
Amazon Simple Notification
Service

Developer Guide

API Version 2010-03-31

Amazon Simple Notification Service: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

Amazon Simple Notification Service Developer Guide

Table of Contents
What is Amazon SNS? ... 1

Are You a First-Time Amazon Simple Notification Service User? .. 2
Beyond the Getting Started Section .. 2
Accessing Amazon SNS ... 2
Common Scenarios ... 3

Fanout ... 3
Application and System Alerts ... 4
Push Email and Text Messaging ... 4
Mobile Push Notifications .. 4

Getting Started ... 5
Before You Begin ... 5
Create a Topic .. 6
Subscribe to a Topic ... 6
Publish to a Topic .. 7

Create Different Messages for Each Protocol ... 8
Clean Up ... 9
Using the SDK for Java ... 9

Managing Access .. 12
Overview .. 12

When to Use Access Control ... 13
Key Concepts ... 13
Architectural Overview .. 15
Using the Access Policy Language ... 17
Evaluation Logic .. 18
Example Cases for Amazon SNS Access Control .. 21

Special Information for Amazon SNS Policies ... 26
Amazon SNS Policy Limits .. 26
Valid Amazon SNS Policy Actions ... 26
Amazon SNS Keys ... 26

Controlling User Access to Your AWS Account .. 27
IAM and Amazon SNS Policies Together .. 27
Amazon SNS ARNs ... 30
Amazon SNS Actions ... 31
Amazon SNS Keys ... 31
Example Policies for Amazon SNS .. 32
Using Temporary Security Credentials ... 34

Amazon SNS Mobile Push .. 36
Overview .. 36
Prerequisites .. 37
Mobile Push High Level Steps .. 38

Step 1: Request Credentials from Mobile Platforms .. 38
Step 2: Request Token from Mobile Platforms ... 38
Step 3: Create Platform Application Object ... 39
Step 4: Create Platform Endpoint Object .. 39
Step 5: Publish Message to Mobile Endpoint .. 39

Getting Started with ADM .. 39
ADM Prerequisites ... 40
Step 1: Create a Kindle Fire App with the ADM Service Enabled .. 40
Step 2: Obtain a Client ID and Client Secret ... 40
Step 3: Obtain an API Key ... 41
Step 4: Obtain a Registration ID ... 41
Step 5: Sending a Message to a Kindle Fire app using Amazon SNS and ADM 42

Getting Started with APNS .. 44
APNS Prerequisites ... 44
Step 1: Create an iOS App .. 44

API Version 2010-03-31
iii

Amazon Simple Notification Service Developer Guide

Step 2: Obtain an APNS SSL Certificate .. 45
Step 3: Obtain the App Private Key ... 45
Step 4: Verify the Certificate and App Private Key .. 46
Step 5: Obtain a Device Token ... 46
Next Steps ... 47
Send a message to an iOS app .. 47
Send a message to a VoIP app .. 49
Send a message to a Mac OS X app ... 49

Getting Started with Baidu ... 50
Baidu Prerequisites .. 50
Step 1: Create a Baidu Account .. 51
Step 2: Register as a Baidu Developer ... 52
Step 3: Create a Baidu Cloud Push Project .. 56
Step 4: Download and Install the Android Demo App .. 59
Step 5: Obtain a user Id and channel Id ... 63
Step 6: Send a Push Notification Message to a Mobile Endpoint using Amazon SNS and
Baidu ... 63

Getting Started with GCM ... 67
GCM Prerequisites .. 68
Step 1: Create a Google API Project and Enable the GCM Service 68
Step 2: Obtain the Server API Key .. 68
Step 3: Obtain a Registration ID from GCM .. 69
Step 4: Send a Message to a Mobile Endpoint using GCM .. 70

Getting Started with MPNS .. 72
MPNS Prerequisites ... 72
Step 1: Set Up Your Windows Phone App to Receive Push Notifications Messages 73
Step 2: Get a Push Notification URI from MPNS .. 73
Step 3: Create a Windows Developer Account .. 73
Step 4: Upload TLS Certificate ... 73
Step 5: Send a Push Notification Message to a Windows Phone app using Amazon SNS and
MPNS .. 73

Getting Started with WNS ... 75
WNS Prerequisites .. 76
Step 1: Set Up Your App to Receive Push Notifications Messages .. 76
Step 2: Get a Push Notification URI from WNS .. 76
Step 3: Get a Package Security Identifier from WNS .. 76
Step 4: Get a Secret Key from WNS .. 76
Step 5: Send a Push Notification Message to an App using Amazon SNS and WNS 77

Using Amazon SNS Mobile Push .. 78
Register Your Mobile App with AWS .. 78
Add Device Tokens or Registration IDs .. 80
Create a Platform Endpoint and Manage Device Tokens ... 83
Send a Direct Message to a Mobile Device ... 88
Send Messages to Mobile Devices Subscribed to a Topic ... 88
Send Custom Platform-Specific Payloads to Mobile Devices .. 88

Application Attributes for Message Delivery Status .. 90
Configuring Message Delivery Status Attributes with the AWS Management Console 91
Amazon SNS Message Delivery Status CloudWatch Log Examples 91
Configuring Message Delivery Status Attributes with the AWS SDKs 92
Platform Response Codes ... 93

Application Event Notifications ... 93
Available Application Events .. 93
How to Set Application Event Notifications ... 94

Amazon SNS TTL .. 95
TTL Message Attributes for Push Notification Services ... 96
Precedence Order for Determining TTL ... 96
Specifying TTL with the AWS Management Console .. 97
Specifying TTL with the AWS SDKs .. 97

API Version 2010-03-31
iv

Amazon Simple Notification Service Developer Guide

Amazon SNS Mobile Push APIs ... 97
API Errors .. 99

Sending Messages to Amazon SQS Queues .. 106
Step 1. Get the ARN of the queue and the topic. .. 107
Step 2. Give permission to the Amazon SNS topic to send messages to the Amazon SQS queue 108
Step 3. Subscribe the queue to the Amazon SNS topic ... 109
Step 4. Give users permissions to the appropriate topic and queue actions 109

Adding a policy to an IAM user or group ... 110
Adding a policy to a topic or queue .. 110

Step 5. Test it .. 111
Sending Messages to a Queue in a Different Account .. 112

Queue Owner Creates Subscription .. 112
User Who Does Not Own the Queue Creates Subscription .. 114

Using an AWS CloudFormation Template to Create a Topic that Sends Messages to Amazon SQS
Queues .. 115

Using an AWS CloudFormation Template to Set Up Topics and Queues Within an AWS
Account .. 116

Sending and Receiving SMS Notifications .. 121
Task 1: Assign a Topic Display Name ... 122
Task 2: Subscribe to a Topic Using the SMS Protocol ... 123
Task 3: Publish a Message .. 124
Task 4: Cancel SMS Subscriptions .. 125

Sending Messages to HTTP/HTTPS Endpoints ... 127
Step 1: Make sure your endpoint is ready to process Amazon SNS messages 128
Step 2: Subscribe the HTTP/HTTPS endpoint to the Amazon SNS topic 131
Step 3: Confirm the subscription ... 132
Step 4: Set the delivery retry policy for the subscription (optional) ... 132
Step 5: Give users permissions to publish to the topic (optional) ... 132
Step 6: Send messages to the HTTP/HTTPS endpoint ... 133
Setting Amazon SNS Delivery Retry Policies for HTTP/HTTPS Endpoints 134

Applying Delivery Policies to Topics and Subscriptions .. 136
Setting the Maximum Receive Rate ... 137
Immediate Retry Phase ... 137
Pre-Backoff Phase ... 138
Backoff Phase ... 138
Post-Backoff Phase .. 139

Certificate Authorities for HTTPS Endpoints .. 140
Verifying Message Signatures .. 153
Example Code for an Endpoint Java Servlet ... 155

Invoking Lambda functions .. 159
Prerequisites ... 159
Configuring Amazon SNS with Lambda Endpoints with the AWS Management Console 159

Using Amazon SNS Topic Attributes for Message Delivery Status ... 161
Configuring Message Delivery Status Attributes with the AWS Management Console 162
Configuring Message Delivery Status Attributes for Topics Subscribed to Amazon SNS Endpoints
with the AWS SDKs .. 162

Topic Attributes .. 162
Java Example to Configure Topic Attributes .. 163

Message Attributes .. 164
Message Attribute Items and Validation .. 164
Data Types .. 165
Reserved Message Attributes .. 165
Using Message Attributes with the AWS SDKs .. 166

Monitoring Amazon SNS with CloudWatch ... 167
Access CloudWatch Metrics for Amazon SNS ... 167
Set CloudWatch Alarms for Amazon SNS Metrics .. 168
Amazon SNS Metrics .. 169
Dimensions for Amazon Simple Notification Service Metrics .. 170

API Version 2010-03-31
v

Amazon Simple Notification Service Developer Guide

Logging Amazon SNS API Calls By Using CloudTrail .. 171
Amazon SNS Information in CloudTrail .. 171
Understanding Amazon SNS Log File Entries ... 172

Appendix: Message and JSON Formats ... 175
HTTP/HTTPS Headers ... 175
HTTP/HTTPS Subscription Confirmation JSON Format .. 176
HTTP/HTTPS Notification JSON Format .. 178
HTTP/HTTPS Unsubscribe Confirmation JSON Format .. 179
SetSubscriptionAttributes Delivery Policy JSON Format .. 181
SetTopicAttributes Delivery Policy JSON Format .. 181

Appendix: Large Payload and Raw Message Delivery ... 183
Enabling Raw Message Delivery with the AWS Management Console ... 183

Document History .. 185

API Version 2010-03-31
vi

Amazon Simple Notification Service Developer Guide

What is Amazon Simple
Notification Service?

Amazon Simple Notification Service (Amazon SNS) is a web service that coordinates and manages the
delivery or sending of messages to subscribing endpoints or clients. In Amazon SNS, there are two types
of clients—publishers and subscribers—also referred to as producers and consumers. Publishers
communicate asynchronously with subscribers by producing and sending a message to a topic, which is
a logical access point and communication channel. Subscribers (i.e., web servers, email addresses,
Amazon SQS queues, AWS Lambda functions) consume or receive the message or notification over one
of the supported protocols (i.e., Amazon SQS, HTTP/S, email, SMS, Lambda) when they are subscribed
to the topic.

When using Amazon SNS, you (as the owner) create a topic and control access to it by defining policies
that determine which publishers and subscribers can communicate with the topic. A publisher sends
messages to topics that they have created or to topics they have permission to publish to. Instead of
including a specific destination address in each message, a publisher sends a message to the topic.
Amazon SNS matches the topic to a list of subscribers who have subscribed to that topic, and delivers
the message to each of those subscribers. Each topic has a unique name that identifies the Amazon SNS
endpoint for publishers to post messages and subscribers to register for notifications. Subscribers receive
all messages published to the topics to which they subscribe, and all subscribers to a topic receive the
same messages.

API Version 2010-03-31
1

Amazon Simple Notification Service Developer Guide

http://aws.amazon.com/sns/

Topics

• Are You a First-Time Amazon Simple Notification Service User? (p. 2)

• Beyond the Getting Started Section (p. 2)

• Accessing Amazon SNS (p. 2)

• Common Amazon SNS Scenarios (p. 3)

Are You a First-Time Amazon Simple Notification
Service User?

If you are a first-time user of Amazon SNS, we recommend that you begin by reading the following
sections:

• What is Amazon SNS – The rest of this section includes a video that introduces Amazon SNS and
walks you through the example presented in Getting Started with Amazon Simple Notification
Service (p. 5), and presents common use-case scenarios.

• Getting Started – The Getting Started with Amazon Simple Notification Service (p. 5) section walks
you through creating a topic, subscribing to it, publishing a message to it, unsubscribing from it, and
finally, deleting the topic.

Beyond the Getting Started Section
Beyond the getting started section, you'll probably want to learn more about Amazon SNS operations.
The following sections provide detailed information about working with Amazon SNS:

• Managing Access to Your Amazon SNS Topics (p. 12)

You have detailed control over which endpoints a topic allows, who is able to publish to a topic, and
under what conditions.This section shows you how to control access through the use of access control
policies.

• Monitoring Amazon SNS with CloudWatch (p. 167)

Amazon SNS and CloudWatch are integrated so you can collect, view, and analyze metrics for every
active Amazon SNS topic.

• Sending Amazon SNS Messages to Amazon SQS Queues (p. 106)

You can use Amazon SNS to send messages to one or more Amazon SQS queues.

• Sending and Receiving SMS Notifications Using Amazon SNS (p. 121)

You can use Amazon Simple Notification Service (Amazon SNS) to send SMS notifications to
SMS-enabled mobile phones and smart phones.

• Sending Amazon SNS Messages to HTTP/HTTPS Endpoints (p. 127)

You can use Amazon SNS to send notification messages to one or more HTTP or HTTPS endpoints.

Accessing Amazon SNS
If you have an AWS account, you can access Amazon SNS in any of the following ways.

API Version 2010-03-31
2

Amazon Simple Notification Service Developer Guide
Are You a First-Time Amazon Simple Notification Service

User?

AWS Management Console
The AWS Management Console provides a web interface where you can manage your compute,
storage, and other cloud resources. Within the AWS Management Console, individual services have
their own console. To open the Amazon SNS console, log in to https://console.aws.amazon.com/
and choose SNS from the console home page, or use the SNS console direct URL: https://
console.aws.amazon.com/sns/. For a tutorial that helps you complete common SNS tasks in the
console, see Getting Started with Amazon Simple Notification Service (p. 5).

AWS Command Line Interface (CLI)
Provides commands for a broad set of AWS products, and is supported on Windows, Mac, and Linux.
To get started, see AWS Command Line Interface User Guide. For more information about the
commands for Amazon SNS, see sns in the AWS Command Line Interface Reference.

AWS Tools for Windows PowerShell
Provides commands for a broad set of AWS products for those who script in the PowerShell
environment. To get started, see the AWS Tools for Windows PowerShell User Guide. For more
information about the cmdlets for Amazon SNS, see Amazon Simple Notification Service in the AWS
Tools for Windows PowerShell Reference.

AWS SDKs
AWS provides SDKs (software development kits) that consist of libraries and sample code for various
programming languages and platforms (Java, Python, Ruby, .NET, iOS, Android, etc.). The SDKs
provide a convenient way to create programmatic access to Amazon SNS and AWS. For example,
the SDKs take care of tasks such as cryptographically signing requests, managing errors, and retrying
requests automatically. For information about the AWS SDKs, including how to download and install
them, see the Tools for Amazon Web Services page.

Amazon SNS Query API
You can access Amazon SNS and AWS programmatically by using the Amazon SNS Query API,
which lets you issue requests directly to the service. For more information, see the Amazon Simple
Notification Service API Reference.

Common Amazon SNS Scenarios

Fanout
The "fanout" scenario is when an Amazon SNS message is sent to a topic and then replicated and pushed
to multiple Amazon SQS queues, HTTP endpoints, or email addresses. This allows for parallel
asynchronous processing. For example, you could develop an application that sends an Amazon SNS
message to a topic whenever an order is placed for a product. Then, the Amazon SQS queues that are
subscribed to that topic would receive identical notifications for the new order. The Amazon EC2 server
instance attached to one of the queues could handle the processing or fulfillment of the order while the
other server instance could be attached to a data warehouse for analysis of all orders received.

Another way to use "fanout" is to replicate data sent to your production environment with your development
environment. Expanding upon the previous example, you could subscribe yet another queue to the same
topic for new incoming orders. Then, by attaching this new queue to your development environment, you
could continue to improve and test your application using data received from your production environment.
For more information about sending Amazon SNS messages to Amazon SQS queues, see Sending
Amazon SNS Messages to Amazon SQS Queues (p. 106). For more information about sending Amazon

API Version 2010-03-31
3

Amazon Simple Notification Service Developer Guide
Common Scenarios

https://console.aws.amazon.com/
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/reference/sns
http://docs.aws.amazon.com/powershell/latest/userguide/
http://docs.aws.amazon.com/powershell/latest/reference/index.html?page=Amazon_Simple_Notification_Service_cmdlets.html&tocid=Amazon_Simple_Notification_Service_cmdlets
http://aws.amazon.com/tools/
http://docs.aws.amazon.com/sns/latest/api/
http://docs.aws.amazon.com/sns/latest/api/

SNS messages to HTTP/S endpoints, see Sending Amazon SNS Messages to HTTP/HTTPS
Endpoints (p. 127).

Application and System Alerts
Application and system alerts are notifications, triggered by predefined thresholds, sent to specified users
by SMS and/or email. For example, since many AWS services use Amazon SNS, you can receive
immediate notification when an event occurs, such as a specific change to your AWS Auto Scaling group.

Push Email and Text Messaging
Push email and text messaging are two ways to transmit messages to individuals or groups via email
and/or SMS. For example, you could use Amazon SNS to push targeted news headlines to subscribers
by email or SMS. Upon receiving the email or SMS text, interested readers could then choose to learn
more by visiting a website or launching an application. For more information about using Amazon SNS
to send SMS notifications, see Sending and Receiving SMS Notifications Using Amazon SNS (p. 121).

Mobile Push Notifications
Mobile push notifications enable you to send messages directly to mobile apps. For example, you could
use Amazon SNS for sending notifications to an app, indicating that an update is available.The notification
message can include a link to download and install the update. For more information about using Amazon
SNS to send direct notification messages to mobile endpoints, see Amazon SNS Mobile Push
Notifications (p. 36)

API Version 2010-03-31
4

Amazon Simple Notification Service Developer Guide
Application and System Alerts

Getting Started with Amazon
Simple Notification Service

This section contains information for you to understand Amazon SNS concepts and quickly set up and
use available tools and interfaces for creating and publishing to topics. To get started with push notification
messages, see Amazon SNS Mobile Push Notifications (p. 36).

Topics

• Before You Begin (p. 5)

• Create a Topic (p. 6)

• Subscribe to a Topic (p. 6)

• Publish to a Topic (p. 7)

• Clean Up (p. 9)

• Using the AWS SDK for Java with Amazon SNS (p. 9)

Before You Begin
To use Amazon SNS, you need an AWS account. If you don't already have one, use the following
procedure.

To sign up for AWS account

1. Open http://aws.amazon.com/, and then choose Create an AWS Account.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

To get started with Amazon SNS

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. Click the Get Started button.

You should now be on the SNS Home page.

API Version 2010-03-31
5

Amazon Simple Notification Service Developer Guide
Before You Begin

http://aws.amazon.com/sns/
http://aws.amazon.com/
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Create a Topic
Now that you're signed up for Amazon SNS, you're ready to create a topic. A topic is a communication
channel to send messages and subscribe to notifications. It provides an access point for publishers and
subscribers to communicate with each other. In this section you create a topic named MyTopic.

To create a topic

1. In the Amazon SNS console, click Create topic.

The Create topic dialog box appears.

2. In the Topic name box, type a topic name.

3. Click Create topic.

The new topic appears in the Topics page.

4. Select the new topic and then click the topic ARN.

The Topic Details page appears.

5. Copy the topic ARN for the next task.

arn:aws:sns:us-west-2:111122223333:MyTopic

Subscribe to a Topic
To receive messages published to a topic, you have to subscribe an endpoint to that topic. An endpoint
is a mobile app, web server, email address, or an Amazon SQS queue that can receive notification
messages from Amazon SNS. Once you subscribe an endpoint to a topic and the subscription is confirmed,
the endpoint will receive all messages published to that topic.

In this section you subscribe an endpoint to the topic you just created in the previous section.You configure
the subscription to send the topic messages to your email account.

API Version 2010-03-31
6

Amazon Simple Notification Service Developer Guide
Create a Topic

https://console.aws.amazon.com/sns/v2/home

To subscribe to a topic

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/.

2. Click Create subscription.

The Create Subscription dialog box appears.

3. In the Topic ARN field, paste the topic ARN you created in the previous task, for example:
arn:aws:sns:us-west-2:111122223333:MyTopic.

4. In the Protocol drop-down box, select Email.

5. In the Endpoint box, type an email address you can use to receive the notification.

Important
Entourage Users: Entourage strips out the confirmation URL. Type an email address you
can access in a different email application.

6. Click Create subscription.

7. Go to your email application and open the message from AWS Notifications, and then click the link
to confirm your subscription.

Your web browser displays a confirmation response from Amazon SNS.

Publish to a Topic
Publishers send messages to topics. Once a new message is published, Amazon SNS attempts to deliver
that message to every endpoint that is subscribed to the topic. In this section you publish a message to
the email address you defined in the previous task.

To publish to a topic

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/.

In the left navigation pane, click Topics and then select the topic you want to publish to.

2. Click the Publish to topic button.

The Publish a Message page appears.

API Version 2010-03-31
7

Amazon Simple Notification Service Developer Guide
Publish to a Topic

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

3. In the Subject box, type a subject line for your message.

4. In the Message box, type a brief message.

5. Click Publish Message.

A confirmation dialog box appears.

You can now use your email application to open the message from AWS Notifications and read the
message.

Create Different Messages for Each Protocol
You can use message formatting support to customize the messages you send for each protocol. For
example, a notification that goes to both email and SMS subscribers can be tailored to each type of client.
SMS users can receive a version of the message formatted for the available 140 characters supported
by the SMS standard, while email users can receive a longer, more detailed version of the same content.

To publish to a topic with message formatting

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left navigation pane, click Topics and then select a topic.

3. Click the Publish to topic button.

The Publish a message page appears.

4. Click the JSON Message Generator button.

5. In the Message box, type a brief message.

6. In this example for the Target Platforms, select email and sms.

7. Click the Generate JSON button.

In the following example, messages are specified for the default, email, and sms protocols. Do not
delete any protocols from the list.

API Version 2010-03-31
8

Amazon Simple Notification Service Developer Guide
Create Different Messages for Each Protocol

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

You can now modify the message text so that it is tailored to each type of client, such as in this
example – up to 140 characters for sms and up to 256Kb for email.

{
"default": "Message body text here.",
"email": "Message body text here.",
"sms": "Message body text here."
}

8. Click Publish message.

A confirmation dialog box appears.

Clean Up
You have created a topic, subscribed to it, and published a message to the topic. Now you clean up your
environment by unsubscribing from the topic and then deleting the topic.

To unsubscribe from a topic

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/.

In the left navigation pane, click Subscriptions.

The Subscriptions page opens.

2. Select your topic in the subscription list. This will be the only listing on the page, unless you created
more than one subscription.

3. Click the Other actions drop-down list and then click Delete subscription(s).

The Delete confirmation dialog box appears.

4. Click Delete.

To delete a topic

Open the Amazon SNS console at https://console.aws.amazon.com/sns/.

1. In the left navigation pane, click Topics, and then select the topic you want to delete.

2. Click the Actions drop-down list and select Delete topics.

The Delete confirmation dialog box appears.

3. Click Delete.

When you delete a topic, you also delete all subscriptions to that topic.

Using the AWS SDK for Java with Amazon SNS
The SDK for Java provides a class named AmazonSNSClient that you can use to interact with Amazon
SNS. For information about downloading the AWS SDK for Java, go to AWS SDK for Java.

The AmazonSNSClient class defines methods that map to underlying Amazon SNS Query API actions.
(These actions are described in the Amazon SNS API Reference). When you call a method, you must
create a corresponding request object and response object. The request object includes information that

API Version 2010-03-31
9

Amazon Simple Notification Service Developer Guide
Clean Up

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sns/AmazonSNSClient.html
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/sns/latest/api/API_Operations.html

you must pass with the actual request. The response object includes information returned from Amazon
SNS in response to the request.

For example, the AmazonSNSClient class provides the createTopic method to create a topic to which
notifications can be published. This method maps to the underlying CreateTopic API action.You create
a CreateTopicRequest object to pass information with the createTopic method.

The following import statements are used with the provided java samples.

import com.amazonaws.services.sns.AmazonSNSClient;
import com.amazonaws.auth.ClasspathPropertiesFileCredentialsProvider;
import com.amazonaws.regions.Region;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.sns.model.CreateTopicRequest;
import com.amazonaws.services.sns.model.CreateTopicResult;
import com.amazonaws.services.sns.model.SubscribeRequest;
import com.amazonaws.services.sns.model.PublishRequest;
import com.amazonaws.services.sns.model.PublishResult;
import com.amazonaws.services.sns.model.DeleteTopicRequest;

The following example shows how to create a new Amazon SNS client, set the Amazon SNS endpoint
to use, and then create a new topic.

Note
In some of the following examples, the getCachedResponseMetadata method is used to show
how to programmatically retrieve the request ID for a previously executed successful Amazon
SNS request.This is typically used for debugging issues and is helpful when requesting assistance
from Amazon Web Services.

Create a Topic

//create a new SNS client and set endpoint
AmazonSNSClient snsClient = new AmazonSNSClient(new ClasspathPropertiesFileCre
dentialsProvider());
snsClient.setRegion(Region.getRegion(Regions.US_EAST_1));

//create a new SNS topic
CreateTopicRequest createTopicRequest = new CreateTopicRequest("MyNewTopic");
CreateTopicResult createTopicResult = snsClient.createTopic(createTopicRequest);
//print TopicArn
System.out.println(createTopicResult);
//get request id for CreateTopicRequest from SNS metadata
System.out.println("CreateTopicRequest - " + snsClient.getCachedResponse
Metadata(createTopicRequest));

When you run this example, the following is displayed in the console output window of your IDE, such as
Eclipse:

{TopicArn: arn:aws:sns:us-east-1:123456789012:MyNewTopic}
CreateTopicRequest - {AWS_REQUEST_ID=93f7fc90-f131-5ca3-ab18-b741fef918b5}

The TopicArn is assigned to a string variable to use in additional operations.

String topicArn = "arn:aws:sns:us-east-1:123456789012:MyNewTopic";

The following examples show how to subscribe to, publish to, and delete a topic.

API Version 2010-03-31
10

Amazon Simple Notification Service Developer Guide
Using the SDK for Java

http://docs.aws.amazon.com/sns/latest/api/API_CreateTopic.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sns/model/CreateTopicRequest.html

Subscribe to a Topic

//subscribe to an SNS topic
SubscribeRequest subRequest = new SubscribeRequest(topicArn, "email",
"name@example.com");
snsClient.subscribe(subRequest);
//get request id for SubscribeRequest from SNS metadata
System.out.println("SubscribeRequest - " + snsClient.getCachedResponse
Metadata(subRequest));
System.out.println("Check your email and confirm subscription.");

When you run this example, the following is displayed in the console output window of your IDE:

SubscribeRequest - {AWS_REQUEST_ID=9b7ff59a-f917-533a-a6bd-be4bf6df0acf}
Check your email and confirm subscription.

Publish to a Topic

//publish to an SNS topic
String msg = "My text published to SNS topic with email endpoint";
PublishRequest publishRequest = new PublishRequest(topicArn, msg);
PublishResult publishResult = snsClient.publish(publishRequest);
//print MessageId of message published to SNS topic
System.out.println("MessageId - " + publishResult.getMessageId());

When you run this example, the following is displayed in the console output window of your IDE:

MessageId - 9b888f80-15f7-5c30-81a2-c4511a3f5229

Delete a Topic

//delete an SNS topic
DeleteTopicRequest deleteTopicRequest = new DeleteTopicRequest(topicArn);
snsClient.deleteTopic(deleteTopicRequest);
//get request id for DeleteTopicRequest from SNS metadata
System.out.println("DeleteTopicRequest - " + snsClient.getCachedResponse
Metadata(deleteTopicRequest));

When you run this example, the following is displayed in the console output window of your IDE:

DeleteTopicRequest - {AWS_REQUEST_ID=067a4980-4e93-5bfc-b88c-0251415bc852}

API Version 2010-03-31
11

Amazon Simple Notification Service Developer Guide
Using the SDK for Java

Managing Access to Your Amazon
SNS Topics

Topics

• Overview (p. 12)

• Special Information for Amazon SNS Policies (p. 26)

• Controlling User Access to Your AWS Account (p. 27)

Amazon SNS supports other protocols beside email.You can use HTTP, HTTPS, and Amazon SQS
queues.You have detailed control over which endpoints a topic allows, who is able to publish to a topic,
and under what conditions. This appendix shows you how to control through the use of access control
policies.

The main portion of this section includes basic concepts you need to understand, how to write a policy,
and the logic Amazon Web Services (AWS) uses to evaluate policies and decide whether to give the
requester access to the resource. Although most of the information in this section is service-agnostic,
there are some Amazon SNS-specific details you need to know. For more information, see Special
Information for Amazon SNS Policies (p. 26).

Overview
Topics

• When to Use Access Control (p. 13)

• Key Concepts (p. 13)

• Architectural Overview (p. 15)

• Using the Access Policy Language (p. 17)

• Evaluation Logic (p. 18)

• Example Cases for Amazon SNS Access Control (p. 21)

This section describes basic concepts you need to understand to use the access policy language to write
policies. It also describes the general process for how access control works with the access policy
language, and how policies are evaluated.

API Version 2010-03-31
12

Amazon Simple Notification Service Developer Guide
Overview

http://aws.amazon.com/sns/

When to Use Access Control
You have a great deal of flexibility in how you grant or deny access to a resource. However, the typical
use cases are fairly simple:

• You want to grant another AWS account a particular type of topic action (e.g., Publish). For more
information, see Allowing AWS account Access to a Topic (p. 22).

• You want to limit subscriptions to your topic to only the HTTPS protocol. For more information, see
Limiting Subscriptions to HTTPS (p. 22).

• You want to allow Amazon SNS to publish messages to your Amazon SQS queue. For more information,
see Publishing to an Amazon SQS Queue (p. 23).

Key Concepts
The following sections describe the concepts you need to understand to use the access policy language.
They're presented in a logical order, with the first terms you need to know at the top of the list.

Permission
A permission is the concept of allowing or disallowing some kind of access to a particular resource.
Permissions essentially follow this form: "A is/isn't allowed to do B to C where D applies." For example,
Jane (A) has permission to publish (B) to TopicA (C) as long as she uses the HTTP protocol (D).Whenever
Jane publishes to TopicA, the service checks to see if she has permission and if the request satisfies the
conditions set forth in the permission.

Statement
A statement is the formal description of a single permission, written in the access policy language.You
always write a statement as part of a broader container document known as a policy (see the next concept).

Policy
A policy is a document (written in the access policy language) that acts as a container for one or more
statements. For example, a policy could have two statements in it: one that states that Jane can subscribe
using the email protocol, and another that states that Bob cannot publish to TopicA. As shown in the
following figure, an equivalent scenario would be to have two policies, one that states that Jane can
subscribe using the email protocol, and another that states that Bob cannot publish to TopicA.

API Version 2010-03-31
13

Amazon Simple Notification Service Developer Guide
When to Use Access Control

Issuer
The issuer is the person who writes a policy to grant permissions for a resource.The issuer (by definition)
is always the resource owner. AWS does not permit AWS service users to create policies for resources
they don't own. If John is the resource owner, AWS authenticates John's identity when he submits the
policy he's written to grant permissions for that resource.

Principal
The principal is the person or persons who receive the permission in the policy. The principal is A in the
statement "A has permission to do B to C where D applies." In a policy, you can set the principal to
"anyone" (i.e., you can specify a wildcard to represent all people).You might do this, for example, if you
don't want to restrict access based on the actual identity of the requester, but instead on some other
identifying characteristic such as the requester's IP address.

Action
The action is the activity the principal has permission to perform. The action is B in the statement "A has
permission to do B to C where D applies." Typically, the action is just the operation in the request to AWS.
For example, Jane sends a request to Amazon SNS with Action=Subscribe.You can specify one or
multiple actions in a policy.

Resource
The resource is the object the principal is requesting access to. The resource is C in the statement "A
has permission to do B to C where D applies."

Conditions and Keys
The conditions are any restrictions or details about the permission. The condition is D in the statement
"A has permission to do B to C where D applies." The part of the policy that specifies the conditions can
be the most detailed and complex of all the parts. Typical conditions are related to:

• Date and time (e.g., the request must arrive before a specific day)

• IP address (e.g., the requester's IP address must be part of a particular CIDR range)

A key is the specific characteristic that is the basis for access restriction. For example, the date and time
of request.

You use both conditions and keys together to express the restriction. The easiest way to understand how
you actually implement a restriction is with an example: If you want to restrict access to before May 30,
2010, you use the condition called DateLessThan.You use the key called aws:CurrentTime and set
it to the value 2010-05-30T00:00:00Z. AWS defines the conditions and keys you can use. The AWS
service itself (e.g., Amazon SQS or Amazon SNS) might also define service-specific keys. For more
information, see Special Information for Amazon SNS Policies (p. 26).

Requester
The requester is the person who sends a request to an AWS service and asks for access to a particular
resource. The requester sends a request to AWS that essentially says: "Will you allow me to do B to C
where D applies?"

API Version 2010-03-31
14

Amazon Simple Notification Service Developer Guide
Key Concepts

Evaluation
Evaluation is the process the AWS service uses to determine if an incoming request should be denied
or allowed based on the applicable policies. For information about the evaluation logic, see Evaluation
Logic (p. 18).

Effect
The effect is the result that you want a policy statement to return at evaluation time.You specify this value
when you write the statements in a policy, and the possible values are deny and allow.

For example, you could write a policy that has a statement that denies all requests that come from
Antarctica (effect=deny given that the request uses an IP address allocated to Antarctica). Alternately,
you could write a policy that has a statement that allows all requests that don't come from Antarctica
(effect=allow, given that the request doesn't come from Antarctica). Although the two statements sound
like they do the same thing, in the access policy language logic, they are different. For more information,
see Evaluation Logic (p. 18).

Although there are only two possible values you can specify for the effect (allow or deny), there can be
three different results at policy evaluation time: default deny, allow, or explicit deny. For more information,
see the following concepts and Evaluation Logic (p. 18).

Default Deny
A default deny is the default result from a policy in the absence of an allow or explicit deny.

Allow
An allow results from a statement that has effect=allow, assuming any stated conditions are met. Example:
Allow requests if they are received before 1:00 p.m. on April 30, 2010. An allow overrides all default
denies, but never an explicit deny.

Explicit Deny
An explicit deny results from a statement that has effect=deny, assuming any stated conditions are met.
Example: Deny all requests if they are from Antarctica. Any request that comes from Antarctica will always
be denied no matter what any other policies might allow.

Architectural Overview
The following figure and table describe the main components that interact to provide access control for
your resources.

API Version 2010-03-31
15

Amazon Simple Notification Service Developer Guide
Architectural Overview

You, the resource owner.1

Your resources (contained within the AWS service; e.g., Amazon SQS queues).2

Your policies.

Typically you have one policy per resource, although you could have multiple. The AWS service
itself provides an API you use to upload and manage your policies.

3

Requesters and their incoming requests to the AWS service.4

The access policy language evaluation code.

This is the set of code within the AWS service that evaluates incoming requests against the ap-
plicable policies and determines whether the requester is allowed access to the resource. For
information about how the service makes the decision, see Evaluation Logic (p. 18).

5

API Version 2010-03-31
16

Amazon Simple Notification Service Developer Guide
Architectural Overview

Using the Access Policy Language
The following figure and table describe the general process of how access control works with the access
policy language.

Process for Using Access Control with the Access Policy Language

You write a policy for your resource.

For example, you write a policy to specify permissions for your Amazon SNS topics.

1

You upload your policy to AWS.

The AWS service itself provides an API you use to upload your policies. For example, you use
the Amazon SNS SetTopicAttributes action to upload a policy for a particular Amazon SNS
topic.

2

Someone sends a request to use your resource.

For example, a user sends a request to Amazon SNS to use one of your topics.

3

The AWS service determines which policies are applicable to the request.

For example, Amazon SNS looks at all the available Amazon SNS policies and determines which
ones are applicable (based on what the resource is, who the requester is, etc.).

4

The AWS service evaluates the policies.

For example, Amazon SNS evaluates the policies and determines if the requester is allowed to
use your topic or not. For information about the decision logic, see Evaluation Logic (p. 18).

5

The AWS service either denies the request or continues to process it.

For example, based on the policy evaluation result, the service either returns an "Access denied"
error to the requester or continues to process the request.

6

Related Topics

• Architectural Overview (p. 15)

API Version 2010-03-31
17

Amazon Simple Notification Service Developer Guide
Using the Access Policy Language

Evaluation Logic
The goal at evaluation time is to decide whether a given request should be allowed or denied. The
evaluation logic follows several basic rules:

• By default, all requests to use your resource coming from anyone but you are denied

• An allow overrides any default denies

• An explicit deny overrides any allows

• The order in which the policies are evaluated is not important

The following flow chart and discussion describe in more detail how the decision is made.

The decision starts with a default deny.1

API Version 2010-03-31
18

Amazon Simple Notification Service Developer Guide
Evaluation Logic

The enforcement code then evaluates all the policies that are applicable to the request (based
on the resource, principal, action, and conditions).

The order in which the enforcement code evaluates the policies is not important.

2

In all those policies, the enforcement code looks for an explicit deny instruction that would apply
to the request.

If it finds even one, the enforcement code returns a decision of "deny" and the process is finished
(this is an explicit deny; for more information, see Explicit Deny (p. 15)).

3

If no explicit deny is found, the enforcement code looks for any "allow" instructions that would
apply to the request.

If it finds even one, the enforcement code returns a decision of "allow" and the process is done
(the service continues to process the request).

4

If no allow is found, then the final decision is "deny" (because there was no explicit deny or allow,
this is considered a default deny (for more information, see Default Deny (p. 15)).

5

The Interplay of Explicit and Default Denials
A policy results in a default deny if it doesn't directly apply to the request. For example, if a user requests
to use Amazon SNS, but the policy on the topic doesn't refer to the user's AWS account at all, then that
policy results in a default deny.

A policy also results in a default deny if a condition in a statement isn't met. If all conditions in the statement
are met, then the policy results in either an allow or an explicit deny, based on the value of the Effect
element in the policy. Policies don't specify what to do if a condition isn't met, and so the default result in
that case is a default deny.

For example, let's say you want to prevent requests coming in from Antarctica.You write a policy (called
Policy A1) that allows a request only if it doesn't come from Antarctica. The following diagram illustrates
the policy.

If someone sends a request from the U.S., the condition is met (the request is not from Antarctica).
Therefore, the request is allowed. But, if someone sends a request from Antarctica, the condition isn't
met, and the policy's result is therefore a default deny.

You could turn the result into an explicit deny by rewriting the policy (named Policy A2) as in the following
diagram. Here, the policy explicitly denies a request if it comes from Antarctica.

API Version 2010-03-31
19

Amazon Simple Notification Service Developer Guide
Evaluation Logic

If someone sends a request from Antarctica, the condition is met, and the policy's result is therefore an
explicit deny.

The distinction between a default deny and an explicit deny is important because a default deny can be
overridden by an allow, but an explicit deny can't. For example, let's say there's another policy that allows
requests if they arrive on June 1, 2010. How does this policy affect the overall outcome when coupled
with the policy restricting access from Antarctica? We'll compare the overall outcome when coupling the
date-based policy (we'll call Policy B) with the preceding policies A1 and A2. Scenario 1 couples Policy
A1 with Policy B, and Scenario 2 couples Policy A2 with Policy B. The following figure and discussion
show the results when a request comes in from Antarctica on June 1, 2010.

API Version 2010-03-31
20

Amazon Simple Notification Service Developer Guide
Evaluation Logic

In Scenario 1, Policy A1 returns a default deny, as described earlier in this section. Policy B returns an
allow because the policy (by definition) allows requests that come in on June 1, 2010. The allow from
Policy B overrides the default deny from Policy A1, and the request is therefore allowed.

In Scenario 2, Policy B2 returns an explicit deny, as described earlier in this section. Again, Policy B
returns an allow. The explicit deny from Policy A2 overrides the allow from Policy B, and the request is
therefore denied.

Example Cases for Amazon SNS Access Control
Topics

• Allowing AWS account Access to a Topic (p. 22)

• Limiting Subscriptions to HTTPS (p. 22)

API Version 2010-03-31
21

Amazon Simple Notification Service Developer Guide
Example Cases for Amazon SNS Access Control

• Publishing to an Amazon SQS Queue (p. 23)

• Allowing Any AWS Resource to Publish to a Topic (p. 24)

• Allowing an Amazon S3 Bucket to Publish to a Topic (p. 24)

This section gives a few examples of typical use cases for access control.

Allowing AWS account Access to a Topic
Let's say you have a topic in the Amazon SNS system. In the simplest case, you want to allow one or
more AWS accounts access to a specific topic action (e.g., Publish).

You can do this by using the Amazon SNS API action AddPermission. It takes a topic, a list of AWS
account IDs, a list of actions, and a label, and automatically creates a new statement in the topic's access
control policy. In this case, you don't write a policy yourself, because Amazon SNS automatically generates
the new policy statement for you.You can remove the policy statement later by calling RemovePermission
with its label.

For example, if you called AddPermission on the topic arn:aws:sns:us-east-1:444455556666:MyTopic,
with AWS account ID 1111-2222-3333, the Publish action, and the label give-1234-publish, Amazon
SNS would generate and insert the following access control policy statement:

{
 "Version":"2012-10-17",
 "Id":"AWSAccountTopicAccess",
 "Statement" :[
 {
 "Sid":"give-1234-publish",
 "Effect":"Allow",
 "Principal" :{
 "AWS":"111122223333"
 },
 "Action":["sns:Publish"],
 "Resource":"arn:aws:sns:us-east-1:444455556666:MyTopic"
 }
]
}

Once this statement is added, the user with AWS account 1111-2222-3333 can publish messages to the
topic.

Limiting Subscriptions to HTTPS
In this use case, you want to allow subscription requests to your topic only by HTTPS, for security.

You need to know how to write your own policy for the topic because the Amazon SNS AddPermission
action doesn't let you specify a protocol restriction when granting someone access to your topic. In this
case, you would write your own policy, and then use the SetTopicAttributes action to set the topic's
Policy attribute to your new policy.

The following example of a full policy gives the AWS account ID 1111-2222-3333 the ability to subscribe
to notifications from a topic.

Note
Subscribe and Receive are separate actions in the policy.You can apply different conditions
to the subscriber and the message recipient.

API Version 2010-03-31
22

Amazon Simple Notification Service Developer Guide
Example Cases for Amazon SNS Access Control

{
 "Version":"2012-10-17",
 "Id":"SomePolicyId",
 "Statement" :[
 {
 "Sid":"Statement1",
 "Effect":"Allow",
 "Principal" :{
 "AWS":"111122223333"
 },
 "Action":["sns:Subscribe"],
 "Resource": "arn:aws:sns:us-east-1:444455556666:MyTopic",
 "Condition" :{
 "StringEquals" :{
 "sns:Protocol":"https"
 }
 }
 }
]
}

Publishing to an Amazon SQS Queue
In this use case, you want to publish messages from your topic to your Amazon SQS queue. Like Amazon
SNS, Amazon SQS uses Amazon's access control policy language. To allow Amazon SNS to send
messages, you'll need to use the Amazon SQS action SetQueueAttributes to set a policy on the
queue.

Again, you'll need to know how to write your own policy because the Amazon SQS AddPermission
action doesn't create policy statements with conditions.

Note that the example presented below is an Amazon SQS policy (controlling access to your queue), not
an Amazon SNS policy (controlling access to your topic). The actions are Amazon SQS actions, and the
resource is the Amazon Resource Name (ARN) of the queue.You can determine the queue's ARN by
retrieving the queue's QueueArn attribute with the GetQueueAttributes action.

{
 "Version":"2012-10-17",
 "Id":"MyQueuePolicy",
 "Statement" :[
 {
 "Sid":"Allow-SNS-SendMessage",
 "Effect":"Allow",
 "Principal" :"*",
 "Action":["sqs:SendMessage"],
 "Resource": "arn:aws:sqs:us-east-1:444455556666:MyQueue",
 "Condition" :{
 "ArnEquals" :{
 "aws:SourceArn":"arn:aws:sns:us-east-1:444455556666:MyTopic"
 }
 }
 }
]
}

API Version 2010-03-31
23

Amazon Simple Notification Service Developer Guide
Example Cases for Amazon SNS Access Control

This policy uses the aws:SourceArn condition to restrict access to the queue based on the source of
the message being sent to the queue.You can use this type of policy to allow Amazon SNS to send
messages to your queue only if the messages are coming from one of your own topics. In this case, you
specify a particular one of your topics, whose ARN is arn:aws:sns:us-east-1:444455556666:MyTopic.

The preceding policy is an example of the Amazon SQS policy you could write and add to a specific
queue. It would grant Amazon SNS and other AWS products access. Amazon SNS gives a default policy
to all newly created topics. The default policy gives all other AWS products access to your topic. This
default policy uses an aws:SourceArn condition to ensure that AWS products access your topic only
on behalf of AWS resources you own.

Allowing Any AWS Resource to Publish to a Topic
In this case, you want to configure a topic's policy so that another AWS account's resource (e.g., Amazon
S3 bucket, Amazon EC2 instance, or Amazon SQS queue) can publish to your topic. This example
assumes that you write your own policy and then use the SetTopicAttributes action to set the topic's
Policy attribute to your new policy.

In the following example statement, the topic owner in these policies is 1111-2222-3333 and the AWS
resource owner is 4444-5555-6666. The example gives the AWS account ID 4444-5555-6666 the ability
to publish to My-Topic from any AWS resource owned by the account.

{
 "Version":"2012-10-17",
 "Id":"MyAWSPolicy",
 "Statement" :[
 {
 "Sid":"My-statement-id",
 "Effect":"Allow",
 "Principal" :"*",
 "Action":"sns:Publish",
 "Resource":"arn:aws:sns:us-east-1:111122223333:My-Topic",
 "Condition":{
 "StringEquals":{
 "AWS:SourceOwner":"444455556666"
 }
 }
 }
]
}

Allowing an Amazon S3 Bucket to Publish to a Topic
In this case, you want to configure a topic's policy so that another AWS account's Amazon S3 bucket can
publish to your topic. For more information about publishing notifications from Amazon S3, go to Setting
Up Notifications of Bucket Events.

This example assumes that you write your own policy and then use the SetTopicAttributes action
to set the topic's Policy attribute to your new policy.

The following example statement uses the ArnLike condition to make sure the ARN of the resource
making the request (the AWS:SourceARN) is an Amazon S3 ARN.You could use a similar condition to
restrict the permission to a set of Amazon S3 buckets, or even to a specific bucket. In this example, the
topic owner is 1111-2222-3333 and the Amazon S3 owner is 4444-5555-6666. The example states that
any Amazon S3 bucket owned by 4444-5555-6666 is allowed to publish to My-Topic.

API Version 2010-03-31
24

Amazon Simple Notification Service Developer Guide
Example Cases for Amazon SNS Access Control

http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html

{
 "Version":"2012-10-17",
 "Id":"MyAWSPolicy",
 "Statement" :[
 {
 "Sid":"My-statement-id",
 "Effect":"Allow",
 "Principal" :"*",
 "Action":"sns:Publish",
 "Resource":"arn:aws:sns:us-east-1:111122223333:My-Topic",
 "Condition":{
 "StringEquals":{ "AWS:SourceOwner":"444455556666" } ,
 "ArnLike": {"AWS:SourceArn": "arn:aws:s3:*:*:*" }
 }
 }
]
}

API Version 2010-03-31
25

Amazon Simple Notification Service Developer Guide
Example Cases for Amazon SNS Access Control

Special Information for Amazon SNS Policies
The following list gives information specific to the Amazon SNS implementation of access control:

• Each policy must cover only a single topic (when writing a policy, don't include statements that cover
different topics)

• Each policy must have a unique policy Id

• Each statement in a policy must have a unique statement sid

Amazon SNS Policy Limits
The following table lists the maximum limits for policy information.

Maximum LimitName

30 kbBytes

100Statements

1 to 200 (0 is invalid.)Principals

1 (0 is invalid.The value must match the ARN of the policy's
topic.)

Resource

Valid Amazon SNS Policy Actions
Amazon SNS supports the actions shown in the following table.

DescriptionAction

Grants permission to add permissions to the topic policy.sns:AddPermission

Grants permission to delete a topic.sns:DeleteTopic

Grants permission to receive all of the topic attributes.sns:GetTopicAttributes

Grants permission to retrieve all the subscriptions to a specific topic.sns:ListSubscriptionsByTopic

Grants permission to publish to a topic or endpoint. For more inform-
ation, see Publish in the Amazon Simple Notification Service API
Reference

sns:Publish

Grants permission to receive notifications from a topic.sns:Receive

Grants permission to remove any permissions in the topic policy.sns:RemovePermission

Grants permission to set a topic's attributes.sns:SetTopicAttributes

Grants permission to subscribe to a topic.sns:Subscribe

Amazon SNS Keys
Amazon SNS uses the following service-specific keys.You can use these in policies that restrict access
to Subscribe requests and Receive requests.

API Version 2010-03-31
26

Amazon Simple Notification Service Developer Guide
Special Information for Amazon SNS Policies

http://docs.aws.amazon.com/sns/latest/api/API_Publish.html

• sns:Endpoint—The URL, email address, or ARN from a Subscribe request or a previously confirmed
subscription. Use with string conditions (see Example Policies for Amazon SNS (p. 32)) to restrict
access to specific endpoints (e.g., *@example.com).

• sns:Protocol—The protocol value from a Subscribe request or a previously confirmed subscription.
Use with string conditions (see Example Policies for Amazon SNS (p. 32)) to restrict publication to
specific delivery protocols (e.g., https).

Important
When you use a policy to control access by sns:Endpoint, be aware that DNS issues might affect
the endpoint's name resolution in the future.

Controlling User Access to Your AWS Account
Topics

• IAM and Amazon SNS Policies Together (p. 27)

• Amazon SNS ARNs (p. 30)

• Amazon SNS Actions (p. 31)

• Amazon SNS Keys (p. 31)

• Example Policies for Amazon SNS (p. 32)

• Using Temporary Security Credentials (p. 34)

Amazon Simple Notification Service integrates with AWS Identity and Access Management (IAM) so that
you can specify which Amazon SNS actions a user in your AWS account can perform with Amazon SNS
resources.You can specify a particular topic in the policy. For example, you could use variables when
creating an IAM policy that gives certain users in your organization permission to use the Publish action
with specific topics in your AWS account. For more information, see Policy Variables in the Using IAM
guide.

Important
Using Amazon SNS with IAM doesn't change how you use Amazon SNS.There are no changes
to Amazon SNS actions, and no new Amazon SNS actions related to users and access control.

For examples of policies that cover Amazon SNS actions and resources, see Example Policies for Amazon
SNS (p. 32).

IAM and Amazon SNS Policies Together
You use an IAM policy to restrict your users' access to Amazon SNS actions and topics. An IAM policy
can restrict access only to users within your AWS account, not to other AWS accounts.

You use an Amazon SNS policy with a particular topic to restrict who can work with that topic (e.g., who
can publish messages to it, who can subscribe to it, etc.). Amazon SNS policies can give access to other
AWS accounts, or to users within your own AWS account.

To give your users permissions for your Amazon SNS topics, you can use IAM policies, Amazon SNS
policies, or both. For the most part, you can achieve the same results with either. For example, the
following diagram shows an IAM policy and an Amazon SNS policy that are equivalent. The IAM policy
allows the Amazon SNS Subscribe action for the topic called topic_xyz in your AWS account. The IAM
policy is attached to the users Bob and Susan (which means that Bob and Susan have the permissions
stated in the policy). The Amazon SNS policy likewise gives Bob and Susan permission to access
Subscribe for topic_xyz.

API Version 2010-03-31
27

Amazon Simple Notification Service Developer Guide
Controlling User Access to Your AWS Account

http://docs.aws.amazon.com/IAM/latest/UserGuide/PolicyVariables.html

Note
The preceding example shows simple policies with no conditions.You could specify a particular
condition in either policy and get the same result.

There is one difference between AWS IAM and Amazon SNS policies: The Amazon SNS policy system
lets you grant permission to other AWS accounts, whereas the IAM policy doesn't.

It's up to you how you use both of the systems together to manage your permissions, based on your
needs. The following examples show how the two policy systems work together.

API Version 2010-03-31
28

Amazon Simple Notification Service Developer Guide
IAM and Amazon SNS Policies Together

Example 1

In this example, both an IAM policy and an Amazon SNS policy apply to Bob. The IAM policy gives him
permission for Subscribe on any of the AWS account's topics, whereas the Amazon SNS policy gives
him permission to use Publish on a specific topic (topic_xyz). The following diagram illustrates the
concept.

If Bob were to send a request to subscribe to any topic in the AWS account, the IAM policy would allow
the action. If Bob were to send a request to publish a message to topic_xyz, the Amazon SNS policy
would allow the action.

API Version 2010-03-31
29

Amazon Simple Notification Service Developer Guide
IAM and Amazon SNS Policies Together

Example 2

In this example, we build on example 1 (where Bob has two policies that apply to him). Let's say that Bob
publishes messages to topic_xyz that he shouldn't have, so you want to entirely remove his ability to
publish to topics. The easiest thing to do is to add an IAM policy that denies him access to the Publish
action on all topics.This third policy overrides the Amazon SNS policy that originally gave him permission
to publish to topic_xyz, because an explicit deny always overrides an allow (for more information about
policy evaluation logic, see Evaluation Logic (p. 18)). The following diagram illustrates the concept.

For examples of policies that cover Amazon SNS actions and resources, see Example Policies for Amazon
SNS (p. 32). For more information about writing Amazon SNS policies, go to the technical documentation
for Amazon SNS.

Amazon SNS ARNs
For Amazon SNS, topics are the only resource type you can specify in a policy. Following is the Amazon
Resource Name (ARN) format for topics.

arn:aws:sns:region:account_ID:topic_name

For more information about ARNs, go to ARNs in IAM User Guide.

API Version 2010-03-31
30

Amazon Simple Notification Service Developer Guide
Amazon SNS ARNs

http://aws.amazon.com/documentation/sns/
http://aws.amazon.com/documentation/sns/
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_Identifiers.html#Identifiers_ARNs

Example

Following is an ARN for a topic named my_topic in the us-east-1 region, belonging to AWS account
123456789012.

arn:aws:sns:us-east-1:123456789012:my_topic

Example

If you had a topic named my_topic in each of the different Regions that Amazon SNS supports, you could
specify the topics with the following ARN.

arn:aws:sns:*:123456789012:my_topic

You can use * and ? wildcards in the topic name. For example, the following could refer to all the topics
created by Bob that he has prefixed with bob_.

arn:aws:sns:*:123456789012:bob_*

As a convenience to you, when you create a topic, Amazon SNS returns the topic's ARN in the response.

Amazon SNS Actions
In an IAM policy, you can specify any actions that Amazon SNS offers. However, the
ConfirmSubscription and Unsubscribe actions do not require authentication, which means that
even if you specify those actions in a policy, IAM won't restrict users' access to those actions.

Each action you specify in a policy must be prefixed with the lowercase string sns:.To specify all Amazon
SNS actions, for example, you would use sns:*. For a list of the actions, go to the Amazon Simple
Notification Service API Reference.

Amazon SNS Keys
Amazon SNS implements the following AWS-wide policy keys, plus some service-specific keys.

AWS-Wide Policy Keys

• aws:CurrentTime—To check for date/time conditions.

• aws:EpochTime—To check for date/time conditions using a date in epoch or UNIX time.

• aws:MultiFactorAuthAge—To check how long ago (in seconds) the MFA-validated security credentials
making the request were issued using Multi-Factor Authentication (MFA). Unlike other keys, if MFA is
not used, this key is not present.

• aws:principaltype—To check the type of principal (user, account, federated user, etc.) for the current
request.

• aws:SecureTransport—To check whether the request was sent using SSL. For services that use
only SSL, such as Amazon RDS and Amazon Route 53, the aws:SecureTransport key has no
meaning.

• aws:SourceArn—To check the source of the request, using the Amazon Resource Name (ARN) of
the source. (This value is available for only some services. For more information, see Amazon Resource
Name (ARN) under "Element Descriptions" in the Amazon Simple Queue Service Developer Guide.)

• aws:SourceIp—To check the IP address of the requester. Note that if you use aws:SourceIp, and
the request comes from an Amazon EC2 instance, the public IP address of the instance is evaluated.

API Version 2010-03-31
31

Amazon Simple Notification Service Developer Guide
Amazon SNS Actions

http://docs.aws.amazon.com/sns/latest/api/
http://docs.aws.amazon.com/sns/latest/api/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AccessPolicyLanguage_ElementDescriptions.html#Conditions_ARN
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AccessPolicyLanguage_ElementDescriptions.html#Conditions_ARN

• aws:UserAgent—To check the client application that made the request.

• aws:userid—To check the user ID of the requester.

• aws:username—To check the user name of the requester, if available.

Note
Key names are case sensitive.

Amazon SNS Keys
Amazon SNS uses the following service-specific keys. Use these keys in policies that restrict access to
Subscribe requests.

• sns:Endpoint—The URL, email address, or ARN from a Subscribe request or a previously confirmed
subscription. Use with string conditions (see Example Policies for Amazon SNS (p. 32)) to restrict
access to specific endpoints (e.g., *@yourcompany.com).

• sns:Protocol—The protocol value from a Subscribe request or a previously confirmed subscription.
Use with string conditions (see Example Policies for Amazon SNS (p. 32)) to restrict publication to
specific delivery protocols (e.g., https).

Example Policies for Amazon SNS
This section shows several simple policies for controlling user access to Amazon SNS.

Note
In the future, Amazon SNS might add new actions that should logically be included in one of the
following policies, based on the policy’s stated goals.

Example 1: Allow a group to create and manage topics

In this example, we create a policy that gives access to CreateTopic, ListTopics,
SetTopicAttributes, and DeleteTopic.

{
 "Version":"2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":["sns:CreateTopic","sns:ListTopics","sns:SetTopicAttrib
utes","sns:DeleteTopic"],
 "Resource":"*"
 }
]
}

API Version 2010-03-31
32

Amazon Simple Notification Service Developer Guide
Example Policies for Amazon SNS

Example 2: Allow the IT group to publish messages to a particular topic

In this example, we create a group for IT, and assign a policy that gives access to Publish on the specific
topic of interest.

{
 "Version":"2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":"sns:Publish",
 "Resource":"arn:aws:sns:*:123456789012:topic_xyz"
 }
]
}

Example 3: Give users in the AWS account ability to subscribe to topics

In this example, we create a policy that gives access to the Subscribeaction, with string matching
conditions for the sns:Protocol and sns:Endpoint policy keys.

{
 "Version":"2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":["sns:Subscribe"],
 "Resource":"*",
 "Condition":{
 "StringLike": {
 "SNS:Endpoint":"*@yourcompany.com"
 },
 "StringEquals":{
 "sns:Protocol":"email"
 }
 }
 }
]
}

API Version 2010-03-31
33

Amazon Simple Notification Service Developer Guide
Example Policies for Amazon SNS

Example 4: Allow a partner to publish messages to a particular topic

You can use an Amazon SNS policy or an IAM policy to allow a partner to publish to a specific topic. If
your partner has an AWS account, it might be easier to use an Amazon SNS policy. However, anyone
in the partner's company who possesses the AWS security credentials could publish messages to the
topic. This example assumes that you want to limit access to a particular person (or application). To do
this you need to treat the partner like a user within your own company, and use a IAM policy instead of
an Amazon SNS policy.

For this example, we create a group called WidgetCo that represents the partner company; we create a
user for the specific person (or application) at the partner company who needs access; and then we put
the user in the group.

We then attach a policy that gives the group Publish access on the specific topic named
WidgetPartnerTopic.

We also want to prevent the WidgetCo group from doing anything else with topics, so we add a statement
that denies permission to any Amazon SNS actions other than Publish on any topics other than
WidgetPartnerTopic. This is necessary only if there's a broad policy elsewhere in the system that gives
users wide access to Amazon SNS.

{
 "Version":"2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":"sns:Publish",
 "Resource":"arn:aws:sns:*:123456789012:WidgetPartnerTopic"
 },
 {
 "Effect":"Deny",
 "NotAction":"sns:Publish",
 "NotResource":"arn:aws:sns:*:123456789012:WidgetPartnerTopic"
 }
]
}

Using Temporary Security Credentials
In addition to creating IAM users with their own security credentials, IAM also enables you to grant
temporary security credentials to any user allowing this user to access your AWS services and resources.
You can manage users who have AWS accounts; these users are IAM users.You can also manage users
for your system who do not have AWS accounts; these users are called federated users. Additionally,
"users" can also be applications that you create to access your AWS resources.

You can use these temporary security credentials in making requests to Amazon SNS. The API libraries
compute the necessary signature value using those credentials to authenticate your request. If you send
requests using expired credentials Amazon SNS denies the request.

For more information about IAM support for temporary security credentials, go to Granting Temporary
Access to Your AWS Resources in Using IAM.

Example Using Temporary Security Credentials to Authenticate an Amazon SNS Request

The following example demonstrates how to obtain temporary security credentials to authenticate an
Amazon SNS request.

API Version 2010-03-31
34

Amazon Simple Notification Service Developer Guide
Using Temporary Security Credentials

http://docs.aws.amazon.com/IAM/latest/UserGuide/TokenBasedAuth.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/TokenBasedAuth.html

http://sns.us-east-1.amazonaws.com/
?Name=My-Topic
&Action=CreateTopic
&Signature=gfzIF53exFVdpSNb8AiwN3Lv%2FNYXh6S%2Br3yySK70oX4%3D
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-03-31T12%3A00%3A00.000Z
&SecurityToken=SecurityTokenValue
&AWSAccessKeyId=Access Key ID provided by AWS Security Token Service

API Version 2010-03-31
35

Amazon Simple Notification Service Developer Guide
Using Temporary Security Credentials

Amazon SNS Mobile Push
Notifications

With Amazon SNS, you have the ability to send push notification messages directly to apps on mobile
devices. Push notification messages sent to a mobile endpoint can appear in the mobile app as message
alerts, badge updates, or even sound alerts.

Overview
You send push notification messages to both mobile devices and desktops using one of the following
supported push notification services:

• Amazon Device Messaging (ADM)

• Apple Push Notification Service (APNS) for both iOS and Mac OS X

• Baidu Cloud Push (Baidu)

• Google Cloud Messaging for Android (GCM)

• Microsoft Push Notification Service for Windows Phone (MPNS)

• Windows Push Notification Services (WNS)

The following figure shows an overview of how Amazon SNS is used to send a direct push notification
message to a mobile endpoint.

Push notification services, such as APNS and GCM, maintain a connection with each app and associated
mobile device registered to use their service.When an app and mobile device register, the push notification

API Version 2010-03-31
36

Amazon Simple Notification Service Developer Guide
Overview

http://aws.amazon.com/sns/

service returns a device token. Amazon SNS uses the device token to create a mobile endpoint, to which
it can send direct push notification messages. In order for Amazon SNS to communicate with the different
push notification services, you submit your push notification service credentials to Amazon SNS to be
used on your behalf. For more information, see Amazon SNS Mobile Push High Level Steps (p. 38)

In addition to sending direct push notification messages, you can also use Amazon SNS to send messages
to mobile endpoints subscribed to a topic. The concept is the same as subscribing other endpoint types,
such as Amazon SQS, HTTP/S, email, and SMS, to a topic, as described in What is Amazon Simple
Notification Service? (p. 1).The difference is that Amazon SNS communicates using the push notification
services in order for the subscribed mobile endpoints to receive push notification messages sent to the
topic. The following figure shows a mobile endpoint as a subscriber to an Amazon SNS topic. The mobile
endpoint communicates using push notification services where the other endpoints do not.

Prerequisites
To begin using Amazon SNS mobile push notifications, you need the following:

• A set of credentials for connecting to one of the supported push notification services: ADM, APNS,
Baidu, GCM, MPNS, or WNS.

• A device token or registration ID for the mobile app and device.

• Amazon SNS configured to send push notification messages to the mobile endpoints.

• A mobile app that is registered and configured to use one of the supported push notification services.

Registering your application with a push notification service requires several steps. Amazon SNS needs
some of the information you provide to the push notification service in order to send direct push notification
messages to the mobile endpoint. Generally speaking, you need the required credentials for connecting
to the push notification service, a device token or registration ID (representing your mobile device and
mobile app) received from the push notification service, and the mobile app registered with the push
notification service.

The exact form the credentials take differs between mobile platforms, but in every case, these credentials
must be submitted while making a connection to the platform. One set of credentials is issued for each
mobile app, and it must be used to send a message to any instance of that app.

The specific names will vary depending on which push notification service is being used. For example,
when using APNS as the push notification service, you need a device token. Alternatively, when using

API Version 2010-03-31
37

Amazon Simple Notification Service Developer Guide
Prerequisites

GCM, the device token equivalent is called a registration ID.The device token or registration ID is a string
that is sent to the application by the operating system of the mobile device. It uniquely identifies an instance
of a mobile app running on a particular mobile device and can be thought of as unique identifiers of this
app-device pair.

Amazon SNS stores the credentials (plus a few other settings) as a platform application resource. The
device tokens (again with some extra settings) are represented as objects called platform endpoints.
Each platform endpoint belongs to one specific platform application, and every platform endpoint can be
communicated with by using the credentials that are stored in its corresponding platform application.

The following sections include the prerequisites for each of the supported push notification services. Once
you've obtained the prerequisite information, you can send a push notification message using the AWS
Management Console or the Amazon SNS mobile push APIs. For more information, see Amazon SNS
Mobile Push High Level Steps (p. 38).

Amazon SNS Mobile Push High Level Steps
This section provides the high level steps you must perform to use Amazon SNS mobile push. First, for
the mobile platforms you want to support you must complete the prerequisites, such as obtaining the
required credentials and device token. For more information, see Prerequisites (p. 37) Then, you use the
information you obtained from the mobile platforms with Amazon SNS to send a message to a mobile
device. This information should help you gain a better understanding of the steps involved when using
the Amazon SNS mobile push, as described in Using Amazon SNS Mobile Push (p. 78).

Step 1: Request Credentials from Mobile Platforms
To use Amazon SNS mobile push, you must first request the necessary credentials from the mobile
platforms. For more information, see the getting started section for your platform later in this guide.

Step 2: Request Token from Mobile Platforms
You then use the returned credentials to request a token for your mobile app and device from the mobile
platforms. The token you receive represents your mobile app and device. For more information, see the
getting started section for you platform later in this guide.

API Version 2010-03-31
38

Amazon Simple Notification Service Developer Guide
Mobile Push High Level Steps

Step 3: Create Platform Application Object
The credentials and token are then used to create a platform application object (PlatformApplicationArn)
from Amazon SNS. For more information, see Create a Platform Endpoint and Manage Device
Tokens (p. 83).

Step 4: Create Platform Endpoint Object
The PlatformApplicationArn is then used to create a platform endpoint object (EndpointArn) from Amazon
SNS. For more information, see Create a Platform Endpoint and Manage Device Tokens (p. 83).

Step 5: Publish Message to Mobile Endpoint
The EndpointArn is then used to publish a message to an app on a mobile device. For more information,
see Send a Direct Message to a Mobile Device (p. 88) and the Publish API in the Amazon Simple
Notification Service API Reference.

Getting Started with Amazon Device Messaging
Amazon Device Messaging (ADM) is a service that enables you to send push notification messages to
Kindle Fire apps.This section describes how to obtain the ADM prerequisites and send a push notification
message using Amazon SNS and ADM.

Topics

• ADM Prerequisites (p. 40)

API Version 2010-03-31
39

Amazon Simple Notification Service Developer Guide
Step 3: Create Platform Application Object

http://docs.aws.amazon.com/sns/latest/api/API_Publish.html

• Step 1: Create a Kindle Fire App with the ADM Service Enabled (p. 40)

• Step 2: Obtain a Client ID and Client Secret (p. 40)

• Step 3: Obtain an API Key (p. 41)

• Step 4: Obtain a Registration ID (p. 41)

• Step 5: Sending a Push Notification Message to a Kindle Fire app using Amazon SNS and ADM (p. 42)

ADM Prerequisites
To send push notifications to a Kindle Fire app using Amazon SNS and ADM, you need the following:

• Kindle Fire app with the ADM service enabled

• Client ID and client secret

• API key

• Registration ID

If you already have these prerequisites, then you can send a push notification message to a Kindle Fire
app using either the Amazon SNS console or the Amazon SNS API. For more information about using
the Amazon SNS console, see Using Amazon SNS Mobile Push (p. 78). For more information about
using the Amazon SNS API, see Step 5: Sending a Push Notification Message to a Kindle Fire app using
Amazon SNS and ADM (p. 42)

Step 1: Create a Kindle Fire App with the ADM
Service Enabled
To send a push notification message to a Kindle Fire app, you must have an Amazon developer account,
set up your development environment, created a Kindle Fire app with ADM enabled, and registered the
app with ADM. For more information, see Integrating Your App with ADM.

To create a Kindle Fire app

1. Create an Amazon developer account by following the instructions at Create an Account.

2. Set up your development environment for developing mobile apps for Kindle Fire tablets. For more
information, see Setting Up Your Development Environment.

3. Create a Kindle Fire app. For more information, see Creating Your First Kindle Fire App.

Note
If you do not already have a Kindle Fire app registered with ADM, then you can use the
sample Kindle Fire app provided by AWS as a template to get started. For more information,
see Step 4: Obtain a Registration ID (p. 41).

4. On the Amazon App Distribution Portal, click Apps and Services, click the name of your Kindle Fire
app, and then click Device Messaging.

5. Verify that ADM is enabled for the app. If your app is not listed on the Amazon App Distribution Portal,
then add it and enable ADM.

Step 2: Obtain a Client ID and Client Secret
ADM uses a client ID and client secret to verify your server's identity. For more information, Obtaining
ADM Credentials.

API Version 2010-03-31
40

Amazon Simple Notification Service Developer Guide
ADM Prerequisites

https://developer.amazon.com/sdk/adm/integrating-app.html
https://developer.amazon.com/welcome.html
https://developer.amazon.com/sdk/fire/setup.html
https://developer.amazon.com/public/resources/development-tools/ide-tools/tech-docs/04-creating-your-first-kindle-fire-app
https://developer.amazon.com/home.html
https://developer.amazon.com/sdk/adm/credentials.html
https://developer.amazon.com/sdk/adm/credentials.html

To obtain a client ID and client secret

1. On the Amazon App Distribution Portal, click Apps and Services, click the name of your Kindle Fire
app, and then click Security Profile.You should see a security profile associated with your app. If
not, click Security Profiles to create a new security profile.

2. Click View Security Profile. Make note of the client ID and client secret.

Step 3: Obtain an API Key
ADM uses an API key to verify your app's identity.

Note
An API key is required to use ADM with pre-release or test apps. However, it is not required
with a release or production version of your app when you allow Amazon to sign your app on
your behalf.

To obtain an API key

• Obtain an API key by following instructions at Getting Your OAuth Credentials and API Key.

Step 4: Obtain a Registration ID
The following steps show how to use the sample Kindle Fire app provided by AWS to obtain a registration
ID from ADM.You can use this sample Kindle Fire app as an example to help you get started with Amazon
SNS push notifications. The sample app requires that you have included the ADM JAR file,
amazon-device-messaging-1.0.1.jar in your development environment. For more information, see
Setting Up ADM.

To obtain a registration ID from ADM for your app

1. Download and unzip the snsmobilepush.zip file.

2. Import the KindleMobilePushApp folder into your IDE. In Eclipse, click File, Import, expand the
Android folder, click Existing Android Code Into Workspace, click Next, browse to the folder
KindleMobilePushApp, click OK, and then click Finish.

API Version 2010-03-31
41

Amazon Simple Notification Service Developer Guide
Step 3: Obtain an API Key

https://developer.amazon.com/home.html
https://developer.amazon.com/sdk/adm/credentials.html
https://developer.amazon.com/sdk/adm/setup.html
samples/snsmobilepush.zip

After the sample Kindle Fire app has been imported into your IDE, you need to add the API key for
your Kindle Fire app to the strings.xml file, which is included in the sample Kindle Fire app.

3. Add the API key to the strings.xml file. In your IDE you will find the file included in the values
folder, which is a subfolder of res.You add the string to the following:

<string name="api_key"></string>

4. Run the app to see the registration ID as output to the Android logging system. If you are using
Eclipse with the Android ADT plug-in, you can see the registration ID in the LogCat display window.
For example, the output containing the registration ID will look similar to the following:

amzn1.adm-registration.v2.Example...1cwWJUvgkcPPYcaXCpPWmG3Bqn-
wiqIEzp5zZ7y_jsM0PKPxKhddCzx6paEsyay9Zn3D4wNUJb8m6HXrBf9dqaEw

You should now have the necessary information from ADM (client ID, client secret, API key, and registration
ID) to send push notification messages to your mobile endpoint.You can now send a push notification
message to the Kindle Fire app on your device by either using the Amazon SNS console or the Amazon
SNS API. To use the Amazon SNS console, see Using Amazon SNS Mobile Push (p. 78). To use the
Amazon SNS API, see Step 5: Sending a Push Notification Message to a Kindle Fire app using Amazon
SNS and ADM (p. 42).

Step 5: Sending a Push Notification Message to a
Kindle Fire app using Amazon SNS and ADM
This section describes how to use the prerequisite information to send a push notification message to
your Kindle Fire app using Amazon SNS and ADM.You add the gathered prerequisite information to the
AWS sample file SNSMobilePush.java, which is included in the snsmobilepush.zip file.

Note
The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do I Get
Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

1. Create a new Java project in Eclipse (File | New | Java Project).

2. Import the SNSSamples folder to the top-level directory of the newly created Java project. In Eclipse,
right-click the name of the Java project and then click Import, expand General, click File System,
click Next, browse to the SNSSamples folder, click OK, and then click Finish.

3. In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open the
AwsCredentials.properties file and add your AWS security credentials.

To add the AWS SDK for Java to the Build Path

1. Right-click the Java project folder, click Build Path, and then click Configure Build Path...

2. Click the Libraries tab, and then click Add Library....

API Version 2010-03-31
42

Amazon Simple Notification Service Developer Guide
Step 5: Sending a Message to a Kindle Fire app using

Amazon SNS and ADM

samples/snsmobilepush.zip
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

3. Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMobilePush.java

1. In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open SNSMobilePush.java
in Eclipse.

2. Uncomment sample.demoKindleAppNotification();. It should look similar to the following:

SNSMobilePush sample = new SNSMobilePush(sns);
// TODO: Uncomment the services you wish to use.
// sample.demoAndroidAppNotification();
sample.demoKindleAppNotification();
// sample.demoAppleAppNotification();
// sample.demoAppleSandboxAppNotification();
// sample.demoBaiduAppNotification();
// sample.demoWNSAppNotification();
// sample.demoMPNSAppNotification();

3. Locate the demoKindleAppNotification method and enter the registration ID you received from
ADM for the value of the registration ID string. For example, it should look similar to the following:

String registrationId = = "amzn1.adm-registration.v2.Example...1cwWJUvgk
cPPYcaXCpPWmG3Bqn-wiqIEzp5zZ7y_jsM0PKPxKhd
dCzx6paEsyay9Zn3D4wNUJb8m6HXrBf9dqaEw";

4. Enter the client ID for your app. For example, it should look similar to the following:

String clientId = "amzn1.application-oa2-client.EX
AMPLE7423654b79fc9f062fEXAMPLE";

5. Enter the client secret for your app. For example, it should look similar to the following:

String clientSecret = "EXAMPLE01658e75ceb7bf9f71939647b1aa105c1c8eac
cabaf7d41f68EXAMPLE";

6. Enter a name for your app. App names must be made up of only uppercase and lowercase ASCII
letters, numbers, underscores, hyphens, and periods, and must be between 1 and 256 characters
long. For example, it should look similar to the following:

String applicationName = "admpushapp";

7. Run the Java application.You should see output similar to the following in the output window of your
IDE:

===
Getting Started with Amazon SNS
===

{PlatformApplicationArn: arn:aws:sns:us-west-2:111122223333:app/ADM/mypush

API Version 2010-03-31
43

Amazon Simple Notification Service Developer Guide
Step 5: Sending a Message to a Kindle Fire app using

Amazon SNS and ADM

appname}
{EndpointArn: arn:aws:sns:us-west-2:111122223333:endpoint/ADM/mypushapp
name/97e9ced9-f136-3893-9d60-775467eafebb}
{"ADM": "{ \"data\": { \"message\": \"ENTER YOUR MESSAGE\" } }"}
Published. MessageId=b35fb4bz-b503-4e37-83d4-feu4218d6da6

On your Kindle Fire device, you should see a push notification message appear within the Kindle
Fire app.

Getting Started with Apple Push Notification
Service

Apple Push Notification Service (APNS) is a service that enables you to send push notification messages
to iOS and OS X apps. This section describes how to obtain the APNS prerequisites and send a push
notification message using Amazon SNS and APNS.

Topics

• APNS Prerequisites (p. 44)

• Step 1: Create an iOS App (p. 44)

• Step 2: Obtain an APNS SSL Certificate (p. 45)

• Step 3: Obtain the App Private Key (p. 45)

• Step 4: Verify the Certificate and App Private Key (p. 46)

• Step 5: Obtain a Device Token (p. 46)

• Next Steps (p. 47)

• Send a push notification message to an iOS app using Amazon SNS and APNS (p. 47)

• Send a push notification message to a VoIP iOS app using Amazon SNS and APNS (p. 49)

• Send a push notification message to a Mac OS X app using Amazon SNS and APNS (p. 49)

APNS Prerequisites
To send push notifications to mobile devices using Amazon SNS and APNS, you need to obtain the
following:

• iOS app registered with APNS

• APNS SSL certificate

• App private key

• Device token

If you already have these prerequisites, you can send a push notification message to an iOS app using
either the Amazon SNS console or you can use the Amazon SNS API. For more information about using
the Amazon SNS console, see Using Amazon SNS Mobile Push (p. 78). For more information about
using the Amazon SNS API, see Send a push notification message to an iOS app using Amazon SNS
and APNS (p. 47).

Step 1: Create an iOS App
To get started with sending a push notification message to an iOS app, you must have an Apple developer
account, created an App ID (application identifier), registered your iOS device, and created an iOS

API Version 2010-03-31
44

Amazon Simple Notification Service Developer Guide
Getting Started with APNS

Provisioning Profile. For more information, see the Local and Remote Notification Programming Guide
in the iOS Developer Library.

Note
If you do not already have an iOS app registered with APNS, then you can use the sample iOS
app provided by AWS as a template to get started. For more information, see Step 5: Obtain a
Device Token (p. 46).

Step 2: Obtain an APNS SSL Certificate
Amazon SNS requires the APNS SSL certificate of the app in the .pem format when using the Amazon
SNS API.When using the Amazon SNS console you can upload the certificate in .p12 format and Amazon
SNS will convert it to .pem and display it in the console.You use the Keychain Access application on
your Mac computer to export the APNS SSL certificate. For more information about the SSL certificate,
see Provisioning and Development in the Apple Local and Push Notification Programming Guide.

To download an APNS SSL certificate

1. On the Apple Developer web site, click Member Center, click Certificates, Identifiers and Profiles,
and then click Certificates.

2. Select the certificate you created for iOS APNS development, click Download, and then save the
file, which will have the .cer extension type.

To convert the APNS SSL certificate from .cer format to .pem format

The following steps use the openssl utility.

• At a command prompt, type the following command. Replace myapnsappcert.cer with the name
of the certificate you downloaded from the Apple Developer web site.

openssl x509 -in myapnsappcert.cer -inform DER -out myapnsappcert.pem

The newly created .pem file will be used to configure Amazon SNS for sending mobile push notification
messages.

Step 3: Obtain the App Private Key
Amazon SNS requires an app private key in the .pem format.You use the Keychain Access application
on your Mac computer to export the app private key.

To obtain the app private key

The private key associated with the SSL certificate can be exported from the Keychain Access application
on your Mac computer. This is based on the assumption that you have already imported the .cer file you
downloaded from the Apple Developer web site into Keychain Access.You can do this either by copying
the .cer file into Keychain Access or double-clicking the .cer file.

1. Open Keychain Access, select Keys, and then highlight your app private key.

2. Click File, click Export Items..., and then enter a name in the Save As: field.

3. Accept the default .p12 file format and then click Save.

The .p12 file will then be converted to .pem file format.

API Version 2010-03-31
45

Amazon Simple Notification Service Developer Guide
Step 2: Obtain an APNS SSL Certificate

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/Introduction.html
https://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ProvisioningDevelopment.html
https://developer.apple.com/

To convert the app private key from .p12 format to .pem format

• At a command prompt, type the following command. Replace myapnsappprivatekey.p12 with
the name of the private key you exported from Keychain Access.

openssl pkcs12 -in myapnsappprivatekey.p12 -out myapnsappprivatekey.pem
-nodes -clcerts

The newly created .pem file will be used to configure Amazon SNS for sending mobile push notification
messages.

Step 4: Verify the Certificate and App Private Key
You can verify the .pem certificate and private key files by using them to connect to APNS.

To verify the certificate and private key by connecting to APNS

• At a command prompt, type the following command. Replace myapnsappcert.pem and
myapnsappprivatekey.pem with the name of your certificate and private key.

openssl s_client -connect gateway.sandbox.push.apple.com:2195 -cert myapns
appcert.pem -key myapnsappprivatekey.pem

Step 5: Obtain a Device Token
When you register your app with APNS to receive push notification messages, a device token (64-byte
hexadecimal value) is generated. The following steps describe how to use the sample iOS app provided
by AWS to obtain a device token from APNS.You can use this sample iOS app to help you get started
with Amazon SNS push notifications. For more information, see Registering for Remote Notifications in
the Apple Local and Push Notification Programming Guide.

To obtain a device token from APNS for your app

1. Download and unzip the snsmobilepush.zip file.

2. Navigate to the AppleMobilePushApp folder and then open either the iOS 7 and earlier or
iOS 8 folder.

3. In Xcode, open the AmazonMobilePush.xcodeproj project.

4. Run the app in Xcode. In the output window, you should see the device token displayed, which is
similar to the following:

Device Token = <examp1e 29z6j5c4 df46f809 505189c4 c83fjcgf 7f6257e9 8542d2jt
 3395kj73>

Note
Do not include spaces in the device token when submitting it to Amazon SNS.

API Version 2010-03-31
46

Amazon Simple Notification Service Developer Guide
Step 4: Verify the Certificate and App Private Key

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/IPhoneOSClientImp.html#//apple_ref/doc/uid/TP40008194-CH103-SW2
samples/snsmobilepush.zip

Next Steps
You should now have the necessary information from APNS (SSL certificate, app private key, and device
token) to send push notification messages to your mobile endpoint.You can now send a notification to
the iOS app on your device by either using the Amazon SNS console or the Amazon SNS API.

• To send a notification to the iOS app on your device using the Amazon SNS console, see Using Amazon
SNS Mobile Push (p. 78).

• To use the Amazon SNS API, see Send a push notification message to an iOS app using Amazon
SNS and APNS (p. 47).

• To send a push notification message to a VoIP app using Amazon SNS and APNS, see Send a push
notification message to a VoIP iOS app using Amazon SNS and APNS (p. 49).

• To send a push notification message to a Mac OS X app using Amazon SNS and APNS, see Send a
push notification message to a Mac OS X app using Amazon SNS and APNS (p. 49).

Send a push notification message to an iOS app
using Amazon SNS and APNS
This section describes how to use the prerequisite information with the Amazon SNS API to send a push
notification message to your iOS app using Amazon SNS and APNS.You add the prerequisite information
to the AWS sample file SNSMobilePush.java, which is included in the snsmobilepush.zip file.

You can also use the Amazon SNS console. For more information about using the Amazon SNS console,
see Using Amazon SNS Mobile Push (p. 78).

Note
The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do I Get
Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

1. Create a new Java project in Eclipse (File | New | Java Project).

2. Import the SNSSamples folder to the top-level directory of the newly created Java project. In Eclipse,
right-click the name of the Java project and then click Import, expand General, click File System,
click Next, browse to the SNSSamples folder, click OK, and then click Finish.

3. In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open the
AwsCredentials.properties file and add your AWS security credentials.

To add the AWS SDK for Java to the Build Path

1. Right-click the Java project folder, click Build Path, and then click Configure Build Path...

2. Click the Libraries tab, and then click Add Library....

3. Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMobilePush.java

1. In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open SNSMobilePush.java
in Eclipse.

2. Depending on which APNS you are using, uncomment either
sample.demoAppleAppNotification(); or sample.demoAppleSandboxAppNotification();.

API Version 2010-03-31
47

Amazon Simple Notification Service Developer Guide
Next Steps

samples/snsmobilepush.zip
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

For example, if you're using demoAppleSandboxAppNotification, it should look similar to the
following:

SNSMobilePush sample = new SNSMobilePush(sns);
// TODO: Uncomment the services you wish to use.
// sample.demoAndroidAppNotification();
// sample.demoKindleAppNotification();
// sample.demoAppleAppNotification();
sample.demoAppleSandboxAppNotification();
// sample.demoBaiduAppNotification();
// sample.demoWNSAppNotification();
// sample.demoMPNSAppNotification();

3. Locate the demoAppleSandboxAppNotification method and enter the device token you received
from APNS for the value of the device token string. For example, it should look similar to the following:

String deviceToken = "ex
amp1e29z6j5c4df46f809505189c4c83fjcgf7f6257e98542d2jt3395kj73";

4. Enter the APNS SSL certificate for your app. At the beginning of each new line in your certificate,
you must add \n. For example, it should look similar to the following:

String certificate = "-----BEGIN CERTIFICATE-----\nMIICiTCCAfICCQD6m7oRw0uXO
jANBgkqhkiG9w0BAQUFADCBiDELMAkGA1UEBhMC\nVVMxCzAJBgNVBAgTAldBMRAwDgY
DVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBbWF6\nb24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRI
wEAYDVQQDEwlUZXN0Q2lsYWMxHzAd\nBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5jb20wHhcN
MTEwNDI1MjA0NTIxWhcN\nMTIwNDI0MjA0NTIxWjCBiDELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAld
BMRAwDgYD\nVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBbWF6b24xFDASBgNVBAsTC0lBTSB
Db25z\nb2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMxHzAdBgkqhkiG9w0BCQEWEG5vb25lQGFt\nYX
pvbi5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMaK0dn+a4GmWIWJ\n21uUSfw
fEvySWtC2XADZ4nB+BLYgVIk60CpiwsZ3G93vUEIO3IyNoH/f0wYK8m9T\nrDHu
dUZg3qX4waLG5M43q7Wgc/MbQITxOUSQv7c7ugFFDzQGBzZswY6786m86gpE\nIbb3OhjZn
zcvQAaRHhdlQWIMm2nrAgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAtCu4\nnUhVVxYUnt
neD9+h8Mg9q6q+auNKyExzyLwaxlAoo7TJHidbtS4J5iNmZgXL0Fkb\nFFBjvS
fpJIlJ00zbhNYS5f6GuoEDmFJl0ZxB
HjJnyp378OD8uTs7fLvjx79LjSTb\nNYiytVbZPQUQ5Yaxu2jXnimvw3rrszlaEXAMPLE=\n--
---END CERTIFICATE-----";

5. Enter the private key for your app. At the beginning of each new line in your certificate, you must add
\n. For example, it should look similar to the following:

String privateKey = "-----BEGIN RSA PR1VATE KEY-----\nMJICiTCHAfIC
CQD9m7oRw0uXOjANBgkqhkiG7w0BAQUFADCBiDELMAkGA1UEBhMC\nWVMxCzAJBgNVBAgTAldB
MRAwDgYDVQQHEwdTZWF0dGx2MQ8wDQYDVQQKEwZBbWF6\nVVMxCzAJBgNVBAgTAldBMRAwDgY
DVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBbWF6\n4MXNchZOFFreg4Rr3Xzhb9Rhv
lIRgsr3wU4/FYai3z96EXAMPLE=\n-----END RSA PR1VATE KEY-----";

6. Enter a name for your app. App names must be made up of only uppercase and lowercase ASCII
letters, numbers, underscores, hyphens, and periods, and must be between 1 and 256 characters
long. For example, it should look similar to the following:

API Version 2010-03-31
48

Amazon Simple Notification Service Developer Guide
Send a message to an iOS app

String applicationName = "mypushappname";

7. Run the Java application.You should see output similar to the following in the output window of your
IDE:

===
Getting Started with Amazon SNS
===

{PlatformApplicationArn: arn:aws:sns:us-west-2:111122223333:app/APNS_SAND
BOX/mypushappname}
{EndpointArn: arn:aws:sns:us-west-2:111122223333:endpoint/APNS_SANDBOX/push
app/97e9ced9-f136-3893-9d60-775467eafebb}
{"default":"This is the default Message","APNS_SANDBOX":"{ \"aps\" : {
\"alert\" : \"You have got email.\", \"badge\" : 9,\"sound\" :\"default\"}}"}
Published. MessageId=d65fb4bb-b903-5e37-83d4-feb4818d6da3

On your iOS device, you should see a message notification.

Send a push notification message to a VoIP iOS
app using Amazon SNS and APNS
To send a push notification message to a VoIP app using Amazon SNS and APNS, you must first complete
the prerequisites in APNS Prerequisites (p. 44).

Note
If you do not already have an iOS app registered with APNS, you can download and use the
snsmobilepush.zip sample file provided by AWS as a template to get started. For more information,
see Step 5: Obtain a Device Token (p. 46).

To register your mobile app with AWS

1. Go to https://console.aws.amazon.com/sns/ and click Create platform application.

2. In the Application name box, enter a name to represent your app.

App names must be made up of only uppercase and lowercase ASCII letters, numbers, underscores,
hyphens, and periods, and must be between 1 and 256 characters long.

3. In the Push Notification Platform field, select Apple Development or Apple Production.

4. In the Push Certification Type field, select VoIP Push Certificate.

5. Select the password encrypted certificate and private key, as exported from Keychain Access on
your Mac computer in the .p12 file format.

6. Enter your password, and then click Create Platform Application.

Send a push notification message to a Mac OS X
app using Amazon SNS and APNS
To send a push notification message to a Mac OS X app using Amazon SNS and APNS, you must first
complete the prerequisites in APNS Prerequisites (p. 44).

API Version 2010-03-31
49

Amazon Simple Notification Service Developer Guide
Send a message to a VoIP app

samples/snsmobilepush.zip
https://console.aws.amazon.com/sns/

Note
If you do not already have a Mac OS X app registered with APNS, you can download and use
a sample application such as PushyMac, which is available from the Apple Developer web site.

To register your mobile app with AWS

1. Go to https://console.aws.amazon.com/sns/ and click Create platform application.

2. In the Application name box, enter a name to represent your app.

App names must be made up of only uppercase and lowercase ASCII letters, numbers, underscores,
hyphens, and periods, and must be between 1 and 256 characters long.

3. In the Push Notification Platform field, select Apple Development or Apple Production.

4. In the Push Certification Type field, select MacOS Push Certificate.

5. Select the password encrypted certificate and private key, as exported from Keychain Access on
your Mac computer in the .p12 file format.

6. Enter your password, and then click Create Platform Application.

Getting Started with Baidu Cloud Push
Baidu Cloud Push is a Chinese cloud service. Using Baidu, you can send push notification messages to
mobile devices.This section describes how to obtain the Baidu prerequisites and send a push notification
message using Amazon SNS and Baidu.

Topics

• Baidu Prerequisites (p. 50)

• Step 1: Create a Baidu Account (p. 51)

• Step 2: Register as a Baidu Developer (p. 52)

• Step 3: Create a Baidu Cloud Push Project (p. 56)

• Step 4: Download and Install the Android Demo App from Baidu (p. 59)

• Step 5: Obtain a User Id and Channel Id from Baidu (p. 63)

• Step 6: Send a Push Notification Message to a Mobile Endpoint using Amazon SNS and Baidu (p. 63)

Baidu Prerequisites
To send a push notification message to mobile devices using Amazon SNS and Baidu, you need the
following:

• Baidu account

• Registration as a Baidu developer

• Baidu cloud push project

• API key and secret key from a Baidu cloud push project

• Baidu user ID and channel ID

• Android demo app

If you already have these prerequisites, then you can send a push notification message to a mobile
endpoint using the Amazon SNS API. For more information about using the Amazon SNS API, see Step
6: Send a Push Notification Message to a Mobile Endpoint using Amazon SNS and Baidu (p. 63).

API Version 2010-03-31
50

Amazon Simple Notification Service Developer Guide
Getting Started with Baidu

https://developer.apple.com/library/mac/samplecode/PushyMac/Introduction/Intro.html
https://console.aws.amazon.com/sns/

Step 1: Create a Baidu Account
To use Baidu, you must first create an account.

Important
In order to create a Baidu account there is a verification step where you must enter Chinese
Simplified characters. The easiest way to accomplish this task is for someone that can read
Chinese to assist. Another option is to use Amazon Mechanical Turk for creating the Baidu
account. Once you have the account and password created for Baidu, you could login and change
the password without needing to enter Chinese Simplified characters. For more information
about Mechanical Turk, see the Amazon Mechanical Turk Requester User Interface.

To create a Baidu account

1. On the Baidu Portal, in the top right corner, click (Registration).

2. Enter an email address, password, and verification code, and then click (Registration).

You should then see a page similar to the following, informing you that an activation email has been
sent to the email address you entered.

API Version 2010-03-31
51

Amazon Simple Notification Service Developer Guide
Step 1: Create a Baidu Account

http://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/Welcome.html
http://www.baidu.com/

3. Login to your email account, open the activation email you received from Baidu, and click the provided
link:

4. After you click the provided link in the activation email from Baidu, you must then enter the verification
code (Chinese Simplified characters).

Once you have created a Baidu account, you can then register as a developer.

Step 2: Register as a Baidu Developer
You must register as a Baidu developer to use the Baidu push notification service.

API Version 2010-03-31
52

Amazon Simple Notification Service Developer Guide
Step 2: Register as a Baidu Developer

To register as a Baidu developer

1. On the Baidu Portal, click (More).

2. Click (Baidu's Open Cloud Platform)

3. On the next page, near the top right corner, click (Developer Services).

4. Click (Start Now)

API Version 2010-03-31
53

Amazon Simple Notification Service Developer Guide
Step 2: Register as a Baidu Developer

http://www.baidu.com/

5. Enter your name, description, and mobile phone number for receiving a verification text message,
and then click (Send Verification Code).

You should then receive a text message with a verification number, similar to the following:

6. Complete the developer registration by entering the verification number and then click (Submit)
on the bottom of the page.

API Version 2010-03-31
54

Amazon Simple Notification Service Developer Guide
Step 2: Register as a Baidu Developer

Upon successful registration, you should see the following:

After registering as a Baidu developer, you can then proceed to the next step to create a Baidu cloud
push project. This assumes that you are still logged in. If you are not logged in, then you can use
the following login procedure.

To login to Baidu

1. On the Baidu Portal, in the top right corner, click (Login).

API Version 2010-03-31
55

Amazon Simple Notification Service Developer Guide
Step 2: Register as a Baidu Developer

http://www.baidu.com/

2. Enter your Baidu username (email address) and password and then click (Login).

Step 3: Create a Baidu Cloud Push Project
When you create a Baidu cloud push project, you receive your app ID, API key, and secret key.

To create a Baidu cloud push project

1. On the Baidu Portal, click (More).

2. Click (Baidu's Open Cloud Platform)

API Version 2010-03-31
56

Amazon Simple Notification Service Developer Guide
Step 3: Create a Baidu Cloud Push Project

http://www.baidu.com/

3. On the next page, near the top right corner, click (Developer Services).

4. Click (Cloud Push).

5. Click (Management Console).

6. Click (Management Console) to enter information for an Android project.

API Version 2010-03-31
57

Amazon Simple Notification Service Developer Guide
Step 3: Create a Baidu Cloud Push Project

7. Click (Create Project).

8. Enter an app name and then click (Create).

API Version 2010-03-31
58

Amazon Simple Notification Service Developer Guide
Step 3: Create a Baidu Cloud Push Project

9. Upon successful completion of the project, you will then see a page similar to the following with your
app ID, API Key, and Secret Key. Make note of the API key and secret key, as they will be needed
later.

Step 4: Download and Install the Android Demo
App from Baidu
Baidu generates an Android demo app that you can download and install to your mobile device.

To download and install the Android demo app from Baidu

1. Starting from the page that displays the app ID, API Key, and Secret Key, click (Cloud Push)

API Version 2010-03-31
59

Amazon Simple Notification Service Developer Guide
Step 4: Download and Install the Android Demo App

2. Click (Push Settings)

3. Using reverse domain name notation, enter a package name in the (App Package Name) box.

4. Click (Save Settings)

API Version 2010-03-31
60

Amazon Simple Notification Service Developer Guide
Step 4: Download and Install the Android Demo App

You should then see the (Successfully saved!) message displayed.

5. Next, click (Quick Example).

You should then see a page similar to the following:

API Version 2010-03-31
61

Amazon Simple Notification Service Developer Guide
Step 4: Download and Install the Android Demo App

6. On the Android mobile device you want to test with, scan the QR code icon using a code scanner,
such as QR Droid, to get a link to a demo app provided by Baidu.

Note
You can also download the demo app by clicking Android (Download Android Sample)

The Baidu Push Demo app is included in the downloaded PushDemo.zip package.You
can use the demo app as an example for creating your own app to use with Baidu. In addition,
the push service jar file (pushservice-4.0.0.jar) from Baidu is included in the
PushDemo.zip package.You must use the jar file from Baidu in order to create a new app.

7. Click the link you receive after scanning the scan code. This will download the demo app provided
by Baidu onto your mobile device.

8. After the download has completed, install the demo app onto your mobile device.You should then
see the following Push Demo app installed:

API Version 2010-03-31
62

Amazon Simple Notification Service Developer Guide
Step 4: Download and Install the Android Demo App

http://qrdroid.com

Step 5: Obtain a User Id and Channel Id from Baidu
Baidu generates a user Id and channel Id that you will need to send a push notification message using
Baidu.

To obtain the user Id and channel Id from Baidu

1. Open Push Demo and then click, in the bottom right, (Bind Without Baidu Account).

You should then see a screen similar to the following with the userId and channelId.

2. Make a note of the userId and channelId, as you will be using them in the next step.

Note
For an example of Java code that is used to retrieve the userID and channelId, see the onBind
method in the MyPushMessageReceiver.java file of the Push Demo app from Baidu. For
more information, see the Android integration guide. To translate this guide into English, you
can paste the URL, http://developer.baidu.com/wiki/index.php?title=docs/cplat/push/guide, into
Bing Translator and then click Translate.

Step 6: Send a Push Notification Message to a
Mobile Endpoint using Amazon SNS and Baidu
This section describes how to send a push notification message to your mobile endpoint.You add the
gathered prerequisite information to the AWS sample file SNSMobilePush.java, which is included in
the snsmobilepush.zip file. Included in the SNSMobilePush.java file are examples on how to create a
mobile endpoint and use message attributes for structuring the message. For additional information and
examples on how to create mobile endpoints and use message attributes with Baidu, see Creating an
Amazon SNS Endpoint for Baidu (p. 65) and Using Message Attributes for Structuring the Message (p. 66).

Note
The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do I Get
Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

1. In Eclipse, create a new Java project (File | New | Java Project).

API Version 2010-03-31
63

Amazon Simple Notification Service Developer Guide
Step 5: Obtain a user Id and channel Id

http://developer.baidu.com/wiki/index.php?title=docs/cplat/push/guide
http://www.bing.com/translator/
samples/snsmobilepush.zip
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

2. Import the SNSSamples folder to the top-level directory of the newly created Java project. In Eclipse,
right-click the name of the Java project and then click Import, expand General, click File System,
click Next, browse to the SNSSamples folder, click OK, and then click Finish.

3. In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open the
AwsCredentials.properties file and add your AWS security credentials.

To add the AWS SDK for Java to the Build Path

1. Right-click the Java project folder, click Build Path, and then click Configure Build Path...

2. Click the Libraries tab, and then click Add Library....

3. Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMobilePush.java

1. In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open SNSMobilePush.java
in Eclipse and uncomment sample.demoBaiduAppNotification();. It should look similar to
the following:

SNSMobilePush sample = new SNSMobilePush(sns);
// TODO: Uncomment the services you wish to use.
//sample.demoAndroidAppNotification();
//sample.demoKindleAppNotification();
//sample.demoAppleAppNotification();
//sample.demoAppleSandboxAppNotification();
sample.demoBaiduAppNotification();
//sample.demoWNSAppNotification();
//sample.demoMPNSAppNotification();

2. Locate the demoBaiduAppNotification method and enter the user ID and channel ID you received
from Baidu for the value of the userId and channelId strings. For example, it should look similar to
the following:

String userId = "EXAMPLE-kLMchcX0v3xOxWVhG6TfdBp...KT2TGkvnKyTvLuS
pzK_qsHgxVB_UpmcUa7Gl6g3EXAMPLE";
String channelId = "EXAMPLE<channelId>EXAMPLE";

3. Enter the secret key for your application. For example, it should look similar to the following:

String secretKey = "EXAMPLE<secretkey>EXAMPLE";

4. Enter the API key for your application. For example, it should look similar to the following:

String apiKey = "EXAMPLExV2lcV2zEKTLNYs625zfk2jh4EXAMPLE";

5. Enter a name for your application. Application names must be made up of only uppercase and
lowercase ASCII letters, numbers, underscores, hyphens, and periods, and must be between 1 and
256 characters long. For example, it should look similar to the following:

String applicationName = "baidupushapp";

API Version 2010-03-31
64

Amazon Simple Notification Service Developer Guide
Step 6: Send a Push Notification Message to a Mobile

Endpoint using Amazon SNS and Baidu

6. Run the application.You should see output similar to the following in the output window of your IDE:

===
Getting Started with Amazon SNS
===

{PlatformApplicationArn: arn:aws:sns:us-west-2:111122223333:app/BAIDU/TestApp}
{EndpointArn: arn:aws:sns:us-west-2:111122223333:endpoint/BAIDU/Test
App/8f3fdf0d-520b-38d1-8ed2-3301a477eef3}
{Message Body: {"BAIDU":"{\"title\":\"New Notification Received from
SNS\",\"description\":\"Hello World!\"}"}}
{Message Attributes: ("AWS.SNS.MOBILE.BAIDU.MessageKey": "default-channel-
msg-key"),("AWS.SNS.MOBILE.BAIDU.DeployStatus": "1"),("AWS.SNS.MO
BILE.BAIDU.MessageType": "0")}
Published!
{MessageId=56a3a3e6-4b4b-59b4-8d1d-eff592c0ffa1}

On your Android device, you should see a push notification message appear within the Android app,
similar to the following:

Creating an Amazon SNS Endpoint for Baidu
This section provides additional information and examples on how to create an Amazon SNS endpoint
to use with Baidu.You create an Amazon SNS endpoint, using the combined userId and channelId
received from Baidu, to represent the app and mobile device.The endpoint is then used by Amazon SNS
for publishing notification messages using the Baidu push notification service to the app on the mobile
device.

The following Java example shows how to create an Amazon SNS endpoint for a Baidu app and mobile
device.

Map<String ,String> attributes = new HashMap<String ,String>();

// Insert your UserId. This is a mandatory field.
attributes.put("UserId", "9999999999");

// Insert your ChannelId. This is a mandatory field.
attributes.put("ChannelId", "1234567890");

CreatePlatformEndpointRequest createPlatformEndpointRequest = new CreatePlatfor

API Version 2010-03-31
65

Amazon Simple Notification Service Developer Guide
Step 6: Send a Push Notification Message to a Mobile

Endpoint using Amazon SNS and Baidu

mEndpointRequest();

// Baidu endpoints are identified by a combination of the userId and channelId
 which must be supplied as endpoint attributes,
// without which a valid endpoint cannot be successfully created.
createPlatformEndpointRequest.setAttributes(attributes);

// Insert your ChannelId. This is a mandatory field.
createPlatformEndpoint.setPlatformToken("1234567890");

// Insert your Customer User Data. This is an optional field.
createPlatformEndpoint.setCustomUserData("Test Endpoint");

// Insert your Platform Application Arn. This is a mandatory field.
createPlatformEndpoint.setPlatformApplicationArn("arn:aws:sns:us-west-
2:123456789012:app/BAIDU/TestApp");
String endpointArn = snsClient.createPlatformEndpoint(createPlatformEndpointRe
quest);

Note the following considerations when using the Amazon SNS API to create an endpoint for use with
Baidu:

• In CreateEndpointRequest, the platform token field should contain the channelId.

• If you specify the endpoint attribute "Token" in the attributes map, this field must encapsulate the
channelId as well.

• The channelId should also be specified as an endpoint attribute with the name "ChannelId".

• The value of the "ChannelId" endpoint attribute and the platform token field and/or "Token" endpoint
attribute must be identical to construct a successful request.

• The userId should be specified as an endpoint attribute with the name "UserId".

• For a successful response, the request must contain valid UserId and ChannelId values in the attributes.
Also, the ChannelId parameter entered using setPlatformToken(String), which is a part of
CreatePlatformEndpointRequest, must be the same as the ChannelId specified in the attributes map.

Using Message Attributes for Structuring the Message
This section provides additional information and examples for using message attributes to structure a
message and send a push notification message to a mobile endpoint.

The following Java example shows how to send a push notification message to a mobile endpoint and
how to use the optional message attributes for structuring the message. If an attribute is not sent, a default
value is auto-set in its place.

Note
The push notification message cannot exceed 256 bytes, which is the maximum size allowed
by Baidu.

Map<String, MessageAttributeValue> messageAttributes = new HashMap<String,
MessageAttributeValue>();

// Insert your desired value of Deploy Status here. 1 = DEV, 2 = PROD
messageAttributes.put("AWS.SNS.MOBILE.BAIDU.DeployStatus", new MessageAttribute
Value().withDataType("String").withStringValue("1"));

// Insert your desired value of Message Type here. 0 = IN-APP MESSAGE, 1 = ALERT
 NOTIFICATION

API Version 2010-03-31
66

Amazon Simple Notification Service Developer Guide
Step 6: Send a Push Notification Message to a Mobile

Endpoint using Amazon SNS and Baidu

messageAttributes.put("AWS.SNS.MOBILE.BAIDU.MessageType", new MessageAttribute
Value().withDataType("String").withStringValue("1"));

// Insert your desired value of Message Key
messageAttributes.put("AWS.SNS.MOBILE.BAIDU.MessageKey", new MessageAttribute
Value().withDataType("String").withStringValue("test-message"));

PublishRequest publishRequest = new PublishRequest();
publishRequest.setMessageAttributes(messageAttributes);
String message = "{\"title\":\"Test_Title\",\"description\":\"Test_Descrip
tion\"}";
publishRequest.setMessage(message);
publishRequest.setTargetArn("arn:aws:sns:us-west-2:999999999999:end
point/BAIDU/TestApp/309fc7d3-bc53-3b63-ac42-e359260ac740");
PublishResult publishResult = snsClient.publish(publishRequest);

Note the following considerations when using the optional message attributes for structuring the message:

• AWS.SNS.MOBILE.BAIDU.DeployStatus

Possible Values (Default = 1):

1 – Tags the notification as being sent in a development environment

2 – Tags the notification as being sent in a production environment

• AWS.SNS.MOBILE.BAIDU.MessageType

Possible Values (Default = 1):

0 – Generates an in-app message

1 – Generates an alert notification. Alert notifications are restricted to the following format:

{"title":"<TITLE>","description":"<DESCRIPTION>"}

<TITLE> and <DESCRIPTION> are the title and description you desire for your alert notification. If the
message is incorrectly formatted JSON, the request fails.

• AWS.SNS.MOBILE.BAIDU.MessageKey

A short message identifier you can attach to your message

Getting Started with Google Cloud Messaging
for Android

Google Cloud Messaging for Android (GCM) is a service that enables you to send push notification
messages to an Android app. This section describes how to obtain the GCM prerequisites and send a
push notification message to a mobile endpoint.

Topics

• GCM Prerequisites (p. 68)

• Step 1: Create a Google API Project and Enable the GCM Service (p. 68)

• Step 2: Obtain the Server API Key (p. 68)

• Step 3: Obtain a Registration ID from GCM (p. 69)

API Version 2010-03-31
67

Amazon Simple Notification Service Developer Guide
Getting Started with GCM

• Step 4: Send a Push Notification Message to a Mobile Endpoint using GCM (p. 70)

GCM Prerequisites
To send push notification messages to an Android app, you need the following:

• Android app registered with GCM

• Registration ID

• Server API key (sender auth token)

If you already have these prerequisites, then you can either use the Amazon SNS console to send a push
notification message to the mobile endpoint or you can use the Amazon SNS API. For more information
about using the Amazon SNS console, see Using Amazon SNS Mobile Push (p. 78). For more information
about using the Amazon SNS API, see Step 4: Send a Push Notification Message to a Mobile Endpoint
using GCM (p. 70).

Step 1: Create a Google API Project and Enable
the GCM Service
To send an push notification message to an Android app, you must have a Google API project and enable
the GCM service.

To create a Google API project and enable the GCM service

1. If you do not already have a Google API project, then see the Creating a Google API project in the
Android developer documentation.

Note
If you do not already have an Android app registered with GCM, then you can use the sample
Android app provided by AWS as a template to get started. For more information, see Step
3: Obtain a Registration ID from GCM (p. 69).

2. On the Google APIs Console web site, verify that you have an Google API project.

3. Click Services, and make sure Google Cloud Messaging for Android is turned on.

Step 2: Obtain the Server API Key
To communicate with GCM on your behalf, Amazon SNS uses your server API key. This key will be used
in a later step to send a push notification to a mobile endpoint.

To obtain the server API key

1. On the Google APIs Console web site, click API Access and make note of the server API key with
the Key for server apps (with IP locking) label.

2. If you have not yet created a server API key, then click Create new Server key. This key will be
used later in this section to send a push notification to a mobile endpoint.

API Version 2010-03-31
68

Amazon Simple Notification Service Developer Guide
GCM Prerequisites

http://developer.android.com/google/gcm/gs.html
https://code.google.com/apis/console
https://code.google.com/apis/console

Step 3: Obtain a Registration ID from GCM
When you register your app with GCM to receive push notification messages, a registration ID is generated.
Amazon SNS uses this value to determine which app and associated device to send mobile push
notifications to.

The following steps show how to use the sample Android app provided by AWS to obtain a registration
ID from GCM.You can use this sample Android app to help you get started with Amazon SNS push
notifications.This sample app requires the Android SDK, the Google Play Services SDK, and the Android
Support Library package. For more information about these SDKs, see Get the Android SDK and Setup
Google Play Services SDK. For more information about the Android Support Library package, see Support
Library Setup.

Note
The provided sample Android app is compatible with physical devices running Android version
2.3 or later and with virtual devices running Google API 17 or later.

To obtain a registration ID from GCM for your app

1. Download and unzip the snsmobilepush.zip file.

2. Import the AndroidMobilePushApp folder into your IDE. In Eclipse, click File, Import, expand the
Android folder, click Existing Android Code Into Workspace, click Next, browse to the folder
AndroidMobilePushApp, click OK, and then click Finish.

After the sample Android app has been imported into your IDE, you need to add the Project Number
for your Google API project to the strings.xml file, which is included in the sample Android app.

3. Add the Project Number for your Google API project to the strings.xml file. In your IDE, you will
find the file included in the values folder, which is a subfolder of res. The string will look similar to
the following:

<string name="project_number">012345678912</string>

4. Add google-play-services.jar, android-support-v4.jar, and android.jar to the Java
Build Path. Select google-play-services.jar and android-support-v4.jarfor export, but
do not select android.jar for export.

API Version 2010-03-31
69

Amazon Simple Notification Service Developer Guide
Step 3: Obtain a Registration ID from GCM

http://developer.android.com/sdk/index.html
http://developer.android.com/google/play-services/setup.html
http://developer.android.com/google/play-services/setup.html
http://developer.android.com/tools/support-library/setup.html
http://developer.android.com/tools/support-library/setup.html
samples/snsmobilepush.zip

5. Run the app to see the registration ID as output to the Android logging system. If you are using
Eclipse with the Android ADT plug-in, you can see the registration ID in the LogCat display window.
For example, the output containing the registration ID will look similar to the following:

06-05 11:50:43.587: V/Registration(14146): Registered, registrationId: =
Examplei7fFachkJ1xjlqT64RaBkcGHochmf1VQAr9k-IB
JtKjp7fedYPzEwT_Pq3Tu0lroqro1cwWJUvgkcPPYcaXCpPWmG3Bqn-
wiqIEzp5zZ7y_jsM0PKPxKhddCzx6paEsyay9Zn3D4wNUJb8m6HXrBf9dqaEw, error = null,
 unregistered = null

The installed app will appear on your Android device:

You should now have a registration ID, server API key, and Android app registered with GCM.You can
now send a notification to the Android app on your device by either using the Amazon SNS console or
the Amazon SNS API. To use the Amazon SNS console, see Using Amazon SNS Mobile Push (p. 78).
To use the Amazon SNS API, see Step 4: Send a Push Notification Message to a Mobile Endpoint using
GCM (p. 70).

Step 4: Send a Push Notification Message to a
Mobile Endpoint using GCM
This section describes how to send a push notification message to your mobile endpoint.You add the
gathered prerequisite information to the AWS sample file SNSMobilePush.java, which is included in
the snsmobilepush.zip file.

Note
The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do I Get
Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

1. In Eclipse, create a new Java project (File | New | Java Project).

2. Import the SNSSamples folder to the top-level directory of the newly created Java project. In Eclipse,
right-click the name of the Java project and then click Import, expand General, click File System,
click Next, browse to the SNSSamples folder, click OK, and then click Finish.

3. In the SNSSamples/src/com/amazonaws/sns/samples/mobilepush folder, open the
AwsCredentials.properties file and add your AWS security credentials.

API Version 2010-03-31
70

Amazon Simple Notification Service Developer Guide
Step 4: Send a Message to a Mobile Endpoint using GCM

samples/snsmobilepush.zip
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

To add the AWS SDK for Java to the Build Path

1. Right-click the Java project folder, click Build Path, and then click Configure Build Path...

2. Click the Libraries tab, and then click Add Library....

3. Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMobilePush.java

1. In the SNSSamples/src/com/amazonaws/sns/samples/mobilepush folder, open SNSMobilePush.java
in Eclipse and uncomment sample.demoAndroidAppNotification();. It should look similar to
the following:

SNSMobilePush sample = new SNSMobilePush(sns);
// TODO: Uncomment the services you wish to use.
sample.demoAndroidAppNotification();
// sample.demoKindleAppNotification();
// sample.demoAppleAppNotification();
// sample.demoAppleSandboxAppNotification();
// sample.demoBaiduAppNotification();
// sample.demoWNSAppNotification();
// sample.demoMPNSAppNotification();

2. Locate the demoAndroidAppNotification method and enter the registration ID you received
from GCM for the value of the registration ID string. For example, it should look similar to the following:

String registrationId = = "EXAMPLE-kLMchcX0v3xOxWVhG6TfdBp...KT2TGkvnKyTvLuS
pzK_qsHgxVB_UpmcUa7Gl6g3EXAMPLE";

3. Enter the API key for your application. For example, it should look similar to the following:

String serverAPIKey = "EXAMPLExV2lcV2zEKTLNYs625zfk2jh4EXAMPLE";

4. Enter a name for your application. Application names must be made up of only uppercase and
lowercase ASCII letters, numbers, underscores, hyphens, and periods, and must be between 1 and
256 characters long. For example, it should look similar to the following:

String applicationName = "gcmpushapp";

5. Run the application.You should see output similar to the following in the output window of your IDE:

===
Getting Started with Amazon SNS
===

{PlatformApplicationArn: arn:aws:sns:us-west-2:111122223333:app/GCM/gcmpush
app}
{EndpointArn: arn:aws:sns:us-west-2:111122223333:endpoint/GCM/gcmpush
app/5e3e9847-3183-3f18-a7e8-671c3a57d4b3}
{"default":"This is the default mes

API Version 2010-03-31
71

Amazon Simple Notification Service Developer Guide
Step 4: Send a Message to a Mobile Endpoint using GCM

sage","GCM":"{\"delay_while_idle\":true,\"collapse_key\":\"Wel
come\",\"data\":{\"message\":\"Visit Amazon!\",\"url\":\"ht
tp://www.amazon.com/\"},\"time_to_live\":125,\"dry_run\":false}"}
Published. MessageId=1ca8d7d1-c261-5bfc-8689-9db269c4e46c

On your Android device, you should see a push notification message appear within the Android app,
similar to the following:

Getting Started with MPNS
Microsoft Push Notification Service for Windows Phone (MPNS) is a service that enables you to send
push notification messages to Windows Phone 7+ and Windows Phone 8.0 apps. This section describes
how to obtain the MPNS prerequisites and send a push notification message using Amazon SNS and
MPNS.You can send both unauthenticated and authenticated push notification messages with MPNS.
For better security and to avoid throttling limits imposed by MPNS, you should send authenticated push
notification messages.

Topics

• MPNS Prerequisites (p. 72)

• Step 1: Set Up Your Windows Phone App to Receive Push Notifications Messages (p. 73)

• Step 2: Get a Push Notification URI from MPNS (p. 73)

• Step 3: Create a Windows Developer Account (p. 73)

• Step 4: Upload TLS Certificate (p. 73)

• Step 5: Send a Push Notification Message to a Windows Phone app using Amazon SNS and
MPNS (p. 73)

MPNS Prerequisites
To send an unauthenticated push notification message to a Windows Phone app using Amazon SNS
and MPNS, you need the following:

• Windows Phone app configured to use MPNS

• Push notification URI from MPNS

To send an authenticated push notification message to a Windows Phone app using Amazon SNS and
MPNS, you also need the following:

API Version 2010-03-31
72

Amazon Simple Notification Service Developer Guide
Getting Started with MPNS

• HTTPS Push notification URI from MPNS

• Registered as a Windows app developer

• Transport Layer Security (TLS) certificate

If you already have these prerequisites, then you can send a push notification message to a Windows
Phone app using either the Amazon SNS console or the Amazon SNS API. For more information about
using the Amazon SNS console, see Using Amazon SNS Mobile Push (p. 78). For more information
about using the Amazon SNS API, see Step 5: Send a Push Notification Message to a Windows Phone
app using Amazon SNS and MPNS (p. 73).

Step 1: Set Up Your Windows Phone App to
Receive Push Notifications Messages
To send a push notification message to your Windows Phone app, you must enable the app for the MPNS
service. For more information, see Setting up your app to receive push notifications for Windows Phone
8.

Step 2: Get a Push Notification URI from MPNS
To create a mobile endpoint with Amazon SNS you need a push notification URI from MPNS.You can
either get an HTTP or HTTPS push notification URI from MPNS. For better security and to avoid throttling
limits imposed by MPNS, you should get an HTTPS push notification URI for sending authenticated
messages. For more information about getting an HTTPS push notification URI, see Setting up an
authenticated web service to send push notifications for Windows Phone 8.

Step 3: Create a Windows Developer Account
To send authenticated messages using MPNS you must create a Windows developer account. For more
information about opening a Windows developer account, see Opening a developer account.

Step 4: Upload TLS Certificate
To send authenticated messages using MPNS, you must upload a TLS certificate obtained from one of
the trusted certificate authorities (CA) for Windows Phone to your Windows developer account.You must
also submit the complete TLS certificate chain and associated private key to Amazon SNS. This is to
help with establishing a secure connection to MPNS with Amazon SNS on your behalf. Amazon SNS
requires the TLS certificate and private key in the .pem format.You can use different utilities, such as
openssl, for converting and exporting certificates. For more information, see Setting up an authenticated
web service to send push notifications for Windows Phone 8 and SSL root certificates for Windows Phone
OS 7.1. For more information about openssl, see http://www.openssl.org/.

Step 5: Send a Push Notification Message to a
Windows Phone app using Amazon SNS and MPNS
This section describes how to use the prerequisite information with the Amazon SNS API to send a push
notification message to your Windows Phone app using Amazon SNS and MPNS.You add the gathered
prerequisite information to the AWS sample file SNSMobilePush.java, which is included in the
snsmobilepush.zip file.

You can also use the Amazon SNS console. However, to send toast notifications, you must use the
Amazon SNS API. For more information about using the Amazon SNS console, see Using Amazon SNS
Mobile Push (p. 78).

API Version 2010-03-31
73

Amazon Simple Notification Service Developer Guide
Step 1: Set Up Your Windows Phone App to Receive

Push Notifications Messages

http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh202940.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh202940.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ff941099.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ff941099.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868184.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ff941099.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ff941099.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg521150.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg521150.aspx
http://www.openssl.org/
samples/snsmobilepush.zip

Note
The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do I Get
Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

1. In Eclipse, create a new Java project (File | New | Java Project).

2. Import the SNSSamples folder to the top-level directory of the newly created Java project. In Eclipse,
right-click the name of the Java project and then click Import, expand General, click File System,
click Next, browse to the SNSSamples folder, click OK, and then click Finish.

3. In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open the
AwsCredentials.properties file and add your AWS security credentials.

To add the AWS SDK for Java to the Build Path

1. Right-click the Java project folder, click Build Path, and then click Configure Build Path...

2. Click the Libraries tab, and then click Add Library....

3. Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMobilePush.java

1. In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open SNSMobilePush.java
in Eclipse and uncomment sample.demoMPNSAppNotification();. It should look similar to the
following:

SNSMobilePush sample = new SNSMobilePush(sns);
// TODO: Uncomment the services you wish to use.
//sample.demoAndroidAppNotification();
//sample.demoKindleAppNotification();
//sample.demoAppleAppNotification();
//sample.demoAppleSandboxAppNotification();
//sample.demoBaiduAppNotification();
//sample.demoWNSAppNotification();
sample.demoMPNSAppNotification();

2. Locate the demoMPNSAppNotification method and enter the notification URI you received from
MPNS for the value of the notificationChannelURI string.

3. Enter a name for your application. Application names must be made up of only uppercase and
lowercase ASCII letters, numbers, underscores, hyphens, and periods, and must be between 1 and
256 characters long. For example, it should look similar to the following:

String applicationName = "mpnspushapp";

4. Enter the MPNS TLS certificate in .pem file format.You must include the complete certificate chain,
beginning with the root CA certificate at the top and ending with the issued certificate at the bottom.
At the beginning of each new line in your certificate, you must add \n. For example, it should look
similar to the following:

API Version 2010-03-31
74

Amazon Simple Notification Service Developer Guide
Step 5: Send a Push Notification Message to a Windows

Phone app using Amazon SNS and MPNS

http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

String certificateChain = "-----BEGIN CERTIFICATE-----\nMIICiTCCAfIC
CQD6m7oRw0uXOjANBgkqhkiG9w0BAQUFADCBiDELMAkGA1UEBhMC\nVVMxCzAJBgNVBAgTAldB
MRAwDgYDVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBbWF6\nb24xFDASBgNVBAsTC0lBTSB
Db25zb2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMxHzAd\nBgkqhkiG9w0BCQEWEG5vb25lQGFtYX
pvbi5jb20wHhcNMTEwNDI1MjA0NTIxWhcN\nMTIwNDI0MjA0NTIxWjCBiDELMAkGA1UEBhMCVVMx
CzAJBgNVBAgTAldBMRAwDgYD\nVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBbWF6b24xFDASBgN
VBAsTC0lBTSBDb25z\nb2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMxHzAd
BgkqhkiG9w0BCQEWEG5vb25lQGFt\nYXpvbi5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIG
JAoGBAMaK0dn+a4GmWIWJ\n21uUSfwfEvySWtC2XADZ4nB+BLYgVIk60CpiwsZ3G93vUEIO3IyN
oH/f0wYK8m9T\nrDHudUZg3qX4waLG5M43q7Wgc/MbQITxOUSQv7c7ugFFDzQGBzZ
swY6786m86gpE\nIbb3OhjZnzcvQAaRHhdlQWIMm2nrAgMBAAEwDQYJKoZIhvcNAQEF
BQADgYEAtCu4\nnUhVVxYUntneD9+h8Mg9q6q+auNKyExzyLwaxlAoo7TJHidbtS4J5iN
mZgXL0Fkb\nFFBjvSfpJIlJ00zbhNYS5f6GuoEDmFJl0ZxB
HjJnyp378OD8uTs7fLvjx79LjSTb\nNYiytVbZPQUQ5Yaxu2jXnimvw3rrszlaEXAMPLE=\n--
---END CERTIFICATE-----";

5. Enter the private key for the MPNS TLS certificate in .pem file format. At the beginning of each new
line in your certificate, you must add \n. For example, it should look similar to the following:

String privateKey = "-----BEGIN RSA PR1VATE KEY-----\nMJICiTCHAfIC
CQD9m7oRw0uXOjANBgkqhkiG7w0BAQUFADCBiDELMAkGA1UEBhMC\nWVMxCzAJBgNVBAgTAldB
MRAwDgYDVQQHEwdTZWF0dGx2MQ8wDQYDVQQKEwZBbWF6\nVVMxCzAJBgNVBAgTAldBMRAwDgY
DVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBbWF6\n4MXNchZOFFreg4Rr3Xzhb9Rhv
lIRgsr3wU4/FYai3z96EXAMPLE=\n-----END RSA PR1VATE KEY-----";

6. Run the application.You should see output similar to the following in the output window of your IDE:

===
Getting Started with Amazon SNS
===

{PlatformApplicationArn: arn:aws:sns:us-west-2:111122223333:app/MPNS/TestApp}
{EndpointArn: arn:aws:sns:us-west-2:111122223333:endpoint/MPNS/Test
App/557597f8-be4a-3035-8c6d-bb7fa8b20fef}
{Message Body: {"MPNS":"<?xml version=\"1.0\" encoding=\"utf-8\"?><wp:Noti
fication xmlns:wp=\"WPNotifica
tion\"><wp:Tile><wp:Count>23</wp:Count><wp:Title>This is a tile notifica
tion</wp:Title></wp:Tile></wp:Notification>"}}
{Message Attributes: ("AWS.SNS.MOBILE.MPNS.Type": "token"),("AWS.SNS.MO
BILE.MPNS.NotificationClass": "realtime")}
Published!
{MessageId=ce9855bf-395f-5a1a-a4b9-19ace305780d}

On your Windows Phone, you should see a push notification message appear within the app.

Getting Started with WNS
Windows Push Notification Services (WNS) is a service that enables you to send push notification
messages and updates to Windows 8 (and later) and Windows Phone 8.1 (and later) apps. This section
describes how to obtain the WNS prerequisites and send a push notification message using Amazon
SNS and WNS.

API Version 2010-03-31
75

Amazon Simple Notification Service Developer Guide
Getting Started with WNS

Topics

• WNS Prerequisites (p. 76)

• Step 1: Set Up Your App to Receive Push Notifications Messages (p. 76)

• Step 2: Get a Push Notification URI from WNS (p. 76)

• Step 3: Get a Package Security Identifier from WNS (p. 76)

• Step 4: Get a Secret Key from WNS (p. 76)

• Step 5: Send a Push Notification Message to an App using Amazon SNS and WNS (p. 77)

WNS Prerequisites
To send push notification messages to Windows devices using Amazon SNS and WNS, you need the
following:

• Windows 8 (and later) or Windows Phone 8.1 app configured to use WNS

• Push notification URI from WNS

• Package security identifier

• Secret key

If you already have these prerequisites, then you can send a push notification message to an app using
either the Amazon SNS console or the Amazon SNS API. For more information about using the Amazon
SNS console, see Using Amazon SNS Mobile Push (p. 78). For more information about using the Amazon
SNS API, see Step 5: Send a Push Notification Message to an App using Amazon SNS and WNS (p. 77).

Step 1: Set Up Your App to Receive Push
Notifications Messages
To send push notification message to your app, you must enable the app for the WNS service. For more
information, see Windows Push Notification Services.

Step 2: Get a Push Notification URI from WNS
To create a mobile endpoint with Amazon SNS, you need a push notification URI from WNS. For more
information, see Windows Push Notification Services.

Step 3: Get a Package Security Identifier from WNS
To create a mobile endpoint with Amazon SNS, you need a package security identifier from WNS. For
more information, see Windows Push Notification Services.

Step 4: Get a Secret Key from WNS
To create a mobile endpoint with Amazon SNS, you need a secret key from WNS. For more information,
see Windows Push Notification Services.

API Version 2010-03-31
76

Amazon Simple Notification Service Developer Guide
WNS Prerequisites

http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx

Step 5: Send a Push Notification Message to an
App using Amazon SNS and WNS
This section describes how to use the prerequisite information to send a push notification message to
your app using Amazon SNS and WNS.You add the gathered prerequisite information to the AWS sample
file SNSMobilePush.java, which is included in the snsmobilepush.zip file.

Note
The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do I Get
Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

1. In Eclipse, create a new Java project (File | New | Java Project).

2. Import the SNSSamples folder to the top-level directory of the newly created Java project. In Eclipse,
right-click the name of the Java project and then click Import, expand General, click File System,
click Next, browse to the SNSSamples folder, click OK, and then click Finish.

3. In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open the
AwsCredentials.properties file and add your AWS security credentials.

To add the AWS SDK for Java to the Build Path

1. Right-click the Java project folder, click Build Path, and then click Configure Build Path...

2. Click the Libraries tab, and then click Add Library....

3. Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMobilePush.java

1. In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open SNSMobilePush.java
in Eclipse and uncomment sample.demoWNSAppNotification();. It should look similar to the
following:

SNSMobilePush sample = new SNSMobilePush(sns);
// TODO: Uncomment the services you wish to use.
//sample.demoAndroidAppNotification();
//sample.demoKindleAppNotification();
//sample.demoAppleAppNotification();
//sample.demoAppleSandboxAppNotification();
//sample.demoBaiduAppNotification();
sample.demoWNSAppNotification();
//sample.demoMPNSAppNotification();

2. Locate the demoWNSAppNotification method and enter the string values for the push notification
URI, package security identifier, and secret key.

3. Enter a name for your application. Application names must be made up of only uppercase and
lowercase ASCII letters, numbers, underscores, hyphens, and periods, and must be between 1 and
256 characters long. For example, it should look similar to the following:

API Version 2010-03-31
77

Amazon Simple Notification Service Developer Guide
Step 5: Send a Push Notification Message to an App

using Amazon SNS and WNS

samples/snsmobilepush.zip
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

String applicationName = "wnspushapp";

4. Run the application.You should see output similar to the following in the output window of your IDE:

===
Getting Started with Amazon SNS
===

{PlatformApplicationArn: arn:aws:sns:us-west-2:111122223333:app/WNS/TestApp}
{EndpointArn: arn:aws:sns:us-west-2:111122223333:endpoint/WNS/Test
App/17cc2f2a-dfa8-3450-90c6-e1f88d820f3d}
{Message Body: {"WNS":"<badge version=\"1\" value=\"23\"/>"}}
{Message Attributes: ("AWS.SNS.MOBILE.WNS.Type": "wns/badge"),("AWS.SNS.MO
BILE.WNS.CachePolicy": "cache")}
Published!
{MessageId=d4899281-927e-5f68-9fd0-de9248be6d47}

On your Windows device, you should see a push notification message appear within the app.

Using Amazon SNS Mobile Push
This section describes how to use the AWS Management Console with the information described in
Prerequisites (p. 37) to register your mobile app with AWS, add device tokens (also referred to as
registration IDs), send a direct message to a mobile device, and send a message to mobile devices
subscribed to an Amazon SNS topic.

Topics

• Register Your Mobile App with AWS (p. 78)

• Add Device Tokens or Registration IDs (p. 80)

• Create a Platform Endpoint and Manage Device Tokens (p. 83)

• Send a Direct Message to a Mobile Device (p. 88)

• Send Messages to Mobile Devices Subscribed to a Topic (p. 88)

• Send Custom Platform-Specific Payloads in Messages to Mobile Devices (p. 88)

Register Your Mobile App with AWS
For Amazon SNS to send notification messages to mobile endpoints, whether it is direct or with
subscriptions to a topic, you first need to register the app with AWS. To register your mobile app with
AWS, enter a name to represent your app, select the platform that will be supported, and provide your
credentials for the notification service platform. After the app is registered with AWS, the next step is to
create an endpoint for the app and mobile device.The endpoint is then used by Amazon SNS for sending
notification messages to the app and device.

To register your mobile app with AWS

1. Go to https://console.aws.amazon.com/sns/ and click Create platform application.

2. In the Application name box, enter a name to represent your app.

API Version 2010-03-31
78

Amazon Simple Notification Service Developer Guide
Using Amazon SNS Mobile Push

https://console.aws.amazon.com/sns/

App names must be made up of only uppercase and lowercase ASCII letters, numbers, underscores,
hyphens, and periods, and must be between 1 and 256 characters long.

3. In the Push notification platform box, select the platform that the app is registered with and then
enter the appropriate credentials.

Note
If you are using one of the APNS platforms, then you can select Choose file to upload the
.p12 file (exported from Keychain Access) to Amazon SNS.

For detailed instructions on how to acquire the following information, see Getting Started with Amazon
Device Messaging (p. 39), Getting Started with Apple Push Notification Service (p. 44), Getting
Started with Baidu Cloud Push (p. 50), Getting Started with Google Cloud Messaging for
Android (p. 67), Getting Started with MPNS (p. 72), or Getting Started with WNS (p. 75).

CredentialsPlatform

Client ID – Go to the Amazon Mobile App Distri-
bution Portal, click Apps and Services, click the
name of your Kindle Fire app, and then click
Security Profile.

ADM

Client Secret – Go to the Amazon Mobile App
Distribution Portal, click Apps and Services,
click the name of your Kindle Fire app, and then
click Security Profile.

Certificate – Select the password encrypted cer-
tificate and private key, as exported from Key-
chain Access on your Mac computer in the .p12
file format.

APNS

Certificate Password – Enter the password.

Certificate – Same as previous for APNS.APNS_SANDBOX

Certificate Password – Same as previous for
APNS.

Certificate – Same as previous for APNS.APNS_VOIP

Certificate Password – Same as previous for
APNS.

Certificate – Same as previous for APNS.APNS_VOIP_SANDBOX

Certificate Password – Same as previous for
APNS.

Certificate – Same as previous for APNS.MACOS

Certificate Password – Same as previous for
APNS.

Certificate – Same as previous for APNS.MACOS_SANDBOX

Certificate Password – Same as previous for
APNS.

API Version 2010-03-31
79

Amazon Simple Notification Service Developer Guide
Register Your Mobile App with AWS

https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://developer.amazon.com/home.html

CredentialsPlatform

API Key – Enter the API key you received after
creating a Baidu cloud push project, as described
in Step 3: Create a Baidu Cloud Push Pro-
ject (p. 56).

Baidu

Client Secret – Enter the secret key you received
after creating a Baidu cloud push project, as de-
scribed in Step 3: Create a Baidu Cloud Push
Project (p. 56).

API Key – Go to the Google APIs Console web
site, click API Access, and make note of the
server API key with the Key for server apps
(with IP locking) label. If you have not yet cre-
ated a server API key, then click Create new
Server key....

GCM

Certificate – Enter the TLS certificate for your
Windows developer account, as described in
Step 4: Upload TLS Certificate (p. 73).

MPNS

Private Key – Enter the private key for the TLS
certificate, as described in Step 4: Upload TLS
Certificate (p. 73).

Client Secret – Enter the client secret, as de-
scribed in How to authenticate with the Windows
Push Notification Service (WNS).

WNS

Package Security Identifier (SID) – Enter the SID,
as described in How to authenticate with the
Windows Push Notification Service (WNS).

4. After you have entered this information, then click Add New App.

This registers the app with Amazon SNS, which creates a platform application object for the selected
platform and then returns a corresponding PlatformApplicationArn.

Add Device Tokens or Registration IDs
When you first register an app and mobile device with a notification service, such as Apple Push Notification
Service (APNS) and Google Cloud Messaging for Android (GCM), device tokens or registration IDs are
returned from the notification service. When you add the device tokens or registration IDs to Amazon
SNS, they are used with the PlatformApplicationArn API to create an endpoint for the app and
device. When Amazon SNS creates the endpoint, an EndpointArn is returned. The EndpointArn is
how Amazon SNS knows which app and mobile device to send the notification message to.

You can add device tokens and registration IDs to Amazon SNS using the following methods:

• Manually add a single token to AWS using the AWS Management Console

• Migrate existing tokens from a CSV file to AWS using the AWS Management Console

API Version 2010-03-31
80

Amazon Simple Notification Service Developer Guide
Add Device Tokens or Registration IDs

https://code.google.com/apis/console
https://code.google.com/apis/console
http://msdn.microsoft.com/en-us/library/windows/apps/hh465407.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465407.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465407.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465407.aspx

• Upload several tokens using the CreatePlatformEndpoint API

• Register tokens from devices that will install your apps in the future

To manually add a device token or registration ID

1. Go to https://console.aws.amazon.com/sns/, click Apps, click your app, and then click Add Endpoints.

2. In the Endpoint Token box, enter either the token ID or registration ID, depending on which notification
service. For example, with ADM and GCM you enter the registration ID.

3. (Optional) In the User Data box, enter arbitrary information to associate with the endpoint. Amazon
SNS does not use this data. The data must be in UTF-8 format and less than 2KB.

4. Finally, click Add Endpoints.

Now with the endpoint created, you can either send messages directly to a mobile device or send
messages to mobile devices that are subscribed to a topic.

To migrate existing tokens from a CSV file to AWS

You can migrate existing tokens contained in a CSV file. The CSV file cannot be larger than 2MB. When
migrating several tokens, it is recommended to use the CreatePlatformEndpoint API. Each of the
tokens in the CSV file must be followed by a newline. For example, your CSV file should look similar to
the following:

amzn1.adm-registration.v1.XpvSSUk0Rc3hTVVV--TOKEN--KMTlmMWx
wRkxMaDNST2luZz01,"User data with spaces requires quotes"
amzn1.adm-registration.v1.XpvSSUk0Rc3hTVVV--TOKEN--KMTlmMWx
wRkxMaDNST2luZz04,"Data,with,commas,requires,quotes"
amzn1.adm-registration.v1.XpvSSUk0Rc3hTVVV--TOKEN--KMTlmMWx
wRkxMaDNST2luZz02,"Quoted data requires ""escaped"" quotes"
amzn1.adm-registration.v1.XpvSSUk0Rc3hTVVV--TOKEN--KMTlmMWx
wRkxMaDNST2luZz03,"{""key"": ""json is allowed"", ""value"":""endpoint"",
""number"": 1}"
amzn1.adm-registration.v1.XpvSSUk0Rc3hTVVV--TOKEN--KMTlmMWxwRkxMaDNST2luZz05,Sim
pleDataNoQuotes
amzn1.adm-registration.v1.XpvSSUk0Rc3hTVVV--TOKEN--KMTlmMWxwRkxMaDNST2luZz06,"The
 following line has no user data"
amzn1.adm-registration.v1.XpvSSUk0Rc3hTVVV--TOKEN--KMTlmMWxwRkxMaDNST2luZz07
APBTKzPGlCyT6E6oOfpdwLpcRNxQp5vCPFiFeru9oZylc22HvZSwQTDgmmw9WdNlXMerUPxm
pX0w1,"Different token style"

1. Go to https://console.aws.amazon.com/sns/, click Apps, click your app, and then click Add Endpoints.

2. Click Migrate existing tokens over to AWS, click Choose File, select your CSV file, and then click
Add Endpoints.

To upload several tokens using the CreatePlatformEndpoint API

The following steps show how to use the sample Java app (bulkupload package) provided by AWS to
upload several tokens (device tokens or registration IDs) to Amazon SNS.You can use this sample app
to help you get started with uploading your existing tokens.

API Version 2010-03-31
81

Amazon Simple Notification Service Developer Guide
Add Device Tokens or Registration IDs

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Note
The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do I Get
Security Credentials? in the AWS General Reference.

1. Download and unzip the snsmobilepush.zip file.

2. Create a new Java Project in Eclipse.

3. Import the SNSSamples folder to the top-level directory of the newly created Java Project. In Eclipse,
right-click the name of the Java Project and then click Import, expand General, click File System,
click Next, browse to the SNSSamples folder, click OK, and then click Finish.

4. Download a copy of the OpenCSV library and add it to the Build Path of the bulkupload package.

5. Open the BulkUpload.properties file contained in the bulkupload package.

6. Add the following to BulkUpload.properties:

• The ApplicationArn to which you want to add endpoints.

• The absolute path for the location of your CSV file containing the tokens.

• The names for CSV files (such as goodTokens.csv and badTokens.csv) to be created for
logging the tokens that Amazon SNS parses correctly and those that fail.

• (Optional) The characters to specify the delimiter and quote in the CSV file containing the tokens.

• (Optional) The number of threads to use to concurrently create endpoints. The default is 1 thread.

Your completed BulkUpload.properties should look similar to the following:

applicationarn:arn:aws:sns:us-west-2:111122223333:app/GCM/gcmpushapp
csvfilename:C:\\mytokendirectory\\mytokens.csv
goodfilename:C:\\mylogfiles\\goodtokens.csv
badfilename:C:\\mylogfiles\\badtokens.csv
delimiterchar:'
quotechar:"
numofthreads:5

7. Run the BatchCreatePlatformEndpointSample.java application to upload the tokens to Amazon SNS.

In this example, the endpoints that were created for the tokens that were uploaded successfully to
Amazon SNS would be logged to goodTokens.csv, while the malformed tokens would be logged
to badTokens.csv. In addition, you should see STD OUT logs written to the console of Eclipse,
containing content similar to the following:

<1>[SUCCESS] The endpoint was created with Arn arn:aws:sns:us-west-
2:111122223333:app/GCM/gcmpushapp/165j2214-051z-3176-b586-138o3d420071
<2>[ERROR: MALFORMED CSV FILE] Null token found in /mytokendirectory/my
tokens.csv

To register tokens from devices that will install your apps in the future

You can use one of the following two options:

API Version 2010-03-31
82

Amazon Simple Notification Service Developer Guide
Add Device Tokens or Registration IDs

http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
samples/snsmobilepush.zip
http://sourceforge.net/projects/opencsv/

• Use the Amazon Cognito service:Your mobile app will need credentials to create endpoints associated
with your Amazon SNS platform application. We recommend that you use temporary credentials that
expire after a period of time. For most scenarios, we recommend that you use Amazon Cognito to
create temporary security credentials. For more information, see Creating Temporary Security Credentials
for Mobile Apps Using Identity Providers. If you would like to be notified when an app registers with
Amazon SNS, you can register to receive an Amazon SNS event that will provide the new endpoint
ARN.You can also use the ListEndpointByPlatformApplication API to obtain the full list of
endpoints registered with Amazon SNS.

• Use a proxy server: If your application infrastructure is already set up for your mobile apps to call in
and register on each installation, you can continue to use this setup.Your server will act as a proxy
and pass the device token to Amazon SNS mobile push notifications, along with any user data you
would like to store. For this purpose, the proxy server will connect to Amazon SNS using your AWS
credentials and use the CreatePlatformEndpoint API call to upload the token information. The
newly created endpoint Amazon Resource Name (ARN) will be returned, which your server can store
for making subsequent publish calls to Amazon SNS.

Create a Platform Endpoint and Manage Device
Tokens
When an app and mobile device register with a push notification service, the push notification service
returns a device token. Amazon SNS uses the device token to create a mobile endpoint, to which it can
send direct push notification messages. For more information, see Prerequisites (p. 37) and Amazon
SNS Mobile Push High Level Steps (p. 38).

This section describes the recommended approach for creating a platform endpoint and managing device
tokens.

Topics

• Create a Platform Endpoint (p. 83)

• Pseudo Code (p. 84)

• Java Example (p. 84)

• Troubleshooting (p. 87)

Create a Platform Endpoint
To push notifications to an app with Amazon SNS, that app's device token must first be registered with
Amazon SNS by calling the create platform endpoint action. This action takes the Amazon Resource
Name (ARN) of the platform application and the device token as parameters and returns the ARN of the
created platform endpoint.

The create platform endpoint action does the following:

• If the platform endpoint already exists, then do not create it again. Return to the caller the ARN of the
existing platform endpoint.

• If the platform endpoint with the same device token but different settings already exists, then do not
create it again. Throw an exception to the caller.

• If the platform endpoint does not exist, then create it. Return to the caller the ARN of the newly-created
platform endpoint.

You should not call the create platform endpoint action immediately every time an app starts, because
this approach does not always provide a working endpoint. This can happen, for example, when an app

API Version 2010-03-31
83

Amazon Simple Notification Service Developer Guide
Create a Platform Endpoint and Manage Device Tokens

http://docs.aws.amazon.com/STS/latest/UsingSTS/CreatingWIF.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/CreatingWIF.html

is uninstalled and reinstalled on the same device and the endpoint for it already exists but is disabled. A
successful registration process should accomplish the following:

1. Ensure a platform endpoint exists for this app-device combination.

2. Ensure the device token in the platform endpoint is the latest valid device token.

3. Ensure the platform endpoint is enabled and ready to use.

Pseudo Code
The following pseudo code describes a recommended practice for creating a working, current, enabled
platform endpoint in a wide variety of starting conditions. This approach works whether this is a first time
the app is being registered or not, whether the platform endpoint for this app already exists, and whether
the platform endpoint is enabled, has the correct device token, and so on. It is safe to call it multiple times
in a row, as it will not create duplicate platform endpoints or change an existing platform endpoint if it is
already up to date and enabled.

retrieve the latest device token from the mobile operating system
if (the platform endpoint ARN is not stored)
 # this is a first-time registration
 call create platform endpoint
 store the returned platform endpoint ARN
endif

call get endpoint attributes on the platform endpoint ARN

if (while getting the attributes a not-found exception is thrown)
 # the platform endpoint was deleted
 call create platform endpoint with the latest device token
 store the returned platform endpoint ARN
else
 if (the device token in the endpoint does not match the latest one) or
 (get endpoint attributes shows the endpoint as disabled)
 call set endpoint attributes to set the latest device token and then enable
 the platform endpoint
 endif
endif

This approach can be used any time the app wants to register or re-register itself. It can also be used
when notifying Amazon SNS of a device token change. In this case, you can just call the action with the
latest device token value. Some points to note about this approach are:

• There are two cases where it may call the create platform endpoint action. It may be called at the very
beginning, where the app does not know its own platform endpoint ARN, as happens during a first-time
registration. It is also called if the initial get endpoint attributes action call fails with a not-found exception,
as would happen if the application knows its endpoint ARN but it was deleted.

• The get endpoint attributes action is called to verify the platform endpoint's state even if the platform
endpoint was just created. This happens when the platform endpoint already exists but is disabled. In
this case, the create platform endpoint action succeeds but does not enable the platform endpoint, so
you must double-check the state of the platform endpoint before returning success.

Java Example
Here is an implementation of the previous pseudo code in Java:

API Version 2010-03-31
84

Amazon Simple Notification Service Developer Guide
Create a Platform Endpoint and Manage Device Tokens

class RegistrationExample {

 AmazonSNSClient client = new AmazonSNSClient(); //provide credentials here

 private void registerWithSNS() {

 String endpointArn = retrieveEndpointArn();
 String token = "Retrieved from the mobile operating system";

 boolean updateNeeded = false;
 boolean createNeeded = (null == endpointArn);

 if (createNeeded) {
 // No platform endpoint ARN is stored; need to call createEndpoint.
 endpointArn = createEndpoint();
 createNeeded = false;
 }

 System.out.println("Retrieving platform endpoint data...");
 // Look up the platform endpoint and make sure the data in it is current,
even if
 // it was just created.
 try {
 GetEndpointAttributesRequest geaReq =
 new GetEndpointAttributesRequest()
 .withEndpointArn(endpointArn);
 GetEndpointAttributesResult geaRes =
 client.getEndpointAttributes(geaReq);

 updateNeeded = !geaRes.getAttributes().get("Token").equals(token)
 || !geaRes.getAttributes().get("Enabled").equalsIgnoreCase("true");

 } catch (NotFoundException nfe) {
 // We had a stored ARN, but the platform endpoint associated with it
 // disappeared. Recreate it.
 createNeeded = true;
 }

 if (createNeeded) {
 createEndpoint();
 }

 System.out.println("updateNeeded = " + updateNeeded

 if (updateNeeded) {
 // The platform endpoint is out of sync with the current data;
 // update the token and enable it.
 System.out.println("Updating platform endpoint " + endpointArn);
 Map attribs = new HashMap();
 attribs.put("Token", token);
 attribs.put("Enabled", "true");
 SetEndpointAttributesRequest saeReq =
 new SetEndpointAttributesRequest()
 .withEndpointArn(endpointArn)
 .withAttributes(attribs);
 client.setEndpointAttributes(saeReq);
 }
 }

API Version 2010-03-31
85

Amazon Simple Notification Service Developer Guide
Create a Platform Endpoint and Manage Device Tokens

 /**
 * @return never null
 * */
 private String createEndpoint() {

 String endpointArn = null;
 try {
 System.out.println("Creating platform endpoint with token " + token);
 CreatePlatformEndpointRequest cpeReq =
 new CreatePlatformEndpointRequest()
 .withPlatformApplicationArn(applicationArn)
 .withToken(token);
 CreatePlatformEndpointResult cpeRes = client
 .createPlatformEndpoint(cpeReq);
 endpointArn = cpeRes.getEndpointArn();
 } catch (InvalidParameterException ipe) {
 String message = ipe.getErrorMessage();
 System.out.println("Exception message: " + message);
 Pattern p = Pattern
 .compile(".*Endpoint (arn:aws:sns[^]+) already exists " +
 "with the same token.*");
 Matcher m = p.matcher(message);
 if (m.matches()) {
 // The platform endpoint already exists for this token, but with
 // additional custom data that
 // createEndpoint doesn't want to overwrite. Just use the
 // existing platform endpoint.
 endpointArn = m.group(1);
 } else {
 // Rethrow the exception, the input is actually bad.
 throw ipe;
 }
 }
 storeEndpointArn(endpointArn);
 return endpointArn;
 }

 /**
 * @return the ARN the app was registered under previously, or null if no
 * platform endpoint ARN is stored.
 */
 private String retrieveEndpointArn() {
 // Retrieve the platform endpoint ARN from permanent storage,
 // or return null if null is stored.
 return arnStorage;
 }

 /**
 * Stores the platform endpoint ARN in permanent storage for lookup next time.

 * */
 private void storeEndpointArn(String endpointArn) {
 // Write the platform endpoint ARN to permanent storage.
 arnStorage = endpointArn;
 }
}

API Version 2010-03-31
86

Amazon Simple Notification Service Developer Guide
Create a Platform Endpoint and Manage Device Tokens

An interesting thing to note about this implementation is how the InvalidParameterException is
handled in the createEndpoint method. Amazon SNS rejects create platform endpoint requests when
an existing platform endpoint has the same device token and a non-null CustomUserData field, because
the alternative is to overwrite (and therefore lose) the CustomUserData.The createEndpoint method
in the preceding code captures the InvalidParameterException thrown by Amazon SNS, checks
whether it was thrown for this particular reason, and if so, extracts the ARN of the existing platform
endpoint from the exception. This succeeds, since a platform endpoint with the correct device token
exists.

For more information, see Using Amazon SNS Mobile Push APIs (p. 97).

Troubleshooting

Repeatedly Calling Create Platform Endpoint with an Outdated Device Token

Especially for GCM endpoints, you may think it is best to store the first device token the application is
issued and then call the create platform endpoint with that device token every time on application startup.
This may seem correct since it frees the app from having to manage the state of the device token and
Amazon SNS will automatically update the device token to its latest value. However, this solution has a
number of serious issues:

• Amazon SNS relies on feedback from GCM to update expired device tokens to new device tokens.
GCM retains information on old device tokens for some time, but not indefinitely. Once GCM forgets
about the connection between the old device token and the new device token, Amazon SNS will no
longer be able to update the device token stored in the platform endpoint to its correct value; it will just
disable the platform endpoint instead.

• The platform application will contain multiple platform endpoints corresponding to the same device
token.

• Amazon SNS imposes a limit to the number of platform endpoints that can be created starting with the
same device token. Eventually, the creation of new endpoints will fail with an invalid parameter exception
and the following error message: "This endpoint is already registered with a different token."

Re-Enabling a Platform Endpoint Associated with an Invalid Device Token

When a mobile platform (such as APNS or GCM) informs Amazon SNS that the device token used in the
publish request was invalid, Amazon SNS disables the platform endpoint associated with that device
token. Amazon SNS will then reject subsequent publishes to that device token. While you may think it is
best to simply re-enable the platform endpoint and keep publishing, in most situations doing this will not
work: the messages that are published do not get delivered and the platform endpoint becomes disabled
again soon afterward.

This is because the device token associated with the platform endpoint is genuinely invalid. Deliveries to
it cannot succeed because it no longer corresponds to any installed app. The next time it is published to,
the mobile platform will again inform Amazon SNS that the device token is invalid, and Amazon SNS will
again disable the platform endpoint.

To re-enable a disabled platform endpoint, it needs to be associated with a valid device token (with a set
endpoint attributes action call) and then enabled. Only then will deliveries to that platform endpoint become
successful. The only time re-enabling a platform endpoint without updating its device token will work is
when a device token associated with that endpoint used to be invalid but then became valid again. This
can happen, for example, when an app was uninstalled and then re-installed on the same mobile device
and receives the same device token. The approach presented above does this, making sure to only
re-enable a platform endpoint after verifying that the device token associated with it is the most current
one available.

API Version 2010-03-31
87

Amazon Simple Notification Service Developer Guide
Create a Platform Endpoint and Manage Device Tokens

Send a Direct Message to a Mobile Device
You can send Amazon SNS push notification messages directly to an endpoint, which represents an app
and mobile device, by completing the following steps.

To send a direct message

1. Go to https://console.aws.amazon.com/sns/.

2. In the left Navigation pane, click Apps and click the app that you want to send a message to.

3. On the Application Details screen, select Endpoint Actions and then click Publish.

4. On the Publish dialog box, enter the message to appear in the app on the mobile device and then
click Publish.

The notification message will then be sent from Amazon SNS to the platform notification service,
which will then send the message to the app.

Send Messages to Mobile Devices Subscribed to
a Topic
You can also use Amazon SNS to send messages to mobile endpoints subscribed to a topic.The concept
is the same as subscribing other endpoint types, such as Amazon SQS, HTTP/S, email, and SMS, to a
topic, as described in What is Amazon Simple Notification Service? (p. 1). The difference is that Amazon
SNS communicates through the notification services in order for the subscribed mobile endpoints to
receive notifications sent to the topic.

To send to endpoints subscribed to a topic

1. Follow the steps as described in Subscribe to a Topic (p. 6).You just need to select Application
in the Protocol drop-down menu and then enter the mobile endpoint Amazon Resource Name (ARN)
in the Endpoint box.

2. Follow the steps to publish messages to a topic, as described in Publish to a Topic (p. 7), then all
mobile endpoints that are subscribed to the topic will be sent the message.

Send Custom Platform-Specific Payloads in
Messages to Mobile Devices
You can use either the Amazon SNS console or APIs to send custom platform-specific payloads in
messages to mobile devices. The following sections describe how to use the Amazon SNS console to
create and send custom platform-specific payloads for each of the supported notification services. For
information on using the Amazon SNS APIs, see Using Amazon SNS Mobile Push APIs (p. 97) and the
AWS sample file SNSMobilePush.java, which is included in the snsmobilepush.zip file.

JSON Formatted Message Data
When sending platform-specific payloads in messages using the Amazon SNS console, the data must
be key-value pair strings and formatted as JSON with quotation marks escaped. The following example,
including formatting and spaces for readability, shows a sample custom message for the GCM platform
with key-value pair within the message body and formatted as JSON.

API Version 2010-03-31
88

Amazon Simple Notification Service Developer Guide
Send a Direct Message to a Mobile Device

https://console.aws.amazon.com/sns/
samples/snsmobilepush.zip

{
 "GCM":"{
 "data":{
 "message":"Check out these awesome deals!",
 "url":"www.amazon.com"
 }
 }"
}

When sending messages using the console quotation marks must be escaped (\"), as the following
example shows.

{
 "GCM":"{
 \"data\":{
 \"message\":\"Check out these awesome deals!\",
 \"url\":\"www.amazon.com\"
 }
 }"
}

When entered in the Amazon SNS console, the example should look similar to the following:

{
"GCM":"{\"data\":{\"message\":\"Check out these awesome
deals!\",\"url\":\"www.amazon.com\"}}"
}

Platform-Specific Key-Value Pairs
In addition to sending custom data as key-value pairs, you can also send platform-specific key-value
pairs within the JSON payload. For example, if you wanted to include time_to_live and collapse_key
GCM parameters after the custom data key-value pairs included in the data GCM parameter, then the
JSON payload without escaped quotation marks would look similar to the following:

{
 "GCM":"{
 "data":{
 "message":"Check out these awesome deals!",
 "url":"www.amazon.com"
 },
 "time_to_live": 3600,
 "collapse_key": "deals"
 }"
}

API Version 2010-03-31
89

Amazon Simple Notification Service Developer Guide
Send Custom Platform-Specific Payloads to Mobile

Devices

When entered in the Amazon SNS console, the example should look similar to the following:

{
 "GCM":"{\"data\":{\"message\":\"Check out these awesome
deals!\",\"url\":\"www.amazon.com\"},\"time_to_live\": 3600,\"col
lapse_key\":\"deals\"}"
}

For a list of the supported key-value pairs in each of the push notification services supported in Amazon
SNS, see the following links:

• APNS – Apple Push Notification Service

• GCM – Implementing GCM Server Message Parameters

• ADM – Sending a Message

Messages to an App on Multiple Platforms
To send a message to an app installed on devices for multiple platforms, such as GCM and APNS, you
must first subscribe the mobile endpoints to a topic in Amazon SNS and then publish the message to the
topic. The following example shows a message to send to subscribed mobile endpoints on APNS, GCM,
and ADM:

{
"default": "This is the default message which must be present when publishing
a message to a topic. The default message will only be used if a message is not
 present for
one of the notification platforms.",
"APNS": "{\"aps\":{\"alert\": \"Check out these awesome
deals!\",\"url\":\"www.amazon.com\"} }",
"GCM":"{\"data\":{\"message\":\"Check out these awesome
deals!\",\"url\":\"www.amazon.com\"}}",
"ADM": "{ \"data\": { \"message\": \"Check out these awesome
deals!\",\"url\":\"www.amazon.com\" }}"
}

Using Amazon SNS Application Attributes for
Message Delivery Status

Amazon Simple Notification Service (Amazon SNS) provides support to log the delivery status of push
notification messages. After you configure application attributes, log entries will be sent to CloudWatch
Logs for messages sent from Amazon SNS to mobile endpoints. Logging message delivery status helps
provide better operational insight, such as the following:

• Know whether a push notification message was delivered from Amazon SNS to the push notification
service.

• Identify the response sent from the push notification service to Amazon SNS.

API Version 2010-03-31
90

Amazon Simple Notification Service Developer Guide
Application Attributes for Message Delivery Status

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
http://developer.android.com/google/gcm/server.html#params
https://developer.amazon.com/sdk/adm/sending-message.html

• Determine the message dwell time (the time between the publish timestamp and just before handing
off to a push notification service).

To configure application attributes for message delivery status, you can use the AWS Management
Console, AWS software development kits (SDKs), or query API.

Topics

• Configuring Message Delivery Status Attributes with the AWS Management Console (p. 91)

• Amazon SNS Message Delivery Status CloudWatch Log Examples (p. 91)

• Configuring Message Delivery Status Attributes with the AWS SDKs (p. 92)

• Platform Response Codes (p. 93)

Configuring Message Delivery Status Attributes
with the AWS Management Console
You can configure message delivery status attributes with the AWS Management Console.

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left Navigation pane, click Apps, and then click the app containing the endpoints for which
you want receive CloudWatch Logs.

3. Click Application Actions and then click Delivery Status.

4. On the Delivery Status dialog box, click Create IAM Roles.

You will then be redirected to the IAM console.

5. Click Allow to give Amazon SNS write access to use CloudWatch Logs on your behalf.

6. Now, back on the Delivery Status dialog box, enter a number in the Percentage of Success to
Sample (0-100) field for the percentage of successful messages sent for which you want to receive
CloudWatch Logs.

Note
After you configure application attributes for message delivery status, all failed message
deliveries generate CloudWatch Logs.

7. Finally, click Save Configuration.You will now be able to view and parse the CloudWatch Logs
containing the message delivery status. For more information about using CloudWatch, see the
CloudWatch Documentation.

Amazon SNS Message Delivery Status CloudWatch
Log Examples
After you configure message delivery status attributes for an application endpoint, CloudWatch Logs will
be generated. Example logs, in JSON format, are shown as follows:

SUCCESS

{
 "status": "SUCCESS",
 "notification": {
 "timestamp": "2015-01-26 23:07:39.54",
 "messageId": "9655abe4-6ed6-5734-89f7-e6a6a42de02a"

API Version 2010-03-31
91

Amazon Simple Notification Service Developer Guide
Configuring Message Delivery Status Attributes with the

AWS Management Console

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
http://aws.amazon.com/documentation/cloudwatch

 },
 "delivery": {
 "statusCode": 200,
 "dwellTimeMs": 65,
 "token": "Examplei7fFachkJ1xjlqT64RaBkcGHochmf1VQAr9k-IB
JtKjp7fedYPzEwT_Pq3Tu0lroqro1cwWJUvgkcPPYcaXCpPWmG3Bqn-
wiqIEzp5zZ7y_jsM0PKPxKhddCzx6paEsyay9Zn3D4wNUJb8m6HXrBf9dqaEw",
 "attempts": 1,
 "providerResponse": "{\"multicast_id\":5138139752481671853,\"suc
cess\":1,\"failure\":0,\"canonical_ids\":0,\"results\":[{\"mes
sage_id\":\"0:1422313659698010%d6ba8edff9fd7ecd\"}]}",
 "destination": "arn:aws:sns:us-east-1:111122223333:endpoint/GCM/GCMPush
App/c23e42de-3699-3639-84dd-65f84474629d"
 }
}

FAILURE

{
 "status": "FAILURE",
 "notification": {
 "timestamp": "2015-01-26 23:29:35.678",
 "messageId": "c3ad79b0-8996-550a-8bfa-24f05989898f"
 },
 "delivery": {
 "statusCode": 8,
 "dwellTimeMs": 1451,
 "token": "ex
amp1e29z6j5c4df46f809505189c4c83fjcgf7f6257e98542d2jt3395kj73",
 "attempts": 1,
 "providerResponse": "NotificationErrorResponse(command=8, status=Inval
idToken, id=1, cause=null)",
 "destination": "arn:aws:sns:us-east-1:111122223333:endpoint/APNS_SAND
BOX/APNSPushApp/986cb8a1-4f6b-34b1-9a1b-d9e9cb553944"
 }
 }

For a list of push notification service response codes, see the section called “Platform Response
Codes” (p. 93).

Configuring Message Delivery Status Attributes
with the AWS SDKs
The AWS SDKs provide APIs in several languages for using message delivery status attributes with
Amazon SNS.

The following Java example shows how to use the SetPlatformApplicationAttributes API to
configure application attributes for message delivery status of push notification messages.You can use
the following attributes for message delivery status: SuccessFeedbackRoleArn,
FailureFeedbackRoleArn, and SuccessFeedbackSampleRate. The SuccessFeedbackRoleArn
and FailureFeedbackRoleArn attributes are used to give Amazon SNS write access to use CloudWatch
Logs on your behalf. The SuccessFeedbackSampleRate attribute is for specifying the sample rate
percentage (0-100) of successfully delivered messages. After you configure the
FailureFeedbackRoleArn attribute, then all failed message deliveries generate CloudWatch Logs.

API Version 2010-03-31
92

Amazon Simple Notification Service Developer Guide
Configuring Message Delivery Status Attributes with the

AWS SDKs

http://aws.amazon.com/tools/

SetPlatformApplicationAttributesRequest setPlatformApplicationAttributesRequest
 = new SetPlatformApplicationAttributesRequest();
Map<String, String> attributes = new HashMap<>();
attributes.put("SuccessFeedbackRoleArn",
"arn:aws:iam::111122223333:role/SNS_CWlogs");
attributes.put("FailureFeedbackRoleArn",
"arn:aws:iam::111122223333:role/SNS_CWlogs");
attributes.put("SuccessFeedbackSampleRate", "5");
setPlatformApplicationAttributesRequest.withAttributes(attributes);
setPlatformApplicationAttributesRequest.setPlatformApplication
Arn("arn:aws:sns:us-west-2:111122223333:app/GCM/GCMPushApp");
sns.setPlatformApplicationAttributes(setPlatformApplicationAttributesRequest);

For more information about the SDK for Java, see Getting Started with the AWS SDK for Java.

Platform Response Codes
The following is a list of links for the push notification service response codes:

Response CodesPush Notification Service

See "Response Format" in Sending a Message via
Amazon Device Messaging

Amazon Device Messaging (ADM)

See Codes in error-response packet in the iOS
Developer Library

Apple Push Notification Service (APNS)

See Downstream message error response codes
in the GCM Connection Server Reference

Google Cloud Messaging for Android (GCM)

See Push Notification Service response codesMicrosoft Push Notification Service for Windows
Phone (MPNS)

See "Response codes" in Push notification service
request and response headers

Windows Push Notification Services (WNS)

Application Event Notifications
Amazon SNS provides support to trigger notifications when certain application events occur.You can
then take some programmatic action on that event.Your application must include support for a push
notification service such as Apple Push Notification Service (APNS), Google Cloud Messaging for Android
(GCM), and Windows Push Notification Services (WNS).You set application event notifications using
the Amazon SNS console, AWS CLI, or the AWS SDKs.

Topics

• Available Application Events (p. 93)

• How to Set Application Event Notifications (p. 94)

Available Application Events
Application event notifications track when individual platform endpoints are created, deleted, and updated,
along with delivery failures. The attribute name for each application event is as follows:

API Version 2010-03-31
93

Amazon Simple Notification Service Developer Guide
Platform Response Codes

http://aws.amazon.com/developers/getting-started/java/
https://developer.amazon.com/appsandservices/apis/engage/device-messaging/tech-docs/06-sending-a-message
https://developer.amazon.com/appsandservices/apis/engage/device-messaging/tech-docs/06-sending-a-message
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Appendixes/BinaryProviderAPI.html#//apple_ref/doc/uid/TP40008194-CH106-SW1
https://developers.google.com/cloud-messaging/http-server-ref#error-codes
https://msdn.microsoft.com/en-us/library/windows/apps/ff941100%28v=vs.105%29.aspx#BKMK_PushNotificationServiceResponseCodes
https://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx

DescriptionAttribute name

A notification is triggered when a new platform endpoint is added to your
application.

EventEndpointCreated

A notification is triggered when any of the platform endpoints associated
with your application is deleted.

EventEndpointDeleted

A notification is triggered when any of the attributes of the platform endpoints
associated with your application are changed.

EventEndpointUpdated

A notification is triggered when a delivery to any of the platform endpoints
associated with your application encounters a permanent failure.

Note
To track delivery failures on the platform application side, subscribe
to message delivery status events for the application. For more
information, see Using Amazon SNS Application Attributes for
Message Delivery Status.

EventDeliveryFailure

Each of the preceding attributes can be associated with an application. The application can then receive
these event notifications.

How to Set Application Event Notifications
You can set application event notifications using the Amazon SNS console, the AWS Command Line
Interface (AWS CLI), or the AWS SDKs.

AWS Management Console
1. Sign in to the AWS Management Console and open the Amazon SNS console at https://

console.aws.amazon.com/sns/.

2. In the service navigation pane, choose Applications.

3. Choose the name of the application that you want to set event notifications for.

4. Choose Actions, Configure events.

5. For each of the events that you want to send events notifications for, type the corresponding Amazon
SNS topic ARN.

6. Choose Save configuration. The event notifications are set.

AWS CLI
Run the set-platform-application-attributes command.

The following example sets the same Amazon SNS topic for all four application events:

aws sns set-platform-application-attributes
--platform-application-arn arn:aws:sns:us-east-1:12345EXAMPLE:app/GCM/MyGCMPlat
formApplication
--attributes EventEndpointCreated="arn:aws:sns:us-east-1:12345EXAMPLE:MyGCMPlat
formApplicationEvents",
EventEndpointDeleted="arn:aws:sns:us-east-1:12345EXAMPLE:MyGCMPlatformApplica
tionEvents",
EventEndpointUpdated="arn:aws:sns:us-east-1:12345EXAMPLE:MyGCMPlatformApplica

API Version 2010-03-31
94

Amazon Simple Notification Service Developer Guide
How to Set Application Event Notifications

http://docs.aws.amazon.com/sns/latest/dg/sns-msg-status.html
http://docs.aws.amazon.com/sns/latest/dg/sns-msg-status.html
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
http://docs.aws.amazon.com/cli/latest/reference/sns/set-platform-application-attributes.html

tionEvents",
EventDeliveryFailure="arn:aws:sns:us-east-1:12345EXAMPLE:MyGCMPlatformApplica
tionEvents"

AWS SDKs
Call one of the following APIs, depending on your target programming language or platform:

API reference linksProgramming language
or platform

setPlatformApplicationAttributesAndroid

AWSSNSSetPlatformApplicationAttributesInputiOS

setPlatformApplicationAttributesJava

setPlatformApplicationAttributesJavaScript

SetPlatformApplicationAttributes.NET

SetPlatformApplicationAttributesPHP

set_platform_application_attributesPython (boto)

set_platform_application_attributesRuby

SetPlatformApplicationAttributesAsyncUnity

Set-SNSPlatformApplicationAttributesWindows PowerShell

Using the Amazon SNS Time To Live (TTL)
Message Attribute for Mobile Push Notifications

Amazon Simple Notification Service (Amazon SNS) provides support for setting a Time To Live (TTL)
message attribute for mobile push notifications messages. This is in addition to the existing capability of
setting TTL within the Amazon SNS message body for the mobile push notification services that support
this, such as Amazon Device Messaging (ADM) and Google Cloud Messaging for Android (GCM).

The TTL message attribute is used to specify expiration metadata about a message. This allows you to
specify the amount of time that the push notification service, such as Apple Push Notification Service
(APNS) or GCM, has to deliver the message to the endpoint. If for some reason (such as the mobile
device has been turned off) the message is not deliverable within the specified TTL, then the message
will be dropped and no further attempts to deliver it will be made.To specify TTL within message attributes,
you can use the AWS Management Console, AWS software development kits (SDKs), or query API.

Topics

• TTL Message Attributes for Push Notification Services (p. 96)

• Precedence Order for Determining TTL (p. 96)

• Specifying TTL with the AWS Management Console (p. 97)

• Specifying TTL with the AWS SDKs (p. 97)

API Version 2010-03-31
95

Amazon Simple Notification Service Developer Guide
Amazon SNS TTL

http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/services/sns/AmazonSNSClient.html#setPlatformApplicationAttributes%28com.amazonaws.services.sns.model.SetPlatformApplicationAttributesRequest%29
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSSNSSetPlatformApplicationAttributesInput.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sns/AmazonSNSClient.html#setPlatformApplicationAttributes(com.amazonaws.services.sns.model.SetPlatformApplicationAttributesRequest)
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#setPlatformApplicationAttributes-property
http://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SNS/MSNS_SNSSetPlatformApplicationAttributes_SetPlatformApplicationAttributesRequest.html
http://docs.aws.amazon.com/aws-sdk-php/v3/api/api-sns-2010-03-31.html#setplatformapplicationattributes
http://boto.readthedocs.org/en/latest/ref/sns.html
http://docs.aws.amazon.com/sdkforruby/api/Aws/SNS/Client.html#set_platform_application_attributes-instance_method
http://docs.aws.amazon.com/awssdkunity/latest/apireference/items/SNS/MSNS_SNSSetPlatformApplicationAs_SetPlatformApplicationAs_!SetPlatformApplicationAsSetPlatformApplicationAs!_.html
http://docs.aws.amazon.com/powershell/latest/reference/items/Set-SNSPlatformApplicationAttributes.html

TTL Message Attributes for Push Notification
Services
The following is a list of the TTL message attributes for push notification services that you can use to set
when using the AWS SDKs or query API:

TTL Message AttributePush Notification Service

AWS.SNS.MOBILE.ADM.TTLAmazon Device Messaging (ADM)

AWS.SNS.MOBILE.APNS.TTLApple Push Notification Service (APNS)

AWS.SNS.MOBILE.APNS_SANDBOX.TTLApple Push Notification Service Sandbox
(APNS_SANDBOX)

AWS.SNS.MOBILE.BAIDU.TTLBaidu Cloud Push (Baidu)

AWS.SNS.MOBILE.GCM.TTLGoogle Cloud Messaging for Android (GCM)

AWS.SNS.MOBILE.WNS.TTLWindows Push Notification Services (WNS)

Each of the push notification services handle TTL differently. Amazon SNS provides an abstract view of
TTL over all the push notification services, which makes it easier to specify TTL. When you use the AWS
Management Console to specify TTL (in seconds), you only have to enter the TTL value once and Amazon
SNS will then calculate the TTL for each of the selected push notification services when publishing the
message.

TTL is relative to the publish time. Before handing off a push notification message to a specific push
notification service, Amazon SNS computes the dwell time (the time between the publish timestamp and
just before handing off to a push notification service) for the push notification and passes the remaining
TTL to the specific push notification service. If TTL is shorter than the dwell time, Amazon SNS won't
attempt to publish.

If you specify a TTL for a push notification message, then the TTL value must be a positive integer, unless
the value of 0 has a specific meaning for the push notification service—such as with APNS and GCM. If
the TTL value is set to 0 and the push notification service does not have a specific meaning for 0, then
Amazon SNS will drop the message. For more information about the TTL parameter set to 0 when using
APNS, see expiration date. For more information about the TTL parameter set to 0 when using GCM,
see Lifetime of a message.

Precedence Order for Determining TTL
The precedence that Amazon SNS uses to determine the TTL for a push notification message is based
on the following order, where the lowest number has the highest priority:

1. Message attribute TTL

2. Message body TTL

3. Push notification service default TTL (varies per service)

4. Amazon SNS default TTL (4 weeks)

If you set different TTL values (one in message attributes and another in the message body) for the same
message, then Amazon SNS will modify the TTL in the message body to match the TTL specified in the
message attribute.

API Version 2010-03-31
96

Amazon Simple Notification Service Developer Guide
TTL Message Attributes for Push Notification Services

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/CommunicatingWIthAPS.html
https://developers.google.com/cloud-messaging/concept-options#lifetime

Specifying TTL with the AWS Management Console
You can specify TTL with the AWS Management Console.

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left Navigation pane, click Apps, and then click the app containing the endpoints you want
to set TTL for when publishing a message.

3. Select the endpoints to publish a message to, click Endpoint Actions and then click Publish.

4. On the Publish dialog box, enter the number of seconds for Time to Live (TTL) and then click Publish
Message.

Specifying TTL with the AWS SDKs
The AWS SDKs provide APIs in several languages for using TTL with Amazon SNS.

For more information about the SDK for Java, see Getting Started with the AWS SDK for Java.

The following Java example shows how to configure a TTL message attribute and publish the message
to an endpoint, which in this example is registered with Baidu Cloud Push:

Map<String, MessageAttributeValue> messageAttributes = new HashMap<String,
MessageAttributeValue>();

// Insert your desired value (in seconds) of TTL here. For example, a TTL of 1
 day would be 86,400 seconds.
messageAttributes.put("AWS.SNS.MOBILE.BAIDU.TTL", new MessageAttribute
Value().withDataType("String").withStringValue("86400"));

PublishRequest publishRequest = new PublishRequest();
publishRequest.setMessageAttributes(messageAttributes);
String message = "{\"title\":\"Test_Title\",\"description\":\"Test_Descrip
tion\"}";
publishRequest.setMessage(message);
publishRequest.setMessageStructure("json");
publishRequest.setTargetArn("arn:aws:sns:us-east-1:999999999999:end
point/BAIDU/TestApp/318fc7b3-bc53-3d63-ac42-e359468ac730");
PublishResult publishResult = snsClient.publish(publishRequest);

For more information about using message attributes with Amazon SNS, see Using Amazon SNS Message
Attributes (p. 164).

Using Amazon SNS Mobile Push APIs
To use the Amazon SNS mobile push APIs, you must first meet the prerequisites for the push notification
service, such as Apple Push Notification Service (APNS) and Google Cloud Messaging for Android (GCM).
For more information about the prerequisites, see Prerequisites (p. 37).

To send a push notification message to a mobile app and device using the APIs, you must first use the
CreatePlatformApplication action, which returns a PlatformApplicationArn attribute. The
PlatformApplicationArn attribute is then used by CreatePlatformEndpoint, which returns an
EndpointArn attribute.You can then use the EndpointArn attribute with the Publish action to send

API Version 2010-03-31
97

Amazon Simple Notification Service Developer Guide
Specifying TTL with the AWS Management Console

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
http://aws.amazon.com/tools/
http://aws.amazon.com/developers/getting-started/java/

a notification message to a mobile app and device, or you could use the EndpointArn attribute with the
Subscribe action for subscription to a topic. For more information, see Amazon SNS Mobile Push
High Level Steps (p. 38).

The following is a list and description of the Amazon SNS mobile push APIs:

DescriptionAPI

Creates a platform application object for one of the
supported push notification services, such as APNS
and GCM, to which devices and mobile apps may
register. Returns a PlatformApplicationArn
attribute, which is used by the CreatePlatfor-
mEndpoint action. For more information, see
CreatePlatformApplication in the Amazon Simple
Notification Service API Reference.

CreatePlatformApplication

Sets the attributes of the platform application object.
For more information, see SetPlatformApplication-
Attributes in the Amazon Simple Notification Ser-
vice API Reference.

SetPlatformApplicationAttributes

Retrieves the attributes of the platform application
object. For more information, see GetPlatformAp-
plicationAttributes in the Amazon Simple Notifica-
tion Service API Reference.

GetPlatformApplicationAttributes

Lists the platform application objects for the suppor-
ted push notification services. For more information,
see ListPlatformApplications in the Amazon Simple
Notification Service API Reference.

ListPlatformApplications

Deletes a platform application object. For more in-
formation, see DeletePlatformApplication in the
Amazon Simple Notification Service API Reference.

DeletePlatformApplication

Creates an endpoint for a device and mobile app
on one of the supported push notification services.
CreatePlatformEndpoint uses the Platform-
ApplicationArn attribute returned from the
CreatePlatformApplication action.The End-
pointArn attribute, which is returned when using
CreatePlatformEndpoint, is then used with the
Publish action to send a notification message to
a mobile app and device. For more information,
see CreatePlatformEndpoint in the Amazon Simple
Notification Service API Reference.

CreatePlatformEndpoint

Sets the attributes for an endpoint for a device and
mobile app. For more information, see SetEndpoint-
Attributes in the Amazon Simple Notification Ser-
vice API Reference.

SetEndpointAttributes

Retrieves the endpoint attributes for a device and
mobile app. For more information, see GetEndpoint-
Attributes in the Amazon Simple Notification Ser-
vice API Reference.

GetEndpointAttributes

API Version 2010-03-31
98

Amazon Simple Notification Service Developer Guide
Amazon SNS Mobile Push APIs

http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_SetPlatformApplicationAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_SetPlatformApplicationAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_GetPlatformApplicationAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_GetPlatformApplicationAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_ListPlatformApplications.html
http://docs.aws.amazon.com/sns/latest/api/API_DeletePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformEndpoint.html
http://docs.aws.amazon.com/sns/latest/api/API_SetEndpointAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_SetEndpointAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_GetEndpointAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_GetEndpointAttributes.html

DescriptionAPI

Lists the endpoints and endpoint attributes for
devices and mobile apps in a supported push noti-
fication service. For more information, see
ListEndpointsByPlatformApplication in the Amazon
Simple Notification Service API Reference.

ListEndpointsByPlatformApplication

Deletes the endpoint for a device and mobile app
on one of the supported push notification services.
For more information, see DeleteEndpoint in the
Amazon Simple Notification Service API Reference.

DeleteEndpoint

API Errors for Amazon SNS Mobile Push
Errors that are returned by the Amazon SNS APIs for mobile push are listed in the following table. For
more information about the Amazon SNS APIs for mobile push, see Using Amazon SNS Mobile Push
APIs (p. 97).

Action that Returns
this Error

HTTPS Status CodeDescriptionError

CreatePlatformAp-
plication

400The required application
name is set to null.

Application Name is null
string

CreatePlatformAp-
plication

400The required platform
name is set to null.

Platform Name is null
string

CreatePlatformAp-
plication

400An invalid or out-of-
range value was sup-
plied for the platform
name.

Platform Name is invalid

CreatePlatformAp-
plication

400An invalid certificate was
supplied for the APNS
principal, which is the
SSL certificate. For
more information, see
CreatePlatformApplica-
tion in the Amazon
Simple Notification Ser-
vice API Reference.

APNS — Principal is not
a valid certificate

CreatePlatformAp-
plication

400A valid certificate that is
not in the .pem format
was supplied for the
APNS principal, which is
the SSL certificate.

APNS — Principal is a
valid cert but not in a
.pem format

CreatePlatformAp-
plication

400An expired certificate
was supplied for the
APNS principal, which is
the SSL certificate.

APNS — Prinicipal is an
expired certificate

API Version 2010-03-31
99

Amazon Simple Notification Service Developer Guide
API Errors

http://docs.aws.amazon.com/sns/latest/api/API_ListEndpointsByPlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_DeleteEndpoint.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html

Action that Returns
this Error

HTTPS Status CodeDescriptionError

CreatePlatformAp-
plication

400A non-Apple issued cer-
tificate was supplied for
the APNS principal,
which is the SSL certific-
ate.

APNS — Principal is not
an Apple issued certific-
ate

CreatePlatformAp-
plication

400The APNS principal,
which is the SSL certific-
ate, was not provided.

APNS — Principal is not
provided

CreatePlatformAp-
plication

400The APNS credential,
which is the private key,
was not provided. For
more information, see
CreatePlatformApplica-
tion in the Amazon
Simple Notification Ser-
vice API Reference.

APNS — Credential is
not provided

CreatePlatformAp-
plication

400The APNS credential,
which is the private key,
is not in a valid .pem
format.

APNS — Credential are
not in a valid .pem
format

CreatePlatformAp-
plication

400The GCM credential,
which is the API key,
was not provided. For
more information, see
CreatePlatformApplica-
tion in the Amazon
Simple Notification Ser-
vice API Reference.

GCM — serverAPIKey
is not provided

CreatePlatformAp-
plication

400The GCM credential,
which is the API key, is
empty.

GCM — serverAPIKey
is empty

CreatePlatformAp-
plication

400The GCM credential,
which is the API key, is
null.

GCM — serverAPIKey
is a null string

CreatePlatformAp-
plication

400The GCM credential,
which is the API key, is
invalid.

GCM — serverAPIKey
is invalid

CreatePlatformAp-
plication

400The required client
secret is not provided.

ADM — clientsecret is
not provided

CreatePlatformAp-
plication

400The required string for
the client secret is null.

ADM — clientsecret is a
null string

CreatePlatformAp-
plication

400The required string for
the client secret is
empty.

ADM — client_secret is
empty string

API Version 2010-03-31
100

Amazon Simple Notification Service Developer Guide
API Errors

http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html

Action that Returns
this Error

HTTPS Status CodeDescriptionError

CreatePlatformAp-
plication

400The required string for
the client secret is not
valid.

ADM — client_secret is
not valid

CreatePlatformAp-
plication

400The required string for
the client ID is empty.

ADM — client_id is
empty string

CreatePlatformAp-
plication

400The required string for
the client ID is not
provided.

ADM — clientId is not
provided

CreatePlatformAp-
plication

400The required string for
the client ID is null.

ADM — clientid is a null
string

CreatePlatformAp-
plication

400The required string for
the client ID is not valid.

ADM — client_id is not
valid

CreatePlatformAp-
plication

400EventEndpointCreated
has invalid ARN format.

EventEndpointCreated
has invalid ARN format

CreatePlatformAp-
plication

400EventEndpointDeleted
has invalid ARN format.

EventEndpointDeleted
has invalid ARN format

CreatePlatformAp-
plication

400EventEndpointUpdated
has invalid ARN format.

EventEndpointUpdated
has invalid ARN format

CreatePlatformAp-
plication

400EventDeliveryAttempt-
Failure has invalid ARN
format.

EventDeliveryAttempt-
Failure has invalid ARN
format

CreatePlatformAp-
plication

400EventDeliveryFailure
has invalid ARN format.

EventDeliveryFailure
has invalid ARN format

CreatePlatformAp-
plication

400EventEndpointCreated
is not an existing topic.

EventEndpointCreated
is not an existing Topic

CreatePlatformAp-
plication

400EventEndpointDeleted
is not an existing topic.

EventEndpointDeleted
is not an existing Topic

CreatePlatformAp-
plication

400EventEndpointUpdated
is not an existing topic.

EventEndpointUpdated
is not an existing Topic

CreatePlatformAp-
plication

400EventDeliveryAttempt-
Failure is not an existing
topic.

EventDeliveryAttempt-
Failure is not an existing
Topic

CreatePlatformAp-
plication

400EventDeliveryFailure is
not an existing topic.

EventDeliveryFailure is
not an existing Topic

SetPlatformAttrib-
utes

400Platform ARN is invalid.Platform ARN is invalid

SetPlatformAttrib-
utes

400Platform ARN is valid
but does not belong to
the user.

Platform ARN is valid
but does not belong to
the user

API Version 2010-03-31
101

Amazon Simple Notification Service Developer Guide
API Errors

Action that Returns
this Error

HTTPS Status CodeDescriptionError

SetPlatformAttrib-
utes

400An invalid certificate was
supplied for the APNS
principal, which is the
SSL certificate. For
more information, see
CreatePlatformApplica-
tion in the Amazon
Simple Notification Ser-
vice API Reference.

APNS — Principal is not
a valid certificate

SetPlatformAttrib-
utes

400A valid certificate that is
not in the .pem format
was supplied for the
APNS principal, which is
the SSL certificate.

APNS — Principal is a
valid cert but not in a
.pem format

SetPlatformAttrib-
utes

400An expired certificate
was supplied for the
APNS principal, which is
the SSL certificate.

APNS — Prinicipal is an
expired certificate

SetPlatformAttrib-
utes

400A non-Apple issued cer-
tificate was supplied for
the APNS principal,
which is the SSL certific-
ate.

APNS — Principal is not
an Apple issued certific-
ate

SetPlatformAttrib-
utes

400The APNS principal,
which is the SSL certific-
ate, was not provided.

APNS — Principal is not
provided

SetPlatformAttrib-
utes

400The APNS credential,
which is the private key,
was not provided. For
more information, see
CreatePlatformApplica-
tion in the Amazon
Simple Notification Ser-
vice API Reference.

APNS — Credential is
not provided

SetPlatformAttrib-
utes

400The APNS credential,
which is the private key,
is not in a valid .pem
format.

APNS — Credential are
not in a valid .pem
format

SetPlatformAttrib-
utes

400The GCM credential,
which is the API key,
was not provided. For
more information, see
CreatePlatformApplica-
tion in the Amazon
Simple Notification Ser-
vice API Reference.

GCM — serverAPIKey
is not provided

API Version 2010-03-31
102

Amazon Simple Notification Service Developer Guide
API Errors

http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html

Action that Returns
this Error

HTTPS Status CodeDescriptionError

SetPlatformAttrib-
utes

400The GCM credential,
which is the API key, is
null.

GCM — serverAPIKey
is a null string

SetPlatformAttrib-
utes

400The required string for
the client ID is not
provided.

ADM — clientId is not
provided

SetPlatformAttrib-
utes

400The required string for
the client ID is null.

ADM — clientid is a null
string

SetPlatformAttrib-
utes

400The required client
secret is not provided.

ADM — clientsecret is
not provided

SetPlatformAttrib-
utes

400The required string for
the client secret is null.

ADM — clientsecret is a
null string

SetPlatformAttrib-
utes

400EventEndpointUpdated
has invalid ARN format.

EventEndpointUpdated
has invalid ARN format

SetPlatformAttrib-
utes

400EventEndpointDeleted
has invalid ARN format.

EventEndpointDeleted
has invalid ARN format

SetPlatformAttrib-
utes

400EventEndpointUpdated
has invalid ARN format.

EventEndpointUpdated
has invalid ARN format

SetPlatformAttrib-
utes

400EventDeliveryAttempt-
Failure has invalid ARN
format.

EventDeliveryAttempt-
Failure has invalid ARN
format

SetPlatformAttrib-
utes

400EventDeliveryFailure
has invalid ARN format.

EventDeliveryFailure
has invalid ARN format

SetPlatformAttrib-
utes

400EventEndpointCreated
is not an existing topic.

EventEndpointCreated
is not an existing Topic

SetPlatformAttrib-
utes

400EventEndpointDeleted
is not an existing topic.

EventEndpointDeleted
is not an existing Topic

SetPlatformAttrib-
utes

400EventEndpointUpdated
is not an existing topic.

EventEndpointUpdated
is not an existing Topic

SetPlatformAttrib-
utes

400EventDeliveryAttempt-
Failure is not an existing
topic.

EventDeliveryAttempt-
Failure is not an existing
Topic

SetPlatformAttrib-
utes

400EventDeliveryFailure is
not an existing topic.

EventDeliveryFailure is
not an existing Topic

GetPlatformApplica-
tionAttributes

400The platform ARN is in-
valid.

Platform ARN is invalid

GetPlatformApplica-
tionAttributes

403The platform ARN is
valid, but does not be-
long to the user.

Platform ARN is valid
but does not belong to
the user

ListPlatformApplic-
ations

400The specified token is
invalid.

Token specified is inval-
id

API Version 2010-03-31
103

Amazon Simple Notification Service Developer Guide
API Errors

Action that Returns
this Error

HTTPS Status CodeDescriptionError

ListEndpointsBy-
PlatformApplica-
tion

400The platform ARN is in-
valid.

Platform ARN is invalid

ListEndpointsBy-
PlatformApplica-
tion

404The platform ARN is
valid, but does not be-
long to the user.

Platform ARN is valid
but does not belong to
the user

ListEndpointsBy-
PlatformApplica-
tion

400The specified token is
invalid.

Token specified is inval-
id

DeletePlatformAp-
plication

400The platform ARN is in-
valid.

Platform ARN is invalid

DeletePlatformAp-
plication

403The platform ARN is
valid, but does not be-
long to the user.

Platform ARN is valid
but does not belong to
the user

CreatePlatformEnd-
point

400The platform ARN is in-
valid.

Platform ARN is invalid

CreatePlatformEnd-
point

404The platform ARN is
valid, but does not be-
long to the user.

Platform ARN is valid
but does not belong to
the user

CreatePlatformEnd-
point

400The token is not spe-
cified.

Token is not specified

CreatePlatformEnd-
point

400The token is not the cor-
rect length.

Token is not of correct
length

CreatePlatformEnd-
point

400The customer user data
cannot be more than
2048 bytes long in UTF-
8 encoding.

Customer User data is
too large

DeleteEndpoint400The endpoint ARN is in-
valid.

Endpoint ARN is invalid

DeleteEndpoint403The endpoint ARN is
valid, but does not be-
long to the user.

Endpoint ARN is valid
but does not belong to
the user

SetEndpointAttrib-
utes

400The endpoint ARN is in-
valid.

Endpoint ARN is invalid

SetEndpointAttrib-
utes

403The endpoint ARN is
valid, but does not be-
long to the user.

Endpoint ARN is valid
but does not belong to
the user

SetEndpointAttrib-
utes

400The token is not spe-
cified.

Token is not specified

SetEndpointAttrib-
utes

400The token is not the cor-
rect length.

Token is not of correct
length

API Version 2010-03-31
104

Amazon Simple Notification Service Developer Guide
API Errors

Action that Returns
this Error

HTTPS Status CodeDescriptionError

SetEndpointAttrib-
utes

400The customer user data
cannot be more than
2048 bytes long in UTF-
8 encoding.

Customer User data is
too large

GetEndpointAttrib-
utes

400The endpoint ARN is in-
valid.

Endpoint ARN is invalid

GetEndpointAttrib-
utes

403The endpoint ARN is
valid, but does not be-
long to the user.

Endpoint ARN is valid
but does not belong to
the user

Publish400The target ARN is inval-
id.

Target ARN is invalid

Publish403The target ARN is valid,
but does not belong to
the user.

Target ARN is valid but
does not belong to the
user

Publish400The message format is
invalid.

Message format is inval-
id

Publish400The message size is lar-
ger than supported by
the protocol/end-service.

Message size is larger
than supported by pro-
tocol/end-service

API Version 2010-03-31
105

Amazon Simple Notification Service Developer Guide
API Errors

Sending Amazon SNS Messages
to Amazon SQS Queues

Amazon SNS works closely with Amazon Simple Queue Service (Amazon SQS). Both services provide
different benefits for developers. Amazon SNS allows applications to send time-critical messages to
multiple subscribers through a “push” mechanism, eliminating the need to periodically check or “poll” for
updates. Amazon SQS is a message queue service used by distributed applications to exchange messages
through a polling model, and can be used to decouple sending and receiving components—without
requiring each component to be concurrently available. By using Amazon SNS and Amazon SQS together,
messages can be delivered to applications that require immediate notification of an event, and also
persisted in an Amazon SQS queue for other applications to process at a later time.

When you subscribe an Amazon SQS queue to an Amazon SNS topic, you can publish a message to
the topic and Amazon SNS sends an Amazon SQS message to the subscribed queue.The Amazon SQS
message contains the subject and message that were published to the topic along with metadata about
the message in a JSON document. The Amazon SQS message will look similar to the following JSON
document.

{
 "Type" : "Notification",
 "MessageId" : "63a3f6b6-d533-4a47-aef9-fcf5cf758c76",
 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:MyTopic",
 "Subject" : "Testing publish to subscribed queues",
 "Message" : "Hello world!",
 "Timestamp" : "2012-03-29T05:12:16.901Z",
 "SignatureVersion" : "1",
 "Signature" : "EXAMPLEnTrFPa37tnVO0FF9Iau3MGzjlJLRfySEoWz4uZHSj6ycK4ph71Zm
dv0NtJ4dC/El9FOGp3VuvchpaTraNHWhhq/OsN1HVz20zxmF9b88R8GtqjfKB5woZZmz87HiM6CY
DTo3l7LMwFT4VU7ELtyaBBafhPTg9O5CnKkg=",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/SimpleNotificationSer
vice-f3ecfb7224c7233fe7bb5f59f96de52f.pem",
 "UnsubscribeURL" : "https://sns.us-west-2.amazonaws.com/?Action=Unsubscribe&Sub
scriptionArn=arn:aws:sns:us-west-2:123456789012:MyTopic:c7fe3a54-ab0e-4ec2-88e0-
db410a0f2bee"
}

API Version 2010-03-31
106

Amazon Simple Notification Service Developer Guide

http://aws.amazon.com/sns/

Note
Instead of following the steps listed below, you can now subscribe an Amazon SQS queue to
an Amazon SNS topic using the Amazon SQS console, which simplifies the process. For more
information, see Subscribe Queue to Amazon SNS Topic

To enable an Amazon SNS topic to send messages to an Amazon SQS queue, follow these steps:

1. Get the Amazon Resource Name (ARN) of the queue you want to send messages to and the topic to
which you want to subscribe the queue. (p. 107)

2. Give sqs:SendMessage permission to the Amazon SNS topic so that it can send messages to the
queue. (p. 108)

3. Subscribe the queue to the Amazon SNS topic. (p. 109)

4. Give IAM users or AWS accounts the appropriate permissions to publish to the Amazon SNS topic
and read messages from the Amazon SQS queue. (p. 109)

5. Test it out by publishing a message to the topic and reading the message from the queue. (p. 111)

To learn about how to set up a topic to send messages to a queue that is in a different AWS account,
see Sending Amazon SNS messages to an Amazon SQS queue in a different account (p. 112).

To see an AWS CloudFormation template that creates a topic that sends messages to two queues, see
Using an AWS CloudFormation Template to Create a Topic that Sends Messages to Amazon SQS
Queues (p. 115).

Step 1. Get the ARN of the queue and the topic.
When subscribing a queue to your topic, you'll need a copy of the ARN for the queue. Similarly, when
giving permission for the topic to send messages to the queue, you'll need a copy of the ARN for the
topic.

To get the queue ARN, you can use the Amazon SQS console or the GetQueueAttributes API action.

To get the queue ARN from the Amazon SQS console

1. Sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Select the box for the queue whose ARN you want to get.

3. From the Details tab, copy the ARN value so that you can use it to subscribe to the Amazon SNS
topic.

To get the topic ARN, you can use the Amazon SNS console, the sns-get-topic-attributes command, or
the GetQueueAttributes API action.

To get the topic ARN from the Amazon SNS console

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the navigation pane, select the topic whose ARN you want to get.

3. From the Topic Details pane, copy the Topic ARN value so that you can use it to give permission
for the Amazon SNS topic to send messages to the queue.

API Version 2010-03-31
107

Amazon Simple Notification Service Developer Guide
Step 1. Get the ARN of the queue and the topic.

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqssubscribe.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryGetQueueAttributes.html
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
http://docs.aws.amazon.com/sns/latest/cli/sns_get_topic_attributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryGetQueueAttributes.html
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Step 2. Give permission to the Amazon SNS
topic to send messages to the Amazon SQS
queue

For an Amazon SNS topic to be able to send messages to a queue, you must set a policy on the queue
that allows the Amazon SNS topic to perform the sqs:SendMessage action.

Before you subscribe a queue to a topic, you need a topic and a queue. If you haven't already created a
topic or queue, create them now. For more information, see Creating a Topic in the Amazon Simple
Notification Service Getting Started Guide. For more information, see Creating a Queue in the Amazon
Simple Queue Service Getting Started Guide.

To set a policy on a queue, you can use the Amazon SQS console or the SetQueueAttributes API action.
Before you start, make sure you have the ARN for the topic that you want to allow to send messages to
the queue.

To set a SendMessage policy on a queue using the Amazon SQS console

1. Sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Select the box for the queue whose policy you want to set, click the Permissions tab, and then click
Add a Permission.

3. In the Add a Permission dialog box, select Allow for Effect, select Everybody (*) for Principal,
and then select SendMessage from the Actions drop-down.

4. Add a condition that allows the action for the topic. Click Add Conditions (optional), select ArnEquals
for Condition, select aws:SourceArn for Key, and paste in the topic ARN for Value. Click Add
Condition. The new condition should appear at the bottom of the box (you may have to scroll down
to see this).

5. Click Add Permission.

If you wanted to create the policy document yourself, you would create a policy like the following. The
policy allows MyTopic to send messages to MyQueue.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"MySQSPolicy001",
 "Effect":"Allow",
 "Principal":"*",
 "Action":"sqs:SendMessage",
 "Resource":"arn:aws:sqs:us-east-1:123456789012:MyQueue",
 "Condition":{
 "ArnEquals":{
 "aws:SourceArn":"arn:aws:sns:us-east-1:123456789012:MyTopic"
 }
 }
 }
]
}

API Version 2010-03-31
108

Amazon Simple Notification Service Developer Guide
Step 2. Give permission to the Amazon SNS topic to

send messages to the Amazon SQS queue

http://docs.aws.amazon.com/sns/latest/gsg/CreateTopic.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/CreatingQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QuerySetQueueAttributes.html
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

Step 3. Subscribe the queue to the Amazon SNS
topic

To send messages to a queue through a topic, you must subscribe the queue to the Amazon SNS topic.
You specify the queue by its ARN. To subscribe to a topic, you can use the Amazon SNS console, the
sns-subscribe command, or the Subscribe API action. Before you start, make sure you have the ARN for
the queue that you want to subscribe.

To subscribe a queue to a topic using the Amazon SNS console

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the navigation pane, select the topic.

3. Click Create Subscription, select Amazon SQS for Protocol, paste in the ARN for the queue that
you want the topic to send messages to for Endpoint, and click Subscribe.

4. For the Subscription request received! message, click Close.

When the subscription is confirmed, your new subscription's Subscription ID displays its subscription
ID. If the owner of the queue creates the subscription, the subscription is automatically confirmed
and the subscription should be active almost immediately.

Usually, you'll be subscribing your own queue to your own topic in your own account. However, you
can also subscribe a queue from a different account to your topic. If the user who creates the
subscription is not the owner of the queue (for example, if a user from account A subscribes a queue
from account B to a topic in account A), the subscription must be confirmed. For more information
about subscribing a queue from a different account and confirming the subscription, see Sending
Amazon SNS messages to an Amazon SQS queue in a different account (p. 112).

Step 4. Give users permissions to the
appropriate topic and queue actions

You should use AWS Identity and Access Management (IAM) to allow only appropriate users to publish
to the Amazon SNS topic and to read/delete messages from the Amazon SQS queue. For more information
about controlling actions on topics and queues for IAM users, see Controlling User Access to Your AWS
Account in the Amazon Simple Notification Service Getting Started Guide and Controlling User Access
to Your AWS Account in the Amazon SQS Developer Guide.

There are two ways to control access to a topic or queue:

• Add a policy to an IAM user or group (p. 110). The simplest way to give users permissions to topics or
queues is to create a group and add the appropriate policy to the group and then add users to that
group. It's much easier to add and remove users from a group than to keep track of which policies you
set on individual users.

• Add a policy to topic or queue (p. 110). If you want to give permissions to a topic or queue to another
AWS account, the only way you can do that is by adding a policy that has as its principal the AWS
account you want to give permissions to.

You should use the first method for most cases (apply policies to groups and manage permissions for
users by adding or removing the appropriate users to the groups). If you need to give permissions to a
user in another account, you should use the second method.

API Version 2010-03-31
109

Amazon Simple Notification Service Developer Guide
Step 3. Subscribe the queue to the Amazon SNS topic

http://docs.aws.amazon.com/sns/latest/cli/sns_subscribe.html
http://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
http://docs.aws.amazon.com/sns/latest/gsg/UsingIAMwithSNS.html
http://docs.aws.amazon.com/sns/latest/gsg/UsingIAMwithSNS.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html

Adding a policy to an IAM user or group
If you added the following policy to an IAM user or group, you would give that user or members of that
group permission to perform the sns:Publish action on the topic MyTopic.

{
 "Version":"2012-10-17",
 "Statement":[{
 "Sid":"AllowPublishToMyTopic",
 "Effect":"Allow",
 "Action":"sns:Publish",
 "Resource":"arn:aws:sns:us-east-1:123456789012:MyTopic"
 }
]
}

If you added the following policy to an IAM user or group, you would give that user or members of that
group permission to perform the sqs:ReceiveMessage and sqs:DeleteMessage actions on the queues
MyQueue1 and MyQueue2.

{
 "Version":"2012-10-17",
 "Statement":[{
 "Sid":"AllowReadDeleteMessageOnMyQueue",
 "Effect":"Allow",
 "Action":[
 "sqs:ReceiveMessage",
 "sqs:DeleteMessage"
],
 "Resource":[
 "arn:aws:sns:us-east-1:123456789012:MyQueue1",
 "arn:aws:sns:us-east-1:123456789012:MyQueue2"
],
 }
]
}

Adding a policy to a topic or queue
The following example policies show how to give another account permissions to a topic and queue.

Note
When you give another AWS account access to a resource in your account, you are also giving
IAM users who have admin-level access (wildcard access) permissions to that resource. All
other IAM users in the other account are automatically denied access to your resource. If you
want to give specific IAM users in that AWS account access to your resource, the account or an
IAM user with admin-level access must delegate permissions for the resource to those IAM
users. For more information about cross-account delegation, see Enabling Cross-Account Access
in the Using IAM Guide.

If you added the following policy to a topic MyTopic in account 123456789012, you would give account
111122223333 permission to perform the sns:Publish action on that topic.

{
 "Version":"2012-10-17",

API Version 2010-03-31
110

Amazon Simple Notification Service Developer Guide
Adding a policy to an IAM user or group

http://docs.aws.amazon.com/IAM/latest/UserGuide/Delegation.html

 "Id":"MyTopicPolicy",
 "Statement":[{
 "Sid":"Allow-publish-to-topic",
 "Effect":"Allow",
 "Principal":{
 "AWS":"111122223333"
 },
 "Action":"sns:Publish",
 "Resource":"arn:aws:sns:us-east-1:123456789012:MyTopic"
 }
]
}

If you added the following policy to a queue MyQueue in account 123456789012, you would give account
111122223333 permission to perform the sqs:ReceiveMessage and sqs:DeleteMessage actions on
that queue.

{
 "Version":"2012-10-17",
 "Id":"MyQueuePolicy",
 "Statement":[
 {
 "Sid":"Allow-Processing-Of-Messages-for-Queue",
 "Effect":"Allow",
 "Principal":{
 "AWS":"111122223333"
 },
 "Action":[
 "sqs:DeleteMessage",
 "sqs:ReceiveMessage"
],
 "Resource":[
 "arn:aws:sns:us-east-1:123456789012:MyQueue",
]
 }
]
}

Step 5.Test it
You can test a topic's queue subscriptions by publishing to the topic and viewing the message that the
topic sends to the queue.

To publish to a topic using the Amazon SNS console

1. Using the credentials of the AWS account or IAM user with permission to publish to the topic, sign
in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the navigation pane, select the topic and click Publish to Topic.

3. In the Subject box, enter a subject (for example, Testing publish to queue) in the Message
box, enter some text (for example, Hello world!), and click Publish Message. The following
message appears:Your message has been successfully published.

API Version 2010-03-31
111

Amazon Simple Notification Service Developer Guide
Step 5.Test it

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

To view the message from the topic using the Amazon SQS console

1. Using the credentials of the AWS account or IAM user with permission to view messages in the
queue, sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Check the box for the queue that is subscribed to the topic.

3. From the Queue Action drop-down, select View/Delete Messages and click Start Polling for
Messages. A message with a type of Notification appears.

4. In the Body column, click More Details. The Message Details box contains a JSON document that
contains the subject and message that you published to the topic. The message looks similar to the
following JSON document.

{
 "Type" : "Notification",
 "MessageId" : "63a3f6b6-d533-4a47-aef9-fcf5cf758c76",
 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:MyTopic",
 "Subject" : "Testing publish to subscribed queues",
 "Message" : "Hello world!",
 "Timestamp" : "2012-03-29T05:12:16.901Z",
 "SignatureVersion" : "1",
 "Signature" : "EXAMPLEnTrFPa37tnVO0FF9Iau3MGzjlJLRfySEoWz4uZHSj6ycK4ph71Zm
dv0NtJ4dC/El9FOGp3VuvchpaTraNHWhhq/OsN1HVz20zxmF9b88R8GtqjfKB5woZZmz87HiM6CY
DTo3l7LMwFT4VU7ELtyaBBafhPTg9O5CnKkg=",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/SimpleNotification
Service-f3ecfb7224c7233fe7bb5f59f96de52f.pem",
 "UnsubscribeURL" : "https://sns.us-west-2.amazonaws.com/?Action=Unsub
scribe&SubscriptionArn=arn:aws:sns:us-west-2:123456789012:MyTopic:c7fe3a54-
ab0e-4ec2-88e0-db410a0f2bee"
}

5. Click Close.You have successfully published to a topic that sends notification messages to a queue.

Sending Amazon SNS messages to an Amazon
SQS queue in a different account

You can publish a notification to an Amazon SNS topic with one or more subscriptions to Amazon SQS
queues in another account.You set up the topic and queues the same way you would if they were in the
same account (see Sending Amazon SNS Messages to Amazon SQS Queues (p.106)).The only difference
is how you handle subscription confirmation, and that depends on how you subscribe the queue to the
topic.

Topics

• Queue Owner Creates Subscription (p. 112)

• User Who Does Not Own the Queue Creates Subscription (p. 114)

Queue Owner Creates Subscription
When the queue owner creates the subscription, the subscription does not require confirmation. The
queue starts receiving notifications from the topic as soon as the Subscribe action completes.To enable
the queue owner to subscribe to the topic owner's topic, the topic owner must give the queue owner's
account permission to call the Subscribe action on the topic. When added to the topic MyTopic in the

API Version 2010-03-31
112

Amazon Simple Notification Service Developer Guide
Sending Messages to a Queue in a Different Account

https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

account 123456789012, the following policy gives the account 111122223333 permission to call
sns:Subscribe on MyTopic in the account 123456789012.

{
 "Version":"2012-10-17",
 "Id":"MyTopicSubscribePolicy",
 "Statement":[{
 "Sid":"Allow-other-account-to-subscribe-to-topic",
 "Effect":"Allow",
 "Principal":{
 "AWS":"111122223333"
 },
 "Action":"sns:Subscribe",
 "Resource":"arn:aws:sns:us-east-1:123456789012:MyTopic"
 }
]
}

After this policy has been set on MyTopic, a user can log in to the Amazon SNS console with credentials
for account 111122223333 to subscribe to the topic.

To add an Amazon SQS queue subscription to a topic in another account using the Amazon
SQS console

1. Using the credentials of the AWS account containing the queue or an IAM user in that account, sign
in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. Make sure you have the ARNs for both the topic and the queue.You will need them when you create
the subscription.

3. Make sure you have set sqs:SendMessage permission on the queue so that it can receive messages
from the topic. For more information, see Step 2. Give permission to the Amazon SNS topic to send
messages to the Amazon SQS queue (p. 108).

4. In the navigation pane, select the SNS Dashboard.

5. In the Dashboard, in the Additional Actions section, click Create New Subscription.

6. In the Topic ARN box, enter the ARN for the topic.

7. For Protocol, select Amazon SQS.

8. In the Endpoint box, enter the ARN for the queue.

9. Click Subscribe.

10. For the Subscription request received! message, you'll notice text that says you must confirm the
subscription. Because you are the queue owner, the subscription does not need to be confirmed.
Click Close.You've completed the subscription process and notification messages published to the
topic can now be sent to the queue.

The user can also use the access key and secret key for the AWS account 111122223333 to issue the
sns-subscribe command or call the Subscribe API action to subscribe an Amazon SQS queue to
MyTopic in the account 123456789012. The following sns-subscribe command subscribes the queue
MyQ from account 111122223333 to the topic MyTopic in account 123456789012.

sns-subscribe arn:aws:sns:us-east-1:123456789012:MyTopic --protocol sqs --end
point arn:aws:sqs:us-east-1:111122223333:MyQ

API Version 2010-03-31
113

Amazon Simple Notification Service Developer Guide
Queue Owner Creates Subscription

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
http://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
http://docs.aws.amazon.com/sns/latest/cli/sns_subscribe.html

User Who Does Not Own the Queue Creates
Subscription
When a user who is not the queue owner creates the subscription (for example, when the topic owner in
account A adds a subscription for a queue in account B), the subscription must be confirmed.

Important
Before you subscribe to the topic, make sure you have set sqs:SendMessage permission on
the queue so that it can receive messages from the topic. See Step 2. Give permission to the
Amazon SNS topic to send messages to the Amazon SQS queue (p. 108).

When the user calls the Subscribe action, a message of type SubscriptionConfirmation is sent
to the queue and the subscription is displayed in the Amazon SNS console with its Subscription ID set
to Pending Confirmation. To confirm the subscription, a user who can read messages from the queue
must visit the URL specified in the SubscribeURL value in the message. Until the subscription is confirmed,
no notifications published to the topic are sent to the queue. To confirm a subscription, you can use the
Amazon SQS console or the ReceiveMessage API action.

To confirm a subscription using the Amazon SQS console

1. Sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Select the queue that has a pending subscription to the topic.

3. From the Queue Action drop-down, select View/Delete Messages and click Start Polling for
Messages. A message with a type of SubscriptionConfirmation appears.

4. In the Body column, click More Details.

5. In the text box, find the SubscribeURL value and copy the URL. It will look similar to the following
URL.

https://sns.us-west-2.amazonaws.com/?Action=ConfirmSubscription&Topi
cArn=arn:aws:sns:us-west-2:123456789012:MyTop
ic&Token=2336412f37fb687f5d51e6e241d09c805d352fe148e56f8cff30f023ff35db8bccbc62721725b074841be6524bb215b0c45ec571ba1e7faacc309940c0b4b9e511ab85eba671412a4c314ecd446127ff1a9cfe08642b8e3738e73c279dd3ae565bd98f842ed992a4742ebec0946ebd9a

API Version 2010-03-31
114

Amazon Simple Notification Service Developer Guide
User Who Does Not Own the Queue Creates Subscription

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryReceiveMessage.html
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

6. In a web browser, paste the URL into the address bar to visit the URL.You will see a response similar
to the following XML document.

<ConfirmSubscriptionResponse xmlns="http://sns.amazonaws.com/doc/2010-03-
31/">
 <ConfirmSubscriptionResult>
 <SubscriptionArn>arn:aws:sns:us-west-2:123456789012:MyTopic:c7fe3a54-
ab0e-4ec2-88e0-db410a0f2bee</SubscriptionArn>
 </ConfirmSubscriptionResult>
 <ResponseMetadata>
 <RequestId>dd266ecc-7955-11e1-b925-5140d02da9af</RequestId>
 </ResponseMetadata>
</ConfirmSubscriptionResponse>

If you view the topic subscription in the Amazon SNS console, you will now see that subscription
ARN replaces the Pending Confirmation message in the Subscription ID column.The subscribed
queue is ready to receive messages from the topic.

Using an AWS CloudFormation Template to
Create a Topic that Sends Messages to Amazon
SQS Queues

AWS CloudFormation enables you to use a template file to create and configure a collection of AWS
resources together as a single unit. This section has an example template that makes it easy to deploy
topics that publish to queues. The templates take care of the setup steps for you by creating two queues,
creating a topic with subscriptions to the queues, adding a policy to the queues so that the topic can send
messages to the queues, and creating IAM users and groups to control access to those resources.

For more information about deploying AWS resources using an AWS CloudFormation template, see Get
Started in the AWS CloudFormation User Guide.

API Version 2010-03-31
115

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Create a
Topic that Sends Messages to Amazon SQS Queues

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/GettingStarted.Walkthrough.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/GettingStarted.Walkthrough.html

Using an AWS CloudFormation Template to Set
Up Topics and Queues Within an AWS Account
The example template creates an Amazon SNS topic that can send messages to two Amazon SQS
queues with appropriate permissions for members of one IAM group to publish to the topic and another
to read messages from the queues. The template also creates IAM users that are added to each group.

You can download this template (https://s3.amazonaws.com/cloudformation-templates-us-east-1/
SNSToSQS.template) from the AWS CloudFormation Sample Templates page.

MySNSTopic is set up to publish to two subscribed endpoints, which are two Amazon SQS queues
(MyQueue1 and MyQueue2). MyPublishTopicGroup is an IAM group whose members have permission
to publish to MySNSTopic using the Publish API action or sns-publish command. The template creates
the IAM users MyPublishUser and MyQueueUser and gives them login profiles and access keys. The
user who creates a stack with this template specifies the passwords for the login profiles as input
parameters. The template creates access keys for the two IAM users with MyPublishUserKey and
MyQueueUserKey. AddUserToMyPublishTopicGroup adds MyPublishUser to the MyPublishTopicGroup
so that the user will have the permissions assigned to the group.

MyRDMessageQueueGroup is an IAM group whose members have permission to read and delete
messages from the two Amazon SQS queues using the ReceiveMessage and DeleteMessage API actions.
AddUserToMyQueueGroup adds MyQueueUser to the MyRDMessageQueueGroup so that the user will
have the permissions assigned to the group. MyQueuePolicy assigns permission for MySNSTopic to
publish its notifications to the two queues.

{
 "AWSTemplateFormatVersion":"2010-09-09",

 "Description":"This Template creates an Amazon SNS topic that can send messages
 to two Amazon SQS queues with appropriate permissions for one IAM user to
publish to the topic and another to read messages from the queues. MySNSTopic
is set up to publish to two subscribed endpoints, which are two Amazon SQS
queues (MyQueue1 and MyQueue2). MyPublishUser is an IAM user that can publish
to MySNSTopic using the Publish API. MyTopicPolicy assigns that permission to
MyPublishUser. MyQueueUser is an IAM user that can read messages from the two
Amazon SQS queues. MyQueuePolicy assigns those permissions to MyQueueUser. It
also assigns permission for MySNSTopic to publish its notifications to the two
 queues. The template creates access keys for the two IAM users with MyPub
lishUserKey and MyQueueUserKey. Note that you will be billed for the AWS re
sources used if you create a stack from this template.",

 "Parameters":{
 "MyPublishUserPassword":{
 "NoEcho":"true",
 "Type":"String",
 "Description":"Password for the IAM user MyPublishUser",
 "MinLength":"1",
 "MaxLength":"41",
 "AllowedPattern":"[a-zA-Z0-9]*",
 "ConstraintDescription":"must contain only alphanumeric characters."
 },
 "MyQueueUserPassword":{
 "NoEcho":"true",
 "Type":"String",
 "Description":"Password for the IAM user MyQueueUser",
 "MinLength":"1",

API Version 2010-03-31
116

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Set Up

Topics and Queues Within an AWS Account

https://s3.amazonaws.com/cloudformation-templates-us-east-1/SNSToSQS.template
https://s3.amazonaws.com/cloudformation-templates-us-east-1/SNSToSQS.template
http://aws.amazon.com/cloudformation/aws-cloudformation-templates/
http://docs.aws.amazon.com/sns/latest/api/API_Publish.html
http://docs.aws.amazon.com/sns/latest/cli/sns_publish.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryDeleteMessage.html

 "MaxLength":"41",
 "AllowedPattern":"[a-zA-Z0-9]*",
 "ConstraintDescription":"must contain only alphanumeric characters."
 }
 },

 "Resources":{
 "MySNSTopic":{
 "Type":"AWS::SNS::Topic",
 "Properties":{
 "Subscription":[
 {
 "Endpoint":{"Fn::GetAtt":["MyQueue1","Arn"]},
 "Protocol":"sqs"
 },
 {
 "Endpoint":{"Fn::GetAtt":["MyQueue2","Arn"]},
 "Protocol":"sqs"
 }
]
 }
 },
 "MyQueue1":{
 "Type":"AWS::SQS::Queue"
 },
 "MyQueue2":{
 "Type":"AWS::SQS::Queue"
 },
 "MyPublishUser":{
 "Type":"AWS::IAM::User",
 "Properties":{
 "LoginProfile":{
 "Password":{"Ref":"MyPublishUserPassword"}
 }
 }
 },
 "MyPublishUserKey":{
 "Type":"AWS::IAM::AccessKey",
 "Properties":{
 "UserName":{"Ref":"MyPublishUser"}
 }
 },
 "MyPublishTopicGroup":{
 "Type":"AWS::IAM::Group",
 "Properties":{
 "Policies":[
 {
 "PolicyName":"MyTopicGroupPolicy",
 "PolicyDocument":{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "sns:Publish"
],
 "Resource":{"Ref":"MySNSTopic"}

API Version 2010-03-31
117

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Set Up

Topics and Queues Within an AWS Account

 }
]}
 }
]
 }
 },
 "AddUserToMyPublishTopicGroup":{
 "Type":"AWS::IAM::UserToGroupAddition",
 "Properties":{
 "GroupName":{"Ref":"MyPublishTopicGroup"},
 "Users":[{"Ref":"MyPublishUser"}]
 }
 },
 "MyQueueUser":{
 "Type":"AWS::IAM::User",
 "Properties":{
 "LoginProfile":{
 "Password":{"Ref":"MyQueueUserPassword"}
 }
 }
 },
 "MyQueueUserKey":{
 "Type":"AWS::IAM::AccessKey",
 "Properties":{
 "UserName":{"Ref":"MyQueueUser"}
 }
 },
 "MyRDMessageQueueGroup":{
 "Type":"AWS::IAM::Group",
 "Properties":{
 "Policies":[
 {
 "PolicyName":"MyQueueGroupPolicy",
 "PolicyDocument":{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "sqs:DeleteMessage",
 "sqs:ReceiveMessage"
],
 "Resource":[
 {"Fn::GetAtt":["MyQueue1","Arn"]},
 {"Fn::GetAtt":["MyQueue2","Arn"]}
]
 }
]}
 }
]
 }
 },
 "AddUserToMyQueueGroup":{
 "Type":"AWS::IAM::UserToGroupAddition",
 "Properties":{
 "GroupName":{"Ref":"MyRDMessageQueueGroup"},
 "Users":[{"Ref":"MyQueueUser"}]
 }

API Version 2010-03-31
118

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Set Up

Topics and Queues Within an AWS Account

 },
 "MyQueuePolicy":{
 "Type":"AWS::SQS::QueuePolicy",
 "Properties":{
 "PolicyDocument":{
 "Version":"2012-10-17",
 "Id":"MyQueuePolicy",
 "Statement":[
 {
 "Sid":"Allow-SendMessage-To-Both-Queues-From-SNS-Topic",
 "Effect":"Allow",
 "Principal":"*",
 "Action":["sqs:SendMessage"],
 "Resource":"*",
 "Condition":{
 "ArnEquals":{
 "aws:SourceArn":{"Ref":"MySNSTopic"}
 }
 }
 }
]
 },
 "Queues":[{"Ref":"MyQueue1"},{"Ref":"MyQueue2"}]
 }
 }
 },
 "Outputs":{
 "MySNSTopicTopicARN":{
 "Value":{"Ref":"MySNSTopic"}
 },
 "MyQueue1Info":{
 "Value":{"Fn::Join":[
 " ",
 [
 "ARN:",
 {"Fn::GetAtt":["MyQueue1","Arn"]},
 "URL:",
 {"Ref":"MyQueue1"}
]
]}
 },
 "MyQueue2Info":{
 "Value":{"Fn::Join":[
 " ",
 [
 "ARN:",
 {"Fn::GetAtt":["MyQueue2","Arn"]},
 "URL:",
 {"Ref":"MyQueue2"}
]
]}
 },
 "MyPublishUserInfo":{
 "Value":{"Fn::Join":[
 " ",
 [
 "ARN:",
 {"Fn::GetAtt":["MyPublishUser","Arn"]},

API Version 2010-03-31
119

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Set Up

Topics and Queues Within an AWS Account

 "Access Key:",
 {"Ref":"MyPublishUserKey"},
 "Secret Key:",
 {"Fn::GetAtt":["MyPublishUserKey","SecretAccessKey"]}
]
]}
 },
 "MyQueueUserInfo":{
 "Value":{"Fn::Join":[
 " ",
 [
 "ARN:",
 {"Fn::GetAtt":["MyQueueUser","Arn"]},
 "Access Key:",
 {"Ref":"MyQueueUserKey"},
 "Secret Key:",
 {"Fn::GetAtt":["MyQueueUserKey","SecretAccessKey"]}
]
]}
 }
 }
}

API Version 2010-03-31
120

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Set Up

Topics and Queues Within an AWS Account

Sending and Receiving SMS
Notifications Using Amazon SNS

You can use Amazon SNS to send and receive Short Message Service (SMS) notifications to SMS-enabled
mobile phones and smart phones.

To send an SMS message using Amazon SNS, select one of your Amazon SNS topics that has a display
name and publish a message to the topic. The topic must have a display name assigned to it because
the first ten (10) characters of the display name are used as the initial part of the text message prefix.
SMS messages can contain up to 140 ASCII characters or 70 Unicode characters. Because Amazon
SNS includes a display name prefix with all SMS messages that you send, the sum of the display name
prefix and the message payload cannot exceed 140 ASCII characters or 70 Unicode characters. Amazon
SNS truncates messages that exceed these limits.

To receive SMS messages using Amazon SNS, select the SMS protocol setting when you subscribe to
an Amazon SNS topic. The full message prefix comprises the display name followed by the > character.
For example, if the display name of a topic is MyTopic and the message payload sent is Hello World!,
the message delivered would appear as it does in the following example:

MYTOPIC>Hello World!

Note
Display names are not case sensitive, and Amazon SNS converts display names to uppercase
characters for SMS messages.

You can use SMS notifications in conjunction with other notification types, such as email. For example,
if you use CloudWatch to monitor your AWS application, you can create a CloudWatch alarm that is
associated with an Amazon SNS topic.You can then subscribe to the topic via both email and SMS so
that you receive notifications not only through email, but also on your SMS-enabled device.

To facilitate the use of a single message for both SMS and email notifications, Amazon SNS checks
whether your message contains both a message body and a subject. If you publish a message that
contains only a message body, both SMS and email subscribers receive the same message, up to the
size limits for each protocol (140 characters for SMS and 256 KB for email). If your message is longer
than 140 characters, your SMS message will be truncated.

To avoid a truncated SMS message when your message payload is longer than 140 characters, publish
a message with both a subject and a message payload. For messages with both a subject and a message

API Version 2010-03-31
121

Amazon Simple Notification Service Developer Guide

http://aws.amazon.com/sns/

payload, Amazon SNS sends only the subject to SMS subscribers, but sends both the subject and the
message to any email subscribers. This allows you to send email notifications up to 256 KB long and
also have the subject line delivered as an SMS message to your mobile device.

Note
SMS notifications are currently supported for phone numbers in the United States. SMS messages
can be sent only from topics created in the US East (N. Virginia) region. However, you can
publish messages to topics that you create in the US East (N. Virginia) region from any other
region.

Amazon SNS uses short code 30304 to send and receive SMS messages.

Prerequisites

• Sign up for Amazon SNS—Create an AWS account if you don't have one.

For more information, see Before You Begin (p. 5).

• Create an Amazon SNS topic—Create an Amazon SNS topic if you don't have one.

For more information, see Create a Topic (p. 6).

After you have completed both of the prerequisite tasks, you can use the following process to publish
and receive SMS messages with Amazon SNS.

Process for Sending and Receiving SMS Messages with Amazon SNS

Task 1: Assign a Topic Display Name (p. 122)

Task 2: Subscribe to a Topic Using the SMS Protocol (p. 123)

Task 3: Publish a Message (p. 124)

Task 4: Cancel SMS Subscriptions (p. 125)

Task 1: Assign a Topic Display Name
To publish SMS messages for a topic, you must assign the topic a display name.

To assign a display name to a topic

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left navigation pane, click Topics and then select a topic.

3. Click the Other actions drop-down list and then select Edit topic display name.

4. In the Display Name box, type a display name and click Set display name.

The new topic display name appears in the Topic Details page.

API Version 2010-03-31
122

Amazon Simple Notification Service Developer Guide
Task 1: Assign a Topic Display Name

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Task 2: Subscribe to a Topic Using the SMS
Protocol

Note
SMS notifications are currently supported for phone numbers in the United States. SMS messages
can be sent only from topics created in the US East (N. Virginia) region. However, you can
publish messages to topics that you create in the US East (N. Virginia) region from any other
region.

To subscribe to an Amazon SNS topic using the SMS protocol

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left navigation pane, click Topics and then select the topic.

3. Click the Other actions drop-down list and then select Subscribe to topic.

4. In the Protocol drop-down list, select SMS.

5. In the Endpoint box, type the phone number of an SMS-enabled device and then click Create
subscription.

Note
Use numbers only. Do not include dashes, spaces, or parentheses.

Amazon SNS sends a confirmation text message to the SMS-enabled device associated with the
number you entered.

In the Amazon SNS console, the subscription is listed as PendingConfirmation until the SMS-enabled
device confirms the subscription.

6. Use the SMS-enabled device associated with the phone number you entered in the previous step
to reply affirmatively to the confirmation text message. For example, the following text message
confirms a subscription to the MyTopic Amazon SNS topic.

Amazon SNS responds with a subscription confirmation message.

API Version 2010-03-31
123

Amazon Simple Notification Service Developer Guide
Task 2: Subscribe to a Topic Using the SMS Protocol

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Task 3: Publish a Message
To publish a message to a topic

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left navigation pane, click Topics and then select the topic you want to publish to.

3. Click the Publish to topic button.

4. In the Subject box, type a subject if you want to use the Message box for messages to email
subscribers.

If you include text in the Subject box, the SMS message will contain the subject text rather than the
text from the Message box. Any email subscribers, however, will receive both the subject and the
message body. This allows you to use a single published message to send a short SMS message
using the subject and a longer email message using the message payload.

5. In the Message box, type a message.

Amazon SNS sends text that you enter in the Message box to SMS subscribers unless you also
enter text into the Subject box.

6. Click Publish message.

Amazon SNS displays a confirmation dialog box.

The SMS message appears on your SMS-enabled device.

API Version 2010-03-31
124

Amazon Simple Notification Service Developer Guide
Task 3: Publish a Message

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Task 4: Cancel SMS Subscriptions
You have several options for canceling SMS subscriptions to a topic.You can stop receiving all SMS
messages by replying STOP or QUIT to short code 30304. To cancel your subscription to a specific topic,
send an SMS message that contains STOP <TOPICNAME> to short code 30304, where <TOPICNAME>
is the display name of the topic.You can also cancel a subscription through the AWS Management
Console or the Query API Unsubscribe action.

To stop receiving all SMS messages from Amazon SNS

• Use your SMS-enabled device to send a STOP or QUIT message to short code 30304. For example,
the following text message cancels both of the subscriptions that this device had with Amazon SNS.

Amazon SNS responds with confirmation messages for each topic.

To stop receiving SMS messages from a specific topic

• Use your SMS-enabled device to send an SMS message that contains STOP <TOPICNAME> to short
code 30304, where <TOPICNAME> is the display name of the topic. For example, the following SMS
message cancels a subscription to a topic named mytopic.

API Version 2010-03-31
125

Amazon Simple Notification Service Developer Guide
Task 4: Cancel SMS Subscriptions

http://docs.aws.amazon.com/sns/latest/api/API_Unsubscribe.html

Amazon SNS responds with a confirmation message.

API Version 2010-03-31
126

Amazon Simple Notification Service Developer Guide
Task 4: Cancel SMS Subscriptions

Sending Amazon SNS Messages
to HTTP/HTTPS Endpoints

You can use Amazon SNS to send notification messages to one or more HTTP or HTTPS endpoints.
When you subscribe an endpoint to a topic, you can publish a notification to the topic and Amazon SNS
sends an HTTP POST request delivering the contents of the notification to the subscribed endpoint.When
you subscribe the endpoint, you select whether Amazon SNS uses HTTP or HTTPS to send the POST
request to the endpoint. If you use HTTPS, then you can take advantage of the support in Amazon SNS
for the following:

• Server Name Indication (SNI)—This allows Amazon SNS to support HTTPS endpoints that require
SNI, such as a server requiring multiple certificates for hosting multiple domains. For more information
about SNI, see http://en.wikipedia.org/wiki/Server_Name_Indication.

• Basic and Digest Access Authentication—This allows you to specify a username and password in
the HTTPS URL for the HTTP POST request, such as https://user:password@domain.com or
https://user@domain.com. The username and password are encrypted over the SSL connection
established when using HTTPS. Only the domain name is sent in plaintext. For more information about
Basic and Digest Access Authentication, see http://www.rfc-editor.org/info/rfc2617

The request contains the subject and message that were published to the topic along with metadata about
the notification in a JSON document. The request will look similar to the following HTTP POST request.
For details about the HTTP header and the JSON format of the request body, see HTTP/HTTPS
Headers (p. 175) and HTTP/HTTPS Notification JSON Format (p. 178).

POST / HTTP/1.1
x-amz-sns-message-type: Notification
x-amz-sns-message-id: da41e39f-ea4d-435a-b922-c6aae3915ebe
x-amz-sns-topic-arn: arn:aws:sns:us-west-2:123456789012:MyTopic
x-amz-sns-subscription-arn: arn:aws:sns:us-west-2:123456789012:MyTopic:2bcfbf39-
05c3-41de-beaa-fcfcc21c8f55
Content-Length: 761
Content-Type: text/plain; charset=UTF-8
Host: ec2-50-17-44-49.compute-1.amazonaws.com
Connection: Keep-Alive
User-Agent: Amazon Simple Notification Service Agent

API Version 2010-03-31
127

Amazon Simple Notification Service Developer Guide

http://aws.amazon.com/sns/
http://en.wikipedia.org/wiki/Server_Name_Indication
http://www.rfc-editor.org/info/rfc2617

{
 "Type" : "Notification",
 "MessageId" : "da41e39f-ea4d-435a-b922-c6aae3915ebe",
 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:MyTopic",
 "Subject" : "test",
 "Message" : "test message",
 "Timestamp" : "2012-04-25T21:49:25.719Z",
 "SignatureVersion" : "1",
 "Signature" : "EXAMPLElDMXvB8r9R83tGoNn0ecwd5UjllzsvS
vbItzfaMpN2nk5HVSw7XnOn/49IkxDKz8YrlH2qJXj2iZB0Zo2O71c4qQk1fMUDi3LG
pij7RCW7AW9vYYsSqIKRnFS94ilu7NFhUzLiieYr4BKHpdTmdD6c0esKEYBpabxDSc=",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/SimpleNotificationSer
vice-f3ecfb7224c7233fe7bb5f59f96de52f.pem",
 "UnsubscribeURL" : "https://sns.us-west-2.amazonaws.com/?Action=Unsubscribe&Sub
scriptionArn=arn:aws:sns:us-west-2:123456789012:MyTopic:2bcfbf39-05c3-41de-beaa-
fcfcc21c8f55"
}

To enable an Amazon SNS topic to send messages to an HTTP or HTTPS endpoint, follow these steps:

Step 1: Make sure your endpoint is ready to process Amazon SNS messages (p. 128)

Step 2: Subscribe the HTTP/HTTPS endpoint to the Amazon SNS topic (p. 131)

Step 3: Confirm the subscription (p. 132)

Step 4: Set the delivery retry policy for the subscription (optional) (p. 132)

Step 5: Give users permissions to publish to the topic (optional) (p. 132)

Step 6: Send messages to the HTTP/HTTPS endpoint (p. 133)

Step 1: Make sure your endpoint is ready to
process Amazon SNS messages

Before you subscribe your HTTP or HTTPS endpoint to a topic, you must make sure that the HTTP or
HTTPS endpoint has the capability to handle the HTTP POST requests that Amazon SNS uses to send
the subscription confirmation and notification messages. Usually, this means creating and deploying a
web application (for example, a Java servlet if your endpoint host is running Linux with Apache and
Tomcat) that processes the HTTP requests from Amazon SNS. When you subscribe an HTTP endpoint,
Amazon SNS sends it a subscription confirmation request.Your endpoint must be prepared to receive
and process this request when you create the subscription because Amazon SNS sends this request at
that time. Amazon SNS will not send notifications to the endpoint until you confirm the subscription. Once
you confirm the subscription, Amazon SNS will send notifications to the endpoint when a publish action
is performed on the subscribed topic.

To set up your endpoint to process subscription confirmation and notification messages

1. Your code should read the HTTP headers of the HTTP POST requests that Amazon SNS sends to
your endpoint.Your code should look for the header field x-amz-sns-message-type, which tells
you the type of message that Amazon SNS has sent to you. By looking at the header, you can
determine the message type without having to parse the body of the HTTP request. There are two
types that you need to handle: SubscriptionConfirmation and Notification. The
UnsubscribeConfirmation message is used only when the subscription is deleted from the topic.

API Version 2010-03-31
128

Amazon Simple Notification Service Developer Guide
Step 1: Make sure your endpoint is ready to process

Amazon SNS messages

For details about the HTTP header, see HTTP/HTTPS Headers (p. 175). The following HTTP POST
request is an example of a subscription confirmation message.

POST / HTTP/1.1
x-amz-sns-message-type: SubscriptionConfirmation
x-amz-sns-message-id: 165545c9-2a5c-472c-8df2-7ff2be2b3b1b
x-amz-sns-topic-arn: arn:aws:sns:us-west-2:123456789012:MyTopic
Content-Length: 1336
Content-Type: text/plain; charset=UTF-8
Host: example.com
Connection: Keep-Alive
User-Agent: Amazon Simple Notification Service Agent

{
 "Type" : "SubscriptionConfirmation",
 "MessageId" : "165545c9-2a5c-472c-8df2-7ff2be2b3b1b",
 "Token" :
"2336412f37fb687f5d51e6e241d09c805a5a57b30d712f794cc5f6a988666d92768dd60a747ba6f3beb71854e285d6ad02428b09ceece29417f1f02d609c582af
bacc99c583a916b9981dd2728f4ae6fdb82efd087cc3b7849e05798d2d2785c03b0879594eeac82c01f235d0e717736",

 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:MyTopic",
 "Message" : "You have chosen to subscribe to the topic arn:aws:sns:us-
west-2:123456789012:MyTopic.\nTo confirm the subscription, visit the Sub
scribeURL included in this message.",
 "SubscribeURL" : "https://sns.us-west-2.amazonaws.com/?Action=ConfirmSub
scription&TopicArn=arn:aws:sns:us-west-2:123456789012:MyTop
ic&Token=2336412f37fb687f5d51e6e241d09c805a5a57b30d712f794cc5f6a988666d92768dd60a747ba6f3beb71854e285d6ad02428b09ceece29417f1f02d609c582af
bacc99c583a916b9981dd2728f4ae6fdb82efd087cc3b7849e05798d2d2785c03b0879594eeac82c01f235d0e717736",

 "Timestamp" : "2012-04-26T20:45:04.751Z",
 "SignatureVersion" : "1",
 "Signature" : "EXAMPLEpH+DcEwjAPg8O9mY8dReBSwksfg2S7WKQcikcNK
WLQjwu6A4VbeS0QHVCkhRS7fUQvi2egU3N858fiTDN6bkkOxYDVrY0Ad8L10Hs3zH81mtnPk5uvvol
IC1CXGu43obcgFxeL3khZl8IKvO61GWB6jI9b5+gLPoBc1Q=",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/SimpleNotification
Service-f3ecfb7224c7233fe7bb5f59f96de52f.pem"
 }

2. Your code should parse the JSON document in the body of the HTTP POST request to read the
name/value pairs that make up the Amazon SNS message. Use a JSON parser that handles converting
the escaped representation of control characters back to their ASCII character values (for example,
converting \n to a newline character).You can use an existing JSON parser such as the Jackson
JSON Processor (http://wiki.fasterxml.com/JacksonHome) or write your own. In order to send the
text in the subject and message fields as valid JSON, Amazon SNS must convert some control
characters to escaped representations that can be included in the JSON document.When you receive
the JSON document in the body of the POST request sent to your endpoint, you must convert the
escaped characters back to their original character values if you want an exact representation of the
original subject and messages published to the topic.This is critical if you want to verify the signature
of a notification because the signature uses the message and subject in their original forms as part
of the string to sign.

3. Your code should verify the authenticity of a notification, subscription confirmation, or unsubscribe
confirmation message sent by Amazon SNS. Using information contained in the Amazon SNS
message, your endpoint can recreate the signature so that you can verify the contents of the message
by matching your signature with the signature that Amazon SNS sent with the message. For more
information about verifying the signature of a message, see Verifying the Signatures of Amazon SNS
Messages (p. 153).

API Version 2010-03-31
129

Amazon Simple Notification Service Developer Guide
Step 1: Make sure your endpoint is ready to process

Amazon SNS messages

http://wiki.fasterxml.com/JacksonHome

4. Based on the type specified by the header field x-amz-sns-message-type, your code should read
the JSON document contained in the body of the HTTP request and process the message. Here are
the guidelines for handling the two primary types of messages:

SubscriptionConfirmation
Read the value for SubscribeURL and visit that URL. To confirm the subscription and start
receiving notifications at the endpoint, you must visit the SubscribeURLURL (for example, by
sending an HTTP GET request to the URL). See the example HTTP request in the previous step
to see what the SubscribeURL looks like. For more information about the format of the
SubscriptionConfirmation message, see HTTP/HTTPS Subscription Confirmation JSON
Format (p. 176).When you visit the URL, you will get back a response that looks like the following
XML document. The document returns the subscription ARN for the endpoint within the
ConfirmSubscriptionResult element.

<ConfirmSubscriptionResponse xmlns="http://sns.amazonaws.com/doc/2010-
03-31/">
 <ConfirmSubscriptionResult>
 <SubscriptionArn>arn:aws:sns:us-west-2:123456789012:MyTopic:2bcfbf39-
05c3-41de-beaa-fcfcc21c8f55</SubscriptionArn>
 </ConfirmSubscriptionResult>
 <ResponseMetadata>
 <RequestId>075ecce8-8dac-11e1-bf80-f781d96e9307</RequestId>
 </ResponseMetadata>
 </ConfirmSubscriptionResponse>

As an alternative to visiting the SubscribeURL, you can confirm the subscription using the
ConfirmSubscription action with the Token set to its corresponding value in the
SubscriptionConfirmation message. If you want to allow only the topic owner and
subscription owner to be able to unsubscribe the endpoint, you call the ConfirmSubscription
action with an AWS signature.

Notification
Read the values for Subject and Message to get the notification information that was published
to the topic.

For details about the format of the Notification message, see HTTP/HTTPS Headers (p. 175).
The following HTTP POST request is an example of a notification message sent to the endpoint
example.com.

POST / HTTP/1.1
x-amz-sns-message-type: Notification
x-amz-sns-message-id: 22b80b92-fdea-4c2c-8f9d-bdfb0c7bf324
x-amz-sns-topic-arn: arn:aws:sns:us-west-2:123456789012:MyTopic
x-amz-sns-subscription-arn: arn:aws:sns:us-west-2:123456789012:MyTop
ic:c9135db0-26c4-47ec-8998-413945fb5a96
Content-Length: 773
Content-Type: text/plain; charset=UTF-8
Host: example.com
Connection: Keep-Alive
User-Agent: Amazon Simple Notification Service Agent

{
 "Type" : "Notification",
 "MessageId" : "22b80b92-fdea-4c2c-8f9d-bdfb0c7bf324",
 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:MyTopic",
 "Subject" : "My First Message",
 "Message" : "Hello world!",

API Version 2010-03-31
130

Amazon Simple Notification Service Developer Guide
Step 1: Make sure your endpoint is ready to process

Amazon SNS messages

http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html

 "Timestamp" : "2012-05-02T00:54:06.655Z",
 "SignatureVersion" : "1",
 "Signature" : "EXAMPLEw6JRNwm1LFQL4ICB0bnXrdB8ClRMTQFGBqwLp
GbM78tJ4etTwC5zU7O3tS6tGpey3ejedNdOJ+1fkIp9F2/LmNVKb5aFlYq+9rk9ZiPph5YlL
mWsDcyC5T+Sy9/umic5S0UQc2PEtgdpVBahwNOdMW4JPwk0kAJJztnc=",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/SimpleNotific
ationService-f3ecfb7224c7233fe7bb5f59f96de52f.pem",
 "UnsubscribeURL" : "https://sns.us-west-2.amazonaws.com/?Action=Unsub
scribe&SubscriptionArn=arn:aws:sns:us-west-2:123456789012:MyTop
ic:c9135db0-26c4-47ec-8998-413945fb5a96"
 }

5. Make sure that your endpoint responds to the HTTP POST message from Amazon SNS with the
appropriate status code.The connection will time out in 15 seconds. If your endpoint does not respond
before the connection times out or if your endpoint returns a status code outside the range of 200–4xx,
Amazon SNS will consider the delivery of the message as a failed attempt.

6. Make sure that your code can handle message delivery retries from Amazon SNS. If Amazon SNS
doesn't receive a successful response from your endpoint, it attempts to deliver the message again.
This applies to all messages, including the subscription confirmation message. By default, if the initial
delivery of the message fails, Amazon SNS attempts up to three retries with a delay between failed
attempts set at 20 seconds. Note that the message request times out at 15 seconds. This means
that if the message delivery failure was caused by a timeout, Amazon SNS will retry approximately
35 seconds after the previous delivery attempt. If you don't like the default delivery policy, you can
set a different delivery policy on the endpoint.

To be clear, Amazon SNS attempts to retry only after a delivery attempt has failed.You can identify
a message using the x-amz-sns-message-id header field. By comparing the IDs of the messages
you have processed with incoming messages, you can determine whether the message is a retry
attempt.

7. If you are subscribing an HTTPS endpoint, make sure that your endpoint has a server certificate
from a trusted Certificate Authority (CA). Amazon SNS will only send messages to HTTPS endpoints
that have a server certificate signed by a CA trusted by Amazon SNS. For a list of trusted CAs, see
Certificate Authorities (CA) Recognized by Amazon SNS for HTTPS Endpoints (p. 140).

8. Deploy the code that you have created to receive Amazon SNS messages. When you subscribe the
endpoint, the endpoint must be ready to receive at least the subscription confirmation message.

Step 2: Subscribe the HTTP/HTTPS endpoint to
the Amazon SNS topic

To send messages to an HTTP or HTTPS endpoint through a topic, you must subscribe the endpoint to
the Amazon SNS topic.You specify the endpoint using its URL. To subscribe to a topic, you can use the
Amazon SNS console, the sns-subscribe command, or the Subscribe API action. Before you start, make
sure you have the URL for the endpoint that you want to subscribe and that your endpoint is prepared to
receive the confirmation and notification messages as described in Step 1.

To subscribe an HTTP or HTTPS endpoint to a topic using the Amazon SNS console

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left navigation pane, click Topics and then select the topic.

3. Click the Other actions drop-down list and select Subscribe to topic.

API Version 2010-03-31
131

Amazon Simple Notification Service Developer Guide
Step 2: Subscribe the HTTP/HTTPS endpoint to the

Amazon SNS topic

http://docs.aws.amazon.com/sns/latest/cli/sns_subscribe.html
http://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

4. In the Protocol drop-down list, select HTTP or HTTPS.

5. In the Endpoint box, paste in the URL for the endpoint that you want the topic to send messages to
and then click Create subscription.

6. For the Subscription request received! message, click Close.

Your new subscription's Subscription ID displays PendingConfirmation. When you confirm the
subscription, Subscription ID will display the subscription ID.

Step 3: Confirm the subscription
After you subscribe your endpoint, Amazon SNS will send a subscription confirmation message to the
endpoint.You should already have code that performs the actions described in Step 1 (p. 128) deployed
to your endpoint. Specifically, the code at the endpoint must retrieve the SubscribeURL value from the
subscription confirmation message and either visit the location specified by SubscribeURL itself or make
it available to you so that you can manually visit the SubscribeURL, for example, using a web browser.
Amazon SNS will not send messages to the endpoint until the subscription has been confirmed. When
you visit the SubscribeURL, the response will contain an XML document containing an element
SubscriptionArn that specifies the ARN for the subscription.You can also use the Amazon SNS
console to verify that the subscription is confirmed: The Subscription ID will display the ARN for the
subscription instead of the PendingConfirmation value that you saw when you first added the
subscription.

Step 4: Set the delivery retry policy for the
subscription (optional)

By default, if the initial delivery of the message fails, Amazon SNS attempts up to three retries with a
delay between failed attempts set at 20 seconds. As discussed in Step 1 (p. 128), your endpoint should
have code that can handle retried messages. By setting the delivery policy on a topic or subscription, you
can control the frequency and interval that Amazon SNS will retry failed messages.You can set a delivery
policy on a topic or on a particular subscription.

Step 5: Give users permissions to publish to the
topic (optional)

By default, the topic owner has permissions to publish the topic. To enable other users or applications to
publish to the topic, you should use AWS Identity and Access Management (IAM) to give publish permission
to the topic. For more information about giving permissions for Amazon SNS actions to IAM users, see
Controlling User Access to Your AWS Account.

There are two ways to control access to a topic:

• Add a policy to an IAM user or group. The simplest way to give users permissions to topics is to create
a group and add the appropriate policy to the group and then add users to that group. It's much easier
to add and remove users from a group than to keep track of which policies you set on individual users.

• Add a policy to the topic. If you want to give permissions to a topic to another AWS account, the only
way you can do that is by adding a policy that has as its principal the AWS account you want to give
permissions to.

API Version 2010-03-31
132

Amazon Simple Notification Service Developer Guide
Step 3: Confirm the subscription

http://docs.aws.amazon.com/sns/latest/gsg/UsingIAMwithSNS.html

You should use the first method for most cases (apply policies to groups and manage permissions for
users by adding or removing the appropriate users to the groups). If you need to give permissions to a
user in another account, use the second method.

If you added the following policy to an IAM user or group, you would give that user or members of that
group permission to perform the sns:Publish action on the topic MyTopic.

{
 "Version":"2012-10-17",
 "Statement":[{
 "Sid":"AllowPublishToMyTopic",
 "Effect":"Allow",
 "Action":"sns:Publish",
 "Resource":"arn:aws:sns:us-east-1:123456789012:MyTopic"
 }
]
}

The following example policy shows how to give another account permissions to a topic.

Note
When you give another AWS account access to a resource in your account, you are also giving
IAM users who have admin-level access (wildcard access) permissions to that resource. All
other IAM users in the other account are automatically denied access to your resource. If you
want to give specific IAM users in that AWS account access to your resource, the account or an
IAM user with admin-level access must delegate permissions for the resource to those IAM
users. For more information about cross-account delegation, see Enabling Cross-Account Access
in the Using IAM Guide.

If you added the following policy to a topic MyTopic in account 123456789012, you would give account
111122223333 permission to perform the sns:Publish action on that topic.

{
 "Version":"2012-10-17",
 "Id":"MyTopicPolicy",
 "Statement":[{
 "Sid":"Allow-publish-to-topic",
 "Effect":"Allow",
 "Principal":{
 "AWS":"111122223333"
 },
 "Action":"sns:Publish",
 "Resource":"arn:aws:sns:us-east-1:123456789012:MyTopic"
 }
]
}

Step 6: Send messages to the HTTP/HTTPS
endpoint

You can send a message to a topic's subscriptions by publishing to the topic. To publish to a topic, you
can use the Amazon SNS console, the sns-publish command, or the Publish API.

API Version 2010-03-31
133

Amazon Simple Notification Service Developer Guide
Step 6: Send messages to the HTTP/HTTPS endpoint

http://docs.aws.amazon.com/IAM/latest/UserGuide/Delegation.html
http://docs.aws.amazon.com/sns/latest/cli/sns_publish.html
http://docs.aws.amazon.com/sns/latest/api/API_Publish.html

If you followed Step 1 (p. 128), the code that you deployed at your endpoint should process the notification.

To publish to a topic using the Amazon SNS console

1. Using the credentials of the AWS account or IAM user with permission to publish to the topic, sign
in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left navigation pane, click Topics and then select a topic.

3. Click the Publish to topic button.

4. In the Subject box, enter a subject (for example, Testing publish to my endpoint).

5. In the Message box, enter some text (for example, Hello world!), and click Publish message.

The following message appears:Your message has been successfully published.

Setting Amazon SNS Delivery Retry Policies for
HTTP/HTTPS Endpoints

Topics

• Applying Delivery Policies to Topics and Subscriptions (p. 136)

• Setting the Maximum Receive Rate (p. 137)

• Immediate Retry Phase (p. 137)

• Pre-Backoff Phase (p. 138)

• Backoff Phase (p. 138)

• Post-Backoff Phase (p. 139)

A successful Amazon SNS delivery to an HTTP/HTTPS endpoint sometimes requires more than one
attempt. This can be the case, for example, if the web server that hosts the subscribed endpoint is down
for maintenance or is experiencing heavy traffic. If an initial delivery attempt doesn't result in a successful
response from the subscriber, Amazon SNS attempts to deliver the message again. We call such an
attempt a retry. In other words, a retry is an attempted delivery that occurs after the initial delivery attempt.

Amazon SNS only attempts a retry after a failed delivery attempt. Amazon SNS considers the following
situations as a failed delivery attempt.

• HTTP status in the range 500-599.

• HTTP status outside the range 200-599.

• A request timeout (15 seconds). Note that if a request timeout occurs, the next retry will occur at the
specified interval after the timeout. For example, if the retry interval is 20 seconds and a request times
out, the start of the next request will be 35 seconds after the start of the request that timed out.

• Any connection error such as connection timeout, endpoint unreachable, bad SSL certificate, etc.

You can use delivery policies to control not only the total number of retries, but also the time delay between
each retry.You can specify up to 100 total retries distributed among four discrete phases. The maximum
lifetime of a message in the system is one hour. This one hour limit cannot be extended by a delivery
policy.

API Version 2010-03-31
134

Amazon Simple Notification Service Developer Guide
Setting Amazon SNS Delivery Retry Policies for

HTTP/HTTPS Endpoints

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

1. Immediate Retry Phase (p. 137)—Also called the no delay phase, this phase occurs immediately after
the initial delivery attempt. The value you set for Retries with no delay determines the number of
retries immediately after the initial delivery attempt. There is no delay between retries in this phase.

2. Pre-Backoff Phase (p. 138)—The pre-backoff phase follows the immediate retry phase. Use this phase
to create a set of retries that occur before a backoff function applies to the retries. Use the Minimum
delay retries setting to specify the number of retries in the Pre-Backoff Phase.You can control the
time delay between retries in this phase by using the Minimum delay setting.

3. Backoff Phase (p. 138)—This phase is called the backoff phase because you can control the delay
between retries in this phase using the retry backoff function. Set the Minimum delay and the Maximum
delay, and then select a Retry backoff function to define how quickly the delay increases from the
minimum delay to the maximum delay.

4. Post-Backoff Phase (p. 139)—The post-backoff phase follows the backoff phase. Use the Maximum
delay retries setting to specify the number of retries in the post-backoff phase.You can control the
time delay between retries in this phase by using the Maximum delay setting.

The backoff phase is the most commonly used phase. If no delivery policies are set, the default is to retry
three times in the backoff phase, with a time delay of 20 seconds between each retry. The default value
for both the Minimum delay and the Maximum delay is 20. The default number of retries is 3, so the
default retry policy calls for a total of 3 retries with a 20 second delay between each retry. The following
diagram shows the delay associated with each retry.

To see how the retry backoff function affects the time delay between retries, you can set the maximum
delay to 40 seconds and leave the remaining settings at their default values. With this change, your
delivery policy now specifies 3 retries during the backoff phase, a minimum delay of 20 seconds, and a
maximum delay of 40 seconds. Because the default backoff function is linear, the delay between messages
increases at a constant rate over the course of the backoff phase. Amazon SNS attempts the first retry
after 20 seconds, the second retry after 30 seconds, and the final retry after 40 seconds. The following
diagram shows the delay associated with each retry.

API Version 2010-03-31
135

Amazon Simple Notification Service Developer Guide
Setting Amazon SNS Delivery Retry Policies for

HTTP/HTTPS Endpoints

The maximum lifetime of a message in the system is one hour. This one hour limit cannot be extended
by a delivery policy.

Note
Only HTTP and HTTPS subscription types are supported by delivery policies. Support for other
Amazon SNS subscription types (e.g., email, Amazon SQS, and SMS) is not currently available.

Applying Delivery Policies to Topics and
Subscriptions
You can apply delivery policies to Amazon SNS topics. If you set a delivery policy on a topic, the policy
applies to all of the topic's subscriptions. The following diagram illustrates a topic with a delivery policy
that applies to all three subscriptions associated with that topic.

You can also apply delivery policies to individual subscriptions. If you assign a delivery policy to a
subscription, the subscription-level policy takes precedence over the topic-level delivery policy. In the
following diagram, one subscription has a subscription-level delivery policy whereas the two other
subscriptions do not.

In some cases, you might want to ignore all subscription delivery policies so that your topic's delivery
policy applies to all subscriptions even if a subscription has set its own delivery policy. To configure
Amazon SNS to apply your topic delivery policy to all subscriptions, click Ignore subscription override
in the View/Edit Topic Delivery Policies dialog box. The following diagram shows a topic-level delivery
policy that applies to all subscriptions, even the subscription that has its own subscription delivery policy
because subscription-level policies have been specifically ignored.

API Version 2010-03-31
136

Amazon Simple Notification Service Developer Guide
Applying Delivery Policies to Topics and Subscriptions

Setting the Maximum Receive Rate
You can set the maximum number of messages per second that Amazon SNS sends to a subscribed
endpoint by setting the Maximum receive rate setting. Amazon SNS holds messages that are awaiting
delivery for up to an hour. Messages held for more than an hour are discarded.

• To set a maximum receive rate that applies to all of a topic's subscriptions, apply the setting at the topic
level using the Edit Topic Delivery Policy dialog box. For more information, see To set the maximum
receive rate for a topic (p. 137).

• To set a maximum receive rate that applies to a specific subscription, apply the setting at the subscription
level using the Edit Subscription Delivery Policy dialog box. For more information, see To set the
maximum receive rate for a subscription (p. 137).

To set the maximum receive rate for a topic

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left navigation pane, click Topics and then select the topic.

3. Click the Other actions drop-down list and select Edit topic delivery policy.

4. In the Maximum receive rate box, type an integer value (e.g., 2).

5. Click Update policy to save your changes.

To set the maximum receive rate for a subscription

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left navigation pane, click Topics and then select a topic ARN.

3. In the Topic Details pane, select a subscription and click Edit topic delivery policy.

4. In the Maximum receive rate box, type an integer value (e.g., 2).

5. Click Update policy to save your changes.

Immediate Retry Phase
The immediate retry phase occurs directly after the initial delivery attempt. This phase is also known as
the No Delay phase because it happens with no time delay between the retries. The default number of
retries for this phase is 0.

API Version 2010-03-31
137

Amazon Simple Notification Service Developer Guide
Setting the Maximum Receive Rate

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

To set the number of retries in the immediate retry phase

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left navigation pane, click Topics and then select a topic ARN.

3. In the Topic Details pane, select Edit topic delivery policy from the Other topic actions drop-down
list.

4. In the Retries with no delay box, type an integer value.

5. Click Update policy to save your changes.

Pre-Backoff Phase
The pre-backoff phase follows the immediate retry phase. Use this phase if you want to create a set of
one or more retries that happen before the backoff function affects the delay between retries. In this
phase, the time between retries is constant and is equal to the setting that you choose for the Minimum
delay.The Minumum delay setting affects retries in two phases—it applies to all retries in the pre-backoff
phase and serves as the initial time delay for retries in the backoff phase. The default number of retries
for this phase is 0.

To set the number of retries in the pre-backoff phase

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left navigation pane, click Topics and then select a topic ARN.

3. In the Topic Details pane, select Edit topic delivery policy from the Other topic actions drop-down
list.

4. In the Minimum delay retries box, type an integer value.

5. In the Minimum delay box, type an integer value to set the delay between messages in this phase.

The value you set must be less than or equal to the value you set for Maximum delay.

6. Click Update policy to save your changes.

Backoff Phase
The backoff phase is the only phase that applies by default.You can control the number of retries in the
backoff phase using Number of retries.

Important
The value you choose for Number of retries represents the total number of retries, including
the retries you set for Retries with no delay, Minimum delay retries, and Maximum delay
retries.

You can control the frequency of the retries in the backoff phase with three parameters.

• Minimum delay—The minimum delay defines the delay associated with the first retry attempt in the
backoff phase.

• Maximum delay—The maximum delay defines the delay associated with the final retry attempt in the
backoff phase.

• Retry backoff function—The retry backoff function defines the algorithm that Amazon SNS uses to
calculate the delays associated with all of the retry attempts between the first and last retries in the
backoff phase.

API Version 2010-03-31
138

Amazon Simple Notification Service Developer Guide
Pre-Backoff Phase

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

You can choose from four retry backoff functions.

• Linear

• Arithmetic

• Geometric

• Exponential

The following screen shot shows how each retry backoff function affects the delay associated with
messages during the backoff period. The vertical axis represents the delay in seconds associated with
each of the 10 retries. The horizontal axis represents the retry number. The minimum delay is 5 seconds,
and the maximum delay is 260 seconds.

Post-Backoff Phase
The post-backoff phase is the final phase. Use this phase if you want to create a set of one or more retries
that happen after the backoff function affects the delay between retries. In this phase, the time between
retries is constant and is equal to the setting that you choose for the Maximum delay. The Maximum
delay setting affects retries in two phases—it applies to all retries in the post-backoff phase and serves
as the final time delay for retries in the backoff phase. The default number of retries for this phase is 0.

To set the number of retries in the post-backoff phase

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left navigation pane, click Topics and then select a topic ARN.

3. In the Topic Details pane, select Edit topic delivery policy from the Other topic actions drop-down
list.

4. In the Maximum delay retries box, type an integer value.

5. In the Maximum delay box, type an integer value to set the delay between messages in this phase.

The value you set must be greater than or equal to the value you set for Minimum delay.

6. Click Update policy to save your changes.

API Version 2010-03-31
139

Amazon Simple Notification Service Developer Guide
Post-Backoff Phase

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Certificate Authorities (CA) Recognized by
Amazon SNS for HTTPS Endpoints

If you subscribe an HTTPS endpoint to a topic, that endpoint must have a server certificate signed by a
trusted Certificate Authority (CA). Amazon SNS will only deliver messages to HTTPS endpoints that have
a signed certificate from a trusted CA that Amazon SNS recognizes. Amazon SNS recognizes the following
CAs.

mozillacert81.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
07:E0:32:E0:20:B7:2C:3F:19:2F:06:28:A2:59:3A:19:A7:0F:06:9E
mozillacert99.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
F1:7F:6F:B6:31:DC:99:E3:A3:C8:7F:FE:1C:F1:81:10:88:D9:60:33
swisssignplatinumg2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
56:E0:FA:C0:3B:8F:18:23:55:18:E5:D3:11:CA:E8:C2:43:31:AB:66
mozillacert145.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
10:1D:FA:3F:D5:0B:CB:BB:9B:B5:60:0C:19:55:A4:1A:F4:73:3A:04
mozillacert37.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
B1:2E:13:63:45:86:A4:6F:1A:B2:60:68:37:58:2D:C4:AC:FD:94:97
mozillacert4.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
E3:92:51:2F:0A:CF:F5:05:DF:F6:DE:06:7F:75:37:E1:65:EA:57:4B
amzninternalitseccag2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
FA:07:FA:A6:35:D0:BC:98:72:3D:B3:08:8A:CD:CD:CD:3E:23:F9:ED
mozillacert70.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
78:6A:74:AC:76:AB:14:7F:9C:6A:30:50:BA:9E:A8:7E:FE:9A:CE:3C
mozillacert88.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
FE:45:65:9B:79:03:5B:98:A1:61:B5:51:2E:AC:DA:58:09:48:22:4D
mozillacert134.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
70:17:9B:86:8C:00:A4:FA:60:91:52:22:3F:9F:3E:32:BD:E0:05:62
mozillacert26.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
87:82:C6:C3:04:35:3B:CF:D2:96:92:D2:59:3E:7D:44:D9:34:FF:11
verisignclass2g2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
B3:EA:C4:47:76:C9:C8:1C:EA:F2:9D:95:B6:CC:A0:08:1B:67:EC:9D
mozillacert77.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:39:E2:55:76:60:9B:5C:C6
mozillacert123.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
2A:B6:28:48:5E:78:FB:F3:AD:9E:79:10:DD:6B:DF:99:72:2C:96:E5
utndatacorpsgcca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
58:11:9F:0E:12:82:87:EA:50:FD:D9:87:45:6F:4F:78:DC:FA:D6:D4
mozillacert15.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):

API Version 2010-03-31
140

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

74:20:74:41:72:9C:DD:92:EC:79:31:D8:23:10:8D:C2:81:92:E2:BB
digicertglobalrootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
A8:98:5D:3A:65:E5:E5:C4:B2:D7:D6:6D:40:C6:DD:2F:B1:9C:54:36
mozillacert66.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
DD:E1:D2:A9:01:80:2E:1D:87:5E:84:B3:80:7E:4B:B1:FD:99:41:34
mozillacert112.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
43:13:BB:96:F1:D5:86:9B:C1:4E:6A:92:F6:CF:F6:34:69:87:82:37
utnuserfirstclientauthemailca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
B1:72:B1:A5:6D:95:F9:1F:E5:02:87:E1:4D:37:EA:6A:44:63:76:8A
verisignc2g1.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
67:82:AA:E0:ED:EE:E2:1A:58:39:D3:C0:CD:14:68:0A:4F:60:14:2A
mozillacert55.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
AA:DB:BC:22:23:8F:C4:01:A1:27:BB:38:DD:F4:1D:DB:08:9E:F0:12
mozillacert101.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
99:A6:9B:E6:1A:FE:88:6B:4D:2B:82:00:7C:B8:54:FC:31:7E:15:39
mozillacert119.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
75:E0:AB:B6:13:85:12:27:1C:04:F8:5F:DD:DE:38:E4:B7:24:2E:FE
verisignc3g1.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
A1:DB:63:93:91:6F:17:E4:18:55:09:40:04:15:C7:02:40:B0:AE:6B
mozillacert44.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
5F:43:E5:B1:BF:F8:78:8C:AC:1C:C7:CA:4A:9A:C6:22:2B:CC:34:C6
mozillacert108.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
B1:BC:96:8B:D4:F4:9D:62:2A:A8:9A:81:F2:15:01:52:A4:1D:82:9C
mozillacert95.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
DA:FA:F7:FA:66:84:EC:06:8F:14:50:BD:C7:C2:81:A5:BC:A9:64:57
keynectisrootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
9C:61:5C:4D:4D:85:10:3A:53:26:C2:4D:BA:EA:E4:A2:D2:D5:CC:97
mozillacert141.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
31:7A:2A:D0:7F:2B:33:5E:F5:A1:C3:4E:4B:57:E8:B7:D8:F1:FC:A6
equifaxsecureglobalebusinessca1, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
7E:78:4A:10:1C:82:65:CC:2D:E1:F1:6D:47:B4:40:CA:D9:0A:19:45
baltimorecodesigningca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
30:46:D8:C8:88:FF:69:30:C3:4A:FC:CD:49:27:08:7C:60:56:7B:0D
mozillacert33.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
FE:B8:C4:32:DC:F9:76:9A:CE:AE:3D:D8:90:8F:FD:28:86:65:64:7D
mozillacert0.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
97:81:79:50:D8:1C:96:70:CC:34:D8:09:CF:79:44:31:36:7E:F4:74
mozillacert84.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
D3:C0:63:F2:19:ED:07:3E:34:AD:5D:75:0B:32:76:29:FF:D5:9A:F2

API Version 2010-03-31
141

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

mozillacert130.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
E5:DF:74:3C:B6:01:C4:9B:98:43:DC:AB:8C:E8:6A:81:10:9F:E4:8E
mozillacert148.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
04:83:ED:33:99:AC:36:08:05:87:22:ED:BC:5E:46:00:E3:BE:F9:D7
mozillacert22.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
32:3C:11:8E:1B:F7:B8:B6:52:54:E2:E2:10:0D:D6:02:90:37:F0:96
verisignc1g1.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
90:AE:A2:69:85:FF:14:80:4C:43:49:52:EC:E9:60:84:77:AF:55:6F
mozillacert7.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
AD:7E:1C:28:B0:64:EF:8F:60:03:40:20:14:C3:D0:E3:37:0E:B5:8A
mozillacert73.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
B5:1C:06:7C:EE:2B:0C:3D:F8:55:AB:2D:92:F4:FE:39:D4:E7:0F:0E
mozillacert137.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
4A:65:D5:F4:1D:EF:39:B8:B8:90:4A:4A:D3:64:81:33:CF:C7:A1:D1
swisssignsilverg2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
9B:AA:E5:9F:56:EE:21:CB:43:5A:BE:25:93:DF:A7:F0:40:D1:1D:CB
mozillacert11.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
05:63:B8:63:0D:62:D7:5A:BB:C8:AB:1E:4B:DF:B5:A8:99:B2:4D:43
mozillacert29.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
74:F8:A3:C3:EF:E7:B3:90:06:4B:83:90:3C:21:64:60:20:E5:DF:CE
mozillacert62.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
A1:DB:63:93:91:6F:17:E4:18:55:09:40:04:15:C7:02:40:B0:AE:6B
mozillacert126.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
25:01:90:19:CF:FB:D9:99:1C:B7:68:25:74:8D:94:5F:30:93:95:42
soneraclass1ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
07:47:22:01:99:CE:74:B9:7C:B0:3D:79:B2:64:A2:C8:55:E9:33:FF
mozillacert18.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
79:98:A3:08:E1:4D:65:85:E6:C2:1E:15:3A:71:9F:BA:5A:D3:4A:D9
mozillacert51.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
FA:B7:EE:36:97:26:62:FB:2D:B0:2A:F6:BF:03:FD:E8:7C:4B:2F:9B
mozillacert69.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
2F:78:3D:25:52:18:A7:4A:65:39:71:B5:2C:A2:9C:45:15:6F:E9:19
mozillacert115.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
59:0D:2D:7D:88:4F:40:2E:61:7E:A5:62:32:17:65:CF:17:D8:94:E9
verisignclass3g5ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:56:BE:3D:9B:67:44:A5:E5
utnuserfirsthardwareca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
04:83:ED:33:99:AC:36:08:05:87:22:ED:BC:5E:46:00:E3:BE:F9:D7
addtrustqualifiedca, Apr 22, 2014, trustedCertEntry,

API Version 2010-03-31
142

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

Certificate fingerprint (SHA1):
4D:23:78:EC:91:95:39:B5:00:7F:75:8F:03:3B:21:1E:C5:4D:8B:CF
mozillacert40.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
80:25:EF:F4:6E:70:C8:D4:72:24:65:84:FE:40:3B:8A:8D:6A:DB:F5
mozillacert58.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
8D:17:84:D5:37:F3:03:7D:EC:70:FE:57:8B:51:9A:99:E6:10:D7:B0
verisignclass3g3ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:39:E2:55:76:60:9B:5C:C6
mozillacert104.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
4F:99:AA:93:FB:2B:D1:37:26:A1:99:4A:CE:7F:F0:05:F2:93:5D:1E
mozillacert91.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
3B:C0:38:0B:33:C3:F6:A6:0C:86:15:22:93:D9:DF:F5:4B:81:C0:04
thawtepersonalfreemailca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
E6:18:83:AE:84:CA:C1:C1:CD:52:AD:E8:E9:25:2B:45:A6:4F:B7:E2
certplusclass3pprimaryca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
21:6B:2A:29:E6:2A:00:CE:82:01:46:D8:24:41:41:B9:25:11:B2:79
verisignc3g4.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:CF:8A:2D:64:C9:3F:6C:3A
swisssigngoldg2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
D8:C5:38:8A:B7:30:1B:1B:6E:D4:7A:E6:45:25:3A:6F:9F:1A:27:61
mozillacert47.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
1B:4B:39:61:26:27:6B:64:91:A2:68:6D:D7:02:43:21:2D:1F:1D:96
mozillacert80.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
B8:23:6B:00:2F:1D:16:86:53:01:55:6C:11:A4:37:CA:EB:FF:C3:BB
mozillacert98.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
C9:A8:B9:E7:55:80:5E:58:E3:53:77:A7:25:EB:AF:C3:7B:27:CC:D7
mozillacert144.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
37:F7:6D:E6:07:7C:90:C5:B1:3E:93:1A:B7:41:10:B4:F2:E4:9A:27
starfieldclass2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
AD:7E:1C:28:B0:64:EF:8F:60:03:40:20:14:C3:D0:E3:37:0E:B5:8A
mozillacert36.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
23:88:C9:D3:71:CC:9E:96:3D:FF:7D:3C:A7:CE:FC:D6:25:EC:19:0D
mozillacert3.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
87:9F:4B:EE:05:DF:98:58:3B:E3:60:D6:33:E7:0D:3F:FE:98:71:AF
globalsignr2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
75:E0:AB:B6:13:85:12:27:1C:04:F8:5F:DD:DE:38:E4:B7:24:2E:FE
mozillacert87.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
5F:3B:8C:F2:F8:10:B3:7D:78:B4:CE:EC:19:19:C3:73:34:B9:C7:74
mozillacert133.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):

API Version 2010-03-31
143

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

85:B5:FF:67:9B:0C:79:96:1F:C8:6E:44:22:00:46:13:DB:17:92:84
mozillacert25.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:56:BE:3D:9B:67:44:A5:E5
verisignclass1g2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
27:3E:E1:24:57:FD:C4:F9:0C:55:E8:2B:56:16:7F:62:F5:32:E5:47
mozillacert76.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
F9:B5:B6:32:45:5F:9C:BE:EC:57:5F:80:DC:E9:6E:2C:C7:B2:78:B7
mozillacert122.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
02:FA:F3:E2:91:43:54:68:60:78:57:69:4D:F5:E4:5B:68:85:18:68
godaddysecurecertificationauthority, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
7C:46:56:C3:06:1F:7F:4C:0D:67:B3:19:A8:55:F6:0E:BC:11:FC:44
mozillacert14.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
5F:B7:EE:06:33:E2:59:DB:AD:0C:4C:9A:E6:D3:8F:1A:61:C7:DC:25
equifaxsecureca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
D2:32:09:AD:23:D3:14:23:21:74:E4:0D:7F:9D:62:13:97:86:63:3A
mozillacert65.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
69:BD:8C:F4:9C:D3:00:FB:59:2E:17:93:CA:55:6A:F3:EC:AA:35:FB
mozillacert111.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
9C:BB:48:53:F6:A4:F6:D3:52:A4:E8:32:52:55:60:13:F5:AD:AF:65
certumtrustednetworkca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
07:E0:32:E0:20:B7:2C:3F:19:2F:06:28:A2:59:3A:19:A7:0F:06:9E
mozillacert129.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
E6:21:F3:35:43:79:05:9A:4B:68:30:9D:8A:2F:74:22:15:87:EC:79
mozillacert54.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
03:9E:ED:B8:0B:E7:A0:3C:69:53:89:3B:20:D2:D9:32:3A:4C:2A:FD
mozillacert100.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
58:E8:AB:B0:36:15:33:FB:80:F7:9B:1B:6D:29:D3:FF:8D:5F:00:F0
mozillacert118.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
7E:78:4A:10:1C:82:65:CC:2D:E1:F1:6D:47:B4:40:CA:D9:0A:19:45
mozillacert151.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
AC:ED:5F:65:53:FD:25:CE:01:5F:1F:7A:48:3B:6A:74:9F:61:78:C6
thawteprimaryrootcag3, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
F1:8B:53:8D:1B:E9:03:B6:A6:F0:56:43:5B:17:15:89:CA:F3:6B:F2
quovadisrootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
DE:3F:40:BD:50:93:D3:9B:6C:60:F6:DA:BC:07:62:01:00:89:76:C9
thawteprimaryrootcag2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
AA:DB:BC:22:23:8F:C4:01:A1:27:BB:38:DD:F4:1D:DB:08:9E:F0:12
deprecateditsecca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
12:12:0B:03:0E:15:14:54:F4:DD:B3:F5:DE:13:6E:83:5A:29:72:9D

API Version 2010-03-31
144

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

entrustrootcag2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
8C:F4:27:FD:79:0C:3A:D1:66:06:8D:E8:1E:57:EF:BB:93:22:72:D4
mozillacert43.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
F9:CD:0E:2C:DA:76:24:C1:8F:BD:F0:F0:AB:B6:45:B8:F7:FE:D5:7A
mozillacert107.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
8E:1C:74:F8:A6:20:B9:E5:8A:F4:61:FA:EC:2B:47:56:51:1A:52:C6
trustcenterclass4caii, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
A6:9A:91:FD:05:7F:13:6A:42:63:0B:B1:76:0D:2D:51:12:0C:16:50
mozillacert94.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
49:0A:75:74:DE:87:0A:47:FE:58:EE:F6:C7:6B:EB:C6:0B:12:40:99
mozillacert140.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
CA:3A:FB:CF:12:40:36:4B:44:B2:16:20:88:80:48:39:19:93:7C:F7
ttelesecglobalrootclass3ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
55:A6:72:3E:CB:F2:EC:CD:C3:23:74:70:19:9D:2A:BE:11:E3:81:D1
amzninternalcorpca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
43:E3:E6:37:C5:88:05:67:91:37:E3:72:4D:01:7F:F4:1B:CE:3A:97
mozillacert32.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
60:D6:89:74:B5:C2:65:9E:8A:0F:C1:88:7C:88:D2:46:69:1B:18:2C
mozillacert83.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
A0:73:E5:C5:BD:43:61:0D:86:4C:21:13:0A:85:58:57:CC:9C:EA:46
verisignroot.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
36:79:CA:35:66:87:72:30:4D:30:A5:FB:87:3B:0F:A7:7B:B7:0D:54
mozillacert147.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
58:11:9F:0E:12:82:87:EA:50:FD:D9:87:45:6F:4F:78:DC:FA:D6:D4
camerfirmachambersca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
78:6A:74:AC:76:AB:14:7F:9C:6A:30:50:BA:9E:A8:7E:FE:9A:CE:3C
mozillacert21.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
9B:AA:E5:9F:56:EE:21:CB:43:5A:BE:25:93:DF:A7:F0:40:D1:1D:CB
mozillacert39.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
AE:50:83:ED:7C:F4:5C:BC:8F:61:C6:21:FE:68:5D:79:42:21:15:6E
mozillacert6.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
27:96:BA:E6:3F:18:01:E2:77:26:1B:A0:D7:77:70:02:8F:20:EE:E4
verisignuniversalrootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
36:79:CA:35:66:87:72:30:4D:30:A5:FB:87:3B:0F:A7:7B:B7:0D:54
mozillacert72.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:A7:9F:45:C2:54:FD:E6:8B
geotrustuniversalca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
E6:21:F3:35:43:79:05:9A:4B:68:30:9D:8A:2F:74:22:15:87:EC:79
mozillacert136.pem, Apr 22, 2014, trustedCertEntry,

API Version 2010-03-31
145

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

Certificate fingerprint (SHA1):
D1:EB:23:A4:6D:17:D6:8F:D9:25:64:C2:F1:F1:60:17:64:D8:E3:49
mozillacert10.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
5F:3A:FC:0A:8B:64:F6:86:67:34:74:DF:7E:A9:A2:FE:F9:FA:7A:51
mozillacert28.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
66:31:BF:9E:F7:4F:9E:B6:C9:D5:A6:0C:BA:6A:BE:D1:F7:BD:EF:7B
mozillacert61.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
E0:B4:32:2E:B2:F6:A5:68:B6:54:53:84:48:18:4A:50:36:87:43:84
mozillacert79.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
D8:A6:33:2C:E0:03:6F:B1:85:F6:63:4F:7D:6A:06:65:26:32:28:27
mozillacert125.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
B3:1E:B1:B7:40:E3:6C:84:02:DA:DC:37:D4:4D:F5:D4:67:49:52:F9
mozillacert17.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
40:54:DA:6F:1C:3F:40:74:AC:ED:0F:EC:CD:DB:79:D1:53:FB:90:1D
mozillacert50.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
8C:96:BA:EB:DD:2B:07:07:48:EE:30:32:66:A0:F3:98:6E:7C:AE:58
mozillacert68.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
AE:C5:FB:3F:C8:E1:BF:C4:E5:4F:03:07:5A:9A:E8:00:B7:F7:B6:FA
mozillacert114.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
51:C6:E7:08:49:06:6E:F3:92:D4:5C:A0:0D:6D:A3:62:8F:C3:52:39
mozillacert57.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
D6:DA:A8:20:8D:09:D2:15:4D:24:B5:2F:CB:34:6E:B2:58:B2:8A:58
verisignc2g3.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
61:EF:43:D7:7F:CA:D4:61:51:BC:98:E0:C3:59:12:AF:9F:EB:63:11
verisignclass2g3ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
61:EF:43:D7:7F:CA:D4:61:51:BC:98:E0:C3:59:12:AF:9F:EB:63:11
mozillacert103.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
70:C1:8D:74:B4:28:81:0A:E4:FD:A5:75:D7:01:9F:99:B0:3D:50:74
mozillacert90.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
F3:73:B3:87:06:5A:28:84:8A:F2:F3:4A:CE:19:2B:DD:C7:8E:9C:AC
verisignc3g3.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:39:E2:55:76:60:9B:5C:C6
mozillacert46.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
40:9D:4B:D9:17:B5:5C:27:B6:9B:64:CB:98:22:44:0D:CD:09:B8:89
godaddyclass2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
27:96:BA:E6:3F:18:01:E2:77:26:1B:A0:D7:77:70:02:8F:20:EE:E4
verisignc4g3.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
C8:EC:8C:87:92:69:CB:4B:AB:39:E9:8D:7E:57:67:F3:14:95:73:9D
mozillacert97.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):

API Version 2010-03-31
146

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

85:37:1C:A6:E5:50:14:3D:CE:28:03:47:1B:DE:3A:09:E8:F8:77:0F
mozillacert143.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
36:B1:2B:49:F9:81:9E:D7:4C:9E:BC:38:0F:C6:56:8F:5D:AC:B2:F7
mozillacert35.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
2A:C8:D5:8B:57:CE:BF:2F:49:AF:F2:FC:76:8F:51:14:62:90:7A:41
mozillacert2.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:CF:8A:2D:64:C9:3F:6C:3A
utnuserfirstobjectca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
E1:2D:FB:4B:41:D7:D9:C3:2B:30:51:4B:AC:1D:81:D8:38:5E:2D:46
mozillacert86.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
74:2C:31:92:E6:07:E4:24:EB:45:49:54:2B:E1:BB:C5:3E:61:74:E2
mozillacert132.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
39:21:C1:15:C1:5D:0E:CA:5C:CB:5B:C4:F0:7D:21:D8:05:0B:56:6A
addtrustclass1ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
CC:AB:0E:A0:4C:23:01:D6:69:7B:DD:37:9F:CD:12:EB:24:E3:94:9D
mozillacert24.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
59:AF:82:79:91:86:C7:B4:75:07:CB:CF:03:57:46:EB:04:DD:B7:16
verisignc1g3.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
20:42:85:DC:F7:EB:76:41:95:57:8E:13:6B:D4:B7:D1:E9:8E:46:A5
mozillacert9.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
F4:8B:11:BF:DE:AB:BE:94:54:20:71:E6:41:DE:6B:BE:88:2B:40:B9
amzninternalrootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
A7:B7:F6:15:8A:FF:1E:C8:85:13:38:BC:93:EB:A2:AB:A4:09:EF:06
mozillacert75.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
D2:32:09:AD:23:D3:14:23:21:74:E4:0D:7F:9D:62:13:97:86:63:3A
entrustevca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
B3:1E:B1:B7:40:E3:6C:84:02:DA:DC:37:D4:4D:F5:D4:67:49:52:F9
secomscrootca2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
5F:3B:8C:F2:F8:10:B3:7D:78:B4:CE:EC:19:19:C3:73:34:B9:C7:74
camerfirmachambersignca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
4A:BD:EE:EC:95:0D:35:9C:89:AE:C7:52:A1:2C:5B:29:F6:D6:AA:0C
secomscrootca1, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
36:B1:2B:49:F9:81:9E:D7:4C:9E:BC:38:0F:C6:56:8F:5D:AC:B2:F7
mozillacert121.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
CC:AB:0E:A0:4C:23:01:D6:69:7B:DD:37:9F:CD:12:EB:24:E3:94:9D
mozillacert139.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
DE:3F:40:BD:50:93:D3:9B:6C:60:F6:DA:BC:07:62:01:00:89:76:C9
mozillacert13.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
06:08:3F:59:3F:15:A1:04:A0:69:A4:6B:A9:03:D0:06:B7:97:09:91

API Version 2010-03-31
147

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

mozillacert64.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
62:7F:8D:78:27:65:63:99:D2:7D:7F:90:44:C9:FE:B3:F3:3E:FA:9A
mozillacert110.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
93:05:7A:88:15:C6:4F:CE:88:2F:FA:91:16:52:28:78:BC:53:64:17
mozillacert128.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
A9:E9:78:08:14:37:58:88:F2:05:19:B0:6D:2B:0D:2B:60:16:90:7D
entrust2048ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
50:30:06:09:1D:97:D4:F5:AE:39:F7:CB:E7:92:7D:7D:65:2D:34:31
mozillacert53.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
7F:8A:B0:CF:D0:51:87:6A:66:F3:36:0F:47:C8:8D:8C:D3:35:FC:74
mozillacert117.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
D4:DE:20:D0:5E:66:FC:53:FE:1A:50:88:2C:78:DB:28:52:CA:E4:74
mozillacert150.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
33:9B:6B:14:50:24:9B:55:7A:01:87:72:84:D9:E0:2F:C3:D2:D8:E9
thawteserverca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
9F:AD:91:A6:CE:6A:C6:C5:00:47:C4:4E:C9:D4:A5:0D:92:D8:49:79
secomvalicertclass1ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
E5:DF:74:3C:B6:01:C4:9B:98:43:DC:AB:8C:E8:6A:81:10:9F:E4:8E
mozillacert42.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
85:A4:08:C0:9C:19:3E:5D:51:58:7D:CD:D6:13:30:FD:8C:DE:37:BF
gtecybertrustglobalca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
97:81:79:50:D8:1C:96:70:CC:34:D8:09:CF:79:44:31:36:7E:F4:74
mozillacert106.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
E7:A1:90:29:D3:D5:52:DC:0D:0F:C6:92:D3:EA:88:0D:15:2E:1A:6B
equifaxsecureebusinessca1, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
DA:40:18:8B:91:89:A3:ED:EE:AE:DA:97:FE:2F:9D:F5:B7:D1:8A:41
mozillacert93.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
31:F1:FD:68:22:63:20:EE:C6:3B:3F:9D:EA:4A:3E:53:7C:7C:39:17
quovadisrootca3, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
1F:49:14:F7:D8:74:95:1D:DD:AE:02:C0:BE:FD:3A:2D:82:75:51:85
quovadisrootca2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
CA:3A:FB:CF:12:40:36:4B:44:B2:16:20:88:80:48:39:19:93:7C:F7
soneraclass2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
37:F7:6D:E6:07:7C:90:C5:B1:3E:93:1A:B7:41:10:B4:F2:E4:9A:27
mozillacert31.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
9F:74:4E:9F:2B:4D:BA:EC:0F:31:2C:50:B6:56:3B:8E:2D:93:C3:11
mozillacert49.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
61:57:3A:11:DF:0E:D8:7E:D5:92:65:22:EA:D0:56:D7:44:B3:23:71
mozillacert82.pem, Apr 22, 2014, trustedCertEntry,

API Version 2010-03-31
148

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

Certificate fingerprint (SHA1):
2E:14:DA:EC:28:F0:FA:1E:8E:38:9A:4E:AB:EB:26:C0:0A:D3:83:C3
mozillacert146.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
21:FC:BD:8E:7F:6C:AF:05:1B:D1:B3:43:EC:A8:E7:61:47:F2:0F:8A
baltimorecybertrustca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
D4:DE:20:D0:5E:66:FC:53:FE:1A:50:88:2C:78:DB:28:52:CA:E4:74
mozillacert20.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
D8:C5:38:8A:B7:30:1B:1B:6E:D4:7A:E6:45:25:3A:6F:9F:1A:27:61
mozillacert38.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
CB:A1:C5:F8:B0:E3:5E:B8:B9:45:12:D3:F9:34:A2:E9:06:10:D3:36
mozillacert5.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
B8:01:86:D1:EB:9C:86:A5:41:04:CF:30:54:F3:4C:52:B7:E5:58:C6
mozillacert71.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
4A:BD:EE:EC:95:0D:35:9C:89:AE:C7:52:A1:2C:5B:29:F6:D6:AA:0C
verisignclass3g4ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:CF:8A:2D:64:C9:3F:6C:3A
mozillacert89.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
C8:EC:8C:87:92:69:CB:4B:AB:39:E9:8D:7E:57:67:F3:14:95:73:9D
mozillacert135.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
62:52:DC:40:F7:11:43:A2:2F:DE:9E:F7:34:8E:06:42:51:B1:81:18
camerfirmachamberscommerceca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
6E:3A:55:A4:19:0C:19:5C:93:84:3C:C0:DB:72:2E:31:30:61:F0:B1
mozillacert27.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
3A:44:73:5A:E5:81:90:1F:24:86:61:46:1E:3B:9C:C4:5F:F5:3A:1B
verisignclass3g2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
85:37:1C:A6:E5:50:14:3D:CE:28:03:47:1B:DE:3A:09:E8:F8:77:0F
mozillacert60.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
3B:C4:9F:48:F8:F3:73:A0:9C:1E:BD:F8:5B:B1:C3:65:C7:D8:11:B3
mozillacert78.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
29:36:21:02:8B:20:ED:02:F5:66:C5:32:D1:D6:ED:90:9F:45:00:2F
certumca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
62:52:DC:40:F7:11:43:A2:2F:DE:9E:F7:34:8E:06:42:51:B1:81:18
deutschetelekomrootca2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
85:A4:08:C0:9C:19:3E:5D:51:58:7D:CD:D6:13:30:FD:8C:DE:37:BF
mozillacert124.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
4D:23:78:EC:91:95:39:B5:00:7F:75:8F:03:3B:21:1E:C5:4D:8B:CF
mozillacert16.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
DA:C9:02:4F:54:D8:F6:DF:94:93:5F:B1:73:26:38:CA:6A:D7:7C:13
secomevrootca1, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):

API Version 2010-03-31
149

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

FE:B8:C4:32:DC:F9:76:9A:CE:AE:3D:D8:90:8F:FD:28:86:65:64:7D
mozillacert67.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
D6:9B:56:11:48:F0:1C:77:C5:45:78:C1:09:26:DF:5B:85:69:76:AD
globalsignr3ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
D6:9B:56:11:48:F0:1C:77:C5:45:78:C1:09:26:DF:5B:85:69:76:AD
mozillacert113.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
50:30:06:09:1D:97:D4:F5:AE:39:F7:CB:E7:92:7D:7D:65:2D:34:31
aolrootca2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
85:B5:FF:67:9B:0C:79:96:1F:C8:6E:44:22:00:46:13:DB:17:92:84
trustcenteruniversalcai, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
6B:2F:34:AD:89:58:BE:62:FD:B0:6B:5C:CE:BB:9D:D9:4F:4E:39:F3
aolrootca1, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
39:21:C1:15:C1:5D:0E:CA:5C:CB:5B:C4:F0:7D:21:D8:05:0B:56:6A
mozillacert56.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
F1:8B:53:8D:1B:E9:03:B6:A6:F0:56:43:5B:17:15:89:CA:F3:6B:F2
verisignc2g2.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
B3:EA:C4:47:76:C9:C8:1C:EA:F2:9D:95:B6:CC:A0:08:1B:67:EC:9D
verisignclass1g3ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
20:42:85:DC:F7:EB:76:41:95:57:8E:13:6B:D4:B7:D1:E9:8E:46:A5
mozillacert102.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
96:C9:1B:0B:95:B4:10:98:42:FA:D0:D8:22:79:FE:60:FA:B9:16:83
addtrustexternalca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
02:FA:F3:E2:91:43:54:68:60:78:57:69:4D:F5:E4:5B:68:85:18:68
verisignclass3ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
A1:DB:63:93:91:6F:17:E4:18:55:09:40:04:15:C7:02:40:B0:AE:6B
verisignc3g2.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
85:37:1C:A6:E5:50:14:3D:CE:28:03:47:1B:DE:3A:09:E8:F8:77:0F
mozillacert45.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
67:65:0D:F1:7E:8E:7E:5B:82:40:A4:F4:56:4B:CF:E2:3D:69:C6:F0
verisignc4g2.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
0B:77:BE:BB:CB:7A:A2:47:05:DE:CC:0F:BD:6A:02:FC:7A:BD:9B:52
digicertassuredidrootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
05:63:B8:63:0D:62:D7:5A:BB:C8:AB:1E:4B:DF:B5:A8:99:B2:4D:43
verisignclass1ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
CE:6A:64:A3:09:E4:2F:BB:D9:85:1C:45:3E:64:09:EA:E8:7D:60:F1
mozillacert109.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
B5:61:EB:EA:A4:DE:E4:25:4B:69:1A:98:A5:57:47:C2:34:C7:D9:71
thawtepremiumserverca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
E0:AB:05:94:20:72:54:93:05:60:62:02:36:70:F7:CD:2E:FC:66:66

API Version 2010-03-31
150

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

verisigntsaca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
BE:36:A4:56:2F:B2:EE:05:DB:B3:D3:23:23:AD:F4:45:08:4E:D6:56
mozillacert96.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
55:A6:72:3E:CB:F2:EC:CD:C3:23:74:70:19:9D:2A:BE:11:E3:81:D1
mozillacert142.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
1F:49:14:F7:D8:74:95:1D:DD:AE:02:C0:BE:FD:3A:2D:82:75:51:85
thawteprimaryrootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
91:C6:D6:EE:3E:8A:C8:63:84:E5:48:C2:99:29:5C:75:6C:81:7B:81
mozillacert34.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
59:22:A1:E1:5A:EA:16:35:21:F8:98:39:6A:46:46:B0:44:1B:0F:A9
mozillacert1.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
23:E5:94:94:51:95:F2:41:48:03:B4:D5:64:D2:A3:A3:F5:D8:8B:8C
mozillacert85.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
CF:9E:87:6D:D3:EB:FC:42:26:97:A3:B5:A3:7A:A0:76:A9:06:23:48
valicertclass2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
31:7A:2A:D0:7F:2B:33:5E:F5:A1:C3:4E:4B:57:E8:B7:D8:F1:FC:A6
mozillacert131.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
37:9A:19:7B:41:85:45:35:0C:A6:03:69:F3:3C:2E:AF:47:4F:20:79
mozillacert149.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
6E:3A:55:A4:19:0C:19:5C:93:84:3C:C0:DB:72:2E:31:30:61:F0:B1
geotrustprimaryca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
32:3C:11:8E:1B:F7:B8:B6:52:54:E2:E2:10:0D:D6:02:90:37:F0:96
mozillacert23.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
91:C6:D6:EE:3E:8A:C8:63:84:E5:48:C2:99:29:5C:75:6C:81:7B:81
verisignc1g2.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
27:3E:E1:24:57:FD:C4:F9:0C:55:E8:2B:56:16:7F:62:F5:32:E5:47
mozillacert8.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
3E:2B:F7:F2:03:1B:96:F3:8C:E6:C4:D8:A8:5D:3E:2D:58:47:6A:0F
mozillacert74.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
92:5A:8F:8D:2C:6D:04:E0:66:5F:59:6A:FF:22:D8:63:E8:25:6F:3F
mozillacert120.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
DA:40:18:8B:91:89:A3:ED:EE:AE:DA:97:FE:2F:9D:F5:B7:D1:8A:41
geotrustglobalca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
DE:28:F4:A4:FF:E5:B9:2F:A3:C5:03:D1:A3:49:A7:F9:96:2A:82:12
mozillacert138.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
E1:9F:E3:0E:8B:84:60:9E:80:9B:17:0D:72:A8:C5:BA:6E:14:09:BD
mozillacert12.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
A8:98:5D:3A:65:E5:E5:C4:B2:D7:D6:6D:40:C6:DD:2F:B1:9C:54:36
comodoaaaca, Apr 22, 2014, trustedCertEntry,

API Version 2010-03-31
151

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

Certificate fingerprint (SHA1):
D1:EB:23:A4:6D:17:D6:8F:D9:25:64:C2:F1:F1:60:17:64:D8:E3:49
mozillacert63.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
89:DF:74:FE:5C:F4:0F:4A:80:F9:E3:37:7D:54:DA:91:E1:01:31:8E
certplusclass2primaryca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
74:20:74:41:72:9C:DD:92:EC:79:31:D8:23:10:8D:C2:81:92:E2:BB
mozillacert127.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
DE:28:F4:A4:FF:E5:B9:2F:A3:C5:03:D1:A3:49:A7:F9:96:2A:82:12
ttelesecglobalrootclass2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
59:0D:2D:7D:88:4F:40:2E:61:7E:A5:62:32:17:65:CF:17:D8:94:E9
mozillacert19.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
B4:35:D4:E1:11:9D:1C:66:90:A7:49:EB:B3:94:BD:63:7B:A7:82:B7
digicerthighassuranceevrootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
5F:B7:EE:06:33:E2:59:DB:AD:0C:4C:9A:E6:D3:8F:1A:61:C7:DC:25
mozillacert52.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
8B:AF:4C:9B:1D:F0:2A:92:F7:DA:12:8E:B9:1B:AC:F4:98:60:4B:6F
mozillacert116.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
2B:B1:F5:3E:55:0C:1D:C5:F1:D4:E6:B7:6A:46:4B:55:06:02:AC:21
globalsignca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
B1:BC:96:8B:D4:F4:9D:62:2A:A8:9A:81:F2:15:01:52:A4:1D:82:9C
mozillacert41.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
6B:2F:34:AD:89:58:BE:62:FD:B0:6B:5C:CE:BB:9D:D9:4F:4E:39:F3
mozillacert59.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
36:79:CA:35:66:87:72:30:4D:30:A5:FB:87:3B:0F:A7:7B:B7:0D:54
mozillacert105.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
77:47:4F:C6:30:E4:0F:4C:47:64:3F:84:BA:B8:C6:95:4A:8A:41:EC
trustcenterclass2caii, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
AE:50:83:ED:7C:F4:5C:BC:8F:61:C6:21:FE:68:5D:79:42:21:15:6E
mozillacert92.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
A3:F1:33:3F:E2:42:BF:CF:C5:D1:4E:8F:39:42:98:40:68:10:D1:A0
geotrustprimarycag3, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
03:9E:ED:B8:0B:E7:A0:3C:69:53:89:3B:20:D2:D9:32:3A:4C:2A:FD
entrustsslca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
99:A6:9B:E6:1A:FE:88:6B:4D:2B:82:00:7C:B8:54:FC:31:7E:15:39
verisignc3g5.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:56:BE:3D:9B:67:44:A5:E5
geotrustprimarycag2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
8D:17:84:D5:37:F3:03:7D:EC:70:FE:57:8B:51:9A:99:E6:10:D7:B0
mozillacert30.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):

API Version 2010-03-31
152

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

E7:B4:F6:9D:61:EC:90:69:DB:7E:90:A7:40:1A:3C:F4:7D:4F:E8:EE
mozillacert48.pem, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHA1):
A0:A1:AB:90:C9:FC:84:7B:3B:12:61:E8:97:7D:5F:D3:22:61:D3:CC

Verifying the Signatures of Amazon SNS
Messages

You should verify the authenticity of a notification, subscription confirmation, or unsubscribe confirmation
message sent by Amazon SNS. Using information contained in the Amazon SNS message, your endpoint
can recreate the string to sign and the signature so that you can verify the contents of the message by
matching the signature you recreated from the message contents with the signature that Amazon SNS
sent with the message.

To help prevent spoofing attacks, you should do the following when verifying messages sent by Amazon
SNS:

• Always use HTTPS when getting the certificate from Amazon SNS.

• Validate the authenticity of the certificate.

• Verify the certificate was received from Amazon SNS.

• When possible, use one of the supported AWS SDKs for Amazon SNS to validate and verify messages.
For example, with the AWS SDK for PHP you would use the isValid method from the
MessageValidator class.

For example code for a Java servlet that handles Amazon SNS messages , see Example Code for an
Amazon SNS Endpoint Java Servlet (p. 155).

To verify the signature of an Amazon SNS message when using HTTP query-based requests

1. Extract the name/value pairs from the JSON document in the body of the HTTP POST request that
Amazon SNS sent to your endpoint.You'll be using the values of some of the name/value pairs to
create the string to sign. When you are verifying the signature of an Amazon SNS message, it is
critical that you convert the escaped control characters to their original character representations in
the Message and Subject values. These values must be in their original forms when you use them
as part of the string to sign. For information about how to parse the JSON document, see Step 1:
Make sure your endpoint is ready to process Amazon SNS messages (p. 128).

The SignatureVersion tells you the signature version. From the signature version, you can
determine the requirements for how to generate the signature. For Amazon SNS notifications, Amazon
SNS currently supports signature version 1. This section provides the steps for creating a signature
using signature version 1.

2. Get the X509 certificate that Amazon SNS used to sign the message. The SigningCertURL value
points to the location of the X509 certificate used to create the digital signature for the message.
Retrieve the certificate from this location.

3. Extract the public key from the certificate. The public key from the certificate specified by
SigningCertURL is used to verify the authenticity and integrity of the message.

4. Determine the message type. The format of the string to sign depends on the message type, which
is specified by the Type value.

5. Create the string to sign.The string to sign is a newline character–delimited list of specific name/value
pairs from the message. Each name/value pair is represented with the name first followed by a

API Version 2010-03-31
153

Amazon Simple Notification Service Developer Guide
Verifying Message Signatures

newline character, followed by the value, and ending with a newline character. The name/value pairs
must be listed in byte-sort order.

Depending on the message type, the string to sign must have the following name/value pairs.

Notification
Notification messages must contain the following name/value pairs:

Message
MessageId
Subject (if included in the message)
Timestamp
TopicArn
Type

The following example is a string to sign for a Notification.

Message
My Test Message
MessageId
4d4dc071-ddbf-465d-bba8-08f81c89da64
Subject
My subject
Timestamp
2012-06-05T04:37:04.321Z
TopicArn
arn:aws:sns:us-east-1:123456789012:s4-MySNSTopic-1G1WEFCOXTC0P
Type
Notification

SubscriptionConfirmation and UnsubscribeConfirmation
SubscriptionConfirmation and UnsubscribeConfirmation messages must contain the
following name/value pairs:

Message
MessageId
SubscribeURL
Timestamp
Token
TopicArn
Type

The following example is a string to sign for a SubscriptionConfirmation.

Message
My Test Message
MessageId
3d891288-136d-417f-bc05-901c108273ee
SubscribeURL
https://sns.us-west-2.amazonaws.com/?Action=ConfirmSubscription&Topi
cArn=arn:aws:sns:us-west-2:123456789012:s4-MySNSTopic-1G1WEF
COXTC0P&Token=2336412f37fb687f5d51e6e241d09c8058323f60b964268bfe08ce35640228c208a66d3621bd9f7b012918cf
d
cfe65e153df551f76df58ed147f1245e330ce77ceff06dedab9f051f7028657e6c42750bf64bc9ef711d494e9f7637b86e690779eb5568f72466806b246bd244fa9392b1bc01eeb1c5e420847a745b7aa4b0085
Timestamp

API Version 2010-03-31
154

Amazon Simple Notification Service Developer Guide
Verifying Message Signatures

2012-06-03T19:25:13.719Z
Token
2336412f37fb687f5d51e6e241d09c8058323f60b964268bfe08ce35640228c208a66d3621bd9f7b012918cf
d
cfe65e153df551f76df58ed147f1245e330ce77ceff06dedab9f051f7028657e6c42750bf64bc9ef711d494e9f7637b86e690779eb5568f72466806b246bd244fa9392b1bc01eeb1c5e420847a745b7aa4b0085
TopicArn
arn:aws:sns:us-west-2:123456789012:s4-MySNSTopic-1G1WEFCOXTC0P
Type
SubscriptionConfirmation

6. Decode the Signature value from Base64 format. The message delivers the signature in the
Signature value, which is encoded as Base64. Before you compare the signature value with the
signature you have calculated, make sure that you decode the Signature value from Base64 so
that you compare the values using the same format.

7. Generate the derived hash value of the Amazon SNS message. Submit the Amazon SNS message,
in canonical format, to the same hash function used to generate the signature.

8. Generate the asserted hash value of the Amazon SNS message. The asserted hash value is the
result of using the public key value (from step 3) to decrypt the signature delivered with the Amazon
SNS message.

9. Verify the authenticity and integrity of the Amazon SNS message. Compare the derived hash value
(from step 7) to the asserted hash value (from step 8). If the values are identical, then the receiver
is assured that the message has not been modified while in transit and the message must have
originated from Amazon SNS. If the values are not identical, it should not be trusted by the receiver.

Example Code for an Amazon SNS Endpoint
Java Servlet

Important
The following code snippets help you understand a Java servlet that processes Amazon SNS
HTTP POST requests.You should make sure that any portions of these snippets are suitable
for your purposes before implementing them in your production environment. For example, in a
production environment to help prevent spoofing attacks, you should verify that the identity of
the received Amazon SNS messages is from Amazon SNS.You can do this by checking that
the DNS Name value (DNS Name=sns.us-west-2.amazonaws.com in us-west-2; this will vary
by region) for the Subject Alternative Name field, as presented in the Amazon SNS Certificate,
is the same for the received Amazon SNS messages. For more information about verifying server
identity, see section 3.1. Server Identity in RFC 2818. Also see Verifying the Signatures of
Amazon SNS Messages (p. 153)

The following method implements an example of a handler for HTTP POST requests from Amazon SNS
in a Java servlet.

 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException, SecurityException{
 //Get the message type header.
 String messagetype = request.getHeader("x-amz-sns-message-type");
 //If message doesn't have the message type header, don't process it.
 if (messagetype == null)
 return;

 // Parse the JSON message in the message body

API Version 2010-03-31
155

Amazon Simple Notification Service Developer Guide
Example Code for an Endpoint Java Servlet

http://tools.ietf.org/search/rfc2818

 // and hydrate a Message object with its contents
 // so that we have easy access to the name/value pairs
 // from the JSON message.
 Scanner scan = new Scanner(request.getInputStream());
 StringBuilder builder = new StringBuilder();
 while (scan.hasNextLine()) {
 builder.append(scan.nextLine());
 }
 Message msg = readMessageFromJson(builder.toString());

 // The signature is based on SignatureVersion 1.
 // If the sig version is something other than 1,
 // throw an exception.
 if (msg.getSignatureVersion().equals("1")) {
 // Check the signature and throw an exception if the signature verification
 fails.
 if (isMessageSignatureValid(msg))
 log.info(">>Signature verification succeeded");
 else {
 log.info(">>Signature verification failed");
 throw new SecurityException("Signature verification failed.");
 }
 }
 else {
 log.info(">>Unexpected signature version. Unable to verify signature.");
 throw new SecurityException("Unexpected signature version. Unable to
verify signature.");
 }

 // Process the message based on type.
 if (messagetype.equals("Notification")) {
 //TODO: Do something with the Message and Subject.
 //Just log the subject (if it exists) and the message.
 String logMsgAndSubject = ">>Notification received from topic " +
msg.getTopicArn();
 if (msg.getSubject() != null)
 logMsgAndSubject += " Subject: " + msg.getSubject();
 logMsgAndSubject += " Message: " + msg.getMessage();
 log.info(logMsgAndSubject);
 }
 else if (messagetype.equals("SubscriptionConfirmation"))
 {
 //TODO: You should make sure that this subscription is from the topic
you expect. Compare topicARN to your list of topics
 //that you want to enable to add this endpoint as a subscription.

 //Confirm the subscription by going to the subscribeURL location
 //and capture the return value (XML message body as a string)
 Scanner sc = new Scanner(new URL(msg.getSubscribeURL()).openStream());
 StringBuilder sb = new StringBuilder();
 while (sc.hasNextLine()) {
 sb.append(sc.nextLine());
 }
 log.info(">>Subscription confirmation (" + msg.getSubscribeURL() +")
Return value: " + sb.toString());
 //TODO: Process the return value to ensure the endpoint is subscribed.
 }
 else if (messagetype.equals("UnsubscribeConfirmation")) {

API Version 2010-03-31
156

Amazon Simple Notification Service Developer Guide
Example Code for an Endpoint Java Servlet

 //TODO: Handle UnsubscribeConfirmation message.
 //For example, take action if unsubscribing should not have occurred.
 //You can read the SubscribeURL from this message and
 //re-subscribe the endpoint.
 log.info(">>Unsubscribe confirmation: " + msg.getMessage());
 }
 else {
 //TODO: Handle unknown message type.
 log.info(">>Unknown message type.");
 }
 log.info(">>Done processing message: " + msg.getMessageId());
 }

The following example Java method creates a signature using information from a Message object that
contains the data sent in the request body and verifies that signature against the original Base64-encoded
signature of the message, which is also read from the Message object.

 private static boolean isMessageSignatureValid(Message msg) {
 try {
 URL url = new URL(msg.getSigningCertURL());
 InputStream inStream = url.openStream();
 CertificateFactory cf = CertificateFactory.getInstance("X.509");
 X509Certificate cert = (X509Certificate)cf.generateCertificate(in
Stream);
 inStream.close();

 Signature sig = Signature.getInstance("SHA1withRSA");
 sig.initVerify(cert.getPublicKey());
 sig.update(getMessageBytesToSign(msg));
 return sig.verify(Base64.decodeBase64(msg.getSignature()));
 }
 catch (Exception e) {
 throw new SecurityException("Verify method failed.", e);
 }
 }

The following example Java methods work together to create the string to sign for an Amazon SNS
message. The getMessageBytesToSign method calls the appropriate string-to-sign method based on
the message type and runs the string to sign as a byte array. The buildNotificationStringToSign
and buildSubscriptionStringToSign methods create the string to sign based on the formats
described in Verifying the Signatures of Amazon SNS Messages (p. 153).

 private static byte [] getMessageBytesToSign (Message msg) {
 byte [] bytesToSign = null;
 if (msg.getType().equals("Notification"))
 bytesToSign = buildNotificationStringToSign(msg).getBytes();
 else if (msg.getType().equals("SubscriptionConfirmation") || msg.get
Type().equals("UnsubscribeConfirmation"))
 bytesToSign = buildSubscriptionStringToSign(msg).getBytes();
 return bytesToSign;
 }

 //Build the string to sign for Notification messages.
 public static String buildNotificationStringToSign(Message msg) {
 String stringToSign = null;

API Version 2010-03-31
157

Amazon Simple Notification Service Developer Guide
Example Code for an Endpoint Java Servlet

 //Build the string to sign from the values in the message.
 //Name and values separated by newline characters
 //The name value pairs are sorted by name
 //in byte sort order.
 stringToSign = "Message\n";
 stringToSign += msg.getMessage() + "\n";
 stringToSign += "MessageId\n";
 stringToSign += msg.getMessageId() + "\n";
 if (msg.getSubject() != null) {
 stringToSign += "Subject\n";
 stringToSign += msg.getSubject() + "\n";
 }
 stringToSign += "Timestamp\n";
 stringToSign += msg.getTimestamp() + "\n";
 stringToSign += "TopicArn\n";
 stringToSign += msg.getTopicArn() + "\n";
 stringToSign += "Type\n";
 stringToSign += msg.getType() + "\n";
 return stringToSign;
 }

 //Build the string to sign for SubscriptionConfirmation
 //and UnsubscribeConfirmation messages.
 public static String buildSubscriptionStringToSign(Message msg) {
 String stringToSign = null;
 //Build the string to sign from the values in the message.
 //Name and values separated by newline characters
 //The name value pairs are sorted by name
 //in byte sort order.
 stringToSign = "Message\n";
 stringToSign += msg.getMessage() + "\n";
 stringToSign += "MessageId\n";
 stringToSign += msg.getMessageId() + "\n";
 stringToSign += "SubscribeURL\n";
 stringToSign += msg.getSubscribeURL() + "\n";
 stringToSign += "Timestamp\n";
 stringToSign += msg.getTimestamp() + "\n";
 stringToSign += "Token\n";
 stringToSign += msg.getToken() + "\n";
 stringToSign += "TopicArn\n";
 stringToSign += msg.getTopicArn() + "\n";
 stringToSign += "Type\n";
 stringToSign += msg.getType() + "\n";
 return stringToSign;
 }

API Version 2010-03-31
158

Amazon Simple Notification Service Developer Guide
Example Code for an Endpoint Java Servlet

Invoking Lambda functions using
Amazon SNS notifications

Amazon SNS and AWS Lambda are integrated so you can invoke Lambda functions with Amazon SNS
notifications. When a message is published to an SNS topic that has a Lambda function subscribed to it,
the Lambda function is invoked with the payload of the published message.The Lambda function receives
the message payload as an input parameter and can manipulate the information in the message, publish
the message to other SNS topics, or send the message to other AWS services.

In addition, Amazon SNS also supports message delivery status attributes for message notifications sent
to Lambda endpoints. For more information, see Using Amazon SNS Topic Attributes for Message Delivery
Status.

Prerequisites
To invoke Lambda functions using Amazon SNS notifications, you need the following:

• Lambda function

• Amazon SNS topic

For information on creating a Lambda function, see Getting Started with AWS Lambda. For information
on creating a Amazon SNS topic, see Create a Topic.

Configuring Amazon SNS with Lambda
Endpoints with the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left Navigation pane, click Topics, and then click the topic to which you want to subscribe a
Lambda endpoint.

3. Click Actions and then click Subscribe to topic.

4. In the Protocol drop-down box, select AWS Lambda.

API Version 2010-03-31
159

Amazon Simple Notification Service Developer Guide
Prerequisites

http://docs.aws.amazon.com/sns/latest/dg/msg-status-topics.html
http://docs.aws.amazon.com/sns/latest/dg/msg-status-topics.html
http://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

5. In the Endpoint drop-down box, select the ARN for the Lambda function.

6. In the Version or Alias drop-down box, select an available version or alias to use.You can also
choose $LATEST to specifiy the latest version of the Lambda function. If you do not want to specify
a version or alias, you can also choose default, which is functionally the same as $LATEST. For
more information, see AWS Lambda Function Versioning and Aliases.

7. Click Create subscription.

When a message is published to an SNS topic that has a Lambda function subscribed to it, the Lambda
function is invoked with the payload of the published message. For information on how to create a sample
message history store using SNS, Lambda, and Amazon DynamoDB, see the AWS Mobile Development
blog Invoking AWS Lambda functions via Amazon SNS.

API Version 2010-03-31
160

Amazon Simple Notification Service Developer Guide
Configuring Amazon SNS with Lambda Endpoints with

the AWS Management Console

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
https://mobile.awsblog.com/post/Tx1VE917Z8J4UDY/Invoking-AWS-Lambda-functions-via-Amazon-SNS

Using Amazon SNS Topic
Attributes for Message Delivery
Status

Amazon SNS provides support to log the delivery status of notification messages sent to topics with the
following Amazon SNS endpoints:

• Application

• HTTP

• Lambda

• SQS

After you configure the message delivery status attributes, log entries will be sent to CloudWatch Logs
for messages sent to a topic subscribed to an Amazon SNS endpoint. Logging message delivery status
helps provide better operational insight, such as the following:

• Knowing whether a message was delivered to the Amazon SNS endpoint.

• Identifying the response sent from the Amazon SNS endpoint to Amazon SNS.

• Determining the message dwell time (the time between the publish timestamp and just before handing
off to an Amazon SNS endpoint).

To configure topic attributes for message delivery status, you can use the AWS Management Console,
AWS software development kits (SDKs), or query API.

Topics

• Configuring Message Delivery Status Attributes with the AWS Management Console (p. 162)

• Configuring Message Delivery Status Attributes for Topics Subscribed to Amazon SNS Endpoints
with the AWS SDKs (p. 162)

API Version 2010-03-31
161

Amazon Simple Notification Service Developer Guide

Configuring Message Delivery Status Attributes
with the AWS Management Console

The following steps describe how to use the console to configure the message delivery status attributes
for notifications from Amazon SNS to a AWS Lambda endpoint.

To configure message delivery status for notifications from Amazon SNS to a Lambda
endpoint:

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left Navigation pane, click Topics, and then click the topic to which you want to receive
message delivery status information.

3. Click Actions and then click Delivery status.

4. Click the Lambda check box.

5. On the Delivery Status dialog box, click Create IAM Roles.

You will then be redirected to the IAM console.

6. Click Allow to give Amazon SNS write access to use CloudWatch Logs on your behalf.

7. Switch back to the Delivery Status dialog box and enter a number in the Percentage of Success
to Sample (0-100) field for the percentage of successful messages sent for which you want to receive
CloudWatch Logs.

Note
After you configure application attributes for message delivery status, all failed message
deliveries generate CloudWatch Logs.

8. Finally, click Save Configuration.

You will now be able to view and parse the CloudWatch Logs containing the message delivery status.
For more information about using CloudWatch, see the CloudWatch Documentation.

Configuring Message Delivery Status Attributes
for Topics Subscribed to Amazon SNS
Endpoints with the AWS SDKs

The AWS SDKs provide APIs in several languages for using message delivery status attributes with
Amazon SNS.

Topic Attributes
You can use the following topic attribute name values for message delivery status:

Application

• ApplicationSuccessFeedbackRoleArn

• ApplicationSuccessFeedbackSampleRate

• ApplicationFailureFeedbackRoleArn

API Version 2010-03-31
162

Amazon Simple Notification Service Developer Guide
Configuring Message Delivery Status Attributes with the

AWS Management Console

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
http://aws.amazon.com/documentation/cloudwatch
http://aws.amazon.com/tools/

Note
In addition to being able to configure topic attributes for message delivery status of notification
messages sent to Amazon SNS application endpoints, you can also configure application
attributes for the delivery status of push notification messages sent to push notification services.
For more information, see Using Amazon SNS Application Attributes for Message Delivery
Status.

HTTP

• HTTPSuccessFeedbackRoleArn

• HTTPSuccessFeedbackSampleRate

• HTTPFailureFeedbackRoleArn

Lambda

• LambdaSuccessFeedbackRoleArn

• LambdaSuccessFeedbackSampleRate

• LambdaFailureFeedbackRoleArn

SQS

• SQSSuccessFeedbackRoleArn

• SQSSuccessFeedbackSampleRate

• SQSFailureFeedbackRoleArn

The <ENDPOINT>SuccessFeedbackRoleArn and <ENDPOINT>FailureFeedbackRoleArn attributes
are used to give Amazon SNS write access to use CloudWatch Logs on your behalf. The
<ENDPOINT>SuccessFeedbackSampleRate attribute is for specifying the sample rate percentage
(0-100) of successfully delivered messages. After you configure the
<ENDPOINT>FailureFeedbackRoleArn attribute, then all failed message deliveries generate CloudWatch
Logs.

Java Example to Configure Topic Attributes
The following Java example shows how to use the SetTopicAttributes API to configure topic attributes
for message delivery status of notification messages sent to topics subscribed to Amazon SNS endpoints.
In this example, it is assumed that string values have been set for topicArn, attribName, and
attribValue.

final static String topicArn = ("arn:aws:sns:us-west-2:123456789012:MyTopic");
final static String attribName = ("LambdaSuccessFeedbackRoleArn");
final static String attribValue = ("arn:aws:iam::123456789012:role/SNSSuccess
Feedback");

SetTopicAttributesRequest setTopicAttributesRequest = new SetTopicAttributes
Request();
setTopicAttributesRequest.withTopicArn(topicArn);
setTopicAttributesRequest.setAttributeName(attribName);
setTopicAttributesRequest.setAttributeValue(attribValue);

For more information about the SDK for Java, see Getting Started with the AWS SDK for Java.

API Version 2010-03-31
163

Amazon Simple Notification Service Developer Guide
Java Example to Configure Topic Attributes

http://docs.aws.amazon.com/sns/latest/dg/sns-msg-status.html
http://docs.aws.amazon.com/sns/latest/dg/sns-msg-status.html
http://aws.amazon.com/developers/getting-started/java/

Using Amazon SNS Message
Attributes

Amazon Simple Notification Service (Amazon SNS) provides support for delivery of message attributes
to Amazon SQS endpoints. Message attributes allow you to provide structured metadata items (such as
timestamps, geospatial data, signatures, and identifiers) about the message. Message attributes are
optional and separate from, but sent along with, the message body to Amazon SQS endpoints. This
information can be used by the receiver of the message to help decide how to handle the message without
having to first process the message body. Each message can have up to 10 attributes.To specify message
attributes, you can use the AWS software development kits (SDKs) or query API.

Important
To use message attributes with Amazon SQS endpoints, you must set the subscription attribute,
Raw Message Delivery, to True. For more information about Raw Message Delivery, see
Appendix: Large Payload and Raw Message Delivery (p. 183)

You can also use message attributes to help structure the push notification message for mobile endpoints.
In this scenario the message attributes are only used to help structure the push notification message and
are not delivered to the endpoint, as they are when sending messages with message attributes to Amazon
SQS endpoints.

Topics

• Message Attribute Items and Validation (p. 164)

• Message Attribute Data Types and Validation (p. 165)

• Reserved Message Attributes (p. 165)

• Using Message Attributes with the AWS SDKs (p. 166)

Message Attribute Items and Validation
Each message attribute consists of the following items:

• Name – The message attribute name can contain the following characters: A-Z, a-z, 0-9, underscore(_),
hyphen(-), and period (.).The name must not start or end with a period, and it should not have successive
periods. The name is case sensitive and must be unique among all attribute names for the message.
The name can be up to 256 characters long. The name cannot start with "AWS." or "Amazon." (or any
variations in casing) because these prefixes are reserved for use by Amazon Web Services.

API Version 2010-03-31
164

Amazon Simple Notification Service Developer Guide
Message Attribute Items and Validation

• Type – The supported message attribute data types are String, Number, and Binary. The data type
has the same restrictions on the content as the message body. The data type is case sensitive, and it
can be up to 256 bytes long. For more information, see the Message Attribute Data Types and
Validation (p. 165) section.

• Value – The user-specified message attribute value. For string data types, the value attribute has the
same restrictions on the content as the message body. For more information, see the Publish action
in the Amazon Simple Notification Service API Reference.

Name, type, and value must not be empty or null. In addition, the message body should not be empty or
null. All parts of the message attribute, including name, type, and value, are included in the message size
restriction, which is currently 256 KB (262,144 bytes).

Message Attribute Data Types and Validation
Message attribute data types identify how the message attribute values are handled by Amazon SNS.
For example, if the type is a number, Amazon SNS will validate that it's a number.

Amazon SNS supports the following logical data types:

• String – Strings are Unicode with UTF-8 binary encoding. For a list of code values, see http://
en.wikipedia.org/wiki/ASCII#ASCII_printable_characters.

• Number – Numbers are positive or negative integers or floating-point numbers. Numbers have sufficient
range and precision to encompass most of the possible values that integers, floats, and doubles typically
support. A number can have up to 38 digits of precision, and it can be between 10^-128 to 10^+126.
Leading and trailing zeroes are trimmed.

• Binary – Binary type attributes can store any binary data, for example, compressed data, encrypted
data, or images.

Reserved Message Attributes
The following table lists the reserved message attributes for push notification services that you can use
to structure your push notification message:

Allowed ValuesReserved Message AttributePush Notifica-
tion Service

1—development environment.
2—production environment. (default
1)

0—in-app message. 1—alert notifica-
tion. (default 1)

A short message identifier you can
attach to your message

AWS.SNS.MOBILE.BAIDU.DeployStatus
(optional)

AWS.SNS.MOBILE.BAIDU.MessageType
(optional)

AWS.SNS.MOBILE.BAIDU.MessageKey
(optional)

Baidu

token (for tile notifications), toast, raw

realtime, priority, regular

AWS.SNS.MOBILE.MPNS.Type (required)

AWS.SNS.MOBILE.MPNS.NotificationClass
(required)

MPNS

API Version 2010-03-31
165

Amazon Simple Notification Service Developer Guide
Data Types

http://docs.aws.amazon.com/sns/latest/api/API_Publish.html
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

Allowed ValuesReserved Message AttributePush Notifica-
tion Service

same as X-WNS-Type

same as X-WNS-Cache-Policy

same as X-WNS-Group

same as X-WNS-Match

same as X-WNS-SuppressPopup

same as X-WNS-Tag

AWS.SNS.MOBILE.WNS.Type (required)

AWS.SNS.MOBILE.WNS.CachePolicy (option-
al)

AWS.SNS.MOBILE.WNS.Group (optional)

AWS.SNS.MOBILE.WNS.Match (optional)

AWS.SNS.MOBILE.WNS.SuppressPopup
(optional)

AWS.SNS.MOBILE.WNS.Tag (optional)

WNS

For more information about using message attributes with Baidu, see Using Message Attributes for
Structuring the Message (p. 66).

Using Message Attributes with the AWS SDKs
The AWS SDKs provide APIs in several languages for using message attributes with Amazon SNS. Java
examples with message attributes are in the AWS sample file SNSMobilePush.java, which is included
in the snsmobilepush.zip file.

When setting message attributes for a message, you can use either a string value or a binary value,
but not both string and binary values.

For more information about the SDK for Java, see Getting Started with the AWS SDK for Java.

API Version 2010-03-31
166

Amazon Simple Notification Service Developer Guide
Using Message Attributes with the AWS SDKs

http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_type
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_cache
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_group
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_match
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_suppresspopup
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_tag
http://aws.amazon.com/tools/
samples/snsmobilepush.zip
http://aws.amazon.com/developers/getting-started/java/

Monitoring Amazon SNS with
CloudWatch

Amazon SNS and CloudWatch are integrated so you can collect, view, and analyze metrics for every
active Amazon SNS topic. Once you have configured CloudWatch for Amazon SNS, you can gain better
insight into the performance of your Amazon SNS topics and Amazon SNS push notifications. For example,
you can set an alarm to send you an email notification if a specified threshold is met for an Amazon SNS
metric, such as NumberOfNotificationsFailed. For a list of all the metrics that Amazon SNS sends to
CloudWatch, see Amazon SNS Metrics (p.169).For more information about Amazon SNS push notifications,
see Amazon SNS Mobile Push Notifications (p. 36)

The metrics you configure with CloudWatch for your Amazon SNS topics are automatically collected and
pushed to CloudWatch every five minutes. These metrics are gathered on all topics that meet the
CloudWatch guidelines for being active. A topic is considered active by CloudWatch for up to six hours
from the last activity (i.e., any API call) on the topic.

Note
There is no charge for the Amazon SNS metrics reported in CloudWatch; they are provided as
part of the Amazon SNS service.

Access CloudWatch Metrics for Amazon SNS
You can monitor metrics for Amazon SNS using the CloudWatch console, CloudWatch's own command
line interface (CLI), or programmatically using the CloudWatch API. The following procedures show you
how to access the metrics using these different options.

To view metrics using the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Click View Metrics.

3. From the Viewing drop-down menu select either SNS:Topic Metrics, SNS: Push Notifications
by Application, SNS: Push Notifications by Application and Platform, or SNS: Push Notifications
by Platform to show the available metrics.

4. Click a specific item to see more detail, such as a graph of the data collected. For example, the
following graph of the selected metric, NumberOfMessagesPublished, shows the average number
of published Amazon SNS messages for a five-minute period throughout the time range of 6 hours.

API Version 2010-03-31
167

Amazon Simple Notification Service Developer Guide
Access CloudWatch Metrics for Amazon SNS

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

To access metrics from the CloudWatch CLI

• Call mon-get-stats.You can learn more about this and other metrics-related functions in the
Amazon CloudWatch Developer Guide.

To access metrics from the CloudWatch API

• Call GetMetricStatistics.You can learn more about this and other metrics-related functions in
the Amazon CloudWatch API Reference.

Set CloudWatch Alarms for Amazon SNS Metrics
CloudWatch also allows you to set alarms when a threshold is met for a metric. For example, you could
set an alarm for the metric, NumberOfNotificationsFailed, so that when your specified threshold number
is met within the sampling period, then an email notification would be sent to inform you of the event.

To set alarms using the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Click Alarms, and then click the Create Alarm button. This launches the Create Alarm wizard.

3. Scroll through the Amazon SNS metrics to locate the metric you want to place an alarm on. Select
the metric to create an alarm on and click Continue.

4. Fill in the Name, Description, Threshold, and Time values for the metric, and then click Continue.

5. Choose Alarm as the alarm state. If you want CloudWatch to send you an email when the alarm
state is reached, either select a preexisting Amazon SNS topic or click Create New Email Topic. If

API Version 2010-03-31
168

Amazon Simple Notification Service Developer Guide
Set CloudWatch Alarms for Amazon SNS Metrics

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cli-mon-get-stats.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

you click Create New Email Topic, you can set the name and email addresses for a new topic. This
list will be saved and appear in the drop-down box for future alarms. Click Continue.

Note
If you use Create New Email Topic to create a new Amazon SNS topic, the email addresses
must be verified before they will receive notifications. Emails are sent only when the alarm
enters an alarm state. If this alarm state change happens before the email addresses are
verified, they will not receive a notification.

6. At this point, the Create Alarm wizard gives you a chance to review the alarm you’re about to create.
If you need to make any changes, you can use the Edit links on the right. Once you are satisfied,
click Create Alarm.

For more information about using CloudWatch and alarms, see the CloudWatch Documentation.

Amazon SNS Metrics
Amazon SNS sends the following metrics to CloudWatch.

DescriptionMetric

The number of messages published.

Units: Count

Valid Statistics: Sum

NumberOfMessagesPublished

The size of messages published.

Units: Bytes

Valid Statistics: Minimum, Maximum, Average and Count

PublishSize

The number of messages successfully delivered.

Units: Count

Valid Statistics: Sum

NumberOfNotificationsDelivered

The number of messages that Amazon SNS failed to
deliver. This metric is applied after Amazon SNS stops
attempting message deliveries to Amazon SQS, email,
SMS, or mobile push endpoints. Each delivery attempt
to an HTTP or HTTPS endpoint adds 1 to the metric. For
all other endpoints, the count increases by 1 when the
message is not delivered (regardless of the number of
attempts).You can control the number of retries for HTTP
endpoints; for more information, see Setting Amazon SNS
Delivery Retry Policies for HTTP/HTTPS End-
points (p. 134).

Units: Count

Valid Statistics: Sum, Average

NumberOfNotificationsFailed

API Version 2010-03-31
169

Amazon Simple Notification Service Developer Guide
Amazon SNS Metrics

http://aws.amazon.com/documentation/cloudwatch

Dimensions for Amazon Simple Notification
Service Metrics

Amazon Simple Notification Service sends the following dimensions to CloudWatch.

DescriptionDimension

Filters on application objects, which represent an app and device
registered with one of the supported push notification services, such
as APNS and GCM.

Application

Filters on application and platform objects, where the platform objects
are for the supported push notification services, such as APNS and
GCM.

Application,Platform

Filters on platform objects for the push notification services, such as
APNS and GCM.

Platform

Filters on Amazon SNS topic names.TopicName

API Version 2010-03-31
170

Amazon Simple Notification Service Developer Guide
Dimensions for Amazon Simple Notification Service

Metrics

Logging Amazon Simple
Notification Service API Calls By
Using AWS CloudTrail

Amazon SNS is integrated with CloudTrail, a service that captures API calls made by or on behalf of
Amazon SNS in your AWS account and delivers the log files to an Amazon S3 bucket that you specify.
CloudTrail captures API calls made from the Amazon SNS console or from the Amazon SNS API. Using
the information collected by CloudTrail, you can determine what request was made to Amazon SNS, the
source IP address from which the request was made, who made the request, when it was made, and so
on. To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail
User Guide.

Amazon SNS Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to Amazon SNS actions are
tracked in log files. Amazon SNS records are written together with other AWS service records in a log
file. CloudTrail determines when to create and write to a new file based on a time period and file size.

The following actions are supported:

• AddPermission

• ConfirmSubscription

• CreatePlatformApplication

• CreatePlatformEndpoint

• CreateTopic

• DeleteEndpoint

• DeletePlatformApplication

• DeleteTopic

• GetEndpointAttributes

• GetPlatformApplicationAttributes

• GetSubscriptionAttributes

• GetTopicAttributes

API Version 2010-03-31
171

Amazon Simple Notification Service Developer Guide
Amazon SNS Information in CloudTrail

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/sns/latest/api/API_AddPermission.html
http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformEndpoint.html
http://docs.aws.amazon.com/sns/latest/api/API_CreateTopic.html
http://docs.aws.amazon.com/sns/latest/api/API_DeleteEndpoint.html
http://docs.aws.amazon.com/sns/latest/api/API_DeletePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_DeleteTopic.html
http://docs.aws.amazon.com/sns/latest/api/API_GetEndpointAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_GetPlatformApplicationAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_GetSubscriptionAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_GetTopicAttributes.html

• ListEndpointsByPlatformApplication

• ListPlatformApplications

• ListSubscriptions

• ListSubscriptionsByTopic

• ListTopics

• RemovePermission

• SetEndpointAttributes

• SetPlatformApplicationAttributes

• SetSubscriptionAttributes

• SetTopicAttributes

• Subscribe

• Unsubscribe

Note
When you are not logged in to Amazon Web Services (unauthenticated mode) and either the
ConfirmSubscription or Unsubscribe actions are invoked, then they will not be logged to CloudTrail.
Such as, when you click the provided link in an email notification to confirm a pending subscription
to a topic, the ConfirmSubscription action is invoked in unauthenticated mode. In this
example, the ConfirmSubscription action would not be logged to CloudTrail.

Every log entry contains information about who generated the request. The user identity information in
the log helps you determine whether the request was made with root or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userIdentity field in the CloudTrail Event Reference.

You can store your log files in your bucket for as long as you want, but you can also define Amazon S3
lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by using
Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered
if you want to take quick action upon log file delivery. For more information, see Configuring Amazon
SNS Notifications.

You can also aggregate Amazon SNS log files from multiple AWS regions and multiple AWS accounts
into a single Amazon S3 bucket. For more information, see Aggregating CloudTrail Log Files to a Single
Amazon S3 Bucket.

Understanding Amazon SNS Log File Entries
CloudTrail log files contain one or more log entries where each entry is made up of multiple JSON-formatted
events. A log entry represents a single request from any source and includes information about the
requested action, any parameters, the date and time of the action, and so on. The log entries are not
guaranteed to be in any particular order. That is, they are not an ordered stack trace of the public API
calls.

The following example shows a CloudTrail log entry for the ListTopics, CreateTopic, and
DeleteTopic actions.

{
 "Records": [
 {

API Version 2010-03-31
172

Amazon Simple Notification Service Developer Guide
Understanding Amazon SNS Log File Entries

http://docs.aws.amazon.com/sns/latest/api/API_ListEndpointsByPlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_ListPlatformApplications.html
http://docs.aws.amazon.com/sns/latest/api/API_ListSubscriptions.html
http://docs.aws.amazon.com/sns/latest/api/API_ListSubscriptionsByTopic.html
http://docs.aws.amazon.com/sns/latest/api/API_ListTopics.html
http://docs.aws.amazon.com/sns/latest/api/API_RemovePermission.html
http://docs.aws.amazon.com/sns/latest/api/API_SetEndpointAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_SetPlatformApplicationAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_SetSubscriptionAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_SetTopicAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
http://docs.aws.amazon.com/sns/latest/api/API_Unsubscribe.html
http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
http://docs.aws.amazon.com/sns/latest/api/API_Unsubscribe.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

 "eventVersion": "1.02",
 "userIdentity": {
 "type":"IAMUser",
 "userName":"Bob"
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Bob",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2014-09-30T00:00:00Z",
 "eventSource": "sns.amazonaws.com",
 "eventName": "ListTopics",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version",
 "requestParameters": {
 "nextToken": "ABCDEF1234567890EXAMPLE=="
 },
 "responseElements": null,
 "requestID": "example1-b9bb-50fa-abdb-80f274981d60",
 "eventID": "example0-09a3-47d6-a810-c5f9fd2534fe",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 },
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type":"IAMUser",
 "userName":"Bob"
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Bob",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2014-09-30T00:00:00Z",
 "eventSource": "sns.amazonaws.com",
 "eventName": "CreateTopic",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version",
 "requestParameters": {
 "name": "hello"
 },
 "responseElements": {
 "topicArn": "arn:aws:sns:us-west-2:123456789012:hello-topic"
 },
 "requestID": "example7-5cd3-5323-8a00-f1889011fee9",
 "eventID": "examplec-4f2f-4625-8378-130ac89660b1",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 },
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type":"IAMUser",
 "userName":"Bob"
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Bob",

API Version 2010-03-31
173

Amazon Simple Notification Service Developer Guide
Understanding Amazon SNS Log File Entries

 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2014-09-30T00:00:00Z",
 "eventSource": "sns.amazonaws.com",
 "eventName": "DeleteTopic",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version",
 "requestParameters": {
 "topicArn": "arn:aws:sns:us-west-2:123456789012:hello-topic"
 },
 "responseElements": null,
 "requestID": "example5-4faa-51d5-aab2-803a8294388d",
 "eventID": "example8-6443-4b4d-abfd-1b867280d964",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 },
]
}

API Version 2010-03-31
174

Amazon Simple Notification Service Developer Guide
Understanding Amazon SNS Log File Entries

Appendix: Message and JSON
Formats

Amazon SNS uses the following formats.

Topics

• HTTP/HTTPS Headers (p. 175)

• HTTP/HTTPS Subscription Confirmation JSON Format (p. 176)

• HTTP/HTTPS Notification JSON Format (p. 178)

• HTTP/HTTPS Unsubscribe Confirmation JSON Format (p. 179)

• SetSubscriptionAttributes Delivery Policy JSON Format (p. 181)

• SetTopicAttributes Delivery Policy JSON Format (p. 181)

HTTP/HTTPS Headers
When Amazon SNS sends a subscription confirmation, notification, or unsubscribe confirmation message
to HTTP/HTTPS endpoints, it sends a POST message with a number of Amazon SNS-specific header
values.You can use these header values to do things such as identify the type of message without having
to parse the JSON message body to read the Type value.

x-amz-sns-message-type
The type of message. The possible values are SubscriptionConfirmation, Notification,
and UnsubscribeConfirmation.

x-amz-sns-message-id
A Universally Unique Identifier, unique for each message published. For a notification that Amazon
SNS resends during a retry, the message ID of the original message is used.

x-amz-sns-topic-arn
The Amazon Resource Name (ARN) for the topic that this message was published to.

x-amz-sns-subscription-arn
The ARN for the subscription to this endpoint.

The following HTTP POST header is an example of a header for a Notification message to an HTTP
endpoint.

API Version 2010-03-31
175

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Headers

POST / HTTP/1.1
x-amz-sns-message-type: Notification
x-amz-sns-message-id: 165545c9-2a5c-472c-8df2-7ff2be2b3b1b
x-amz-sns-topic-arn: arn:aws:sns:us-west-2:123456789012:MyTopic
x-amz-sns-subscription-arn: arn:aws:sns:us-west-2:123456789012:MyTopic:2bcfbf39-
05c3-41de-beaa-fcfcc21c8f55
Content-Length: 1336
Content-Type: text/plain; charset=UTF-8
Host: myhost.example.com
Connection: Keep-Alive
User-Agent: Amazon Simple Notification Service Agent

HTTP/HTTPS Subscription Confirmation JSON
Format

After you subscribe an HTTP/HTTPS endpoint, Amazon SNS sends a subscription confirmation message
to the HTTP/HTTPS endpoint. This message contains a SubscribeURL value that you must visit to
confirm the subscription (alternatively, you can use the Token value with the ConfirmSubscription). Note
that Amazon SNS will not send notifications to this endpoint until the subscription is confirmed.

The subscription confirmation message is a POST message with a message body that contains a JSON
document with the following name/value pairs.

Message
A string that describes the message. For subscription confirmation, this string looks like this:

You have chosen to subscribe to the topic arn:aws:sns:us-east-
1:123456789012:MyTopic.\nTo confirm the subscription, visit the SubscribeURL
 included in this message.

MessageId
A Universally Unique Identifier, unique for each message published. For a message that Amazon
SNS resends during a retry, the message ID of the original message is used.

Signature
Base64-encoded "SHA1withRSA" signature of the Message, MessageId, Type, Timestamp, and
TopicArn values.

SignatureVersion
Version of the Amazon SNS signature used.

SigningCertURL
The URL to the certificate that was used to sign the message.

SubscribeURL
The URL that you must visit in order to confirm the subscription. Alternatively, you can instead use
the Token with the ConfirmSubscription action to confirm the subscription.

Timestamp
The time (GMT) when the subscription confirmation was sent.

Token
A value you can use with the ConfirmSubscription action to confirm the subscription. Alternatively,
you can simply visit the SubscribeURL.

TopicArn
The Amazon Resource Name (ARN) for the topic that this endpoint is subscribed to.

API Version 2010-03-31
176

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Subscription Confirmation JSON Format

http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html

Type
The type of message. For a subscription confirmation, the type is SubscriptionConfirmation.

The following HTTP POST message is an example of a SubscriptionConfirmation message to an HTTP
endpoint.

POST / HTTP/1.1
x-amz-sns-message-type: SubscriptionConfirmation
x-amz-sns-message-id: 165545c9-2a5c-472c-8df2-7ff2be2b3b1b
x-amz-sns-topic-arn: arn:aws:sns:us-west-2:123456789012:MyTopic
Content-Length: 1336
Content-Type: text/plain; charset=UTF-8
Host: myhost.example.com
Connection: Keep-Alive
User-Agent: Amazon Simple Notification Service Agent

{
 "Type" : "SubscriptionConfirmation",
 "MessageId" : "165545c9-2a5c-472c-8df2-7ff2be2b3b1b",
 "Token" :
"2336412f37fb687f5d51e6e241d09c805a5a57b30d712f794cc5f6a988666d92768dd60a747ba6f3beb71854e285d6ad02428b09ceece29417f1f02d609c582af
bacc99c583a916b9981dd2728f4ae6fdb82efd087cc3b7849e05798d2d2785c03b0879594eeac82c01f235d0e717736",

 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:MyTopic",
 "Message" : "You have chosen to subscribe to the topic arn:aws:sns:us-west-
2:123456789012:MyTopic.\nTo confirm the subscription, visit the SubscribeURL
included in this message.",
 "SubscribeURL" : "https://sns.us-west-2.amazonaws.com/?Action=ConfirmSubscrip
tion&TopicArn=arn:aws:sns:us-west-2:123456789012:MyTop
ic&Token=2336412f37fb687f5d51e6e241d09c805a5a57b30d712f794cc5f6a988666d92768dd60a747ba6f3beb71854e285d6ad02428b09ceece29417f1f02d609c582af
bacc99c583a916b9981dd2728f4ae6fdb82efd087cc3b7849e05798d2d2785c03b0879594eeac82c01f235d0e717736",

 "Timestamp" : "2012-04-26T20:45:04.751Z",
 "SignatureVersion" : "1",
 "Signature" : "EXAMPLEpH+DcEwjAPg8O9mY8dReBSwksfg2S7WKQcikcNK
WLQjwu6A4VbeS0QHVCkhRS7fUQvi2egU3N858fiTDN6bkkOxYDVrY0Ad8L10Hs3zH81mtnPk5uvvol
IC1CXGu43obcgFxeL3khZl8IKvO61GWB6jI9b5+gLPoBc1Q=",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/SimpleNotificationSer
vice-f3ecfb7224c7233fe7bb5f59f96de52f.pem"
 }

You can download the following JSON file to view the definition of the JSON format for a subscription
confirmation: https://sns.us-west-2.amazonaws.com/doc/2010-03-31/SubscriptionConfirmation.json.

API Version 2010-03-31
177

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Subscription Confirmation JSON Format

https://sns.us-west-2.amazonaws.com/doc/2010-03-31/SubscriptionConfirmation.json

HTTP/HTTPS Notification JSON Format
When Amazon SNS sends a notification to a subscribed HTTP or HTTPS endpoint, the POST message
sent to the endpoint has a message body that contains a JSON document with the following name/value
pairs.

Message
The Message value specified when the notification was published to the topic.

MessageId
A Universally Unique Identifier, unique for each message published. For a notification that Amazon
SNS resends during a retry, the message ID of the original message is used.

Signature
Base64-encoded "SHA1withRSA" signature of the Message, MessageId, Subject (if present), Type,
Timestamp, and TopicArn values.

SignatureVersion
Version of the Amazon SNS signature used.

SigningCertURL
The URL to the certificate that was used to sign the message.

Subject
The Subject parameter specified when the notification was published to the topic. Note that this is
an optional parameter. If no Subject was specified, then this name/value pair does not appear in this
JSON document.

Timestamp
The time (GMT) when the notification was published.

TopicArn
The Amazon Resource Name (ARN) for the topic that this message was published to.

Type
The type of message. For a notification, the type is Notification.

UnsubscribeURL
A URL that you can use to unsubscribe the endpoint from this topic. If you visit this URL, Amazon
SNS unsubscribes the endpoint and stops sending notifications to this endpoint.

The following HTTP POST message is an example of a Notification message to an HTTP endpoint.

POST / HTTP/1.1
x-amz-sns-message-type: Notification
x-amz-sns-message-id: 22b80b92-fdea-4c2c-8f9d-bdfb0c7bf324
x-amz-sns-topic-arn: arn:aws:sns:us-west-2:123456789012:MyTopic
x-amz-sns-subscription-arn: arn:aws:sns:us-west-2:123456789012:MyTopic:c9135db0-
26c4-47ec-8998-413945fb5a96
Content-Length: 773
Content-Type: text/plain; charset=UTF-8
Host: myhost.example.com
Connection: Keep-Alive
User-Agent: Amazon Simple Notification Service Agent

{
 "Type" : "Notification",
 "MessageId" : "22b80b92-fdea-4c2c-8f9d-bdfb0c7bf324",
 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:MyTopic",
 "Subject" : "My First Message",
 "Message" : "Hello world!",
 "Timestamp" : "2012-05-02T00:54:06.655Z",

API Version 2010-03-31
178

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Notification JSON Format

 "SignatureVersion" : "1",
 "Signature" : "EXAMPLEw6JRNwm1LFQL4ICB0bnXrdB8ClRMTQFGBqwLp
GbM78tJ4etTwC5zU7O3tS6tGpey3ejedNdOJ+1fkIp9F2/LmNVKb5aFlYq+9rk9ZiPph5YlLmWsD
cyC5T+Sy9/umic5S0UQc2PEtgdpVBahwNOdMW4JPwk0kAJJztnc=",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/SimpleNotificationSer
vice-f3ecfb7224c7233fe7bb5f59f96de52f.pem",
 "UnsubscribeURL" : "https://sns.us-west-2.amazonaws.com/?Action=Unsubscribe&Sub
scriptionArn=arn:aws:sns:us-west-2:123456789012:MyTopic:c9135db0-26c4-47ec-8998-
413945fb5a96"
}

You can download the following JSON file to view the definition of the JSON format for a notification:
https://sns.us-west-2.amazonaws.com/doc/2010-03-31/Notification.json.

HTTP/HTTPS Unsubscribe Confirmation JSON
Format

After an HTTP/HTTPS endpoint is unsubscribed from a topic, Amazon SNS sends an unsubscribe
confirmation message to the endpoint.

The unsubscribe confirmation message is a POST message with a message body that contains a JSON
document with the following name/value pairs.

Message
A string that describes the message. For unsubscribe confirmation, this string looks like this:

You have chosen to deactivate subscription arn:aws:sns:us-east-
1:123456789012:MyTopic:2bcfbf39-05c3-41de-beaa-fcfcc21c8f55.\nTo cancel this
 operation and restore the subscription, visit the SubscribeURL included in
 this message.

MessageId
A Universally Unique Identifier, unique for each message published. For a message that Amazon
SNS resends during a retry, the message ID of the original message is used.

Signature
Base64-encoded "SHA1withRSA" signature of the Message, MessageId, Type, Timestamp, and
TopicArn values.

SignatureVersion
Version of the Amazon SNS signature used.

SigningCertURL
The URL to the certificate that was used to sign the message.

SubscribeURL
The URL that you must visit in order to re-confirm the subscription. Alternatively, you can instead
use the Token with the ConfirmSubscription action to re-confirm the subscription.

Timestamp
The time (GMT) when the unsubscribe confirmation was sent.

Token
A value you can use with the ConfirmSubscription action to re-confirm the subscription. Alternatively,
you can simply visit the SubscribeURL.

API Version 2010-03-31
179

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Unsubscribe Confirmation JSON Format

https://sns.us-west-2.amazonaws.com/doc/2010-03-31/Notification.json
http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html

TopicArn
The Amazon Resource Name (ARN) for the topic that this endpoint has been unsubscribed from.

Type
The type of message. For a unsubscribe confirmation, the type is UnsubscribeConfirmation.

The following HTTP POST message is an example of a UnsubscribeConfirmation message to an HTTP
endpoint.

POST / HTTP/1.1
x-amz-sns-message-type: UnsubscribeConfirmation
x-amz-sns-message-id: 47138184-6831-46b8-8f7c-afc488602d7d
x-amz-sns-topic-arn: arn:aws:sns:us-west-2:123456789012:MyTopic
x-amz-sns-subscription-arn: arn:aws:sns:us-west-2:123456789012:MyTopic:2bcfbf39-
05c3-41de-beaa-fcfcc21c8f55
Content-Length: 1399
Content-Type: text/plain; charset=UTF-8
Host: myhost.example.com
Connection: Keep-Alive
User-Agent: Amazon Simple Notification Service Agent

{
 "Type" : "UnsubscribeConfirmation",
 "MessageId" : "47138184-6831-46b8-8f7c-afc488602d7d",
 "Token" : "2336412f37fb687f5d51e6e241d09c805a5a57b30d712f7948a98bac386ed
fe3e10314e873973b3e0a3c09119b722dedf2b5e31c59b13ed
bb26417c19f109351e6f2169efa9085ffe97e10535f4179ac1a03590b0f541f209c190f9ae23219ed6c470453e06c19b5ba9fcbb27daeb7c7",

 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:MyTopic",
 "Message" : "You have chosen to deactivate subscription arn:aws:sns:us-west-
2:123456789012:MyTopic:2bcfbf39-05c3-41de-beaa-fcfcc21c8f55.\nTo cancel this
operation and restore the subscription, visit the SubscribeURL included in this
 message.",
 "SubscribeURL" : "https://sns.us-west-2.amazonaws.com/?Action=ConfirmSubscrip
tion&TopicArn=arn:aws:sns:us-west-2:123456789012:MyTop
ic&Token=2336412f37fb687f5d51e6e241d09c805a5a57b30d712f7948a98bac386ed
fe3e10314e873973b3e0a3c09119b722dedf2b5e31c59b13ed
bb26417c19f109351e6f2169efa9085ffe97e10535f4179ac1a03590b0f541f209c190f9ae23219ed6c470453e06c19b5ba9fcbb27daeb7c7",

 "Timestamp" : "2012-04-26T20:06:41.581Z",
 "SignatureVersion" : "1",
 "Signature" : "EXAMPLEHXgJmXqnqsHTlqOCk7TIZsnk8zpJJoQbr8leD+8kAHcke3ClC4VPOvd
pZo9s/vR9GOznKab6sjGxE8uwqDI9HwpDm8lGxSlFGuwCruWeecnt7MdJCNh0XK4XQCbtGoXB762ePJ
faSWi9tYwzW65zAFU04WkNBkNsIf60=",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/SimpleNotificationSer
vice-f3ecfb7224c7233fe7bb5f59f96de52f.pem"
 }

You can download the following JSON file to view the definition of the JSON format for an unsubscribe
confirmation: https://sns.us-west-2.amazonaws.com/doc/2010-03-31/UnsubscribeConfirmation.json.

API Version 2010-03-31
180

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Unsubscribe Confirmation JSON Format

https://sns.us-west-2.amazonaws.com/doc/2010-03-31/UnsubscribeConfirmation.json

SetSubscriptionAttributes Delivery Policy JSON
Format

If you send a request to the SetSubscriptionAttributes action and set the AttributeName parameter to a
value of DeliveryPolicy, the value of the AttributeValue parameter must be a valid JSON object. For
example, the following example sets the delivery policy to 5 total retries.

http://sns.us-east-1.amazonaws.com/
?Action=SetSubscriptionAttributes
&SubscriptionArn=arn%3Aaws%3Asns%3Aus-east-1%3A123456789012%3AMy-Top
ic%3A80289ba6-0fd4-4079-afb4-ce8c8260f0ca
&AttributeName=DeliveryPolicy
&AttributeValue={"healthyRetryPolicy":{"numRetries":5}}
...

Use the following JSON format for the value of the AttributeValue parameter.

{
 "healthyRetryPolicy" : {
 "minDelayTarget" : <int>,
 "maxDelayTarget" : <int>,
 "numRetries" : <int>,
 "numMaxDelayRetries" : <int>,
 "backoffFunction" : "<linear|arithmetic|geometric|exponential>"
 },
 "throttlePolicy" : {
 "maxReceivesPerSecond" : <int>
 }
}

For more information about the SetSubscriptionAttribute action, go to SetSubscriptionAttributes in the
Amazon Simple Notification Service API Reference.

SetTopicAttributes Delivery Policy JSON Format
If you send a request to the SetTopicAttributes action and set the AttributeName parameter to a value of
DeliveryPolicy, the value of the AttributeValue parameter must be a valid JSON object. For example,
the following example sets the delivery policy to 5 total retries.

http://sns.us-east-1.amazonaws.com/
?Action=SetTopicAttributes
&TopicArn=arn%3Aaws%3Asns%3Aus-east-1%3A123456789012%3AMy-Topic
&AttributeName=DeliveryPolicy
&AttributeValue={"http":{"defaultHealthyRetryPolicy":{"numRetries":5}}}
...

Use the following JSON format for the value of the AttributeValue parameter.

API Version 2010-03-31
181

Amazon Simple Notification Service Developer Guide
SetSubscriptionAttributes Delivery Policy JSON Format

http://docs.aws.amazon.com/sns/latest/api/API_SetSubscriptionAttributes.html

{
 "http" : {
 "defaultHealthyRetryPolicy" : {
 "minDelayTarget": <int>,
 "maxDelayTarget": <int>,
 "numRetries": <int>,
 "numMaxDelayRetries": <int>,
 "backoffFunction": "<linear|arithmetic|geometric|exponential>"
 },
 "disableSubscriptionOverrides" : <boolean>,
 "defaultThrottlePolicy" : {
 "maxReceivesPerSecond" : <int>
 }
 }
}

For more information about the SetTopicAttribute action, go to SetTopicAttributes in the Amazon Simple
Notification Service API Reference.

API Version 2010-03-31
182

Amazon Simple Notification Service Developer Guide
SetTopicAttributes Delivery Policy JSON Format

http://docs.aws.amazon.com/sns/latest/api/API_SetTopicAttributes.html

Appendix: Large Payload and Raw
Message Delivery

With Amazon SNS and Amazon SQS, you now have the ability to send large payload messages that are
up to 256KB (262,144 bytes) in size. To send large payloads (messages between 64KB and 256KB),
you must use an AWS SDK that supports AWS Signature Version 4 (SigV4) signing. To verify whether
SigV4 is supported for an AWS SDK, check the SDK release notes.

In addition to sending large payloads, with Amazon SNS you can now enable raw message delivery for
messages delivered to either Amazon SQS endpoints or HTTP/S endpoints. This eliminates the need for
the endpoints to process JSON formatting, which is created for the Amazon SNS metadata when raw
message delivery is not selected. For example when enabling raw message delivery for an Amazon SQS
endpoint, the Amazon SNS metadata is not included and the published message is delivered to the
subscribed Amazon SQS endpoint as is. When enabling raw message delivery for HTTP/S endpoints,
the messages will contain an additional HTTP header x-amz-sns-rawdelivery with a value of true
to indicate that the message is being published raw instead of with JSON formatting. This enables those
endpoints to understand what is being delivered and enables easier transition for subscriptions from
JSON to raw delivery.

To enable raw message delivery using one of the AWS SDKs, you must use the
SetSubscriptionAttribute action and configure the RawMessageDelivery attribute with a value
of true. The default value is false.

Enabling Raw Message Delivery with the AWS
Management Console

You can enable raw message delivery using the AWS Management Console by setting the Raw Message
Delivery subscription attribute to a value of true.

To enable raw message delivery with the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. Select a topic that is subscribed to either an Amazon SQS endpoint or an HTTP/S endpoint and then
click the topic ARN.

API Version 2010-03-31
183

Amazon Simple Notification Service Developer Guide
Enabling Raw Message Delivery with the AWS

Management Console

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

The Topic Details page appears.

3. Select the Subscription ID and then click the Other subscription actions drop-down box.

4. Click Edit subscription attributes, select Raw Message Delivery, and then click Set subscription
attributes.

API Version 2010-03-31
184

Amazon Simple Notification Service Developer Guide
Enabling Raw Message Delivery with the AWS

Management Console

Document History

The following table describes the important changes to the documentation since the last release of the
Amazon SNS Developer Guide.

• API version: 2010-03-31

• Latest documentation update: September 23, 2015

Date ChangedDescriptionChange

September 23, 2015Added a topic about how to create a platform endpoint
and manage device tokens for Amazon SNS mobile push
notification. For more information, see Create a Platform
Endpoint and Manage Device Tokens (p. 83).

Platform endpoints
and device tokens

September 23, 2015Added a topic about how to trigger notifications when cer-
tain application events occur. For more information, see
Application Event Notifications (p. 93).

Application event
notifications

June 15, 2015Added new topics about sending push notification mes-
sages to VoIP and Mac OS X apps using Apple Push No-
tification Service. For more information, see Getting Started
with Apple Push Notification Service (p. 44).

New support for
VoIP and Mac OS X
push notifications

April 09, 2015Added a topic on how to invoke Lambda functions using
Amazon SNS notifications. For more information, see In-
voking Lambda functions using Amazon SNS notifica-
tions (p. 159).

Invoking AWS
Lambda functions

April 09, 2015Added a topic on using Amazon SNS topic attributes for
message delivery status. For more information, see Using
Amazon SNS Topic Attributes for Message Delivery
Status (p. 161).

Using Amazon SNS
topic attributes for
message delivery
status

February 05, 2015Added a topic on using Amazon SNS application attributes
for message delivery status. For more information, see
Using Amazon SNS Application Attributes for Message
Delivery Status (p. 90).

Support to log the
delivery status of
push notification
messages

API Version 2010-03-31
185

Amazon Simple Notification Service Developer Guide

Date ChangedDescriptionChange

October 09, 2014Added a topic on logging Amazon SNS API calls by using
CloudTrail. For more information, see Logging Amazon
Simple Notification Service API Calls By Using AWS
CloudTrail (p. 171).

Support for AWS
CloudTrail with
Amazon Simple No-
tification Service

October 09, 2014Added a topic about the high-level steps you must perform
to use Amazon SNS mobile push.This information should
help you gain a better understanding of the steps involved
when using the Amazon SNS mobile push APIs. For more
information, see Amazon SNS Mobile Push High Level
Steps (p. 38).

Amazon SNS mo-
bile push high-level
steps

August 19, 2014Updated a topic on how to send authenticated messages
with MPNS. For more information, see Getting Started with
MPNS (p. 72).

Support for authen-
ticated messages
with Microsoft Push
Notification Service
for Windows Phone

July 10, 2014Added a topic on how to specify expiration metadata for
a mobile push notification message. For more information,
see Using the Amazon SNS Time To Live (TTL) Message
Attribute for Mobile Push Notifications (p. 95).

Support for setting
a Time To Live
(TTL) message at-
tribute for mobile
push notification
messages

June 12, 2014Added topics on how to use Baidu, MPNS, and WNS, with
Amazon SNS to send push notification messages to mobile
devices. For more information, see Getting Started with
Baidu Cloud Push (p. 50), Getting Started with
MPNS (p. 72), and Getting Started with WNS (p. 75).

Support for Baidu
Cloud Push, Mi-
crosoft Push Notific-
ation Service for
Windows Phone,
and Windows Push
Notification Services

June 12, 2014Message attributes allow you to provide structured
metadata items about a message. For more information,
see Using Amazon SNS Message Attributes (p. 164).

Message attributes

April 23, 2014Added a section about using the AWS SDK for Java with
Amazon SNS. Examples in this section show how to create
a new Amazon SNS client, set the Amazon SNS endpoint
to use, and create a new topic. In addition, examples are
provided on how to subscribe to, publish to, and delete a
topic. For more information, see Using the AWS SDK for
Java with Amazon SNS (p. 9).

Amazon SNS
samples in Java

December 17, 2013Added a topic about how to create and send custom plat-
form-specific payloads in messages to mobile devices.
For more information, see Send Custom Platform-Specific
Payloads in Messages to Mobile Devices (p. 88).

Mobile push notifica-
tions

August 13, 2013Added support to send notification messages directly to
apps on mobile devices. For more information, see
Amazon SNS Mobile Push Notifications (p. 36).

Mobile push notifica-
tions

May 1, 2013This is the first release of the Amazon SNS Developer
Guide.

Initial Release

API Version 2010-03-31
186

Amazon Simple Notification Service Developer Guide

	Amazon Simple Notification Service
	Table of Contents
	What is Amazon Simple Notification Service?
	Are You a First-Time Amazon Simple Notification Service User?
	Beyond the Getting Started Section
	Accessing Amazon SNS
	Common Amazon SNS Scenarios
	Fanout
	Application and System Alerts
	Push Email and Text Messaging
	Mobile Push Notifications

	Getting Started with Amazon Simple Notification Service
	Before You Begin
	Create a Topic
	Subscribe to a Topic
	Publish to a Topic
	Create Different Messages for Each Protocol

	Clean Up
	Using the AWS SDK for Java with Amazon SNS

	Managing Access to Your Amazon SNS Topics
	Overview
	When to Use Access Control
	Key Concepts
	Permission
	Statement
	Policy
	Issuer
	Principal
	Action
	Resource
	Conditions and Keys
	Requester
	Evaluation
	Effect
	Default Deny
	Allow
	Explicit Deny

	Architectural Overview
	Using the Access Policy Language
	Evaluation Logic
	The Interplay of Explicit and Default Denials

	Example Cases for Amazon SNS Access Control
	Allowing AWS account Access to a Topic
	Limiting Subscriptions to HTTPS
	Publishing to an Amazon SQS Queue
	Allowing Any AWS Resource to Publish to a Topic
	Allowing an Amazon S3 Bucket to Publish to a Topic

	Special Information for Amazon SNS Policies
	Amazon SNS Policy Limits
	Valid Amazon SNS Policy Actions
	Amazon SNS Keys

	Controlling User Access to Your AWS Account
	IAM and Amazon SNS Policies Together
	Amazon SNS ARNs
	Amazon SNS Actions
	Amazon SNS Keys
	Amazon SNS Keys

	Example Policies for Amazon SNS
	Using Temporary Security Credentials

	Amazon SNS Mobile Push Notifications
	Overview
	Prerequisites
	Amazon SNS Mobile Push High‐Level Steps
	Step 1: Request Credentials from Mobile Platforms
	Step 2: Request Token from Mobile Platforms
	Step 3: Create Platform Application Object
	Step 4: Create Platform Endpoint Object
	Step 5: Publish Message to Mobile Endpoint

	Getting Started with Amazon Device Messaging
	ADM Prerequisites
	Step 1: Create a Kindle Fire App with the ADM Service Enabled
	Step 2: Obtain a Client ID and Client Secret
	Step 3: Obtain an API Key
	Step 4: Obtain a Registration ID
	Step 5: Sending a Push Notification Message to a Kindle Fire app using Amazon SNS and ADM

	Getting Started with Apple Push Notification Service
	APNS Prerequisites
	Step 1: Create an iOS App
	Step 2: Obtain an APNS SSL Certificate
	Step 3: Obtain the App Private Key
	Step 4: Verify the Certificate and App Private Key
	Step 5: Obtain a Device Token
	Next Steps
	Send a push notification message to an iOS app using Amazon SNS and APNS
	Send a push notification message to a VoIP iOS app using Amazon SNS and APNS
	Send a push notification message to a Mac OS X app using Amazon SNS and APNS

	Getting Started with Baidu Cloud Push
	Baidu Prerequisites
	Step 1: Create a Baidu Account
	Step 2: Register as a Baidu Developer
	Step 3: Create a Baidu Cloud Push Project
	Step 4: Download and Install the Android Demo App from Baidu
	Step 5: Obtain a User Id and Channel Id from Baidu
	Step 6: Send a Push Notification Message to a Mobile Endpoint using Amazon SNS and Baidu
	Creating an Amazon SNS Endpoint for Baidu
	Using Message Attributes for Structuring the Message

	Getting Started with Google Cloud Messaging for Android
	GCM Prerequisites
	Step 1: Create a Google API Project and Enable the GCM Service
	Step 2: Obtain the Server API Key
	Step 3: Obtain a Registration ID from GCM
	Step 4: Send a Push Notification Message to a Mobile Endpoint using GCM

	Getting Started with MPNS
	MPNS Prerequisites
	Step 1: Set Up Your Windows Phone App to Receive Push Notifications Messages
	Step 2: Get a Push Notification URI from MPNS
	Step 3: Create a Windows Developer Account
	Step 4: Upload TLS Certificate
	Step 5: Send a Push Notification Message to a Windows Phone app using Amazon SNS and MPNS

	Getting Started with WNS
	WNS Prerequisites
	Step 1: Set Up Your App to Receive Push Notifications Messages
	Step 2: Get a Push Notification URI from WNS
	Step 3: Get a Package Security Identifier from WNS
	Step 4: Get a Secret Key from WNS
	Step 5: Send a Push Notification Message to an App using Amazon SNS and WNS

	Using Amazon SNS Mobile Push
	Register Your Mobile App with AWS
	Add Device Tokens or Registration IDs
	Create a Platform Endpoint and Manage Device Tokens
	Create a Platform Endpoint
	Pseudo Code
	Java Example
	Troubleshooting
	Repeatedly Calling Create Platform Endpoint with an Outdated Device Token
	Re-Enabling a Platform Endpoint Associated with an Invalid Device Token

	Send a Direct Message to a Mobile Device
	Send Messages to Mobile Devices Subscribed to a Topic
	Send Custom Platform-Specific Payloads in Messages to Mobile Devices
	JSON Formatted Message Data
	Platform-Specific Key-Value Pairs
	Messages to an App on Multiple Platforms

	Using Amazon SNS Application Attributes for Message Delivery Status
	Configuring Message Delivery Status Attributes with the AWS Management Console
	Amazon SNS Message Delivery Status CloudWatch Log Examples
	Configuring Message Delivery Status Attributes with the AWS SDKs
	Platform Response Codes

	Application Event Notifications
	Available Application Events
	How to Set Application Event Notifications
	AWS Management Console
	AWS CLI
	AWS SDKs

	Using the Amazon SNS Time To Live (TTL) Message Attribute for Mobile Push Notifications
	TTL Message Attributes for Push Notification Services
	Precedence Order for Determining TTL
	Specifying TTL with the AWS Management Console
	Specifying TTL with the AWS SDKs

	Using Amazon SNS Mobile Push APIs
	API Errors for Amazon SNS Mobile Push

	Sending Amazon SNS Messages to Amazon SQS Queues
	Step 1. Get the ARN of the queue and the topic.
	Step 2. Give permission to the Amazon SNS topic to send messages to the Amazon SQS queue
	Step 3. Subscribe the queue to the Amazon SNS topic
	Step 4. Give users permissions to the appropriate topic and queue actions
	Adding a policy to an IAM user or group
	Adding a policy to a topic or queue

	Step 5. Test it
	Sending Amazon SNS messages to an Amazon SQS queue in a different account
	Queue Owner Creates Subscription
	User Who Does Not Own the Queue Creates Subscription

	Using an AWS CloudFormation Template to Create a Topic that Sends Messages to Amazon SQS Queues
	Using an AWS CloudFormation Template to Set Up Topics and Queues Within an AWS Account

	Sending and Receiving SMS Notifications Using Amazon SNS
	Task 1: Assign a Topic Display Name
	Task 2: Subscribe to a Topic Using the SMS Protocol
	Task 3: Publish a Message
	Task 4: Cancel SMS Subscriptions

	Sending Amazon SNS Messages to HTTP/HTTPS Endpoints
	Step 1: Make sure your endpoint is ready to process Amazon SNS messages
	Step 2: Subscribe the HTTP/HTTPS endpoint to the Amazon SNS topic
	Step 3: Confirm the subscription
	Step 4: Set the delivery retry policy for the subscription (optional)
	Step 5: Give users permissions to publish to the topic (optional)
	Step 6: Send messages to the HTTP/HTTPS endpoint
	Setting Amazon SNS Delivery Retry Policies for HTTP/HTTPS Endpoints
	Applying Delivery Policies to Topics and Subscriptions
	Setting the Maximum Receive Rate
	Immediate Retry Phase
	Pre-Backoff Phase
	Backoff Phase
	Post-Backoff Phase

	Certificate Authorities (CA) Recognized by Amazon SNS for HTTPS Endpoints
	Verifying the Signatures of Amazon SNS Messages
	Example Code for an Amazon SNS Endpoint Java Servlet

	Invoking Lambda functions using Amazon SNS notifications
	Prerequisites
	Configuring Amazon SNS with Lambda Endpoints with the AWS Management Console

	Using Amazon SNS Topic Attributes for Message Delivery Status
	Configuring Message Delivery Status Attributes with the AWS Management Console
	Configuring Message Delivery Status Attributes for Topics Subscribed to Amazon SNS Endpoints with the AWS SDKs
	Topic Attributes
	Java Example to Configure Topic Attributes

	Using Amazon SNS Message Attributes
	Message Attribute Items and Validation
	Message Attribute Data Types and Validation
	Reserved Message Attributes
	Using Message Attributes with the AWS SDKs

	Monitoring Amazon SNS with CloudWatch
	Access CloudWatch Metrics for Amazon SNS
	Set CloudWatch Alarms for Amazon SNS Metrics
	Amazon SNS Metrics
	Dimensions for Amazon Simple Notification Service Metrics

	Logging Amazon Simple Notification Service API Calls By Using AWS CloudTrail
	Amazon SNS Information in CloudTrail
	Understanding Amazon SNS Log File Entries

	Appendix: Message and JSON Formats
	HTTP/HTTPS Headers
	HTTP/HTTPS Subscription Confirmation JSON Format
	HTTP/HTTPS Notification JSON Format
	HTTP/HTTPS Unsubscribe Confirmation JSON Format
	SetSubscriptionAttributes Delivery Policy JSON Format
	SetTopicAttributes Delivery Policy JSON Format

	Appendix: Large Payload and Raw Message Delivery
	Enabling Raw Message Delivery with the AWS Management Console

	Document History

