- published: 16 Feb 2012
- views: 1681
Amino acid dating is a dating technique used to estimate the age of a specimen in paleobiology, archaeology, forensic science, taphonomy, sedimentary geology and other fields. This technique relates changes in amino acid molecules to the time elapsed since they were formed.
All biological tissues contain amino acids. All amino acids except glycine (the simplest one) are optically active, having an asymmetric carbon atom. This means that the amino acid can have two different configurations, "D" or "L" which are mirror images of each other. With a few important exceptions, living organisms keep all their amino acids in the "L" configuration. When an organism dies, control over the configuration of the amino acids ceases, and the ratio of D to L moves from a value near 0 towards an equilibrium value near 1, a process called racemization. Thus, measuring the ratio of D to L in a sample enables one to estimate how long ago the specimen died.
The rate at which racemization proceeds depends on the type of amino acid and on the average temperature, humidity, acidity (pH), and other characteristics of the enclosing matrix. Also, D/L concentration thresholds appear to occur as sudden decreases in the rate of racemization. These effects restrict amino acid chronologies to materials with known environmental histories and/or relative intercomparisons with other dating methods.
Amino acids ( /əˈmiːnoʊ/, /əˈmaɪnoʊ/, or /ˈæmɪnoʊ/) are molecules containing an amine group, a carboxylic acid group, and a side-chain that is specific to each amino acid. The key elements of an amino acid are carbon, hydrogen, oxygen, and nitrogen. They are particularly important in biochemistry, where the term usually refers to alpha-amino acids.
An alpha-amino acid has the generic formula H2NCHRCOOH, where R is an organic substituent; the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (the α–carbon). Other types of amino acid exist when the amino group is attached to a different carbon atom; for example, in gamma-amino acids (such as gamma-amino-butyric acid) the carbon atom to which the amino group attaches is separated from the carboxylate group by two other carbon atoms. The various alpha-amino acids differ in which side-chain (R-group) is attached to their alpha carbon, and can vary in size from just one hydrogen atom in glycine to a large heterocyclic group in tryptophan.