Ants are distinct in their morphology from other insects in having elbowed antennae, metapleural glands, and a strong constriction of their second abdominal segment into a node-like petiole. The head, mesosoma, and metasoma are the three distinct body segments. The petiole forms a narrow waist between their mesosoma (thorax plus the first abdominal segment, which is fused to it) and gaster (abdomen less the abdominal segments in the petiole). The petiole may be formed by one or two nodes (the second alone, or the second and third abdominal segments).
Like other insects, ants have an exoskeleton, an external covering that provides a protective casing around the body and a
point of attachment for muscles, in contrast to the internal skeletons of humans and other vertebrates.
Insects do not have lungs; oxygen and other gases such as carbon dioxide pass through their exoskeleton via tiny valves called spiracles. Insects also lack closed blood vessels; instead, they have a long, thin, perforated tube along the top of the body (called the "dorsal aorta") that functions like a heart, and pumps haemolymph toward the head, thus driving the circulation of the internal fluids.
The nervous system consists of a ventral nerve cord that runs the length of the body, with several ganglia and branches along the way reaching into the extremities of the appendages.
Head
An ant's head contains many sensory organs. Like most insects, ants have compound eyes made from numerous tiny lenses attached together. Ant eyes are good for acute movement detection, but do not offer a high resolution image. They also have three small ocelli (simple eyes) on the top of the head that detect light levels and polarization. Compared to vertebrates, most ants have poor-to-mediocre eyesight and a few subterranean species are completely blind. Some ants such as
Australia's bulldog ant, however, have excellent vision and are capable of discriminating the distance and size of objects moving nearly a metre away.
Two antennae ("feelers") are attached to the head; these organs detect chemicals, air currents, and vibrations; they also are used to transmit and receive signals through touch. The head has two strong jaws, the mandibles, used to carry food, manipulate objects, construct nests, and for defence. In some species a small pocket (infrabuccal chamber) inside the mouth stores food, so it may be passed to other ants or their larvae.
Legs
All six legs are attached to the mesosoma ("thorax"). A hooked claw at the end of each leg helps ants to climb and to hang onto surfaces.
Wings
Most queens and the small number of drones in a colony (the male ants), have wings; queens shed the wings after the nuptial flight, leaving visible stubs, a distinguishing feature of queens.
Wingless queens (ergatoids) and males occur in a few species, however.
Polymorphism
Seven
Leafcutter ant workers of various castes (left) and two
Queens (right)
In the colonies of a few ant species, there are physical castes—workers in distinct size-classes, called minor, median, and major workers.
Often the larger ants have disproportionately larger heads, and correspondingly stronger mandibles. Such individuals sometimes are called "soldier" ants because their stronger mandibles make them more effective in fighting, although they still are workers and their "duties" typically do not vary greatly from the minor or median workers. In a few species the median workers are absent, creating a sharp divide between the minors and majors.
Weaver ants, for example, have a distinct bimodal size distribution. Some other species show continuous variation in the size of workers. The smallest and largest workers in
Pheidologeton diversus show nearly a 500-fold
difference in their dry-weights. Workers cannot mate; however, because of the haplodiploid sex-determination system in ants, workers of a number of species can lay unfertilised eggs that become fully fertile, haploid males. The role of workers may change with their age and in some species, such as honeypot ants, young workers are fed until their gasters are distended, and act as living food storage vessels. These food storage workers are called repletes. This polymorphism in morphology and behaviour of workers initially was thought to be determined by environmental factors such as nutrition and hormones that led to different developmental paths; however, genetic differences between worker castes have been noted in Acromyrmex sp. These polymorphisms are caused by relatively small genetic changes; differences in a single gene of
Solenopsis invicta can decide whether the colony will have single or multiple queens.
The Australian jack jumper ant (
Myrmecia pilosula) has only a single pair of chromosomes (with the males having just one chromosome as they are haploid), the lowest number known for any animal, making it an interesting subject for studies in the genetics and developmental biology of social insects. (bron.
Wikipedia)
- published: 12 Feb 2013
- views: 2997