In mathematics, hyperbolic functions are analogs of the ordinary trigonometric, or circular functions. The basic hyperbolic functions are the hyperbolic sine "sinh" (/ˈsɪntʃ/ or /ˈʃaɪn/), and the hyperbolic cosine "cosh" (/ˈkɒʃ/), from which are derived the hyperbolic tangent "tanh" (/ˈtæntʃ/ or /ˈθæn/),hyperbolic cosecant "csch" or "cosech" (/ˈkoʊʃɛk/ or /ˈkoʊsɛtʃ/), hyperbolic secant "sech" (/ˈʃɛk/ or /ˈsɛtʃ/), and hyperbolic cotangent "coth" (/ˈkoʊθ/ or /ˈkɒθ/), corresponding to the derived trigonometric functions. The inverse hyperbolic functions are the area hyperbolic sine "arsinh" (also called "asinh" or sometimes "arcsinh") and so on.
Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the equilateral hyperbola. The hyperbolic functions take a real argument called a hyperbolic angle. The size of a hyperbolic angle is twice the area of its hyperbolic sector. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector.