- published: 04 Jun 2013
- views: 38276
Electromagnetic radiation (EM radiation or EMR) is the radiant energy released by certain electromagnetic processes. Visible light is one type of electromagnetic radiation; other familiar forms are invisible electromagnetic radiations, such as radio waves, infrared light and X rays.
Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields that propagate at the speed of light through a vacuum. The oscillations of the two fields are perpendicular to each other and perpendicular to the direction of energy and wave propagation, forming a transverse wave. Electromagnetic waves can be characterized by either the frequency or wavelength of their oscillations to form the electromagnetic spectrum, which includes, in order of increasing frequency and decreasing wavelength: radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.
Electromagnetic waves are produced whenever charged particles are accelerated, and these waves can subsequently interact with any charged particles. EM waves carry energy, momentum and angular momentum away from their source particle and can impart those quantities to matter with which they interact. Quanta of EM waves are called photons, which are massless, but they are still affected by gravity. Electromagnetic radiation is associated with those EM waves that are free to propagate themselves ("radiate") without the continuing influence of the moving charges that produced them, because they have achieved sufficient distance from those charges. Thus, EMR is sometimes referred to as the far field. In this language, the near field refers to EM fields near the charges and current that directly produced them, specifically, electromagnetic induction and electrostatic induction phenomena.