![Physics: Electric circuits. Resistors (12) Physics: Electric circuits. Resistors (12)](http://web.archive.org./web/20110904180051im_/http://i.ytimg.com/vi/ZkCqJ0GOoBU/0.jpg)
- Order:
- Duration: 10:14
- Published: 22 Feb 2010
- Uploaded: 24 Mar 2011
- Author: freelanceteach
A node is a point along a standing wave where the wave has minimal amplitude. For instance, in a vibrating guitar string, the ends of the string are nodes. By changing the position of the end node through frets, the guitarist changes the effective length of the vibrating string and thereby the note played. The opposite of a node is an anti-node, a point where the amplitude of the standing wave is a maximum. These occur midway between the nodes.
In a standing wave the nodes are a series of locations at equally spaced intervals where the wave amplitude (motion) is zero (see animation above). At these points the two waves add with opposite phase and cancel each other out. They occur at intervals of half a wavelength (λ/2). Midway between each pair of nodes are locations where the amplitude is maximum. These are called the antinodes. At these points the two waves add with the same phase and reinforce each other.
In cases where the two opposite wave trains are not the same amplitude, they do not cancel perfectly, so the amplitude of the standing wave at the nodes is not zero but merely a minimum. This occurs when the reflection at the boundary isn't perfect. This is indicated by a finite standing wave ratio (SWR), the ratio of the amplitude of the wave at the antinode to the amplitude at the node.
In resonance of a two dimensional surface or membrane, such as a drumhead or vibrating metal plate, the nodes become nodal lines, lines on the surface where the surface is motionless, dividing the surface into separate regions vibrating with opposite phase. These can be made visible by sprinkling sand on the surface, and the intricate patterns of lines resulting are called Chladni figures.
In transmission lines a voltage node is a current antinode, and a voltage antinode is a current node.
:: 0, λ/2, λ, 3λ/2, 2λ, ...
:: λ/4, 3λ/4, 5λ/4, 7λ/4, ...
The number of nodes in a specified length is directly proportional to the frequency of the wave.
Occasionally on a guitar, violin, or other stringed instrument, nodes are used to create harmonics. When the finger is placed on top of the string at a certain point, but does not push the string all the way down to the fretboard, a third node is created (in addition to the bridge and nut) and a harmonic is sounded. During normal play when the frets are used, the harmonics are always present, although they are quieter. With the artificial node method, the overtone is louder and the fundamental tone is quieter. If the finger is placed at the midpoint of the string, the first overtone is heard, which is an octave above the fundamental note which would be played, had the harmonic not been sounded. When two additional nodes divide the string into thirds, this creates an octave and a perfect fifth (twelfth). When three additional nodes divide the string into quarters, this creates a double octave. When four additional nodes divide the string into fifths, this creates a double-octave and a major third (17th). The octave, major third and perfect fifth are the three notes present in a major chord.
The characteristic sound that allows the listener to identify a particular instrument is largely due to the relative magnitude of the harmonics created by the instrument.
Category:Fundamental physics concepts Category:Sound Category:Musical tuning Category:Waves
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.