
Experience Report:
An Empirical Study of PHP Security Mechanism Usage

Johannes Dahse and Thorsten Holz
Horst Görtz Institute for IT-Security (HGI)

Ruhr-University Bochum, Germany
{firstname.lastname}@rub.de

ABSTRACT
The World Wide Web mainly consists of web applications
written in weakly typed scripting languages, with PHP being
the most popular language in practice. Empirical evidence
based on the analysis of vulnerabilities suggests that security
is often added as an ad-hoc solution, rather than planning
a web application with security in mind during the design
phase. Although some best-practice guidelines emerged, no
comprehensive security standards are available for develop-
ers. Thus, developers often apply their own favorite security
mechanisms for data sanitization or validation to prohibit
malicious input to a web application.

In the context of our development of a new static code
analysis tool for vulnerability detection, we studied com-
monly used input sanitization or validation mechanisms in
25 popular PHP applications. Our analysis of 2.5 million
lines of code and over 26 thousand secured data flows pro-
vides a comprehensive overview of how developers utilize
security mechanisms in practice regarding different markup
contexts. In this paper, we discuss these security mecha-
nisms in detail and reveal common pitfalls. For example,
we found certain markup contexts and security mechanisms
more frequently vulnerable than others. Our empirical study
helps researchers, web developers, and tool developers to
focus on error-prone markup contexts and security mecha-
nisms in order to detect and mitigate vulnerabilities.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General—protection mech-
anisms; D.2.8 [Software Engineering]: Metrics—complex-
ity measures, product metrics

General Terms
Security, Measurement

Keywords
Static analysis, input sanitization, input validation, PHP

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Empirical studies of security vulnerabilities found in the

last years [3, 7, 28, 31] indicate that web-related vulnera-
bilities such as cross-site scripting (XSS) and SQL injection
(SQLi) are among the most common software flaws. In fact,
such vulnerabilities are more frequently detected in the re-
cent years than memory corruption vulnerabilities. This ob-
servation suggests that security is only added as an ad-hoc
solution in web applications, rather than planning such ap-
plications with security in mind during the design phase.

Although some best-practice guidelines on secure web pro-
gramming emerged (e.g., recommendations by OWASP [17]),
no comprehensive security standards are available for devel-
opers. This leads to the observation that each developer
applies his own favorite security mechanisms for data sani-
tization or validation. As a result, many programming pat-
terns emerged for input sanitization (e.g., type casting, data
encoding, converting data to HTML entities, or prepared
statements) and input validation (e.g., type validation, for-
mat validation, or whitelisting). Each of these patterns has
its own advantages and drawbacks, and programming mis-
takes due to common pitfalls can still lead to vulnerabilities.
As a side effect, this variety in security mechanisms leads to
many false reports in static code analysis tools, which have
to detect and analyze these security mechanisms precisely.

PHP is the most popular server-side scripting language on
the Web, running on 82% of all websites [30]. It is a weakly
typed language, meaning that a memory location can hold a
value of every possible data type. In contrast to a strongly
typed language, the weak typing in PHP implies that more
security checks have to be implemented by the developer to
ensure a safe usage in scenarios where only a specific data
type is allowed. Furthermore, weak typing introduces oddi-
ties when comparing data of different data types, leading to
even more (potential) bugs or insecurities [18].

Based on our experience in the development of a static
code analysis tool for finding security vulnerabilities in mod-
ern PHP applications [4–6], we collected typical program-
ming patterns used by developers to sanitize and validate
data. In this paper, we provide a comprehensive empiri-
cal analysis of the 20 different data sanitization and valida-
tion mechanisms we found being used in web applications.
Furthermore, we also study common implementation pitfalls
that lead to vulnerabilities in practice. We extended our pro-
totype in order to enumerate the security mechanisms used
in PHP applications and applied it to 25 of the most pop-
ular web applications. We analyzed more than 2.5 million
lines of code and present an analysis of the detected security

patterns in more than 26 thousand data flows. Our analysis
helps to answer the following essential questions for PHP
developers, code auditors, and static analysis engineers to
refine the focus during vulnerability detection:

• Q1: Which security mechanisms are available?

• Q2: Which pitfalls might these mechanisms imply?

• Q3: Which security mechanisms are used how often
in modern (web) applications?

• Q4: Which security mechanism is used to prevent
which vulnerability type in which markup context?

• Q5: Which pitfalls occur in practice?

We believe that our work is of great value for designers of
static code analysis tools, especially since the basic insights
can also be applied to programs implemented in other lan-
guages. Developers can understand how to use the correct
sanitization and validation mechanism in which situation.

In summary, we make the following three contributions:

• We survey common mechanisms to sanitize and vali-
date data in PHP applications and highlight the pit-
falls that can occur to answer questions Q1 and Q2.

• We present our approach to enumerate these mecha-
nisms via static code analysis techniques.

• We evaluate our approach with 25 popular real-world
applications. To the best of our knowledge, this is the
largest study on the usage of security mechanisms in
modern PHP applications. Based on this analysis, we
can answer research questions Q3 – Q5.

2. TYPES OF SECURITY MECHANISMS
Web applications receive remotely supplied (and poten-

tially malicious) user data via HTTP request parameters.
In PHP applications, user input is always received as data
of type string. If this input is processed in a security sen-
sitive operation of the web application, a vulnerability can
occur. For example, a dynamically built SQL query with
embedded user input may lead to a SQL injection vulnera-
bility [8]. In order to prevent such a critical vulnerability, the
user input has to be sanitized or validated beforehand. For
this purpose, a security mechanism is applied between the
user input (source) and the sensitive operation (sink) such
that malicious data cannot reach the sensitive operation.

To study the variety of security mechanisms used by devel-
opers in practice (Q1), we collected common types of mech-
anisms we experienced in real-world applications during the
development of our static analysis tool [4–6]. Although the
possible ways of implementation are endless, our list cov-
ers all different mechanisms we encountered. They can be
grouped into input sanitization (see Section 2.1) and input
validation (see Section 2.3) mechanisms. Some sanitization
and validation mechanisms have to be applied carefully to
the context of the markup (see Section 2.2 and Section 2.4).
Additionally, a security mechanism can be applied path sen-
sitively (see Section 2.5). Each mechanism is illustrated with
an example and common pitfalls are explained (Q2).

2.1 Generic Input Sanitization
Generally speaking, during input sanitization the data is

transformed such that harmful characters are removed or de-
fused. The advantage of this approach is that relevant parts

of the data stay intact, while only certain characters are re-
moved or replaced. This way, the application can proceed
with the sanitized data without a request for resubmission.
In the following, we present several ways to sanitize data
generically against all type of injection flaws, such as cross-
site scripting [13] and SQL injection [8].

2.1.1 Explicit Type Casting
Numeric characters can be safely used in security sensi-

tive string operations. To ensure only numeric characters, a
string can be explicitly typecasted to a number by using the
typecast operator or built-in functions.

1 $var = (int)$var; // safe
2 $var = intval($var); // safe
3 settype($var, 'int'); // safe

Listing 1: Examples for explicit type casting.

All three operations in Listing 1 ensure a secure use of the
variable $var regarding injection flaws. PHP uses duck typ-
ing to determine the integer value of a string. An empty and
non-empty string is typecasted to the number 0. However,
if the string starts with a number (“123abc”), the number
is used as result of the typecast (123). We will introduce
pitfalls associated with duck typing later on.

2.1.2 Implicit Type Casting
Similar to an explicit typecast, an implicit type cast auto-

matically occurs if data is used in mathematical operations.
Listing 2 shows an addition in line 1 in which $var is safely
typecasted to integer before a number is added.

1 $var = $var + 1; // safe
2 $var = $var++; // unsafe

Listing 2: Examples for implicit type casting.

In contrast, the increment operator in line 2 performs no
typecast and also works on strings. For example, the last
character in the string aaa will be incremented to aab. Thus,
$var can still contain malicious characters.

2.1.3 Formatting
Type casting is also performed by PHP’s built-in format

string functions. Different specifiers (beginning with a per-
centage sign) can be used in a format string that determine
the data type of the data they will be replaced with. An ex-
ample is given in Listing 3 that uses the identifier %s (string)
and %d (numeric).

1 $var = sprintf("%s %d", $var1, $var2); // unsafe / safe

Listing 3: Sanitization with a format string function.

The argument $var1 is unsafely embedded to the string
assigned to $var. Contrarily, $var2 is safely typecasted to
integer before it is embedded to the string.

2.1.4 Encoding
Exploitation of injection flaws almost always requires spe-

cial characters. Thus, next to numbers, alphabetical letters
can be considered to be a safe character set. By encoding
data to an alphanumeric character set, the data is sanitized.
Listing 4 provides a few encoding examples.

Although the base64 and url encoding introduces a few
special characters (+, /, =, or %), they are generally not suffi-
cient to form a malicious payload and these encodings can be

considered as safe when used in a sensitive sink. Other en-
codings, however, include the full set of ASCII characters in
the transformed output and thus are unsafe to use in sinks.
Specifically, the transformation or decoding to the original
data is unsafe because it reanimates malicious characters.

1 $var = base64_encode($var); // safe
2 $var = urlencode($var); // safe
3 $var = zlib_encode($var, 15); // unsafe
4 $var = urldecode($var); // unsafe

Listing 4: Transforming data into different encodings.

2.1.5 Filtering
It is also possible to sanitize data by built-in filter func-

tions. If the data passes a filter, it is returned unmodified.
Otherwise, false is returned so that the function can also be
used for input validation (see Section 2.3). Listing 5 demon-
strates the usage of two filter functions.

1 $var = filter_var($var, FILTER_VALIDATE_INT); // safe
2 $var = filter_var($var, FILTER_VALIDATE_EMAIL); // unsafe
3 $vars = array_filter($vars, 'is_numeric'); // safe
4 $vars = array_filter($vars, 'is_file'); // unsafe

Listing 5: Sanitization with a filter.

While the filter for integer/numeric values is safe, filtering
for valid email addresses or files is not necessarily, because
the character set of email addresses and file names allow
special characters. For example the SQL injection payload
1’or’1’-@abc.com can be a valid email and file name.

2.2 Context-Sensitive Input Sanitization
In contrast to generic input sanitization, context-sensitive

sanitization removes or transforms only a small set of special
characters to prevent exploitation of a specific vulnerabil-
ity type or a subset of vulnerabilities. Therefore, sanitized
data may still cause a vulnerability when used in the wrong
markup context or another type of sensitive sink. Again, we
provide in the following examples for security mechanisms
and common pitfalls inspired by real-world code we found.

2.2.1 Converting
A common method to distinguish between HTML markup

characters and data is to convert markup characters within
data to HTML entities. In Listing 6, the built-in function
htmlentities() is applied to different HTML contexts.

1 $var = htmlentities($var);
2 echo ''.$var.''; // safe
3 echo 'link'; // safe
4 echo "link"; // unsafe
5 echo "link"; // unsafe
6 echo 'link'; // unsafe

Listing 6: Converting meta characters to HTML entities.

The function htmlentities() converts the < and > char-
acter to the entity < and >, as well as the double-
quote character to ". Thus, the data is safely used
in line 2, where no new HTML tag can be opened with a
< character, and in line 3, where no double-quote can be
used to break the href attribute. However, if single-quotes
(line 4) or no quotes (line 5) are used for the attribute, an at-
tacker can inject eventhandlers to execute JavaScript code.
In line 6, double-quotes are used and cannot be broken, but
a javascript: protocol handler can be injected at the begin-
ning of the URL attribute and craft a malicious link.

2.2.2 Escaping
In SQL markup, string values are escaped in order to pre-

vent breaking the quotes the value is embedded in. A pre-
fixed backslash before a quote tells the SQL parser to inter-
pret the next quote as data instead of syntax.

1 $var = addslashes($var);
2 $sql = "SELECT * FROM user WHERE nr = '".$var."'"; // safe
3 $sql = 'SELECT * FROM user WHERE nr = "'.$var.'"'; // safe
4 $sql = "SELECT * FROM user WHERE nr = ".$var; // unsafe
5 mysql_query($sql);

Listing 7: Escaping data for a SQL query.

In Listing 7, a value is escaped with the built-in func-
tion addslashes(). It prevents breaking a single- or double-
quoted string value (line 2 and line 3). However, when no
quotes are used in the SQL query (line 4), breaking quotes
is irrelevant and an attacker can inject SQL syntax.

Furthermore, truncating a string after it was escaped in-
troduces a security risks. If the string is truncated at an es-
caped character, a backslash remains unescaped at the end
of the string that breaks any upcoming quote in the query.

2.2.3 Preparing
A safer way to separate data and SQL syntax is to use

prepared statements (see Listing 8). Here, the SQL state-
ment is prepared with place holders for parameters. Data
can then be bound to each place holder which will be safely
inserted at runtime, regardless of quoting or data type.

1 $stmt = $db->prepare("INSERT INTO ".$pfx."user (id, name)
VALUES (?, ?)");

2 $stmt->bind_param("i", $var); // safe
3 $stmt->bind_param("s", $var); // safe
4 $stmt->execute();

Listing 8: Binding parameters to a prepared statement.

Note that if the SQL statement is prepared dynamically,
it is still vulnerable to SQL injection. In line 1, the table
prefix variable $pfx can still inject SQL syntax. Another
pitfall to be aware of is that the inserted name to the table
user can still cause a second-order vulnerability [5].

2.2.4 Replacing
Manual replacing of certain characters is error-prone in

practice. In Listing 9, two ways of replacing single-quotes
are shown that look safe at first sight.

1 $var = str_replace("'", "", $var); // unsafe
2 $var = str_replace("'", "\'", $var); // unsafe
3 $sql = "INSERT INTO user VALUES ('".$var."','".$var."')";
4 mysql_query($sql);

Listing 9: Two examples for manual escaping.

In line 1, single quotes are removed completely and in
line 2 they are escaped with a backslash. However, the
backslash itself is forgotten in both replacements. Hence,
a backslash can be injected to break the single quotes. The
second replacement will replace “\’” to “\\’”, which escapes
the backslash and leaves the single quote unescaped.

2.2.5 Regex Replacing
Regular expressions (regex) can be used for string replace-

ment and are error-prone if not specified carefully [2]. For
example, in Listing 10, all characters except for those speci-
fied in brackets shall be removed to ensure safe data output.

1 $var = preg_replace("/[^a-z0-9]/", "", $var); // safe
2 $var = preg_replace("/[^a-z.-_]/", "", $var); // unsafe
3 echo $var;

Listing 10: String replacement with regular expressions.

The first regular expression allows alphanumerical char-
acters. The second regular expression could intent to allow
lowercase letters as well as the dot, minus, and underscore
character. However, the full ASCII range between the dot
and underscore character is allowed, including the character
< and > that allow to inject HTML.

2.3 Generic Input Validation
Next to input sanitization that transforms data into a safe

character set, data can be simply refused if it does not hold
a condition or fails a check. This input validation ensures
that only data which already consists of a safe character
set reaches a sensitive sink and data containing malicious
characters is refused. In the following, we introduce generic
conditions and checks to validate data against all type of
injection flaws we empirically found during our analysis.

2.3.1 Null Validation
The easiest way to validate that no malicious character is

within a given string is to check if it is empty or not set (see
Listing 11). However, this also implies that no data can be
used. A null validation is commonly used in combination
with a previous unset() operation. A static code analysis
tool should be able to calculate the boolean logic behind a
not operator and multiple else or elseif branches (line 4).

1 if(empty($var)) { } // safe
2 if(!isset($var)) { } // safe
3 if(!$var) { } // safe
4 if(empty($var)) { } else { } // unsafe

Listing 11: Validating a variable’s initialization.

2.3.2 Type Validation
Validation can also be performed by checking the data

type. Listing 12 shows four examples that check for a nu-
meric data type. In line 3, PHP’s duck typing is used when
a string is provided for an integer typecast. According to
its rules, the typecast result of a string that starts with a
number will bypass the validation. The same applies to the
validation in line 4, however, $var is sanitized by overwriting
it with the typecast result.

1 if(is_numeric($var)) { } // safe
2 if(is_int($var) === true) { } // safe
3 if((int)$var) { } // unsafe
4 if($var = (int)$var) { } // safe

Listing 12: Validating a variable’s type.

2.3.3 Format Validation
Next to the data type, a specific data format can be en-

forced. For example, the time and date format ensures that
no malicious payload can be crafted with the given set of
characters (see Listing 13). Other formats, however, might
allow malicious characters, such as parts of the URL format.

1 if(checkdate($var)) { } // safe
2 if($var = strtotime($var)) { } // safe
3 if($vars = parse_url($var)) { } // unsafe

Listing 13: Validating a variable’s format.

2.3.4 Comparing
By comparing input against a specific non-malicious value,

the data is implicitly limited to this value. In PHP, this can
be done by the equal operator, the identical operator, or
built-in functions (see Listing 14).

1 if($var == 'abc') { } // safe
2 if($var === 'abc') { } // safe
3 if(!strcmp($var, 'abc')) { } // safe
4 if($var == 1) { } // unsafe
5 if($var === 1) { } // safe

Listing 14: Validating a variable’s string content.

Care should be taken when using the equal operator (==,
line 4). It performs a type unsafe comparison by using duck
typing on operands. Therefore, any string starting with the
number 1 is typecasted to the integer 1 when compared with
an integer. Thus, malicious characters in this string bypass
the comparison to 1. A type safe comparison is performed
with the identical operator (===).

2.3.5 Explicit Whitelisting
To compare input against a set of whitelisted values, an

array can be used as lookup table, as shown in Listing 15.
The lookup can be performed either by array key (line 2 to
line 4) or array value.

1 $whitelist = array('a' => true,'b' => true,'c' => true);
2 if(isset($whitelist[$var])) { } // safe
3 if($whitelist[$var]) { } // safe
4 if(array_key_exists($var, $whitelist)) { } // safe
5 if(in_array($var, array('a','b','c'))) { } // safe
6 if(in_array($var, array(1, 2, 3))) { } // unsafe
7 if(in_array($var, array(1, 2, 3), true)) { } // safe

Listing 15: Using an explicit whitelist for validation.

Looking up a value in an array applies to the same rules
than comparing two values with the equal operator. Thus,
the example in line 6 is unsafe because the string 1abc is
typecasted to 1 and found successfully in the array. To avoid
this, the strict parameter has to be set to true. Similar pit-
falls occur when using the built-in function array_search().

2.3.6 Implicit Whitelisting
Next to an array, a value can be compared against a fixed

set of items. For example, method and property names
are limited to an alphanumerical character set . If a value
matches one of these (method_exists()), it implies that no
malicious character is contained.

2.3.7 Second-order Validation
Similar to a whitelist, a value can be looked up in a re-

source, such as the file system or a database. Listing 16
shows an example where an email is looked up in the table
user. Only if a user with the email address exists, the path is
reached. Similarly, three additional examples show a check
for the presence of a file name.

1 $var = addslashes($var);
2 $r = mysql_query("SELECT * FROM user WHERE mail='$var'");
3 if(mysql_num_rows($r)) { }
4 if(file_exists($var)) { }
5 if(realpath($var)) { }
6 if(stat($var)) { }

Listing 16: Database and file name lookup.

The safety of the validation depends on the present values
in the database or available file names. If the application
allows to insert arbitrary email addresses to the database or
to upload arbitrary file names, the validation is unsafe [5].

2.4 Context-Sensitive Input Validation
Input validation can also be performed context-sensitively:

for a subset of vulnerability types, the data is validated
against a safe character set or the absence of malicious char-
acters regarding the vulnerability type and markup context
in a specific code path. Another vulnerability type or an-
other markup context within the same path may still be
exploitable. In the following, we introduce examples for
context-sensitive input validation we found in our study.

2.4.1 Searching
For a specific context, user input can be validated by

proofing the absence of a malicious character required for
exploitation. For example, if no < character is found in the
input, it can be considered as safe regarding XSS in the con-
text of a HTML tag. Two typical search examples are shown
in Listing 17.

1 if(!strpos($var, '<')) { } // unsafe
2 if(strpos($var, '<') === FALSE) { } // safe

Listing 17: Searching for a specific malicious character.

The first example is unsafe, because strpos() returns the
offset at which the character was found in the string. If
the string starts with a < character, offset 0 is returned
that evaluates to false in the if-condition. Thus, the first
validation can be bypassed.

2.4.2 Length Validation
Note that a specific string length can or cannot prevent

exploitation, depending on the vulnerability type and its
markup context. For example, on MySQL, the SQL injec-
tion of the three characters ’-’ is equal to a ’or’1’=’1 in-
jection. For a XSS vulnerability, three characters are usually
not enough for exploitation. Thus, a string length valida-
tion, as shown in Listing 18, is context-sensitive.

1 if(strlen($var) < 3) { }

Listing 18: Validating the length of a variable.

2.4.3 Regular Expressions
Regular expressions are a useful tool to perform very pre-

cise input validation. In Listing 19, three different examples
are shown to allow only alphanumerical characters in the
following path.

1 if(!preg_match('/[^\w]/', $var)) { } // safe
2 if(preg_match('/\w+/', $var)) { } // unsafe
3 if(preg_match('/^\w+$/', $var)) { } // safe

Listing 19: Validating the character set with regex.

The first example ensures, that no characters are present
except for alphanumerical (\w) characters. The second ex-
ample checks that alphanumerical characters are present.
However, it fails to check the complete string range due to
the missing boundary checks (compare to line 3). Hence,
one alphanumerical character at any position of the string
is enough to bypass the validation. More pitfalls regarding
regular expressions can be found in Section 2.2.5.

2.5 Path Sensitivity
A security mechanism can also be spread across multiple

paths of the control flow. In this case, path-insensitive code
analysis reports false positives when impossible path com-
binations are considered [38]. In the following, we present
examples for path-sensitive applications of security mecha-
nisms and outline the challenges for static code analysis.

2.5.1 Path-sensitive Sanitization
In Listing 20, the variable $var is implicitly sanitized by

first checking for a numerical data type. If this condition
does not hold, the variable is sanitized. For example, in
line 2, the variable is set to the integer 0 which effectively
limits the variable to numerical characters for all paths after
the if-block. Similarly, the variable could be unset (line 3)
or context-sensitive sanitization could be applied (line 4).

1 if(!is_numeric($var)) {
2 $var = 0;
3 //unset($var);
4 //$var = addslashes($var);
5 }

Listing 20: Path-sensitive sanitization.

Typically, static code analysis tools fail to recognize this
type of input sanitization because all execution paths are
considered separately. Thus, it is assumed that the variable
is not modified when the if-path is not taken. However,
this implies that the variable’s value is already numerical.

2.5.2 Path-sensitive Termination
A similar confusion of static analysis can occur when the

program is terminated based on input validation. In List-
ing 21, the program execution is halted if $var is not nu-
merical. Alternatively, a loop could be aborted (break) or
the control-flow of a user-defined function ended (return).

1 if(!is_numeric($var))
2 die("not numeric.");

Listing 21: Path-sensitive program termination.

A static analysis tool should not only be aware of the fact
that there is no jump from the if-block to the following code,
but also that the conditional termination of the program pre-
vents any non-numerical characters after the if-block. Con-
sidering more complex code and the halting problem, which
proves the undecidability of all program halts with another
program, it is evident that static code analysis cannot reason
about all security mechanisms correctly.

2.5.3 Path-sensitive Validation
Another challenge for static analysis is path-sensitive us-

age of input validation. A typical example is given in List-
ing 22, where the variable $error is used to flag bad input.

1 if(!is_numeric($var)) {
2 $error = true;
3 }
4 if(!$error) { }

Listing 22: Path-sensitive validation.

The variable $error is independent from the variable $var
that is analyzed for tainted input. Thus, its relevance for
input validation is likely missed by path-insensitive static
analysis. In contrast, analyzing all variables in all conditions
of an execution path for input validation is very expensive
for long paths and inter-procedural data flow.

3. STATIC ENUMERATION OF SECURITY
MECHANISMS

Following the paradigm of sources and sinks (see Sec-
tion 2), a web application can be audited for security vul-
nerabilities in an automated fashion with static code anal-
ysis (e.g., [1, 4, 12, 35]). Although dynamic code analysis
provides a more precise data flow analysis for one execu-
tion path, static code analysis can (theoretically) achieve full
code coverage and allows to enumerate all security mecha-
nisms utilized in a given application. During static analysis,
the application’s source code is transformed into an abstract
data model to analyze the data flow. A security vulnerabil-
ity is reported if a source flows into a sensitive sink without
any sanitization or validation in between. While sources and
sinks can be easily configured, one of the main challenges
for static analysis tools is to detect and evaluate these se-
curity mechanisms to avoid false vulnerability reports (false
positives). In addition, we have shown that identifying the
incorrect usage of security mechanisms is the key to detect
vulnerabilities in modern applications [4]. Studying the oc-
currences of security mechanisms helps static analysis engi-
neers to focus on the main root causes for false reports.

A erroneous approach to count security mechanisms in an
application is to count the occurrences of security related
operators and built-in functions in the code. On the one
hand, this leads to an over-approximation when these fea-
tures are used for other purposes than for data sanitization
or validation, such as a type-cast of non-sensitive data. On
the other hand, this leads to an under-approximation when
these features are declared in reusable code once but called
multiple times at runtime, such as a user-defined function.

A more precise enumeration of security mechanisms is
achieved by leveraging static data flow and taint analysis.
Here, the security relevance of data flow through such a
mechanism can be evaluated by the taint status of the data.
A mechanism should only be associated with security if it
sanitizes or validates tainted data and this data reaches a
sensitive sink. For this purpose, we modified the data flow
and taint analysis of the existing prototype RIPS that is
based on block and function summaries. It is able to sim-
ulate built-in security features precisely (for details, please
refer to our paper [4]). In this section, we briefly recall the
analysis steps of RIPS and introduce our modifications for
enumeration, in order to answer our research questions Q3-
Q5. Furthermore, we discuss limitations of our approach.

3.1 Data Flow Analysis
RIPS transforms every PHP file’s code into an abstract

syntax tree (AST). At jump nodes, the tree is split into basic
blocks. These are connected by block edges that hold the
branch’s condition and build a control flow graph (CFG).

The data flow within each basic block is simulated by in-
ferring memory locations and values from the AST to data
symbols [4]. A data symbol is an abstract representation of
data and used to store meta information, such as the data
type, applied sanitization, encoding, or escaping. Examples
for memory locations are variables, arrays, or object prop-
erties. Different types of memory locations are inferred to
different types of symbols with additional meta information
(see Section 3.2). Static strings are stored in a value symbol.

Data symbols assigned to a memory location are indexed
in each basic block’s summary by the location’s name. The
block summary stores the summarized data flow within one

block. It is used to perform backwards-directed data flow
analysis between multiple connected basic blocks throughout
the CFG. By recursively looking up location names, data
symbols can be resolved from previous basic blocks. Meta
information, such as sanitization or encoding, is inherited
from looked up symbols to resolved symbols.

Similarly, a function summary saves the data flow through
a user-defined function and its side effects. The summary is
reused for every function call context-sensitively, by adjust-
ing call-site arguments to the summary.

3.2 Sanitization and Pitfall Tags
The symbols’ meta information about sanitization is in-

ferred from PHP operators and built-in functions within the
AST. For this purpose, a whitelist of sanitizers is used and
complex sanitizers are simulated carefully [4]. RIPS assigns
different sanitization tags to the inferred data symbols that
precisely point out the sanitized markup contexts.

For example, the built-in function htmlentities() sani-
tizes against double quotes and lower-than characters by de-
fault. Thus, the corresponding sanitization tags for double-
quoted attributes or HTML elements are added to the argu-
ment’s data symbol. If the mechanism sanitizes against all
types of injection flaws, such as an integer typecast, a univer-
sal sanitization tag is added. In order to track multiple levels
of escaping and encoding, each data symbol has an escap-
ing and encoding stack that is modified by certain built-in
functions, such as addslashes() and urlencode(). String
and regular expression replacements are evaluated against a
configured list of characters that are required for exploita-
tion of specific markup contexts. If a character is replaced,
the according sanitization tag is added to the data symbol.

For our study, we leverage these sanitization tags and ex-
tended our prototype by adding pitfall tags. These are in-
ferred from the AST for delusive sanitization, such as the
increment operator (see Section 2.1.2), or weak validation,
such as fragmentary regular expressions (see Section 2.4.3).

3.3 Sanitization-centric Taint Analysis
During a basic block’s simulation, taint analysis is in-

voked for sensitive arguments of sensitive sinks, such as the
echo operator or mysql_query() built-in function. First,
all strings are reconstructed that flow into the sink by us-
ing backwards-directed data flow analysis (see Section 3.1).
Here, strings are fetched from value symbols and data sym-
bols of sources are mapped to place holders. Unknown mem-
ory locations are resolved to empty strings. Then the place
holders’ positions within each string are analyzed to deter-
mine the markup context. If (according to the meta infor-
mation) the data symbol of a place holder is not sanitized
regarding the detected markup context, a vulnerability re-
port is issued [4]. The report is not issued if the resolved
data symbol possesses a matching sanitization tag.

For our study, we extended the taint analysis of our pro-
totype to log such a successfully applied sanitization mech-
anism. For this purpose, we also added information about
the used security mechanism when sanitization tags are ap-
plied to a data symbol by an operator or built-in function.
Furthermore, we log a taken pitfall if a source’s data symbol
owns wrong sanitization tags, insecure encoding, or escaping
regarding the detected markup context. A pitfall is logged
if no correct sanitization tags are found but a pitfall tag was
assigned to the data symbol.

3.4 Validation-centric Taint Analysis
In contrast to sanitization mechanisms, operators and built-

in functions that perform a security related validation of
their arguments are inferred from an AST to a boolean data
symbol. It stores the information about the validated ar-
gument and the condition for successful validation (true or
false). Additionally, the corresponding sanitization and pit-
fall tags are added for the type of validation. The boolean
data symbol allows to track the flow of validated data in form
of a true or false constant intra- and inter-procedurally.

Similarly to basic blocks, RIPS simulates block edges. If
a boolean data symbol is inferred from the condition’s AST,
its sanitized data symbol is added to the block edge. Dur-
ing backwards-directed taint analysis of a data symbol, the
sanitization and pitfall tags are copied from a block edge
that validates the analyzed data symbol. At the end of the
taint analysis, the collected sanitization and pitfall tags can
be evaluated against the markup context. Due to our mod-
ification, successful validation leads to logging of the corre-
sponding sanitization tags and erroneous validation issues a
vulnerability report and logging of any pitfall tags.

3.5 Side Effects and Limitations
As a side effect, our modified prototype is significantly

slower than the unmodified version. The unmodified ver-
sion stops resolving data when it is validated by a block edge.
Moreover, data symbols that were sanitized with a universal
sanitization tag are not resolved further. Our modified ver-
sion tries to fully resolve these symbols, however. Although
exploitation is impossible, it tests if the symbol is resolved
to a source in order to determine if the detected mechanism
was applied for a security purpose.

Our prototype suffers from the limits of static code anal-
ysis. First of all, the detection of path-sensitive security
mechanisms is unsound: although our prototype detects ba-
sic path-sensitive sanitization and termination, it fails to
analyze complex forms of path-sensitive validation (see Sec-
tion 2.5.3). Furthermore, our prototype is unable to handle
custom template engines that combine data with file con-
tent. Lastly, complex string construction within loops, as it
is sometimes used by SQL query builders, is handled impre-
cisely. These limitations can potentially lead to false nega-
tives and false positives.

4. EMPIRICAL STUDY ON SECURITY
MECHANISM USAGE

Based on our extended prototype, we empirically study
the usage of different security mechanisms in combination
with the markup context. This allows us to evaluate com-
mon and uncommon combinations, as well as, associated
pitfalls. We first introduce our methodology of enumeration
(see Section 4.1) and the software picked (see Section 4.2).
Then we present our results in Section 4.3 that provides an-
swers to Q3-Q5 in detail and discuss our lessons learned in
Section 4.4. Threats to validity are addressed in Section 4.5.

4.1 Methodology
We limit our study to XSS and SQL injection vulnerabil-

ities, because these are the most prevalent injection flaws.
Both types have a variety of contexts by using a separate
markup language (namely HTML and SQL). A security mech-
anism is counted when a unique source flows into a unique

Table 1: Overview of 25 selected applications with the
amount of analyzed lines of code (LOC) and detected
markup injections (HTML, SQL, or JavaScript).

Software Version LOC HTML SQL JS

Beehive 1.4.3 105 325 2 976 402 0
CMSSimple 1.11.11 137 222 190 335 1
Concrete5 5.6.3.1 317 025 1 823 161 109
Couch CMS 1.4 37 073 25 29 16
e107 1.0.4 157 706 2 561 828 937
FluxBB 1.5.6 28 945 268 145 2
FreePBX 2.11.0.25 75 909 147 36 10
FUDForum 3.0.6-RC2 74 421 556 211 31
HotCRP 2.92 40 865 181 106 3
LiveZilla 5.2.0.1 43 593 40 181 0
Nucleus CMS 3.6.5 38 268 61 49 1
OpenConf 6.0 21 836 325 180 2
osCommerce 2.3.4 85 563 2 615 788 0
Phorum 5.2.19 73 841 304 699 2
PHP Fusion 7.02.07 54 584 805 563 40
PHP Nuke 8.3.2 200 767 261 291 0
phpList 3.0.6 103 647 670 169 15
Pligg CMS 2.0.1 62 588 24 258 0
PunBB 1.4.2 43 268 119 84 2
Roundcube 1.0.2 158 435 179 24 0
Serendipity 1.7.8 212 705 137 418 19
Squirrelmail 1.4.22 56 194 1 097 123 3
Wacko Wiki 5.4.0 103 217 100 132 0
Xoops 2.5.6 142 749 209 74 10
Zen Cart 1.5.1 131 458 1 029 1 810 5

Sum n/a 2 507 204 16 702 8 096 1 208
Average n/a 100 288 668 324 48

markup context of a sink and was sanitized or validated
correctly by a security mechanism. Incorrect sanitization
or validation regarding the markup context is counted as
pitfall, as well as any present pitfall tag. The backwards-
directed taint analysis allows us to count only the nearest
security mechanism before the sink. In the case of a path-
sensitive sanitization or termination, the corresponding val-
idation mechanism is counted (refer to Section 2.5). The
detection of path-sensitive validation is disabled (reasons in
Section 3.5). Furthermore, we excluded second-order taint-
ing [5] and validation (see Section 2.3.7) because it depends
on the analysis of taintable resources which is more error-
prone than the detection of other security mechanisms.

4.2 Corpus
In order to obtain the most precise results, we carefully

chose the applications to analyze. First, we gathered a
coarse list of PHP applications according to the following
criteria:

• The application is open source, active, and popular
according to W3Tech’s usage statistic [29].

• The application has an size of at least 20 KLOC.

• The application works standalone and does not require
additional code.

Then, we excluded applications from our list that make
an extensive use of reflection or application frameworks. As
mentioned in Section 3.5, static analysis of these components
is limited and often requires manual configuration [26]. We
discuss related threats to validity in Section 4.5. The list of
our selected applications for evaluation is given in Table 1.

Table 2: Mechanisms safely applied to HTML contexts.

DQ Element SQ Comment URL

Converting 3 367 839 18 8 10
Type Validation 1 816 1 494 15 27 0
Comparing 999 1 269 32 35 95
Explicit Typecast 439 1 075 34 57 20
Regex Validate 903 397 145 1 1
String Replace 27 513 517 3 1
Null Validation 167 205 9 15 0
Other 918 869 48 37 16

Sum 8 636 6 661 818 183 143

Table 3: Safe JS context.

Script Event

TypeVal 465 2
ExplCast 206 27
Compare 161 7
Replace 80 2
NullVal 31 4
RegexRepl 31 2
Encode 26 7
Other 75 17

Sum 1 075 68

Table 4: JS pitfalls.

Script Event

Converting 34 8
Replace 14 0
Compare 4 0
RegexCheck 3 0
RegexRepl 1 0
Truncate 1 0
Decode 0 0
Other 0 0

Sum 57 8

4.3 Results
In total, we analyzed 2.5 million lines of code and 26,006

unique data flows where a source flows sanitized (53%) or
validated (47%) into a sensitive sink. Data flows without any
applied security mechanism are excluded from our study.

As shown in Table 1, the most common markup con-
text we found is HTML (64%), followed by SQL (31%) and
JavaScript (5%). This is likely related to the fact that an av-
erage application prints more data to the response page than
that it interacts with the database [9]. The style context
(CSS) appeared rarely and was excluded from our study.

As a preliminary answer to research question Q3, we found
that user input is primarily secured with a type validation
(19%) or an explicit type cast (16%). The extensive use of
type-related security mechanisms shows the additional work
on the developer side that would otherwise be handled by
default in a strongly typed language. Other security mech-
anisms are applied context-sensitively to the markup and
are revealed throughout this section in order to answer re-
search question Q4. Format validation or PHP’s valuable
filter functions are the least detected security mechanisms in
our test set (<1%). Instead, string replacement and regu-
lar expressions are used, which are the security mechanisms
with the highest pitfall density in our test corpus (Q5).

4.3.1 HTML Markup Security
Table 2 shows the seven most frequently used security

mechanisms to secure the five most common HTML markup
contexts, according to our study. For example, 3,367 occa-
sions were detected where user input within a double-quoted
(DQ) HTML attribute was correctly sanitized by converting
characters. Table 5 shows frequent markup contexts where
this mechanism failed, for example for 3 URL attributes.

In summary, the HTML landscape is dominated by double-
quoted HTML attributes (52%) and the context between
two HTML elements (41%), followed by single-quoted (SQ)
attributes context (5%). HTML comments, fully controlled
URL attributes, and attribute names are rare contexts (<1%).

Table 5: Pitfalls triggered in HTML contexts.

Element DQ SQ URL Comment

String Replace 57 12 3 2 1
Regex Validation 33 10 6 0 0
Escaping 40 0 0 0 0
Regex Replace 20 11 4 0 2
Comparing 7 18 8 1 0
Converting 0 0 6 3 0
String Search 4 2 0 0 0
Other 2 9 0 0 0

Sum 163 62 27 6 3

The most frequently used security mechanism is an HTML
character conversion by PHP built-in functions, such as html
entities() (see Table 2 and Table 5, cursive). This data
sanitization is applied to 25% of all 16,702 detected HTML
markup contexts, primarily to the two markup contexts it is
designed for: double-quoted attributes and between HTML
elements. However, we also detected 24 cases where it is
applied to a single-quoted attribute context that requires an
additional parameter to the htmlentities() function (see
Section 2.2.1). In 6 cases (e. g., in FreePBX), this pitfall
was triggered which leads to the suggestion to always use
double-quoted HTML attributes. Furthermore, type valida-
tion (20%) and explicit type casting (10%) is regularly ap-
plied, followed by data validation with regular expressions
(9%) and data sanitization with string replacements (7%).

Especially the two latter are prone to pitfalls, as shown
highlighted in Table 5. We found that 7% of all applied
string replacements and 3% of all applied regular expres-
sions to tainted data are insufficiently sanitizing or validat-
ing the HTML context. A single forgotten character that
slips through the string replacement or regular expression
filter leads to an exploitable vulnerability. Moreover, cross-
site scripting occurs when data is sanitized for a different
vulnerability type. For example, in 40 occasions data is cor-
rectly escaped for the use in a SQL query, but later printed
insecurely to the HTML markup between two elements.

4.3.2 JavaScript Markup Security
As shown in Table 3, the prevalent JavaScript context

in our selected applications is the HTML script tag that
clearly dominates over eventhandler attributes (Event). The
table lists the top seven security mechanisms applied to both
contexts, as detected by our prototype in the corpus. Next
to type-related security mechanisms, such as type validation
(39%) and explicit type casting (19%), many custom saniti-
zation approaches are found that base on string comparison
(14%), regular expressions (3%), or string replacement (8%).

Similar to the HTML markup, the latter is the root cause
for 14 pitfalls (see Table 4, highlighted). For example, in
Couch CMS the backslash and double-quote character is re-
placed to prevent an outbreak of double-quotes. However,
an attacker can terminate the current script tag and start
a new JavaScript context that requires no quotes by inject-
ing </script><script>. According to our study, the most
commonly taken pitfall for a JavaScript context is based
on character conversion. In fact, we found more vulnera-
ble applications of character conversion to a JavaScript con-
text than secure ones. This is related to the fact that most
JavaScript contexts use no quotes or single-quotes, which
are not converted by the built-in functions by default.

Table 6: Safe SQL contexts.

SQ NQ DQ

ExplCast 1 140 1 028 1
Escape 1 519 0 38
TypeVal 826 287 6
Compare 537 248 19
RegexVal 497 77 4
Replace 382 39 4
Prepare 0 352 0
Other 489 316 49

Sum 5 390 2 347 121

Table 7: SQL pitfalls.

NQ SQ DQ

Escape 72 0 0
RegexVal 26 11 0
Replace 18 15 2
Compare 15 12 0
Truncate 7 20 0
Prepare 21 2 0
RegexRepl 9 1 0
Other 2 4 0

Sum 170 65 2

4.3.3 SQL Markup Security
Table 6 and Table 7 compare the distribution of correctly

and wrongly applied security mechanisms to 8,096 detected
SQL contexts. In our evaluation, 67% of the sources are em-
bedded into single-quotes (SQ), 31% without quotes (NQ),
and 2% into double-quotes (DQ). The values are usually san-
itized (27%) or validated (14%) by data type, or sanitized by
escaping (19%). However, for 72 escapes (4%), the surround-
ing quotes are forgotten which leads to SQL injection. This
is the most frequent pitfall encountered for SQL markup.
Contrarily, we found that only 5% of all SQL queries in our
selected applications use prepared statements which would
prevent these obstacles. Moreover, 7% of all these prepared
statements are handled unsafe (e. g. in PunBB), indicating
that the concept is not thoroughly understood. As for the
HTML and JavaScript markup, many vulnerabilities stem
from insufficient string replacement or regular expression
validation (see Table 7, highlighted). While these mostly
recognize quotes within the input, the SQL markup misses
quotes or the backslash character is forgotten.

4.4 Lessons Learned
Based on our results, we were able to suggest answers

to our research questions regarding the diversity of security
mechanisms and pitfalls (Q3-Q5). This provides valuable
insight for the practice and teaches the following lessons.

First of all, we learned about pitfall-prone markup con-
text. In order to find vulnerable code as a developer, code
auditor, or static analysis engineer, an increased focus can
be applied to markup contexts with a high pitfall density
(detected pitfalls per detected markup contexts) and high
frequency (see Figure 1). According to our evaluation, fully
controlled URL attributes (18%) and eventhandlers (15%)
are highly prone to pitfalls. However, these appear sel-
dom in code (0.2% of all detected markup contexts). More
commonly in practice are SQL values with no quotes (9%),
script tags (4%), and single-quoted HTML attributes (3%)
that have a pitfall density of 8%, 6%, and 4%, respectively
(according to our analysis results). These are the contexts
to keep an eye on. Least likely affected by pitfalls are double-
quoted HTML attributes and single-quoted SQL values (1%).

Second, we learned about pitfall-prone security mecha-
nisms. As highlighted throughout Table 2-7, custom se-
curity mechanisms based on regular expressions and string
replacement are more prone to pitfalls than other security
mechanisms, but appear rather frequently. These should
be carefully inspected, and often can be replaced with a less
error-prone security mechanism. We also believe that a high
pitfall density for JavaScript markup is related to the fact
that there is no designated built-in function in PHP.

HTML
DQ

SQL
SQ

HTML
Tag

SQL
NQ

JS
Script

HTML
SQ

HTML
Comm

SQL
DQ

JS
Event

HTML
URL

10-1 10-1

100 100

101 101

102 102

Fr
eq

ue
nc

y
(%

)

Figure 1: Pitfall density (bars) versus frequency (line) of
markup contexts prone to XSS (dark) and SQLi (light).

Last but not least, we use the lessons learned as a new
metric for our tool to improve the severity ranking of vul-
nerability reports. Except for the universal sanitization tag
that introduces performance issues (see Section 3.5), we kept
the logging of applied security mechanisms in our proto-
type. This allows us to rank vulnerabilities detected in
error-prone markup contexts, such as an XSS within an URL
attribute, higher than reports in other markups that are sta-
tistically less vulnerable. Similarly, reported vulnerabilities
with a pitfall in string replacement or a regular expression
are ranked higher. The logging also helps us to validate our
true negative rate and to detect a low code coverage. We as-
sume that a large application will result in a certain amount
of logged security mechanisms and markup contexts. Other-
wise, this indicates a low code coverage that could possibly
stem from a template engine or a SQL builder.

4.5 Threats to Validity
There are certain threats to validity of our results that

caution to draw strong conclusions and to generalize. Our
corpus consists of only 25 popular applications. We excluded
some popular applications, such as Wordpress, Joomla, and
Drupal, because for these highly dynamic applications, a
low code coverage of our static analysis tool is expected,
which could tamper the results. We refrained from adding
more unpopular applications because we believe that they
are more vulnerable. Although more studies need to be con-
ducted to verify our results for more applications, we believe
that our corpus represents a comprehensive set of modern
and popular applications in order to provide reasonable indi-
cators. However, a different corpus may introduce a different
amount of security mechanisms and pitfalls and the detec-
tion rate of our tool may be different for each application.

Moreover, as discussed in Section 3.5, static code analysis
is limited. Although we would like to find all vulnerabilities
present in an application, static analysis allows only to de-
tect a fraction. While we experienced good results with our
prototype in the past and verified random samples, we can-
not guarantee the absence of false positives, false negatives,
or mistakes. We tried to mitigate this threat by exclud-
ing applications not suited for our prototype and the results
appear to be reasonable according to our experience with
security vulnerabilities in PHP applications [4–6].

Finally, our analysis cannot reason about the intention of
the developer. This poses a threat to the evaluation of se-
curity mechanisms and pitfalls because, for example in case
of a string comparison, data can be accidentally validated
or a pitfall might be triggered although no validation was
intended in first place.

5. RELATED WORK
Input sanitization and validation mechanisms became very

important for software developers with the raise of string-
related vulnerabilities, especially in the context of web appli-
cations and vulnerabilities such as XSS and SQL injection.
In this section, we review related empirical studies and auto-
mated analysis of security mechanisms in (PHP-based web)
applications.

5.1 Empirical Studies
Next to security vulnerability trends [3, 7, 28, 31], empiri-

cal studies regarding sanitization and validation approaches
in PHP applications were conducted. However, the covered
mechanisms are either incomplete or studied in a different
context. This leads to different results because, for example,
not every string comparison is a security mechanism.

Hills et al. conducted an interesting study of the usage
of PHP features in 19 applications [9]. Among different fea-
tures, the occurrences of type casts and binary operations
were studied. However, these features were not interpreted
regarding security and no other security mechanisms were
covered. Scholte et al. empirically analyzed the data type
of the parameters that are affected by XSS and SQL injec-
tion for over 7,000 vulnerabilities [23]. Next to native data
types, such as string, integer, and boolean, they also consid-
ered custom data types, such as email, url, or username. As
a result, the most commonly affected data types were iden-
tified, as well as the lack of built-in sanitization mechanisms
for these types in common web frameworks.

Weinberger et al. empirically studied present sanitization
approaches against XSS in web application frameworks [34].
They analyzed the availability of sanitization approaches for
different HTML markup contexts for five PHP frameworks.
Furthermore, eight PHP applications were studied for the
usage of various markup contexts. A templating framework
was proposed by Samuel et al. that uses type qualifiers
to automate context-sensitive XSS sanitization [19]. Our
analysis is more comprehensive and extends these studies.

In his dissertation about decision procedures for string
constraints, Hooimeijer studied the occurrence of 113 PHP
built-in string functions in 88 applications [10]. Among these
functions are length limiting, regular expression, and for-
matting functions, but these are not interpreted regarding
sanitization or validation. Saxena et al. developed Script-
Gard to detect and correct the misplacement of sanitiz-
ers in ASP.NET applications with dynamic analysis [22].
They studied one application with 400 KLOC for context-
mismatched sanitization or sanitizer sequences. In compar-
ison, we studied 25 applications and 2.5 million LOC.

5.2 Static Security Mechanism Analysis
A variety of static analysis approaches have been proposed

to automatically identify security vulnerabilities in PHP ap-
plications based on insufficient sanitization and validation.

Zheng and Zhang introduced path-sensitive static analy-
sis for PHP applications with Z3-str [38]. They leverage a
modified version of the Z3 SMT solver that is also capable
of analyzing strings. Shar and Tan proposed static code at-
tributes for predicting SQLi and XSS vulnerabilities [24, 25].
Among their attribute vectors are six validation and six sani-
tization mechanisms. Other security mechanisms introduced
by our work are missed and likely lead to false positives.

Yu et al. built an automata-based string analysis tool
called STRANGER [36] based on the static code analy-
sis tool Pixy [12]. STRANGER detects security vulnera-
bilities in PHP applications by computing possible string
values using a symbolic automata representation of com-
mon string functions, including escaping and replacement
functions. Later, they automatically generated sanitization
statements for detected vulnerabilities by using regular ex-
pression replacements [37]. Balzarotti et al. combine static
and dynamic analysis techniques to identify faulty custom
sanitization routines [1]. The static analysis component of
their tool called Saner extends Pixy and analyzes string
modification with automata, while the dynamic component
verifies analysis results to reduce false positives. None of
these tools detects input validation.

Kneuss et al. developed a static analyzer called PHANTM
to detect type errors in PHP applications [14]. Although
not primarily in focus, they detected security vulnerabilities
during their evaluation. Wasserman and Su leverage string
analysis with context free grammars to detect XSS [33] and
SQLi [32] vulnerabilities based on insufficiently-checked un-
trusted data. They cover string replacement and escap-
ing, while path-sensitive input validation leads to false posi-
tives. Minamide developed a string analyzer to approximate
the output of PHP applications using a context-free gram-
mar [16]. It models a variety of sanitization functions but
can only prove the absence of predefined attack vectors.

Sanitization analysis was also applied to other program-
ming languages, such as JavaScript [20, 21], Java [27], and
ASP.NET [11, 15, 22]. Our work complements such stud-
ies and provides a comprehensive overview of sanitization
approaches used in modern web applications.

6. CONCLUSION
In PHP, a variety of security mechanisms exist that can

be applied by developers in order to defuse user input for
sensitive operations. However, different markup contexts of
different operations require different security mechanisms.

In this paper, we empirically analyzed how developers uti-
lize data sanitization and validation mechanisms in practice
to prohibit malicious input. We discussed typical program-
ming patterns we experienced during analysis of a variety of
PHP-based web applications. Furthermore, we presented a
static code analysis approach to detect and study these secu-
rity mechanisms and extended our prototype. By analyzing
25 popular PHP applications, we obtained valuable insights
into common pitfalls and security vulnerabilities. For exam-
ple, we found evidence that single-quoted HTML attributes
are more likely causing a vulnerability than double-quoted.

Our results help us (and other static analysis engineers)
to focus on the detection and precise simulation of the most
common security mechanisms. We expect that (web) ap-
plications implemented in other languages contain similar
programming patterns that developers, code auditors, and
static analysis engineers need to be aware of. Furthermore,
our results serve as a metric to rank vulnerability reports
and to verify the code coverage in our tool.

Threats to validity of our results exist, that in the worst
case allow us to only generate hypotheses. In the future,
we plan to work on the support for frameworks in order to
evaluate even more applications. More specifically, template
engines and SQL builders can lead to imprecision in our
static analysis that we want to eliminate.

7. REFERENCES
[1] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,

E. Kirda, C. Kruegel, and G. Vigna. Saner: Composing
Static and Dynamic Analysis to Validate Sanitization in
Web Applications. In IEEE Symposium on Security and
Privacy (S&P), 2008.

[2] D. Bates, A. Barth, and C. Jackson. Regular Expressions
Considered Harmful in Client-side XSS Filters. In
Conference on the World Wide Web (WWW), 2010.

[3] S. Christey and R. A. Martin. Vulnerability Type
Distributions in CVE, May 2007.

[4] J. Dahse and T. Holz. Simulation of Built-in PHP Features
for Precise Static Code Analysis. In Symposium on
Network and Distributed System Security (NDSS), 2014.

[5] J. Dahse and T. Holz. Static Detection of Second-Order
Vulnerabilities in Web Applications. In USENIX Security
Symposium, 2014.

[6] J. Dahse, N. Krein, and T. Holz. Code Reuse Attacks in
PHP: Automated POP Chain Generation. In ACM
Conference on Computer and Communications Security
(CCS), 2014.

[7] M. Doyle and J. Walden. An Empirical Study of the
Evolution of PHP Web Application Security. In Security
Measurements and Metrics (Metrisec), 2011.

[8] W. G. Halfond, J. Viegas, and A. Orso. A Classification of
SQL Injection Attacks and Countermeasures. In
Proceedings of the IEEE International Symposium on
Secure Software Engineering, 2006.

[9] M. Hills, P. Klint, and J. Vinju. An Empirical Study of
PHP Feature Usage. In International Symposium on
Software Testing and Analysis (ISSTA), 2013.

[10] P. Hooimeijer. Decision Procedures for String Constraints.
Ph.D. Dissertation, University of Virginia, 2010.

[11] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and
M. Veanes. Fast and Precise Sanitizer Analysis with BEK.
In USENIX Security Symposium, 2011.

[12] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static
analysis tool for detecting web application vulnerabilities
(short paper). In IEEE Symposium on Security and
Privacy (S&P), 2006.

[13] A. Klein. Cross-Site Scripting Explained. Sanctum White
Paper, 2002.

[14] E. Kneuss, P. Suter, and V. Kuncak. Phantm: PHP
Analyzer for Type Mismatch. In ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(FSE), 2010.

[15] B. Livshits and S. Chong. Towards Fully Automatic
Placement of Security Sanitizers and Declassifiers. In ACM
Symposium on Principles of Programming Languages
(POPL), 2013.

[16] Y. Minamide. Static Approximation of Dynamically
Generated Web Pages. In Conference on the World Wide
Web (WWW), 2005.

[17] OWASP. OWASP Secure Coding Practices.
https://www.owasp.org/index.php/OWASP_Secure_Coding_
Practices_-_Quick_Reference_Guide, as of January 2015.

[18] B. Ray, D. Posnett, V. Filkov, and P. Devanbu. A Large
Scale Study of Programming Languages and Code Quality
in Github. In ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE), 2014.

[19] M. Samuel, P. Saxena, and D. Song. Context-sensitive
Auto-sanitization in Web Templating Languages using
Type Qualifiers. In ACM Conference on Computer and
Communications Security (CCS), pages 587–600, 2011.

[20] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant,
and D. Song. A Symbolic Execution Framework for
Javascript. In IEEE Symposium on Security and Privacy
(S&P), 2010.

[21] P. Saxena, S. Hanna, P. Poosankam, and D. Song. FLAX:
Systematic Discovery of Client-side Validation
Vulnerabilities in Rich Web Applications. In Symposium on
Network and Distributed System Security (NDSS), 2010.

[22] P. Saxena, D. Molnar, and B. Livshits. SCRIPTGARD:
Automatic Context-sensitive Sanitization for Large-scale
Legacy Web Applications. In ACM Conference on
Computer and Communications Security (CCS), 2011.

[23] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda. An
Empirical Analysis of Input Validation Mechanisms in Web
Applications and Languages. In ACM Symposium On
Applied Computing (SAC), 2012.

[24] L. K. Shar and H. B. K. Tan. Predicting Common Web
Application Vulnerabilities from Input Validation and
Sanitization Code Patterns. In Automated Software
Engineering (ASE), 2012.

[25] L. K. Shar, H. B. K. Tan, and L. C. Briand. Mining SQL
Injection and Cross Site Scripting Vulnerabilities using
Hybrid Program Analysis. In International Conference on
Software Engineering (ICSE), 2013.

[26] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp,
and R. Berg. F4F: Taint Analysis of Framework-based Web
Applications. ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), 2011.

[27] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and
O. Weisman. TAJ: Effective Taint Analysis of Web
Applications. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2009.

[28] V. van der Veen, N. dutt Sharma, L. Cavallaro, and H. Bos.
Memory Errors: The Past, the Present, and the Future. In
Symposium on Recent Advances in Intrusion Detection
(RAID), 2012.

[29] W3Techs. Usage of Content Management Systems for
Websites. http://w3techs.com/technologies/overview/
content_management/all, as of January 2015.

[30] W3Techs. Usage of Server-side Programming Languages for
Websites. http://w3techs.com/technologies/overview/
programming_language/all, as of January 2015.

[31] J. Walden, M. Doyle, G. A. Welch, and M. Whelan.
Security of Open Source Web Applications. In Proceedings
of the International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2009.

[32] G. Wasserman and Z. Su. Sound and Precise Analysis of
Web Applications for Injection Vulnerabilities. In ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2007.

[33] G. Wasserman and Z. Su. Static Detection of Cross-Site
Scripting Vulnerabilities. In International Conference on
Software Engineering (ICSE), 2008.

[34] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin,
and D. Song. A Systematic Analysis of XSS Sanitization in
Web Application Frameworks. In European Symposium on
Research in Computer Security (ESORICS), 2011.

[35] Y. Xie and A. Aiken. Static Detection of Security
Vulnerabilities in Scripting Languages. In USENIX
Security Symposium, 2006.

[36] F. Yu, M. Alkhalaf, and T. Bultan. STRANGER: An
Automata-based String Analysis Tool for PHP. In
Symposium on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2010.

[37] F. Yu, M. Alkhalaf, and T. Bultan. Patching
Vulnerabilities with Sanitization Synthesis. In International
Conference on Software Engineering (ICSE), 2011.

[38] Y. Zheng and X. Zhang. Path Sensitive Static Analysis of
Web Applications for Remote Code Execution Vulnerability
Detection. In International Conference on Software
Engineering (ICSE), 2013.

https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
http://w3techs.com/technologies/overview/content_management/all
http://w3techs.com/technologies/overview/content_management/all
http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all

	Introduction
	Types of Security Mechanisms
	Generic Input Sanitization
	Explicit Type Casting
	Implicit Type Casting
	Formatting
	Encoding
	Filtering

	Context-Sensitive Input Sanitization
	Converting
	Escaping
	Preparing
	Replacing
	Regex Replacing

	Generic Input Validation
	Null Validation
	Type Validation
	Format Validation
	Comparing
	Explicit Whitelisting
	Implicit Whitelisting
	Second-order Validation

	Context-Sensitive Input Validation
	Searching
	Length Validation
	Regular Expressions

	Path Sensitivity
	Path-sensitive Sanitization
	Path-sensitive Termination
	Path-sensitive Validation

	Static Enumeration of SecurityMechanisms
	Data Flow Analysis
	Sanitization and Pitfall Tags
	Sanitization-centric Taint Analysis
	Validation-centric Taint Analysis
	Side Effects and Limitations

	Empirical Study on SecurityMechanism Usage
	Methodology
	Corpus
	Results
	HTML Markup Security
	JavaScript Markup Security
	SQL Markup Security

	Lessons Learned
	Threats to Validity

	Related Work
	Empirical Studies
	Static Security Mechanism Analysis

	Conclusion
	REFERENCES

