
AWS Encryption SDK
Developer Guide

AWS Encryption SDK: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

AWS Encryption SDK Developer Guide

Table of Contents
What Is the AWS Encryption SDK? ... 1

Encryption Concepts .. 1
Encryption Basics .. 2
Envelope Encryption .. 2

Architecture .. 3
Encryption .. 3
Decryption ... 4

Getting Started ... 5
(Optional) Create an AWS Account ... 5
Download the AWS Encryption SDK ... 5

Message Format ... 7
Header Structure ... 7
Body Structure .. 11

Non-Framed Data .. 11
Framed Data ... 12

Footer Structure .. 13
Example Code (Java) ... 15

Strings ... 15
Byte Streams .. 17
Byte Streams with Multiple Master Key Providers .. 19

Frequently Asked Questions .. 23

iii

AWS Encryption SDK Developer Guide

What Is the AWS Encryption SDK?

The AWS Encryption SDK provides client-side encryption libraries you can use to protect your data and
the encryption keys used to encrypt that data. The SDK does the following things for you:

• Provides an API to define and use a master key provider, an interface for the top-level key or keys
under which your data is encrypted.

• Tracks and protects the data encryption keys (DEKs) used to encrypt your data.

• Performs the low-level cryptographic operations.

You determine the top-level master keys that protect your data, and the SDK does the rest. The SDK
helps you connect the low-level cryptography to the top-level master keys. For more information about
master keys, master key providers, data encryption keys, and other cryptography concepts related to this
SDK, see Encryption Concepts (p. 1) and Architecture (p. 3).

The SDK is similar to the Amazon DynamoDB Encryption Client for Java and the Amazon S3 Encryption
Client, but unlike those clients the data encrypted by this SDK can be stored anywhere.

The SDK is provided for free under the Apache license and is available for the Java programming language
at https://github.com/awslabs/aws-encryption-sdk-java.

Topics

• Encryption Concepts (p. 1)

• Architecture (p. 3)

• Getting Started (p. 5)

Encryption Concepts
You can use the AWS Encryption SDK to protect your data and the encryption keys used to encrypt that
data.

Topics

• Encryption Basics (p. 2)

• Envelope Encryption (p. 2)

1

AWS Encryption SDK Developer Guide
Encryption Concepts

https://github.com/awslabs/aws-dynamodb-encryption-java
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
http://aws.amazon.com/apache-2-0/
https://github.com/awslabs/aws-encryption-sdk-java

Encryption Basics
To encrypt data, you provide the raw data (plaintext) and a data key to an encryption algorithm. The
algorithm uses those inputs to produce encrypted data (ciphertext). To decrypt data, you provide the
encrypted data and the data key to a decryption algorithm that uses those inputs to return the original
data.

Some algorithms use the same data key to encrypt and decrypt data. This is called symmetric key
encryption. Other algorithms use a public key to encrypt data, and only a related private key can decrypt
that data. This is called public key encryption.

For both types of encryption, the security of your encrypted data depends on protecting the data key that
can decrypt it. One accepted best practice for protecting the data key is to encrypt it. To encrypt the data
key you need another encryption key called a key encryption key (KEK). This practice of using KEKs to
encrypt data keys is called envelope encryption.

Envelope Encryption
Envelope encryption is the practice of encrypting plaintext data with a unique data key, and then encrypting
the data key with a KEK.You might choose to encrypt the KEK with another KEK, and so on, but eventually
you must have a master key.The master key is an unencrypted (plaintext) key with which you can decrypt
one or more other keys.

Some of the benefits of envelope encryption include:

• Protecting data keys

When you encrypt a data key, you do not have to worry about where to store the encrypted data key,
because the security of that data key is inherently protected by encryption.You can safely store the
encrypted data key alongside the encrypted data. The AWS Encryption SDK takes care of this for you
by combining the encrypted data key and the encrypted data into a single encrypted message.

• Encrypting the same data under multiple master keys

Encryption operations can be time-consuming, particularly when the data being encrypted are large
objects. Instead of re-encrypting raw data multiple times with different keys, you can re-encrypt only
the data keys that protect the raw data.

• Combining the strengths of multiple algorithms

In general, symmetric key algorithms are faster and produce smaller ciphertexts than public key
algorithms, but public key algorithms provide inherent separation of roles and easier key management.
You might want to combine the strengths of each. For example, you might encrypt raw data with
symmetric key encryption, and then encrypt the data key with public key encryption.

2

AWS Encryption SDK Developer Guide
Encryption Basics

The following image provides an overview of envelope encryption. In this scenario, the data key is
encrypted with a single KEK, which is the master key.

When you use envelope encryption, you must protect the master keys from unauthorized access. To
protect your master keys, you can use a hardware security module (HSM) (for example, those offered
by AWS CloudHSM), you can use the AWS Key Management Service (AWS KMS), or you can use your
existing key management tools.

The AWS Encryption SDK supports the use of AWS KMS to protect your master keys, or you can use
another master key provider, including a custom one. Even if you don't use AWS, you can still use this
SDK.

Architecture
The AWS Encryption SDK provides methods that operate on byte arrays, byte streams, and strings. The
following topics provide a high-level overview of how this SDK works.

For code samples in Java, see Example Code (Java) (p. 15).

Topics

• Encryption (p. 3)

• Decryption (p. 4)

Encryption
The following diagram shows how you can use the AWS Encryption SDK to encrypt data.

3

AWS Encryption SDK Developer Guide
Architecture

https://en.wikipedia.org/wiki/Hardware_security_module
http://aws.amazon.com/cloudhsm/
http://aws.amazon.com/kms/

1. Your application passes data to one of the encryption methods.

2. The encryption method uses a master key provider to determine which master key to use.

3. The master key generates a data key.

4. The master key creates two copies of the data key, one in plaintext and one encrypted by the master
key.

5. The encryption method uses the plaintext data key to encrypt the data, and then deletes the plaintext
data key.

6. The encryption method returns, in a single message, encrypted data that consists of the plaintext data
and the encrypted data key.

Decryption
The following diagram shows a high-level overview of how you can use the AWS Encryption SDK to
decrypt data.

1. Your application passes encrypted data to one of the decryption methods.

2. The decryption method extracts the encrypted data key from the encrypted data, and then sends the
encrypted data key to a master key provider for decryption.

4

AWS Encryption SDK Developer Guide
Decryption

3. The master key provider decrypts the encrypted data key, and then returns the plaintext data key to
the decryption method.

4. The decryption method uses the plaintext data key to return the plaintext data, and then deletes the
plaintext data key.

Getting Started
To get started with the AWS Encryption SDK, follow the steps in the following topics.

Topics

• (Optional) Create an AWS Account (p. 5)

• Download the AWS Encryption SDK (p. 5)

(Optional) Create an AWS Account
To use some of the example Java code (p. 15) in this guide, you need to create an AWS account and
then create a customer master key (CMK) in AWS Key Management Service (AWS KMS). Some of the
sample code demonstrates how to use a CMK in AWS KMS to protect the data keys that encrypt your
data.

To create an AWS account

1. Go to the Sign In or Create an AWS Account page.

2. Type your email address or mobile phone number, and then choose I am a new user. Choose Sign
in using our secure server.

3. Follow the instructions on the website.

During the sign-up process, you receive a phone call and enter a PIN with the phone keypad.You must
also enter a valid credit card number during the sign-up process.

To create a customer master key (CMK) in AWS KMS

1. Open the Creating Keys page in the AWS Key Management Service Developer Guide.

2. Follow the instructions on that page.

Download the AWS Encryption SDK
The AWS Encryption SDK is currently available for the Java programming language. Before you download
the SDK, you must have the following:

• A Java 8 development environment

If you do not have one, go to Java SE Downloads and then download and install the Java SE
Development Kit (JDK). Java 8 or higher is recommended.

• Bouncy Castle

Bouncy Castle provides a cryptography API for Java. If you do not have Bouncy Castle, go to https://
bouncycastle.org/latest_releases.html, and then download the provider file that corresponds to your
JDK.

• (Optional) AWS SDK for Java

5

AWS Encryption SDK Developer Guide
Getting Started

https://portal.aws.amazon.com/gp/aws/developer/registration/index.html
http://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://bouncycastle.org/latest_releases.html
https://bouncycastle.org/latest_releases.html

Although you do not need the AWS SDK for Java to use the AWS Encryption SDK, you do need it to
use some of the example Java code (p. 15) in this guide. To download the AWS SDK for Java, go to
http://aws.amazon.com/sdk-for-java/. For more information about installing and configuring the AWS
SDK for Java, see Installing the AWS SDK for Java in the AWS SDK for Java Developer Guide.

If you already have these prerequisites, or after you have downloaded and installed them, you can
download the AWS Encryption SDK at https://github.com/awslabs/aws-encryption-sdk-java.

If you use Apache Maven, you can specify the AWS Encryption SDK as a dependency in your project.
Add the following dependency to your application's pom.xml file:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-encryption-sdk-java</artifactId>
 <version>0.0.1-SNAPSHOT</version>
</dependency>

After you download the AWS Encryption SDK, see Example Code (Java) (p. 15) for examples that
demonstrate how to use it.

6

AWS Encryption SDK Developer Guide
Download the AWS Encryption SDK

http://aws.amazon.com/sdk-for-java/
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-install-sdk.html
https://github.com/awslabs/aws-encryption-sdk-java
https://maven.apache.org/

Message Format

The encryption operations in the AWS Encryption SDK return a single data structure or message that
contains the encrypted data and the encrypted data key. To understand this data structure, or to build
libraries that read and write it, you need to understand the message format.

The message format consists of at least two parts: a header and a body. In some cases, the message
format consists of a third part called a footer. The message format defines an ordered sequence of bytes
in network byte order, also called big-endian format.The message format begins with the header, followed
by the body, followed by the footer (when applicable).

Note
The following information is provided for reference only. The message format should not be
modified.

Topics

• Header Structure (p. 7)

• Body Structure (p. 11)

• Footer Structure (p. 13)

Header Structure
The message header contains the encrypted data key and information about how the message body is
formed. The following table describes the fields that form the header. The bytes are appended in the
order shown.

Header Structure

Length, in bytesField

1Version

1Type

2Algorithm ID

16Message ID

2AAD Length

7

AWS Encryption SDK Developer Guide
Header Structure

Length, in bytesField

Variable. Equal to the value specified in the previ-
ous 2 bytes (AAD Length).

AAD

2Encrypted Data Key Count

Variable. Determined by the number of encrypted
data keys and the length of each.

Encrypted Data Key(s)

1Content Type

4Reserved

1IV Length

4Frame Length

Variable. Equal to the value specified in the IV
Length byte.

IV

Variable. Determined by the algorithm used, as
specified in Algorithm ID.

Authentication Tag

Version
The version of this message format.The current version is 1.0, encoded as the byte 01 in hexadecimal
notation.

Type
The type of this message format. The type indicates the kind of structure with regard to the AWS
Key Management Service (AWS KMS).This message format is described as customer authenticated
encrypted data. Its type value is 128, encoded as byte 80 in hexadecimal notation.

Algorithm ID
An identifier for the algorithm used. It is a 2-byte value interpreted as a 16-bit unsigned integer. The
following table shows the supported algorithm IDs, in hexadecimal notation, and the algorithm that
corresponds to each ID.

For more information about these algorithms, see Which cryptographic algorithms are supported by
the AWS Encryption SDK, and which one is the default? (p. 24) on the Frequently Asked
Questions (p. 23) page.

Algorithms IDs

Corresponding algorithmAlgorithm ID, in 2-byte hex

ALG_AES_128_GCM_IV12_TAG16_NO_KDF00 14

ALG_AES_192_GCM_IV12_TAG16_NO_KDF00 46

ALG_AES_256_GCM_IV12_TAG16_NO_KDF00 78

ALG_AES_128_GCM_IV12_TAG16_HK-
DF_SHA256

01 14

ALG_AES_192_GCM_IV12_TAG16_HK-
DF_SHA256

01 46

ALG_AES_256_GCM_IV12_TAG16_HK-
DF_SHA256

01 78

8

AWS Encryption SDK Developer Guide
Header Structure

Corresponding algorithmAlgorithm ID, in 2-byte hex

ALG_AES_128_GCM_IV12_TAG16_HK-
DF_SHA256_ECDSA_P256

02 14

ALG_AES_192_GCM_IV12_TAG16_HK-
DF_SHA384_ECDSA_P384

03 46

ALG_AES_256_GCM_IV12_TAG16_HK-
DF_SHA384_ECDSA_P384

03 78

Message ID
A randomly-generated 128-bit value that identifies the message. The Message ID:

• Uniquely identifies the encrypted message.

• Weakly binds the message header to the message body.

• Provides a mechanism to securely reuse an AWS KMS-encrypted data key with multiple encrypted
objects.

• Protects against accidental reuse of a data key or the wearing out of keys in the AWS Encryption
SDK.

AAD Length
The length of the additional authenticated data (AAD). It is a 2-byte value interpreted as a 16-bit
unsigned integer that specifies the number of bytes that contain the AAD.

AAD
The additional authenticated data. The AAD is an encoding of the encryption context, an array of
key-value pairs where each key and value is a string of UTF-8 encoded characters. The encryption
context is converted to a sequence of bytes and used for the AAD value.

When the signed algorithms (p. 24) are used, the encryption context must contain the key-value pair
{'aws-crypto-public-key', Qtxt} where Qtxt is the base64-encoded text of the compressed
elliptic curve point Q. The encryption context can contain additional values.

The following table describes the fields that form the AAD. Key-value pairs are sorted, by key, in
ascending order according to UTF-8 character code.

AAD Structure

Length, in bytesField

2Key-Value Pair Count

2Key Length

Variable. Equal to the value specified in the pre-
vious 2 bytes (Key Length).

Key

2Value Length

Variable. Equal to the value specified in the pre-
vious 2 bytes (Value Length).

Value

Key-Value Pair Count
The number of key-value pairs in the AAD. It is a 2-byte value interpreted as a 16-bit unsigned
integer that specifies the number of key-value pairs in the AAD.

Key Length
The length of the key for the key-value pair. It is a 2-byte value interpreted as a 16-bit unsigned
integer that specifies the number of bytes that contain the key.

9

AWS Encryption SDK Developer Guide
Header Structure

http://docs.aws.amazon.com/kms/latest/developerguide/encryption-context.html

Key
The key for the key-value pair. It is a sequence of UTF-8 encoded bytes.

Value Length
The length of the value for the key-value pair. It is a 2-byte value interpreted as a 16-bit unsigned
integer that specifies the number of bytes that contain the value.

Value
The value for the key-value pair. It is a sequence of UTF-8 encoded bytes.

Encrypted Data Key Count
The number of encrypted data keys. It is a 2-byte value interpreted as a 16-bit unsigned integer that
specifies the number of encrypted data keys.

Encrypted Data Key(s)
A sequence of encrypted data keys. The length of the sequence is determined by the number of
encrypted data keys and the length of each.The sequence contains at least one encrypted data key.

The following table describes the fields that form each encrypted data key. The bytes are appended
in the order shown.

Encrypted Data Key Structure

Length, in bytesField

2Key Provider ID Length

Variable. Equal to the value specified in the pre-
vious 2 bytes (Key Provider ID Length).

Key Provider ID

2Key Provider Information Length

Variable. Equal to the value specified in the pre-
vious 2 bytes (Key Provider Information Length).

Key Provider Information

2Encrypted Data Key Length

Variable. Equal to the value specified in the pre-
vious 2 bytes (Encrypted Data Key Length).

Encrypted Data Key

Key Provider ID Length
The length of the key provider identifier. It is a 2-byte value interpreted as a 16-bit unsigned
integer that specifies the number of bytes that contain the key provider ID.

Key Provider ID
The key provider identifier. It is used to indicate the provider of the encrypted data key and
intended to be extensible.

Key Provider Information Length
The length of the key provider information. It is a 2-byte value interpreted as a 16-bit unsigned
integer that specifies the number of bytes that contain the key provider information.

Key Provider Information
The key provider information. It is determined by the key provider. When AWS KMS is the key
provider, this value contains the Amazon Resource Name (ARN) of the AWS KMS customer
master key (CMK).

Encrypted Data Key Length
The length of the encrypted data key. It is a 2-byte value interpreted as a 16-bit unsigned integer
that specifies the number of bytes that contain the encrypted data key.

Encrypted Data Key
The encrypted data key. It is determined by the key provider, but should be the underlying data
encryption key encrypted by the key provider. For the AWS KMS provider, it is a binary ciphertext
blob as returned by the AWS KMS GenerateDataKey API operation.

10

AWS Encryption SDK Developer Guide
Header Structure

Content Type
The type of encrypted content, either non-framed or framed. Non-framed content is not broken into
parts; it is a single encrypted blob. Framed content is broken into equal-length parts; each part is
encrypted separately.

Non-framed content is type 1, encoded as the byte 01 in hexadecimal notation. Framed content is
type 2, encoded as the byte 02 in hexadecimal notation.

Reserved
A reserved sequence of 4 bytes. This value must be 0. It is encoded as the bytes 00 00 00 00 in
hexadecimal notation (that is, a 4-byte sequence of a 32-bit integer value equal to 0).

IV Length
The length of the initialization vector (IV). It is a 1-byte value interpreted as an 8-bit unsigned integer
that specifies the number of bytes that contain the IV. All of the algorithms supported by the AWS
Encryption SDK use a 12-byte (96-bit) IV, so the IV length is encoded as the byte 0C in hexadecimal
notation.

Frame Length
The length of each frame of framed content. It is a 4-byte value interpreted as a 32-bit unsigned
integer that specifies the number of bytes that form each frame.When the content is non-framed—that
is, when the value of the Content Type field is 1—this value must be 0.

IV
The initialization vector for the header authentication tag. It is used to generate the header
authentication tag over the header fields up to, but not including, the IV.

Authentication Tag
The authentication value for the header. It is used to authenticate the header fields up to, but not
including, the IV.

Body Structure
The message body contains the encrypted data. The structure of the body depends on the content type
(non-framed or framed).The following sections describe the format of the message body for each content
type.

Topics

• Non-Framed Data (p. 11)

• Framed Data (p. 12)

Non-Framed Data
Non-framed data is encrypted in a single blob.The following table describes the fields that form non-framed
data. The bytes are appended in the order shown.

Non-Framed Body Structure

Length in bytesField

Variable. Equal to the value specified in the IV
Length byte of the header.

IV

8Encrypted Content Length

Variable. Equal to the value specified in the previ-
ous 8 bytes (Encrypted Content Length).

Encrypted Content

11

AWS Encryption SDK Developer Guide
Body Structure

Length in bytesField

Variable. Determined by the algorithm used, as
specified in the Algorithm ID field of the header.

Authentication Tag

IV
The initialization vector. The IV for the implemented encryption mode, the Advanced Encryption
Standard (AES) algorithm in Galois/Counter Mode (GCM) known as AES-GCM, is a
randomly-generated 12-byte value.

Encrypted Content Length
The length of the encrypted content. It is an 8-byte value interpreted as a 64-bit unsigned integer
that specifies the number of bytes that contain the encrypted content.

The maximal allowed value is 2^63 - 1 or 8 exbibytes (8 EiB). However, for the implemented mode
of AES-GCM, the maximum value is 2^36 - 32 or 64 gibibytes (64 GiB), due to restrictions on the
use of AES-GCM. The Java implementation of this SDK further restricts this value to 2^31 - 1 or 2
gibibytes (2 GiB), due to restrictions in the implementation.

Encrypted Content
The encrypted content.

Authentication Tag
The authentication value for the body. It is used to authenticate the body fields up to, but not including,
the authentication tag.

Framed Data
Framed data is divided into equal-length parts, except for the last part. Each frame is encrypted separately
with a unique IV and AAD.

There are two kinds of frames: a regular frame and a final frame. A final frame is always used, even when
the content fits into a single regular frame. In this case, the final frame contains no data—that is, a content
length of 0.

The following tables describe the fields that form the frames.The bytes are appended in the order shown.

Framed Body Structure, Regular Frame

Length (bytes)Field

4Sequence Number

Variable. Equal to the value specified in the IV
Length byte of the header.

IV

Variable. Equal to the value specified in the Frame
Length of the header.

Encrypted Content

Variable. Determined by the algorithm used, as
specified in the Algorithm ID of the header.

Authentication Tag

Sequence Number
The frame sequence number. It is an incremental counter number for the frame. Framed data must
start at sequence number 1, encoded as the 4 bytes 00 00 00 01, in hexadecimal notation. The
frames must be in order and must contain an increment of 1 of the previous frame. Otherwise, the
decryption process stops and reports an error.

12

AWS Encryption SDK Developer Guide
Framed Data

IV
The initialization vector for the frame. The IV for the implemented encryption mode of AES-GCM is
a randomly-generated 12-byte value.

Encrypted Content
The encrypted content for the frame.

Authentication Tag
The authentication value for the frame. It is used to authenticate the frame fields up to, but not
including, the authentication tag.

Framed Body Structure, Final Frame

Length (bytes)Field

4Sequence Number End

4Sequence Number

Variable. Equal to the value specified in the IV
Length byte of the header.

IV

4Encrypted Content Length

Variable. Equal to the value specified in the previ-
ous 4 bytes (Encrypted Content Length).

Encrypted Content

Variable. Determined by the algorithm used, as
specified in the Algorithm ID of the header.

Authentication Tag

Sequence Number End
An indicator for the final frame. The value is encoded as the 4 bytes FF FF FF FF, in hexadecimal
notation.

Sequence Number
The frame sequence number. It is an incremental counter number for the frame. Framed data must
start at sequence number 1, encoded as the 4 bytes 00 00 00 01, in hexadecimal notation. The
frames must be in order and must contain an increment of 1 of the previous frame. Otherwise, the
decryption process stops and reports an error.

IV
The initialization vector for the frame. The IV for the implemented encryption mode of AES-GCM is
a randomly-generated 12-byte value.

Encrypted Content Length
The length of the encrypted content for the frame. It is a 4-byte value interpreted as a 32-bit unsigned
integer that specifies the number of bytes that contain the encrypted content for the frame.

Encrypted Content
The encrypted content for the frame.

Authentication Tag
The authentication value for the frame. It is used to authenticate the frame fields up to, but not
including, the authentication tag.

Footer Structure
When the signed algorithms (p. 24) are used, the message format contains a footer. The message footer
contains a signature that authenticates the message header and message body. The following table
describes the fields that form the footer. The bytes are appended in the order shown.

13

AWS Encryption SDK Developer Guide
Footer Structure

Footer Structure

Length in bytesField

2Signature Length

Variable. Equal to the value specified in the previ-
ous 2 bytes (Signature Length).

Signature

Signature Length
The length of the signature. It is a 2-byte value interpreted as a 16-bit unsigned integer that specifies
the number of bytes that contain the signature.

Signature
The signature. It is used to authenticate the header and body of the message.

14

AWS Encryption SDK Developer Guide
Footer Structure

Example Code (Java)

The following examples demonstrate how you can use the Java implementation of the AWS Encryption
SDK to encrypt and decrypt data.

Topics

• Strings (p. 15)

• Byte Streams (p. 17)

• Byte Streams with Multiple Master Key Providers (p. 19)

Encrypting and Decrypting Strings
The following example demonstrates how you can use the AWS Encryption SDK to encrypt and decrypt
strings.This example uses a customer master key (CMK) in AWS Key Management Service (AWS KMS)
as the master key.

/*
 * Copyright 2016 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not
 use this file except
 * in compliance with the License. A copy of the License is located at
 *
 * https://aws.amazon.com/apache-2-0/
 *
 * or in the "license" file accompanying this file. This file is distributed
on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
 the License for the
 * specific language governing permissions and limitations under the License.
 */

package com.amazonaws.crypto.examples;

import java.util.Collections;
import java.util.Map;

import com.amazonaws.encryptionsdk.AwsCrypto;

15

AWS Encryption SDK Developer Guide
Strings

http://aws.amazon.com/kms/

import com.amazonaws.encryptionsdk.CryptoResult;
import com.amazonaws.encryptionsdk.kms.KmsMasterKey;
import com.amazonaws.encryptionsdk.kms.KmsMasterKeyProvider;

/**
 * <p>
 * Encrypts and then decrypts a string under a KMS customer master key (CMK)
 *
 * <p>
 * Arguments:
 *
 * Amazon Resource Name (ARN) of the KMS CMK
 * String to encrypt
 *
 */
public class StringExample {
 private static String keyArn;
 private static String data;

 public static void main(final String[] args) {
 keyArn = args[0];
 data = args[1];

 // Instantiate the SDK
 final AwsCrypto crypto = new AwsCrypto();

 // Set up the KmsMasterKeyProvider backed by the default credentials
 final KmsMasterKeyProvider prov = new KmsMasterKeyProvider(keyArn);

 // Encrypt the data
 //
 // Most encrypted data should have associated encryption context to
 // protect integrity. For this example, just use a placeholder value.
 //
 // For more information about encryption context,
 // see https://amzn.to/1nSbe9X (blogs.aws.amazon.com)
 final Map<String, String> context = Collections.singletonMap("Example",
 "String");

 final String ciphertext = crypto.encryptString(prov, data, con
text).getResult();
 System.out.println("Ciphertext: " + ciphertext);

 // Decrypt the data
 final CryptoResult<String, KmsMasterKey> decryptResult = crypto.de
cryptString(prov, ciphertext);
 // Check the encryption context (and ideally the master key) to ensure

 // this was the expected ciphertext
 if (!decryptResult.getMasterKeyIds().get(0).equals(keyArn)) {
 throw new IllegalStateException("Wrong key id!");
 }

 // The SDK may add information to the encryption context, so check to
ensure
 // that all of the values are present
 for (final Map.Entry<String, String> e : context.entrySet()) {
 if (!e.getValue().equals(decryptResult.getEncryptionCon

16

AWS Encryption SDK Developer Guide
Strings

text().get(e.getKey()))) {
 throw new IllegalStateException("Wrong Encryption Context!");
 }
 }

 // The data is correct, so output it.
 System.out.println("Decrypted: " + decryptResult.getResult());
 }
}

Encrypting and Decrypting Byte Streams
The following example demonstrates how you can use the AWS Encryption SDK to encrypt and decrypt
byte streams.This example does not use AWS. It uses the Java Cryptography Extension (JCE) to protect
the master key.

/*
 * Copyright 2016 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not
 use this file except
 * in compliance with the License. A copy of the License is located at
 *
 * https://aws.amazon.com/apache-2-0/
 *
 * or in the "license" file accompanying this file. This file is distributed
on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
 the License for the
 * specific language governing permissions and limitations under the License.
 */

package com.amazonaws.crypto.examples;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.security.SecureRandom;
import java.util.Collections;
import java.util.Map;

import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CryptoInputStream;
import com.amazonaws.encryptionsdk.MasterKey;
import com.amazonaws.encryptionsdk.jce.JceMasterKey;
import com.amazonaws.util.IOUtils;

/**
 * <p>
 * Encrypts and then decrypts a file under a random key.
 *

17

AWS Encryption SDK Developer Guide
Byte Streams

 * <p>
 * Arguments:
 *
 * Name of the file to encrypt
 *
 *
 * <p>
 * This program demonstrates how to use a normal Java {@link SecretKey} object
 as a {@link MasterKey}
 * to encrypt and decrypt streaming data.
 */
public class FileStreamingExample {
 private static String srcFile;

 public static void main(String[] args) throws IOException {
 srcFile = args[0];

 // In a production implementation, load this master key from an existing
 store.
 // For this example, just generate a random one.
 SecretKey cryptoKey = retrieveEncryptionKey();

 // Convert the master key into a provider. This example uses AES-GCM
because it is
 // a secure algorithm.
 JceMasterKey masterKey = JceMasterKey.getInstance(cryptoKey, "Example",
 "RandomKey", "AES/GCM/NoPadding");

 // Instantiate the SDK
 AwsCrypto crypto = new AwsCrypto();

 // Create the encryption context to identify this ciphertext
 // For more information about encryption context,
 // see https://amzn.to/1nSbe9X (blogs.aws.amazon.com)
 Map<String, String> context = Collections.singletonMap("Example",
"FileStreaming");

 // The file might be really big, so don't load
 // it all into memory. Streaming is necessary.
 FileInputStream in = new FileInputStream(srcFile);
 CryptoInputStream<JceMasterKey> encryptingStream = crypto.createEncrypt
ingStream(masterKey, in, context);

 FileOutputStream out = new FileOutputStream(srcFile + ".encrypted");
 IOUtils.copy(encryptingStream, out);
 encryptingStream.close();
 out.close();

 // Decrypt the file now, remembering to check the encryption context
 in = new FileInputStream(srcFile + ".encrypted");
 CryptoInputStream<JceMasterKey> decryptingStream = crypto.createDecrypt
ingStream(masterKey, in);
 // Does it have the right encryption context?
 if (!"FileStreaming".equals(decryptingStream.getCryptoResult().getEn
cryptionContext().get("Example"))) {
 throw new IllegalStateException("Bad encryption context");
 }

18

AWS Encryption SDK Developer Guide
Byte Streams

 // Finally, write out the data
 out = new FileOutputStream(srcFile + ".decrypted");
 IOUtils.copy(decryptingStream, out);
 decryptingStream.close();
 out.close();
 }

 /**
 * In a production implementation, this key needs to be persisted somewhere.
 For this demo,
 * just generate a new random one each time.
 */
 private static SecretKey retrieveEncryptionKey() {
 SecureRandom rnd = new SecureRandom();
 byte[] rawKey = new byte[16]; // 128 bits
 rnd.nextBytes(rawKey);
 return new SecretKeySpec(rawKey, "AES");
 }
}

Encrypting and Decrypting Byte Streams with
Multiple Master Key Providers

The following example demonstrates how you can use the AWS Encryption SDK with more than one
master key provider. Using more than one master key provider creates redundancy in case one master
key provider is unavailable for decryption. This example uses a CMK in AWS KMS and an RSA key pair
as the master keys.

/*
 * Copyright 2016 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not
 use this file except
 * in compliance with the License. A copy of the License is located at
 *
 * https://aws.amazon.com/apache-2-0/
 *
 * or in the "license" file accompanying this file. This file is distributed
on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
 the License for the
 * specific language governing permissions and limitations under the License.
 */

package com.amazonaws.crypto.examples;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.security.GeneralSecurityException;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.PrivateKey;
import java.security.PublicKey;

19

AWS Encryption SDK Developer Guide
Byte Streams with Multiple Master Key Providers

http://aws.amazon.com/kms/

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CryptoOutputStream;
import com.amazonaws.encryptionsdk.MasterKeyProvider;
import com.amazonaws.encryptionsdk.jce.JceMasterKey;
import com.amazonaws.encryptionsdk.kms.KmsMasterKeyProvider;
import com.amazonaws.encryptionsdk.multi.MultipleProviderFactory;
import com.amazonaws.util.IOUtils;

/**
 * <p>
 * Encrypts a file with two master keys: a KMS CMK and an asymmetric key pair.

 *
 * <p>
 * Arguments:
 *
 * Amazon Resource Name (ARN) of the KMS CMK
 * Name of the file to encrypt
 *
 *
 * Some organizations want the ability to decrypt their data even if KMS is
unavailable. This
 * program demonstrates one possible way of accomplishing this by generating
an "escrow" RSA
 * key pair and using that, in addition to the KMS CMK, as the master key for
encryption.
 * The organization should keep the RSA private key in a secure place (such as
 an offline HSM) and
 * distribute the public key to their developers. This way, normal use would
use the KMS CMK
 * for decryption, but the organization maintains the ability to decrypt all
ciphertexts in a
 * completely offline manner.
 */
public class EscrowedEncryptExample {
 private static PublicKey publicEscrowKey;
 private static PrivateKey privateEscrowKey;

 public static void main(final String[] args) throws Exception {
 // In a production implementation, the public key is distributed by the
 organization.
 // For this example, just generate a new random one each time.
 generateEscrowKeyPair();

 final String kmsArn = args[0];
 final String fileName = args[1];

 standardEncrypt(kmsArn, fileName);
 standardDecrypt(kmsArn, fileName);

 escrowDecrypt(fileName);
 }

 private static void standardEncrypt(final String kmsArn, final String file
Name) throws Exception {
 // Standard user encrypting to both KMS and the escrow public key
 // 1. Instantiate the SDK

20

AWS Encryption SDK Developer Guide
Byte Streams with Multiple Master Key Providers

 final AwsCrypto crypto = new AwsCrypto();

 // 2. Instantiate the providers
 final KmsMasterKeyProvider kms = new KmsMasterKeyProvider(kmsArn);
 // Note that the standard user does not have access to the private escrow

 // key and so simply passes in "null"
 final JceMasterKey escrowPub = JceMasterKey.getInstance(publicEscrowKey,
 null, "Escrow", "Escrow",
 "RSA/ECB/OAEPWithSHA-512AndMGF1Padding");

 // 3. Combine the providers into a single one
 final MasterKeyProvider<?> provider = MultipleProviderFactory.buildMul
tiProvider(kms, escrowPub);

 // 4. Encrypt the file
 // To simplify the code, this example omits encryption context this
time. Production code
 // should always use encryption context. See https://amzn.to/1nSbe9X
(blogs.aws.amazon.com)
 // for more information.
 final FileInputStream in = new FileInputStream(fileName);
 final FileOutputStream out = new FileOutputStream(fileName + ".encryp
ted");
 final CryptoOutputStream<?> encryptingStream = crypto.createEncrypting
Stream(provider, out);

 IOUtils.copy(in, encryptingStream);
 in.close();
 encryptingStream.close();
 }

 private static void standardDecrypt(final String kmsArn, final String file
Name) throws Exception {
 // A standard user decrypts the file. The user can use the same provider
 from before,
 // or can use a provider that refers to the KMS CMK. It doesn't matter.

 // 1. Instantiate the SDK
 final AwsCrypto crypto = new AwsCrypto();

 // 2. Instantiate the providers
 final KmsMasterKeyProvider kms = new KmsMasterKeyProvider(kmsArn);
 // Note that the standard user does not have access to the private escrow

 // key and so simply passes in "null"
 final JceMasterKey escrowPub = JceMasterKey.getInstance(publicEscrowKey,
 null, "Escrow", "Escrow",
 "RSA/ECB/OAEPWithSHA-512AndMGF1Padding");

 // 3. Combine the providers into a single one
 final MasterKeyProvider<?> provider = MultipleProviderFactory.buildMul
tiProvider(kms, escrowPub);

 // 4. Decrypt the file
 // To simplify the code, this example omits encryption context this
time. Production code

21

AWS Encryption SDK Developer Guide
Byte Streams with Multiple Master Key Providers

 // should always use encryption context. See https://amzn.to/1nSbe9X
(blogs.aws.amazon.com)
 // for more information.
 final FileInputStream in = new FileInputStream(fileName + ".encrypted");

 final FileOutputStream out = new FileOutputStream(fileName + ".decryp
ted");
 final CryptoOutputStream<?> decryptingStream = crypto.createDecrypting
Stream(provider, out);
 IOUtils.copy(in, decryptingStream);
 in.close();
 decryptingStream.close();
 }

 private static void escrowDecrypt(final String fileName) throws Exception
{
 // The organization can decrypt using the private escrow key with no
calls to AWS KMS

 // 1. Instantiate the SDK
 final AwsCrypto crypto = new AwsCrypto();

 // 2. Instantiate the provider
 // Note that the organization does have access to the private escrow
key and can use it.
 final JceMasterKey escrowPriv = JceMasterKey.getInstance(publicEscrowKey,
 privateEscrowKey, "Escrow", "Escrow",
 "RSA/ECB/OAEPWithSHA-512AndMGF1Padding");

 // 3. Decrypt the file
 // To simplify the code, this example omits encryption context this
time. Production code
 // should always use encryption context. See https://amzn.to/1nSbe9X
(blogs.aws.amazon.com)
 // for more information.
 final FileInputStream in = new FileInputStream(fileName + ".encrypted");

 final FileOutputStream out = new FileOutputStream(fileName +
".deescrowed");
 final CryptoOutputStream<?> decryptingStream = crypto.createDecrypting
Stream(escrowPriv, out);
 IOUtils.copy(in, decryptingStream);
 in.close();
 decryptingStream.close();

 }

 private static void generateEscrowKeyPair() throws GeneralSecurityException
 {
 final KeyPairGenerator kg = KeyPairGenerator.getInstance("RSA");
 kg.initialize(4096); // Escrow keys should be very strong
 final KeyPair keyPair = kg.generateKeyPair();
 publicEscrowKey = keyPair.getPublic();
 privateEscrowKey = keyPair.getPrivate();

 }
}

22

AWS Encryption SDK Developer Guide
Byte Streams with Multiple Master Key Providers

Frequently Asked Questions

• Which data types are supported by the AWS Encryption SDK? (p. 23)

• How is the AWS Encryption SDK different from the AWS SDKs? (p. 23)

• How is the AWS Encryption SDK different from the Amazon S3 encryption client in the AWS SDK for
Java, the AWS SDK for Ruby, and the AWS SDK for .NET? (p. 23)

• How does the AWS Encryption SDK encode each type of encrypted output? (p. 23)

• How does the AWS Encryption SDK encrypt and decrypt input/output streams? (p. 24)

• How do I keep track of the data keys used to encrypt my data? (p. 24)

• Can I add additional key encryption keys (KEKs) to the envelope encryption (p. 2) scheme? (p. 24)

• What is the message format used by the AWS Encryption SDK? (p. 24)

• Which cryptographic algorithms are supported by the AWS Encryption SDK, and which one is the
default? (p. 24)

Which data types are supported by the AWS Encryption SDK?
The AWS Encryption SDK can encrypt raw bytes (byte arrays), I/O streams (byte streams), and
strings. For examples, see Example Code (Java) (p. 15).

How is the AWS Encryption SDK different from the AWS SDKs?
The AWS SDKs provide language-specific APIs for all of the Amazon Web Services (AWS). The
AWS Encryption SDK provides an API for client-side encryption and decryption that optionally
integrates with AWS. The AWS Encryption SDK supports the AWS Key Management Service (AWS
KMS) as a master key provider, which means the AWS Encryption SDK overlaps with the AWS SDKs
regarding some of the AWS KMS API. However, the implementations of the AWS KMS API in the
AWS SDKs do not manage data encryption keys for you. The AWS Encryption SDK manages data
keys for you by inserting them (in encrypted form) into the encrypted data (ciphertexts) that are
returned by the encryption methods.You can also use the AWS Encryption SDK without using AWS.

How is the AWS Encryption SDK different from the Amazon S3 encryption client in the AWS SDK
for Java, the AWS SDK for Ruby, and the AWS SDK for .NET?

The Amazon S3 encryption client in the AWS SDK for Java, AWS SDK for Ruby, and AWS SDK for
.NET provides client-side encryption and decryption for data stored in Amazon Simple Storage Service
(Amazon S3). It is tightly coupled to Amazon S3 and is intended for use only with data stored in
Amazon S3. The AWS Encryption SDK provides client-side encryption and decryption for data you
can store anywhere. The encrypted data formats produced by the Amazon S3 encryption client and
the AWS Encryption SDK are not interoperable.

How does the AWS Encryption SDK encode each type of encrypted output?
The AWS Encryption SDK does not add encoding to its output.The methods in the SDK that operate
on strings return strings; the methods that operate on bytes return bytes.

23

AWS Encryption SDK Developer Guide

http://aws.amazon.com/tools/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3EncryptionClient.html
http://docs.aws.amazon.com/sdkforruby/api/Aws/S3/Encryption/Client.html
http://docs.aws.amazon.com/sdkfornet/v3/apidocs/index.html?page=S3/TS3EncryptionS3EncryptionClient.html
http://docs.aws.amazon.com/sdkfornet/v3/apidocs/index.html?page=S3/TS3EncryptionS3EncryptionClient.html

How does the AWS Encryption SDK encrypt and decrypt input/output streams?
The AWS Encryption SDK creates an encrypting or decrypting stream that wraps an underlying I/O
stream. The encrypting or decrypting stream performs a cryptographic operation on a read or write
call. For example, it can read plaintext data on the underlying stream and encrypt it before returning
the result, or read ciphertext from an underlying stream and decrypt it before returning the result. For
example code that uses encrypting and decrypting streams, see Encrypting and Decrypting Byte
Streams (p. 17).

How do I keep track of the data keys used to encrypt my data?
The AWS Encryption SDK does this for you. When you encrypt data, the AWS Encryption SDK
creates a unique symmetric data encryption key for each data object, and the object's data key is
encrypted and returned as part of the encrypted data. When you decrypt data, the AWS Encryption
SDK extracts the encrypted data key, decrypts it, and then uses it to decrypt the data.

Can I add additional key encryption keys (KEKs) to the envelope encryption (p. 2) scheme?
The AWS Encryption SDK encrypts the data you pass to the encryption methods with a unique data
encryption key (DEK), and then encrypts that DEK with a key encryption key (KEK) called a master
key.You can encrypt the DEK with additional master keys to add redundancy, in case one of the
master keys is unavailable. For a code sample (Java) that demonstrates how you can do this, see
Encrypting and Decrypting Byte Streams with Multiple Master Key Providers (p. 19).

What is the message format used by the AWS Encryption SDK?
The encryption operations in the AWS Encryption SDK return a single data structure, or message,
that contains the encrypted data and the encrypted data key. The message format consists of at
least two parts, a header and a body. In some cases the message format consists of a third part
called a footer. The message header contains the encrypted data key and information about how
the message body is formed. The message body contains the encrypted data. The message footer
contains a signature that authenticates the message header and message body. For more information,
see Message Format (p. 7).

Which cryptographic algorithms are supported by the AWS Encryption SDK, and which one is the
default?

The SDK uses the Advanced Encryption Standard (AES) algorithm in Galois/Counter Mode (GCM),
known as AES-GCM. The SDK supports encryption key lengths of 256 bits, 192 bits, and 128 bits.
In all cases, the length of the initialization vector (IV) is 12 bytes; the length of the authentication tag
is 16 bytes.

The AWS Encryption SDK supports the following encryption algorithms. By default, the SDK uses
the first algorithm in the list.

1. ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA384_ECDSA_P384

2. ALG_AES_192_GCM_IV12_TAG16_HKDF_SHA384_ECDSA_P384

3. ALG_AES_128_GCM_IV12_TAG16_HKDF_SHA256_ECDSA_P256

4. ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256

5. ALG_AES_192_GCM_IV12_TAG16_HKDF_SHA256

6. ALG_AES_128_GCM_IV12_TAG16_HKDF_SHA256

7. ALG_AES_256_GCM_IV12_TAG16_NO_KDF

8. ALG_AES_192_GCM_IV12_TAG16_NO_KDF

9. ALG_AES_128_GCM_IV12_TAG16_NO_KDF

The algorithms belong to one of three categories, which are described in more detail in the following
list.

Signed algorithms
The algorithms numbered 1 through 3 in the preceding list are the signed algorithms.The signed
algorithms use the data encryption key as an input to the HMAC key derivation function (HKDF)
to derive the AES-GCM encryption key. These algorithms also add an Elliptic Curve Digital
Signature Algorithm (ECDSA) signature. When the key length is 256 bits or 192 bits, the HKDF
uses SHA-384 and the ECDSA signature uses the secp384r1 curve.When the key length is 128
bits, the HKDF uses SHA-256 and the ECDSA signature uses the secp256r1 curve.

24

AWS Encryption SDK Developer Guide

These algorithms help protect against accidental reuse of a data encryption key, and the ECDSA
signature helps provide stronger authenticity and non-repudiation of the original data. Use these
algorithms when authorized users of a master key—that is, the users who encrypt data and
those who decrypt data—are not equally trusted. These algorithms help protect against some
users of the master key attempting to impersonate other users of the master key.

Standard algorithms
The algorithms numbered 4 through 6 in the preceding list are the standard algorithms. The
standard algorithms are like the signed algorithms but without the ECDSA signature.

These algorithms help protect against accidental reuse of a data encryption key.These algorithms
are appropriate for standard use cases in which all authorized users of a master key—that is,
the users who encrypt data and those who decrypt data—are equally trusted.

Compatibility algorithms
The algorithms numbered 7 through 9 in the preceding list are the compatibility algorithms. The
compatibility algorithms do not use a key derivation function (KDF) to derive the encryption key;
they use the data encryption key as the AES-GCM encryption key.

The use of these algorithms is not recommended; the SDK provides them for compatibility
reasons only.

25

AWS Encryption SDK Developer Guide

	AWS Encryption SDK
	Table of Contents
	What Is the AWS Encryption SDK?
	Encryption Concepts
	Encryption Basics
	Envelope Encryption

	Architecture
	Encryption
	Decryption

	Getting Started
	(Optional) Create an AWS Account
	Download the AWS Encryption SDK

	Message Format
	Header Structure
	Body Structure
	Non-Framed Data
	Framed Data

	Footer Structure

	Example Code (Java)
	Encrypting and Decrypting Strings
	Encrypting and Decrypting Byte Streams
	Encrypting and Decrypting Byte Streams with Multiple Master Key Providers

	Frequently Asked Questions

