Aerodynamics is a branch of dynamics concerned with studying the motion of air, particularly when it interacts with a solid object. Aerodynamics is a subfield of fluid dynamics and gas dynamics, with much theory shared between them. Aerodynamics is often used synonymously with gas dynamics, with the difference being that gas dynamics applies to all gases.
Understanding motion of air (often called a flow field) around an object enables the calculation of forces and moments acting on the object. Typical properties calculated for a flow field include velocity, pressure, density and temperature as a function of spatial position and time. Aerodynamics allows the definition and solution of equations for the conservation of mass, momentum, and energy in air. The use of aerodynamics through mathematical analysis, empirical approximations, wind tunnel experimentation, and computer simulations form the scientific basis for heavier-than-air flight and a number of other technologies.
Aerodynamic problems can be classified according to the flow environment. External aerodynamics is the study of flow around solid objects of various shapes. Evaluating the lift and drag on an airplane or the shock waves that form in front of the nose of a rocket are examples of external aerodynamics. Internal aerodynamics is the study of flow through passages in solid objects. For instance, internal aerodynamics encompasses the study of the airflow through a jet engine or through an air conditioning pipe.