Amazon Kinesis Analytics

Developer Guide

amazon
webservices™

Amazon Kinesis Analytics Developer Guide

Amazon Kinesis Analytics: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

Amazon Kinesis Analytics Developer Guide

Table of Contents

What IS AMazon KiNESIS ANAIYLICS?iuiiii et e e et e e e e eneenas 1
When Should | Use Amazon KinesisS ANAIYHICS?ouiiiiiiie e 1
Are You a First-time User of Amazon Kinesis ANAlYLICS?c.uiuiiiiiiiiere e 1

HOW TEWVOTKS .ottt ettt et et e et a et e e et et et e e et e e et anaas 3
] 6 PP PP 5

Configuring @ SIreamMING SOUICEuiuuieitii ettt e e eans 5
Configuring @ REfErENCE SOUICEuvuiiiiiiie e anes 7
Using the Schema Discovery Feature and Related Editingcoooviiiiiiiiiiiiiieeee, 9
Py o] o] [Tor=1i o] B @70 Lo [P T TP 10
[1110 | PP 11
Application Output DeliVery MOGE!ouiiiii e 12
= g o P o |1 o o PP PPIPRN 12
Reporting Errors Using an In-Application Error Streamcooooveiiiiiiiiiiinieieeeee e 13
Granting PEeIMISSIONSttt e ettt et et et et e et e e e e e ens 13
TRUSE POLICY . ettt 13
PEIMISSIONS POLICY ...ttt e e e e e e e e aaas 14

(€Tl 1110 [o [RS] = T (=T PP PETPIP 16

Step 1: St UP AN ACCOUNTuett ettt et e ettt e e et e e e enenes 16
SN UP O AN S e 16
Create AN TAM USEI .. etieii ettt e e et 17
N] (= PP 17

StEP 2: SELUP the AWS CLI ..uiiiiiiiiii et 17
[N] (= PP 18

Step 3: GettiNg STArEA EXEICISEeueiiei e e e e e ees 18
Step 3.1: Create an APPLICALIONc.uiei e 20
Step 3.2: CoNfIGUIE INPUL ...uuie et e e e aanas 20
Step 3.3: Add Real-Time Analytics (Add Application Code)ccoeviiiiiiiiiiiiiie, 23
Step 3.4: (Optional) Update Application COOEc.iiuiiiiiiiiiii e 25
Step 3.5: (Optional) Configure OULPULoutie e 26

Step 4: CoNSOlE FEALUIE SUMMAIYiuiiin ittt e e e e e et e et e e e e e e aneanas 26

Sreaming SQL COMCEPLSueninte ittt e et et et et et e et ettt e et et et e e et et et e it aa 30
In-Application Streams and PUMPS ... 30
Timestamps and the ROWTIME COIUMN ...t 31

Understanding Various Times in Streaming ANaIYLiCScviuiiiiiiiiiiiiii e 32

(@] 0110110 UL @ 1= = 34

R TAT LT [0 =T @ TH T 4 T 34
TUMDBIING WINAOWS ...t e e et et e aaeaees 35
SHAING WINGOWS ..ttt e e et e e ananas 36

(=T 1o o I o] [TP 40
Example 1: Report Orders Where There Are Trades within One Minute of the Order Being
PLACET ..t 40

EXAMPIE APPIICALIONS ...ttt 42

Examples: PreproCeSSING SITEAIMSt ittt ettt e et e e eaes 42
Example: Manipulating Strings and Date TiMESc.iuiiiiiiiiere e 43
Example: Streaming Source With Multiple Record TYPESc.ovviiiiiiiiiiiie e 52
Example: Add Reference Dat@ SOUICEc.uiuiuiiiiiiicee et 58

EXamples: BASIC ANGIYEICSottt 62
Example: Most Frequently OCCUITiNg VAIUESouiiuiiiiiiiiiii e 62
Example: Count DIStINCE VAIUESc.uiuiiiiii e 63
EXample: SIMPIE AIBITS ... e 64

Examples: ADVaNCed ANGIYEICSuii e 66
Example: DeteCt ANOMAIIES ... c..ieiii e 66
Example: Using Different Types of Times in ANAIYLICScooiiiiiiiiiiiii e 71

Examples: Post Processing IN-Application Streamc.oouiieiiiiiiiii e 72
Example: AWS Lambda INtegrationoouiiniiiiiiiiii e 72

Amazon Kinesis Analytics Developer Guide

Examples: Other Amazon Kinesis Analytics APpliCatioNSc.iieiiiiii e 75
Example: Explore the In-Application Error Streamoouieiiiii i 75

/1 71 (o) 1 T 77
/T 1 (o 1 o R o0} 78
AULOMALEA TOOIS ...t 78
MEANUAI TOOIS ...ttt et 78
Monitoring with Amazon CIOUAWALCK ... e 79
MetricS and DIMENSIONSuuiti et 79

(O = 1] T TN = T 0 80

[0] PP PP TPPPP 82
BESE PrACHCES ..vuitit it 84
ManNaging APPIICALIONSt e e 84
Defining INPUL SChEMA ..o e 85
(0] o aT=Tot i o IR (o T @ 11 i o U £ 86
AUthoring APPLICALION COOEt ettt eneaens 86
APT REIEIEINCE ... ettt 88
A CTIONIS e 88
/2o [0 7aN o] o] Tox= 11T o 1] o V| P 89

2o [0 VAN o o] [Tox= 11T o @ 111 ¥ | AP 91
AddApplicatioNReferenNCeDAtASOUICEuieiie e e 93
CreatEAPPIICALION ... et 95
Delet@APPIICALION ...t 99

(D111 (YA o] o] o= 14 o] 4 [@ 10 i o U | PP 100
DeleteApplicationReferenceDataSOUICeeuiuieii e 102
DeSCHDEAPPICALION e 104
DISCOVEINPUESCREIMA ...e et ens 107

IS AN o] o] o= U1 1 1=t 110
SEANTAPPIICALION ... e 112

0] 072X o]] 1= o o 114

L0 T0 Fo (Y Y o]][> o] o 115

(D= 1= N 1Y o1 PP PPN 117
APPIICAIONDELAIL ... e e 119

WY o] o] 1Tor= Vi o] PS04 0 - 121

Y o] o] Tor= Vo 10T o o (e 122
CSVMAaPPINGPAramMELEISttt 123
DeStiNAtIONSCREMAt 124

] 60 PP PPN 125
INPUECONFIGUIALION ..o et e e aaenas 126
L0181 TS o g o] (T o 127
INPUEPAIAIIEIISIM ..o e et e 128
INpUtPAralleliSMUPAALEc.oei e 129
INPUESCheMAUPALE e e et eeaas 130
INputStartingPositionConfiQUuIation ..o 131

T 01010 oo = 132
JSONMAPPINGPAIAMELEISen ettt ettt e e en e enaans 133
KINESISFIrENOSEINPUL et e e aees 134
KinesisFireN0SelNPUIDESCIIPLIONuuiet e e e aaenns 135
KinesisFirehoselNPUIUPAALE ... e 136
KIiNESISFIrENOSEOULPULee ittt e e e e e aaenns 137
KinesisFireh0SeOULPUIDESCIIPLIONt e e aenas 138
KinesisFireN0SeOULPULUPAALEuieiei e e 139
KINESISSIIEAMSINPUL ...t e e et ene e 140
KinesisStreamsINpuIDESCHPLION 141
KinesisStreamsINPUIUPAALEieieii e 142
KINESISSIrEAMSOULPUL ...ttt ettt et et e et et et e e e e e eneaen 143
KinesisStreamsOULPUIDESCHPLIONc..uie e 144
KinesisStreamsSOUIPULUPTALEenieiiiii e et e e e e aaenas 145
MaPPINGPAIAMELEIS ...ttt et ettt 146

Amazon Kinesis Analytics Developer Guide

L0 11 11 o 11 | S PP P PPPN 147
L@ 1011 o101 L= o]]) o] o 148
L@ 10 o101 { o T F= L= 149
RECOMACOIUMIN .o ettt et 150
RECOMAFOIMAL ... ettt et 151
REfErenNCEDAIASOUITEitiitit ittt 152
ReferenceDataSourceDeSCIIPLONi.ii e e 153
ReferenceDataSourCEUPUALEouiuiiii e 154
S3REErENCEDAIASOUITE ...ttt ettt 155
S3ReferenceDataSourceDEeSCIPLIONc.uit e 156
S3ReferenceDataSoUrCEUPUALEuiuiii e 157
SOUICESCNEIMA ...ttt ettt et 158
[o o U] 0 =Y oL 1] (o Y 159
TS T 110 1= T 160

Amazon Kinesis Analytics Developer Guide
When Should | Use Amazon Kinesis Analytics?

What Is Amazon Kinesis Analytics?

With Amazon Kinesis Analytics, you can process and analyze streaming data using standard SQL. The
service enables you to quickly author and run powerful SQL code against streaming sources to perform
time series analytics, feed real-time dashboards, and create real-time metrics.

To get started with Amazon Kinesis Analytics, you create a Amazon Kinesis Analytics application that
continuously reads and processes streaming data. The service supports ingesting data from Amazon
Kinesis Streams and Amazon Kinesis Firehose streaming sources. Then, you author your SQL code
using the interactive editor and test it with live streaming data. You can also configure destinations where
you want Amazon Kinesis Analytics to persist the results. Amazon Kinesis Analytics supports Amazon
Kinesis Firehose (Amazon S3, Amazon Redshift, and Amazon Elasticsearch Service), and Amazon
Kinesis Streams as destinations.

When Should | Use Amazon Kinesis Analytics?

Amazon Kinesis Analytics enables you to quickly author SQL code that continuously reads, processes,
and stores data in near real time. Using standard SQL queries on the streaming data, you can construct
applications that transform and gain insights into your data. Following are some of example scenarios
for using Amazon Kinesis Analytics:

¢ Generate time-series analytics — You can calculate metrics over time windows, and then stream
values to Amazon S3 or Amazon Redshift through an Amazon Kinesis Firehose delivery stream.

¢ Feed real-time dashboards — You can send aggregated and processed streaming data results
downstream to feed real-time dashboards.

¢ Create real-time metrics —You can create custom metrics and triggers for use in real-time monitoring,
notifications, and alarms.

Are You a First-time User of Amazon Kinesis
Analytics?

If you are a first-time user of Amazon Kinesis Analytics, we recommend that you read the following sections
in order:

Amazon Kinesis Analytics Developer Guide
AreYou a First-time User of Amazon Kinesis Analytics?

. Read the How It Works section of this guide. This section introduces various Amazon Kinesis
Analytics components that you work with to create an end-to-end experience. For more information,
see Amazon Kinesis Analytics: How It Works (p. 3).

. Try the Getting Started Exercises. For more information, see Getting Started (p. 16).
. Explore the streaming SQL concepts. For more information, see Streaming SQL Concepts (p. 30).

. Try additional examples. For more information, see Example Amazon Kinesis Analytics
Applications (p. 42).

Amazon Kinesis Analytics Developer Guide

Amazon Kinesis Analytics: How It
Works

An application is the primary resource in Amazon Kinesis Analytics that you can create in your account.
You can create and manage applications using the console or the Amazon Kinesis Analytics APl. Amazon
Kinesis Analytics provides API operations to manage applications. For a list of API operations, see
Actions (p. 88).

Amazon Kinesis Analytics applications continuously read and process streaming data in real-time. You
write application code using SQL to process the incoming streaming data and produce output. Then,
Amazon Kinesis Analytics writes the output to a configured destination. The following diagram illustrates
a typical application architecture.

——
 Amazon
Kinesis stream
or mH —_—
. Amazon
| Kinesis stream
— and/or

/ Application | _.nrap_nll_C_at_C\[L | =
Firshoee | tn-application | code GUEpLE Streams -
dellvery stream T e 3 b1

put streams - —— -
| straaming input = = \:—._- Amazan 53
- - = Firehose bucket

\ delivery stream Amazon
= Radshift tabie

In-application
&rror stream

Reference table

53 object

| Amazon Kinesis Analytics application
_Reference data / .

Womd

Each application has a name, description, version ID, and status. Amazon Kinesis Analytics assigns a
version ID when you first create an application. This version ID is updated when you update any application
configuration. For example, if you add an input configuration, add or delete a reference data source, or
add or delete output configuration, or update application code, Amazon Kinesis Analytics updates the
current application version ID. Amazon Kinesis Analytics also maintains timestamps when an application
was created and last updated.

In addition to these basic properties, each application consists of the following:

¢ Input — The streaming source for your application. You can select either an Amazon Kinesis stream
or a Firehose delivery stream as the streaming source. In the input configuration, you map the streaming
source to an in-application input stream. The in-application stream is like a continuously updating table

Amazon Kinesis Analytics Developer Guide

upon which you can perform the SELECT and INSERT SQL operations. In your application code you
can create additional in-application streams to store intermediate query results.

You can optionally partition a single streaming source in multiple in-application input streams to improve
the throughput. For more information, see Limits (p. 82) and Configuring Application Input (p. 5).

Amazon Kinesis Analytics provides a timestamp column in each application stream called Timestamps
and the ROWTIME Column (p. 31). You can use this column in time-based windowed queries. For
more information, see Windowed Queries (p. 34).

You can optionally configure a reference data source to enrich your input data stream within the
application. It results in an in-application reference table. You must store your reference data as an
object in your S3 bucket. When the application starts, Amazon Kinesis Analytics reads the S3 object
and creates an in-application table. For more information, see Configuring Application Input (p. 5).

¢ Application code — A series of SQL statements that process input and produce output. You can write
SQL statements against in-application streams, reference tables, and you can write JOIN queries to
combine data from both of these sources.

In its simplest form, application code can be a single SQL statement that selects from a streaming input
and inserts results into a streaming output. It can also be a series of SQL statements where output of
one feeds into the input of the next SQL statement. Further, you can write application code to split an
input stream into multiple streams and then apply additional queries to process these streams. For
more information, see Application Code (p. 10).

¢ Output — In application code, query results go to in-application streams. In your application code, you
can create one or more in-application streams to hold intermediate results. You can then optionally
configure application output to persist data in the in-application streams, that hold your application
output (also referred to as in-application output streams), to external destinations. External destinations
can be a Firehose delivery stream or an Amazon Kinesis stream. Note the following about these
destinations:

* You can configure a Firehose delivery stream to write results to Amazon S3, Amazon Redshift, or
Amazon ES.

 You can also write application output to a custom destination, instead of Amazon S3 or Amazon
Redshift. To do that, you specify an Amazon Kinesis stream as the destination in your output
configuration. Then, you configure AWS Lambda to poll the stream and invoke your Lambda function.
Your Lambda function code receives stream data as input. In your Lambda function code, you can
write the incoming data to your custom destination. For more information, see Using AWS Lambda
with Amazon Kinesis Analytics.

For more information, see Configuring Application Output (p. 11).

In addition, note the following:

http://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html
http://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html

Amazon Kinesis Analytics Developer Guide
Input

¢ Amazon Kinesis Analytics needs permissions to read records from a streaming source and write
application output to the external destinations. You use IAM roles to grant these permissions.

* Amazon Kinesis Analytics automatically provides an in-application error stream for each application.
If your application has issues while processing certain records, for example because of a type mismatch
or late arrival, that record will be written to the error stream. You can configure application output to
direct Amazon Kinesis Analytics to persist the error stream data to an external destination for further
evaluation. For more information, see Error Handling (p. 12).

« Amazon Kinesis Analytics ensures that your application output records are written to the configured
destination. It uses an "at least once" processing and delivery model, even in the event of an application
interruption for various reasons. For more information, see Delivery Model for Persisting Application
Output to External Destination (p. 12).

Topics
¢ Configuring Application Input (p. 5)
e Application Code (p. 10)
¢ Configuring Application Output (p. 11)
e Error Handling (p. 12)

¢ Granting Amazon Kinesis Analytics Permissions to Access Streaming Sources (Creating an IAM
Role) (p. 13)

Configuring Application Input

Topics
¢ Configuring a Streaming Source (p. 5)
¢ Configuring a Reference Source (p. 7)
¢ Using the Schema Discovery Feature and Related Editing (p. 9)

Your Amazon Kinesis Analytics application can receive input from a single streaming source and, optionally,
use one reference data source. For more information, see Amazon Kinesis Analytics: How It Works (p. 3).
The sections in this topic describe the application input sources.

Configuring a Streaming Source

At the time you create an application, you specify a streaming source. You can also modify and input
after you create the application. Amazon Kinesis Analytics supports the following streaming sources for
your application:

¢ An Amazon Kinesis stream
¢ An Amazon Kinesis Firehose delivery stream

Amazon Kinesis Analytics continuously polls the streaming source for new data and ingests it in
in-application streams according to the input configuration. Your application code can query the
in-application stream. As part of input configuration you provide the following:

« Streaming source — You provide the Amazon Resource Name (ARN) of the stream and an IAM role
that Amazon Kinesis Analytics can assume to access the stream on your behalf.

Amazon Kinesis Analytics Developer Guide
Configuring a Streaming Source

 In-application stream name prefix —When you start the application, Amazon Kinesis Analytics creates
the specified in-application stream. In your application code, you access the in-application stream using
this name.

You can optionally map a streaming source to multiple in-application streams. For more information,
see Limits (p. 82). In this case, Amazon Kinesis Analytics creates the specified number of in-application
streams with names as follows: pr ef i x_001, prefi x_002, and pr ef i x_003. By default, Amazon
Kinesis Analytics maps the streaming source to one in-application stream called pr ef i x_001.

There is a limit on the rate that you can insert rows in an in-application stream. Therefore, Amazon
Kinesis Analytics supports multiple such in-application streams to enable you to bring records into your
application at a much faster rate. If you find your application is not keeping up with the data in the
streaming source, you can add units of parallelism to improve performance.

¢ Mapping schema —You describe the record format (JSON, CSV) on the streaming source, and describe
how each record on the stream maps to columns in the in-application stream that is created. This is
where you provide column names and data types.

Note

Amazon Kinesis Analytics adds quotation marks around the identifiers (stream name and column
names) when creating the input in-application stream. When querying this stream and the
columns, you must specify them in quotation marks using the exact same casing (matching
lowercase and uppercase letters exactly). For more information about identifiers, see Identifiers
in the Amazon Kinesis Analytics SQL Reference.

You can create application and configure inputs in the Amazon Kinesis Analytics console. The console
then makes the necessary API calls. You can configure application input when you create a new application
API or add input configuration to an existing application. For more information, see CreateApplication (p. 95)
and AddApplicationInput (p. 89). The following is the input configuration part of the Cr eat eappl i cati on
API request body:

"I nputs": |
{
"I nput Schema": {
"RecordCol ums": [

{
"I sDropped”: bool ean,
"Mappi ng": "string",
"Name": "string",
"Sql Type": "string"
}
I,
"RecordEncodi ng": "string",

"RecordFormat": {
"Mappi ngPar aneters": {
" CSVMappi ngPar anet ers": {
"RecordCol umbDelimter": "string",
"RecordRowDel imter": "string"
}
" JSONMappi ngPar aneters”: {
"RecordRowPat h": "string"
}

}

"Recor dFor mat Type": "string"

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-identifiers.html

Amazon Kinesis Analytics Developer Guide
Configuring a Reference Source

}

H

"Ki nesi sFi rehosel nput": {
"ResourceARN': "string",
"Rol eARN': "string"

H

"Ki nesi sStreansl nput": {
"ResourceARN': "string",
"Rol eARN': "string"

}

"Name": "string"

Configuring a Reference Source

You can also optionally add a reference data source to an existing application to enrich the data coming
in from streaming sources. You must store reference data as an object in your S3 bucket. When the
application starts, Amazon Kinesis Analytics reads the S3 object and creates an in-application reference
table. Your application code can then join it with an in-application stream.

You store reference data in the S3 object using supported formats (CSV, JSON). For example, suppose
your application performs analytics on stock orders. Assume the following record format on the streaming
source:

Ticker, SalePrice, Oderld

AMZN $700 1003
XYZ $250 1004

In this case, you might then consider maintaining a reference data source to provide details for each stock
ticker, such as company name:

Ti cker, Company
AMZN, Anazon
XYZ, SonmeConpany

Amazon Kinesis Analytics provides the following APIs to manage reference data sources.

¢ AddApplicationReferenceDataSource (p. 93)
¢ UpdateApplication (p. 115)

Note

Amazon Kinesis Analytics console does not support managing reference data sources for your
applications. You can use the AWS CLI to add reference data source to your application. For
an example, see Example: Adding Reference Data to an Amazon Kinesis Analytics
Application (p. 58).

Note the following:

« If the application is running, Amazon Kinesis Analytics creates an in-application reference table, and
then loads the reference data immediately.

Amazon Kinesis Analytics Developer Guide
Configuring a Reference Source

« If the application is not running (for example, it's in the ready state), Amazon Kinesis Analytics only
saves the updated input configuration. When the application starts running, Amazon Kinesis Analytics
loads the reference data in your application as a table.

If you want to refresh the data after Amazon Kinesis Analytics creates the in-application reference table,
perhaps because you updated the S3 object or you want to use different S3 object, you must explicitly
call the UpdateApplication (p. 115). Amazon Kinesis Analytics does not refresh the in-application reference
table automatically.

There is a limit on the size of the S3 object that you can create as a reference data source. For more
information, see Limits (p. 82). If the object size exceeds the limit, Amazon Kinesis Analytics can't load
the data. The application state appears as running, but the data is not being read.

When you add a reference data source, you provide the following information:

» S3 bucket and object key name — In addition to bucket name and object key, you also provide an
IAM role that Amazon Kinesis Analytics can assume to read the object on your behalf.

 In-application reference table name — Amazon Kinesis Analytics creates this in-application table and
populates it by reading the S3 object. This is the table name you specify in your application code.

« Mapping schema —You describe the record format (JSON, CSV), encoding of data stored in the S3
object. You also describe how each data element maps to columns in the in-application reference table.

The following shows the request body in the AddAppl i cati onRef er enceDat aSour ce API request.

"applicationName": "string",
"CurrentapplicationVersionld": nunber,
"Ref erenceDat aSource": {
"ReferenceSchema": {
"RecordCol ums": [

{
"I sDropped”: bool ean,
"Mappi ng": "string",
"Name": "string",
"Sql Type": "string"

}

]

"RecordEncodi ng": "string",
"RecordFormat": {
"Mappi ngPar aneters": {
" CSVMappi ngPar aneters": {
"RecordCol umbDelinmter": "string",
"RecordRowDel im ter": "string"
H
" JSONMappi ngPar aneters”: {
"RecordRowPat h": "string"
}
},
"Recor dFor mat Type": "string"

Amazon Kinesis Analytics Developer Guide
Using the Schema Discovery Feature and Related Editing

" S3Ref er enceDat aSource": {
"Bucket ARN': "string",
"Fil eKey": "string",
"Ref erenceRol eARN': "string"
}

"Tabl eNanme": "string"

Using the Schema Discovery Feature and Related
Editing

Providing an input schema that describes how records on the streaming input map to in-application stream
can be cumbersome and error prone. You can use the DiscoverinputSchema (p. 107) API (called the
discovery API) to infer a schema. Using random samples of records on the streaming source, the API
can infer a schema (that is, column names, data types, and position of the data element in the incoming
data).

Note
You can use the discovery API only to infer a schema for a streaming source. It is not supported
for inferring schema for a reference data source.

The console uses the same discovery feature. For a specified streaming source, the console shows the
inferred schema. Using the console, you can also update the schema, such as change column names,
data types, etc. However, you need to make changes carefully to ensure that you do not create an invalid
schema. For more information, see Error Handling (p. 12).

After you finalize a schema for your in-application stream, there are functions you can use to manipulate
string and date time values. You can leverage these functions in your application code when working with
rows in the resulting in-application stream. For more information, see Example: Manipulating Strings and
Date Times (p. 43).

Schema Discovery Issues

What happens if Amazon Kinesis Analytics does not infer a schema for a given streaming source?

Amazon Kinesis Analytics will infer your schema for common formats, such as CSV and JSON, which
are UTF-8 encoded. Amazon Kinesis Analytics supports any UTF-8 encoded records including raw text
like application logs and records with custom column and row delimiter. You can define as schema
manually using the schema editor in the console (or using the API) if Amazon Kinesis Analytics does not
infer a schema.

If you your data does not follow a pattern which you can specify using the schema editor, you can define
a schema as a single column of type VARCHAR(N), where N is the largest number of characters you
expect your record to include. From there, you can use string and date time manipulation to structure
your data after it is in an in-application stream. More information on how to do this is found in the String
and Date Time manipulation section. For examples, see Example: Manipulating Strings and Date
Times (p. 43).

Amazon Kinesis Analytics Developer Guide
Application Code

Application Code

Application code is a series of SQL statements that process input and produce output. These SQL
statements operate on in-application streams and reference tables. For more information, see Amazon
Kinesis Analytics: How It Works (p. 3).

In relational databases, you work with tables, using INSERT statements to add records and the SELECT
statement to query the data. In Amazon Kinesis Analytics, you work with streams. You can write a SQL
statement to query these streams. The results of querying one in-application stream are always sent to
another in-application stream. When performing complex analytics, you might create several in-application
streams to hold the results of intermediate analytics. And then finally, you configure application output to
persist results of the final analytics (from one or more in-application streams) to external destinations. In
summary, the following is a typical pattern for writing application code:

¢ The SELECT statement is always used in the context of an INSERT statement. That is, when you
select rows, you insert results into another in-application stream.

¢ The INSERT statement is always used in the context of a pump. That is, you use pumps to write to an
in-application stream.

The following example application code reads records from one in-application
(SOURCE_SQL_STREAM_001) stream and write it to another in-application stream
(DESTINATION_SQL_STREAM).You can insert records to in-application streams using pumps, as shown
following:

CREATE OR REPLACE STREAM " DESTI NATI ON_SQ._STREAM' (ti cker_symbol VARCHAR(4),
change DOUBLE,
pri ce DOUBLE);

-- Create a punp and insert into output stream

CREATE OR REPLACE PUWP " STREAM PUMP" AS

I NSERT | NTO " DESTI NATI ON_SQL_ STREAM'
SELECT STREAM ti cker_synmbol, change, price
FROM " SOURCE_SQL_STREAM 001";

The identifiers that you specify for stream names and column names follow standard SQL conventions.
For example, if you put quotation marks around an identifier, it will make the identifier case-sensitive. If
you don't, the identifier will default to uppercase. For more information about identifiers, see Identifiers

in the Amazon Kinesis Analytics SQL Reference.

Your application code can consist of many SQL statements. For example:

¢ You can write SQL queries in a sequential manner where the result of one SQL statement feeds into
the next SQL statement.

« You can also write SQL queries that run independent of each other. For example, you can write two
SQL statements that query the same in-application stream, but send output into different in-applications
streams. You can then query the newly created in-application streams independently.

You can create in-application streams to save intermediate results. You insert data in in-application
streams using pumps. For more information, see In-Application Streams and Pumps (p. 30).

If you add a in-application reference table, you can write SQL to join data in in-application streams and
reference tables. For more information, see Example: Adding Reference Data to an Amazon Kinesis
Analytics Application (p. 58).

10

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-identifiers.html

Amazon Kinesis Analytics Developer Guide
Output

According to the application's output configuration, Amazon Kinesis Analytics writes data from specific
in-application streams to the external destination according to the application's output configuration. Make
sure that your application code writes to the in-application streams specified in the output configuration.

For more information, see the following topics:

¢ Streaming SQL Concepts (p. 30)
¢ Amazon Kinesis Analytics SQL Reference

Configuring Application Output

In your application code, you write the output of SQL statements to one or more in-application streams.
You can optionally add output configuration to your application to persist everything written to an
in-application stream to an external destination such as an Amazon Kinesis stream or a Firehose delivery
stream.

There is a limit on the number of external destinations you can persist an application output. For more
information, see Limits (p. 82).

Note
We recommend that you use one external destination to persist in-application error stream data
SO you can investigate the errors.

In each of these output configurations, you provide the following:

* In-application stream name — This is the stream that you want to persist to an external destination.

¢ External destination — You can persist data to an Amazon Kinesis stream or a Firehose delivery
stream. You provide the Amazon Resource Name (ARN) of the stream and an IAM role that Amazon
Kinesis Analytics can assume write to the stream on your behalf. You also describe the record format
(JSON, CSV) to Amazon Kinesis Analytics to use when writing to the external destination.

Amazon Kinesis Analytics looks for the in-application stream that you specified in the output configuration
(note that the stream name is case-sensitive and must match exactly). You should make sure that your
application code creates this in-application stream.

You can configure the application output using the console. The console makes the API call to save the
configuration. The following JSON fragment shows the Qut put s section in the Cr eat eAppl i cati on
request body.

"Qutputs": [
{
"how it -wor ks-out putchema": {
"Recor dFor mat Type": "string"

}

Ki nesi sFi rehoseQut put": {
"Resour ceARN': "string",
"Rol eARN": "string"

}

Ki nesi sStreanmsQut put": {
"ResourceARN': "string",
"Rol eARN': "string"

}

Name": "string"

11

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Analytics Developer Guide
Application Output Delivery Model

If Amazon Kinesis Analytics service is not able to write to the streaming destination, the service continues
to try indefinitely. This creates back pressure and your application will fall behind. And, if this is not
resolved, your application will eventually stop processing new data.

Delivery Model for Persisting Application Output
to External Destination

Amazon Kinesis Analytics uses an "at least once" delivery model for application output to the configured
destinations. When an application is running, Amazon Kinesis Analytics takes internal checkpoints, which
are points in time when output records were delivered to the destinations and there is no data loss. The
service uses the checkpoints as needed to ensure your application output is delivered at least once to
the configured destinations.

In a normal situation, your application processes incoming data continuously, and Amazon Kinesis
Analytics writes the output to the configured destinations such as an Amazon Kinesis stream or a Firehose
delivery stream.

However, your application can be interrupted, either by your choice or by some application configuration
change that causes an interruption or failure, such as:

« You might choose to stop your application and restart it later.

¢ You delete the IAM role that Amazon Kinesis Analytics needs to write your application output to the
configured destination. Without the IAM role, Amazon Kinesis Analytics does not have any permissions
to write to the external destination on your behalf.

* Network outage or other internal service failures causing your application to stop running momentarily.

When your application starts working again, Amazon Kinesis Analytics ensures it continues to process
and write output from a point before or equal to when the failure occurred, so that it does not miss delivering
any of your application output to the configured destinations.

If you configured multiple destinations from same in-application stream, after the application recovers
from failure, Amazon Kinesis Analytics resumes persisting output to the configured destinations from the
last record that was delivered to the slowest destination. This might result in the same output record
delivered more than once to other destinations. In this case you need to handle potential duplications in
the destination externally.

Error Handling

Amazon Kinesis Analytics returns API or SQL errors directly to you. For more information about API
operations, see Actions (p. 88). For more information about handling SQL errors, see Amazon Kinesis
Analytics SQL Reference.

Amazon Kinesis Analytics reports runtime errors using an in-application error stream called er r or _st r eam

12

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html
http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Analytics Developer Guide
Reporting Errors Using an In-Application Error Stream

Reporting Errors Using an In-Application Error
Stream

Amazon Kinesis Analytics reports runtime errors to the in-application error stream called er r or _stream
For example:

¢ Arecord read from the streaming source does not conform to the input schema.
« Your application code specifies division by zero.

¢ The rows are out of order (for example, a record appears on the stream with a ROATI ME value that a
user modified that causes a record to go out of order).

we recommend that you either handle these errors programmatically in your SQL code and/or persist the
data on the error stream to an external destination such as a Firehose delivery stream that is configured
to write data to an S3 bucket. This requires you add output configuration (see Configuring Application
Output (p. 11)) to your application. For an example of how in-application error stream works, see Example:
Explore the In-Application Error Stream (p. 75).

Granting Amazon Kinesis Analytics Permissions
to Access Streaming Sources (Creating an IAM
Role)

Amazon Kinesis Analytics needs permissions to read records from a streaming source that you specify
in your application input configuration. Amazon Kinesis Analytics also needs permissions to write your
application output to streams that you specify in your application output configuration.

You can grant these permissions by creating an IAM role that Amazon Kinesis Analytics can assume.
Permissions that you grant to this role determine what Amazon Kinesis Analytics can do when the service
assumes the role.

Note

The information in this section is useful if you want to create an IAM role yourself. When you
create an application in the Amazon Kinesis Analytics console, the console can create an IAM
role for you at that time. The console uses the following naming convention for IAM roles that it
creates:

ki nesi s-anal yti cs- Appl i cati onNane

After the role is created, you can review the role and attached policies in the IAM console.

Each IAM role has two policies attached to it. In the trust policy, you specify who can assume the role.
In the permissions policy (there can be one or more), you specify the permissions that you want to grant
to this role. The following sections describe these policies, which you can use when you create an 1AM
role.

Trust Policy

To grant Amazon Kinesis Analytics permissions to assume a role, you can attach the following trust policy
to an IAM role:

13

Amazon Kinesis Analytics Developer Guide
Permissions Policy

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Allow',
"Principal": {
"Service": "Kkinesisanal ytics.amzonaws. cont
s
"Action": "sts:AssuneRol e"
}
]
}

Permissions Policy

If you are creating an 1AM role to allow Amazon Kinesis Analytics to read from an application's streaming
source, you must grant permissions for relevant read actions. Depending on your streaming source (for
example, an Amazon Kinesis stream or a Firehose delivery stream), you can attach the following
permissions policy.

Permissions Policy for Reading an Amazon Kinesis Stream

"Version": "2012-10-17",
"Statenment": [
{
"Sid": "Readl nputKinesis",
"Effect": "All ow',
"Action": [
"ki nesi s: Descri beStreant,
"ki nesi s: Get Shardlterator"”,
"Kki nesi s: Get Recor ds”

]

source": [
"arn: aws: ki nesi s: aws-regi on: aws-account -i d: streani i nput St ream

Permissions Policy for Reading a Firehose Delivery Stream

"Version": "2012-10-17",
"Statenent": [
{
"Sid": "Readl nput Firehose",
"Effect": "All ow',
"Action": [
"firehose: Descri beDel i veryStreant,
"firehose: Get*"

]

source": [
"arn:aws: firehose: aws-regi on: aws- account -i d: del i verystreanin

14

Amazon Kinesis Analytics Developer Guide
Permissions Policy

put Fi r ehoseNange"

]
}

If you direct Amazon Kinesis Analytics to write output to external destinations in your application output

configuration, you need to grant the following permission to the 1AM role.

Permissions Policy for Writing to an Amazon Kinesis Stream

"Version": "2012-10-17",
"Statenent": [
{
"Sid': "WiteQutputKinesis",
"Effect": "Alow',
"Action": [
"Kki nesi s: Descri beStreant,
"Kki nesi s: Put Record",
"Kki nesi s: Put Recor ds"
I,

"Resource": |

"arn: aws: ki nesi s: aws-regi on: aws- account -i d: stream out put - stream

Permissions Policy for Writing to a Firehose Delivery Stream

"Version": "2012-10-17",
"Statenent": [
{
"Sid': "WiteCQutputFirehose",
"Effect": "Alow',
"Action": [
"firehose: Descri beDel i veryStreant,
"firehose: Put Record",
"firehose: Put Recor dBat ch"
I,

"Resource": |

"arn: aws: firehose: aws-regi on: aws- account -i d: del i veryst r eant out

put-firehose-nanme"

]
}

15

Amazon Kinesis Analytics Developer Guide
Step 1: Set Up an Account

Getting Started

This section provides topics to get you started using Amazon Kinesis Analytics. If you are new to Amazon
Kinesis Analytics, we recommend that you review the concepts and terminology presented in Amazon
Kinesis Analytics: How It Works (p. 3) before performing the steps in the Getting Started section.

Topics
¢ Step 1: Set Up an AWS Account and Create an Administrator User (p. 16)
¢ Step 2: Set Up the AWS Command Line Interface (AWS CLI) (p. 17)
¢ Step 3: Getting Started Exercise (Create an Amazon Kinesis Analytics Application) (p. 18)
¢ Step 4: Console Feature Summary (p. 26)

Step 1: Set Up an AWS Account and Create an
Administrator User

Before you use Amazon Kinesis Analytics for the first time, complete the following tasks:

1. Sign up for AWS (p. 16)
2. Create an IAM User (p. 17)

Sign up for AWS

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up for
all services in AWS, including Amazon Kinesis Analytics. You are charged only for the services that you
use.

With Amazon Kinesis Analytics, you pay only for the resources you use. If you are a new AWS customer,
you can get started with Amazon Kinesis Analytics for free. For more information, see AWS Free Usage
Tier.

If you already have an AWS account, skip to the next task. If you don't have an AWS account, perform
the steps in the following procedure to create one.

16

http://aws.amazon.com//free/
http://aws.amazon.com//free/

Amazon Kinesis Analytics Developer Guide
Create an IAM User

To create an AWS account

1. Open http://aws.amazon.com/, and then choose Create an AWS Account.
2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

Note your AWS account ID because you'll need it for the next task.

Create an IAM User

Services in AWS, such as Amazon Kinesis Analytics, require that you provide credentials when you
access them so that the service can determine whether you have permissions to access the resources
owned by that service. The console requires your password. You can create access keys for your AWS
account to access the AWS CLI or API. However, we don't recommend that you access AWS using the
credentials for your AWS account. Instead, we recommend that you use AWS Identity and Access
Management (IAM). Create an IAM user, add the user to an IAM group with administrative permissions,
and then grant administrative permissions to the IAM user that you created. You can then access AWS
using a special URL and that IAM user's credentials.

If you signed up for AWS, but you haven't created an IAM user for yourself, you can create one using the
IAM console.

The Getting Started exercises in this guide assume that you have a user (admi nuser) with administrator
privileges. Follow the procedure to create adni nuser in your account.

To create an administrator user and sign in to the console

1. Create an administrator user called admi nuser in your AWS account. For instructions, see Creating
Your First IAM User and Administrators Group in the IAM User Guide.

2. A user can sign in to the AWS Management Console using a special URL. For more information,
How Users Sign In to Your Account in the IAM User Guide.

For more information about IAM, see the following:

« Identity and Access Management (IAM)
¢ Getting Started
¢ |IAM User Guide

Next Step

Step 2: Set Up the AWS Command Line Interface (AWS CLI) (p. 17)

Step 2: Set Up the AWS Command Line Interface
(AWS CLI)

Follow the steps to download and configure the AWS Command Line Interface (AWS CLI).

17

http://aws.amazon.com/
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
http://aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/

Amazon Kinesis Analytics Developer Guide
Next Step

Important

You don't need the AWS CLI to perform the steps in the Getting Started exercise. However,
some of the exercises in this guide use the AWS CLI. You can skip this step and go to Step 3:
Getting Started Exercise (Create an Amazon Kinesis Analytics Application) (p. 18), and then set
up the AWS CLI later when you need it.

To set up the AWS CLI

1.

Download and configure the AWS CLI. For instructions, see the following topics in the AWS Command
Line Interface User Guide:

« Getting Set Up with the AWS Command Line Interface
¢ Configuring the AWS Command Line Interface

Add a named profile for the administrator user in the AWS CLI config file. You use this profile when
executing the AWS CLI commands. For more information about named profiles, see Named Profiles
in the AWS Command Line Interface User Guide.

[profile adm nuser]

aws_access_key_id = admi nuser access key ID
aws_secret _access_key = adm nuser secret access key
region = aws-region

For a list of available AWS regions, see Regions and Endpoints in the Amazon Web Services General
Reference.

Verify the setup by entering the following help command at the command prompt:

aws hel p

Next Step

Step 3: Getting Started Exercise (Create an Amazon Kinesis Analytics Application) (p. 18)

Step 3: Getting Started Exercise (Create an
Amazon Kinesis Analytics Application)

In this section, you create your first Amazon Kinesis Analytics application using the console.

Note
We suggest that you review the Amazon Kinesis Analytics: How It Works (p. 3) section before
trying the Getting Started exercise.

For this Getting Started exercise, you can use the following console features:

Demo stream — If you choose to use the demo stream, the console creates an Amazon Kinesis stream
(ki nesi s-anal yti cs-deno- st rean) inyour account. Then, the console runs a script that populates
stock trade records on the stream. The sample data is stock prices by ticker symbol. You can use this
stream as the streaming source for your application.

18

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-multiple-profiles
http://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Kinesis Analytics Developer Guide
Step 3: Getting Started Exercise

Note

The demo stream remains in your account. You can use it to test other examples in this guide.
However, when you leave the console, the script that the console uses stops populating the
data. When needed, the console provides the option to start populating the stream again.

» Templates with example application code — You use the template code that the console provides
to perform simple analytics on the demo stream.

You use these features to quickly set up your first application as follows:

1. Create an application — You only need to provide a name. The console creates the application and
the service sets the application state to READY.

2. Configure input — First you add a streaming source, the demo stream. You must create a demo stream
in the console before you can use it. Then, the console takes a random sample of records on the demo
stream and infers a schema for the in-application input stream that is created. The console names the
in-application stream SOURCE_SQ._STREAM 001.

The console uses the discovery API to infer the schema. If necessary, you can edit the inferred schema.
For more information, see DiscoverlnputSchema (p. 107). Amazon Kinesis Analytics uses this schema
to create an in-application stream.

When you start the application, Amazon Kinesis Analytics reads the demo stream continuously on
your behalf and inserts rows in the SOURCE_SQ._STREAM 001 in-application input stream.

3. Specify application code —You use a template (called Continuous filter) that provides the following
code:

CREATE OR REPLACE STREAM " DESTI NATI ON_SQL_STREAM'
(synmbol VARCHAR(4), sector VARCHAR(12), CHANGE DOUBLE, price DOUBLE);

-- Create punp to insert into output.
CREATE OR REPLACE PUWP " STREAM PUMP" AS
| NSERT | NTO " DESTI NATI ON_SQL_STREAM'
SELECT STREAM ticker_synbol, sector, CHANGE, price
FROM " SOURCE_SQL_STREAM 001"
WHERE sector SIMLAR TO ' 99ECH% ;

The application code queries the in-application stream SOURCE_SQ._STREAM 001 and inserts the
resulting rows in another in-application stream DESTI NATI ON_SQ._ STREAM using pumps. For more
information about this coding pattern, see Application Code (p. 10).

4. Configuring output — In this exercise, you don't configure any output. That is, you will not persist data
in the in-application stream that your application creates to any external destination. Instead, you verify
guery results in the console. There are additional examples in this guide that show how to configure
output. For example, see Example: Simple Alerts (p. 64).

Important
The exercise uses the US East (N. Virginia) Region (us-east-1) to set up the application. You
can use any of the supported regions.

19

Amazon Kinesis Analytics Developer Guide
Step 3.1: Create an Application

Next Step

Step 3.1: Create an Application (p. 20)

Step 3.1: Create an Application

In this section you create an Amazon Kinesis Analytics application. You configure application input in the
next step.

1. Signin to the AWS Management Console and open the Analytics console at
https://console.aws.amazon.com/kinesisanalytics.

2. Choose Create new application.

3. Onthe New application page, type an application name, type a description, and then choose Save
and continue.

New application

Application name* = Exampleapp

D!SCI‘IPUU" Kmesis Analylics Gelting Started exerntise
To enable iMeractivity with your data dunng configuraton of your streaming applcation you will be prompted
10 U your appication. Usage based charges apply. See (& KInesis Analyties pricing for more info

Cancel Save and continue

This creates an Amazon Kinesis Analytics application with a status of READY. The console shows
the application hub where you can configure input and output.

Note

To create an application, the CreateApplication (p. 95) operation requires only the application
name. You can add input and output configuration after you create an application in the
console.

In the next step, you configure input for the application. In the input configuration, you add a streaming
data source to the application and discover a schema for an in-application input stream by sampling
data on the streaming source.

Next Step

Step 3.2: Configure Input (p. 20)

Step 3.2: Configure Input

Your application needs a streaming source. To help you get started, the console can create a demo
stream (called ki nesi s- anal yti cs- denp- st r eam). The console also runs a script that populates
records in the stream. Add a streaming source to your application as follows:

1. Onthe application hub page in the console, choose Connect to a source.

20

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Analytics Developer Guide
Step 3.2: Configure Input

Knesis Analytics dashboard * ExampleApp
ExampleApp
Kinesis Analytics Gelling Slaned exencise
Source
Connect 10 a Kinesis streamigd . a Firehose delivery streami, or easily create and
connect 1o a gemo stream.

Exit to Kinasis Analytics dashboard

2. On the page that appears, review the following:

« Source section where you specify a streaming source for your application. You can select an
existing stream source or create one. In this exercise, you create a new stream, the demo stream.

By default the console names the in-application input stream that is created as
I NPUT_SQL_ STREAM 001. For this exercise, keep this name as it appears.

« Stream reference name — This shows the name of the in-application input stream,
SOURCE_SQL._STREAM 001, that is created. You can change the name, but for this exercise
use this name.

In the input configuration, you map the demo stream to an in-application input stream that is
created. When you start the application, Amazon Kinesis Analytics continuously reads the demo
stream and insert rows in the in-application input stream. You query this in-application input
stream in your application code.

¢ Permission to access the stream —This is where you specify an IAM role. For more information,
see Configuring a Streaming Source (p. 5). You have the option to choose an IAM role that
exists in your account or create a new role. In this exercise, you create a new |IAM role.

After you provide all the information on this page, the console sends an update request (see
UpdateApplication (p. 115)) to add the input configuration the application.

3. Onthe Source page, choose Configure a new stream.
4. Choose Create demo stream. The console does the following to configure the application input:

¢ Creates the Amazon Kinesis stream called ki nesi s- anal yti cs- denp- stream

21

Amazon Kinesis Analytics Developer Guide
Step 3.2: Configure Input

e The console also runs a script that populates the stream with sample stock ticker data.

» Using the discovery API (see DiscoverlnputSchema (p. 107)) infer a schema by reading sample
records on the stream. This is the schema for the in-application input stream that is created. For
more information, see Configuring Application Input (p. 5).

¢ Then, the console shows the inferred schema and the sample data it read from the streaming
source to infer the schema.

The console displays the sample records on the streaming source.

Stream sample

Formatted stream sample Raw stream sample # Edit schema Rediscover schema

T

TICKER_SYMBOL SECTOR CHANGE PRICE

CRM HEALTHCARE

Note the following:

e The Raw stream sample tab shows the raw stream records sampled by the discovery API (see
DiscoverlnputSchema (p. 107)) to infer the schema.

* The Formatted stream sample tab shows the tabular version of the data in the Raw stream
sample tab.

* The Edit schema option allows you to edit the inferred schema. For this exercise, don't change
the inferred schema.

The Rediscover schema option allows you to request the console to run the discovery schema
API again (see DiscoverlnputSchema (p. 107)) and infer the schema.

5. Choose Save and continue.
You now have an application with input configuration added to it. In the next step, you add SQL code
to perform some analytics on the data in-application input stream.

Next Step

Step 3.3: Add Real-Time Analytics (Add Application Code) (p. 23)

22

Amazon Kinesis Analytics Developer Guide
Step 3.3: Add Real-Time Analytics (Add Application
Code)

Step 3.3: Add Real-Time Analytics (Add Application
Code)

You can write your own SQL queries against the in-application stream, but for this exercise you use one
of the templates that provides sample code.

1. Onthe application hub page, choose Go to SQL editor.

GSExample1

Applization status: READY

Source
Kinesis stream: kinesis-anallics-dema-siraam F

our Kinests Analytics appication can receive input from a single streaming saurce

Real-time analytics

Q AUThor your own S0L queries or add SAL from temglates 1o easlly analyze your source

Go to 50L editor

Exit to Kinesis Analytics dashboand

2. Inthe Would you like to start running "GSExamplel"? dialog box, choose Yes, start application.

The console sends a request to start the application (see StartApplication (p. 112)), and then the SQL
editor page appears.

3. The console opens the SQL editor page. Review the page, including the buttons (Add SQL from
templates, Save and run SQL) and various tabs.

4. Inthe SQL editor, choose Add SQL from templates.

5. From the available template list, choose Continuous filter. Note that the sample code reads data
from one in-application stream (the WHERE clause filers the rows) and inserts it in another in-application
stream as follows:

¢ Creates the in-application stream DESTI NATI ON_SQL_ STREAM

¢ Creates a pump STREAM PUMP, uses it to select rows from SOURCE_SQ._ STREAM 001 and insert
them in the DESTI NATI ON_SQL_ STREAM

6. Choose Add this SQL to editor.
7. Test the application code as follows:

Remember, you already started the application (status is RUNNING). Therefore, Amazon Kinesis
Analytics is already continuously reading from the streaming source and adding rows to the
in-application stream SOURCE_SQL_STREAM 001.

a. Inthe SQL Editor, click Save and run SQL. The console first sends update request to save the
application code. Then, the code continuously executes.

23

Amazon Kinesis Analytics Developer Guide
Step 3.3: Add Real-Time Analytics (Add Application
Code)

b. You can see the results in the Real-time analytics tab.

Kinesis Analylics dashbpard > Exampiesppz » SOL edib

Agd SQL from templates

CREATE STREAM "OUTPUT_SOL_STREAM® (ti

9 |CREATE PUMP "ST

11 |SELECT STREAM ticker_symbol, sector, changs, price FROM “IMPUT_SGL_STREAN

14 |WHERE ticker_symbol SIMILAR TO "NAMINE') -

Exit [done editing) Save and run SQL t

Source data Real-time analytics Destination Application status: RUNNING

In-application streams: Pause results {) MNew resulis will be added every 2-10 seconds

AMZN STREAM Beroll i bottom wh pa—
AMIN_STREAM Scroll fo bofiom when new resyits arrive.

T

ROWTIME TICKER_SYMBOL CHANGE FRICE

2016-08-07 23:21 AMZN -5 920000076203045

AMZIN

AMZN

AMZN

AMZN

AMZIN

The SQL Editor has the following tabs:

» The Source data tab shows an in-application input stream that is mapped to the streaming
source. Choose the in-application stream and you can see data coming in. Note the additional
columns in the in-application input stream that were not specified in the input configuration.
These include the following timestamp columns:

* ROWTIME — Each row in an in-application stream has a special column called ROATI ME.
It's the timestamp when Amazon Kinesis Analytics inserted the row in the first in-application
stream (the in-application input stream that is mapped to the streaming source).

* Approximate_Arrival_Time — Each Amazon Kinesis Analytics record includes a value
called Appr oxi mat e_Arri val _Ti nme. It is the approximate arrival timestamp that is set
when the streaming source successfully receives and stores the record. When Amazon
Kinesis Analytics reads records from a streaming source, it fetches this column into the
in-application input stream.

These timestamp values are useful in windowed queries that are time-based. For more
information, see Windowed Queries (p. 34).

» The Real-time analytics tab shows all the other in-application streams created by your
application code. It also includes the error stream. Amazon Kinesis Analytics sends any rows
it cannot process to the error stream. For more information, see Error Handling (p. 12).

24

Amazon Kinesis Analytics Developer Guide
Step 3.4: (Optional) Update Application Code

Choose the DESTI NATI ON_SQ._ STREAMto view the rows your application code inserted.
Note again the additional columns that your application code did not create. These include
the ROATI ME timestamp column. Amazon Kinesis Analytics simply copies these values from
the source (SOURCE_SQL._STREAM 001).

» The Destination tab shows the external destination where Amazon Kinesis Analytics writes
the query results. You have not configured any external destination for your application output
yet.

Next Step

Step 3.4: (Optional) Update Application Code (p. 25)

Step 3.4: (Optional) Update Application Code

In this step, you explore how to update the application code.
1. Create another in-application stream as follows:

« Create another in-application stream called DESTI NATI ON_SQL_ STREAM 2.

» Create a pump, and then use it to insert rows in the newly created stream by selecting rows from
the DESTI NATI ON_SQL_STREAM

In the SQL Editor, append the following code to the existing application code:

CREATE OR REPLACE STREAM " DESTI NATI ON_SQL_STREAM 2"
(ticker_synbol VARCHAR(4),
change DOUBLE,
price DOUBLE) ;

CREATE OR REPLACE PUMP " STREAM PUMP_2" AS
| NSERT | NTO " DESTI NATI ON_SQL_STREAM 2"
SELECT STREAM ti cker_synbol, change, price
FROM " DESTI NATI ON_SQL_STREAM';

Save and run the code. Additional in-application streams appear on the Real-time analytics tab.

2. Create two in-application streams. Filter rows in the SOURCE_SQL_STREAM 001 based on stock
ticker, and then insert them in to these separate streams.

Append the following SQL statements to your application code:

CREATE OR REPLACE STREAM " AMZN_STREAM'
(ticker_synbol VARCHAR(4),
change DOUBLE,
price DOUBLE) ;

CREATE OR REPLACE PUWP "AMZN_PUWP" AS
I NSERT | NTO " AMZN_STREAM'
SELECT STREAM ticker_synbol, change, price
FROM " SOURCE_SQL_STREAM 001"

25

Amazon Kinesis Analytics Developer Guide
Step 3.5: (Optional) Configure Output

VWHERE ticker_synbol SIMLAR TO ' %AMZN% ;

CREATE OR REPLACE STREAM " TGT_STREAM'
(ticker_synbol VARCHAR(4),
change DOUBLE,
price DOUBLE) ;

CREATE OR REPLACE PUWP " TGT_PUMP" AS
I NSERT | NTO " TGT_STREAM'
SELECT STREAM ti cker_synbol, change, price
FROM " SOURCE_SQL_STREAM 001"
WHERE ticker_synbol SIMLAR TO ' %GT% ;

Save and run the code. Notice additional in-application streams on the Real-time analytics tab.

Next Step

Step 3.5: (Optional) Configure Output (p. 26)

Step 3.5: (Optional) Configure Output

You now have your first working Amazon Kinesis Analytics application. In this exercise, you did the
following:

« Created your first Amazon Kinesis Analytics application.

¢ Configured application input that identified the demo stream as the streaming source and mapped it
to an in-application stream (SOURCE_SQL_STREAM 001) that is created. Amazon Kinesis Analytics
continuously reads the demo stream and inserts records in the in-application stream.

¢ Your application code queried the SOURCE_SQL._ STREAM 001 and wrote output to another in-application
stream called DESTI NATI ON_SQL_ STREAM

Now you can optionally configure application output to write the application output to an external destination.
That is, configure the application output to write records in the DESTI NATI ON_SQ._ STREAMto an external
destination. For this exercise, we make this an optional step. You configure the destination in the next
exercise.

Next Step

Step 4: Console Feature Summary (p. 26).

Step 4: Console Feature Summary

This section summarizes some of the useful console features you used in the Getting Started exercise.
These are used in several examples in this guides.

« Demo stream — An Amazon Kinesis Analytics application requires a streaming source. Several examples
of SQL code in this guide use a demo stream that the console can create in your account. It is an
Amazon Kinesis stream called ki nesi s- anal yti cs- denb- st r eam The console also runs a script
that continuously add sample data (simulated stock trade records) on the stream as shown:

26

Amazon Kinesis Analytics Developer Guide
Step 4: Console Feature Summary

Stream sample

Formatted stream sample Raw stream sampie # Edit schema Rediscover schema

T

TICKER_SYMBOL ~ SECTOR CHANGE PRICE

CRM HEALTHCARE

Note

The demo stream remains in your account. You can use it to test other examples in this guide.
However, when you leave the console, the script that the console uses stops populating the
data. When needed, the console provides the option to start populating the stream again.

¢ Templates — In the SQL editor, you can either author your own code yourself or choose Add SQL
from templates to start with a template that provide example code. The example applications in this
guide use some of these templates. For more information, see Example Amazon Kinesis Analytics
Applications (p. 42).

« Various Tabs in SQL editor — Note the tabs in the SQL editor.

27

Amazon Kinesis Analytics Developer Guide
Step 4: Console Feature Summary

Kinesis Analytics dashboard » ExampleAppZ » S0L editor

Add SQL from templates

JL_STREAM™ (ticker_sywbol

5 |CREATE PUMP "STR A5 INSERT INTD “OUTFUT_SQL_STREAM™

VARCHAR(4), seckor WARCHAR(1Z), chenge DOUBLE, price DOUBLE);

Pause results

BMTH_STREAM

DESTINATION_SQL_STREAM_2
T
OUTPUT_SOL_STREAM
ROWTIME
TGT_STREAM

2016-08-0F 23:23.30 441

» Source tab — Identifies the streaming source and in-application input stream to which it maps (as

the application input configuration).

Scroll i boftom when new results arrve:

TICKER_SYMBOL

AMIN

18 select all ns treas
11 |SELECT STREAM ticker_sywbol, sector, change, price

12 e a st ern [_ m g

13 E

14

n

Exit ([done editing) Save and run 30L
see

Source data Real-time analytics Destination Application status: RUNNING

€) Mew results will be asded every 2-10 seconds

CHANGE

2016-08-07 23:21.46 362 AMIN -8.020000075203945 816.10000244 14062
2016-08-0T 232147 341 AMZN 1425 837 4400024414062
2016-08-07 23:21:48 382 AMZN £ 380000114440018 842 8200073242188
2016-08- AMIN -15 9390085803433 826 8800046828125
2016-08-07 AMZN 3 619900885550082 8305

-12 8500003814697 27

PRICE

820 08001 FOEGE4 38

I Kinesis-analytics-demo-stream: |
INPUT_SOL_STREAM_B81 r

Refresh stream sample

Export results

Kinesis An ics dashboard » ExampleAppZ ¥ S0OL editor a
Add SQL from templates Export S0L
i a

2
3 . FLLter baded 54 & WHER " 3
4
5 Create out
6 | CREATE STREAM
B |-~ Creste pumo inta output
5 | CREATE PUMP *5T 4% INSERT INTO “OUTPUT_SOL_STREAM®
1 5 all r stresa
11 nge, price FROM I
12 m {_ =5 all substring
13
14
! =
Exit (done editing) Save and run SQL
s
source Real-time analytics Destination Application status: RUNMNG

Edit schema

ROWTIME TICKER SYMBOL SECTOR CHANGE PRICE PARTITION_KEY
TIMESTAMP VARCHAR(4) VARCHAR({16) REAL REAL WARCHAR(I1Z)
2016-08-07 2254 45977 KFU ENERGY 1.39 4583 Paniionkey
2016-0B8-07 2254 45977 Q2 FINAKCLAL &7 22561 Paniionkey E
2018 F 5445077 DEG ENERGY 013 284 Partifionkey

Note that Amazon Kinesis Analytics provides the following timestamp columns (you don't need to
provide explicit mapping in your input configuration).

28

Amazon Kinesis Analytics Developer Guide
Step 4: Console Feature Summary

« ROWTIME - Each row in an in-application stream has a special column called ROATI ME. It is the
timestamp when Amazon Kinesis Analytics inserted the row in the first in-application stream.

» Approximate_Arrival_Time — Records on your streaming source include the
Appr oxi mat e_Arri val _Ti mest anp column. It is the approximate arrival timestamp that is set
when the streaming source successfully receives and stores the record. Amazon Kinesis Analytics
fetches this column into the in-application input stream as Appr oxi mat e_Arri val _Ti me. Amazon
Kinesis Analytics provides this column only in the in-application input stream that is mapped to the
streaming source.

These timestamp values are useful in windowed queries that are time-based. For more information,
see Windowed Queries (p. 34).

* Real-time analytics tab — Shows all the in-application streams that your application code creates.
This also includes the error stream (er r or _st r ean) that Amazon Kinesis Analytics provides for all
applications.

s dashboard > GSExample! > SOL edor o

Add SGL from templates

Exit (done editing) Save and run SQL

Source SGL Results Destination Application status: RUNNING

In-application streams: Pause results 3 Mew results will be added every 2-10 seconds

SCroll B0 botlom when new results arrve

T
ROWTIME TICKER_SYMBOL CHANGE PRICE
REA
2016-08-05 D0DD'29 195 AMZN 15.5500 39
e Firea 2016-08-05 000029195 AMZN £ 135900BESAR550E 9g

» Destination tab — Enables you to configure application output, to persist in-application streams to
external destinations. You can configure output to persist data in any of the in-application streams
to external destinations. For more information, see Configuring Application Output (p. 11).

For additional examples, see Example Amazon Kinesis Analytics Applications (p. 42).

29

Amazon Kinesis Analytics Developer Guide
In-Application Streams and Pumps

Streaming SQL Concepts

Amazon Kinesis Analytics implements the ANSI 2008 SQL standard with extensions. These extensions
enable you to process streaming data. The following topics cover key streaming SQL concepts.

Topics
¢ In-Application Streams and Pumps (p. 30)
¢ Timestamps and the ROWTIME Column (p. 31)
e Continuous Queries (p. 34)
* Windowed Queries (p. 34)
e Streaming Data Operations: Stream Joins (p. 40)

In-Application Streams and Pumps

When you configure application input, you map a streaming source to an in-application stream that is
created. Data continuously flows from the streaming source into the in-application stream. An in-application
stream works like a table that you can query using SQL statements, but it's called a stream because it
represents continuous data flow.

Note

Do not confuse in-application streams with the Amazon Kinesis streams and Firehose delivery
streams. In-application streams exist only in the context of an Amazon Kinesis Analytics
application. Amazon Kinesis streams and Firehose delivery streams exist independent of your
application, and you can configure them as a streaming source in your application input
configuration or as a destination in output configuration.

You can also create additional in-application streams as needed to store intermediate query results.
Creating an in-application stream is a two-step process. First, you create an in-application stream, and
then you pump data into it. For example, suppose the input configuration of your application creates an
in-application stream called | NPUTSTREAM In the following example, you create another stream
(TEMPSTREAM), and then you pump data from | NPUTSTREAMInto it.

1. Create an in-application stream (TEMPSTREAM with three columns, as shown following:

CREATE OR REPLACE STREAM " TEMPSTREAM' (
"columl1" BI G NT NOT NULL,

30

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html

Amazon Kinesis Analytics Developer Guide
Timestamps and the ROWTIME Column

"col um?2" | NTEGER,
"col utm3" VARCHAR(64)) ;

The column names are specified in quotes, making them case-sensitive. For more information, see
Identifiers in the Amazon Kinesis Analytics SQL Reference.

2. Insert data into the stream using a pump. A pump is a continuous insert query running that inserts data
from one in-application stream to another in-application stream. The following statement creates a
pump (SAMPLEPUMP) and inserts data into the TEMPSTREAMby selecting records from another stream
(I NPUTSTREAM.

CREATE OR REPLACE PUMP " SAMPLEPUMP" AS
I NSERT | NTO " TEMPSTREAM' (" col um1",
"col um2",
"col um3")
SELECT STREAM i nput col um1,
i nput col um2,
i nput col um3
FROM " | NPUTSTREAM' ;

You can have multiple writers insert into an in-application stream, and there can be multiple readers
selected from the stream. You can think of an in-application stream as implementing a publish/subscribe
messaging paradigm in which the data row, including time of creation and time of receipt, can be processed,
interpreted, and forwarded by a cascade of streaming SQL statements, without having to be stored in a
traditional RDBMS.

After an in-application stream is created, you can perform normal SQL queries.

Note
When querying streams, most SQL statements are bound using a row-based or time-based
window. For more information, see Windowed Queries (p. 34).

You can also join streams. For examples of joining streams, see Streaming Data Operations: Stream
Joins (p. 40).

Timestamps and the ROWTIME Column

In-application streams include a special column called ROATI ME. It stores a timestamp when Amazon
Kinesis Analytics inserts a row in the first in-application stream. ROM 1 ME reflects the timestamp at which
Amazon Kinesis Analytics inserted a record into the first in-application stream after reading from the
streaming source. This ROATI ME value is then maintained throughout your application.

Note
When you pump records from one in-application stream into another, you don't need to explicitly
copy the ROATI ME column, Amazon Kinesis Analytics copies this column for you.

Amazon Kinesis Analytics guarantees that the ROATI ME values are monotonically increased. You use
this timestamp in time-based windowed queries. For more information, see Windowed Queries (p. 34).

You can access the ROWTIME column in your SELECT statement like any other columns in your
in-application stream. For example:

31

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-identifiers.html

Amazon Kinesis Analytics Developer Guide
Understanding Various Times in Streaming Analytics

SELECT STREAM ROWTI ME,
sonme_col _1,
sone_col _2

FROM SOURCE_SQL_STREAM 001

Understanding Various Times in Streaming
Analytics

In addition to ROM| MVE, there are other types of times in real-time streaming applications. These are:

« Event time — The timestamp when the event occurred. This is also sometimes called the client-side
time. It is often desirable to use this time in analytics because it is the time when an event occurred.
However, many event sources, such as mobile phones and web clients, do not have reliable clocks,
which can lead to inaccurate times. In addition, connectivity issues can lead to records appearing on
a stream not in the same order the events occurred.

¢ Ingest time — The timestamp of when record was added to the streaming source. Amazon Kinesis
Streams includes a field called Appr oxi mat eArri val Ti neSt anp in every record that provides this
timestamp. This is also sometimes referred to as the server-side time. This ingest time is often the
close approximation of event time. If there is any kind of delay in the record ingestion to the stream,
this can lead to inaccuracies, which are typically rare. Also, the ingest time is rarely out of order, but it
can occur due to the distributed nature of streaming data. Therefore, Ingest time is a mostly accurate
and in-order reflection of the event time.

¢ Processing time — The timestamp when Amazon Kinesis Analytics inserts a row in the firstin-application
stream. Amazon Kinesis Analytics provides this timestamp in the ROATI ME column that exists in each
in-application stream. The processing time is always monotonically increasing, but it will not be accurate
if your application falls behind (if an application falls behind, the processing time will not accurately
reflect the event time). This ROATI ME is very accurate in relation to the wall clock, but it might not be
the time when the event actually occurred.

As you can see from the preceding discussion, using each of these times in windowed queries that are
time-based has advantages and disadvantages. We recommend you choose one or more of these times,
and a strategy to deal with the relevant disadvantages based on your use case scenario.

Note
If you are using row-based windows, time is not an issue and you can ignore this section.

We recommend a two-window strategy that uses two time-based, both ROATI ME and one of the other
times (ingest or event time).

¢ Use ROATI ME as the first window, which controls how frequently the query emits the results, as shown
in the following example. It is not used as a logical time.

¢ Use one of the other times that is the logical time you want to associated with your analytics. This time
represents when the event occurred. In the following example, the analytics goal is to group the records
and return count by ticker.

The advantage of this strategy is that it can use a time that represents when the event occurred, and it

can gracefully handle when your application falls behind or when events arrive out of order. If the application
falls behind when bringing records into the in-application stream, they are still grouped by the logical time
in the second window. The query uses ROATI ME to guarantee the order of processing. Any records that

32

Amazon Kinesis Analytics Developer Guide
Understanding Various Times in Streaming Analytics

are late (ingest timestamp shows earlier value compared to the ROM| ME value) are processed successfully
too.

Consider the following query against the demo stream used in the Getting Started Exercise. The query
uses the GROUP BY clause and emits ticker count in a one-minute tumbling window.

CREATE OR REPLACE STREAM " DESTI NATI ON_SQL_STREAM'

(i ngest _tine ti mest anp,
Ti cker _Synbol VARCHAR(12) ,
synbol _count i nteger);

- - CREATE OR REPLACE PUWP data into output
CREATE OR REPLACE PUWP "nyQut put PUMP" AS
| NSERT | NTO " DESTI NATI ON_SQL_STREAM'
-- select the ingest time used in the GROUP BY cl ause
SELECT STREAM FLOOR(" SOURCE_SQL_STREAM 001". Approxi mate_Arrival _Tine TO
M NUTE) AS ingest_tine,
Ti cker _Synbol ,
COUNT(*) AS symnbol _count
FROM " SOURCE_SQL_STREAM 001"
GROUP BY Ti cker _Synbol ,
-- use process tine as a trigger, which can be different tine
wi ndow as the aggregate
FLOOR(" SOURCE_SQL_STREAM 001" . ROMI ME TO M NUTE) ,
-- aggregate records based upon ingest tine
FLOOR(" SOURCE_SQ._STREAM 001". Approxi mate_Arrival _Time TO
M NUTE) ;

In GROUP BY, you first group the records based on ROM| ME in a one-minute window and then by
Appr oxi mat e_Arrival _Ti ne.

Note that the timestamp values in the result are rounded to nearest minute. The first group result emitted
by the query shows records in the first minute. The second group of results emitted shows records in the
next minutes based on ROATI ME. The last record indicates that the application was late in bringing the
record in the in-application stream (it shows a late ROMTI ME value compared to the ingest timestamp).

ROWTI ME I NGEST_TI ME TI CKER_SYMBOL SYMBOL_COUNT
--First one mnute w ndow.

2016-07-19 17:05:00.0 2016-07-19 17:05:00.0 ABC 10
2016-07-19 17:05:00.0 2016-07-19 17:05:00.0 DEF 15
2016-07-19 17:05:00.0 2016-07-19 17:05:00.0 XYZ 6

— Second one m nute w ndow.

2016-07-19 17:06:00.0 2016-07-19 17:06:00.0 ABC 11
2016-07-19 17:06:00.0 2016-07-19 17:06:00.0 DEF 11
2016-07-19 17:06:00.0 2016-07-19 17:05:00.0 XYZ 1 *xx

***|ate-arriving record, instead of appearing in the result of the
first 1-mnute wi ndows (based on ingest_time, it is in the result
of the second 1-minute w ndow.

You can combine the results for a final accurate count per minute by pushing the results to a downstream
database. For example, you can configure application output to persist the results to a Firehose delivery
stream that can write to an Amazon Redshift table. After results are in an Amazon Redshift table, you
can query the Amazon Redshift table to compute the total count group by Ti cker _Synbol . In the case
of ABC, the total is accurate (6+1) even though a record arrived late.

33

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Continuous Queries

Continuous Queries

A query over a stream executes continuously over streaming data. This continuous execution enables
scenarios, such as the ability for applications to continuously query a stream and generate alerts.

In the Getting Started exercise, you have an in-application stream called SOURCE_SQL_ STREAM 001 that
continuously receives stock prices from a demo stream (an Amazon Kinesis stream). Following is the
schema:

(TI CKER_SYMBOL VARCHAR(4),
SECTCR var char (16),
CHANGE REAL,

PRI CE REAL)

Suppose you are interested in stock price changes greater than 15%. You can use the following query
in your application code. This query runs continuously and emits records when a stock price change
greater than 1% is detected.

SELECT STREAM TI CKER SYMBOL, PRI CE
FROM " SOURCE_SQL_STREAM 001"
WHERE (ABS((CHANGE / (PRI CE-CHANGE)) * 100)) > 1

Use the following procedure to set up an Amazon Kinesis Analytics application and test this query.
To test the query

1. Setup an application by following the Getting Started Exercise.

2. Replace the SELECT statement in the application code with the preceding SELECT query. The resulting
application code is shown following:

CREATE OR REPLACE STREAM " DESTI NATI ON_SQL_STREAM' (ti cker_synbol VARCHAR(4),

pri ce DOUBLE);
-- CREATE OR REPLACE PUMP to insert into output
CREATE OR REPLACE PUWMP " STREAM PUWP" AS
I NSERT | NTO " DESTI NATI ON_SQL_STREAM'
SELECT STREAM Tl CKER_SYMBQL,
PRI CE
FROM " SOURCE_SQL_STREAM 001"
WHERE (ABS((CHANGE / (PRI CE-CHANGE)) * 100)) > 1;

Windowed Queries

SQL queries in your application code execute continuously over in-application streams. And, an
in-application stream represents unbounded data that is flowing continuously through your application.
Therefore, to get result sets from this continuously updating input, you often bound queries using a window
defined in terms of time or rows. These are also called windowed SQL.

For a time-based windowed query, you specify the window size in terms of time (for example, a one-minute
window). This requires a timestamp column in your in-application stream that is monotonically increasing
(timestamp for a new row is greater than or equal to previous row). Amazon Kinesis Analytics provides

34

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Tumbling Windows

such a timestamp column called ROM ME for each in-application stream. You can use this column when
specifying time-based queries. For your application, you might choose some other timestamp option. For
more information, see Timestamps and the ROWTIME Column (p. 31).

For a row-based windowed query, you specify window size in terms of the number of rows.

You can specify a query to process records in a tumbling window or sliding window manner, depending
on your application needs. For more information, see the following topics:

Tumbling Windows (Aggregations Using GROUP
BY)

When a windowed query processes each window in a hon-overlapping manner, the window is referred
to as a tumbling window. In this case, each record on an in-application stream belongs to a specific
window, and it's processed only once (when the query processes the window to which the record belongs).

Stream = = = ---

Time

For example, an aggregation query using a GROUP BY clause processes rows in a tumbling window. The
demo stream in the Getting Started Exercise receives stock price data that is mapped to the in-application
stream SOURCE_SQL_STREAM 001 in your application, which has the following schema:

(TI CKER_SYMBOL VARCHAR(4),
SECTCR var char (16),
CHANGE REAL,

PRI CE REAL)

In your application code, suppose you want to find aggregate (min, max) prices for each ticker over a
one-minute window. You can use the following query:

SELECT STREAM ROMI ME,
Ti cker _Synbol ,
M N(Price) AS Price,
MAX(Price) AS Price
FROM " SOURCE_SQL_STREAM 001"
GROUP BY Ti cker_Synbol
FLOOR(" SOURCE_SQ._STREAM 001" . ROATI ME TO M NUTE) ;

This is an example of a windowed query that is time-based, the query groups records by ROATI ME values.
For a per-minute basis reporting, the FLOOR function rounds down the ROATI ME values to the nearest
minute.

This query is an example of a non-overlapping (tumbling) window. The GROUP BY clause groups records
in a one-minute window and each record belongs to a specific window (no overlapping). The query emits
one output record per minute, providing the min/max ticker price recorded at the specific minute. This
type of query is useful for generating periodic reports (in this example, each minute) from the input data
stream.

35

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Sliding Windows

To test the query

1. Setup an application by following the Getting Started Exercise.

2. Replace the SELECT statement in the application code by the preceding SELECT query. The resulting
application code is shown following:

CREATE OR REPLACE STREAM " DESTI NATI ON_SQL_STREAM' (
ticker_symbol VARCHAR(4),
M n_Price DOUBLE,
Max_Price DOUBLE) ;
-- CREATE OR REPLACE PUMP to insert into output
CREATE OR REPLACE PUWP " STREAM PUWP" AS
I NSERT | NTO " DESTI NATI ON_SQL_ STREAM'
SELECT STREAM Ti cker _Synbol ,
M N(Price) AS M n_Pri ce,
MAX(Price) AS Max_Price
FROM " SOURCE_SQ._STREAM 001"
GROUP BY Ti cker _Synbol
FLOOR(" SOURCE_SQL_STREAM 001" . ROMI ME TO M NUTE) ;

Sliding Windows

Instead of grouping records using GROUP BY, you can define a window (time- or row-based). For example,
you can do this by adding an explicit W NDOWclause. In this case, as the window slides with time, Amazon
Kinesis Analytics emits an output when new records appear on the stream, by processing rows in the
window. Note that windows can overlap in this type of processing, a record can be part of multiple windows
and processed with the window. The following example illustrates the sliding window.

Consider a simple query that counts records on the stream. We assume a five-second window. In the
following example stream, new records arriving at time t,, t,, tg, t7, and three records at time tg seconds.

 J

Keep the following in mind:

« We assume a five-second window. The five-second window slides continuously with the time.

¢ For every row that enters a window, an output row is emitted by the sliding window. Soon after the
application starts, initially you see the query emit output for every new record that appears on the
stream, even though it is not a five-second window yet. For example, the query emits output when a
record appears in the first second and second second. Later, the query processes records in the
five-second window.

« The windows slide with time and if an old record on the stream falls out of the window, the query will
not emit any output unless there is also a new record on the stream in that five-second window.

Suppose the query starts executing at t;.

1. At the time t,, the query starts. The query will not emit output (count value) because there are no
records at this time.

36

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Sliding Windows

Stream= = = aee

Time (ta) ¥ T T T T T L

. Attime t;, a new record appears on the stream, and the query emit count value 1.

Stream mmm mmm

Time (ty) * T T T T T -

. At time t,, another record appears, and the query emits count 2.
™

Stream mm = ---

Time (t;) ¥ T T T T T
; L 3

. The five-second window slides with time.
* At t, the sliding window t; to t,.
o At t4 (sliding window t, to ty), and
* At t5 the sliding window t-t,.

At all of these times, the five-second window has the same records—there are no new records.
Therefore, the query doesn't emit any output.

Stream = = = R

e

. At time tg, the five-second window is (tg to t;), the query detects one new record at tg so it emits output
2.The record at t; is no longer in the window and it will not count.
™ ™

Stream = = = ---

Y

Time (ts) L2 T T
t t t

. At time t5, the five-second window is t; to t,, the query detects one new record at t; so it emits output
2.The record at t, is no longer in the five-second window and, therefore, is not counted.

™ .

Stream = = = -

Time (tz) i T T T T T -

. At time tg, the five-second window is tg to t5, the query detects three new records, and therefore emits
record count 5.

Stream mm = L

Time (tg) > T T T T T >

37

Amazon Kinesis Analytics Developer Guide
Sliding Windows

In summary, the window is a fixed size and slides with time. The query emits output when new records
appear.

The following are example queries that use the W NDOWclause to define windows and perform aggregates.
Because the queries don't specify GROUP BY, the query uses the sliding window approach to process
records on the stream.

Example 1: Process a Stream Using a One-Minute Sliding
Window

For example, consider the demo stream in the Getting Started exercise that populates the in-application
stream, SOURCE_SQ._ STREAM 001. The following is the schema:

(TI CKER_SYMBOL VARCHAR(4),
SECTCOR var char (16),
CHANGE REAL,

PRI CE REAL)

Suppose you want your application to compute aggregates using a sliding one-minute window. That is,
for each new record that appears on the stream, you want the application to emit an output by applying
aggregates on records in the preceding one-minute window.

You can use the following time-based windowed query. The query uses the W NDOWclause to define the
one-minute range interval. The PARTI TI ON BY in the W NDOWCclause groups records by ticker values
within the sliding window.

SELECT STREAM ti cker_synbol ,
M N(Price) OVER W AS M n_Pri ce,
MAX(Price) OVER WL AS Max_Pri ce,
AVGE(Price) OVER WL AS Avg_Price
FROM " SOURCE_SQL_STREAM 001"
W NDOW WL AS (
PARTI TI ON BY ti cker_synbol
RANGE | NTERVAL '1' M NUTE PRECEDI NG ;

To test the query

1. Setup an application by following the Getting Started Exercise.

2. Replace the SELECT statement in the application code with the preceding SELECT query. The resulting
application code is:

CREATE OR REPLACE STREAM " DESTI NATI ON_SQL_STREAM' (
ticker_synbol VARCHAR(10),

Mn_Price doubl e,
Max_Price doubl e,
Avg _Price doubl e);

CREATE OR REPLACE PUMP " STREAM PUWP" AS
| NSERT | NTO " DESTI NATI ON_SQL_STREAM'
SELECT STREAM ti cker _synbol,
M N(Price) OVER WL AS M n_Price,
MAX(Price) OVER WL AS Max_Price,
AVG Price) OVER WL AS Avg_Price
FROM " SOURCE_SQL_STREAM 001"
W NDOW WL AS (

38

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Sliding Windows

PARTI TI ON BY ticker _synbol
RANGE | NTERVAL '1' M NUTE PRECEDI NG ;

Example 2: Query Applying Aggregates on a Sliding Window

The following query against the demo stream returns the average of the percent change in the price of
each ticker in a ten-second window.

SELECT STREAM Ti cker _Synbol ,
AVGE Change / (Price - Change)) over WL as Avg_Per cent _Change
FROM " SOURCE_SQL_STREAM 001"
W NDOW WL AS (
PARTI TI ON BY ti cker_synbol
RANGE | NTERVAL ' 10" SECOND PRECEDI NG ;

To test the query

1. Setup an application by following the Getting Started Exercise.

2. Replace the SELECT statement in the application code with the preceding SELECT query. The resulting
application code is:

CREATE OR REPLACE STREAM " DESTI NATI ON_SQ._STREAM' (
ticker_synmbol VARCHAR(10),
Avg_Per cent _Change doubl e);
CREATE OR REPLACE PUWP " STREAM PUWP" AS
| NSERT | NTO " DESTI NATI ON_SQL_STREAM'
SELECT STREAM Ti cker _Synbol ,
AVE Change / (Price - Change)) over WL as Avg_Per
cent _Change
FROM " SOURCE_SQL_STREAM 001"
W NDOW WL AS (
PARTI TI ON BY ti cker_synbol
RANGE | NTERVAL ' 10° SECOND PRECEDI NG ;

Example 3: Query Data from Multiple Sliding Windows on
the Same Stream

You can write queries to emit output in which each column value is calculated using different sliding
windows defined over the same stream.

In this example, the query emits output (that is, ticker, price, a2, and a10) for ticker symbols whose two-row
moving average crosses the ten-row moving average. Note that the a2 and a10 column values are derived
from two-row and ten-row sliding windows

CREATE OR REPLACE STREAM " DESTI NATI ON_SQL_STREAM' (
ticker_synbol VARCHAR(12) ,
price doubl e,
aver age_| ast2rows doubl e,
aver age_| ast 10r ows doubl e);

39

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Stream Joins

CREATE OR REPLACE PUVP "nmyPunp" AS | NSERT | NTO " DESTI NATI ON_SQL_STREAM'
SELECT STREAM ti cker _synbol ,
price,
avg(price) over | ast2rows,
avg(price) over |ast10rows
FROM SOURCE_SQL_STREAM 001
W NDOW
| ast 2rows AS (PARTI TI ON BY ticker_synbol ROANS 2 PRECEDI NG,
| ast 10rows AS (PARTI TI ON BY ticker_synbol ROAS 10 PRECEDI NG ;

To test this query against the demo stream, follow the test procedure described in Example 1 (p. 38).
Use the following application code that creates another in-application stream DESTI NATI ON_SQL_ STREAM

Streaming Data Operations: Stream Joins

You can have multiple in-application streams in your application. You can write JO N queries to correlate
data arriving on these streams. For example, suppose you have the following in-application streams:

¢ OrderStream — Receives stock orders being placed.

(orderld Sql Type, ticker Sgl Type, anpunt Sql Type, ROMIME Ti neSt anp)

TradeStream — Receives resulting stock trades for those orders.

(tradeld Sql Type, orderld Sqgl Type, ticker Sqgl Type, anount Sqgl Type, ticker
Sql Type, amount Sqgl Type, ROMI ME Ti neSt anp)

The following are JO N query examples that correlate data on these streams.

Example 1: Report Orders Where There Are Trades
within One Minute of the Order Being Placed

In this example, your query joins both the Or der St r eamand Tr adeSt r eam However, because we want
only trades placed one minute after the orders, the query defines the one-minute window over the
Tr adeSt r eam For information about windowed queries, see Sliding Windows (p. 36).

SELECT STREAM
ROWTI MVE,
o.orderld, o.ticker, o.anpbunt AS orderAnpunt,
t.anount AS tradeAnmount
FROM Or der Stream AS o
JO N TradeStream OVER (RANGE | NTERVAL '1' M NUTE FOLLON NG AS t
ON o.orderld = t.orderld;

You can define the windows explicitly using the W NDOWclause and writing the preceding query as follows:

40

Amazon Kinesis Analytics Developer Guide
Example 1: Report Orders Where There Are Trades
within One Minute of the Order Being Placed

SELECT STREAM
ROWTI MVE,
o.orderld, o.ticker, o.anmount AS order Anount,
t.anount AS tradeAnount
FROM Or der Stream AS o
JO N TradeStream OVER t
ON o.orderld = t.orderld
W NDOWt AS
(RANGE | NTERVAL '1' M NUTE FOLLOW NG

When you include this query in your application code, the application code runs continuously. For each
arriving record on the Or der St r eam the application emits an output if there are trades within the
one-minute window following the order being placed.

The join in the preceding query is an inner join where the query emits records in Or der St r eamfor which
there is a matching record in Tr adeSt r eam(and vice versa). Using an outer join you can create another
interesting scenario. Suppose you want stock orders for which there are no trades within one minute of
stock order being placed, and trades reported within the same window but for some other orders. This is
example of an outer join.

SELECT STREAM
ROWTI MVE,
o.orderld, o.ticker, o.anmount AS order Anpbunt,
t.ticker, t.tradeld, t.anpunt AS tradeAnount,
FROM Order Stream AS o
QUTER JO N TradeStream OVER (RANGE | NTERVAL '1' M NUTE FOLLON NG AS t
ON o.orderld = t.orderld;

41

Amazon Kinesis Analytics Developer Guide
Examples: Preprocessing Streams

Example Amazon Kinesis Analytics
Applications

This section provides examples of working with Amazon Kinesis Analytics. Some of these examples also
provide step-by-step instructions for you to create an Amazon Kinesis Analytics application and test the
setup.

Before you explore these walkthroughs, we recommend that you first review Amazon Kinesis Analytics:
How It Works (p. 3) and Getting Started (p. 16).

Topics
¢ Examples: Preprocessing Streams (p. 42)
¢ Examples: Basic Analytics (p. 62)
¢ Examples: Advanced Analytics (p. 66)
¢ Examples: Post Processing In-Application Stream (p. 72)
¢ Examples: Other Amazon Kinesis Analytics Applications (p. 75)

Examples: Preprocessing Streams

There are times when your application code needs to preprocess the incoming records before performing
any analytics. This can happen for various reasons, such as records not conforming the supported record
formats that can result into unnormalized columns in in-application input streams. This section provides
examples of how to use the available string functions to normalize data, how to extract information that
you need from string columns, and so on. The section also points to date time functions that you might
find useful.

Topics
¢ Example: Manipulating Strings and Date Times (p. 43)
¢ Example: Streaming Source With Multiple Record Types (p. 52)
« Example: Adding Reference Data to an Amazon Kinesis Analytics Application (p. 58)

42

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

Example: Manipulating Strings and Date Times

String Manipulation

Amazon Kinesis Analytics supports formats such as JSON and CSV for records on a streaming source.
For details, see RecordFormat (p. 151). These records then map to rows in in-application stream as per
the input configuration. For details, see Configuring Application Input (p. 5). The input configuration
specifies how record fields in the streaming source map to columns in in-application stream.

This mapping works when records on the streaming source follow the supported formats, that results in
an in-application stream with normalized data.

But, what if data on your streaming source does not conform to supported standards? For example, what
if your streaming source contain data such as clickstream data, 10T sensors, and application logs? Consider
these examples:

e Streaming source contains application logs — The application logs follow the standard Apache log
format, and are written to the stream using JSON format.

{

"Log":"192.168. 254. 30 - John [24/ May/ 2004: 22: 01: 02 -0700] " GET
/i cons/ apache_pb.gi f HTTP/ 1.1" 304 0"
}

For more information about the standard Apache log format, see Log Files on the Apache website.

¢ Streaming source contains semi-structured data — The following example shows two records. The
Col _E Unst rucut ur ed field value is a series of comma-separated values.

{ "Col _A" : "string",

"Col _B" : "string",

"Col _C" : "string",

"Col _D' : "string",

"Col _E Unstructured" : "val ue, val ue, val ue, val ue"}
{ "Col _A" : "string",

"Col _B" : "string",

"Col _C" : "string",

"Col _D' : "string",

"Col _E Unstructured" : "val ue, val ue, val ue, val ue"}

There are five columns, the first four have string type values and the last column contains
comma-separated values.

¢ Records on your streaming source contain URLs and you need a portion of the URL domain name for
analytics.

{ "referrer” : "http://ww. amazon. cont'}
{ "referrer” : "http://ww.stackoverflow. com' }

In such cases, the following two-step process generally works for creating in-application streams that
contain normalized data:

43

https://httpd.apache.org/docs/2.4/logs.html

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

1. Configure application input to map the unstructured field to a column of the VARCHAR(N) type in the
in-application input stream that is created.
2. In your application code, use string functions to split this single column into multiple columns and then

save the rows in another in-application stream. This in-application stream that your application code
creates will have normalized data. You can then perform analytics on this in-application stream.

Amazon Kinesis Analytics provides string operations, standard SQL functions, and extensions to the SQL
standard for working with string columns, including the following:

e String operators — Operators such as LI KE and SI M LAR are useful in comparing strings. For more
information, see String Operators in the Amazon Kinesis Analytics SQL Reference.

¢ SQL functions — The following functions are useful when manipulating individual strings. For more
information, see Scalar Functions in the Amazon Kinesis Analytics SQL Reference.

CHAR_LENGTH - Provides the length of a string.
LOWER/UPPER - Converts a string to lowercase or uppercase.

OVERLAY - Replace a portion of the first string argument (the original string) with the second string
argument (the replacement string).

SUBSTRING - Extracts a portion of a source string starting at a specific position.
POSITION — Searches for a string within another string.

e SQL Extensions — These are useful for working with unstructured strings such as logs and URIs.

REGEX_LOG_PARSE — Parses a string based on default Java Regular Expression patterns.
FAST_REGEX_LOG_PARSER — Works similar to the regex parser, but takes several shortcuts to
ensure faster results. For example, the fast regex parser stops at the first match it finds (known as
lazy semantics).

W3C_Log_Parse — A function for quickly formatting Apache logs.

FIXED_COLUMN_LOG_PARSE - Parses fixed-width fields and automatically converts them to the
given SQL types.

VARIABLE_COLUMN_LOG_PARSE — Splits an input string into fields separated by a delimiter
character or a delimiter string.

For examples using these function, see the following topics:

« Example: String Manipulation (W3C_LOG_PARSE Function) (p. 44)
¢ Example: String Manipulation (VARIABLE_COLUMN_LOG_PARSE Function) (p.47)
¢ Example: String Manipulation (SUBSTRING Function) (p. 49)

Example: String Manipulation (W3C_LOG_PARSE Function)

In this example, you write log records to an Amazon Kinesis stream. Example logs are shown following:

{"Log":"192. 168. 254. 30 - John [24/ May/ 2004: 22: 01: 02 -0700] "GET
/i cons/ apache_pba.gi f HTTP/1.1" 304 0"}
{"Log":"192. 168. 254. 30 - John [24/ May/ 2004: 22: 01: 03 -0700] "GET
/i cons/ apache_pbb. gi f HTTP/1.1" 304 0"}
{"Log":"192. 168. 254. 30 - John [24/ May/ 2004: 22: 01: 04 -0700] "GET

44

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-string-operators.html
http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-scalar-functions.html

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

/i cons/ apache_pbc.gi f HTTP/1.1" 304 0"}

You then create an Amazon Kinesis Analytics application in the console, with the Amazon Kinesis stream
as the streaming source. The discovery process reads sample records on the streaming source and infers
an in-application schema with one column (log), as shown following:

Stream sample 4
Format: JSON (auto detected)]
Racord encoding: LUTF P
Read position: HOW
Formatted stream sample Raw stream sample # Edit schema Rediscover schema
T
log

192 168.254.30 - John [24/Way2004.22.01.02 -07

siapache_ph.gf HTTR/A.1™ 304 0 1
pachs_ph. gif HTTP1.17 204 1)

192 168 254 30 - John |2 4
192 168 254 30 - John [24/May2004:22:01:02 -0700) "GET ficonsfapache_ph. gf HTTR/.17 304 0 l
192 168 254 30 - John |24/ May 20048:22:01:02 -0

192 168 254 30 - John [24/May/2004:22:01:02 -0

iconsfagache_pb.gf HTTFA.1° 304 0

pacha_ph. gif HTTR/1.17 304 0
192 168 254.30 - John [24/May 2004 22:01:02 -

192 168,254 30 - John [24/May/2004-22:01:02

GET fconslapache_ph. gf HTTRMA 1™ 30

ha_ph. gif MTTR/ 17 30

192 168 254.30 - John [24/May 2004:22:01:02 -07

192 168 254 30 - John |24/ May 2004-22-01:02 -0 icons/apache_pb. gf HTTF/. 1" 304 0

192 168.254.30 - John [24/May/2004:22:01:02 -0700] "GET /icons/apache_ph.gf HTTP/1.17 304 0

Cancel Save and continue

Then, you use the application code with the WBC_LOG_PARSE function to parse the log, and create another
in-application stream with various log fields in separate columns, as shown following:

Source data Real-time analytics Destination Application status: RUNNING
In-application sireams: Pause results () New resulls will be adoed every 2-10 seconds
Laapedpie el d=n) Scroll o botiom when new resulis arrive

errar_stream

T
ROWTIME COLUMNT COLUMNZ COLUMNI COLUMMNS COLUMMNS =4
2016-0E-10 00:43:11.223 192.163.254.30 John [24Mayr2004-22: GET fAcons/apach 30

- e [aany =

Step 1: Create an Amazon Kinesis Stream
Create an Amazon Kinesis stream and populate log records as follows:

1. Signin to the AWS Management Console and open the Analytics console at
https://console.aws.amazon.com/kinesisanalytics.

2. Choose Kinesis Stream and then create a stream with one shard.

3. Run the following Python code to populate sample log records. The Python code is simple, it
continuously writes same log record to the stream.

i mport json
fromboto inport kinesis

45

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

i mport random

ki nesi s = kinesis.connect_to_region("us-east-1")
def getH ghHeartRate():

data = {}

data['log'] = '192.168.254.30 - John [24/ May/2004: 22: 01: 02 -0700] "GET
/i cons/ apache_pb. gif HTTP/1.1" 304 O

return data

whil e True:
data = json. dunps(get H ghHeart Rate())
print data

ki nesi s. put_record("stream nane", data, "partitionkey")

Step 2: Create the Amazon Kinesis Analytics Application
Create an Amazon Kinesis Analytics application as follows:

1. Signin to the AWS Management Console and open the Analytics console at
https://console.aws.amazon.com/kinesisanalytics.

2. Choose Create new application, and specify an application name.
3. On the application hub, connect to the source.
4. On the Source page, do the following:

« Select the stream that you created in the preceding section.
e Choose the create |IAM role option.

« Wait for console to show the inferred schema and samples records used to infer the schema for
the in-application stream created. Note that the inferred schema has only one column.

* Choose Save and continue.

5. On the application hub, choose Go to SQL editor. To start the application, choose yes in the dialog
box that appears.

6. Inthe SQL editor, write application code and verify the results as follows:

< Copy the following application code and paste it into the editor.

CREATE OR REPLACE STREAM " DESTI NATI ON_SQL_STREAM' (
col uml VARCHAR(16),

col utm2 VARCHAR(16),

col utm3 VARCHAR(16),

col utm4 VARCHAR(16),

col utm5 VARCHAR(16),

col um6 VARCHAR(16),

col um7 VARCHAR(16));

CREATE OR REPLACE PUMP "nyPUWVP" AS
I NSERT | NTO " DESTI NATI ON_SQL_ STREAM'
SELECT STREAM
. r. COLUWNL,
I.r. COLUMNZ,
. r. COLUWNS,
. r. COLUMNM4,

46

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

I .r. COLUWNS,
I .r.COLUWNG,
. r.COLUWNT7
FROM (SELECT STREAM WBC_LOG PARSE("l 0g", ' COMNON)
FROM " SOURCE_SQL_STREAM 001") AS I(r);

¢ Choose Save and run SQL. On the Real-time analytics tab you can see all of the in-application
streams that the application created and verify the data.

Example: String Manipulation
(VARIABLE_COLUMN_LOG_PARSE Function)

In this example, you write semi-structured records to an Amazon Kinesis stream. The example records
are as follows:

{ "Col _A" : "string",

"Col _B" : "string",

"Col _C" : "string",

"Col _D Unstructured" : "val ue, val ue, val ue, val ue"}
{ "Col _A" : "string",

"Col _B" : "string",

"Col _C" : "string",

"Col _D Unstructured" : "val ue, val ue, val ue, val ue"}

You then create an Amazon Kinesis Analytics application in the console, with the Amazon Kinesis stream
as the streaming source. The discovery process reads sample records on the streaming source and infer
an in-application schema with one column (log), as shown following:

Stream sample 1

Formak JSON fauto detected)

Record encoding: UTF3

Read pasition: NOW

Formatted stream sample Raw siream sample # Edrtschema Rediscover schema

T

Col_B Col_C Col_A Col_E_Unstructured

Yz

Then, you use the application code with the VARI ABLE_COLUWN_LOG PARSE function to parse the
comma-separated values, and insert normalized rows in another in-application stream, as shown following:

47

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

Source data Real-time analytics Destination Application status: RUNNING
In-application streams: Pause results) New results will be added every 2-10 seconds
IES ETMATION >3 _STRESH Stroll o botiom when new resulis ariv

error_stream
T

ROWTIME eoliimn_A eolumn_B column_G coL_1 coL_z2 coL_a

H016-0B-10 01:38:11 273

2016-08-10 01:38:11.273

a b
a [
a [
a b
a b

Step 1: Create an Amazon Kinesis Stream
Create an Amazon Kinesis stream and populate log records as follows:

1. Signin to the AWS Management Console and open the Analytics console at
https://console.aws.amazon.com/kinesisanalytics.

2. Choose Kinesis Stream and then create a stream with one shard.

3. Run the following Python code to populate sample log records. The Python code is simple, it
continuously writes same log record to the stream.

i mport json
fromboto inport kinesis
i mport random

ki nesis = ki nesis.connect_to_region("us-east-1")
def getH ghHeartRate():
data = {}

data['Col _A'] ="'a'

data['Col _B'] ="'b

data['Col _C] ="¢c'

data[' Col _E Unstructured'] = 'x,y,Zz'

return data

whil e True:

data = json. dunps(get H ghHeart Rate())
print data

ki nesi s. put_record("teststreanforkinesi sanal yti csapps"”, data,
titionkey")

par

Step 2: Create the Amazon Kinesis Analytics Application
Create an Amazon Kinesis Analytics application as follows:

1. Signin to the AWS Management Console and open the Analytics console at
https://console.aws.amazon.com/kinesisanalytics.

2. Choose Create new application, and specify an application name.
3. On the application hub, connect to the source.
4. On the Source page, do the following:

¢ Select the stream you created in the preceding section.

48

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

¢ Choose the create |IAM role option.

« Wait for console to show the inferred schema and samples records used to infer the schema for
the in-application stream created. Note that the inferred schema has only one column.

* Choose Save and continue.

5. On the application hub, choose Go to SQL editor. To start the application, choose yes in the dialog
box that appears.

6. Inthe SQL editor, write application code and verify results:

« Copy the following application code and paste it into the editor.

CREATE OR REPLACE STREAM " DESTI NATI ON_SQL_STREAM (
"col unm_A" VARCHAR(16) ,
"col unm_B" VARCHAR(16) ,
"col unm_C' VARCHAR(16) ,
"COL_1" VARCHAR(16),
"COL_2" VARCHAR(16),
"COL_3" VARCHAR(16));

CREATE OR REPLACE PUMWP " SECOND _STREAM PUVP" AS
| NSERT | NTO " DESTI NATI ON_SQL_STREAM'
SELECT STREAM t."Col A", t."Col _B", t."Col _C',
t.r."Cco_1", t.r."COL_2", t.r."COL_3"
FROM (SELECT STREAM
"Col A", "Col B", "Col _C',
VAR ABLE_COLUWN_LOG PARSE (" Col _E_Unstruct ured",
"OOL_1 TYPE VARCHAR(16), COL_2 TYPE
VARCHAR(16), COL_3 TYPE VARCHAR(16)',
"') ASr
FROM " SOURCE_SQL_STREAM 001") as t;

¢ Choose Save and run SQL. On the Real-time analytics tab you can see all of the in-application
streams that the application created and verify the data.

Example: String Manipulation (SUBSTRING Function)

In this example, you write the following records to your an Amazon Kinesis stream.

{ "referrer” : "http://ww.stackoverfl ow. com' }
{ "referrer” : "http://ww. amazon. con'}
{ "referrer” : "http://ww. amazon. con'}

You then create an Amazon Kinesis Analytics application in the console, with the Amazon Kinesis stream
as the streaming source. The discovery process reads sample records on the streaming source and infers
an in-application schema with one column (log) as shown.

49

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

Stream sample

Format: JSON (suto detected
Record encoding: UTF-8

&
Read position: NOW 1

Formatted stream sample Raw stream sample # Edit schema Rediscover schema 1

T

rafernar

hitp.\/wwa amazon com

Then, you use the application code with the SUBSTRI NGfunction to parse URL string to retrieve company
name, and insert resulting data in another in-application stream, as shown following:

Source data Real-time analytics Destination Application status: RUNNING

In-apgiication streams: Pause results ¥3 New results wil be added every 2-10 secands

DESTIMATION SQL_STREA Seroll b bofom when new resulls anmve

ROWTIME ingesi_time referrer
amazon
Amaon

amazon

alllEenn

Step 1: Create an Amazon Kinesis Stream
Create an Amazon Kinesis stream and populate log records as follows:

1. Signin to the AWS Management Console and open the Analytics console at
https://console.aws.amazon.com/kinesisanalytics.

2. Choose Kinesis Stream, and then create a stream with one shard.

3. Run the following Python code to populate sample log records. The Python code is simple, it
continuously writes same log record to the stream.

i mport json
fromboto inport kinesis
i nport random

ki nesi s = kinesis.connect_to_region("us-east-1")
def getReferrer():
data = {}
data['referrer'] = 'http://ww. amazon. conm
return data

whil e True:
data = json.dunps(getReferrer())
print data

50

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Analytics Developer Guide
Example: Manipulating Strings and Date Times

ki nesi s. put _record("teststreanforkinesi sanal yti csapps", data, "par

titionkey")

Step 2: Create the Amazon Kinesis Analytics Application

Create an Amazon Kinesis Analytics application as follows:

1.

Sign in to the AWS Management Console and open the Analytics console at
https://console.aws.amazon.com/kinesisanalytics.

Choose Create new application, and specify an application name.
On the application hub, connect to the source.
On the Source page, do the following:

Select the stream you created in the preceding section.
Choose the create IAM role option.

« Wait for console to show the inferred schema and samples records used to infer the schema for

the in-application stream created. Note that the inferred schema has only one column.

Choose Save and continue.

On the application hub, choose Go to SQL editor. To start the application, choose yes in the dialog
box that appears.

In the SQL editor, write application code and verify the results as follows:

Copy the following application code and paste it into the editor.

-- CREATE OR REPLACE STREAM for cl eaned up referrer
CREATE OR REPLACE STREAM " DESTI NATI ON_SQL_STREAM' (
"ingest_tinme" TIMESTAWP,
"referrer" VARCHAR(32));

CREATE OR REPLACE PUWP "nmyPUWP' AS
I NSERT | NTO " DESTI NATI ON_SQ._STREAM'
SELECT STREAM
" APPROXI MATE_ARRI VAL_TI ME",
SUBSTRI NG("referrer", 12, (POSITION('.com IN "referrer") - POSI
TION("ww. ' IN "referrer") - 4))
FROM " SOURCE_SQL_STREAM 001";

Choose Save and run SQL. On the Real-time analytics tab you can see all of the in-application
streams that the application created and verify the data.

Date Time Manipulation

Amazon Kinesis Analytics supports converting columns to timestamps. For example, you might want to
use your own timestamp as part of a GROUP BY clause as another time-based window, in addition to the
ROATI ME column. Amazon Kinesis Analytics provides operations and SQL functions for working with date
and time fields.

51

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Analytics Developer Guide
Example: Streaming Source With Multiple Record Types

» Date and time operators — You can perform arithmetic operations on dates, times, and interval data
types. For more information, see Date, Timestamp, and Interval Operators in the Amazon Kinesis
Analytics SQL Reference.

¢ SQL Functions — These include the following:

* EXTRACT() - Extracts one field from a date, time, timestamp, or interval expression.
e CURRENT_TI ME — Returns the time when the query executes (UTC).

* CURRENT_DATE — Returns the date when the query executes (UTC).

e CURRENT_TI MESTAMP — Returns the timestamp when the query executes (UTC).

« LOCALTI ME — Returns the current time when the query executes as defined by the environment on
which Amazon Kinesis Analytics is running (UTC).

e LOCALTI MESTAMP — Returns the current timestamp as defined by the environment on which Amazon
Kinesis Analytics is running (UTC).

¢ SQL Extensions — These include the following:

» CURRENT_ROW TI MESTAMP — Returns a new timestamp for each row in the stream.
» TSDI FF — Returns the difference of two timestamps in milliseconds.

e CHAR_TO_DATE — Converts a string to a date.

e CHAR_TO_TI ME — Converts a string to time.

* CHAR_TO TI MESTAMP — Converts a string to a timestamp.

« DATE_TO_CHAR- Converts a date to a string.

e TI ME_TO_CHAR - Converts a time to a string.

e TI MESTAMP_TO_CHAR — Converts a timestamp to a string.

Most of the preceding SQL functions use a format to convert the columns. The format is flexible. For
example, you can specify the format yyyy- Mt dd hh: nm ss to convert an input string 2009- 09- 16
03: 15: 24 into a timestamp. For more information, Char To Timestamp(Sys) in the Amazon Kinesis
Analytics SQL Reference.

Example: Streaming Source With Multiple Record
Types

Topics
e Step 1: Prepare (p. 55)
¢ Step 2: Create an Application (p. 57)

A common requirement in Extract, Transform and Load (ETL) applications is to process multiple record
types on a streaming source. You can create Amazon Kinesis Analytics application to process these
kinds of streaming sources. You do the following:

¢ First, you map the streaming source to an in-application input stream, similar to all other Amazon Kinesis
Analytics applications.

* Then, in your application code you write SQL statements to retrieve rows of specific types from the
in-application input stream, and insert them in separate in-application streams (you can create additional
in-application streams in your application code).

52

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-date-timestamp-interval.html
http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-char-to-timestamp.html

Amazon Kinesis Analytics Developer Guide
Example: Streaming Source With Multiple Record Types

In this exercise, you have a streaming source that receives records of two types (Or der and Tr ade
types). These are stock orders and corresponding trades. For each order, there can be zero or more
trades. Example records of each type are shown following:

Order record

{"RecordType": "Order", "Qprice": 9047, "Qype": "Sell", "Od": 3811, "Qticker":
" AAAA" }

Trade record

{"RecordType": "Trade", "Tid": 1, "Toid": 3812, "Tprice": 2089, "Tticker":
" BBBB" }

When you create an application using the console, the console displays the following inferred schema
for the in-application input stream created. By default, console names this in-application stream as
SOURCE_SQ._STREAM 001.

Stream sample

Format: JSON [aulo detecied

Record encoding: UTF-8

Read position: NOW
Formatted stream sample Raw stream sample # Edit schema Rediscover schema
T
Opiice Onype Oid RecordType Oticker Tid Todd Tprice Tticker

795 Se 997 Cnde AARA

1459

b

d
Trade

o

|

When you save the configuration, Amazon Kinesis Analytics continuously reads data from the streaming
source and inserts rows in the in-application stream. You can now perform analytics on data in the
in-application stream.

In this example, the application code you first create two additional in-application streams, Or der _St r eam
Tr ade_St r eam You then filter the rows from SOURCE_SQL_STREAM 001 stream based on record type
and insert them in the newly created streams using pumps. For information about this coding pattern,
see Application Code (p. 10).

 Filter order and trade rows into separate in-application streams

« Filter the order records in the SOURCE_SQ._STREAM 001 and save the orders in the Or der _St r eam

--Create Order_Stream
CREATE OR REPLACE STREAM "Order _Streant

(

order _id i nt eger,

53

Amazon Kinesis Analytics Developer Guide
Example: Streaming Source With Multiple Record Types

order _type var char (10),
ticker var char (4),
order _price DOUBLE,
record_type varchar(10)

)

CREATE OR REPLACE PUMP "Order Punp" AS
| NSERT | NTO "Order_Streant
SELECT STREAM oi d, otype,oticker, oprice, recordtype
FROM " SOURCE_SQL_STREAM 001"
WHERE recordtype = 'Order';

« Filter the trade records in the SOURCE_SQL_STREAM 001 and save the ordersin the Tr ade_St r eam

--Create Trade_Stream
CREATE OR REPLACE STREAM "Trade_Streant

(trade_id i nteger,
order_id i nteger,
trade_price DOUBLE,
ticker var char (4),
record_type varchar(10)
)

CREATE OR REPLACE PUMP "Trade Punp" AS
| NSERT | NTO "Trade_Streant
SELECT STREAM tid, toid, tprice, tticker, recordtype
FROM " SOURCE_SQL_STREAM 001"
WHERE recordtype = 'Trade';

¢ Now you can perform additional analytics on these streams. In this example, you count number of
trades by ticker in a one-minute tumbling window and save results to yet another stream,
DESTI NATI ON_SQL_STREAM

--do sone analytics on the Trade_Stream and Order_Stream
-- To see results in console you nmust wite to OPUT_SQ._STREAM

CREATE OR REPLACE STREAM " DESTI NATI ON_SQL_STREAM' (
ticker varchar(4),
trade_count i nt eger

)

CREATE OR REPLACE PUMP "CQut put _Punp" AS
I NSERT | NTO " DESTI NATI ON_SQ._ STREAM'
SELECT STREAM ticker, count(*) as trade_count
FROM "Trade_Streant
GROUP BY ticker,
FLOOR(" Tr ade_Streant . ROATI ME TO M NUTE) ;

You see the result, as shown following:

54

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html

Amazon Kinesis Analytics Developer Guide
Example: Streaming Source With Multiple Record Types

Source S0L Results Destination

Stream name

UT SGL STREAM ¢4 Streaming - New results will append every 2-10 seconds. Pause streaming results
OUTPUT S0L_STREAN

Application Status Scroll to bottom when new results armve

RUNNING
ROWTIME TICKER TRADE_COUNT
HME-07-17 21:50:00 0 BEBBE 78
260717 21:50:00.0 ALAL, 106

2016-07-17 21:50:00.0 CCCo 13

Next Step

Step 1: Prepare (p. 55)

Step 1: Prepare

In this section, you create an Amazon Kinesis stream, and then populate order and trade records on the
stream. This is your streaming source for the application you create in the next step.

Step 1.1: Create a Streaming Source

You can create an Amazon Kinesis stream using the console or the AWS CLI. The example assumes
O der sAndTr ades St r eamas the stream name.

¢ Using the console — Sign in to the AWS Management Console and open the Amazon Kinesis console
at https://console.aws.amazon.com/kinesis. Choose Kinesis Stream, and then create a stream with
one shard.

¢ Using the AWS CLI — Use the following Amazon Kinesis cr eat e- st r eamCLI command to create the
stream:

$ aws kinesis create-stream)\
--stream nane OrdersAndTradesStream\
--shard-count 1\

--region us-east-1\

--profile adm nuser

Step 1.2: Populate the Streaming Source

Run the following Python script to populate sample records on the Or der sAndTr ades St r eam If you
created the stream with different name, update the Python code appropriately.

1. Install Python and pi p.
For information about installing Python, see the Python website.

You can install dependencies using pip. For information about installing pip, see Installing on the pip
website.

2. Run the following Python code. The put - r ecor d command in the code writes the JSON records to
the stream.

55

https://console.aws.amazon.com/kinesis
https://www.python.org/
https://pip.pypa.io/en/stable/installing/

Amazon Kinesis Analytics Developer Guide
Example: Streaming Source With Multiple Record Types

i nport testdata
i mport json
fromboto inport
i mport random

ki nesi s

ki nesi s = kinesis.connect_to_region("us-east-1")

def getOrderData(orderld, ticker):
data = {}
data[' RecordType'] = "Order”
data['Qd'] = orderld
data[' Oticker'] = ticker
data[' Oprice'] = random randi nt (500, 10000)
data[' Oype'] = "Sel "
return data
def get TradeData(orderld, tradeld, ticker, tradePrice):
data = {}
data[' RecordType'] = "Trade"
data['Tid'] = tradeld
data[' Toid'] = orderld
data[' Tticker'] = ticker
data[' Tprice'] = tradePrice

return data

x =1
while True

#rnd = random randony{)

rnd = randomrandint(1,3)

if rnd ==
ticker = "AAAA"

elif rnd == 2:
ticker = "BBBB"

el se:
ticker = "Cccc

data = json. dunps(getOrderData(x, ticker))

ki nesi s. put_record("OrdersAndTradesStreant, data, "partitionkey")

print data

tld =1

for y in range (0, randomrandint(0,6)):
tradeld = tld
tradePrice = random randi nt (0, 3000)
data2 = json.dunps(get TradeData(x, tradeld, ticker, tradePrice));
ki nesi s. put_record("OrdersAndTradesStreant, data2, "partitionkey")
print data2
t1d+=1

X+=1

Next Step

Step 2: Create an Application (p. 57)

56

Amazon Kinesis Analytics Developer Guide
Example: Streaming Source With Multiple Record Types

Step 2: Create an Application

In this section, you create an Amazon Kinesis Analytics application. You then update the application by
adding input configuration that maps the streaming source you created in the preceding section to an
in-application input stream.

1.

Sign in to the AWS Management Console and open the Analytics console at
https://console.aws.amazon.com/kinesisanalytics.

Choose Create new application. We assume application name is Pr ocessMil t i pl eRecor dTypes

On the application hub, connect to the source.
On the Source page,

Select the stream you created in the preceding section.
Choose the create IAM role option.

Wait for console to show the inferred schema and samples records used to infer the schema
for the in-application stream created.

Choose Save and continue.

On the application hub, choose Go to SQL editor. To start the application, reply "yes" in the dialog
box that appeatrs.

In the SQL editor, write application code and verify results:

a.

Copy the following application code and paste it into the editor.

--Create Order_Stream
CREATE OR REPLACE STREAM " Order _Streant

"order _id" i nteger,
"order _type" var char (10),
"ticker" var char (4),

"order _price" DOUBLE,
"record_type" varchar(10)

)

CREATE OR REPLACE PUMP "Order_Pump" AS
I NSERT | NTO " Order _Streant
SELECT STREAM "G d", "Qype","OQicker", "Oprice", "RecordType"
FROM " SOURCE_SQL_STREAM 001"
WHERE "RecordType" = 'Order';

_kkkkkhkkhkkhkhkkhkhkhkhkhkhkhkkhkhkhkhkhkdhkhkkhhkdhhkdkhkhkhkhkrhkrxhkhk

--Create Trade_Stream
CREATE OR REPLACE STREAM "Trade_Streant

("trade_id" i nteger,
"order_id" i nteger,
"trade_price" DOUBLE,
"ticker" var char (4),

ecord_type" varchar(10)
)

CREATE OR REPLACE PUMP "Trade_Punmp" AS
I NSERT | NTO " Tr ade_Streant
SELECT STREAM "Tid", "Toid", "Tprice", "Tticker", "RecordType"
FROM " SOURCE_SQL_STREAM 001"
WHERE "RecordType" = 'Trade';

_kkkkkhkkhkkhkhkhkhkhkhkhkhkhkkhhkhkhkdhkhhhkhdhhkdhkhhhdrhdhhhhdrhkdrxdrhrdrhkrxdhrkhrdxdrx*k

57

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Analytics Developer Guide
Example: Add Reference Data Source

--do sone analytics on the Trade_Stream and Order_Stream

CREATE OR REPLACE STREAM " DESTI NATI ON_SQL_STREAM' (
“ticker" varchar(4),

"trade_count” i nt eger

)

CREATE OR REPLACE PUMP " CQut put _Pump" AS
I NSERT | NTO " DESTI NATI ON_SQL_STREAM'
SELECT STREAM "ticker", count(*) as trade_count
FROM "Trade_Streant
GROUP BY "ticker",
FLOOR(" Trade_St reant. ROAMI ME TO M NUTE) ;

b. Choose Save and run SQL. Choose the Real-time analytics tab to see all of the in-application
streams that the application created and verify data.

Next Step

You can configure application output to persist results to an external destination, such as another Amazon
Kinesis stream or a Firehose delivery stream.

Example: Adding Reference Data to an Amazon
Kinesis Analytics Application

Topics
e Step 1: Prepare (p. 59)
e Step 2: Add Reference Data Source to the Application Configuration (p. 60)
¢ Step 3: Test: Query the In-Application Reference Table (p. 62)

In this exercise, you add reference data to an existing Amazon Kinesis Analytics application. For information
about reference data, see the following topics:
¢ Amazon Kinesis Analytics: How It Works (p. 3)

e Configuring Application Input (p. 5)

In this exercise you add reference data to the application you created in the getting started exercise. The
reference data provides company name for each ticker symbol. For example,

Ti cker, Company
AMZN, Anazon

ASD, SoneConpanyA
MvB, SomeConpanyB
WAS, SoneConpanyC

First complete the Getting Started Exercise. Then you do the following to set up and add reference data
to your application.

1. Prepare

¢ Store preceding reference data as an object in your S3 bucket.

58

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Example: Add Reference Data Source

¢ Create an IAM role, that Amazon Kinesis Analytics can assume to read the S3 object on your behalf.

. Add the reference data source to your application. Amazon Kinesis Analytics reads the S3 object and
create an in-application reference table that you can query in your application code.

. Test. In your application code you will write a join query to join the in-application stream with the
in-application reference table, to get company name for each ticker symbol.

Note

Amazon Kinesis Analytics console does not support managing reference data sources for your
applications. In this exercise, you use the AWS CLI to add reference data source to your
application. If you haven't already done so, set up the AWS CLI.

Step 1: Prepare

In this section, you store sample reference data as an object in your S3 bucket. You also create an IAM
role that Amazon Kinesis Analytics can assume to read the object on your behalf.

Prepare: Store Reference Data as S3 Object

Store sample reference data as S3 object.

1.

Open a text editor, type the following data, and save the file as Ti cker Ref er ence. csv.

Ti cker, Conpany
AMEZN, Armazon

ASD, SoneConpanyA
MVB, SoneConpanyB
WAS, SonmeConpanyC

Upload the Ti cker Ref er ence. csv file to your S3 bucket. For instructions, see Uploading Objects
into Amazon S3 in the Amazon Simple Storage Service Console User Guide.

Prepare: Create an IAM Role

Create an IAM role. Follow the procedure to create an IAM role that Amazon Kinesis Analytics can assume
and read the S3 object.

1.

Create an IAM role called Ki nesi sAnal yti cs- ReadS3bj ect . In the IAM console, you specify
the following when you create a role:

* Choose AWS Lambda on the Select Role Type. After creating the role, you will change the trust
policy to allow Amazon Kinesis Analytics to assume the role (not AWS Lambda).

< Do not attach any policy on the Attach Policy page.

For instructions, see Creating a Role for an AWS Service (AWS Management Console) in the IAM
User Guide.

Update the IAM role policies.

a. Inthe IAM console, select the role you created.

b. On the Trust Relationships tab, update the trust policy to allow Amazon Kinesis Analytics
permissions to assume the role. The trust policy is shown following:

59

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/setup-awscli.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console

Amazon Kinesis Analytics Developer Guide
Example: Add Reference Data Source

{
"Version": "2012-10-17",
"Statenment": [
{
"Effect": "Allow',
"Principal": {
"Service": "kinesisanal ytics.amazonaws. cont
I
"Action": "sts:AssuneRol e"
}
]
}

c. Onthe Permissions tab, attach an AWS managed policy called AmazonS3ReadOnlyAccess.
This grants the role permissions to read an S3 object. The policy is shown following for your
information:

{
"Version": "2012-10-17",

"Statement": [

{
"Effect": "Al ow',
"Action": [
"s3: Get*",
"s3:List*"
|
"Resource": "*"
}

Step 2: Add Reference Data Source to the Application
Configuration

In this section you add reference data source to your application configuration. You will need the following
information:

« Your Amazon Kinesis Analytics application name and current application version ID
¢ S3 bucket name and object key name
¢ |IAM role ARN

Now, you now use the AWS CLI to complete the step:

1. Runthe descri be-appli cati on to get the application description, as shown following:

$ aws kinesisanalytics describe-application \
--region us-east-1\
--application-name application-nane

2. Note the current application version ID.

60

Amazon Kinesis Analytics Developer Guide
Example: Add Reference Data Source

Each time you make changes to your application, the current version is updated. So you need to
make sure you have the current application version ID.

Use the following JSON to add the reference data source:

{
"Tabl eName": " ConpanyNane",
" S3Ref er enceDat aSour ce": {
"Bucket ARN': "arn: aws: s3::: bucket - nane",
"Fi |l eKey": "Ti cker Ref erence. csv",
"Ref erenceRol eARN': "arn: aws: i am : aws-account-id: rol e/l AMrol e- nane"
H
"Ref erenceSchema": {
"Recor dFormat ": {
"Recor dFor mat Type": " CSV",
" Mappi ngPar anet ers": {
" CSVMappi ngPar anet ers": {
"RecordRowDel inmter":"\n",
"RecordCol umbDel imter":","
}
}
H
"Recor dEncodi ng": "string",
"Recor dCol ums": [
{
"Name": " Ti cker",
"Sql Type": " VARCHAR(64) "
3
{
"Name": " Conpany",
"Sql Type": " VARCHAR(64) "
}
]
}
}

Run the add- appl i cati on-r ef er ence- dat a- sour ce command using the preceding reference
data configuration information. You need to provide your bucket name, object key name, IAM role
name, and AWS account ID.

$ aws kinesisanal ytics add-application-reference-data-source \

--endpoi nt https://kinesis-streamanal yti cs-internal.amzon.com\
--region us-east-1\

--application-nane DenpStreanBasedGettingStarted \

--debug \

--reference-data-source '{"Tabl eNane": " ConpanyNane", " S3Ref er enceDat a
Source": {"Bucket ARN': "arn: aws: s3: : : bucket - nane", "Fi | eKey": " Ti cker Ref er
ence. csv",

"Ref erenceRol eARN': "arn: aws: i am : aws-account-i d: rol e/ | AMrol e-nane"}, "Ref er
enceSchema": { "RecordFormat":{" Recor dFor mat Type": " CSV', "Mappi ngPar anet
ers": {" CSVMappi ngPar anet ers": {"RecordRowDel i mi ter": "\ n", "RecordCol utmDel i m
iter":","} }},"RecordEncodi ng": "string","RecordCol ums": [{"Nane":"Ti cker", " Sql
Type": " VARCHAR(64) "}, { "Nanme":"Conpany", "Sql Type": "VARCHAR(64)"}]1}}" \
--current-application-version-id 10

Verify that the reference data was added to the application by getting the application description
using the descri be- appl i cati on operation.

61

Amazon Kinesis Analytics Developer Guide
Examples: Basic Analytics

Step 3: Test: Query the In-Application Reference Table

You can now query the in-application reference table, Conpany Nane. You can use the reference information
to enrich your application by joining the ticker price data with the reference table, and then the result
shows the company name.

1. Replace your application code by the following. The query joins the in-application input stream with
the in-application reference table. The application code writes the results to another in-application
stream, DESTINATION_SQL_STREAM.

CREATE OR REPLACE STREAM " DESTI NATI ON_SQL_STREAM' (ticker_synbol VARCHAR(4),
conpany varchar (20), sector VARCHAR(12), change DOUBLE, price DOUBLE);

CREATE OR REPLACE PUWVP " STREAM PUMP" AS | NSERT | NTO " DESTI NATI ON_SQL_ STREAM'
SELECT STREAM ticker_synbol, c.conpany, sector, change, price

FROM " SOURCE_SQL_STREAM 001" LEFT JO N ConpanyNane c
ON " SOURCE_SQL_STREAM 001".ti cker_synbol = c.Ticker;

2. Verify that the application output appears in the SQLResults tab. Make sure some of the rows show
company nhames (your sample reference data does not have all company names).

Examples: Basic Analytics

This section provides examples of Amazon Kinesis Analytics applications that perform basic analytics.
The examples provide step-by-step instructions to set up an Amazon Kinesis Analytics application.

Topics
¢ Example: Most Frequently Occurring Values (the TOP_K_ITEMS_TUMBLING Function) (p. 62)
« Example: Counting Distinct Values (the COUNT_DISTINCT_ITEMS_TUMBLING function) (p. 63)
¢ Example: Simple Alerts (p. 64)

Example: Most Frequently Occurring Values (the
TOP_K_ITEMS _TUMBLING Function)

In this exercise, you set up an Amazon Kinesis Analytics application to find the top ten most frequently
traded stocks in a one-minute window.

For this exercise, you use the demo stream, which provides continuous flow of simulated stock trade
records and finds the top ten most frequently traded stocks in a one-minute window. For more information
about the demo stream, see Step 4: Console Feature Summary (p. 26).

Use the following application code:

CREATE OR REPLACE STREAM DESTI NATI ON_SQL_STREAM (
| TEM VARCHAR(1024) ,
| TEM COUNT DOUBLE) ;

CREATE OR REPLACE PUWP " STREAM PUMP" AS
| NSERT | NTO " DESTI NATI ON_SQL_STREAM'
SELECT STREAM *

62

Amazon Kinesis Analytics Developer Guide
Example: Count Distinct Values

FROM TABLE(TOP_K_I TEMS_TUMBLI NG
CURSOR(SELECT STREAM * FROM " SOURCE_SQL_STREAM 001"),

"columl', -- name of colum in single quote.
10, -- nunber of top itens.

60 -- tunbling window size in seconds
)

)

The code uses the TOP_K_| TEMS_TUMBLI NGfunction to find the most frequently traded stock. Note that,
for efficiency, the function approximates the most frequently occurring values. For more information about
the function, see TOP_K_ITEMS_TUMBLING Function in the Amazon Kinesis Analytics SQL Reference.

In the console, this application code is available as a template (Approximate Top-K items), which you
use to quickly create the application. You need to update this template code by replacing ‘col urm1' with
" TI CKER_SYMBOL' to estimate the most frequently occurring values, in a one-minute tumbling window.

You can use the following procedure to test this template using the demo stream.

To create an application

1. Complete the Getting Started exercise. For instructions, see Step 3: Getting Started Exercise (Create
an Amazon Kinesis Analytics Application) (p. 18).

2. Replace the application code in the SQL editor with the Approximate Top-K items template as
follows in the SQL editor:

Delete the existing sample code.
Choose Add SQL from templates and then select the TopKltems template.

Update the template code by replacing the column name from COLUWNL to ' TI CKER_SYMBOL'
(with single quotes around). Also, change the number of items from 10 to 3, so that you get the
top three most frequently traded stocks in each one-minute window.

3. Save and run SQL. Review results in the Real-time analytics tab in the SQL editor.

Because the window size is one minute, you need to wait to see the results. The
DESTI NATI ON_SQL_ STREAMdisplays three columns (ROATI ME, | TEM and | TEM_COUNT). The query
emits results every one minute.

Example: Counting Distinct Values (the
COUNT _DISTINCT_ITEMS _TUMBLING function)

In this exercise, you set up a Amazon Kinesis Analytics application to count distinct values in a one-minute
tumbling window.

For the exercise, you use the demo stream, which provides continuous flow of simulated stock trade
records and finds distinct stocks traded in a one-minute window. For information about the demo stream,
see Step 4: Console Feature Summary (p. 26).

Use the following application code:

CREATE OR REPLACE STREAM DESTI NATI ON_SQL_STREAM (
NUVBER_OF DI STI NCT_| TEMS BI G NT) ;

63

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/top-k.html

Amazon Kinesis Analytics Developer Guide
Example: Simple Alerts

CREATE OR REPLACE PUMP " STREAM PUMP" AS
I NSERT | NTO " DESTI NATI ON_SQ._STREAM'
SELECT STREAM *
FROM TABLE(COUNT_DI STI NCT_| TEMS_TUMBLI N
CURSOR(SELECT STREAM * FROM " SOURCE_SQL_STREAM 001"),
"columl', -- nane of colum in single quotes
60 -- tunbling wi ndow size in seconds
)
)

The code uses the COUNT_DI STI NCT_| TEMS_TUMBLI NG function to approximate the number of distinct
values. For more information about the function, see COUNT_DISTINCT _ITEMS_TUMBLING Function
in the Amazon Kinesis Analytics SQL Reference.

In the console, this application code is available as a template (Approximate distinct count), which you
use to quickly create the application. You need to update this template code by replacing ‘col urm1' with
" TI CKER_SYMBOL' to estimate the number of distinct stocks traded, in a one-minute tumbling window.

You can use the following procedure to test this template using the demo stream.

To create an application

1. Complete the getting started exercise. For instructions, see Step 3: Getting Started Exercise (Create
an Amazon Kinesis Analytics Application) (p. 18).

2. Now you replace the application code in the SQL editor by the Approximate distinct count template
as follows. In SQL editor, do the following:

Delete the existing sample code.
Choose Add SQL from templates and then select the Approximate distinct count template.

Update the template code by replacing the column name from col umm1 to 'TICKER_SYMBOL'
(with single quotes around).

3. Save and run SQL. Review results in the Real-time analytics tab in the SQL editor.

Because the window size is one minute, you need to wait to see the results. The
DESTI NATI ON_SQL_STREAMshows two columns (ROATI ME and NUMBER_COF_DI STI NCT_I TENS).
The query emits results every one minute.

Example: Simple Alerts

In this application, the query runs continuously on the in-application stream created over the demo stream.
For more information, see Continuous Queries (p. 34). If any rows show stock price change is greater
than 1%, those rows are inserted in another in-application stream. In the exercise, you can configure the
application output persist the results to an external destination. You can then further investigate results.
For example, you can use an AWS Lambda function to process records and send you alerts.

To create a simple alerts application

1. Create the Amazon Kinesis Analytics application as described in the Getting Started Exercise.
2. Inthe SQL editor, replace the application code with the following:

CREATE OR REPLACE STREAM " DESTI NATI ON_SQ._STREAM'
(ticker_synbol VARCHAR(4),

64

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/count-distinct-items.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Example: Simple Alerts

sect or VARCHAR(12) ,
change DOUBLE,
price DOUBLE) ;

CREATE OR REPLACE PUWMP " STREAM PUWP' AS
| NSERT | NTO " DESTI NATI ON_SQ._ STREAM'
SELECT STREAM ticker _synbol, sector, change, price
FROM " SOURCE_SQL_STREAM 001"
WHERE (ABS(Change / (Price - Change)) * 100) > 1;

The SELECT statement in the application code filters rows in the SOURCE_SQ._STREAM 001 for
stock price changes greater than 1%, and inserts those rows to another in-application stream
DESTI NATI ON_SQL_ STREAMusing a pump. For more information about the coding pattern that
explains using pumps to insert rows in in-application streams, see Application Code (p. 10).
Click Save and run SQL.

Add a destination. You can either choose the Destination in the SQL Editor, or choose Add a
destination on the application hub.

a. In SQL editor, choose the Destination tab and then choose Add a destination.

On the Add a destination page, choose Configure a new stream.

Destination

Configure 8 new siream

Q

.

f.cml'g.lrc- a Firehase de iy stream 1o continuously deliver
sourca data b hik, or Elasticsearch) and make & Go to Kinesis Firehose
source data ova abons

Configure a Kinesis stream to contin
18 sfors daks, which ¢

nsumsed by an ' Go to Kinesis Streams

Choose Go to Kinesis Streams.

c. Inthe Amazon Kinesis Streams console, create a new Amazon Kinesis stream (for example,
gs- desti nati on) with 1 shard. Wait until the stream status is ACTIVE.

d. Return to the Amazon Kinesis Analytics console. On the Destination page, choose the stream
that you created.

If the stream does not show, refresh the page.

Now you have an external destination, where Amazon Kinesis Analytics persists any records
your application writes to the in-application stream DESTI NATI ON_SQL_ STREAM

e. Choose Save and continue.

Now you have an external destination, a Amazon Kinesis stream, where Amazon Kinesis Analytics
persists your application output in the DESTI NATI ON_SQ._ STREAMin-application stream.

65

Amazon Kinesis Analytics Developer Guide
Examples: Advanced Analytics

5. Configure AWS Lambda to monitor the Amazon Kinesis stream you created and invoke a Lambda
function.

For instructions, see Example: Integrating Amazon Kinesis Analytics with AWS Lambda (p. 72).

Examples: Advanced Analytics

This section provides additional examples of Amazon Kinesis Analytics applications. This includes using
the RANDOM_CUT_FOREST function to assign anomaly scores to your stream data. You can then evaluate
the anomaly scores to determine if the data is anomalous and perhaps take additional action. In addition,
how section provides examples of using different types of times in analytics.

Topics
¢ Example: Detecting Data Anomalies on a Stream (the RANDOM_CUT_FOREST Function) (p. 66)
¢ Example: Using Different Types of Times in Streaming Analytics (p. 71)

Example: Detecting Data Anomalies on a Stream
(the RANDOM_CUT_FOREST Function)

Amazon Kinesis Analytics provides a function (RANDOM_CUT_FOREST) that can assign an anomaly score
to each record based on values in the numeric columns. For more information, see
RANDOM_CUT_FOREST Function in the Amazon Kinesis Analytics SQL Reference. In this exercise,
you write application code to assign anomaly score to records on your application's streaming source.
You do the following to set up the application:

1. Setup astreaming source —You set up a Amazon Kinesis stream and write sample heart Rat e
data as shown following:

{"heartRate": 60, "rateType":" NORVAL"}

{"heartRate": 180, "rateType":"H GH'}

The walkthrough provides a Python script for you to populate the stream. The hear t Rat e values
are randomly generated, with 99% of the records having hear t Rat e values between 60 and 100,
and only 1% of hear t Rat e values between 150 and 200. Thus, records with hear t Rat e values

between 150 and 200 are anomalies.

2. Configureinput—Using the console, create an Amazon Kinesis Analytics application, and configure
application input by mapping the streaming source to an in-application stream
(SOURCE_SQL_STREAM 001). When the application starts, Amazon Kinesis Analytics continuously
reads the streaming source and inserts records into the in-application stream.

3. Specify application code — Use the following application code:

--Creates a tenporary stream
CREATE OR REPLACE STREAM " TEMP_STREAM' (

"heart Rat e" | NTEGER,
"rateType" var char (20) ,
" ANOVALY_SCORE" DOUBLE) ;

--Creates another streamfor application output.
CREATE OR REPLACE STREAM " DESTI NATI ON_SQL_STREAM' (
"heart Rat e" | NTEGER,

66

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Analytics Developer Guide
Example: Detect Anomalies

"rateType" var char (20) ,
" ANOVALY_SCORE" DOUBLE) ;

-- Conpute an anomaly score for each record in the input stream
-- using Random Cut Forest
CREATE OR REPLACE PUWMP " STREAM PUWP" AS
I NSERT | NTO " TEMP_STREAM'
SELECT STREAM "heartRate", "rateType", ANOVALY_SCORE
FROM TABLE(RANDOM CUT_FOREST(
CURSOR(SELECT STREAM * FROM " SOURCE_SQL_STREAM')));

-- Sort records by descending anomaly score, insert into output stream
CREATE OR REPLACE PUWMP " QUTPUT_PUWP" AS
| NSERT | NTO " DESTI NATI ON_SQ._STREAM'
SELECT STREAM * FROM " TEMP_STREAM'
CORDER BY FLOOR(" TEMP_STREAM'. ROAMTI ME TO SECOND), ANOVALY_SCORE DESC;

The code reads rows in the SOURCE_SQL_STREAM 001, assigns an anomaly score, and writes the
resulting rows to another in-application stream (TEMP_STREAM. The application code then sorts the
records in the TEMP_STREAMand saves the results to another in-application stream
(DESTI NATI ON_SQL_STREAM. Note that you use pumps to insert rows in in-application streams.
For more information, see In-Application Streams and Pumps (p. 30).

4. Configure output —You configure the application output to persist data in the
DESTI NATI ON_SQL_STREAMto an external destination, which is another Amazon Kinesis stream.
Reviewing the anomaly scores assigned to each record and determining what score indicates an
anomaly (and you need to be alerted) is external to the application. You can use a Lambda function
to process these anomaly scores and configure alerts.

The exercise uses the US East (N. Virginia) (us- east - 1) AWS Region to create these streams and your
application. If you use any other region, you need to update the code accordingly.
Next Step

Step 1: Prepare (p. 67)

Step 1: Prepare

Before you create an Amazon Kinesis Analytics application for this exercise, you create two Amazon
Kinesis streams. You configure one of the streams as the streaming source for your application, and
another stream as destination where Amazon Kinesis Analytics persists your application output.

Step 1.1: Create Two Amazon Kinesis Streams

In this section, you create two Amazon Kinesis streams (Exanpl el nput St r eamand
Exanpl eQut put St r eam).

1. You can create these streams using the console or the AWS CLI.

¢ Sign in to the AWS Management Console and open the Analytics console at
https://console.aws.amazon.com/kinesisanalytics.

* Choose Kinesis Stream, and then create a stream with one shard.

¢ Use the following Amazon Kinesis cr eat e- st r eamCLI command to create the first stream
(Exanpl el nput St r eam).

67

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Analytics Developer Guide
Example: Detect Anomalies

2.

$ aws kinesis create-stream\
--stream nanme Exanpl el nput Stream \
--shard-count 1\

--region us-east-1\

--profile adm nuser

Run the same command, changing the stream name to Exanpl eCut put St r eam to create the
second stream that the application will use to write output.

Step 1.2: Write Sample Records to the Input Stream

In this step, you run Python code to continuously generate sample records and write to the
Exanpl el nput St r eamstream.

{"heartRate": 60, "rateType":"NORVAL"}

{"heartRate": 180, "rateType":"H GH'}

The code writes these records to the Exanpl el nput St r eamstream.

1.

Install Python and pi p.
For information about installing Python, see the Python website.

You can install dependencies using pip. For information about installing pip, see Installation on the
pip website.

Run the following Python code. The put - r ecor d command in the code writes the JSON records to
the stream.

i mport json
fromboto inport kinesis
i mport random

ki nesi s = ki nesis.connect_to_region("us-east-1")
generate normal heart rate with probability .99
def get Nornmal Heart Rate():

data = {}

data[' heartRate'] = random randi nt (60, 100)

data['rateType'] = "NORMAL"

return data
generate high heart rate with probability .01 (very few)
def getH ghHeartRate():

data = {}

data[' heartRate'] = random randi nt (150, 200)

data['rateType'] = "H GH

return data

whil e True:
rnd = random random()
if (rnd < 0.01):
data = json. dunps(get H ghHeart Rate())
print data
ki nesi s. put _record("Exanpl el nput Streanf’, data, "partitionkey")

68

https://www.python.org/
https://pip.pypa.io/en/stable/installing/

Amazon Kinesis Analytics Developer Guide
Example: Detect Anomalies

el se:
data = json. dunps(get Nor mal Heart Rat e())
print data
ki nesi s. put _record("Exanpl el nput Streant', data, "partitionkey")

Next Step

Step 2: Create an Application (p. 69)

Step 2: Create an Application

In this section, you create an Amazon Kinesis Analytics application as follows:

¢ Configure the application input to use the Amazon Kinesis stream you created in the preceding section
as the streaming source.

¢ Use the Anomaly Detection template in the console.

To create an application

1. Follow steps 1, 2, and 3 in Getting Started exercise (see Step 3.1: Create an Application (p. 20)) to
create an application. Note the following:

« In the source configuration, do the following:

« Specify the streaming source you created in the preceding section.

« After the console infers the schema, edit the schema and set the hear t Rat e column type to
INTEGER.

Most of the heart rate values are normal and the discovery process will most likely assign TINYINT
type to this column. But very small percentage of values that show high heart rate. If these high
values don'tfitin the TINYINT type, Amazon Kinesis Analytics sends these rows to error stream.
Update the data type to INTEGER so that it can accommodate all of the generated heart rate
data.

« Use the Anomaly Detection template in the console. You then update the template code to provide
appropriate column name.

2. Update the application code by providing column names. The resulting application code is shown
following (you can paste this code into the SQL editor):

--Creates a tenporary stream
CREATE OR REPLACE STREAM " TEMP_STREAM' (

"heart Rat e" | NTEGER,
"rateType" var char (20),
" ANOVALY_SCORE" DOUBLE) ;

--Creates another streamfor application output.
CREATE OR REPLACE STREAM " DESTI NATI ON_SQL_STREAM' (

"heart Rat e" | NTEGER,
"rateType" var char (20),
" ANOVALY_SCORE" DOUBLE) ;

-- Conpute an anomaly score for each record in the input stream
-- using Random Cut Forest

69

Amazon Kinesis Analytics Developer Guide
Example: Detect Anomalies

CREATE OR REPLACE PUMP " STREAM PUMP" AS
I NSERT | NTO " TEMP_STREAM'
SELECT STREAM "heartRate", "rateType", ANOVALY_SCORE
FROM TABLE(RANDOM_CUT_FOREST(
CURSOR(SELECT STREAM * FROM " SOURCE_SQL_STREAM')));

-- Sort records by descending anonmaly score, insert into output stream
CREATE OR REPLACE PUMP " QUTPUT_PUMP" AS
| NSERT | NTO " DESTI NATI ON_SQ._STREAM'
SELECT STREAM * FROM " TEMP_STREAM'
CORDER BY FLOOR(" TEMP_STREAM'. ROAMTI ME TO SECOND), ANOVALY_SCORE DESC;

3. Runthe SQL code and review results:
[7]
Expoi a
DESTIHATION_SQL_STREAM v s anl®
a b
"
Exit (done editing) [ESVEELGEITEL R
Source data Real-tima analytics Destination Application status: RUMNNING
In-application sireams: Start streaming results Export results
DESTINATION_SGL_STREAM T
STREAH
ROWTIME heartRate rateType ANOMALY SCORE
_Erean 8-0B 0203060 =) HORMAL
8-0B 0203060 o9
2016-08-0B 0203060 63
Next Step

Step 3: Configure Application Output (p. 70)

Step 3: Configure Application Output

At this time, you have application code reading heart rate data from a streaming source and assigning
an anomaly score to each. You can now send the application result from the in-application stream to an
external destination, another Amazon Kinesis stream (Qut put St r eanifest i ngAnomal yScor es). You
can then analyze the anomaly scores and determine which heart rate is anomalous. You can extend this
application further to generate alerts. Follow these steps to configure application output:

1.
2.

In the SQL editor, choose either Destination or Add a destination in the application dashboard.

On the Add a destination page, choose Select from your streams, and then choose the
Qut put St r eanTest i ngAnonal yScor es stream you created in the preceding section.

Now you have an external destination, where Amazon Kinesis Analytics persists any records your
application writes to the in-application stream DESTI NATI ON_SQL_ STREAM

You can optionally configure AWS Lambda to monitor the Qut put St r eaniTest i ngAnomal yScor es
stream and send you alerts. For instructions, see Example: Integrating Amazon Kinesis Analytics
with AWS Lambda (p. 72). If not, you can review the records that Amazon Kinesis Analytics writes

70

Amazon Kinesis Analytics Developer Guide
Example: Using Different Types of Times in Analytics

to the external destination, the Amazon Kinesis stream Qut put St r eaniTest i ngAnomal yScor es,
as described in the next step.
Next Step

Step 4: Verify Output (p. 71)
Step 4: Verify Output

In this step, you use the following AWS CLI commands to read records in the destination stream written
by the application:

1. Runthe get-shard-iterator command to get a pointer to data on the output stream.

aws kinesis get-shard-iterator \

--shard-id shardl d- 000000000000 \
--shard-iterator-type TRIM HORI ZON \

--stream nane Qut put Streanilesti ngAnonal yScores \
--region us-east-1\

--profile adm nuser

You get a response with a shard iterator value, as shown in the following example response:

"Shardlterator":
"shard-iterator-val ue" }

Copy the shard iterator value.
2. Runthe CLI get - r ecor ds command.

aws kinesis get-records \
--shard-iterator shared-iterator-val ue \
--region us-east-1\

--profile adm nuser

The command returns a page of records and another shard iterator that you can use in the subsequent
get - r ecor ds command to fetch the next set of records.

Example: Using Different Types of Times in
Streaming Analytics

For information about different types of times and an example query, see Timestamps and the ROWTIME
Column (p. 31). You can try the example query in that section against the demo stream you created in
the Getting Started Exercise.

71

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Analytics Developer Guide
Examples: Post Processing In-Application Stream

Examples: Post Processing In-Application
Stream

In your Amazon Kinesis Analytics application, you can create in-application streams to store intermediate
results of analytics. Post processing refers to persisting the results stored in-application streams to external
destinations for further analysis.

In your application configuration, you can configure output to persist data in your in-application streams
to external destinations, such as an Amazon Kinesis stream or an Amazon Kinesis Firehose delivery
stream, for further analysis.

For example, if application output is persisted to an Amazon Kinesis stream, you can configure AWS
Lambda to poll the stream and invoke a Lambda function to process records on the stream.

Topics
« Example: Integrating Amazon Kinesis Analytics with AWS Lambda (p. 72)

Example: Integrating Amazon Kinesis Analytics
with AWS Lambda

Integrating Amazon Kinesis Analytics applications with AWS Lambda enable additional scenarios. If you
persist your application output an Amazon Kinesis stream, you can have AWS Lambda poll the stream
and invoke a Lambda function. Your Lambda function can then process records that arrive on the stream,
for example write those records to a destination of your choice.

The example Amazon Kinesis Analytics application in the following sections persist output to an Amazon
Kinesis stream:

e Example: Simple Alerts (p. 64)
¢ Example: Detecting Data Anomalies on a Stream (the RANDOM_CUT_FOREST Function) (p. 66)

You can further enhance these examples using AWS Lambda to publish alerts. For illustration, this section
shows how to create a Lambda function and configure AWS Lambda so you get email notifications when
records arrive at the Amazon Kinesis Analytics stream.

You configure AWS Lambda as follows:

¢ Configure Lambda to poll the Amazon Kinesis stream and invoke your Lambda function when new
records are detected. The Lambda function receives these new records as the event parameter.

¢ Write a Lambda function to process the events. In this example, the Lambda function publishes a
message to an Amazon Simple Notification Service (Amazon SNS) topic.

For testing, you subscribe to the topic using email protocol. Amazon SNS then notifies you whenever
the Lambda function publishes a message (an alert) to the Amazon SNS topic.

¢ Add event source mapping in AWS Lambda to associate the Lambda function with your Amazon Kinesis
stream.

72

Amazon Kinesis Analytics Developer Guide
Example: AWS Lambda Integration

Note
The instructions in this exercise use the US East (N. Virginia) Region, (us- east - 1).

About AWS Lambda

If you are new to AWS Lambda, we recommend that you read the overview topic What IS AWS Lambda?
in the AWS Lambda Developer Guide. The Using AWS Lambda with Amazon Kinesis chapter also provides
an AWS Lambda and Amazon Kinesis Analytics integration example that you might find useful. However,
that example uses the AWS CLI. In this exercise you use the AWS Lambda console to quickly create a
Lambda function and map it to the destination stream of your application.

Topics
¢ Step 1: Create an Amazon Kinesis Analytics Application (p. 73)
e Step 2: Create an Amazon SNS Topic (p. 73)
¢ Step 3: Create a Lambda Function (p. 73)
e Step 4: Verify Results (p. 75)

Step 1. Create an Amazon Kinesis Analytics Application

In this section you set up an Amazon Kinesis Analytics application as follows:

1. First set up the example application that assigns anomaly score to heart rate data on a stream. For
instructions, see Example: Detecting Data Anomalies on a Stream (the RANDOM_CUT_FOREST
Function) (p. 66).

2. You now update part of the application code that writes rows to the DESTINATION_SQL_STREAM
stream. Now you want application to write only rows with higher anomaly score to the
DESTINATION_SQL_STREAM.

CREATE OR REPLACE PUMP " OUTPUT_PUMP" AS

I NSERT | NTO " DESTI NATI ON_SQL_ STREAM'

SELECT STREAM * FROM " TEMP_STREAM'
WHERE " ANOVALY_SCORE" > 3. 0;

Here we choose, 3.0 anomaly score, you can tweak this value as needed. The idea is to have the
application write high heart rate records to the output.

Step 2: Create an Amazon SNS Topic

Create an Amazon SNS topic and subscribe to it using the email as the protocol. Your Lambda function
will post messages to the topic and you will get email notifications. For instructions, see Getting Started
with Amazon Simple Notification Service in the Amazon Simple Notification Service Developer Guide.

Step 3: Create a Lambda Function

In this step, you do two things—create a Lambda function and then map your application destination
stream as the event source for your Lambda function.

If you are new to AWS Lambda, we recommend that you first review AWS Lambda: How It Works in the
AWS Lambda Developer Guide.

In the AWS Lambda console at https://console.aws.amazon.com/lambda/, choose Create Function and
then follow these steps:

73

http://docs.aws.amazon.com/lambda/latest/dg/
http://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html
http://docs.aws.amazon.com/sns/latest/dg/GettingStarted.html
http://docs.aws.amazon.com/sns/latest/dg/GettingStarted.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
https://console.aws.amazon.com/lambda/

Amazon Kinesis Analytics Developer Guide
Example: AWS Lambda Integration

On the Step 1: Select blueprint page, select the kinesis-process-record-python blueprint. This
blueprint closely resembles the scenario in this exercise.

On the Step2: Configure event sources page, specify the following values:

* Event source type — Kinesis

¢ Kinesis stream — Select the Amazon Kinesis stream from the that is the configured destination
for your Amazon Kinesis Analytics application.

* Batch size-1

On the Step 3: Configure function page, specify following values:
Name — ProcessAnomalies
Runtime — Python 2.7.

Replace the sample code by the following:

i nport base64
i mport json
i mport boto3

snsClient = boto3.client('sns')
print (' Loadi ng function')

def | ambda_handl er (event, context):
for record in event[' Records']:
Kinesis data is base64 encoded so decode here
payl oad = json.| oads(base64. b64decode(record[' kinesis']['data']))

payl oad = base64. b64decode(record[' kinesis']['data'])
print payl oad

response = snsCient. publish(

Topi cArn=" SNS-t opi c- ARN ,

Message=' Anomal y detected ... ' + payl oad,

Subj ect =" Anoral y detected',

MessageStructure="string',

MessageAttri but es={

"String' : {
' Dat aType': 'String',
"StringVal ue': ' New records have been processed.’
}

}

)

return ' Successfully processed {} records.'.fornat(len(event[' Records']))

Note
You need to update the code by providing the Topi cAr n.

Role — Choose Kinesis execution role. On the detail page that appears, choose View Policy
Document, and then choose edit. Add permission for the sns:Publish action. This allows the Lambda
function to publish the anomaly event to the specific Amazon SNS topic.

Timeout —60 seconds

Leave the default values for the other fields.
Choose Create function to create the Lambda function.

74

Amazon Kinesis Analytics Developer Guide
Examples: Other Amazon Kinesis Analytics Applications

5. Onthe Event sources tab for the Lambda function, verify that the specific event source is enabled.

You now have a Lambda function created and it is mapped to the destination stream of your
application. AWS Lambda now begins polling the destination stream, and invokes your Lambda
function when records appear on the stream.

Step 4: Verify Results

If all is well, you have the following occurring in your application flow:

e Sample script is writing data to your application's streaming source.

¢ Your application is processing records on the streaming source (assigning anomaly score to each
record based on the hear rate), and writing records with anomaly scores to in-application output stream.

« Amazon Kinesis Analytics is writing records from the in-application output stream to the output destination
(an Amazon Kinesis stream) configured for your application.

¢« AWS Lambda is polling your destination stream and invoking your Lambda function. Your Lambda
function will process each record, and publish a message to your Amazon SNS topic.

*« Amazon SNS is sending email notifications to you.

If you don't get Amazon SNS email notifications, you can check the logs in the CloudwWatch log for your
application. The logs provide information that can help you debug the problem. For example, your Lambda
function might be posting messages to the Amazon SNS topic, but you have not subscribed to the topic
(or you subscribed to the topic, but did not confirm the subscription). The log provides useful information
that will help you fix the problem.

Examples: Other Amazon Kinesis Analytics
Applications

This section provides examples that help you explore Amazon Kinesis Analytics concepts. This includes,
examples in which you introduce runtime errors that cause your application send rows to in-application
stream, explore console support for editing schemas that the console infers for in-application input stream,
by sampling data on the streaming source.

Topics
¢ Example: Explore the In-Application Error Stream (p. 75)

Example: Explore the In-Application Error Stream

Amazon Kinesis Analytics provides an in-application error stream for each application you create. Any
rows that your application cannot process are sent to this error stream. You might consider persisting the
error stream data to an external destination so that you can investigate.

In this exercise, you introduce errors in input configuration by editing the schema inferred by the discovery
process, and verify rows sent to the error stream.

You perform this exercise in the console.

Introduce Parse Error

In this exercise, you introduce a parse error.

75

Amazon Kinesis Analytics Developer Guide
Example: Explore the In-Application Error Stream

Create an application. For instructions, see Step 3.1: Create an Application (p. 20).
On the newly created application hub, choose Connect to a source.
On the Source page, select the demo stream (ki nesi s- anl ayti cs- deno- st ream.

If you followed the Getting Started exercise, you have a demo stream in your account.

Amazon Kinesis Analytics takes sample from the demo stream to infer a schema for the in-application
input stream it creates. The console show the inferred schema and sample data in the Formatted
stream sample tab.

Now you edit the schema and modify column type to introduce the parse error. Choose Edit schema.
Change the TI CKER_SYMBCL column type from VARCHAR(4) to | NTEGER.

Now that column type of the in-application schema that is created is invalid, Amazon Kinesis Analytics
will not be able to bring in data in the in-application stream, instead Analytics will send the rows to
error stream.

Choose Save schema.
Choose Refresh schema samples.

Notice that there are no rows in the Formatted stream sample. However, the Error stream tab
shows data with an error message. The Error stream tab shows data sent to the in-application error
stream.

Because you changed the column data type, Amazon Kinesis Analytics was not able to bring the
data in the in-application input stream, and instead it sent the data to the error stream.

Divide by Zero Error

In this exercise you update application code to introduce a runtime error (division by zero), and notice
that Amazon Kinesis Analytics sends the resulting rows to the in-application error stream, not to the
in-application error stream where the results are supposed to be written.

1.

Follow the Getting Started exercise to create an application. For instructions, see Step 3: Getting
Started Exercise (Create an Amazon Kinesis Analytics Appli