- published: 09 Nov 2012
- views: 180728
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory.
The commutator of two elements, g and h, of a group G, is the element
It is equal to the group's identity if and only if g and h commute (i.e., if and only if gh = hg). The subgroup of G generated by all commutators is called the derived group or the commutator subgroup of G. Note that one must consider the subgroup generated by the set of commutators because in general the set of commutators is not closed under the group operation. Commutators are used to define nilpotent and solvable groups.
The above definition of the commutator is used by some group theorists, as well as throughout this article. However, many other group theorists define the commutator as
Commutator identities are an important tool in group theory. The expression ax denotes the conjugate of a by x, defined as x−1a x.
Yo queria, que lo nuestro fuese mas que una costumbre
yo queria, conocer cada repliegue de tu ser
recorrerte, mas alla de las fronteras de la piel
Cuantas noches
en tus brazos he llorado hasta dormirme
cuantas veces
en tu muro de silencio me estrellé
porque nunca
te tomaste la molestia de entender
Y todavía,
yo me pregunto
por que camino
se llega a ti
que nuevo idioma
puedo inventarte
para que un dia
me quieras oir
Muchas veces he intentado hacerme fuerte y olvidarte
me da rabia, ver que casi se perdió mi dignidad
sin embargo, como titere me dejo manejar
Y todavia
yo me pregunto
por que camino
se llega a ti
sigo muriendo
muertes pequeñas
y esta agonia
no tiene final