- published: 25 Jul 2010
- views: 13042
In organic chemistry, cis/trans isomerism (also known as geometric isomerism, configuration isomerism, or E/Z isomerism) is a form of stereoisomerism describing the orientation of functional groups within a molecule. In general, such isomers contain double bonds, which cannot rotate, but they can also arise from ring structures, wherein the rotation of bonds is greatly restricted. Cis and trans isomers occur both in organic molecules and in inorganic coordination complexes.
The terms cis and trans are from Latin, in which cis means "on the same side" and trans means "on the other side" or "across". The term "geometric isomerism" is considered an obsolete synonym of "cis/trans isomerism" by IUPAC. It is sometimes used as a synonym for general stereoisomerism (e.g., optical isomerism being called geometric isomerism); the correct term for non-optical stereoisomerism is diastereomerism.
When the substituent groups are oriented in the same direction, the diastereomer is referred to as cis, whereas, when the substituents are oriented in opposing directions, the diastereomer is referred to as trans. An example of a small hydrocarbon displaying cis/trans isomerism is 2-butene.