- published: 29 Apr 2016
- views: 11
In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the same number of points.
Although certain specific configurations had been studied earlier (for instance by Thomas Kirkman in 1849), the formal study of configurations was first introduced by Theodor Reye in 1876, in the second edition of his book Geometrie der Lage, in the context of a discussion of Desargues' theorem. Ernst Steinitz wrote his dissertation on the subject in 1894, and they were popularized by Hilbert and Cohn-Vossen's 1932 book Anschauliche Geometrie (reprinted in English as Geometry and the Imagination).
Configurations may be studied either as concrete sets of points and lines in a specific geometry, such as the Euclidean or projective planes (these are said to be realizable in that geometry), or as abstract incidence structures. In the latter case they are closely related to regular hypergraphs and regular bipartite graphs, but with some additional restrictions: every two points of the incidence structure can be associated with at most one line, and every two lines can be associated with at most one point. That is, the girth of the corresponding bipartite graph (the Levi graph of the configuration) must be at least six.
Geometry (Ancient Greek: γεωμετρία; geo- "earth", -metria "measurement") is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer. Geometry arose independently in a number of early cultures as a body of practical knowledge concerning lengths, areas, and volumes, with elements of a formal mathematical science emerging in the West as early as Thales (6th Century BC). By the 3rd century BC geometry was put into an axiomatic form by Euclid, whose treatment—Euclidean geometry—set a standard for many centuries to follow.Archimedes developed ingenious techniques for calculating areas and volumes, in many ways anticipating modern integral calculus. The field of astronomy, especially mapping the positions of the stars and planets on the celestial sphere and describing the relationship between movements of celestial bodies, served as an important source of geometric problems during the next one and a half millennia. Both geometry and astronomy were considered in the classical world to be part of the Quadrivium, a subset of the seven liberal arts considered essential for a free citizen to master.
Bike Crank in ANSYS AIM - Geometry Configuration
Cis-Trans and E-Z Naming Scheme for Alkenes
Projective Geometry 7 Harmonic Quadrangles & The 13 Configuration
Bonding Models and Lewis Structures: Crash Course Chemistry #24
Orbitals: Crash Course Chemistry #25
Configuration and Conformation
Crystal Field Theory (Octahedral Geometry) for Coordination Compounds
Configuration Space Visualization
VSEPR Theory: Common Mistakes
MCNP 04 | Simple Geometrical Configuration
sp3, sp2, and sp Hybridization
Constructing The Dual Of A Quadrangle - The Thirteen Point Configuration