- published: 08 Dec 2012
- views: 3307
In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as Z[i]. This integral domain is a particular case of a commutative ring of quadratic integers. It does not have a total ordering that respects arithmetic.
Formally, the Gaussian integers are the set
Note that when they are considered within the complex plane the Gaussian integers may be seen to constitute the 2-dimensional integer lattice.
The (arithmetic or field) norm of a Gaussian integer is the square of its absolute value (Euclidean norm) as a complex number. It is the natural number defined as
where ⋅ (an overline) is complex conjugation.
The norm is multiplicative, since the absolute value of complex numbers is multiplicative, i.e., one has
The latter can also be verified by a straightforward check. The units of Z[i] are precisely those elements with norm 1, i.e. the set {±1, ±i}.
Ring Theory: As an application of all previous ideas on rings, we determine the primes in the Euclidean domain of Gaussian integers Z[i]. Not only is the answer somewhat elegant, but it contains a beautiful theorem on prime integers due to Fermat. We finish with examples of factorizations in Z[i].
Each of the 223 frames is a plot of the Gaussian primes within a certain norm. The norm for each frame is determined by the square of prime numbers (in the real integers) in the arithmetic progression 4n+3 starting from n = 0 (p = 3). In other words, the increment is chosen to show the next Gaussian prime on the real/imaginary axis using squares of primes congruent to 3 (mod 4). The first frame is all the Gaussian primes with norm less than or equal to 3^2. The last frame is all Gaussian primes with norm less than or equal to 3163^2. The full project report can be found at https://danielhutama.wordpress.com/research/ Created by D. Hutama at McGill University, June 2016
http://demonstrations.wolfram.com/GaussianPrimeSpirals The Wolfram Demonstrations Project contains thousands of free interactive visualizations, with new entries added daily. Start a loop with a point having integer coordinates in the complex plane (called a Gaussian integer) and trace a path as follows: ? Move right until a Gaussian prime p is encountered, then turn left 90. ? Continue, always moving straight in the curren... Contributed by: Joseph O'Rourke and Stan Wagon Audio created with WolframTones: http://tones.wolfram.com
http://demonstrations.wolfram.com/GaussianPrimes/ The Wolfram Demonstrations Project contains thousands of free interactive visualizations, with new entries added daily. The pattern of Gaussian primes in the complex plane. Contributed by: Stephen Wolfram
Here I wrap up our thoughts on Chapter 6. We see how Z[i] provides a natural framework to prove Fermat's two square theorem. Most of this is directly from Stillwell, but I tried to add a bit here and there about why Z[i] still supports Division Algorthim, Euclidean Algorithm, Prime Divisor Property and Unique Factorization. To be careful, I would have to write much, much more. But, the point here is not to be super rigorous, the point is to be reasonably rigorous and see how abstraction solves problems.
Carl Friedrich Gauss one of the greatest mathematicians, is said to have claimed: "Mathematics is the queen of the sciences and number theory is the queen of mathematics." The properties of primes play a crucial part in number theory. An intriguing question is how they are distributed among the other integers. The 19th century saw progress in answering this question with the proof of the Prime Number Theorem although it also saw Bernhard Riemann posing what many think to be the greatest unsolved problem in mathematics - the Rieman Hypothesis. The transcript and downloadable versions of the lecture are available from the Gresham College website: http://www.gresham.ac.uk/lectures-and-events/the-queen-of-mathematics Gresham College has been giving free public lectures since 1597. This tra...
MAX units ruin everything.
More on the math behind this: http://youtu.be/oYlB5lUGlbw Professor David Eisenbud - director of MSRI - on the amazing 17-gon and its link to Gauss. See end of this video for a bit MSRI's address at 17 Gauss Way! NUMBERPHILE Website: http://www.numberphile.com/ Numberphile on Facebook: http://www.facebook.com/numberphile Numberphile tweets: https://twitter.com/numberphile Numberphile is supported by the Mathematical Sciences Research Institute (MSRI): http://bit.ly/MSRINumberphile Videos by Brady Haran Support us on Patreon: http://www.patreon.com/numberphile Brady's videos subreddit: http://www.reddit.com/r/BradyHaran/ A run-down of Brady's channels: http://www.bradyharan.com Sign up for (occasional) emails: http://eepurl.com/YdjL9 Brown papers: http://bit.ly/brownpapers
The Great Courses Plus free trial: http://ow.ly/RJw3301cRhU Cliff Stoll discusses a "Remarkable Theorem", Gaussian curvature and pizza. Postscript note from Cliff: "Cliff says he forgot to mention that at each point, he calls an outward going curve positive, and an inward going curve negative. He also neglected to say that saddle points have negative Gaussian curvature. Finally, he insists that the frozen pizza shown in this video is inferior to his wife's homemade pizza. But both have zero Gaussian curvature." Animation by Pete McPartlan. NUMBERPHILE Website: http://www.numberphile.com/ Numberphile on Facebook: http://www.facebook.com/numberphile Numberphile tweets: https://twitter.com/numberphile Numberphile is supported by the Mathematical Sciences Research Institute (MSRI): http...