- published: 01 Apr 2011
- views: 339494
In physics, the Planck time, denoted by tP, is the unit of time in the system of natural units known as Planck units. It is the time required for light to travel, in a vacuum, a distance of 1 Planck length. The unit is named after Max Planck, who was the first to propose it.
The Planck time is defined as:
where:
The two digits between parentheses denote the standard error of the estimated value.
One Planck time is the time it would take a photon travelling at the speed of light to cross a distance equal to one Planck length. Theoretically, this is the smallest time measurement that will ever be possible, roughly 10−43 seconds. Within the framework of the laws of physics as we understand them today, for times less than one Planck time apart, we can neither measure nor detect any change. As of May 2010[update], the smallest time interval uncertainty in direct measurements is on the order of 12 attoseconds (1.2 × 10−17 seconds), about 3.7 × 1026 Planck times.
The Planck time comes from a field of mathematical physics known as dimensional analysis, which studies units of measurement and physical constants. The Planck time is the unique combination of the gravitational constant G, the relativity constant c, and the quantum constant h, to produce a constant with units of time. For processes that occur in a time t less than one Planck time, the dimensionless quantity tP / t is greater than one. Dimensional analysis suggests that the effects of both quantum mechanics and gravity will be important under these circumstances, requiring a theory of quantum gravity. All scientific experiments and human experiences happen over billions of billions of billions of Planck times, making any events happening at the Planck scale hard to detect.