- published: 09 May 2014
- views: 302606
In analytic geometry, an asymptote (/ˈæsɪmptoʊt/) of a curve is a line such that the distance between the curve and the line approaches zero as they tend to infinity. Some sources include the requirement that the curve may not cross the line infinitely often, but this is unusual for modern authors. In some contexts, such as algebraic geometry, an asymptote is defined as a line which is tangent to a curve at infinity.
The word asymptote is derived from the Greek ἀσύμπτωτος (asumptōtos) which means "not falling together", from ἀ priv. + σύν "together" + πτωτ-ός "fallen". The term was introduced by Apollonius of Perga in his work on conic sections, but in contrast to its modern meaning, he used it to mean any line that does not intersect the given curve.
There are potentially three kinds of asymptotes: horizontal, vertical and oblique asymptotes. For curves given by the graph of a function y = ƒ(x), horizontal asymptotes are horizontal lines that the graph of the function approaches as x tends to +∞ or −∞. Vertical asymptotes are vertical lines near which the function grows without bound.
Practice this lesson yourself on KhanAcademy.org right now: https://www.khanacademy.org/math/algebra2/rational-expressions/rational-function-graphing/e/graphs-of-rational-functions?utm_source=YT&utm;_medium=Desc&utm;_campaign=AlgebraII Watch the next lesson: https://www.khanacademy.org/math/algebra2/rational-expressions/direct_inverse_variation/v/direct-and-inverse-variation?utm_source=YT&utm;_medium=Desc&utm;_campaign=AlgebraII Missed the previous lesson? https://www.khanacademy.org/math/algebra2/rational-expressions/rational-function-graphing/v/finding-asymptotes-example?utm_source=YT&utm;_medium=Desc&utm;_campaign=AlgebraII Algebra II on Khan Academy: Your studies in algebra 1 have built a solid foundation from which you can explore linear equations, inequalities, and functions. In algeb...
Gebrochen Rationale Funktionen, Asymptote und Restterm, Polynomdivision Top Taschenrechner für Schule/Uni: http://amzn.to/2bkTSSC Top Rechner Online: http://www.wolframalpha.com/ Meine Website: http://daniel-jung.eu/ Mein Social Media: https://www.facebook.com/daniel.jung.520900 https://www.instagram.com/danielskylimit/ https://twitter.com/simplicityyoung Snapchat: jung.daniel Daniel Jung erklärt Mathe in Kürze: Lernkonzept: Mathe lernen durch kurze, auf den Punkt gebrachte Videos zu allen Themen von der 5.Klasse bis zum Studium, sortiert in Themenplaylists für eine intuitive Channelnavigation. Online Nachhilfe, Hilfe in Mathe, Mathe Nachhilfe, einfach erklärt, Onlinenachhilfe https://www.youtube.com/c/mathebydanieljung https://www.studyhelp.de (ABI & UNI Crashkurse) http://www.mathe2...
http://www.freemathvideos.com In this playlist I show you how transformations will alter a exponential graph. We will look at such transformation such as horizontal and vertical shift. Reflections over the x and y axis and dilation.
Clique ici http://bossetesmaths.com/ pour télécharger la feuille d'exercices et son corrigé. Entraîne-toi et les asymptotes n'auront plus de secret pour toi !
Vidéo pour comprendre la notion de limite d'une fonction et comprendre l'interprétation graphique : asymptote horizontale http://www.jaicompris.com/lycee/math/fonction/limite-fonction-graphique.php Cours Terminale S - mathématiques
Liegt nur vor, wenn der Zählergrad (Höchste Potenz im Zähler) mindestens um einen Wert höher ist als der Nennergrad (höchste Potenz im Nenner). Gebrochenrationale Funktionen. Top Taschenrechner für Schule/Uni: http://amzn.to/2bkTSSC Top Rechner Online: http://www.wolframalpha.com/ Schiefe Asymptote bei rationalen Funktionen, Verlauf, Mathehilfe online Eine Asymptote ist eine Gerade, der sich eine Kurve bei deren immer größer werdender Entfernung vom Koordinatenursprung unbegrenzt nähert. Meine Website: http://daniel-jung.eu/ Mein Social Media: https://www.facebook.com/daniel.jung.520900 https://www.instagram.com/danielskylimit/ https://twitter.com/simplicityyoung Snapchat: jung.daniel Daniel Jung erklärt Mathe in Kürze: Lernkonzept: Mathe lernen durch kurze, auf den Punkt gebrachte Vid...
Graphing a Rational Function that has an Oblique/Slant Asymptote and a vertical asymptote. One example!
This example shows how to find the slant asymptote for a rational function. Remember that a rational function will only have a slant asymptote if the top polynomial Is one degree larger than the bottom polynomial. For more videos please visit http://www.mysecretmathtutor.com