Engineering physics is the study of the combined disciplines of physics, engineering and mathematics in order to develop an understanding of the interrelationships of these three disciplines. Fundamental physics is combined with problem solving and engineering skills, which then has broad applications. Career paths for Engineering physics is usually (broadly) "engineering, applied science or applied physics through research, teaching or entrepreneurial engineering". Coverage of Engineering physics can be one course, one curriculum, or one book. This interdisciplinary knowledge is designed for the continuous innovation occurring with technology.
Unlike traditional engineering disciplines, engineering science/physics is not necessarily confined to a particular branch of science or physics. Instead, engineering science/physics is meant to provide a more thorough grounding in applied physics for a selected specialty such as optics, quantum physics, materials science, applied mechanics, nanotechnology, microfabrication, mechanical engineering, electrical engineering, biophysics, control theory, aerodynamics, energy, solid-state physics, etc. It is the discipline devoted to creating and optimizing engineering solutions through enhanced understanding and integrated application of mathematical, scientific, statistical, and engineering principles. The discipline is also meant for cross-functionality and bridges the gap between theoretical science and practical engineering with emphasis in research and development, design, and analysis.