameters are quer ys-
tring, pat h, header, and body.

cacheNamespace string An API-specific tag group of re-
lated cached parameters.
cacheKeyParameters An array of stri ng A list of request parameters
whose values are to be cached.
responses X-amazon-apigateway-integra- | Defines the method's responses
tion.responses (p. 122) and specifies desired parameter

mappings or payload mappings
from integration responses to
method responses.

X-amazon-apigateway-integration Example

The following example integrates an API's POST method with a Lambda function in the back end. For
demonstration purposes, the sample mapping templates shown in r equest Tenpl at es and
responseTenpl at es of the examples below are assumed to apply to the following JSON-formatted
payload:{ "nane":"value_1", "key":"value_2", "redirect": {"url" :"..."} } togenerate
a JSON output of { "stage":"val ue_1", "user-id":"val ue_2" } oran XML output of

<st age>val ue_1</ st age>.

"X-amazon- api gat eway-i ntegration" : {

"type" : "aws",

"uri" : "arn:aws:api gat eway: us- east - 1: | anbda: pat h/ 2015- 03- 31/ f unc
tions/arn: aws: | anbda: us-east-1: 012345678901: f uncti on: Hel | oWor | d/ i nvocati ons",

"httpMet hod" : "POST",

"credentials" : "arn:aws:iam:012345678901: r ol e/ api gat eway- i nvoke-| anbda-
exec-rol e",

"request Tenpl ates" : {

119

http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

"application/json" : "#set ($root=$input.path('$)) { \"stage\"
\"$root.nane\", \"user-id\": \"$root.key\" }",
"application/xm" : "#set ($root=$input.path('$'))
<st age>%r oot . nane</ st age> "
H
"request Paraneters" : {
"integration.request. path.stage" : "method.request.querystring.version"
"integration.request.querystring.provider" : "method.request.querys
tring. vendor"
H
"cacheNanmespace" : "cache nanmespace",
"cacheKeyParaneters" : [],
"responses” : {
"2\ d{2}" : {
"statusCode" : "200"
"responseParaneters” : {
"met hod. response. header.requestld" : "integration.response. head
er.cid"
H
"responseTenpl ates" : {
"application/json" : "#set ($root=$input.path('$)) { \"stage\"
\"$root.nane\", \"user-id\": \"$root.key\" }",
"application/xm" : "#set ($root=$input.path('$'))
<st age>%r oot . nane</ st age> "
}
H
"302" : {
"statusCode" : "302",
"responseParaneters” : {
"met hod. response. header. Locati on" : "integration.response. body.re
direct.url"
}
H
"default" : {
"statusCode" : "400"
"responseParaneters” : {
"met hod. response. header. t est - net hod- response- header" : "'static
val ue'"
}
}
}

Note that double quotes (") of the JSON string in the mapping templates must be string-escaped (\").

X-amazon-apigateway-integration.requestTemplates Object

Specifies mapping templates for a request payload of the specified MIME types.

120

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

Properties
Property Name Type Description
M ME type string An example of the MIME type is

appl i cati on/j son.Forinform-
ation about creating a mapping
template, see Mapping Tem-
plates (p. 76).

X-amazon-apigateway-integration.requestTemplates Example

The following example sets mapping templates for a request payload of the appl i cati on/j son and
appl i cati on/ xm MIME types.

"request Tenpl ates" : {

"application/json" : "#set ($root=$input.path('$)) { \"stage\":
\"$root.nanme\", \"user-id\": \"$root.key\" }",
"application/xm" : "#set ($root=$input.path('$')) <stage>$root.nane</stage>

X-amazon-apigateway-integration.requestParameters Object

Specifies mappings from named method request parameters to integration request parameters. The
method request parameters must be defined before being referenced.

Properties

Property Name Type Description

integration.re- string The value must be a predefined
guest . <param method request parameter of the
type>. <par am nane> nmet hod. r equest . <par am

t ype>. <par am nane> format,
where <par am t ype> can be
querystring, pat h, header, or
body. For the body parameter,
the <par am nane> is a JSON
path expression without the $.
prefix.

X-anmazon- api gat eway-i nt egrati on. request Par anet ers Example

The following request parameter mappings example translates a method request's query (ver si on),
header (x- user - i d) and path (ser vi ce) parameters to the integration request's query (st age), header
(x- useri d), and path parameters (op), respectively.

"request Paraneters" : {
"integration.request.querystring.stage" : "nethod.request.querystring.ver
sion",

121

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

"integration.request. header.x-userid" : "method.request. header.x-user-id",

"integration.request.path.op" : "method.request. path. service"

b

X-amazon-apigateway-integration.responses Object

Defines the method's responses and specifies parameter mappings or payload mappings from integration
responses to method responses.

Properties

Property Name Type Description

Response status pattern | x-amazon-apigateway-integra- | Selection regular expression used
tion.response (p. 123) to match the integration response

to the method response. For HT-
TP integrations, this regex applies
to the integration response status
code. For Lambda invocations, the
regex applies to the er r or Mes-
sage field of the error information
object returned by AWS Lambda
as a failure response body when
the Lambda function execution
throws an exception.

Note

The Response st at us
patt er n property name
refers to a response
status code or regular
expression describing a
group of response status
codes. It does not corres-
pond to any identifier of
an IntegrationResponse
resource in the API
Gateway REST API.

X- amazon- api gat eway-i ntegrati on. responses Example

The following example shows a list of responses from 2xx and 302 responses. For the 2xx response,
the method response is mapped from the integration response's payload of the appl i cati on/j son or
appl i cati on/ xm MIME type. This response uses the supplied mapping templates. For the 302
response, the method response returns a Locat i on header whose value is derived from the

redi rect. url property on the integration response's payload.

"responses” : {
"2A\d{2}" : {
"st at usCode" : "200",
"responseTenpl ates" : {

122

http://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-mode-exceptions.html
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration-response/

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

"application/json" : "#set ($root=$input.path('$')) { \"stage\":
\"$root.nanme\", \"user-id\": \"$root.key\" }",
"application/xm" : "#set ($root=$input.path('$'))
<st age>%r oot . nane</ st age> "
}
H
"302" : {
"statusCode" : "302",
"responsePar aneters" : {
"met hod. response. header. Location": "integration.response. body.redir
ect.url"
}
}

X-amazon-apigateway-integration.response Object

Defines a response and specifies parameter mappings or payload mappings from the integration response
to the method response.

Properties

Property Name Type Description

statusCode string HTTP status code for the method
response; for example, " 200" .
This must correspond to a match-
ing response in the Swagger Op-
eration r esponses field.

responseTemplates X-amazon-apigateway-integra- | Specifies MIME type-specific

tion.responseTemplates (p. 124) | mapping templates for the re-

sponse’s payload.

responseParameters X-amazon-apigateway-integra- | Specifies parameter mappings for

tion.responseParameters (p. 124) | the response. Only the header
and body parameters of the integ-
ration response can be mapped
to the header parameters of the
method.

X-anmazon- api gat eway-i ntegration. response Example

The following example defines a 302 response for the method that derives a payload of the
application/jsonorapplication/xm MIME type from the back end. The response uses the
supplied mapping templates and returns the redirect URL from the integration response in the method's
Locat i on header.

{
"statusCode" : "302",
"responseTenpl ates" : {
"application/json" : "#set ($root=$input.path('$)) { \"stage\":

123

https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md#operationObject
https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md#operationObject

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

\"$root.nane\", \"user-id\": \"$root.key\" }",

“application/xm" : "#set ($root=3$input.path('$'))
<st age>%r oot . nane</ st age> "
1
"responseParaneters" : {
"met hod. response. header. Location": "integration.response. body.redir
ect.url™
}

}

X-amazon-apigateway-integration.responseTemplates Object

Specifies mapping templates for a response payload of the specified MIME types.

Properties
Property Name Type Description
M ME type string Specifies a mapping template to

transform the integration response
body to the method response
body for a given MIME type. For
information about creating a map-
ping template, see Mapping Tem-
plates (p. 76). An example of the
M ME type isapplica-
tion/json.

X-amazon-apigateway-integration.responseTemplate Example

The following example sets mapping templates for a request payload of the appl i cati on/j son and
appl i cati on/ xm MIME types.

"responseTenpl ates" : {

"application/json" : "#set ($root=$input.path('$')) { \"stage\":
\"$root.name\", \"user-id\": \"$root.key\" }",

"application/xm" : "#set ($root=$input.path('$)) <stage>$root.nane</stage>

X-amazon-apigateway-integration.responseParameters Object

Specifies mappings from integration method response parameters to method response parameters. Only
the header and body types of the integration response parameters can be mapped to the header type
of the method response.

124

Amazon API Gateway Developer Guide
Create an APl as an Amazon S3 Proxy

Properties

Property Name Type Description

nmet hod. r esponse. head- string The named parameter value can
er. <param nane> be derived from the header and

body types of the integration re-
sponse parameters only.

X- amazon- api gat eway-i ntegrati on. responsePar aneters Example

The following example maps body and header parameters of the integration response to two header
parameters of the method response.

"responseParaneters” : {
"met hod. response. header. Location" : "integration.response. body.redirect.url",
"met hod. response. header. x-user-id" : "integration.response. header. x-userid"
}

Create an APl as an Amazon S3 Proxy

As an example to showcase using an APl in API Gateway to proxy Amazon S3, this section describes
how to create and configure an API to expose the following Amazon S3 operations:

« Expose GET on the API's root resource to list all of the Amazon S3 buckets of a caller.

* Expose GET on a Folder resource to view a list of all of the objects in an Amazon S3 bucket.

¢ Expose PUT on a Folder resource to add a bucket to Amazon S3.

* Expose DELETE on a Folder resource to remove a bucket from Amazon S3.

« Expose GET on a Folder/Item resource to view or download an object from an Amazon S3 bucket.
« Expose PUT on a Folder/ltem resource to upload an object to an Amazon S3 bucket.

« Expose HEAD on a Folder/Item resource to get object metadata in an Amazon S3 bucket.

* Expose DELETE on a Folder/ltem resource to remove an object from an Amazon S3 bucket.

Note

To integrate your API Gateway API with Amazon S3, you must choose a region where both the
API Gateway and Amazon S3 services are available. For region availability, see Regions and
Endpoints.

You may want to import the sample API as an Amazon S3 proxy, as shown in A Sample Amazon S3
Proxy APl in Swagger with APl Gateway Extensions (p. 134). To do so, copy the Swagger definition and
paste it into a file. Use the API Gateway Swagger Importer. For more information, see Getting Started
with the API Gateway Swagger Importer.

To use the API Gateway console to create the API, you must first sign up for an AWS account.

If you do not have an AWS account, use the following procedure to create one.

125

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETE.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region
https://github.com/awslabs/aws-apigateway-importer
http://swagger.io/getting-started-with-the-amazon-swagger-importer/
http://swagger.io/getting-started-with-the-amazon-swagger-importer/

Amazon API Gateway Developer Guide
Create an IAM Role and Policy for the APl to Access
Amazon S3

To sign up for AWS
1. Open http://aws.amazon.com/ and choose Create an AWS Account.

2. Follow the online instructions.

To allow the API to invoke the Amazon S3 actions, you must have appropriate IAM policies attached to
an IAM role. The next section describes how to verify and to create, if necessary, the required 1AM role
and policies.

Create an IAM Role and Policy for the API to
Access Amazon S3

For read-only operations, including Get * and Li st * actions in Amazon S3, you can use the
AmazonS3ReadOnlyAccess policy provided by the IAM , whose ARN is
arn: aws: i am :aws: pol i cy/ AmazonS3ReadOnl yAccess:

The AmazonS3ReadOnlyAccess Policy

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Alow',
"Action": [
"s3: Get*",
"s3: List*"
I,
"Resource": "*"
}
]
}

This policy document states that any of the Amazon S3 Get * and Li st * actions can be invoked on any
of the Amazon S3 resources.

To allow Amazon S3 buckets and objects to be updated, you can use a custom policy for any of the
Amazon S3 Put * actions.

An Amazon S3 Put-only Policy

"Version": "2012-10-17",
"Statenent": [

{
"Effect": "All ow',
"Action": "s3:Put*",
"Resource": "*"

}

126

http://aws.amazon.com/

Amazon API Gateway Developer Guide
Create an IAM Role and Policy for the APl to Access
Amazon S3

You can attach a read-only and a put-only policy to an IAM role if your APl works with Amazon S3 Get *,
Li st* and Put * actions only.

To invoke the Amazon S3 Post actions, you must include s3: Post * action in an Allow policy document.
For a complete list of Amazon S3 actions, see Specifying Amazon S3 Permissions in a Policy.

For an API to create, view, update, and delete buckets and objects in Amazon S3, you can attach a single

full-access policy. For this, you can use the AmazonS3FullAccess policy, which is provided by the IAM
console and whose ARN is arn:aws:iam::aws:policy/AmazonS3FullAccess.

The AmazonS3FullAccess Policy

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "All ow',
"Action": s3:%*,
"Resource": "*"
}
]
}

This policy covers all actions on any resources in Amazon S3. Using the IAM role and policies ensures
that API Gateway can call the specifically allowed Amazon S3 actions on the specified Amazon S3
resources.

After you have decided which IAM policy documents to use, create an IAM role. Attach the policies to the
role. The resulting IAM role must contain the following trust policy for the attached policies to be applied
on API Gateway.

"Version": "2012-10-17",
"Statenment”: [
{
"Sidt:o"t,
"Effect": "Alow',
"Principal": {
"Service": "apigateway. anazonaws. conf

1

"Action": "sts:AssunmeRol e"

When using the IAM console to create the role, choose the Amazon API Gateway role type to ensure
that this trust policy is automatically included.

127

http://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html

Amazon API Gateway Developer Guide
Create API Resources for Amazon S3 Features

Create APl Resources for Amazon S3 Features

The following procedure describes how to use the APl Gateway console to create an API that exposes
the Amazon S3 service features.

To create an APl resource that exposes the Amazon S3 service features

1.

In the AP| Gateway console, create an APl named MyS3. This API's root resource (/) represents the
Amazon S3 service. Later, we will expose the GET method to list the Amazon S3 buckets of the
caller.

For the API's root resource, create a child resource named Folder, setting the required Resource
Path as /{folder}. The folder path parameter enables the client to specify a bucket name in the URL
when the client calls the API to work with the bucket. Later, we will expose the DELETE, GET, and
PUT methods on this Folder resource to work with an Amazon S3 bucket in the back end. We will
also declare a bucket path parameter for the back-end URL and specify a mapping expression to
translate folder to bucket.

For the API's Folder resource, identified by the /{folder} resource path, create an ltem child resource.
Set the required Resource Path as /{item}. The folder and item path parameters enable the client
to specify, in the request's URL, an object name in a given folder when the client calls the API to
work with the object. Later, we will expose the DELETE, HEAD, GET and PUT methods on this Item
resource. We will also declare bucket and object path parameters for the back-end URL and specify
mapping expressions to translate folder and item to bucket and object, respectively.

Expose a GET Method on an APl Root as Get
Service Action in Amazon S3

Use Create Method in the APl Gateway console to create a GET method for the API's root resource, (/).
In the Set up pane for the method, configure the GET method to integrate with the GET Service action
in Amazon S3, as follows.

To set up the newly created GET method on the API root

©No ok wDdPRE

For the Integration type, choose AWS Service Proxy.

From the list, choose an AWS Region.

From AWS Service, choose S3.

From HTTP method, choose GET.

For Action Type, choose Use path override.

(Optional) In Path override type /.

Copy the previously created IAM role's ARN (from the IAM console) and paste it into Execution role.
Choose Save to finish setting up this method.

128

Amazon API Gateway Developer Guide
Expose a GET Method on an API Root as Get Service
Action in Amazon S3

Choose the integration point for your new method. €

Integration type Lambda Function
HTTP Proxy

Mock Integration

@ AWS Service Proxy 1

AWS Region 2 E‘
AWs service (53 O@EP =]

AWS Subdomain

HTTP method 0

Action Type Use action name

Q) Use path override 5

Path override {opﬁonal@@

Execution role (" arn:aws:iam: 7005700 200 TrolefapigAwsProxyRole i]

Note
After the method is set up, you can modify these settings in the method's Integration
Request page.

By default, APl Gateway assumes the request and response payload to be of the "application/json" type.
However, Amazon S3 returns results in an XML-formatted response payload. This means that you must
override the default Content-Type header value of the method response with the Content-Type header
value from the integration response. Otherwise, the client will see "application/json" in the response
Content-Type header when the response body is an XML string.

To translate the integration response header to the method response header, use response header
mappings. The process involves declaring the Content-Type header explicitly for the method response
and specifying a header mapping expression for the integration response to pass the back-end
Content-Type header value to the front-end Content-Type header value.

To set up header mappings to return an integration response Content-Type header

1. Inthe API Gateway console, choose Method Response. Add the Content-Type header.

129

Amazon API Gateway Developer Guide
Expose a GET Method on an APl Root as Get Service
Action in Amazon S3

€ Metnod Execution /- GET - Method Response

Provide information about this method's response types, their headers and content types.

HTTP Status
o
Response Headers for 200 Response Models for 200 Create a model
Name Content type Models

Timestamp %] application/json Empty]

Content-Length S0 © Add Response Model

Content-Type Py x]

© Add Header,

O Add Response

2. InlIntegration Response, for Content-Type, type
i nt egration. response. header. Cont ent - Type for the method response.

€ Method Execution [- GET - Integration Response

First, declare response types using Method Response. Then, map the possible responses from the backend to this method's response types.
HTTP status regex Method response status Output model Default mapping
v \d{3} 200 No (%)

Map the output from your HTTP endpoint to the headers and output model of the 200 method response.

HTTP status legexl‘.d{(i}]0

Method response status200

- -

~ Header Mappings

Response header Mapping value €

Timestamp integration.response. header. Date #
Content-Length integration.response.header.Content-Length rd
Content-Type integration.response. header.Content-Type g

» Mapping Templates

© Add integration response

Test the GET method on the API root resource

¢ In Method Execution, choose Test. An example result is shown in the following figure.

130

Amazon API Gateway Developer Guide
Expose Methods on an API Folder Resource as Bucket
Actions in Amazon S3

Method Execution [- GET - Method Test

Make a test call to your method with the provided input

Path

No path parameters exist for this resource. You can define
path parameters by using the syntax {myPathParam} in a
resource path

Query Strings
No query S|I'\Hg parameters exist for this method. You can
add them via Method Request.

Headers
Mo header parameters exist for this method. You can add
them via Method Request.

Stage Variables
No stage variables exist for this method.

Client Certificate

None v

Request Body
Request Body is not supported for GET methods.

p

Request: /
Status: 200
Latency: 746 ms
Response Body

~

<ListAllMyBucketsResult xmlns="http://s3.amazonaws.com/doc/2006-83-81/"><
Owner> < 10506 esiiniiumiinkiekl "k ™ b Ciblemm “18mm = St 25l Sl kol Sl 1 3

<2wml version="1.8" encoding="UTF-8"2>

£¢/1D>¢Di splayName> Wewrdtnig</DisplayNames</Ouner> (Buckets>¢Buckets <Name>a
pig-demo</Name><CreationDate>2816-02-12T22:05:55.0087</Creat ionDatex</Buc
ket><Bucket><Name>apig-demol</Name><CreationDate>2016-82-15723:38:35.0802
</CreationDater</Bucket> Bucket> <Name>aws-devdoc-test-kd</Name><CreationD
ate>2015-10-27722:59:29.000Z</Creation e,
lasbda-fileproc-test-kd-eventarchive- T0UIoY
5-19-21722:39:57.0802</CreationDate></Bucket><Bucket ><Name>aws Lab-lanbda-
fileproc-test-kd-eventarchive-. oo, coweon/-out</Name > <CreationDate>2015-1
©-21723:14:14. 0002 < /CreationDatex</Bucket><Bucket > <Name>awslab-triggers-k
d</Name><CreationDate>2015-10-22723:48:01.0002</CreationDate»</Bucket><Bu
cket>cName>cf-templates - 1 BUNIDPPIYYio-us-east-1¢/Name><Creat ionDate>2815 -
16-21726:59:45. 8082</CreationDate></Bucket><Bucket><Nameselast icbeanstalk
-us-east-1- 007« /Name><CreationDate>2015-19- 16T23:13:15.000Zc/Cre
ationDate></Bucket><Bucket><Name dev.y ok |

tionDate»2015-12-01T19:34:56.0002</CreationDate»</Bucket> <Bucket><Name>ja
ws .dev.useastl.myapp-eyol lwv. comc/Name><CreationDate>2015-12-017120: 22147 .

cket> <Bucket> cName>awslab-
017 ¢/Name> <CreationDate>201

0. come< /Name><Crea

JCreationDate></Bucket><Bucket><Name>my-pictures-82-16-2016</Name><C
18T8:14:40,000Z</CreationDate></Bucket
-mobilehub-1161765204</Name> <CreationD

hub-1161765204</Nama> cCreationDate>2015-10-26T85:00: 30, 0007< /CreatisnDate

></Bucket><Bucket><Name>node-sdk-sample- 33358871 - 858c-40d-830- Sbecboss
cee</Name> <CreationDate>2015-10-21T23:49:15,000Z</CreationDates</Bucket>
N\ </Buckets></ListAL Iy BucketsResult>

Response Headers

({“Time;unp“:‘rm, 19 Feb 2016 03:09:52 G".T“."(er\:en(—Type":"applicatinD
xml"}

Logs

Execution log for request test-request
Fri Feb 19 93:909:5¢ UTC 2016 Starting execution for request: test-invok

Note

To use the API Gateway console to test the APl as an Amazon S3 proxy, make sure that the
targeted S3 bucket is from a different region from the API's region. Otherwise, you may get a
500 Internal Server Error response. This limitation does not apply to any deployed API.

Expose Methods on an API Folder Resource as
Bucket Actions in Amazon S3

You can apply a similar procedure to expose methods on the Folder (/{folder}) resources, with minor
modifications that include using different HTTP verbs and setting up path parameter mappings between
the method request and integration request. To illustrate, we expose the GET, PUT, and DELETE methods
for listing objects in a bucket, creating a new bucket, and deleting an existing bucket, respectively. As an
example, we will cover the PUT method setup in detail.

To expose methods on a folder resource

1.
2.

On the /{folder} resource under the root, choose Create Method to create a PUT method.

Follow the setup steps for the GET method on the root resource explained in the previous procedure,
except that you will specify PUT for HTTP method and / { bucket } for Path override.

Set up the mappings for the Content-Type and possibly other headers from method request to
integration request and from integration response to method response. The instructions are the same
or similar to the header mapping from the integration response to the method response for the GET
method on the API's root resource. You must add the mapping for the Content-Type header from
the method request to integration because you must supply an XML payload in the PUT request;
this mapping overrides the default Content-Type header value (i.e., application/json) to reflect the
actual payload content type.

131

Amazon API Gateway Developer Guide
Expose Methods on an API Folder Resource as Bucket
Actions in Amazon S3

In Integration Request, expand the URL Path Parameters section. Add the path parameter name,
for example, bucket, as specified in Path override. Type a path-mapping expression, namely
method.request.path.folder, to map the front-end path parameter (folder) for the method request
to the back-end path parameter (bucket) for the integration request.

€Method Execution /{folder} - PUT {Integration Request

Provide informaticn about the target backend that this method will call and whether the incoming request data should be medified

Integration type U Lambda Function
O HTTP Proxy
O Mock Integration
® AWS Service Proxy
AWS Region us-west-2 #
AWS Service 353 4
AWS Subdomain &
HTTP method PUT &
Path override {bucket} +
Execution role arm‘aws-iam: "'role/apigAwsProxyRole #
Credentials cache Do not add caller credentials to cache key #

v URL Path Parameters

Name Mapped from @ Caching
Quc ket method request path folder _) O 1O

Choose Test from the Method Execution pane to test this PUT method. In folder, type a bucket
name, and then in Content-Type, type appl i cati on/ xm . In Request Body, provide the bucket
region as the location constraint; it is declared in an XML fragment as the payload of the request.

<Cr eat eBucket Confi gurati on>
<Locat i onConst r ai nt >us- west - 2</ Locat i onConst r ai nt >

</ Cr eat eBucket Confi gurati on>

132

Amazon API Gateway Developer Guide
Expose Methods on an API Item in a Folder as Actions
on an Amazon S3 Object in a Bucket

&Method Execution /{folder} - PUT - Method Test

Make a test call to your method with the provided input

Request: /my-pictures-02-16-2016
Status: 200

Latency: 984 ms

Response Body
Query Strings
Mo query string parameters exist for this method. You can add them via o data
Method Request.

Response Headers

{*Content-Length": "6", "Content-Type": “application/fson"}

Logs

Execution log for request test-request

Stage Variables Thu Feb 18 @8:14:38 UTC 2016 rting execution for request: test-invoke-request
Mo stage variables exist for this method Thu Feb 18 88:14:30 UTC 2006 : API Key: test-invoke-spi-key
Thu Feb 18 08:14:33 UTC 2016 : Method request path: {foldersay-pictures-02-16-2016)
i Thu Feb 18 €8:14:39 UTC 2016 : Method request query string: {}
Client Certificate Thu Feb 16 88:14:38 UTC 2006 : Method request headers: {Content-Typemapplication/ual}
None v Tha Feb 18 €8:14:39 UTC 2016 request body before transformations: <Createucket

Configuration xalns="http://53. doc/2006-83-01/">

</LacationConstraints

CLocationConstraintsus-wes
</CrestebucketConfiguration»

Thu Feb 16 ©8:14:39 UTC 2016 : Endpolnt request URI: https://s3-us-west-2.amazonaws.com/
my-pictures-02-16-2016

Thu Feb 18 88:14:35 UTC 2016 :

equest Body
1 <Creats ketlonf:
B aciames-0xe
2 docationtonstr
3 c/CreateBucketCondigurationr

't request headers: [Auth

822966, X-Anz-Dates20160218T0814 -amzn-apigateway-api-idelg il L5, Accepteappli
cation/json, User-AgenteimozoniPlGateway g 6, X-Anz-Security-TokensAgoGb3Jpz2lutH

6. Repeat the preceding steps to create and configure the GET and DELETE method on the API's
Hfolder} resource.

Expose Methods on an API Item in a Folder as
Actions on an Amazon S3 Object in a Bucket

The following procedure describes how to expose methods on an API item in a folder as an action on an
Amazon S3 object in a bucket.

To expose methods on an item resource
1. Repeat the preceding steps to create and configure the DELETE, HEAD, GET and PUT methods

on the /{folder}/{item} resource. The following image shows integration settings for the PUT method.
The settings for the other methods are similar.

Resources Actions- | @ ¢ Method Execution /{folder}/{item} - PUT - Integration Request
T Provide information about the target backend that this method will call and whether the incoming request data should be modified
~ & Nfolder)
Integration type Lambda Function
N HTTP Proxy
- & fitem Mock Integration
HEAD
@ AWS Service Proxy
puT AWS Region us-west-2 #

AWS Service 534

AWS Subdomain ¢

HTTP method PUT #

Path override {bucket)/{object} #

Execution role arn:awsiam 738575810317 rolefapigAwsProxyRole #
Credentials cache Do not add caller credentials to cache key #

¥ URL Path Parameters

Name Mapped from © Caching

method. request patn item

method request path folder #0

© Add patn

133

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample APl as an Amazon S3
Proxy

2. Totest the GET method on a Folder/ltem resource using the APl Gateway console, choose Test in
the Method Execution page. The following image shows the result of an example test, where the
README.txt file in the apig-demo bucket in Amazon S3 contains a string of plain text ("Welcome to
README.txt").

€ Method Execution /{folder}/{item} - GET - Method Test

Make a test call to your method with the provided input

Path Request: /apig-demo/README .txt
Status: 200
apig-demo Latency: 486 ms
ftem Response Body
README. 1

Query Strings
No query string parameters exist for this method
You can add them via Method Request

Headers
No header parameters exist for this method. You
can add them via Method Request.

Stage Variables
No stage variables exist for this method

Client Certificate

None W

Welcome to README.txt

Response Headers

{"Content-Type": "text/plain"}

Logs

Execution log for request test-request

Fri Feb 19 ©3:35:20 UTC 2616
st: test-invoke-request

Fri Feb 19 @3:35:20 UTC 2816
Fri Feb 19 ©3:35:20 UTC 2016
EADME.txt, foldersapig-demo}
Fri Feb 19 ©3:35:20 UTC 2816
g {}

Fri Feb 19 #3:35:28 UTC 2016
Fri Feb 19 ©3:35:20 UTC 2816

: Starting execution for reque

: API Key: test-invoke-api-key
: Method request path: {item=R

: Method request query strin

: Method request headers: {}
: Method request body before t

ransformations: null

Fri Feb 19 ©3:35:20 UTC 2816 : Endpoint request URI: http
s://s3-us-west-2.amazonaws.com/apig-demo/README. txt

Fri Feb 19 ©3:35:20 UTC 2016 : Endpoint request headers: {A

Request Body
Request Body is not supported for GET
methods

uthorization=****+ssssssesnsns rrrmexs reane rrreeae PR e

A Sample Amazon S3 Proxy APl in Swagger with
APl Gateway Extensions

"swagger": "2.0",
"info": {
"version": "2016-02-19T04: 30: 127",
"title": "MyS3"
1,
"host": "1234567890. execut e- api . us-east - 1. amazonaws. cont',

"basePat h":
"schenmes": [
" ht t psll

u/ SS“ ,

1,
"paths": {
"I
"get": {
"produces": [
"application/json"
1,

"paranmeters":

(1,

134

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample APl as an Amazon S3

Proxy
"responses”: {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}s
"headers": {
"Content-Length": {
"type": "string"
}s
"Ti mestamp”: {
"type": "string"
}s
"Content - Type": {
"type": "string"
}
}

}
H
"X-anmazon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses": {
"\\d{3}": {
"statusCode": "200",
"responseParaneters": {
"met hod. r esponse. header. Content - Type": "integration.response. head
er. Cont ent - Type"

"met hod. response. header. Content-Length": "integration.re
sponse. header. Cont ent - Lengt h",
"met hod. response. header. Ti nestanp”: "integration.response. head
er. Date"
H
"responseTenpl ates": {
"application/json": "__passthrough__"
}
}
H
"uri": "arn:aws: api gateway: us-west-2:s3:path//",
"httpMethod": "GET",
"type": "aws"
}
}
H
"/{folder}": {
"get": {

"produces": |
"application/json"

I,
"paraneters": [
{
"nane": "folder",
"in": "path",
"required": true,
"type": "string"
}
I,
"responses": {

"200": {

135

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample APl as an Amazon S3

Proxy
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
H
"headers": {
"Content-Length": {
"type": "string"
H
"Date": {
"type": "string"
H
"Content - Type": {
"type": "string"
}
}

}
H
"X-anmmzon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses”: {
"\\d{3}": {
"statusCode": "200",
"responseParaneters": {
"met hod. r esponse. header. Content - Type": "integration.response. head
er. Cont ent - Type"

"met hod. response. header. Date": "integration.response. head
er.Date",
"met hod. response. header. Content-Length": "integration.re
sponse. header. content -1 engt h"
H
"responseTenpl ates": {
"application/json": "__passthrough__"
}
}
H
"uri": "arn:aws: api gat eway: us- west - 2: s3: pat h/ { bucket }",
"httpMethod": "GET",
"request Paraneters": {
"integration.request.path. bucket": "nethod.request. path.fol der"
H
"type": "aws"
}
H
"put": {

"produces": |
"application/json"

I,
"paraneters": [
{
"nane": "Content-Type",
"in": "header",
"required": false
"type": "string"
}s
{
"nane": "folder",
"in": "path",

"required": true,

136

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample APl as an Amazon S3

Proxy
"type": "string"
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
8
"headers": {
"Content-Length": {
"type": "string"
1
"Content - Type": {
"type": "string"
}
}
}
1

"X-anmazon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses": {
"\\d{3}": {

"statusCode": "200",

"responseParaneters": {

"met hod. r esponse. header. Content - Type": "integration.response. head

er. Cont ent - Type"

"met hod. response. header. Content-Length": "integration.re
sponse. header. Cont ent - Lengt h"
H
"responseTenpl ates": {
"application/json": "__passthrough__"
}
}
H
"uri": "arn:aws: api gat eway: us- west - 2: s3: pat h/ { bucket }",

"httpMethod": "PUT",
"request Paraneters": {

"integration.request.path. bucket": "nethod.request. path.folder",
"integration.request. header. Content-Type": "method.request. head
er. Cont ent - Type"
H
"type": "aws"
}
H
"delete": {

"produces": |
"application/json"

I,
"paraneters": [
{
"nane": "folder",
"in": "path",
"required": true,
"type": "string"
}
I,

"responses": {

137

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample APl as an Amazon S3
Proxy

"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
H
"headers": {
"Date": {
"type": "string"
}

"Content - Type": {
"type": "string"
}
}
}
H
"X-anmzon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses": {
"\\d{3}": {
"statusCode": "200",
"responseParaneters": {
"met hod. r esponse. header. Content - Type": "integration.response. head
er. Cont ent - Type"
"met hod. response. header. Date": "integration.response. header. Dat e"

H
"responseTenpl ates": {
"application/json": "__passthrough__"
}
}
H
"uri": "arn:aws: api gat eway: us- west - 2: s3: pat h/ { bucket } ",
"httpMethod": "DELETE",
"request Paraneters": {
"integration.request.path. bucket": "nethod.request. path.fol der"
}

}

ype": "aws"

}
}s
"/{folder}/{item": {
"get": {
"produces": |
"application/json"

I,
"paraneters": [
{
"nane": "itent,
"in": "path",
"required": true,
"type": "string"
}s
{
"nane": "folder",
"in": "path",
"required": true,
"type": "string"
}

138

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample APl as an Amazon S3

Proxy
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
8
"headers": {
"content-type": {
"type": "string"
8
"Content - Type": {
"type": "string"
}
}
}
1

"X-anmmzon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses": {
"\\d{3}": {
"statusCode": "200",
"responseParaneters": {

"met hod. r esponse. header. content-type": "integration.response. head
er.content-type",
"met hod. r esponse. header. Content - Type": "integration.response. head
er. Cont ent - Type"
H
"responseTenpl ates": {
"application/json": "__passthrough__"
}
}
H
"uri": "arn:aws: api gat eway: us- west - 2: s3: pat h/ { bucket}/{object}",

"htt pMet hod": "GET",
"request Paraneters": {

"integration.request.path.object”: "nethod.request.path.itent
"integration.request.path. bucket": "nethod.request. path.fol der"
H
"type": "aws"
}
H
"head": {

"produces": |
"application/json"

I,
"paraneters": [
{
"nane": "itent,
"in": "path",
"required": true,
"type": "string"
}s
{
"nane": "folder",
"in": "path",

"required": true,
"type": "string"

139

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample APl as an Amazon S3

Proxy
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
H
"headers": {
"Content-Length": {
"type": "string"
H
"Content - Type": {
"type": "string"
}
}
}
H

"X-anmzon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses": {
"\\d{3}": {

"statusCode": "200",

"responseParaneters": {

"met hod. r esponse. header. Content - Type": "integration.response. head

er. Cont ent - Type"

"met hod. response. header. Content-Length": "integration.re
sponse. header. Cont ent - Lengt h"
H
"responseTenpl ates": {
"application/json": "__passthrough__"
}
}
H
"uri": "arn:aws: api gat eway: us- west - 2: s3: pat h/ { bucket}/{object}",

"httpMethod": "HEAD',
"request Paraneters": {

"integration.request.path.object”: "nethod.request.path.itent
"integration.request.path. bucket": "nethod.request. path.fol der"
}s
"type": "aws"
}
}s
"put": {

"produces": |
"application/json"

I,
"paraneters": [
{
"nane": "Content-Type",
"in": "header",
"required": false
"type": "string"
}s
{ .
"name": "itent,
"in": "path",

"required": true,

140

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample APl as an Amazon S3
Proxy

"type": "string"

"name": "folder",
"in": "path",
"required": true,
"type": "string"
}
1,
"responses”: {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}

"headers": {
"Content-Length": {
"type": "string"
H
"Content - Type": {
"type": "string"
}
}
}
H
"X-anmzon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses": {
"\\d{3}": {
"statusCode": "200",
"responseParaneters": {
"met hod. r esponse. header. Content - Type": "integration.response. head
er. Cont ent - Type"

"met hod. response. header. Content-Length": "integration.re
sponse. header. Cont ent - Lengt h"
H
"responseTenpl ates": {
"application/json": "__passthrough__"
}
}
H
"uri": "arn:aws: api gat eway: us- west - 2: s3: pat h/ { bucket}/{object}",

"httpMethod": "PUT",
"request Paraneters": {

"integration.request.path.object”: "nethod.request.path.itent
"integration.request. header.content-type": "method.request. head
er. Cont ent - Type"
"integration.request.path. bucket": "nethod.request. path.folder",
"integration.request. header. Content-Type": "method.request. head
er. Cont ent - Type"
H
"type": "aws"
}
H
"delete": {

"produces": |
"application/json"

1

141

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample APl as an Amazon S3
Proxy

"paraneters": [
{ .
"name": "itent,
" I nll : " pat hll ,
"required": true,
"type": "string"

"name": "folder",
"in": "path",
"required": true,
"type": "string"
}
1,
"responses”: {
"200": {
"description":
"schema": {
"$ref": "#/definitions/Enpty"

"200 response",

8
"headers": {
"Content-Length": {
"type": "string"
1
"Content-Type": {
"type": "string"
}
}
}
1
"X-anmazon- api gat eway-i ntegration": {
"credential s":
"responses": {
"d\\{3}": {
"statusCode": "200",
"responseParaneters": {
"met hod. r esponse. header . Cont ent - Type":
er. Cont ent - Type"
"met hod. response. header. Cont ent - Lengt h":
sponse. header. Cont ent - Lengt h"
1
"responseTenpl ates": {

"application/json": "__passthrough__"

"arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",

"integration.response. head

"integration.re

}
}
H
"uri": "arn:aws: api gat eway: us- west - 2: s3: pat h/ { bucket}/{object}",
"httpMethod": "DELETE",

"request Paraneters": {
"integration.request.path. object":
"integration.request.path. bucket":

}
"type": "aws"
}
}
}
}

"definitions": {

"met hod. request. path.itent,
"met hod. request . pat h. fol der™

142

Amazon API Gateway Developer Guide
Create an APl as a Lambda Proxy

"Empty":
"type": "object"
}

}
}

Create an APl Gateway APl as an AWS Lambda
Proxy

Note
To integrate your APl Gateway API with Lambda, you must choose a region where both the API
Gateway and Lambda services are available. For region availability, see Regions and Endpoints.

If your API makes only synchronous calls to Lambda functions in the back end, you should use the
Lambda Function integration type. For instructions, see Call Lambda Functions Synchronously (p. 22).

If your API makes asynchronous calls to Lambda functions, you must use the AWS Service Proxy
integration type described in this section. The instructions apply to requests for synchronous Lambda
function invocations as well. For the asynchronous invocation, you must explicitly add the

X- Anz- | nvocat i on- Type: Event header to the integration request. For the synchronous invocation,
you can add the X- Anz- | nvocat i on- Type: Request Response header to the integration request or
leave it unspecified. The following example shows the integration request of an asynchronous Lambda
function invocation:

PGOST /2015-03-31/functions/ Functi onArn/invocati ons?Qual ifier=Qualifier HITP/ 1.1
X- Anz- | nvocat i on- Type: Event

Aut hori zati on:

Cont ent - Type: application/json

Cont ent - Lengt h: Payl oadSi ze

Payl oad

In this example, Funct i onAr n is the ARN of the Lambda function to be invoked. The Aut hori zati on
header is required by secure invocation of Lambda functions over HTTPS. For more information, see the
I nvoke action in the AWS Lambda Developer Guide.

To illustrate how to create and configure an APl as an AWS service proxy for Lambda, we will create a
Lambda function (Cal c¢) that performs addition (+), subtraction (-), multiplication (*), and division (/). When
a client submits a method request to perform any of these operations, API Gateway will post the
corresponding integration request to call the specified Lambda function, passing the required input (two
operands and one operator) as a JSON payload. A synchronous call will return the result, if any, as the
JSON payload. An asynchronous call will return no data.

The API can expose a GET or POST method on the / cal ¢ resource to invoke the Lambda function. With
the GET method, a client supplies the input to the back-end Lambda function through three query string
parameters (oper and1, oper and2, and oper at or). These are mapped to the JSON payload of the

integration request. With the POST method, a client provides the input to the Lambda function as a JSON
payload of the method request, which is then passed through to the integration request. Alternatively, the
API can expose a GET method on the / cal ¢/ { oper and1}/{ oper and2}/{oper at or} resource. With

143

http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region
http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon API Gateway Developer Guide
Set Up an IAM Role and Policy for an API to Invoke
Lambda Functions

this method, the client specifies the Lambda function input as the values of the path parameters. Parameter
mappings and mapping templates are used to translate the method request data into the Lambda function
input and to translate the output from the integration responses to the method response.

This section provides more detailed discussions for the following tasks:

« Create the Cal ¢ Lambda function to implement the arithmetic operations, accepting and returning
JSON-formatted input and output.

* Expose GET onthe/ cal ¢ resource to invoke the Lambda function, supplying the input as query strings.
¢ Expose POST onthe/ cal ¢ resource to invoke the Lambda function, supplying the input in the payload.

¢ Expose GET onthe/ cal c/ { operandl}/{operand2}/{ oper at or} resource to invoke the Lambda
function, specifying the input in the path parameters.

You can import the sample API as a Lambda proxy from the Swagger Definitions of a Sample API as
Lambda Proxy (p. 155). To do so, copy the Swagger definition, paste itinto a file, and use the API Gateway
Swagger Importer. For more information, see Getting Started with the APl Gateway Swagger Importer.

To use the API Gateway console to create the API, you must first sign up for an AWS account.
If you do not have an AWS account, use the following procedure to create one.
To sign up for AWS

1. Open http://aws.amazon.com/ and choose Create an AWS Account.
2. Follow the online instructions.

To allow the API to invoke Lambda functions, you must have an IAM role that has appropriate IAM policies
attached to it. The next section describes how to verify and to create, if necessary, the required IAM role
and policies.

Topics
¢ Set Up an IAM Role and Policy for an API to Invoke Lambda Functions (p. 144)
¢ Create a Lambda Function in the Back End (p. 145)
¢ Create API Resources for the Lambda Function (p. 146)
¢ Create a GET Method with Query Strings to Call the Lambda Function (p. 147)
¢ Create a POST Method with a JSON Payload to Call the Lambda Function (p. 149)
¢ Create a GET Method with Path Parameters to Call the Lambda Function (p. 151)
¢ A Sample APl as a Lambda Proxy in Swagger with APl Gateway Extensions (p. 155)

Set Up an IAM Role and Policy for an APl to Invoke
Lambda Functions

The API will use the InvokeFunction action to call a Lambda function. At minimum, you must attach the
following 1AM policy to an IAM role for APl Gateway to assume the policy.

"Version": "2012-10-17",
"Statenment": [

"Effect": "Alow',

144

https://github.com/awslabs/aws-apigateway-importer
https://github.com/awslabs/aws-apigateway-importer
http://swagger.io/getting-started-with-the-amazon-swagger-importer/
http://aws.amazon.com/
http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon API Gateway Developer Guide
Create a Lambda Function in the Back End

"Action": "lanbda: |l nvokeFunction",
"Resource": "*"

If you do not enact this policy, the API caller will receive a 500 Internal Server Error response. The
response contains the "Invalid permissions on Lambda function" error message. For a complete list of
error messages returned by Lambda, see the Invoke topic.

An AP| Gateway assumable role is an IAM role with the following trusted relationship:

"Version": "2012-10-17",
"Statenment”: [
{
"Sidt:o"t,
"Effect": "Allow',
"Principal": {
"Service": "apigateway. anazonaws. conf

}

"Action": "sts:AssunmeRol e"

Create a Lambda Function in the Back End

Copy the following Lambda function and paste it into the code editor in the Lambda console.

exports. handl er = function(event, context) ({
/I consol e. |l og(' Received event:', JSON.stringify(event, null, 2));
var res = {};
res.a = event. a;
res.b = event.b;
res.op = event. op;

swi tch(event. op)
{
case "+":
res.c = Nunber(event.a) + Number(event.Db);
br eak;
case "-":
res.c = Nunber(event.a) - Number(event.Db);
br eak;
case "*":
res.c = Nunber(event.a) * Number(event.b);
br eak;
case "/":
res.c = Nunber (event.b)===0 ? NaN : Nunber(event.a) / Num
ber (event. b);

145

http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon API Gateway Developer Guide
Create API Resources for the Lambda Function

br eak;
def aul t:
res.c = "lnvalid op";

}

cont ext . succeed(res);

This function requires two operands (a and b) and an operator (op) from the event input parameter. The
input is a JSON object of the following format:

{
"a": "Number" | "String",
"b": "Number" | "String",
"op": "String"

}

This function returns the calculated result (c) and the input. For an invalid input, the function returns either
the null value or the "Invalid op" string as the result. The output is of the following JSON format:

{

"a": "Nunber",

"b": "Nunber",

"op": "String",

"“c": "Number" | "String"
}

You should test the function in the Lambda console before integrating it with the API, which is created
next.

Create API Resources for the Lambda Function

The following procedure describes how to create API resources for the Lambda function.
To create APl resources for Lambda functions

1. Inthe API Gateway console, create an APl named LambdaGate. You can create child resources to
represent different Lambda functions; in the following, you will create a single child resource of the
API root.

2. For the simple calculator function you created, create the /calc resource off the API's root. You will
expose the GET and POST methods on this resource for the client to invoke the back-end Lambda
function, supplying the required input as query string parameters (to be declared as
?operandl=. .. &perand2=. .. &operator=...)inthe GET request and as a JSON payload in
the POST request, respectively.

You will also create the /calc/{operand1}/{operand2}/{operator} to expose the GET method to
invoke the Lambda function and to supply the required input as the three path parameters (operand1l,
operand2, and operator).

We will show how to apply API Gateway request and response data mapping to normalize the input
to the back end Lambda function.

146

Amazon API Gateway Developer Guide
Create a GET Method with Query Strings to Call the
Lambda Function

Resources actions~ | o / Methods

Create a GET Method with Query Strings to Call
the Lambda Function

Use the following steps to expose a GET method with query strings to call a Lambda function.
To set up the GET method with query strings to invoke the Lambda function

1. Choose Create Method in the API Gateway console to create a GET method for the API's /calc
resource.

In the method's Set up pane, configure the method with the following settings.

€ Method Execution /calc - GET - Integration Request
Provide information about the target backend that this method will call and whether the incoming request data should be medified

Integration type Lambda Function
HTTP Proxy
Mock Integration
@ AWS Service Proxy
AWS Region us-west-2 #

AWS Service Lambda #

AWS Subdomain &

HTTP method POST #
Path override /2015-03-31/functions/am:aws:lambda:us-west-2:" T-function:Calc/invocations #
Execution role am:awsiam::" & "role/apigAwsProxyRole #
Credentials cache Do not add caller credentials to cache key #*

» URL Path Parameters
» URL Query String Parameters
» HTTP Headers

~ Mapping Templates

You must use the POST method for the integration request when calling a Lambda function, although
you can use any other HTTP verbs for the method request.

The Path override value must the URL path of the Lambda Invoke action. The path is of the following
format:

147

http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon API Gateway Developer Guide
Create a GET Method with Query Strings to Call the
Lambda Function

3.

/2015- 03- 31/ functions/ Functi onNane/ i nvocati ons?Qual i fi er=version

where Funct i onNane is the ARN of the Lambda function to be invoked. The optional Qual i fi er
query string can be used to select a version of the function. If it not specified, the $LATEST version
will be used.

You can also add the X- Anz- | nvocati on- Type: Event | Request Reponse | DryRunheader
to have the action invoked asynchronously, as request and response, or as a test run, respectively.
If the header is not specified, the action will be invoked as request and response. For the example
shown here, this header has the default value.

We will come back to setting up Mapping Templates after setting up the query string parameters
to hold the input data for the Lambda function.

In Method Request for the GET method on /calc, expand the URL Query String Parameters
section. Choose Add query string to add the operandl, operand2, and operator query string
parameters.

€ Method Execution /calc - GET - Method Request

Provide information about this method's authorization settings and the parameters it can receive.

Authorization Settings

Authorization NONE #@

APl Key Required false #
» URL Query String Parameters

Name Caching

cperator
gperandi

© Add query string
» HTTP Request Headers

* Request Models Create a Model

Go back to Integration Request. Expand the Mapping Templates section. If necessary, in
Content-Type, under application/json, choose Add mapping template. Type the following in the
Mapping template editor:

{
"a" "$i nput . parans(' operandl’')",
"b": "&$input.parans(' operand2')",
"op": "$input.parans(' operator')"
}

148

Amazon API Gateway Developer Guide
Create a POST Method with a JSON Payload to Call the
Lambda Function

AWS Region us-west-2 #
AWS Service Lambda #
AWS Subdomain
HTTP method POST &
Path override /2015-03-31/functions/arn:aws:lambda:us-west-2: "l Ffunction:Calc/invocations #
Execution role arn:awsiam:’ tm. mo o rolefapigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key #

-

URL Path Parameters
» URL Query String Parameters
» HTTP Headers

~ Mapping Templates

Content-Type application/json Mapping template #"

(-] Template

© Add mapping template

“$input.params(‘operandl’)"”,
"$input.params(’ operand2’)",
"$input.params(’ operator')”

This template maps the three query string parameters declared in Method Request into designated
property values of the JSON object as the input to the back-end Lambda function. The transformed
JSON object will be included as the integration request payload.

4. You can now choose Test to verify that the GET method on the /calc resource has been properly
set up to invoke the Lambda function.

Create a POST Method with a JSON Payload to
Call the Lambda Function

The following steps describe how to expose a POST method with a JISON payload.
To set up the POST method with a JSON payload to invoke a Lambda function

1. Choose Create Method in the API Gateway console to create a POST method for the LambdaGate
API's /calc resource.

In the method's Set Up panel, configure the POST method with the following settings.

149

Amazon API Gateway Developer Guide
Create a POST Method with a JSON Payload to Call the
Lambda Function

€ Method Execution /calc - POST - Integration Request
Provide information about the target backend that this method will call and whether the incoming request data should be modified.

Integration type) Lambda Function
HTTP Proxy
Mock Integration
@ AWS Service Proxy
AWS Region us-west-2 #
AWS Service Lambda #
AWS Subdomain &
HTTP method POST #
Path override /2015-03-31/functions/arn:aws:lambda:us-west-2:7 function:Calc/invocations #
Execution role am:aws:iam:: | “rolefapigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key #

+ URL Path Parameters

» URL Query String Parameters
» HTTP Headers

» Mapping Templates

Using a POST request with a JSON payload is the simplest way to invoke a Lambda function, because
no mappings are needed.

2. You can now choose Test to verify the POST method works as expected. The following input:

{
"a": 1,
"b": 2,
"opti 4"
}

{
"a": 1,
"b": 2,
"op": "+",
"c": 3

}

If you would like to implement POST as an asynchronous call, you can add an | nvocat i onType: Event
header in the method request and map it to the X- Anz- | nvocat i on- Type header in the integration
request, using the header mapping expression of et hod. r equest . header. | nvocati onType. You
must inform the clients to include the | nvocat i onType: Event header in the method request. Alternatively,
you can set the X- Anz- | nvocat i on- Type header with the ' Event ' string literal in the integration

150

Amazon API Gateway Developer Guide
Create a GET Method with Path Parameters to Call the
Lambda Function

request, without requiring the client to include the header. The asynchronous call will return an empty
response, instead.

Create a GET Method with Path Parameters to Call
the Lambda Function

The following steps describe how to set up the GET method with path parameters to call the Lambda
function.

To set up the GET method with URL path parameters to invoke the Lambda function

1. Choose Create Method in the API Gateway console to create a GET method for the API's
/calc/{operand1}/{operand2}/{operator} resource.

In the method's Set up pane, configure this GET method with the following settings.

€ Method Execution /calc/{operand1}/{operand2}/{operator} - GET - Integration ...

Provide information about the target backend that this method will call and whether the incoming request data should be modified,

Integration type Lambda Function
HTTP Proxy
Mock Integration
@ AWS Service Proxy
AWS Region us-west-2 #
AWS Service Lambda #
AWS Subdomain #
HTTP method POST &
Path override /2015-03-31/functions/arn:aws:lambda:us-west-2; ".function:Calc/invocations #*
Execution role arn:aws:iam:: - T:role/apigAwsProxyRole #
Credentials cache Do not add caller credentials to cache key #

» URL Path Parameters
» URL Query String Parameters
» HTTP Headers

+~ Mapping Templates

Content-Type

Next, we will set up Mapping Templates to translate the URL path parameters into the integration
request JSON payload as the input to the Lambda function.

2. In Method Request for the GET method on /calc/{operand1}/{operand2}/{operator}, expand the
Request Paths section to verify that the path parameters are there.

151

Amazon API Gateway Developer Guide
Create a GET Method with Path Parameters to Call the
Lambda Function

€ Method Execution /calc/{operand1}/{operand2}/{operator} - GET - Method Re...

Provide information about this method's authorization settings and the parameters it can receive
Authorization Settings
Authorization NONE #€@

API Key Required false #

~ Request Paths

Name Caching

» URL Query String Parameters

» HTTP Request Headers

Go back to Integration Request. Expand the Mapping Templates section. If necessary, in
Content-Type, under application/json, choose Add mapping template.

Integration type Lambda Function
HTTP Proxy
Mock Integration
@ AWS Service Proxy
AWS Region us-west-2 #

AWS Service Lambda #

AWS Subdomain #

HTTP method POST #

Path override /2015-03-31/functions/arn:aws:lambdaius-west-2. = “function:Calcfinvocations #

Execution role arm:aws:iam:’ I'role/apigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key #

» URL Path Parameters
» URL Query String Parameters
» HTTP Headers

= Mapping Templates

Content-Type application/json Mapping template ~ Q©
Template Select a model to generate a template ~

1=k
2

": "$input.params('operandl’)",
$input.params(‘operand2')",
“op": #if($input.params(’operator’y=="%2F')"/"#{else}"$input
Garams(‘operator') "#end

Bw

w

Type the following in the Mapping Template editor:

152

Amazon API Gateway Developer Guide
Create a GET Method with Path Parameters to Call the
Lambda Function

"a": "$input.parans(' operandl')",

"b": "$input.parans(' operand2')",

"op": #if($input.parans(' operator')=="9%R2F)"/"#{el se}"$i nput. parans(' op
erator')"#end

}

This template maps the three URL path parameters, declared when the
/calc/{operand1}/{operand2}/{operator} resource was created, into designated property values of
the JSON object. Because URL paths must be URL-encoded, the division operator must be specified
as %2F instead of / . This template maps these translations as well. The transformed JSON object
will be included as the integration request payload.

As another exercise, we demonstrate how to translate the JSON returned from the Lambda function
to show the output as a plain text string to the caller. This involves resetting the method request's
Content-Type header to "text/plain” and providing a mapping template to translate the JSON output
into a plain string.

First, make sure that Content-Type header is included in the Response Headers for 200 section
in Method Response.

& Method Execution /calc/{operand1}/{operand2}/{operator} - GET - Method Re...

Provide information about this method's response types, their headers and content types

HTTP Status

v 200
Response Headers for 200 Response Models for 200 Create a model
Name Content type Models
applicationjson Empty
© Add Header © Add Response Model

© Add Response

In Integration Response, expand the 200 method response entry. Expand the Header Mappings
section. In Mapping value for Content-Type, type ' t ext/ pl ai n' .This header mapping expression
overrides the Content-Type header with a literal string, which must be enclosed within a pair of single
quotes.

153

Amazon API Gateway Developer Guide
Create a GET Method with Path Parameters to Call the
Lambda Function

€ Method Execution /calc/{operand1}/{operand2}/{operator} - GET - Integration ...

First, declare response types using Method Response. Then, map the possible responses from the backend to this method's response types.
HTTP status regex Method response status Output model Default mapping
v - 200 Yes. (2]

Map the output from your HTTP endpoint te the headers and output model of the 200 method respense.

HTTP status regex default i

Method response status200

el m

@ Header Mappings

Response header Mapping value @
Content-Type #
@ Mapping Templates
Content-Type application/json Mapping templat
° Template 2%

1 ¢ Sinput.path(‘$.a’) $input.path('$.op’) $input.path("$.b")
. dgput.path(‘$.c’)
© Add mapping template

Next, expand the Mapping Templates section, highlight the application/json entry under the
Content-Type header (of integration response), open the Mapping template editor, enter and save
the following mapping script:

$input.path('$.a') $input.path('$.op') $input.path('$.b") = $input.path('$.c')

Choose Test to verify the GET method on the /calc/{operand1}/{operand2}/{operator} works as
expected. The following request URL:

/cal c/ 1/ 2] YRF

should produce the following plain text output:

Note
As part of a URL, the division operator (/) is URL-encoded (%2F).

After testing the API using the Test Invoke in the APl Gateway console, you must deploy the API to

make it public available. If you update the API, such as adding, modifying or deleting a resource or

method, updating any data mapping, you must redeploy the API to make the new features or updates
available.

154

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample APl as Lambda Proxy

A Sample APl as a Lambda Proxy in Swagger with
API Gateway Extensions

{
"swagger": "2.0",
"info": {
"version": "2016-02-23T05: 35: 542",
"title": "LanbdaGate"
}
"host": "al23456789. execut e-api . us-east - 1. amazonaws. cont',
"basePath": "/test",
"schenmes": [
"https"
I,
"pat hs": {
"lcalc": {
"get": {

"produces”: [
"application/json"

I,
"paranmeters": [
{
"nanme": "operand2",
"in": "query",
"required": false,
"type": "string"
s
{
"nane": "operator",
"in": "query",
"required": false,
"type": "string"
s
{
"nanme": "operandl",
"in": "query",
"required": false,
"type": "string"
}
I,
"responses": {
"200": {
"description": "200 response",

"schema": ({

"$ref": "#/ definitions/Enpty"
I
"headers": {

"operand_1": {

"type": "string"

I

"operand_2": {

"type": "string"
I
"operator": {
"type": "string"

155

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample APl as Lambda Proxy

}
}
}
H
"X-anmzon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses": ({
"default": {
"statusCode": "200",
"responseParaneters": {

"met hod. response. header . operator”: "integration.re
sponse. body. op",
"met hod. response. header. operand_2": "integration.re
sponse. body. b",
"met hod. r esponse. header. operand_1": "integration.response. body. a"

H
"responseTenpl ates": {
"application/json": "#set($res= $input.path('$))\n{\n
\"result\": \"$res.a, $res.b, $res.op => Pres.c\"\n}"
}
}
H
"request Tenpl ates": {
"application/json": "{\n \"a\": \"S$input.parans('operandl')\",\n
\"b\": \"S$input.parans(' operand2')\", \n \"op\": \"$input.parans(' oper
ator')\" \n}"
H
"uri": "arn:aws: api gat eway: us- west - 2: | anbda: pat h//2015- 03- 31/ f unc
tions/arn: aws: | anbda: us-west - 2: 123456789012: functi on: Cal c/i nvocati ons",
"httpMethod": "POST",
"type": "aws"
}
H
"post": {
"produces": |
"application/json"
1,
"paraneters": [],
"responses": {

"200": {
"description": "200 response",
"schema": {

"$ref": "#/definitions/Enpty"
}

"'eaders": {}
}

H
"X-anmmzon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses": {
"default": {
"statusCode": "200",
"responseTenpl ates": {
"application/json": " __passthrough__"
}
}
H

156

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample APl as Lambda Proxy

"uri": "arn:aws: api gat eway: us- west - 2: | anbda: pat h//2015- 03- 31/ f unc
tions/arn: aws: | anbda: us-west - 2: 123456789012: functi on: Cal ¢c/i nvocati ons",
"httpMethod": "POST",
"type": "aws"
}
}
}s
"/ cal c/ {operandl}/{operand2}/{operator}": {
"get": {
"produces": |
"application/json"

I,
"paraneters": [

{

"name": "operand2",
"in": "path",
"required": true,
"type": "string"

}s

{

"name": "operator",
"in": "path",
"required": true,
"type": "string"

}s

{

"name": "operandl",
"in": "path",
"required": true,
"type": "string"

}

I,
"responses": {

"200": {
"description": "200 response",
"schema": {

"$ref": "#/definitions/Enpty"
}s
"headers": {
"Content - Type": {
"type": "string"
}
}
}
}s

"X-anmzon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses”: {
"default": {
"statusCode": "200",
"responseParaneters": {
"met hod. response. header. Content - Type": "'text/plain'"
H
"responseTenpl ates": {
"application/json": "\"$input.path('$.a') $input.path('$.op')
$input.path('$.b') = $input.path('$.c')\""
}

}

157

Amazon API Gateway Developer Guide
Create an APl as an Amazon Kinesis Proxy

H
"request Tenpl ates": {
"application/json": "\n{\n \"a\": \"$input.parans('operandl')\",\n
\"b\": \"S$input.parans(' operand2')\",\n \"op\": #if($input.parans(' operat
or')=="9%F)\"/\"#{el se}\"$i nput. parans(' operator')\"#end\n \n}"
H
"uri": "arn:aws: api gat eway: us- west - 2: | anbda: pat h//2015- 03- 31/ f unc
tions/arn: aws: | anbda: us-west - 2: 123456789012: functi on: Cal ¢/ i nvocati ons",
"httpMethod": "POST",
"type": "aws"
}
}
}
H
"definitions": {
"Enmpty": {
"type": "object"
}
}
}

Create an API Gateway APl as an Amazon
Kinesis Proxy

This section describes how to create and configure an APl Gateway API as an AWS proxy to access
Amazon Kinesis.

Note

To integrate your AP Gateway APl with Amazon Kinesis, you must choose a region where both
the API Gateway and Amazon Kinesis services are available. For region availability, see Regions
and Endpoints.

For the purpose of illustration, we will create an example API to enable a client to do the following:

1. List the user's available streams in Amazon Kinesis
2. Create, describe, or delete a specified stream
3. Read data records from or write data records into the specified stream

To accomplish the preceding tasks, the APl exposes methods on various resources to invoke the following,
respectively:

1. The Li st St r eans action in Amazon Kinesis
2. The Cr eat eStr eam Descri beSt r eam or Del et eSt r eamaction
3. The Get Recor ds or Put Recor ds (including Put Recor d) action in Amazon Kinesis

Specifically, we will build the API as follows:

¢ Expose an HTTP GET method on the API's / st r eans resource and integrate the method with the
ListStreams action in Amazon Kinesis to list the streams in the caller's account.

158

http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreams.html

Amazon API Gateway Developer Guide
Create an IAM Role and Policy for the APl to Access
Amazon Kinesis

¢ Expose an HTTP POST method on the API's / st r eans/ { st r eam nane} resource and integrate the
method with the CreateStream action in Amazon Kinesis to create a named stream in the caller's
account.

¢ Expose an HTTP GET method on the API's / st r eans/ { st r eam nane} resource and integrate the
method with the DescribeStream action in Amazon Kinesis to describe a named stream in the caller's
account.

¢ Expose an HTTP DELETE method on the API's / st r eans/ { st r eam nane} resource and integrate
the method with the DeleteStream action in Amazon Kinesis to delete a stream in the caller's account.

¢ Expose an HTTP PUT method on the API's / st r eans/ { st r eam nane}/ r ecor d resource and
integrate the method with the PutRecord action in Amazon Kinesis. This enables the client to add a
single data record to the named stream.

¢ Expose an HTTP PUT method on the API's / st r eans/ { st r eam nane}/ r ecor ds resource and
integrate the method with the PutRecords action in Amazon Kinesis. This enables the client to add a
list of data records to the named stream.

¢ Expose an HTTP GET method on the API's / st r eans/ { st r eam nane}/ r ecor ds resource and
integrate the method with the GetRecords action in Amazon Kinesis. This enables the client to list data
records in the named stream, with a specified shard iterator. A shard iterator specifies the shard position
from which to start reading data records sequentially.

¢ Expose an HTTP GET method on the API's / st r eans/ { st r eam nane}/ shar di t er at or resource
and integrate the method with the GetShardlterator action in Amazon Kinesis. This helper method must
be supplied to the Li st St r eans action in Amazon Kinesis.

You can apply the instructions presented here to other Amazon Kinesis actions. For the complete list of
the Amazon Kinesis actions, see Amazon Kinesis AP| Reference.

Instead of using the API Gateway console to create the sample API, you can import the sample API into
API Gateway, using either the APl Gateway Import API or the API Gateway Swagger Importer. For
information on how to use the Import API, see Import an API (p. 110). For information on how to use the
API Gateway Swagger Importer, see Getting Started with the API Gateway Swagger Importer.

If you do not have an AWS account, use the following procedure to create one.
To sign up for AWS

1. Open http://aws.amazon.com/ and choose Create an AWS Account.
2. Follow the online instructions.

Create an IAM Role and Policy for the API to
Access Amazon Kinesis

To allow the API to invoke Amazon Kinesis actions, you must have appropriate IAM policies attached to
an IAM role. This section explains how to verify and to create, if necessary, the required IAM role and
policies.

To enable read-only access to Amazon Kinesis, you can use the AmazonKinesisReadOnlyAccess policy
that allows the Get *, Li st*, and Descri be* actions in Amazon Kinesis to be invoked.

"Version": "2012-10-17",
"Statenment": [

{

159

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_CreateStream.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_DescribeStream.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_DeleteStream.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-import/
https://github.com/awslabs/aws-apigateway-importer
http://swagger.io/getting-started-with-the-amazon-swagger-importer/
http://aws.amazon.com/

Amazon API Gateway Developer Guide
Create an IAM Role and Policy for the APl to Access
Amazon Kinesis

"Effect": "Allow',
"Action": [

"ki nesis: Get*",

"kinesis:List*",

"Kki nesi s: Descri be*"
I,

"Resource": "*"

This policy is available from the IAM console and its ARN is
arn:aws:iam:aws: pol i cy/ AmazonKi nesi sReadOnl yAccess.

To enable read-write actions in Amazon Kinesis, you can use the AmazonKinesisFullAccess policy.

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Alow',
"Action": "kinesis:*",
"Resource": "*"
}
]
}

This policy is also available from the IAM console. Its ARN is
arn:aws:iam:aws: pol i cy/ AmazonKi nesi sFul | Access.

After you decide which IAM policy to use, attach it to a new or existing IAM role. Make sure that the API
Gateway control service (api gat eway. amazonaws. con) is a trusted entity of the role and is allowed to
assume the execution role (st s: AssuneRol e).

{
"Version": "2012-10-17",

"Statenent": [
{
"Sidt: ",
"Effect": "Alow',
"Principal": {
"Service": "apigateway.anazonaws. conf
}s

"Action": "sts:AssunmeRol e"

If you create the execution role in the IAM console and choose the Amazon API Gateway role type, this
trust policy is automatically attached.

160

Amazon API Gateway Developer Guide
Start to Create an APl as an Amazon Kinesis Proxy

Note the ARN of the execution role. You will need it when creating an APl method and setting up its
integration request.

Start to Create an APl as an Amazon Kinesis Proxy

Use the following steps to create the API in the API Gateway console.
To create an APl as an AWS service proxy for Amazon Kinesis

In the API Gateway console, choose Create API.

In APl name, type Ki nesi sPr oxy. Leave the default values in the other fields.
For Clone from API, choose Do not clone from existing API.

Type a description in Description.

Choose Create API.

ok~ eDdRE

After the APl is created, the APl Gateway console displays the Resources page, which contains only
the API's root (/) resource.

List Streams in Amazon Kinesis

To list streams in Amazon Kinesis, add a / st r eans resource to the API's root, expose a GET method
on the resource, and integrate the method to the Li st St r eans action of Amazon Kinesis.

The following procedure describes how to list Amazon Kinesis streams by using the API Gateway console.

To list Amazon Kinesis streams by using the APl Gateway console
1. Select the API root resource. In Actions, choose Create Resource.

In Resource Name, type St r eans, leave Resource Path as the default, and choose Create
Resource.

2. Select the / St r eans resource. From Actions, choose Create Method, choose GET from the list,
and then choose the checkmark icon to finish creating the method.

Note
You can choose any of the available HTTP verbs for a method request. We use GET here,
because listing streams is a READ operation.

3. Inthe method's Setup pane, choose Show Advanced and then choose AWS Service Proxy.

a. For AWS Region, choose a region (e.g., us-east-1).
. For AWS Service, choose Kinesis.

c. For HTTP method, choose POST.
Note
For the integration request with Amazon Kinesis, you must choose the POST HTTP
verb to invoke the action, although you can use any of the available HTTP verbs for
the API's method request.

For Action Type, choose Use action name.

For Action, type Li st St r eans.

For Execution role, type the ARN for your execution role.

Choose Save to finish the initial setup of the method.

@ 0o o

161

Amazon API Gateway Developer Guide
List Streams in Amazon Kinesis

€ Method Execution /Streams - GET - Integration Request
Provide information about the target backend that this method will call and whether the incoming request data should be modified.

Integration type Lambda Function
HTTP Proxy
Mock Integration

@ AWS Service Proxy
AWS Region us-east-1 4
AWS Service Kinesis 4
AWS Subdomain
HTTP method POST #
Action ListStreams
Execution role arn:aws:iam:: :role/apigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key #

The initial setup of the integration request will suffice if there is no need to map data between the
method and integration requests and/or between the method and integration responses. Examples
discussed in this topic require data mapping, which is covered in the second half of the Integration
Request pane.

In the Integration Request pane, expand the HTTP Headers section:

Choose Add header.

In the Name column, type Cont ent - Type.

In the Mapped from column, type ' appl i cati on/ x-anez-json-1.1".
Choose the checkmark icon to save the setting.

a0 oo

Expand the Body Mapping Templates section:

Choose Add mapping template.

For Content-Type, type appl i cati on/j son.

Choose the checkmark icon to save the setting.

Choose the pencil icon to the right of Mapping template.

Choose Mapping template from the drop-down list to open the Template editor.
Type {} in the template editor.

Choose the checkmark icon to save the mapping template.

@ *o o0 0op

The ListStreams request takes a payload of the following JSON format:

"Excl usiveStart StreanNane": "string",
"Limt": nunber

However, the properties are optional. To use the default values, we opted for an empty JSON payload
here.

162

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreams.html#API_ListStreams_RequestSyntax

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

» URL Path Parameters
» URL Query String Parameters

» HTTP Headers
Name Mapped from & Caching
Content-Type ‘application/x-amz-json-1.1' #O

© Add header

+* Body Mapping Templates
Content-Type application/json Mapping template #*

application/json e Template ™

1 {

© Add mapping template o

6. Testthe GET method on the Streams resource to invoke the Li st St r eans action in Amazon Kinesis:

From the API Gateway console, select the /streams/GET entry from the Resources pane, choose
the Test invocation option, and then choose Test.

If you have already created two streams named "myStream" and "yourStream" in Amazon Kinesis,
the successful test will return a 200 OK response containing the following payload:

{
"HasMoreStreans": fal se,
"StreamNanes": |
"nyStreant,
"your St r eant
]
}

Create, Describe, and Delete a Stream in Amazon
Kinesis

Creating, describing, and deleting a stream in Amazon Kinesis involves making the following Amazon
Kinesis REST API requests, respectively:

POST /?Acti on=CreateStream HTTP/ 1.1
Host: Kinesis.region.donain

Cont ent - Type: application/x-ane-json-1.1
Cont ent - Lengt h: Payl oadSi zeByt es

{
"Shar dCount": nunber,

163

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

"StreanNane": "string"

POST / ?Acti on=DescribeStream HTTP/ 1.1
Host: Kinesis.region.donain

Cont ent - Type: application/x-ane-json-1.1
Cont ent - Lengt h: Payl oadSi zeByt es

{
"Excl usiveStart Shardld": "string",
"Limt": nunber,
"StreanNanme": "string"

}

POST / ?Action=Del eteStream HTTP/ 1. 1
Host: Ki nesis.region.donain

Cont ent - Type: application/x-ane-json-1.1
Cont ent - Lengt h: Payl oadSi zeByt es

{
}

" StreanNane": "string"

We can build our API to accept the required input as a JSON payload of the method request and pass
the payload through to the integration request. However, to provide more examples of data mapping
between method and integration requests, and method and integration responses, we will create our API
slightly differently.

We will expose the GET, POST, and Del et e HTTP methods on a to-be-named St r eamresource. We will
use the { st r eam nane} path variable to hold the to-be-named stream resource and integrate these API
methods with the Amazon Kinesis' Descri beSt r eam Cr eat eSt r eam and Del et eSt r eamactions,
respectively. We require that the client pass other input data as headers, query parameters, or the payload
of a method request, and we provide mapping templates to transform the data to the required integration
request payload.

After the methods are created on a to-be-named stream resource, the structure of the API looks like the
following:
Resources Actions~

- &
~ & Istreams

» & /stream-name

164

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

To configure and test the GET method on a stream resource

1. Setupthe GET method to describe a named stream in Amazon Kinesis, as shown in the following.

€ Method Execution
/streams/{stream-name} - GET - Integration Request

Provide information about the target backend that this method will call and whether the incoming request
data should be modified.

Integration type Lambda Function
HTTP Proxy
Mock Integration

@ AWS Service Proxy

AWS Region us-east-1 4
AWS Service Kinesis #
AWS Subdomain &
HTTP method POST #
Action DescribeStream #
Execution role arn:aws:iam:7.= = T:role/apigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key
2. Map data from the GET method request to the integration request, as shown in the following:

HTTP method POST #
Action DescribeStream #
Execution role arn:aws:iam:7Hi® "8 "role/apigAwsProxyRole #
Credentials cache Do not add caller credentials to cache key #

» URL Path Parameters
» URL Query String Parameters
» HTTP Headers

~ Body Mapping Templates

Content-Type application/json Mapping template #
application/json © Template
1~ {
© Add mapping template g ; "StreamName”: "$input.params(‘stream-name’)"

3. Test the GET method to invoke the Descri beSt r eamaction in Amazon Kinesis:

165

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

From the API Gateway console, select /streams/{stream-name}/GET in the Resources pane,
choose Test to start testing, type the name of an existing Amazon Kinesis stream in the Path field
for st r eam nane, and choose Test. If the test is successful, a 200 OK response is returned with a
payload similar to the following:

{
"StreanDescription": {

"HasMor eShards": fal se,
"Ret enti onPeri odHours": 24,
"Shards": |
{
"HashKeyRange": {
" Endi ngHashKey": "68056473384187692692674921486353642290",
"StartingHashkey": "0"
}.
"SequenceNunber Range": {
"StartingSequenceNunber":
"49559266461454070523309915164834022007924120923395850242"

b
"Shardl d": "shardl d-000000000000"
b
{
"HashKeyRange": {
" Endi ngHashKey": "340282366920938463463374607431768211455",
"StartingHashKey": "272225893536750770770699685945414569164"
}

" SequenceNunber Range": {
"StartingSequenceNunber":
"49559266461543273504104037657400164881014714369419771970"

1
"Shardl d": "shardl d-000000000004"
}
]

"StreamARN': "arn:aws: ki nesi s: us-east-1: 12345678901: streani nyStreant',
"StreamNane": "nyStreant,
"Streanttatus": "ACTI VE"
}
}

After you deploy the API, you can make a REST request against this APl method:

CET https://your-api-id. execute-api.regi on.amazonaws. contf st age/ streans/ nyS
tream HTTP/ 1. 1

Host: your-api-id. execute-api.regi on.amazonaws. com

Cont ent - Type: application/json

Aut hori zati on:

X- Anz- Dat e: 20160323T1944517

166

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

To configure and test the POST method on a stream resource
1. Setup the POST method on a stream resource to create the stream in Amazon Kinesis, as shown
in the following:

4 Method Execution
/streams/{stream-name} - POST - Integration Request

Provide information about the target backend that this method will call and whether the incoming request
data should be modified.

Integration type Lambda Function
HTTP Proxy
Mock Integration
9@ AWS Service Proxy
AWS Region us-east-1 4
AWS Service Kinesis #
AWS Subdomain ¢
HTTP method POST #
Action CreateStream

Execution role arn:aws:iam::7! 7:role/apigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key #

2. Map data from the POST method request to the integration request, as shown in the following:

HTTP method POST #
Action CreateStream #
Execution role amn:.aws.iam "rolefapigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key &

-

URL Path Parameters

-

URL Query String Parameters

» HTTP Headers

~ Body Mapping Templates

Content-Type application/json
application/json - Generate template: h
1-{
© Add mapping template 2~ “ShardCount™: #if(Sinput.path("$.ShardCount’) == *')
3 5
4- #else
5 $input.path('$.ShardCount ")

#end,
"StreamName™: “Sinput.params(’stream-name’)"

@ m

In this example, we use the following mapping template to set Shar dCount to a fixed value of 5 if
the client does not specify a value in the method request payload. Otherwise, we pass the
client-supplied value to the back end.

167

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

{
"ShardCount": #if($input.path('$. ShardCount') == "") 5 #else $in
put . pat h(' $. ShardCount')",
"StreamNane": "$input. parans(' stream name')"
}
The precedingi f ($i nput.path('$. ShardCount') == "'') ... Boolean expression tests

if the method request's JSON payload does not have the Shar dCount property declared or if the
property value is empty.
3. Test the POST method to create a named stream in Amazon Kinesis:

From the AP| Gateway console, select /streams/{stream-name}/POST in the Resources pane,
choose Test to start testing, type the name of an existing Amazon Kinesis stream in Path for

st r eam nane, and choose Test. If the test is successful, a 200 OK response is returned with no
data.

After you deploy the API, you can also make a REST API request against the POST method on a
Stream resource to invoke the Cr eat eSt r eamaction in Amazon Kinesis:

POST https://your-api-id.execute-api.region.amzon
aws. coni st age/ streans/ your Stream HTTP/ 1. 1

Host: your-api-id. execute-api.regi on.amazonaws. com
Cont ent - Type: application/json

Aut hori zati on:

X- Anz- Dat e: 20160323T1944517

{
}

"ShardCount": 5

Configure and test the DELETE method on a stream resource

1. Setup the DELETE method to invoke the Del et eSt r eamaction in Amazon Kinesis, as shown in
the following.

168

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

2.

3.

€ Method Execution
/streams/{stream-name} - DELETE - Integration Request

Provide information about the target backend that this method will call and whether the incoming request data
should be modified.

Integration type Lambda Function
HTTP Proxy
Mock Integration

@ AWS Service Proxy

AWS Region us-east-1 4
AWS Service Kinesis #

AWS Subdomain ¢

HTTP method POST #
Action DeleteStream #
Execution role arn:aws:iam::7mms s 7:role/apigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key #

Map data from the DELETE method request to the integration request, as shown in the following:
HTTP method POST #
Action DeleteStream +
Execution role arn:aws:iam::738575810317:role/apigAwsProxyRole #
Credentials cache Do not add caller credentials to cache key #

» URL Path Parameters
» URL Query String Parameters

» HTTP Headers

Name Mapped from & Caching
Content-Type ‘application/x-amz-json-1.1'] il

© Add header

v Body Mapping Templates

Content-Type applicationljson Mapping template &
application/json) Template "
1-{
o Addmappinglemplate ‘;’) StreamName™: “$input.params(’stream-name’)

Test the DELETE method to delete a named stream in Amazon Kinesis:

169

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in
Amazon Kinesis

From the API Gateway console, select the /streams/{stream-name}/DELETE method node in the
Resources pane, choose Test to start testing, type the name of an existing Amazon Kinesis stream
in Path for st r eam nane, and choose Test. If the test is successful, a 200 OK response is returned
with no data.

After you deploy the API, you can also make the following REST API request against the DELETE
method on the Stream resource to call the Del et eSt r eamaction in Amazon Kinesis:

DELETE https://your-api-id. execute-api.regi on. amazon
aws. coni st age/ streans/ your Stream HTTP/ 1. 1

Host: your-api-id. execute-api.regi on. amazonaws. com
Cont ent - Type: application/json

Aut hori zati on:

X- Anz- Date: 20160323T1944517

{}

Get Records from and Add Records to a Stream
in Amazon Kinesis

After you create a stream in Amazon Kinesis, you can add data records to the stream and read the data
from the stream. Adding data records involves calling the PutRecords or PutRecord action in Amazon
Kinesis. The former adds multiple records whereas the latter adds a single record to the stream.

POST / ?Acti on=Put Records HTTP/ 1.1
Host: Kinesis.region.donain
Aut hori zati on: AWS4- HVAC- SHA256 Credential =.. .,

Cont ent - Type: application/x-ane-json-1.1
Cont ent - Lengt h: Payl oadSi zeByt es

{
"Records": [
{
"Data": bl ob,
"ExplicitHashKey": "string",
"PartitionKey": "string"
}
I,
"StreanNanme": "string"
}
or

POST / ?Acti on=Put Record HTTP/ 1.1
Host: Kinesis.region.donain
Aut hori zati on: AWS4- HVAC- SHA256 Credential =.. .,

170

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html#API_PutRecords_Examples
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html#API_PutRecord_Examples

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in
Amazon Kinesis

Cont ent - Type: application/x-ane-json-1.1
Cont ent - Lengt h: Payl oadSi zeByt es

{
"Data": bl ob,
"ExplicitHashKey": "string",
"PartitionKey": "string",
"SequenceNunber For Ordering": "string",
"StreanNanme": "string"

}

Here, St r eanNane identifies the target stream to add records. St r eanNane, Dat a, and Par ti ti onKey
are required input data. In our example, we use the default values for all of the optional input data and
will not explicitly specify values for them in the input to the method request.

Reading data in Amazon Kinesis amounts to calling the GetRecords action:

POST / ?Acti on=Get Records HTTP/ 1.1
Host: Kinesis.region.donain
Aut hori zati on: AWs4- HVAC- SHA256 Credential =.. .,

Cont ent - Type: application/x-ane-json-1.1
Cont ent - Lengt h: Payl oadSi zeByt es

{

"Shardlterator": "string",
"Limt": nunber

Here, the source stream from which we are getting records is specified in the required Shar dl t er at or
value, as is shown in the following Amazon Kinesis action to obtain a shard iterator:

POST / ?Acti on=Get Shardlterator HTTP/1.1
Host: Kkinesis.region.donain
Aut hori zati on: AWS4- HVAC- SHA256 Credential =.. .,

Content - Type: application/x-ane-json-1.1
Cont ent - Lengt h: Payl oadSi zeByt es

{
"Shardld": "string",
"ShardlteratorType": "string",
"StartingSequenceNunber": "string",
"StreanmName": "string"

}

For the Get Recor ds and Put Recor ds actions, we expose the GET and PUT methods, respectively, on
a/records resource that is appended to a named stream resource (/ { st r eam nane}). Similarly, we
expose the Put Recor d action as a PUT method on a/ r ecor d resource.

171

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html#API_GetRecords_Examples

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in
Amazon Kinesis

Because the Get Recor ds action takes as input a Shar dl t er at or value, which is obtained by calling

the Get Shar dl t er at or helper action, we expose a GET helper method on a Shar dl t er at or resource
(/ shardi terator).

The following figure shows the API structure of resources after the methods are created:

Resources Actions ~

- &
- & /streams
GET
» & /[stream-name}
DELETE

GET

& frecords
GET
PUT
frecord
PUT

Isharditerator

The following four procedures describe how to set up each of the methods, how to map data from the
method requests to the integration requests, and how to test the methods.

To configure and test the PUT method on the record resource in the API to invoke the
PutRecord action in Amazon Kinesis:

1. Setup the PUT method, as shown in the following:

€ Method Execution /Streams/{stream-name}/record - PUT - Integration Request
Previde information about the target backend that this methed will call and whether the incoming request data should be modified

Integration type Lambda Function
HTTP Proxy

Mock Integration
@ AWS Service Proxy

AWS Region us-sast-1.4

AWS Service (Kinesis #

AWS Subdomain &

HTTP method(POST »)
Actiorl PutRecord #

Execution role armn:aws:iam:7 7:rolelapigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key #

2. Configure data mapping for the PUT-on-Record method, as shown in the following:

172

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in
Amazon Kinesis

Action
Execution role arm:awsiiam:: 718 T:role/apighwsProxyRole +#

Credentials cache Do not add caller credentials to cache key #

» URL Path Parameters
» URL Query String Parameters

+» HTTP Headers

Name Mapped from @ Caching

Content-Type ‘application/x-amz-json-1.1' 0

© Add header

~ Body Mapping Templates
Content-Type application/json Mapping template #

application/json L] Template ™

S
‘ 2 “Streamiame™: "$input.params(stream-name’)”,
© Add mapping template 3 “Dat. til.base64Encode($input.path($.Data’))",
4 “PartitionKey": “$input.path('$.Partitionkey')"
5 1

The preceding mapping template assumes that the method request payload is of the following format:

"Data": "sone data",
"PartitionKey": "sone key"

This data can be modeled by the following JSON schema:

{
"$schema": "http://json-schema. org/draft-04/schema#",
"title": "PutRecord proxy single-record payl oad",
"type": "object",
"properties": {
"Data": { "type": "string" },
"PartitionKey": { "type": "string" }
}
}

You can create a model to include this schema and use the model to facilitate generating the mapping
template. However, you can generate a mapping template without using any model.

To test the PUT method, set the st r eam nane path variable to an existing stream, supply a payload
of the preceding format, and then submit the method request. The successful result is a 200 OK
response with a payload of the following format:

{
" SequenceNunber " :

" 49559409944537880850133345460169886593573102115167928386",
"Shardl d": "shardl d- 000000000004"

173

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in
Amazon Kinesis

To configure and test the PUT method on the records resource in the API to invoke the
PutRecords action in Amazon Kinesis

1. Setup the PUT method, as shown in the following:

& Method Execution [Streams/{stream-name}/records - PUT - Integration Request
Provide information about the target backend that this method will call and whether the incoming request data should be modified.

Integration type Lambda Function
HTTP Proxy

Mock Integration
© AWS Service Proxy

AWS Region us-east-1.#

AWS 5ervice

AWS Subdomain #

HTTP method(POST +
Action\ PutRecords #,

Execution role am:aws:iam:7iss w T:role/apigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key #

2. Configure data mapping for the PUT method, as shown in the following:

Action PutRecords #

Execution role am:aws:iam:: 70080 7:role/apigAwsProxyRole #
Credentials cache Do not add caller credentials to cache key +*

» URL Path Parameters

» URL Query String Parameters

» HTTP Headers

~ Body Mapping Templates

Content-Type application.’]son Mapplng template Y
application/json e Template
T-{
2 “StreamMame”: “$input.params(’stream-name’)”,
© Add mapping template 3- “Records™: [
a- #foreach($elem in $input.path('$.records’))
5 {
6 "Data”: "$util.base4Encode($elem.data)”,
7 "PartitionKey": "$elem.partition-key”
8 }#if($Foreach.hasNext),#end
9 #end
10 1
}

The preceding mapping template assumes the method request payload can be modeled by following
JSON schema:

174

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in
Amazon Kinesis

{
"$schema": "http://json-schema. org/draft-04/ schema#",
"title": "PutRecords proxy payload data",
"type": "object"”,
"properties": {
"records": {
"type": "array",
"items": {
"type": "object"”,
"properties": {
"data": { "type": "string" },
"partition-key": { "type": "string" }
}
}
}
}
}

To test the PUT method, set the st r eam nane path variable to an existing stream, supply a payload
as previously shown, and submit the method request. The successful result is a 200 OK response
with a payload of the following format:

{
"records": |
{
"data": "sone data",
"partition-key": "some key"
},
{
"data": "sone other data",
"partition-key": "some key"
}
|
}

The response payload will be similar to the following output:

{
"Fai | edRecordCount": O,

"Records": |

{
" SequenceNunber " :
" 49559409944537880850133345460167468741933742152373764162",
"Shardld": "shardl d-000000000004"
b
{
" SequenceNunber " :
" 49559409944537880850133345460168677667753356781548470338",
"Shardld": "shardl d-000000000004"
}
]
}

175

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in
Amazon Kinesis

To configure and test the GET method on the Shardlterator resource in the API to invoke
the GetShardlIterator action in Amazon Kinesis

The GET-on-Shardlterator method is a helper method to acquire a required shard iterator before calling

the GET-on-Records method.

1. Set up the GET-on-Shardlterator method, as shown in the following:

€ Method Execution /streams/{stream-name}/sharditerator - GET - Integration R...

Provide information about the target backend that this method will call and whether the incoming request data should be modified.

Integration type Lambda Function
HTTP Proxy

Mack Integration

9 AWS Service Proxy

AWS Region us-east-1 #

AWS Service

AWS Subdomain &

HTTP method
Action (GetSharditerator #*

Execution role arn:aws:iam::7 T:role/apigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key #

2. The Get Shardl t er at or action requires an input of a Shardld value. To pass a client-supplied
Shar dl d value, we add a shar d- i d query parameter to the method request, as shown in the

following:
€ Method Execution /Streams/{stream-name}/sharditerator - GET - Method Req...

Provide information about this method's autherization settings and the parameters it can receive.
Authorization Settings
Authorization NONE /€@

API Key Required faise #*
~ Request Paths

Name Caching

stream-name

~ URL Query String Parameters

Name Caching

o

© Add query string
» HTTP Request Headers

» Request Models Create a Model

In the following mapping template, we add the translation of the shar d- i d query parameter value
to the Shar dl d property value of the JSON payload for the Get Shar dl t er at or action in Amazon

Kinesis.

176

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in
Amazon Kinesis

3. Configure data mapping for the GET-on-Shardlterator method:

Action GetSharditerator #
Execution role arn:aws:iam:7 7:role/apigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key #*

» URL Path Parameters
» URL Query String Parameters

~ HTTP Headers

Name Mapped from @ Caching

Content-Type ‘application/x-amz-json-1.1" #$0

© Add header

~ Body Mapping Templates
Content-Type application/json Mapping template &

application/json e Template ™

“ShardId™: “$input.params(’shard-id*)",
“ShardIteratorType™: “TRIM_HORIZON™,
“StreamMame™: "$input.params(’stream-name’)"”

© Add mapping template

W oB W e

}

4. Using the Test option in the API Gateway console, enter an existing stream name as the
st r eam nane Path variable value, set the shar d- i d Query string to an existing Shar dl d value
(e.g., shar d- 000000000004), and choose Test.

The successful response payload will be similar to the following output:

{
}

"Shardlterator": "AAAAAAAAAAFYVN3VI Fy. . ."

Make note of the Shar dl t er at or value. You will need it to get records from a stream.

To configure and test the GET Method on the records resource in the API to invoke the
GetRecords action in Amazon Kinesis

1. Setupthe GET method, as shown in the following:

177

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in
Amazon Kinesis

€ Method Execution /streams/{stream-name}/records - GET - Integration Request
Provide information about the target backend that this method will call and whether the incoming request data should be modified.

Integration type Lambda Function
HTTP Proxy

Mock Integration

@ AWS Service Proxy

AWS Region us-sast-14

AWS Service (Kinesis #)

AWS Subdomain #

HTTP methnd
Action{GetRecords #

Execution role am:aws:iam::7 7:role/apigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key #

The Get Recor ds action requires an input of a Shar dl t er at or value. To pass a client-supplied
Shardl t er at or value, we add a Shar d- | t er at or header parameter to the method request, as
shown in the following:

€ Method Execution /Streams/{stream-name}/records - GET - Method Request

Provide information about this method's authorization settings and the parameters it can receive.

Authorization Settings

Authorization NONE #€)

API Key Required false #*
= Request Paths

Name Caching

stream-name
» URL Query String Parameters

v HTTP Request Headers

Name Caching

Shard-lterator Q

© Add header

» Request Models Create a Model

In the following mapping template, we add the mapping from the Shar d- | t er at or header value
to the Shar dl t er at or property value of the JSON payload for the Get Recor ds action in Amazon
Kinesis.

Configure data mapping for the GET-on-Records method:

178

Amazon API Gateway Developer Guide
Swagger Definitions of an APl as a Kinesis Proxy

Action GetRecords #
Execution role am:aws:iam::7 T.role/apighwsProxyRole #
Credentials cache Do not add caller credentials to cache key #

» URL Path Parameters

» URL Query String Parameters

» HTTP Headers

Name Mapped from @ Caching

Content-Type ‘application/x-amz-json-1.1" #O
© Add header
+ Body Mapping Templates
Content-Type application/json Mapping template #*

application/fjson e Template ,*

1=
© Add mapping template G , ShardIterator™: "$input.params(’Shard u.-r..:m—D

4. Using the Test option in the API Gateway console, type an existing stream name as the st r eam nane
Path variable value, set the Shar d- | t er at or Header to the Shar dl t er at or value obtained from
the test run of the GET-on-Shardlterator method (above), and choose Test.

The successful response payload will be similar to the following output:

{
"M I1isBehindLatest": O,
"Next Shardl terator": "AAAAAAAAAAF. ..",
"Records": [...]

}

Swagger Definitions of a Sample APl as an Amazon
Kinesis Proxy

{
"swagger": "2.0",
"info": {
"version": "2016-03-31T18: 25: 322",
"title": "KinesisProxy"
}s
"host": "wd4zcl robb. execut e- api . us- east - 1. anazonaws. cont',

"basePath": "/test",
"schenes": |
"https"
1,
"paths": {
"/streanms": {
"get": {
"consunes": |
"application/json"

179

Amazon API Gateway Developer Guide
Swagger Definitions of an APl as a Kinesis Proxy

]

"produces": |
"application/json"
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}
}
1
"X-anmmzon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses”: {
"default": {
"statusCode": "200"

}
}s
"request Tenpl ates": {
"application/json": "{\n}"
}s
"uri": "arn:aws: api gat eway: us- east-1: ki nesi s: action/ListStreans",

"httpMethod": "POST",
"request Paraneters": {
"integration.request. header.Content-Type": "'application/x-ane-json-
1.1
H
"type": "aws"
}
}
}

streans/ {stream nanme}": {
"get": {
"consunes": |
"application/json"
1,
"produces": |
"application/json"
1,
"paraneters": [
{
"name": "stream nane",
"in": "path",
"required": true,
"type": "string"
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}
}
H
"Xx-anmazon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",

180

Amazon API Gateway Developer Guide
Swagger Definitions of an APl as a Kinesis Proxy

"responses”: {
"default": {
"statusCode": "200"

}
}s
"request Tenpl ates": {
"application/json": "{\n \"StreamNarme\": \"$i nput. parans('stream
nane')\"\n}"
}s
"uri": "arn:aws: api gat eway: us- east - 1: ki nesi s: acti on/ Descri beStreant,

"httpMethod": "POST",
"type": "aws"
}
1
"post": {
"consunes": |
"application/json"

]

"produces": |
"application/json"

I,
"paraneters": [
{
"nanme": "stream nane",
"in": "path",
"required": true,
"type": "string"
}
I,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}
}
}s

"X-anmzon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:123456789012: r ol e/ api gAwsPr oxyRol e",
"responses”: {
"default": {
"statusCode": "200"

}
H
"request Tenpl ates": {

"application/json": "{\n \"ShardCount\": 5,\n \"StreamNane\":
\"$i nput . parans(' stream nane')\ "\ n}"

H

"uri": "arn:aws: api gat eway: us- east - 1: ki nesi s: acti on/ Creat eStreant,
"httpMethod": "POST",

"request Paraneters": {

"integration.request. header. Content-Type": "'application/x-ane-json-

}

ype": "aws"

181

Amazon API Gateway Developer Guide
Swagger Definitions of an APl as a Kinesis Proxy

"delete": {
"consunes": |
"application/json"

I,
"produces": |
"application/json"
I,
"paraneters": [
{
"nanme": "stream nane",
"in": "path",
"required": true,
"type": "string"
}
I,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}s
"headers": {
"Content - Type": {
"type": "string"
}
}
}s
"400": {
"description": "400 response",
"headers": {
"Content - Type": ({
"type": "string"
}
}
}s
"500": {
"description": "500 response",
"headers": {
"Content - Type": {
"type": "string"
}
}
}
}s

"X-anmazon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses": {
"A\Nd{2}": {
"statusCode": "400",
"responseParaneters": {

"met hod. r esponse. header. Content - Type": "integration.response. head
er. Cont ent - Type"
}
H
"default": {

"statusCode": "200",
"responseParaneters": {
"met hod. r esponse. header. Content - Type": "integration.response. head

182

Amazon API Gateway Developer Guide
Swagger Definitions of an APl as a Kinesis Proxy

er. Cont ent - Type"
}
H
"s5\\d{2}": {
"statusCode": "500",
"responseParaneters": {
"met hod. r esponse. header. Content - Type": "integration.response. head
er. Cont ent - Type"
}

}
H
"request Tenpl ates": {

"application/json": "{\n \"StreamNarme\": \"$i nput. parans('stream
nane')\"\n}"
H
"uri": "arn:aws: api gat eway: us- east - 1: ki nesi s: acti on/ Del et eStreant,
"httpMethod": "POST",
"request Paraneters": {
"integration.request. header. Content-Type": "'application/x-ane-json-

}

}

ype": "aws"

}
1
"/streans/{stream nane}/record": {

"put": {

"consunes": |
"application/json"
1,
"produces": |
"application/json"

I,
"paraneters": [
{
"nanme": "stream nane",
"in": "path",
"required": true,
"type": "string"
}
I,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}
}
}s

"X-anmzon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:123456789012: r ol e/ api gAwsPr oxyRol e",
"responses": {
"default": {
"statusCode": "200"

}

}s
"request Tenpl ates": {
"application/json": "{\n \"StreamNarme\": \"$i nput. parans('stream

183

Amazon API Gateway Developer Guide
Swagger Definitions of an APl as a Kinesis Proxy

nane')\",\n \"Data\": \"S$util.base64Encode($i nput.path('$.Data'))\",\n
\"PartitionKey\": \"$input.path('$.PartitionKey')\"\n}"
1
"uri": "arn:aws: api gat eway: us-east- 1: ki nesi s: acti on/ Put Record",
"httpMethod": "POST",
"request Paraneters": {
"integration.request. header. Content-Type": "'application/x-ane-json-

}

}

ype": "aws"

}
1
"/ streans/{stream nane}/records": {

"get": {

"consunes": |
"application/json"
1,
"produces": |
"application/json"

I,
"paraneters": [
{
"nanme": "stream nane",
"in": "path",
"required": true,
"type": "string"
}s
{
"nane": "Shard-Iterator",
"in": "header",
"required": false,
"type": "string"
}
I,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}
}
}s

"X-anmzon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:123456789012: r ol e/ api gAwsPr oxyRol e",
"responses": {
"default": {
"statusCode": "200"

}
H
"request Tenpl ates": {

"application/json": "{\n \"Shardlterator\": \"$in
put. parans(' Shard-lterator')\"\n}"

H

"uri": "arn:aws: api gat eway: us- east - 1: ki nesi s: acti on/ Get Records",
"httpMethod": "POST",

"request Paraneters": {

"integration.request. header.Content-Type": "'application/x-ane-json-

184

Amazon API Gateway Developer Guide
Swagger Definitions of an APl as a Kinesis Proxy

}

}
H
"put": {

"consunes": |

"application/json",
"application/x-anz-json-1.1"

ype": "aws"

]

"produces": |
"application/json"

1,

"paraneters": [

{
"nane": "Content-Type",
"in": "header",
"required": false,
"type": "string"

"nane": "stream nane",
" I nll : " pat hll ,
"required": true,
"type": "string"

"in": "body",
"name": "Put RecordsMet hodRequest Payl oad",
"required": true,
"schema": {
"$ref": "#/ definitions/PutRecordsMet hodRequest Payl oad"

}
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"

}
}
1
"X-anmzon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:123456789012: r ol e/ api gAwsPr oxyRol e",
"responses": {
"default": {
"statusCode": "200"

}
H
"request Tenpl ates": {

"application/json": "{\n \"StreamNarme\": \"$i nput. parans(' stream
nane')\",\n \"Records\": [\n #f oreach($el emin $input.path('$.re
cords'))\n {\n \"Data\": \"$util.base64En
code($el emdata)\",\n \"PartitionkKey\": \"$elempartition-key\"\n
} #i f ($f oreach. hasNext), #end\ n #end\ n]\n}",
"application/x-aneg-json-1.1": "#set($i nput Root = $in
put.path('$))\n{\n \"StreamNane\": \"$i nput.parans('streamnane')\",\n

185

Amazon API Gateway Developer Guide
Swagger Definitions of an APl as a Kinesis Proxy

\"records\" : [\n #f oreach($el emin $i nput Root.records)\n {\n
\"Data\" : \"$elemdata\",\n \"partition-key\" : \"$elempartition-key\"\n
}#i f ($f oreach. hasNext), #end\ n #end\n]\n}"
H
"uri": "arn:aws: api gat eway: us- east - 1: ki nesi s: acti on/ Put Records",
"httpMethod": "POST",
"request Paraneters": {
"integration.request. header. Content-Type": "'application/x-ane-json-

}

}

ype": "aws"

}
1
"/ streans/ {stream nane}/sharditerator": {

"get": {

"consunes": |
"application/json"
1,
"produces": |
"application/json"

I,
"paraneters": [
{
"nanme": "stream nane",
"in": "path",
"required": true,
"type": "string"
}s
{
"nane": "shard-id",
"in": "query",
"required": false,
"type": "string"
}
I,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}
}
}s

"X-anmazon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:123456789012: r ol e/ api gAwsPr oxyRol e",
"responses”: {
"default": {
"statusCode": "200"

}
1
"request Tenpl ates": {

"application/json": "{\n \"Shardl d\": \"$input.paranms(' shard-
id)\",\n \"ShardlteratorType\": \"TRIM HORI ZON\",\n \"StreamNane\":

\ "$i nput . parans(' stream name')\"\n}"

"uri": "arn:aws: api gat eway: us- east - 1: ki nesi s: action/ Get Shardlterator",

186

Amazon API Gateway Developer Guide
Swagger Definitions of an APl as a Kinesis Proxy

"httpMethod": "POST",
"request Paraneters": {

"integration.request. header.Content-Type": "'application/x-ane-json-
1.1
H
"type": "aws"
}
}
}

H

"definitions": {

" Put Recor dsMet hodRequest Payl oad": {
"type": "object",
"properties": {

"records": {
"type": "array",
"items": {
"type": "object",
"properties": {
"data": {
"type": "string"
H
"partition-key": {
"type": "string"
}
}
}
}
}
H
"Enpty":
"type": "object"
}
}
}

187

Amazon API Gateway Developer Guide
Set IAM Permissions

Controlling Access in APl Gateway

API Gateway supports multiple mechanisms of access control, including metering or tracking API uses
by clients using API keys. The standard AWS IAM roles and policies offer flexible and robust access
controls that can be applied to an entire API set or individual methods. Custom authorizers and Amazon
Cognito user pools provide customizable authorization and authentication solutions.

Topics
¢ Set IAM Permissions to Access API Gateway (p. 188)
¢ Enable CORS for an API Gateway Resource (p. 198)
¢ Use an API Key in API Gateway (p. 203)
¢ Use Amazon API Gateway Custom Authorizers (p. 204)
¢ Authenticate API Clients with Amazon Cognito Your User Pool (p. 212)
¢ Use Client-Side SSL Certificates for Authentication by the Back End (p. 215)

Set IAM Permissions to Access API Gateway

Topics
¢ Control Access to API Gateway with IAM Policies (p. 188)
¢ Create and Attach a Policy to an IAM User (p. 190)
¢ Statement Reference of IAM Policies for Managing APl in AP| Gateway (p. 191)
¢ Statement Reference of IAM Policies for Executing APl in API Gateway (p. 192)
¢ |AM Policy Examples for APl Gateway APIs (p. 193)
« |AM Policy Examples for APl Execution Permissions (p. 198)

Control Access to API Gateway with IAM Policies

When working with Amazon API Gateway, you access two services. You use one to create, configure,
deploy and update your APl and the other to actually execute your deployed API upon requests by a
client. When setting access permissions in an IAM policy, you reference the APl managing service as
api gat eway and the API executing service as execut e- api . The api gat eway service supports the
actions of GET, POST, PUT, PATCH, DELETE, OPTI ONS, HEAD and the execut e- api service supports the
I nvoke and | nval i dat eCache actions. To create an IAM policy using the Policy Generator in the IAM
console, select Manage Amazon API Gateway as AWS Service to set permissions statements for

188

Amazon API Gateway Developer Guide
Control Access to APl Gateway with IAM Policies

api gat eway and select Amazon API Gateway as AWS Service to set permission statements for
execut e- api .

You can use 1AM to allow IAM users and roles in your AWS account to manage only certain API Gateway
entities (for example, APls, resources, methods, models, and stages) and perform only certain actions
against those entities. You may want to do this, for example, if you have 1AM users you want to allow to
list, but not create, resources and methods for selected APIs. You may have other IAM users you want
to allow to list and create new resources and methods for any API they have access to in AP Gateway.

In the Get Ready to Use API Gateway (p. 4) instructions, you attached an access policy to an IAM user
in your AWS account that contains a policy statement similar to this:

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Allow',
"Action": [
"api gat eway: *"
1,
"Resource": |
e
]
}
]
}

This statement allows the 1AM user in your AWS account to perform all available actions and access all
available resources in APl Gateway to which your AWS account has access. In practice, you may not
want to give the IAM users in your AWS account this much access.

You can also use IAM to enable users inside your organization to interact with only certain APl methods
in AP| Gateway.

In the Configure How a User Calls an APl Method (p. 65) instructions, the APl Gateway console may
have displayed a resource ARN you used to create a policy statement similar to this:

{
"Version": "2012-10-17",

"Statenment": [
{
"Effect": "Allow',
"Action": [
"execut e- api : | nvoke"
1
"Resource": [
"arn: aws: execut e- api : us- east-1: my- aws- account -i d: ny-api -i d/ ny-
st age/ GET/ ny-r esour ce- pat h"
]
}
]
}

This statement allows the 1AM user to call the GET method for the resource path associated with the
specified resource ARN in AP| Gateway. In practice, you may want to give IAM users access to more
methods.

189

Amazon API Gateway Developer Guide
Create and Attach a Policy to an IAM User

Note

IAM policies are effective only if IAM authentication is enabled. If you, as the APl owner, has
enabled AWS identity and access management on a specific resource, users from other AWS
accounts cannot access your API. If you do not enable IAM authentication on the resource, that
resource is effectively public accessible.

Create and Attach a Policy to an IAM User

To create and attach an access policy to an IAM user that restricts the API Gateway entities the IAM user
can manage or the API methods the IAM user can call, do the following:

1.

© 0N

Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

Choose Policies, and then choose Create Policy. (If a Get Started button appears, choose it, and
then choose Create Policy.)

Next to Create Your Own Policy, choose Select.
For Policy Name, type any value that will be easy for you to refer to later, if needed.

For Policy Document, type a policy statement with the following format, and then choose Create
Policy:

{
"Version": "2012-10-17",
"Statement" @ [
{
"Effect" : "Alow',
"Action" : |
"action-statenent"
I,
"Resource" : [
"resource-statenent”
|
b
{
"Effect" : "Alow',
"Action" : |
"action-statenent"
I,
"Resource" : [
"resource-statenent”
|
}
|
}

In this statement, substitute act i on- st at enent and r esour ce- st at enent as needed, and add
additional statements as needed, to specify the API Gateway entities you want to allow the IAM user
to manage, the APl methods the IAM user can call, or both. (By default, the IAM user will not have
permissions unless a corresponding Al | ow statement is explicitly stated.)

Choose Users.

Choose the IAM user to whom you want to attach the policy.

For Permissions, for Managed Policies, choose Attach Policy.
Select the policy you just created, and then choose Attach Policy.

190

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Statement Reference of IAM Policies for Managing API
in API Gateway

Statement Reference of IAM Policies for Managing
APl in APl Gateway

The following information describes the Act i on and Resour ce format used in an IAM policy statement
to grant or revoke permissions for managing API Gateway API entities, such as restapis, resources,
methods, models, stages, custom domain names, API keys, etc.

Action Format of Permissions for Managing APl in API
Gateway

The API-managing Act i on expression has the following general format:

api gat eway: acti on

where act i on is one of the following API Gateway actions:

« * which represents all of the following actions.
¢ GET, which is used to get information about resources.
¢ POST, which is primarily used to create child resources.

¢ PUT, which is primarily used to update resources (and, although not recommended, can be used to
create child resources).

¢« DELETE, which is used to delete resources.
¢ PATCH, which can be used to update resources.

« HEAD, which is the same as GET but does not return the resource representation. HEAD is used
primarily in testing scenarios.

¢ OPTIONS, which can be used by callers to get information about available communication options for
the target service.

Some examples of the Act i on expression include:

« api gat eway: * for all API Gateway actions.
e api gat eway: GET for just the GET action in API Gateway.

Resource Format of Permissions for Managing APl in API
Gateway

The APIl-managing Resour ce expression has the following general format:

arn: aws: api gat eway: regi on: : resour ce- pat h- speci fier

where r egi on is a target AWS region (such as us- east - 1 or * for all supported AWS regions), and
resour ce- pat h- speci fi er is the path to the target resources.

Some example resource expressions include:

e arn: aws: api gat eway: regi on: : / rest api s/ * for all resources, methods, models, and stages in
the AWS region of r egi on.

e arn:aws: api gateway: regi on: : / restapi s/ api -i d/ * for all resources, methods, models, and
stages in the API with the identifier of api - i d in the AWS region of r egi on.

191

Amazon API Gateway Developer Guide
Statement Reference of IAM Policies for Executing API
in API Gateway

e arn: aws: api gat eway: regi on: : / rest api s/ api - i d/ resour ces/ r esour ce- i d/ * for all resources
and methods in the resource with the identifier r esour ce- i d, which is in the API with the identifier of
api - i d in the AWS region of r egi on.

e arn: aws: api gateway: regi on: : /restapi s/ api -i d/ resources/ resource-id/ met hods/ *
for all of the methods in the resource with the identifier r esour ce- i d, which is in the API with the
identifier of api - i d in the AWS region of r egi on.

e arn:aws: api gateway: regi on::/restapis/api-id/resources/resource-id/ nethods/ GET
for just the GET method in the resource with the identifier r esour ce- i d, which is in the API with the
identifier of api - i d in the AWS region of r egi on.

e arn: aws: api gat eway: regi on: : / rest api s/ api -i d/ nodel s/ * for all of the models in the API
with the identifier of api - i d in the AWS region of r egi on.

e arn: aws: api gat eway: regi on: : /rest api s/ api -i d/ nodel s/ nodel - nane for the model with
the name of nodel - nane, which is in the API with the identifier of api - i d inthe AWS region of r egi on.

e arn:aws: api gateway: regi on: : /restapi s/ api -i d/ st ages/ * for all of the stages in the API
with the identifier of api - i d in the AWS region of r egi on.

e arn:aws: api gateway: regi on: :/restapi s/ api -i d/ st ages/ st age- nane for just the stage with
the name of st age- nane in the API with the identifier of api - i d in the AWS region of r egi on.

Statement Reference of IAM Policies for Executing
APl in APl Gateway

The following information describes the Action and Resource format of IAM policy statements of access
permissions for executing an API.

Action Format of Permissions for Executing APl in API
Gateway

The APIl-executing Act i on expression has the following general format:

execut e-api:action

where act i on is an available API-executing action:

« * which represents all of the following actions.
¢ Invoke, used to invoke an API upon a client request.
¢ InvalidateCache, used to invalidate API cache upon a client request.

Resource Format of Permissions for Executing APl in API
Gateway

The API-executing Resour ce expression has the following general format:

arn: aws: execut e- api : regi on: account -i d: api -i d/ st age- nane/ HTTP- VERB/ r esour ce- pat h-
speci fier

where:

e regi on is the AWS region (such as us- east - 1 or * for all AWS regions) that corresponds to the
deployed API for the method.

192

Amazon API Gateway Developer Guide
IAM Policy Examples for APl Gateway APIs

e account-id is the 12-digit AWS account Id of the REST API owner.

e api - i d is the identifier APl Gateway has assigned to the API for the method. (* can be used for all
APIs, regardless of the API's identifier.)

e st age- nane is the name of the stage associated with the method (* can be used for all stages,
regardless of the stage's name.)

e HTTP- VERBIis the HTTP verb for the method. It can be one of the following: GET, POST, PUT, DELETE,
PATCH, HEAD, OPTIONS.

e resource-pat h-speci fi er is the path to the desired method. (* can be used for all paths).

Some example resource expressions include:

e arn: aws: execut e-api : *: *: * for any resource path in any stage, for any API in any AWS region.
(This is equivalent to *).

e arn: aws: execut e- api : us- east - 1: *: * for any resource path in any stage, for any API in the AWS
region of us- east - 1.

e arn: aws: execut e-api : us-east-1: *: api -i d/ * for any resource path in any stage, for the API
with the identifier of api - i d in the AWS region of us-east-1.

e arn: aws: execut e-api : us-east-1: *: api -i d/ t est/* for resource path in the stage of t est , for
the API with the identifier of api - i d in the AWS region of us-east-1.

e arn: aws: execut e-api : us-east-1:*:api-id/test/*/ nmydenoresource/* for any resource
path along the path of nydenor esour ce, for any HTTP method in the stage of t est , for the API with
the identifier of api - i d in the AWS region of us-east-1.

e arn:aws: execut e- api : us-east-1:*:api-id/test/ GET/ nydenor esour ce/ * for GET methods
under any resource path along the path of nydenor esour ce, in the stage of t est, for the API with
the identifier of api - i d in the AWS region of us-east-1.

IAM Policy Examples for APl Gateway APIs

The following example policy documents shows various use cases to set access permissions for managing
API resources in APl Gateway. For permissions model and other background information, see Control
Access to API Gateway with IAM Policies (p. 188).

Topics
¢ Simple Read Permissions (p. 193)
¢ Read-Only Permissions on any APIs (p. 194)
¢ Full Access Permissions for any APl Gateway Resources (p. 195)
¢ Full-Access Permissions for Managing API Stages (p. 196)
¢ Block Specified Users from Deleting any APl Resources (p. 197)

Simple Read Permissions

The following policy statement gives the user permission to get information about all of the resources,
methods, models, and stages in the API with the identifier of a123456789 in the AWS region of us-east-1:

"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Alow',
"Action": [

193

Amazon API Gateway Developer Guide
IAM Policy Examples for APl Gateway APIs

"api gat eway: GET"
I,
"Resource": |
"arn: aws: api gat eway: us-east-1::/restapi s/ al23456789/*"

]

The following example policy statement gives the IAM user permission to list information for all resources,
methods, models, and stages in any region. The user also has permission to perform all available API
Gateway actions for the API with the identifier of a123456789 in the AWS region of us-east-1:

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "All ow',
"Action": [
"api gat eway: GET"
1
"Resource": [
"arn:aws: api gateway: *::/restapis/*"
]
}
{
"Effect": "All ow',
"Action": [
"api gat eway: *"
1
"Resource": [
"arn: aws: api gat eway: us- east-1::/restapis/al23456789/*"
]
}
]
}

Read-Only Permissions on any APIs

The following policy document will permit attached entities (users, groups or roles) to retrieve any of the
APIs of the caller's AWS account. This includes any of the child resources of an API, such as method,
integration, etc.

"Version": "2012-10-17",
"Statenent": [
{
"Sid': "Stnt1467321237000",
"Effect": "Deny",
"Action": [
"api gat eway: POST",
"api gat eway: PUT",
"api gat eway: PATCH",
"api gat eway: DELETE"

194

Amazon API Gateway Developer Guide
IAM Policy Examples for APl Gateway APIs

"Resource": |
"arn: aws: api gat eway: us-east-1::/*"

]

"Sid": "Stnt1467321341000",

"Effect": "Deny",

"Action": [
"api gat eway: GET",
"api gat eway: HEAD",
"api gat eway: OPTI ONS"

1,

"Resource": |
"arn: aws: api gat eway: us-east-1::/",
"arn: aws: api gat eway: us-east-1::/account",
"arn: aws: api gat eway: us-east-1::/clientcertificates",
"arn: aws: api gat eway: us- east - 1: : / domai nnanes",
"arn: aws: api gat eway: us- east-1::/ api keys"

"Sid": "Stnt1467321344000",
"Effect": "Alow',
"Action": [
"api gat eway: CGET",
"api gat eway: HEAD",
"api gat eway: OPTI ONS"
I,
"Resource": |
"arn: aws: api gat eway: us-east-1::/restapis/*"

]

The first Deny statement explicitly prohibits any calls of POST, PUT, PATCH, DELETE on any resources in
API Gateway. This ensures that such permissions will not be overridden by other policy documents also
attached to the caller. The second Deny statement blocks the caller to query the root (/) resource, account
information (/ account), client certificates (/ cl i ent certi fi cat es), custom domain names

(/ domai nnanes) and API keys (/ api keys. Together, the three statements ensure that the caller can
only query API-related resources. This can be useful in API testing when you do not want the tester to
modify any of the code.

To restrict the above read-only access to specified APIs, replace the Resour ce property of Al | ow
statement by the following:

"Resource": ["arn:aws:api gateway: us-east-1::/restapis/restapi _idl/*",
"arn: aws: api gateway: us-east-1::/restapis/restapi _id2/*"]

Full Access Permissions for any API Gateway Resources

The following example policy document grants the full access to any of the APl Gateway resource of the
AWS account.

195

Amazon API Gateway Developer Guide
IAM Policy Examples for APl Gateway APIs

{
"Version": "2012-10-17",
"Statenent": [
{
"Sid": "Stnt1467321765000",
"Effect": "Allow',
"Action": [
"api gat eway: *"
1,
"Resource": |
W n
]
}
]
}

In general, you should refrain from using such a broad and open access policy. It may be necessary to
do so for your API development core team so that they can create, deploy, update, and delete any API
Gateway resources.

Full-Access Permissions for Managing API Stages

The following example policy documents grants full-access permissions on Stage related resources of
any API in the caller's AWS account.

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Alow',
"Action": [
"api gat eway: *"
1.
"Resource": [
"arn: aws: api gat eway: us- east-1::/restapis/*/stages",
"arn:aws: api gat eway: us-east-1::/restapis/*/stages/*"
]
}
]
}

The above policy document grants full access permissions only to the st ages collection and any of the
contained st age resources, provided that no other policies granting more accesses have been attached
to the caller. Otherwise, you must explicitly deny all the other accesses.

Using the above policy, caller must find out the REST API's identifier beforehand because the user cannot
call GET /r espai s to query the available APls. Also, if

arn: aws: api gat eway: us-east-1::/restapi s/ */ st ages is not specified in the Resour ce list, the
Stages resource becomes inaccessible. In this case, the caller will not be able to create a stage nor get
the existing stages, although he or she can still view, update or delete a stage, provided that he stage's
name is known.

To grant permissions for a specific API's stages, simply replace the r est api s/ * portion of the Resour ce
specifications by r est api s/ rest api _i d, where r est api _i d is the identifier of the API of interest.

196

Amazon API Gateway Developer Guide
IAM Policy Examples for APl Gateway APIs

Block Specified Users from Deleting any APl Resources

The following example IAM policy document blocks a specified user from deleting any API resources in
API Gateway.

"Version": "2012-10-17",
"Statenent": [
{
"Sid": "Stnt1467331998000",
"Effect": "Alow',
"Action": [
"api gat eway: GET",
"api gat eway: HEAD",
"api gat eway: OPTI ONS",
"api gat eway: PATCH",
"api gat eway: POST",
"api gat eway: PUT"
]

Resource": [
"arn: aws: api gat eway: us-east-1::/restapis/*"

"Sid": "Stnt1467332141000",
"Effect": "Alow',
"Action": [

"api gat eway: DELETE"
I,
"Condition": {

"StringNotLike": {

"aws: user nane": "johndoe"

}

}

Resource": [
"arn: aws: api gat eway: us-east-1::/restapis/*"

This IAM policy grants full access permission to create, deploy, update and delete API for attached users,
groups or roles, except for the specified user (j ohndoe), who cannot delete any API resources. It assumes
that no other policy document granting Al | ow permissions on the root, API keys, client certificates or
custom domain names has been attached to the caller.

To block the specified user from deleting specific APl Gateway resources, e.g., a specific APl or an API's
resources, replace the Resour ce specification above by this:

"Resource": ["arn:aws:api gateway: us-east-1::/restapis/restapi_id_1",
"arn: aws: api gat eway: us-east-1::/restapis/restapi _id_2/resources"]

197

Amazon API Gateway Developer Guide
IAM Policy Examples for APl Execution Permissions

IAM Policy Examples for APl Execution
Permissions

For permissions model and other background information, see Control Access to APl Gateway with IAM
Policies (p. 188).

The following policy statement gives the user permission to call any POST method along the path of
mydenor esour ce, in the stage of t est, for the API with the identifier of a123456789, assuming the
corresponding API has been deployed to the AWS region of us-east-1:

{
"Version": "2012-10-17",
"Statenent": [
"Effect": "Al ow',
"Action": [
"execut e- api : | nvoke"
I,
"Resource": [
"arn: aws: execut e- api : us-east-1:*:al123456789/ t est / POST/ nydenor esour ce/ *"
]
}
]
}

The following example policy statement gives the user permission to call any method on the resource
path of pet st or ewal kt hr ough/ pet s, in any stage, for the API with the identifier of a123456789, in
any AWS region where the corresponding API has been deployed:

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Alow',
"Action": [
"execut e- api : | nvoke"
I,
"Resource": |
"arn: aws: execute-api:*:*:al123456789/t est/ */ pet st or ewal kt hr ough/ pet s"
]
}
]
}

Enable CORS for an AP| Gateway Resource

When your API's resources receive requests from a domain other than the API's own domain, you must
enable cross-origin resource sharing (CORS) for selected methods on the resource. This amounts to
having your API respond to the OPTI ONS preflight request with at least the following CORS-required
response headers:

¢ Access- Control - Al | ow Met hods

198

Amazon API Gateway Developer Guide
Prerequisites

e Access-Control - Al | ow Header s
e Access-Control -Allow Origin

In API Gateway you enable CORS by setting up an OPTI ONS method with the mock integration type to
return the preceding response headers (with static values discussed in the following) as the method
response headers. In addition, the actual CORS-enabled methods must also return the
Access-Control -Al'l ow Ori gi n: ' *' header in at least its 200 response.
Tip
You must set up an OPTIONS method to handle preflight requests to support CORS. However,
OPTIONS methods are optional if 1) an API resource exposes only the GET, HEAD or POST
methods and 2) the request payload content type is appl i cat i on/ x- www f or m ur | encoded,
mul tipart/formdataortext/plainand 3)the request does not contain any custom
headers. When possible, we recommend to use OPTIONS method to enable CORS in your API.

This section describes how to enable CORS for a method in APl Gateway using the API Gateway console
or the API Gateway Import API.

Topics
¢ Prerequisites (p. 199)
¢ Enable CORS on a Resource Using the APl Gateway Console (p. 199)
¢ Enable CORS for a Resource Using the APl Gateway Import API (p. 201)

Prerequisites

¢ You must have the method available in APl Gateway. For instructions on how to create and configure
a method, see Build an AP| Gateway API Step by Step (p. 14).

Enable CORS on a Resource Using the API
Gateway Console

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.
2. Inthe API Gateway console, choose an API under APIs.
3. Choose aresource under Resources. This will enable CORS for all the methods on the resource.

Alternatively, you could choose a method under the resource to enable CORS for just this method.
4. Choose Enable CORS from the Actions drop-down menu.

199

http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-import-api.html
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Enable CORS Using the Console

:1§ Amazon APl Gateway APIs > HelloWorld (vys2gggws7) > Resources > /hello (z0g00) > GET

APIs , Resources Actions~ ¢ [hello - GET - Method Execution
HelloWorld - & WETHOD ACTIONS
I Resources > & Mello Deete Method Method Request =
Stages o RESOURCE ACTIONS ! Auth: NONE
Custom Authoriz Create Method ARN: am-aws execute-api us-
Models Create Resource east-1 7.vys2gggwsT

fGETmello
PetStore Enable CORS

Delete Resource

API Keys
[« i '
Custom Domain N Deploy AP
Client Certificates Import AP
Delete AP Method Response L

Settings
HTTP Status: 200

Models: application/json =>
Empty

5. Inthe Enable CORS form, do the following:

a. Inthe Access-Control-Allow-Headers input field, type a static string of a comma-separated
list of headers that the client must submit in the actual request of the resource. Use the
console-provided header list of
' Cont ent - Type, X- Anez- Dat e, Aut hori zat i on, X- Api - Key, X- Anz- Security- Token'
or specify your own headers.

b. Use the console-provided value of ' *' as the Access-Control-Allow-Origin header value to
allow access requests from all domains, or specify a named domain to all access requests from
the specified domain.

c. Choose Enable CORS and replace existing CORS headers.

Resources Actions~ | ¢ Enable CORS

- &

Cross-Origin Resource Sharing (CORS) allows browsers to make HTTP requests to servers with a
+ & Ihello

different domain/origin. Specify which methods in the /hello resource are available to CORS requests. To
define static values surround the value in single quotes (eg. ‘amazon.com’). To define mappings use the
syntax described in the Method Editor (eg. method request.querystring. myQueryString).

Methods® V|GET | OPTIONS @

A ontrol-All GET,OPTIONS @
Access-Control-Allow-Headers 'Content-Type X-Amz-Date Authorizatic €
Access-Control-Allow-Origin® ™' [JF:%

» Advanced

Enable CORS and replace existing CORS headers

6. In Confirm method changes, choose Yes, overwrite existing values to confirm the new CORS
settings.

200

Amazon API Gateway Developer Guide
Enable CORS Using Swagger Definition

Confirm method overwrite

The following £ i i ‘will be made to this s methods and will overwrite any existing values. A you sure you want 1o
continue?

= Create OPTIONS mathod

- Add 200 Method Response with Empty Response Model to OPTIONS method

= Add Mock Integration to OPTIONS method

+ Ak 200 Integration Response to OPTIONS method

« Add A Control-Allow-Headers, Access-Control-All Access-Control-Allow-Origin Method Response
Headers to OPTIONS method

= Add Access-Control-Allow-Headers, Access-Control-Allow-Methods, Access-Control-Allow-Origin Integration Response
Header Mappings to OPTIONS method

- Add Access-Control-Allow-Origin Method Response Header to GET mathod

+ Add Access-Control-Allow-Origin Integration Response Header Mapping to GET mathod

Cancel Yes, overwrite axisting values

After CORS is enabled on the GET method, an OPTIONS method is added to the resource, if it is not
already there. The 200 response of the OPTIONS method is automatically configured to return the three
Access- Control - Al | ow * headers to fulfill preflight handshakes. In addition, the actual (GET) method
is also configured by default to return the Access- Control - Al | ow Ori gi n header in its 200 response
as well. For other types of responses, you will need to manually configure them to return

Access- Control - Al l ow Ori gi n' header with ™' or specific origin domain names, if you do not want
to return the Cross-origin access error.

Enable CORS for a Resource Using the API
Gateway Import API

If you are using the API Gateway Import API (p. 110), you can set up CORS support using a Swagger file.
You must first define an OPTIONS method in your resource that returns the required headers.

Note

Web browsers expect Access-Control-Allow-Headers, and Access-Control-Allow-Origin headers
to be set up in each APl method that accepts CORS requests. In addition, some browsers first
make an HTTP request to an OPTIONS method in the same resource, and then expect to receive
the same headers.

The following example creates an OPTI ONS method and specifies mock integration. For more information,
see Configure Mock Integration for a Method (p. 69).

/users
opti ons:
summary: CORS support
description:
Enabl e CORS by returning correct headers
consunes:
- application/json
produces:
- application/json
t ags:
- CORS
X-amazon- api gat eway-i ntegrati on:
type: nock
request Tenpl at es:

201

Amazon API Gateway Developer Guide
Enable CORS Using Swagger Definition

application/json: |
{
"statusCode" : 200
}

responses:
"defaul t":
st at usCode: " 200"
responsePar anet er s:

met hod. r esponse. header . Access- Control - Al |l ow Headers : "' Content -
Type, X- Anz- Dat e, Aut hori zati on, X- Api - Key' "

nmet hod. r esponse. header . Access- Control - Al |l ow- Methods : "'*"'"

met hod. r esponse. header. Access- Control -AllowOrigin : "'*""

responseTenpl at es:
application/json:
{}
responses:
200:
description: Default response for CORS net hod
headers:
Access- Control - Al | ow Headers:
type: "string"
Access- Control - Al | ow Met hods
type: "string"
Access-Control - Al l ow Ori gi n:
type: "string"

Once you have configured the OPTI ONS method for your resource, you can add the required headers to
the other methods in the same resource that need to accept CORS requests.

1.

Declare the Access-Control-Allow-Origin and Headers to the response types.

responses:
200:
description: Default response for CORS net hod
headers:
Access- Control - Al | ow Header s:
type: "string"
Access- Control - Al | ow Met hods:
type: "string"
Access-Control - Al l ow Ori gi n:

type: "string"

In the x- amazon- api gat eway- i nt egr at i on tag, set up the mapping for those headers to your
static values:

responses:
"defaul t":
st at usCode: " 200"
responsePar anet er s:

nmet hod. r esponse. header . Access- Control - Al | ow Headers : "' Cont ent -
Type, X- Anz- Dat e, Aut hori zat i on, X- Api - Key' "
met hod. r esponse. header . Access- Control - Al | ow- Met hods @ "' *"'"
nmet hod. r esponse. header . Access-Control -AllowOrigin : "' *""

202

Amazon API Gateway Developer Guide
Use an API Key

Use an API Key in API Gateway

You can use an API key in APl Gateway to identify apps calling the API and control API access based
on the API key. You can use an API key to control how an APl is used. For example, you can generate
an API key and give it to specific app developers to make the API available for their app users. When an
API key is enabled, API calls must contain the specified key, as the value of the x- api - key header of
the requests. Requests without the matching API key will then be rejected. API keys are useful to control
that an APl is used as expected and curtail abusive uses by changing the API keys. They should not be
treated as a security mechanism for controlling access to an API.

Topics
¢ Prerequisites (p. 203)
¢ Use an API Key with the API Gateway Console (p. 203)

Prerequisites

1. You must have an API available in API Gateway. Follow the instructions in Creating an API (p. 61).

2. You must have deployed the API in APl Gateway at least once. Follow the instructions in Deploying
an API (p. 221).

Use an API Key with the API Gateway Console

To enable an API key with the API Gateway console, follow these instructions:

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

Choose the GET method under a resource of your choosing.

Choose the Method Request box

If APl Key Required is set to false, choose the pencil icon next to it. From the drop-down menu list,
choose true. Finally, choose the check-mark icon to save the setting.

Note
The steps above configures the API Gateway to enforce using API key. Otherwise, the API
key created following the instructions below will not be used.

P oDNPE

5. Inthe secondary navigation bar, in the first list next to the console home button, choose API Keys.
6. Choose Create APl Key.

7. For Name, type a name for the API key entry.

8. (Optional) For Description, type a description for the API key entry.

9. To enable the API key, select Enabled.

10. Choose Save. Make a note of the key displayed in API key.

11. For API Stage Association, for Select API, choose the name of the API.

12. For Select stage, choose the name of the stage.

13. Choose Add, and then choose Save.

14. Deploy or redeploy the API for the effect to take place.

15. Callers must now add to each call a custom header named x- api - key, along with the value of the
API key. For example, if the API key value is bkay ZOMruy8aZChl gxq94K90e7Y70HW55, the custom
header would be as follows:

x-api - key: bkayZOWuy8azZChl gxq94K90e7Y70HWS5

203

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Use Custom Authorizers

Note
In addition to, or instead of, enabling an API key, you can restrict access to certain IAM users
only. For instructions, see Configure How a User Calls an API Method (p. 65).

Use Amazon API Gateway Custom Authorizers

Topics
¢ Amazon API Gateway Custom Authorization Overview (p. 204)
¢ Create the API Gateway Custom Authorizer Lambda Function (p. 205)
¢ Input to an Amazon API Gateway Custom Authorizer (p. 206)
¢ Output from an Amazon API Gateway Custom Authorizer (p. 207)
¢ Configure Custom Authorizer Using the APl Gateway Console (p. 208)
¢ Call an API Using API Gateway Custom Authorization (p. 210)

Amazon APl Gateway Custom Authorization
Overview

With Amazon API Gateway custom authorization, you can control access to your APIs using bearer token
authentication strategies, such as OAuth or SAML. To do so, you provide and configure a custom
authorizer, a Lambda function you own, for APl Gateway to use to authorize the client requests for the
configured APIs.

When an API request is made, AP| Gateway verifies whether a custom authorizer is configured for the
API. If so, APl Gateway calls the Lambda function, supplying the authorization token extracted from a
custom request header. You use this Lambda function to implement various authorization strategies,
such as JSON Web Token (JWT) verification and OAuth provider callout, to return 1AM policies that
authorize the request. If the returned policy is invalid or the permissions are denied, the API call will not
succeed. For a valid policy, APl Gateway caches the returned policy, associated with the incoming token
and used for the current and subsequent requests, over a pre-configured time-to-live (TTL) period of up
to 3600 seconds. You can set the TTL period to zero seconds to disable the policy caching. The default
TTL value is 300 seconds. Currently, the maximum TTL value of 3600 seconds cannot be increased.

g
Lambda Auth
function
Context + Token
Principal + Policy

Request w/ a bearer
token

B—:3—@

Client AP| Gateway Palicy is accessibie endpoint
evaluated
403 Denied l

Policy is
cached

Any other publicty

204

Amazon API Gateway Developer Guide
Create the Custom Authorizer Lambda Function

Create the APl Gateway Custom Authorizer
Lambda Function

Before creating an API Gateway custom authorizer, you must first create the AWS Lambda function that
implements the logic to authenticate and authorize the caller. You can do so in the Lambda console,
using the code template available from the API Gateway Custom Authorizer blueprint. Or you can create
one from scratch. For illustration purposes, we will explain here the creation of the Lambda function
without using the blueprint.

Note

The custom authorizer Lambda function presented here is for illustration purposes. In production
code, you should follow the API Gateway Custom Authorizer blueprint to implement your authorizer
Lambda function.

When creating the Lambda function for your API Gateway custom authorizer, you will be asked to assign
an execution role for the Lambda function if it calls other AWS services. For the following example, the
basic AWBLanbdaRol e will suffice. For more involved use cases, follow the instructions to grant permissions
in an execution role for the Lambda function.

In the code editor of the Lambda console, enter the following Node.js code.

consol e. |l og(' Loadi ng function');

exports. handl er = function(event, context) {
var token = event.authorizati onToken;
/1 Call oauth provider, crack jw token, etc.
/1 In this exanple, the token is treated as the status for sinplicity.

switch (token) {
case 'allow :

cont ext . succeed(generatePolicy('user', "Allow, event.nethodArn));
br eak;

case 'deny':
cont ext. succeed(generatePolicy('user', 'Deny', event.nethodArn));
br eak;

case 'unaut hori zed':
context.fail ("Unauthorized");
br eak;

def aul t:
context.fail("error");

var generatePolicy = function(principalld, effect, resource) {
var aut hResponse = {};
aut hResponse. principalld = principalld,;
if (effect && resource) {
var policyDocunent = {};
pol i cyDocunent. Version = '2012-10-17"; // default version
pol i cyDocunent. Statenent = [];
var statenentOne = {};
st at enent One. Action = 'execute-api:lnvoke'; // default action
statement One. Effect = effect;
st at enent One. Resource = resource;

205

http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role

Amazon API Gateway Developer Guide
Input to a Custom Authorizer

st at enent One;
pol i cyDocunent ;

pol i cyDocunent . St at enent [0]
aut hResponse. pol i cyDocunent

}

return aut hResponse;

The preceding Lambda function returns an Allow IAM policy on a specified method if the request's
authorization token contains an ' al | ow value, thereby permitting a caller to invoke the specified method.
The caller receives an 200 OK response. The function returns a Deny policy against the specified method
if the authorization token has a' deny' value, thus blocking the caller from calling the method. The client
will receive a 403 Forbidden response. If the token is ' unaut hori zed' , the client will receive a 401
Unauthorized response. If the tokenis ' fai | ' or anything else, the client will receive a 500 Internal
Server Error response. In both of the last two cases, the calls will not succeed.

Note

In production code, you may need to authenticate the user before granting authorizations. If so,
you can add authentication logic in the Lambda function as well. Consult the provider-specific
documentation for instructions on how to call such an authentication provider.

Before going further, you may want to test the Lambda function from within the Lambda Console. To do
this, configure the sample event to provide the input and verify the result by examining the output. The
next two sections explain the Input to a Custom Authorizer (p. 206) and Output from a Custom
Authorizer (p. 207).

Input to an Amazon API Gateway Custom
Authorizer

When a custom authorizer is enabled on an APl method, you must specify a custom header for the method
caller to pass the required authorization token in the initial client request. Upon receiving the request, API
Gateway extracts the token from the custom header as the input aut hor i zat i onToken parameter value
into the Lambda function and calls the custom authorizer with the following request payload.

"type": " TOKEN',

"aut hori zati onToken": "<cal | er - suppl i ed-t oken>",

"met hodArn": "arn: aws: execut e- api : <regi onl d>: <account | d>: <api | d>/ <st age>/ <net h
od>/ <r esour cePat h>"

}

In this example, the t ype property specifies the payload type. Currently, the only valid value is the TOKEN
literal. The <cal | er - suppl i ed-t oken> originates from the custom authorization header in a client
request. The met hodAr n is the ARN of the incoming method request and is populated by APl Gateway
in accordance with the custom authorizer configuration.

For the custom authorizer shown in the preceeding section, the <cal | er - suppl i ed-t oken> string is
al | ow, deny, unaut hori zed, or any other string value. An empty string value is the same as

unaut hori zed. The following shows an example of such an input to obtain an Al | ow policy on the GET
method of an API (ynmy 8t bxw7b) of the AWS account (123456789012) in any stage (*).

206

Amazon API Gateway Developer Guide
Output from a Custom Authorizer

{

"type":" TOKEN',

"aut hori zati onToken":"al | ow',

"met hodArn": "arn: aws: execut e- api : us-west - 2: 123456789012: yny8t bxw7b/ */ CGET/ "
}

Output from an Amazon API Gateway Custom
Authorizer

The custom authorizer's Lambda function must return a response that includes the principal identifier
(princi pal 1 d) and a policy document containing a list of policy statements. The following shows an
example of a response.

{
"principalld": "xxxxxxxx", [/ The principal user identification associated
with the token send by the client.
"pol i cyDocunment": {
"Version": "2012-10-17",
"Statenent": [

{
"Action": "execute-api:|nvoke",
"Effect": "All ow Deny",
"Resource": "arn:aws:execute-api:<regionld>: <account!| d>: <ap
pl d>/ <st age>/ <htt pVer b>/ [<resour ce>/<httpVerb>/[...]1"
}

]
}
}

Here, a policy statement stipulates whether to allow or deny (Ef f ect) the APl Gateway execution service
to invoke (Act i on) the specified APl method (Resour ce). You can use a wild card (*) to specify a
resource type (method).

You can access the pri nci pal | d value in a mapping template using the
$cont ext . aut hori zer. pri nci pal | d variable. This is useful if you want to pass the value to the back
end. For more information, see Accessing the $context Variable (p. 102).

For information about valid policies for calling an API, see Statement Reference of IAM Policies for
Executing APl in APl Gateway (p. 192).

The following shows example output from the example custom authorizer. The example output contains
a policy statement to block (Deny) calls to the GET method in an API (yny8t bxw7b) of an AWS account
(123456789012) in any stage (*).

“principalld": "user",

"pol i cyDocument": {
"Version": "2012-10-17",
"Statenent": [

207

Amazon API Gateway Developer Guide
Configure Custom Authorizer

{
"Action": "execute-api:|nvoke",
"Effect": "Deny",
"Resource": "arn:aws:execute-api: us-west-

2:123456789012: yny8t bxwrb/ */ GET/ "

]

}
}

}

Configure Custom Authorizer Using the API
Gateway Console

After you create the Lambda function and verify that it works, you can configure the API Gateway Custom
Authorizer in the APl Gateway console.

Enable a Custom Authorizer on APl Methods

1. Signin to the API Gateway console.
2. Create a new or select an existing APl and choose Authorizers.
3. Choose Create, select Custom Authorizer, and do the following:

In Lambda region, select the region where you upload your custom authorizer's Lambda function.
In Lambda function, select the Lambda function for your custom authorizer.

Note
You must first create a custom authorizer Lambda function in the region for it to be available
in the drop-down list.

In Authorizer Name, enter a name for your new custom authorizer.

Leave Execution role blank to let the APl Gateway console to set a resource-based policy to
grant API Gateway permissions to invoke the authorizer Lambda function or type the name of an
IAM role to allow API Gateway to invoke the authorizer Lambda function. For an example of such
arole, see Set Up an IAM Role and Policy for an API to Invoke Lambda Functions (p. 144).

In Identity token source, type the mapping expression for your authorizer's custom header.

Note

The custom header mapping expression is of the net hod. r equest . header . <nane>
format, where <nane> is the name of a custom authorization header submitted as part
of the client request. In the following example, this custom header name is Aut h.

In Token validation expression, you can optionally provide a RegEx statement for API Gateway
to validate the input token before calling the custom authorizer Lambda function. This helps you
avoid or reduce the chances of being charged for processing invalid tokens.

In Result TTL in seconds, you can change or use the default (300) value to enable caching (>0)
or disable caching (=0) of the policy returned from the Lambda function.

Note

The policy caching uses a cache key generated from the supplied token for the targeted
API and custom authorizer in a specified stage. To enable caching, your authorizer must
return a policy that is applicable to all methods across an API. To enforce method-specific
policy, you can set the TTL value to zero to disable policy caching for the API.

208

Amazon API Gateway Developer Guide
Configure Custom Authorizer

Authorizers create- New Custom Authorizer

Provide a name, Lambda function, and identity token source for your authorizer.

Lambda region* us-west-2 -
Lambda function® myCustomAuthorizer [i]
Authorizer name* myTestApiAuthorizer

Execution role T £ 1 myAccour s/myRole €@
Identity token source* method request.header. Authl [i]

Token validation expression

Result TTL in seconds* 300 i}

4. If you choose to let the APl Gateway console to set the resource-based policy, the Add Permission
to Lambda Function dialog will be displayed. Choose OK. After the custom authorization is created,
you can test it with appropriate authorization token values to verify that it works as expected.

This completes the procedure to create a custom authorization. The next procedure shows how to configure
an API method to use the custom authorizer.

Configure an API Method to Use the Custom Authorizer

1. Go back to the API. Create a new method or choose an existing method. If necessary, create a new
resource.

2. In Method Execution, choose the Method Request link.

3. Under Authorization Settings, expand the Authorization drop-down list to select the custom
authorizer you just created (myTestApiAuthorizer), and then choose the checkmark icon to save

the choice.
Resources Actions~ ¢ & method Execution [- GET - Method RCqUCSt
T ® Provide information about this method's authorization settings and the parameters it can
receive.
Authorization Settings
- & Ipels
Autherization (myTestApiAuthorizer F|i'"0
API Key Required false #
- & /Hpetld)

®
» URL Query String Parameters
» HTTP Request Headers

» Request Models Create a Model ®

4. Optionally, while still on the Method Request page, choose Add header if you also want to pass
the custom authorization header to the back end. In Name, type a custom header name that matches
the header mapping expression you used when you created the custom authorization, and then
choose the checkmark icon to save the settings.

209

Amazon API Gateway Developer Guide
Call an API with Custom authorization

5. Choose Deploy API to deploy the API to a stage. Make a note of the Invoke URL value. You will
need it when calling the API.

Call an API Using API Gateway Custom
Authorization

After you configure your API to use the custom authorizer, you or your customers can call the API using
the custom authorizer. Because it involves submitting a custom authorization token header in the requests,
you need a REST client that supports this. In the following examples, API calls are made using the
Postman Chrome App.

Note
When calling an authorizer-enabled method, API Gateway will not log the call to CloudWatch if
the required token is not set, null or invalidated by the specified Token validation expression.

Calling an API with Custom Authorization Tokens

1. Open the Postman Chrome App, choose the GET method and paste the API's Invoke URL into
the adjacent URL field.

Add the custom authorization token header and set the value to al | ow. Choose Send.

Builder D a = (@ v & W

https-/fy.y 7 No environment v 6
<GET v https://mm s.execute-apl.us-west-2.amazonaws.com/test) Params
e ke alue s

’

Authorization Headers (1) Pre-request script Tests <y 'f)
< Auth allow >
4 Etsw
Body Cookies Headers(8) Tests(0/0 Status Time 3878ms
Raw Preview v || = O Q
9 z {
2 ‘args”: {3},
He ‘headers": {
4 "Accept": "application/json",

"Host": "httpbin.org",
"User-Agent": "AmazonAPIGateway_ymyStbxw7b",
"X-Amzn-Apigateway-Api-Id": "ymyS8tbxw7b"

8 3.
9 'origin": "54.186.57.187",
10 ‘url”: "http://httpbin.org/get”

“ Scroll to response

The response shows that the APl Gateway custom authorizer returns a 200 OK response and
successfully authorizes the call to access the HTTP endpoint (http://httpbin.org/get) integrated with
the method.

2. Still in Postman, change the custom authorization token header value to deny. Choose Send.

210

https://www.getpostman.com/

Amazon API Gateway Developer Guide
Call an APl with Custom authorization

GET

https:/fy -execute-api.us-west-2.amazonaws.com/test Params

._ , >
Authorization Headers (1) Pre-reguest script Tests < (D
—
Q Auth
Heade Value s esetsw
Body Cookies Headers(9) Tests(0/0 S(B(USTimE 848 ms
Raw Preview JSON w =| Q

[

L
C 'Message"”: "User is not authorized to access this resource”

The response shows that the APl Gateway custom authorizer returns a 403 Forbidden response
without authorizing the call to access the HTTP endpoint.

3. In Postman, change the custom authorization token header value to unaut hor i zed and choose
Send.
https://| No environment v e
GET https://y Lexecute-apl.us-west-2.amazonaws.com/test Params
Authorization Headers (1) Pre-request script Tests <3 (D
© a
Body Cookies Headers(9) Test Sld(usTime 508ms
Raw Previ Nv || = D Q

message": "Unauth

The response shows that APl Gateway returns a 401 Unauthorized response without authorizing
the call to access the HTTP endpoint.

4. Now, change the custom authorization token header value to f ai | . Choose Send.

211

Amazon API Gateway Developer Guide
Authenticate API Clients with Amazon Cognito Your
User Pool

GET https://y execute-api.us-west-2.amazonaws.com/test Params Send ~

’;

;

Authorization Headers (1) Pre-request script Tests <) (D

© ~o @

—
e

The response shows that APl Gateway returns a 500 Internal Server Error response without
authorizing the call to access the HTTP endpoint.

Authenticate API Clients with Amazon Cognito
Your User Pool

In addition to using IAM roles and policies (p. 188) or custom authorizers (p. 204), you can also use a user
pool in Amazon Cognito to control who can access your APl in API Gateway. A user pool serves as your
own identity provider to maintain a user directory. It supports user registration and sign-in, as well as
provisioning identity tokens for signed-in users.

A user pool is integrated with an API as a method authorizer. When calling the methods with such an
authorizer enabled, an API client includes in the request headers the user's identity token provisioned
from the user pool. API Gateway then validates the token to ensure it belongs to the configured user pool
and authenticates the caller before passing the request to the back end.

To integrate an APl with the Amazon Cognito identity provider, you, as an API developer, create and own
a user pool, create an API Gateway authorizer connected to the user pool, and enable the authorizer on
selected APl methods. You must also distribute to your API client developers the user pool ID, a client
ID, and possibly the associated client secret that are provisioned from the user pool. The client will need
this information to register users with the user pool, to provide the sign-in functionality, and to have the
user's identity token provisioned from the user pool.

In this section, you will learn how to create a user pool, how to integrate an APl Gateway API with the
user pool, and how to invoke an API integrated with the user pool.

Topics
¢ Create a User Pool (p. 212)
¢ Integrate an API with a User Pool (p. 213)
¢ Call an API Integrated with a User Pool (p. 214)

Create a User Pool

Before integrating your API with a user pool, you must create the user pool in Amazon Cognito. For
instructions on how to create a user pool, see Setting up User Pools in the Amazon Cognito Developer
Guide.

212

http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
http://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
http://docs.aws.amazon.com/cognito/latest/developerguide/setting-up-cognito-user-identity-pools.html

Amazon API Gateway Developer Guide
Integrate an API with a User Pool

Note

Make note of the user pool ID, client ID and the client secret, if selected. The client will need to
provide them to Amazon Cognito for the user to register with the user pool, to sign in to the user
pool, and to get an identity token to be included in requests to call APl methods configured with
the user pool. Also, you will need to specify the user pool name when you configure the user
pool as an authorizer in API Gateway, as described next.

Integrate an API with a User Pool

To integrate your API with a user pool, you must create in APl Gateway a user pool authorizer connected
to the user pool. The following procedure walks you through the steps to do this using the API Gateway

console.
To create a user pool authorizer using the APl Gateway console

Create a new API or select an existing APl in API Gateway.

From the main navigation pane, choose Authorizers under the specified API.

Under Authorizers, choose Create and then choose Cognito User Pool Authorizer.
To configure this authorizer:

P obdPE

a. Choose aregion for Cognito region.
For Cognito User Pool, choose an available user pool.

c. The Authorizer name field will be automatically populated with the chosen user pool name.
However, you can customize it if you want to.

d. The ldentity token source field will be set to net hod. r equest . header . Aut hori zat i on by

default. However, you can customize it if you want to. Using the default, Aut hori zat i on will
be the name of the incoming request header to contain an API caller's identity token.

e. Optionally, type a regular expression in the App client ID regex field to validate client IDs
associated with the user pool.

f. Choose Create to finish integrating the user pool with the API.

5. Having created the authorizer, you can, optionally, test it by supplying an identity token provisioned

from the user pool.

To enable a user pool authorizer on methods

Choose (or create) a method of your API.

Choose Method Request.

Under Authorization Settings, choose the edit icon by the Authorization field.

Choose one of the available Amazon Cognito User Pool authorizers from the drop-down list.
Choose the check-mark icon to save the settings.

Repeat these steps for other methods of your choosing.

If needed, choose Integration Request to add
$cont ext . aut hori zer. cl ai ns[' property-nane'] or

No gagp~wdPE

$cont ext . aut hori zer. cl ai ns. property- nane expressions in a body-mapping template to
pass the specified identity claims property from the user pool to the back end. For simple property
names, such as sub or cust om sub, the two notations are identical. For complex property hames,

such as cust om r ol e, the dot notation may not be used. For example, the following mapping
expressions pass the claim's standard fields of sub and emai | to the back end:

213

http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

Amazon API Gateway Developer Guide
Call an API Integrated with a User Pool

{
"context" : {
"sub" : "$context.authorizer.clains.sub",
"emai | " : "$context.authorizer.clains.emil"
}
}

If you have declared a custom claim field when configuring your user pool, you can follow the same
pattern to access the custom fields. The following example gets a custom r ol e field of a claim:

{
"context" : {
"role" : "$context.authorizer.clains.role"
}
}

If the custom claim field is declared as cust om r ol e, use the following example to get the claim's
property:

{
"context" : {
"role" : "$context.authorizer.clains['customrole']"
}
}

Call an API Integrated with a User Pool

To call a method with a user pool authorizer configured, the client must do the following:

¢ Enable the user to sign up with the user pool.
¢ Enable the user to sign in to the user pool.
¢ Obtain an identity token of the signed-in user from the user pool.

¢ Include the identity token in the Aut hor i zat i on header (or another header you specified when creating
the authorizer).

You can use one of the AWS SDKs to perform these tasks. For example:

« To use the Android SDK, see Setting up the AWS Mobile SDK for Android to Work with User Pools.
* To use the iOS SDK, see Setting Up the AWS Mobile SDK for iOS to Work with User Pools.
¢ To use JavaScript, see Setting up the AWS SDK for JavaScript in the Browser to Work with User Pools.

The following procedure outlines the steps to perform these tasks. For more information, see the blog
posts on Using Android SDK with Amazon Cognito Your User Pools and Using Your Amazon Cognito
User Pool for iOS.

To call an API integrated with a user pool

1. Sign up a first-time user to a specified user pool.
2. Signin a user to the user pool.
3. Get the user's identity token.

214

https://aws.amazon.com/tools#SDK
http://docs.aws.amazon.com/cognito/latest/developerguide/setting-up-android-sdk.html
http://docs.aws.amazon.com/cognito/latest/developerguide/walkthrough-using-the-ios-sdk.html
http://docs.aws.amazon.com/cognito/latest/developerguide/setting-up-the-javascript-sdk.html
http://mobile.awsblog.com/post/TxNYVQQ3A2LT6Y/Using-Android-SDK-with-Amazon-Cognito-Your-User-Pools
http://mobile.awsblog.com/post/TxGNH1AUKDRZDH/Announcing-Your-User-Pools-in-Amazon-Cognito
http://mobile.awsblog.com/post/TxGNH1AUKDRZDH/Announcing-Your-User-Pools-in-Amazon-Cognito

Amazon API Gateway Developer Guide
Use Client-Side SSL Certificates

4. Call APl methods configured with a user pool authorizer, supplying the unexpired token in the
Aut hori zat i on header or another header of your choosing.

5. When the token expires, repeat Step 2-4. Identity tokens provisioned by Amazon Cognito expire
within an hour.

For code examples, see an Android Java sample and an iOS Objective-C sample.

Use Client-Side SSL Certificates for
Authentication by the Back End

You can use AP| Gateway to generate an SSL certificate and use its public key in the back end to verify
that HTTP requests to your back-end system are from API Gateway. This allows your HTTP back end to
control and accept only requests originating from Amazon API Gateway, even if the back end is publicly
accessible.

The API Gateway-generated SSL certificates are self-signed and only the public key of a certificate is
visible in the APl Gateway console or through the APIs.

Topics
¢ Generate a Client Certificate Using the API Gateway Console (p. 215)
¢ Configure an API to Use SSL Certificates (p. 216)
e Test Invoke (p. 217)
¢ Configure Back End to Authenticate API (p. 217)

Generate a Client Certificate Using the API
Gateway Console

1. Inthe main navigation pane, choose Client Certificates.
2. From Client Certificates, choose Generate.

3. Optionally, For Description, enter a short descriptive title for the generated certificate. API Gateway
generates a new certificate and returns the new certificate GUID, along with the PEM-encoded public
key.

4. Choose the Save button to save the certificate to APl Gateway.

215

https://github.com/awslabs/aws-sdk-android-samples/tree/master/AmazonCognitoYourUserPoolsDemo
https://github.com/awslabs/aws-sdk-ios-samples/tree/master/CognitoYourUserPools-Sample/Objective-C

Amazon API Gateway Developer Guide
Configure an APl to Use SSL Certificates

:1: Amazon AP| Gateway ~ Client Certificates > xmbigp Show all hints e

APls Client Camﬁcales@ xmbiqp - test-client-cert-2 Delete client certificate
.
PetStore & xmbigg Descriptiqp_ test-client-cert-2

APl Keys Certificate - BEGIN CERTIFICAT Eveeee -

Custom Domain Names MICEDCCAICGAWIBAQNTCaSKBL)

S+QwDQYJKoZIhveNAQELBQAWN | _
Client Certificates DELMAKGA1UE 1

Settings BhMCVVMYEDAOBGNVBAC TBINIY
XRObGUXEZARBGHNVBAMTCkFwal
dhdGV3YXkwHhcN
MTUXMAIMTWMIE2WRENMTYxMj
ASMTgwMJE2WJAOMQswCQYDVQ
QGEw/VUIEQMA4G
ATUEBXMHUZ2VNOHRSZTETMBEGA
TUEAXMKQXBpR2FOZXdneTCCASI
wDQYJKoZIhveN
AQEBBQADIIEPADCCAQOCOIES
AIBVWVRSSMDZIIZUKC QTrpesF 1P| =

QITKZjhWhgc
You are now ready to configure an API to use the certificate.

Configure an APl to Use SSL Certificates

These instructions assume you have already completed Generate a Client Certificate Using the API
Gateway Console (p. 215).

1. Inthe API Gateway console, create or open an API for which you want to use the client certificate.
Make sure the API has been deployed to a stage.

2. Choose Stages under the selected APl and then choose a stage.
3. Inthe Stage Editor panel, select a certificate under the Client Certificate section.
4. Choose the Save Changes button to save the settings.

42 AmazonAPIGateway APls > Peistors (Onianifnf) > Stages > fest snowalhints (@)
APIs . Stages m test Stage Editor Delete Stage
PetStore 1
Resources

® Invoke URL: hitps//0n1anifwvl exec ute-api us-east-1 amazonaws. comiest

Custom Authoriz

Models Settings Stage Varia SDK Export D History
Dashboard

Custom Autheriz Configure the metering and caching settings for the test stage.

Models Cache Settings

Dashboard

Enable API cache
API Keys

CloudWatch Settings
Custom Domain N

Client Certificates Enable CloudWatch Logs |
Seltings Enable CloudWatch Metrics || @
Throttling Settings
Rate 500 [%
BurstLimit 1000 %

Client Certificate

Select the chient certificate thal AP| Gateway will use to call your integration endpoints in

this stage
None jestclient-cen-2 (xmbigp) | =
« Save Changes

216

Amazon API Gateway Developer Guide
Test Invoke

After a certificate is selected for the APl and saved, API Gateway will use the certificate for all calls to
HTTP integrations in your API.

Test Invoke

1. Choose an API method. In Client, choose Test.
2. From Client Certificate, choose Test to invoke the method request.

Resources Actions~ @ ¢ Method Execution /pets - GET - Method Test

- & Make a test call to your method with the provided input

Path
No path parameters exist for this resource. You can define path parameters by
- & Ipets using the syntax {myPathParam} in a resource path

Query Strings
type
-~ & /petid}

Headers
No header parameters exist for this method. You can add them via Method
Request

Stage Variables
No stage variables exist for this method

Ehient Certificate
test-client-cert-2 (xmbigp E‘

Request Body
Request Body is not supported for GET methods.

N fes]

API Gateway will present the chosen SSL certificate for the HTTP back end to authenticate the API.

Configure Back End to Authenticate API

These instructions assume you have already completed Generate a Client Certificate Using the API
Gateway Console (p. 215) and Configure an API to Use SSL Certificates (p. 216).

When receiving HTTPS requests from API Gateway, your back end can authenticate your API using the
PEM-encoded certificate generated by API Gateway, provided that the back end is properly configured.
Most Web servers can be easily configured to do so.

For example, in Node.js you can use the HTTPS module to create an HTTPS back end and use the
client-certificate-auth modules to authenticate client requests with PEM-encoded certificates.
For more information, see HTTPS on the Nodejs.org website and see client-certificate-auth on the
https://www.npmjs.com/ website.

217

https://nodejs.org/api/https.html#https_https
https://www.npmjs.com/package/client-certificate-auth

Amazon API Gateway Developer Guide
View a List of APIs

Maintaining an APl in Amazon API
Gateway

Topics
¢ View a List of APIs in API Gateway (p. 218)
¢ Delete an APl in API Gateway (p. 218)
¢ Delete a Resource in APl Gateway (p. 219)
¢ View a Methods List in APl Gateway (p. 219)
¢ Delete a Method in API Gateway (p. 220)

View a List of APIs in APl Gateway

Use the API Gateway console to view a list of APIs.

Topics
« Prerequisites (p. 218)
¢ View a List of APIs with the APl Gateway Console (p. 218)

Prerequisites

¢ You must have an API available in APl Gateway. Follow the instructions in Creating an API (p. 61).

View a List of APIs with the API Gateway Console

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.
2. The list of APIs is displayed.

Delete an APl in APl Gateway

Use the API Gateway console to delete an API.

218

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Prerequisites

Warning
Deleting an API means that you can no longer call it. This action cannot be undone.

Topics
¢ Prerequisites (p. 219)
¢ Delete an API with the APl Gateway Console (p. 219)

Prerequisites

* You must have deployed the API at least once. Follow the instructions in Deploying an API (p. 221).

Delete an APl with the APl Gateway Console

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
In the box that contains the name of the APl you want to delete, choose Resources.
Choose Delete API.

When prompted to delete the API, choose Ok.

PN PE

Delete a Resource in API Gateway

Use the APl Gateway console to delete a resource.

Warning
When you delete a resource, you also delete its child resources and methods. Deleting a resource
may cause part of the corresponding API to be unusable. Deleting a resource cannot be undone.

Delete a Resource with the APl Gateway Console

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

In the box that contains the name of the API for the resource you want to delete, choose Resources.
In the Resources pane, choose the resource, and then choose Delete Resource.

When prompted, choose Delete.

PowonNE

View a Methods List in APl Gateway

Use the API Gateway console to view a list of methods for a resource.

Topics
¢ Prerequisites (p. 219)
¢ View a Methods List with the APl Gateway Console (p. 220)

Prerequisites

¢ You must have methods available in APl Gateway. Follow the instructions in Build an APl Gateway
API Step by Step (p. 14).

219

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
View a Methods List with the API Gateway Console

View a Methods List with the API Gateway Console

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Inthe box that contains the name of the API, choose Resources.

3. The list of methods is displayed in the Resources pane.
Tip
You may need to choose the arrow next to one or more resources to display all of the
available methods.

Delete a Method in API Gateway

Use the API Gateway console to delete a method.

Warning
Deleting a method may cause part of the corresponding API to become unusable. Deleting a
method cannot be undone.

Delete a Method with the API Gateway Console

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
In the box that contains the name of the API for the method, choose Resources.

In the Resources pane, choose the arrow next to the resource for the method.
Choose the method, and then choose Delete Method.

When prompted, choose Delete.

gk wbdRE

220

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Deploy an API with the APl Gateway Console

Deploying an APl in Amazon API
Gateway

After an API is created, you must deploy it to make it public callable. A deployment takes place in stages.
A stage corresponds to a version of the API in service. In each stage, you can configure stage-level
throttling settings, in addition to enabling or disabling API cache or CloudWatch logs for the API's requests
and responses. If the stage-level settings are enabled, you have options to override them for individual
methods. You can also define stage variables and use them to pass deployment-specific environment
data to the API integration at the run time.

Topics
¢ Deploy an API with the Amazon API Gateway Console (p. 221)
¢ Deploy an API in Stages in Amazon API Gateway (p. 223)
¢ Manage API Request Throttling (p. 227)
¢ Enable Amazon API Gateway Caching in a Stage to Enhance API Performance (p. 227)
¢ Manage API Gateway API Deployment with Stage Variables (p. 233)
¢ Generate an SDK for an API in APl Gateway (p. 245)
¢ Use a Custom Domain Name in API Gateway (p. 251)

Deploy an APl with the Amazon APl Gateway
Console

Prerequisites

¢ You must specify settings for all of the methods in the API you want to deploy. Follow the instructions
in Set up Method and Integration (p. 62).

Deploy an API with the APl Gateway Console

Note
If you want to change a stage in API Gateway to use a different deployment, see Change a
Stage to Use a Different Deployment with the API Gateway Console (p. 222) instead.

221

Amazon API Gateway Developer Guide
Update deployment configuration with the APl Gateway
Console

P onNPE

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
In the box that contains the name of the API you want to deploy, choose Resources.
In the Resources pane, choose Deploy API.

For Deployment stage, do one of the following:

« To deploy the API to an existing stage, choose the name of the stage.
« To deploy the API to a new stage, choose New Stage. For Stage name, type the name of the
stage you want to use for the deployment.
Tip
The stage name should be meaningful, but short enough to be easy and fast to type. Your
users will specify this name as part of the URL they will use to invoke the API.

(Optional) For Stage description, type a description for the stage.
(Optional) For Deployment description, type a description for the deployment.
Choose Deploy.

Update deployment configuration with the API
Gateway Console

After an APl is deployed to a stage, you can, optionally, modify the deployment by updating the stage
settings or stage variables. After making any changes, you must redeploy the API. The following procedure
demonstrates how to accomplish with the APl Gateway Console.

1.

If needed, choose the Settings tab in the Stage Editor pane of the API Gateway Console.

You can then choose to use or not use API cache, to enable or disable CloudWatch logs, to change
throttling settings, or to select or deselect a client certificate.

If needed, choose the Stage Variables tab in the Stage Editor pane of the APl Gateway Console.

You can then choose to update the values of selected stage variables.

If you made any change, choose the Save Changes button; go back to the Resources window; and
then choose Deploy API again.

Note

If the updated settings, such as enabling logging, requires a new IAM role, you can add the
required IAM role without redeploying the API. However, it can take a few minutes before the
new |IAM role takes effect. Before that happens, traces of your API calls will not be logged even
if you have enabled the logging option.

Change a Stage to Use a Different Deployment
with the APl Gateway Console

Once you have deployed an APl more than once, you can choose a specific deployment for a given stage.
The following procedure shows how to do this.

1.

You must have deployed to the stage at least twice. Follow the instructions in Deploy an API with
the API Gateway Console (p. 221).

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
In the box that contains the name of the API with the stage you want to change, choose Stages.

222

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Deploy an APl in Stages

4. Choose the stage you want to update the deployment.

5. Onthe Deployment History tab, choose the option button next to the deployment you want the
stage to use.

6. Choose Change Deployment.

Deploy an APl in Stages in Amazon API Gateway

In API Gateway, a stage defines the path through which an API deployment is accessible.
Use the API Gateway console to deploy an API in stages.

¢ Create a Stage (p. 223)
¢ View a List of Stages (p. 223)
e Set Up a Stage (p. 224)
¢ Delete a Stage (p. 227)

Create a Stage in API Gateway

Use the API Gateway console to create a stage for an API.

Topics
¢ Prerequisites (p. 223)
¢ Create a Stage with the AP Gateway Console (p. 223)

Prerequisites

1. You must have an API available in API Gateway. Follow the instructions in Creating an API (p. 61).
2. You must have deployed the API at least once. Follow the instructions in Deploying an API (p. 221).

Create a Stage with the API Gateway Console

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
In the box that contains the name of the API, choose Stages.

Choose Create Stage.

For Stage name, type a name for the stage.

(Optional) For Stage description, type a description for the stage.

For Deployment, choose the date and time of the existing API deployment you want to associate
with this stage.

7. Choose Create.

o gk wdRE

View a List of Stages in API Gateway

Use the API Gateway console to view a list of stages in AP Gateway.

Topics
¢ Prerequisites (p. 224)
¢ View a List of Stages with the APl Gateway Console (p. 224)

223

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Set Up a Stage

Prerequisites

1. You must have an API available in API Gateway. Follow the instructions in Creating an API (p. 61).

2. You must have deployed the API in API Gateway at least once. Follow the instructions in Deploying
an API (p. 221).

View a List of Stages with the APl Gateway Console

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.
2. In the box that contains the name of the API, choose Stages.

Set Up a Stage

This section walks you through the options to set up an API deployment stage in the AP Gateway console.

Topics
¢ Prerequisites (p. 224)
¢ Set Up an API Deployment Stage with the API Gateway Console (p. 224)

Prerequisites

¢ You must have a stage available in APl Gateway. Follow the instructions in Create a Stage (p. 223).

Set Up an API Deployment Stage with the API Gateway
Console

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Inthe box that contains the name of the API for the stage where you want to specify settings, choose
Stages.

3. Inthe Stages pane, choose the name of the stage.

4. To enable a cache for the API, on the Settings tab, in the Cache Settings area, select Enable API
cache. Then, for Cache capacity, choose a cache size. You can use the default for other cache
settings. For information on how to set up these, . Finally, choose Save Changes.

Important

By selecting this box, your AWS account may be charged for API caching.

Tip

To override enabled stage-level cache settings, expand the stage under the Stages
secondary navigation pane, choose a method. Then back in the stage editor, choose
Override for this method for Settings. In the ensuing Cache Settings area, clear Enable
Method Cache or customize any other desired options, before choosing Save Changes.
For more information about the method-level and other stage-level cache settings, see
Enable APl Caching (p. 227).

5. To generate code to call the API from Android, iOS, or JavaScript, you use the SDK Generation
tab. For more information, see Generate an SDK for an API (p. 245).

6. To enable Amazon CloudWatch Logs for all of the methods associated with this stage of this API
Gateway API, do the following:

1. On the Settings tab, in the CloudWatch Settings area, select Enable CloudWatch Logs.

224

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Set Up a Stage

Tip

To enable method-level CloudWatch settings, expand the stage under the Stages
secondary navigation pane, choose each method of interest, and, back in the stage
editor, choose Override for this method for Settings. In the ensuing CloudWatch
Settings area, make sure to select Log to CloudWatch Logs and any other desired
options, before choosing Save Changes.

Important
Your account will be charged for accessing method-level CloudWatch logs, but not the
API- or stage level logs.

For Log level, choose ERROR to write only error-level entries to CloudWatch Logs, or choose
INFO to include all ERROR events as well as extra informational events. No sensitive data will
be logged unless the Log full requests/responses data option is selected.

To write entries to CloudWatch Logs that contain full API call request and response information,
select Log full requests/responses data.

Choose Save Changes. The new settings will take effect after a new deployment.

Important

Whether you enable CloudWatch Logs for all or only some of the methods, you must
also specify the ARN of an IAM role that enables APl Gateway to write information to
CloudWatch Logs on behalf of your IAM user. To do this, in the secondary navigation
bar, in the first list next to the console home button, choose Settings. Then type the
ARN of the IAM role in the CloudWatch Logging role ARN box. For common application
scenarios, the IAM role could attach the managed policy of
AmazonAPIGatewayPushToCloudWatchLogs, which contains the following access
policy statement:

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Alow',
"Action": [
"l ogs: Cr eat eLogG oup",
"l ogs: Creat eLogStreant,
"l ogs: Descri beLogG oups",
"l ogs: Descri beLogStreans",
"l ogs: Put LogEvent s",
"l ogs: Get LogEvent s",
"l ogs: FilterLogEvents"

]

Resource": "*"

The 1AM role must also contain the following trust relationship statement:

"Version": "2012-10-17",
"Statement": [
{
"Sidv:ott,
"Effect": "Allow',
"Principal": {
"Service": "api gateway. anazonaws. cont

225

Amazon API Gateway Developer Guide
Set Up a Stage

b

"Action": "sts:AssumeRol e"

To create the IAM role, you can adapt the instructions in "To create the Lambda
invocation role and its policy" and "To create the Lambda execution role and its policy"
in the Create Lambda Functions (p. 23) section of the Call Lambda Functions
Synchronously (p. 22).

For more information about CloudWatch, see the Amazon CloudWatch Developer
Guide.

7. Toenable Amazon CloudWatch metrics for all of the methods associated with this API in APl Gateway,
in the Stage Editor pane, on the Settings tab, in the CloudWatch Settings area, select Enable
CloudWatch metrics, and then choose Save Changes. The new settings will take effect after a
new deployment.

Important

By selecting this box, your AWS account may be charged for using CloudWatch.

Tip

To enable CloudWatch metrics for only some methods, clear Enable CloudWatch metrics.
In the Stages pane, choose each of the methods for which you want to enable CloudWatch
metrics. For each method you choose, on the Settings tab for the method, choose Override
for this method, and in the CloudWatch Settings area, select Enable CloudWatch
metrics. Finally, choose Save Changes.

For more information about CloudWatch, see the Amazon CloudWatch Developer Guide.

8. To set a default throttle limit for all of the methods associated with this API in API Gateway, in the
Stage Editor pane, on the Settings tab, in the Throttle Settings area, do the following, and then
choose Save Changes:

e For Burst Limit, type the absolute maximum number of times API Gateway will allow this method
to be called per second. (The value of Burst Limit must be equal to or greater than the value of
Rate.) The default setting is 1000 request per second.

« For Rate, type the number of times APl Gateway will allow this method to be called per second
on average. (The value of Rate must be equal to or less than the value of Burst Limit.) The default
setting is 500 request per second.

Note

* When creating a stage, if not supplied, API Gateway will enforce the default values of
1000 for Burst Limit and 500 for Rate in the stage settings.

< In addition, API Gateway enforces overall account level throttling at the default values of
1000 for Burst Limitand 500 for Rate. If your require a higher level of throttling on your
account, contact the AWS Support Center to request an increase.

» API Gateway uses the token bucket algorithm, including average rate and burst size, for
both account and method throttling.

9. To change the stage to use a different deployment, in the Stage Editor pane, on the Change
Deployment tab, choose the option button next to the deployment you want the stage to use, and
then choose Change Deployment.

226

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
https://console.aws.amazon.com/support/home#/
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket#Average_rate
https://en.wikipedia.org/wiki/Token_bucket#Burst_size

Amazon API Gateway Developer Guide
Delete a Stage

Delete a Stage in APl Gateway

Use the API Gateway console to delete a stage in API Gateway.

Warning
Deleting a stage may cause part or all of the corresponding API to be unusable by API callers.
Deleting a stage cannot be undone.

Delete a Stage with the APl Gateway Console

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

In the box that contains the name of the API for the stage, choose Stages.

In the Stages pane, choose the stage you want to delete, and then choose Delete Stage.
When prompted, choose Delete.

AwNPE

Manage APl Request Throttling

Topics
¢ Account-Level Throttling (p. 227)
* Stage-Level and Method-Level Throttling (p. 227)

Amazon API Gateway throttles API requests to your API using the token bucket algorithm. For more
information, see token bucket algorithm.

Account-Level Throttling

By default, API Gateway limits the steady-state request rates to 1000 requests per second (rps) and
allows bursts of up to 2000 rps across all APIs, stages, and methods within an AWS account. If necessary,
you can request an increase to your account-level limits. For more information, see API Gateway

Limits (p. 279).

You can view account-level throttling limits in the API Gateway console. The console displays the default
account-level settings before these settings are overridden by any customization. You can also read the
account-level throttling limits by using the API Gateway REST API (p. 278).

Stage-Level and Method-Level Throttling

As an API owner, you can override the account-level request throttling limits for a specific stage or for
individual methods in an API. Actual stage-level and method-level throttling limits are bounded by the
account-level rate limits, even if you set the stage-level or method-level throttling limits greater than the
account-level limits.

You can set the stage-level or method-level throttling limits by using the API Gateway console or by calling
the API Gateway REST API (p. 278). For instructions using the console, see Set Up a Stage (p. 224).

Enable Amazon API Gateway Caching in a Stage
to Enhance API Performance

Topics

227

https://console.aws.amazon.com/apigateway
https://en.wikipedia.org/wiki/Token_bucket

Amazon API Gateway Developer Guide
API Caching Overview

¢ Amazon API Gateway Caching Overview (p. 228)

¢ Enable Amazon API Gateway Caching (p. 228)

¢ Override API Gateway Stage-Level Caching for Method Caching (p. 229)

¢ Use Method or Integration Parameters as Cache Keys to Index Cached Responses (p. 230)
¢ Flush the API Stage Cache in APl Gateway (p. 231)

¢ Invalidate an APl Gateway Cache Entry (p. 231)

Amazon API Gateway Caching Overview

You can enable API caching in Amazon API Gateway to cache your endpoint’s response. With caching,
you can reduce the number of calls made to your endpoint and also improve the latency of the requests
to your API. When you enable caching for a stage, API Gateway caches responses from your endpoint

for a specified time-to-live (TTL) period, in seconds. APl Gateway then responds to the request by looking
up the endpoint response from the cache instead of making a request to your endpoint. The default TTL
value for API caching is 300 seconds. The maximum TTL value is 3600 seconds. TTL=0 means caching
is disabled.

Note
Caching is charged by the hour and is not eligible for the AWS free tier.

Enable Amazon API Gateway Caching

In API Gateway, you can enable caching for all methods for a specified stage. When you enable caching,
you must choose a cache capacity. In general, a larger capacity gives a better performance, but also
costs more.

API Gateway enables caching by creating a dedicated cache instance. This process can take up to 4
minutes.

API Gateway changes caching capacity by removing the existing cache instance and recreating a new
one with a modified capacity. All existing cached data is deleted.

In the API Gateway console, you configure caching in the Settings tab of a named Stage Editor.

Go to the API Gateway console.

Navigate to the Stage Editor for the stage for which you want to enable caching.
Choose Settings.

Select Enable API cache.

Wait for the cache creation to complete.

gk, wdPeE

Note

Creating or deleting a cache takes about 4 minutes for APl Gateway to complete. When cache
is created, the Cache status value changes from CREATE_| N_PROGRESS to AVAI LABLE. When
cache deletion is completed, the Cache status value changes from DELETE_| N_PROGRESS to
an empty string.

When you enable caching within a stage's Cache Settings, you enable caching for all methods in that
stage.

228

Amazon API Gateway Developer Guide
Override Stage Caching for Method Caching

test Stage Editor Delete Stage

® Invoke URL: hitps:/iy » execute-api us-east-1. amazonaws co

Settings Stage Variables = SDK Generation = Export = Deployment History

Configure the metering and caching seftings for the test stage.

Cache Settings
Cache status CREATE_IN_PROGRESS

Enable APl cache

Enabling API cache increases cost and is not covered by the free tier. See pricing for more details

Cache capacity (5GH E|
Encrypt cache data 0
Cache time-to-live (TTL) 300 =
Per-key cache invalidation

Require authorization

Handle unauthorized requests |gnore cache control header; Add a waming in response header E|

If you would like to verify if caching is functioning as expected, you have two general options:

¢ Inspect the CloudWatch metrics of CacheHitCount and CacheMissCount for your API and stage.
* Put a timestamp in the response.

Note
You should not use the X-Cache header from the CloudFront response to determine if your API
is being served from your AP| Gateway cache instance.

Override APl Gateway Stage-Level Caching for
Method Caching

If you want more granularity in your caching settings, you can override the stage-level caching for individual
methods . This includes disabling caching for a specific method, increasing or decreasing its TTL period,
and turning on or off encryption of the cached response. If you anticipate that a method will receive
sensitive data in its responses, in Cache Settings, choose Encrypt cache data.

229

Amazon API Gateway Developer Guide
Use Method/Integration Parameters as Cache Keys

test - GET - /streams

Inveke URL: hitps:/i r.execute-api.us-east-1.amazonaws co

Use this page to override the test stage settings for the GET to /streams method.
Settings ©) Inherit from stage

‘é" Override for this method

CloudWatch Settings
Enable CloudWatch Logs [1@
Enable CloudWatch Metrics DO
Throttling Settings

Rate 500

e

e

Burst Limit 1000

Cache Settings

Configure the cache for GET to /streams

Enable Method Cache
Encrypt cache data ||
Cache time-to-live (TTL) 300 4

Per-key cache invalidation
Require authorization

[

Uamdla timasdharizad rmmimeée

Use Method or Integration Parameters as Cache
Keys to Index Cached Responses

When a cached method or integration has parameters, which can take the form of custom headers, URL
paths, or query strings, you can use some or all of the parameters to form cache keys. API Gateway can
cache the method's responses, depending on the parameter values used.

For example, suppose you have a request of the following format:

GET /users?type=... HITP/ 1.1
host: exanpl e. com

In this request, t ype can take a value of adni n or r egul ar . If you include the t ype parameter as part
of the cache key, the responses from GET / user s?t ype=admi n will be cached separately from those
from GET / user s?t ype=regul ar.

When a method or integration request takes more than one parameter, you can choose to include some
or all of the parameters to create the cache key. For example, you can include only the t ype parameter
in the cache key for the following request, made in the listed order within a TTL period:

230

Amazon API Gateway Developer Guide
Flush the API Stage Cache in APl Gateway

GET /users?type=adm n&depart nent =A HTTP/ 1.1
host: exanpl e. com

The response from this request will be cached and will be used to serve the following request:

GET /users?type=adm n&departnent=B HTTP/ 1.1
host: exanpl e. com

To include a method or integration request parameter as part of a cache key in the APl Gateway console,
select Caching after you add the parameter.

€ Method Execution /Streams - GET - Method Request

Provide information about this method's authorization settings and the parameters it can receive.

Authorization Settings @

Authorization NONE #€

APl Key Required false

~ URL Query String Parameters °

Name Caching

© Add query string
» HTTP Request Headers

» Request Models Create a Model ®

Flush the API Stage Cache in APl Gateway

When API caching is enabled, you can flush your API stage's entire cache to ensure your API's clients
get the most recent responses from your integration endpoints.

To flush the API stage cache, you can choose the Flush Cache button under the Stage tab in the API
Gateway console. Notice that flushing the cache will cause the responses to ensuing requests to be
serviced from the back end until the cache is build up again. During this period, the number of requests
sent to the integration endpoint may increase. That may affect the overall latency of your API.

Invalidate an API Gateway Cache Entry

A client of your API can invalidate an existing cache entry and reloads it from the integration endpoint for
individual requests. The client must send a request that contains the Cache- Control : max- age=0
header. The client receives the response directly from the integration endpoint instead of the cache,

231

Amazon API Gateway Developer Guide
Invalidate an API Gateway Cache Entry

provided that the user is authorized to do so. This replaces the existing cache entry with the new response,
which is fetched from the integration endpoint.

To grant permission for a caller, attach a policy of the following format to an IAM execution role for the
user.

{
"Version": "2012-10-17",

"Statenent": [
{
"Effect": "Alow',
"Action": [
"execut e-api: | nval i dat eCache"
1,
"Resource": |
"arn: aws: execut e-api : regi on: account -i d: api -i d/ st age- name/ HTTP- VERB/ r e
sour ce- pat h-specifier"
]
}
]
}

This policy allows the APl Gateway execution service to invalidate cache for requests on the specified
resource (or resources). To specify a group of targeted resources, use a wildcard (*) character for
account -i d, api -i d, and other entries in the ARN value of Resour ce. For more information on how
to set permissions for the APl Gateway execution service, see Set IAM Permissions (p. 188)

If you do not impose an | nval i dat eCache policy, any client can invalidate the API cache. If all or most
of the clients invalidate the API cache, there could be significant latency impact on your API.

When the policy is in place, caching is enabled, and authorization is required, you can control how
unauthorized requests are handled by choosing an option from Handle unauthorized requests in the
API Gateway console.

232

Amazon API Gateway Developer Guide
Manage API Deployment with Stage Variables

test Stage Editor Delete Stage

@ Invoke URL: https /i b execute-api us-east-1 amazonaws comAest

Settings Stage Variables = SDK Generation = Export = Deployment History

Configure the metering and caching settings for the test stage.

Cache Settings

Cache status AVAILABLE Flush entire cache

Enable APl cache [V

Enabling API cache increases cost and is not covered by the free lier. See pricing for more details

Cache capacity (568 F
Encrypt cache data [¥
Cache time-to-live (TTL) 200 -

Per-key cache invalidation

Require authorization |V

@"‘Wil?d requests |gnore cache control header, Add a waming in response header ¥
gnore cache control header; Add a warning in response header
CloudWatch Settings Ignore cache control header
Fail the request with 403 status code

Enable CloudWatch Logs | | @

The three options result in the following behaviors:

¢ Fail the request with 403 status code: returns a 403 Unauthorized response.

To set this option using the API, use FAI L_W TH_403.

¢ Ignore cache control header; Add a warning in response header: process the request and add a

warning header in the response.

To set this option using the API, use SUCCEED W TH_RESPONSE_HEADER.

¢ Ignore cache control header: process the request and do not add a warning header in the response.

To set this option using the API, use SUCCEED_ W THOUT_RESPONSE_HEADER.

Manage API Gateway API Deployment with Stage

Variables

Stage variables are name-value pairs that you can define as configuration attributes associated with a
deployment stage of an API. They act like environment variables and can be used in your API setup and

mapping templates.

For example, you can define a stage variable in a stage configuration, and then set its value as the URL
string of an HTTP integration for a method in your API. Later, you can reference the URL string using the
associated stage variable name from the API setup. This way, you can use the same API setup with a
different endpoint at each stage by resetting the stage variable value to the corresponding URLSs. You
can also access stage variables in the mapping templates, or pass configuration parameters to your AWS

Lambda or HTTP back end.

233

Amazon API Gateway Developer Guide
Use Cases

For more information about mapping templates, see Request and Response Payload-Mapping
Reference (p. 101).

Use Cases

With deployment stages in API Gateway, you can manage multiple release stages for each API, such as
alpha, beta, and production. Using stage variables you can configure an API deployment stage to interact
with different back-end endpoints. For example, your API can pass a GET request as an HTTP proxy to
the back-end web host (for example, htt p: / / exanpl e. con. In this case, the back-end web host is
configured in a stage variable so that when developers call your production endpoint, APl Gateway calls
example.com. When you call your beta endpoint, APl Gateway uses the value configured in the stage
variable for the beta stage, and calls a different web host (for example, bet a. exanpl e. com). Similarly,
stage variables can be used to specify a different AWS Lambda function name for each stage in your
API.

You can also use stage variables to pass configuration parameters to a Lambda function through your
mapping templates. For example, you may want to re-use the same Lambda function for multiple stages
in your API, but the function should read data from a different Amazon DynamoDB table depending on
which stage is being called. In the mapping templates that generate the request for the Lambda function,
you can use stage variables to pass the table name to Lambda.

Examples

To use a stage variable to customize the HTTP integration endpoint, you must first configure a stage
variable of a specified name, e.g., ur | , and then assign it a value, e.g., exanpl e. com Next, from your
method configuration, set up an HTTP proxy integration, and instead of entering the endpoint's URL, you
can tell APl Gateway to use the stage variable value, ht t p: / / ${ st ageVari abl es. url } . This value
tells APl Gateway to substitute your stage variable ${} at runtime, depending on which stage your API
is running. You can reference stage variables in a similar way to specify a Lambda function name, an
AWS Service Proxy path, or an AWS role ARN in the credentials field.

When specifying a Lambda function name as a stage variable value, you must configure the permissions
on the Lambda function manually. You can use the AWS Command Line Interface to do this.

aws | anbda add- permi ssion --function-name arn:aws: | anbda: XXXXXX: your - | anbda-
function-nane --source-arn arn: aws: execut e-api : us-east-1: YOUR_AC

COUNT_I D: api _i d/ */ HTTP_METHOD/ r esour ce --princi pal api gat eway. anazonaws. com - -
statenent-id api gat eway-access --action | anbda: | nvokeFuncti on

The following example assigns API Gateway permission to invoke a Lambda function named hel | oVor | d
hosted in the US West (Oregon) region of an AWS account on behalf of the API method.

arn arn: aws: execut e-api : us-west-2:123123123123: brmuvpt wze/ */ GET/ hel | o

Here is the same command using the AWS CLI.

aws | anbda add- permi ssion --function-name arn:aws:| anbda: us- east -
1:123123123123: function: hel | oWworl d --source-arn arn: aws: execut e-api : us- west -
2:123123123123: brmruvpt wze/ */ GET/ hel I o - -princi pal api gat eway. amazonaws. com - -
statenent-id api gat eway-access --action | anbda: | nvokeFuncti on

234

Amazon API Gateway Developer Guide
Set Stage Variables

Set Stage Variables Using the Amazon API
Gateway Console

In this tutorial, you will learn how to set stage variables for two deployment stages of a sample API, using
the Amazon API Gateway console.

Prerequisites

1. You must have an API available in API Gateway. Follow the instructions in Creating an API (p. 61).
2. You must have deployed the API at least once. Follow the instructions in Deploying an API (p. 221).

3. You must have created the first stage for a deployed API. Follow the instructions in Create a
Stage (p. 223).

To Declare Stage Variables Using the API Gateway Console

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Create an API, create a GET method on the API's root resource, if you have not already done so.
Set the HTTP Endpoint URL value as "htt p: / / ${ st ageVari abl es. url } ", and then choose
Save.

Resources Actions~ 9/ - GET - Setup

T Choose the integration point for your new method. €@

@ Integration type Lambda Function
Q@ HTTP Proxy
Mock Integration

Show advanced

HTTP methed GET - |

Endpoint URE_ http://${stageVariables url} A
Save

3. Choose Deploy API. Choose New Stage and enter "bet a" for Stage name. Choose Deploy.

235

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Set Stage Variables

Deploy API ®

Choose a stage where your AP will be deployed. For example, a test version of your
API could be deployed to a stage named beta.

Deployment stage E

Stage description

Deployment description

Cancel

In the beta Stage Editor panel; choose the Stage Variables tab; and then choose Add Stage
Variable.

Stages Geta Stage Editor

» & Dbela

Delete Stage

® Invoke URL: hitps /i)l ™8 g¥a execute-api us-east-1 amazonaws com/beta

Settings _Stage Variables SDK Generation Export Deployment History

You can add, remove, and edit stage variables and their values. You can use stage variables in your
API configuration to parametrize the integration of a request. Stage variables are also available in
the Scontext object of the mapping templates.

MName Value

Mo stage variables

G CAdd Stage Variable

Enter the "ur | " string in the Name field and the "ht t pbi n. or g/ get " in the Value field. Choose the
checkmark icon to save the setting for the stage variable.

beta Stage Editor

Delete Stage

@ Invoke URL: https://t. . Wl execute-api.us-east-1.amazonaws.com/beta

Settings = Stage Variables | SDK Generation = Export Deployment History

You can add, remove, and edit stage variables and their values. You can use stage variables in your

AP configuration to parametrize the integration of a request. Stage variables are also available in
the $context object of the mapping templates.

Name Value

@ @me.orgn’g@ ‘ <30

236

Amazon API Gateway Developer Guide
Set Stage Variables

6. Repeat the above step to add two more stage variables: ver si on and f unct i on. Set their values
as "v- bet a" and "Hel | oWor | d", respectively.

beta Stage Editor

Delete Stage

® Invoke URL: hitps://t 3.execute-api.us-east-1.amazonaws.com/beta

Settings =~ Stage Variables = SDK Generation = Export = Deployment History

You can add. remove, and edit stage variables and their values. You can use stage variables in your
AP configuration to parametrize the integration of a request. Stage variables are also available in
the $context object of the mapping templates.

Name Value
url hitpbin_org/get

HelloWorld

© Add Stage Variable

Note

When setting a Lambda function as the value of a stage variable, use the function's local
name, possibly including its alias or version specification, as in Hel | oWor | d, Hel | oWor | d: 1
or Hel | oWor | d: al pha. Do not use the function's ARN (for example,

arn: aws: | anbda: us- east - 1: 123456789012: f uncti on: Hel | oWor | d). The API
Gateway console assumes the stage variable value for a Lambda function as the unqualified
function name and will expand the given stage variable into an ARN.

7. From the Stages navigation pane, choose Create. For Stage name, type pr od. Select a recent
deployment from Deployment and then choose Create.

Stages @ Create Stage

» & beta Create a stage where your APIs will be deployed. For example, a test version of your API could be deployed to
a stage named beta

Stage name”

Stage description

Deployment* ((04-15-2016 10:38 [+

Deployment Description

@

As with the beta stage, set the same three stage variables (url, version, and function) to different
values ("pet st or e- denp- endpoi nt . execut e- api . con pet st or e/ pets”, "v- prod", and
"Hel | oEver yone"), respectively.

8.

237

Amazon API Gateway Developer Guide
Use Stage Variables

prod Stage Editor Delete Stage

® Invoke URL: htps:/iu a execute-api us-east-1 amazonaws com/prod

Settings | Stage Variables | SDK Generation Export = Deployment History

You can add, remove, and edit stage variables and their values. You can use stage variables in your
API configuration to parametrize the integration of a request. Stage variables are also available in
the Scontext object of the mapping templates.

Name Value
petstore-demo-endpoint execute-
@ api.com/petstore/pets
FelloEveryone

© Add Stage Variable

Use Amazon API Gateway Stage Variables

You can use AP| Gateway stage variables to access the HTTP and Lambda back ends for different API
deployment stages and to pass stage-specific configuration metadata into an HTTP back end as a query
parameter and into a Lambda function as a payload generated in an input mapping template.

Prerequisites

You must create two stages with a ur | variable set to two different HTTP endpoints: a f unct i on stage
variable assigned to two different Lambda functions, and a ver si on stage variable containing
stage-specific metadata. Follow the instructions in Set Stage Variables Using the Amazon AP| Gateway
Console (p. 235).

Access an HTTP endpoint through an API with a stage
variable

1. Inthe Stages navigation pane, choose beta. In beta Stage Editor, choose the Invoke URL link.
This starts the beta stage GET request on the root resource of the API.

Note

The Invoke URL link points to the root resource of the APl in its beta stage. Navigating to
the URL by choosing the link calls the beta stage GET method on the root resource. If
methods are defined on child resources and not on the root resource itself, choosing the
Invoke URL link will return a {" nessage": "M ssi ng Aut henti cati on Token"} error
response. In this case, you must append the name of a specific child resource to the Invoke
URL link.

238

Amazon API Gateway Developer Guide
Use Stage Variables

Stages m beta Stage Editor

» & prod

Delete Stage

® Invoke URI@_ 3 execute-api.us-east-1. amazonaws com/beta_>

settings ;stage\.'irlables SDK Generation Export = Deployment History

You can add, remove, and edit stage variables and their values. You can use stage variables in your
API configuration to parametrize the integration of a request. Stage variables are also available in
the Scontext object of the mapping templates.

Name value

version v-beta #FO
url hitipbin.org/get ax)
function HelloWorld S0

© Add Stage Variable

2. The response you get from the beta stage GET request is shown next. You can also verify the result
by using a browser to navigate to http://httpbin.org/get. This value was assigned to the ur | variable
in the beta stage. The two responses are identical.

D execute-apiAu;-east-l.amazon@ c
{
"args": (1,
"headers™: {
"Accept": "application/json",
"Host": "httpbkin.crg",
"User-Agent”: "RmazonAPIGateway L .= b™
T
"origin™: "54.172.45.191",
"url™: "http://httpbin.crg/get"
}
3.

In the Stages navigation pane, choose the prod stage. From prod Stage Editor , choose the Invoke
URL link. This starts the prod stage GET request on the root resource of the API.

Stages IE=8) orod Stage Editor
» & Dbeta

> 2D

Delete Stage

#® Invoke U@ P8 execute-api.us-east-1 ammna\@

Settings Stage Variables SDK Generation Export Deployment History

You can add, remove, and edit stage variables and their values. You can use stage variables in your
API configuration fo parametrize the integration of a request. Stage variables are aiso available in
the Scontext object of the mapping templates.

Name

Value
version v-prod Py x]
e s
function HelloEveryone 5O

© Add Stage Variable

4. The response you get from the prod stage GET request is shown next. You can verify the result by

using a browser to navigate to http://petstore-demo-endpoint-execute-api.com/petstore/pets.
This value was assigned to the ur | variable in the prod stage. The two responses are identical.

239

Amazon API Gateway Developer Guide
Use Stage Variables

) execute-api.us-east-1l.amazonaws.com/prod >y e

"type": "dog",
"price": 249.%9%

"type": "cat",
"price": 124.99

Pass stage-specific metadata to an HTTP back end via a
stage variable in a query parameter expression

This procedure describes how to use a stage variable value in a query parameter expression to pass
stage-specific metadata into an HTTP back end. We will use the ver si on stage variable declared in Set
Stage Variables Using the Amazon API Gateway Console (p. 235).

1.

In the Resource navigation pane, choose the GET method. To add a query string parameter to the
method's URL, in Method Execution, choose Method Request . Type version for the parameter
name.

Resources Actions~ @ g method Execution /- GET - Method Request

- & Provide information about this method's authorization settings and the parameters it can receive.
Authorization Settings ®

Autherization NONE #@

APl Key Required faise #

~ URL Query String Parameters °

Name Caching

°

© Add query string
» HTTP Request Headers

» Request Models Create a Model ®

In Method Execution choose Integration Request. Edit the Endpoint URL value to append
?ver si on=%${ st ageVari abl es. ver si on} to the previously defined URL value, which, in this
case, is also expressed with the ur| stage variable. Choose Deploy API to deploy these changes.

240

Amazon API Gateway Developer Guide
Use Stage Variables

Resources Actions~ | @ ¢ method Execution [- GET - Integration Request

METHOD ACTIONS

Delete Method + information about the target backend that this method will call and whether the incoming request

- &
ould be modified

RESOURCE ACTIONS

Create Method ® Integration type Lambda Function
Create Resource

]
Enable CORS AT Py

Mock Integration

AP ACTIONS

Deploy AP| Show advanced

Import APl
HTTP method GET #

Delete AP
Endpoint URL htip://${stageVariables. uri;version=3{stageVariables version}) A

» URL Path Parameters
» URL Query String Parameters
» HTTP Headers

» Body Mapping Templates &

In the Stages navigation pane, choose the beta stage. From beta Stage Editor, verify that the

3.
current stage is in the most recent deployment, and then choose the Invoke URL link.
Note
We use the beta stage here because the HTTP endpoint, as specified by the ur| variable,
"http://httpbin.org/get", accepts query parameter expressions and returns them as the ar gs
object in its response.
Stages beta Stage Editor Delete stage
’
* & prod @nps /] ™™ execute-api us-east-1 a@
Settings Stage Variables SDK Generation Export Deployment History
Choose a deployment for the beta stage from the list below For example, you may want to roll back
to an earlier deployment
€ < >
Deployment date Current stage Description
4. The response is shown next. Notice that v- bet a, assigned to the ver si on stage variable, is passed

in the back end as the ver si on argument.

{

"args": {
"version": "v-beta" |

Tr

"headers™: {
"Accept": "application/json",
"Host"™: "httpbin.org",
"User-Agent": "AmazonAPIGateway hd4ah70cvmb"

br
"origin": "52.91.42.97",
"url": "http://httpbin.org/get?version=v-beta"

241

Amazon API Gateway Developer Guide
Use Stage Variables

Call Lambda function through APl with a stage variable

This procedure describes how to use a stage variable to call a Lambda function as a back end of your
API. We will use the f unct i on stage variable declared earlier. For more information, see Set Stage
Variables Using the Amazon API Gateway Console (p. 235).

1. Inthe Resources pane, create a/lambdasv1 child resource under the root directory, and then create
a GET method on the child resource. Set the Integration type to Lambda Function, and in Lambda
Function, type ${ st ageVari abl es. functi on} . Choose Save.

Resources Actions~ | ¢ [lambdasv1 - GET - Setup

- & Choose the integration point for your new method. @

° @ Integration typd @ Lambda Function

HTTP Proxy
Mock Integration

Show advanced

Lambda Region ys.east-1 El

Lambda Function{${stageVariables functi)

Tip

When prompted with Add Permision to Lambda Function, make a note of the AWS CLI
command before choosing OK. You must run the command on each Lambda function that
is or will be assigned to the f unct i on stage variable for each of the newly created API
methods. For example, if the $st ageVari abl es. functi on value is Hel | owor | d and
you have not added permission to this function yet, you must run the following AWS CLI
command:

aws | ambda add- perm ssion --function-nanme arn: aws:| anbda: us- east -
1:account-id:function: Hell oWwrld --source-arn arn: aws: execut e- api : us-
east-1: account-id: api-id/*/ GET/| anbdasvl --principal apigateway. anazon
aws. com--statenent-id statenent-id-guid --action | anbda: | nvokeFuncti on

Failing to do so results in a 500 I nternal Server Error response when invoking the
method. Make sure to replace ${ st ageVari abl es. f unct i on} with the Lambda function
name that is assigned to the stage variable.

Add Permission to Lambda Function

‘You defined your Lambda function as a stage variable; you must manually give permissions to all the functions you will usf/You can do
this by running the below AWS GLI command for each function, replacing the stage variable in the function-name paranjéter with the
necessary function name.

aws lambda add-permission --function-name arn:aws:lambda:us-east-1:73 8317: function §{stageVariables.function)

--source-arn arn:aws:execute-api:us-east-1:738 ©8317:h4ah7@cvmb/*/GET/lambdasvl --principal apigateway.amazonaws.com
statement-id a12836d5-dafe-dac5-b1f2-7fcldc7Secf3 action lambda:InvokeFunction

Cancel m

2. Deploy the API to available stages.

3. Inthe Stages navigation pane, choose the beta stage. Verify that your most recent deployment is
in beta Stage Editor. Copy the Invoke URL link, paste it into the address bar of your browser, and

242

Amazon API Gateway Developer Guide
Use Stage Variables

append/ | anbdasv1 to that URL. This calls the underlying Lambda function through the GET method
on the LambdaSv1 child resource of the API.

Note
Your Hel | oWor | d Lambda function implements the following code.

exports. handl er = function(event, context) {
if (event.version)
cont ext. succeed(' Hel lo, World! (' + event.version + ')');
el se
cont ext . succeed("Hell o, world! (v-unknown)");

This implementation results in the following response.

"Hel l o, world! (v-unknown)"

Pass stage-specific metadata to a Lambda function via a
stage variable

This procedure describes how to use a stage variable to pass stage-specific configuration metadata into
a Lambda function. We will use a POST method and an input mapping template to generate payload using
the ver si on stage variable declared earlier.

1.

In the Resources pane, choose the /lambdasv1l child resource. Create a POST method on the child
resource, set the Integration type to Lambda Function, and type ${ st ageVari abl es. functi on}
in Lambda Function. Choose Save.

Tip

This step is similar to the step we used to create the GET method. For more information,

see Call Lambda function through API with a stage variable (p. 242).

From the /Method Execution pane, choose Integration Request. In the Integration Request pane,
expand Mapping Templates, and then choose Add mapping template to add a template for the
appl i cati on/j son content-type, as shown in the following.

243

Amazon API Gateway Developer Guide
Stage Variables Reference

Resources Actions~ g & metnod Execution /lambdasv1 - POST - Integration Request

v & Provide information about the target backend that this method will call and whether the incoming
- request data should be modified
~ & fNlambdasv
@ Integration type @ Lambda Function
HTTP Proxy

Mock Integration

Show advanced
Lambda Region us-east-1 4
Lambda Function ${stageVariables function} #
Invoke with caller credentials = | @
Credentials cache Do not add caller credentials to cache key #

v Body Mapping Templates e

Content-Type application/json

application/json - Generate template -

1 #set($inputRoot = $input('s'))

27 {

3 “version": "$stageVariables.version®
a4 3

© Add mapping template

Note

In a mapping template, a stage variable must be referenced within quotes (as in

"$st ageVari abl es. versi on" or" ${ st ageVari abl es. ver si on}"), whereas elsewhere
it must be referenced without quotes (as in ${ st ageVari abl es. f uncti on}).

3. Deploy the API to available stages.

4. Inthe Stages navigation pane, choose beta. In beta Stage Editor , verify that the current stage has
the most recent deployment. Copy the Invoke URL link, paste it into the URL input field of a REST
API client, append / | anbdasv1 to that URL, and then submit a POST request to the underlying
Lambda function.

Note
You will get the following response.

"Hell o, world! (v-beta)"

To summarize, we have demonstrated how to use API Gateway stage variables to target different HTTP
and Lambda back ends for different stages of API deployment. In addition, we also showed how to use
the stage variables to pass stage-specific configuration data into HTTP and Lambda back ends. Together,
these procedures demonstrate the versatility of the API Gateway stage variables in managing API
development.

Amazon APl Gateway Stage Variables Reference

You can use AP| Gateway stage variables in the following cases.

Parameter Mapping Expressions

A stage variable can be used in a parameter mapping expression for an API method's request or response
header parameter, without any partial substitution. In the following example, the stage variable is referenced
without the $ and the enclosing {...}.

244

Amazon API Gateway Developer Guide
Generate an SDK for an API

e stageVari abl es. <vari abl e_nane>

Mapping Templates

A stage variable can be used anywhere in a mapping template, as shown in the following examples.

"$st ageVari abl es. <vari abl e_nanme>"}
"${stageVari abl es. <vari abl e_nane>}"}

{ n naI’TE'
{ n nan,Ev

HTTP Integration URIs

A stage variable can be used as part of an HTTP integration URL, as shown in the following examples.

¢ A full URI without protocol, e.g., htt p: // ${ st ageVari abl es. <vari abl e_nanme>}
e Afull domain: e.g., http: // ${ st ageVari abl es. <vari abl e_nanme>}/resour ce/ operati on

¢ A subdomain: e.g.,
http://${stageVari abl es. <vari abl e_nane>}. exanpl e. com resour ce/ operati on

e Apath, e.g., http://exanpl e. com ${st ageVari abl es. <vari abl e_nanme>}/ bar
e A query string, e.g., ht t p: / / exanpl e. conl f 00?q=%${ st ageVari abl es. <vari abl e_nanme>}

AWS Integration URIs

A stage variable can be used as part of AWS URI action or path components, as shown in the following
example.

e arn: aws: api gat eway: <r egi on>: <servi ce>: ${ st ageVari abl es. <vari abl e_nane>}

AWS Integration URIs (Lambda Functions)

A stage variable can be used in place of a Lambda function name, or version/alias, as shown in the
following examples.

e anasg gery <ajorl alth h 6@ A/ futi o¥anag | atoh: <ot i d:futti nHtapai dles Sutti nai derasd/inazios
¢ anaggiesy sajor| atthEH2B@ A futti o¥anas | alsh: <t i d:futti m<uti mraesfdapai des <as onai derasy/inadios

AWS Integration Credentials

A stage variable can be used as part of AWS user/role credential ARN, as shown in the following example.

e arn:aws:iam:<account _i d>: ${stageVari abl es. <vari abl e_nanme>}

Generate an SDK for an API in API Gateway

You can generate an SDK for a specific stage of an APl in APl Gateway. The SDK contains code you
can use to call the API from Android, iOS, or JavaScript. To generate an SDK of your API, use the API
Gateway console.

Topics
¢ Prerequisites (p. 246)

245

Amazon API Gateway Developer Guide
Prerequisites

Generate an SDK for an API with the API Gateway Console (p. 246)

Use an API Gateway-Generated API SDK for Android (p. 247)

Integrate an API Gateway-Generated iOS SDK into Your iOS Project (p. 248)

Integrate an API Gateway-Generated JavaScript SDK into Your JavaScript Code (p. 250)

Prerequisites

You must have deployed the API at least once in APl Gateway. Follow the instructions in Deploying
an API (p. 221).

Generate an SDK for an APl with the API Gateway

Console

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.
2. In the box that contains the name of the API for the stage, choose Stages.

3. Inthe Stages pane, choose the name of the stage.

4. Onthe SDK Generation tab, for Platform, choose the platform.

5. If you chose Android, specify the following:

For Group ID, type the unique identifier for the corresponding project. This is used in the pom xmi
file (for example, com nmyconpany).

For Invoker package, type the namespace for the generated client classes (for example,

com nyconpany. cl i ent sdk).

For Artifact ID, type the name of the compiled .jar file without the version. This is used in the
pom xm file (for example, aws- api gat eway- api - sdk).

For Artifact version, type the artifact version number for the generated client. This is used in the
pom xm file and should follow a maj or .m nor .pat ch pattern (for example, 1. 0. 0).

If you chose iOS, in the Prefix box, type the unique prefix for the generated classes. (For example,
typing CLI will result in classes named CLI Request Model . h and CLI Request Model . m)

Choose Generate SDK, and then follow the on-screen directions to download the API
Gateway-generated SDK.

Do one of the following:

If you chose Android for Platform, follow the instructions in Use an API Gateway-Generated API
SDK for Android (p. 247).

If you chose i0S for Platform, follow the instructions in Integrate an API Gateway-Generated i0OS
SDK into Your iOS Project (p. 248).

If you chose JavaScript for Platform, follow the instructions in Integrate an API Gateway-Generated
JavaScript SDK into Your JavaScript Code (p. 250).

246

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Use an API Gateway-Generated APl SDK for Android

Use an API Gateway-Generated APl SDK for
Android

ok wDdPRE

Note
These instructions assume you have already completed the steps in Generate an SDK for an
API with the APl Gateway Console (p. 246).

Extract the contents of the API Gateway-generated .zip file you downloaded earlier.
Download and install Apache Maven (preferably version 3.x).

Download and install the JDK (preferably version 1.7 or later).

Set the JAVA HOVE environment variable.

Run the command mvn install to install the compiled artifact files to your local Maven repository.
This will create a t ar get folder containing compiled SDK library.

Copy the SDK file (the name of which is derived from the Artifact Id and Artifact Version you
specified when generating the SDK, e.g., aws- api gat eway- api - sdk- 1. 0. 0. j ar) fromthe t ar get
folder, along with all of the other libraries from the t ar get / | i b folder, into your project's | i b folder.

If you use Andriod Studio, create a libs folder under your client app module and copy the required
JAR file into this folder. Verify that the dependencies section in the module's gradle file contains the
following

conpile fileTree(include:
conpile fileTree(include:

r'], dir: "libs")

['*.ja
["*.jar"], dir: "app/libs")

and make sure no duplicated JAR files are declared.
Use the Api Cl i ent Fact or y class to initialize the API Gateway-generated SDK. For example:

Api dientFactory factory = new Api CientFactory();

/1 Create an instance of your SDK.
final MyApidient client = factory. buil d(MyApi dient.cl ass);

/1 Invoke a nmethod (e.g., 'parentPathlGet(paraml, body)') exposed by your
SDK.

/1 Here the method's return type is Original Model .

Ori gi nal Mbdel output = client. parentPat h1Get (paramnid, body) ;

/1 You al so have access to your API's nodels.
Ori gi nal Mbdel myModel = new Ori gi nal Model () ;
myModel . set St reet Addr ess(street Addr ess) ;
myModel . setCity(city);

myModel . set St ate(state);

myModel . set St reet Nunber (st r eet Nunber) ;

myMbdel . set Nest ed(nest ed) ;

myModel . set PoBox(poBox) ;

To use a Amazon Cognito credentials provider to authorize calls to your API, use the
Api O i ent Fact ory class to pass a set of AWS credentials by using the API Gateway-generated
SDK. For example:

/1 Use CognitoCachi ngCredenti al sProvider to provide AWS credentials
/1 for the ApidientFactory

247

https://maven.apache.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html

Amazon API Gateway Developer Guide
Integrate an API Gateway-Generated iOS SDK into Your
iOS Project

AWSCr edent i al sProvi der credenti al sProvi der = new Cogni t oCachi ngCr edenti al sPro

vi der (
cont ext, /1 activity context
"identityPool 1d", // Cognito identity pool id
Regi ons. US_EAST_1 // region of Cognito identity poo
}

Api CientFactory factory = new Api CientFactory()
.credential sProvi der(credenti al sProvider);

9. To set an API key by using the API Gateway-generated SDK, use code similar to the following:

Api CientFactory factory = new Api ClientFactory()
. api Key(" YOUR_API _KEY");

Integrate an APl Gateway-Generated iOS SDK into
Your iOS Project

Note
These instructions assume you have already completed the steps in Generate an SDK for an
API with the APl Gateway Console (p. 246).

1. Extract the contents of the APl Gateway-generated .zip file you downloaded earlier.
2. Import the AWS Mobile SDK for iOS into your project by using CocoaPods or Frameworks.

To import the AWS Mobile SDK for iOS into your project by using CocoaPods, do the following:

1. Install CocoaPods by running the command sudo gem install cocoapods.

2. Copy the Podfi | e file from the extracted .zip file into the same directory as your Xcode project
file. If your Xcode project file already contains a file named Podf i | e, you can simply add the
following line of code to it:

pod ' AWSAPI Gat eway', '~> 2.2.1'

3. Runthe pod install command .
4. Use Xcode to open the *. xcwor kspace file.

5. Copy all of the . h and . mfiles from the extracted .zip file's gener at ed- sr c directory into your
Xcode project.

To import the AWS Mobile SDK for iOS into your project by using Frameworks, do the following:

1. Download the AWS Mobile SDK for iOS, version 2.2.1 or later.

2. With your project already open in Xcode, press and hold the Ctrl key while choosing Frameworks,
and then choose Add files to "<project name>"....

248

https://cocoapods.org/
http://aws.amazon.com/mobile/sdk/

Amazon API Gateway Developer Guide
Integrate an API Gateway-Generated iOS SDK into Your
iOS Project

3. InFinder, browse to and select both the AWSCor e. f r amewor k and AWSAPI Gat eway . f r amewor k
files, and then choose Add.

4. Open a target for your project, choose Build Phases, expand Link Binary With Libraries,
choose the + button, and then add the following: I i bsqgl i te3. dyli b, i bz. dyli b, and
Syst enConf i guration. f ranewor k.

Import the . h file from the API Gateway-generated SDK. For example:

#i nport "<generated header file name>"

Get the def aul t O i ent from your code. For example:

APl A ntTestApiClient *client = [APIA ntTestApi Cient defaultdient];

Use the API Gateway-generated SDK to call your API's method. For example:

[[client parentPathlChil dPathlGet: @test" body: APl GOri gi nal Model] conti nue
Wt hBl ock: i d(AWSTask *task) {
if (task.error) {
NSLog(@ Error: %@, task.error);
return nil;
}
if (task.result) {
APl GOri gi nal Model * output = task.result;
/ /Do something with the output.
}
return nil;
}
1

To use a Amazon Cognito credentials provider to authorize calls to your API, create an
AWSCogni t oCr edent i al sProvi der object as the default provider for the API Gateway-generated
SDK. For example:

AWSCogni t oCredent i al sProvi der *creds = [[AWsCogni t oCr edent i al sProvi der al |l oc]
i ni t WthRegi onType: AWSRegi onUSEast 1
i denti t yPool | d: Cogni t oPool | D] ;
AWSSer vi ceConfiguration *configuration = [[ANSServi ceConfiguration alloc]
i ni t Wt hRegi on: AWSRegi onUSEast 1 credenti al sProvi der: creds];
AWSSer vi ceManager . def aul t Ser vi ceManager . def aul t Servi ceConfi gurati on = con
figuration;

To send an API key in your requests, set the api Key property of the API Gateway-generated SDK.
For example:

client.api Key = @ Your APl key";

249

Amazon API Gateway Developer Guide
Integrate an API Gateway-Generated JavaScript SDK
into Your JavaScript Code

Integrate an API Gateway-Generated JavaScript
SDK into Your JavaScript Code

Note
These instructions assume you have already completed the instructions in Generate an SDK
for an API with the APl Gateway Console (p. 246).

1. Extract the contents of the APl Gateway-generated .zip file you downloaded earlier.

2. Enable cross-origin resource sharing (CORS) for all of the methods the API Gateway-generated
SDK will call. For instructions, see Enable CORS for a Resource (p. 198).

3. Inyour web page, include references to the following scripts:

<script type="text/javascript" src="lib/axios/dist/axios.stan

dal one. js"></script>

<script type="text/javascript" src="lib/CryptoldS/rollups/hnmac-

sha256. j s"></scri pt>

<script type="text/javascript" src="lib/CryptodS/rollups/sha256.js"></script>
<script type="text/javascript" src="1ib/CyptolS conponents/hmac.js"></script>
<script type="text/javascript" src="Iib/CryptoJS/ conponents/enc-

base64. | s"></script>

<script type="text/javascript" src="lib/url-tenplate/url-tem
plate.js"></script>

<script type="text/javascript" src="lib/api Gat ewayCor e/ si gv4d i
ent.js"></script>

<script type="text/javascript" src="lib/api Gat ewayCor e/ api Gat ewayd i
ent.js"></script>

<script type="text/javascript" src="lib/api Gat ewayCore/sinpleHttpdi
ent.js"></script>

<script type="text/javascript" src="lib/api GatewayCore/utils.js"></script>
<script type="text/javascript" src="apigdient.js"></script>

4. Inyour code, initialize the API Gateway-generated SDK by using code similar to the following:

var apigCient = apigdientFactory.newCient();

5. Call the APl in API Gateway by using code similar to the following. Each call returns a promise with
a success and failure callbacks:

var parans = {
/1 This is where any nodel ed request parameters shoul d be added.
/1l The key is the paraneter name, as it is defined in the APl in APl
Gat enay.
paranD: '"',
par an:

h

var body = {
/1 This is where you define the body of the request,

h

var additional Parans = {
/1 1If there are any unnodel ed query paraneters or headers that nust be
/1 sent with the request, add them here.

250

Amazon API Gateway Developer Guide
Use a Custom Domain Name

headers: {
paranO: "',
par aml:

b

queryParans: {
paranO: '"',
par aml:

}

}

api gd i ent. met hodNane(par ans, body, additional Parans)
.then(function(result)({
/1 Add success cal | back code here.
}).catch(function(result){
/1 Add error callback code here.

1)

6. Toinitialize the API Gateway-generated SDK with AWS credentials, use code similar to the following.
If you use AWS credentials, all requests to the API will be signed. This means you must set the
appropriate CORS Accept headers for each request:

var apigCient = apigdientFactory. newd ient({
accessKey: ' ACCESS KEY',
secret Key: ' SECRET_KEY',

s

7. To use an API key with the APl Gateway-generated SDK, you can pass the API key as a parameter
to the Fact or y object by using code similar to the following. If you use an API key, it is specified as
part of the x- api - key header and all requests to the API will be signed. This means you must set
the appropriate CORS Accept headers for each request:

var apigdient = apigQientFactory.newd ient({
api Key: ' APl _KEY'
1)

Use a Custom Domain Name in APl Gateway

After deploying your API, you (and the client) can invoke the API using the default root URL of the
https://api-id.execute-api.regi on. anazonaws. comformat. To provide a simpler and more
intuitive URL for your API users, you can use AP| Gateway to set up a custom domain name (e.g.,

api . exanpl e. con) and choose a base path (e.g., nyser vi ce) to present an alternative URL (e.g.,
https://api.exanpl e. conl nyservi ce) for the API. You can also use an empty base path for an
API. In this case, the API's URL is the same as the custom domain (e.g., ht t ps: / / api . exanpl e. com)

For every API you create, APl Gateway sets up an Amazon CloudFront distribution for the API. Requests
with the default API URL are routed to the corresponding CloudFront distribution. Similarly, every custom
domain name is backed by a CloudFront distribution. An API request with the custom domain name
passes through the custom domain name's CloudFront distribution before reaching the API's CloudFront
distribution. APl Gateway supports custom domain names for APIs by leveraging Server Name Indication
(SNI) on the CloudFront distribution. For more information on using custom domain names on a CloudFront
distribution, including the required certificate format and the maximum size of a certificate key length, see
Using Alternate Domain Names and HTTPS in the Amazon CloudFront Developer Guide.

251

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/SecureConnections.html#CNAMEsAndHTTPS
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/SecureConnections.html#CNAMEsAndHTTPS

Amazon API Gateway Developer Guide
Prerequisites

To enable a custom domain name, you, as the API owner, must provide a server-side SSL certificate to
verify the custom domain name targeted by the client requests. You do this when setting up the domain
name initially and then when renewing an expiring certificate subsequently. In addition, you must have
registered the custom domain name with a domain name registrar. After setting up a custom domain
name in AP| Gateway, you must create or update your domain name service (DNS) provider's resource
record to map the custom domain name to its CloudFront distribution domain name. For the SSL certificate,
you must also have obtained from a certificate authority the PEM-formatted SSL certificate body, its
private key, and the certificate chain for the custom domain name. This section describes how to configure
a domain name for an API, to set up the certificate for a custom domain name, to map a base path to an
API, and to upload a new certificate to replace an expiring one. We will also provide general guidance,
by way of examples, on how to obtain the server-side certificate and create a DNS alias record.

Topics
¢ Prerequisites (p. 252)
e Set Up a Custom Domain Name for an API Gateway API (p. 253)
¢ Specify API Mappings for a Custom Domain Name (p. 255)
¢ Base Path Examples of APl Mappings for a Custom Domain Name (p. 256)
« Upload and Renew an Expiring Certificate (p. 256)
e Call Your API with Custom Domain Names (p. 257)

Prerequisites

The following steps describe how to prepare to use custom domain names in API Gateway.

To prepare to use custom domain names in APl Gateway

1. Register your custom domain name. See the Accredited Registrar Directory at the ICANN website.

2. Geta PEM-encoded SSL certificate for your custom domain name from a certificate authority. For
a partial list, see Third-Party Certificate Authorities at the DMOZ website.

Here are the general steps to obtain an SSL certificate from your chosen certificate authority:

a. Generate a private key for the certificate and save output to a file, using the OpenSSL toolkit at
the OpenSSL website:

openssl genrsa -out private-key-file 2048

Note

Amazon API Gateway leverages Amazon CloudFront to support certificates for custom
domain names. As such, the requirements and constraints of a custom domain name
SSL certificate are dictated by CloudFront. For example, the maximum size of the public
key is 2048 and the private key size can be 1024, 2048 and 4096. For more information,
see Secure access to your objects and Create signed URLs and signed cookies.

b. Generate a certificate signing request (CSR) with the previously generated private key, using
OpenSSL:

openssl req -new -sha256 -key private-key-file -out CSR-file

c. Submit the CSR to the certificate authority and save the resulting certificate.
d. Download the certificate chain from the certificate authority.

252

http://www.internic.net/regist.html
http://www.dmoz.org/Computers/Security/Public_Key_Infrastructure/PKIX/Tools_and_Services/Third_Party_Certificate_Authorities/
http://www.openssl.org
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/SecureConnections.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-trusted-signers.html

Amazon API Gateway Developer Guide
Set Up a Custom Domain Name for an API Gateway API

Note

If you obtain the private key in another way and the key is encrypted, you can use the
following command to decrypt the key before submitting it to APl Gateway for setting up a
custom domain name.

openssl pkcs8 -topk8 -informpem-in MyEncryptedKey. pem -outform pem
-nocrypt -out MyDecryptedKey. pem

Set Up a Custom Domain Name for an API Gateway

API

The following procedure describes how to set up a custom domain name.

To set up a custom domain name for an APl Gateway API

PwbhPE

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
Choose Custom Domain Names from the main navigation pane.

Choose Create in the secondary navigation pane.

In Create Custom Domain Name, specify the following:

For Domain name, type your domain name (for example, api . exanpl e. com).

For Certificate name, type a name for future reference (for example,

ny- exanpl e-certificate).

For Certificate body, type or paste the body of the PEM-formatted server certificate from your
certificate authority. The following shows an abbreviated example of such a certificate.

----- BEG N CERTI FI CATE- - - - -
EXAMPLECA+KgAW BAgl QI 1XxJ8PI ++gCf Qt j 01 BogDANBgkghki GOWOBAQUFADBB

az8Cglai cxLBQ7EaW hhgEXAMPLE
----- END CERTI FI CATE- - - - -

For Certificate private key, type or paste your PEM-formatted certificate's private key. The
following shows an abbreviated example of such a key.

----- BEG N RSA PRI VATE KEY-----
EXANMPL EBAAKCAQEA2 Qb3LDHD7 St Y7W 6U2/ 0pV6Xu37qUCCke DWavpZMYJ9/ nETO

1qGvJI3u04vdnzaYNsWyN5LFckr | A71+Csz D1CGSqbVDWEXAMPLE
----- END RSA PRI VATE KEY-----

For Certificate chain, type or paste the PEM-formatted intermediate certificates and, optionally,
the root certificate, one after the other without any blank lines. If you include the root certificate,
your certificate chain must start with intermediate certificates and end with the root certificate.
Use the intermediate certificates provided by your certificate authority. Do not include any
intermediaries that are not in the chain of trust path. The following shows an abbreviated example.

----- BEG N CERTI FI CATE- - - - -
EXAVPLECA4ugAW BAgl QW Ydr B5NogYUx 1U9Pany 3DANBgk ghki GOWOBAQUFADCB

253

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Set Up a Custom Domain Name for an API Gateway API

5.
6.

8/ f Bl | K3se2e4/ hEf cEej X/ ar xbx1BJCHBvI EPNnsdw8EXAMPLE
----- END CERTI FI CATE- - - - -

Here is another example.

----- BEG N CERTI FI CATE- - - - -
Internedi ate certificate 2
----- END CERTI FI CATE- - - - -
----- BEG N CERTI FI CATE- - - - -
Internedi ate certificate 1
----- END CERTI FI CATE- - - - -
----- BEG N CERTI FI CATE- - - - -
Optional: Root certificate
----- END CERTI FI CATE- - - - -

Choose Save.

While the new custom domain name is being created, the console displays the following information
to have an alias resource record created in your DNS provider to map your custom domain name
(api . exanpl e. com to the API's CloudFront distribution domain name

(di stribution-id.cloudfront.net).

api.example.com Delete Custom Domain Name
Create an Alias resource record with your DNS provider to map api.example.com to d3boq9ikothtgw.cloudfront.net
Certificate name my-example-cert

Distribution domain name d3bogdikothtgw cloudfront net

The custom domain name is being created. This process can take up to 40 minutes.

API| Mappings

Base path API Stage

No APl mappings

© Create APl mapping

Make note of the CloudFront distribution's domain name shown in the output. You will need it to set
the custom domain's CNAME or alias record in your DNS.

In this step, we will use Amazon Route 53 as an example DNS provider to show how to set up the
alias record to map the custom domain to its CloudFront distribution. The instructions can be adapted
to other DNS providers.

Go to the Amazon Route 53 console.

If necessary, register a custom domain name.
Create a hosted zone.

Create a record set (e.g., api . exanpl e. com)

Choose Yes for Alias, type the CloudFront domain name (e.g.,
d3boq9i kot ht gw. cl oudf ront . net) in Alias Target, and then choose Create.

a0 op

254

Amazon API Gateway Developer Guide
Specify APl Mappings for a Custom Domain Name

Create Record Set

v

Type: A-IPv4 address
Alias Target: (3boqikothtgw.cloudfront.nel 1

Alias Hosted Zone 1D: ZZFDTNDATAQYW2

Routing Policy: Simple ﬂ

Route 53 responds to queries based only on the values in this record. Leam

More

Evaluate Target Health: ¢ ® No &

For most DNS providers, including Amazon Route 53, your custom domain name is added to the
hosted zone as a CNAME resource record set. The CNAME record name specifies the custom
domain name you typed earlier for Domain Name (for example, api . exanpl e. com). The CNAME
record value specifies the domain name for the CloudFront distribution. However, use of a CNAME
record will not work if your custom domain is a zone apex (i.e., exanpl e. cominstead of

api . exanpl e. com). A zone apex is also commonly known as the root domain of your organization.

With Amazon Route 53 you can also create an alias resource record set for your custom domain
name and specify the CloudFront distribution as the alias target. This means that Amazon Route 53
can route your custom domain name even if it is a zone apex. For more information, see Choosing
Between Alias and Non-Alias Resource Record Sets in the Amazon Route 53 Developer Guide.

Specify APl Mappings for a Custom Domain Name

After you have set up a custom domain name, you must configure how individual APIs are invoked with
the custom domain name. This amounts to specifying an API's URL with the given domain name. For
example, if you have created an APl named Pet St or e and another APl named Pet Shop and set up a
custom domain name of api . exanpl e. comin API Gateway, you can set the Pet St or e API's URL as
https://api.exanpl e.comorhttps://api.exanpl e. conl myPet St or e. This involves setting up
the API's base path. The first example uses an empty base path and the second example uses

myPet St or e as the base path of the API, relative to the domain name. Similarly, you can use
https://api.exanpl e. com your Pet St or e as the Pet Shop API's URL. The base path is

your Pet Shop. Thus, base paths can be used to host multiple APIs behind a single custom domain name.

Complete the steps in Set Up a Custom Domain Name for an API Gateway API (p. 253) before setting the
base path for API mappings.

To set the base path for APl mappings

1. For each URL variation you want to enable, choose Create APl mapping.

2. (Optional) For Base path, type the base path name that API callers must provide as part of the URL.
This value must be unique for all of the mappings across a single API. Leave this blank if you do not
want callers to specify a base path name after the domain name.

3. For API, choose the name of an available API from the selected region in your AWS account.

255

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-choosing-alias-non-alias.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-choosing-alias-non-alias.html

Amazon API Gateway Developer Guide
Base Path Examples of APl Mappings for a Custom
Domain Name

4. (Optional) For Stage, choose the name of the API's stage you want to use for this mapping. Leave
this blank if you want callers to explicitly specify the stage name after any base path name.

5. Choose Save.

Note
To delete a mapping after you create it, next to the mapping that you want to delete, choose
Remove.

Base Path Examples of API Mappings for a Custom
Domain Name

The following examples use a custom domain name of api . exanpl e. com

« Leave Base Path blank, specify an API of MyDenpAPI , and specify a Stage value of pr od to enable
callsto htt ps: // api . exanpl e. comto be forwarded to
https://ny-api-id.execute-api.region-id.amazonaws. cont pr od (where ny- api -i d is
the identifier APl Gateway assigns to the APl named MyDenpAPI).

« Leave Base Path blank, specify an APl of MyDenpAPI , and leave Stage blank to enable calls to
htt ps:// api . exanpl e. cont pr od to be forwarded to
https://ny-api-id. execute-api.region-id.amazonaws. coni prod (where ny-api -i dis
the identifier APl Gateway assigns to the APl named MyDenpAPI).

¢ Specify a Base Path value of bi | | i ng, specify an API of MyDenpAPI , and leave Stage blank to enable
callsto https://api.exanpl e. com bi |l |ing/bet a to be forwarded to
https://ny-api-id. execute-api.region-id.amazonaws. coni bet a (where ny-api -i dis
the identifier API Gateway assigns to the APl named My DenpAPI).

¢ Specify a Base Path value of schedul i ng, specify an API of MyDenpAPI , and specify a Stage value
of gammma to enable calls to ht t ps: / / api . exanpl e. com schedul i ng to be forwarded to
https://ny-api-id. execute-api.region-id. amazonaws. conf ganma (where ny- api -i d is
the identifier APl Gateway assigns to the APl named MyDenpAPI).

Upload and Renew an Expiring Certificate

The following steps describe how to upload and renew an expiring certificate for a custom domain name
using the API Gateway console. You cannot rotate custom domain name certificates programmatically.

To upload a new certificate for a custom domain name

1. Choose Custom Domain Names from the AP| Gateway console main navigation pane.
2. Select a custom name under the Domain Names pane.
3. Choose Upload
Note
The upload feature will not be available when the certificate is being initialized or rotated

for the selected custom domain name. However, upload for a different domain name is still
available because the upload feature is independent for each custom domain name.

4. In Upload Backup Certificate for a- domai n- nane specify the following:

« Type a name for the new certificate in Certificate name. The name should be different from the
name of the expiring certificate.

* Type or paste the PEM-formatted new certificate body in Certificate body.
« Type or paste the PEM-formatted new certificate key in Certificate private key
« Type or paste the PEM-formatted new certificate chain in Certificate chain.

256

Amazon API Gateway Developer Guide
Call Your APl with Custom Domain Names

Then, choose Save.
5. Choose Rotate to start replacing the old certificate by the new certificate.

Note
The certificate rotation takes up to 40 minutes to finish. The custom domain name is available

during the rotation.

api.example.com Delete Custom Domain Name
Create an Alias resource record with your DNS provider to map api.example.com to d3boq9ikothtgw.cloudfront.net

Certificate name my-example-certificate-2
Distribution domain name d3bogdikothigw.cloudfront.net

Backup Certificate my-example-certificate-3 Rotate Upload

API Mappings
Base path AP| Stage
petstore PetStore test SO

© Create APl mapping

Call Your APl with Custom Domain Names

Calling an API with a custom domain name is the same as calling the API with its default domain name,
provided that the correct URL is used.

API Gateway supports custom domain names for an API by using Server Name Indication (SNI). After a
custom domain name is configured with the API, you can call the API with the custom domain name by
using a browser or a client library that supports SNI.

API Gateway enforces SNI on the CloudFront distribution. For information on how CloudFront uses custom
domain names, see Amazon CloudFront Custom SSL.

257

https://en.wikipedia.org/wiki/Server_Name_Indication
http://aws.amazon.com/cloudfront/custom-ssl-domains/

Amazon API Gateway Developer Guide
Prerequisites

Calling a Deployed APl in Amazon
APl Gateway

Calling a deployed API involves submitting requests to the execut e- api component of API Gateway.
The request URL is the Invoke URL generated by API Gateway when the API is successfully deployed.
You can obtain this invocation URL from the API Gateway console or you can construct it yourself according
to the following format:

https://{restapi _id}.execute-api.{regi on}.anazonaws. coni {st age_nane}/

If your API permits anonymous access, you can use any web browser to invoke any GET-method calls
by pasting the Invoke URL to the browser's address bar. For other methods or any authentication-required
calls, the invocation will be more involved because you must specify a payload or sign the requests. You
can handle these in a script behind an HTML page or in a client app using one of the AWS SDKs.

For testing, you can use the API Gateway console to call an API using the API Gateway's Testlnvoke
feature, which bypasses the Invoke URL and allows API testing before the API is deployed. Alternatively,
you can use the Postman Chrome extension to test a successfully deployed API, without writing a script
or a client.

Topics
¢ Prerequisites (p. 258)
¢ Obtain an API's Invoke URL in the APl Gateway Console (p. 259)
¢ Test a Method Using the API Gateway Console (p. 259)
¢ Use Postman to Test an API (p. 260)

Prerequisites

¢ You must have already deployed the API in APl Gateway. Follow the instructions in Deploying an
API (p. 221).

258

http://www.getpostman.com/

Amazon API Gateway Developer Guide
Obtain an API's Invoke URL in the API Gateway Console

Obtain an API's Invoke URL in the APl Gateway
Console

Test

PN PE

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
In the box that contains the name of the APl you want to call, choose Stages.
In the Stages pane, choose the name of the stage.

The URL displayed next to Invoke URL should look something like this, where ny- api - i d is the
identifier APl Gateway assigns to your API, r egi on-i d is the AWS region identifier (for example,
us- east - 1) where you deployed your API, and st age- nane is the name of the stage for the API
you want to call:

https://ny-api-id.execute-api.region-id. anazonaws. coni st age- nane/ {resource
Pat h}

Depending on the method type you want to call and the tool you want to use, copy this URL to your
clipboard, and then paste and modify it to call the API from a web browser, a web debugging proxy tool
or the cURL command-line tool, or from your own API.

If you are not familiar with which method to call or the format you must use to call it, browse the list of
available methods by following the instructions in View a Methods List (p. 219).

To call the method directly from the API Gateway console, see Test a Method Using the Console (p. 259).

For more options, contact the API owner.

a Method Using the API Gateway Console

Use the API Gateway console to test a method.

Topics

¢ Prerequisites (p. 259)
¢ Test a Method with the APl Gateway Console (p. 259)

Prerequisites

You must specify the settings for the methods you want to test. Follow the instructions in Set up
Method and Integration (p. 62).

Test a Method with the APl Gateway Console

Important

Testing methods with the APl Gateway console may result in changes to resources that cannot
be undone. Testing a method with the APl Gateway console is the same as calling the method
outside of the API Gateway console. For example, if you use the APl Gateway console to call
a method that deletes an API's resources, if the method call is successful, the API's resources
will be deleted.

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

259

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Use Postman to Test an API

In the box that contains the name of the API for the method, choose Resources.
In the Resources pane, choose the method you want to test.

In the Method Execution pane, in the Client box, choose TEST. Type values in any of the displayed
boxes (such as Query Strings, Headers, and Request Body).

For additional options you may need to specify, contact the APl owner.
Choose Test. The following information will be displayed:

« Request is the resource's path that was called for the method.

e Status is the response's HTTP status code.

e Latency is the time between the receipt of the request from the caller and the returned response.

¢ Response Body is the HTTP response body.

* Response Headers are the HTTP response headers.
Tip
Depending on the mapping, the HTTP status code, response body, and response headers
may be different from those sent from the Lambda function, HTTP proxy, or AWS service
proxy.

¢ Logs are the simulated Amazon CloudWatch Logs entries that would have been written if this

method were called outside of the APl Gateway console.

Note
Although the CloudWatch Logs entries are simulated, the results of the method call are
real.

Use Postman to Test an API

Use the Postman Chrome extension is a convenient tool to test an APl in APl Gateway.

1.
2.

Launch Postman.

Enter the endpoint URL of a request in the address bar and choose the appropriate HTTP method
from the drop-down list to the left of the address bar.

If required, choose the Authorization tab. Choose AWS Signature for the authorization Type. Enter
your AWS IAM user's access key ID in the AccessKey input field. Enter your IAM user secret key
in SecretKey. Specify an appropriate AWS region that matches the region specified in the invocation
URL. Enter execut e- api in Service Name.

Choose the Headers tab. Optionally, delete any existing headers. This can clear any stale settings
that may cause errors. Add any required custom headers. For example, if API keys are enabled, you
can set the x- api - key: { api _key} name/value pair here.

Choose Send to submit the request and receive a response.

For an example of using Postman, see Call an API with Custom authorization (p. 210).

260

http://www.getpostman.com

Amazon API Gateway Developer Guide
Log API Management Calls with CloudTrail

Monitoring and Troubleshooting in
APl Gateway

Topics
¢ Log APl management calls to Amazon API Gateway Using AWS CloudTrail (p. 261)
¢ Monitor API execution with Amazon CloudWatch (p. 263)

For API execution, APl Gateway automatically reports to Amazon CloudWatch your API's execution
metrics on the API- and stage-levels. The metrics include statistics about caching, latency and detected
errors. You can also opt in for APl Gateway to send to CloudWatch method-level metrics, using the API
Gateway console (p. 224) or calling the API Gateway REST API or one of its SDKs. Based on these
metrics, you can set CloudWatch custom alarms for troubleshooting any performance issues of your
APIs. For more information about CloudWatch, see Amazon CloudWatch Developer Guide.

For APl management using API Gateway REST API, you can create AWS CloudTrail trails to log events
involved in the API Gateway REST API calls. You can use the logs to troubleshoot API creation, deployment
and updates. You can also use Amazon CloudWatch to monitor the CloudTrail logs. To learn more about
CloudTrail, see the AWS CloudTrail User Guide.

Note

CloudTrail logs APl Gateway REST API calls an API developer or owner made against the

api gat eway component, whereas CloudWatch logs API calls an API customer or client made
against the execut e- api component of API Gateway.

Log APl management calls to Amazon API
Gateway Using AWS CloudTrail

You can use AWS CloudTrail to capture API Gateway REST API calls in your AWS account and deliver
the log files to an Amazon S3 bucket you specify. Examples of these API calls include creating a new
API, resource, or method in API Gateway. CloudTrail captures such API calls from the APl Gateway
console or from the API Gateway APIs directly. Using the information collected by CloudTrail, you can
determine which request was made to AP| Gateway, the source IP address from which the request was
made, who made the request, when it was made, and so on. To learn more about CloudTrail, including
how to configure and enable it, see the AWS CloudTrail User Guide.

261

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/stage-update/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
http://alpha-docs-aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Amazon API Gateway Developer Guide
API Gateway Information in CloudTrail

APl Gateway Information in CloudTrail

When CloudTrail logging is enabled in your AWS account, API calls made to API Gateway actions are
tracked in log files. APl Gateway records are written together with other AWS service records in a log
file. CloudTrail determines when to create and write to a new file based on a time period and file size.

All of the API Gateway actions are logged and documented in the API Gateway REST API (p. 278). For
example, calls to create a new API, resource, or method in API Gateway generate entries in CloudTrail
log files.

Every log entry contains information about who generated the request. The user identity information in
the log helps you determine whether the request was made with root or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userldentity field in the CloudTrail Event Reference.

You can store your log files in your bucket for as long as you want, but you can also define Amazon S3
lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by using
Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered
S0 you can take action quickly. For more information, see Configuring Amazon SNS Notifications.

You can also aggregate API Gateway log files from multiple AWS regions and multiple AWS accounts
into a single Amazon S3 bucket. For more information, see Aggregating CloudTrail Log Files to a Single
Amazon S3 Bucket.

Understanding APl Gateway Log File Entries

CloudTrail log files can contain one or more log entries where each entry is made up of multiple
JSON-formatted events. A log entry represents a single request from any source and includes information
about the requested action, any parameters, the date and time of the action, and so on. The log entries
are not guaranteed to be in any particular order. That is, they are not an ordered stack trace of the public
API calls.

The following example shows a CloudTrail log entry that demonstrates the APl Gateway get resource
action:

Records: [
{
event Version: "1.03",
userldentity: {
type: "Root",
principalld: "AKI Al 44QH8DHBEXAMPLE" ,
arn: "arn:aws:iam:123456789012: r oot ",
account |l d: "123456789012",
accessKeyl d: " AKI Al OSFOCDNN7EXAMPLE" ,
sessi onCont ext: {
attributes: {
nf aAut henti cated: "fal se",
creationDate: "2015-06-16T23: 37: 582"

}
H
event Ti me: "2015-06-17T00: 47: 282",
event Sour ce: "api gat eway. amazonaws. cont',
event Nane: " Get Resource",

262

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

Amazon API Gateway Developer Guide
Monitor APl execution with Amazon CloudWatch

awsRegi on: "us-east-1",
sour cel PAddress: "203.0.113.11",
user Agent: "exanpl e-user-agent-string",
request Paraneters: {
rest Api | d: " 3r bEXAMPLE",
resourcel d: "5tfEXAMPLE",
tenpl ate: false
H
responseEl enments: null,
request | D "6d9c4bf c- 148a- 11e5- 81b6- 7577cEXAMPLE",
event I D: "4d293154- al5b- 4¢33-9e0a- f f 5eeEXAMPLE",
readOnly: true,
event Type: "AwsApi Cal | ",
reci pi ent Accountld: "123456789012"

addi tional entries ...

Monitor APl execution with Amazon CloudWatch

You can monitor API execution using CloudWatch, which collects and processes raw data from API
Gateway into readable, near real-time metrics. These statistics are recorded for a period of two weeks,
so that you can access historical information and gain a better perspective on how your web application
or service is performing. By default, APl Gateway metric data is automatically sent to CloudWatch in
one-minute periods. For more information, see What Are Amazon CloudWatch, Amazon CloudWatch
Events, and Amazon CloudWatch Logs? in the Amazon CloudWatch Developer Guide.

The metrics reported by API Gateway provide information that you can analyze in different ways. The list
below shows some common uses for the metrics. These are suggestions to get you started, not a
comprehensive list.

« Monitor the IntegrationLatency metrics to measure the responsiveness of the back end.
¢ Monitor the Latency metrics to measure the overall responsiveness of your API calls.

« Monitor the CacheHitCount and CacheMissCount metrics to optimize cache capacities to achieve a
desired performance.

Topics
¢ Amazon API Gateway Dimensions and Metrics (p. 263)
¢ View CloudWatch Metrics with the API Dashboard in APl Gateway (p. 265)
« View API Gateway Metrics in the CloudWatch Console (p. 266)
¢ Monitoring Tools in AWS (p. 266)

Amazon API Gateway Dimensions and Metrics

The metrics and dimensions that APl Gateway sends to Amazon CloudWatch are listed below. For more
information, see Monitor AP Execution with Amazon CloudWatch in the Amazon API Gateway Developer
Guide.

263

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/monitoring-cloudwatch.html

Amazon API Gateway Developer Guide
Amazon API Gateway Dimensions and Metrics

API Gateway Metrics

Amazon API Gateway sends metrics under the AWS/ApiGateway namespace to CloudWatch once every
minute.

The following metrics are available from the APl Gateway service.

Metric Description

AXXError The number of client-side errors captured
Unit: count

5XXError The number of server-side errors captured.
Unit: count

CacheHitCount The number of requests served from the API cache.
Unit: count

CacheMissCount The number of requests served from the back end when

API caching is enabled.

Unit: count
Count The number of calls to APl methods.
Unit: count
IntegrationLatency The time between when API| Gateway relays a request

to the back end and when it receives a response from
the back end.

Unit: millisecond

Latency The time between when API Gateway receives a request
from a client and when it returns a response to the client.

Unit: millisecond

Dimensions for Metrics

You can use the dimensions in the following table to filter APl Gateway metrics.

Dimension Description
ApiName Filters APl Gateway metrics for an API of the specified
API name.

264

Amazon API Gateway Developer Guide
View Metrics with the API Dashboard

Dimension Description

ApiName, Method, Resource, Stage Filters APl Gateway metrics for an APl method of the
specified API, stage, resource, and method.

API Gateway will not send such metrics unless you have
explicitly enabled detailed CloudWatch metrics. You can
do this in the console by selecting Enable CloudWatch
Metrics under a stage Settings tab. Alternatively, you
can call the stage:update action of the AP| Gateway REST
API to update the nmet ri csEnabl ed property to t r ue.

Enabling such metrics will incur additional charges to your
account. For pricing information, see Amazon CloudWatch
Pricing.

ApiName, Stage Filters APl Gateway metrics for an API stage of the spe-
cified API and stage.

View CloudWatch Metrics with the API Dashboard
in APl Gateway

You can use the API dashboard in the API Gateway Console to display the CloudWatch metrics of your
deployed API in API Gateway. These are shown as a summary of API activity over time.

Topics
¢ Prerequisites (p. 265)
¢ Examine API activities in the Dashboard (p. 265)

Prerequisites

1. You must have an API created in APl Gateway. Follow the instructions in Creating an API (p. 61).
2. You must have the API deployed at least once. Follow the instructions in Deploying an API (p. 221).

3. To get CloudwWatch metrics for individual methods, you must have CloudWatch Logs enabled for
those methods in a given stage. The process is prescribed in Set Up a Stage (p. 224). Your account
will be charged for accessing method-level logs, but not for accessing API- or stage-level logs.

Examine API activities in the Dashboard

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
Choose the name of the API.

Under the selected API, choose Dashboard.

To display a summary of API activity over time, for Stage, choose the desired stage.
Use From and To to enter the date range.

Refresh, if needed, and view individual metrics displayed in separate graphs titled API Calls,
Integration Latency, Latency, 4xx Error and 5xx Error. The CacheHitCount and CacheMissCount
graphs will be displayed only if API caching has been enabled.

o0k wdRE

265

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/stage-update/
http://aws.amazon.com/cloudwatch/pricing/
http://aws.amazon.com/cloudwatch/pricing/
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
View Metrics in the CloudWatch Console

Tip

To examine method-level CloudWatch metrics, make sure that you have enabled CloudWatch
Logs on a method level. For more information about how to set up method-level logging,
see Set Up an API Deployment Stage with the API Gateway Console (p. 224).

View API Gateway Metrics in the CloudWatch
Console

To view metrics using the CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension combinations
within each namespace.

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Ifnecessary, change the region. From the navigation bar, select the region where your AWS resources
reside. For more information, see Regions and Endpoints.

3. Inthe navigation pane, choose Metrics.

4. Inthe CloudWatch Metrics by Category pane, under the metrics category for API Gateway, select
a metrics category, and then in the upper pane, scroll down to view the full list of metrics.

To view metrics using the AWS CLI

e Atacommand prompt, use the following command:

aws cloudwatch list-nmetrics --nanmespace "AWS Api Gat eway"

Monitoring Tools in AWS

AWS provides various tools that you can use to monitor APl Gateway. You can configure some of these
tools to do the monitoring for you automatically, while other tools require manual intervention. We
recommend that you automate monitoring tasks as much as possible.

Automated Monitoring Tools in AWS

You can use the following automated monitoring tools to watch API Gateway and report when something
is wrong:

¢« Amazon CloudWatch Alarms —Watch a single metric over a time period that you specify, and perform
one or more actions based on the value of the metric relative to a given threshold over a number of
time periods. The action is a naotification sent to an Amazon Simple Notification Service (Amazon SNS)
topic or Auto Scaling policy. CloudWatch alarms do not invoke actions simply because they are in a
particular state, the state must have changed and been maintained for a specified number of periods.
For more information, see Monitor AP| execution with Amazon CloudWatch (p. 263).

*« Amazon CloudWatch Logs — Monitor, store, and access your log files from AWS CloudTrail or other
sources. For more information, see Monitoring Log Files in the Amazon CloudWatch Developer Guide.

¢« Amazon CloudWatch Events — Match events and route them to one or more target functions or
streams to make changes, capture state information, and take corrective action. For more information,
see Using Events in the Amazon CloudWatch Developer Guide.

¢ AWS CloudTrail Log Monitoring — Share log files between accounts, monitor CloudTrail log files in
real time by sending them to CloudWatch Logs, write log processing applications in Java, and validate

266

https://console.aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchEvents.html

Amazon API Gateway Developer Guide
Monitoring Tools in AWS

that your log files have not changed after delivery by CloudTrail. For more information, see Working
with CloudTrail Log Files in the AWS CloudTrail User Guide.

Manual Monitoring Tools

Another important part of monitoring API Gateway involves manually monitoring those items that the
CloudWatch alarms don't cover. The API Gateway, CloudWatch, and other AWS console dashboards
provide an at-a-glance view of the state of your AWS environment. We recommend that you also check
the log files on API execution.

« API Gateway dashboard shows the following statistics for a given API stage during a specified period
of time:

* API Calls
» Cache Hit, only when API caching is enabled.
» Cache Miss, only when API caching is enabled.
» Latency
* Integration Latency
e 4XX Error
* 5XX Error
¢ The CloudWatch home page shows:
» Current alarms and status
» Graphs of alarms and resources
» Service health status

In addition, you can use CloudWatch to do the following:

« Create customized dashboards to monitor the services you care about
» Graph metric data to troubleshoot issues and discover trends

e Search and browse all your AWS resource metrics

» Create and edit alarms to be notified of problems

Creating CloudWatch Alarms to Monitor API Gateway

You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes state.
An alarm watches a single metric over a time period you specify, and performs one or more actions based
on the value of the metric relative to a given threshold over a number of time periods. The action is a
notification sent to an Amazon SNS topic or Auto Scaling policy. Alarms invoke actions for sustained
state changes only. CloudWatch alarms do not invoke actions simply because they are in a particular
state; the state must have changed and been maintained for a specified number of periods.

267

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html

Amazon API Gateway Developer Guide
What Is a Usage Plan?

Creating and Using APl Usage
Plans in Amazon API Gateway

After you create, test, and deploy your APIs, you can extend them as product offerings for your customers.
You can provide usage plans to allow specified customers to access selected APIs at agreed-upon request
rates and quotas that can meet their business requirements and budgetary constraints.

What Is a Usage Plan?

A usage plan provides access to one or more deployed API stages with configurable throttling and quota
limits enforced on individual client API keys. API callers are identified by API keys that can be generated
by API Gateway or imported from external sources. The throttling prescribes the request rate limits applied
to each API key. The quotas are the maximum number of requests with a given API key submitted within
a specified time interval. Individual APl methods can be configured to require API key authorization based
on usage plan configuration. An API stage is identified by an API identifier and a stage name.

Note
Throttling and quota limits apply to requests for individual API keys that are aggregated across
all API stages within a usage plan.

How to Configure a Usage Plan?

The following steps describe how you, as the API owner, configure a usage plan for your customers.
To configure a usage plan

Create one or more APIs, configure the methods to require an API key, and deploy the APIs in stages.
Generate API keys and distribute the keys to app developers (your customers) using your APIs.
Create the usage plan with the desired throttle and quota limits.

Associate selected API stages and API keys to the usage plan.

P obdPE

Callers of the API must supply an assigned API key in the x- api - key header in requests to the API.

268

Amazon API Gateway Developer Guide
Configure Usage Plans Using the API Gateway Console

Note

To enforce authorization of the API key in requests to the API, individual APl methods must be
configured to require an API key (p. 203). Setting this configuration ensures the incoming API
key will be authorized according to the usage plan configuration.

Topics
¢ Configure Usage Plans Using the APl Gateway Console (p. 269)
¢ Configure Usage Plans Using the APl Gateway REST API (p. 274)
¢ API Gateway API Key File Format (p. 277)

Configure Usage Plans Using the API Gateway
Console

To use the API Gateway console to configure a usage plan, use the following instructions.

Topics
¢ Create and Deploy an API for Usage Plans (p. 269)
¢ Configure an API Method to Require an API Key (p. 269)
e Create an API Key (p. 270)
¢ Import API Keys (p. 270)
« Migrate to Default Usage Plans (p. 271)
¢ Create Usage Plans (p. 271)
e Test a Usage Plan (p. 273)
¢ Manage Plan Usage (p. 273)

Create and Deploy an API for Usage Plans

For instructions on how to create and deploy an API, see Creating an API (p. 61) and Deploying an
API (p. 221), respectively.

Configure an APl Method to Require an API Key

The following procedure describes how to configure an APl method to require an API key.
To configure an APl method to require an API key

1. Signin to the AWS Management Console and open the APl Gateway console at https://
console.aws.amazon.com/apigateway/.

In the API Gateway main navigation pane, choose Resources.

Under Resources, create a new method or choose an existing one.

Choose Method Request.

Under the Authorization Settings section, choose t r ue for API Key Required.
Select the check-mark icon to save the settings.

o g~ wN

269

https://console.aws.amazon.com/apigateway/
https://console.aws.amazon.com/apigateway/

Amazon API Gateway Developer Guide
Create an API Key

Create an API Key

If you have already created or imported API keys for use with usage plans, you can skip this and the next
procedure.

To create an APl key

1.

5.

Sign in to the AWS Management Console and open the AP Gateway console at https://
console.aws.amazon.com/apigateway/.

In the API Gateway main navigation pane, choose API Keys.
From the Actions drop-down menu, choose Create API key.

{1: Amazon APl Gateway AP Keys

APls APl Keys Actions ~ Select an APl key
‘. Y
PetStore v Create AP key
‘ Import AP| keys
Usage Plans ® 4 MyFirstkey
API Keys

Custom Domain Names
Client Certificates

Settings

In Create API Key, do the following:

a. Type an API key name (e.g., MyFi r st Key) in the Name input field.

b. Choose Auto Generate to have API Gateway to generate the key value or choose Custom to
enter the key manually.

c. Choose Save.

Create APl Key
Name* MyFirstkey
APl key* @ Auto Generate Custom

Description |For the first customer

* Required m

Repeat the preceding steps to create more API keys, if needed.

Import APl Keys

The following procedure describes how to import API keys to use with usage plans.

To import APl keys

1.
2.

In the main navigation pane, choose API Keys.
From the Actions drop-down menu, choose Import API keys.

270

https://console.aws.amazon.com/apigateway/
https://console.aws.amazon.com/apigateway/

Amazon API Gateway Developer Guide
Migrate to Default Usage Plans

3. Toload a comma-separated key file, choose Select CSV File. You can also type the keys manually.
For information about the file format, see API Gateway API Key File Format (p. 277).

Import API Keys
Use the field below to upload your existing API Keys as comma separated values (CSV). APl Keys will be created in API
Gateway and associated with a Usage Plan. Learn about the CSV format in the (ZAP| Gateway documentation

Select CSV File

1 name,Key,Description,enabled,usageplanlds
2 ImportedKey,CWaiyZjNC212f9P7hcxG17Ae803jEdFuBpzfrygf,an imported key,true,abcdef

9 Fail on warnings Ignore warnings m

4. Choose Fail on warnings to stop import when there is an error, or choose Ignore warnings to
continue to import valid key entries when there is an error.

5. To start importing the selected API keys, choose Import.

Migrate to Default Usage Plans

When creating a usage plan for the first time, you are prompted with the Enable Usage Plans option
before you can proceed further. This option creates default usage plans for every unique API stage
associated with existing API keys. In the default usage plan, no throttle and quota limits are set initially,
existing API keys are converted to a collection of UsagePlanKey resources, and existing API keys are
converted to API stage Ids. The API will behave the same as before. However, you must use the UsagePlan
api St ages property to associate specified API stage values (api | d and st age) with included API keys
(via UsagePlanKey), instead of using the ApiKey st ageKeys property.

Create Usage Plans

The following procedure describes how to create a usage plan.
To create a usage plan

1. Inthe Amazon API Gateway main navigation pane, choose Usage Plans, and then choose Create.
2. Under Create Usage Plan, do the following:

For Name, type a name for your plan (e.g., Pl an_A).

For Description, type a description for your plan.

Select Enable throttling and set Rate (e.g., 100) and Burst (e. g., 200).

Choose Enable gquota and set its limit (e.g., 5000) for a selected time interval (e.g., Month).
Choose Save.

® oo o

271

http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan-key/
http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan/
http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan-key/
http://docs.aws.amazon.com/apigateway/api-reference/resource/api-key/

Amazon API Gateway Developer Guide
Create Usage Plans

ﬂi Amazon API Gateway UsagePlans > Creale Show all hints 9
APls . Usage Plans Create Usage Plan
PetShop

Usage Plans help you meter API usage. With Usage Plans, you can enlorce a throttling and quota limit
on gach APl key. Throttling limits define the maximum number of requests per second available to each
PetStore key. Quota imits define the number of requests each API key is allowed to make over a penod
Usage Plans
Name® Plan A
API Keys

Custom Domain Names Description First usage plan

Client Cerfificates Throttling
Settings
Enable throttling ¥ @
Rate 100 # requests per second @
Burst 200 # requests @
Quota
Enable quota V' @
5000 + requests per Month | = |@
* Required m

To add a stage to the plan, do the following in the Associated API Stages pane:

Choose Add API Stage.

Choose an API (e.g., Pet St or e) from the API drop-down list.
Choose a stage (e.g., St age_1) from the Stage drop-down list.
Choose the check-mark icon to save.

Choose Next.

a0 op

Associated API Stages
Associate AP| stages to this usage plan. Subscribers will only be allowed to access the API stages that are

associated with the plan. Choose "Add Stage" below, then use the dropdown to select an API and stage to
enable for this usage plan.

API Stage

PetStore A testStage v (v %]

Back Next

To add a key to the plan, do the following in the Usage Plan APl Keys pane:

To use an existing key, choose Add API Key to Usage Plan.

For Name, type a name for the key you want to add (e.g., MyFi r st Key).

Choose the check-mark icon to save.

If desired, repeat the preceding steps to add other existing API keys to this usage plan.

Qo op

272

Amazon API Gateway Developer Guide
Test a Usage Plan

Usage Plan API Keys

Subscribe an API key to this usage plan. Choose "Add API Key" below to search through your existing API keys.
Once a key is associated with a plan, AP| Gateway will meter all requests from the key and apply the plan's
throttling and quota limits.

Results per page 100 ~

Name
MyFirstKey (Hiorr...)
Page 1

Back Done

Note
To add a new API key to the usage plan, choose Create APl Key and add to Usage Plan
and follow the instructions.

5. To finish creating the usage plan, choose Done.

6. Ifyouwantto add more API stages to the usage plan, choose Add API Stage to repeat the preceding
steps.

Test a Usage Plan

To test the usage plan, you can use an AWS SDK, AWS CLI, or a REST API client like Postman. For an
example of using Postman to test the usage plan, see Test Usage Plans (p. 276)

Manage Plan Usage

Managing a usage plan involves monitoring the used and remaining quotas over a given time period and
extending the remaining quotas by a specified amount. The following procedures describe how to monitor
and extend quotas.

To monitor used and remaining quotas

In the API Gateway main navigation pane, choose Usage Plans.

Choose a usage plan from the list of the usage plans in the secondary navigation pane in the middle.
From within the specified plan, choose API Keys.

Choose an API key. Then choose Usage to view Subscriber's Traffic from the plan you are
monitoring.

5. Optionally, choose Export, choose a From date and a To date, choose JSONor CSV for the exported
data format, and then choose Export.

P onNPE

The following example shows an exported file.

{
"thisPeriod": {
"px1KW6. . . qBazQIH": [
[
0,
5000

273

https://www.getpostman.com/

Amazon API Gateway Developer Guide
Configure Usage Plans Using the API Gateway REST
API

}
"startDate": "2016-08-01",

"endDate": "2016-08-03"
}

The usage data in the example shows the daily usage data for an API client, as identified by the API
key (px1KW6. . . qBaz QJH), between August 1, 2016, and August 3, 2016. Each daily usage data
shows used and remaining quotas. In this example, the subscriber has not yet used any allotted
quotas and the API owner or administrator has reduced the remaining quota from 5000 to 10 on the
third day.

To extend the remaining quotas

Repeat steps 1-3 of the previous procedure.

On the usage plan page, choose Extension from the usage plan window.
Type a number for the Remaining request quotas.

Choose Save.

P oDdPE

Configure Usage Plans Using the APl Gateway
REST API

To configure a usage plan using the APl Gateway REST API, use the following instructions, assuming
you have already created the APIs to be added to the usage plan.

Topics
¢ Require an API Key on a Method (p. 274)
¢ Create or Import API Keys (p. 275)
¢ Migrate to Default Usage Plans (p. 275)
¢ Create a Usage Plan (p. 275)
¢ Manage a Usage Plan (p. 276)
¢ Test Usage Plans (p. 276)

Require an APl Key on a Method

To require an API key on a method, do one of the following:

¢ Call method:put to create a method, setting api KeyRequi r ed to t r ue in the request payload.
¢ Call method:update to set api KeyRequi red totrue.

274

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/method-put/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/method-update/

Amazon API Gateway Developer Guide
Create or Import API Keys

Create or Import APl Keys

To create or import an API key, do one of the following:

¢ Call apikey:create to create an API key.

¢ Call apikey:import to import an API key from a file. For the file format, see AP| Gateway API Key File
Format (p. 277).

Migrate to Default Usage Plans

When creating a usage plan the first time, you can migrate existing API stages associated with selected
API keys to a usage plan by calling account:update with the following body:

{
"patchOperations" : [{
"op" : "add",
"path" : "/features",
"val ue" : "UsagePl ans"
bl
}

For more information about migrating API stages associated with API keys see Migrate to Default Usage
Plans in the APl Gateway Console (p. 271).

Create a Usage Plan

The following procedure describes how to create a usage plan.
To create a usage plan with the REST API

1. Call usageplan:create to create a usage plan, specifying in the payload the name and description of
the plan, associated API stages, rate limits, and quotas.

Make note of the resultant usage plan identifier. You will need it in the next step.
2. Do one of the following:

a. Call usageplankey:create to add an API key to the usage plan, specifying keyl d and keyType
in the payload.

To add more API keys to the usage plan, repeat the above call, one API key at a time.

b. Call apikey:import to add one or more API keys directly to the specified usage plan. The request
payload should contain API key values, the associated usage plan identifier, the Boolean flags
to indicate the keys are enabled for the usage plan, and, possibly, the APl key names and
descriptions.

The following example of the api key: i nport request will add three API keys (as identified by
key, nane, and descri pti on) to one usage plan (as identified by usagepl anl ds):

PQOST / api keys?node=i nport & or mat =csv&f ai | onwar ni ngs=fase HTTP/ 1.1
Host: api gat eway. us-east- 1. amazonaws. com

Content - Type: text/csv

Aut hori zati on:

275

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/apikey-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/apikey-import/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/account-update/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplan-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplankey-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/apikey-import/

Amazon API Gateway Developer Guide
Manage a Usage Plan

key, nane, description, enabl ed, usagepl anlds

abcdef 1234ghi j kl mop8901234567, inportedKey_1, firstone, tRuE, n371lpt
abcdef 1234ghi j kl mop0123456789, i nportedKey_2, secondone, TRUE, n371pt
abcdef 1234ghi j kl mop9012345678, i nportedKey_3, , true, n371pt

As a result, three UsagePl anKey resources will be created and added to the UsageP! an.

You can also add API keys to more than one usage plan this way. To do this, change each
usagepl anl ds column value to a comma-separated string that contains the selected usage
plan identifiers and is enclosed within a pair of quotes (" n371pt, n282qgs" or

'n371pt, n282qgs’).

Manage a Usage Plan

The following procedure describes how to manage a usage plan.

To manage a usage plan with the REST API

1. Call usageplans:by-id to get a usage plan of a given plan Id. To see the available usage plans, call
apigateway:usageplans.

2. Call usageplan:update to add a new API stage to the plan, to replace an existing API stage in the
plan, to remove an API stage from the plan, or to modify the rate limits or quotas.

3. Call usage:get to query the usage data in a specified time interval.
4. Call usage:update to grant an extension to the current usage in a usage plan.

Test Usage Plans

As an example, let's use the PetStore API, created in Build and Test an API Gateway API from an
Example (p. 6). Assume the API is configured to use an APl key of Hi orr 45VR. . . c4GJc. The following
steps describe how to test a usage plan.

To test your usage plan

¢ Make a GET request on the Pets resource (/ pet s), with the ?t ype=. . . &page=. . . query parameters,
of the API (e.g., xbvxI| pi j ch) in a usage plan:

GET /test Stage/ pet s?t ype=dog&page=1 HTTP/ 1.1

X-api -key: Hiorr45VR ..c4Gc

Cont ent - Type: application/ x-wwmform url encoded

Host: xbvxl pijch. execut e-api . ap- sout heast - 1. amazonaws. com

X- Anz- Date: 20160803T001845Z

Aut hori zation: AWS4- HVAC- SHA256 Credenti al ={access_key_| D}/ 20160803/ ap-
sout heast - 1/ execut e- api / aws4_r equest, Si gnedHeader s=cont ent -t ype; host ; x- anz-
dat e; x- api - key, Si gnature={sigv4_hash}

Note
You must submit this request to the execut e- api component of API Gateway and provide
the required API key (e.g., Hi orr 45VR. . . c4GJc) in the required x- api - key header.

The successful response returns a 200 K status code and a payload containing the requested
results from the back end. If you forget to set the x- api - key header or set it with an incorrect key,

276

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplans-by-id/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/apigateway-usageplans/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplan-update/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usage-get/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usage-update/

Amazon API Gateway Developer Guide
API Gateway API Key File Format

you will get a 403 For bi dden response. On the other hand, if you did not configure the method to
require an API key, you will likely to geta 200 OK response whether you set the x- api - key header
correctly or not and the throttle and quota limits of the usage plan are bypassed.

APl Gateway API Key File Format

API Gateway can import API keys from external files of a comma-separated value (CSV) format and
associate the imported keys with one or more usage plans. The imported file must contain the Nane and
Key columns. The column header names are not case-sensitive and columns can be in any order, as
shown in the following example:

Key, nane
api keyl234abcdef ghi j 0123456789, MyFi r st Api Key

A Key value must be between 30 and 128 characters.

An API key file can also have the Descri pti on, Enabl ed, or UsagePl anl ds column, as shown in the
following example:

Nare, key, descri pti on, Enabl ed, usagepl anl ds
MyFi r st Api Key, api keyl1234abcdef ghi j 0123456789, An i nported key, TRUE, c7y23b

When a key is associated with more than one usage plan, the UsagePl anl ds value is a comma-separated
string of the usage plan Ids enclosed with a pair of double or single quotes, as shown in the following
example:

Enabl ed, Nan®e, key, Usagepl anl ds
true, MyFi r st Api Key, api keyl1234abcdef ghi j 0123456789, "c7y23b, gl vrsr"

Unrecognized columns are permitted, but will be ignored. The default value is an empty string or atrue
Boolean value.

The same API key can be imported multiple times with the most recent version overwriting the previous
one. Two API keys are identical if they have the same key value.

277

Amazon API Gateway Developer Guide

Amazon AP| Gateway REST API

When you use the Amazon API Gateway console to create, configure, update, and deploy an API, the
console calls the APl Gateway REST API behind the scenes to make things happen.

When you use AWS Command Line Interface to create, configure, update, and deploy an API, the AWS
CLI tool calls the APl Gateway REST API as well. For an example, see Create an AP| using API Gateway
and Test It in the AWS Lambda Developer Guide . For more information, see AWS Command Line
Interface User Guide.

When you use an AWS SDK to create, configure, update, and deploy an API, the SDK calls the API
Gateway REST API behind the scenes.

Instead, you can call the API Gateway REST API directly to create, configure, update, and deploy an API
in API Gateway.

For more information on how to use the API Gateway REST API, see Amazon AP| Gateway REST API
Reference.

278

http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https-example-configure-event-source.html
http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https-example-configure-event-source.html
http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/userguide/
https://aws.amazon.com/tools/
http://docs.aws.amazon.com/apigateway/api-reference/
http://docs.aws.amazon.com/apigateway/api-reference/

Amazon API Gateway Developer Guide
API Gateway Limits

Amazon APl Gateway Limits and
Pricing

Topics
¢ API Gateway Limits (p. 279)
¢ API Gateway Pricing (p. 281)
¢ Known Issues (p. 281)

API Gateway Limits

Unless noted otherwise, the limits can be increased upon request. To request a limit increase, contact
the AWS Support Center.

API Gateway Limits for Configuring and Running
an API

The following limits apply to configuring and running an API in Amazon API Gateway.

Resource or Opera- | Default Limit Can BeIn-
tion creased
Throttle limits per ac- | 1000 request per second (rps) with a burst limit of 2000 rps. Yes

count

APIs per account 60 Yes

API keys per account | 500 Yes
Usage plans per ac- | 300 Yes

count

Custom authorizers | 10 Yes

per API

279

https://console.aws.amazon.com/support/home#/

Amazon API Gateway Developer Guide
API| Gateway Limits for Creating, Deploying and
Managing an API

Resource or Opera-
tion

Client certificates per
account

Resources per API
Stages per API

API caching TTL

Integration timeout
Payload size

Number of iterations
in a #f oreach ...
#end loop in map-
ping templates

ARN length of a
method with authoriz-
ation

Default Limit

60

300
10

300 seconds by default and configurable between 0 and 3600 by

an API owner.

30 second for both Lambda and HTTP integrations.

10 MB
1000

1600 bytes

CanBeln-
creased

Yes

Yes
Yes

Not for the
upper
bound
(3600)

No

No

No

No

When authorization is enabled on a method, the maximum length of the method's ARN (e.g.,

arn: ans: execut e- api : {regi on-i d}: {account -i d}: {api -i d}/{stage-i d}/{net hod}/{resour ce}/ {pat h})
is 1600 bytes. The path parameter values, the size of which are determined at run time, can cause the
ARN length to exceed the limit. When this happens, the API client will receive a 414 Request URI too

| ong response.

APl Gateway Limits for Creating, Deploying and
Managing an API

The following fixed limits apply to creating, deploying, and managing an APl in AP| Gateway, using the
AWS CLI, the API Gateway console, or the APl Gateway REST API and its SDKs. These limits cannot

be increased.

Action

CreateRestApi
ImportRestApi
PutRestApi
DeleteRestApi
CreateDeployment

UpdateAccount

Default Limit naC
e B
-nl
asec
2 requests per minute (rpm) per account. o/ N
2 requests per minute per account o N
60 requests per minutes per account o'N
2 requests per minutes per account oN
3 requests per minutes per account o N
3 requests per minutes per account o|N

280

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-import/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-put/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-delete/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/deployment-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/account-update/

Amazon API Gateway Developer Guide
API Gateway Pricing

Action

GetResources
CreateResource
DeleteResource

CreateDomainName

Default Limit

150 requests per minutes per account
300 requests per minutes per account
300 requests per minutes per account

2 requests per minutes per account

APl Gateway Pricing

For API Gateway region-specific pricing information, see Amazon AP| Gateway Pricing.

Note

API caching in Amazon API Gateway is not eligible for the AWS Free Tier.

Known Issues

naC

¢ Cross-account authentication is not currently supported in APl Gateway. An API caller must be an IAM
user of the same AWS account of the APl owner.

¢ When using the APl Gateway console to test an API, you may get an "unknown endpoint errors"

response if a self-signed certificate is presented to the back end, the intermediate certificate is missing
from the certificate chain, or any other unrecognizable certificate-related exceptions thrown by the back

end.

281

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-resources/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/resource-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/resource-delete/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/domainname-create/
http://aws.amazon.com/api-gateway/pricing/

Amazon API Gateway Developer Guide

Document

History

The following table describes the important changes to the documentation since the last release of the
API Gateway Developer Guide.

¢ Latest documentation update: August 11, 2016

Change

Extending selected
APIs in API Gateway
as product offerings
for your customers by
providing one or more
usage plans.

Enabling method-level
authorization with a
user pool in Amazon
Cognito

Enabling Amazon
CloudWatch metrics
and dimensions under
the AWS/ApiGateway
namespace.

Enabling certificate
rotation for a custom
domain name

Documenting changes
for the updated
Amazon API Gateway
console.

Description

Create a usage plan in APl Gateway to enable selected API
clients to access specified API stages at agreed-upon request
rates and quotas. For more information, see Creating and Using
Usage Plans (p. 268)

You can create a user pool in Amazon Cognito and use it as
your own identity provider. You can configure the user pool as
a method-level authorizer to grant access for users who are
registered with the user pool. For more information, see Au-
thenticate API Clients with Amazon Cognito Your User

Pool (p. 212)

The API Gateway metrics are now standardized under the
CloudWatch namespace of AWS/ApiGateway. You can view
them in both the APl Gateway console and the Amazon
CloudWatch console. For more information, see Amazon API
Gateway Dimensions and Metrics (p. 263).

Certificate rotation allows you to upload and renew an expiring
certificate for a custom domain name. For more information,
see Upload and Renew an Expiring Certificate (p. 256).

Learn how to create and set up an API using the updated API
Gateway console. For more information, see Build and Test
an API Gateway API from an Example (p. 6) and Build an
API| Gateway API Step by Step (p. 14).

Date Changed

August 11,
2016

July 28, 2016

July 28, 2016

April 27, 2016

April 5, 2016

282

Amazon API Gateway Developer Guide

Change

Enabling the Import
API feature to create
a new or update an
existing API from ex-
ternal API definitions.

Exposing the $i n-
put . body variable to
access the raw pay-
load as string and the
$util . parsedson()
function to turn a
JSON string into a
JSON object in a
mapping template.

Enabling client re-
quests with method-
level cache invalida-
tion, and improving
request throttling
management.

Enabling and calling
API| Gateway API us-
ing custom authoriza-
tion

Importing and export-
ing API Gateway API
using a Swagger
definition file and ex-
tensions

Mapping request or
response body or
body's JSON fields to
request or response
parameters.

Working with Stage
Variables in Amazon
API| Gateway

How to: Enable CORS
for a Method

How to: Use Client
Side SSL Authentica-
tion

Description

With the Import API features, you can create a new API or
update an existing one by uploading an external API definition
expressed in Swagger 2.0 with the APl Gateway extensions.
For more information about the Import API, see Import an
API (p. 110).

For more information about $i nput . body and
$util . parsedson(), see Request and Response Payload-
Mapping Reference (p. 101).

Flush API stage-level cache and invalidate individual cache
entry. For more information, see Flush the API Stage Cache
in APl Gateway (p. 231) and Invalidate an APl Gateway Cache
Entry (p. 231). Improve the console experience for managing
API request throttling. For more information, see Manage API
Request Throttling (p. 227).

Create and configure an AWS Lambda function to implement
custom authorization. The function returns an 1AM policy doc-
ument that grants the Allow or Deny permissions to client re-
quests of an API Gateway API. For more information, see Use
Custom Authorizers (p. 204).

Create and update your API Gateway API using the Swagger
specification with the APl Gateway extensions. Import the
Swagger definitions using the API Gateway Importer. Export
an AP| Gateway API to a Swagger definition file using the API
Gateway console or API Gateway Export API. For more inform-
ation, see Import and Export API (p. 109).

Map method request body or its JSON fields into integration
request's path, query string, or headers. Map integration re-
sponse body or its JSON fields into request response's head-
ers. For more information, see Request and Response Para-
meter-Mapping Reference (p. 98).

Learn how to associate configuration attributes with a deploy-
ment stage of an APl in Amazon API Gateway. For more in-
formation, see Manage AP| Gateway API Deployment with
Stage Variables (p. 233).

Itis now easier to enable cross-origin resource sharing (CORS)
for methods in Amazon API Gateway. For more information,
see Enable CORS for a Resource (p. 198).

Use Amazon API Gateway to generate SSL certificates that
you can use to authenticate calls to your HTTP backend. For
more information, see Use Client-Side SSL Certificates (p. 215).

Date Changed

April 5, 2016

April 5, 2016

March 25,
2016

February 11,
2016

December 18,
2015

December 18,
2015

November 5,
2015

November 3,
2015

September 22,
2015

283

Amazon API Gateway Developer Guide

Change

Mock integration of
methods

Amazon Cognito
Identity support

Swagger integration

Mapping Template
Reference

Initial public release

Description

Learn how to mock-integrate an API with Amazon API Gate-
way (p. 69). This feature enables developers to generate API
responses from API Gateway directly without the need for a
final integration back end beforehand.

Amazon API Gateway has expanded the scope of the $con-
t ext variable so that it now returns information about Amazon
Cognito Identity when requests are signed with Amazon Cog-
nito credentials. In addition, we have added a $uti | variable
for escaping characters in JavaScript and encoding URLs and
strings. For more information, see Request and Response
Payload-Mapping Reference (p. 101).

Use the Swagger import tool on GitHub to import Swagger API
definitions into Amazon AP| Gateway. Learn more about Import
and Export API (p. 109) to create and deploy APIs and methods
using the import tool. With the Swagger importer tool you can
also update existing APlIs.

Read about the $i nput parameter and its functions in the
Request and Response Payload-Mapping Reference (p. 101).

This is the initial public release of the Amazon API Gateway
Developer Guide.

Date Changed

September 1,
2015

August 28,
2015

July 21, 2015

July 18, 2015

July 9, 2015

284

https://github.com/awslabs/aws-apigateway-swagger-importer

Amazon API Gateway Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

285

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon API Gateway
	Table of Contents
	What Is Amazon API Gateway?
	Amazon API Gateway Concepts

	Getting Started with Amazon API Gateway
	Get Ready to Use Amazon API Gateway
	Sign Up for AWS
	Create an IAM User, Group or Role in Your AWS Account
	Grant IAM Users Permissions to Access API Gateway Control and Execution Services
	Next Step

	Build and Test an API Gateway API from an Example
	Build an API Gateway API Step by Step
	Make Synchronous Calls to Lambda Functions
	Step 1: Prerequisites
	Step 2: Create an API
	Step 3: Create a Resource
	Step 4: Create Lambda Functions
	Step 5: Create and Test a GET Method
	Step 6: Create and Test a POST Method
	Step 7: Deploy the API
	Step 8: Test the API
	Step 9: Clean Up
	Next Steps
	Create Lambda Invocation and Execution Roles

	Map Request Parameters for an API Gateway API as an HTTP Proxy
	Prerequisites
	Step 1: Create Resources
	Step 2: Create GET and POST Methods
	Step 3: Set Up and Test the Methods
	Step 4: Deploy the API
	Step 5: Test the API
	Next Steps

	Use Models and Mapping Templates to Transform Response Payload
	Prerequisites
	Step 1: Create Models
	Step 2: Create Resources
	Step 3: Create GET Methods
	Step 4: Create a Lambda Function
	Step 5: Set Up and Test the Methods
	Step 6: Deploy the API
	Step 7: Test the API
	Step 8: Clean Up
	Next Steps

	Create an AWS Service Proxy for Amazon SNS
	Prerequisites
	Step 1: Create the Resource
	Step 2: Create the GET Method
	Step 3: Create the AWS Service Proxy Execution Role
	Step 4: Specify Method Settings and Test the Method
	Step 5: Deploy the API
	Step 6: Test the API
	Step 7: Clean Up

	Creating an API in Amazon API Gateway
	Create an API in API Gateway
	Create an API Using the API Gateway Console
	Create an API Using the API Gateway Control Service API
	Create an API Using the AWS SDK for API Gateway
	Create an API Using the AWS CLI

	Set up API Gateway API Method and Integration
	Before Configuring Methods
	After Setting Up Methods and Integration
	Configure How API Gateway Integrates the Method with a Back End
	Configure How an API User Calls an API Method in Amazon API Gateway
	Configure How Data Is Mapped between a Method and its Integration in Amazon API Gateway
	Configure Mock Integration for a Method in API Gateway
	Prerequisites
	Enable Mock Integration on a Method
	Example Request Templates
	Example Response Templates

	Set Up Amazon API Gateway API Request and Response Payload Mappings
	Models
	Mapping Templates
	Tasks for Models and Mapping Templates
	Create a Model in API Gateway
	Prerequisites
	Create a Model With the API Gateway Console

	View a List of Models in API Gateway
	Prerequisites
	View a List of Models with the API Gateway Console

	Delete a Model in API Gateway
	Delete a Model with the API Gateway Console

	Photos Example (API Gateway Models and Mapping Templates)
	Original Data (Photos Example)
	Input Model (Photos Example)
	Input Mapping Template (Photos Example)
	Transformed Data (Photos Example)
	Output Model (Photos Example)
	Output Mapping Template (Photos Example)

	News Article Example (API Gateway Models and Mapping Templates)
	Original Data (News Article Example)
	Input Model (News Article Example)
	Input Mapping Template (News Article Example)
	Transformed Data (News Article Example)
	Output Model (News Article Example)
	Output Mapping Template (News Article Example)

	Sales Invoice Example (API Gateway Models and Mapping Templates)
	Original Data (Sales Invoice Example)
	Input Model (Sales Invoice Example)
	Input Mapping Template (Sales Invoice Example)
	Transformed Data (Sales Invoice Example)
	Output Model (Sales Invoice Example)
	Output Mapping Template (Sales Invoice Example)

	Employee Record Example (API Gateway Models and Mapping Templates)
	Original Data (Employee Record Example)
	Input Model (Employee Record Example)
	Input Mapping Template (Employee Record Example)
	Transformed Data (Employee Record Example)
	Output Model (Employee Record Example)
	Output Mapping Template (Employee Record Example)

	Amazon API Gateway API Request and Response Parameter-Mapping Reference
	Map Data to Integration Request Parameters
	Map Data to Method Response Headers
	Transform Request and Response Bodies
	Select Mapping Templates

	API Gateway API Request and Response Payload-Mapping Template Reference
	Accessing the $context Variable
	Example
	Context Variables Template Example

	Accessing the $input Variable
	Examples
	Example JSON Mapping Template
	Example Inputs Mapping Template
	Param Mapping Template Example
	Example Request and Response

	Accessing the $stageVariables Variable
	Accessing the $util Variable
	Integration Passthrough Behaviors

	Import and Export API Gateway API with Swagger Definition Files
	Import an API into API Gateway
	Use the Import API to Create a New API
	Use the Import API to Update an Existing API
	Swagger basePath
	ignore
	prepend
	split

	Errors during Import
	Warnings during Import

	Export an API from API Gateway
	Request to Export an API
	Download API Swagger Definition in JSON
	Download API Swagger Definition in YAML
	Download API Swagger Definition with Postman Extensions in JSON
	Download API Swagger Definition with API Gateway Integration in YAML
	Export API Using the API Gateway Console

	API Gateway Extensions to Swagger
	x-amazon-apigateway-authorizer Object
	x-amazon-apigateway-authorizer Example

	x-amazon-apigateway-authtype Property
	x-amazon-apigateway-authtype Example

	x-amazon-apigateway-integration Object
	x-amazon-apigateway-integration Example

	x-amazon-apigateway-integration.requestTemplates Object
	x-amazon-apigateway-integration.requestTemplates Example

	x-amazon-apigateway-integration.requestParameters Object
	x-amazon-apigateway-integration.requestParameters Example

	x-amazon-apigateway-integration.responses Object
	x-amazon-apigateway-integration.responses Example

	x-amazon-apigateway-integration.response Object
	x-amazon-apigateway-integration.response Example

	x-amazon-apigateway-integration.responseTemplates Object
	x-amazon-apigateway-integration.responseTemplate Example

	x-amazon-apigateway-integration.responseParameters Object
	x-amazon-apigateway-integration.responseParameters Example

	Create an API as an Amazon S3 Proxy
	Create an IAM Role and Policy for the API to Access Amazon S3
	Create API Resources for Amazon S3 Features
	Expose a GET Method on an API Root as Get Service Action in Amazon S3
	Expose Methods on an API Folder Resource as Bucket Actions in Amazon S3
	Expose Methods on an API Item in a Folder as Actions on an Amazon S3 Object in a Bucket
	A Sample Amazon S3 Proxy API in Swagger with API Gateway Extensions

	Create an API Gateway API as an AWS Lambda Proxy
	Set Up an IAM Role and Policy for an API to Invoke Lambda Functions
	Create a Lambda Function in the Back End
	Create API Resources for the Lambda Function
	Create a GET Method with Query Strings to Call the Lambda Function
	Create a POST Method with a JSON Payload to Call the Lambda Function
	Create a GET Method with Path Parameters to Call the Lambda Function
	A Sample API as a Lambda Proxy in Swagger with API Gateway Extensions

	Create an API Gateway API as an Amazon Kinesis Proxy
	Create an IAM Role and Policy for the API to Access Amazon Kinesis
	Start to Create an API as an Amazon Kinesis Proxy
	List Streams in Amazon Kinesis
	Create, Describe, and Delete a Stream in Amazon Kinesis
	Get Records from and Add Records to a Stream in Amazon Kinesis
	Swagger Definitions of a Sample API as an Amazon Kinesis Proxy

	Controlling Access in API Gateway
	Set IAM Permissions to Access API Gateway
	Control Access to API Gateway with IAM Policies
	Create and Attach a Policy to an IAM User
	Statement Reference of IAM Policies for Managing API in API Gateway
	Action Format of Permissions for Managing API in API Gateway
	Resource Format of Permissions for Managing API in API Gateway

	Statement Reference of IAM Policies for Executing API in API Gateway
	Action Format of Permissions for Executing API in API Gateway
	Resource Format of Permissions for Executing API in API Gateway

	IAM Policy Examples for API Gateway APIs
	Simple Read Permissions
	Read-Only Permissions on any APIs
	Full Access Permissions for any API Gateway Resources
	Full-Access Permissions for Managing API Stages
	Block Specified Users from Deleting any API Resources

	IAM Policy Examples for API Execution Permissions

	Enable CORS for an API Gateway Resource
	Prerequisites
	Enable CORS on a Resource Using the API Gateway Console
	Enable CORS for a Resource Using the API Gateway Import API

	Use an API Key in API Gateway
	Prerequisites
	Use an API Key with the API Gateway Console

	Use Amazon API Gateway Custom Authorizers
	Amazon API Gateway Custom Authorization Overview
	Create the API Gateway Custom Authorizer Lambda Function
	Input to an Amazon API Gateway Custom Authorizer
	Output from an Amazon API Gateway Custom Authorizer
	Configure Custom Authorizer Using the API Gateway Console
	Call an API Using API Gateway Custom Authorization

	Authenticate API Clients with Amazon Cognito Your User Pool
	Create a User Pool
	Integrate an API with a User Pool
	Call an API Integrated with a User Pool

	Use Client-Side SSL Certificates for Authentication by the Back End
	Generate a Client Certificate Using the API Gateway Console
	Configure an API to Use SSL Certificates
	Test Invoke
	Configure Back End to Authenticate API

	Maintaining an API in Amazon API Gateway
	View a List of APIs in API Gateway
	Prerequisites
	View a List of APIs with the API Gateway Console

	Delete an API in API Gateway
	Prerequisites
	Delete an API with the API Gateway Console

	Delete a Resource in API Gateway
	Delete a Resource with the API Gateway Console

	View a Methods List in API Gateway
	Prerequisites
	View a Methods List with the API Gateway Console

	Delete a Method in API Gateway
	Delete a Method with the API Gateway Console

	Deploying an API in Amazon API Gateway
	Deploy an API with the Amazon API Gateway Console
	Prerequisites
	Deploy an API with the API Gateway Console
	Update deployment configuration with the API Gateway Console
	Change a Stage to Use a Different Deployment with the API Gateway Console

	Deploy an API in Stages in Amazon API Gateway
	Create a Stage in API Gateway
	Prerequisites
	Create a Stage with the API Gateway Console

	View a List of Stages in API Gateway
	Prerequisites
	View a List of Stages with the API Gateway Console

	Set Up a Stage
	Prerequisites
	Set Up an API Deployment Stage with the API Gateway Console

	Delete a Stage in API Gateway
	Delete a Stage with the API Gateway Console

	Manage API Request Throttling
	Account-Level Throttling
	Stage-Level and Method-Level Throttling

	Enable Amazon API Gateway Caching in a Stage to Enhance API Performance
	Amazon API Gateway Caching Overview
	Enable Amazon API Gateway Caching
	Override API Gateway Stage-Level Caching for Method Caching
	Use Method or Integration Parameters as Cache Keys to Index Cached Responses
	Flush the API Stage Cache in API Gateway
	Invalidate an API Gateway Cache Entry

	Manage API Gateway API Deployment with Stage Variables
	Use Cases
	Examples
	Set Stage Variables Using the Amazon API Gateway Console
	Prerequisites

	Use Amazon API Gateway Stage Variables
	Prerequisites
	Access an HTTP endpoint through an API with a stage variable
	Pass stage-specific metadata to an HTTP back end via a stage variable in a query parameter expression
	Call Lambda function through API with a stage variable
	Pass stage-specific metadata to a Lambda function via a stage variable

	Amazon API Gateway Stage Variables Reference
	Parameter Mapping Expressions
	Mapping Templates
	HTTP Integration URIs
	AWS Integration URIs
	AWS Integration URIs (Lambda Functions)
	AWS Integration Credentials

	Generate an SDK for an API in API Gateway
	Prerequisites
	Generate an SDK for an API with the API Gateway Console
	Use an API Gateway-Generated API SDK for Android
	Integrate an API Gateway-Generated iOS SDK into Your iOS Project
	Integrate an API Gateway-Generated JavaScript SDK into Your JavaScript Code

	Use a Custom Domain Name in API Gateway
	Prerequisites
	Set Up a Custom Domain Name for an API Gateway API
	Specify API Mappings for a Custom Domain Name
	Base Path Examples of API Mappings for a Custom Domain Name
	Upload and Renew an Expiring Certificate
	Call Your API with Custom Domain Names

	Calling a Deployed API in Amazon API Gateway
	Prerequisites
	Obtain an API's Invoke URL in the API Gateway Console
	Test a Method Using the API Gateway Console
	Prerequisites
	Test a Method with the API Gateway Console

	Use Postman to Test an API

	Monitoring and Troubleshooting in API Gateway
	Log API management calls to Amazon API Gateway Using AWS CloudTrail
	API Gateway Information in CloudTrail
	Understanding API Gateway Log File Entries

	Monitor API execution with Amazon CloudWatch
	Amazon API Gateway Dimensions and Metrics
	API Gateway Metrics
	Dimensions for Metrics

	View CloudWatch Metrics with the API Dashboard in API Gateway
	Prerequisites
	Examine API activities in the Dashboard

	View API Gateway Metrics in the CloudWatch Console
	Monitoring Tools in AWS
	Automated Monitoring Tools in AWS
	Manual Monitoring Tools
	Creating CloudWatch Alarms to Monitor API Gateway

	Creating and Using API Usage Plans in Amazon API Gateway
	What Is a Usage Plan?
	How to Configure a Usage Plan?
	Configure Usage Plans Using the API Gateway Console
	Create and Deploy an API for Usage Plans
	Configure an API Method to Require an API Key
	Create an API Key
	Import API Keys
	Migrate to Default Usage Plans
	Create Usage Plans
	Test a Usage Plan
	Manage Plan Usage

	Configure Usage Plans Using the API Gateway REST API
	Require an API Key on a Method
	Create or Import API Keys
	Migrate to Default Usage Plans
	Create a Usage Plan
	Manage a Usage Plan
	Test Usage Plans

	API Gateway API Key File Format

	Amazon API Gateway REST API
	Amazon API Gateway Limits and Pricing
	API Gateway Limits
	API Gateway Limits for Configuring and Running an API
	API Gateway Limits for Creating, Deploying and Managing an API

	API Gateway Pricing
	Known Issues

	Document History
	AWS Glossary

