- published: 02 May 2014
- views: 1456
Insect wings are adult outgrowths of the insect exoskeleton that enable insects to fly. They are found on the second and third thoracic segments (the mesothorax and metathorax), and the two pairs are often referred to as the forewings and hindwings, respectively, though a few insects lack hindwings, even rudiments. The wings are strengthened by a number of longitudinal veins, which often have cross-connections that form closed "cells" in the membrane (extreme examples include Odonata and Neuroptera). The patterns resulting from the fusion and cross-connection of the wing veins are often diagnostic for different evolutionary lineages and can be used for identification to the family or even genus level in many orders of insects.
The physical dynamics of flight are composed of direct and indirect flight. Those species that employ direct flight have wing muscles directly attached to the wing base, so that a small downward movement of the wing base lifts the wing itself upward. However, insects with indirect flight have muscles that attach to the thorax and deform it; since the wings are extensions of the thoracic exoskeleton, the deformations of the thorax cause the wings to move as well.
A wing is a type of fin with a surface that produces aerodynamic forces facilitating movement through air and other gases, or water and other liquids. As such, wings have an airfoil shape, a streamlined cross-sectional shape producing lift.
The word "wing" from the Old Norse vængr for many centuries referred mainly to the foremost limbs of birds (in addition to the architectural aisle.) But in recent centuries the word's meaning has extended to include lift producing appendages of insects, bats, pterosaurs, boomerangs, some sail boats and aircraft, or the inverted airfoil on a race car that generates a downward force to increase traction.
Various species of penguins and other flighted or flightless water birds such as auks, cormorants, guillemots, shearwaters, eider and scoter ducks and diving petrels are avid swimmers, and use their wings to propel through water.
A wing's aerodynamic quality is expressed as its lift-to-drag ratio. The lift a wing generates at a given speed and angle of attack can be one to two orders of magnitude greater than the total drag on the wing. A high lift-to-drag ratio requires a significantly smaller thrust to propel the wings through the air at sufficient lift.
03 Insect Wings: Formation and Structure
Dragonfly Wings in Slow Motion - Smarter Every Day 91
Levitated insect wings, test series of Viktor Grebennikov
Craft Insect Wings, 7.5" biomimicry artificial wings
Insect Flight Wing Structure and Motion ESA
how to embroider goldwork/stumpwork insect wings
How to Draw the Inside of Insect Wings
Insect Wing Flutter
Wing evolution 1of4
Animate a flying insect (wing motion) in Inkscape