-
ciclo de vida de ceramiales #biology #uami
published: 26 Oct 2023
-
Ciclo de vida de los Ceramiales #biology #uami
published: 26 Oct 2023
-
ECI 2017i: The biogeography and evolution of the cosmopolitan red algae, Neosiphonia harveyi complex
The biogeography and evolution of the cosmopolitan red algae, Neosiphonia harveyi complex (Ceramiales, Rhodophyta) suggest an area to future conservation management
Danilo E. Bustamante, Boo Yeon Won y Tae Oh Cho
Chosun University, Gwangju, Korea
published: 26 Aug 2017
-
Live history of Rhodophyta | Primary and Secondary Pit Plugs
Red algae, or Rhodophyta (/roʊˈdɒfɪtə/, /ˌroʊdəˈfaɪtə/; from Ancient Greek ῥόδον (rhódon) 'rose', and φυτόν (phutón) 'plant'), are one of the oldest groups of eukaryotic algae. The Rhodophyta also comprises one of the largest phyla of algae, containing over 7,000 currently recognized species with taxonomic revisions ongoing. The majority of species (6,793) are found in the Florideophyceae (class), and mostly consist of multicellular, marine algae, including many notable seaweeds. Red algae are abundant in marine habitats but relatively rare in freshwaters. Approximately 5% of red algae species occur in freshwater, environments with greater concentrations found in warmer areas. Except for two coastal cave dwelling species in the asexual class Cyanidiophyceae, there are no terrestrial specie...
published: 20 Sep 2022
-
Rhodophyta parte2
Aula sobre algas vermelhas - Classificação, Classe Bangiophyceae (Ordem Bangiales), Classe Florideophyceae (Ordens Nemaniales, Gelidiales, Ceramiales, Halymeniales, Gigartinales e Corallinales), e Utilização pelo Homem.
published: 14 Apr 2021
-
Division Rhodophyta (Algas Rojas).BIOPEDIA
⬇⬇⬇DESCARGA LA PRESENTACIÓN GRATIS⬇⬇⬇
https://adsrt.org/5tqJ36B
1. División Rhodophyta (Algas rojas)
2. DIVISIÓN RODOPHYTA CLASE RHODOPHYCEAE SUBCLASE BANGIOPHYCIDAE SUBCLASE FLORIDIOPHYCIDAE ORDEN: NEMALIONALES ORDEN: GELIDIALES ORDEN GIGARTINALES ORDEN: CORALLINALES ORDENGRACILARIALES ORDEN BONNEMAISONIALES ORDEN RHODYMENIALES ORDEN PALMARIALES ORDEN CERAMIALES Formas vegetativas + complejas, son plurinucleadas, - la cél. apical. Plastos, en gral, #, discoidales, periféricos, puede aparecer 1 plasto en Nemalionales. Talo de crecimiento apical. Grite. Cél. consecutivas c/filamento unidas entre si por sinápsis.
3. por esta razón el color predominante el talo es el rojo. Nothogenia fastigiata
4. • Llegan a los 675 géneros y más de 4 000 especies. • La mayoría son de hábit...
published: 30 Mar 2017
-
Miriã Gollmann (28º SIC EM UFSC)
a) Projeto: O papel dos filamentos de actina na regulação dos processos iniciais de germinação dos tetrásporos de Palisada flagellifera (Ceramiales, Rhodophyta);
b) Nome da bolsista: Miriã Figueira de Souza Gollmann;
c) Nome da orientadora: Luciane Ouriques;
d) Centro de Ciências Biológicas (CCB);
e) Departamento de Biologia Celular, Embriologia e Genética (BEG);
f) Laboratório de Biologia Celular Vegetal;
g) Grande Área: Vida;
h) Área: Biologia Celular;
i) Sub-Área: Biologia Celular Vegetal;
j) Universidade Federal de Santa Catarina;
k) Palavras-chave: citocalasina, Palisada flagellifera, germinação, algas vermelhas.
l) Resumo:
O citoesqueleto é um componente celular envolvido nos processos iniciais de germinação dos tetrásporos de Palisada flagellifera,tendo como principais ...
published: 20 Aug 2018
-
Polysiphonia in Hindi
#NOTES #ALGAE #POLYSIPHONIA #BSC #MSC
Polysiphonia
Scientific classification
(unranked): Archaeplastida
Division: Rhodophyta
Class: Florideophyceae
Order: Ceramiales
Family: Rhodomelaceae
Genus: Polysiphonia
Polysiphonia is a genus of filamentous red algae with about 19 species on the coasts of the British Isles and about 200 species worldwide including Crete in Greece, Antarctica, and Greenland. Its members are known by a number of common names. It is in the order Ceramiales and family Rhodomelaceae.
Description
Polysiphonia is a red algae, polysiphonous, and usually well-branched, with some plants reaching a length of about 30 cm. They are attached by rhizoids or chapters to a rocky surface or other algae. The thallus (tissue) consists of fine branched filaments each with a central axial...
published: 22 Nov 2017
-
Малый практикум 6 занятие. Часть 1
Это первая часть шестого занятия для факультета Биоинженерии и биоинформатики или пятого занятия факультета биотехнологии.
Как всегда, привожу программу практикума
Отдел Rhodophyta
Кл. Bangiophyceae
Пор. Bangiales
Porphyra (внешний вид)
Кл. Rhodimeniophyceae
пор. Ceramiales
Polysiphonia (гербарий, внешний вид таллома под микроскопом, цистокарпии, тетраспоры в тетраспорангии)
Пор. Batrachospermales
Batrachospermum (внешний вид таллома).
published: 22 Mar 2020
-
RedToL: Understanding the morphology of marine red algae
An NSF RedToL (Red Algal Tree of Life) Student Workshop on the morphology of Red Algae (Rhodophyta) was held at LUMCON (Louisiana Universities Marine Consortium, http://www.lumcon.edu) in Chauvin (Cocodrie) LA, June 26-30, 2011.
Seven instructors and 28 undergraduate students, graduate students and postdoctoral fellows worked together in learning how to interpret morphological structures that are phylogenetically significant as viewed through light microscopy. Lectures were also given on red algal genomics and transcriptomics. Information about the workshop can be found at: http://www.bigelow.org/research/srs/hwan_su_yoon/red-tol-student-workshop
RedToL (http://dblab.rutgers.edu/redtol/home.php) is part of the National Science Foundation-funded Tree of Life Initiative to reconstruct th...
published: 11 Jul 2011
25:19
ECI 2017i: The biogeography and evolution of the cosmopolitan red algae, Neosiphonia harveyi complex
The biogeography and evolution of the cosmopolitan red algae, Neosiphonia harveyi complex (Ceramiales, Rhodophyta) suggest an area to future conservation manage...
The biogeography and evolution of the cosmopolitan red algae, Neosiphonia harveyi complex (Ceramiales, Rhodophyta) suggest an area to future conservation management
Danilo E. Bustamante, Boo Yeon Won y Tae Oh Cho
Chosun University, Gwangju, Korea
https://wn.com/Eci_2017I_The_Biogeography_And_Evolution_Of_The_Cosmopolitan_Red_Algae,_Neosiphonia_Harveyi_Complex
The biogeography and evolution of the cosmopolitan red algae, Neosiphonia harveyi complex (Ceramiales, Rhodophyta) suggest an area to future conservation management
Danilo E. Bustamante, Boo Yeon Won y Tae Oh Cho
Chosun University, Gwangju, Korea
- published: 26 Aug 2017
- views: 102
5:32
Live history of Rhodophyta | Primary and Secondary Pit Plugs
Red algae, or Rhodophyta (/roʊˈdɒfɪtə/, /ˌroʊdəˈfaɪtə/; from Ancient Greek ῥόδον (rhódon) 'rose', and φυτόν (phutón) 'plant'), are one of the oldest groups of e...
Red algae, or Rhodophyta (/roʊˈdɒfɪtə/, /ˌroʊdəˈfaɪtə/; from Ancient Greek ῥόδον (rhódon) 'rose', and φυτόν (phutón) 'plant'), are one of the oldest groups of eukaryotic algae. The Rhodophyta also comprises one of the largest phyla of algae, containing over 7,000 currently recognized species with taxonomic revisions ongoing. The majority of species (6,793) are found in the Florideophyceae (class), and mostly consist of multicellular, marine algae, including many notable seaweeds. Red algae are abundant in marine habitats but relatively rare in freshwaters. Approximately 5% of red algae species occur in freshwater, environments with greater concentrations found in warmer areas. Except for two coastal cave dwelling species in the asexual class Cyanidiophyceae, there are no terrestrial species, which may be due to an evolutionary bottleneck in which the last common ancestor lost about 25% of its core genes and much of its evolutionary plasticity.
Pit connections and pit plugs
Pit connections
Pit connections and pit plugs are unique and distinctive features of red algae that form during the process of cytokinesis following mitosis. In red algae, cytokinesis is incomplete. Typically, a small pore is left in the middle of the newly formed partition. The pit connection is formed where the daughter cells remain in contact.
Shortly after the pit connection is formed, cytoplasmic continuity is blocked by the generation of a pit plug, which is deposited in the wall gap that connects the cells.
Connections between cells having a common parent cell are called primary pit connections. Because apical growth is the norm in red algae, most cells have two primary pit connections, one to each adjacent cell.
Connections that exist between cells not sharing a common parent cell are labelled secondary pit connections. These connections are formed when an unequal cell division produced a nucleated daughter cell that then fuses to an adjacent cell. Patterns of secondary pit connections can be seen in the order Ceramiales.'
Pit plugs
After a pit connection is formed, tubular membranes appear. A granular protein called the plug core then forms around the membranes. The tubular membranes eventually disappear. While some orders of red algae simply have a plug core, others have an associated membrane at each side of the protein mass, called cap membranes. The pit plug continues to exist between the cells until one of the cells dies. When this happens, the living cell produces a layer of wall material that seals off the plug.
Function
The pit connections have been suggested to function as structural reinforcement, or as avenues for cell-to-cell communication and transport in red algae, however little data supports this hypothesis.
Reproduction
The reproductive cycle of red algae may be triggered by factors such as day length. Red algae reproduce sexually as well as asexually. Asexual reproduction can occur through the production of spores and by vegetative means (fragmentation, cell division or propagules production).
Life cycle
They display alternation of generations. In addition to a gametophyte generation, many have two sporophyte generations, the carposporophyte-producing carpospores, which germinate into a tetrasporophyte – this produces spore tetrads, which dissociate and germinate into gametophytes.
The gametophyte is typically (but not always) identical to the tetrasporophyte.
Carpospores may also germinate directly into thalloid gametophytes, or the carposporophytes may produce a tetraspore without going through a (free-living) tetrasporophyte phase.
Tetrasporangia may be arranged in a row (zonate), in a cross (cruciate), or in a tetrad.
The carposporophyte may be enclosed within the gametophyte, which may cover it with branches to form a cystocarp.
The two following case studies may be helpful to understand some of the life histories algae may display:
In a simple case, such as Rhodochorton investiens:
In the carposporophyte: a spermatium merges with a trichogyne (a long hair on the female sexual organ), which then divides to form carposporangia – which produce carpospores.
Carpospores germinate into gametophytes, which produce sporophytes. Both of these are very similar; they produce monospores from monosporangia "just below a cross-wall in a filament" and their spores are "liberated through the apex of sporangial cell."
Questions:
What is pit-connection in the context of the red algae?
A) Unicellular adult
B) Proteinaceous plug formed between two adjacent red algal cells *
C) Parenchima of cells to form true tissue
D) Alinear array of cells, each with their own cell walls and sharing cell wall at the junction
Between the cells
E) None of the above
What is the only known sexual live history in Rhodophyta?
A) Zygotic meiosis life history
B) Sporic meiosis live history *
C) Gametic meiosis live history
D) All the above
E) None of the above
https://wn.com/Live_History_Of_Rhodophyta_|_Primary_And_Secondary_Pit_Plugs
Red algae, or Rhodophyta (/roʊˈdɒfɪtə/, /ˌroʊdəˈfaɪtə/; from Ancient Greek ῥόδον (rhódon) 'rose', and φυτόν (phutón) 'plant'), are one of the oldest groups of eukaryotic algae. The Rhodophyta also comprises one of the largest phyla of algae, containing over 7,000 currently recognized species with taxonomic revisions ongoing. The majority of species (6,793) are found in the Florideophyceae (class), and mostly consist of multicellular, marine algae, including many notable seaweeds. Red algae are abundant in marine habitats but relatively rare in freshwaters. Approximately 5% of red algae species occur in freshwater, environments with greater concentrations found in warmer areas. Except for two coastal cave dwelling species in the asexual class Cyanidiophyceae, there are no terrestrial species, which may be due to an evolutionary bottleneck in which the last common ancestor lost about 25% of its core genes and much of its evolutionary plasticity.
Pit connections and pit plugs
Pit connections
Pit connections and pit plugs are unique and distinctive features of red algae that form during the process of cytokinesis following mitosis. In red algae, cytokinesis is incomplete. Typically, a small pore is left in the middle of the newly formed partition. The pit connection is formed where the daughter cells remain in contact.
Shortly after the pit connection is formed, cytoplasmic continuity is blocked by the generation of a pit plug, which is deposited in the wall gap that connects the cells.
Connections between cells having a common parent cell are called primary pit connections. Because apical growth is the norm in red algae, most cells have two primary pit connections, one to each adjacent cell.
Connections that exist between cells not sharing a common parent cell are labelled secondary pit connections. These connections are formed when an unequal cell division produced a nucleated daughter cell that then fuses to an adjacent cell. Patterns of secondary pit connections can be seen in the order Ceramiales.'
Pit plugs
After a pit connection is formed, tubular membranes appear. A granular protein called the plug core then forms around the membranes. The tubular membranes eventually disappear. While some orders of red algae simply have a plug core, others have an associated membrane at each side of the protein mass, called cap membranes. The pit plug continues to exist between the cells until one of the cells dies. When this happens, the living cell produces a layer of wall material that seals off the plug.
Function
The pit connections have been suggested to function as structural reinforcement, or as avenues for cell-to-cell communication and transport in red algae, however little data supports this hypothesis.
Reproduction
The reproductive cycle of red algae may be triggered by factors such as day length. Red algae reproduce sexually as well as asexually. Asexual reproduction can occur through the production of spores and by vegetative means (fragmentation, cell division or propagules production).
Life cycle
They display alternation of generations. In addition to a gametophyte generation, many have two sporophyte generations, the carposporophyte-producing carpospores, which germinate into a tetrasporophyte – this produces spore tetrads, which dissociate and germinate into gametophytes.
The gametophyte is typically (but not always) identical to the tetrasporophyte.
Carpospores may also germinate directly into thalloid gametophytes, or the carposporophytes may produce a tetraspore without going through a (free-living) tetrasporophyte phase.
Tetrasporangia may be arranged in a row (zonate), in a cross (cruciate), or in a tetrad.
The carposporophyte may be enclosed within the gametophyte, which may cover it with branches to form a cystocarp.
The two following case studies may be helpful to understand some of the life histories algae may display:
In a simple case, such as Rhodochorton investiens:
In the carposporophyte: a spermatium merges with a trichogyne (a long hair on the female sexual organ), which then divides to form carposporangia – which produce carpospores.
Carpospores germinate into gametophytes, which produce sporophytes. Both of these are very similar; they produce monospores from monosporangia "just below a cross-wall in a filament" and their spores are "liberated through the apex of sporangial cell."
Questions:
What is pit-connection in the context of the red algae?
A) Unicellular adult
B) Proteinaceous plug formed between two adjacent red algal cells *
C) Parenchima of cells to form true tissue
D) Alinear array of cells, each with their own cell walls and sharing cell wall at the junction
Between the cells
E) None of the above
What is the only known sexual live history in Rhodophyta?
A) Zygotic meiosis life history
B) Sporic meiosis live history *
C) Gametic meiosis live history
D) All the above
E) None of the above
- published: 20 Sep 2022
- views: 235
30:42
Rhodophyta parte2
Aula sobre algas vermelhas - Classificação, Classe Bangiophyceae (Ordem Bangiales), Classe Florideophyceae (Ordens Nemaniales, Gelidiales, Ceramiales, Halymenia...
Aula sobre algas vermelhas - Classificação, Classe Bangiophyceae (Ordem Bangiales), Classe Florideophyceae (Ordens Nemaniales, Gelidiales, Ceramiales, Halymeniales, Gigartinales e Corallinales), e Utilização pelo Homem.
https://wn.com/Rhodophyta_Parte2
Aula sobre algas vermelhas - Classificação, Classe Bangiophyceae (Ordem Bangiales), Classe Florideophyceae (Ordens Nemaniales, Gelidiales, Ceramiales, Halymeniales, Gigartinales e Corallinales), e Utilização pelo Homem.
- published: 14 Apr 2021
- views: 1286
4:22
Division Rhodophyta (Algas Rojas).BIOPEDIA
⬇⬇⬇DESCARGA LA PRESENTACIÓN GRATIS⬇⬇⬇
https://adsrt.org/5tqJ36B
1. División Rhodophyta (Algas rojas)
2. DIVISIÓN RODOPHYTA CLASE RHODOPHYCEAE S...
⬇⬇⬇DESCARGA LA PRESENTACIÓN GRATIS⬇⬇⬇
https://adsrt.org/5tqJ36B
1. División Rhodophyta (Algas rojas)
2. DIVISIÓN RODOPHYTA CLASE RHODOPHYCEAE SUBCLASE BANGIOPHYCIDAE SUBCLASE FLORIDIOPHYCIDAE ORDEN: NEMALIONALES ORDEN: GELIDIALES ORDEN GIGARTINALES ORDEN: CORALLINALES ORDENGRACILARIALES ORDEN BONNEMAISONIALES ORDEN RHODYMENIALES ORDEN PALMARIALES ORDEN CERAMIALES Formas vegetativas + complejas, son plurinucleadas, - la cél. apical. Plastos, en gral, #, discoidales, periféricos, puede aparecer 1 plasto en Nemalionales. Talo de crecimiento apical. Grite. Cél. consecutivas c/filamento unidas entre si por sinápsis.
3. por esta razón el color predominante el talo es el rojo. Nothogenia fastigiata
4. • Llegan a los 675 géneros y más de 4 000 especies. • La mayoría son de hábitat marino • Como producto de reserva : Gránulos de almidón de florideas ( dispersas en todo el citoplasma). • Reproducción Asexual y Sexual Rhodophyllis divaricata Características generales
5. Representadas por: microscópicas unicelulares, coloniales a filamentosas como: Asterocystis Porphyridium Rhodosorus formas macroscópicas variadas filamentosas a parenquimatosas
6. Las Rodophytas poseen: * clorofila a y d (exclusiva de los rodophyta, sólo ausente en Bangiophyceae) * β caroteno y * ficobilinas: ficoeritrina y ficocianina Sustancias de reserva
7. Como producto de reserva presentan el almidón de Florideas, es un carbohidrato insoluble. Algunas algas Rojas también acumulan azúcares y glicosidos como: floridósido, isofloridósido, maltosa y sucrosa.
8. Las estructuras y elementos reproductivas sea asexual o sexual son variados. Reproducción Asexual: Producen uno o más tipos de esporas no flageladas: Monosporas Neutrosporas Tetrasporas Polisporas y Corposporas Reproducción
9. Son sexualmente Oogámicos: - Carpogonio: Elemento sexual femenino - Espermatangio: Órgano masculino El carpogonio se encuentra en el extremo distal de una rama especial llamada rama carpogonial El carpogonio presenta una estructura receptiva característica: El tricogino (se reabsorbe después de la fertilización) El espermatangio solo produce un espermacio, no móvil. El cual se traslada pasivamente hacia el tricógino para fecundar al carpogonio. Reproducción Sexual:
10. Ciclo de vida bifásico o digenético haplo-diploide heteromórfico de porphyra División RHODOPHYTA Fase asexual o conchocelis Fase sexual gametofítica
11. Ciclo de Vida Trigenético isomorfico de Polysiphonia División RHODOPHYTA Fase asexual tetrasporófitica libre Fase sexual carposporófitica dependiente Fase sexual gametofítica
12. Importancia Importante en la formación del substrato coralígeno, es decir en la cimentación de los arrecifes de coral al producir material nuevo y sedimentarse junto a otros organismos, acogiendo importantes comunidades bentónicas. 18Corallina mediterranea
13. A partir de las sustancias que contienen las algas rojas se extraen productos para la industria como el agar (agar-agar). El agar es un glúcido complejo que se utiliza como medio de cultivo de bacterias en laboratorios microbiológicos de todo el mundo. Golosinas en las que se emplea agar
14. Actualmente se consumen diferentes especies de algas rojas que constituyen el alimento de millones de personas en Asia fundamentalmente
15. Entonces: -Intervienen en la formación del plancton. -Son decisivas en la formación de arrecifes coralinos. -Se utilizan como alimento humano fundamentalmente en el continente asiático en diversos preparados. -El agar y la carragenina de la pared celular se utilizan como espesantes en la fabricación de quesos, gelatinas, pinturas y cosméticos. -El agar se utiliza en laboratorios microbiológicos para solidificar los medios de cultivo, en la preparación de laxantes y en la confección de cápsulas para medicamentos muy sensibles como algunos tipos de antibióticos.
https://wn.com/Division_Rhodophyta_(Algas_Rojas).Biopedia
⬇⬇⬇DESCARGA LA PRESENTACIÓN GRATIS⬇⬇⬇
https://adsrt.org/5tqJ36B
1. División Rhodophyta (Algas rojas)
2. DIVISIÓN RODOPHYTA CLASE RHODOPHYCEAE SUBCLASE BANGIOPHYCIDAE SUBCLASE FLORIDIOPHYCIDAE ORDEN: NEMALIONALES ORDEN: GELIDIALES ORDEN GIGARTINALES ORDEN: CORALLINALES ORDENGRACILARIALES ORDEN BONNEMAISONIALES ORDEN RHODYMENIALES ORDEN PALMARIALES ORDEN CERAMIALES Formas vegetativas + complejas, son plurinucleadas, - la cél. apical. Plastos, en gral, #, discoidales, periféricos, puede aparecer 1 plasto en Nemalionales. Talo de crecimiento apical. Grite. Cél. consecutivas c/filamento unidas entre si por sinápsis.
3. por esta razón el color predominante el talo es el rojo. Nothogenia fastigiata
4. • Llegan a los 675 géneros y más de 4 000 especies. • La mayoría son de hábitat marino • Como producto de reserva : Gránulos de almidón de florideas ( dispersas en todo el citoplasma). • Reproducción Asexual y Sexual Rhodophyllis divaricata Características generales
5. Representadas por: microscópicas unicelulares, coloniales a filamentosas como: Asterocystis Porphyridium Rhodosorus formas macroscópicas variadas filamentosas a parenquimatosas
6. Las Rodophytas poseen: * clorofila a y d (exclusiva de los rodophyta, sólo ausente en Bangiophyceae) * β caroteno y * ficobilinas: ficoeritrina y ficocianina Sustancias de reserva
7. Como producto de reserva presentan el almidón de Florideas, es un carbohidrato insoluble. Algunas algas Rojas también acumulan azúcares y glicosidos como: floridósido, isofloridósido, maltosa y sucrosa.
8. Las estructuras y elementos reproductivas sea asexual o sexual son variados. Reproducción Asexual: Producen uno o más tipos de esporas no flageladas: Monosporas Neutrosporas Tetrasporas Polisporas y Corposporas Reproducción
9. Son sexualmente Oogámicos: - Carpogonio: Elemento sexual femenino - Espermatangio: Órgano masculino El carpogonio se encuentra en el extremo distal de una rama especial llamada rama carpogonial El carpogonio presenta una estructura receptiva característica: El tricogino (se reabsorbe después de la fertilización) El espermatangio solo produce un espermacio, no móvil. El cual se traslada pasivamente hacia el tricógino para fecundar al carpogonio. Reproducción Sexual:
10. Ciclo de vida bifásico o digenético haplo-diploide heteromórfico de porphyra División RHODOPHYTA Fase asexual o conchocelis Fase sexual gametofítica
11. Ciclo de Vida Trigenético isomorfico de Polysiphonia División RHODOPHYTA Fase asexual tetrasporófitica libre Fase sexual carposporófitica dependiente Fase sexual gametofítica
12. Importancia Importante en la formación del substrato coralígeno, es decir en la cimentación de los arrecifes de coral al producir material nuevo y sedimentarse junto a otros organismos, acogiendo importantes comunidades bentónicas. 18Corallina mediterranea
13. A partir de las sustancias que contienen las algas rojas se extraen productos para la industria como el agar (agar-agar). El agar es un glúcido complejo que se utiliza como medio de cultivo de bacterias en laboratorios microbiológicos de todo el mundo. Golosinas en las que se emplea agar
14. Actualmente se consumen diferentes especies de algas rojas que constituyen el alimento de millones de personas en Asia fundamentalmente
15. Entonces: -Intervienen en la formación del plancton. -Son decisivas en la formación de arrecifes coralinos. -Se utilizan como alimento humano fundamentalmente en el continente asiático en diversos preparados. -El agar y la carragenina de la pared celular se utilizan como espesantes en la fabricación de quesos, gelatinas, pinturas y cosméticos. -El agar se utiliza en laboratorios microbiológicos para solidificar los medios de cultivo, en la preparación de laxantes y en la confección de cápsulas para medicamentos muy sensibles como algunos tipos de antibióticos.
- published: 30 Mar 2017
- views: 6684
5:10
Miriã Gollmann (28º SIC EM UFSC)
a) Projeto: O papel dos filamentos de actina na regulação dos processos iniciais de germinação dos tetrásporos de Palisada flagellifera (Ceramiales, Rhodophyta)...
a) Projeto: O papel dos filamentos de actina na regulação dos processos iniciais de germinação dos tetrásporos de Palisada flagellifera (Ceramiales, Rhodophyta);
b) Nome da bolsista: Miriã Figueira de Souza Gollmann;
c) Nome da orientadora: Luciane Ouriques;
d) Centro de Ciências Biológicas (CCB);
e) Departamento de Biologia Celular, Embriologia e Genética (BEG);
f) Laboratório de Biologia Celular Vegetal;
g) Grande Área: Vida;
h) Área: Biologia Celular;
i) Sub-Área: Biologia Celular Vegetal;
j) Universidade Federal de Santa Catarina;
k) Palavras-chave: citocalasina, Palisada flagellifera, germinação, algas vermelhas.
l) Resumo:
O citoesqueleto é um componente celular envolvido nos processos iniciais de germinação dos tetrásporos de Palisada flagellifera,tendo como principais elementos os microtúbulos e os filamentos de actina.Este trabalho teve como objetivo caracterizar os f-actina durante as fases iniciais de germinação dos tetrásporos utilizando o inibidor citocalasina B. As plantas tetrasporofíticas foram colocadas em uma bandeja plástica para liberação dos tetrásporos. Em seguida, as algas controle foram colocadas em Placas de Petri com água do mar esterilizada e as amostras tratadas foram incubadas com duas concentrações diferentes de citocalasina B (25µM e 50µM). Posteriormente, todas as amostras foram observadas e fotografadas em microscopia de luz (ML) para verificar a viabilidade e morfologia celular. Na microscopia confocal de varredura a laser, em todas as amostras, a rodamina-faloidina foi usada para marcar os filamentos de actina, sendo que o calcofluor foi utilizado para marcar a parede celular. Após 12 horas de incubação, os tetrásporos do controle já estavam germinados com padrão bipolar típico da ordem Ceramiales. No tratamento com 25µM de citocalasina B, os tetrásporos iniciaram a polarização, mas não continuaram a se desenvolver. No entanto, o tratamento com 50µM de citocalasina B inibiu completamente a germinação dos tetrásporos. Quando observada no CLSM, a fluorescência dos filamentos de actina foi detectada nas amostras controle e nos tratamentos com concentração de 25µM. Em relação às marcações da parede celular, as células do controle apresentaram uma forte fluorescência, enquanto o tratamento mostrou uma fluorescência mais fraca. Estes resultados sugerem que os filamentos de actina estão envolvidos nas fases iniciais de germinação de P. flagellifera e na formação de parede celular de tetrásporos.
m) Contatos:
Site do laboratório: http://labcev.ufsc.br/
miria.gollmann@hotmail.com
luciane.ouriques@hotmail.com
carmensimioni@hotmail.com
https://wn.com/Miriã_Gollmann_(28º_Sic_Em_Ufsc)
a) Projeto: O papel dos filamentos de actina na regulação dos processos iniciais de germinação dos tetrásporos de Palisada flagellifera (Ceramiales, Rhodophyta);
b) Nome da bolsista: Miriã Figueira de Souza Gollmann;
c) Nome da orientadora: Luciane Ouriques;
d) Centro de Ciências Biológicas (CCB);
e) Departamento de Biologia Celular, Embriologia e Genética (BEG);
f) Laboratório de Biologia Celular Vegetal;
g) Grande Área: Vida;
h) Área: Biologia Celular;
i) Sub-Área: Biologia Celular Vegetal;
j) Universidade Federal de Santa Catarina;
k) Palavras-chave: citocalasina, Palisada flagellifera, germinação, algas vermelhas.
l) Resumo:
O citoesqueleto é um componente celular envolvido nos processos iniciais de germinação dos tetrásporos de Palisada flagellifera,tendo como principais elementos os microtúbulos e os filamentos de actina.Este trabalho teve como objetivo caracterizar os f-actina durante as fases iniciais de germinação dos tetrásporos utilizando o inibidor citocalasina B. As plantas tetrasporofíticas foram colocadas em uma bandeja plástica para liberação dos tetrásporos. Em seguida, as algas controle foram colocadas em Placas de Petri com água do mar esterilizada e as amostras tratadas foram incubadas com duas concentrações diferentes de citocalasina B (25µM e 50µM). Posteriormente, todas as amostras foram observadas e fotografadas em microscopia de luz (ML) para verificar a viabilidade e morfologia celular. Na microscopia confocal de varredura a laser, em todas as amostras, a rodamina-faloidina foi usada para marcar os filamentos de actina, sendo que o calcofluor foi utilizado para marcar a parede celular. Após 12 horas de incubação, os tetrásporos do controle já estavam germinados com padrão bipolar típico da ordem Ceramiales. No tratamento com 25µM de citocalasina B, os tetrásporos iniciaram a polarização, mas não continuaram a se desenvolver. No entanto, o tratamento com 50µM de citocalasina B inibiu completamente a germinação dos tetrásporos. Quando observada no CLSM, a fluorescência dos filamentos de actina foi detectada nas amostras controle e nos tratamentos com concentração de 25µM. Em relação às marcações da parede celular, as células do controle apresentaram uma forte fluorescência, enquanto o tratamento mostrou uma fluorescência mais fraca. Estes resultados sugerem que os filamentos de actina estão envolvidos nas fases iniciais de germinação de P. flagellifera e na formação de parede celular de tetrásporos.
m) Contatos:
Site do laboratório: http://labcev.ufsc.br/
miria.gollmann@hotmail.com
luciane.ouriques@hotmail.com
carmensimioni@hotmail.com
- published: 20 Aug 2018
- views: 77
17:14
Polysiphonia in Hindi
#NOTES #ALGAE #POLYSIPHONIA #BSC #MSC
Polysiphonia
Scientific classification
(unranked): Archaeplastida
Division: Rhodophyta
Class: Florideophyceae
Order: Ceram...
#NOTES #ALGAE #POLYSIPHONIA #BSC #MSC
Polysiphonia
Scientific classification
(unranked): Archaeplastida
Division: Rhodophyta
Class: Florideophyceae
Order: Ceramiales
Family: Rhodomelaceae
Genus: Polysiphonia
Polysiphonia is a genus of filamentous red algae with about 19 species on the coasts of the British Isles and about 200 species worldwide including Crete in Greece, Antarctica, and Greenland. Its members are known by a number of common names. It is in the order Ceramiales and family Rhodomelaceae.
Description
Polysiphonia is a red algae, polysiphonous, and usually well-branched, with some plants reaching a length of about 30 cm. They are attached by rhizoids or chapters to a rocky surface or other algae. The thallus (tissue) consists of fine branched filaments each with a central axial filament supporting pericentral cells. The number of these pericentral cells (4–24) is used in identification. Polysiphonia elongata shows a central axial cell with 4 preaxial cells with cortical cells growing over the outside on the older fronds. Its cuticle contains bromine.
Features used in identification include the number of pericentral cells, the cortication of main branches, constriction of young branches at their base, whether the branching dichotomous or spiral and the width and length of thalli.
Distribution and ecology
Species have been recorded from Europe, Australia, and New Zealand, North America and South America, islands in the Pacific Ocean, South Africa, southwest Asia, Japan, Greenland, and Antarctica.
The species are entirely marine, found growing on rock, other algae, mussels or limpets, and artificial substrate, etc. from mid-littoral to at least 27 m depth. Many species are abundant in rock pools. Polysiphonia lanosa is commonly found growing on Ascophyllum nodosum.
Reproduction and life cycle
The life-cycle of the red algae has three stages (triphasic). In Polysiphonia it consists of a sequence of a gametangial, carpospoangial, and tetrasporangial phases. Male (haploid) plants (the male gametophytes]) produce spermatia and the female plants (the female gametophytes) produce the carpogonium (the haploid carpogonium) which remains attached to the parent female plant. After fertilization, the diploid nucleus migrates and fuses with an auxiliary cell. A complex series of fusions and developments follow as the diploid zygote develops to become the carposporophyte, this is a separate phase of the life-cycle and is entirely parasitic on the female, it is surrounded by the haploid pericarp of the parent female plant. The diploid carpospores produced in the carposporangium when released are non-motile, they settle and grow to form filamentous diploid plants similar to the gametophyte. This diploid plant is the tetrasporophyte which when adult produced spores in fours after meiosis. These spores settle and grow to become the male and female plants thus completing the cycle.
https://wn.com/Polysiphonia_In_Hindi
#NOTES #ALGAE #POLYSIPHONIA #BSC #MSC
Polysiphonia
Scientific classification
(unranked): Archaeplastida
Division: Rhodophyta
Class: Florideophyceae
Order: Ceramiales
Family: Rhodomelaceae
Genus: Polysiphonia
Polysiphonia is a genus of filamentous red algae with about 19 species on the coasts of the British Isles and about 200 species worldwide including Crete in Greece, Antarctica, and Greenland. Its members are known by a number of common names. It is in the order Ceramiales and family Rhodomelaceae.
Description
Polysiphonia is a red algae, polysiphonous, and usually well-branched, with some plants reaching a length of about 30 cm. They are attached by rhizoids or chapters to a rocky surface or other algae. The thallus (tissue) consists of fine branched filaments each with a central axial filament supporting pericentral cells. The number of these pericentral cells (4–24) is used in identification. Polysiphonia elongata shows a central axial cell with 4 preaxial cells with cortical cells growing over the outside on the older fronds. Its cuticle contains bromine.
Features used in identification include the number of pericentral cells, the cortication of main branches, constriction of young branches at their base, whether the branching dichotomous or spiral and the width and length of thalli.
Distribution and ecology
Species have been recorded from Europe, Australia, and New Zealand, North America and South America, islands in the Pacific Ocean, South Africa, southwest Asia, Japan, Greenland, and Antarctica.
The species are entirely marine, found growing on rock, other algae, mussels or limpets, and artificial substrate, etc. from mid-littoral to at least 27 m depth. Many species are abundant in rock pools. Polysiphonia lanosa is commonly found growing on Ascophyllum nodosum.
Reproduction and life cycle
The life-cycle of the red algae has three stages (triphasic). In Polysiphonia it consists of a sequence of a gametangial, carpospoangial, and tetrasporangial phases. Male (haploid) plants (the male gametophytes]) produce spermatia and the female plants (the female gametophytes) produce the carpogonium (the haploid carpogonium) which remains attached to the parent female plant. After fertilization, the diploid nucleus migrates and fuses with an auxiliary cell. A complex series of fusions and developments follow as the diploid zygote develops to become the carposporophyte, this is a separate phase of the life-cycle and is entirely parasitic on the female, it is surrounded by the haploid pericarp of the parent female plant. The diploid carpospores produced in the carposporangium when released are non-motile, they settle and grow to form filamentous diploid plants similar to the gametophyte. This diploid plant is the tetrasporophyte which when adult produced spores in fours after meiosis. These spores settle and grow to become the male and female plants thus completing the cycle.
- published: 22 Nov 2017
- views: 70434
1:12:08
Малый практикум 6 занятие. Часть 1
Это первая часть шестого занятия для факультета Биоинженерии и биоинформатики или пятого занятия факультета биотехнологии.
Как всегда, привожу программу практи...
Это первая часть шестого занятия для факультета Биоинженерии и биоинформатики или пятого занятия факультета биотехнологии.
Как всегда, привожу программу практикума
Отдел Rhodophyta
Кл. Bangiophyceae
Пор. Bangiales
Porphyra (внешний вид)
Кл. Rhodimeniophyceae
пор. Ceramiales
Polysiphonia (гербарий, внешний вид таллома под микроскопом, цистокарпии, тетраспоры в тетраспорангии)
Пор. Batrachospermales
Batrachospermum (внешний вид таллома).
https://wn.com/Малый_Практикум_6_Занятие._Часть_1
Это первая часть шестого занятия для факультета Биоинженерии и биоинформатики или пятого занятия факультета биотехнологии.
Как всегда, привожу программу практикума
Отдел Rhodophyta
Кл. Bangiophyceae
Пор. Bangiales
Porphyra (внешний вид)
Кл. Rhodimeniophyceae
пор. Ceramiales
Polysiphonia (гербарий, внешний вид таллома под микроскопом, цистокарпии, тетраспоры в тетраспорангии)
Пор. Batrachospermales
Batrachospermum (внешний вид таллома).
- published: 22 Mar 2020
- views: 1839
4:05
RedToL: Understanding the morphology of marine red algae
An NSF RedToL (Red Algal Tree of Life) Student Workshop on the morphology of Red Algae (Rhodophyta) was held at LUMCON (Louisiana Universities Marine Consorti...
An NSF RedToL (Red Algal Tree of Life) Student Workshop on the morphology of Red Algae (Rhodophyta) was held at LUMCON (Louisiana Universities Marine Consortium, http://www.lumcon.edu) in Chauvin (Cocodrie) LA, June 26-30, 2011.
Seven instructors and 28 undergraduate students, graduate students and postdoctoral fellows worked together in learning how to interpret morphological structures that are phylogenetically significant as viewed through light microscopy. Lectures were also given on red algal genomics and transcriptomics. Information about the workshop can be found at: http://www.bigelow.org/research/srs/hwan_su_yoon/red-tol-student-workshop
RedToL (http://dblab.rutgers.edu/redtol/home.php) is part of the National Science Foundation-funded Tree of Life Initiative to reconstruct the Red Algal (Rhodophyta) Tree of Life using phylogenetic and genomic approaches (http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5129).
This short lecture entitled "How can we identify marine red algae and what are the morphological characters that are systematically important at various taxonomic levels" was presented by Suzanne Fredericq, University of Louisiana at Lafayette.
Invited instructors:
Wendy Nelson (NIWA New Zealand):
Charles O'Kelly (Friday Harbor Lab):
Fredericq lab, University of Louisiana at Lafayette:
Suzanne Fredericq (PI, instructor)
William Schmidt (Postdoc)
Joseph Richards (PhD student)
William Gardiner (Undergrad)
Gregory Lalonde (Undergrad)
Vis lab, Ohio University:
Morgan Vis (PI, instructor)
Daryl Lam (Postdoc)
Eric Salomaki, (MS student)
Emily Johnston (MS student)
Taylor Macy (REU student)
Saunders lab, University of New Brunswick, Canada:
Tanya Moore (Lab Manager)
Meghann Bruce (PhD student)
Gina Filloramo (PhD student)
Bhattacharya lab, Rutgers University:
Debashish Bhattacharya (PI)
Shraddha Desai (student)
Dana Price (PhD student)
Cheong Xin Chan (Postdoc)
Lopez-Bautista lab, University of
Alabama at Tuscaloosa:
Juan Lopez-Bautista (PI)
Haj Allali (Postdoc)
Michael Depriest (PhD student)
Drew Lathan (REU student)
Boo lab, Chungnam University, Korea:
Jeong Kwang Park (PhD student)
Ga Hun Boo (PhD student)
Yoon lab, Bigelow Lab for Ocean Sciences:
Hwan Su Yoon (PI)
Eun Chan Yang (Postdoc)
Huan Qiu (Postdoc)
Nicholas Schulte (REU student)
https://wn.com/Redtol_Understanding_The_Morphology_Of_Marine_Red_Algae
An NSF RedToL (Red Algal Tree of Life) Student Workshop on the morphology of Red Algae (Rhodophyta) was held at LUMCON (Louisiana Universities Marine Consortium, http://www.lumcon.edu) in Chauvin (Cocodrie) LA, June 26-30, 2011.
Seven instructors and 28 undergraduate students, graduate students and postdoctoral fellows worked together in learning how to interpret morphological structures that are phylogenetically significant as viewed through light microscopy. Lectures were also given on red algal genomics and transcriptomics. Information about the workshop can be found at: http://www.bigelow.org/research/srs/hwan_su_yoon/red-tol-student-workshop
RedToL (http://dblab.rutgers.edu/redtol/home.php) is part of the National Science Foundation-funded Tree of Life Initiative to reconstruct the Red Algal (Rhodophyta) Tree of Life using phylogenetic and genomic approaches (http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5129).
This short lecture entitled "How can we identify marine red algae and what are the morphological characters that are systematically important at various taxonomic levels" was presented by Suzanne Fredericq, University of Louisiana at Lafayette.
Invited instructors:
Wendy Nelson (NIWA New Zealand):
Charles O'Kelly (Friday Harbor Lab):
Fredericq lab, University of Louisiana at Lafayette:
Suzanne Fredericq (PI, instructor)
William Schmidt (Postdoc)
Joseph Richards (PhD student)
William Gardiner (Undergrad)
Gregory Lalonde (Undergrad)
Vis lab, Ohio University:
Morgan Vis (PI, instructor)
Daryl Lam (Postdoc)
Eric Salomaki, (MS student)
Emily Johnston (MS student)
Taylor Macy (REU student)
Saunders lab, University of New Brunswick, Canada:
Tanya Moore (Lab Manager)
Meghann Bruce (PhD student)
Gina Filloramo (PhD student)
Bhattacharya lab, Rutgers University:
Debashish Bhattacharya (PI)
Shraddha Desai (student)
Dana Price (PhD student)
Cheong Xin Chan (Postdoc)
Lopez-Bautista lab, University of
Alabama at Tuscaloosa:
Juan Lopez-Bautista (PI)
Haj Allali (Postdoc)
Michael Depriest (PhD student)
Drew Lathan (REU student)
Boo lab, Chungnam University, Korea:
Jeong Kwang Park (PhD student)
Ga Hun Boo (PhD student)
Yoon lab, Bigelow Lab for Ocean Sciences:
Hwan Su Yoon (PI)
Eun Chan Yang (Postdoc)
Huan Qiu (Postdoc)
Nicholas Schulte (REU student)
- published: 11 Jul 2011
- views: 3451