
Amazon API Gateway
Developer Guide

Amazon API Gateway: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

Amazon API Gateway Developer Guide

Table of Contents
What Is Amazon API Gateway? ... 1

API Gateway Concepts ... 2
Getting Started ... 4

Get Ready to Use API Gateway ... 4
Sign Up for AWS ... 5
Create an IAM User, Group or Role in Your AWS Account ... 5
Grant IAM Users Permissions to Access API Gateway Control and Execution Services 5
Next Step ... 6

Learn from an Example .. 6
Build an API Step by Step ... 14
Call Lambda Functions Synchronously .. 22

Step 1: Prerequisites .. 22
Step 2: Create an API ... 22
Step 3: Create a Resource .. 22
Step 4: Create Lambda Functions ... 23
Step 5: Create and Test a GET Method .. 26
Step 6: Create and Test a POST Method .. 27
Step 7: Deploy the API .. 28
Step 8: Test the API .. 28
Step 9: Clean Up ... 29
Next Steps ... 30
Appendix: Create Lambda Invocation and Execution Roles ... 30

Map Request Parameters .. 33
Prerequisites .. 35
Step 1: Create Resources ... 35
Step 2: Create GET and POST Methods .. 36
Step 3: Set Up and Test the Methods ... 36
Step 4: Deploy the API .. 39
Step 5: Test the API .. 39
Next Steps ... 41

Transform Response Payload .. 41
Prerequisites .. 43
Step 1: Create Models .. 43
Step 2: Create Resources ... 45
Step 3: Create GET Methods ... 46
Step 4: Create a Lambda Function .. 47
Step 5: Set Up and Test the Methods ... 48
Step 6: Deploy the API .. 52
Step 7: Test the API .. 52
Step 8: Clean Up ... 54
Next Steps ... 54

Create an AWS Service Proxy ... 55
Prerequisites .. 55
Step 1: Create the Resource .. 55
Step 2: Create the GET Method ... 56
Step 3: Create the AWS Service Proxy Execution Role ... 56
Step 4: Specify Method Settings and Test the Method .. 58
Step 5: Deploy the API .. 58
Step 6: Test the API .. 59
Step 7: Clean Up ... 59

Creating an API ... 61
Create an API in API Gateway ... 61

Create an API Using the API Gateway Console ... 61
Create an API Using the API Gateway Control Service API ... 62
Create an API Using the AWS SDK for API Gateway .. 62

iii

Amazon API Gateway Developer Guide

Create an API Using the AWS CLI .. 62
Set up Method and Integration ... 62

Before Configuring Methods .. 62
After Setting Up Methods and Integration ... 62
Configure How a Method Is Integrated with a Back End .. 63
Configure How a User Calls an API Method ... 65
Configure How Data Is Mapped between Method and Integration ... 67
Configure Mock Integration for a Method .. 69

Set Up Request and Response Payload Mappings .. 72
Models ... 73
Mapping Templates .. 76
Tasks for Models and Mapping Templates .. 79
Create a Model ... 79
View a List of Models ... 80
Delete a Model .. 80
Photos Example .. 81
News Article Example ... 84
Sales Invoice Example .. 88
Employee Record Example ... 93

Request and Response Parameter-Mapping Reference .. 98
Map Data to Integration Request Parameters .. 98
Map Data to Method Response Headers .. 100
Transform Request and Response Bodies .. 101

Request and Response Payload-Mapping Reference ... 101
Accessing the $context Variable .. 102
Accessing the $input Variable ... 103
Accessing the $stageVariables Variable ... 106
Accessing the $util Variable ... 107
Integration Passthrough Behaviors .. 108

Import and Export API .. 109
Import an API .. 110
Export an API .. 113
API Gateway Extensions to Swagger ... 115

Create an API as an Amazon S3 Proxy .. 125
Create an IAM Role and Policy for the API to Access Amazon S3 126
Create API Resources for Amazon S3 Features .. 128
Expose a GET Method on an API Root as Get Service Action in Amazon S3 128
Expose Methods on an API Folder Resource as Bucket Actions in Amazon S3 131
Expose Methods on an API Item in a Folder as Actions on an Amazon S3 Object in a
Bucket ... 133
Swagger Definitions of a Sample API as an Amazon S3 Proxy ... 134

Create an API as a Lambda Proxy .. 143
Set Up an IAM Role and Policy for an API to Invoke Lambda Functions 144
Create a Lambda Function in the Back End .. 145
Create API Resources for the Lambda Function .. 146
Create a GET Method with Query Strings to Call the Lambda Function 147
Create a POST Method with a JSON Payload to Call the Lambda Function 149
Create a GET Method with Path Parameters to Call the Lambda Function 151
Swagger Definitions of a Sample API as Lambda Proxy .. 155

Create an API as an Amazon Kinesis Proxy .. 158
Create an IAM Role and Policy for the API to Access Amazon Kinesis 159
Start to Create an API as an Amazon Kinesis Proxy ... 161
List Streams in Amazon Kinesis .. 161
Create, Describe, and Delete a Stream in Amazon Kinesis .. 163
Get Records from and Add Records to a Stream in Amazon Kinesis 170
Swagger Definitions of an API as a Kinesis Proxy .. 179

Controlling Access ... 188
Set IAM Permissions .. 188

iv

Amazon API Gateway Developer Guide

Control Access to API Gateway with IAM Policies .. 188
Create and Attach a Policy to an IAM User ... 190
Statement Reference of IAM Policies for Managing API in API Gateway 191
Statement Reference of IAM Policies for Executing API in API Gateway 192
IAM Policy Examples for API Gateway APIs .. 193
IAM Policy Examples for API Execution Permissions .. 198

Enable CORS for a Resource ... 198
Prerequisites ... 199
Enable CORS Using the Console .. 199
Enable CORS Using Swagger Definition .. 201

Use an API Key ... 203
Prerequisites ... 203
Use an API Key with the API Gateway Console ... 203

Use Custom Authorizers .. 204
Custom authorization Overview .. 204
Create the Custom Authorizer Lambda Function .. 205
Input to a Custom Authorizer .. 206
Output from a Custom Authorizer .. 207
Configure Custom Authorizer ... 208
Call an API with Custom authorization ... 210

Authenticate API Clients with Amazon Cognito Your User Pool ... 212
Create a User Pool ... 212
Integrate an API with a User Pool .. 213
Call an API Integrated with a User Pool .. 214

Use Client-Side SSL Certificates .. 215
Generate a Client Certificate Using the API Gateway Console ... 215
Configure an API to Use SSL Certificates ... 216
Test Invoke ... 217
Configure Back End to Authenticate API .. 217

Maintaining an API ... 218
View a List of APIs ... 218

Prerequisites ... 218
View a List of APIs with the API Gateway Console ... 218

Delete an API .. 218
Prerequisites ... 219
Delete an API with the API Gateway Console .. 219

Delete a Resource ... 219
Delete a Resource with the API Gateway Console ... 219

View a Methods List ... 219
Prerequisites ... 219
View a Methods List with the API Gateway Console ... 220

Delete a Method .. 220
Delete a Method with the API Gateway Console .. 220

Deploying an API ... 221
Deploy an API with the API Gateway Console ... 221

Prerequisites ... 221
Deploy an API with the API Gateway Console ... 221
Update deployment configuration with the API Gateway Console .. 222
Change a Stage to Use a Different Deployment with the API Gateway Console 222

Deploy an API in Stages .. 223
Create a Stage .. 223
View a List of Stages .. 223
Set Up a Stage .. 224
Delete a Stage .. 227

Manage API Request Throttling .. 227
Account-Level Throttling .. 227
Stage-Level and Method-Level Throttling .. 227

Enable API Caching ... 227

v

Amazon API Gateway Developer Guide

API Caching Overview .. 228
Enable API Caching ... 228
Override Stage Caching for Method Caching .. 229
Use Method/Integration Parameters as Cache Keys ... 230
Flush the API Stage Cache in API Gateway .. 231
Invalidate an API Gateway Cache Entry ... 231

Manage API Deployment with Stage Variables .. 233
Use Cases .. 234
Examples ... 234
Set Stage Variables .. 235
Use Stage Variables .. 238
Stage Variables Reference ... 244

Generate an SDK for an API .. 245
Prerequisites ... 246
Generate an SDK for an API with the API Gateway Console .. 246
Use an API Gateway-Generated API SDK for Android .. 247
Integrate an API Gateway-Generated iOS SDK into Your iOS Project 248
Integrate an API Gateway-Generated JavaScript SDK into Your JavaScript Code 250

Use a Custom Domain Name ... 251
Prerequisites ... 252
Set Up a Custom Domain Name for an API Gateway API .. 253
Specify API Mappings for a Custom Domain Name .. 255
Base Path Examples of API Mappings for a Custom Domain Name 256
Upload and Renew an Expiring Certificate .. 256
Call Your API with Custom Domain Names ... 257

Calling a Deployed API ... 258
Prerequisites ... 258
Obtain an API's Invoke URL in the API Gateway Console .. 259
Test a Method Using the Console .. 259

Prerequisites ... 259
Test a Method with the API Gateway Console ... 259

Use Postman to Test an API ... 260
Monitoring and Troubleshooting .. 261

Log API Management Calls with CloudTrail ... 261
API Gateway Information in CloudTrail ... 262
Understanding API Gateway Log File Entries .. 262

Monitor API execution with Amazon CloudWatch ... 263
Amazon API Gateway Dimensions and Metrics ... 263
View Metrics with the API Dashboard .. 265
View Metrics in the CloudWatch Console ... 266
Monitoring Tools in AWS .. 266

Creating and Using Usage Plans .. 268
What Is a Usage Plan? ... 268
How to Configure a Usage Plan? .. 268
Configure Usage Plans Using the API Gateway Console ... 269

Create and Deploy an API for Usage Plans ... 269
Configure an API Method to Require an API Key ... 269
Create an API Key ... 270
Import API Keys ... 270
Migrate to Default Usage Plans .. 271
Create Usage Plans ... 271
Test a Usage Plan .. 273
Manage Plan Usage ... 273

Configure Usage Plans Using the API Gateway REST API .. 274
Require an API Key on a Method .. 274
Create or Import API Keys ... 275
Migrate to Default Usage Plans .. 275
Create a Usage Plan .. 275

vi

Amazon API Gateway Developer Guide

Manage a Usage Plan .. 276
Test Usage Plans ... 276

API Gateway API Key File Format ... 277
API Gateway REST API .. 278
Limits, Pricing and Known Issues .. 279

API Gateway Limits .. 279
API Gateway Limits for Configuring and Running an API ... 279
API Gateway Limits for Creating, Deploying and Managing an API 280

API Gateway Pricing ... 281
Known Issues .. 281

Document History .. 282
AWS Glossary ... 285

vii

Amazon API Gateway Developer Guide

What Is Amazon API Gateway?

Amazon API Gateway consists of two services: the API Gateway control service and API Gateway
execution service.The control service lets you create a RESTful API to expose selected back-end features.
The back end can be another AWS service, such as AWS Lambda or Amazon DynamoDB, or it can be
an existing web application.The execution service lets an app call the API to access the exposed back-end
features. The app can interact with the API using standard HTTP protocols or using a platform- or
language-specific SDK generated by the API creator.

The API you create in API Gateway consists of a set of resources and methods. A resource is a logical
entity that can be accessed through a resource path using the API. A resource can have one or more
operations that are defined by appropriate HTTP verbs such as GET, POST, and DELETE. A combination
of a resource path and an operation identify a method in the API. Each method corresponds to a REST
API request submitted by the user of your API and the corresponding response returned to the user. API
Gateway integrates the method with a targeted back end by mapping the method request to an integration
request acceptable by the back end and then mapping the integration response from the back end to the
method response returned to the user. As an API developer, you can configure how methods are mapped
to integrations and vice versa by stipulating what parameters to use and specifying mapping templates
to transform payloads of given data models.

You can create an API by using the API Gateway management console, described in Getting
Started (p. 4), or by using the API Gateway API Gateway REST API (p. 278). In addition, you can integrate
API creation with AWS CloudFormation templates or API Gateway Extensions to Swagger (p. 115). For
a list of regions where API Gateway is available, as well as the associated control service endpoints, see
Regions and Endpoints.

API Gateway helps developers deliver robust, secure, and scalable mobile and web application back
ends. API Gateway allows developers to securely connect mobile and web applications to business logic
hosted on AWS Lambda, APIs hosted on Amazon EC2, or other publicly addressable web services hosted
inside or outside of AWS. With API Gateway, developers can create and operate APIs for their back-end
services without developing and maintaining infrastructure to handle authorization and access control,
traffic management, monitoring and analytics, version management, and software development kit (SDK)
generation.

API Gateway is designed for web and mobile developers who want to provide secure, reliable access to
back-end APIs for access from mobile apps, web apps, and server apps that are built internally or by
third-party ecosystem partners. The business logic behind the APIs can either be provided by a publicly
accessible endpoint that API Gateway proxies call, or it can be entirely run as a Lambda function.

To better understand the terminology used in this documentation, you may find it useful to peruse the
API Gateway Concepts (p. 2) section.

1

Amazon API Gateway Developer Guide

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-reference.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region

Amazon API Gateway Concepts
API Gateway An AWS service that 1) supports creating, deploying and managing

a RESTful application programming interface (API) to expose back-end
HTTP endpoints, AWS Lambda function, or other AWS services; and
2) invoking exposed API methods through the front-end HTTP
endpoints.

API Gateway API A collection of resources and methods that are integrated with
back-end HTTP endpoints, Lambda functions or other AWS services
and can be deployed in one or more stages. API methods are invoked
through front-end HTTP endpoints that can be associated with a
registered custom domain names. Permissions to invoke a method
can be granted using IAM roles and policies or API Gateway custom
authorizers. An API can present a certificate to be authenticated by
the back end. Typically, API resources are organized in a resource
tree according to the application logic. Each API resource can expose
one or more API methods that must have unique HTTP verbs
supported by API Gateway.

API developer or API owner An AWS account that owns an API Gateway deployment (for example,
a service provider who also supports programmatic access.)

App developer or client
developer

An app creator who may or may not have an AWS account and
interacts with the API deployed by the API developer. An app
developer can be represented by an API Key.

App user, end user or client
endpoint

An entity that uses the application built by an app developer that
interacts with APIs in Amazon API Gateway. An app user can be
represented by an Amazon Cognito identity or a bearer token.

API Key An alphanumeric string, which can be generated by API Gateway on
behalf of an API owner or imported from an external source such as
a CSV file, is used to identify an app developer of the API. An API
owner can use API keys to permit or deny access of given APIs based
on the apps in use.

API Deployment and stage An API deployment is a point-in-time snapshot of the API Gateway
API resources and methods. For a deployment to be accessible for
invocation by a client, it must be associated with one or more stages.
A stage is a logical reference to a life-cycle status of your API (e.g.,
'dev', 'prod', 'beta', 'v2'). The identifier of an API stage consists of an
API ID and stage name.

Method request The public interface of an API method in API Gateway that defines
the parameters and body that an app developer must send in the
requests to access the back end through the API.

Integration request An API Gateway internal interface that defines how API Gateway
maps the parameters and body of a method request into the formats
required by the back end.

Integration response An API Gateway internal interface that defines how API Gateway
maps data. The integration response includes the status codes,
headers, and payload that are received from the back end into the
formats defined for an app developer.

2

Amazon API Gateway Developer Guide
API Gateway Concepts

Method response The public interface of an API that defines the status codes, headers,
and body models that an app developer should expect from API
Gateway.

Mapping template Scripts, expressed in Velocity Template Language (VTL), to transform
a request body from the front-end data format to the back-end data
format or to transform a response body from the back-end data format
to the front-end data format. Mapping templates are specified in the
integration request or integration response and they can reference
data made available at run time in the forms of context and stage
variables. An identity transformation is referred to as pass-through in
which a payload is passed as-is from the client to the back end for a
request and from the back end to the client for a response.

Model Data schema specifying the data structure of a request or response
payload. It is required for generating strongly typed SDK of an API,
used for validating payload, and convenient for generating a sample
mapping template to initiate creation of a production mapping template.
Although useful, a model is not required for creating a mapping
template.

Usage plan A usage plan provides selected API clients with access to one or more
deployed APIs with configurable throttling and quota limits enforced
on individual client API keys.

3

Amazon API Gateway Developer Guide
API Gateway Concepts

http://velocity.apache.org/engine/devel/vtl-reference.html

Getting Started with Amazon API
Gateway

The following walkthroughs include hands-on exercises, using the API Gateway console, to help you
learn about API Gateway.

Topics

• Get Ready to Use Amazon API Gateway (p. 4)

• Build and Test an API Gateway API from an Example (p. 6)

• Build an API Gateway API Step by Step (p. 14)

• Make Synchronous Calls to Lambda Functions (p. 22)

• Map Request Parameters for an API Gateway API as an HTTP Proxy (p. 33)

• Use Models and Mapping Templates to Transform Response Payload (p. 41)

• Create an AWS Service Proxy for Amazon SNS (p. 55)

Get Ready to Use Amazon API Gateway
Before using API Gateway for the first time, you must have an AWS account set up. To create, configure
and deploy an API in API Gateway, you must have appropriate IAM policy provisioned with permissible
access rights to the API Gateway control service. To permit your API clients to invoke your API in API
Gateway, you must set up the right IAM policy to allow the clients to call the API Gateway execution
service. To allow API Gateway to invoke an AWS service in the back end, API Gateway must have
permissions to assume the roles required to call the back-end AWS service. When an API Gateway API
is set up to use AWS IAM roles and policies to control client access, the client must sign API Gateway
API requests with Signature Version 4.

Understanding of these topics are important to use API Gateway and to follow the tutorials and instructions
presented here. This section provides brief discussions of or quick references to these topics.

Topics

• Sign Up for AWS (p. 5)

• Create an IAM User, Group or Role in Your AWS Account (p. 5)

• Grant IAM Users Permissions to Access API Gateway Control and Execution Services (p. 5)

• Next Step (p. 6)

4

Amazon API Gateway Developer Guide
Get Ready to Use API Gateway

http://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

Sign Up for AWS
Go to http://aws.amazon.com/, choose Create an AWS Account, and follow the instructions therein.

Create an IAM User, Group or Role in Your AWS
Account
For better security practices, you should refrain from using your AWS root account to access API Gateway.
Instead, create a new AWS Identity and Access Management (IAM) user or use an existing one in your
AWS account, and then access API Gateway with that IAM user credentials.

To manage access for a user, you can create an IAM user, grant the user API Gateway access permissions.
To create a new IAM user, see Creating an IAM User.

To manage access for a group of users, you can create an IAM group, grant the group API Gateway
access permissions and then add one or more IAM users to the group. To create an IAM group, see
Creating IAM Groups.

To delegate access to specific users, apps or service, you can create an IAM role, add the specified users
or groups to the role, and grant the users or groups API Gateway access permissions. To create an IAM
role, see Creating IAM Roles.

When setting up your API, you need to specify the ARN of an IAM role to control access the API's methods.
Make sure that this is ready when creating an API.

Grant IAM Users Permissions to Access API
Gateway Control and Execution Services
In AWS, access permissions are stated as policies. A policy created by AWS is a managed policy and
one created by a user is an inline policy.

For the API Gateway control service, the managed policy of AmazonAPIGatewayAdministrator
(arn:aws:iam::aws:policy/AmazonAPIGatewayAdministrator) grants the full access to create,
configure and deploy an API in API Gateway:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:*"
],
 "Resource": "arn:aws:apigateway:*::/*"
 }
]
}

To grant the stated permissions to a user, attach the policy to the user, a group containing the user. To
attach a policy, see Attaching Managed Policies.

Attaching the preceding policy to an IAM user provides the user with access to all API Gateway control
service actions and resources associated with the AWS account. To learn how to restrict IAM users to a
limited set of API Gateway control service actions and resources, see Set IAM Permissions (p. 188).

5

Amazon API Gateway Developer Guide
Sign Up for AWS

http://aws.amazon.com/
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html#Using_CreateUser_console
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console

For the API Gateway execution service, the managed policy of AmazonAPIGatewayInvokeFullAccess
(arn:aws:iam::aws:policy/AmazonAPIGatewayInvokeFullAccess) provides full access to
invoke an API in API Gateway:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": "arn:aws:execute-api:*:*:*"
 }
]
}

Attaching the preceding policy to an IAM user provides the user with access to all API Gateway execution
service actions and resources associated with the AWS account. To learn how to restrict IAM users to a
limited set of API Gateway execution service actions and resources, see Set IAM Permissions (p. 188).

To grant the state permissions to a user, attach the policy to the user, a group containing the user. To
attach a policy, see Attaching Managed Policies.

In this documentation, we will use managed policies, whenever possible.To create and use inline policies,
see Working with Inline Policies.

Note
To complete the steps above, you must have permission to create the IAM policy and attach it
to the desired IAM user.

Next Step
You are now ready to start using API Gateway. See Build and Test an API Gateway API from an
Example (p. 6).

Build and Test an API Gateway API from an
Example

The Amazon API Gateway console now provides an option for you to create an API Gateway API by
example, with helpful hints provided along the way. If you are new to API Gateway, you may find it useful
as a learning tool. The following steps walk you through using this create-by-example option to create
and test the example API.

1. Do one of the following:

a. For the first API in your account, choose Get Started from the API Gateway console welcome
page:

6

Amazon API Gateway Developer Guide
Next Step

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html

If prompted with a modal dialog box containing hints at a stage of the process, choose OK to
close the modal dialog and continue.

b. For your next API, choose Create API from the API Gateway APIs home page:

2. Under Create new API, select Examples API and then choose Import to create the example API.
For your first API, the API Gateway console will start with this option as default.

7

Amazon API Gateway Developer Guide
Learn from an Example

You can scroll down the Swagger definition for details of this example API before choosing Import.

3. The resulting display shows the newly created API:

The API Gateway navigation pane on the left shows your available APIs, any API keys, custom
domain names and client certificates that you created for your APIs, as well as the settings for logging
your APIs' performance metrics. API-specific resources, deployment, custom authorizers and
payload-mapping data models are organized under individual APIs.

The Resources pane in the middle shows the structure of the selected API as a tree of nodes. API
methods defined on each resource are edges of the tree. When a resource is selected, all of its
methods are listed in the Methods pane on the right. Displayed under each method is a brief summary
of the method, including its endpoint URL, authorization type, and API Key requirement.

4. To view the details of a method, to modify its set-up, or to test the method invocation, choose the
method name from either the method list or the resource tree.

8

Amazon API Gateway Developer Guide
Learn from an Example

The resulting Method Execution pane for the chosen method presents a logical view of the method's
structure and behaviors: a client accesses a back-end service by interacting with the API through
Method Request. API Gateway translates the client request, if necessary, into the form acceptable
to the back end before forwarding the request to the back end. The transformed request is known
as the integration request and is depicted by Integration Request in the display. Similarly, the
response from the back end goes through Integration Response and then Method Response
before being received by the client. Again, if necessary, API Gateway maps the response from the
form shaped in the back end to a form expected by the client.

For the POST method on this API's root (/) resource, the method's integration request shows that
the method is integrated with the endpoint of
http://petstore-demo-endpoint.execute-api.com/petstore/pets in the back end.The
method request payload will be passed through to the integration request without modification. The
GET / method request uses the MOCK integration type and is not tied to any endpoint in the back
end.When the method is called, the API Gateway simply accepts the request and immediately returns
a response, by way of from Integration Response to Method Response.You can use the mock
integration to test an API without requiring a back-end endpoint.You can also use it to serve a local
response. In fact, the example API uses it to return a local HTML page as the home page of the API.
It uses a mapping template to generate the home page in Integration Response.

As an API developer, you control the behaviors of your API's front-end interactions by configuring
the method request and a method response.You control the behaviors of your API's back-end
interactions by setting up the integration request and integration response.They involve data mappings
between a method and its corresponding integration. We will cover the method setup in Build an API
Gateway API Step by Step (p. 14). For now, we focus on testing the API to provide an end-to-end
user experience.

5. Choose Test shown on Client (as shown in the previous image) to start testing. Enter the following
{"type": "dog","price": 249.99} payload into the Request Body before choosing the Test
button.

9

Amazon API Gateway Developer Guide
Learn from an Example

The input specifies the attributes of the pet that we wish to add to the list of pets on the PetStore
website.

6. The results display as follows:

10

Amazon API Gateway Developer Guide
Learn from an Example

The Logs entry of the output shows the state changes from the method request to the integration
request and from the integration response to the method response. This can be useful for
troubleshooting any mapping errors that cause the request to fail. In this example, no mapping is
applied: the method request is identical to the integration request and the integration response is the
same as the method response.

To test the API using a client other than the API Gateway test-invoke-request feature, you must first
deploy the API to a stage.

7. To deploy the sample API, select the PetStore API and the root / resource, and then choose Deploy
API from the Actions menu.

11

Amazon API Gateway Developer Guide
Learn from an Example

In Deploy API, for Deployment stage, choose [New Stage] because this is the first deployment of
the API. Type a name (e.g., test) in Stage name and, optionally, type descriptions in Stage
description and Deployment description. Choose Deploy.

In the resulting Stage Editor pane, Invoke URL displays the URL to invoke the API's GET / method
request.

12

Amazon API Gateway Developer Guide
Learn from an Example

8. On Stage Editor, follow the Invoke URL link to submit the GET / method request in a browser. The
result, generated from the mapping template in the integration response, is shown as follows:

9. In the Stages navigation pane, expand the test stage, select GET on /pets/{petId}, and then
copy the Invoke URL value of
https://api-id.execute-api.region.amazonaws.com/test/pets/{petId}. {petId}
stands for a path variable.

Paste the Invoke URL value (obtained in the previous step) into the address bar of a browser,
replacing {petId} by, for example, 1, and press Enter to submit the request. A 200 OK response
should return with the following JSON payload:

{
 "id": 1,
 "type": "dog",
 "price": 249.99
}

13

Amazon API Gateway Developer Guide
Learn from an Example

Invoking the API method as shown is possible because its Authorization type is set to NONE. If the
AWS_IAM authorization were used, you would sign the request using the Signature Version 4 protocols.
For an example of such a request, see Build an API Gateway API Step by Step (p. 14).

Build an API Gateway API Step by Step
You can create an API in the Amazon API Gateway console from the ground up. In essence, you use
the console as an API design studio to scope the API features, to experiment with its behaviors, to build
the API, and to deploy your API in stages.

This section walks you through the steps to create resources, expose methods on a resource, configure
a method to achieve the desired API behaviors, and to test and deploy the API.

1. From Create new API, select New API, type a name in API Name, optionally add a description in
Description, and then choose Create API.

As a result, an empty API is created. The Resources tree shows the root resource (/) without any
methods. In this exercise, we will build the API as an HTTP proxy of the PetStore demo website
(http://petstore-demo-endpoint.execute-api.come.) For illustration purposes, we will create a /pets
resource as a child of the root and expose a GET method on this resource for a client to retrieve a
list of available Pets items from the PetStore website.

2. To create the /pets resource, select the root, choose Actions and then choose Create Resource.

Type Pets in Resource Name, leave the Resource Path value as given, and choose Create
Resource.

14

Amazon API Gateway Developer Guide
Build an API Step by Step

3. To expose a GET method on the /pets resource, choose Actions and then Create Method.

Choose GET from the list under the /pets resource node and choose the checkmark icon to finish
creating the method.

Note
Other options for an API method include:

• POST, primarily used to create child resources.

• PUT, primarily used to update existing resources (and, although not recommended, can
be used to create child resources).

• DELETE, used to delete resources.

• PATCH, used to update resources.

15

Amazon API Gateway Developer Guide
Build an API Step by Step

• HEAD, primarily used in testing scenarios. It is the same as GET but does not return the
resource representation.

• OPTIONS, which can be used by callers to get information about available communication
options for the target service.

The method created is not yet integrated with the back end. The next step sets this up.

4. In the method's Setup pane, select HTTP Proxy for Integration type, select GET from the HTTP
method drop-down list, type
http://petstore-demo-endpoint.execute-api.com/petstore/pets as the Endpoint URL
value, and then choose Save.

Note
For the integration request's HTTP method, you must choose one supported by the back
end. For HTTP Proxy or Mock integration, it makes sense that the method request
and the integration request use the same HTTP verb. For other integration types the method
request will likely use an HTTP verb different from the integration request. For example, to
call a Lambda function, the integration request must use POST to invoke the function, whereas
the method request may use any HTTP verb depending on the logic of the Lambda function.

When the method setup finishes, you are presented with the Method Execution pane, where you
can further configure the method request to add query string or custom header parameters.You can
also update the integration request to map input data from the method request to the format required
by the back end.

The PetStore website allows you to retrieve a list of Pet items by the pet type (e.g., "Dog" or "Cat")
on a given page. It uses the type and page query string parameters to accept such input. As such,
we must add the query string parameters to the method request and map them into the corresponding
query strings of the integration request.

5. In the GET method's Method Execution pane, choose Method Request, select AWS_IAM for
Authorization, expand the URL Query String Parameters section, and choose Add query string
to create two query string parameters named type and page. Choose the checkmark icon to save
the newly added query string parameters.

16

Amazon API Gateway Developer Guide
Build an API Step by Step

The client can now supply a pet type and a page number as query string parameters when submitting
a request. These input parameters must be mapped into the integration's query string parameters
to forward the input values to our PetStore website in the back end. Because the method uses
AWS_IAM, you must sign the request to invoke the method.

6. From the method's Integration Request page, expand the URL Query String Parameters section.
By default, the method request query string parameters are mapped to the like-named integration
request query string parameters. This default mapping works for our demo API. We will leave them
as given. To map a different method request parameter to the corresponding integration request
parameter, choose the pencil icon for the parameter to edit the mapping expression, shown in the
Mapped from column. To map a method request parameter to a different integration request
parameter, first choose the delete icon to remove the existing integration request parameter, choose
Add query string to specify a new name and the desired method request parameter mapping
expression.

17

Amazon API Gateway Developer Guide
Build an API Step by Step

This completes building the simple demo API. It's time to test the API.

7. To test the API using the API Gateway console, choose Test from the GET-on-Pets method's Method
Execution pane. In the Method Test pane, enter Dog and 2 for the type and page query strings,
respectively, and then choose Test.

18

Amazon API Gateway Developer Guide
Build an API Step by Step

The result is shown as follows. (You may need to scroll down to see the test result.)

19

Amazon API Gateway Developer Guide
Build an API Step by Step

Now that the test is successful, we can deploy the API to make it publicly available.

8. To deploy the API, select the API and then choose Deploy API from the Actions drop-down menu.

In the Deploy API dialog, choose a stage (or [New Stage] for the API's first deployment); enter a
name (e.g., "test", "prod", "dev", etc.) in the Stage name input field; optionally, provide a description
in Stage description and/or Deployment description; and then choose Deploy.

20

Amazon API Gateway Developer Guide
Build an API Step by Step

Once deployed, you can obtain the invocation URLs (Invoke URL) of the API's endpoints. For
example, the GET on Pets method's invocation URL is as follows:

To invoke this API method in a client (e.g., a Postman browser), append the query string parameters
to the stage-specific method invocation URL (as shown in the previous image) to create the complete
method request URL:

https://api-id.execute-api.region.amazonaws.com/test/pets?type=Dog&page=2

Specify this URL in the address bar of the browser. Choose GET as the HTTP verb. Select AWS
Signature for the Authorization type and then specify the required properties (as shown), following
the Signature Version 4 protocols. Finally, send the request.

21

Amazon API Gateway Developer Guide
Build an API Step by Step

https://www.getpostman.com/
http://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

If you use an SDK to create a client, you can call the methods exposed by the SDK to sign the
request. For implementation details, see the AWS SDK of your choosing.

Note
When changes are made to your API, you must redeploy the API to make the new or updated
features available before invoking the request URL again.

Make Synchronous Calls to Lambda Functions
AWS Lambda provides an easy way to build back ends without managing servers. API Gateway and
Lambda together can be powerful to create and deploy serverless Web applications. In this walkthrough,
you learn how to create Lambda functions and build an API Gateway API to enable a Web client to call
the Lambda functions synchronously. For more information about Lambda, see the AWS Lambda Developer
Guide. For information about asynchronous invocation of Lambda functions, see Create an API as a
Lambda Proxy (p. 143).

Topics

• Step 1: Prerequisites (p. 22)

• Step 2: Create an API (p. 22)

• Step 3: Create a Resource (p. 22)

• Step 4: Create Lambda Functions (p. 23)

• Step 5: Create and Test a GET Method (p. 26)

• Step 6: Create and Test a POST Method (p. 27)

• Step 7: Deploy the API (p. 28)

• Step 8: Test the API (p. 28)

• Step 9: Clean Up (p. 29)

• Next Steps (p. 30)

• Create Lambda Invocation and Execution Roles (p. 30)

Step 1: Prerequisites
You must grant API Gateway access permission to the IAM user who will perform the tasks discussed
here. The IAM user must have full access to work with Lambda. For this, you can use or customize the
managed policy of AWSLambdaFullAccess (arn:aws:iam::aws:policy/AWSLambdaFullAccess)
and attach it to the IAM user. For more information, see Get Ready to Use API Gateway (p. 4). The IAM
user must also be allowed to create policies and roles in IAM. For this you can use or customize the
managed policy of IAMFullAccess (arn:aws:iam::aws:policy/IAMFullAccess and attach it to the
user.

Step 2: Create an API
In this step, you will create a new API named MyDemoAPI. To create the new API, follow the steps in
Build an API Gateway API Step by Step (p. 14).

Step 3: Create a Resource
In this step, you will create a new resource named MyDemoResource. To create this resource, follow the
steps in Build an API Gateway API Step by Step (p. 14).

22

Amazon API Gateway Developer Guide
Call Lambda Functions Synchronously

https://aws.amazon.com/tools/
http://docs.aws.amazon.com/lambda/latest/dg/
http://docs.aws.amazon.com/lambda/latest/dg/

Step 4: Create Lambda Functions
Note
Creating Lambda functions may result in charges to your AWS account.

In this step, you will create two new Lambda functions. The first Lambda function, GetHelloWorld, will
log the call to Amazon CloudWatch and return the JSON object {"Hello": "World"}. For more
information about JSON, see Introducing JSON.

The second Lambda function, GetHelloWithName, will take an input ("name"), log the call to CloudWatch,
and return the JSON object {"Hello": user-supplied-input-value}. If no input value is provided,
the value will be "No-Name".

You will use the Lambda console to create the Lambda functions and set up the required execution
role/policy.You will then use the API Gateway console to create an API to integrate API methods with
the Lambda functions; the API Gateway console will set up the required Lambda invocation role/policy.
If you set up the API without using the API Gateway console, such as when importing an API from Swagger,
you must explicitly create, if necessary, and set up an invocation role/policy for API Gateway to invoke
the Lambda functions. For more information on how to set up Lambda invocation and execution roles,
see Create Lambda Invocation and Execution Roles (p. 30). For more information about Lambda see
AWS Lambda Developer Guide.

To create the GetHelloWorld Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Do one of the following:

• If the welcome page appears, choose Get Started Now.

• If the Lambda: Function list page appears, choose Create a Lambda function.

3. From Select blueprint, select the hello-world blueprint for nodejs.You may need to type Hello
as the search filter to bring the blueprint in focus.

4. For Name, type GetHelloWorld.

5. For Description, type Returns {"Hello":"World"}.

6. For Runtime, choose Node.js or leave as-is.

7. Under Lambda function code, replace the default code statements in the inline code editor with
the following:

'use strict';
console.log('Loading event');

exports.handler = function(event, context) {
 console.log('"Hello":"World"');
 context.done(null, {"Hello":"World"}); // SUCCESS with message
};

Tip
The preceding code is written in Node.js. The console.log method writes information to
an Amazon CloudWatch Log.The event parameter contains the event's data.The context
parameter contains callback context. Lambda uses context.done to perform follow-up
actions. For more information about how to write Lambda function code, see the
"Programming Model" section in AWS Lambda: How it Works and the sample walkthroughs
in the AWS Lambda Developer Guide.

23

Amazon API Gateway Developer Guide
Step 4: Create Lambda Functions

http://json.org
https://github.com/awslabs/api-gateway-secure-pet-store/blob/master/src/main/resources/swagger.yaml#L39
http://alpha-docs-aws.amazon.com/lambda/latest/dg/welcome.html
https://console.aws.amazon.com/lambda/
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html

8. Under Lambda function handler and role, leave the default of index.handler for Handler.

9. For Role, choose * Basic execution role under Create new role.

a. Leave the default selection of lambda_basic_execution for IAM Role.

b. Leave the default selection of Create a new Role Policy for Policy Name.

c. Choose Allow.

10. For Advanced settings leave the default setting as is.

11. Choose Next

12. Choose Create function.

13. For the newly created GetHelloWorld function, note the AWS region where you created this function.
You will need it later.

14. To test the newly created function, as a good practice, choose Actions and then select Configure
test event.

15. For Input test event, replace any default code statements with the following, and then choose Save
and test.

{

}

Tip
This function does not use any input. Therefore, we provide an empty JSON object as the
input.

16. Choose Test to invoke the function. The Execution result section shows {"Hello": "World"}.
The output is also written to CloudWatch Logs.

17. Go to the Functions list to create the next Lambda function.

In addition to the Lambda function, an IAM role (lambda_basic_execution) is also created as the
result of this procedure.You can view this in the IAM console. Attached to this IAM role is the following
inline policy that grants users of your AWS account permission to call the CloudWatch CreateLogGroup,
CreateLogStreams, and PutLogEvents actions on any of the CloudWatch resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:*"
 }
]
}

A trusted entity of this IAM role is lambda.amazonaws.com, which has the following trust relationship:

24

Amazon API Gateway Developer Guide
Step 4: Create Lambda Functions

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

The combination of this trust relationship and the inline policy makes it possible for the user to invoke the
Lambda function and for Lambda to call the supported CloudWatch actions on the user's behalf.

To create the GetHelloWithName Lambda function

1. Choose Create a Lambda function.

2. From Select blueprint, select the hello-world blueprint for nodejs.

3. Type GetHelloWithName for Name.

4. For Description, type Returns {"Hello":", a user-provided string, and "}.

5. For Runtime, choose Node.js.

6. In the code editor under Lambda function code replace the default code statements with the
following:

'use strict';
console.log('Loading event');

exports.handler = function(event, context) {
 var name = (event.name === undefined ? 'No-Name' : event.name);
 console.log('"Hello":"' + name + '"');
 context.done(null, {"Hello":name}); // SUCCESS with message
};

7. Under Lambda function handler and role, leave the default of index.handler for Handler.

8. For Role, choose lambda_basic_execution under Use existing role, assuming you have created
the lambda_basic_execution role in the previous procedure.

9. Leave the default values for Advanced settings. Then choose Next.

10. Choose Create function.

11. For the newly created GetHelloWorldName function, note the AWS region where you created this
function.You will need it in later steps.

12. To test this newly created function, choose Actions and then Configure test event.

13. In Input test event, replace any default code statements with the following, and then choose Save
and test.

{
 "name": "User"
}

25

Amazon API Gateway Developer Guide
Step 4: Create Lambda Functions

Tip
The function calls context.name to read the input name.We expect it to return {"Hello":
"User"}, given the above input.

You can experiment with this function by removing "name": "User" from the Input test event for
the function and choosing Save and test again.You should see the output of {"Hello":
"No-Name"} under Execution result in the Lambda console, as well as in CloudWatch Logs.

Step 5: Create and Test a GET Method
Switch back to the API Gateway console. In this step, you will create a GET method, connect it to your
GetHelloWorld function in Lambda, and then test it.You use a GET method primarily to retrieve or
read a representation of a resource. If successful, the GET method will return a JSON-formatted object.

To create and test the GET method

1. In the API Gateway console, from APIs, choose MyDemoAPI.

2. In the Resources pane, choose /mydemoresource. From Actions, choose Create Method. Choose
GET from the HTTP method drop-down list and then choose the checkmark to create the method.

3. In the GET method Setup pane, for Integration type, choose Lambda Function. For Lambda
Region, choose the region (.e.g, us-east-1) where you created the Lambda functions. In Lambda
Function, type GetHelloWorld. Choose Save to finish setting up the integration request for this
method.

For a list of region names and identifiers, see AWS Lambda in the Amazon Web Services General
Reference.

4. For Add Permission to Lambda Function, choose OK.

5. In the Method Execution pane, choose TEST from the Client box, and then choose the Test button.
If successful, Response Body will display the following:

{
 "Hello": "World"
}

By default, API Gateway will pass through the request from the API caller. For the GET method call you
just created, as well as for HEAD method calls, a Lambda function will receive an empty JSON response
by default and then return the response from the Lambda function without modifications.

26

Amazon API Gateway Developer Guide
Step 5: Create and Test a GET Method

http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

In the next step, you will create a POST method call. For POST and PUT method calls, you can pass in
a request body in JSON format, which the Lambda function will receive as its input event. Optionally, you
can transform the input to the Lambda function by using mapping templates in API Gateway.

Step 6: Create and Test a POST Method
In this step, you will create a new POST method, connect it to your GetHelloWithName function in
Lambda, and then test it. If successful, the POST method typically returns to the caller the URI of the
newly created resource. In this walkthrough, the POST method will simply return a JSON-formatted object.

To create and test the POST method

1. In the Resources pane, choose /mydemoresource, and then choose Create Method.

2. For the HTTP method, choose POST, and then choose the checkmark to save your choice.

3. In the Setup pane, for Integration Type, choose Lambda Function.

4. For Lambda Region, choose the region identifier that corresponds to the region name in which you
created the GetHelloWithName Lambda function.

5. For Lambda Function, type GetHelloWithName, and then choose Save.

6. When you are prompted to give API Gateway permission to invoke your Lambda function, choose
OK.

7. In the Method Execution pane, in the Client box, and then choose TEST. Expand Request Body,
and type the following:

{
 "name": "User"
}

8. Choose Test. If successful, Response Body will display the following:

{
 "Hello": "User"
}

9. Change Request Body by removing "name": "User" so that only a set of curly braces ({ })
remain, and then choose Test again. If successful, Response Body will display the following:

{
 "Hello": "No-Name"
}

The API Gateway console-assisted Lambda function integration uses the AWS service proxy integration
type for Lambda. It streamlines the process to integrate an API method with a Lambda function by setting
up, among other things, the required Lambda function invocation URI and the invocation role on behalf
of the API developer.

The GET and POST methods discussed here are both integrated with a POST request in the back end:

POST /2015-03-31/functions/FunctionArn/invocations?Qualifier=Qualifier HTTP/1.1

27

Amazon API Gateway Developer Guide
Step 6: Create and Test a POST Method

X-Amz-Invocation-Type: RequestReponse
...
Content-Type: application/json
Content-Length: PayloadSize

Payload

The X-Amz-Invocation-Type: RequestReponse header specifies that the Lambda function be
invoked synchronously. FunctionArn is of the
arn:aws:lambda:region:account-id:function:FunctionName format. In this walkthrough, the
console sets FunctionName as GetHelloWorld for the GET method request and supplies an empty
JSON payload when you test-invoke the method. For the POST method, the console sets FunctionName
as GetHelloWithName and passes the caller-supplied method request payload to the integration request.
You can regain full control of a method creation and setup by going through the AWS service proxy
integration directly. For more information, see Create an API as a Lambda Proxy (p. 143).

Step 7: Deploy the API
You are now ready to deploy your API so that you can call it outside of the API Gateway console. In this
step, you will create a stage. In API Gateway, a stage defines the path through which an API deployment
is accessible. For example, you can define a test stage and deploy your API to it, so that a resource
named MyDemoAPI is accessible through a URI that ends in .../test/MyDemoAPI.

To deploy the API

1. Choose the API from the APIs pane or choose a resource or method from the Resources pane.
Choose Deploy API from the Actions drop-down menu.

2. For Deployment stage, choose New Stage.

3. For Stage name, type test.

Note
The input must be UTF-8 encoded (i.e., unlocalized) text.

4. For Stage description, type This is a test.

5. For Deployment description, type Calling Lambda functions walkthrough.

6. Choose Deploy.

Step 8:Test the API
In this step, you will go outside of the API Gateway console to call the GET and POST methods in the
API you just deployed.

To test the GET-on-mydemoresource method

1. In the Stage Editor pane, copy the URL from Invoke URL to the clipboard. It should look something
like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test

2. In a separate web browser tab or window, paste the URL into the address box. Append the path to
your resource (/mydemoresource) to the end of the URL.The URL should look something like this:

28

Amazon API Gateway Developer Guide
Step 7: Deploy the API

https://my-api-id.execute-api.region-id.amazonaws.com/test/mydemoresource

3. Browse to this URL. If the GET method is successfully called, the web page will display:

{"Hello":"World"}

To test the POST-on-mydemoresource method

1. You will not be able to test a POST method request with your web browser's address bar. Instead,
use an advanced REST API client, such as Postman, or the cURL command-line tool.

2. Send a POST method request to the URL from the previous procedure. The URL should look
something like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test/mydemoresource

Be sure to append to the request headers the following header:

Content-Type: application/json

Also, be sure to add the following code to the request body:

{
 "name": "User"
}

For example, if you use the cURL command-line tool, run a command similar to the following:

curl -H "Content-Type: application/json" -X POST -d "{\"name\": \"User\"}"
 https://my-api-id.execute-api.region-id.amazonaws.com/test/mydemoresource

If the POST method is successfully called, the response should contain:

{"Hello":"User"}

Step 9: Clean Up
If you no longer need the Lambda functions you created for this walkthrough, you can delete them now.
You can also delete the accompanying IAM resources.

Caution
If you plan to complete the other walkthroughs in this series, do not delete the Lambda execution
role or the Lambda invocation role. If you delete a Lambda function that your APIs rely on, those
APIs will no longer work. Deleting a Lambda function cannot be undone. If you want to use the
Lambda function again, you must re-create the function.
If you delete an IAM resource that a Lambda function relies on, that Lambda function will no
longer work, and any APIs that rely on that function will no longer work. Deleting an IAM resource
cannot be undone. If you want to use the IAM resource again, you must re-create the resource.

29

Amazon API Gateway Developer Guide
Step 9: Clean Up

https://www.getpostman.com/
https://curl.haxx.se/

To delete the Lambda functions

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. From the list of functions, choose GetHelloWorld, choose Actions and then choose Delete function.
When prompted, choose Delete again.

3. From the list of functions, choose GetHelloWithName, choose Actions, and then choose Delete
function. When prompted, choose Delete again.

To delete the associated IAM resources

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/iam/.

2. From Details, choose Roles.

3. From the list of roles, choose APIGatewayLambdaExecRole, choose Role Actions and then choose
Delete Role. When prompted, choose Yes, Delete.

4. From Details, choose Policies.

5. From the list of policies, choose APIGatewayLambdaExecPolicy, choose Policy Actions and then
choose Delete. When prompted, choose Delete.

You have now reached the end of this walkthrough.

Next Steps
You may want to proceed to the next walkthrough, which shows how to map header parameters from the
method request to the integration request and from the integration response to the method response. It
uses the HTTP proxy integration to connect your API to HTTP endpoints in the back end.

For more information about API Gateway, see What Is Amazon API Gateway? (p. 1). For more information
about REST, see RESTful Web Services: A Tutorial.

Create Lambda Invocation and Execution Roles
Before you create AWS Lambda functions, you must assign appropriate permissions for the functions to
execute the specified Amazon CloudWatch action (namely, writing to the CloudWatch Log) and for API
Gateway to invoke the Lambda functions.You set up the permissions using IAM roles and policies for
API Gateway to invoke your code and for Lambda to execute your code. For more information about
invocation and execution roles/policies in Lambda see Permission Model in the AWS Lambda Developer
Guide.

To create the Lambda invocation role and its policy

1. Open the IAM console at https://console.aws.amazon.com/iam/.

If you are using the IAM-managed AWSLambdaRole policy, skip to Step 8 to create an invocation
role.

2. In Details, choose Policies.

3. Do one of the following:

• If a list of policies appears, choose Create Policy.

• If the Welcome to Managed Policies page appears, choose Get Started, and then choose Create
Policy.

4. For Create Your Own Policy, choose Select.

30

Amazon API Gateway Developer Guide
Next Steps

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/iam/
http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://console.aws.amazon.com/iam/

5. For Policy Name, type a name for the policy; for example, APIGatewayLambdaInvokePolicy.

6. For Description, type Enables API Gateway to call Lambda functions.

7. For Policy Document, type the following, and then choose Create Policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Resource": [
 "*"
],
 "Action": [
 "lambda:InvokeFunction"
]
 }
]
}

8. In Details, choose Roles.

9. Choose Create New Role.

10. For Role Name, type a name for the invocation role; for example, APIGatewayLambdaInvokeRole,
and then choose Next Step.

11. Under Select Role Type, with the option button next to AWS Service Roles already chosen, for
Amazon API Gateway, choose Select.

12. For Attach Policy, if the policy you want is in the list, choose it before choosing Next Step. Otherwise,
simply choose Next Step to proceed.

13. For Role ARN, make a note of the invocation role's Amazon Resource Name (ARN).You will need
this ARN in later steps when you specify the invocation role explicitly. The ARN should look similar
to this: arn:aws:iam::123456789012:role/APIGatewayLambdaInvokeRole, where
123456789012 is your AWS account ID.

14. Choose Create Role.

The newly created IAM role will have the following trust policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

The preceding policy document enables API Gateway to assume roles taken up by and, hence, take
actions on behalf of your AWS account.

31

Amazon API Gateway Developer Guide
Appendix: Create Lambda Invocation and Execution

Roles

To create the Lambda execution role and its policies

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In Details, choose Policies.

3. Choose Create Policy.

4. For Create Your Own Policy, choose Select.

5. For Policy Name, type a name for the policy (for example, APIGatewayLambdaExecPolicy).

6. For Description, type Enables Lambda to execute code.

7. For Policy Document, type the following, and then choose Create Policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:*"
],
 "Effect": "Allow",
 "Resource": "arn:aws:logs:*:*:*"
 }
]
}

Note
The preceding policy document permits all log actions on Amazon CloudWatch Logs.
Typically, you would add other permissions required by your Lambda function to interact
with AWS services, such as uploading an object to an Amazon S3 bucket. In this walkthrough,
the Lambda functions you create are very simple; they do not interact with AWS services.

8. In Details, choose Roles.

9. Choose Create New Role.

10. In Role Name, type a name for the execution role (for example, APIGatewayLambdaExecRole),
and then choose Next Step.

11. Next to AWS Lambda, choose Select.

Note
IAM will attach the following resource-policy document in Trust Relationships:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

This policy document enables Lambda to assume roles taken up by and, hence, to take
actions on behalf of your AWS account.

32

Amazon API Gateway Developer Guide
Appendix: Create Lambda Invocation and Execution

Roles

https://console.aws.amazon.com/iam/

Map Request Parameters for an API Gateway
API as an HTTP Proxy

In this walkthrough, you will learn how to map method request parameters to the corresponding integration
request parameters for an API Gateway API. As an illustration, we will create an example API as an HTTP
proxy and use it to demonstrate how to use API Gateway to map a method request parameter to the
corresponding integration request parameter and to access the publicly accessible HTTP endpoint of:

http://petstore-demo-endpoint.execute-api.com/petstore/pets

If you copy the above URL, paste it into the address bar of a web browser, and hit the Enter or Return
key, you will get the following JSON-formatted response body:

[
 {
 "id": 1,
 "type": "dog",
 "price": 249.99
 },
 {
 "id": 2,
 "type": "cat",
 "price": 124.99
 },
 {
 "id": 3,
 "type": "fish",
 "price": 0.99
 }
]

The above endpoint can take two query parameters: type and page. For example, if you change the
above URL to the following:

http://petstore-demo-endpoint.execute-api.com/petstore/pets?type=cat&page=2

you will receive the following JSON-formatted response payload, displaying page 2 of only the cats:

[
 {
 "id": 4,
 "type": "cat",
 "price": 999.99
 },
 {
 "id": 5,
 "type": "cat",
 "price": 249.99
 },
 {
 "id": 6,
 "type": "cat",

33

Amazon API Gateway Developer Guide
Map Request Parameters

 "price": 49.97
 }
]

This endpoint also supports the use of an item ID, as expressed by a URL path parameter. For example,
if you browse to the following:

http://petstore-demo-endpoint.execute-api.com/petstore/pets/1

The following JSON-formatted information about the item with an ID of 1 is displayed:

{
 "id": 1,
 "type": "dog",
 "price": 249.99
}

In addition to supporting GET operations, this endpoint also take POST requests with a payload. For
example, if you use Postman to send a POST method request to the following:

http://petstore-demo-endpoint.execute-api.com/petstore/pets

including the header Content-type: application/json and the following request body:

{
 "type": "dog",
 "price": 249.99
}

you will receive following JSON object in the response body:

{
 "pet": {
 "type": "dog",
 "price": 249.99
 },
 "message": "success"
}

We now expose these and other features by building an API Gateway API as an HTTP proxy of this
PetStore website. The tasks includes the following:

• Create an API with a resource of
https://my-api-id.execute-api.region-id.amazonaws.com/test/petstorewalkthrough/pets
acting as a proxy to the HTTP endpoint of
http://petstore-demo-endpoint.execute-api.com/petstore/pets.

• Enable the API to accept two method request query parameters of petType and petsPage, map them
to the type and page query parameters of the integration request, respectively, and pass the request
to the HTTP endpoint.

• Support a path parameter of {petId} on the API's method request URL to specify an item ID, map it
to the {id} path parameter in the integration request URL, and send the request to the HTTP endpoint.

34

Amazon API Gateway Developer Guide
Map Request Parameters

https://www.getpostman.com/

• Enable the method request to accept the JSON payload of the format defined by the back end website,
pass the payload without modifications through the integration request to the back-end HTTP endpoint.

Topics

• Prerequisites (p. 35)

• Step 1: Create Resources (p. 35)

• Step 2: Create GET and POST Methods (p. 36)

• Step 3: Set Up and Test the Methods (p. 36)

• Step 4: Deploy the API (p. 39)

• Step 5: Test the API (p. 39)

• Next Steps (p. 41)

Prerequisites
Before you begin this walkthrough, you should do the following:

1. Complete the steps in Get Ready to Use API Gateway (p. 4), including assigning API Gateway
access permission to the IAM user.

2. At a minimum, follow the steps in Build an API Gateway API Step by Step (p. 14) to create a new
API named MyDemoAPI in the API Gateway console.

Step 1: Create Resources
In this step, you will create three resources that will enable the API to interact with the HTTP endpoint.

To create the first resource

1. In the Resources pane, select the resource root, as represented by a single forward slash (/), and
then choose Create Resource from the Actions drop-down menu.

2. For Resource Name, type petstorewalkthrough.

This maps to petstore in the HTTP endpoint.

3. For Resource Path, accept the default of /petstorewalkthrough, and then choose Create Resource.

This maps to /petstore in the HTTP endpoint.

To create the second resource

1. In the Resources pane, choose /petstorewalkthrough, and then choose Create Resource.

2. For Resource Name, type pets.

This maps to pets in the HTTP endpoint.

3. For Resource Path, accept the default of /petstorewalkthrough/pets, and then choose Create
Resource.

This maps to /petstore/pets in the HTTP endpoint.

To create the third resource

1. In the Resources pane, choose /petstorewalkthrough/pets, and then choose Create Resource.

35

Amazon API Gateway Developer Guide
Prerequisites

2. For Resource Name, type petId. This maps to the item ID in the HTTP endpoint.

3. For Resource Path, overwrite petid with {petId}. Be sure to use curly braces ({ }) around petId
so that /petstorewalkthrough/pets/{petId} is displayed, and then choose Create Resource.

This maps to /petstore/pets/my-item-id in the HTTP endpoint.

Step 2: Create GET and POST Methods
In this step, you will create two GET methods and a POST method to interact with the HTTP endpoint.

To create the first GET method

1. In the Resources pane, choose /petstorewalkthrough/pets, and then choose Create Method from
the Actions drop-down menu.

2. For the HTTP method, choose GET, and then save your choice.

To create the second GET method

1. In the Resources pane, choose /petstorewalkthrough/pets/{petId}, and then choose Create
Method.

2. For the HTTP method, choose GET, and then save your choice.

To create the POST method

1. In the Resources pane, choose /petstorewalkthrough/pets again, and then choose Create Method.

2. For the HTTP method, choose POST, and then save your choice.

Step 3: Set Up and Test the Methods
In this step, you will integrate the methods with the back-end HTTP endpoints, map the GET method
request parameters to the corresponding integration request parameters, and then test the methods.

To set up and test the first GET method

This procedure demonstrates the following:

• Integrate the method request of GET /petstorewalkthrough/pets with the integration request of
GET https://petstore-demo-endpoint.execute-api.com/petstore/pets.

• Map the method request query parameters of petType and petsPage to the integration request query
string parameters of type and page, respectively.

1. In the Resources pane, in /petstorewalkthrough/pets, choose GET.

2. In the Setup pane, for HTTP method, choose GET.

3. For Endpoint URL, type
http://petstore-demo-endpoint.execute-api.com/petstore/pets.

4. Choose Save.

5. In the Method Execution pane, choose Method Request, and then choose the arrow next to URL
Query String Parameters.

6. Choose Add query string.

7. For Name, type petType.

36

Amazon API Gateway Developer Guide
Step 2: Create GET and POST Methods

This specifies the petType query parameter in the API's method request.

8. Choose Create a new query string (the check mark icon).

9. Choose Add query string again.

10. For Name, type petsPage.

This specifies the petsPage query parameter in the API's method request.

11. Choose Create a new query string.

12. Choose Method Execution, choose Integration Request, and then choose the arrow next to URL
Query String Parameters.

13. Choose Add query string.

14. For Name, type type.

15. For Mapped from, type method.request.querystring.petType.

This maps the method request's petType query parameter to the integration request's type query
parameter.

16. Choose Create (the check mark icon).

17. Choose Add query string again.

18. For Name, type page.

19. For Mapped from, type method.request.querystring.petsPage.

This maps the method request's petsPage query parameter to the integration request's page query
parameter.

20. Choose Create.

21. Choose Method Execution, and in the Client box, choose TEST. In the Query Strings area, for
petType, type cat. For petsPage, type 2.

22. Choose Test. If successful, Response Body will display the following:

[
 {
 "id": 4,
 "type": "cat",
 "price": 999.99
 },
 {
 "id": 5,
 "type": "cat",
 "price": 249.99
 },
 {
 "id": 6,
 "type": "cat",
 "price": 49.97
 }
]

To set up and test the second GET method

This procedure demonstrates the following:

• Integrate the method request of GET /petstorewalkthrough/pets/{petId} with the integration
request of GET https://petstore-demo-endpoint.execute-api.com/petstore/pets/{id}.

• Map the method request path parameters of petId to the integration request path parameters of id.

37

Amazon API Gateway Developer Guide
Step 3: Set Up and Test the Methods

1. In the Resources list, in /petstorewalkthrough/pets/{petId}, choose GET.

2. In the Setup pane, for HTTP method, choose GET.

3. For Endpoint URL, type
http://petstore-demo-endpoint.execute-api.com/petstore/pets/{id}.

4. Choose Save.

5. In the Method Execution pane, choose Integration Request, and then choose the arrow next to
URL Path Parameters.

6. Choose Add path.

7. For Name, type id.

8. For Mapped from, type method.request.path.petId.

This maps the method request's path parameter of petId to the integration request's path parameter
of id.

9. Choose Create.

10. Choose Method Execution, and in the Client box, choose TEST. In the Path area, for petId, type
1.

11. Choose Test. If successful, Response Body will display the following:

{
 "id": 1,
 "type": "dog",
 "price": 249.99
}

To set up and test the POST method

This procedure demonstrates the following:

• Integrate the method request of POST /petstorewalkthrough/pets with the integration request
of POST https://petstore-demo-endpoint.execute-api.com/petstore/pets.

• Pass the method request JSON payload through to the integration request payload, without modification.

1. In the Resources pane, in /petstorewalkthrough/pets, choose POST.

2. In the Setup pane, for HTTP method, choose POST.

3. For Endpoint URL, type
http://petstore-demo-endpoint.execute-api.com/petstore/pets.

4. Choose Save.

5. In the Method Execution pane, in the Client box, choose TEST. Expand Request Body, and then
type the following:

{
 "type": "dog",
 "price": 249.99
}

6. Choose Test. If successful, Response Body will display the following:

{
 "pet": {

38

Amazon API Gateway Developer Guide
Step 3: Set Up and Test the Methods

 "type": "dog",
 "price": 249.99
 },
 "message": "success"
}

Step 4: Deploy the API
In this step, you will deploy the API so that you can begin calling it outside of the API Gateway console.

To deploy the API

1. In the Resources pane, choose Deploy API.

2. For Deployment stage, choose test.

Note
The input must be UTF-8 encoded (i.e., unlocalized) text.

3. For Deployment description, type Calling HTTP endpoint walkthrough.

4. Choose Deploy.

Step 5:Test the API
In this step, you will go outside of the API Gateway console and use your API to access the HTTP endpoint.

1. In the Stage Editor pane, next to Invoke URL, copy the URL to the clipboard. It should look something
like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test

2. Paste this URL in the address box of a new browser tab.

3. Append /petstorewalkthrough/pets so that it looks like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test/petstorewalk
through/pets

Browse to the URL. The following information should be displayed:

[
 {
 "id": 1,
 "type": "dog",
 "price": 249.99
 },
 {
 "id": 2,
 "type": "cat",
 "price": 124.99
 },
 {
 "id": 3,

39

Amazon API Gateway Developer Guide
Step 4: Deploy the API

 "type": "fish",
 "price": 0.99
 }
]

4. After petstorewalkthrough/pets, type ?petType=cat&petsPage=2 so that it looks like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test/petstorewalk
through/pets?petType=cat&petsPage=2

5. Browse to the URL. The following information should be displayed:

[
 {
 "id": 4,
 "type": "cat",
 "price": 999.99
 },
 {
 "id": 5,
 "type": "cat",
 "price": 249.99
 },
 {
 "id": 6,
 "type": "cat",
 "price": 49.97
 }
]

6. After petstorewalkthrough/pets, replace ?petType=cat&petsPage=2 with /1 so that it looks
like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test/petstorewalk
through/pets/1

7. Browse to the URL. The following information should be displayed:

{
 "id": 1,
 "type": "dog",
 "price": 249.99
}

8. Using a web debugging proxy tool or the cURL command-line tool, send a POST method request to
the URL from the previous procedure. Be sure to append /petstorewalkthrough/pets so that
it looks like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test/petstorewalk
through/pets

Also, be sure to append the following header:

40

Amazon API Gateway Developer Guide
Step 5:Test the API

Content-Type: application/json

And be sure to add the following code to the request body:

{
 "type": "dog",
 "price": 249.99
}

For example, if you use the cURL command-line tool, run a command similar to the following:

curl -H "Content-Type: application/json" -X POST -d "{\"type\":
\"dog\",\"price\": 249.99}" https://my-api-id.execute-api.region-id.amazon
aws.com/test/petstorewalkthrough/pets

The following information should be returned in the response body:

{
 "pet": {
 "type": "dog",
 "price": 249.99
 },
 "message": "success"
}

You have reached the end of this walkthrough.

Next Steps
You may want to begin the next walkthrough, which shows you how to use models and mappings in API
Gateway to transform the output of an API call from one data format to another. See Transform Response
Payload (p. 41).

Use Models and Mapping Templates to
Transform Response Payload

In this walkthrough, you will learn how to use models and mapping templates in API Gateway to transform
the output of an API call from one data schema to another. This walkthrough builds on the instructions
and concepts in the Call Lambda Functions Synchronously (p. 22) and the Map Request
Parameters (p. 33). If you have not yet completed those walkthroughs, we suggest you do them first.

In this walkthrough, you will use API Gateway to get example data from a publicly-accessible HTTP
endpoint and from an AWS Lambda function you will create. Both the HTTP endpoint and the Lambda
function return the same example data:

[
 {
 "id": 1,

41

Amazon API Gateway Developer Guide
Next Steps

 "type": "dog",
 "price": 249.99
 },
 {
 "id": 2,
 "type": "cat",
 "price": 124.99
 },
 {
 "id": 3,
 "type": "fish",
 "price": 0.99
 }
]

You will use models and mapping templates to transform this data to one or more output formats. In API
Gateway, a model defines the format, also known as the schema or shape, of some data. In API Gateway,
a mapping template is used to transform some data from one format to another. For more information,
see Set Up Request and Response Payload Mappings (p. 72).

The first model and mapping template is used to rename id to number, type to class, and price to
salesPrice, as follows:

[
 {
 "number": 1,
 "class": "dog",
 "salesPrice": 249.99
 },
 {
 "number": 2,
 "class": "cat",
 "salesPrice": 124.99
 },
 {
 "number": 3,
 "class": "fish",
 "salesPrice": 0.99
 }
]

The second model and mapping template is used to combine id and type into description, and to
rename price to askingPrice, as follows:

[
 {
 "description": "Item 1 is a dog.",
 "askingPrice": 249.99
 },
 {
 "description": "Item 2 is a cat.",
 "askingPrice": 124.99
 },
 {
 "description": "Item 3 is a fish.",
 "askingPrice": 0.99

42

Amazon API Gateway Developer Guide
Transform Response Payload

 }
]

The third model and mapping template is used to combine id, type, and price into a set of listings,
as follows:

{
 "listings": [
 "Item 1 is a dog. The asking price is 249.99.",
 "Item 2 is a cat. The asking price is 124.99.",
 "Item 3 is a fish. The asking price is 0.99."
]
}

Topics

• Prerequisites (p. 43)

• Step 1: Create Models (p. 43)

• Step 2: Create Resources (p. 45)

• Step 3: Create GET Methods (p. 46)

• Step 4: Create a Lambda Function (p. 47)

• Step 5: Set Up and Test the Methods (p. 48)

• Step 6: Deploy the API (p. 52)

• Step 7: Test the API (p. 52)

• Step 8: Clean Up (p. 54)

• Next Steps (p. 54)

Prerequisites
Before you begin this walkthrough, you should have already done the following:

1. Complete the steps in Get Ready to Use API Gateway (p. 4), including assigning API Gateway
access permission to an IAM user.

2. Open the API Gateway console and create a new API named MyDemoAPI. For more information,
see Build an API Gateway API Step by Step (p. 14).

3. Create two resources: petstorewalkthrough and pets. For more information, see Create
Resources (p. 35) in the Map Request Parameters (p. 33).

4. To use the Lambda portions of this walkthrough, make sure the IAM user has full access to work
with Lambda.You can use the IAM console to attach the AWSLambdaFullAccess AWS managed
policy to the IAM user.

5. Make sure the IAM user has access to create policies and roles in IAM. If you have not done so
already, create a Lambda execution role named APIGatewayLambdaExecRole in IAM. For more
information, see Create Lambda Functions (p. 23) in the Call Lambda Functions Synchronously (p. 22).

Step 1: Create Models
In this step, you will create four models. The first three models represent the data output formats for use
with the HTTP endpoint and the Lambda function. The last model represents the data input schema for
use with the Lambda function.

43

Amazon API Gateway Developer Guide
Prerequisites

To create the first output model

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. If MyDemoAPI is displayed, choose Models.

3. Choose Create.

4. For Model name, type PetsModelNoFlatten.

5. For Content type, type application/json.

6. For Model description, type Changes id to number, type to class, and price to
salesPrice.

7. For Model schema, type the following JSON Schema-compatible definition:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PetsModelNoFlatten",
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "number": { "type": "integer" },
 "class": { "type": "string" },
 "salesPrice": { "type": "number" }
 }
 }
}

8. Choose Create model.

To create the second output model

1. Choose Create.

2. For Model name, type PetsModelFlattenSome.

3. For Content type, type application/json.

4. For Model description, type Combines id and type into description, and changes
price to askingPrice.

5. For Model schema, type the following:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PetsModelFlattenSome",
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "description": { "type": "string" },
 "askingPrice": { "type": "number" }
 }
 }
}

6. Choose Create model.

44

Amazon API Gateway Developer Guide
Step 1: Create Models

https://console.aws.amazon.com/apigateway

To create the third output model

1. Choose Create.

2. For Model name, type PetsModelFlattenAll.

3. For Content type, type application/json.

4. For Model description, type Combines id, type, and price into a set of listings.

5. For Model schema, type the following:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PetsModelFlattenAll",
 "type": "object",
 "properties": {
 "listings": {
 "type": "array",
 "items": {
 "type": "string"
 }
 }
 }
}

6. Choose Create model.

To create the input model

1. Choose Create.

2. For Model name, type PetsLambdaModel.

3. For Content type, type application/json.

4. For Model description, type GetPetsInfo model.

5. For Model schema, type the following:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PetsLambdaModel",
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "id": { "type": "integer" },
 "type": { "type": "string" },
 "price": { "type": "number" }
 }
 }
}

6. Choose Create model.

Step 2: Create Resources
In this step, you will create four resources. The first three resources will enable you to get the example
data from the HTTP endpoint in the three output formats. The last resource will enable you to get the

45

Amazon API Gateway Developer Guide
Step 2: Create Resources

example data from the Lambda function in the output schema that combines id and type into
description and renames price to askingPrice.

To create the first resource

1. In the links list, choose Resources.

2. In the Resources pane, choose /petstorewalkthrough, and then choose Create Resource.

3. For Resource Name, type NoFlatten.

4. For Resource Path, accept the default of /petstorewalkthrough/noflatten, and then choose Create
Resource.

To create the second resource

1. In the Resources pane, choose /petstorewalkthrough again, and then choose Create Resource.

2. For Resource Name, type FlattenSome.

3. For Resource Path, accept the default of /petstorewalkthrough/flattensome, and then choose
Create Resource.

To create the third resource

1. In the Resources pane, choose /petstorewalkthrough again, and then choose Create Resource.

2. For Resource Name, type FlattenAll.

3. For Resource Path, accept the default of /petstorewalkthrough/flattenall, and then choose Create
Resource.

To create the fourth resource

1. In the Resources pane, choose /petstorewalkthrough again, and then choose Create Resource.

2. For Resource Name, type LambdaFlattenSome.

3. For Resource Path, accept the default of /petstorewalkthrough/lambdaflattensome, and then
choose Create Resource.

Step 3: Create GET Methods
In this step, you will create a GET method for each of the resources you created in the previous step.

To create the first GET method

1. In the Resources list, choose /petstorewalkthrough/flattenall, and then choose Create Method.

2. For the HTTP method, choose GET, and then save your choice.

To create the second GET method

1. In the Resources list, choose /petstorewalkthrough/lambdaflattensome, and then choose Create
Method.

2. For the HTTP method, choose GET, and then save your choice.

To create the third GET method

1. In the Resources list, choose /petstorewalkthrough/flattensome, and then choose Create Method.

46

Amazon API Gateway Developer Guide
Step 3: Create GET Methods

2. For the HTTP method, choose GET, and then save your choice.

To create the fourth GET method

1. In the Resources list, choose /petstorewalkthrough/noflatten, and then choose Actions, Create
Method.

2. For the HTTP method, choose GET, and then save your choice.

Step 4: Create a Lambda Function
In this step, you will create a Lambda function that returns the sample data.

To create the Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Do one of the following:

• If a welcome page appears, choose Get Started Now.

• If the Lambda: Function list page appears, choose Create a Lambda function.

3. For Name, type GetPetsInfo.

4. For Description, type Gets information about pets.

5. For Code template, choose None.

6. Type the following code:

console.log('Loading event');

exports.handler = function(event, context) {
 context.done(null,
 [{"id": 1, "type": "dog", "price": 249.99},
 {"id": 2, "type": "cat", "price": 124.99},
 {"id": 3, "type": "fish", "price": 0.99}]); // SUCCESS with message
};

Tip
In the preceding code, written in Node.js, console.log writes information to an Amazon
CloudWatch log. event contains the event's data. context contains callback context.
Lambda uses context.done to perform follow-up actions. For more information about how
to write Lambda function code, see the "Programming Model" section in AWS Lambda: How
it Works and the sample walkthroughs in the AWS Lambda Developer Guide.

7. For Handler name, leave the default of index.handler.

8. For Role, choose the Lambda execution role, APIGatewayLambdaExecRole, you created in the
Call Lambda Functions Synchronously (p. 22).

9. Choose Create Lambda function.

10. In the list of functions, choose GetPetsInfo to show the function's details.

11. Make a note of the AWS region where you created this function.You will need it later.

12. In the pop-up list, choose Edit or test function.

13. For Sample event, replace any code that appears with the following:

47

Amazon API Gateway Developer Guide
Step 4: Create a Lambda Function

https://console.aws.amazon.com/lambda/
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html

{

}

Tip
The empty curly braces mean there are no input values for this Lambda function. This
function simply returns the JSON object containing the pets information, so those key/value
pairs are not required here.

14. Choose Invoke. Execution result shows
[{"id":1,"type":"dog","price":249.99},{"id":2,"type":"cat","price":124.99},{"id":3,"type":"fish","price":0.99}],
which is also written to the CloudWatch logs.

15. Choose Go to function list.

Step 5: Set Up and Test the Methods
In this step, you will specify the URL and data output schema for the three GET methods associated with
the HTTP endpoint, testing each method as you proceed.You will also specify the Lambda function name,
data input schema, and data output schema for the GET method associated with the Lambda function.
You will then test this method.

To specify settings for the first GET method and then test it

1. In the Resources pane, in /petstorewalkthrough/flattenall, choose GET.

2. For HTTP Method, choose GET.

3. In the Setup pane, for Endpoint URL, type
http://petstore-demo-endpoint.execute-api.com/petstore/pets.

4. Choose Save.

5. In the Method Execution pane, choose Method Response, and then choose the arrow next to 200.

6. In the Response Models for 200 area, for application/json, choose Edit. For Models, choose
PetsModelFlattenAll, and then choose Save.

7. Choose Method Execution, choose Integration Response, and then choose the arrow next to 200.

8. In the Template Mappings area, for Content type, choose application/json, and then choose Edit.
Clear Output passthrough. For Generate template from model, choose PetsModelFlattenAll.
This displays the PetsModelFlattenAll model as a starting point.

9. Modify the code as follows:

#set($inputRoot = $input.path('$'))
{
 "listings" : [
#foreach($elem in $inputRoot)
 "Item number $elem.id is a $elem.type. The asking price is
$elem.price."#if($foreach.hasNext),#end

#end
]
}

10. Choose Update.

11. Choose Method Execution, and in the Client box, choose TEST, and then choose Test. If successful,
Response Body will display the following:

48

Amazon API Gateway Developer Guide
Step 5: Set Up and Test the Methods

{
 "listings" : [
 "Item number 1 is a dog. The asking price is 249.99.",
 "Item number 2 is a cat. The asking price is 124.99.",
 "Item number 3 is a fish. The asking price is 0.99."
]
}

To specify settings for the second GET method and then test it

1. In the Resources pane, in /petstorewalkthrough/lambdaflattensome, choose GET.

2. In the Setup pane, for Execution Type, choose Lambda Function.

3. For Lambda Region, choose the region identifier that corresponds to the region in which you created
the GetPetsInfo Lambda function. For example, if you created this Lambda in the US East (N.
Virginia) region, you would choose us-east-1. For a list of region names and identifiers, see AWS
Lambda in the Amazon Web Services General Reference.

4. For Lambda Function, type GetPetsInfo, and then choose Save.

5. When you are prompted to give API Gateway permission to invoke your Lambda function, choose
Ok.

6. In the Method Execution pane, choose Integration Request.

7. Next to Templates, choose Add.

8. For Content-Type, type application/json.

9. Leave Input passthrough cleared. For Generate template from model, choose PetsLambdaModel.
This displays the PetsLambdaModel model as a starting point.

10. In the Input mapping area, modify the code as follows, and then choose Update:

#set($inputRoot = $input.path('$'))
[
#foreach($elem in $inputRoot)
 {
 "id" : $elem.id,
 "type" : "$elem.type",
 "price" : $elem.price
 }#if($foreach.hasNext),#end

#end
]

11. Choose Method Execution, choose Method Response, and then choose the arrow next to 200.

12. In the Response Models for 200 area, for application/json, choose Edit. For Models, choose
PetsModelFlattenSome, and then choose Save.

13. Choose Method Execution, choose Integration Response, and then choose the arrow next to 200.

14. In the Template Mappings area, for Content type, choose application/json, and then choose Edit.
Clear Output passthrough. For Generate template from model, choose PetsModelFlattenSome.
This displays the PetsModelFlattenSome model as a starting point.

15. Modify the code as follows, and then choose Update:

#set($inputRoot = $input.path('$'))
[
#foreach($elem in $inputRoot)

49

Amazon API Gateway Developer Guide
Step 5: Set Up and Test the Methods

http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

 {
 "description" : "Item $elem.id is a $elem.type.",
 "askingPrice" : $elem.price
 }#if($foreach.hasNext),#end

#end
]

16. Choose Method Execution, and in the Client box, choose TEST, and then choose Test. If successful,
Response Body will display the following:

[
 {
 "description" : "Item 1 is a dog.",
 "askingPrice" : 249.99
 },
 {
 "description" : "Item 2 is a cat.",
 "askingPrice" : 124.99
 },
 {
 "description" : "Item 3 is a fish.",
 "askingPrice" : 0.99
 }
]

To specify settings for the third GET method and then test it

1. In the Resources pane, in /petstorewalkthrough/flattensome, choose GET.

2. In the Setup pane, for HTTP method, choose GET.

3. For Endpoint URL, type
http://petstore-demo-endpoint.execute-api.com/petstore/pets.

4. Choose Save.

5. In the Method Execution pane, choose Method Response, and then choose the arrow next to 200.

6. In the Response Models for 200 area, for application/json, choose Edit. For Models, choose
PetsModelFlattenSome, and then choose Save.

7. Choose Method Execution, choose Integration Response, and then choose the arrow next to 200.

8. In the Template Mappings area, for Content type, choose application/json, and then choose Edit.
Clear Output passthrough. For Generate template from model, choose PetsModelFlattenSome.
This displays the PetsModelFlattenSome model as a starting point.

9. Modify the code as follows:

#set($inputRoot = $input.path('$'))
[
#foreach($elem in $inputRoot)
 {
 "description": "Item $elem.id is a $elem.type.",
 "askingPrice": $elem.price
 }#if($foreach.hasNext),#end

#end
]

50

Amazon API Gateway Developer Guide
Step 5: Set Up and Test the Methods

10. Choose Update.

11. Choose Method Execution, and in the Client box, choose TEST, and then choose Test. If successful,
Response Body will display the following:

[
 {
 "description": "Item 1 is a dog.",
 "askingPrice": 249.99
 },
 {
 "description": "Item 2 is a cat.",
 "askingPrice": 124.99
 },
 {
 "description": "Item 3 is a fish.",
 "askingPrice": 0.99
 }
]

To specify settings for the fourth GET method and then test it

1. Return to the API Gateway console.

2. If MyDemoAPI is displayed, choose Resources.

3. In the Resources pane, in /petstorewalkthrough/noflatten, choose GET.

4. In the Setup pane, for HTTP method, choose GET.

5. For Endpoint URL, type
http://petstore-demo-endpoint.execute-api.com/petstore/pets.

6. Choose Save.

7. In the Method Execution pane, choose Method Response, and then expand 200.

8. In the Response Models for 200 area, for application/json, choose Edit. For Models, choose
PetsModelNoFlatten, and then choose Save.

9. Choose Method Execution, choose Integration Response, and then choose the arrow next to 200.

10. In the Template Mappings area, for Content type, choose application/json, and then choose Edit.
Clear Output passthrough. For Generate template from model, choose PetsModelNoFlatten.
This displays the PetsModelNoFlatten model as a starting point.

11. Modify the code as follows:

#set($inputRoot = $input.path('$'))
[
#foreach($elem in $inputRoot)
 {
 "number": $elem.id,
 "class": "$elem.type",
 "salesPrice": $elem.price
 }#if($foreach.hasNext),#end

#end
]

12. Choose Update.

13. Choose Method Execution, and in the Client box, choose TEST, and then choose Test. If successful,
Response Body will display the following:

51

Amazon API Gateway Developer Guide
Step 5: Set Up and Test the Methods

[
 {
 "number": 1,
 "class": "dog",
 "salesPrice": 249.99
 },
 {
 "number": 2,
 "class": "cat",
 "salesPrice": 124.99
 },
 {
 "number": 3,
 "class": "fish",
 "salesPrice": 0.99
 }
]

Step 6: Deploy the API
In this step, you will deploy the API so that you can begin calling it outside of the API Gateway console.

To deploy the API

1. In the Resources pane, choose Deploy API.

2. For Deployment stage, choose test.

3. For Deployment description, type Using models and mapping templates walkthrough.

4. Choose Deploy.

Step 7:Test the API
In this step, you will go outside of the API Gateway console to interact with both the HTTP endpoint and
the Lambda function.

1. In the Stage Editor pane, next to Invoke URL, copy the URL to the clipboard. It should look something
like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test

2. Paste this URL in the address box of a new browser tab.

3. Append /petstorewalkthrough/noflatten so that it looks like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test/petstorewalk
through/noflatten

Browse to the URL. The following information should be displayed:

[
 {
 "number": 1,

52

Amazon API Gateway Developer Guide
Step 6: Deploy the API

 "class": "dog",
 "salesPrice": 249.99
 },
 {
 "number": 2,
 "class": "cat",
 "salesPrice": 124.99
 },
 {
 "number": 3,
 "class": "fish",
 "salesPrice": 0.99
 }
]

4. After petstorewalkthrough/, replace noflatten with flattensome.

5. Browse to the URL. The following information should be displayed:

[
 {
 "description": "Item 1 is a dog.",
 "askingPrice": 249.99
 },
 {
 "description": "Item 2 is a cat.",
 "askingPrice": 124.99
 },
 {
 "description": "Item 3 is a fish.",
 "askingPrice": 0.99
 }
]

6. After petstorewalkthrough/, replace flattensome with flattenall.

7. Browse to the URL. The following information should be displayed:

{
 "listings" : [
 "Item number 1 is a dog. The asking price is 249.99.",
 "Item number 2 is a cat. The asking price is 124.99.",
 "Item number 3 is a fish. The asking price is 0.99."
]
}

8. After petstorewalkthrough/, replace flattenall with lambdaflattensome.

9. Browse to the URL. The following information should be displayed:

[
 {
 "description" : "Item 1 is a dog.",
 "askingPrice" : 249.99
 },
 {

53

Amazon API Gateway Developer Guide
Step 7:Test the API

 "description" : "Item 2 is a cat.",
 "askingPrice" : 124.99
 },
 {
 "description" : "Item 3 is a fish.",
 "askingPrice" : 0.99
 }
]

Step 8: Clean Up
If you no longer need the Lambda function you created for this walkthrough, you can delete it now.You
can also delete the accompanying IAM resources.

Caution
If you delete a Lambda function your APIs rely on, those APIs will no longer work. Deleting a
Lambda function cannot be undone. If you want to use the Lambda function again, you must
re-create the function.
If you delete an IAM resource a Lambda function relies on, the Lambda function and any APIs
that rely on it will no longer work. Deleting an IAM resource cannot be undone. If you want to
use the IAM resource again, you must re-create the resource. If you plan to continue
experimenting with the resources you created for this and the other walkthroughs, do not delete
the Lambda invocation role or the Lambda execution role.
API Gateway does not currently support the deactivation or deletion of APIs that no longer work.

To delete the Lambda function

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. On the Lambda: Function list page, in the list of functions, choose the button next to GetPetsInfo,
and then choose Actions, Delete. When prompted, choose Delete again.

To delete the associated IAM resources

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/iam/.

2. In the Details area, choose Roles.

3. Select APIGatewayLambdaExecRole, and then choose Role Actions, Delete Role.When prompted,
choose Yes, Delete.

4. In the Details area, choose Policies.

5. Select APIGatewayLambdaExecPolicy, and then choose Policy Actions, Delete.When prompted,
choose Delete.

You have now reached the end of this walkthrough.

Next Steps
You may want to begin the next walkthrough, which shows you how to create an API Gateway API to
access an AWS service. See Create an AWS Service Proxy (p. 55).

54

Amazon API Gateway Developer Guide
Step 8: Clean Up

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/iam/

Create an AWS Service Proxy for Amazon SNS
In this walkthrough, you will learn how to use API Gateway to connect a custom API to an AWS service
through what we call an AWS service proxy. This enables you to call an AWS service directly instead of
through an AWS Lambda function. An AWS service proxy can call only one action in an AWS service,
and that action typically does not change. If you want more flexibility, you should call a Lambda function
instead.

This walkthrough builds on the instructions and concepts in the Call Lambda Functions
Synchronously (p. 22), which shows you how to use API Gateway to create a custom API, connect it to
a set of AWS Lambda functions, and then call the Lambda functions from your API. If you have not yet
completed that walkthrough, we suggest that you do it first.

Topics

• Prerequisites (p. 55)

• Step 1: Create the Resource (p. 55)

• Step 2: Create the GET Method (p. 56)

• Step 3: Create the AWS Service Proxy Execution Role (p. 56)

• Step 4: Specify Method Settings and Test the Method (p. 58)

• Step 5: Deploy the API (p. 58)

• Step 6: Test the API (p. 59)

• Step 7: Clean Up (p. 59)

Prerequisites
Before you begin this walkthrough, you should have already done the following:

1. Complete the steps in Get Ready to Use API Gateway (p. 4).

2. Make sure the IAM user has access to create policies and roles in IAM.You will need to create an
IAM policy and role in this walkthrough.

3. At a minimum, open the API Gateway console and create a new API named MyDemoAPI. For more
information, see Build an API Gateway API Step by Step (p. 14).

4. Deploy the API at least once to a stage named test. For more information, see Deploy the API (p. 28)
in the Call Lambda Functions Synchronously (p. 22).

5. Complete the rest of the steps in the Call Lambda Functions Synchronously (p. 22).

6. Create at least one topic in Amazon Simple Notification Service (Amazon SNS).You will use the
deployed API to get a list of topics in Amazon SNS that are associated with your AWS account. To
learn how to create a topic in Amazon SNS, see Create a Topic. (You do not need to copy the topic
ARN mentioned in step 5.)

Step 1: Create the Resource
In this step, you will create a resource that will enable the AWS service proxy to interact with the AWS
service.

To create the resource

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. If MyDemoAPI is displayed, choose Resources.

55

Amazon API Gateway Developer Guide
Create an AWS Service Proxy

http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://console.aws.amazon.com/apigateway

3. In the Resources pane, choose the resource root, represented by a single forward slash (/), and
then choose Create Resource.

4. For Resource Name, type MyDemoAWSProxy, and then choose Create Resource.

Step 2: Create the GET Method
In this step, you will create a GET method that will enable the AWS service proxy to interact with the AWS
service.

To create the GET method

1. In the Resources pane, choose /mydemoawsproxy, and then choose Create Method.

2. For the HTTP method, choose GET, and then save your choice.

Step 3: Create the AWS Service Proxy Execution
Role
In this step, you will create an IAM role that your AWS service proxy will use to interact with the AWS
service.We call this IAM role an AWS service proxy execution role.Without this role, API Gateway cannot
interact with the AWS service. In later steps, you will specify this role in the settings for the GET method
you just created.

To create the AWS service proxy execution role and its policy

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Choose Policies.

3. Do one of the following:

• If the Welcome to Managed Policies page appears, choose Get Started, and then choose Create
Policy.

• If a list of policies appears, choose Create Policy.

4. Next to Create Your Own Policy, choose Select.

5. For Policy Name, type a name for the policy (for example, APIGatewayAWSProxyExecPolicy).

6. For Description, type Enables API Gateway to call AWS services.

7. For Policy Document, type the following, and then choose Create Policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Resource": [
 "*"
],
 "Action": [
 "sns:ListTopics"
]
 }

56

Amazon API Gateway Developer Guide
Step 2: Create the GET Method

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

]
}

Note
This policy document allows the caller to get a list of the Amazon SNS topics for the AWS
account.

8. Choose Roles.

9. Choose Create New Role.

10. For Role Name, type a name for the execution role (for example, APIGatewayAWSProxyExecRole),
and then choose Next Step.

11. Next to Amazon EC2, choose Select.

Note
You choose Select here because you need to choose a standard AWS service role statement
before you can continue. There is currently no option to choose a standard API Gateway
service role statement. Later in this step, you will modify the standard Amazon EC2 service
role statement for use with API Gateway.

12. In the list of policies, select APIGatewayAWSProxyExecPolicy, and then choose Next Step.

13. For Role ARN, make a note of the Amazon Resource Name (ARN) for the execution role.You will
need it later. The ARN should look similar to:
arn:aws:iam::123456789012:role/APIGatewayAWSProxyExecRole, where 123456789012
is your AWS account ID.

14. Choose Create Role.

The invocation role IAM just created enables Amazon EC2 to get a list of the Amazon SNS topics
for the AWS account.You will change this role to enable API Gateway to get a list of the Amazon
SNS topics for the AWS account instead.

15. In the list of roles, select APIGatewayAWSProxyExecRole.

16. In the Trust Relationships area, choose Edit Trust Relationship.

17. For Policy Document, replace ec2.amazonaws.com with apigateway.amazonaws.com so that
the access control policy document now looks as follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

This policy document enables API Gateway to take actions on behalf of your AWS account.

18. Choose Update Trust Policy.

57

Amazon API Gateway Developer Guide
Step 3: Create the AWS Service Proxy Execution Role

Step 4: Specify Method Settings and Test the
Method
In this step, you will specify the settings for the GET method so that it can interact with an AWS service
through an AWS service proxy.You will then test the method.

To specify settings for the GET method and then test it

1. In the API Gateway console, in the Resources pane for the API named MyDemoAPI, in
/mydemoawsproxy, choose GET.

2. In the Setup pane, for Integration type, choose Show advanced, and then choose AWS Service
Proxy.

3. For AWS Region, choose the name of the AWS region where you want to get the Amazon SNS
topics.

4. For AWS Service, choose SNS.

5. For HTTP method, choose GET.

6. For Action, type ListTopics.

7. For Execution Role, type the ARN for the execution role.

8. Leave Path Override blank.

9. Choose Save.

10. In the Method Execution pane, in the Client box, choose TEST, and then choose Test. If successful,
Response Body will display a response similar to the following:

{
 "ListTopicsResponse": {
 "ListTopicsResult": {
 "NextToken": null,
 "Topics": [
 {
 "TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-1"
 },
 {
 "TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-2"
 },
 ...
 {
 "TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-N"
 }
]
 },
 "ResponseMetadata": {
 "RequestId": "abc1de23-45fa-6789-b0c1-d2e345fa6b78"
 }
 }
}

Step 5: Deploy the API
In this step, you will deploy the API so that you can begin calling it from outside of the API Gateway
console.

58

Amazon API Gateway Developer Guide
Step 4: Specify Method Settings and Test the Method

To deploy the API

1. In the Resources pane, choose Deploy API.

2. For Deployment stage, choose test.

3. For Deployment description, type Calling AWS service proxy walkthrough.

4. Choose Deploy.

Step 6:Test the API
In this step, you will go outside of the API Gateway console and use your AWS service proxy to interact
with the Amazon SNS service.

1. In the Stage Editor pane, next to Invoke URL, copy the URL to the clipboard. It should look like
this:

https://my-api-id.execute-api.region-id.amazonaws.com/test

2. Paste the URL into the address box of a new browser tab.

3. Append /mydemoawsproxy so that it looks like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test/mydemoawsproxy

Browse to the URL. Information similar to the following should be displayed:

{"ListTopicsResponse":{"ListTopicsResult":{"NextToken": null,"Topics":[{"Topi
cArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-1"},{"TopicArn":
"arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-2"},...{"TopicArn":
"arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-N}]},"ResponseMetadata":{"Re
questId":"abc1de23-45fa-6789-b0c1-d2e345fa6b78}}}

Step 7: Clean Up
You can delete the IAM resources the AWS service proxy needs to work.

Caution
If you delete an IAM resource an AWS service proxy relies on, that AWS service proxy and any
APIs that rely on it will no longer work. Deleting an IAM resource cannot be undone. If you want
to use the IAM resource again, you must re-create it.

To delete the associated IAM resources

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/iam/.

2. In the Details area, click Roles.

3. Select APIGatewayAWSProxyExecRole, and then choose Role Actions, Delete Role. When
prompted, choose Yes, Delete.

4. In the Details area, choose Policies.

5. Select APIGatewayAWSProxyExecPolicy, and then choose Policy Actions, Delete. When
prompted, choose Delete.

59

Amazon API Gateway Developer Guide
Step 6:Test the API

https://console.aws.amazon.com/iam/

You have reached the end of this walkthrough. For more detailed discussions about creating API as an
AWS service proxy, see Create an API as an Amazon S3 Proxy (p. 125), Create an API as a Lambda
Proxy (p. 143) or Create an API as an Amazon Kinesis Proxy (p. 158).

60

Amazon API Gateway Developer Guide
Step 7: Clean Up

Creating an API in Amazon API
Gateway

Topics

• Create an API in API Gateway (p. 61)

• Set up API Gateway API Method and Integration (p. 62)

• Set Up Amazon API Gateway API Request and Response Payload Mappings (p. 72)

• Amazon API Gateway API Request and Response Parameter-Mapping Reference (p. 98)

• API Gateway API Request and Response Payload-Mapping Template Reference (p. 101)

• Import and Export API Gateway API with Swagger Definition Files (p. 109)

• Create an API as an Amazon S3 Proxy (p. 125)

• Create an API Gateway API as an AWS Lambda Proxy (p. 143)

• Create an API Gateway API as an Amazon Kinesis Proxy (p. 158)

Create an API in API Gateway
In Amazon API Gateway you can create an API using the API Gateway console, AWS CLI, the API
Gateway control service REST API, and platform-specific or language-specific SDKs.

Topics

• Create an API Using the API Gateway Console (p. 61)

• Create an API Using the API Gateway Control Service API (p. 62)

• Create an API Using the AWS SDK for API Gateway (p. 62)

• Create an API Using the AWS CLI (p. 62)

Create an API Using the API Gateway Console
To create an API Gateway API using the API Gateway console, see Build an API Gateway API Step by
Step (p. 14).

You can learn how to create an API by following an example. For more information, see Build and Test
an API Gateway API from an Example (p. 6).

61

Amazon API Gateway Developer Guide
Create an API in API Gateway

Alternatively, you can create an API by using the API Gateway Import API (p. 110) feature to upload an
external API definition, such as one expressed in the Swagger 2.0 with the API Gateway Extensions to
Swagger (p. 115). The example provided in Build and Test an API Gateway API from an Example (p. 6)
uses the Import API feature.

Create an API Using the API Gateway Control
Service API
For more information about the API Gateway Control Service API, see Amazon API Gateway REST API
Reference.

Create an API Using the AWS SDK for API Gateway
For more information using a AWS SDK, see AWS SDKs.

Create an API Using the AWS CLI
For an example of creating an API Gateway API Using AWS CLI, see Create an API Gateway API for
Lambda tutorial.

Set up API Gateway API Method and Integration

Before Configuring Methods
• You must have the method available in API Gateway. Follow the instructions in Build an API Gateway

API Step by Step (p. 14).

• If you want the method to communicate with a Lambda function, you must have already created the
Lambda invocation role and Lambda execution role in IAM and created the Lambda function with which
your method will communicate in AWS Lambda. To create the roles and function, use the instructions
in Step 4: Create Lambda Functions (p. 23) of the Call Lambda Functions Synchronously (p. 22).

• If you want the method to communicate with an HTTP proxy, you must have already created and have
access to the HTTP endpoint URL with which your method will communicate.

After Setting Up Methods and Integration
The next step is to deploy the API to make it open for access. For instructions, see Deploying an
API (p. 221).

Topics

• Configure How API Gateway Integrates the Method with a Back End (p. 63)

• Configure How an API User Calls an API Method in Amazon API Gateway (p. 65)

• Configure How Data Is Mapped between a Method and its Integration in Amazon API Gateway (p. 67)

• Configure Mock Integration for a Method in API Gateway (p. 69)

62

Amazon API Gateway Developer Guide
Create an API Using the API Gateway Control Service

API

http://swagger.io/specification/
http://docs.aws.amazon.com/apigateway/api-reference/
http://docs.aws.amazon.com/apigateway/api-reference/
https://aws.amazon.com/tools/
http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https-example-configure-event-source.html
http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https-example-configure-event-source.html

Configure How API Gateway Integrates the Method
with a Back End
The settings of an API method defines the method and describes its behaviors. To create a method, you
must specify a resource, including the root (“/”), on which the method is exposed, a method type (GET,
POST, etc.), and how it will be integrated with the targeted back end. The method request and response
specify the contract with the calling app, stipulating which parameters the API can receive and what the
response looks like.The integration request and response specifies how API Gateway interacts with their
back end: enforcing secure communications over HTTPS with the back end and translating data formats
between the client and back end. The following topics describe how to use the API Gateway console to
specify a method settings.

1. In the Resources pane, choose the method.

2. In the Method Execution pane, choose Integration Request. For Integration type, choose one of
the following:

• Choose Lambda Function if your API will be communicating with a Lambda function.

• Choose HTTP Proxy if your API will be communicating with an HTTP endpoint.

• Choose Show Advanced, AWS Service Proxy if your API will be communicating directly with an
AWS service.

• Choose Mock Integration if your API is not yet final, but you want to generate API responses from
API Gateway anyway to unblock dependent teams for testing. If you choose this option, skip the
rest of the instructions in this topic and see Configure Mock Integration for a Method (p. 69).

3. If you chose Lambda Function, do the following:

1. For Lambda Region, choose the region identifier that corresponds to the region where you
created the Lambda function. For example, if you created the Lambda function in the US East
(N. Virginia) region, you would choose us-east-1. For a list of region names and identifiers,
see AWS Lambda in the Amazon Web Services General Reference.

2. For Lambda Function, type the name of the Lambda function, and then choose the function's
corresponding ARN.

3. Choose Save.

4. If you chose HTTP Proxy, do the following:

1. For HTTP method, choose the HTTP method type that most closely matches the method in the
HTTP proxy.

2. For Endpoint URL, type the URL of the HTTP proxy you want this method to use.

3. Choose Save.

5. If you chose Mock Integration, do the following:

• Choose Save.

6. If you chose Show advanced, AWS Service Proxy, do the following:

1. For AWS Region, choose the AWS region you want this method to use to call the action.

2. For AWS Service, choose the AWS service you want this method to call.

63

Amazon API Gateway Developer Guide
Configure How a Method Is Integrated with a Back End

http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

3. For HTTP method, choose the HTTP method type that corresponds to the action. For HTTP
method type, see the API reference documentation for the AWS service you chose for AWS
Service.

4. For Action, type the action you want to use. For a list of available actions, see the API reference
documentation for the AWS service you chose for AWS Service.

5. For Execution Role, type the ARN of the IAM role the method will use to call the action.

To create the IAM role, you can adapt the instructions in "To create the Lambda invocation role
and its policies" and "To create the Lambda execution role and its policy" in the Create Lambda
Functions (p. 23) section of the Call Lambda Functions Synchronously (p. 22); and specify an
access policy of the following format, with the desired number of action and resource statements:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "action-statement"
],
 "Resource": [
 "resource-statement"
]
 },
 ...
]
}

For the action and resource statement syntax, see the documentation for the AWS service you
chose for AWS Service.

For the IAM role's trust relationship, specify the following, which enables API Gateway to take
actions on behalf of your AWS account:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

6. If the action you typed for Action provides a custom resource path you want this method to use,
for Path Override, type this custom resource path. For the custom resource path, see the API
reference documentation for the AWS service you chose for AWS Service.

7. Choose Save.

7. Do both of the following:

64

Amazon API Gateway Developer Guide
Configure How a Method Is Integrated with a Back End

• Specify how the method will receive requests from, and send responses to, callers (which API
Gateway refers to as the API's method request/response), and how the method will authorize
requests by following the instructions in Configure How a User Calls an API Method (p. 65).

• Specify how the method will send requests to, and receive responses from, the Lambda function,
HTTP proxy, or AWS service proxy (which API Gateway refers to as the API's integration
request/response) by following the instructions in Configure How Data Is Mapped between Method
and Integration (p. 67).

Configure How an API User Calls an API Method
in Amazon API Gateway
To use the API Gateway console to specify an API's method request/response and the way in which the
method will authorize requests, follow these instructions.

Note
These instructions assume you have already completed the steps in Configure How a Method
Is Integrated with a Back End (p. 63).

1. With the method selected in the Resources pane, in the Method Execution pane, choose Method
Request.

2. To assign custom access permissions to the method, in the Authorization Settings area, for
Authorization Type, choose Edit, and then choose AWS_IAM. Only IAM roles with the correct IAM
policy attached will be allowed to call this method. If you do not want to assign custom access
permissions to the method, choose NONE.

• To create the IAM role, specify an access policy with a format like the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "resource-statement"
]
 }
]
}

In this access policy, resource-statement is the value of the ARN field in the Authorization
Settings section.

To create the IAM role, you can adapt the instructions in "To create the Lambda invocation role and
its policy" and "To create the Lambda execution role and its policy" in the Create Lambda
Functions (p. 23) section of the Call Lambda Functions Synchronously (p. 22).

To save your choice, choose Update. Otherwise, choose Cancel.

65

Amazon API Gateway Developer Guide
Configure How a User Calls an API Method

Note
You can also enable an API key. For instructions, see Use an API Key with the API Gateway
Console (p. 203).

3. To add a query string parameter to the method, do the following:

a. Choose the arrow next to URL Query String Parameters, and then choose Add query string.

b. For Name, type the name of the query string parameter.

c. Choose Create a new query string.

Note
To remove the query string parameter, choose Cancel or Remove.
To change the name of the query string parameter, you must remove it and create a new
one.

4. To add a header parameter to the method, do the following:

a. Choose the arrow next to HTTP Request Headers, and then choose Add header.

b. For Name, type the name of the header parameter.

c. Optionally, check the Caching option to make this method as an API cache key. For more
information, see Use Method/Integration Parameters as Cache Keys (p. 230).

d. Choose Create

Tip
To remove the header parameter, choose Cancel or Remove.
To change the name of the header parameter, you must remove the old header parameter
and create a new one in its place.

5. For non-GET method types, expand Request Models, and for Content Type and Model name,
type the content type and choose the name of a model that will transform caller-supplied data into
the expected format.

To create a model, see Create a Model (p. 79).

6. To send a set of custom response headers, a custom response data format, or both, back to callers
based on the HTTP status code returned by the method, do the following:

a. In the Method Execution pane, choose Method Response. By default, 200 response is included
in the method responses.You can modify it, e.g., to have the method return 201 instead. In
addition, you can add other responses, e.g., 409 for access denial and 500 for uninitialized
stage variables used. Either choose the arrow icon next to 200 to specify settings for the 200
response, or choose Add Response to specify settings for any other HTTP response status
code. If you choose Add Response, for HTTP Status, choose the response, choose Create,
and choose the arrow next to the response.

Tip
You will use Method Response to specify all possible response codes for your API
and use Integration Response to indicate to API Gateway how back-end errors are
mapped to an HTTP status code.

b. For each custom header you want to include in the response, in the Response Headers area,
choose Add Header, type the name of the header, and then choose Save. (Choose Remove
to remove a header from this list.)

To specify a response model to transform the output's data from one format to another, in the
Response Models area, choose Add Response Model. Type the content type (for Content
type), choose the model's name (for Models), and then choose Save. Choose Add Response
Model to specify an additional model, or choose Create a model to define a new model. (Choose
Remove to remove a response model selection from this list.)

66

Amazon API Gateway Developer Guide
Configure How a User Calls an API Method

Configure How Data Is Mapped between a Method
and its Integration in Amazon API Gateway

Note
API Gateway does not currently support binary payloads. Binary data can be passed around in
a payload as a JSON property value of a Base64-encoded string.

To use the API Gateway console to define the API's integration request/response, follow these instructions.

Note
These instructions assume you have already completed the steps in Configure How a Method
Is Integrated with a Back End (p. 63).

1. With the method selected in the Resources pane, in the Method Execution pane, choose Integration
Request.

2. For an HTTP proxy or an AWS service proxy, to associate a path parameter, a query string parameter,
or a header parameter defined in the integration request with a corresponding path parameter, query
string parameter, or header parameter in the method request of the HTTP proxy or AWS service
proxy, do the following:

a. Choose the arrow next to URL Path Parameters, URL Query String Parameters, or HTTP
Headers respectively, and then choose Add path, Add query string, or Add header,
respectively.

b. For Name, type the name of the path parameter, query string parameter, or header parameter
in the HTTP proxy or AWS service proxy.

c. For Mapped from, type the mapping value for the path parameter, query string parameter, or
header parameter. Use one of the following formats:

• method.request.path.parameter-name for a path parameter named parameter-name
as defined in the Method Request page.

• method.request.querystring.parameter-name for a query string parameter named
parameter-name as defined in the Method Request page.

• method.request.header.parameter-name for a header parameter named
parameter-name as defined in the Method Request page.

Alternatively, you can set a literal string value (enclosed by a pair of single quotes) to an
integration header.

d. Choose Create. (To delete a path parameter, query string parameter, or header parameter,
choose Cancel or Remove next to the parameter you want to delete.)

3. In the Body Mapping Templates area, choose an option for Request body passthrough to configure
how the method request body of an unmapped content type will be passed through the integration
request without transformation to the Lambda function, HTTP proxy, or AWS service proxy. There
are three options:

• Choose When no template matches the request Content-Type header if you want the method
request body to pass through the integration request to the back end without transformation when
the method request content type does not match any content types associated with the mapping
templates, as defined in the next step.

Note
When calling the API Gateway API, you choose this option by setting WHEN_NO_MATCH
as the passthroughBehavior property value on the Integration resource.

67

Amazon API Gateway Developer Guide
Configure How Data Is Mapped between Method and

Integration

http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/

• Choose When there are no templates defined (recommended) if you want the method request
body to pass through the integration request to the back end without transformation when no
mapping template is defined in the integration request. If a template is defined when this option is
selected, the method request of an unmapped content type will be rejected with an HTTP 415
Unsupported Media Type response.

Note
When calling the API Gateway API, you choose this option by setting WHEN_NO_TEMPLATE
as the passthroughBehavior property value on the Integration resource.

• Choose Never if you do not want the method request to pass through when either the method
request content type does not match any content type associated with the mapping templates
defined in the integration request or no mapping template is defined in the integration request.The
method request of an unmapped content type will be rejected with an HTTP 415 Unsupported
Media Type response.

Note
When calling the API Gateway API, you choose this option by setting NEVER as the
passthroughBehavior property value on the Integration resource.

For more information about the integration passthrough behaviors, see Integration Passthrough
Behaviors (p. 108).

4. To define a mapping template for an incoming request, choose Add mapping template under
Content-Type.Type a content type (e.g., application/json) in the input text box and then choose
the check mark icon to save the input.Then, type the mapping template manually or choose Generate
template to create one from a model template. For more information, see Set Up Request and
Response Payload Mappings (p. 72).

5. You can map an integration response from the back-end to a method response of the API returned
to the calling app. This includes returning to the client selected response headers from the available
ones from the back end, transforming the data format of the back-end response payload to an
API-specified format.You can specify such mapping by configuring Method Response and
Integration Response from the Method Execution page.

a. In the Method Execution pane, choose Integration Response. Choose either the arrow next
to 200 to specify settings for a 200 HTTP response code from the method, or choose Add
integration response to specify settings for any other HTTP response status code from the
method.

b. For Lambda error regex (for a Lambda function) or HTTP status regex (for an HTTP proxy or
AWS service proxy), type a regular expression to specify which Lambda function error strings
(for a Lambda function) or HTTP response status codes (for an HTTP proxy or AWS service
proxy) map to this output mapping. For example, to map all 2xx HTTP response status codes
from an HTTP proxy to this output mapping, type "2\\d{2}" for HTTP status regex. To return
an error message containing "Invalid Request" from a Lambda function to a 400 Bad Request
response, type ".*Invalid request.*" as the Lambda error regex expression. On the other
hand, to return 400 Bad Request for all unmapped error messages from Lambda, type
"(\n|.)+" in Lambda error regex. This last regular expression can be used for the default
error response of an API.

Note
The error patterns are matched against the entire string of the errorMessage property
in the Lambda response, which is populated by context.fail(errorMessage) in
Node.js or by throw new MyException(errorMessage) in Java. Also, escaped
characters are unescaped before the regular expression is applied.
If you use '.+' as the selection pattern to filter responses, be aware that it may not match
a response containing a newline ('\n') character.

c. If enabled, for Method response status, choose the HTTP response status code you defined
in the Method Response page.

68

Amazon API Gateway Developer Guide
Configure How Data Is Mapped between Method and

Integration

http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/

d. For Header Mappings, for each header you defined for the HTTP response status code in the
Method Response page, specify a mapping value by choosing Edit. For Mapping value, use
the format integration.response.header.header-name where header-name is the name
of a response header from the backend. For example, to return the backend response's Date
header as an API method's response's Timestamp header, the Response header column will
contain an Timestamp entry and the associated Mapping value should be set to
integration.response.header.Date.

e. In the Template Mappings area, next to Content type, choose Add. In the Content type box,
type the content type of the data that will be passed from the Lambda function, HTTP proxy, or
AWS service proxy to the method. Choose Update.

f. Select Output passthrough if you want the method to receive, but not modify, the data from
the Lambda function, HTTP proxy, or AWS service proxy.

g. If Output passthrough is cleared, for Output mapping, specify the output mapping template
you want the Lambda function, HTTP proxy, or AWS service proxy to use to send data to the
method.You can either type the mapping template manually or choose a model from Generate
template from model.

h. Choose Save.

Configure Mock Integration for a Method in API
Gateway
Amazon API Gateway supports mock integrations for API methods. This feature enables API developers
to generate API responses from API Gateway directly, without the need for an integration back end. As
an API developer, you can use this feature to unblock other dependent teams needing to work with an
API before the project development is complete.You can also leverage this feature to provision a landing
page of your API, which can provide an overview of and navigation to your API. For an example of such
a landing page, see the integration request and response of the GET method on the root resource of the
example API discussed in Build and Test an API Gateway API from an Example (p. 6).

As an API developer, you decide how API Gateway responds to a mock integration request. For this, you
configure the method's integration request and integration response to associate a response with a given
status code. The tasks involve setting up a mapping template in the integration request to specify a
supported status code in the request payload and setting up maping templates, one for a supported status
code, in the integration response to provide associated response payloads. At run time API Gateway
retrieves the status code from the request payload and invokes the matching template to return the
associated response payload.The integration request payload's content type must be application/json
and its format must be of {"statusCode": ddd, ... }, where ddd stands for an HTTP status code.
The integration response payload's content type can be any of those matching the response data, including
application/json, application/xml, text/html, text/plain and etc.

In this section, you will learn how to use the API Gateway console to enable the mock integration for an
API method.

Topics

• Prerequisites (p. 70)

• Enable Mock Integration on a Method (p. 70)

• Example Request Templates (p. 71)

• Example Response Templates (p. 72)

69

Amazon API Gateway Developer Guide
Configure Mock Integration for a Method

Prerequisites
• You must have the method available in API Gateway. Follow the instructions in Build an API Gateway

API Step by Step (p. 14).

Enable Mock Integration on a Method
1. Choose an API resource and create a method. In the Setup pane, choose Mock Integration , and

then choose Save.

2. In the Method Execution pane, choose Integration Request.

3. By default, mock integrations return a 200 HTTP status code. To customize this default behavior, do
the following:

1. Expand Mapping Templates.

2. For Content-Type, do one of the following:

• If the desired content type is already visible (for example, application/json), then choose it.

• If the desired content type is not already visible, then choose Add mapping template, type
the desired content type (for example, application/json), and then choose Create.

3. In the Template editor, type the content of the template you want API Gateway to use to
determine which HTTP status code to use in the integration response.The template must output
a JSON payload containing the statusCode property. For more information, see Example
Request Templates (p. 71).

4. Next to Mapping template, choose Save.

4. For each query string parameter or header parameter you want to add to the method, do the following:

1. Choose Method Execution, and then choose Method Request.

2. Choose the arrow next to URL Query String Parameters or HTTP Request Headers, and then
choose Add query string or Add header, respectively.

3. For Name, type the name of the query string parameter or header parameter, and then choose
Create a new query string or Create, respectively.

Note
To remove a query string parameter or header parameter, choose Cancel or Remove.
To change the name of a query string parameter or header parameter, you must remove
it and create a new one in its place.

5. Choose Method Execution, and then choose Method Response.

6. Do one of the following:

• If all of the HTTP Status entries you want to use are already visible (for example, 200), then skip
ahead to step 8.

• If any of the HTTP Status entries you want to use are not already visible, then for each missing
HTTP Status entry, choose Add Response, choose the HTTP status code that you want to use,
and then choose Create.

7. Choose Method Execution, and then choose Integration Response.

8. Do one of the following:

70

Amazon API Gateway Developer Guide
Configure Mock Integration for a Method

• If all of the Method response status entries you want to use are already visible (for example,
200), then skip ahead to step 10.

• If any of the Method response status entries you want to use are not already visible, then for
each missing Method response status entry, choose Add integration response, for Method
response status choose the HTTP Status entry you created earlier, and then choose Save.

9. For each Method response status entry you want to use, do the following:

1. Expand the row that corresponds to the Method response status entry you want to use.

2. For HTTP status regex, type the matching HTTP Status entry (for example, type 400 for a 400
HTTP Status entry or 500 for a 500 HTTP Status entry). Or specify a range of matching HTTP
status codes (for example, 5/d{2} matches all 5XX HTTP status codes).

3. Expand Mapping Templates.

4. For Content-Type, do one of the following:

• If the desired content type is already visible (for example, application/json), then choose it.

• If the desired content type is not already visible, then choose Add mapping template, type
the desired content type (for example, application/json), and then choose Create.

5. In the Template editor, type the contents of the template that you want API Gateway to use to
respond to the caller. For more information, see Example Response Templates (p. 72).

6. Next to Mapping template, choose Save.

10. Do one of the following to test the method:

• Call the method from the API Gateway console. Follow the instructions in Test a Method Using
the Console (p. 259).

• Call the method from a web browser, a web debugging proxy tool or the cURL command-line tool,
or from your own API. Follow the instructions in Calling a Deployed API (p. 258).

Example Request Templates
The following example shows a request template that always uses the 200 HTTP status code.

{
 "statusCode": 200
}

The following example shows a request template that uses the 200 HTTP status code if the request
specifies the petType parameter of cat; 400 if the request specifies dog; and uses 500 otherwise. This
example is based on the one in the Map Request Parameters (p. 33).

{
 #if($input.params('petType') == "cat")
 "statusCode": 200
 #elseif($input.params('petType') == "dog")
 "statusCode": 400
 #else
 "statusCode": 500

71

Amazon API Gateway Developer Guide
Configure Mock Integration for a Method

 #end
}

Example Response Templates
The following two examples show response templates that respond with the same information every time.
These examples are based on the one in the Map Request Parameters (p. 33).

Example 400 response.
{
 "Message": "Error: petType not valid."
}

Example 500 response.
{
 "Message": "Error: petType not valid or not specified."
}

The following example shows a response template that responds with the same information every time,
but includes the value the caller specified for the petType parameter. This example is based on the one
in the Map Request Parameters (p. 33).

Example 200 response for ?petType=cat (response will contain "type": "cat").
{
 "id": 1,
 "name": "Kitty",
 "type": "$input.params('petType')"
}

Set Up Amazon API Gateway API Request and
Response Payload Mappings

In API Gateway, an API's method request can take a payload in a different format from the corresponding
integration request payload, as required in the back end. Similarly, the back end may return an integration
response payload different from the method response payload, as expected by the front end. API Gateway
lets you map the payload from a method request to the corresponding integration request and from an
integration response to the corresponding method response.You use mapping templates to specify the
mapping and can create model to facilitate the template generation. The section explains how to use the
map the API request and response payload using models and mapping templates.

Topics

• Models (p. 73)

• Mapping Templates (p. 76)

• Tasks for Models and Mapping Templates (p. 79)

• Create a Model in API Gateway (p. 79)

• View a List of Models in API Gateway (p. 80)

• Delete a Model in API Gateway (p. 80)

• Photos Example (API Gateway Models and Mapping Templates) (p. 81)

72

Amazon API Gateway Developer Guide
Set Up Request and Response Payload Mappings

• News Article Example (API Gateway Models and Mapping Templates) (p. 84)

• Sales Invoice Example (API Gateway Models and Mapping Templates) (p. 88)

• Employee Record Example (API Gateway Models and Mapping Templates) (p. 93)

Models
In API Gateway, a model defines the format, also known as the schema or shape, of some data. Models
are most useful for generating strongly typed SDK of your API.They can also be useful in helping generate
a mapping template or validate a payload. Because API Gateway is designed to work primarily with
JavaScript Object Notation (JSON)-formatted data, API Gateway uses JSON Schema to define the
expected schema of the data.

For example, the following expresses some JSON data:

{
 "department": "produce",
 "categories": [
 "fruit",
 "vegetables"
],
 "bins": [
 {
 "category": "fruit",
 "type": "apples",
 "price": 1.99,
 "unit": "pound",
 "quantity": 232
 },
 {
 "category": "fruit",
 "type": "bananas",
 "price": 0.19,
 "unit": "each",
 "quantity": 112
 },
 {
 "category": "vegetables",
 "type": "carrots",
 "price": 1.29,
 "unit": "bag",
 "quantity": 57
 }
]
}

In the preceding example:

• The top-level or root object contains a department string object, a categories array, and a bins
array.

• The categories array contains a collection of string values.

• The bins array contains a collection of objects. Each object contains a category string object, a type
string object, a price number object, a unit string object, and a quantity number object.

The corresponding model is expressed in JSON Schema notation:

73

Amazon API Gateway Developer Guide
Models

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "GroceryStoreInputModel",
 "type": "object",
 "properties": {
 "department": { "type": "string" },
 "categories": {
 "type": "array",
 "items": { "type": "string" }
 },
 "bins": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "category": { "type": "string" },
 "type": { "type": "string" },
 "price": { "type": "number" },
 "unit": { "type": "string" },
 "quantity": { "type": "integer" }
 }
 }
 }
 }
}

In the preceding example:

• The $schema object represents a valid JSON Schema version identifier. In this example, it refers to
JSON Schema, draft v4.

• The title object is a human-readable identifier for the model. In this example, it is
GroceryStoreInputModel.

• The top-level, or root, construct in the JSON data is an object.

• The root object in the JSON data contains department, categories, and bins properties.

• The department property is a string object in the JSON data.

• The categories property is an array in the JSON data. The array contains string values in the JSON
data.

• The bins property is an array in the JSON data. The array contains objects in the JSON data. Each
of these objects in the JSON data contains a category string, a type string, a price number, a unit
string, and a quantity integer (a number without a fraction or exponent part).

Alternatively, you could include part of this schema, for example, the item definition of the bins array, in
a separate section of the same file and use the $ref primitive to reference this reusable definition in
other parts of the schema. Using $ref, the above model definition file can be expressed as follows:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "GroceryStoreInputModel",
 "type": "object",
 "properties": {
 "department": { "type": "string" },
 "categories": {
 "type": "array",
 "items": { "type": "string" }

74

Amazon API Gateway Developer Guide
Models

 },
 "bins": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/Bin"
 }
 }
 },
 "definitions": {
 "Bin" : {
 "type": "object",
 "properties": {
 "category": { "type": "string" },
 "type": { "type": "string" },
 "price": { "type": "number" },
 "unit": { "type": "string" },
 "quantity": { "type": "integer" }
 }
 }
 }
}

The definitions section contains the schema definition of the Bin item that is referenced in the bins
array with "ref": "#/definitions/Bin". Using reusable definitions this way makes your model
definition easier to read.

In addition, you can also reference another model schema defined in an external model file by setting
that model's URL as the value of the $ref property: "$ref":
"https://apigateway.amazonaws.com/restapis/{restapi_id}/models/{model_name}".
For example, supposed you have the following full-fledged model named Bin2 created under an API with
an identifier of fugvjdxtri:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "GroceryStoreInputModel",
 "type": "object",
 "properties": {
 "Bin" : {
 "type": "object",
 "properties": {
 "category": { "type": "string" },
 "type": { "type": "string" },
 "price": { "type": "number" },
 "unit": { "type": "string" },
 "quantity": { "type": "integer" }
 }
 }
 }
}

You can then reference it from the GroceryStoreInputModel from the same API, as shown as follows:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "GroceryStoreInputModel",
 "type": "object",

75

Amazon API Gateway Developer Guide
Models

 "properties": {
 "department": { "type": "string" },
 "categories": {
 "type": "array",
 "items": { "type": "string" }
 },
 "bins": {
 "type": "array",
 "items": {
 "$ref": "https://apigateway.amazonaws.com/restapis/fugvjdxtri/mod
els/Bin2"
 }
 }
 }
}

The referencing and referenced models must be from the same API.

The examples do not use advanced JSON Schema features, such as specifying required items; minimum
and maximum allowed string lengths, numeric values, and array item lengths; regular expressions; and
more. For more information, see Introducing JSON and JSON Schema.

For more complex JSON data formats and their models, see the following examples:

• Input Model (Photos Example) (p. 82) and Output Model (Photos Example) (p. 83) in the Photos
Example (p. 81)

• Input Model (News Article Example) (p. 85) and Output Model (News Article Example) (p. 87) in the
News Article Example (p. 84)

• Input Model (Sales Invoice Example) (p. 89) and Output Model (Sales Invoice Example) (p. 91) in the
Sales Invoice Example (p. 88)

• Input Model (Employee Record Example) (p. 94) and Output Model (Employee Record Example) (p. 96)
in the Employee Record Example (p. 93)

To experiment with models in API Gateway, follow the instructions in Transform Response Payload (p. 41),
specifically Step 1: Create Models (p. 43).

Mapping Templates
In API Gateway, a mapping template is used to transform some data from one format to another.You
create and use input mapping templates and output mapping templates when you need to inform API
Gateway about the schema of the data being sent from or returned to the caller, respectively. API Gateway
uses the Velocity Template Language (VTL) and JSONPath expressions to define mapping templates.

For an example of an input mapping template, consider the example JSON data from the previous section.
The following input mapping template makes no transform to the JSON data as API Gateway receives
the JSON data from the caller:

#set($inputRoot = $input.path('$'))
{
 "department": "$inputRoot.department",
 "categories": [
#foreach($elem in $inputRoot.categories)
 "$elem"#if($foreach.hasNext),#end

#end

76

Amazon API Gateway Developer Guide
Mapping Templates

http://json.org
http://json-schema.org
http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://goessner.net/articles/JsonPath/

],
 "bins" : [
#foreach($elem in $inputRoot.bins)
 {
 "category" : "$elem.category",
 "type" : "$elem.type",
 "price" : $elem.price,
 "unit" : "$elem.unit",
 "quantity" : $elem.quantity
 }#if($foreach.hasNext),#end

#end
]
}

The preceding input mapping template is expressed as follows:

• Let the variable $inputRoot in the input mapping template represent the root object in the original
JSON data.

• The values of the department object and categories and bins arrays in the input mapping template
(represented by $inputRoot.department, $inputRoot.categories, and $inputRoot.bins)
map to the corresponding values of the department object and categories and bins arrays in the
root object in the original JSON data.

• In the input mapping template, each of the values in the categories array (represented by the first
$elem), and each of the objects in the bins array (represented by the second $elem), map to the
corresponding values in the categories array and objects in the bins array, respectively, within the
root object in the original JSON data.

• For each of objects in the bins object, the values of the category, type, price, unit, and quantity
objects in the input mapping template (represented by $elem.category, $elem.type, $elem.price,
$elem.unit, and $elem.quantity, respectively) map to the corresponding values of the category,
type, price, unit, and quantity objects in the original JSON data, respectively.

For an example of an output mapping template, first consider the following JSON data schema, which is
based on the example JSON data from the previous section.

Note
None of the array and object names in this JSON data schema match the JSON data from the
previous section:

{
 "choices": [
 {
 "kind": "apples",
 "suggestedPrice": "1.99 per pound",
 "available": 232
 },
 {
 "kind": "bananas",
 "suggestedPrice": "0.19 per each",
 "available": 112
 },
 {
 "kind": "carrots",
 "suggestedPrice": "1.29 per bag",
 "available": 57

77

Amazon API Gateway Developer Guide
Mapping Templates

 }
]
}

To transform the example JSON data from the previous section into this JSON data schema, you would
use the following model:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "GroceryStoreOutputModel",
 "type": "object",
 "properties": {
 "choices": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "kind": { "type": "string" },
 "suggestedPrice": { "type": "string" },
 "available": { "type": "integer" }
 }
 }
 }
 }
}

In the preceding example, the JSON schema is expressed as follows:

• The $schema object represents a valid JSON Schema version identifier. In this example, it refers to
JSON Schema, draft v4.

• The title object is a human-readable identifier for the model. In this example, it is
GroceryStoreOutputModel.

• The top-level, or root, construct in the JSON data is an object.

• The root object in the JSON data contains an array of objects.

• Each object in the array of objects contains a kind string, a suggestedPrice string, and an available
integer (a number without a fraction or exponent part).

You would then use the following output mapping template, which is based on this model:

#set($inputRoot = $input.path('$'))
{
 "choices": [
#foreach($elem in $inputRoot.bins)
 {
 "kind": "$elem.type",
 "suggestedPrice": "$elem.price per $elem.unit",
 "available": $elem.quantity
 }#if($foreach.hasNext),#end

#end
]
}

The preceding output mapping template is expressed as follows:

78

Amazon API Gateway Developer Guide
Mapping Templates

• Let the variable $inputRoot in the output mapping template represent the root object in the original
JSON data from the previous section. Note the variables in the output mapping template map to the
original JSON data, not the desired transformed JSON data schema.

• The choices array in the output mapping template maps to the bins array with the root object in the
original JSON data ($inputRoot.bins).

• In the output mapping template, each of the objects in the choices array (represented by $elem) map
to the corresponding objects in the bins array within the root object in the original JSON data.

• In the output mapping template, for each of objects in the choices object, the values of the kind and
available objects (represented by $elem.type and $elem.quantity) map to the corresponding
values of the type and value objects in each of the objects in the original JSON data's bins array,
respectively.

• In the output mapping template, for each of objects in the choices object, the value of the
suggestedPrice object is a concatenation of the corresponding value of the price and unit objects
in each of the objects in the original JSON data, respectively, with each value separated by the word
per.

For more information about the Velocity Template Language, see Apache Velocity - VTL Reference. For
more information about JSONPath, see JSONPath - XPath for JSON.

To explore more complex mapping templates, see the following examples:

• Input Mapping Template (Photos Example) (p. 82) and Output Mapping Template (Photos
Example) (p. 84) in the Photos Example (p. 81)

• Input Mapping Template (News Article Example) (p. 86) and Output Mapping Template (News Article
Example) (p. 87) in the News Article Example (p. 84)

• Input Mapping Template (Sales Invoice Example) (p. 90) and Output Mapping Template (Sales Invoice
Example) (p. 92) in the Sales Invoice Example (p. 88)

• Input Mapping Template (Employee Record Example) (p. 95) and Output Mapping Template (Employee
Record Example) (p. 97) in the Employee Record Example (p. 93)

To experiment with mapping templates in API Gateway, follow the instructions in Transform Response
Payload (p. 41), specifically Step 5: Set Up and Test the Methods (p. 48).

Tasks for Models and Mapping Templates
For additional things you can do with models and mapping templates, see the following:

• Create a Model (p. 79)

• View a List of Models (p. 80)

• Delete a Model (p. 80)

Create a Model in API Gateway
Use the API Gateway console to create a model for an API.

Topics

• Prerequisites (p. 80)

• Create a Model With the API Gateway Console (p. 80)

79

Amazon API Gateway Developer Guide
Tasks for Models and Mapping Templates

http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://goessner.net/articles/JsonPath

Prerequisites
• You must have an API available in API Gateway. Follow the instructions in Creating an API (p. 61).

Create a Model With the API Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API where you want to create the model, choose Models.

3. Choose Create.

4. For Model Name, type a name for the model.

5. For Content Type, type the model's content type (for example, application/json for JSON).

6. (Optional) For Model description, type a description for the model.

7. For Model schema, type the model's schema. For more information about model schemas, see Set
Up Request and Response Payload Mappings (p. 72).

8. Choose Create model.

View a List of Models in API Gateway
Use the API Gateway console to view a list of models.

Topics

• Prerequisites (p. 80)

• View a List of Models with the API Gateway Console (p. 80)

Prerequisites
• You must have at least one model in API Gateway. Follow the instructions in Create a Model (p. 79).

View a List of Models with the API Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API, choose Models.

Delete a Model in API Gateway
Use the API Gateway console to delete a model.

Warning
Deleting a model may cause part or all of the corresponding API to become unusable by API
callers. Deleting a model cannot be undone.

Delete a Model with the API Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API for the model, choose Models.

3. In the Models pane, choose the model you want to delete, and then choose Delete Model.

4. When prompted, choose Delete.

80

Amazon API Gateway Developer Guide
View a List of Models

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Photos Example (API Gateway Models and
Mapping Templates)
The following sections provide examples of models and mapping templates that could be used for a
sample photo API in API Gateway. For more information about models and mapping templates in API
Gateway, see Set Up Request and Response Payload Mappings (p. 72).

Topics

• Original Data (Photos Example) (p. 81)

• Input Model (Photos Example) (p. 82)

• Input Mapping Template (Photos Example) (p. 82)

• Transformed Data (Photos Example) (p. 83)

• Output Model (Photos Example) (p. 83)

• Output Mapping Template (Photos Example) (p. 84)

Original Data (Photos Example)
The following is the original JSON data for the photos example:

{
 "photos": {
 "page": 1,
 "pages": "1234",
 "perpage": 100,
 "total": "123398",
 "photo": [
 {
 "id": "12345678901",
 "owner": "23456789@A12",
 "secret": "abc123d456",
 "server": "1234",
 "farm": 1,
 "title": "Sample photo 1",
 "ispublic": 1,
 "isfriend": 0,
 "isfamily": 0
 },
 {
 "id": "23456789012",
 "owner": "34567890@B23",
 "secret": "bcd234e567",
 "server": "2345",
 "farm": 2,
 "title": "Sample photo 2",
 "ispublic": 1,
 "isfriend": 0,
 "isfamily": 0
 }
]
 }
}

81

Amazon API Gateway Developer Guide
Photos Example

Input Model (Photos Example)
The following is the input model that corresponds to the original JSON data for the photos example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PhotosInputModel",
 "type": "object",
 "properties": {
 "photos": {
 "type": "object",
 "properties": {
 "page": { "type": "integer" },
 "pages": { "type": "string" },
 "perpage": { "type": "integer" },
 "total": { "type": "string" },
 "photo": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "id": { "type": "string" },
 "owner": { "type": "string" },
 "secret": { "type": "string" },
 "server": { "type": "string" },
 "farm": { "type": "integer" },
 "title": { "type": "string" },
 "ispublic": { "type": "integer" },
 "isfriend": { "type": "integer" },
 "isfamily": { "type": "integer" }
 }
 }
 }
 }
 }
 }
}

Input Mapping Template (Photos Example)
The following is the input mapping template that corresponds to the original JSON data for the photos
example:

#set($inputRoot = $input.path('$'))
{
 "photos": {
 "page": $inputRoot.photos.page,
 "pages": "$inputRoot.photos.pages",
 "perpage": $inputRoot.photos.perpage,
 "total": "$inputRoot.photos.total",
 "photo": [
#foreach($elem in $inputRoot.photos.photo)
 {
 "id": "$elem.id",
 "owner": "$elem.owner",
 "secret": "$elem.secret",

82

Amazon API Gateway Developer Guide
Photos Example

 "server": "$elem.server",
 "farm": $elem.farm,
 "title": "$elem.title",
 "ispublic": $elem.ispublic,
 "isfriend": $elem.isfriend,
 "isfamily": $elem.isfamily
 }#if($foreach.hasNext),#end

#end
]
 }
}

Transformed Data (Photos Example)
The following is one example of how the original photos example JSON data could be transformed for
output:

{
 "photos": [
 {
 "id": "12345678901",
 "owner": "23456789@A12",
 "title": "Sample photo 1",
 "ispublic": 1,
 "isfriend": 0,
 "isfamily": 0
 },
 {
 "id": "23456789012",
 "owner": "34567890@B23",
 "title": "Sample photo 2",
 "ispublic": 1,
 "isfriend": 0,
 "isfamily": 0
 }
]
}

Output Model (Photos Example)
The following is the output model that corresponds to the transformed JSON data format:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PhotosOutputModel",
 "type": "object",
 "properties": {
 "photos": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "id": { "type": "string" },
 "owner": { "type": "string" },

83

Amazon API Gateway Developer Guide
Photos Example

 "title": { "type": "string" },
 "ispublic": { "type": "integer" },
 "isfriend": { "type": "integer" },
 "isfamily": { "type": "integer" }
 }
 }
 }
 }
}

Output Mapping Template (Photos Example)
The following is the output mapping template that corresponds to the transformed JSON data format.
The template variables here are based on the original, not transformed, JSON data format:

#set($inputRoot = $input.path('$'))
{
 "photos": [
#foreach($elem in $inputRoot.photos.photo)
 {
 "id": "$elem.id",
 "owner": "$elem.owner",
 "title": "$elem.title",
 "ispublic": $elem.ispublic,
 "isfriend": $elem.isfriend,
 "isfamily": $elem.isfamily
 }#if($foreach.hasNext),#end

#end
]
}

News Article Example (API Gateway Models and
Mapping Templates)
The following sections provide examples of models and mapping templates that could be used for a
sample news article API in API Gateway. For more information about models and mapping templates in
API Gateway, see Set Up Request and Response Payload Mappings (p. 72).

Topics

• Original Data (News Article Example) (p. 84)

• Input Model (News Article Example) (p. 85)

• Input Mapping Template (News Article Example) (p. 86)

• Transformed Data (News Article Example) (p. 86)

• Output Model (News Article Example) (p. 87)

• Output Mapping Template (News Article Example) (p. 87)

Original Data (News Article Example)
The following is the original JSON data for the news article example:

84

Amazon API Gateway Developer Guide
News Article Example

{
 "count": 1,
 "items": [
 {
 "last_updated_date": "2015-04-24",
 "expire_date": "2016-04-25",
 "author_first_name": "John",
 "description": "Sample Description",
 "creation_date": "2015-04-20",
 "title": "Sample Title",
 "allow_comment": "1",
 "author": {
 "last_name": "Doe",
 "email": "johndoe@example.com",
 "first_name": "John"
 },
 "body": "Sample Body",
 "publish_date": "2015-04-25",
 "version": "1",
 "author_last_name": "Doe",
 "parent_id": 2345678901,
 "article_url": "http://www.example.com/articles/3456789012"
 }
],
 "version": 1
}

Input Model (News Article Example)
The following is the input model that corresponds to the original JSON data for the news article example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "NewsArticleInputModel",
 "type": "object",
 "properties": {
 "count": { "type": "integer" },
 "items": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "last_updated_date": { "type": "string" },
 "expire_date": { "type": "string" },
 "author_first_name": { "type": "string" },
 "description": { "type": "string" },
 "creation_date": { "type": "string" },
 "title": { "type": "string" },
 "allow_comment": { "type": "string" },
 "author": {
 "type": "object",
 "properties": {
 "last_name": { "type": "string" },
 "email": { "type": "string" },
 "first_name": { "type": "string" }
 }

85

Amazon API Gateway Developer Guide
News Article Example

 },
 "body": { "type": "string" },
 "publish_date": { "type": "string" },
 "version": { "type": "string" },
 "author_last_name": { "type": "string" },
 "parent_id": { "type": "integer" },
 "article_url": { "type": "string" }
 }
 }
 },
 "version": { "type": "integer" }
 }
}

Input Mapping Template (News Article Example)
The following is the input mapping template that corresponds to the original JSON data for the news
article example:

#set($inputRoot = $input.path('$'))
{
 "count": $inputRoot.count,
 "items": [
#foreach($elem in $inputRoot.items)
 {
 "last_updated_date": "$elem.last_updated_date",
 "expire_date": "$elem.expire_date",
 "author_first_name": "$elem.author_first_name",
 "description": "$elem.description",
 "creation_date": "$elem.creation_date",
 "title": "$elem.title",
 "allow_comment": "$elem.allow_comment",
 "author": {
 "last_name": "$elem.author.last_name",
 "email": "$elem.author.email",
 "first_name": "$elem.author.first_name"
 },
 "body": "$elem.body",
 "publish_date": "$elem.publish_date",
 "version": "$elem.version",
 "author_last_name": "$elem.author_last_name",
 "parent_id": $elem.parent_id,
 "article_url": "$elem.article_url"
 }#if($foreach.hasNext),#end

#end
],
 "version": $inputRoot.version
}

Transformed Data (News Article Example)
The following is one example of how the original news article example JSON data could be transformed
for output:

86

Amazon API Gateway Developer Guide
News Article Example

{
 "count": 1,
 "items": [
 {
 "creation_date": "2015-04-20",
 "title": "Sample Title",
 "author": "John Doe",
 "body": "Sample Body",
 "publish_date": "2015-04-25",
 "article_url": "http://www.example.com/articles/3456789012"
 }
],
 "version": 1
}

Output Model (News Article Example)
The following is the output model that corresponds to the transformed JSON data format:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "NewsArticleOutputModel",
 "type": "object",
 "properties": {
 "count": { "type": "integer" },
 "items": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "creation_date": { "type": "string" },
 "title": { "type": "string" },
 "author": { "type": "string" },
 "body": { "type": "string" },
 "publish_date": { "type": "string" },
 "article_url": { "type": "string" }
 }
 }
 },
 "version": { "type": "integer" }
 }
}

Output Mapping Template (News Article Example)
The following is the output mapping template that corresponds to the transformed JSON data format.
The template variables here are based on the original, not transformed, JSON data format:

#set($inputRoot = $input.path('$'))
{
 "count": $inputRoot.count,
 "items": [
#foreach($elem in $inputRoot.items)
 {
 "creation_date": "$elem.creation_date",

87

Amazon API Gateway Developer Guide
News Article Example

 "title": "$elem.title",
 "author": "$elem.author.first_name $elem.author.last_name",
 "body": "$elem.body",
 "publish_date": "$elem.publish_date",
 "article_url": "$elem.article_url"
 }#if($foreach.hasNext),#end

#end
],
 "version": $inputRoot.version
}

Sales Invoice Example (API Gateway Models and
Mapping Templates)
The following sections provide examples of models and mapping templates that could be used for a
sample sales invoice API in API Gateway. For more information about models and mapping templates
in API Gateway, see Set Up Request and Response Payload Mappings (p. 72).

Topics

• Original Data (Sales Invoice Example) (p. 88)

• Input Model (Sales Invoice Example) (p. 89)

• Input Mapping Template (Sales Invoice Example) (p. 90)

• Transformed Data (Sales Invoice Example) (p. 91)

• Output Model (Sales Invoice Example) (p. 91)

• Output Mapping Template (Sales Invoice Example) (p. 92)

Original Data (Sales Invoice Example)
The following is the original JSON data for the sales invoice example:

{
 "DueDate": "2013-02-15",
 "Balance": 1990.19,
 "DocNumber": "SAMP001",
 "Status": "Payable",
 "Line": [
 {
 "Description": "Sample Expense",
 "Amount": 500,
 "DetailType": "ExpenseDetail",
 "ExpenseDetail": {
 "Customer": {
 "value": "ABC123",
 "name": "Sample Customer"
 },
 "Ref": {
 "value": "DEF234",
 "name": "Sample Construction"
 },
 "Account": {
 "value": "EFG345",

88

Amazon API Gateway Developer Guide
Sales Invoice Example

 "name": "Fuel"
 },
 "LineStatus": "Billable"
 }
 }
],
 "Vendor": {
 "value": "GHI456",
 "name": "Sample Bank"
 },
 "APRef": {
 "value": "HIJ567",
 "name": "Accounts Payable"
 },
 "TotalAmt": 1990.19
}

Input Model (Sales Invoice Example)
The following is the input model that corresponds to the original JSON data for the sales invoice example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "InvoiceInputModel",
 "type": "object",
 "properties": {
 "DueDate": { "type": "string" },
 "Balance": { "type": "number" },
 "DocNumber": { "type": "string" },
 "Status": { "type": "string" },
 "Line": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "Description": { "type": "string" },
 "Amount": { "type": "integer" },
 "DetailType": { "type": "string" },
 "ExpenseDetail": {
 "type": "object",
 "properties": {
 "Customer": {
 "type": "object",
 "properties": {
 "value": { "type": "string" },
 "name": { "type": "string" }
 }
 },
 "Ref": {
 "type": "object",
 "properties": {
 "value": { "type": "string" },
 "name": { "type": "string" }
 }
 },
 "Account": {

89

Amazon API Gateway Developer Guide
Sales Invoice Example

 "type": "object",
 "properties": {
 "value": { "type": "string" },
 "name": { "type": "string" }
 }
 },
 "LineStatus": { "type": "string" }
 }
 }
 }
 }
 },
 "Vendor": {
 "type": "object",
 "properties": {
 "value": { "type": "string" },
 "name": { "type": "string" }
 }
 },
 "APRef": {
 "type": "object",
 "properties": {
 "value": { "type": "string" },
 "name": { "type": "string" }
 }
 },
 "TotalAmt": { "type": "number" }
 }
}

Input Mapping Template (Sales Invoice Example)
The following is the input mapping template that corresponds to the original JSON data for the sales
invoice example:

#set($inputRoot = $input.path('$'))
{
 "DueDate": "$inputRoot.DueDate",
 "Balance": $inputRoot.Balance,
 "DocNumber": "$inputRoot.DocNumber",
 "Status": "$inputRoot.Status",
 "Line": [
#foreach($elem in $inputRoot.Line)
 {
 "Description": "$elem.Description",
 "Amount": $elem.Amount,
 "DetailType": "$elem.DetailType",
 "ExpenseDetail": {
 "Customer": {
 "value": "$elem.ExpenseDetail.Customer.value",
 "name": "$elem.ExpenseDetail.Customer.name"
 },
 "Ref": {
 "value": "$elem.ExpenseDetail.Ref.value",
 "name": "$elem.ExpenseDetail.Ref.name"
 },

90

Amazon API Gateway Developer Guide
Sales Invoice Example

 "Account": {
 "value": "$elem.ExpenseDetail.Account.value",
 "name": "$elem.ExpenseDetail.Account.name"
 },
 "LineStatus": "$elem.ExpenseDetail.LineStatus"
 }
 }#if($foreach.hasNext),#end

#end
],
 "Vendor": {
 "value": "$inputRoot.Vendor.value",
 "name": "$inputRoot.Vendor.name"
 },
 "APRef": {
 "value": "$inputRoot.APRef.value",
 "name": "$inputRoot.APRef.name"
 },
 "TotalAmt": $inputRoot.TotalAmt
}

Transformed Data (Sales Invoice Example)
The following is one example of how the original sales invoice example JSON data could be transformed
for output:

{
 "DueDate": "2013-02-15",
 "Balance": 1990.19,
 "DocNumber": "SAMP001",
 "Status": "Payable",
 "Line": [
 {
 "Description": "Sample Expense",
 "Amount": 500,
 "DetailType": "ExpenseDetail",
 "Customer": "ABC123 (Sample Customer)",
 "Ref": "DEF234 (Sample Construction)",
 "Account": "EFG345 (Fuel)",
 "LineStatus": "Billable"
 }
],
 "TotalAmt": 1990.19
}

Output Model (Sales Invoice Example)
The following is the output model that corresponds to the transformed JSON data format:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "InvoiceOutputModel",
 "type": "object",
 "properties": {
 "DueDate": { "type": "string" },

91

Amazon API Gateway Developer Guide
Sales Invoice Example

 "Balance": { "type": "number" },
 "DocNumber": { "type": "string" },
 "Status": { "type": "string" },
 "Line": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "Description": { "type": "string" },
 "Amount": { "type": "integer" },
 "DetailType": { "type": "string" },
 "Customer": { "type": "string" },
 "Ref": { "type": "string" },
 "Account": { "type": "string" },
 "LineStatus": { "type": "string" }
 }
 }
 },
 "TotalAmt": { "type": "number" }
 }
}

Output Mapping Template (Sales Invoice Example)
The following is the output mapping template that corresponds to the transformed JSON data format.
The template variables here are based on the original, not transformed, JSON data format:

#set($inputRoot = $input.path('$'))
{
 "DueDate": "$inputRoot.DueDate",
 "Balance": $inputRoot.Balance,
 "DocNumber": "$inputRoot.DocNumber",
 "Status": "$inputRoot.Status",
 "Line": [
#foreach($elem in $inputRoot.Line)
 {
 "Description": "$elem.Description",
 "Amount": $elem.Amount,
 "DetailType": "$elem.DetailType",
 "Customer": "$elem.ExpenseDetail.Customer.value ($elem.ExpenseDetail.Cus
tomer.name)",
 "Ref": "$elem.ExpenseDetail.Ref.value ($elem.ExpenseDetail.Ref.name)",
 "Account": "$elem.ExpenseDetail.Account.value ($elem.ExpenseDetail.Ac
count.name)",
 "LineStatus": "$elem.ExpenseDetail.LineStatus"
 }#if($foreach.hasNext),#end

#end
],
 "TotalAmt": $inputRoot.TotalAmt
}

92

Amazon API Gateway Developer Guide
Sales Invoice Example

Employee Record Example (API Gateway Models
and Mapping Templates)
The following sections provide examples of models and mapping templates that can be used for a sample
employee record API in API Gateway. For more information about models and mapping templates in API
Gateway, see Set Up Request and Response Payload Mappings (p. 72).

Topics

• Original Data (Employee Record Example) (p. 93)

• Input Model (Employee Record Example) (p. 94)

• Input Mapping Template (Employee Record Example) (p. 95)

• Transformed Data (Employee Record Example) (p. 96)

• Output Model (Employee Record Example) (p. 96)

• Output Mapping Template (Employee Record Example) (p. 97)

Original Data (Employee Record Example)
The following is the original JSON data for the employee record example:

{
 "QueryResponse": {
 "maxResults": "1",
 "startPosition": "1",
 "Employee": {
 "Organization": "false",
 "Title": "Mrs.",
 "GivenName": "Jane",
 "MiddleName": "Lane",
 "FamilyName": "Doe",
 "DisplayName": "Jane Lane Doe",
 "PrintOnCheckName": "Jane Lane Doe",
 "Active": "true",
 "PrimaryPhone": { "FreeFormNumber": "505.555.9999" },
 "PrimaryEmailAddr": { "Address": "janedoe@example.com" },
 "EmployeeType": "Regular",
 "status": "Synchronized",
 "Id": "ABC123",
 "SyncToken": "1",
 "MetaData": {
 "CreateTime": "2015-04-26T19:45:03Z",
 "LastUpdatedTime": "2015-04-27T21:48:23Z"
 },
 "PrimaryAddr": {
 "Line1": "123 Any Street",
 "City": "Any City",
 "CountrySubDivisionCode": "WA",
 "PostalCode": "01234"
 }
 }
 },
 "time": "2015-04-27T22:12:32.012Z"
}

93

Amazon API Gateway Developer Guide
Employee Record Example

Input Model (Employee Record Example)
The following is the input model that corresponds to the original JSON data for the employee record
example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "EmployeeInputModel",
 "type": "object",
 "properties": {
 "QueryResponse": {
 "type": "object",
 "properties": {
 "maxResults": { "type": "string" },
 "startPosition": { "type": "string" },
 "Employee": {
 "type": "object",
 "properties": {
 "Organization": { "type": "string" },
 "Title": { "type": "string" },
 "GivenName": { "type": "string" },
 "MiddleName": { "type": "string" },
 "FamilyName": { "type": "string" },
 "DisplayName": { "type": "string" },
 "PrintOnCheckName": { "type": "string" },
 "Active": { "type": "string" },
 "PrimaryPhone": {
 "type": "object",
 "properties": {
 "FreeFormNumber": { "type": "string" }
 }
 },
 "PrimaryEmailAddr": {
 "type": "object",
 "properties": {
 "Address": { "type": "string" }
 }
 },
 "EmployeeType": { "type": "string" },
 "status": { "type": "string" },
 "Id": { "type": "string" },
 "SyncToken": { "type": "string" },
 "MetaData": {
 "type": "object",
 "properties": {
 "CreateTime": { "type": "string" },
 "LastUpdatedTime": { "type": "string" }
 }
 },
 "PrimaryAddr": {
 "type": "object",
 "properties": {
 "Line1": { "type": "string" },
 "City": { "type": "string" },
 "CountrySubDivisionCode": { "type": "string" },
 "PostalCode": { "type": "string" }
 }

94

Amazon API Gateway Developer Guide
Employee Record Example

 }
 }
 }
 }
 },
 "time": { "type": "string" }
 }
}

Input Mapping Template (Employee Record Example)
The following is the input mapping template that corresponds to the original JSON data for the employee
record example:

#set($inputRoot = $input.path('$'))
{
 "QueryResponse": {
 "maxResults": "$inputRoot.QueryResponse.maxResults",
 "startPosition": "$inputRoot.QueryResponse.startPosition",
 "Employee": {
 "Organization": "$inputRoot.QueryResponse.Employee.Organization",
 "Title": "$inputRoot.QueryResponse.Employee.Title",
 "GivenName": "$inputRoot.QueryResponse.Employee.GivenName",
 "MiddleName": "$inputRoot.QueryResponse.Employee.MiddleName",
 "FamilyName": "$inputRoot.QueryResponse.Employee.FamilyName",
 "DisplayName": "$inputRoot.QueryResponse.Employee.DisplayName",
 "PrintOnCheckName": "$inputRoot.QueryResponse.Employee.PrintOnCheckName",

 "Active": "$inputRoot.QueryResponse.Employee.Active",
 "PrimaryPhone": { "FreeFormNumber": "$inputRoot.QueryResponse.Employ
ee.PrimaryPhone.FreeFormNumber" },
 "PrimaryEmailAddr": { "Address": "$inputRoot.QueryResponse.Employ
ee.PrimaryEmailAddr.Address" },
 "EmployeeType": "$inputRoot.QueryResponse.Employee.EmployeeType",
 "status": "$inputRoot.QueryResponse.Employee.status",
 "Id": "$inputRoot.QueryResponse.Employee.Id",
 "SyncToken": "$inputRoot.QueryResponse.Employee.SyncToken",
 "MetaData": {
 "CreateTime": "$inputRoot.QueryResponse.Employee.MetaData.CreateTime",

 "LastUpdatedTime": "$inputRoot.QueryResponse.Employee.MetaData.LastUp
datedTime"
 },
 "PrimaryAddr" : {
 "Line1": "$inputRoot.QueryResponse.Employee.PrimaryAddr.Line1",
 "City": "$inputRoot.QueryResponse.Employee.PrimaryAddr.City",
 "CountrySubDivisionCode": "$inputRoot.QueryResponse.Employee.PrimaryAd
dr.CountrySubDivisionCode",
 "PostalCode": "$inputRoot.QueryResponse.Employee.PrimaryAddr.PostalCode"

 }
 }
 },
 "time": "$inputRoot.time"
}

95

Amazon API Gateway Developer Guide
Employee Record Example

Transformed Data (Employee Record Example)
The following is one example of how the original employee record example JSON data could be transformed
for output:

{
 "QueryResponse": {
 "maxResults": "1",
 "startPosition": "1",
 "Employees": [
 {
 "Title": "Mrs.",
 "GivenName": "Jane",
 "MiddleName": "Lane",
 "FamilyName": "Doe",
 "DisplayName": "Jane Lane Doe",
 "PrintOnCheckName": "Jane Lane Doe",
 "Active": "true",
 "PrimaryPhone": "505.555.9999",
 "Email": [
 {
 "type": "primary",
 "Address": "janedoe@example.com"
 }
],
 "EmployeeType": "Regular",
 "PrimaryAddr": {
 "Line1": "123 Any Street",
 "City": "Any City",
 "CountrySubDivisionCode": "WA",
 "PostalCode": "01234"
 }
 }
]
 },
 "time": "2015-04-27T22:12:32.012Z"
}

Output Model (Employee Record Example)
The following is the output model that corresponds to the transformed JSON data format:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "EmployeeOutputModel",
 "type": "object",
 "properties": {
 "QueryResponse": {
 "type": "object",
 "properties": {
 "maxResults": { "type": "string" },
 "startPosition": { "type": "string" },
 "Employees": {
 "type": "array",
 "items": {
 "type": "object",

96

Amazon API Gateway Developer Guide
Employee Record Example

 "properties": {
 "Title": { "type": "string" },
 "GivenName": { "type": "string" },
 "MiddleName": { "type": "string" },
 "FamilyName": { "type": "string" },
 "DisplayName": { "type": "string" },
 "PrintOnCheckName": { "type": "string" },
 "Active": { "type": "string" },
 "PrimaryPhone": { "type": "string" },
 "Email": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "type": { "type": "string" },
 "Address": { "type": "string" }
 }
 }
 },
 "EmployeeType": { "type": "string" },
 "PrimaryAddr": {
 "type": "object",
 "properties": {
 "Line1": {"type": "string" },
 "City": { "type": "string" },
 "CountrySubDivisionCode": { "type": "string" },
 "PostalCode": { "type": "string" }
 }
 }
 }
 }
 }
 }
 },
 "time": { "type": "string" }
 }
}

Output Mapping Template (Employee Record Example)
The following is the output mapping template that corresponds to the transformed JSON data format.
The template variables here are based on the original, not transformed, JSON data format:

#set($inputRoot = $input.path('$'))
{
 "QueryResponse": {
 "maxResults": "$inputRoot.QueryResponse.maxResults",
 "startPosition": "$inputRoot.QueryResponse.startPosition",
 "Employees": [
 {
 "Title": "$inputRoot.QueryResponse.Employee.Title",
 "GivenName": "$inputRoot.QueryResponse.Employee.GivenName",
 "MiddleName": "$inputRoot.QueryResponse.Employee.MiddleName",
 "FamilyName": "$inputRoot.QueryResponse.Employee.FamilyName",
 "DisplayName": "$inputRoot.QueryResponse.Employee.DisplayName",
 "PrintOnCheckName": "$inputRoot.QueryResponse.Employee.PrintOnCheckName",

97

Amazon API Gateway Developer Guide
Employee Record Example

 "Active": "$inputRoot.QueryResponse.Employee.Active",
 "PrimaryPhone": "$inputRoot.QueryResponse.Employee.PrimaryPhone.Free
FormNumber",
 "Email" : [
 {
 "type": "primary",
 "Address": "$inputRoot.QueryResponse.Employee.PrimaryEmailAddr.Ad
dress"
 }
],
 "EmployeeType": "$inputRoot.QueryResponse.Employee.EmployeeType",
 "PrimaryAddr": {
 "Line1": "$inputRoot.QueryResponse.Employee.PrimaryAddr.Line1",
 "City": "$inputRoot.QueryResponse.Employee.PrimaryAddr.City",
 "CountrySubDivisionCode": "$inputRoot.QueryResponse.Employee.Primary
Addr.CountrySubDivisionCode",
 "PostalCode": "$inputRoot.QueryResponse.Employee.PrimaryAd
dr.PostalCode"
 }
 }
]
 },
 "time": "$inputRoot.time"
}

Amazon API Gateway API Request and
Response Parameter-Mapping Reference

This section explains how to set up data mappings from an API's method request data, including other
data stored in context (p. 102), stage (p. 106) or util (p. 107) variables, to the corresponding integration
request parameters and from an integration response data, including the other data, to the method
response parameters.The method request data includes request parameters (path, query string, headers)
and the body The integration response data includes response parameters (headers), and the body. For
more information about using the stage variables, see Amazon API Gateway Stage Variables
Reference (p. 244).

Topics

• Map Data to Integration Request Parameters (p. 98)

• Map Data to Method Response Headers (p. 100)

• Transform Request and Response Bodies (p. 101)

Map Data to Integration Request Parameters
Integration request parameters, in the form of path variables, query strings or headers, can be mapped
from any defined method request parameters and the payload.

98

Amazon API Gateway Developer Guide
Request and Response Parameter-Mapping Reference

Integration request data mapping expressions

Mapping expressionMapped data source

method.request.path.PARAM_NAMEMethod request path

method.request.querystring.PARAM_NAMEMethod request query string

method.request.header.PARAM_NAMEMethod request header

method.request.bodyMethod request body

method.request.body.JSONPath_EXPRES-
SION.

Method request body (JsonPath)

stageVariables.VARIABLE_NAMEStage variables

context.VARIABLE_NAME that must be one of
the supported context variables (p. 102).

Context variables

'STATIC_VALUE'.The STATIC_VALUE is a string
literal and must be enclosed within a pair of single
quotes.

Static value

Here, PARAM_NAME is the name of a method request parameter of the given parameter type. It must have
been defined before it can be referenced.JSONPath_EXPRESSION is a JSONPath expression for a JSON
field of the body of a request or response. However, the "$." prefix is omitted in this syntax.

Example mappings from method request parameter in Swagger

The following example shows a Swagger snippet that maps 1) the method request's header, named
methodRequestHeadParam, into the integration request path parameter, named
integrationPathParam; 2) the method request query string, named methodRequestQueryParam,
into the integration request query string, named integrationQueryParam.

...
"requestParameters" : {

 "integration.request.path.integrationPathParam" : "method.request.header.meth
odRequestHeaderParam",
 "integration.request.querystring.integrationQueryParam" : "method.re
quest.querystring.methodRequestQueryParam"

}
...

Integration request parameters can also be mapped from fields in the JSON request body using a
JSONPath expression. The following table shows the mapping expressions for a method request body
and its JSON fields.

99

Amazon API Gateway Developer Guide
Map Data to Integration Request Parameters

http://goessner.net/articles/JsonPath/index.html#e2

Example mapping from method request body in Swagger

The following example shows a Swagger snippet that maps 1) the method request body to the integration
request header, named body-header, and 2) a JSON field of the body, as expressed by a JSON
expression (petstore.pets[0].name, without the $. prefix).

...
"requestParameters" : {

 "integration.request.header.body-header" : "method.request.body",
 "integration.request.path.pet-name" : "method.request.body.pet
store.pets[0].name",

}
...

Map Data to Method Response Headers
Method response header parameters can be mapped from any integration response header or from the
integration response body.

Method response header mapping expressions

Mapping expressionMapped Data Source

integration.response.header.PARAM_NAMEIntegration response header

integration.response.bodyIntegration response body

integration.response.body.JSONPath_EX-
PRESSION

Integration response body (JsonPath)

stageVariables.VARIABLE_NAMEStage variable

context.VARIABLE_NAME that must be one of
the supported context variables (p. 102).

Context variable

'STATIC_VALUE'.The STATIC_VALUE is a string
literal and must be enclosed within a pair of single
quotes.

Static value

100

Amazon API Gateway Developer Guide
Map Data to Method Response Headers

Example data mapping from integration response in Swagger

The following example shows a Swagger snippet that maps 1) the integration response's redirect.url,
JSONPath field into the request response's location header; and 2) the integration response's x-app-id
header to the method response's id header.

...
"responseParameters" : {

 "method.response.header.location" : "integration.response.body.redirect.url",

 "method.response.header.id" : "integration.response.header.x-app-id",

}
...

Transform Request and Response Bodies
Integration request and method response bodies can be transformed from the method request and
integration response bodies, respectively, by using Mapping Templates (p. 76) written in Velocity Template
Language (VTL). JSON data can be manipulated using VTL logic and JSONPath expressions, and
additional data can be included from HTTP parameters, the calling context, and stage variables.

Select Mapping Templates
The request mapping template used to transform the method request body into the integration request
body is selected by the value of the "Content-Type" header sent in the client request.

The response mapping template used to transform the integration response body into the method response
body is selected by the value of the "Accept" header sent in the client request.

For example, if the client sends headers of "Content-Type : application/xml", and "Accept :
application/json", the request template with the application/xml key will be used for the integration
request, and the response template with the application/json key will be used for the method
response.

Only the MIME type is used from the Accept and Content-Type headers when selecting a mapping
template. For example, a header of "Content-Type: application/json; charset=UTF-8" will
have a request template with the application/json key selected.

API Gateway API Request and Response
Payload-Mapping Template Reference

Amazon API Gateway defines a set of variables for working with models and mapping templates. This
document describes those functions and provides examples for working with input payloads.

Topics

• Accessing the $context Variable (p. 102)

• Accessing the $input Variable (p. 103)

• Accessing the $stageVariables Variable (p. 106)

101

Amazon API Gateway Developer Guide
Transform Request and Response Bodies

http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://velocity.apache.org/engine/devel/vtl-reference-guide.html

• Accessing the $util Variable (p. 107)

• Integration Passthrough Behaviors (p. 108)

Accessing the $context Variable
The $context variable holds all the contextual information of your API call.

$context Variable Reference

DescriptionParameter

The identifier API Gateway assigns to your API.$context.apiId

The principal user identification associated with the
token sent by the client.

$context.authorizer.principalId

A property of the claims returned from the Amazon
Cognito user pool after the method caller is success-
fully authenticated.

Note
Calling $context.authorizer.claims
returns null.

$context.authorizer.claims.property

The HTTP method used. Valid values include: DE-
LETE, GET, HEAD, OPTIONS, PATCH, POST, and
PUT.

$context.httpMethod

The AWS account ID associated with the request.$context.identity.accountId

The API owner key associated with your API.$context.identity.apiKey

The principal identifier of the caller making the re-
quest.

$context.identity.caller

The Amazon Cognito authentication provider used
by the caller making the request. Available only if
the request was signed with Amazon Cognito cre-
dentials.

For information related to this and the other
Amazon Cognito $context variables, see Amazon
Cognito Identity.

$context.identity.cognitoAuthentication-
Provider

The Amazon Cognito authentication type of the
caller making the request. Available only if the re-
quest was signed with Amazon Cognito credentials.

$context.identity.cognitoAuthentication-
Type

The Amazon Cognito identity ID of the caller mak-
ing the request. Available only if the request was
signed with Amazon Cognito credentials.

$context.identity.cognitoIdentityId

The Amazon Cognito identity pool ID of the caller
making the request. Available only if the request
was signed with Amazon Cognito credentials.

$context.identity.cognitoIdentityPoolId

The source IP address of the TCP connection
making the request to API Gateway.

$context.identity.sourceIp

102

Amazon API Gateway Developer Guide
Accessing the $context Variable

http://docs.aws.amazon.com/cognito/devguide/identity/
http://docs.aws.amazon.com/cognito/devguide/identity/

DescriptionParameter

The principal identifier of the user making the re-
quest.

$context.identity.user

The User Agent of the API caller.$context.identity.userAgent

The Amazon Resource Name (ARN) of the effective
user identified after authentication.

$context.identity.userArn

An automatically generated ID for the API call.$context.requestId

The identifier API Gateway assigns to your re-
source.

$context.resourceId

The path to your resource. For more information,
see Build an API Gateway API Step by Step (p. 14).

$context.resourcePath

The deployment stage of the API call (for example,
Beta or Prod).

$context.stage

Example
You may want to use the $context variable if you're using AWS Lambda as the target backend that the
API method calls. For example, you may want to perform two different actions depending on whether the
stage is in Beta or in Prod.

Context Variables Template Example

The following example shows how to get context variables:

{
 "stage" : "$context.stage",
 "request_id" : "$context.requestId",
 "api_id" : "$context.apiId",
 "resource_path" : "$context.resourcePath",
 "resource_id" : "$context.resourceId",
 "http_method" : "$context.httpMethod",
 "source_ip" : "$context.identity.sourceIp",
 "user-agent" : "$context.identity.userAgent",
 "account_id" : "$context.identity.accountId",
 "api_key" : "$context.identity.apiKey",
 "caller" : "$context.identity.caller",
 "user" : "$context.identity.user",
 "user_arn" : "$context.identity.userArn"
}

Accessing the $input Variable
The $input variable represents the input payload and parameters to be processed by your template. It
provides four functions:

103

Amazon API Gateway Developer Guide
Accessing the $input Variable

Function Reference

DescriptionVariable and Function

Returns the raw payload as a string.$input.body

This function evaluates a JSONPath expression
and returns the results as a JSON string.

For example, $input.json('$.pets') will return
a JSON string representing the pets structure.

For more information about JSONPath, see
JSONPath or JSONPath for Java.

$input.json(x)

Returns a map of all the request parameters of your
API call.

$input.params()

Returns the value of a method request parameter
from the path, query string, or header value (in that
order) given a parameter name string x.

$input.params(x)

Takes a JSONPath expression string (x) and re-
turns an object representation of the result. This
allows you to access and manipulate elements of
the payload natively in Apache Velocity Template
Language (VTL).

For example, $input.path('$.pets').size()

For more information about JSONPath, see
JSONPath or JSONPath for Java.

$input.path(x)

Examples
You may want to use the $input variable to get query strings and the request body with or without using
models.You may also want to get the parameter and the payload, or a subsection of the payload, into
your AWS Lambda function. The examples below show how to do this.

Example JSON Mapping Template

The following example shows how to use a mapping to read a name from the query string and then include
the entire POST body in an element:

{
 "name" : "$input.params('name')",
 "body" : $input.json('$')
}

If the JSON input contains unescaped characters that cannot be parsed by JavaScript, a 400 response
may be returned. Applying $util.escapeJavaScript($input.json('$')) above will ensure that
the JSON input can be parsed properly.

104

Amazon API Gateway Developer Guide
Accessing the $input Variable

http://goessner.net/articles/JsonPath/
https://github.com/jayway/JsonPath
http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://goessner.net/articles/JsonPath/
https://github.com/jayway/JsonPath

Example Inputs Mapping Template

The following example shows how to pass a JSONPath expression to the json() method.You could
also read a specific property of your request body object by using a period (.), followed by your property
name:

{
 "name" : "$input.params('name')",
 "body" : $input.json('$.mykey')
}

If a method request payload contains unescaped characters that cannot be parsed by JavaScript, you
may get 400 response. In this case, you need to call $util.escapeJavaScript() function in the
mapping template, as shown as follows:

{
 "name" : "$input.params('name')",
 "body" : $util.escapeJavaScript($input.json('$.mykey'))
}

Param Mapping Template Example

The following parameter-mapping example passes all parameters, including path, querystring and header,
through to the integration endpoint via a JSON payload

#set($allParams = $input.params())
{
 "params" : {
 #foreach($type in $allParams.keySet())
 #set($params = $allParams.get($type))
 "$type" : {
 #foreach($paramName in $params.keySet())
 "$paramName" : "$util.escapeJavaScript($params.get($paramName))"
 #if($foreach.hasNext),#end
 #end
 }
 #if($foreach.hasNext),#end
 #end
 }
}

In effect, this mapping template outputs all the request parameters in the payload as outlined as follows:

{
 "parameters" : {
 "path" : {
 "path_name" : "path_value",
 ...
 }
 "header" : {
 "header_name" : "header_value",
 ...
 }
 'querystring" : {
 "querystring_name" : "querystring_value",

105

Amazon API Gateway Developer Guide
Accessing the $input Variable

 ...
 }
 }
}

Example Request and Response

Here’s an example that uses all three functions:

Request Template:

Resource: /things/{id}

With input template:
{
 "id" : "$input.params('id')",
 "count" : "$input.path('$.things').size()",
 "things" : $util.escapeJavaScript($input.json('$.things'))
}

POST /things/abc
{
 "things" : {
 "1" : {},
 "2" : {},
 "3" : {}
 }
}

Response:

{
 "id": "abc",
 "count": "3",
 "things": {
 "1": {},
 "2": {},
 "3": {}
 }
}

For more mapping examples, see Set Up Request and Response Payload Mappings (p. 72)

Accessing the $stageVariables Variable
The syntax for inserting a stage variable looks like this: $stageVariables.

$stageVariables Reference

DescriptionSyntax

<variable_name> represents a stage variable
name.

$stageVariables.<variable_name>

106

Amazon API Gateway Developer Guide
Accessing the $stageVariables Variable

DescriptionSyntax

<variable_name> represents any stage variable
name.

$stageVariables['<variable_name>']

<variable_name> represents any stage variable
name.

${stageVariables['<variable_name>']}

Accessing the $util Variable
The $util variable contains utility functions for use in mapping templates.

Note
Unless otherwise specified, the default character set is UTF-8.

$util Variable Reference

DescriptionFunction

Escapes the characters in a string using JavaScript
string rules.

Note
This function will turn any regular single
quotes (') into escaped ones (\'). How-
ever, the escaped single quotes are not
valid in JSON.Thus, when the output from
this function is used in a JSON property,
you must turn any escaped single quotes
(\') back to regular single quotes (').This
is shown in the following example:

 $util.escapeJavaScript(data).re
placeAll("\'","'")

$util.escapeJavaScript()

107

Amazon API Gateway Developer Guide
Accessing the $util Variable

DescriptionFunction

Takes "stringified" JSON and returns an object
representation of the result.You can use the result
from this function to access and manipulate ele-
ments of the payload natively in Apache Velocity
Template Language (VTL). For example, if you
have the following payload:

{"errorMes
sage":"{\"key1\":\"var1\",\"key2\":{\"arr\":[1,2,3]}}"}

and use the following mapping template

#set ($errorMessageObj =
$util.parseJson($input.path('$.errorMes
sage')))
{
 "errorMessageObjKey2ArrVal" : $er
rorMessageObj.key2.arr[0]
}

You will get the following output:

{
 "errorMessageObjKey2ArrVal" : 1
}

$util.parseJson()

Converts a string into "application/x-www-form-ur-
lencoded" format.

$util.urlEncode()

Decodes an "application/x-www-form-urlencoded"
string.

$util.urlDecode()

Encodes the data into a base64-encoded string.$util.base64Encode()

Decodes the data from a base64-encoded string.$util.base64Decode()

Integration Passthrough Behaviors
When a method request carries a payload and either the Content-Type header does not match any
specified mapping template or no mapping template is defined, you can choose to pass the client supplied
request payload through the integration request to the back end without transformation. The process is
known as integration passthrough.The actual passthrough behavior of an incoming request is determined
by the option you choose for a specified mapping template, during integration request set-up (p. 67), and
the Content Type header that a client set in the incoming request. The following examples illustrate the
possible passthrough behaviors.

Example 1: One mapping template is defined in the integration request for the application/json
content type.

108

Amazon API Gateway Developer Guide
Integration Passthrough Behaviors

NEVERWHEN_NO_TEMPLATEWHEN_NO_MATCHContent-Type head-
er\Selected
passthrough option

The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

None (default to applic-
ation/json

The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

application/json

The request is rejected
with an HTTP 415 Un-
supported Media
Type response.

The request is rejected
with an HTTP 415 Un-
supported Media
Type response.

The request payload is
not transformed and is
sent to the back end as-
is.

application/xml

Example 2: One mapping template is defined in the integration request for the application/xml content
type.

NEVERWHEN_NO_TEMPLATEWHEN_NO_MATCHContent-Type head-
er\Selected
passthrough option

The request is rejected
with an HTTP 415 Un-
supported Media
Type response.

The request is rejected
with an HTTP 415 Un-
supported Media
Type response.

The request payload is
not transformed and is
sent to the back end as-
is.

None (default to applic-
ation/json

The request is rejected
with an HTTP 415 Un-
supported Media
Type response.

The request is rejected
with an HTTP 415 Un-
supported Media
Type response.

The request payload is
not transformed and is
sent to the back end as-
is.

application/json

The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

application/xml

Import and Export API Gateway API with
Swagger Definition Files

As an alternative to using the Amazon API Gateway console to create and update your API, you can use
the API Gateway Import API feature to upload API definitions into API Gateway from external API definition
files, such as those using the Swagger specification with the API Gateway extensions (p. 115).

After an API is created and configured in API Gateway, you can download it as a Swagger definition file
using the Amazon API Gateway Export API. The API Gateway console has enabled this feature for you
to export an API using intuitive visual interfaces.

Topics

• Import an API into API Gateway (p. 110)

• Export an API from API Gateway (p. 113)

• API Gateway Extensions to Swagger (p. 115)

109

Amazon API Gateway Developer Guide
Import and Export API

https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md

Import an API into API Gateway
You can use the API Gateway Import API feature to import an API from an external definition file into API
Gateway. Currently, the Import API feature supports Swagger v2.0 definition files.

With the Import API, you can either create a new API by submitting a POST request that includes a
definition as the payload, or you can update an existing API by using a PUT request that contains a
definition in the payload.You can update an API by overwriting it with a new definition, or merge a definition
with an existing API.You specify the options in the request URL using a mode query parameter.

Note
For RAML API definitions, you can continue to use API Gateway Importer.

Besides making explicit calls to the REST API, as described below, you can also use the Import API
feature in the API Gateway console. The option is available as an item in the Actions drop-down menu.
For an example of using the Import API feature from the API Gateway console, see Build and Test an
API Gateway API from an Example (p. 6).

Use the Import API to Create a New API
To use the Import API feature to create a new API, POST your API definition file to
https://apigateway.<region>.amazonaws.com/restapis?mode=import. This request results
in a new RestApi, along with Resources, Models, and other items defined in the definition file.

The following code snippet shows an example of the POST request with the payload of a JSON-formatted
Swagger definition:

POST /restapis?mode=import
Host:apigateway.<region>.amazonaws.com
Content-Type: application/json
Content-Length: ...

Swagger API definition in JSON (p. 155)

Use the Import API to Update an Existing API
You can use the Import API feature to update an existing API when there are aspects of that API you
would like to preserve, such as stages and stage variables, or references to the API from API Keys.

An API update can occur in two modes: merge or overwrite. Merging an API is useful when you have
decomposed your external API definitions into multiple, smaller parts and only want to apply changes
from one of those parts at a time. For example, this might occur if multiple teams are responsible for
different parts of an API and have changes available at different rates. In this mode, items from the existing
API that are not specifically defined in the imported definition will be left alone.

Overwriting an API is useful when an external API definition contains the complete definition of an API.
In this mode, items from an existing API that are not specifically defined in the imported definition will be
deleted.

To merge an API, submit a PUT request to
https://apigateway.<region>.amazonaws.com/restapis/<restapi_id>?mode=merge. The
restapi_id path parameter value specifies the API to which the supplied API definition will be merged.

The following code snippet shows an example of the PUT request to merge a Swagger API definition in
JSON, as the payload, with the specified API already in API Gateway.

110

Amazon API Gateway Developer Guide
Import an API

http://swagger.io/specification/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-import/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-put/
https://github.com/awslabs/aws-apigateway-importer

PUT /restapis/<restapi_id>?mode=merge
Host:apigateway.<region>.amazonaws.com
Content-Type: application/json
Content-Length: ...

A Swagger API definition in JSON (p. 155)

The merging update operation takes two complete API definitions and merges them together. For a small
and incremental change, you can use the resource update operation.

To overwrite an API, submit a PUT request to
https://apigateway.<region>.amazonaws.com/restapis/<restapi_id>?mode=overwrite.
The restapi_id path parameter specifies the API that will be overwritten with the supplied API definitions.

The following code snippet shows an example of an overwriting request with the payload of a
JSON-formatted Swagger definition:

PUT /restapis/<restapi_id>?mode=overwrite
Host:apigateway.<region>.amazonaws.com
Content-Type: application/json
Content-Length: ...

A Swagger API definition in JSON (p. 155)

When the mode query parameter is not specified, merge is assumed.

Note
The PUT operations are idempotent, but not atomic. That means if a system error occurs part
way through processing, the API can end up in a bad state. However, repeating the operation
will put the API into the same final state as if the first operation had succeeded.

Swagger basePath
In Swagger, you can use the basePath property to provide one or more path parts that precede each
path defined in the paths property. Because API Gateway has several ways to express a resource’s path,
the Import API feature provides three options for interpreting the basePath property during an import:

ignore

If the Swagger file has a basePath value of "/a/b/c" and the paths property contains "/e" and "/f",
the following POST or PUT request:

POST /restapis?mode=import&basepath=ignore

PUT /restapis/api_id?basepath=ignore

will result in the following resources in the API:

• /

111

Amazon API Gateway Developer Guide
Import an API

http://integ-docs-aws.amazon.com/apigateway/api-reference/link-relation/resource-update/
http://swagger.io/specification/

• /e

• /f

The effect is to treat the basePath as if it was not present, and all of the declared API resources are
served relative to the host. This can be used, for example, when you have a custom domain name with
an API mapping that does not include a Base Path and a Stage value that refers to your production stage.

Note
API Gateway will automatically create a root resource for you, even if it is not explicitly declared
in your definition file.

prepend

If the Swagger file has a basePath value of "/a/b/c" and the paths property contains "/e" and "/f",
the following POST or PUT request:

POST /restapis?mode=import&basepath=prepend

PUT /restapis/api_id?basepath=prepend

will result in the following resources in the API:

• /

• /a

• /a/b

• /a/b/c

• /a/b/c/e

• /a/b/c/f

The effect is to treat the basePath as specifying additional resources (without methods) and to add them
to the declared resource set. This can be used, for example, when different teams are responsible for
different parts of an API and the basePath could reference the path location for each team's API part.

Note
API Gateway will automatically create intermediate resources for you, even if they are not explicitly
declared in your definition.

split

If the Swagger file has a basePath value of "/a/b/c" and the paths property contains "/e" and "/f",
the following POST or PUT request:

POST /restapis?mode=import&basepath=split

PUT /restapis/api_id?basepath=split

will result in the following resources in the API:

• /

• /b

• /b/c

• /b/c/e

112

Amazon API Gateway Developer Guide
Import an API

• /b/c/f

The effect is to treat top-most path part, "/a", as the beginning of each resource's path, and to create
additional (no method) resources within the API itself. This could, for example, be used when "a" is a
stage name that you want to expose as part of your API.

Errors during Import
During the import, errors can be generated for major issues like an invalid Swagger document. Errors
are returned as exceptions (e.g., BadRequestException) in an unsuccessful response. When an error
occurs, the new API definition is discarded and no change is made to the existing API.

Warnings during Import
During the import, warnings can be generated for minor issues like a missing model reference. If a warning
occurs, the operation will continue if the failonwarnings=false query expression is appended to the
request URL. Otherwise, the updates will be rolled back. By default, failonwarnings is set to false.
In such cases, warnings are returned as a field in the resulting RestApi resource. Otherwise, warnings
are returned as a message in the exception.

Export an API from API Gateway
Once you created and configured an API in API Gateway, using the API Gateway console or otherwise,
you can export it to a Swagger file using the API Gateway Export API, which is part of the Amazon API
Gateway Control Service.You have options to include the API Gateway integration extensions, as well
as the Postman extensions, in the exported Swagger definition file.

You cannot export an API if its payloads are not of the application/json type. If you try, you will get
an error response stating that JSON body models are not found.

Request to Export an API
With the Export API, you export an existing API by submitting a GET request, specifying the to-be-exported
API as part of URL paths. The request URL is of the following format:

 https://<host>/restapis/<restapi_id>/stages/<stage_name>/exports/swagger

You can append the extensions query string to specify whether to include API Gateway extensions
(with the integration value) or Postman extensions (with the postman value).

In addition, you can set the Accept header to application/json or application/yaml to receive
the API definition output in JSON or YAML format, respectively.

For more information about submitting GET requests using the API Gateway Export API, see Making
HTTP Requests.

Note
If you define models in your API, they must be for the content type of "application/json" for API
Gateway to export the model. Otherwise, API Gateway throws an exception with the "Only found
non-JSON body models for ..." error message.

113

Amazon API Gateway Developer Guide
Export an API

http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://www.getpostman.com
http://docs.aws.amazon.com/apigateway/api-reference/making-http-requests
http://docs.aws.amazon.com/apigateway/api-reference/making-http-requests

Download API Swagger Definition in JSON
To export and download an API in Swagger definitions in JSON format:

GET /restapis/<restapi_id>/stages/<stage_name>/exports/swagger
Host: apigateway.<region>.amazonaws.com
Accept: application/json

Here, <region> could be, for example, us-east-1. For all the regions where API Gateway is available,
see Regions and Endpoints

Download API Swagger Definition in YAML
To export and download an API in Swagger definitions in YAML format:

GET /restapis/<restapi_id>/stages/<stage_name>/exports/swagger
Host: apigateway.<region>.amazonaws.com
Accept: application/yaml

Download API Swagger Definition with Postman Extensions
in JSON
To export and download an API in Swagger definitions with the Postman extension in JSON format:

GET /restapis/<restapi_id>/stages/<stage_name>/exports/swagger?extensions=postman
Host: apigateway.<region>.amazonaws.com
Accept: application/json

Download API Swagger Definition with API Gateway
Integration in YAML
To export and download an API in Swagger definitions with API Gateway integration in YAML format:

GET /restapis/<restapi_id>/stages/<stage_name>/exports/swagger?extensions=integ
ration
Host: apigateway.<region>.amazonaws.com
Accept: application/yaml

114

Amazon API Gateway Developer Guide
Export an API

http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region

Export API Using the API Gateway Console
From the stage configuration page in the API Gateway console, choose the Export tab and then one
of the available options (Export as Swagger, Export as Swagger + API Gateway Integrations and
Export as Postman) to download your API's Swagger definition.

API Gateway Extensions to Swagger
The API Gateway extensions support the AWS-specific authorization and API Gateway-specific API
integrations. In this section, we will describe the API Gateway extensions to the Swagger specification.

Tip
To understand how the API Gateway extensions are used in an app, you can use the API Gateway
console to create an API and export it to a Swagger definition file. For more information on how
to export an API, see Export an API (p. 113).

Topics

• x-amazon-apigateway-authorizer Object (p. 115)

• x-amazon-apigateway-authtype Property (p. 117)

• x-amazon-apigateway-integration Object (p. 118)

• x-amazon-apigateway-integration.requestTemplates Object (p. 120)

• x-amazon-apigateway-integration.requestParameters Object (p. 121)

• x-amazon-apigateway-integration.responses Object (p. 122)

• x-amazon-apigateway-integration.response Object (p. 123)

• x-amazon-apigateway-integration.responseTemplates Object (p. 124)

• x-amazon-apigateway-integration.responseParameters Object (p. 124)

x-amazon-apigateway-authorizer Object
Defines a custom authorizer to be applied for authorization of method invocations in API Gateway. This
object is an extended property of the Swagger Security Definitions Operation object.

115

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#securityDefinitionsObject

Properties

DescriptionTypeProperty Name

The type of the authorizer. This is
a required property and the value
must be "token".

stringtype

The Uniform Resource Identifier
(URI) of the authorizer (a Lambda
function). For example,

"arn:aws:apigateway:us-
east-1:lambda:path/2015-
03-31/func
tions/arn:aws:lambda:us-
east-1:account-id:func
tion:auth_function_name/in
vocations"

stringauthorizerUri

Credentials required for the author-
izer, if any, in the form of an ARN
of an IAM execution role. For ex-
ample, "arn:aws:iam::account-
id:IAM_role".

stringauthorizerCredentials

A regular expression for validating
the incoming identity. For ex-
ample, "^x-[a-z]+".

stringidentityValidationExpression

The number of seconds during
which the resulting IAM policy is
cached.

stringauthorizerResultTtlInSeconds

x-amazon-apigateway-authorizer Example

The following Swagger security definitions example specifies a custom authorizer named
test-authorizer.

 "securityDefinitions" : {
 "test-authorizer" : {
 "type" : "apiKey", // Required and the value must
 be "apiKey" for an API Gateway API.
 "name" : "Authorization", // The source header name
identifying this authorizer.
 "in" : "header", // Required and the value must
 be "header" for an AAPI Gateway API.
 "x-amazon-apigateway-authtype" : "oauth2", // Specifies the authorization
 mechanism for the client.
 "x-amazon-apigateway-authorizer" : { // An API Gateway custom au
thorizer definition
 "type" : "token", // Required property and the
value must "token"
 "authorizerUri" : "arn:aws:apigateway:us-east-1:lambda:path/2015-03-

116

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

31/functions/arn:aws:lambda:us-east-1:account-id:function:function-name/invoca
tions",
 "authorizerCredentials" : "arn:aws:iam::account-id:role",
 "identityValidationExpression" : "^x-[a-z]+",
 "authorizerResultTtlInSeconds" : 60
 }
 }
 }

The following Swagger operation object snippet sets the GET /http to use the custom authorizer specified
above.

 "/http" : {
 "get" : {
 "responses" : { },
 "security" : [{
 "test-authorizer" : []
 }],
 "x-amazon-apigateway-integration" : {
 "type" : "http",
 "responses" : {
 "default" : {
 "statusCode" : "200"
 }
 },
 "httpMethod" : "GET",
 "uri" : "http://api.example.com"
 }
 }
 }

x-amazon-apigateway-authtype Property
Specify the type of a custom authorizer. It is parsed by the API Gateway API import and export features.

This property is an extended property of the Swagger Security Definitions Operation object.

x-amazon-apigateway-authtype Example

The following example sets the type of a custom authorizer using OAuth 2.

 "cust-authorizer" : {
 "type" : "...", // required
 "name" : "...", // name of the identity source header
 "in" : "header", // must be header
 "x-amazon-apigateway-authtype" : "oauth2", // Specifies the authorization
 mechanism for the client.
 "x-amazon-apigateway-authorizer" : {
 ...
 }

117

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#securityDefinitionsObject

 }

The following security definition example specifies authorization using AWS Signature Version 4:

 "sigv4" : {
 "type" : "apiKey",
 "name" : "Authorization",
 "in" : "header",
 "x-amazon-apigateway-authtype" : "awsSigv4"
 }

x-amazon-apigateway-integration Object
Specifies details of the back-end integration used for this method.This extension is an extended property
of the Swagger Operation object. The result is an API Gateway integration object.

Properties

DescriptionTypeProperty Name

The type of integration with the
specified back end. The valid
value is http (for integration with
an HTTP back end) or aws (for
integration with AWS Lambda
functions or other AWS services,
such as DynamoDB, SNS or
SQS).

stringtype

The endpoint URI of the back end.
For integrations of the aws type,
this is an ARN value. For the HT-
TP integration, this is the URL of
the HTTP endpoint including the
https or http scheme.

stringuri

The HTTP method used in the in-
tegration request. For Lambda
function invocations, the value
must be POST.

stringhttpMethod

118

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md#operationObject
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/

DescriptionTypeProperty Name

For AWS IAM role-based creden-
tials, specify the ARN of an appro-
priate IAM role. If unspecified,
credentials will default to re-
source-based permissions that
must be added manually to allow
the API to access the resource.
For more information, see Grant-
ing Permissions Using a Resource
Policy. Note: when using IAM
credentials, please ensure that
AWS STS regional endpoints are
enabled for the region where this
API is deployed for best perform-
ance.

stringcredentials

Mapping templates for a request
payload of specified MIME types.

x-amazon-apigateway-integra-
tion.requestTemplates (p. 120)

requestTemplates

Specifies mappings from method
request parameters to integration
request parameters. Supported
request parameters are querys-
tring, path, header, and body.

x-amazon-apigateway-integra-
tion.requestParameters (p. 121)

requestParameters

An API-specific tag group of re-
lated cached parameters.

stringcacheNamespace

A list of request parameters
whose values are to be cached.

An array of stringcacheKeyParameters

Defines the method's responses
and specifies desired parameter
mappings or payload mappings
from integration responses to
method responses.

x-amazon-apigateway-integra-
tion.responses (p. 122)

responses

x-amazon-apigateway-integration Example

The following example integrates an API's POST method with a Lambda function in the back end. For
demonstration purposes, the sample mapping templates shown in requestTemplates and
responseTemplates of the examples below are assumed to apply to the following JSON-formatted
payload:{ "name":"value_1", "key":"value_2", "redirect": {"url" :"..."} } to generate
a JSON output of { "stage":"value_1", "user-id":"value_2" } or an XML output of
<stage>value_1</stage>.

"x-amazon-apigateway-integration" : {
 "type" : "aws",
 "uri" : "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/func
tions/arn:aws:lambda:us-east-1:012345678901:function:HelloWorld/invocations",
 "httpMethod" : "POST",
 "credentials" : "arn:aws:iam::012345678901:role/apigateway-invoke-lambda-
exec-role",
 "requestTemplates" : {

119

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html

 "application/json" : "#set ($root=$input.path('$')) { \"stage\":
 \"$root.name\", \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$'))
<stage>$root.name</stage> "
 },
 "requestParameters" : {
 "integration.request.path.stage" : "method.request.querystring.version",

 "integration.request.querystring.provider" : "method.request.querys
tring.vendor"
 },
 "cacheNamespace" : "cache namespace",
 "cacheKeyParameters" : [],
 "responses" : {
 "2\\d{2}" : {
 "statusCode" : "200",
 "responseParameters" : {
 "method.response.header.requestId" : "integration.response.head
er.cid"
 },
 "responseTemplates" : {
 "application/json" : "#set ($root=$input.path('$')) { \"stage\":
 \"$root.name\", \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$'))
<stage>$root.name</stage> "
 }
 },
 "302" : {
 "statusCode" : "302",
 "responseParameters" : {
 "method.response.header.Location" : "integration.response.body.re
direct.url"
 }
 },
 "default" : {
 "statusCode" : "400",
 "responseParameters" : {
 "method.response.header.test-method-response-header" : "'static
 value'"
 }
 }
 }
}

Note that double quotes (") of the JSON string in the mapping templates must be string-escaped (\").

x-amazon-apigateway-integration.requestTemplates Object
Specifies mapping templates for a request payload of the specified MIME types.

120

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

Properties

DescriptionTypeProperty Name

An example of the MIME type is
application/json. For inform-
ation about creating a mapping
template, see Mapping Tem-
plates (p. 76).

stringMIME type

x-amazon-apigateway-integration.requestTemplates Example

The following example sets mapping templates for a request payload of the application/json and
application/xml MIME types.

"requestTemplates" : {
 "application/json" : "#set ($root=$input.path('$')) { \"stage\":
\"$root.name\", \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$')) <stage>$root.name</stage>
 "
}

x-amazon-apigateway-integration.requestParameters Object
Specifies mappings from named method request parameters to integration request parameters. The
method request parameters must be defined before being referenced.

Properties

DescriptionTypeProperty Name

The value must be a predefined
method request parameter of the
method.request.<param-
type>.<param-name> format,
where <param-type> can be
querystring, path, header, or
body. For the body parameter,
the <param-name> is a JSON
path expression without the $.
prefix.

stringintegration.re-
quest.<param-
type>.<param-name>

x-amazon-apigateway-integration.requestParameters Example

The following request parameter mappings example translates a method request's query (version),
header (x-user-id) and path (service) parameters to the integration request's query (stage), header
(x-userid), and path parameters (op), respectively.

"requestParameters" : {
 "integration.request.querystring.stage" : "method.request.querystring.ver
sion",

121

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

 "integration.request.header.x-userid" : "method.request.header.x-user-id",

 "integration.request.path.op" : "method.request.path.service"
},

x-amazon-apigateway-integration.responses Object
Defines the method's responses and specifies parameter mappings or payload mappings from integration
responses to method responses.

Properties

DescriptionTypeProperty Name

Selection regular expression used
to match the integration response
to the method response. For HT-
TP integrations, this regex applies
to the integration response status
code. For Lambda invocations, the
regex applies to the errorMes-
sage field of the error information
object returned by AWS Lambda
as a failure response body when
the Lambda function execution
throws an exception.

Note
The Response status
pattern property name
refers to a response
status code or regular
expression describing a
group of response status
codes. It does not corres-
pond to any identifier of
an IntegrationResponse
resource in the API
Gateway REST API.

x-amazon-apigateway-integra-
tion.response (p. 123)

Response status pattern

x-amazon-apigateway-integration.responses Example

The following example shows a list of responses from 2xx and 302 responses. For the 2xx response,
the method response is mapped from the integration response's payload of the application/json or
application/xml MIME type. This response uses the supplied mapping templates. For the 302
response, the method response returns a Location header whose value is derived from the
redirect.url property on the integration response's payload.

"responses" : {
 "2\\d{2}" : {
 "statusCode" : "200",
 "responseTemplates" : {

122

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

http://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-mode-exceptions.html
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration-response/

 "application/json" : "#set ($root=$input.path('$')) { \"stage\":
\"$root.name\", \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$'))
<stage>$root.name</stage> "
 }
 },
 "302" : {
 "statusCode" : "302",
 "responseParameters" : {
 "method.response.header.Location": "integration.response.body.redir
ect.url"
 }
 }
}

x-amazon-apigateway-integration.response Object
Defines a response and specifies parameter mappings or payload mappings from the integration response
to the method response.

Properties

DescriptionTypeProperty Name

HTTP status code for the method
response; for example, "200".
This must correspond to a match-
ing response in the Swagger Op-
eration responses field.

stringstatusCode

Specifies MIME type-specific
mapping templates for the re-
sponse’s payload.

x-amazon-apigateway-integra-
tion.responseTemplates (p. 124)

responseTemplates

Specifies parameter mappings for
the response. Only the header
and body parameters of the integ-
ration response can be mapped
to the header parameters of the
method.

x-amazon-apigateway-integra-
tion.responseParameters (p.124)

responseParameters

x-amazon-apigateway-integration.response Example

The following example defines a 302 response for the method that derives a payload of the
application/json or application/xml MIME type from the back end. The response uses the
supplied mapping templates and returns the redirect URL from the integration response in the method's
Location header.

{
 "statusCode" : "302",
 "responseTemplates" : {
 "application/json" : "#set ($root=$input.path('$')) { \"stage\":

123

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md#operationObject
https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md#operationObject

\"$root.name\", \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$'))
<stage>$root.name</stage> "
 },
 "responseParameters" : {
 "method.response.header.Location": "integration.response.body.redir
ect.url"
 }
}

x-amazon-apigateway-integration.responseTemplates Object
Specifies mapping templates for a response payload of the specified MIME types.

Properties

DescriptionTypeProperty Name

Specifies a mapping template to
transform the integration response
body to the method response
body for a given MIME type. For
information about creating a map-
ping template, see Mapping Tem-
plates (p. 76). An example of the
MIME type is applica-
tion/json.

stringMIME type

x-amazon-apigateway-integration.responseTemplate Example

The following example sets mapping templates for a request payload of the application/json and
application/xml MIME types.

"responseTemplates" : {
 "application/json" : "#set ($root=$input.path('$')) { \"stage\":
\"$root.name\", \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$')) <stage>$root.name</stage>
 "
}

x-amazon-apigateway-integration.responseParameters Object
Specifies mappings from integration method response parameters to method response parameters. Only
the header and body types of the integration response parameters can be mapped to the header type
of the method response.

124

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

Properties

DescriptionTypeProperty Name

The named parameter value can
be derived from the header and
body types of the integration re-
sponse parameters only.

stringmethod.response.head-
er.<param-name>

x-amazon-apigateway-integration.responseParameters Example

The following example maps body and header parameters of the integration response to two header
parameters of the method response.

"responseParameters" : {
 "method.response.header.Location" : "integration.response.body.redirect.url",

 "method.response.header.x-user-id" : "integration.response.header.x-userid"
}

Create an API as an Amazon S3 Proxy
As an example to showcase using an API in API Gateway to proxy Amazon S3, this section describes
how to create and configure an API to expose the following Amazon S3 operations:

• Expose GET on the API's root resource to list all of the Amazon S3 buckets of a caller.

• Expose GET on a Folder resource to view a list of all of the objects in an Amazon S3 bucket.

• Expose PUT on a Folder resource to add a bucket to Amazon S3.

• Expose DELETE on a Folder resource to remove a bucket from Amazon S3.

• Expose GET on a Folder/Item resource to view or download an object from an Amazon S3 bucket.

• Expose PUT on a Folder/Item resource to upload an object to an Amazon S3 bucket.

• Expose HEAD on a Folder/Item resource to get object metadata in an Amazon S3 bucket.

• Expose DELETE on a Folder/Item resource to remove an object from an Amazon S3 bucket.

Note
To integrate your API Gateway API with Amazon S3, you must choose a region where both the
API Gateway and Amazon S3 services are available. For region availability, see Regions and
Endpoints.

You may want to import the sample API as an Amazon S3 proxy, as shown in A Sample Amazon S3
Proxy API in Swagger with API Gateway Extensions (p. 134). To do so, copy the Swagger definition and
paste it into a file. Use the API Gateway Swagger Importer. For more information, see Getting Started
with the API Gateway Swagger Importer.

To use the API Gateway console to create the API, you must first sign up for an AWS account.

If you do not have an AWS account, use the following procedure to create one.

125

Amazon API Gateway Developer Guide
Create an API as an Amazon S3 Proxy

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETE.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region
https://github.com/awslabs/aws-apigateway-importer
http://swagger.io/getting-started-with-the-amazon-swagger-importer/
http://swagger.io/getting-started-with-the-amazon-swagger-importer/

To sign up for AWS

1. Open http://aws.amazon.com/ and choose Create an AWS Account.

2. Follow the online instructions.

To allow the API to invoke the Amazon S3 actions, you must have appropriate IAM policies attached to
an IAM role. The next section describes how to verify and to create, if necessary, the required IAM role
and policies.

Create an IAM Role and Policy for the API to
Access Amazon S3
For read-only operations, including Get* and List* actions in Amazon S3, you can use the
AmazonS3ReadOnlyAccess policy provided by the IAM , whose ARN is
arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess:

The AmazonS3ReadOnlyAccess Policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": "*"
 }
]
}

This policy document states that any of the Amazon S3 Get* and List* actions can be invoked on any
of the Amazon S3 resources.

To allow Amazon S3 buckets and objects to be updated, you can use a custom policy for any of the
Amazon S3 Put* actions.

An Amazon S3 Put-only Policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:Put*",
 "Resource": "*"
 }
]

126

Amazon API Gateway Developer Guide
Create an IAM Role and Policy for the API to Access

Amazon S3

http://aws.amazon.com/

}

You can attach a read-only and a put-only policy to an IAM role if your API works with Amazon S3 Get*,
List* and Put* actions only.

To invoke the Amazon S3 Post actions, you must include s3:Post* action in an Allow policy document.
For a complete list of Amazon S3 actions, see Specifying Amazon S3 Permissions in a Policy.

For an API to create, view, update, and delete buckets and objects in Amazon S3, you can attach a single
full-access policy. For this, you can use the AmazonS3FullAccess policy, which is provided by the IAM
console and whose ARN is arn:aws:iam::aws:policy/AmazonS3FullAccess.

The AmazonS3FullAccess Policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": s3:*,
 "Resource": "*"
 }
]
}

This policy covers all actions on any resources in Amazon S3. Using the IAM role and policies ensures
that API Gateway can call the specifically allowed Amazon S3 actions on the specified Amazon S3
resources.

After you have decided which IAM policy documents to use, create an IAM role. Attach the policies to the
role. The resulting IAM role must contain the following trust policy for the attached policies to be applied
on API Gateway.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

When using the IAM console to create the role, choose the Amazon API Gateway role type to ensure
that this trust policy is automatically included.

127

Amazon API Gateway Developer Guide
Create an IAM Role and Policy for the API to Access

Amazon S3

http://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html

Create API Resources for Amazon S3 Features
The following procedure describes how to use the API Gateway console to create an API that exposes
the Amazon S3 service features.

To create an API resource that exposes the Amazon S3 service features

1. In the API Gateway console, create an API named MyS3. This API's root resource (/) represents the
Amazon S3 service. Later, we will expose the GET method to list the Amazon S3 buckets of the
caller.

2. For the API's root resource, create a child resource named Folder, setting the required Resource
Path as /{folder}. The folder path parameter enables the client to specify a bucket name in the URL
when the client calls the API to work with the bucket. Later, we will expose the DELETE, GET, and
PUT methods on this Folder resource to work with an Amazon S3 bucket in the back end. We will
also declare a bucket path parameter for the back-end URL and specify a mapping expression to
translate folder to bucket.

3. For the API's Folder resource, identified by the /{folder} resource path, create an Item child resource.
Set the required Resource Path as /{item}. The folder and item path parameters enable the client
to specify, in the request's URL, an object name in a given folder when the client calls the API to
work with the object. Later, we will expose the DELETE, HEAD, GET and PUT methods on this Item
resource.We will also declare bucket and object path parameters for the back-end URL and specify
mapping expressions to translate folder and item to bucket and object, respectively.

Expose a GET Method on an API Root as Get
Service Action in Amazon S3
Use Create Method in the API Gateway console to create a GET method for the API's root resource, (/).
In the Set up pane for the method, configure the GET method to integrate with the GET Service action
in Amazon S3, as follows.

To set up the newly created GET method on the API root

1. For the Integration type, choose AWS Service Proxy.

2. From the list, choose an AWS Region.

3. From AWS Service, choose S3.

4. From HTTP method, choose GET.

5. For Action Type, choose Use path override.

6. (Optional) In Path override type /.

7. Copy the previously created IAM role's ARN (from the IAM console) and paste it into Execution role.

8. Choose Save to finish setting up this method.

128

Amazon API Gateway Developer Guide
Create API Resources for Amazon S3 Features

Note
After the method is set up, you can modify these settings in the method's Integration
Request page.

By default, API Gateway assumes the request and response payload to be of the "application/json" type.
However, Amazon S3 returns results in an XML-formatted response payload. This means that you must
override the default Content-Type header value of the method response with the Content-Type header
value from the integration response. Otherwise, the client will see "application/json" in the response
Content-Type header when the response body is an XML string.

To translate the integration response header to the method response header, use response header
mappings. The process involves declaring the Content-Type header explicitly for the method response
and specifying a header mapping expression for the integration response to pass the back-end
Content-Type header value to the front-end Content-Type header value.

To set up header mappings to return an integration response Content-Type header

1. In the API Gateway console, choose Method Response. Add the Content-Type header.

129

Amazon API Gateway Developer Guide
Expose a GET Method on an API Root as Get Service

Action in Amazon S3

2. In Integration Response, for Content-Type, type
integration.response.header.Content-Type for the method response.

Test the GET method on the API root resource

• In Method Execution, choose Test. An example result is shown in the following figure.

130

Amazon API Gateway Developer Guide
Expose a GET Method on an API Root as Get Service

Action in Amazon S3

Note
To use the API Gateway console to test the API as an Amazon S3 proxy, make sure that the
targeted S3 bucket is from a different region from the API's region. Otherwise, you may get a
500 Internal Server Error response. This limitation does not apply to any deployed API.

Expose Methods on an API Folder Resource as
Bucket Actions in Amazon S3
You can apply a similar procedure to expose methods on the Folder (/{folder}) resources, with minor
modifications that include using different HTTP verbs and setting up path parameter mappings between
the method request and integration request.To illustrate, we expose the GET, PUT, and DELETE methods
for listing objects in a bucket, creating a new bucket, and deleting an existing bucket, respectively. As an
example, we will cover the PUT method setup in detail.

To expose methods on a folder resource

1. On the /{folder} resource under the root, choose Create Method to create a PUT method.

2. Follow the setup steps for the GET method on the root resource explained in the previous procedure,
except that you will specify PUT for HTTP method and /{bucket} for Path override.

3. Set up the mappings for the Content-Type and possibly other headers from method request to
integration request and from integration response to method response.The instructions are the same
or similar to the header mapping from the integration response to the method response for the GET
method on the API's root resource.You must add the mapping for the Content-Type header from
the method request to integration because you must supply an XML payload in the PUT request;
this mapping overrides the default Content-Type header value (i.e., application/json) to reflect the
actual payload content type.

131

Amazon API Gateway Developer Guide
Expose Methods on an API Folder Resource as Bucket

Actions in Amazon S3

4. In Integration Request, expand the URL Path Parameters section. Add the path parameter name,
for example, bucket, as specified in Path override. Type a path-mapping expression, namely
method.request.path.folder, to map the front-end path parameter (folder) for the method request
to the back-end path parameter (bucket) for the integration request.

5. Choose Test from the Method Execution pane to test this PUT method. In folder, type a bucket
name, and then in Content-Type, type application/xml. In Request Body, provide the bucket
region as the location constraint; it is declared in an XML fragment as the payload of the request.

<CreateBucketConfiguration>

<LocationConstraint>us-west-2</LocationConstraint>

</CreateBucketConfiguration>

132

Amazon API Gateway Developer Guide
Expose Methods on an API Folder Resource as Bucket

Actions in Amazon S3

6. Repeat the preceding steps to create and configure the GET and DELETE method on the API's
/{folder} resource.

Expose Methods on an API Item in a Folder as
Actions on an Amazon S3 Object in a Bucket
The following procedure describes how to expose methods on an API item in a folder as an action on an
Amazon S3 object in a bucket.

To expose methods on an item resource

1. Repeat the preceding steps to create and configure the DELETE, HEAD, GET and PUT methods
on the /{folder}/{item} resource.The following image shows integration settings for the PUT method.
The settings for the other methods are similar.

133

Amazon API Gateway Developer Guide
Expose Methods on an API Item in a Folder as Actions

on an Amazon S3 Object in a Bucket

2. To test the GET method on a Folder/Item resource using the API Gateway console, choose Test in
the Method Execution page. The following image shows the result of an example test, where the
README.txt file in the apig-demo bucket in Amazon S3 contains a string of plain text ("Welcome to
README.txt").

A Sample Amazon S3 Proxy API in Swagger with
API Gateway Extensions

{
 "swagger": "2.0",
 "info": {
 "version": "2016-02-19T04:30:12Z",
 "title": "MyS3"
 },
 "host": "1234567890.execute-api.us-east-1.amazonaws.com",
 "basePath": "/S3",
 "schemes": [
 "https"
],
 "paths": {
 "/": {
 "get": {
 "produces": [
 "application/json"
],
 "parameters": [],

134

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample API as an Amazon S3

Proxy

 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Timestamp": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "\\d{3}": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type": "integration.response.head
er.Content-Type",
 "method.response.header.Content-Length": "integration.re
sponse.header.Content-Length",
 "method.response.header.Timestamp": "integration.response.head
er.Date"
 },
 "responseTemplates": {
 "application/json": "__passthrough__"
 }
 }
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path//",
 "httpMethod": "GET",
 "type": "aws"
 }
 }
 },
 "/{folder}": {
 "get": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {

135

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample API as an Amazon S3

Proxy

 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Date": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "\\d{3}": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type": "integration.response.head
er.Content-Type",
 "method.response.header.Date": "integration.response.head
er.Date",
 "method.response.header.Content-Length": "integration.re
sponse.header.content-length"
 },
 "responseTemplates": {
 "application/json": "__passthrough__"
 }
 }
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
 "httpMethod": "GET",
 "requestParameters": {
 "integration.request.path.bucket": "method.request.path.folder"
 },
 "type": "aws"
 }
 },
 "put": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "Content-Type",
 "in": "header",
 "required": false,
 "type": "string"
 },
 {
 "name": "folder",
 "in": "path",
 "required": true,

136

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample API as an Amazon S3

Proxy

 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "\\d{3}": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type": "integration.response.head
er.Content-Type",
 "method.response.header.Content-Length": "integration.re
sponse.header.Content-Length"
 },
 "responseTemplates": {
 "application/json": "__passthrough__"
 }
 }
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
 "httpMethod": "PUT",
 "requestParameters": {
 "integration.request.path.bucket": "method.request.path.folder",
 "integration.request.header.Content-Type": "method.request.head
er.Content-Type"
 },
 "type": "aws"
 }
 },
 "delete": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {

137

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample API as an Amazon S3

Proxy

 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Date": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "\\d{3}": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type": "integration.response.head
er.Content-Type",
 "method.response.header.Date": "integration.response.header.Date"

 },
 "responseTemplates": {
 "application/json": "__passthrough__"
 }
 }
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
 "httpMethod": "DELETE",
 "requestParameters": {
 "integration.request.path.bucket": "method.request.path.folder"
 },
 "type": "aws"
 }
 }
 },
 "/{folder}/{item}": {
 "get": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "item",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }

138

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample API as an Amazon S3

Proxy

],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "content-type": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "\\d{3}": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.content-type": "integration.response.head
er.content-type",
 "method.response.header.Content-Type": "integration.response.head
er.Content-Type"
 },
 "responseTemplates": {
 "application/json": "__passthrough__"
 }
 }
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
 "httpMethod": "GET",
 "requestParameters": {
 "integration.request.path.object": "method.request.path.item",
 "integration.request.path.bucket": "method.request.path.folder"
 },
 "type": "aws"
 }
 },
 "head": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "item",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"

139

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample API as an Amazon S3

Proxy

 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "\\d{3}": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type": "integration.response.head
er.Content-Type",
 "method.response.header.Content-Length": "integration.re
sponse.header.Content-Length"
 },
 "responseTemplates": {
 "application/json": "__passthrough__"
 }
 }
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
 "httpMethod": "HEAD",
 "requestParameters": {
 "integration.request.path.object": "method.request.path.item",
 "integration.request.path.bucket": "method.request.path.folder"
 },
 "type": "aws"
 }
 },
 "put": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "Content-Type",
 "in": "header",
 "required": false,
 "type": "string"
 },
 {
 "name": "item",
 "in": "path",
 "required": true,

140

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample API as an Amazon S3

Proxy

 "type": "string"
 },
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "\\d{3}": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type": "integration.response.head
er.Content-Type",
 "method.response.header.Content-Length": "integration.re
sponse.header.Content-Length"
 },
 "responseTemplates": {
 "application/json": "__passthrough__"
 }
 }
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
 "httpMethod": "PUT",
 "requestParameters": {
 "integration.request.path.object": "method.request.path.item",
 "integration.request.header.content-type": "method.request.head
er.Content-Type",
 "integration.request.path.bucket": "method.request.path.folder",
 "integration.request.header.Content-Type": "method.request.head
er.Content-Type"
 },
 "type": "aws"
 }
 },
 "delete": {
 "produces": [
 "application/json"
],

141

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample API as an Amazon S3

Proxy

 "parameters": [
 {
 "name": "item",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "d\\{3}": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type": "integration.response.head
er.Content-Type",
 "method.response.header.Content-Length": "integration.re
sponse.header.Content-Length"
 },
 "responseTemplates": {
 "application/json": "__passthrough__"
 }
 }
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
 "httpMethod": "DELETE",
 "requestParameters": {
 "integration.request.path.object": "method.request.path.item",
 "integration.request.path.bucket": "method.request.path.folder"
 },
 "type": "aws"
 }
 }
 }
 },
 "definitions": {

142

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample API as an Amazon S3

Proxy

 "Empty": {
 "type": "object"
 }
 }
}

Create an API Gateway API as an AWS Lambda
Proxy

Note
To integrate your API Gateway API with Lambda, you must choose a region where both the API
Gateway and Lambda services are available. For region availability, see Regions and Endpoints.

If your API makes only synchronous calls to Lambda functions in the back end, you should use the
Lambda Function integration type. For instructions, see Call Lambda Functions Synchronously (p. 22).

If your API makes asynchronous calls to Lambda functions, you must use the AWS Service Proxy
integration type described in this section. The instructions apply to requests for synchronous Lambda
function invocations as well. For the asynchronous invocation, you must explicitly add the
X-Amz-Invocation-Type:Event header to the integration request. For the synchronous invocation,
you can add the X-Amz-Invocation-Type:RequestResponse header to the integration request or
leave it unspecified. The following example shows the integration request of an asynchronous Lambda
function invocation:

POST /2015-03-31/functions/FunctionArn/invocations?Qualifier=Qualifier HTTP/1.1

X-Amz-Invocation-Type: Event
...
Authorization: ...
Content-Type: application/json
Content-Length: PayloadSize

Payload

In this example, FunctionArn is the ARN of the Lambda function to be invoked. The Authorization
header is required by secure invocation of Lambda functions over HTTPS. For more information, see the
Invoke action in the AWS Lambda Developer Guide.

To illustrate how to create and configure an API as an AWS service proxy for Lambda, we will create a
Lambda function (Calc) that performs addition (+), subtraction (-), multiplication (*), and division (/).When
a client submits a method request to perform any of these operations, API Gateway will post the
corresponding integration request to call the specified Lambda function, passing the required input (two
operands and one operator) as a JSON payload. A synchronous call will return the result, if any, as the
JSON payload. An asynchronous call will return no data.

The API can expose a GET or POST method on the /calc resource to invoke the Lambda function.With
the GET method, a client supplies the input to the back-end Lambda function through three query string
parameters (operand1, operand2, and operator). These are mapped to the JSON payload of the
integration request.With the POST method, a client provides the input to the Lambda function as a JSON
payload of the method request, which is then passed through to the integration request. Alternatively, the
API can expose a GET method on the /calc/{operand1}/{operand2}/{operator} resource. With

143

Amazon API Gateway Developer Guide
Create an API as a Lambda Proxy

http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region
http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

this method, the client specifies the Lambda function input as the values of the path parameters. Parameter
mappings and mapping templates are used to translate the method request data into the Lambda function
input and to translate the output from the integration responses to the method response.

This section provides more detailed discussions for the following tasks:

• Create the Calc Lambda function to implement the arithmetic operations, accepting and returning
JSON-formatted input and output.

• Expose GET on the /calc resource to invoke the Lambda function, supplying the input as query strings.

• Expose POST on the /calc resource to invoke the Lambda function, supplying the input in the payload.

• Expose GET on the /calc/{operand1}/{operand2}/{operator} resource to invoke the Lambda
function, specifying the input in the path parameters.

You can import the sample API as a Lambda proxy from the Swagger Definitions of a Sample API as
Lambda Proxy (p. 155).To do so, copy the Swagger definition, paste it into a file, and use the API Gateway
Swagger Importer. For more information, see Getting Started with the API Gateway Swagger Importer.

To use the API Gateway console to create the API, you must first sign up for an AWS account.

If you do not have an AWS account, use the following procedure to create one.

To sign up for AWS

1. Open http://aws.amazon.com/ and choose Create an AWS Account.

2. Follow the online instructions.

To allow the API to invoke Lambda functions, you must have an IAM role that has appropriate IAM policies
attached to it. The next section describes how to verify and to create, if necessary, the required IAM role
and policies.

Topics

• Set Up an IAM Role and Policy for an API to Invoke Lambda Functions (p. 144)

• Create a Lambda Function in the Back End (p. 145)

• Create API Resources for the Lambda Function (p. 146)

• Create a GET Method with Query Strings to Call the Lambda Function (p. 147)

• Create a POST Method with a JSON Payload to Call the Lambda Function (p. 149)

• Create a GET Method with Path Parameters to Call the Lambda Function (p. 151)

• A Sample API as a Lambda Proxy in Swagger with API Gateway Extensions (p. 155)

Set Up an IAM Role and Policy for an API to Invoke
Lambda Functions
The API will use the InvokeFunction action to call a Lambda function. At minimum, you must attach the
following IAM policy to an IAM role for API Gateway to assume the policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

144

Amazon API Gateway Developer Guide
Set Up an IAM Role and Policy for an API to Invoke

Lambda Functions

https://github.com/awslabs/aws-apigateway-importer
https://github.com/awslabs/aws-apigateway-importer
http://swagger.io/getting-started-with-the-amazon-swagger-importer/
http://aws.amazon.com/
http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

 "Action": "lambda:InvokeFunction",
 "Resource": "*"
 }
]
}

If you do not enact this policy, the API caller will receive a 500 Internal Server Error response. The
response contains the "Invalid permissions on Lambda function" error message. For a complete list of
error messages returned by Lambda, see the Invoke topic.

An API Gateway assumable role is an IAM role with the following trusted relationship:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Create a Lambda Function in the Back End
Copy the following Lambda function and paste it into the code editor in the Lambda console.

exports.handler = function(event, context) {
 //console.log('Received event:', JSON.stringify(event, null, 2));
 var res = {};
 res.a = event.a;
 res.b = event.b;
 res.op = event.op;

 switch(event.op)
 {
 case "+":
 res.c = Number(event.a) + Number(event.b);
 break;
 case "-":
 res.c = Number(event.a) - Number(event.b);
 break;
 case "*":
 res.c = Number(event.a) * Number(event.b);
 break;
 case "/":
 res.c = Number(event.b)===0 ? NaN : Number(event.a) / Num
ber(event.b);

145

Amazon API Gateway Developer Guide
Create a Lambda Function in the Back End

http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

 break;
 default:
 res.c = "Invalid op";
 }
 context.succeed(res);
};

This function requires two operands (a and b) and an operator (op) from the event input parameter.The
input is a JSON object of the following format:

{
 "a": "Number" | "String",
 "b": "Number" | "String",
 "op": "String"
}

This function returns the calculated result (c) and the input. For an invalid input, the function returns either
the null value or the "Invalid op" string as the result. The output is of the following JSON format:

{
 "a": "Number",
 "b": "Number",
 "op": "String",
 "c": "Number" | "String"
}

You should test the function in the Lambda console before integrating it with the API, which is created
next.

Create API Resources for the Lambda Function
The following procedure describes how to create API resources for the Lambda function.

To create API resources for Lambda functions

1. In the API Gateway console, create an API named LambdaGate.You can create child resources to
represent different Lambda functions; in the following, you will create a single child resource of the
API root.

2. For the simple calculator function you created, create the /calc resource off the API's root.You will
expose the GET and POST methods on this resource for the client to invoke the back-end Lambda
function, supplying the required input as query string parameters (to be declared as
?operand1=...&operand2=...&operator=...) in the GET request and as a JSON payload in
the POST request, respectively.

You will also create the /calc/{operand1}/{operand2}/{operator} to expose the GET method to
invoke the Lambda function and to supply the required input as the three path parameters (operand1,
operand2, and operator).

We will show how to apply API Gateway request and response data mapping to normalize the input
to the back end Lambda function.

146

Amazon API Gateway Developer Guide
Create API Resources for the Lambda Function

Create a GET Method with Query Strings to Call
the Lambda Function
Use the following steps to expose a GET method with query strings to call a Lambda function.

To set up the GET method with query strings to invoke the Lambda function

1. Choose Create Method in the API Gateway console to create a GET method for the API's /calc
resource.

In the method's Set up pane, configure the method with the following settings.

You must use the POST method for the integration request when calling a Lambda function, although
you can use any other HTTP verbs for the method request.

The Path override value must the URL path of the Lambda Invoke action.The path is of the following
format:

147

Amazon API Gateway Developer Guide
Create a GET Method with Query Strings to Call the

Lambda Function

http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

/2015-03-31/functions/FunctionName/invocations?Qualifier=version

where FunctionName is the ARN of the Lambda function to be invoked. The optional Qualifier
query string can be used to select a version of the function. If it not specified, the $LATEST version
will be used.

You can also add the X-Amz-Invocation-Type: Event | RequestReponse | DryRun header
to have the action invoked asynchronously, as request and response, or as a test run, respectively.
If the header is not specified, the action will be invoked as request and response. For the example
shown here, this header has the default value.

We will come back to setting up Mapping Templates after setting up the query string parameters
to hold the input data for the Lambda function.

2. In Method Request for the GET method on /calc, expand the URL Query String Parameters
section. Choose Add query string to add the operand1, operand2, and operator query string
parameters.

3. Go back to Integration Request. Expand the Mapping Templates section. If necessary, in
Content-Type, under application/json, choose Add mapping template. Type the following in the
Mapping template editor:

{
 "a": "$input.params('operand1')",
 "b": "$input.params('operand2')",
 "op": "$input.params('operator')"
}

148

Amazon API Gateway Developer Guide
Create a GET Method with Query Strings to Call the

Lambda Function

This template maps the three query string parameters declared in Method Request into designated
property values of the JSON object as the input to the back-end Lambda function. The transformed
JSON object will be included as the integration request payload.

4. You can now choose Test to verify that the GET method on the /calc resource has been properly
set up to invoke the Lambda function.

Create a POST Method with a JSON Payload to
Call the Lambda Function
The following steps describe how to expose a POST method with a JSON payload.

To set up the POST method with a JSON payload to invoke a Lambda function

1. Choose Create Method in the API Gateway console to create a POST method for the LambdaGate
API's /calc resource.

In the method's Set Up panel, configure the POST method with the following settings.

149

Amazon API Gateway Developer Guide
Create a POST Method with a JSON Payload to Call the

Lambda Function

Using a POST request with a JSON payload is the simplest way to invoke a Lambda function, because
no mappings are needed.

2. You can now choose Test to verify the POST method works as expected. The following input:

{
 "a": 1,
 "b": 2,
 "op": "+"
}

should produce the following output:

{
 "a": 1,
 "b": 2,
 "op": "+",
 "c": 3
}

If you would like to implement POST as an asynchronous call, you can add an InvocationType:Event
header in the method request and map it to the X-Amz-Invocation-Type header in the integration
request, using the header mapping expression of method.request.header.InvocationType.You
must inform the clients to include the InvocationType:Event header in the method request. Alternatively,
you can set the X-Amz-Invocation-Type header with the 'Event' string literal in the integration

150

Amazon API Gateway Developer Guide
Create a POST Method with a JSON Payload to Call the

Lambda Function

request, without requiring the client to include the header. The asynchronous call will return an empty
response, instead.

Create a GET Method with Path Parameters to Call
the Lambda Function
The following steps describe how to set up the GET method with path parameters to call the Lambda
function.

To set up the GET method with URL path parameters to invoke the Lambda function

1. Choose Create Method in the API Gateway console to create a GET method for the API's
/calc/{operand1}/{operand2}/{operator} resource.

In the method's Set up pane, configure this GET method with the following settings.

Next, we will set up Mapping Templates to translate the URL path parameters into the integration
request JSON payload as the input to the Lambda function.

2. In Method Request for the GET method on /calc/{operand1}/{operand2}/{operator}, expand the
Request Paths section to verify that the path parameters are there.

151

Amazon API Gateway Developer Guide
Create a GET Method with Path Parameters to Call the

Lambda Function

3. Go back to Integration Request. Expand the Mapping Templates section. If necessary, in
Content-Type, under application/json, choose Add mapping template.

Type the following in the Mapping Template editor:

{

152

Amazon API Gateway Developer Guide
Create a GET Method with Path Parameters to Call the

Lambda Function

 "a": "$input.params('operand1')",
 "b": "$input.params('operand2')",
 "op": #if($input.params('operator')=='%2F')"/"#{else}"$input.params('op
erator')"#end

}

This template maps the three URL path parameters, declared when the
/calc/{operand1}/{operand2}/{operator} resource was created, into designated property values of
the JSON object. Because URL paths must be URL-encoded, the division operator must be specified
as %2F instead of /. This template maps these translations as well. The transformed JSON object
will be included as the integration request payload.

4. As another exercise, we demonstrate how to translate the JSON returned from the Lambda function
to show the output as a plain text string to the caller. This involves resetting the method request's
Content-Type header to "text/plain" and providing a mapping template to translate the JSON output
into a plain string.

First, make sure that Content-Type header is included in the Response Headers for 200 section
in Method Response.

5. In Integration Response, expand the 200 method response entry. Expand the Header Mappings
section. In Mapping value for Content-Type, type 'text/plain'.This header mapping expression
overrides the Content-Type header with a literal string, which must be enclosed within a pair of single
quotes.

153

Amazon API Gateway Developer Guide
Create a GET Method with Path Parameters to Call the

Lambda Function

Next, expand the Mapping Templates section, highlight the application/json entry under the
Content-Type header (of integration response), open the Mapping template editor, enter and save
the following mapping script:

$input.path('$.a') $input.path('$.op') $input.path('$.b') = $input.path('$.c')

6. Choose Test to verify the GET method on the /calc/{operand1}/{operand2}/{operator} works as
expected. The following request URL:

/calc/1/2/%2F

should produce the following plain text output:

1 / 2 = 0.5

Note
As part of a URL, the division operator (/) is URL-encoded (%2F).

7. After testing the API using the Test Invoke in the API Gateway console, you must deploy the API to
make it public available. If you update the API, such as adding, modifying or deleting a resource or
method, updating any data mapping, you must redeploy the API to make the new features or updates
available.

154

Amazon API Gateway Developer Guide
Create a GET Method with Path Parameters to Call the

Lambda Function

A Sample API as a Lambda Proxy in Swagger with
API Gateway Extensions

{
 "swagger": "2.0",
 "info": {
 "version": "2016-02-23T05:35:54Z",
 "title": "LambdaGate"
 },
 "host": "a123456789.execute-api.us-east-1.amazonaws.com",
 "basePath": "/test",
 "schemes": [
 "https"
],
 "paths": {
 "/calc": {
 "get": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "operand2",
 "in": "query",
 "required": false,
 "type": "string"
 },
 {
 "name": "operator",
 "in": "query",
 "required": false,
 "type": "string"
 },
 {
 "name": "operand1",
 "in": "query",
 "required": false,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "operand_1": {
 "type": "string"
 },
 "operand_2": {
 "type": "string"
 },
 "operator": {
 "type": "string"

155

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample API as Lambda Proxy

 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.operator": "integration.re
sponse.body.op",
 "method.response.header.operand_2": "integration.re
sponse.body.b",
 "method.response.header.operand_1": "integration.response.body.a"

 },
 "responseTemplates": {
 "application/json": "#set($res= $input.path('$'))\n{\n
\"result\": \"$res.a, $res.b, $res.op => $res.c\"\n}"
 }
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"a\": \"$input.params('operand1')\",\n
 \"b\": \"$input.params('operand2')\", \n \"op\": \"$input.params('oper
ator')\" \n}"
 },
 "uri": "arn:aws:apigateway:us-west-2:lambda:path//2015-03-31/func
tions/arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",
 "httpMethod": "POST",
 "type": "aws"
 }
 },
 "post": {
 "produces": [
 "application/json"
],
 "parameters": [],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {}
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseTemplates": {
 "application/json": "__passthrough__"
 }
 }
 },

156

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample API as Lambda Proxy

 "uri": "arn:aws:apigateway:us-west-2:lambda:path//2015-03-31/func
tions/arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",
 "httpMethod": "POST",
 "type": "aws"
 }
 }
 },
 "/calc/{operand1}/{operand2}/{operator}": {
 "get": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "operand2",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "operator",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "operand1",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Type": {
 "type": "string"
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type": "'text/plain'"
 },
 "responseTemplates": {
 "application/json": "\"$input.path('$.a') $input.path('$.op')
 $input.path('$.b') = $input.path('$.c')\""
 }
 }

157

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample API as Lambda Proxy

 },
 "requestTemplates": {
 "application/json": "\n{\n \"a\": \"$input.params('operand1')\",\n
 \"b\": \"$input.params('operand2')\",\n \"op\": #if($input.params('operat
or')=='%2F')\"/\"#{else}\"$input.params('operator')\"#end\n \n}"
 },
 "uri": "arn:aws:apigateway:us-west-2:lambda:path//2015-03-31/func
tions/arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",
 "httpMethod": "POST",
 "type": "aws"
 }
 }
 }
 },
 "definitions": {
 "Empty": {
 "type": "object"
 }
 }
}

Create an API Gateway API as an Amazon
Kinesis Proxy

This section describes how to create and configure an API Gateway API as an AWS proxy to access
Amazon Kinesis.

Note
To integrate your API Gateway API with Amazon Kinesis, you must choose a region where both
the API Gateway and Amazon Kinesis services are available. For region availability, see Regions
and Endpoints.

For the purpose of illustration, we will create an example API to enable a client to do the following:

1. List the user's available streams in Amazon Kinesis

2. Create, describe, or delete a specified stream

3. Read data records from or write data records into the specified stream

To accomplish the preceding tasks, the API exposes methods on various resources to invoke the following,
respectively:

1. The ListStreams action in Amazon Kinesis

2. The CreateStream, DescribeStream, or DeleteStream action

3. The GetRecords or PutRecords (including PutRecord) action in Amazon Kinesis

Specifically, we will build the API as follows:

• Expose an HTTP GET method on the API's /streams resource and integrate the method with the
ListStreams action in Amazon Kinesis to list the streams in the caller's account.

158

Amazon API Gateway Developer Guide
Create an API as an Amazon Kinesis Proxy

http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreams.html

• Expose an HTTP POST method on the API's /streams/{stream-name} resource and integrate the
method with the CreateStream action in Amazon Kinesis to create a named stream in the caller's
account.

• Expose an HTTP GET method on the API's /streams/{stream-name} resource and integrate the
method with the DescribeStream action in Amazon Kinesis to describe a named stream in the caller's
account.

• Expose an HTTP DELETE method on the API's /streams/{stream-name} resource and integrate
the method with the DeleteStream action in Amazon Kinesis to delete a stream in the caller's account.

• Expose an HTTP PUT method on the API's /streams/{stream-name}/record resource and
integrate the method with the PutRecord action in Amazon Kinesis. This enables the client to add a
single data record to the named stream.

• Expose an HTTP PUT method on the API's /streams/{stream-name}/records resource and
integrate the method with the PutRecords action in Amazon Kinesis. This enables the client to add a
list of data records to the named stream.

• Expose an HTTP GET method on the API's /streams/{stream-name}/records resource and
integrate the method with the GetRecords action in Amazon Kinesis.This enables the client to list data
records in the named stream, with a specified shard iterator. A shard iterator specifies the shard position
from which to start reading data records sequentially.

• Expose an HTTP GET method on the API's /streams/{stream-name}/sharditerator resource
and integrate the method with the GetShardIterator action in Amazon Kinesis.This helper method must
be supplied to the ListStreams action in Amazon Kinesis.

You can apply the instructions presented here to other Amazon Kinesis actions. For the complete list of
the Amazon Kinesis actions, see Amazon Kinesis API Reference.

Instead of using the API Gateway console to create the sample API, you can import the sample API into
API Gateway, using either the API Gateway Import API or the API Gateway Swagger Importer. For
information on how to use the Import API, see Import an API (p. 110). For information on how to use the
API Gateway Swagger Importer, see Getting Started with the API Gateway Swagger Importer.

If you do not have an AWS account, use the following procedure to create one.

To sign up for AWS

1. Open http://aws.amazon.com/ and choose Create an AWS Account.

2. Follow the online instructions.

Create an IAM Role and Policy for the API to
Access Amazon Kinesis
To allow the API to invoke Amazon Kinesis actions, you must have appropriate IAM policies attached to
an IAM role. This section explains how to verify and to create, if necessary, the required IAM role and
policies.

To enable read-only access to Amazon Kinesis, you can use the AmazonKinesisReadOnlyAccess policy
that allows the Get*, List*, and Describe* actions in Amazon Kinesis to be invoked.

{
 "Version": "2012-10-17",
 "Statement": [
 {

159

Amazon API Gateway Developer Guide
Create an IAM Role and Policy for the API to Access

Amazon Kinesis

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_CreateStream.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_DescribeStream.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_DeleteStream.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-import/
https://github.com/awslabs/aws-apigateway-importer
http://swagger.io/getting-started-with-the-amazon-swagger-importer/
http://aws.amazon.com/

 "Effect": "Allow",
 "Action": [
 "kinesis:Get*",
 "kinesis:List*",
 "kinesis:Describe*"
],
 "Resource": "*"
 }
]
}

This policy is available from the IAM console and its ARN is
arn:aws:iam::aws:policy/AmazonKinesisReadOnlyAccess.

To enable read-write actions in Amazon Kinesis, you can use the AmazonKinesisFullAccess policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "*"
 }
]
}

This policy is also available from the IAM console. Its ARN is
arn:aws:iam::aws:policy/AmazonKinesisFullAccess.

After you decide which IAM policy to use, attach it to a new or existing IAM role. Make sure that the API
Gateway control service (apigateway.amazonaws.com) is a trusted entity of the role and is allowed to
assume the execution role (sts:AssumeRole).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

If you create the execution role in the IAM console and choose the Amazon API Gateway role type, this
trust policy is automatically attached.

160

Amazon API Gateway Developer Guide
Create an IAM Role and Policy for the API to Access

Amazon Kinesis

Note the ARN of the execution role.You will need it when creating an API method and setting up its
integration request.

Start to Create an API as an Amazon Kinesis Proxy
Use the following steps to create the API in the API Gateway console.

To create an API as an AWS service proxy for Amazon Kinesis

1. In the API Gateway console, choose Create API.

2. In API name, type KinesisProxy. Leave the default values in the other fields.

3. For Clone from API, choose Do not clone from existing API.

4. Type a description in Description.

5. Choose Create API.

After the API is created, the API Gateway console displays the Resources page, which contains only
the API's root (/) resource.

List Streams in Amazon Kinesis
To list streams in Amazon Kinesis, add a /streams resource to the API's root, expose a GET method
on the resource, and integrate the method to the ListStreams action of Amazon Kinesis.

The following procedure describes how to list Amazon Kinesis streams by using the API Gateway console.

To list Amazon Kinesis streams by using the API Gateway console

1. Select the API root resource. In Actions, choose Create Resource.

In Resource Name, type Streams, leave Resource Path as the default, and choose Create
Resource.

2. Select the /Streams resource. From Actions, choose Create Method, choose GET from the list,
and then choose the checkmark icon to finish creating the method.

Note
You can choose any of the available HTTP verbs for a method request. We use GET here,
because listing streams is a READ operation.

3. In the method's Setup pane, choose Show Advanced and then choose AWS Service Proxy.

a. For AWS Region, choose a region (e.g., us-east-1).

b. For AWS Service, choose Kinesis.

c. For HTTP method, choose POST.

Note
For the integration request with Amazon Kinesis, you must choose the POST HTTP
verb to invoke the action, although you can use any of the available HTTP verbs for
the API's method request.

d. For Action Type, choose Use action name.

e. For Action, type ListStreams.

f. For Execution role, type the ARN for your execution role.

g. Choose Save to finish the initial setup of the method.

161

Amazon API Gateway Developer Guide
Start to Create an API as an Amazon Kinesis Proxy

The initial setup of the integration request will suffice if there is no need to map data between the
method and integration requests and/or between the method and integration responses. Examples
discussed in this topic require data mapping, which is covered in the second half of the Integration
Request pane.

4. In the Integration Request pane, expand the HTTP Headers section:

a. Choose Add header.

b. In the Name column, type Content-Type.

c. In the Mapped from column, type 'application/x-amz-json-1.1'.

d. Choose the checkmark icon to save the setting.

5. Expand the Body Mapping Templates section:

a. Choose Add mapping template.

b. For Content-Type, type application/json.

c. Choose the checkmark icon to save the setting.

d. Choose the pencil icon to the right of Mapping template.

e. Choose Mapping template from the drop-down list to open the Template editor.

f. Type {} in the template editor.

g. Choose the checkmark icon to save the mapping template.

The ListStreams request takes a payload of the following JSON format:

{
 "ExclusiveStartStreamName": "string",
 "Limit": number
}

However, the properties are optional.To use the default values, we opted for an empty JSON payload
here.

162

Amazon API Gateway Developer Guide
List Streams in Amazon Kinesis

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreams.html#API_ListStreams_RequestSyntax

6. Test the GET method on the Streams resource to invoke the ListStreams action in Amazon Kinesis:

From the API Gateway console, select the /streams/GET entry from the Resources pane, choose
the Test invocation option, and then choose Test.

If you have already created two streams named "myStream" and "yourStream" in Amazon Kinesis,
the successful test will return a 200 OK response containing the following payload:

{
 "HasMoreStreams": false,
 "StreamNames": [
 "myStream",
 "yourStream"
]
}

Create, Describe, and Delete a Stream in Amazon
Kinesis
Creating, describing, and deleting a stream in Amazon Kinesis involves making the following Amazon
Kinesis REST API requests, respectively:

POST /?Action=CreateStream HTTP/1.1
Host: kinesis.region.domain
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "ShardCount": number,

163

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

 "StreamName": "string"
}

POST /?Action=DescribeStream HTTP/1.1
Host: kinesis.region.domain
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "ExclusiveStartShardId": "string",
 "Limit": number,
 "StreamName": "string"
}

POST /?Action=DeleteStream HTTP/1.1
Host: kinesis.region.domain
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "StreamName":"string"
}

We can build our API to accept the required input as a JSON payload of the method request and pass
the payload through to the integration request. However, to provide more examples of data mapping
between method and integration requests, and method and integration responses, we will create our API
slightly differently.

We will expose the GET, POST, and Delete HTTP methods on a to-be-named Stream resource. We will
use the {stream-name} path variable to hold the to-be-named stream resource and integrate these API
methods with the Amazon Kinesis' DescribeStream, CreateStream, and DeleteStream actions,
respectively.We require that the client pass other input data as headers, query parameters, or the payload
of a method request, and we provide mapping templates to transform the data to the required integration
request payload.

After the methods are created on a to-be-named stream resource, the structure of the API looks like the
following:

164

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

To configure and test the GET method on a stream resource

1. Set up the GET method to describe a named stream in Amazon Kinesis, as shown in the following.

2. Map data from the GET method request to the integration request, as shown in the following:

3. Test the GET method to invoke the DescribeStream action in Amazon Kinesis:

165

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

From the API Gateway console, select /streams/{stream-name}/GET in the Resources pane,
choose Test to start testing, type the name of an existing Amazon Kinesis stream in the Path field
for stream-name, and choose Test. If the test is successful, a 200 OK response is returned with a
payload similar to the following:

{
 "StreamDescription": {
 "HasMoreShards": false,
 "RetentionPeriodHours": 24,
 "Shards": [
 {
 "HashKeyRange": {
 "EndingHashKey": "68056473384187692692674921486353642290",
 "StartingHashKey": "0"
 },
 "SequenceNumberRange": {
 "StartingSequenceNumber":
"49559266461454070523309915164834022007924120923395850242"
 },
 "ShardId": "shardId-000000000000"
 },
 ...
 {
 "HashKeyRange": {
 "EndingHashKey": "340282366920938463463374607431768211455",
 "StartingHashKey": "272225893536750770770699685945414569164"
 },
 "SequenceNumberRange": {
 "StartingSequenceNumber":
"49559266461543273504104037657400164881014714369419771970"
 },
 "ShardId": "shardId-000000000004"
 }
],
 "StreamARN": "arn:aws:kinesis:us-east-1:12345678901:stream/myStream",
 "StreamName": "myStream",
 "StreamStatus": "ACTIVE"
 }
}

After you deploy the API, you can make a REST request against this API method:

GET https://your-api-id.execute-api.region.amazonaws.com/stage/streams/myS
tream HTTP/1.1
Host: your-api-id.execute-api.region.amazonaws.com
Content-Type: application/json
Authorization: ...
X-Amz-Date: 20160323T194451Z

166

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

To configure and test the POST method on a stream resource

1. Set up the POST method on a stream resource to create the stream in Amazon Kinesis, as shown
in the following:

2. Map data from the POST method request to the integration request, as shown in the following:

In this example, we use the following mapping template to set ShardCount to a fixed value of 5 if
the client does not specify a value in the method request payload. Otherwise, we pass the
client-supplied value to the back end.

167

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

{
 "ShardCount": #if($input.path('$.ShardCount') == '') 5 #else $in
put.path('$.ShardCount')",
 "StreamName": "$input.params('stream-name')"
}

The preceding if ($input.path('$.ShardCount') == '') ... Boolean expression tests
if the method request's JSON payload does not have the ShardCount property declared or if the
property value is empty.

3. Test the POST method to create a named stream in Amazon Kinesis:

From the API Gateway console, select /streams/{stream-name}/POST in the Resources pane,
choose Test to start testing, type the name of an existing Amazon Kinesis stream in Path for
stream-name, and choose Test. If the test is successful, a 200 OK response is returned with no
data.

After you deploy the API, you can also make a REST API request against the POST method on a
Stream resource to invoke the CreateStream action in Amazon Kinesis:

POST https://your-api-id.execute-api.region.amazon
aws.com/stage/streams/yourStream HTTP/1.1
Host: your-api-id.execute-api.region.amazonaws.com
Content-Type: application/json
Authorization: ...
X-Amz-Date: 20160323T194451Z

{
 "ShardCount": 5
}

Configure and test the DELETE method on a stream resource

1. Set up the DELETE method to invoke the DeleteStream action in Amazon Kinesis, as shown in
the following.

168

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

2. Map data from the DELETE method request to the integration request, as shown in the following:

3. Test the DELETE method to delete a named stream in Amazon Kinesis:

169

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

From the API Gateway console, select the /streams/{stream-name}/DELETE method node in the
Resources pane, choose Test to start testing, type the name of an existing Amazon Kinesis stream
in Path for stream-name, and choose Test. If the test is successful, a 200 OK response is returned
with no data.

After you deploy the API, you can also make the following REST API request against the DELETE
method on the Stream resource to call the DeleteStream action in Amazon Kinesis:

DELETE https://your-api-id.execute-api.region.amazon
aws.com/stage/streams/yourStream HTTP/1.1
Host: your-api-id.execute-api.region.amazonaws.com
Content-Type: application/json
Authorization: ...
X-Amz-Date: 20160323T194451Z

{}

Get Records from and Add Records to a Stream
in Amazon Kinesis
After you create a stream in Amazon Kinesis, you can add data records to the stream and read the data
from the stream. Adding data records involves calling the PutRecords or PutRecord action in Amazon
Kinesis. The former adds multiple records whereas the latter adds a single record to the stream.

POST /?Action=PutRecords HTTP/1.1
Host: kinesis.region.domain
Authorization: AWS4-HMAC-SHA256 Credential=..., ...
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "Records": [
 {
 "Data": blob,
 "ExplicitHashKey": "string",
 "PartitionKey": "string"
 }
],
 "StreamName": "string"
}

or

POST /?Action=PutRecord HTTP/1.1
Host: kinesis.region.domain
Authorization: AWS4-HMAC-SHA256 Credential=..., ...

170

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in

Amazon Kinesis

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html#API_PutRecords_Examples
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html#API_PutRecord_Examples

...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "Data": blob,
 "ExplicitHashKey": "string",
 "PartitionKey": "string",
 "SequenceNumberForOrdering": "string",
 "StreamName": "string"
}

Here, StreamName identifies the target stream to add records. StreamName, Data, and PartitionKey
are required input data. In our example, we use the default values for all of the optional input data and
will not explicitly specify values for them in the input to the method request.

Reading data in Amazon Kinesis amounts to calling the GetRecords action:

POST /?Action=GetRecords HTTP/1.1
Host: kinesis.region.domain
Authorization: AWS4-HMAC-SHA256 Credential=..., ...
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "ShardIterator": "string",
 "Limit": number
}

Here, the source stream from which we are getting records is specified in the required ShardIterator
value, as is shown in the following Amazon Kinesis action to obtain a shard iterator:

POST /?Action=GetShardIterator HTTP/1.1
Host: kinesis.region.domain
Authorization: AWS4-HMAC-SHA256 Credential=..., ...
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "ShardId": "string",
 "ShardIteratorType": "string",
 "StartingSequenceNumber": "string",
 "StreamName": "string"
}

For the GetRecords and PutRecords actions, we expose the GET and PUT methods, respectively, on
a /records resource that is appended to a named stream resource (/{stream-name}). Similarly, we
expose the PutRecord action as a PUT method on a /record resource.

171

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in

Amazon Kinesis

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html#API_GetRecords_Examples

Because the GetRecords action takes as input a ShardIterator value, which is obtained by calling
the GetShardIterator helper action, we expose a GET helper method on a ShardIterator resource
(/sharditerator).

The following figure shows the API structure of resources after the methods are created:

The following four procedures describe how to set up each of the methods, how to map data from the
method requests to the integration requests, and how to test the methods.

To configure and test the PUT method on the record resource in the API to invoke the
PutRecord action in Amazon Kinesis:

1. Set up the PUT method, as shown in the following:

2. Configure data mapping for the PUT-on-Record method, as shown in the following:

172

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in

Amazon Kinesis

The preceding mapping template assumes that the method request payload is of the following format:

{
 "Data": "some data",
 "PartitionKey": "some key"
}

This data can be modeled by the following JSON schema:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PutRecord proxy single-record payload",
 "type": "object",
 "properties": {
 "Data": { "type": "string" },
 "PartitionKey": { "type": "string" }
 }
}

You can create a model to include this schema and use the model to facilitate generating the mapping
template. However, you can generate a mapping template without using any model.

3. To test the PUT method, set the stream-name path variable to an existing stream, supply a payload
of the preceding format, and then submit the method request. The successful result is a 200 OK
response with a payload of the following format:

{
 "SequenceNumber":
"49559409944537880850133345460169886593573102115167928386",
 "ShardId": "shardId-000000000004"

173

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in

Amazon Kinesis

}

To configure and test the PUT method on the records resource in the API to invoke the
PutRecords action in Amazon Kinesis

1. Set up the PUT method, as shown in the following:

2. Configure data mapping for the PUT method, as shown in the following:

The preceding mapping template assumes the method request payload can be modeled by following
JSON schema:

174

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in

Amazon Kinesis

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PutRecords proxy payload data",
 "type": "object",
 "properties": {
 "records": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "data": { "type": "string" },
 "partition-key": { "type": "string" }
 }
 }
 }
 }
}

3. To test the PUT method, set the stream-name path variable to an existing stream, supply a payload
as previously shown, and submit the method request. The successful result is a 200 OK response
with a payload of the following format:

{
 "records": [
 {
 "data": "some data",
 "partition-key": "some key"
 },
 {
 "data": "some other data",
 "partition-key": "some key"
 }
]
}

The response payload will be similar to the following output:

{
 "FailedRecordCount": 0,
 "Records": [
 {
 "SequenceNumber":
"49559409944537880850133345460167468741933742152373764162",
 "ShardId": "shardId-000000000004"
 },
 {
 "SequenceNumber":
"49559409944537880850133345460168677667753356781548470338",
 "ShardId": "shardId-000000000004"
 }
]
}

175

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in

Amazon Kinesis

To configure and test the GET method on the ShardIterator resource in the API to invoke
the GetShardIterator action in Amazon Kinesis

The GET-on-ShardIterator method is a helper method to acquire a required shard iterator before calling
the GET-on-Records method.

1. Set up the GET-on-ShardIterator method, as shown in the following:

2. The GetShardIterator action requires an input of a ShardId value. To pass a client-supplied
ShardId value, we add a shard-id query parameter to the method request, as shown in the
following:

In the following mapping template, we add the translation of the shard-id query parameter value
to the ShardId property value of the JSON payload for the GetShardIterator action in Amazon
Kinesis.

176

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in

Amazon Kinesis

3. Configure data mapping for the GET-on-ShardIterator method:

4. Using the Test option in the API Gateway console, enter an existing stream name as the
stream-name Path variable value, set the shard-id Query string to an existing ShardId value
(e.g., shard-000000000004), and choose Test.

The successful response payload will be similar to the following output:

{
 "ShardIterator": "AAAAAAAAAAFYVN3VlFy..."
}

Make note of the ShardIterator value.You will need it to get records from a stream.

To configure and test the GET Method on the records resource in the API to invoke the
GetRecords action in Amazon Kinesis

1. Set up the GET method, as shown in the following:

177

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in

Amazon Kinesis

2. The GetRecords action requires an input of a ShardIterator value. To pass a client-supplied
ShardIterator value, we add a Shard-Iterator header parameter to the method request, as
shown in the following:

In the following mapping template, we add the mapping from the Shard-Iterator header value
to the ShardIterator property value of the JSON payload for the GetRecords action in Amazon
Kinesis.

3. Configure data mapping for the GET-on-Records method:

178

Amazon API Gateway Developer Guide
Get Records from and Add Records to a Stream in

Amazon Kinesis

4. Using the Test option in the API Gateway console, type an existing stream name as the stream-name
Path variable value, set the Shard-Iterator Header to the ShardIterator value obtained from
the test run of the GET-on-ShardIterator method (above), and choose Test.

The successful response payload will be similar to the following output:

{
 "MillisBehindLatest": 0,
 "NextShardIterator": "AAAAAAAAAAF...",
 "Records": [...]
}

Swagger Definitions of a Sample API as an Amazon
Kinesis Proxy

{
 "swagger": "2.0",
 "info": {
 "version": "2016-03-31T18:25:32Z",
 "title": "KinesisProxy"
 },
 "host": "wd4zclrobb.execute-api.us-east-1.amazonaws.com",
 "basePath": "/test",
 "schemes": [
 "https"
],
 "paths": {
 "/streams": {
 "get": {
 "consumes": [
 "application/json"

179

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

],
 "produces": [
 "application/json"
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestTemplates": {
 "application/json": "{\n}"
 },
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/ListStreams",
 "httpMethod": "POST",
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-json-
1.1'"
 },
 "type": "aws"
 }
 }
 },
 "/streams/{stream-name}": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",

180

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"StreamName\": \"$input.params('stream-
name')\"\n}"
 },
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/DescribeStream",

 "httpMethod": "POST",
 "type": "aws"
 }
 },
 "post": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"ShardCount\": 5,\n \"StreamName\":
 \"$input.params('stream-name')\"\n}"
 },
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/CreateStream",
 "httpMethod": "POST",
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-json-
1.1'"
 },
 "type": "aws"
 }
 },

181

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

 "delete": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response",
 "headers": {
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "500": {
 "description": "500 response",
 "headers": {
 "Content-Type": {
 "type": "string"
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400",
 "responseParameters": {
 "method.response.header.Content-Type": "integration.response.head
er.Content-Type"
 }
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type": "integration.response.head

182

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

er.Content-Type"
 }
 },
 "5\\d{2}": {
 "statusCode": "500",
 "responseParameters": {
 "method.response.header.Content-Type": "integration.response.head
er.Content-Type"
 }
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"StreamName\": \"$input.params('stream-
name')\"\n}"
 },
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/DeleteStream",
 "httpMethod": "POST",
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-json-
1.1'"
 },
 "type": "aws"
 }
 }
 },
 "/streams/{stream-name}/record": {
 "put": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"StreamName\": \"$input.params('stream-

183

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

name')\",\n \"Data\": \"$util.base64Encode($input.path('$.Data'))\",\n
\"PartitionKey\": \"$input.path('$.PartitionKey')\"\n}"
 },
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/PutRecord",
 "httpMethod": "POST",
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-json-
1.1'"
 },
 "type": "aws"
 }
 }
 },
 "/streams/{stream-name}/records": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "Shard-Iterator",
 "in": "header",
 "required": false,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"ShardIterator\": \"$in
put.params('Shard-Iterator')\"\n}"
 },
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/GetRecords",
 "httpMethod": "POST",
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-json-

184

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

1.1'"
 },
 "type": "aws"
 }
 },
 "put": {
 "consumes": [
 "application/json",
 "application/x-amz-json-1.1"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "Content-Type",
 "in": "header",
 "required": false,
 "type": "string"
 },
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "in": "body",
 "name": "PutRecordsMethodRequestPayload",
 "required": true,
 "schema": {
 "$ref": "#/definitions/PutRecordsMethodRequestPayload"
 }
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"StreamName\": \"$input.params('stream-
name')\",\n \"Records\": [\n #foreach($elem in $input.path('$.re
cords'))\n {\n \"Data\": \"$util.base64En
code($elem.data)\",\n \"PartitionKey\": \"$elem.partition-key\"\n
 }#if($foreach.hasNext),#end\n #end\n]\n}",
 "application/x-amz-json-1.1": "#set($inputRoot = $in
put.path('$'))\n{\n \"StreamName\": \"$input.params('stream-name')\",\n

185

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

\"records\" : [\n #foreach($elem in $inputRoot.records)\n {\n
\"Data\" : \"$elem.data\",\n \"partition-key\" : \"$elem.partition-key\"\n
 }#if($foreach.hasNext),#end\n #end\n]\n}"
 },
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/PutRecords",
 "httpMethod": "POST",
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-json-
1.1'"
 },
 "type": "aws"
 }
 }
 },
 "/streams/{stream-name}/sharditerator": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "shard-id",
 "in": "query",
 "required": false,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"ShardId\": \"$input.params('shard-
id')\",\n \"ShardIteratorType\": \"TRIM_HORIZON\",\n \"StreamName\":
\"$input.params('stream-name')\"\n}"
 },
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/GetShardIterator",

186

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

 "httpMethod": "POST",
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-json-
1.1'"
 },
 "type": "aws"
 }
 }
 }
 },
 "definitions": {
 "PutRecordsMethodRequestPayload": {
 "type": "object",
 "properties": {
 "records": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "data": {
 "type": "string"
 },
 "partition-key": {
 "type": "string"
 }
 }
 }
 }
 }
 },
 "Empty": {
 "type": "object"
 }
 }
}

187

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

Controlling Access in API Gateway

API Gateway supports multiple mechanisms of access control, including metering or tracking API uses
by clients using API keys. The standard AWS IAM roles and policies offer flexible and robust access
controls that can be applied to an entire API set or individual methods. Custom authorizers and Amazon
Cognito user pools provide customizable authorization and authentication solutions.

Topics

• Set IAM Permissions to Access API Gateway (p. 188)

• Enable CORS for an API Gateway Resource (p. 198)

• Use an API Key in API Gateway (p. 203)

• Use Amazon API Gateway Custom Authorizers (p. 204)

• Authenticate API Clients with Amazon Cognito Your User Pool (p. 212)

• Use Client-Side SSL Certificates for Authentication by the Back End (p. 215)

Set IAM Permissions to Access API Gateway
Topics

• Control Access to API Gateway with IAM Policies (p. 188)

• Create and Attach a Policy to an IAM User (p. 190)

• Statement Reference of IAM Policies for Managing API in API Gateway (p. 191)

• Statement Reference of IAM Policies for Executing API in API Gateway (p. 192)

• IAM Policy Examples for API Gateway APIs (p. 193)

• IAM Policy Examples for API Execution Permissions (p. 198)

Control Access to API Gateway with IAM Policies
When working with Amazon API Gateway, you access two services.You use one to create, configure,
deploy and update your API and the other to actually execute your deployed API upon requests by a
client. When setting access permissions in an IAM policy, you reference the API managing service as
apigateway and the API executing service as execute-api. The apigateway service supports the
actions of GET, POST, PUT, PATCH, DELETE, OPTIONS, HEAD and the execute-api service supports the
Invoke and InvalidateCache actions. To create an IAM policy using the Policy Generator in the IAM
console, select Manage Amazon API Gateway as AWS Service to set permissions statements for

188

Amazon API Gateway Developer Guide
Set IAM Permissions

apigateway and select Amazon API Gateway as AWS Service to set permission statements for
execute-api.

You can use IAM to allow IAM users and roles in your AWS account to manage only certain API Gateway
entities (for example, APIs, resources, methods, models, and stages) and perform only certain actions
against those entities.You may want to do this, for example, if you have IAM users you want to allow to
list, but not create, resources and methods for selected APIs.You may have other IAM users you want
to allow to list and create new resources and methods for any API they have access to in API Gateway.

In the Get Ready to Use API Gateway (p. 4) instructions, you attached an access policy to an IAM user
in your AWS account that contains a policy statement similar to this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:*"
],
 "Resource": [
 "*"
]
 }
]
}

This statement allows the IAM user in your AWS account to perform all available actions and access all
available resources in API Gateway to which your AWS account has access. In practice, you may not
want to give the IAM users in your AWS account this much access.

You can also use IAM to enable users inside your organization to interact with only certain API methods
in API Gateway.

In the Configure How a User Calls an API Method (p. 65) instructions, the API Gateway console may
have displayed a resource ARN you used to create a policy statement similar to this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "arn:aws:execute-api:us-east-1:my-aws-account-id:my-api-id/my-
stage/GET/my-resource-path"
]
 }
]
}

This statement allows the IAM user to call the GET method for the resource path associated with the
specified resource ARN in API Gateway. In practice, you may want to give IAM users access to more
methods.

189

Amazon API Gateway Developer Guide
Control Access to API Gateway with IAM Policies

Note
IAM policies are effective only if IAM authentication is enabled. If you, as the API owner, has
enabled AWS identity and access management on a specific resource, users from other AWS
accounts cannot access your API. If you do not enable IAM authentication on the resource, that
resource is effectively public accessible.

Create and Attach a Policy to an IAM User
To create and attach an access policy to an IAM user that restricts the API Gateway entities the IAM user
can manage or the API methods the IAM user can call, do the following:

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Choose Policies, and then choose Create Policy. (If a Get Started button appears, choose it, and
then choose Create Policy.)

3. Next to Create Your Own Policy, choose Select.

4. For Policy Name, type any value that will be easy for you to refer to later, if needed.

5. For Policy Document, type a policy statement with the following format, and then choose Create
Policy:

{
 "Version": "2012-10-17",
 "Statement" : [
 {
 "Effect" : "Allow",
 "Action" : [
 "action-statement"
],
 "Resource" : [
 "resource-statement"
]
 },
 {
 "Effect" : "Allow",
 "Action" : [
 "action-statement"
],
 "Resource" : [
 "resource-statement"
]
 }
]
}

In this statement, substitute action-statement and resource-statement as needed, and add
additional statements as needed, to specify the API Gateway entities you want to allow the IAM user
to manage, the API methods the IAM user can call, or both. (By default, the IAM user will not have
permissions unless a corresponding Allow statement is explicitly stated.)

6. Choose Users.

7. Choose the IAM user to whom you want to attach the policy.

8. For Permissions, for Managed Policies, choose Attach Policy.

9. Select the policy you just created, and then choose Attach Policy.

190

Amazon API Gateway Developer Guide
Create and Attach a Policy to an IAM User

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Statement Reference of IAM Policies for Managing
API in API Gateway
The following information describes the Action and Resource format used in an IAM policy statement
to grant or revoke permissions for managing API Gateway API entities, such as restapis, resources,
methods, models, stages, custom domain names, API keys, etc.

Action Format of Permissions for Managing API in API
Gateway
The API-managing Action expression has the following general format:

apigateway:action

where action is one of the following API Gateway actions:

• *, which represents all of the following actions.

• GET, which is used to get information about resources.

• POST, which is primarily used to create child resources.

• PUT, which is primarily used to update resources (and, although not recommended, can be used to
create child resources).

• DELETE, which is used to delete resources.

• PATCH, which can be used to update resources.

• HEAD, which is the same as GET but does not return the resource representation. HEAD is used
primarily in testing scenarios.

• OPTIONS, which can be used by callers to get information about available communication options for
the target service.

Some examples of the Action expression include:

• apigateway:* for all API Gateway actions.

• apigateway:GET for just the GET action in API Gateway.

Resource Format of Permissions for Managing API in API
Gateway
The API-managing Resource expression has the following general format:

arn:aws:apigateway:region::resource-path-specifier

where region is a target AWS region (such as us-east-1 or * for all supported AWS regions), and
resource-path-specifier is the path to the target resources.

Some example resource expressions include:

• arn:aws:apigateway:region::/restapis/* for all resources, methods, models, and stages in
the AWS region of region.

• arn:aws:apigateway:region::/restapis/api-id/* for all resources, methods, models, and
stages in the API with the identifier of api-id in the AWS region of region.

191

Amazon API Gateway Developer Guide
Statement Reference of IAM Policies for Managing API

in API Gateway

• arn:aws:apigateway:region::/restapis/api-id/resources/resource-id/* for all resources
and methods in the resource with the identifier resource-id, which is in the API with the identifier of
api-id in the AWS region of region.

• arn:aws:apigateway:region::/restapis/api-id/resources/resource-id/methods/*
for all of the methods in the resource with the identifier resource-id, which is in the API with the
identifier of api-id in the AWS region of region.

• arn:aws:apigateway:region::/restapis/api-id/resources/resource-id/methods/GET
for just the GET method in the resource with the identifier resource-id, which is in the API with the
identifier of api-id in the AWS region of region.

• arn:aws:apigateway:region::/restapis/api-id/models/* for all of the models in the API
with the identifier of api-id in the AWS region of region.

• arn:aws:apigateway:region::/restapis/api-id/models/model-name for the model with
the name of model-name, which is in the API with the identifier of api-id in the AWS region of region.

• arn:aws:apigateway:region::/restapis/api-id/stages/* for all of the stages in the API
with the identifier of api-id in the AWS region of region.

• arn:aws:apigateway:region::/restapis/api-id/stages/stage-name for just the stage with
the name of stage-name in the API with the identifier of api-id in the AWS region of region.

Statement Reference of IAM Policies for Executing
API in API Gateway
The following information describes the Action and Resource format of IAM policy statements of access
permissions for executing an API.

Action Format of Permissions for Executing API in API
Gateway
The API-executing Action expression has the following general format:

execute-api:action

where action is an available API-executing action:

• *, which represents all of the following actions.

• Invoke, used to invoke an API upon a client request.

• InvalidateCache, used to invalidate API cache upon a client request.

Resource Format of Permissions for Executing API in API
Gateway
The API-executing Resource expression has the following general format:

arn:aws:execute-api:region:account-id:api-id/stage-name/HTTP-VERB/resource-path-
specifier

where:

• region is the AWS region (such as us-east-1 or * for all AWS regions) that corresponds to the
deployed API for the method.

192

Amazon API Gateway Developer Guide
Statement Reference of IAM Policies for Executing API

in API Gateway

• account-id is the 12-digit AWS account Id of the REST API owner.

• api-id is the identifier API Gateway has assigned to the API for the method. (* can be used for all
APIs, regardless of the API's identifier.)

• stage-name is the name of the stage associated with the method (* can be used for all stages,
regardless of the stage's name.)

• HTTP-VERB is the HTTP verb for the method. It can be one of the following: GET, POST, PUT, DELETE,
PATCH, HEAD, OPTIONS.

• resource-path-specifier is the path to the desired method. (* can be used for all paths).

Some example resource expressions include:

• arn:aws:execute-api:*:*:* for any resource path in any stage, for any API in any AWS region.
(This is equivalent to *).

• arn:aws:execute-api:us-east-1:*:* for any resource path in any stage, for any API in the AWS
region of us-east-1.

• arn:aws:execute-api:us-east-1:*:api-id/* for any resource path in any stage, for the API
with the identifier of api-id in the AWS region of us-east-1.

• arn:aws:execute-api:us-east-1:*:api-id/test/* for resource path in the stage of test, for
the API with the identifier of api-id in the AWS region of us-east-1.

• arn:aws:execute-api:us-east-1:*:api-id/test/*/mydemoresource/* for any resource
path along the path of mydemoresource, for any HTTP method in the stage of test, for the API with
the identifier of api-id in the AWS region of us-east-1.

• arn:aws:execute-api:us-east-1:*:api-id/test/GET/mydemoresource/* for GET methods
under any resource path along the path of mydemoresource, in the stage of test, for the API with
the identifier of api-id in the AWS region of us-east-1.

IAM Policy Examples for API Gateway APIs
The following example policy documents shows various use cases to set access permissions for managing
API resources in API Gateway. For permissions model and other background information, see Control
Access to API Gateway with IAM Policies (p. 188).

Topics

• Simple Read Permissions (p. 193)

• Read-Only Permissions on any APIs (p. 194)

• Full Access Permissions for any API Gateway Resources (p. 195)

• Full-Access Permissions for Managing API Stages (p. 196)

• Block Specified Users from Deleting any API Resources (p. 197)

Simple Read Permissions
The following policy statement gives the user permission to get information about all of the resources,
methods, models, and stages in the API with the identifier of a123456789 in the AWS region of us-east-1:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

193

Amazon API Gateway Developer Guide
IAM Policy Examples for API Gateway APIs

 "apigateway:GET"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis/a123456789/*"
]
 }
]
}

The following example policy statement gives the IAM user permission to list information for all resources,
methods, models, and stages in any region. The user also has permission to perform all available API
Gateway actions for the API with the identifier of a123456789 in the AWS region of us-east-1:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:GET"
],
 "Resource": [
 "arn:aws:apigateway:*::/restapis/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:*"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis/a123456789/*"
]
 }
]
}

Read-Only Permissions on any APIs
The following policy document will permit attached entities (users, groups or roles) to retrieve any of the
APIs of the caller's AWS account. This includes any of the child resources of an API, such as method,
integration, etc.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1467321237000",
 "Effect": "Deny",
 "Action": [
 "apigateway:POST",
 "apigateway:PUT",
 "apigateway:PATCH",
 "apigateway:DELETE"
],

194

Amazon API Gateway Developer Guide
IAM Policy Examples for API Gateway APIs

 "Resource": [
 "arn:aws:apigateway:us-east-1::/*"
]
 },
 {
 "Sid": "Stmt1467321341000",
 "Effect": "Deny",
 "Action": [
 "apigateway:GET",
 "apigateway:HEAD",
 "apigateway:OPTIONS"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/",
 "arn:aws:apigateway:us-east-1::/account",
 "arn:aws:apigateway:us-east-1::/clientcertificates",
 "arn:aws:apigateway:us-east-1::/domainnames",
 "arn:aws:apigateway:us-east-1::/apikeys"
]
 },
 {
 "Sid": "Stmt1467321344000",
 "Effect": "Allow",
 "Action": [
 "apigateway:GET",
 "apigateway:HEAD",
 "apigateway:OPTIONS"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis/*"
]
 }
]
}

The first Deny statement explicitly prohibits any calls of POST, PUT, PATCH, DELETE on any resources in
API Gateway. This ensures that such permissions will not be overridden by other policy documents also
attached to the caller.The second Deny statement blocks the caller to query the root (/) resource, account
information (/account), client certificates (/clientcertificates), custom domain names
(/domainnames) and API keys (/apikeys. Together, the three statements ensure that the caller can
only query API-related resources. This can be useful in API testing when you do not want the tester to
modify any of the code.

To restrict the above read-only access to specified APIs, replace the Resource property of Allow
statement by the following:

"Resource": ["arn:aws:apigateway:us-east-1::/restapis/restapi_id1/*",
"arn:aws:apigateway:us-east-1::/restapis/restapi_id2/*"]

Full Access Permissions for any API Gateway Resources
The following example policy document grants the full access to any of the API Gateway resource of the
AWS account.

195

Amazon API Gateway Developer Guide
IAM Policy Examples for API Gateway APIs

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1467321765000",
 "Effect": "Allow",
 "Action": [
 "apigateway:*"
],
 "Resource": [
 "*"
]
 }
]
}

In general, you should refrain from using such a broad and open access policy. It may be necessary to
do so for your API development core team so that they can create, deploy, update, and delete any API
Gateway resources.

Full-Access Permissions for Managing API Stages
The following example policy documents grants full-access permissions on Stage related resources of
any API in the caller's AWS account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:*"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis/*/stages",
 "arn:aws:apigateway:us-east-1::/restapis/*/stages/*"
]
 }
]
}

The above policy document grants full access permissions only to the stages collection and any of the
contained stage resources, provided that no other policies granting more accesses have been attached
to the caller. Otherwise, you must explicitly deny all the other accesses.

Using the above policy, caller must find out the REST API's identifier beforehand because the user cannot
call GET /respais to query the available APIs. Also, if
arn:aws:apigateway:us-east-1::/restapis/*/stages is not specified in the Resource list, the
Stages resource becomes inaccessible. In this case, the caller will not be able to create a stage nor get
the existing stages, although he or she can still view, update or delete a stage, provided that he stage's
name is known.

To grant permissions for a specific API's stages, simply replace the restapis/* portion of the Resource
specifications by restapis/restapi_id, where restapi_id is the identifier of the API of interest.

196

Amazon API Gateway Developer Guide
IAM Policy Examples for API Gateway APIs

Block Specified Users from Deleting any API Resources
The following example IAM policy document blocks a specified user from deleting any API resources in
API Gateway.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1467331998000",
 "Effect": "Allow",
 "Action": [
 "apigateway:GET",
 "apigateway:HEAD",
 "apigateway:OPTIONS",
 "apigateway:PATCH",
 "apigateway:POST",
 "apigateway:PUT"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis/*"
]
 },
 {
 "Sid": "Stmt1467332141000",
 "Effect": "Allow",
 "Action": [
 "apigateway:DELETE"
],
 "Condition": {
 "StringNotLike": {
 "aws:username": "johndoe"
 }
 },
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis/*"
]
 }
]
}

This IAM policy grants full access permission to create, deploy, update and delete API for attached users,
groups or roles, except for the specified user (johndoe), who cannot delete any API resources. It assumes
that no other policy document granting Allow permissions on the root, API keys, client certificates or
custom domain names has been attached to the caller.

To block the specified user from deleting specific API Gateway resources, e.g., a specific API or an API's
resources, replace the Resource specification above by this:

"Resource": ["arn:aws:apigateway:us-east-1::/restapis/restapi_id_1",
"arn:aws:apigateway:us-east-1::/restapis/restapi_id_2/resources"]

197

Amazon API Gateway Developer Guide
IAM Policy Examples for API Gateway APIs

IAM Policy Examples for API Execution
Permissions
For permissions model and other background information, see Control Access to API Gateway with IAM
Policies (p. 188).

The following policy statement gives the user permission to call any POST method along the path of
mydemoresource, in the stage of test, for the API with the identifier of a123456789, assuming the
corresponding API has been deployed to the AWS region of us-east-1:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "arn:aws:execute-api:us-east-1:*:a123456789/test/POST/mydemoresource/*"

]
 }
]
}

The following example policy statement gives the user permission to call any method on the resource
path of petstorewalkthrough/pets, in any stage, for the API with the identifier of a123456789, in
any AWS region where the corresponding API has been deployed:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "arn:aws:execute-api:*:*:a123456789/test/*/petstorewalkthrough/pets"
]
 }
]
}

Enable CORS for an API Gateway Resource
When your API's resources receive requests from a domain other than the API's own domain, you must
enable cross-origin resource sharing (CORS) for selected methods on the resource. This amounts to
having your API respond to the OPTIONS preflight request with at least the following CORS-required
response headers:

• Access-Control-Allow-Methods

198

Amazon API Gateway Developer Guide
IAM Policy Examples for API Execution Permissions

• Access-Control-Allow-Headers

• Access-Control-Allow-Origin

In API Gateway you enable CORS by setting up an OPTIONS method with the mock integration type to
return the preceding response headers (with static values discussed in the following) as the method
response headers. In addition, the actual CORS-enabled methods must also return the
Access-Control-Allow-Origin:'*' header in at least its 200 response.

Tip
You must set up an OPTIONS method to handle preflight requests to support CORS. However,
OPTIONS methods are optional if 1) an API resource exposes only the GET, HEAD or POST
methods and 2) the request payload content type is application/x-www-form-urlencoded,
multipart/form-data or text/plain and 3) the request does not contain any custom
headers.When possible, we recommend to use OPTIONS method to enable CORS in your API.

This section describes how to enable CORS for a method in API Gateway using the API Gateway console
or the API Gateway Import API.

Topics

• Prerequisites (p. 199)

• Enable CORS on a Resource Using the API Gateway Console (p. 199)

• Enable CORS for a Resource Using the API Gateway Import API (p. 201)

Prerequisites
• You must have the method available in API Gateway. For instructions on how to create and configure

a method, see Build an API Gateway API Step by Step (p. 14).

Enable CORS on a Resource Using the API
Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the API Gateway console, choose an API under APIs.

3. Choose a resource under Resources. This will enable CORS for all the methods on the resource.

Alternatively, you could choose a method under the resource to enable CORS for just this method.

4. Choose Enable CORS from the Actions drop-down menu.

199

Amazon API Gateway Developer Guide
Prerequisites

http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-import-api.html
https://console.aws.amazon.com/apigateway

5. In the Enable CORS form, do the following:

a. In the Access-Control-Allow-Headers input field, type a static string of a comma-separated
list of headers that the client must submit in the actual request of the resource. Use the
console-provided header list of
'Content-Type,X-Amz-Date,Authorization,X-Api-Key,X-Amz-Security-Token'
or specify your own headers.

b. Use the console-provided value of '*' as the Access-Control-Allow-Origin header value to
allow access requests from all domains, or specify a named domain to all access requests from
the specified domain.

c. Choose Enable CORS and replace existing CORS headers.

6. In Confirm method changes, choose Yes, overwrite existing values to confirm the new CORS
settings.

200

Amazon API Gateway Developer Guide
Enable CORS Using the Console

After CORS is enabled on the GET method, an OPTIONS method is added to the resource, if it is not
already there. The 200 response of the OPTIONS method is automatically configured to return the three
Access-Control-Allow-* headers to fulfill preflight handshakes. In addition, the actual (GET) method
is also configured by default to return the Access-Control-Allow-Origin header in its 200 response
as well. For other types of responses, you will need to manually configure them to return
Access-Control-Allow-Origin' header with '*' or specific origin domain names, if you do not want
to return the Cross-origin access error.

Enable CORS for a Resource Using the API
Gateway Import API
If you are using the API Gateway Import API (p. 110), you can set up CORS support using a Swagger file.
You must first define an OPTIONS method in your resource that returns the required headers.

Note
Web browsers expect Access-Control-Allow-Headers, and Access-Control-Allow-Origin headers
to be set up in each API method that accepts CORS requests. In addition, some browsers first
make an HTTP request to an OPTIONS method in the same resource, and then expect to receive
the same headers.

The following example creates an OPTIONS method and specifies mock integration. For more information,
see Configure Mock Integration for a Method (p. 69).

/users
 options:
 summary: CORS support
 description: |
 Enable CORS by returning correct headers
 consumes:
 - application/json
 produces:
 - application/json
 tags:
 - CORS
 x-amazon-apigateway-integration:
 type: mock
 requestTemplates:

201

Amazon API Gateway Developer Guide
Enable CORS Using Swagger Definition

 application/json: |
 {
 "statusCode" : 200
 }
 responses:
 "default":
 statusCode: "200"
 responseParameters:
 method.response.header.Access-Control-Allow-Headers : "'Content-
Type,X-Amz-Date,Authorization,X-Api-Key'"
 method.response.header.Access-Control-Allow-Methods : "'*'"
 method.response.header.Access-Control-Allow-Origin : "'*'"
 responseTemplates:
 application/json: |
 {}
 responses:
 200:
 description: Default response for CORS method
 headers:
 Access-Control-Allow-Headers:
 type: "string"
 Access-Control-Allow-Methods:
 type: "string"
 Access-Control-Allow-Origin:
 type: "string"

Once you have configured the OPTIONS method for your resource, you can add the required headers to
the other methods in the same resource that need to accept CORS requests.

1. Declare the Access-Control-Allow-Origin and Headers to the response types.

 responses:
 200:
 description: Default response for CORS method
 headers:
 Access-Control-Allow-Headers:
 type: "string"
 Access-Control-Allow-Methods:
 type: "string"
 Access-Control-Allow-Origin:
 type: "string"

2. In the x-amazon-apigateway-integration tag, set up the mapping for those headers to your
static values:

 responses:
 "default":
 statusCode: "200"
 responseParameters:
 method.response.header.Access-Control-Allow-Headers : "'Content-
Type,X-Amz-Date,Authorization,X-Api-Key'"
 method.response.header.Access-Control-Allow-Methods : "'*'"
 method.response.header.Access-Control-Allow-Origin : "'*'"

202

Amazon API Gateway Developer Guide
Enable CORS Using Swagger Definition

Use an API Key in API Gateway
You can use an API key in API Gateway to identify apps calling the API and control API access based
on the API key.You can use an API key to control how an API is used. For example, you can generate
an API key and give it to specific app developers to make the API available for their app users. When an
API key is enabled, API calls must contain the specified key, as the value of the x-api-key header of
the requests. Requests without the matching API key will then be rejected. API keys are useful to control
that an API is used as expected and curtail abusive uses by changing the API keys. They should not be
treated as a security mechanism for controlling access to an API.

Topics

• Prerequisites (p. 203)

• Use an API Key with the API Gateway Console (p. 203)

Prerequisites
1. You must have an API available in API Gateway. Follow the instructions in Creating an API (p. 61).

2. You must have deployed the API in API Gateway at least once. Follow the instructions in Deploying
an API (p. 221).

Use an API Key with the API Gateway Console
To enable an API key with the API Gateway console, follow these instructions:

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose the GET method under a resource of your choosing.

3. Choose the Method Request box

4. If API Key Required is set to false, choose the pencil icon next to it. From the drop-down menu list,
choose true. Finally, choose the check-mark icon to save the setting.

Note
The steps above configures the API Gateway to enforce using API key. Otherwise, the API
key created following the instructions below will not be used.

5. In the secondary navigation bar, in the first list next to the console home button, choose API Keys.

6. Choose Create API Key.

7. For Name, type a name for the API key entry.

8. (Optional) For Description, type a description for the API key entry.

9. To enable the API key, select Enabled.

10. Choose Save. Make a note of the key displayed in API key.

11. For API Stage Association, for Select API, choose the name of the API.

12. For Select stage, choose the name of the stage.

13. Choose Add, and then choose Save.

14. Deploy or redeploy the API for the effect to take place.

15. Callers must now add to each call a custom header named x-api-key, along with the value of the
API key. For example, if the API key value is bkayZOMvuy8aZOhIgxq94K9Oe7Y70Hw55, the custom
header would be as follows:

x-api-key: bkayZOMvuy8aZOhIgxq94K9Oe7Y70Hw55

203

Amazon API Gateway Developer Guide
Use an API Key

https://console.aws.amazon.com/apigateway

Note
In addition to, or instead of, enabling an API key, you can restrict access to certain IAM users
only. For instructions, see Configure How a User Calls an API Method (p. 65).

Use Amazon API Gateway Custom Authorizers
Topics

• Amazon API Gateway Custom Authorization Overview (p. 204)

• Create the API Gateway Custom Authorizer Lambda Function (p. 205)

• Input to an Amazon API Gateway Custom Authorizer (p. 206)

• Output from an Amazon API Gateway Custom Authorizer (p. 207)

• Configure Custom Authorizer Using the API Gateway Console (p. 208)

• Call an API Using API Gateway Custom Authorization (p. 210)

Amazon API Gateway Custom Authorization
Overview
With Amazon API Gateway custom authorization, you can control access to your APIs using bearer token
authentication strategies, such as OAuth or SAML. To do so, you provide and configure a custom
authorizer, a Lambda function you own, for API Gateway to use to authorize the client requests for the
configured APIs.

When an API request is made, API Gateway verifies whether a custom authorizer is configured for the
API. If so, API Gateway calls the Lambda function, supplying the authorization token extracted from a
custom request header.You use this Lambda function to implement various authorization strategies,
such as JSON Web Token (JWT) verification and OAuth provider callout, to return IAM policies that
authorize the request. If the returned policy is invalid or the permissions are denied, the API call will not
succeed. For a valid policy, API Gateway caches the returned policy, associated with the incoming token
and used for the current and subsequent requests, over a pre-configured time-to-live (TTL) period of up
to 3600 seconds.You can set the TTL period to zero seconds to disable the policy caching. The default
TTL value is 300 seconds. Currently, the maximum TTL value of 3600 seconds cannot be increased.

204

Amazon API Gateway Developer Guide
Use Custom Authorizers

Create the API Gateway Custom Authorizer
Lambda Function
Before creating an API Gateway custom authorizer, you must first create the AWS Lambda function that
implements the logic to authenticate and authorize the caller.You can do so in the Lambda console,
using the code template available from the API Gateway Custom Authorizer blueprint. Or you can create
one from scratch. For illustration purposes, we will explain here the creation of the Lambda function
without using the blueprint.

Note
The custom authorizer Lambda function presented here is for illustration purposes. In production
code, you should follow the API Gateway Custom Authorizer blueprint to implement your authorizer
Lambda function.

When creating the Lambda function for your API Gateway custom authorizer, you will be asked to assign
an execution role for the Lambda function if it calls other AWS services. For the following example, the
basic AWSLambdaRole will suffice. For more involved use cases, follow the instructions to grant permissions
in an execution role for the Lambda function.

In the code editor of the Lambda console, enter the following Node.js code.

console.log('Loading function');

exports.handler = function(event, context) {
 var token = event.authorizationToken;
 // Call oauth provider, crack jwt token, etc.
 // In this example, the token is treated as the status for simplicity.

 switch (token) {
 case 'allow':
 context.succeed(generatePolicy('user', 'Allow', event.methodArn));

 break;
 case 'deny':
 context.succeed(generatePolicy('user', 'Deny', event.methodArn));
 break;
 case 'unauthorized':
 context.fail("Unauthorized");
 break;
 default:
 context.fail("error");
 }
};

var generatePolicy = function(principalId, effect, resource) {
 var authResponse = {};
 authResponse.principalId = principalId;
 if (effect && resource) {
 var policyDocument = {};
 policyDocument.Version = '2012-10-17'; // default version
 policyDocument.Statement = [];
 var statementOne = {};
 statementOne.Action = 'execute-api:Invoke'; // default action
 statementOne.Effect = effect;
 statementOne.Resource = resource;

205

Amazon API Gateway Developer Guide
Create the Custom Authorizer Lambda Function

http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role

 policyDocument.Statement[0] = statementOne;
 authResponse.policyDocument = policyDocument;
 }
 return authResponse;
}

The preceding Lambda function returns an Allow IAM policy on a specified method if the request's
authorization token contains an 'allow' value, thereby permitting a caller to invoke the specified method.
The caller receives an 200 OK response.The function returns a Deny policy against the specified method
if the authorization token has a 'deny' value, thus blocking the caller from calling the method.The client
will receive a 403 Forbidden response. If the token is 'unauthorized', the client will receive a 401
Unauthorized response. If the token is 'fail' or anything else, the client will receive a 500 Internal
Server Error response. In both of the last two cases, the calls will not succeed.

Note
In production code, you may need to authenticate the user before granting authorizations. If so,
you can add authentication logic in the Lambda function as well. Consult the provider-specific
documentation for instructions on how to call such an authentication provider.

Before going further, you may want to test the Lambda function from within the Lambda Console. To do
this, configure the sample event to provide the input and verify the result by examining the output. The
next two sections explain the Input to a Custom Authorizer (p. 206) and Output from a Custom
Authorizer (p. 207).

Input to an Amazon API Gateway Custom
Authorizer
When a custom authorizer is enabled on an API method, you must specify a custom header for the method
caller to pass the required authorization token in the initial client request. Upon receiving the request, API
Gateway extracts the token from the custom header as the input authorizationToken parameter value
into the Lambda function and calls the custom authorizer with the following request payload.

{
 "type":"TOKEN",
 "authorizationToken":"<caller-supplied-token>",
 "methodArn":"arn:aws:execute-api:<regionId>:<accountId>:<apiId>/<stage>/<meth
od>/<resourcePath>"
}

In this example, the type property specifies the payload type. Currently, the only valid value is the TOKEN
literal. The <caller-supplied-token> originates from the custom authorization header in a client
request. The methodArn is the ARN of the incoming method request and is populated by API Gateway
in accordance with the custom authorizer configuration.

For the custom authorizer shown in the preceeding section, the <caller-supplied-token> string is
allow, deny, unauthorized, or any other string value. An empty string value is the same as
unauthorized. The following shows an example of such an input to obtain an Allow policy on the GET
method of an API (ymy8tbxw7b) of the AWS account (123456789012) in any stage (*).

206

Amazon API Gateway Developer Guide
Input to a Custom Authorizer

{
 "type":"TOKEN",
 "authorizationToken":"allow",
 "methodArn":"arn:aws:execute-api:us-west-2:123456789012:ymy8tbxw7b/*/GET/"
}

Output from an Amazon API Gateway Custom
Authorizer
The custom authorizer's Lambda function must return a response that includes the principal identifier
(principalId) and a policy document containing a list of policy statements. The following shows an
example of a response.

{
 "principalId": "xxxxxxxx", // The principal user identification associated
with the token send by the client.
 "policyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "execute-api:Invoke",
 "Effect": "Allow|Deny",
 "Resource": "arn:aws:execute-api:<regionId>:<accountId>:<ap
pId>/<stage>/<httpVerb>/[<resource>/<httpVerb>/[...]]"
 }
]
 }
}

Here, a policy statement stipulates whether to allow or deny (Effect) the API Gateway execution service
to invoke (Action) the specified API method (Resource).You can use a wild card (*) to specify a
resource type (method).

You can access the principalId value in a mapping template using the
$context.authorizer.principalId variable.This is useful if you want to pass the value to the back
end. For more information, see Accessing the $context Variable (p. 102).

For information about valid policies for calling an API, see Statement Reference of IAM Policies for
Executing API in API Gateway (p. 192).

The following shows example output from the example custom authorizer. The example output contains
a policy statement to block (Deny) calls to the GET method in an API (ymy8tbxw7b) of an AWS account
(123456789012) in any stage (*).

{
 "principalId": "user",
 "policyDocument": {
 "Version": "2012-10-17",
 "Statement": [

207

Amazon API Gateway Developer Guide
Output from a Custom Authorizer

 {
 "Action": "execute-api:Invoke",
 "Effect": "Deny",
 "Resource": "arn:aws:execute-api:us-west-
2:123456789012:ymy8tbxw7b/*/GET/"
 }
]
 }
}

Configure Custom Authorizer Using the API
Gateway Console
After you create the Lambda function and verify that it works, you can configure the API Gateway Custom
Authorizer in the API Gateway console.

Enable a Custom Authorizer on API Methods

1. Sign in to the API Gateway console.

2. Create a new or select an existing API and choose Authorizers.

3. Choose Create, select Custom Authorizer, and do the following:

• In Lambda region, select the region where you upload your custom authorizer's Lambda function.

• In Lambda function, select the Lambda function for your custom authorizer.

Note
You must first create a custom authorizer Lambda function in the region for it to be available
in the drop-down list.

• In Authorizer Name, enter a name for your new custom authorizer.

• Leave Execution role blank to let the API Gateway console to set a resource-based policy to
grant API Gateway permissions to invoke the authorizer Lambda function or type the name of an
IAM role to allow API Gateway to invoke the authorizer Lambda function. For an example of such
a role, see Set Up an IAM Role and Policy for an API to Invoke Lambda Functions (p. 144).

• In Identity token source, type the mapping expression for your authorizer's custom header.

Note
The custom header mapping expression is of the method.request.header.<name>
format, where <name> is the name of a custom authorization header submitted as part
of the client request. In the following example, this custom header name is Auth.

• In Token validation expression, you can optionally provide a RegEx statement for API Gateway
to validate the input token before calling the custom authorizer Lambda function. This helps you
avoid or reduce the chances of being charged for processing invalid tokens.

• In Result TTL in seconds, you can change or use the default (300) value to enable caching (>0)
or disable caching (=0) of the policy returned from the Lambda function.

Note
The policy caching uses a cache key generated from the supplied token for the targeted
API and custom authorizer in a specified stage. To enable caching, your authorizer must
return a policy that is applicable to all methods across an API.To enforce method-specific
policy, you can set the TTL value to zero to disable policy caching for the API.

208

Amazon API Gateway Developer Guide
Configure Custom Authorizer

4. If you choose to let the API Gateway console to set the resource-based policy, the Add Permission
to Lambda Function dialog will be displayed. Choose OK. After the custom authorization is created,
you can test it with appropriate authorization token values to verify that it works as expected.

This completes the procedure to create a custom authorization.The next procedure shows how to configure
an API method to use the custom authorizer.

Configure an API Method to Use the Custom Authorizer

1. Go back to the API. Create a new method or choose an existing method. If necessary, create a new
resource.

2. In Method Execution, choose the Method Request link.

3. Under Authorization Settings, expand the Authorization drop-down list to select the custom
authorizer you just created (myTestApiAuthorizer), and then choose the checkmark icon to save
the choice.

4. Optionally, while still on the Method Request page, choose Add header if you also want to pass
the custom authorization header to the back end. In Name, type a custom header name that matches
the header mapping expression you used when you created the custom authorization, and then
choose the checkmark icon to save the settings.

209

Amazon API Gateway Developer Guide
Configure Custom Authorizer

5. Choose Deploy API to deploy the API to a stage. Make a note of the Invoke URL value.You will
need it when calling the API.

Call an API Using API Gateway Custom
Authorization
After you configure your API to use the custom authorizer, you or your customers can call the API using
the custom authorizer. Because it involves submitting a custom authorization token header in the requests,
you need a REST client that supports this. In the following examples, API calls are made using the
Postman Chrome App.

Note
When calling an authorizer-enabled method, API Gateway will not log the call to CloudWatch if
the required token is not set, null or invalidated by the specified Token validation expression.

Calling an API with Custom Authorization Tokens

1. Open the Postman Chrome App, choose the GET method and paste the API's Invoke URL into
the adjacent URL field.

Add the custom authorization token header and set the value to allow. Choose Send.

The response shows that the API Gateway custom authorizer returns a 200 OK response and
successfully authorizes the call to access the HTTP endpoint (http://httpbin.org/get) integrated with
the method.

2. Still in Postman, change the custom authorization token header value to deny. Choose Send.

210

Amazon API Gateway Developer Guide
Call an API with Custom authorization

https://www.getpostman.com/

The response shows that the API Gateway custom authorizer returns a 403 Forbidden response
without authorizing the call to access the HTTP endpoint.

3. In Postman, change the custom authorization token header value to unauthorized and choose
Send.

The response shows that API Gateway returns a 401 Unauthorized response without authorizing
the call to access the HTTP endpoint.

4. Now, change the custom authorization token header value to fail. Choose Send.

211

Amazon API Gateway Developer Guide
Call an API with Custom authorization

The response shows that API Gateway returns a 500 Internal Server Error response without
authorizing the call to access the HTTP endpoint.

Authenticate API Clients with Amazon Cognito
Your User Pool

In addition to using IAM roles and policies (p. 188) or custom authorizers (p. 204), you can also use a user
pool in Amazon Cognito to control who can access your API in API Gateway. A user pool serves as your
own identity provider to maintain a user directory. It supports user registration and sign-in, as well as
provisioning identity tokens for signed-in users.

A user pool is integrated with an API as a method authorizer. When calling the methods with such an
authorizer enabled, an API client includes in the request headers the user's identity token provisioned
from the user pool. API Gateway then validates the token to ensure it belongs to the configured user pool
and authenticates the caller before passing the request to the back end.

To integrate an API with the Amazon Cognito identity provider, you, as an API developer, create and own
a user pool, create an API Gateway authorizer connected to the user pool, and enable the authorizer on
selected API methods.You must also distribute to your API client developers the user pool ID, a client
ID, and possibly the associated client secret that are provisioned from the user pool. The client will need
this information to register users with the user pool, to provide the sign-in functionality, and to have the
user's identity token provisioned from the user pool.

In this section, you will learn how to create a user pool, how to integrate an API Gateway API with the
user pool, and how to invoke an API integrated with the user pool.

Topics

• Create a User Pool (p. 212)

• Integrate an API with a User Pool (p. 213)

• Call an API Integrated with a User Pool (p. 214)

Create a User Pool
Before integrating your API with a user pool, you must create the user pool in Amazon Cognito. For
instructions on how to create a user pool, see Setting up User Pools in the Amazon Cognito Developer
Guide.

212

Amazon API Gateway Developer Guide
Authenticate API Clients with Amazon Cognito Your

User Pool

http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
http://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
http://docs.aws.amazon.com/cognito/latest/developerguide/setting-up-cognito-user-identity-pools.html

Note
Make note of the user pool ID, client ID and the client secret, if selected. The client will need to
provide them to Amazon Cognito for the user to register with the user pool, to sign in to the user
pool, and to get an identity token to be included in requests to call API methods configured with
the user pool. Also, you will need to specify the user pool name when you configure the user
pool as an authorizer in API Gateway, as described next.

Integrate an API with a User Pool
To integrate your API with a user pool, you must create in API Gateway a user pool authorizer connected
to the user pool. The following procedure walks you through the steps to do this using the API Gateway
console.

To create a user pool authorizer using the API Gateway console

1. Create a new API or select an existing API in API Gateway.

2. From the main navigation pane, choose Authorizers under the specified API.

3. Under Authorizers, choose Create and then choose Cognito User Pool Authorizer.

4. To configure this authorizer:

a. Choose a region for Cognito region.

b. For Cognito User Pool, choose an available user pool.

c. The Authorizer name field will be automatically populated with the chosen user pool name.
However, you can customize it if you want to.

d. The Identity token source field will be set to method.request.header.Authorization by
default. However, you can customize it if you want to. Using the default, Authorization will
be the name of the incoming request header to contain an API caller's identity token.

e. Optionally, type a regular expression in the App client ID regex field to validate client IDs
associated with the user pool.

f. Choose Create to finish integrating the user pool with the API.

5. Having created the authorizer, you can, optionally, test it by supplying an identity token provisioned
from the user pool.

To enable a user pool authorizer on methods

1. Choose (or create) a method of your API.

2. Choose Method Request.

3. Under Authorization Settings, choose the edit icon by the Authorization field.

4. Choose one of the available Amazon Cognito User Pool authorizers from the drop-down list.

5. Choose the check-mark icon to save the settings.

6. Repeat these steps for other methods of your choosing.

7. If needed, choose Integration Request to add
$context.authorizer.claims['property-name'] or
$context.authorizer.claims.property-name expressions in a body-mapping template to
pass the specified identity claims property from the user pool to the back end. For simple property
names, such as sub or custom-sub, the two notations are identical. For complex property names,
such as custom:role, the dot notation may not be used. For example, the following mapping
expressions pass the claim's standard fields of sub and email to the back end:

213

Amazon API Gateway Developer Guide
Integrate an API with a User Pool

http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

{
 "context" : {
 "sub" : "$context.authorizer.claims.sub",
 "email" : "$context.authorizer.claims.email"
 }
}

If you have declared a custom claim field when configuring your user pool, you can follow the same
pattern to access the custom fields. The following example gets a custom role field of a claim:

{
 "context" : {
 "role" : "$context.authorizer.claims.role"
 }
}

If the custom claim field is declared as custom:role, use the following example to get the claim's
property:

{
 "context" : {
 "role" : "$context.authorizer.claims['custom:role']"
 }
}

Call an API Integrated with a User Pool
To call a method with a user pool authorizer configured, the client must do the following:

• Enable the user to sign up with the user pool.

• Enable the user to sign in to the user pool.

• Obtain an identity token of the signed-in user from the user pool.

• Include the identity token in the Authorization header (or another header you specified when creating
the authorizer).

You can use one of the AWS SDKs to perform these tasks. For example:

• To use the Android SDK, see Setting up the AWS Mobile SDK for Android to Work with User Pools.

• To use the iOS SDK, see Setting Up the AWS Mobile SDK for iOS to Work with User Pools.

• To use JavaScript, see Setting up the AWS SDK for JavaScript in the Browser to Work with User Pools.

The following procedure outlines the steps to perform these tasks. For more information, see the blog
posts on Using Android SDK with Amazon Cognito Your User Pools and Using Your Amazon Cognito
User Pool for iOS.

To call an API integrated with a user pool

1. Sign up a first-time user to a specified user pool.

2. Sign in a user to the user pool.

3. Get the user's identity token.

214

Amazon API Gateway Developer Guide
Call an API Integrated with a User Pool

https://aws.amazon.com/tools#SDK
http://docs.aws.amazon.com/cognito/latest/developerguide/setting-up-android-sdk.html
http://docs.aws.amazon.com/cognito/latest/developerguide/walkthrough-using-the-ios-sdk.html
http://docs.aws.amazon.com/cognito/latest/developerguide/setting-up-the-javascript-sdk.html
http://mobile.awsblog.com/post/TxNYVQQ3A2LT6Y/Using-Android-SDK-with-Amazon-Cognito-Your-User-Pools
http://mobile.awsblog.com/post/TxGNH1AUKDRZDH/Announcing-Your-User-Pools-in-Amazon-Cognito
http://mobile.awsblog.com/post/TxGNH1AUKDRZDH/Announcing-Your-User-Pools-in-Amazon-Cognito

4. Call API methods configured with a user pool authorizer, supplying the unexpired token in the
Authorization header or another header of your choosing.

5. When the token expires, repeat Step 2-4. Identity tokens provisioned by Amazon Cognito expire
within an hour.

For code examples, see an Android Java sample and an iOS Objective-C sample.

Use Client-Side SSL Certificates for
Authentication by the Back End

You can use API Gateway to generate an SSL certificate and use its public key in the back end to verify
that HTTP requests to your back-end system are from API Gateway. This allows your HTTP back end to
control and accept only requests originating from Amazon API Gateway, even if the back end is publicly
accessible.

The API Gateway-generated SSL certificates are self-signed and only the public key of a certificate is
visible in the API Gateway console or through the APIs.

Topics

• Generate a Client Certificate Using the API Gateway Console (p. 215)

• Configure an API to Use SSL Certificates (p. 216)

• Test Invoke (p. 217)

• Configure Back End to Authenticate API (p. 217)

Generate a Client Certificate Using the API
Gateway Console
1. In the main navigation pane, choose Client Certificates.

2. From Client Certificates, choose Generate.

3. Optionally, For Description, enter a short descriptive title for the generated certificate. API Gateway
generates a new certificate and returns the new certificate GUID, along with the PEM-encoded public
key.

4. Choose the Save button to save the certificate to API Gateway.

215

Amazon API Gateway Developer Guide
Use Client-Side SSL Certificates

https://github.com/awslabs/aws-sdk-android-samples/tree/master/AmazonCognitoYourUserPoolsDemo
https://github.com/awslabs/aws-sdk-ios-samples/tree/master/CognitoYourUserPools-Sample/Objective-C

You are now ready to configure an API to use the certificate.

Configure an API to Use SSL Certificates
These instructions assume you have already completed Generate a Client Certificate Using the API
Gateway Console (p. 215).

1. In the API Gateway console, create or open an API for which you want to use the client certificate.
Make sure the API has been deployed to a stage.

2. Choose Stages under the selected API and then choose a stage.

3. In the Stage Editor panel, select a certificate under the Client Certificate section.

4. Choose the Save Changes button to save the settings.

216

Amazon API Gateway Developer Guide
Configure an API to Use SSL Certificates

After a certificate is selected for the API and saved, API Gateway will use the certificate for all calls to
HTTP integrations in your API.

Test Invoke
1. Choose an API method. In Client, choose Test.

2. From Client Certificate, choose Test to invoke the method request.

API Gateway will present the chosen SSL certificate for the HTTP back end to authenticate the API.

Configure Back End to Authenticate API
These instructions assume you have already completed Generate a Client Certificate Using the API
Gateway Console (p. 215) and Configure an API to Use SSL Certificates (p. 216).

When receiving HTTPS requests from API Gateway, your back end can authenticate your API using the
PEM-encoded certificate generated by API Gateway, provided that the back end is properly configured.
Most Web servers can be easily configured to do so.

For example, in Node.js you can use the HTTPS module to create an HTTPS back end and use the
client-certificate-auth modules to authenticate client requests with PEM-encoded certificates.
For more information, see HTTPS on the Nodejs.org website and see client-certificate-auth on the
https://www.npmjs.com/ website.

217

Amazon API Gateway Developer Guide
Test Invoke

https://nodejs.org/api/https.html#https_https
https://www.npmjs.com/package/client-certificate-auth

Maintaining an API in Amazon API
Gateway

Topics

• View a List of APIs in API Gateway (p. 218)

• Delete an API in API Gateway (p. 218)

• Delete a Resource in API Gateway (p. 219)

• View a Methods List in API Gateway (p. 219)

• Delete a Method in API Gateway (p. 220)

View a List of APIs in API Gateway
Use the API Gateway console to view a list of APIs.

Topics

• Prerequisites (p. 218)

• View a List of APIs with the API Gateway Console (p. 218)

Prerequisites
• You must have an API available in API Gateway. Follow the instructions in Creating an API (p. 61).

View a List of APIs with the API Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. The list of APIs is displayed.

Delete an API in API Gateway
Use the API Gateway console to delete an API.

218

Amazon API Gateway Developer Guide
View a List of APIs

https://console.aws.amazon.com/apigateway

Warning
Deleting an API means that you can no longer call it. This action cannot be undone.

Topics

• Prerequisites (p. 219)

• Delete an API with the API Gateway Console (p. 219)

Prerequisites
• You must have deployed the API at least once. Follow the instructions in Deploying an API (p. 221).

Delete an API with the API Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API you want to delete, choose Resources.

3. Choose Delete API.

4. When prompted to delete the API, choose Ok.

Delete a Resource in API Gateway
Use the API Gateway console to delete a resource.

Warning
When you delete a resource, you also delete its child resources and methods. Deleting a resource
may cause part of the corresponding API to be unusable. Deleting a resource cannot be undone.

Delete a Resource with the API Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API for the resource you want to delete, choose Resources.

3. In the Resources pane, choose the resource, and then choose Delete Resource.

4. When prompted, choose Delete.

View a Methods List in API Gateway
Use the API Gateway console to view a list of methods for a resource.

Topics

• Prerequisites (p. 219)

• View a Methods List with the API Gateway Console (p. 220)

Prerequisites
• You must have methods available in API Gateway. Follow the instructions in Build an API Gateway

API Step by Step (p. 14).

219

Amazon API Gateway Developer Guide
Prerequisites

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

View a Methods List with the API Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API, choose Resources.

3. The list of methods is displayed in the Resources pane.

Tip
You may need to choose the arrow next to one or more resources to display all of the
available methods.

Delete a Method in API Gateway
Use the API Gateway console to delete a method.

Warning
Deleting a method may cause part of the corresponding API to become unusable. Deleting a
method cannot be undone.

Delete a Method with the API Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API for the method, choose Resources.

3. In the Resources pane, choose the arrow next to the resource for the method.

4. Choose the method, and then choose Delete Method.

5. When prompted, choose Delete.

220

Amazon API Gateway Developer Guide
View a Methods List with the API Gateway Console

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Deploying an API in Amazon API
Gateway

After an API is created, you must deploy it to make it public callable. A deployment takes place in stages.
A stage corresponds to a version of the API in service. In each stage, you can configure stage-level
throttling settings, in addition to enabling or disabling API cache or CloudWatch logs for the API's requests
and responses. If the stage-level settings are enabled, you have options to override them for individual
methods.You can also define stage variables and use them to pass deployment-specific environment
data to the API integration at the run time.

Topics

• Deploy an API with the Amazon API Gateway Console (p. 221)

• Deploy an API in Stages in Amazon API Gateway (p. 223)

• Manage API Request Throttling (p. 227)

• Enable Amazon API Gateway Caching in a Stage to Enhance API Performance (p. 227)

• Manage API Gateway API Deployment with Stage Variables (p. 233)

• Generate an SDK for an API in API Gateway (p. 245)

• Use a Custom Domain Name in API Gateway (p. 251)

Deploy an API with the Amazon API Gateway
Console

Prerequisites
• You must specify settings for all of the methods in the API you want to deploy. Follow the instructions

in Set up Method and Integration (p. 62).

Deploy an API with the API Gateway Console
Note
If you want to change a stage in API Gateway to use a different deployment, see Change a
Stage to Use a Different Deployment with the API Gateway Console (p. 222) instead.

221

Amazon API Gateway Developer Guide
Deploy an API with the API Gateway Console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API you want to deploy, choose Resources.

3. In the Resources pane, choose Deploy API.

4. For Deployment stage, do one of the following:

• To deploy the API to an existing stage, choose the name of the stage.

• To deploy the API to a new stage, choose New Stage. For Stage name, type the name of the
stage you want to use for the deployment.

Tip
The stage name should be meaningful, but short enough to be easy and fast to type.Your
users will specify this name as part of the URL they will use to invoke the API.

5. (Optional) For Stage description, type a description for the stage.

6. (Optional) For Deployment description, type a description for the deployment.

7. Choose Deploy.

Update deployment configuration with the API
Gateway Console
After an API is deployed to a stage, you can, optionally, modify the deployment by updating the stage
settings or stage variables. After making any changes, you must redeploy the API.The following procedure
demonstrates how to accomplish with the API Gateway Console.

1. If needed, choose the Settings tab in the Stage Editor pane of the API Gateway Console.

You can then choose to use or not use API cache, to enable or disable CloudWatch logs, to change
throttling settings, or to select or deselect a client certificate.

2. If needed, choose the Stage Variables tab in the Stage Editor pane of the API Gateway Console.

You can then choose to update the values of selected stage variables.

3. If you made any change, choose the Save Changes button; go back to the Resources window; and
then choose Deploy API again.

Note
If the updated settings, such as enabling logging, requires a new IAM role, you can add the
required IAM role without redeploying the API. However, it can take a few minutes before the
new IAM role takes effect. Before that happens, traces of your API calls will not be logged even
if you have enabled the logging option.

Change a Stage to Use a Different Deployment
with the API Gateway Console
Once you have deployed an API more than once, you can choose a specific deployment for a given stage.
The following procedure shows how to do this.

1. You must have deployed to the stage at least twice. Follow the instructions in Deploy an API with
the API Gateway Console (p. 221).

2. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

3. In the box that contains the name of the API with the stage you want to change, choose Stages.

222

Amazon API Gateway Developer Guide
Update deployment configuration with the API Gateway

Console

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

4. Choose the stage you want to update the deployment.

5. On the Deployment History tab, choose the option button next to the deployment you want the
stage to use.

6. Choose Change Deployment.

Deploy an API in Stages in Amazon API Gateway
In API Gateway, a stage defines the path through which an API deployment is accessible.

Use the API Gateway console to deploy an API in stages.

• Create a Stage (p. 223)

• View a List of Stages (p. 223)

• Set Up a Stage (p. 224)

• Delete a Stage (p. 227)

Create a Stage in API Gateway
Use the API Gateway console to create a stage for an API.

Topics

• Prerequisites (p. 223)

• Create a Stage with the API Gateway Console (p. 223)

Prerequisites
1. You must have an API available in API Gateway. Follow the instructions in Creating an API (p. 61).

2. You must have deployed the API at least once. Follow the instructions in Deploying an API (p. 221).

Create a Stage with the API Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API, choose Stages.

3. Choose Create Stage.

4. For Stage name, type a name for the stage.

5. (Optional) For Stage description, type a description for the stage.

6. For Deployment, choose the date and time of the existing API deployment you want to associate
with this stage.

7. Choose Create.

View a List of Stages in API Gateway
Use the API Gateway console to view a list of stages in API Gateway.

Topics

• Prerequisites (p. 224)

• View a List of Stages with the API Gateway Console (p. 224)

223

Amazon API Gateway Developer Guide
Deploy an API in Stages

https://console.aws.amazon.com/apigateway

Prerequisites
1. You must have an API available in API Gateway. Follow the instructions in Creating an API (p. 61).

2. You must have deployed the API in API Gateway at least once. Follow the instructions in Deploying
an API (p. 221).

View a List of Stages with the API Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API, choose Stages.

Set Up a Stage
This section walks you through the options to set up an API deployment stage in the API Gateway console.

Topics

• Prerequisites (p. 224)

• Set Up an API Deployment Stage with the API Gateway Console (p. 224)

Prerequisites
• You must have a stage available in API Gateway. Follow the instructions in Create a Stage (p. 223).

Set Up an API Deployment Stage with the API Gateway
Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API for the stage where you want to specify settings, choose
Stages.

3. In the Stages pane, choose the name of the stage.

4. To enable a cache for the API, on the Settings tab, in the Cache Settings area, select Enable API
cache. Then, for Cache capacity, choose a cache size.You can use the default for other cache
settings. For information on how to set up these, . Finally, choose Save Changes.

Important
By selecting this box, your AWS account may be charged for API caching.

Tip
To override enabled stage-level cache settings, expand the stage under the Stages
secondary navigation pane, choose a method. Then back in the stage editor, choose
Override for this method for Settings. In the ensuing Cache Settings area, clear Enable
Method Cache or customize any other desired options, before choosing Save Changes.
For more information about the method-level and other stage-level cache settings, see
Enable API Caching (p. 227).

5. To generate code to call the API from Android, iOS, or JavaScript, you use the SDK Generation
tab. For more information, see Generate an SDK for an API (p. 245).

6. To enable Amazon CloudWatch Logs for all of the methods associated with this stage of this API
Gateway API, do the following:

1. On the Settings tab, in the CloudWatch Settings area, select Enable CloudWatch Logs.

224

Amazon API Gateway Developer Guide
Set Up a Stage

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Tip
To enable method-level CloudWatch settings, expand the stage under the Stages
secondary navigation pane, choose each method of interest, and, back in the stage
editor, choose Override for this method for Settings. In the ensuing CloudWatch
Settings area, make sure to select Log to CloudWatch Logs and any other desired
options, before choosing Save Changes.

Important
Your account will be charged for accessing method-level CloudWatch logs, but not the
API- or stage level logs.

2. For Log level, choose ERROR to write only error-level entries to CloudWatch Logs, or choose
INFO to include all ERROR events as well as extra informational events. No sensitive data will
be logged unless the Log full requests/responses data option is selected.

3. To write entries to CloudWatch Logs that contain full API call request and response information,
select Log full requests/responses data.

4. Choose Save Changes. The new settings will take effect after a new deployment.

Important
Whether you enable CloudWatch Logs for all or only some of the methods, you must
also specify the ARN of an IAM role that enables API Gateway to write information to
CloudWatch Logs on behalf of your IAM user. To do this, in the secondary navigation
bar, in the first list next to the console home button, choose Settings. Then type the
ARN of the IAM role in the CloudWatch Logging role ARN box. For common application
scenarios, the IAM role could attach the managed policy of
AmazonAPIGatewayPushToCloudWatchLogs, which contains the following access
policy statement:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents",
 "logs:GetLogEvents",
 "logs:FilterLogEvents"
],
 "Resource": "*"
 }
]
}

The IAM role must also contain the following trust relationship statement:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"

225

Amazon API Gateway Developer Guide
Set Up a Stage

 },
 "Action": "sts:AssumeRole"
 }
]
}

To create the IAM role, you can adapt the instructions in "To create the Lambda
invocation role and its policy" and "To create the Lambda execution role and its policy"
in the Create Lambda Functions (p. 23) section of the Call Lambda Functions
Synchronously (p. 22).
For more information about CloudWatch, see the Amazon CloudWatch Developer
Guide.

7. To enable Amazon CloudWatch metrics for all of the methods associated with this API in API Gateway,
in the Stage Editor pane, on the Settings tab, in the CloudWatch Settings area, select Enable
CloudWatch metrics, and then choose Save Changes. The new settings will take effect after a
new deployment.

Important
By selecting this box, your AWS account may be charged for using CloudWatch.

Tip
To enable CloudWatch metrics for only some methods, clear Enable CloudWatch metrics.
In the Stages pane, choose each of the methods for which you want to enable CloudWatch
metrics. For each method you choose, on the Settings tab for the method, choose Override
for this method, and in the CloudWatch Settings area, select Enable CloudWatch
metrics. Finally, choose Save Changes.

For more information about CloudWatch, see the Amazon CloudWatch Developer Guide.

8. To set a default throttle limit for all of the methods associated with this API in API Gateway, in the
Stage Editor pane, on the Settings tab, in the Throttle Settings area, do the following, and then
choose Save Changes:

• For Burst Limit, type the absolute maximum number of times API Gateway will allow this method
to be called per second. (The value of Burst Limit must be equal to or greater than the value of
Rate.) The default setting is 1000 request per second.

• For Rate, type the number of times API Gateway will allow this method to be called per second
on average. (The value of Rate must be equal to or less than the value of Burst Limit.) The default
setting is 500 request per second.

Note

• When creating a stage, if not supplied, API Gateway will enforce the default values of
1000 for Burst Limit and 500 for Rate in the stage settings.

• In addition, API Gateway enforces overall account level throttling at the default values of
1000 for Burst Limitand 500 for Rate. If your require a higher level of throttling on your
account, contact the AWS Support Center to request an increase.

• API Gateway uses the token bucket algorithm, including average rate and burst size, for
both account and method throttling.

9. To change the stage to use a different deployment, in the Stage Editor pane, on the Change
Deployment tab, choose the option button next to the deployment you want the stage to use, and
then choose Change Deployment.

226

Amazon API Gateway Developer Guide
Set Up a Stage

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
https://console.aws.amazon.com/support/home#/
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket#Average_rate
https://en.wikipedia.org/wiki/Token_bucket#Burst_size

Delete a Stage in API Gateway
Use the API Gateway console to delete a stage in API Gateway.

Warning
Deleting a stage may cause part or all of the corresponding API to be unusable by API callers.
Deleting a stage cannot be undone.

Delete a Stage with the API Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API for the stage, choose Stages.

3. In the Stages pane, choose the stage you want to delete, and then choose Delete Stage.

4. When prompted, choose Delete.

Manage API Request Throttling
Topics

• Account-Level Throttling (p. 227)

• Stage-Level and Method-Level Throttling (p. 227)

Amazon API Gateway throttles API requests to your API using the token bucket algorithm. For more
information, see token bucket algorithm.

Account-Level Throttling
By default, API Gateway limits the steady-state request rates to 1000 requests per second (rps) and
allows bursts of up to 2000 rps across all APIs, stages, and methods within an AWS account. If necessary,
you can request an increase to your account-level limits. For more information, see API Gateway
Limits (p. 279).

You can view account-level throttling limits in the API Gateway console. The console displays the default
account-level settings before these settings are overridden by any customization.You can also read the
account-level throttling limits by using the API Gateway REST API (p. 278).

Stage-Level and Method-Level Throttling
As an API owner, you can override the account-level request throttling limits for a specific stage or for
individual methods in an API. Actual stage-level and method-level throttling limits are bounded by the
account-level rate limits, even if you set the stage-level or method-level throttling limits greater than the
account-level limits.

You can set the stage-level or method-level throttling limits by using the API Gateway console or by calling
the API Gateway REST API (p. 278). For instructions using the console, see Set Up a Stage (p. 224).

Enable Amazon API Gateway Caching in a Stage
to Enhance API Performance

Topics

227

Amazon API Gateway Developer Guide
Delete a Stage

https://console.aws.amazon.com/apigateway
https://en.wikipedia.org/wiki/Token_bucket

• Amazon API Gateway Caching Overview (p. 228)

• Enable Amazon API Gateway Caching (p. 228)

• Override API Gateway Stage-Level Caching for Method Caching (p. 229)

• Use Method or Integration Parameters as Cache Keys to Index Cached Responses (p. 230)

• Flush the API Stage Cache in API Gateway (p. 231)

• Invalidate an API Gateway Cache Entry (p. 231)

Amazon API Gateway Caching Overview
You can enable API caching in Amazon API Gateway to cache your endpoint’s response. With caching,
you can reduce the number of calls made to your endpoint and also improve the latency of the requests
to your API. When you enable caching for a stage, API Gateway caches responses from your endpoint
for a specified time-to-live (TTL) period, in seconds. API Gateway then responds to the request by looking
up the endpoint response from the cache instead of making a request to your endpoint. The default TTL
value for API caching is 300 seconds. The maximum TTL value is 3600 seconds. TTL=0 means caching
is disabled.

Note
Caching is charged by the hour and is not eligible for the AWS free tier.

Enable Amazon API Gateway Caching
In API Gateway, you can enable caching for all methods for a specified stage. When you enable caching,
you must choose a cache capacity. In general, a larger capacity gives a better performance, but also
costs more.

API Gateway enables caching by creating a dedicated cache instance. This process can take up to 4
minutes.

API Gateway changes caching capacity by removing the existing cache instance and recreating a new
one with a modified capacity. All existing cached data is deleted.

In the API Gateway console, you configure caching in the Settings tab of a named Stage Editor.

1. Go to the API Gateway console.

2. Navigate to the Stage Editor for the stage for which you want to enable caching.

3. Choose Settings.

4. Select Enable API cache.

5. Wait for the cache creation to complete.

Note
Creating or deleting a cache takes about 4 minutes for API Gateway to complete. When cache
is created, the Cache status value changes from CREATE_IN_PROGRESS to AVAILABLE.When
cache deletion is completed, the Cache status value changes from DELETE_IN_PROGRESS to
an empty string.

When you enable caching within a stage's Cache Settings, you enable caching for all methods in that
stage.

228

Amazon API Gateway Developer Guide
API Caching Overview

If you would like to verify if caching is functioning as expected, you have two general options:

• Inspect the CloudWatch metrics of CacheHitCount and CacheMissCount for your API and stage.

• Put a timestamp in the response.

Note
You should not use the X-Cache header from the CloudFront response to determine if your API
is being served from your API Gateway cache instance.

Override API Gateway Stage-Level Caching for
Method Caching
If you want more granularity in your caching settings, you can override the stage-level caching for individual
methods . This includes disabling caching for a specific method, increasing or decreasing its TTL period,
and turning on or off encryption of the cached response. If you anticipate that a method will receive
sensitive data in its responses, in Cache Settings, choose Encrypt cache data.

229

Amazon API Gateway Developer Guide
Override Stage Caching for Method Caching

Use Method or Integration Parameters as Cache
Keys to Index Cached Responses
When a cached method or integration has parameters, which can take the form of custom headers, URL
paths, or query strings, you can use some or all of the parameters to form cache keys. API Gateway can
cache the method's responses, depending on the parameter values used.

For example, suppose you have a request of the following format:

GET /users?type=... HTTP/1.1
host: example.com
...

In this request, type can take a value of admin or regular. If you include the type parameter as part
of the cache key, the responses from GET /users?type=admin will be cached separately from those
from GET /users?type=regular.

When a method or integration request takes more than one parameter, you can choose to include some
or all of the parameters to create the cache key. For example, you can include only the type parameter
in the cache key for the following request, made in the listed order within a TTL period:

230

Amazon API Gateway Developer Guide
Use Method/Integration Parameters as Cache Keys

GET /users?type=admin&department=A HTTP/1.1
host: example.com
...

The response from this request will be cached and will be used to serve the following request:

GET /users?type=admin&department=B HTTP/1.1
host: example.com
...

To include a method or integration request parameter as part of a cache key in the API Gateway console,
select Caching after you add the parameter.

Flush the API Stage Cache in API Gateway
When API caching is enabled, you can flush your API stage's entire cache to ensure your API's clients
get the most recent responses from your integration endpoints.

To flush the API stage cache, you can choose the Flush Cache button under the Stage tab in the API
Gateway console. Notice that flushing the cache will cause the responses to ensuing requests to be
serviced from the back end until the cache is build up again. During this period, the number of requests
sent to the integration endpoint may increase. That may affect the overall latency of your API.

Invalidate an API Gateway Cache Entry
A client of your API can invalidate an existing cache entry and reloads it from the integration endpoint for
individual requests. The client must send a request that contains the Cache-Control: max-age=0
header. The client receives the response directly from the integration endpoint instead of the cache,

231

Amazon API Gateway Developer Guide
Flush the API Stage Cache in API Gateway

provided that the user is authorized to do so.This replaces the existing cache entry with the new response,
which is fetched from the integration endpoint.

To grant permission for a caller, attach a policy of the following format to an IAM execution role for the
user.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:InvalidateCache"
],
 "Resource": [
 "arn:aws:execute-api:region:account-id:api-id/stage-name/HTTP-VERB/re
source-path-specifier"
]
 }
]
}

This policy allows the API Gateway execution service to invalidate cache for requests on the specified
resource (or resources). To specify a group of targeted resources, use a wildcard (*) character for
account-id, api-id, and other entries in the ARN value of Resource. For more information on how
to set permissions for the API Gateway execution service, see Set IAM Permissions (p. 188)

If you do not impose an InvalidateCache policy, any client can invalidate the API cache. If all or most
of the clients invalidate the API cache, there could be significant latency impact on your API.

When the policy is in place, caching is enabled, and authorization is required, you can control how
unauthorized requests are handled by choosing an option from Handle unauthorized requests in the
API Gateway console.

232

Amazon API Gateway Developer Guide
Invalidate an API Gateway Cache Entry

The three options result in the following behaviors:

• Fail the request with 403 status code: returns a 403 Unauthorized response.

To set this option using the API, use FAIL_WITH_403.

• Ignore cache control header; Add a warning in response header: process the request and add a
warning header in the response.

To set this option using the API, use SUCCEED_WITH_RESPONSE_HEADER.

• Ignore cache control header: process the request and do not add a warning header in the response.

To set this option using the API, use SUCCEED_WITHOUT_RESPONSE_HEADER.

Manage API Gateway API Deployment with Stage
Variables

Stage variables are name-value pairs that you can define as configuration attributes associated with a
deployment stage of an API. They act like environment variables and can be used in your API setup and
mapping templates.

For example, you can define a stage variable in a stage configuration, and then set its value as the URL
string of an HTTP integration for a method in your API. Later, you can reference the URL string using the
associated stage variable name from the API setup. This way, you can use the same API setup with a
different endpoint at each stage by resetting the stage variable value to the corresponding URLs.You
can also access stage variables in the mapping templates, or pass configuration parameters to your AWS
Lambda or HTTP back end.

233

Amazon API Gateway Developer Guide
Manage API Deployment with Stage Variables

For more information about mapping templates, see Request and Response Payload-Mapping
Reference (p. 101).

Use Cases
With deployment stages in API Gateway, you can manage multiple release stages for each API, such as
alpha, beta, and production. Using stage variables you can configure an API deployment stage to interact
with different back-end endpoints. For example, your API can pass a GET request as an HTTP proxy to
the back-end web host (for example, http://example.com). In this case, the back-end web host is
configured in a stage variable so that when developers call your production endpoint, API Gateway calls
example.com. When you call your beta endpoint, API Gateway uses the value configured in the stage
variable for the beta stage, and calls a different web host (for example, beta.example.com). Similarly,
stage variables can be used to specify a different AWS Lambda function name for each stage in your
API.

You can also use stage variables to pass configuration parameters to a Lambda function through your
mapping templates. For example, you may want to re-use the same Lambda function for multiple stages
in your API, but the function should read data from a different Amazon DynamoDB table depending on
which stage is being called. In the mapping templates that generate the request for the Lambda function,
you can use stage variables to pass the table name to Lambda.

Examples
To use a stage variable to customize the HTTP integration endpoint, you must first configure a stage
variable of a specified name, e.g., url, and then assign it a value, e.g., example.com. Next, from your
method configuration, set up an HTTP proxy integration, and instead of entering the endpoint's URL, you
can tell API Gateway to use the stage variable value, http://${stageVariables.url}. This value
tells API Gateway to substitute your stage variable ${} at runtime, depending on which stage your API
is running.You can reference stage variables in a similar way to specify a Lambda function name, an
AWS Service Proxy path, or an AWS role ARN in the credentials field.

When specifying a Lambda function name as a stage variable value, you must configure the permissions
on the Lambda function manually.You can use the AWS Command Line Interface to do this.

aws lambda add-permission --function-name arn:aws:lambda:XXXXXX:your-lambda-
function-name --source-arn arn:aws:execute-api:us-east-1:YOUR_AC
COUNT_ID:api_id/*/HTTP_METHOD/resource --principal apigateway.amazonaws.com --
statement-id apigateway-access --action lambda:InvokeFunction

The following example assigns API Gateway permission to invoke a Lambda function named helloWorld
hosted in the US West (Oregon) region of an AWS account on behalf of the API method.

arn arn:aws:execute-api:us-west-2:123123123123:bmmuvptwze/*/GET/hello

Here is the same command using the AWS CLI.

aws lambda add-permission --function-name arn:aws:lambda:us-east-
1:123123123123:function:helloWorld --source-arn arn:aws:execute-api:us-west-
2:123123123123:bmmuvptwze/*/GET/hello --principal apigateway.amazonaws.com --
statement-id apigateway-access --action lambda:InvokeFunction

234

Amazon API Gateway Developer Guide
Use Cases

Set Stage Variables Using the Amazon API
Gateway Console
In this tutorial, you will learn how to set stage variables for two deployment stages of a sample API, using
the Amazon API Gateway console.

Prerequisites
1. You must have an API available in API Gateway. Follow the instructions in Creating an API (p. 61).

2. You must have deployed the API at least once. Follow the instructions in Deploying an API (p. 221).

3. You must have created the first stage for a deployed API. Follow the instructions in Create a
Stage (p. 223).

To Declare Stage Variables Using the API Gateway Console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Create an API, create a GET method on the API's root resource, if you have not already done so.
Set the HTTP Endpoint URL value as "http://${stageVariables.url}", and then choose
Save.

3. Choose Deploy API. Choose New Stage and enter "beta" for Stage name. Choose Deploy.

235

Amazon API Gateway Developer Guide
Set Stage Variables

https://console.aws.amazon.com/apigateway

4. In the beta Stage Editor panel; choose the Stage Variables tab; and then choose Add Stage
Variable.

5. Enter the "url" string in the Name field and the "httpbin.org/get" in the Value field. Choose the
checkmark icon to save the setting for the stage variable.

236

Amazon API Gateway Developer Guide
Set Stage Variables

6. Repeat the above step to add two more stage variables: version and function. Set their values
as "v-beta" and "HelloWorld", respectively.

Note
When setting a Lambda function as the value of a stage variable, use the function's local
name, possibly including its alias or version specification, as in HelloWorld, HelloWorld:1
or HelloWorld:alpha. Do not use the function's ARN (for example,
arn:aws:lambda:us-east-1:123456789012:function:HelloWorld). The API
Gateway console assumes the stage variable value for a Lambda function as the unqualified
function name and will expand the given stage variable into an ARN.

7. From the Stages navigation pane, choose Create. For Stage name, type prod. Select a recent
deployment from Deployment and then choose Create.

8. As with the beta stage, set the same three stage variables (url, version, and function) to different
values ("petstore-demo-endpoint.execute-api.com/petstore/pets", "v-prod", and
"HelloEveryone"), respectively.

237

Amazon API Gateway Developer Guide
Set Stage Variables

Use Amazon API Gateway Stage Variables
You can use API Gateway stage variables to access the HTTP and Lambda back ends for different API
deployment stages and to pass stage-specific configuration metadata into an HTTP back end as a query
parameter and into a Lambda function as a payload generated in an input mapping template.

Prerequisites
You must create two stages with a url variable set to two different HTTP endpoints: a function stage
variable assigned to two different Lambda functions, and a version stage variable containing
stage-specific metadata. Follow the instructions in Set Stage Variables Using the Amazon API Gateway
Console (p. 235).

Access an HTTP endpoint through an API with a stage
variable
1. In the Stages navigation pane, choose beta. In beta Stage Editor, choose the Invoke URL link.

This starts the beta stage GET request on the root resource of the API.

Note
The Invoke URL link points to the root resource of the API in its beta stage. Navigating to
the URL by choosing the link calls the beta stage GET method on the root resource. If
methods are defined on child resources and not on the root resource itself, choosing the
Invoke URL link will return a {"message":"Missing Authentication Token"} error
response. In this case, you must append the name of a specific child resource to the Invoke
URL link.

238

Amazon API Gateway Developer Guide
Use Stage Variables

2. The response you get from the beta stage GET request is shown next.You can also verify the result
by using a browser to navigate to http://httpbin.org/get.This value was assigned to the url variable
in the beta stage. The two responses are identical.

3. In the Stages navigation pane, choose the prod stage. From prod Stage Editor , choose the Invoke
URL link. This starts the prod stage GET request on the root resource of the API.

4. The response you get from the prod stage GET request is shown next.You can verify the result by
using a browser to navigate to http://petstore-demo-endpoint-execute-api.com/petstore/pets.
This value was assigned to the url variable in the prod stage. The two responses are identical.

239

Amazon API Gateway Developer Guide
Use Stage Variables

Pass stage-specific metadata to an HTTP back end via a
stage variable in a query parameter expression
This procedure describes how to use a stage variable value in a query parameter expression to pass
stage-specific metadata into an HTTP back end. We will use the version stage variable declared in Set
Stage Variables Using the Amazon API Gateway Console (p. 235).

1. In the Resource navigation pane, choose the GET method. To add a query string parameter to the
method's URL, in Method Execution, choose Method Request . Type version for the parameter
name.

2. In Method Execution choose Integration Request. Edit the Endpoint URL value to append
?version=${stageVariables.version} to the previously defined URL value, which, in this
case, is also expressed with the url stage variable. Choose Deploy API to deploy these changes.

240

Amazon API Gateway Developer Guide
Use Stage Variables

3. In the Stages navigation pane, choose the beta stage. From beta Stage Editor, verify that the
current stage is in the most recent deployment, and then choose the Invoke URL link.

Note
We use the beta stage here because the HTTP endpoint, as specified by the url variable,
"http://httpbin.org/get", accepts query parameter expressions and returns them as the args
object in its response.

4. The response is shown next. Notice that v-beta, assigned to the version stage variable, is passed
in the back end as the version argument.

241

Amazon API Gateway Developer Guide
Use Stage Variables

Call Lambda function through API with a stage variable
This procedure describes how to use a stage variable to call a Lambda function as a back end of your
API. We will use the function stage variable declared earlier. For more information, see Set Stage
Variables Using the Amazon API Gateway Console (p. 235).

1. In the Resources pane, create a /lambdasv1 child resource under the root directory, and then create
a GET method on the child resource. Set the Integration type to Lambda Function, and in Lambda
Function, type ${stageVariables.function} . Choose Save.

Tip
When prompted with Add Permision to Lambda Function, make a note of the AWS CLI
command before choosing OK.You must run the command on each Lambda function that
is or will be assigned to the function stage variable for each of the newly created API
methods. For example, if the $stageVariables.function value is HelloWorld and
you have not added permission to this function yet, you must run the following AWS CLI
command:

aws lambda add-permission --function-name arn:aws:lambda:us-east-
1:account-id:function:HelloWorld --source-arn arn:aws:execute-api:us-
east-1:account-id:api-id/*/GET/lambdasv1 --principal apigateway.amazon
aws.com --statement-id statement-id-guid --action lambda:InvokeFunction

Failing to do so results in a 500 Internal Server Error response when invoking the
method. Make sure to replace ${stageVariables.function} with the Lambda function
name that is assigned to the stage variable.

2. Deploy the API to available stages.

3. In the Stages navigation pane, choose the beta stage. Verify that your most recent deployment is
in beta Stage Editor. Copy the Invoke URL link, paste it into the address bar of your browser, and

242

Amazon API Gateway Developer Guide
Use Stage Variables

append /lambdasv1 to that URL.This calls the underlying Lambda function through the GET method
on the LambdaSv1 child resource of the API.

Note
Your HelloWorld Lambda function implements the following code.

exports.handler = function(event, context) {
 if (event.version)
 context.succeed('Hello, World! (' + event.version + ')');
 else
 context.succeed("Hello, world! (v-unknown)");
};

This implementation results in the following response.

"Hello, world! (v-unknown)"

Pass stage-specific metadata to a Lambda function via a
stage variable
This procedure describes how to use a stage variable to pass stage-specific configuration metadata into
a Lambda function.We will use a POST method and an input mapping template to generate payload using
the version stage variable declared earlier.

1. In the Resources pane, choose the /lambdasv1 child resource. Create a POST method on the child
resource, set the Integration type to Lambda Function, and type ${stageVariables.function}
in Lambda Function. Choose Save.

Tip
This step is similar to the step we used to create the GET method. For more information,
see Call Lambda function through API with a stage variable (p. 242).

2. From the /Method Execution pane, choose Integration Request. In the Integration Request pane,
expand Mapping Templates, and then choose Add mapping template to add a template for the
application/json content-type, as shown in the following.

243

Amazon API Gateway Developer Guide
Use Stage Variables

Note
In a mapping template, a stage variable must be referenced within quotes (as in
"$stageVariables.version" or "${stageVariables.version}"), whereas elsewhere
it must be referenced without quotes (as in ${stageVariables.function}).

3. Deploy the API to available stages.

4. In the Stages navigation pane, choose beta. In beta Stage Editor , verify that the current stage has
the most recent deployment. Copy the Invoke URL link, paste it into the URL input field of a REST
API client, append /lambdasv1 to that URL, and then submit a POST request to the underlying
Lambda function.

Note
You will get the following response.

"Hello, world! (v-beta)"

To summarize, we have demonstrated how to use API Gateway stage variables to target different HTTP
and Lambda back ends for different stages of API deployment. In addition, we also showed how to use
the stage variables to pass stage-specific configuration data into HTTP and Lambda back ends.Together,
these procedures demonstrate the versatility of the API Gateway stage variables in managing API
development.

Amazon API Gateway Stage Variables Reference
You can use API Gateway stage variables in the following cases.

Parameter Mapping Expressions
A stage variable can be used in a parameter mapping expression for an API method's request or response
header parameter, without any partial substitution. In the following example, the stage variable is referenced
without the $ and the enclosing {...}.

244

Amazon API Gateway Developer Guide
Stage Variables Reference

• stageVariables.<variable_name>

Mapping Templates
A stage variable can be used anywhere in a mapping template, as shown in the following examples.

• { "name" : "$stageVariables.<variable_name>"}

• { "name" : "${stageVariables.<variable_name>}"}

HTTP Integration URIs
A stage variable can be used as part of an HTTP integration URL, as shown in the following examples.

• A full URI without protocol, e.g., http://${stageVariables.<variable_name>}

• A full domain: e.g., http://${stageVariables.<variable_name>}/resource/operation

• A subdomain: e.g.,
http://${stageVariables.<variable_name>}.example.com/resource/operation

• A path, e.g., http://example.com/${stageVariables.<variable_name>}/bar

• A query string, e.g., http://example.com/foo?q=${stageVariables.<variable_name>}

AWS Integration URIs
A stage variable can be used as part of AWS URI action or path components, as shown in the following
example.

• arn:aws:apigateway:<region>:<service>:${stageVariables.<variable_name>}

AWS Integration URIs (Lambda Functions)
A stage variable can be used in place of a Lambda function name, or version/alias, as shown in the
following examples.

• arn:aws:apigateway:<region>:lambda:path/2015-03-31/functions/arn:aws:lambda::<account_id>:function:${stageVariables.<function_variable_name>}/invocations

• arn:aws:apigateway:<region>:lambda:path/2015-03-31/functions/arn:aws:lambda::<account_id>:function:<function_name>:${stageVariables.<version_variable_name>}/invocations

AWS Integration Credentials
A stage variable can be used as part of AWS user/role credential ARN, as shown in the following example.

• arn:aws:iam::<account_id>:${stageVariables.<variable_name>}

Generate an SDK for an API in API Gateway
You can generate an SDK for a specific stage of an API in API Gateway. The SDK contains code you
can use to call the API from Android, iOS, or JavaScript. To generate an SDK of your API, use the API
Gateway console.

Topics

• Prerequisites (p. 246)

245

Amazon API Gateway Developer Guide
Generate an SDK for an API

• Generate an SDK for an API with the API Gateway Console (p. 246)

• Use an API Gateway-Generated API SDK for Android (p. 247)

• Integrate an API Gateway-Generated iOS SDK into Your iOS Project (p. 248)

• Integrate an API Gateway-Generated JavaScript SDK into Your JavaScript Code (p. 250)

Prerequisites
• You must have deployed the API at least once in API Gateway. Follow the instructions in Deploying

an API (p. 221).

Generate an SDK for an API with the API Gateway
Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API for the stage, choose Stages.

3. In the Stages pane, choose the name of the stage.

4. On the SDK Generation tab, for Platform, choose the platform.

5. If you chose Android, specify the following:

• For Group ID, type the unique identifier for the corresponding project.This is used in the pom.xml
file (for example, com.mycompany).

• For Invoker package, type the namespace for the generated client classes (for example,
com.mycompany.clientsdk).

• For Artifact ID, type the name of the compiled .jar file without the version. This is used in the
pom.xml file (for example, aws-apigateway-api-sdk).

• For Artifact version, type the artifact version number for the generated client. This is used in the
pom.xml file and should follow a major.minor.patch pattern (for example, 1.0.0).

6. If you chose iOS, in the Prefix box, type the unique prefix for the generated classes. (For example,
typing CLI will result in classes named CLIRequestModel.h and CLIRequestModel.m.)

7. Choose Generate SDK, and then follow the on-screen directions to download the API
Gateway-generated SDK.

8. Do one of the following:

• If you chose Android for Platform, follow the instructions in Use an API Gateway-Generated API
SDK for Android (p. 247).

• If you chose iOS for Platform, follow the instructions in Integrate an API Gateway-Generated iOS
SDK into Your iOS Project (p. 248).

• If you chose JavaScript for Platform, follow the instructions in Integrate an API Gateway-Generated
JavaScript SDK into Your JavaScript Code (p. 250).

246

Amazon API Gateway Developer Guide
Prerequisites

https://console.aws.amazon.com/apigateway

Use an API Gateway-Generated API SDK for
Android

Note
These instructions assume you have already completed the steps in Generate an SDK for an
API with the API Gateway Console (p. 246).

1. Extract the contents of the API Gateway-generated .zip file you downloaded earlier.

2. Download and install Apache Maven (preferably version 3.x).

3. Download and install the JDK (preferably version 1.7 or later).

4. Set the JAVA_HOME environment variable.

5. Run the command mvn install to install the compiled artifact files to your local Maven repository.
This will create a target folder containing compiled SDK library.

6. Copy the SDK file (the name of which is derived from the Artifact Id and Artifact Version you
specified when generating the SDK, e.g., aws-apigateway-api-sdk-1.0.0.jar) from the target
folder, along with all of the other libraries from the target/lib folder, into your project's lib folder.

If you use Andriod Studio, create a libs folder under your client app module and copy the required
JAR file into this folder. Verify that the dependencies section in the module's gradle file contains the
following

 compile fileTree(include: ['*.jar'], dir: 'libs')
 compile fileTree(include: ['*.jar'], dir: 'app/libs')

and make sure no duplicated JAR files are declared.

7. Use the ApiClientFactory class to initialize the API Gateway-generated SDK. For example:

ApiClientFactory factory = new ApiClientFactory();

// Create an instance of your SDK.
final MyApiClient client = factory.build(MyApiClient.class);

// Invoke a method (e.g., 'parentPath1Get(param1,body)') exposed by your
SDK.
// Here the method's return type is OriginalModel.
OriginalModel output = client.parentPath1Get(param1,body);

// You also have access to your API's models.
OriginalModel myModel = new OriginalModel();
myModel.setStreetAddress(streetAddress);
myModel.setCity(city);
myModel.setState(state);
myModel.setStreetNumber(streetNumber);
myModel.setNested(nested);
myModel.setPoBox(poBox);

8. To use a Amazon Cognito credentials provider to authorize calls to your API, use the
ApiClientFactory class to pass a set of AWS credentials by using the API Gateway-generated
SDK. For example:

// Use CognitoCachingCredentialsProvider to provide AWS credentials
// for the ApiClientFactory

247

Amazon API Gateway Developer Guide
Use an API Gateway-Generated API SDK for Android

https://maven.apache.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html

AWSCredentialsProvider credentialsProvider = new CognitoCachingCredentialsPro
vider(
 context, // activity context
 "identityPoolId", // Cognito identity pool id
 Regions.US_EAST_1 // region of Cognito identity pool
};

ApiClientFactory factory = new ApiClientFactory()
 .credentialsProvider(credentialsProvider);

9. To set an API key by using the API Gateway-generated SDK, use code similar to the following:

ApiClientFactory factory = new ApiClientFactory()
 .apiKey("YOUR_API_KEY");

Integrate an API Gateway-Generated iOS SDK into
Your iOS Project

Note
These instructions assume you have already completed the steps in Generate an SDK for an
API with the API Gateway Console (p. 246).

1. Extract the contents of the API Gateway-generated .zip file you downloaded earlier.

2. Import the AWS Mobile SDK for iOS into your project by using CocoaPods or Frameworks.

To import the AWS Mobile SDK for iOS into your project by using CocoaPods, do the following:

1. Install CocoaPods by running the command sudo gem install cocoapods.

2. Copy the Podfile file from the extracted .zip file into the same directory as your Xcode project
file. If your Xcode project file already contains a file named Podfile, you can simply add the
following line of code to it:

pod 'AWSAPIGateway', '~> 2.2.1'

3. Run the pod install command .

4. Use Xcode to open the *.xcworkspace file.

5. Copy all of the .h and .m files from the extracted .zip file's generated-src directory into your
Xcode project.

To import the AWS Mobile SDK for iOS into your project by using Frameworks, do the following:

1. Download the AWS Mobile SDK for iOS, version 2.2.1 or later.

2. With your project already open in Xcode, press and hold the Ctrl key while choosing Frameworks,
and then choose Add files to "<project name>"....

248

Amazon API Gateway Developer Guide
Integrate an API Gateway-Generated iOS SDK into Your

iOS Project

https://cocoapods.org/
http://aws.amazon.com/mobile/sdk/

3. In Finder, browse to and select both the AWSCore.framework and AWSAPIGateway.framework
files, and then choose Add.

4. Open a target for your project, choose Build Phases, expand Link Binary With Libraries,
choose the + button, and then add the following: libsqlite3.dylib, libz.dylib, and
SystemConfiguration.framework.

3. Import the .h file from the API Gateway-generated SDK. For example:

#import "<generated header file name>"

4. Get the defaultClient from your code. For example:

APIGIntTestApiClient *client = [APIGIntTestApiClient defaultClient];

5. Use the API Gateway-generated SDK to call your API's method. For example:

[[client parentPath1ChildPath1Get:@"test" body:APIGOriginalModel] continue
WithBlock:^id(AWSTask *task) {
 if (task.error) {
 NSLog(@"Error: %@", task.error);
 return nil;
 }
 if (task.result) {
 APIGOriginalModel * output = task.result;
 //Do something with the output.
 }
 return nil;
 }
];

6. To use a Amazon Cognito credentials provider to authorize calls to your API, create an
AWSCognitoCredentialsProvider object as the default provider for the API Gateway-generated
SDK. For example:

AWSCognitoCredentialsProvider *creds = [[AWSCognitoCredentialsProvider alloc]
 initWithRegionType:AWSRegionUSEast1
 identityPoolId:CognitoPoolID];
AWSServiceConfiguration *configuration = [[AWSServiceConfiguration alloc]
initWithRegion:AWSRegionUSEast1 credentialsProvider:creds];
AWSServiceManager.defaultServiceManager.defaultServiceConfiguration = con
figuration;

7. To send an API key in your requests, set the apiKey property of the API Gateway-generated SDK.
For example:

client.apiKey = @"Your API key";

249

Amazon API Gateway Developer Guide
Integrate an API Gateway-Generated iOS SDK into Your

iOS Project

Integrate an API Gateway-Generated JavaScript
SDK into Your JavaScript Code

Note
These instructions assume you have already completed the instructions in Generate an SDK
for an API with the API Gateway Console (p. 246).

1. Extract the contents of the API Gateway-generated .zip file you downloaded earlier.

2. Enable cross-origin resource sharing (CORS) for all of the methods the API Gateway-generated
SDK will call. For instructions, see Enable CORS for a Resource (p. 198).

3. In your web page, include references to the following scripts:

<script type="text/javascript" src="lib/axios/dist/axios.stan
dalone.js"></script>
<script type="text/javascript" src="lib/CryptoJS/rollups/hmac-
sha256.js"></script>
<script type="text/javascript" src="lib/CryptoJS/rollups/sha256.js"></script>
<script type="text/javascript" src="lib/CryptoJS/components/hmac.js"></script>
<script type="text/javascript" src="lib/CryptoJS/components/enc-
base64.js"></script>
<script type="text/javascript" src="lib/url-template/url-tem
plate.js"></script>
<script type="text/javascript" src="lib/apiGatewayCore/sigV4Cli
ent.js"></script>
<script type="text/javascript" src="lib/apiGatewayCore/apiGatewayCli
ent.js"></script>
<script type="text/javascript" src="lib/apiGatewayCore/simpleHttpCli
ent.js"></script>
<script type="text/javascript" src="lib/apiGatewayCore/utils.js"></script>
<script type="text/javascript" src="apigClient.js"></script>

4. In your code, initialize the API Gateway-generated SDK by using code similar to the following:

var apigClient = apigClientFactory.newClient();

5. Call the API in API Gateway by using code similar to the following. Each call returns a promise with
a success and failure callbacks:

var params = {
 // This is where any modeled request parameters should be added.
 // The key is the parameter name, as it is defined in the API in API
Gateway.
 param0: '',
 param1: ''
};

var body = {
 // This is where you define the body of the request,
};

var additionalParams = {
 // If there are any unmodeled query parameters or headers that must be
 // sent with the request, add them here.

250

Amazon API Gateway Developer Guide
Integrate an API Gateway-Generated JavaScript SDK

into Your JavaScript Code

 headers: {
 param0: '',
 param1: ''
 },
 queryParams: {
 param0: '',
 param1: ''
 }
};

apigClient.methodName(params, body, additionalParams)
 .then(function(result){
 // Add success callback code here.
 }).catch(function(result){
 // Add error callback code here.
 });

6. To initialize the API Gateway-generated SDK with AWS credentials, use code similar to the following.
If you use AWS credentials, all requests to the API will be signed. This means you must set the
appropriate CORS Accept headers for each request:

var apigClient = apigClientFactory.newClient({
 accessKey: 'ACCESS_KEY',
 secretKey: 'SECRET_KEY',
});

7. To use an API key with the API Gateway-generated SDK, you can pass the API key as a parameter
to the Factory object by using code similar to the following. If you use an API key, it is specified as
part of the x-api-key header and all requests to the API will be signed. This means you must set
the appropriate CORS Accept headers for each request:

var apigClient = apigClientFactory.newClient({
 apiKey: 'API_KEY'
});

Use a Custom Domain Name in API Gateway
After deploying your API, you (and the client) can invoke the API using the default root URL of the
https://api-id.execute-api.region.amazonaws.com format. To provide a simpler and more
intuitive URL for your API users, you can use API Gateway to set up a custom domain name (e.g.,
api.example.com) and choose a base path (e.g., myservice) to present an alternative URL (e.g.,
https://api.example.com/myservice) for the API.You can also use an empty base path for an
API. In this case, the API's URL is the same as the custom domain (e.g., https://api.example.com.)

For every API you create, API Gateway sets up an Amazon CloudFront distribution for the API. Requests
with the default API URL are routed to the corresponding CloudFront distribution. Similarly, every custom
domain name is backed by a CloudFront distribution. An API request with the custom domain name
passes through the custom domain name's CloudFront distribution before reaching the API's CloudFront
distribution. API Gateway supports custom domain names for APIs by leveraging Server Name Indication
(SNI) on the CloudFront distribution. For more information on using custom domain names on a CloudFront
distribution, including the required certificate format and the maximum size of a certificate key length, see
Using Alternate Domain Names and HTTPS in the Amazon CloudFront Developer Guide.

251

Amazon API Gateway Developer Guide
Use a Custom Domain Name

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/SecureConnections.html#CNAMEsAndHTTPS
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/SecureConnections.html#CNAMEsAndHTTPS

To enable a custom domain name, you, as the API owner, must provide a server-side SSL certificate to
verify the custom domain name targeted by the client requests.You do this when setting up the domain
name initially and then when renewing an expiring certificate subsequently. In addition, you must have
registered the custom domain name with a domain name registrar. After setting up a custom domain
name in API Gateway, you must create or update your domain name service (DNS) provider's resource
record to map the custom domain name to its CloudFront distribution domain name. For the SSL certificate,
you must also have obtained from a certificate authority the PEM-formatted SSL certificate body, its
private key, and the certificate chain for the custom domain name.This section describes how to configure
a domain name for an API, to set up the certificate for a custom domain name, to map a base path to an
API, and to upload a new certificate to replace an expiring one. We will also provide general guidance,
by way of examples, on how to obtain the server-side certificate and create a DNS alias record.

Topics

• Prerequisites (p. 252)

• Set Up a Custom Domain Name for an API Gateway API (p. 253)

• Specify API Mappings for a Custom Domain Name (p. 255)

• Base Path Examples of API Mappings for a Custom Domain Name (p. 256)

• Upload and Renew an Expiring Certificate (p. 256)

• Call Your API with Custom Domain Names (p. 257)

Prerequisites
The following steps describe how to prepare to use custom domain names in API Gateway.

To prepare to use custom domain names in API Gateway

1. Register your custom domain name. See the Accredited Registrar Directory at the ICANN website.

2. Get a PEM-encoded SSL certificate for your custom domain name from a certificate authority. For
a partial list, see Third-Party Certificate Authorities at the DMOZ website.

Here are the general steps to obtain an SSL certificate from your chosen certificate authority:

a. Generate a private key for the certificate and save output to a file, using the OpenSSL toolkit at
the OpenSSL website:

openssl genrsa -out private-key-file 2048

Note
Amazon API Gateway leverages Amazon CloudFront to support certificates for custom
domain names. As such, the requirements and constraints of a custom domain name
SSL certificate are dictated by CloudFront. For example, the maximum size of the public
key is 2048 and the private key size can be 1024, 2048 and 4096. For more information,
see Secure access to your objects and Create signed URLs and signed cookies.

b. Generate a certificate signing request (CSR) with the previously generated private key, using
OpenSSL:

openssl req -new -sha256 -key private-key-file -out CSR-file

c. Submit the CSR to the certificate authority and save the resulting certificate.

d. Download the certificate chain from the certificate authority.

252

Amazon API Gateway Developer Guide
Prerequisites

http://www.internic.net/regist.html
http://www.dmoz.org/Computers/Security/Public_Key_Infrastructure/PKIX/Tools_and_Services/Third_Party_Certificate_Authorities/
http://www.openssl.org
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/SecureConnections.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-trusted-signers.html

Note
If you obtain the private key in another way and the key is encrypted, you can use the
following command to decrypt the key before submitting it to API Gateway for setting up a
custom domain name.

openssl pkcs8 -topk8 -inform pem -in MyEncryptedKey.pem -outform pem
 -nocrypt -out MyDecryptedKey.pem

Set Up a Custom Domain Name for an API Gateway
API
The following procedure describes how to set up a custom domain name.

To set up a custom domain name for an API Gateway API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Custom Domain Names from the main navigation pane.

3. Choose Create in the secondary navigation pane.

4. In Create Custom Domain Name, specify the following:

a. For Domain name, type your domain name (for example, api.example.com).

b. For Certificate name, type a name for future reference (for example,
my-example-certificate).

c. For Certificate body, type or paste the body of the PEM-formatted server certificate from your
certificate authority. The following shows an abbreviated example of such a certificate.

-----BEGIN CERTIFICATE-----
EXAMPLECA+KgAwIBAgIQJ1XxJ8Pl++gOfQtj0IBoqDANBgkqhkiG9w0BAQUFADBB
...
az8Cg1aicxLBQ7EaWIhhgEXAMPLE
-----END CERTIFICATE-----

d. For Certificate private key, type or paste your PEM-formatted certificate's private key. The
following shows an abbreviated example of such a key.

-----BEGIN RSA PRIVATE KEY-----
EXAMPLEBAAKCAQEA2Qb3LDHD7StY7Wj6U2/opV6Xu37qUCCkeDWhwpZMYJ9/nETO
...
1qGvJ3u04vdnzaYN5WoyN5LFckrlA71+CszD1CGSqbVDWEXAMPLE
-----END RSA PRIVATE KEY-----

e. For Certificate chain, type or paste the PEM-formatted intermediate certificates and, optionally,
the root certificate, one after the other without any blank lines. If you include the root certificate,
your certificate chain must start with intermediate certificates and end with the root certificate.
Use the intermediate certificates provided by your certificate authority. Do not include any
intermediaries that are not in the chain of trust path.The following shows an abbreviated example.

-----BEGIN CERTIFICATE-----
EXAMPLECA4ugAwIBAgIQWrYdrB5NogYUx1U9Pamy3DANBgkqhkiG9w0BAQUFADCB
...

253

Amazon API Gateway Developer Guide
Set Up a Custom Domain Name for an API Gateway API

https://console.aws.amazon.com/apigateway

8/ifBlIK3se2e4/hEfcEejX/arxbx1BJCHBvlEPNnsdw8EXAMPLE
-----END CERTIFICATE-----

Here is another example.

-----BEGIN CERTIFICATE-----
Intermediate certificate 2
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
Intermediate certificate 1
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
Optional: Root certificate
-----END CERTIFICATE-----

5. Choose Save.

6. While the new custom domain name is being created, the console displays the following information
to have an alias resource record created in your DNS provider to map your custom domain name
(api.example.com) to the API's CloudFront distribution domain name
(distribution-id.cloudfront.net).

Make note of the CloudFront distribution's domain name shown in the output.You will need it to set
the custom domain's CNAME or alias record in your DNS.

7. In this step, we will use Amazon Route 53 as an example DNS provider to show how to set up the
alias record to map the custom domain to its CloudFront distribution.The instructions can be adapted
to other DNS providers.

a. Go to the Amazon Route 53 console.

b. If necessary, register a custom domain name.

c. Create a hosted zone.

d. Create a record set (e.g., api.example.com.)

e. Choose Yes for Alias, type the CloudFront domain name (e.g.,
d3boq9ikothtgw.cloudfront.net) in Alias Target, and then choose Create.

254

Amazon API Gateway Developer Guide
Set Up a Custom Domain Name for an API Gateway API

For most DNS providers, including Amazon Route 53, your custom domain name is added to the
hosted zone as a CNAME resource record set. The CNAME record name specifies the custom
domain name you typed earlier for Domain Name (for example, api.example.com). The CNAME
record value specifies the domain name for the CloudFront distribution. However, use of a CNAME
record will not work if your custom domain is a zone apex (i.e., example.com instead of
api.example.com). A zone apex is also commonly known as the root domain of your organization.

With Amazon Route 53 you can also create an alias resource record set for your custom domain
name and specify the CloudFront distribution as the alias target. This means that Amazon Route 53
can route your custom domain name even if it is a zone apex. For more information, see Choosing
Between Alias and Non-Alias Resource Record Sets in the Amazon Route 53 Developer Guide.

Specify API Mappings for a Custom Domain Name
After you have set up a custom domain name, you must configure how individual APIs are invoked with
the custom domain name. This amounts to specifying an API's URL with the given domain name. For
example, if you have created an API named PetStore and another API named PetShop and set up a
custom domain name of api.example.com in API Gateway, you can set the PetStore API's URL as
https://api.example.com or https://api.example.com/myPetStore. This involves setting up
the API's base path. The first example uses an empty base path and the second example uses
myPetStore as the base path of the API, relative to the domain name. Similarly, you can use
https://api.example.com/yourPetStore as the PetShop API's URL. The base path is
yourPetShop.Thus, base paths can be used to host multiple APIs behind a single custom domain name.

Complete the steps in Set Up a Custom Domain Name for an API Gateway API (p. 253) before setting the
base path for API mappings.

To set the base path for API mappings

1. For each URL variation you want to enable, choose Create API mapping.

2. (Optional) For Base path, type the base path name that API callers must provide as part of the URL.
This value must be unique for all of the mappings across a single API. Leave this blank if you do not
want callers to specify a base path name after the domain name.

3. For API, choose the name of an available API from the selected region in your AWS account.

255

Amazon API Gateway Developer Guide
Specify API Mappings for a Custom Domain Name

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-choosing-alias-non-alias.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-choosing-alias-non-alias.html

4. (Optional) For Stage, choose the name of the API's stage you want to use for this mapping. Leave
this blank if you want callers to explicitly specify the stage name after any base path name.

5. Choose Save.

Note
To delete a mapping after you create it, next to the mapping that you want to delete, choose
Remove.

Base Path Examples of API Mappings for a Custom
Domain Name
The following examples use a custom domain name of api.example.com:

• Leave Base Path blank, specify an API of MyDemoAPI, and specify a Stage value of prod to enable
calls to https://api.example.com to be forwarded to
https://my-api-id.execute-api.region-id.amazonaws.com/prod (where my-api-id is
the identifier API Gateway assigns to the API named MyDemoAPI).

• Leave Base Path blank, specify an API of MyDemoAPI, and leave Stage blank to enable calls to
https://api.example.com/prod to be forwarded to
https://my-api-id.execute-api.region-id.amazonaws.com/prod (where my-api-id is
the identifier API Gateway assigns to the API named MyDemoAPI).

• Specify a Base Path value of billing, specify an API of MyDemoAPI, and leave Stage blank to enable
calls to https://api.example.com/billing/beta to be forwarded to
https://my-api-id.execute-api.region-id.amazonaws.com/beta (where my-api-id is
the identifier API Gateway assigns to the API named MyDemoAPI).

• Specify a Base Path value of scheduling, specify an API of MyDemoAPI, and specify a Stage value
of gamma to enable calls to https://api.example.com/scheduling to be forwarded to
https://my-api-id.execute-api.region-id.amazonaws.com/gamma (where my-api-id is
the identifier API Gateway assigns to the API named MyDemoAPI).

Upload and Renew an Expiring Certificate
The following steps describe how to upload and renew an expiring certificate for a custom domain name
using the API Gateway console.You cannot rotate custom domain name certificates programmatically.

To upload a new certificate for a custom domain name

1. Choose Custom Domain Names from the API Gateway console main navigation pane.

2. Select a custom name under the Domain Names pane.

3. Choose Upload

Note
The upload feature will not be available when the certificate is being initialized or rotated
for the selected custom domain name. However, upload for a different domain name is still
available because the upload feature is independent for each custom domain name.

4. In Upload Backup Certificate for a-domain-name specify the following:

• Type a name for the new certificate in Certificate name. The name should be different from the
name of the expiring certificate.

• Type or paste the PEM-formatted new certificate body in Certificate body.

• Type or paste the PEM-formatted new certificate key in Certificate private key

• Type or paste the PEM-formatted new certificate chain in Certificate chain.

256

Amazon API Gateway Developer Guide
Base Path Examples of API Mappings for a Custom

Domain Name

Then, choose Save.

5. Choose Rotate to start replacing the old certificate by the new certificate.

Note
The certificate rotation takes up to 40 minutes to finish.The custom domain name is available
during the rotation.

Call Your API with Custom Domain Names
Calling an API with a custom domain name is the same as calling the API with its default domain name,
provided that the correct URL is used.

API Gateway supports custom domain names for an API by using Server Name Indication (SNI). After a
custom domain name is configured with the API, you can call the API with the custom domain name by
using a browser or a client library that supports SNI.

API Gateway enforces SNI on the CloudFront distribution. For information on how CloudFront uses custom
domain names, see Amazon CloudFront Custom SSL.

257

Amazon API Gateway Developer Guide
Call Your API with Custom Domain Names

https://en.wikipedia.org/wiki/Server_Name_Indication
http://aws.amazon.com/cloudfront/custom-ssl-domains/

Calling a Deployed API in Amazon
API Gateway

Calling a deployed API involves submitting requests to the execute-api component of API Gateway.
The request URL is the Invoke URL generated by API Gateway when the API is successfully deployed.
You can obtain this invocation URL from the API Gateway console or you can construct it yourself according
to the following format:

https://{restapi_id}.execute-api.{region}.amazonaws.com/{stage_name}/

If your API permits anonymous access, you can use any web browser to invoke any GET-method calls
by pasting the Invoke URL to the browser's address bar. For other methods or any authentication-required
calls, the invocation will be more involved because you must specify a payload or sign the requests.You
can handle these in a script behind an HTML page or in a client app using one of the AWS SDKs.

For testing, you can use the API Gateway console to call an API using the API Gateway's TestInvoke
feature, which bypasses the Invoke URL and allows API testing before the API is deployed. Alternatively,
you can use the Postman Chrome extension to test a successfully deployed API, without writing a script
or a client.

Topics

• Prerequisites (p. 258)

• Obtain an API's Invoke URL in the API Gateway Console (p. 259)

• Test a Method Using the API Gateway Console (p. 259)

• Use Postman to Test an API (p. 260)

Prerequisites
• You must have already deployed the API in API Gateway. Follow the instructions in Deploying an

API (p. 221).

258

Amazon API Gateway Developer Guide
Prerequisites

http://www.getpostman.com/

Obtain an API's Invoke URL in the API Gateway
Console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API you want to call, choose Stages.

3. In the Stages pane, choose the name of the stage.

4. The URL displayed next to Invoke URL should look something like this, where my-api-id is the
identifier API Gateway assigns to your API, region-id is the AWS region identifier (for example,
us-east-1) where you deployed your API, and stage-name is the name of the stage for the API
you want to call:

https://my-api-id.execute-api.region-id.amazonaws.com/stage-name/{resource
Path}

Depending on the method type you want to call and the tool you want to use, copy this URL to your
clipboard, and then paste and modify it to call the API from a web browser, a web debugging proxy tool
or the cURL command-line tool, or from your own API.

If you are not familiar with which method to call or the format you must use to call it, browse the list of
available methods by following the instructions in View a Methods List (p. 219).

To call the method directly from the API Gateway console, see Test a Method Using the Console (p. 259).

For more options, contact the API owner.

Test a Method Using the API Gateway Console
Use the API Gateway console to test a method.

Topics

• Prerequisites (p. 259)

• Test a Method with the API Gateway Console (p. 259)

Prerequisites
• You must specify the settings for the methods you want to test. Follow the instructions in Set up

Method and Integration (p. 62).

Test a Method with the API Gateway Console
Important
Testing methods with the API Gateway console may result in changes to resources that cannot
be undone. Testing a method with the API Gateway console is the same as calling the method
outside of the API Gateway console. For example, if you use the API Gateway console to call
a method that deletes an API's resources, if the method call is successful, the API's resources
will be deleted.

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

259

Amazon API Gateway Developer Guide
Obtain an API's Invoke URL in the API Gateway Console

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

2. In the box that contains the name of the API for the method, choose Resources.

3. In the Resources pane, choose the method you want to test.

4. In the Method Execution pane, in the Client box, choose TEST.Type values in any of the displayed
boxes (such as Query Strings, Headers, and Request Body).

For additional options you may need to specify, contact the API owner.

5. Choose Test. The following information will be displayed:

• Request is the resource's path that was called for the method.

• Status is the response's HTTP status code.

• Latency is the time between the receipt of the request from the caller and the returned response.

• Response Body is the HTTP response body.

• Response Headers are the HTTP response headers.

Tip
Depending on the mapping, the HTTP status code, response body, and response headers
may be different from those sent from the Lambda function, HTTP proxy, or AWS service
proxy.

• Logs are the simulated Amazon CloudWatch Logs entries that would have been written if this
method were called outside of the API Gateway console.

Note
Although the CloudWatch Logs entries are simulated, the results of the method call are
real.

Use Postman to Test an API
Use the Postman Chrome extension is a convenient tool to test an API in API Gateway.

1. Launch Postman.

2. Enter the endpoint URL of a request in the address bar and choose the appropriate HTTP method
from the drop-down list to the left of the address bar.

3. If required, choose the Authorization tab. Choose AWS Signature for the authorization Type. Enter
your AWS IAM user's access key ID in the AccessKey input field. Enter your IAM user secret key
in SecretKey. Specify an appropriate AWS region that matches the region specified in the invocation
URL. Enter execute-api in Service Name.

4. Choose the Headers tab. Optionally, delete any existing headers. This can clear any stale settings
that may cause errors. Add any required custom headers. For example, if API keys are enabled, you
can set the x-api-key:{api_key} name/value pair here.

5. Choose Send to submit the request and receive a response.

For an example of using Postman, see Call an API with Custom authorization (p. 210).

260

Amazon API Gateway Developer Guide
Use Postman to Test an API

http://www.getpostman.com

Monitoring and Troubleshooting in
API Gateway

Topics

• Log API management calls to Amazon API Gateway Using AWS CloudTrail (p. 261)

• Monitor API execution with Amazon CloudWatch (p. 263)

For API execution, API Gateway automatically reports to Amazon CloudWatch your API's execution
metrics on the API- and stage-levels. The metrics include statistics about caching, latency and detected
errors.You can also opt in for API Gateway to send to CloudWatch method-level metrics, using the API
Gateway console (p. 224) or calling the API Gateway REST API or one of its SDKs. Based on these
metrics, you can set CloudWatch custom alarms for troubleshooting any performance issues of your
APIs. For more information about CloudWatch, see Amazon CloudWatch Developer Guide.

For API management using API Gateway REST API, you can create AWS CloudTrail trails to log events
involved in the API Gateway REST API calls.You can use the logs to troubleshoot API creation, deployment
and updates.You can also use Amazon CloudWatch to monitor the CloudTrail logs. To learn more about
CloudTrail, see the AWS CloudTrail User Guide.

Note
CloudTrail logs API Gateway REST API calls an API developer or owner made against the
apigateway component, whereas CloudWatch logs API calls an API customer or client made
against the execute-api component of API Gateway.

Log API management calls to Amazon API
Gateway Using AWS CloudTrail

You can use AWS CloudTrail to capture API Gateway REST API calls in your AWS account and deliver
the log files to an Amazon S3 bucket you specify. Examples of these API calls include creating a new
API, resource, or method in API Gateway. CloudTrail captures such API calls from the API Gateway
console or from the API Gateway APIs directly. Using the information collected by CloudTrail, you can
determine which request was made to API Gateway, the source IP address from which the request was
made, who made the request, when it was made, and so on. To learn more about CloudTrail, including
how to configure and enable it, see the AWS CloudTrail User Guide.

261

Amazon API Gateway Developer Guide
Log API Management Calls with CloudTrail

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/stage-update/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
http://alpha-docs-aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/

API Gateway Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to API Gateway actions are
tracked in log files. API Gateway records are written together with other AWS service records in a log
file. CloudTrail determines when to create and write to a new file based on a time period and file size.

All of the API Gateway actions are logged and documented in the API Gateway REST API (p. 278). For
example, calls to create a new API, resource, or method in API Gateway generate entries in CloudTrail
log files.

Every log entry contains information about who generated the request. The user identity information in
the log helps you determine whether the request was made with root or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userIdentity field in the CloudTrail Event Reference.

You can store your log files in your bucket for as long as you want, but you can also define Amazon S3
lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by using
Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered
so you can take action quickly. For more information, see Configuring Amazon SNS Notifications.

You can also aggregate API Gateway log files from multiple AWS regions and multiple AWS accounts
into a single Amazon S3 bucket. For more information, see Aggregating CloudTrail Log Files to a Single
Amazon S3 Bucket.

Understanding API Gateway Log File Entries
CloudTrail log files can contain one or more log entries where each entry is made up of multiple
JSON-formatted events. A log entry represents a single request from any source and includes information
about the requested action, any parameters, the date and time of the action, and so on. The log entries
are not guaranteed to be in any particular order. That is, they are not an ordered stack trace of the public
API calls.

The following example shows a CloudTrail log entry that demonstrates the API Gateway get resource
action:

{
 Records: [
 {
 eventVersion: "1.03",
 userIdentity: {
 type: "Root",
 principalId: "AKIAI44QH8DHBEXAMPLE",
 arn: "arn:aws:iam::123456789012:root",
 accountId: "123456789012",
 accessKeyId: "AKIAIOSFODNN7EXAMPLE",
 sessionContext: {
 attributes: {
 mfaAuthenticated: "false",
 creationDate: "2015-06-16T23:37:58Z"
 }
 }
 },
 eventTime: "2015-06-17T00:47:28Z",
 eventSource: "apigateway.amazonaws.com",
 eventName: "GetResource",

262

Amazon API Gateway Developer Guide
API Gateway Information in CloudTrail

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

 awsRegion: "us-east-1",
 sourceIPAddress: "203.0.113.11",
 userAgent: "example-user-agent-string",
 requestParameters: {
 restApiId: "3rbEXAMPLE",
 resourceId: "5tfEXAMPLE",
 template: false
 },
 responseElements: null,
 requestID: "6d9c4bfc-148a-11e5-81b6-7577cEXAMPLE",
 eventID: "4d293154-a15b-4c33-9e0a-ff5eeEXAMPLE",
 readOnly: true,
 eventType: "AwsApiCall",
 recipientAccountId: "123456789012"
 },
 ... additional entries ...
]
}

Monitor API execution with Amazon CloudWatch
You can monitor API execution using CloudWatch, which collects and processes raw data from API
Gateway into readable, near real-time metrics. These statistics are recorded for a period of two weeks,
so that you can access historical information and gain a better perspective on how your web application
or service is performing. By default, API Gateway metric data is automatically sent to CloudWatch in
one-minute periods. For more information, see What Are Amazon CloudWatch, Amazon CloudWatch
Events, and Amazon CloudWatch Logs? in the Amazon CloudWatch Developer Guide.

The metrics reported by API Gateway provide information that you can analyze in different ways. The list
below shows some common uses for the metrics. These are suggestions to get you started, not a
comprehensive list.

• Monitor the IntegrationLatency metrics to measure the responsiveness of the back end.

• Monitor the Latency metrics to measure the overall responsiveness of your API calls.

• Monitor the CacheHitCount and CacheMissCount metrics to optimize cache capacities to achieve a
desired performance.

Topics

• Amazon API Gateway Dimensions and Metrics (p. 263)

• View CloudWatch Metrics with the API Dashboard in API Gateway (p. 265)

• View API Gateway Metrics in the CloudWatch Console (p. 266)

• Monitoring Tools in AWS (p. 266)

Amazon API Gateway Dimensions and Metrics
The metrics and dimensions that API Gateway sends to Amazon CloudWatch are listed below. For more
information, see Monitor API Execution with Amazon CloudWatch in the Amazon API Gateway Developer
Guide.

263

Amazon API Gateway Developer Guide
Monitor API execution with Amazon CloudWatch

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/monitoring-cloudwatch.html

API Gateway Metrics
Amazon API Gateway sends metrics under the AWS/ApiGateway namespace to CloudWatch once every
minute.

The following metrics are available from the API Gateway service.

DescriptionMetric

The number of client-side errors captured

Unit: count

4XXError

The number of server-side errors captured.

Unit: count

5XXError

The number of requests served from the API cache.

Unit: count

CacheHitCount

The number of requests served from the back end when
API caching is enabled.

Unit: count

CacheMissCount

The number of calls to API methods.

Unit: count

Count

The time between when API Gateway relays a request
to the back end and when it receives a response from
the back end.

Unit: millisecond

IntegrationLatency

The time between when API Gateway receives a request
from a client and when it returns a response to the client.

Unit: millisecond

Latency

Dimensions for Metrics
You can use the dimensions in the following table to filter API Gateway metrics.

DescriptionDimension

Filters API Gateway metrics for an API of the specified
API name.

ApiName

264

Amazon API Gateway Developer Guide
Amazon API Gateway Dimensions and Metrics

DescriptionDimension

Filters API Gateway metrics for an API method of the
specified API, stage, resource, and method.

API Gateway will not send such metrics unless you have
explicitly enabled detailed CloudWatch metrics.You can
do this in the console by selecting Enable CloudWatch
Metrics under a stage Settings tab. Alternatively, you
can call the stage:update action of the API Gateway REST
API to update the metricsEnabled property to true.

Enabling such metrics will incur additional charges to your
account. For pricing information, see Amazon CloudWatch
Pricing.

ApiName, Method, Resource, Stage

Filters API Gateway metrics for an API stage of the spe-
cified API and stage.

ApiName, Stage

View CloudWatch Metrics with the API Dashboard
in API Gateway
You can use the API dashboard in the API Gateway Console to display the CloudWatch metrics of your
deployed API in API Gateway. These are shown as a summary of API activity over time.

Topics

• Prerequisites (p. 265)

• Examine API activities in the Dashboard (p. 265)

Prerequisites
1. You must have an API created in API Gateway. Follow the instructions in Creating an API (p. 61).

2. You must have the API deployed at least once. Follow the instructions in Deploying an API (p. 221).

3. To get CloudWatch metrics for individual methods, you must have CloudWatch Logs enabled for
those methods in a given stage. The process is prescribed in Set Up a Stage (p. 224).Your account
will be charged for accessing method-level logs, but not for accessing API- or stage-level logs.

Examine API activities in the Dashboard
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose the name of the API.

3. Under the selected API, choose Dashboard.

4. To display a summary of API activity over time, for Stage, choose the desired stage.

5. Use From and To to enter the date range.

6. Refresh, if needed, and view individual metrics displayed in separate graphs titled API Calls,
Integration Latency, Latency, 4xx Error and 5xx Error.The CacheHitCount and CacheMissCount
graphs will be displayed only if API caching has been enabled.

265

Amazon API Gateway Developer Guide
View Metrics with the API Dashboard

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/stage-update/
http://aws.amazon.com/cloudwatch/pricing/
http://aws.amazon.com/cloudwatch/pricing/
https://console.aws.amazon.com/apigateway

Tip
To examine method-level CloudWatch metrics, make sure that you have enabled CloudWatch
Logs on a method level. For more information about how to set up method-level logging,
see Set Up an API Deployment Stage with the API Gateway Console (p. 224).

View API Gateway Metrics in the CloudWatch
Console
To view metrics using the CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension combinations
within each namespace.

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. If necessary, change the region. From the navigation bar, select the region where your AWS resources
reside. For more information, see Regions and Endpoints.

3. In the navigation pane, choose Metrics.

4. In the CloudWatch Metrics by Category pane, under the metrics category for API Gateway, select
a metrics category, and then in the upper pane, scroll down to view the full list of metrics.

To view metrics using the AWS CLI

• At a command prompt, use the following command:

aws cloudwatch list-metrics --namespace "AWS/ApiGateway"

Monitoring Tools in AWS
AWS provides various tools that you can use to monitor API Gateway.You can configure some of these
tools to do the monitoring for you automatically, while other tools require manual intervention. We
recommend that you automate monitoring tasks as much as possible.

Automated Monitoring Tools in AWS
You can use the following automated monitoring tools to watch API Gateway and report when something
is wrong:

• Amazon CloudWatch Alarms – Watch a single metric over a time period that you specify, and perform
one or more actions based on the value of the metric relative to a given threshold over a number of
time periods.The action is a notification sent to an Amazon Simple Notification Service (Amazon SNS)
topic or Auto Scaling policy. CloudWatch alarms do not invoke actions simply because they are in a
particular state, the state must have changed and been maintained for a specified number of periods.
For more information, see Monitor API execution with Amazon CloudWatch (p. 263).

• Amazon CloudWatch Logs – Monitor, store, and access your log files from AWS CloudTrail or other
sources. For more information, see Monitoring Log Files in the Amazon CloudWatch Developer Guide.

• Amazon CloudWatch Events – Match events and route them to one or more target functions or
streams to make changes, capture state information, and take corrective action. For more information,
see Using Events in the Amazon CloudWatch Developer Guide.

• AWS CloudTrail Log Monitoring – Share log files between accounts, monitor CloudTrail log files in
real time by sending them to CloudWatch Logs, write log processing applications in Java, and validate

266

Amazon API Gateway Developer Guide
View Metrics in the CloudWatch Console

https://console.aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchEvents.html

that your log files have not changed after delivery by CloudTrail. For more information, see Working
with CloudTrail Log Files in the AWS CloudTrail User Guide.

Manual Monitoring Tools
Another important part of monitoring API Gateway involves manually monitoring those items that the
CloudWatch alarms don't cover. The API Gateway, CloudWatch, and other AWS console dashboards
provide an at-a-glance view of the state of your AWS environment. We recommend that you also check
the log files on API execution.

• API Gateway dashboard shows the following statistics for a given API stage during a specified period
of time:

• API Calls

• Cache Hit, only when API caching is enabled.

• Cache Miss, only when API caching is enabled.

• Latency

• Integration Latency

• 4XX Error

• 5XX Error

• The CloudWatch home page shows:

• Current alarms and status

• Graphs of alarms and resources

• Service health status

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services you care about

• Graph metric data to troubleshoot issues and discover trends

• Search and browse all your AWS resource metrics

• Create and edit alarms to be notified of problems

Creating CloudWatch Alarms to Monitor API Gateway
You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes state.
An alarm watches a single metric over a time period you specify, and performs one or more actions based
on the value of the metric relative to a given threshold over a number of time periods. The action is a
notification sent to an Amazon SNS topic or Auto Scaling policy. Alarms invoke actions for sustained
state changes only. CloudWatch alarms do not invoke actions simply because they are in a particular
state; the state must have changed and been maintained for a specified number of periods.

267

Amazon API Gateway Developer Guide
Monitoring Tools in AWS

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html

Creating and Using API Usage
Plans in Amazon API Gateway

After you create, test, and deploy your APIs, you can extend them as product offerings for your customers.
You can provide usage plans to allow specified customers to access selected APIs at agreed-upon request
rates and quotas that can meet their business requirements and budgetary constraints.

What Is a Usage Plan?
A usage plan provides access to one or more deployed API stages with configurable throttling and quota
limits enforced on individual client API keys. API callers are identified by API keys that can be generated
by API Gateway or imported from external sources.The throttling prescribes the request rate limits applied
to each API key. The quotas are the maximum number of requests with a given API key submitted within
a specified time interval. Individual API methods can be configured to require API key authorization based
on usage plan configuration. An API stage is identified by an API identifier and a stage name.

Note
Throttling and quota limits apply to requests for individual API keys that are aggregated across
all API stages within a usage plan.

How to Configure a Usage Plan?
The following steps describe how you, as the API owner, configure a usage plan for your customers.

To configure a usage plan

1. Create one or more APIs, configure the methods to require an API key, and deploy the APIs in stages.

2. Generate API keys and distribute the keys to app developers (your customers) using your APIs.

3. Create the usage plan with the desired throttle and quota limits.

4. Associate selected API stages and API keys to the usage plan.

Callers of the API must supply an assigned API key in the x-api-key header in requests to the API.

268

Amazon API Gateway Developer Guide
What Is a Usage Plan?

Note
To enforce authorization of the API key in requests to the API, individual API methods must be
configured to require an API key (p. 203). Setting this configuration ensures the incoming API
key will be authorized according to the usage plan configuration.

Topics

• Configure Usage Plans Using the API Gateway Console (p. 269)

• Configure Usage Plans Using the API Gateway REST API (p. 274)

• API Gateway API Key File Format (p. 277)

Configure Usage Plans Using the API Gateway
Console

To use the API Gateway console to configure a usage plan, use the following instructions.

Topics

• Create and Deploy an API for Usage Plans (p. 269)

• Configure an API Method to Require an API Key (p. 269)

• Create an API Key (p. 270)

• Import API Keys (p. 270)

• Migrate to Default Usage Plans (p. 271)

• Create Usage Plans (p. 271)

• Test a Usage Plan (p. 273)

• Manage Plan Usage (p. 273)

Create and Deploy an API for Usage Plans
For instructions on how to create and deploy an API, see Creating an API (p. 61) and Deploying an
API (p. 221), respectively.

Configure an API Method to Require an API Key
The following procedure describes how to configure an API method to require an API key.

To configure an API method to require an API key

1. Sign in to the AWS Management Console and open the API Gateway console at https://
console.aws.amazon.com/apigateway/.

2. In the API Gateway main navigation pane, choose Resources.

3. Under Resources, create a new method or choose an existing one.

4. Choose Method Request.

5. Under the Authorization Settings section, choose true for API Key Required.

6. Select the check-mark icon to save the settings.

269

Amazon API Gateway Developer Guide
Configure Usage Plans Using the API Gateway Console

https://console.aws.amazon.com/apigateway/
https://console.aws.amazon.com/apigateway/

Create an API Key
If you have already created or imported API keys for use with usage plans, you can skip this and the next
procedure.

To create an API key

1. Sign in to the AWS Management Console and open the API Gateway console at https://
console.aws.amazon.com/apigateway/.

2. In the API Gateway main navigation pane, choose API Keys.

3. From the Actions drop-down menu, choose Create API key.

4. In Create API Key, do the following:

a. Type an API key name (e.g., MyFirstKey) in the Name input field.

b. Choose Auto Generate to have API Gateway to generate the key value or choose Custom to
enter the key manually.

c. Choose Save.

5. Repeat the preceding steps to create more API keys, if needed.

Import API Keys
The following procedure describes how to import API keys to use with usage plans.

To import API keys

1. In the main navigation pane, choose API Keys.

2. From the Actions drop-down menu, choose Import API keys.

270

Amazon API Gateway Developer Guide
Create an API Key

https://console.aws.amazon.com/apigateway/
https://console.aws.amazon.com/apigateway/

3. To load a comma-separated key file, choose Select CSV File.You can also type the keys manually.
For information about the file format, see API Gateway API Key File Format (p. 277).

4. Choose Fail on warnings to stop import when there is an error, or choose Ignore warnings to
continue to import valid key entries when there is an error.

5. To start importing the selected API keys, choose Import.

Migrate to Default Usage Plans
When creating a usage plan for the first time, you are prompted with the Enable Usage Plans option
before you can proceed further. This option creates default usage plans for every unique API stage
associated with existing API keys. In the default usage plan, no throttle and quota limits are set initially,
existing API keys are converted to a collection of UsagePlanKey resources, and existing API keys are
converted to API stage Ids.The API will behave the same as before. However, you must use the UsagePlan
apiStages property to associate specified API stage values (apiId and stage) with included API keys
(via UsagePlanKey), instead of using the ApiKey stageKeys property.

Create Usage Plans
The following procedure describes how to create a usage plan.

To create a usage plan

1. In the Amazon API Gateway main navigation pane, choose Usage Plans, and then choose Create.

2. Under Create Usage Plan, do the following:

a. For Name, type a name for your plan (e.g., Plan_A).

b. For Description, type a description for your plan.

c. Select Enable throttling and set Rate (e.g., 100) and Burst (e.g., 200).

d. Choose Enable quota and set its limit (e.g., 5000) for a selected time interval (e.g., Month).

e. Choose Save.

271

Amazon API Gateway Developer Guide
Migrate to Default Usage Plans

http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan-key/
http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan/
http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan-key/
http://docs.aws.amazon.com/apigateway/api-reference/resource/api-key/

3. To add a stage to the plan, do the following in the Associated API Stages pane:

a. Choose Add API Stage.

b. Choose an API (e.g., PetStore) from the API drop-down list.

c. Choose a stage (e.g., Stage_1) from the Stage drop-down list.

d. Choose the check-mark icon to save.

e. Choose Next.

4. To add a key to the plan, do the following in the Usage Plan API Keys pane:

a. To use an existing key, choose Add API Key to Usage Plan.

b. For Name, type a name for the key you want to add (e.g., MyFirstKey).

c. Choose the check-mark icon to save.

d. If desired, repeat the preceding steps to add other existing API keys to this usage plan.

272

Amazon API Gateway Developer Guide
Create Usage Plans

Note
To add a new API key to the usage plan, choose Create API Key and add to Usage Plan
and follow the instructions.

5. To finish creating the usage plan, choose Done.

6. If you want to add more API stages to the usage plan, choose Add API Stage to repeat the preceding
steps.

Test a Usage Plan
To test the usage plan, you can use an AWS SDK, AWS CLI, or a REST API client like Postman. For an
example of using Postman to test the usage plan, see Test Usage Plans (p. 276)

Manage Plan Usage
Managing a usage plan involves monitoring the used and remaining quotas over a given time period and
extending the remaining quotas by a specified amount.The following procedures describe how to monitor
and extend quotas.

To monitor used and remaining quotas

1. In the API Gateway main navigation pane, choose Usage Plans.

2. Choose a usage plan from the list of the usage plans in the secondary navigation pane in the middle.

3. From within the specified plan, choose API Keys.

4. Choose an API key. Then choose Usage to view Subscriber's Traffic from the plan you are
monitoring.

5. Optionally, choose Export, choose a From date and a To date, choose JSON or CSV for the exported
data format, and then choose Export.

The following example shows an exported file.

{
 "thisPeriod": {
 "px1KW6...qBazOJH": [
 [
 0,
 5000

273

Amazon API Gateway Developer Guide
Test a Usage Plan

https://www.getpostman.com/

],
 [
 0,
 5000
],
 [
 0,
 10
]
]
 },
 "startDate": "2016-08-01",
 "endDate": "2016-08-03"
}

The usage data in the example shows the daily usage data for an API client, as identified by the API
key (px1KW6...qBazOJH), between August 1, 2016, and August 3, 2016. Each daily usage data
shows used and remaining quotas. In this example, the subscriber has not yet used any allotted
quotas and the API owner or administrator has reduced the remaining quota from 5000 to 10 on the
third day.

To extend the remaining quotas

1. Repeat steps 1-3 of the previous procedure.

2. On the usage plan page, choose Extension from the usage plan window.

3. Type a number for the Remaining request quotas.

4. Choose Save.

Configure Usage Plans Using the API Gateway
REST API

To configure a usage plan using the API Gateway REST API, use the following instructions, assuming
you have already created the APIs to be added to the usage plan.

Topics

• Require an API Key on a Method (p. 274)

• Create or Import API Keys (p. 275)

• Migrate to Default Usage Plans (p. 275)

• Create a Usage Plan (p. 275)

• Manage a Usage Plan (p. 276)

• Test Usage Plans (p. 276)

Require an API Key on a Method
To require an API key on a method, do one of the following:

• Call method:put to create a method, setting apiKeyRequired to true in the request payload.

• Call method:update to set apiKeyRequired to true.

274

Amazon API Gateway Developer Guide
Configure Usage Plans Using the API Gateway REST

API

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/method-put/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/method-update/

Create or Import API Keys
To create or import an API key, do one of the following:

• Call apikey:create to create an API key.

• Call apikey:import to import an API key from a file. For the file format, see API Gateway API Key File
Format (p. 277).

Migrate to Default Usage Plans
When creating a usage plan the first time, you can migrate existing API stages associated with selected
API keys to a usage plan by calling account:update with the following body:

{
 "patchOperations" : [{
 "op" : "add",
 "path" : "/features",
 "value" : "UsagePlans"
 }]
}

For more information about migrating API stages associated with API keys see Migrate to Default Usage
Plans in the API Gateway Console (p. 271).

Create a Usage Plan
The following procedure describes how to create a usage plan.

To create a usage plan with the REST API

1. Call usageplan:create to create a usage plan, specifying in the payload the name and description of
the plan, associated API stages, rate limits, and quotas.

Make note of the resultant usage plan identifier.You will need it in the next step.

2. Do one of the following:

a. Call usageplankey:create to add an API key to the usage plan, specifying keyId and keyType
in the payload.

To add more API keys to the usage plan, repeat the above call, one API key at a time.

b. Call apikey:import to add one or more API keys directly to the specified usage plan.The request
payload should contain API key values, the associated usage plan identifier, the Boolean flags
to indicate the keys are enabled for the usage plan, and, possibly, the API key names and
descriptions.

The following example of the apikey:import request will add three API keys (as identified by
key, name, and description) to one usage plan (as identified by usageplanIds):

POST /apikeys?mode=import&format=csv&failonwarnings=fase HTTP/1.1
Host: apigateway.us-east-1.amazonaws.com
Content-Type: text/csv
Authorization: ...

275

Amazon API Gateway Developer Guide
Create or Import API Keys

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/apikey-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/apikey-import/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/account-update/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplan-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplankey-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/apikey-import/

key,name, description, enabled, usageplanIds
abcdef1234ghijklmnop8901234567, importedKey_1, firstone, tRuE, n371pt
abcdef1234ghijklmnop0123456789, importedKey_2, secondone, TRUE, n371pt
abcdef1234ghijklmnop9012345678, importedKey_3, , true, n371pt

As a result, three UsagePlanKey resources will be created and added to the UsagePlan.

You can also add API keys to more than one usage plan this way. To do this, change each
usageplanIds column value to a comma-separated string that contains the selected usage
plan identifiers and is enclosed within a pair of quotes ("n371pt,m282qs" or
'n371pt,m282qs').

Manage a Usage Plan
The following procedure describes how to manage a usage plan.

To manage a usage plan with the REST API

1. Call usageplans:by-id to get a usage plan of a given plan Id. To see the available usage plans, call
apigateway:usageplans.

2. Call usageplan:update to add a new API stage to the plan, to replace an existing API stage in the
plan, to remove an API stage from the plan, or to modify the rate limits or quotas.

3. Call usage:get to query the usage data in a specified time interval.

4. Call usage:update to grant an extension to the current usage in a usage plan.

Test Usage Plans
As an example, let's use the PetStore API, created in Build and Test an API Gateway API from an
Example (p. 6). Assume the API is configured to use an API key of Hiorr45VR...c4GJc. The following
steps describe how to test a usage plan.

To test your usage plan

• Make a GET request on the Pets resource (/pets), with the ?type=...&page=... query parameters,
of the API (e.g., xbvxlpijch) in a usage plan:

GET /testStage/pets?type=dog&page=1 HTTP/1.1
x-api-key: Hiorr45VR...c4GJc
Content-Type: application/x-www-form-urlencoded
Host: xbvxlpijch.execute-api.ap-southeast-1.amazonaws.com
X-Amz-Date: 20160803T001845Z
Authorization: AWS4-HMAC-SHA256 Credential={access_key_ID}/20160803/ap-
southeast-1/execute-api/aws4_request, SignedHeaders=content-type;host;x-amz-
date;x-api-key, Signature={sigv4_hash}

Note
You must submit this request to the execute-api component of API Gateway and provide
the required API key (e.g., Hiorr45VR...c4GJc) in the required x-api-key header.

The successful response returns a 200 OK status code and a payload containing the requested
results from the back end. If you forget to set the x-api-key header or set it with an incorrect key,

276

Amazon API Gateway Developer Guide
Manage a Usage Plan

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplans-by-id/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/apigateway-usageplans/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplan-update/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usage-get/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usage-update/

you will get a 403 Forbidden response. On the other hand, if you did not configure the method to
require an API key, you will likely to get a 200 OK response whether you set the x-api-key header
correctly or not and the throttle and quota limits of the usage plan are bypassed.

API Gateway API Key File Format
API Gateway can import API keys from external files of a comma-separated value (CSV) format and
associate the imported keys with one or more usage plans. The imported file must contain the Name and
Key columns. The column header names are not case-sensitive and columns can be in any order, as
shown in the following example:

Key,name
apikey1234abcdefghij0123456789,MyFirstApiKey

A Key value must be between 30 and 128 characters.

An API key file can also have the Description, Enabled, or UsagePlanIds column, as shown in the
following example:

Name,key,description,Enabled,usageplanIds
MyFirstApiKey,apikey1234abcdefghij0123456789,An imported key,TRUE,c7y23b

When a key is associated with more than one usage plan, the UsagePlanIds value is a comma-separated
string of the usage plan Ids enclosed with a pair of double or single quotes, as shown in the following
example:

Enabled,Name,key,UsageplanIds
true,MyFirstApiKey,apikey1234abcdefghij0123456789,"c7y23b,glvrsr"

Unrecognized columns are permitted, but will be ignored. The default value is an empty string or a true
Boolean value.

The same API key can be imported multiple times with the most recent version overwriting the previous
one. Two API keys are identical if they have the same key value.

277

Amazon API Gateway Developer Guide
API Gateway API Key File Format

Amazon API Gateway REST API

When you use the Amazon API Gateway console to create, configure, update, and deploy an API, the
console calls the API Gateway REST API behind the scenes to make things happen.

When you use AWS Command Line Interface to create, configure, update, and deploy an API, the AWS
CLI tool calls the API Gateway REST API as well. For an example, see Create an API using API Gateway
and Test It in the AWS Lambda Developer Guide . For more information, see AWS Command Line
Interface User Guide.

When you use an AWS SDK to create, configure, update, and deploy an API, the SDK calls the API
Gateway REST API behind the scenes.

Instead, you can call the API Gateway REST API directly to create, configure, update, and deploy an API
in API Gateway.

For more information on how to use the API Gateway REST API, see Amazon API Gateway REST API
Reference.

278

Amazon API Gateway Developer Guide

http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https-example-configure-event-source.html
http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https-example-configure-event-source.html
http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/userguide/
https://aws.amazon.com/tools/
http://docs.aws.amazon.com/apigateway/api-reference/
http://docs.aws.amazon.com/apigateway/api-reference/

Amazon API Gateway Limits and
Pricing

Topics

• API Gateway Limits (p. 279)

• API Gateway Pricing (p. 281)

• Known Issues (p. 281)

API Gateway Limits
Unless noted otherwise, the limits can be increased upon request. To request a limit increase, contact
the AWS Support Center.

API Gateway Limits for Configuring and Running
an API
The following limits apply to configuring and running an API in Amazon API Gateway.

Can Be In-
creased

Default LimitResource or Opera-
tion

Yes1000 request per second (rps) with a burst limit of 2000 rps.Throttle limits per ac-
count

Yes60APIs per account

Yes500API keys per account

Yes300Usage plans per ac-
count

Yes10Custom authorizers
per API

279

Amazon API Gateway Developer Guide
API Gateway Limits

https://console.aws.amazon.com/support/home#/

Can Be In-
creased

Default LimitResource or Opera-
tion

Yes60Client certificates per
account

Yes300Resources per API

Yes10Stages per API

Not for the
upper
bound
(3600)

300 seconds by default and configurable between 0 and 3600 by
an API owner.

API caching TTL

No30 second for both Lambda and HTTP integrations.Integration timeout

No10 MBPayload size

No1000Number of iterations
in a #foreach ...
#end loop in map-
ping templates

No1600 bytesARN length of a
method with authoriz-
ation

When authorization is enabled on a method, the maximum length of the method's ARN (e.g.,
arn:aws:execute-api:{region-id}:{account-id}:{api-id}/{stage-id}/{method}/{resource}/{path})
is 1600 bytes. The path parameter values, the size of which are determined at run time, can cause the
ARN length to exceed the limit. When this happens, the API client will receive a 414 Request URI too
long response.

API Gateway Limits for Creating, Deploying and
Managing an API
The following fixed limits apply to creating, deploying, and managing an API in API Gateway, using the
AWS CLI, the API Gateway console, or the API Gateway REST API and its SDKs. These limits cannot
be increased.

Can
Be
In-
creased

Default LimitAction

No2 requests per minute (rpm) per account.CreateRestApi

No2 requests per minute per accountImportRestApi

No60 requests per minutes per accountPutRestApi

No2 requests per minutes per accountDeleteRestApi

No3 requests per minutes per accountCreateDeployment

No3 requests per minutes per accountUpdateAccount

280

Amazon API Gateway Developer Guide
API Gateway Limits for Creating, Deploying and

Managing an API

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-import/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-put/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-delete/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/deployment-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/account-update/

Can
Be
In-
creased

Default LimitAction

No150 requests per minutes per accountGetResources

No300 requests per minutes per accountCreateResource

No300 requests per minutes per accountDeleteResource

No2 requests per minutes per accountCreateDomainName

API Gateway Pricing
For API Gateway region-specific pricing information, see Amazon API Gateway Pricing.

Note
API caching in Amazon API Gateway is not eligible for the AWS Free Tier.

Known Issues
• Cross-account authentication is not currently supported in API Gateway. An API caller must be an IAM

user of the same AWS account of the API owner.

• When using the API Gateway console to test an API, you may get an "unknown endpoint errors"
response if a self-signed certificate is presented to the back end, the intermediate certificate is missing
from the certificate chain, or any other unrecognizable certificate-related exceptions thrown by the back
end.

281

Amazon API Gateway Developer Guide
API Gateway Pricing

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-resources/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/resource-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/resource-delete/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/domainname-create/
http://aws.amazon.com/api-gateway/pricing/

Document History

The following table describes the important changes to the documentation since the last release of the
API Gateway Developer Guide.

• Latest documentation update: August 11, 2016

Date ChangedDescriptionChange

August 11,
2016

Create a usage plan in API Gateway to enable selected API
clients to access specified API stages at agreed-upon request
rates and quotas. For more information, see Creating and Using
Usage Plans (p. 268)

Extending selected
APIs in API Gateway
as product offerings
for your customers by
providing one or more
usage plans.

July 28, 2016You can create a user pool in Amazon Cognito and use it as
your own identity provider.You can configure the user pool as
a method-level authorizer to grant access for users who are
registered with the user pool. For more information, see Au-
thenticate API Clients with Amazon Cognito Your User
Pool (p. 212)

Enabling method-level
authorization with a
user pool in Amazon
Cognito

July 28, 2016The API Gateway metrics are now standardized under the
CloudWatch namespace of AWS/ApiGateway.You can view
them in both the API Gateway console and the Amazon
CloudWatch console. For more information, see Amazon API
Gateway Dimensions and Metrics (p. 263).

Enabling Amazon
CloudWatch metrics
and dimensions under
the AWS/ApiGateway
namespace.

April 27, 2016Certificate rotation allows you to upload and renew an expiring
certificate for a custom domain name. For more information,
see Upload and Renew an Expiring Certificate (p. 256).

Enabling certificate
rotation for a custom
domain name

April 5, 2016Learn how to create and set up an API using the updated API
Gateway console. For more information, see Build and Test
an API Gateway API from an Example (p. 6) and Build an
API Gateway API Step by Step (p. 14).

Documenting changes
for the updated
Amazon API Gateway
console.

282

Amazon API Gateway Developer Guide

Date ChangedDescriptionChange

April 5, 2016With the Import API features, you can create a new API or
update an existing one by uploading an external API definition
expressed in Swagger 2.0 with the API Gateway extensions.
For more information about the Import API, see Import an
API (p. 110).

Enabling the Import
API feature to create
a new or update an
existing API from ex-
ternal API definitions.

April 5, 2016For more information about $input.body and
$util.parseJson(), see Request and Response Payload-
Mapping Reference (p. 101).

Exposing the $in-
put.body variable to
access the raw pay-
load as string and the
$util.parseJson()
function to turn a
JSON string into a
JSON object in a
mapping template.

March 25,
2016

Flush API stage-level cache and invalidate individual cache
entry. For more information, see Flush the API Stage Cache
in API Gateway (p. 231) and Invalidate an API Gateway Cache
Entry (p. 231). Improve the console experience for managing
API request throttling. For more information, see Manage API
Request Throttling (p. 227).

Enabling client re-
quests with method-
level cache invalida-
tion, and improving
request throttling
management.

February 11,
2016

Create and configure an AWS Lambda function to implement
custom authorization. The function returns an IAM policy doc-
ument that grants the Allow or Deny permissions to client re-
quests of an API Gateway API. For more information, see Use
Custom Authorizers (p. 204).

Enabling and calling
API Gateway API us-
ing custom authoriza-
tion

December 18,
2015

Create and update your API Gateway API using the Swagger
specification with the API Gateway extensions. Import the
Swagger definitions using the API Gateway Importer. Export
an API Gateway API to a Swagger definition file using the API
Gateway console or API Gateway Export API. For more inform-
ation, see Import and Export API (p. 109).

Importing and export-
ing API Gateway API
using a Swagger
definition file and ex-
tensions

December 18,
2015

Map method request body or its JSON fields into integration
request's path, query string, or headers. Map integration re-
sponse body or its JSON fields into request response's head-
ers. For more information, see Request and Response Para-
meter-Mapping Reference (p. 98).

Mapping request or
response body or
body's JSON fields to
request or response
parameters.

November 5,
2015

Learn how to associate configuration attributes with a deploy-
ment stage of an API in Amazon API Gateway. For more in-
formation, see Manage API Gateway API Deployment with
Stage Variables (p. 233).

Working with Stage
Variables in Amazon
API Gateway

November 3,
2015

It is now easier to enable cross-origin resource sharing (CORS)
for methods in Amazon API Gateway. For more information,
see Enable CORS for a Resource (p. 198).

How to: Enable CORS
for a Method

September 22,
2015

Use Amazon API Gateway to generate SSL certificates that
you can use to authenticate calls to your HTTP backend. For
more information, see Use Client-Side SSL Certificates (p.215).

How to: Use Client
Side SSL Authentica-
tion

283

Amazon API Gateway Developer Guide

Date ChangedDescriptionChange

September 1,
2015

Learn how to mock-integrate an API with Amazon API Gate-
way (p. 69). This feature enables developers to generate API
responses from API Gateway directly without the need for a
final integration back end beforehand.

Mock integration of
methods

August 28,
2015

Amazon API Gateway has expanded the scope of the $con-
text variable so that it now returns information about Amazon
Cognito Identity when requests are signed with Amazon Cog-
nito credentials. In addition, we have added a $util variable
for escaping characters in JavaScript and encoding URLs and
strings. For more information, see Request and Response
Payload-Mapping Reference (p. 101).

Amazon Cognito
Identity support

July 21, 2015Use the Swagger import tool on GitHub to import Swagger API
definitions into Amazon API Gateway. Learn more about Import
and Export API (p. 109) to create and deploy APIs and methods
using the import tool. With the Swagger importer tool you can
also update existing APIs.

Swagger integration

July 18, 2015Read about the $input parameter and its functions in the
Request and Response Payload-Mapping Reference (p. 101).

Mapping Template
Reference

July 9, 2015This is the initial public release of the Amazon API Gateway
Developer Guide.

Initial public release

284

Amazon API Gateway Developer Guide

https://github.com/awslabs/aws-apigateway-swagger-importer

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

285

Amazon API Gateway Developer Guide

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon API Gateway
	Table of Contents
	What Is Amazon API Gateway?
	Amazon API Gateway Concepts

	Getting Started with Amazon API Gateway
	Get Ready to Use Amazon API Gateway
	Sign Up for AWS
	Create an IAM User, Group or Role in Your AWS Account
	Grant IAM Users Permissions to Access API Gateway Control and Execution Services
	Next Step

	Build and Test an API Gateway API from an Example
	Build an API Gateway API Step by Step
	Make Synchronous Calls to Lambda Functions
	Step 1: Prerequisites
	Step 2: Create an API
	Step 3: Create a Resource
	Step 4: Create Lambda Functions
	Step 5: Create and Test a GET Method
	Step 6: Create and Test a POST Method
	Step 7: Deploy the API
	Step 8: Test the API
	Step 9: Clean Up
	Next Steps
	Create Lambda Invocation and Execution Roles

	Map Request Parameters for an API Gateway API as an HTTP Proxy
	Prerequisites
	Step 1: Create Resources
	Step 2: Create GET and POST Methods
	Step 3: Set Up and Test the Methods
	Step 4: Deploy the API
	Step 5: Test the API
	Next Steps

	Use Models and Mapping Templates to Transform Response Payload
	Prerequisites
	Step 1: Create Models
	Step 2: Create Resources
	Step 3: Create GET Methods
	Step 4: Create a Lambda Function
	Step 5: Set Up and Test the Methods
	Step 6: Deploy the API
	Step 7: Test the API
	Step 8: Clean Up
	Next Steps

	Create an AWS Service Proxy for Amazon SNS
	Prerequisites
	Step 1: Create the Resource
	Step 2: Create the GET Method
	Step 3: Create the AWS Service Proxy Execution Role
	Step 4: Specify Method Settings and Test the Method
	Step 5: Deploy the API
	Step 6: Test the API
	Step 7: Clean Up

	Creating an API in Amazon API Gateway
	Create an API in API Gateway
	Create an API Using the API Gateway Console
	Create an API Using the API Gateway Control Service API
	Create an API Using the AWS SDK for API Gateway
	Create an API Using the AWS CLI

	Set up API Gateway API Method and Integration
	Before Configuring Methods
	After Setting Up Methods and Integration
	Configure How API Gateway Integrates the Method with a Back End
	Configure How an API User Calls an API Method in Amazon API Gateway
	Configure How Data Is Mapped between a Method and its Integration in Amazon API Gateway
	Configure Mock Integration for a Method in API Gateway
	Prerequisites
	Enable Mock Integration on a Method
	Example Request Templates
	Example Response Templates

	Set Up Amazon API Gateway API Request and Response Payload Mappings
	Models
	Mapping Templates
	Tasks for Models and Mapping Templates
	Create a Model in API Gateway
	Prerequisites
	Create a Model With the API Gateway Console

	View a List of Models in API Gateway
	Prerequisites
	View a List of Models with the API Gateway Console

	Delete a Model in API Gateway
	Delete a Model with the API Gateway Console

	Photos Example (API Gateway Models and Mapping Templates)
	Original Data (Photos Example)
	Input Model (Photos Example)
	Input Mapping Template (Photos Example)
	Transformed Data (Photos Example)
	Output Model (Photos Example)
	Output Mapping Template (Photos Example)

	News Article Example (API Gateway Models and Mapping Templates)
	Original Data (News Article Example)
	Input Model (News Article Example)
	Input Mapping Template (News Article Example)
	Transformed Data (News Article Example)
	Output Model (News Article Example)
	Output Mapping Template (News Article Example)

	Sales Invoice Example (API Gateway Models and Mapping Templates)
	Original Data (Sales Invoice Example)
	Input Model (Sales Invoice Example)
	Input Mapping Template (Sales Invoice Example)
	Transformed Data (Sales Invoice Example)
	Output Model (Sales Invoice Example)
	Output Mapping Template (Sales Invoice Example)

	Employee Record Example (API Gateway Models and Mapping Templates)
	Original Data (Employee Record Example)
	Input Model (Employee Record Example)
	Input Mapping Template (Employee Record Example)
	Transformed Data (Employee Record Example)
	Output Model (Employee Record Example)
	Output Mapping Template (Employee Record Example)

	Amazon API Gateway API Request and Response Parameter-Mapping Reference
	Map Data to Integration Request Parameters
	Map Data to Method Response Headers
	Transform Request and Response Bodies
	Select Mapping Templates

	API Gateway API Request and Response Payload-Mapping Template Reference
	Accessing the $context Variable
	Example
	Context Variables Template Example

	Accessing the $input Variable
	Examples
	Example JSON Mapping Template
	Example Inputs Mapping Template
	Param Mapping Template Example
	Example Request and Response

	Accessing the $stageVariables Variable
	Accessing the $util Variable
	Integration Passthrough Behaviors

	Import and Export API Gateway API with Swagger Definition Files
	Import an API into API Gateway
	Use the Import API to Create a New API
	Use the Import API to Update an Existing API
	Swagger basePath
	ignore
	prepend
	split

	Errors during Import
	Warnings during Import

	Export an API from API Gateway
	Request to Export an API
	Download API Swagger Definition in JSON
	Download API Swagger Definition in YAML
	Download API Swagger Definition with Postman Extensions in JSON
	Download API Swagger Definition with API Gateway Integration in YAML
	Export API Using the API Gateway Console

	API Gateway Extensions to Swagger
	x-amazon-apigateway-authorizer Object
	x-amazon-apigateway-authorizer Example

	x-amazon-apigateway-authtype Property
	x-amazon-apigateway-authtype Example

	x-amazon-apigateway-integration Object
	x-amazon-apigateway-integration Example

	x-amazon-apigateway-integration.requestTemplates Object
	x-amazon-apigateway-integration.requestTemplates Example

	x-amazon-apigateway-integration.requestParameters Object
	x-amazon-apigateway-integration.requestParameters Example

	x-amazon-apigateway-integration.responses Object
	x-amazon-apigateway-integration.responses Example

	x-amazon-apigateway-integration.response Object
	x-amazon-apigateway-integration.response Example

	x-amazon-apigateway-integration.responseTemplates Object
	x-amazon-apigateway-integration.responseTemplate Example

	x-amazon-apigateway-integration.responseParameters Object
	x-amazon-apigateway-integration.responseParameters Example

	Create an API as an Amazon S3 Proxy
	Create an IAM Role and Policy for the API to Access Amazon S3
	Create API Resources for Amazon S3 Features
	Expose a GET Method on an API Root as Get Service Action in Amazon S3
	Expose Methods on an API Folder Resource as Bucket Actions in Amazon S3
	Expose Methods on an API Item in a Folder as Actions on an Amazon S3 Object in a Bucket
	A Sample Amazon S3 Proxy API in Swagger with API Gateway Extensions

	Create an API Gateway API as an AWS Lambda Proxy
	Set Up an IAM Role and Policy for an API to Invoke Lambda Functions
	Create a Lambda Function in the Back End
	Create API Resources for the Lambda Function
	Create a GET Method with Query Strings to Call the Lambda Function
	Create a POST Method with a JSON Payload to Call the Lambda Function
	Create a GET Method with Path Parameters to Call the Lambda Function
	A Sample API as a Lambda Proxy in Swagger with API Gateway Extensions

	Create an API Gateway API as an Amazon Kinesis Proxy
	Create an IAM Role and Policy for the API to Access Amazon Kinesis
	Start to Create an API as an Amazon Kinesis Proxy
	List Streams in Amazon Kinesis
	Create, Describe, and Delete a Stream in Amazon Kinesis
	Get Records from and Add Records to a Stream in Amazon Kinesis
	Swagger Definitions of a Sample API as an Amazon Kinesis Proxy

	Controlling Access in API Gateway
	Set IAM Permissions to Access API Gateway
	Control Access to API Gateway with IAM Policies
	Create and Attach a Policy to an IAM User
	Statement Reference of IAM Policies for Managing API in API Gateway
	Action Format of Permissions for Managing API in API Gateway
	Resource Format of Permissions for Managing API in API Gateway

	Statement Reference of IAM Policies for Executing API in API Gateway
	Action Format of Permissions for Executing API in API Gateway
	Resource Format of Permissions for Executing API in API Gateway

	IAM Policy Examples for API Gateway APIs
	Simple Read Permissions
	Read-Only Permissions on any APIs
	Full Access Permissions for any API Gateway Resources
	Full-Access Permissions for Managing API Stages
	Block Specified Users from Deleting any API Resources

	IAM Policy Examples for API Execution Permissions

	Enable CORS for an API Gateway Resource
	Prerequisites
	Enable CORS on a Resource Using the API Gateway Console
	Enable CORS for a Resource Using the API Gateway Import API

	Use an API Key in API Gateway
	Prerequisites
	Use an API Key with the API Gateway Console

	Use Amazon API Gateway Custom Authorizers
	Amazon API Gateway Custom Authorization Overview
	Create the API Gateway Custom Authorizer Lambda Function
	Input to an Amazon API Gateway Custom Authorizer
	Output from an Amazon API Gateway Custom Authorizer
	Configure Custom Authorizer Using the API Gateway Console
	Call an API Using API Gateway Custom Authorization

	Authenticate API Clients with Amazon Cognito Your User Pool
	Create a User Pool
	Integrate an API with a User Pool
	Call an API Integrated with a User Pool

	Use Client-Side SSL Certificates for Authentication by the Back End
	Generate a Client Certificate Using the API Gateway Console
	Configure an API to Use SSL Certificates
	Test Invoke
	Configure Back End to Authenticate API

	Maintaining an API in Amazon API Gateway
	View a List of APIs in API Gateway
	Prerequisites
	View a List of APIs with the API Gateway Console

	Delete an API in API Gateway
	Prerequisites
	Delete an API with the API Gateway Console

	Delete a Resource in API Gateway
	Delete a Resource with the API Gateway Console

	View a Methods List in API Gateway
	Prerequisites
	View a Methods List with the API Gateway Console

	Delete a Method in API Gateway
	Delete a Method with the API Gateway Console

	Deploying an API in Amazon API Gateway
	Deploy an API with the Amazon API Gateway Console
	Prerequisites
	Deploy an API with the API Gateway Console
	Update deployment configuration with the API Gateway Console
	Change a Stage to Use a Different Deployment with the API Gateway Console

	Deploy an API in Stages in Amazon API Gateway
	Create a Stage in API Gateway
	Prerequisites
	Create a Stage with the API Gateway Console

	View a List of Stages in API Gateway
	Prerequisites
	View a List of Stages with the API Gateway Console

	Set Up a Stage
	Prerequisites
	Set Up an API Deployment Stage with the API Gateway Console

	Delete a Stage in API Gateway
	Delete a Stage with the API Gateway Console

	Manage API Request Throttling
	Account-Level Throttling
	Stage-Level and Method-Level Throttling

	Enable Amazon API Gateway Caching in a Stage to Enhance API Performance
	Amazon API Gateway Caching Overview
	Enable Amazon API Gateway Caching
	Override API Gateway Stage-Level Caching for Method Caching
	Use Method or Integration Parameters as Cache Keys to Index Cached Responses
	Flush the API Stage Cache in API Gateway
	Invalidate an API Gateway Cache Entry

	Manage API Gateway API Deployment with Stage Variables
	Use Cases
	Examples
	Set Stage Variables Using the Amazon API Gateway Console
	Prerequisites

	Use Amazon API Gateway Stage Variables
	Prerequisites
	Access an HTTP endpoint through an API with a stage variable
	Pass stage-specific metadata to an HTTP back end via a stage variable in a query parameter expression
	Call Lambda function through API with a stage variable
	Pass stage-specific metadata to a Lambda function via a stage variable

	Amazon API Gateway Stage Variables Reference
	Parameter Mapping Expressions
	Mapping Templates
	HTTP Integration URIs
	AWS Integration URIs
	AWS Integration URIs (Lambda Functions)
	AWS Integration Credentials

	Generate an SDK for an API in API Gateway
	Prerequisites
	Generate an SDK for an API with the API Gateway Console
	Use an API Gateway-Generated API SDK for Android
	Integrate an API Gateway-Generated iOS SDK into Your iOS Project
	Integrate an API Gateway-Generated JavaScript SDK into Your JavaScript Code

	Use a Custom Domain Name in API Gateway
	Prerequisites
	Set Up a Custom Domain Name for an API Gateway API
	Specify API Mappings for a Custom Domain Name
	Base Path Examples of API Mappings for a Custom Domain Name
	Upload and Renew an Expiring Certificate
	Call Your API with Custom Domain Names

	Calling a Deployed API in Amazon API Gateway
	Prerequisites
	Obtain an API's Invoke URL in the API Gateway Console
	Test a Method Using the API Gateway Console
	Prerequisites
	Test a Method with the API Gateway Console

	Use Postman to Test an API

	Monitoring and Troubleshooting in API Gateway
	Log API management calls to Amazon API Gateway Using AWS CloudTrail
	API Gateway Information in CloudTrail
	Understanding API Gateway Log File Entries

	Monitor API execution with Amazon CloudWatch
	Amazon API Gateway Dimensions and Metrics
	API Gateway Metrics
	Dimensions for Metrics

	View CloudWatch Metrics with the API Dashboard in API Gateway
	Prerequisites
	Examine API activities in the Dashboard

	View API Gateway Metrics in the CloudWatch Console
	Monitoring Tools in AWS
	Automated Monitoring Tools in AWS
	Manual Monitoring Tools
	Creating CloudWatch Alarms to Monitor API Gateway

	Creating and Using API Usage Plans in Amazon API Gateway
	What Is a Usage Plan?
	How to Configure a Usage Plan?
	Configure Usage Plans Using the API Gateway Console
	Create and Deploy an API for Usage Plans
	Configure an API Method to Require an API Key
	Create an API Key
	Import API Keys
	Migrate to Default Usage Plans
	Create Usage Plans
	Test a Usage Plan
	Manage Plan Usage

	Configure Usage Plans Using the API Gateway REST API
	Require an API Key on a Method
	Create or Import API Keys
	Migrate to Default Usage Plans
	Create a Usage Plan
	Manage a Usage Plan
	Test Usage Plans

	API Gateway API Key File Format

	Amazon API Gateway REST API
	Amazon API Gateway Limits and Pricing
	API Gateway Limits
	API Gateway Limits for Configuring and Running an API
	API Gateway Limits for Creating, Deploying and Managing an API

	API Gateway Pricing
	Known Issues

	Document History
	AWS Glossary

