- published: 10 Aug 2015
- views: 2175
This page is intended to list all current compilers, compiler generators, interpreters, translators, tool foundations, etc.
This list is incomplete. A more extensive list of source-to-source compilers can be found here.
Liogo NET Compiler http://liogo.sourceforge.net/
The Real LOGO Compiler http://lhogho.sourceforge.net/
See List of ECMAScript engines.
HaskellWiki maintains a list of Haskell implementations. Many of them are compilers.
Production quality, open source compilers.
Coordinates: 37°23′16.54″N 121°57′48.74″W / 37.3879278°N 121.9635389°W / 37.3879278; -121.9635389
Intel Corporation (better known as Intel) is an American multinational technology company headquartered in Santa Clara, California. Intel is one of the world's largest and highest valued semiconductor chip makers, based on revenue. It is the inventor of the x86 series of microprocessors, the processors found in most personal computers. Intel supplies processors for computer system manufacturers such as Apple, Samsung, HP and Dell. Intel also makes motherboard chipsets, network interface controllers and integrated circuits, flash memory, graphics chips, embedded processors and other devices related to communications and computing.
Intel Corporation was founded on July 18, 1968 by semiconductor pioneers Robert Noyce and Gordon Moore and widely associated with the executive leadership and vision of Andrew Grove, Intel combines advanced chip design capability with a leading-edge manufacturing capability.
Intel C++ Compiler, also known as icc or icl, is a group of C and C++ compilers from Intel available for Windows, OS X, Linux and Intel-based Android devices.
The compilers generate optimized code for IA-32 and Intel 64 architectures, and non-optimized code for non-Intel but compatible processors, such as certain AMD processors. A specific release of the compiler (11.1) is available for development of Linux-based applications for IA-64 (Itanium 2) processors.
The 14.0 compiler added support for Intel-based Android devices and optimized vectorization and SSE Family instructions for performance. The 13.0 release added support for the Intel Xeon Phi coprocessor. It continues support for automatic vectorization, which can generate SSE, SSE2, SSE3, SSSE3, SSE4, AVX and AVX2 SIMD instructions, and the embedded variant for Intel MMX and MMX 2. Use of such instruction through the compiler can lead to improved application performance in some applications as run on IA-32 and Intel 64 architectures, compared to applications built with compilers that do not support these instructions.
Intel C++ Compiler 16.0, which is part of Intel Parallel Studio XE 2016, is the latest incarnation. David Bolton discusses what’s new and what’s changed with the compiler. Find out what he discovered and his verdict on the updated tool.
The Intel compiler can autovectorize your code. However, you want to be able to know for sure whether you're getting vectorized code. In this video, Jeff Cogswell shows you how to see which loops are vectorized by looking at the assembly code.
Лекция представляет собой обзор матричных возможностей библиотеки Intel Integrated Performance Primitives, а также демонстрацию на конкретном примере прироста производительности при её использовании в разработке. Кроме того, в лекции рассматриваются возможности Intel C++ Compiler оптимизации приложений и основные ключи компиляции с демонстрацией их работы. Лекция и тесты в НОУ ИНТУИТ http://www.intuit.ru/studies/courses/664/520/lecture/11748
When writing parallel code, it's often useful to look at the generated assembly code to help you determine if the code is optimal. In this video, Jeff Cogswell shows you how to set up the Intel compiler to create a file with the assembly code in it.
HINT: https://software.intel.com/en-us/intel-parallel-studio-xe
This video will guide you on how to install Intel compiler, in this case Intel Parallel XE Cluster Edition 2015, on CentOS 6 1. Download the latest version from Intel's Development site(you need to register for an evaluation and then get a link in the mail). 2. Extract the archive: tar xvf parallel_studio_xe_2015.tgz 3. Install 32Bit libraries: yum install libstdc*i686 -y 4. Change directory the extracted archive: cd parallel_studio_xe_2015 5. Launch the GUI installer: ./install_GUI.sh 6. Nothing special to choose from, just the evaluation check box when asked about a serial number(or enter a serial number if you have one). 7. Create the following files in /etc/profile.d/: vi /etc/profile.d/intel.sh #!/bin/bash source /opt/intel/composerxe/bin/compilervars.sh intel64 source /opt/in...
Xinmin Tian, Intel Corp. OpenMP Con 2015 Aachen Germany - September 2015 Abstract: The relentless pace of Moore’s Law will lead to modern multi-core processors, coprocessors and GPU designs with extensive on-die integration of SIMD execution units on CPU and GPU cores to achieve better performance and power efficiency. To make efficient use of the underlying SIMD hardware, utilizing its wide vector registers and SIMD instructions such as Xeon Phi™, SIMD vectorization plays a key role of converting plain scalar C/C++/Fortran code into SIMD code that operating on vectors of data each holding one or more elements.Intel® Xeon processors and Xeon Phi™ coprocessors combine abundant thread parallelism with SIMD vector units. Efficiently exploiting SIMD vector units is one of the most important ...
Transactional memory (TM) promises to simplify parallel programming by moving the complexity of shared memory management away from the programmer's view. In this talk, we present the latest version of the Draft Specification of Transactional Language Constructs for C++ and its practical implementation within Intel's C++ software transactional memory (STM) compiler. Boost library writers aim to write highly optimized and type-safe software. Because of this, in this talk we make a special effort to demonstrate how transactions in the Intel C++ STM compiler achieve rigid type-safety and optimization. In particular, we show how transactions can be used for complex operations, such as template declarations, member initialization lists, and failure atomic expressions (known as transaction expre...
Intel C++ Compiler 16.0, which is part of Intel Parallel Studio XE 2016, is the latest incarnation. David Bolton discusses what’s new and what’s changed with the compiler. Find out what he discovered and his verdict on the updated tool.
The Intel compiler can autovectorize your code. However, you want to be able to know for sure whether you're getting vectorized code. In this video, Jeff Cogswell shows you how to see which loops are vectorized by looking at the assembly code.
HINT: PATH: w:\tools\incoming\emscripten-fastcomp\build-intel64\ cmake .. -T "Intel C++ Compiler XE 13.0" -G "Visual Studio 10 Win64" -DCMAKE_BUILD_TYPE=Release -DLLVM_TARGETS_TO_BUILD="X86;JSBackend" -DLLVM_INCLUDE_EXAMPLES=OFF -DLLVM_INCLUDE_TESTS=OFF -DCLANG_INCLUDE_EXAMPLES=OFF -DCLANG_INCLUDE_TESTS=OFF ---------------------------------------------------------------------------------- -T "Intel C++ Compiler 15.0 [Intel(R) System Studio]" - Intel System Studio 2015 -T "Intel C++ Compiler XE 13.0" -T "Intel Parallel Composer 2011" ----------------------------------------------------------------------------- -G "Visual Studio 10 Win64" - Visual Studio 2010 -G "Visual Studio 12 Win64" - Visual Studio 2013 (build failed)
HINT: https://software.intel.com/en-us/intel-parallel-studio-xe
Лекция представляет собой обзор матричных возможностей библиотеки Intel Integrated Performance Primitives, а также демонстрацию на конкретном примере прироста производительности при её использовании в разработке. Кроме того, в лекции рассматриваются возможности Intel C++ Compiler оптимизации приложений и основные ключи компиляции с демонстрацией их работы. Лекция и тесты в НОУ ИНТУИТ http://www.intuit.ru/studies/courses/664/520/lecture/11748
And so we kick things off with the first screencast! In this screencast we set up our projects and write an implementation of basic mana rules that Magic uses. Full source code is available here (feel free to fork & PR): https://github.com/nesteruk/ProgrammingMagic Note: compiling the source code requires Visual Studio 2013, Intel Parallel Studio 2015, Google Test. Further screencasts will also require Boost and other things. All projects are configured for 64-bit Intel C++ compilation.
Let's write an emulator, from scratch! We're writing an Intel x86 emulator. Twice a week, at 19:30. Bring your own C Compiler!
Transactional memory (TM) promises to simplify parallel programming by moving the complexity of shared memory management away from the programmer's view. In this talk, we present the latest version of the Draft Specification of Transactional Language Constructs for C++ and its practical implementation within Intel's C++ software transactional memory (STM) compiler. Boost library writers aim to write highly optimized and type-safe software. Because of this, in this talk we make a special effort to demonstrate how transactions in the Intel C++ STM compiler achieve rigid type-safety and optimization. In particular, we show how transactions can be used for complex operations, such as template declarations, member initialization lists, and failure atomic expressions (known as transaction expre...
Leçon 11: Conception de programmes: complexité des algorithmes - Langage C Complexité temporelle Mesure de la complexité Classes de complexité Calcul de la complexité ------------------------ fft algorithm nptel fibonacci algorithm fiche maternelle algorithme imprimer financial algorithms first fit algorithm flood fill algorithm floyd algorithm floyd warshall algorithm for c formation c formation c# formation delphi formation programmation formation programmation informatique formation visual basic fortran forum langage c forward backward algorithm foundations of algorithms fractal algorithm frank wolfe algorithm free c compiler functional data structures fundamentals of data structures game algorithms genetic algorithm genetic algorithm example genetic algorithm game genetic algorithm...
Leçon 11: Les arbres - Langage C Définitions et propriétés Type abstrait de données et Implantation --------------------------- arbre binaire arbre rouge et noir arbres binaires de recherche ensias java les arbres en langage c les arbres en c langage c leçon 11 arbres langage c cours arbre rouge et noir arbre binaire algorithme avancé arbre rouge et noir leçon 11: c langage c ensias lecon 11 langage c leã§on 11 lecon11 leçon 11# complément langage c: allocation dynamique les arbres binaires langage c les arbre exercice arbre binaire de recherche ensias lecon 11 arbree arbres binaires exercice arbres rouge et noir arbre binaire:rouge noir arbre binaire arbre rouge et noir les arbre ensias algorithmique les arbres rouge et noir les arbres en langage c supprimer structures donnees arb...
Leçon 15: Algorithmes Simples de Tri - Langage C Tri à bulles Tri par sélection Tri par insertion Synthèse --------------------------- #16# algorithme ( les types des tris sur tableau ) # الد algorithme avancé : algorithme de tri algorithme d'un tri de tableau par insertion algorithme de tri algorithme de tri à bulles algorithme en c du tri insertion complixité algorithme langage c algorithme tri algorithme tri à bulle algorithme tri à bulles algorithme tri par insertion caml algorithmes de tri algorithmes de tri en c algorithmes de tri par insertion algorithmes de tris algoritme langahe c analyse et conception des algorithme cours de langage c et algorythme diviser pour regner algorithme de tris du langage algorithmique au langage c exercise algorithmique langage c formati...
Xinmin Tian, Intel Corp. OpenMP Con 2015 Aachen Germany - September 2015 Abstract: The relentless pace of Moore’s Law will lead to modern multi-core processors, coprocessors and GPU designs with extensive on-die integration of SIMD execution units on CPU and GPU cores to achieve better performance and power efficiency. To make efficient use of the underlying SIMD hardware, utilizing its wide vector registers and SIMD instructions such as Xeon Phi™, SIMD vectorization plays a key role of converting plain scalar C/C++/Fortran code into SIMD code that operating on vectors of data each holding one or more elements.Intel® Xeon processors and Xeon Phi™ coprocessors combine abundant thread parallelism with SIMD vector units. Efficiently exploiting SIMD vector units is one of the most important ...
El núcleo Linux, ha sido marcado por un crecimiento constante en cada momento de su historia. Desde la primera publicación de su código fuente en 1991, nacido desde un pequeño número de archivos en lenguaje C bajo una licencia que prohíbe la distribución comercial a su estado actual de cerca de 296 MiBs de fuente bajo la Licencia pública general de GNU. Antecedentes[editar] Máscota oficial de GNU. Richard Matthew Stallman, fundador de la Fundación del Software Libre y del Proyecto GNU. En 1983 Richard Stallman inició el ambicioso Proyecto GNU, con el propósito de crear un sistema operativo similar y compatible con UNIX y los estándares POSIX. Dos años más tarde, 1985, creó la Fundación del Software Libre (FSF) y desarrolló la Licencia pública general de GNU (GNU GPL), para tener un marc...
Writing better code with help from Qt and the compiler: Traditionally, getting the most out of a processor required writing assembly code that used specialised instructions to accomplish some particular tasks. And though that's still widely used, processors are very complex and maintaining assembly code by hand is a hard and tedious task. Add to that the fact that processors evolve and getting the timings right of each generation is better left to the compiler. A little known feature of the compilers is that it is possible to get access to certain instructions from high-level C and C++ code, by way of intrinsic functions, thus allowing developers of native code to get very close to bare metal performance. Yet modern compilers can offer more functionality to help the bold developer write b...