![Earthships 101 part I Earthships 101 part I](http://web.archive.org./web/20110824224739im_/http://i.ytimg.com/vi/L9jdIm7grCY/0.jpg)
- Order:
- Duration: 5:20
- Published: 10 Sep 2006
- Uploaded: 02 Aug 2011
- Author: earthship
Internal, non-load-bearing walls are often made of a honeycomb of recycled cans joined by concrete and are referred to as tin can walls. These walls are usually thickly plastered with stucco.
The roof of an Earthship is heavily insulated – often with earth or adobe – for added energy efficiency.
Eventually, Reynolds' vision took the form of the common U-shaped earth-filled tire homes seen today. As a concept, the Earthship was not limited to tires – any dense material with a potential for thermal mass, such as concrete, adobe, or stone could theoretically be used to create an Earthship. However, the earth-rammed tire version of the Earthship is now the most common design, and is the structure commonly referred to as “Earthship”.
Unlike other materials, rammed-earth tires are more accessible to the average person. Scrap tires are ubiquitous around the world and easy to come by; there are an estimated 2 billion tires throughout the United States. As of 1996, as many as 253 million scrap tires were being generated each year in the United States, with 70% being reclaimed by the scrap tire market (leaving perhaps 75 million scrap tires available for reuse as whole tires). In addition to the availability of scrap tires, the method by which they are converted into usable "bricks", the ramming of the earth, is simple and affordable.
The earth-rammed tires of an Earthship are usually assembled by teams of two people working together as part of a larger construction team. One member of the two person team shovels dirt, which usually comes from the building site, placing it into the tire one scoop at a time. The second member, who stands on the tire, uses a sledge hammer to pack the dirt in. The second person moves in a circle around the tire to keep the dirt even and avoid warping the tire. These rammed earth tires in an Earthship are made in place because, when properly made, they weigh as much as 300 pounds and can be very difficult to relocate.
Additional benefits of the rammed earth tire are its great load-bearing capacity and its resistance to fire.
A fully rammed tire, which is about 2 feet 8 inches wide, is massive enough to surpass conventional requirements for structural load distribution to the earth. Because the tire is full of soil, it does not burn when exposed to fire. In 1996 after a fire swept through many conventional homes in New Mexico, an Earthship discovered in the aftermath was relatively unharmed. Only the south-facing wall and the roof had burned away, compared to the total destruction of the conventional homes.
Currently, Earthships are in use in almost every state in the United States, as well as many countries in Europe. The use of insulation on the outside of tire walls, which was not common in early designs, is improving the viability of Earthships in every climate without compromising their durability. In the year 2000, Mike Reynolds, in partnership with Daren Howarth, launched Earthship Biotecture Europe, an organization that aims to explore and evolve the concept of the Earthship within a European context. Two more directors were appointed to Earthship Biotecture Europe in July 2006 – Kevan Trott and Kirsten Jacobsen.
In 2004, the very first Earthship in the UK was opened at Kinghorn Loch in Fife, Scotland. It was built by volunteers of the SCI charity. In 2005, the first earthship in England was established in Stanmer Park, Brighton with the Low Carbon Trust.
Earthship biotecture has now finalized plans for a planning application to build on a valuable development site overlooking the Brighton Marina in the UK. The application follows the successful six-month feasibility study funded by the UK Environment Agency and the Energy Savings Trust. The application calls for sixteen one, two, and three-bedroom earthship homes on this site. The homes are all designed according to basic earthship principles developed in the United States. 15,000 tires will be recycled to construct these homes (the UK burns approximately 40 million tires each year). The plans include the enhancement of habitats on the site for lizards that already live there, which is the reasoning behind entitling the project "The Lizard". This will be the first development of its kind in Europe, and successful development in Brighton may help to pave the way for similar projects around the UK and other places.
The first official Earthship home in mainland Europe with official planning commission approval was built in a small French village called Ger. The home, which is owned by Kevan and Gillian Trott, was built in April 2007 by Kevan, Mike Reynolds and an Earthship Crew from Taos. The design was modified for a European climate and is seen as the first of many for the European arena. It is currently used as a holiday home for eco-tourists.
The first official earthship district (23 earthships) in Europe is currently being developed in Olst (the Netherlands). Building will start in summer 2011.
Two new projects are also in early development in Africa, an information and training centre in Orania, South Africa and a residential house in Swaziland.
Water from the low end of the botanical cell is then directed through a peat-moss filter and collected in a reservoir or well. This reclaimed water is then passed once more through a greywater board and used to flush conventional toilets.
Often, any greywater that is made at earthships is not polluted enough to justify treatment (its "pollution" being usually just soap, which is often not environmentally damaging). At earthships, the use of plants placed at outlets of fixtures is then practiced to regain the water and the nutrients lost (from the soaps, etc.).. Usually, a single plant is placed directly in front of the pipe, but mini drain-fields are also sometimes used. The pipe is made large enough (5,08 cm) so that the formation of underground gas (from the greywater) is avoided. This is done with kitchen and bathroom sinks, and even showers, washing machines, and dishwashing machines. The plants are usually placed indoors with the sinks and outdoors with the washing/dishwashing machines and shower (to avoid indoor "floods"). Also, with the latter, larger drain-fields are used instead of a mere plant being placed before an outlet.
Now, when the newly included flush-toilets are used, blackwater is not reused within the Earthship. Instead, blackwater is sent to a solar-enhanced septic tank with leach-field and planter cells (the whole being often referred to as the “incubator”). The solar-enhanced septic tank is a regular septic tank which is heated by the sun and glazed with an equator-facing window. The incubator stores the sun's heat in its concrete mass, and is insulated, to help the anaerobic process. Water from the incubator is channeled out to an exterior leach field and then to landscaping "planter cells" (spaces surrounded by concrete in which plants have been put). The cells are similar to the botanical cell used in greywater treatment and are usually placed just before and under the windows of the earthship.
In cases where it is not possible to use flush-toilets operating on water, dry solar toilets are now advocated, instead of regular composting toilets. If this is the case, obviously no black water is formed and the use of an incubator is thus (usually) not necessary. Instead, regular "planters" (plants used for sucking up water/nutrients) are then used. When using regular planters as well, no chemical soaps or detergents can be used.
The space where the WOM (water organization module), graywater pump panel, pressure tank, (first set of) batteries, and POM (power organising module) are stored is in a small room referred to as the "systems package".
Earthships are designed to collect and store their own energy from a variety of sources. The majority of electrical energy is harvested from the sun and wind. Photovoltaic panels and windturbines located on or near the Earthship generate DC energy that is then stored in several types of deep-cycle batteries. The space in which the batteries are kept is usually a special, purpose-built room placed on the roof. Additional energy, if required, can be obtained from gasoline-powered generators or by integrating with the city grid.
In an Earthship, a Power Organizing Module is used to take stored energy from batteries and invert it for AC use. The Power Organizing Module is a prefabricated system provided by Earthship Biotecture that is simply attached to a wall on the interior of the Earthship and wired in a conventional manner. It includes the necessary equipment such as circuit breakers and converters. The energy run through the Power Organizing Module can be used to run any house-hold appliance including washing machines, computers, kitchen appliances, print machines, vacuums, etc. Generally, none of the electrical energy in an Earthship is used for heating or cooling.
The load-bearing walls of an Earthship, which are made from steel-belted tires rammed with earth, serve two purposes. First, they hold up the roof, and second, they provide a dense thermal mass that will soak up heat during the day and radiate heat during the night, keeping the interior climate relatively comfortable all day.
In addition to high thermal mass, some Earthships may be earth-sheltered. The benefits of earth-sheltering are twofold because it adds to the thermal mass and, if the Earthship is buried deep enough, allows the structure to take advantage of the Earth's stable temperature.
The Earthship is designed in such a way that the sun provides heating, ventilation, and lighting. To take advantage of the sun, an Earthship is positioned so that its principal wall, which is nonstructural and made mostly of glass sheets, faces directly towards the equator. This positioning allows for optimum solar exposure.
To allow the sun to heat the mass of the Earthship, the solar-orientated wall is angled so that it is perpendicular to light from the winter sun. This allows for maximum exposure in the winter, when heat is wanted, and lesser exposure in the summer, when heat is to be avoided. Some Earthships, especially those built in colder climates, use insulated shading on the solar-orientated wall to reduce heat loss during the night (Reynolds 2000).
The earthships usually use their own natural ventilation system. It consists of cold(er) air coming in from a front ("hopper") window, especially made for this purpose and flowing out through (one of) the skylights that are placed on the earthship. As the hot air rises, the system creates a steady airflow - of cooler air coming in, and warmer air blowing out.
Some earthships appear to have serious problems with heat loss. In these cases heat appears to be leaking into the ground constantly during the heating season and being lost. This situation may have arisen from the mistaken belief that ground-coupled structures (building in thermal contact with the ground) do not require insulation. The situation may also be due to large climatic differences between the sunny, arid, and warm Southwest (of the USA) where earthships were first built and the cloudier, cooler, and wetter climates where some are now being built. Malcolm Wells, an architect and authority on earth-sheltered design, recommends R-value 10 insulation between deep soils and heated spaces. Wells's insulation recommendations increase as the depth of the soil decreases.
In very limited and specific situations, uncommon during the heating season, thermal mass can marginally increase the apparent R-value of a building assembly such as a wall. Generally speaking thermal mass and R-value are distinct thermodynamic properties and should not be equated. Thermal performance problems apparently seen in some earthship designs may have occurred because of thermal mass being erroneously equated to R-value. The R-value of soil is about 1 per foot.
Category:Masonry Category:Solar architecture Category:Sustainable building
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.