- published: 21 Oct 2013
- views: 218255
The Global Positioning System (GPS) is a space-based satellite navigation system that provides location and time information in all weather, anywhere on or near the Earth, where there is an unobstructed line of sight to four or more GPS satellites. It is maintained by the United States government and is freely accessible to anyone with a GPS receiver.
The GPS program provides critical capabilities to military, civil and commercial users around the world. In addition, GPS is the backbone for modernizing the global air traffic system.
The GPS project was developed in 1973 to overcome the limitations of previous navigation systems, integrating ideas from several predecessors, including a number of classified engineering design studies from the 1960s. GPS was created and realized by the U.S. Department of Defense (DoD) and was originally run with 24 satellites. It became fully operational in 1994.
Advances in technology and new demands on the existing system have now led to efforts to modernize the GPS system and implement the next generation of GPS III satellites and Next Generation Operational Control System (OCX). Announcements from the Vice President and the White House in 1998 initiated these changes. In 2000, U.S. Congress authorized the modernization effort, referred to as GPS III.
A positioning system is a mechanism for determining the location of an object in space. Technologies for this task exist ranging from worldwide coverage with meter accuracy to workspace coverage with sub-millimetre accuracy.
Interplanetary-radio communication system not only communicate with spacecraft, but are also used to determine their position. This can be done either using a transponder on-board a spacecraft that echoes a radio signal back, or using radar. Orientation information can be obtained using star trackers.
Global navigation satellite systems (GNSS) allow specialized radio receivers to determine their 3-D space position, as well as time, with an accuracy of 2–20 metres or tens of nanoseconds. Currently deployed systems use microwave signals that can only be received reliably outdoors and that cover most of Earth's surface, as well as near-Earth space.
The existing and planned systems are:
Networks of land-based positioning transmitter allow specialized radio receivers to determine their 2-D position on the surface of the Earth. They are generally less accurate than GNSS because the propagation of their signals is not entirely restricted to line-of-sight, and they have only regional coverage. However, they remain useful for special purposes and as a backup as some of their signals are more reliably to receive, including underground and in indoor environments, and receivers can be built that consume very low battery power.