
Flexible Composition of Smart Device Services
Mathieu Vallée

���
Fano Ramparany

�
Laurent Vercouter

�
�
France Télécom R&D, TECH/ONE

28, Chemin du Vieux Chêne, 38240 Meylan, France
Email: mathieu.vallee@rd.francetelecom.com�

École Nationale Supérieure des Mines de St-Étienne, G2I/SMA
158 cours Fauriel, 42023 Saint-Etienne Cedex, France

Email: Laurent.Vercouter@emse.fr

Abstract— Pervasive computing environments involve a variety
of smart devices and home appliances. Communities of these
devices form a ubiquitous information processing system to
which the physical environment should provide an intuitive
and flexible user interface. As each of these devices offers
specific services, their number and variety make it difficult for
users to control and monitor them all and tend to overcharge
humans cognitive load. In this paper, we present an approach
aimed at automatically composing device services, so that
users can benefit from higher level services. We also ensure
that context information such as users location, current needs
and preferences is properly taken into account within the
composition process. We believe that building mechanisms for
synthesizing context-aware high level services is a mandatory
step towards Ambient Intelligence.

Keywords: Ambient Intelligence, Context-awareness, Service
composition, Semantic services.

INTRODUCTION

Current progress in computer systems is mainly driven
by hardware components miniaturization and ever increasing
integration. This trend is enabling the provisioning of everyday
objects with computing resources and makes silicon technol-
ogy less and less visible in devices already computer enabled.
However, the multiplication and heterogeneity of smart devices
raise concerns about the amount of time and attention users
must devote to interact with them, and strongly calls for new
developments aiming at ”relieving the interaction cognitive
load” [1]. Ambient Intelligence (AmI) pushes forward a vision
where technology is integrated into everyday objects with the
intent of enabling their adaptation to users and their context
[2]. By favouring communication among objects and by en-
abling objects to sense the physical environment, AmI seeks
to make users’ interaction with their surrounding environment
simpler and more intuitive.

We address the design of AmI systems using a service-
oriented approach, in which devices in the environment pro-
vide independent, loosely-coupled, low-level services. As-
sembling or composing services enables a Service Oriented
Architecture (SOA) to supply clients with more complex
services. Such a facility offers several advantages including
that of a modular and flexible approach to designing ser-
vices. Using such an approach makes it possible to replace
a component by another component. Services can thus better
adapt to changing situations. Taking into account contextual

information as well as users’ preference is of paramount
importance in this task. In this article we introduce our work
on the automated composition of AmI services. We draw our
inspiration from formalisms and techniques that have been
developed in the framework of Web services composition. Our
main contribution is in extending these techniques for adapting
solutions to users needs, environmental conditions and any
other contextual information.

In the following, we first introduce the role of service
composition in an AmI environment. We next elaborate on
our service composition system and algorithms. We then
discuss our approach and we conclude on its advantages and
perspectives.

I. THE ROLE OF COMPOSITION IN A SERVICE

INFRASTRUCTURE

As mentioned above we aim at developing mechanisms for
dynamically composing basic services in an open and ever
changing environment. The result of the composition process
will provide users with higher level services that satisfy their
current needs, and that optimally adapt to the current context.

A. The Service Composition Architecture

Our service composition mechanism is viewed as an ”add-
on” to an underlying Service-Oriented Architecture (SOA).
This approach does not require any modification on services to
have them collaborate by themselves. We designed our service
composition function as a new component able to exploit
service models, explore the space of composition alternatives
in order to find an appropriate composition schema, and use
this schema to enact the services involved.

Figure 1 presents the overall architecture and puts the
emphasis on the role of the service composition system within
the SOA.

The architecture is centered around a Service Infras-
tructure which keeps track of available devices and man-
ages the services they offer. Typical Ambient Intelligence
services include measurement services, data processing ser-
vices and interface services. In such a SOA, services publish
a description of their functionalities, so that they can be
discovered and dynamically invoked by other services.

A Context Management system collects and maintains
information about context. It is fed by rough sensors mea-
surements, which it interprets, aggregates and stores. Like a

knowledge base, it can answer queries submitted by other
services.

The Composition System component lies on top of the
Service Infrastructure and is composed of three ele-
ments. It initiates a services composition process in response to
a change in the context which reflects new user’s needs. In our
illustration, a Personnal Assistant component supports
user’s interaction with the AmI environment. It interacts with
the composition system to fulfill a user need which require a
service composition.

As an answer to this request, a Plan Generation
mechanism provides an abstract plan description which defines
the elementary tasks to perform. These tasks specify service
functionalities required to assist the user. In our current system,
this mechanism uses a simple library of abstract plans designed
for specific situations.

Starting from an abstract plan description, the Service
Composition mechanism uses information about available
services and context to discover services able to perform each
task, and to check compatibility between the services to be
composed. This mechanism creates a detailed plan description,
specifying the services chosen and their relationship.

The plan Execution Management mechanism uses this
detailed plan and triggers the execution of services on top
of the service infrastructure. It also monitors the state of
execution of the plan and might revise the composition process
in case of any problem.

Context
Manager

NM
A

M1
A2

D4

Abstract plan
description

Personal
Assistant

description
Detailed plan

Execution
Management

Service
Composition

Plan
Generation

Device Hi−Fi
Services
−PlayMusic
−SpeakMsg

Services

−PlayVideo
−DisplayMsg

Device TV

Service
descriptions

Sensors

Context info

servicesMonitor

Composition systemuser need
High−level

Service
Infrastructure

Environment

Fig. 1. Service composition architecture

This architecture enables to dynamically compose services
in an AmI environment. In this proposal, our main concern
is in the flexibility of service compositions with respect to
the dynamics of the availability of services and of contextual
information. Thus, we focus on the Service Composi-
tion mechanism which collects information from various
sources in order to build and adapt a composition to current
requirements. Our main assumption is that abstract plans,

service descriptions and contextual information are available at
the time of composition. We briefly discuss these assumptions
as a conclusion to this paper.

B. The Oven Monitoring Scenario

The following scenario illustrates the use of our services
composition in an Ambient Intelligence home environment
supporting Albert, a dependent person, in using his home
appliances.

Albert is in the kitchen to prepare his lunch. As soon as
he leaves the kitchen, Albert’s personal assistant checks if he
has forgotten to switch an appliance off or to turn off a water
tap. As Albert switched the oven on, the assistant infers that
there is a need to monitor the oven and inform Albert about
any abnormal or dangerous situation. This need is forwarded
to the composition system.

To satisfy this need, the composition system has to build
a high level service corresponding to an ”home appliance
monitoring” abstract plan. A graphical representation of this
plan is shown in figure 2. It defines three tasks:

� a measurement task, which specifies the need to get
measurements from the home appliance to monitor.
For instance, an oven monitoring service that keeps track
of an oven state (on/off, door open/closed ...) can provide
such measurement.

� a measurements analysis task, which specifies a decision
making process able to conclude on the abnormality
of a situation, depending on the measurements. In the
context of using an oven, ”opening the door for more
than 10 minutes while the oven is on” will be stated as
an abnormal situation. Such a service can be customized
for users according to their needs.

� a notification task, which forecasts to inform the user
about the nature of an abnormal situation, using the most
suitable interface.

measurement
task

home appliance user

task task
analysis notification

Fig. 2. Abstract Plan: Tasks represents sub-goals
Albert

appl. status
analyze

oven status
measure display

on screen

Oven1 PDA12 TV4

Oven1

Fig. 3. Detailed plan: each task is achieved by a service

Several parameters complete this abstract plan description.
Their values depend on the current situation. In our case, the
user is Albert and the Home appliance is Oven1.

The clues provided by this abstract plan and contextual
information enable the composition mechanism to find that an
oven state monitoring service can achieve the measurement

task. A service able to analyze information about the oven,
customized for Albert’s specific handicap, is used for the
analysis task. Finally, as Albert is listening to music in the
living room, the notification task is assigned to a service which
can display a message on a TV set located in proximity. A
graphical representation of the detailed plan is thus displayed
in figure 3. In fact the notification task could have
been allocated to other devices, depending on the level of
emergency. For example, instead of displaying a message on
the TV screen, a voice message could have been emitted on
the Hi-Fi set or an alarm triggered. The service composition
mechanism will select the best option depending on the
situation at hand.

While this scenario has been kept very simple for illustration
purpose, our system is adapted to a wide range of Ambient In-
telligence applications. For instance, we can use our approach
to synthesize and control an ambient Jukebox that plays music
on an adapted device, depending on context information such
as the location of the user, the presence of other people or
the noise level of a room. Other applications would allow
a user to automatically monitor a room where children are
playing, by composing the appropriate camera service with a
display service she carries with her, perhaps abstracting the
displayed data through an activity analyzer. We also envision
assistance systems involving human helpers as services, where
our composition system allocates some critical decision task
to humans while dynamically selecting measurement services
to supply them with appropriate information.

The following sections detail how we have implemented the
Service Composition mechanism, whose main features
have been sketched above.

II. SERVICE COMPOSER MECHANISM

Our service composition mechanism relies on service de-
scriptions to model the functionalities of services, and on task
descriptions to model the needs to be filled by a service. Both
service and task descriptions are expressed using a formalism
described in section II-A.

Using these descriptions and the information obtained from
the context manager, the composition system is able to build a
detailed composition plan from an abstract plan. The abstract
plan does not refer to any existing service, and is composed
of tasks, thus expressing a set of needs and their dependency
relations. The resulting detailed plan explicitly specifies the
suitable services and their interactions.

Figure 4 gives an overview of the composition process. This
is a two-step process. First, a Task Matching algorithm
considers each task independently in order to find a list of
suitable services for this task. This list is ordered according
to the relevance of services. Secondly, a Consistency
Checking algorithm selects one service for each task in order
to make the whole composition globally consistent. We now
go into more details on the service description language that
supports these two algorithms.

description
Defined plan

Abstract plan
description
with possible
services

M1

A2

D4

D2

S4

D4

...0

10

(+rating)

Possible
services

M1

M2

M3

A1

A2

D4

D2

S4

M: measure
A: analyze
N: notify

M

A

N

Abstract plan
description

M

A

M

N

N

Single task
description

Revision
request

Consistency

Checking

Task
Matching

Matching
Task

Fig. 4. Global composition process

A. Service Description Model

The need for such a service description has been widely
addressed in the field of Web services, where extensive work
has been done on how to make Web services usable by
autonomous software agents.

This issue is related to the vision of the Semantic Web.
In this vision machines can understand and manipulate data
through the use of ontologies, which define knowledge do-
mains in a formal manner. This has led to the concept of
Semantic Web Services, for which Ankolekar et al. ([3])
have proposed a service ontology, named OWL-S 1. This
work, supported by the OWL-S coalition, has been founded by
research on several AI fields, such as planning and software
agent capacity descriptions.

Although OWL-S initially targeted at Web services, it is
also of great interest for pervasive computing services, as
illustrated in work conducted by Masuoka et al. [4] or Izumi
et al. [5]. Our work investigates the use of such a semantic
service description in conjunction with contextual information.

Following OWL-S point of view, we consider a service
as a process which consumes inputs and produces outputs.
This process is mainly described by its global service type
(e.g. DisplayService) and its inputs and outputs types (e.g.
Text Message). Types are concepts defined in ontologies,
and are not usual data types (like String). Unlike keywords,
these concepts enable reasoning on the service functionalities
with respect to abstract ontologies. Another OWL-S feature
we use is the ability to enrich a service description with
preconditions (that need to be satisfied for service execution)
and effects (produced by the service when executed). OWL-S
provides a framework for describing Web Services, but some
enhancements are necessary for using such a framework in
AmI. An example is given in figure 5, for a service that
displays a text message on a screen. In the following, we
explain the description and the choices we have made.

serviceType: defines the type of a service. Unlike previ-
ous work ([6] [7]), we avoid using this type as a unique
description of the service functionality. It rather gives a
preliminary vague classification, and does not require a huge
and precise ontology of all service types, as underlined in [8].

1http://www.daml.org/services/owl-s/

hasInput / hasOutput: define the inputs / outputs of
the service, and parameterType describes their respective
type. We distinguish two main classes of input / output types
in our ontologies: binary data and physical data. Binary data
can be transmitted between services within an information
system. Physical data is exchanged between the environment
(for instance the user) and the system. By introducing physical
data, it becomes easy to model the exchanges not only between
services but also with the physical environment. It is a key
feature for Ambient Intelligence.

hasLocal: defines additional ”local” parameters of a
service. In our model, those parameters refer to elements of
the real world which are relevant to the use of the service, such
as devices and users. As with inputs/outputs, local parameters
have a type. Their value can be either set by the description
(with parameterValue) or deduced at composition time.

hasInputProperty / hasOutputProperty: define properties
of inputs / outputs. An output property is an effect involving
an output parameter, and an input property is a precondition
involving an input parameter. When performing a service com-
position, an output and an input can establish a dependency
relationship between services. I/O properties, as well as types,
are used to check the consistency of this link.

hasContextCondition: defines a precondition referring to
the context of use of the service. This feature is essential in
an AmI environment, where the real service functionality is
not only defined by static semantic properties but also by the
current context, such as user’s location.

(Service �����)
(serviceType ����� Display)

(hasInput �����	��
����)
(parameterType ��
���� TextData)

(hasOutput � ���	��������)
(parameterType �������� VisualInfo)

(hasLocal � ���	���������)
(parameterType ��������� Screen)

(parameterValue ��������� SCREEN 12)

(hasInputProperty ����� ’(accessi-

bleBy ��
���� ����� ���)’)
(hasOutputProperty ����� ’(percepti-

bleBy ���� ��� ���� ���)’)
(hasContextCondition ����� ’(percep-

tibleBy ����� ��� ���� ���)’)
Fig. 5. Sample description for a ”display on TV screen service”

B. The Task Matching Algorithm

The Task Matching is a matchmaking algorithm, sim-
ilar to that presented by Paolucci et al. [9]. Given a task
description and a set of service descriptions, the matchmaking
algorithm searches for services that are appropriate to fulfill
the needs specified by the task. The matching is flexible, as
the algorithm computes a kind of matching score between a
task description and a service description.

While Web services matchmaking mainly relies on a se-
mantic matching of service and parameter types, our algorithm
also includes mechanisms to take into account input / output
properties, and more significantly, context conditions required
to use the service.

We consider four evaluation criteria to compute a matching
score between a task and a service description:

Task and service types matching: both types are defined
in an ontology. The algorithm considers their relationships
(based on the subsumption algorithm [10]) to find how close
a service functionality is from the task’s requirement.

Parameter types matching: the algorithm also performs a
semantic matching on the parameters’ types (I/O and locals).
It identifies corresponding parameters in the two descriptions
and computes an overall matching score between the sets of
task and service parameters.

Context condition evaluation: taking into account current
values of local parameters they involve, the algorithm checks
whether context conditions are valid in the current situation,
and assigns a matching score reflecting the number of condi-
tion that hold.

I/O properties comparison: I/O properties are expressed
as logical expressions. One way to compare them involves the
implication operator. We consider that a task output property
(resp. service input property) should be a logical consequence
of one or more service output properties (resp. task input
properties). To evaluate the matching score between I/O
properties, the algorithm checks whether all, some or no
properties of task and service can be related this way.

The order in which to apply the criteria is sensitive, as the
first criteria quickly selects a reduced list of services and the
last two ones depends on the parameter matching. Thus, each
of these criteria is evaluated sequentially for one task, filtering
and sorting candidate services at each step. The result of the
Task Matching algorithm is then a list of services suitable
to realize a task and sorted according to their global relevance.

C. The Consistency Checking algorithm

The Task Matching stage provides a list of potential
services for each task independently. From this point, the
system has to consider the interaction between services that
could be assigned to each task, in order to build a globally
consistent plan.

1) Consistency of the Dependency Links between services:
The initial abstract plan defines dependency links between the
tasks, stating which output of a task feeds which input of a
subsequent task. Each time a service is selected to perform a
given task, its links with the other services selected for the
plan have to be checked.

We define a notion of the consistency of an I/O link on the
basis of information defined in our description model. A link
is called type-consistent if the type of output provided by a
service is equivalent or more specific than the type of input that
the subsequent service can handle. For instance, this ensures
that there will be no attempt to link a service producing a

text message with a service consuming video data. A link is
called property-consistent if each property of the input can
be deduced from properties of the output (as it is done for
task/service properties matching (cf. sectionII-B). Thus, an
I/O link is called consistent if it is both type-consistent and
property-consistent.

2) Constraint Satisfaction Problem: In the final combina-
tion of selected services each link between services has to be
consistent. We model the search for such a combination as a
constraint satisfaction problem (CSP) 2. We consider a variable
for each task, whose domain is a set of values corresponding
to the set of potential services to realize this task. CSP solving
consists in choosing a value for each variable while ensuring
that constraints between variables are satisfied by the chosen
value. In our case, the choice is constrained by the consistency
of links between subsequent services.

Although CSP solving is NP-Complete, we benefit for
general purpose methods that greatly enhance performance
[11]. More importantly, the algorithm tests values in the
order given by the matching relevancy score, which reduces
computation to a few consistency checking, especially when
a task is strongly constrained by the current context. At last,
the Consistency Checking uses the first solution to the
CSP to build a detailed plan description, composed of services
consistent with each other.

D. Composition Revision

A salient feature of service composition for Ambient In-
telligence is the ability to quickly react to condition changes
and update the composition scheme. In particular, we should
be able to replace a service, in case it has unexpectedly
disappeared (due to network, device failure or conflicting use
by another application), or when a change in context or a
runtime interoperability failure between services has occurred.

Our approach is particularly efficient in revising an already
computed composition to handle such changes. For instance,
if one service is no more available, the Consistency
Checking algorithm will attempt to find a new solution
to the CSP starting from the failing (but still approximate)
solution, using very efficient local search methods. In case no
new solution exists with the known set of services, the Task
Matching algorithm will search for new services to replace
the failing one, possibly extending its search in a larger area
(in a way similar to the work of Chakraborty et al. [7]). This
way, new services are added to the variables domains, creating
new values to be considered in the CSP.

E. An AmI Service Composition Prototype

In order to assess the validity of our approach, we have
implemented the plan instantiation algorithm introduced in
the preceding section and applied it to concrete services
corresponding to the scenario presented earlier in this article.

Various services descriptions and the abstract plan descrip-
tions have been expressed using the OWL-S description frame-
work. Although such descriptions still need to be manually

2a clear introduction to CSP is given in [11]

edited, the use of the Protégé 3 ontology graphical editor along
with its OWL-S plug-in 4 speeds up this operation.

The composition algorithm described in section II has been
implemented in Java. We used the OWL-S API 5 to parse
OWL-S description files. Reasoning upon service and param-
eter types is provided by the highly optimized Racer 6 engine,
while we used the JTP 7 theorem prover to reason on service
and task input/output properties. We also implemented a CSP
solving algorithm based on the aima.search.csp 8 library.

III. RELATED WORKS

Compared to related work that aims at dynamically building
applications in the field of pervasive computing [12], we head
towards more open and customizable environments through
the use of a Service-Oriented approach. We do not require
that applications comply to predefined APIs in order to be
integrated into our system. This is key when we come to real
life systems including various types of devices not primarily
designed to interoperate. Instead, we favour the use of se-
mantic descriptions of services to bridge the gap between the
service level and our service composition system.

The issue of automatically composing services has been
addressed in the field of Web Services, with foundation work
around the concept of Semantic Web Services (SWS) ([13],
[8], [14], [15]). Like Ranganathan et al. [16], we believe
such an approach can be extended to the field of pervasive
computing and Ambient Intelligence. However, while SWS
work focuses on composing services using their static semantic
descriptions, we propose a framework for considering not
only semantically described functionalities, but also dynamic
contextual information about the user and its environment to
adapt the composition.

The use of context as a mean of adapting the behavior
of a system to better interact with users has also been
widely investigated. However, existing works [17] [18] usually
demonstrate context adaptation in closed systems, where it
can be handled through hard coded context rules. As we wish
to expand context-awareness to open, dynamic system with
evolving service availability, our approach tends to establish
soft dependencies between services and the situations in which
they can be used. Instead of defining precise rules to use
specific services in specific situations, we rather define a
”context of use” of a service. We believe that the flexibility
that is obtained by this way is the key to more efficient and
robust systems where solutions can be found with only partial
information on the considered services.

IV. CONCLUSION AND DISCUSSION

The work described in this paper contributes to the Ambient
Intelligence vision by developing mechanism for automating

3http://protege.stanford.edu
4http://projects.semwebcentral.org/projects/owlseditor/
5http://www.mindswap.org/2004/owl-s/api/
6http://www.sts.tu-harburg.de/ r.f.moeller/racer/
7http://www.ksl.stanford.edu/software/JTP/
8http://aima.cs.berkeley.edu/

the composition of simple services offered by small smart
devices in the user’s physical environment. We aim at bridging
the gap between these basic services and high level user’s
activities through dynamic and context-sensitive service com-
position.

We build upon work from the Semantic Web Service field
and propose a mean to semantically describe services in an
AmI environment. We extend these descriptions by taking
context information into account, in order to ground services
into the physical environment.

Based on these service descriptions, we propose a
composition algorithm suitable to build up relevant service
composition in a given situation, using contextual information.
Our algorithm dynamically selects services using a semantic
and contextual matchmaking algorithm and consistently
compose them using Constraint Satisfaction Problem solving.

While our system enable dynamic and flexible composition
of smart device services in an AmI environment, we can
underline a few issues related to our approach.

A first concern is the availability of the semantic descrip-
tions. As the semantic approach avoids the use of commonly
agreed description standards, it enables descriptions to be
collected from various sources (e.g. device vendors, services
providers or users). Still, it might not be obvious that accurate
and complete descriptions will be available for every device,
and that the ontologies they rely on can be easily compared.
We argue that the flexibility of our approach is still relevant
when only limited or no description are available, as default
information can be considered when none exists. Although it
alters the quality of results, approximate solutions can still be
found. A next step would be to dynamically complete service
descriptions, considering for instance its interaction with other
services or clues provided by users.

Another assumption required by the system presented is the
preexistence of a library of abstract plans designed for possible
situations (e.g. monitoring someone’s kitchen). Creating and
maintaining such a library might not be possible in real-life
problems, where an unlimited number of situations may occur.
While this work assesses the benefits of a semantic approach to
adapt service composition, we are working on more elaborated
systems in which composition and re-composition will be even
more closely related to the users’ activities. To this purpose,
we plan to design our composition system as a multi-agent
system (MAS). MAS are systems whose global behavior arises
from interactions of autonomous entities (called agents). These
systems present appealing features for AmI. Specifically, MAS
enable to take into account heterogeneous information, for
instance on services or on context, as agents use abstract
models and communication languages to represent and share
information. Thus, the semantic descriptions presented in
this paper can serve as a basis to multi-agent reasoning
and planning. Composition choices do not come anymore
from predefined plans, but will be designed dynamically and
collaboratively, taking context into account.

Finally, we underline that performance is an important

issue in a pervasive computing context. Although we have
implemented a prototype to demonstrate the use of our system,
we do not provide performance results on our work at this
stage. While focusing on flexibility as a first step, we aim
at proposing an efficient, robust and scalable AmI composi-
tion infrastructure. To that purpose, we believe that a MAS
approach will bring a suitable solution to AmI challenges.
Decentralization favors local and reactive computation and
avoids the bottleneck of a centralized system. Reconfigurable
systems whose structure depends on situations can be created
using flexible organization and re-organization capabilities.
From these MAS features, we expect to come up with flexible,
adaptable and reconfigurable systems.

ACKNOWLEDGEMENT

The authors are grateful to Gilles Privat and Olivier Boissier
for their contribution to the ideas presented here, and John
Watlington for his valuable comments on earlier drafts of this
paper.

REFERENCES

[1] Gilles Privat. Des objets communicants a la communication ambiante.
LCN 4-2002, 2002.

[2] W. Weber, C. Braun, R. Glaser, Y. Gsottberger, M. Halik, S. Jung,
H. Klauk, C. Lauterbach, G. Schmid, X. Shi, T. F. Sturm, G. Stromberg,
and U. Zschieschang. Ambient intelligence - key technologies in the
information age. In 49th IEEE International Electron Devices Meeting,
2003.

[3] Anupriya Ankolenkar, Mark Burstein, Jerry R. Hobbs, Ora Las-
sila, David L. Martin, Drew McDermott, Sheila A. McIlraith, Srini
Narayanan, Massimo Paolucci, Terry R. Payne, and Katia Sycara.
DAML-S: Web Service Description for the Semantic Web. In J. Hendler
I. Horrocks, editor, The Semantic Web - ISWC 2002: First International
Semantic Web Conference, volume 2342 / 2002, pages 348–363, Sar-
daigne, Italy, June 9-12 2002. Springer-Verlag Heidelberg.

[4] Ryusuke Masuoka, Yannis Labrou, Bijan Parsia, and Evren Sirin.
Ontology enabled pervasive computing applications. IEEE Intelligent
Systems, 18(5):68–72, Sep./Oct. 2003.

[5] Noriaki Izumi, Akio Sashima, Koichi Kurumatani, and Hideyuki
Nakashima. Semantic services coordination for human and agent
communities. In B. Burg, J. Dale, T. Finin, H. Nakashima, L. Padgham,
C. Sierra, and editors S. Willmott, editors, Agentcities: Challenges in
Open Agent Environments,. Springer-Verlag, 2003.

[6] A. Mingkhwan, P. Fergus, O. Abuelma’atti, and M. Merabti. Implicit
functionality: Dynamic services composition for home network appli-
ances. In ICC’2004 IEEE International Conference on Communications,
2004.

[7] Dipanjan Chakraborty, Filip Perich, Anupam Joshi, Tim Finin, and
Yelena Yesha. A reactive service composition architecture for pervasive
computing environments. In 7th Personal Wireless Communications
Conference (PWC 2002), Singapore, October 2002.

[8] Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen
Srinivasan. Automated discovery, interaction and composition of seman-
tic web services. Journal of Web Semantics, Volume 1(Issue 1):27–46,
September 2003.

[9] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia
Sycara. Semantic matching of web services capabilities. In Proceedings
of the 1st International Semantic Web Conference (ISWC2002), 2002.

[10] Franz Baader, Ian Horrock, and Ulrike Sattler. Handbook on ontologies,
chapter 1. Description Logics, pages 3–28. Springer, 2004.

[11] Stuart Russel and Peter Norvig. Artificial Intelligence, A Modern
Approach, chapter 5. Constraint Satisfaction Problems. Prentice Hall,
1995.

[12] Manuel Roman and Roy H. Campbell. A middleware-based appli-
cation framework for active space applications. In Proceedings of
ACM/IFIP/USENIX International Middleware Conference (Middleware
2003), Rio de Janeiro, Brazil, 2003.

[13] Sheila McIlraith and Tran Cao Son. Adapting golog for programming
in the semantic web. In Fifth International Symposium on Logical
Formalizations of Commonsense Reasoning, pages 195–202, 2001.

[14] Dan Wu, Bijan Parsia, Evren Sirin, James Hendler, and Dana Nau. Au-
tomating daml-s web services composition using shop2. In Proceedings
of 2nd International Semantic Web Conference (ISWC2003), Sanibel
Island, Florida, October 2003.

[15] Mithun Sheshagiri, Marie desJardins, and Timothy Finin. A planner for
composing services described in daml-s. In Proceedings of Planning for
Web Services Workshop in ICAPS 2003, Trento, Italy, June 2003.

[16] Anand Ranganathan, Robert E. McGrath, Roy H. Campbell, and
M. Dennis Mickunas. Ontologies in a pervasive computing environment.
In Workshop on Ontologies and Distributed Systems, Eighteenth Inter-
national Joint Conference on Artificial Intelligence, Acapulco, Mexique,
August 9th 2003.

[17] Anand Ranganathan and Roy H. Campbell. An infrastructure for
context-awareness based on first order logic. Personnal and ubiquitous
computing, 7(x):353–364, 2003.

[18] Maja Vukovic and Peter Robinson. Adaptive, planning-based, web
service composition for context awareness. In Second International
Conference on Pervasive Computing, Vienna, April 2004.

